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Stéphane ROBIN INRAe
Adrian RÖLLIN National University of Singapore

Examinateurs:
Hélène GUERIN Université du Québec à Montréal
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Résumé

L’échantillonage en fonction des répondants (“Respondent Driven Sampling", RDS)
peut être utilisé pour découvrir des réseaux sociaux dans des populations cachées.
Ceci peut conduire à l’étude d’une chaı̂ne de Markov sur un graphe aléatoire dont les
sommets représentent les individus et dont les arêtes décrivent les relations entre les
deux personnes qu’elles relient. Les personnes interrogées sont invitées à indiquer
leurs partenaires et un certain nombre de coupons sont remis à certaines de ces
personnes. Par chaînage on peut ainsi retrouver les noeuds cachés dans la population
en suivant au hasard les arêtes du réseau social sous-jacent.

Nous considérons un processus renormalisé de la chaı̂ne de référence sur le modèle
Erdös-Rényi, puis sur le modèle à blocs stochastiques (“Stochastic Block Model",
SBM), qui en est une extension lorsque les populations sont partitionnées en com-
munautés. La difficulté réside dans la gestion de l’hétérogénéité du graphe. Dans
notre étude, le graphe et la marche aléatoire sont construits simultanément. Nous
démontrons que lorsque la taille de la population est grande et les graphes sparses,
le processus aléatoire représentant la fraction du graphe découverte, correctement
normalisé, se comporte comme une courbe déterministe qui est la solution unique
d’un système d’ODE.

Par ailleurs, nous nous intéressons également au problème de récupérer des informa-
tions statistiques sur un modèle à bloc stochastique à partir du sous-graphe découvert
par une marche aléatoire (correspondant à un RDS à un coupon). Nous considérons
ici le cas dense où le réseau aléatoire peut être approché par un graphon. Tout d’abord,
nous écrivons la vraisemblance du sous-graphe découvert par la marche aléatoire:
des biais émergent car les “hubs” et les types majoritaires sont plus susceptibles
d’être échantillonnés. Même dans le cas où les types sont observés, l’estimateur du
maximum de vraisemblance n’est plus explicite. Lorsque les types de sommets ne



sont pas observés, nous utilisons un algorithme SAEM (“Stochastic Approximation
version of Expectation-Maximization algorithm”) pour maximiser la vraisemblance.
Deuxièmement, nous proposons une stratégie d’estimation différente en utilisant les
nouveaux résultats d’Athreya et Röllin. Elle consiste à dé-biaiser l’estimateur EM
variationnel proposé par Daudin et al. et qui ignore les biais.

Mots clés: graphe aléatoire; Erdös-Rényi graphe; stochastic block model; graphon;
processus stochastique; chaı̂ne de Markov; théorème centrale limite; exploration du
marche aléatoire; sondage biaisé; EM estimation; EM approximation stochastique;
vraisemblance incomplète; respondent driven sampling



Abstract

The study of Respondent Driven Sampling (RDS) is invested for the discovery of
a social network of hidden populations. It leads to the study of a Markov chain
on a random graph whose vertices represent individuals and whose edges describe
the relationships between the people connected. Respondents are asked to list their
partners and a certain number of coupons are given to some of the latter. The RDS
survey searches for hidden nodes in the population by randomly following the edges
of the underlying social network, which allows us to trace the sampled individuals.

We consider the normalized process of the reference chain on the Erdös-Rényi model,
then on its generalization, the Stochastic Block Model (SBM) when populations are
partitioned into communities. We prove that when the population size is large and
the graph is sparse, the normalized stochastic process describing the fraction of the
graph discovered behaves like a deterministic curve which is the unique solution of
a system of ODEs. In our model, the graph and the random walk are constructed
simultaneously. The difficulty lies in handling the heterogeneity of the graph.

Furthermore, we are also interested in the problem of recovering statistical informa-
tion on a SBM from the subgraph discovered by an exploring random walk (RDS
with 1 coupon per interviewee). We consider here the dense case where the random
network can be approximated by a graphon. First, we write the probability of the
subgraph discovered by the random walk: biases emerge because the hubs and the
majority types are more likely to be sampled. Even for the case where the types
are observed, the maximum likelihood estimator is not explicit any more. When the
types of the vertices are unobserved, we use an SAEM (Stochastic approximation
of Expectation-Maximization) algorithm to maximize the likelihood. Second, we
propose a different estimation strategy using new results by Athreya and Röllin. It
consists in de-biasing the variational EM estimator proposed in Daudin et al. and



that ignores the biases.

Keywords: random graph; Erdös-Rényi graph; stochastic block model; graphon;
stochastic processes; Markov chain; central limit theorem; random walk exploration;
sampling bias; EM estimation; stochastic approximation expectation-maximization;
incomplete likelihood; respondent driven sampling; chain-referral survey
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Glossaries, notations and symbols

In this section, I list all of the acronyms, operators and notations I will use throughout
this thesis. There may be ones that are only defined here and used later without recall
the definition at the place they appear.

Acronyms

Initials Meaning

AIDS Acquired Immune Deficiency Syndrome

BP branching Process

càdlàg (in French) continue à droite, limite à gauche

CRS Chain referral sampling

ER Erdös-Rényi

GWP Galton-Waston process

HCV Hepatitis C virus

i.i.d. indentically and independently distributed

MLE maximum likelihood estimator

MSM men who have sex with men



Initials Meaning

PWID people who inject drugs

RDS Respondent Driven Sampling

resp. respectly

RW random walk

SAEM Stochastic Approxiamtion of Expectation-
Maximization

SBM Stochastic Block Model

SSBM symmetric Stochastic Block Model

w.r.t. with respect to

Notations

Notations Meaning Page

ER(N, p) Erdös-Rényi graph with N vertices, each pair of
vertices is connected with probability p.

xi, 11

X
(d)
= Y the two random variables X and Y have the same

law.
xi, 42

Xn
(d)−→ X the sequence (Xn)n converges in distribution to

X .
xi, 66

# the cardinal of a set. xi, 102

N∗ the set of strictly positive natural numbers
{1, 2, . . .}.

xi, 4

N the set of natural numbers {0, 1, 2, . . .}. xi, 4(
n
k

)
n chooses k. xi, 43

[[n]] the set of {1, · · · , n} for every n ∈ N∗. xi, 4

Bin(n, p) the binomial distribution of parameters n and p. xi, 42

C(E,F ) the space of all continuous functions defined in
E, taking value in F .

xi, 25

Cb(E,F ) the space of bounded functions defined in E and
taking values in F .

xi, 66



Notations Meaning Page

C(2) the second largest component. xi, 12

Cmax the largest component. xi, 12

D(E,F ) the Skorokhod space, where each element is a
right continuous with left limits function, defined
in E and taking value in F .

xi, 25

W the space of all graphons. xi, 17

a ∧ b the minimum of two numbers of a and b. xi, 43

f(n) � g(n) two quantities f(n) and g(n) have the same order
as n tends to infinity.

xi, 16

Operators

Operators Meaning Page

δ�(κ1, κ2) The cut-metric of two graphons κ1 and κ2. xi

〈M〉 quadratic variation of the martingale M . xi

dsub(G,G
′) The subgraph distance of two graphs G and G′. xi
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0.1 Motivations 3

0.1 Motivations

A random graph is used to describe a discrete structure composed of nodes or vertices
linked together by edges in some random ways. Graph or network structure is encoun-
tered in various situations and several different scales, from the modeling behaviors
of human society to the microscopic particles in our body. It attracts attention of
researchers in many fields of science and has increasing importance in applications:
General applications Newman et al. gave some general studies of random graphs
applied in internet, epidemics, cellular networks and genetic networks, food webs,
traffic networks (see [99] for details); Public health Modelling of hepatitis C virus
transmission among people who inject drugs [24]; Social networks Modelling the
relationships of people in Facebook, or the interactions in twitter,... [71] and many
more.

In many applications, exploration of random graphs has been used to gather data,
to model and to generate classes of networks that evolve in time like: the flow of
information in the Internet, the transmission of disease, the biological evolution, ...
This procedure is not only applied in describing the mechanism of a system but is also
used to reveal networks which is difficult to observe. One of the main applications
in this thesis comes from public health and deals with the propagation of diseases
associated with sexual or drug exchanges and sociology: how to explore a population,
in which each individual contacts to the others in some way but all the information
about this group is hidden due to the illegal behaviors such as people who inject
drugs (PWID), men having sex with men (MSM),... Discovering the topology of
these social networks may be of primary importance for modeling of the spread of
diseases such as Acquired Immune Deficiency Syndrome (AIDS) or hepatitis C virus
(HCV) in view of public health issues. We refer to [83, 23] for AIDS or to [24, 25,
53] for HCV, for example. Once the random graph or graphon - a continuous version
of the graphs that will be presented in the sequel - are estimated, they can serve in
modeling applications (see e.g. the SIS model of [103]).

The exploration process is based on a “peer-to-peer" networking, meaning that from a
source of items chosen, the network is explored step by step through the connections
between relating nodes. Several methods have been proposed to make use of this
feature on the exploration such as: snowball sampling, targeting sampling, chain
referral sampling, etc., where respondents recruit their peers [47, 49, 70]. Inherited
from the idea of referral chain, Respondent Driven Sampling (RDS, see [49, 50, 51])
was developed as an efficient method of sampling. During the survey, at every wave
of respondent, all the information of who recruited whom is kept, which is combined
later on with the knowledge of each individual’s connections to reweigh the sample.
Henceforth, from a group of initial individuals, the hidden graph is explored step by
step by propagating the walkers along its edges.

The networks in real world are very complex: visualizing them, modeling them,
understanding them, using them raise new challenges. Here, we are interested in the
process of discovering them. Typically, a graph is not known in detail and when we
may have only a partial information about it or even it can be totally hidden. For
this reason, we are encouraged to look for the suitable exploration algorithm with
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the hope that from the initial data, we can capture some features of the underlying
network. Under this circumstance, a random graph model is helpful and can serve
as benchmark. In this thesis, we restrict the mathematics analysis to two classes of
random graphs defined precisely in the next section: the Erdös-Rényi (ER) graph [87,
88, 92, 36, 37, 94] where pairs of vertices are linked independently with a probability
p ∈ (0, 1) and the Stochastic Block Model (SBM) [2, 3, 54] allowing to account for
covariates and cluster features in the graph.

In the following of this section, we present the random graphs, some basic models,
their important properties which are used in our work. The principle of the RDS is
explained in details with the basic notations of following chapters. The main results
of this thesis are presented. These results are objects of three papers:

• Respondent Driving Sampling on sparse Erdös-Rényi graph. (in progress)
• Chain referral sampling on Stochastic Block Model. (to be published)
• Estimation of dense stochastic block models visited by a random walk. (sub-

mitted)

0.2 Random graph and some basic models

With the network structure, we are interested in modeling objects with pair inter-
actions between them. Each object is represented by a node (or a vertex) and the
connections between pairs of nodes are indicated by edges.

0.2.1 Basis of graph theory

All the basic definitions in this section are referred from classic books of Graph
theory: Bollobás [87, 88], Diestel [91], Van der Hofstad [94]. We briefly recall here
some notions being used in this thesis.

In our settings, we work with graphs which are simple, undirected and without
self-loops, i.e. there is at most one edge between two nodes, there is no order in the
pair of vertices describing edges, and there is no edge from one node to itself. The
formal definition of a graph is given as follows.

Definition 0.1 — Graph. Let V be a countable set and E be a subset of distinct
pairs of elements in V . The set G = (V,E) is called a graph of vertices in V
and edges in E.

We mainly deal with the finite graphs, which means that the set of vertices is finite.
We will use the notation

[[1, N ]] := {1, . . . , N}, ∀N ∈ N∗, (1)

and we enumerate the vertices set as V = [[1, N ]], N ∈ N∗. In a graph G, the vertex
set is denoted by V (G) and the edge set is E(G).
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Remark 0.1 The maximum number of edges in a simple, undirected and without
self-loops graph of N vertices is N(N−1)

2
.

Adjacency Consider a graph G. If there is an edge connecting a pair of vertices u
and v ∈ V (G), we say u and v are adjacent or neighbors in G. We denote by u ∼G v
or simply u ∼ v if u and v are adjacent, otherwise, we write u �G v or u � v. Thus
the set of edges in G is: E(G) = {{u, v} ∈ V × V : u ∼G v}.

A graph G is called complete if all the vertices in V (G) are pairwise adjacent. A
complete graph of N vertices is denoted by KN .

When studying a graph, we are interested in the relations between vertices, con-
cerning the appearance of edges. It can be represented mathematically by a squared
matrix of size N ×N , called adjacency matrix.

Definition 0.2 Let G = (V,E) be a graph of size N with V (G) = [[1, N ]]. The
squared matrix A = (aij)N×N defined by:

aij :=

{
1 if i ∼ j

0 otherwise

is called the adjacency matrix of G.

Remark 0.2 In our settings, the adjacency matrix A is necessarily symmetric
and all the elements on the diagonal are zeros.

Vertex’s degree An important information needed for the study of networks is the
number of neighbors to a node.

Definition 0.3 Let G = (V,E) be a graph, and v be a vertex of G. We define
the degree of v by the number of neighbors of v. It is denoted by dG(v) or d(v).

Remark 0.3 For every vertex i ∈ [[1, N ]], the degree of i is d(i) =
∑

j∈[[1,N ]] aij .

Connectivity One of the essential properties that receives the most attention in
graph theory is connectivity. It is an important measure for the networks recovering
problems.
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Definition 0.4 — Path. A path of length k is a non-empty graph
P = (V,E) of the form: V = {v0, . . . , vk}. We set E(P ) ={
{v0, v1}, . . . , {vi, vi+1}, . . . , {vk−1, vk}

}
.

Definition 0.5 — Connected graph. A graph G is called connected if any
pair of its vertices are linked by a path in G, i.e. ∀u, v ∈ V (G),∃u0, . . . , uk ∈
V (G) such that

{
{u, u0}, {u0, u1} . . . , {ui, ui+1}, . . . , {uk, v}

}
⊂ E(G).

Clearly, the connectivity of vertices in a graph is an equivalence relation, where
if (Vk)k denote the associated equivalence classes and Ek =

{
{u, v} ∈ E(G) :

(u, v) ∈ Vk × Vk′
}

, then the Gk = (Vk, Ek) are connected graphs. (Gk)k can be seen
as partition of G. We want to give a name to the "sub-part" of a graph.

Definition 0.6 Let G = (V,E) and G′ = (V ′, E ′) be two graphs. If V ′ ⊂ V

and E ′ ⊂ E, we say G′ is a subgraph of G, written G′ ⊂ G. And if G′ is a
subgraph of G and if ∀u, v ∈ V ′, u ∼G v ⇔ u ∼G′ v, then G′ is called a
induced subgraph of G.

A maximal connected subgraph in G is called a component of G.

Clearly see that a path inG is a connected subgraph ofG. Every node in a component
must be adjacent to at least one other node and thus have degree at least 1. Hence
evidently, every connected graph having n nodes has at least n− 1 edges.

Homomorphism, isomorphism Let G = (V,E) and G′ = (V ′, E ′) be two finite
simple graphs.

1. A function φ from G = (V,E) to G′ = (V ′, E ′), written φ : G → G′, is a
graph homomorphism if it is an adjacency preserving map matching every
node in V to some node in V ′, i.e. (u, v) ∈ E ⇒ (φ(u), φ(v)) ∈ E ′.

2. When φ is a bijection φ : G → G′ preserving adjacency, we call φ a graph
isomorphism and G and G′ are called isomorphic , written G ∼= G′.

From now on, we have enough basis notions in graph theory field for the next parts
of this thesis. Let us move to the probability approach.

0.2.2 Random graphs

A random graph is a graph in which properties such as the number of vertices, graph
edges and the connections between them are determined by some random procedure.
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Definition 0.7 — Random graph. A random graph G is a random variable
valued in the quotient set of all graphs modulo isomorphism.

Some examples of random graphs

Erdös-Rényi graphs: (see Figure 1) The Erdös-Rényi graph is a simple model of
random graphs, which was introduced in the earliest works of Erdös and Rényi [36,
37]: the graph G(N, p) is generated by linking any pair of N nodes with the same
probability p, independently from the other pairs (see Definition 0.9). We give more
detailed discussions about this random graph later in Section 0.2.4.

1

2

34

5
p

p

p

p

p

p

p

p

p

p

Figure 1. Erdös-Rényi graph

Stochastic Block Models (SBM) : (see Figure 2) An SBM is a generalization of
Erdös-Rényi graph, in which (see Definition 0.10)

• the vertices in [[1, N ]] are partitioned into a finite number of classes;
• the probability of connecting vertices is no longer equal for every node but

depends on the class of each vertex.

This model presents the community structure of a network by the pattern of con-
nections. More precisely, the set of N vertices is partitioned into Q blocks with
proportions α = (α1, · · · , αQ) and the probability of find an edge joining a vertex
from group ` with a vertex of group k is π`k (see Definition 0.10).

A1 A2

A3

π••

B1

B2

B3

B4

B5

π••

C1

C2

π••

π••

π••

π••

Figure 2. Stochastic Block Model

Configuration model (CM): The third example is
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Definition 0.8 Let N ∈ N∗ and d = (d1, d2, ..., dN) be a sequence of i.i.d.
random variables, whose values are non-negative integers such that

∑N
i=1 di is

even. Then the Configuration Model (CM) with degree sequence d is a random
multigraph with vertices set V = [[1, N ]], constructed as follows: (see Figure 3)

• To each vertex i, assign di half-edges.
• Take a uniform matching of these half-edges.
• For each pair of half-edges in the matching, replace the two half-edges by

an edge to obtain the a multigraph CMN(d), in which each vertex i has
degree di.

Note that the construction as in the definition of CMN(d) can produce multiple
edges and self-loops, meaning that CMN(d) is a multigraph. Nevertheless, if we
assume that the distribution of degree d has finite second moment, then by Durrett
[92, Theorem 3.1.2], the number of self-loops and multiple edges are asymptotically
independent Poisson random variables as N tends to infinity, which are negligible
with respect to the number of edges.

Figure 3. Configuration model
with number of vertices N = 6

and the degree sequence
d = (3, 2, 1, 4, 2, 2).

1

2

3

4

5

6

Apart from those, there are also other models studied for the different purpose of
research: the various and related versions of CM and Preferential attachment models
(PAM),... are described and discussed in [94, 71, 101].
In this thesis, we focus on the simplest model, Erdös-Rényi graph, and its general-
ization, Stochastic Block Models.
A usual approach for the connectivity of random graphs is branching process. Let
us now review some basis notions and standard results about branching processes,
especially Poisson branching processes.

0.2.3 Branching processes

Branching processes serve as a mathematical model for a population evolving in time,
where each individual at the nth generation produces a number of individuals for the
n+ 1th generation and the offspring distribution is the same for every individual in
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the population. A common formulation of branching processes is the Galton-Waston
process (GWP) which is defined by its offspring distribution ξ:

• ξ is a random variable taking values in N with probability distribution p =
(pk)k∈N: pk := P(ξ = k) and mean µ := E[ξ] <∞;
• (ξn,i)n,i∈N , the i.i.d. random variables with the same law as ξ, represent the

number of children produced by the member i, i ∈ {1, . . . , Zn} of gen-
eration n, (here, each individual of generation n is indexed by a number
i ∈ {1, . . . , Zn} and the order of indexes is not taken into account);
• Zn is the number of individuals at generation n, by convention, Z0 = 1. Thus,
Zn satisfies the equality:

Zn =

Zn−1∑
i=1

ξn,i. (2)

Extinction versus survival probabilities: A population is said to be extinct if at
some certain unit of time, there is no more children produced, which means ∃n0 ∈ N
such that Zn = 0,∀n ≥ n0. The fact is that a population may either become extinct
or survive forever. We are interested in the question: with what probabilities and
under which conditions these events occur. Denote η the extinction probability.

η := P(∃n ∈ N : Zn = 0). (3)

There is well-known result for the extinction probability of branching processes
announced by the following theorem:

Theorem 0.1 — Theorem 3.1 [94]. For a branching process with i.i.d. off-
spring distribution ξ: P(ξ = k) = pk, k ∈ N and mean µ := E[ξ] ∈ [0,+∞),
then the extinction probability η is the smallest solution in [0, 1] of equation

η = Gξ(η),

where Gξ(s) := E[sξ] is the generating function of ξ. Further,

η =


1 if either (µ < 1) or (µ = 1 and p1 < 1)

η0 < 1 if µ > 1

0 if p1 = 1

.

Depending on the expectation µ of offspring distribution, the branching processes
are classified into three regimes:

• subcritical case: µ < 1, the branching process is extinct almost-surely;
• critical case: µ = 1, the branching process is extinct almost-surely if p1 < 1;
• the supercritical case: µ > 1, the branching process survives with probability

1− η.

Total progeny size: From the equation (2), we see that if a branching process starts
with Z0 = 1, the average number of individuals at the nth generation is E[Zn|Z0 =
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1] = E
[∑Zn−1

i=1 ξn,i|Z0 = 1
]

= E[ξ]E[Zn−1|Z0 = 1] = µE[Zn−1|Z0 = 1] <∞. By
recurrence, we obtain:

E[Zn|Z0 = 1] = µn.

If µ < 1, P(Zn > 0) ≤ µn. Consequently, when the expected offspring µ satisfies
µ < 1, the probability that the population survives up to time n is exponentially
small in n.

Conditionally on Z0 = 1, denote

T :=
∞∑
n=1

Zn

the total progeny of a branching process (Zn, ξ). When µ < 1,

E[T ] = E
[ ∞∑
n=0

Zn
]

=
1

1− µ <∞.

Poisson branching processes

When studying the connectivity of the Erdös-Rényi graphs, a specific branching pro-
cess is utilized for modeling the exploration of graph’s component: Poisson branching
process, whose offspring distributions is a Poisson random variable with parameter
λ. The generating function of the offspring distribution in this case is equal to

Gλ(s) =
∞∑
k=0

ske−λ
λk

k!
= eλ(s−1).

Followed by Theorem 0.1, the extinction probability is the smallest solution of equa-
tion

ηλ = eλ(ηλ−1). (4)

Then the survival probability is given by

ζλ := 1− ηλ. (5)

For λ < 1, equation (4) has unique solution η = 1, which says that the Poisson
branching process is almost surely extinct. For λ > 1, equation (4) has two solutions,
of which the smaller is ηλ ∈ (0, 1). It means that in this case, both extinction
and survival are possibly occurring with non-zero probabilities. Let us look at the
branching process conditioned on extinction.

Theorem 0.2 [94, Theorem 3.15] Let µ < 1 < λ be the two real values
satisfying equation µe−µ = λe−λ. The Poisson branching process with mean
λ, conditioned on extinction, has the same distribution as a Poisson branching
process with mean µ.
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Define the large deviation rate function for Poisson random variables with mean λ by

Iλ = λ− 1− log(λ). (6)

The law of the total progeny of a Poisson branching process and its asymptotic
behavior is described by the following theorem.

Theorem 0.3 For a Poisson branching process with mean λ, then the total
progeny is distributed as:

P(T = n) =
(λn)n−1

n!
e−λn.

Further, as n→∞,
P(T = n) =

1

λ
√

2πn3
e−Iλn

(
1 +O(1/n)

)
,

where Iλ is defined in (6).

Poisson and binomial branching processes When coupling a Poisson branching
process with offspring mean λ and a Binomial branching process with parameters n
and sucessive probability λ/n, the total progeny of those two processes are related in
the following way:

Pn,λ(T ≥ k) = Pλ(T ≥ k) + en(k, λ),

where |en(k, λ)| ≤ kλ2/n.

0.2.4 Erdös-Rényi graphs and their properties

Definition 0.9 Let p ∈ (0, 1) and N ∈ N∗. A random graph G is called an
Erdös-Rényi (ER) graph with distribution, denoted by ER(N, p) if it has N ver-
tices and each pair of nodes {i, j} is connected with probability p, independently
of the others.

Despite the simplicity of this graph, this model has its own beautiful properties
to work on. We refer to the book of Van der Hofstad [94, Chapters 4 and 5] for
the detailed study. One of the primary properties studied is the emergence of a
giant component. We are interested in a specific class of ER graphs when the local
structure is normalized by the system’s size N , that is p = λ/N , where λ ∈ (0,∞)
is a constant and N ≥ λ. There is a sharp threshold for the emergence of giant
components:

• sub-critical graphs: λ ∈ (0, 1), the biggest component of ER(N, λ/N) has
size O(log(N));
• super-critical graphs: λ ∈ (1,+∞), the giant component of ER(N, λ/N) has

size O(N).

Here we refer to the Theorem 4.4 and Theorem 4.5 in [94] (the subcritical case:
λ < 1) and Theorem 4.8 (the supercritical case: λ > 1) in [94] for basic results
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concerning the size of the giant component and the second largest component in
the ER(N, λ/N) graphs. There are also other results on the giant components for
ER(N, p), see [72] for example.

Connectivity, giant component

Denote Cmax and C(2) the largest and the second largest components ofER(N, λ/N).
There is a phase transition for these quantities when λ varies from subcritical to
supercritical regimes.

Subcritical case: For λ < 1, the following theorem1 justifies the lower and upper
bounds for the largest component in an ER(N, λ/N).

Theorem 0.4 — Lower and upper bounds of biggest component. [94, The-
orem 4.4 and Theorem 4.5, page 123] For Iλ the large deviation rate function
for Poisson random variables with mean λ defined in (6) and for every a, b > 0
such that a < 1

Iλ
< b, there exist δa = δ(λ, a) and δb = δ(λ, b) such that

Pλ(|Cmax| ≤ a logN) = O(N−δa); (7)

and Pλ(|Cmax| ≥ b logN) = O(N−δb). (8)

A consequence of this theorem is the size of largest component is of order logN .

Proposition 0.1 When λ < 1, for Iλ defined by (6), we have that

|Cmax|
logN

→ 1

Iλ
(9)

in probability as N →∞.

Supercritical case: For λ > 1, there is a constant ζλ > 0 such that the largest
connected component has size approximately ζλN , and the second largest component
has O(log(N)) vertices. A good approximation result, see [94, Theorem 4.18, page
123] for |Cmax| and |C(2)| is illustrated by

Theorem 0.5 — The giant and the second largest components’ sizes. For
λ > 1 and every ν ∈ (1/2, 1), there exists δ = δ(λ, ν) such that

Pλ(|Cmax − ζλN | ≤ N ν) = O(N−δ), (10)

1 this theorem is a combination of two theorems: Theorem 4.4 and 4.5, see Chapter 4, page 123 in
[94].
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where ζλ = 1− ηλ is the survival probability of Poisson branching process with
mean offspring λ, ηλ is determined by the smallest solution of equation (4).
And the second largest component C(2) satisfies:

|C(2)|
logN

−→ 1

Iµλ
, (11)

in probability as N →∞, where µλ = ληλ.

The central limit theorem for the giant component’s size in the super-critical case is
also proved, see [94, Theorem 4.16, page 137].

Theorem 0.6 — Central limit theorem for giant component’s size. Fix
λ > 1, then when N →∞

|Cmax| − ζλN√
N

−→ Z, (12)

in distribution, where Z is a normal random variable with mean 0 and variance
σ2
λ = ζλ(1−ζλ)

(1−λ−λζλ)2
.

0.2.5 Stochastic Block Models and their properties

The block structure is often encountered in social, physical and other phenomena
modeled by the complex networks. It gives rise to the idea of partitioning the whole
graph into groups of vertices regarding to the similarity of their connection patterns.
From this viewpoint, White, Boorman and Breiger [81] designed a blockmodel to
interpret the social structure from the patterns of relations among concrete entities.
Based on this deterministic model, Fienberg and Wasserman [38] and then Holland et
al. [54] generalized it to a probabilistic version, the Stochastic Block Model (SBM),
where the variability of data was taken into consideration. It provides a benchmark
for some common tasks such as: community detection, or recovering the patterns of
connections in the underlying network [1, 2, 3, 42, 46].

We give below the definition of SBM given by Abbe [1].

Definition 0.10 [1] Let

• N be a positive integer (number of vertices);
• Q be a positive integer (number of blocks or types or classes);
• α = (α1, ..., αQ) be a probability distribution on [[1, Q]] (the probabilities

on the Q blocks, i.e. a vector of [0, 1]Q such that
∑Q

k=1 αk = 1);
• Z be an N−dimensional random vector of i.i.d. components with distri-

bution α;
• π = (πk`)(k,`)∈[[1,Q]]2 be a symmetric matrix with entries πk` ∈ [0, 1]
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(connectivity probabilities).
• [`] := {v ∈ [[1, N ]] : Zv = `} be the block (community) `;
• N` := |[`]| be the size of block `, ` ∈ [[1, Q]].

The pair (Z,G) is drawn under the distribution SBM(N,Q, α, π) if G is an
N−vertices {1, ..., N} such that each pair of vertices i and j are connected
independently of other pairs with probability πZiZj .

The SBM is characterized by the number of classes Q, the proportions of each class
and the probability matrix of connections.

Remark 0.4 — Remark 3, [2]. By the law of large numbers, almost surely we
have

N`

N
=

1

N

N∑
i=1

1Zi=`
N→∞−→ α`. (13)

Remark 0.5 When Q = 1, we recover the Erdös-Rényi graph.

A special model of SBM is the symmetric stochastic block model (SSBM) , where the
inner probabilities are the same for all groups: π11 = · · · = πQQ = A and different
with the outer probabilities, which is π`k = B, ∀` 6= k.

Example 0.1 The population of size N is partitioned into Q = 2 groups with

proportions (α, 1−α) and the probability of connections is given by π =

[
π11 π12
π21 π22

]
with π12 = π21 by the symmetry of matrix π. A visual representation of SSBM with

N = 100, α = (0.3, 0.7) and π =

[
0.6 0.05
0.05 0.6

]
is given in Figure 4.

This is an example of a network divided in two groups, where the members within a
group is higher connected than any couple coming from different groups.

Connectivity of SBM

SBM is a generalization of Erdös-Rényi and we also have thresholds for the tran-
sition phases of its connectivity. The sparse case corresponds to the case where
the probabilities of connections grow proportionally to the graph’s size, that is
π = (πN`k)`,k = (π`k

N
)`,k, the connectivity depends on the average of degrees.

The following topology properties are proved for the SSBM (see details in [1]).

2Credit: This figure is plotted by the package igraph of Csardi and Nepusz [28].
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Figure 4. Plot2of an SSBM graph of N = 100 vertices partitioned into Q = 2 classes with
proportion α = (0.3, 0.7) and the matrix of connection probabilities

π11 = π22 = 0.6, π12 = 0.05.
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Proposition 0.2 [1, see page 18]

1. For a, b > 0, the SSBM(N,Q,A,B) with A = a logN
N

, B = b logN
N

is
connected with probability 1− o(N) as N tends to infinity if and only if
a+(Q−1)b

Q
> 1 (if a or b is equal to 0, the graph is of course not connected).

2. The SSBM(N,Q,A,B) with A = a
N
, B = b

N
has a giant component

(i.e. a component of size linear in N ) if and only if d := a+(Q−1)b
Q

> 1;
3. For δ < 1/2, the neighborhood at depth r = δ logdN of a vertex v in
SSBM(N,Q,A,B), where A = a/N,B = b/N , tends in total variation
to a Galton-Watson branching process of offspring distribution Poisson(d)
where d := a+(Q−1)b

Q
> 1.

If a = b, then the SBM collapses with the Erdös-Rényi, and the connectivity
properties coincide with the ones we know from the theory of Erdös-Rényi graphs.

0.3 Convergence of subgraphs, graphons

In this thesis, we are interested in large graphs, which means that we aim to study
some properties of a graphs family (GN)N≥1 when |V (GN)| tends to infinity as
N → ∞. The convergence of graph sequences have been studied for the purpose
of understanding the large graphs and their approximations. There have been huge
works of Bollobás [87], Janson [56, 101] on the properties of large graphs: degree
distributions, the evolution of random graphs for the connectivity, giant components,
etc.

In a series of papers [14, 15, 16, 39, 67, 68], Lovász and coauthors have developed a
beautiful theory of graph limits, which works best for the two extreme cases: dense
graph where the number of edges in a graph is "close" to its maximum possible
edges

(|V (G)|
2

)
, and sparse graph where vertices degrees are bounded or at least the

average degree is bounded [12, 16].

Definition 0.11 Let (GN)N≥1 be a family of graphs such that the size |V (GN)|
tends to infinity as N →∞.
The family (GN)N≥1 is called dense if the number of edges is quadratic in their
number of vertices. Rigorously, |E(GN)| � |V (GN)|2 when |V (GN)| tends to
infinity.
In the other extreme, a family of graphs (GN)N≥1 is called sparse if the vertex
degrees are bounded and |E(GN)| � |V (GN)| when |V (GN)| tends to infinity.

The notions of dense and sparse only make sense for families of graphs whose
sizes are sufficiently large, not for a single graph. If a sequence of graphs converges
from the left, it means that the graph GN has more and more similar homomorphic
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structure of the every small graph embedded in GN . For example, the ER(N, p) with
p fixed, is a class of dense graphs since the average number of edges is N(N−1)

2
p.

While for ER(N, λ/N) for fixed λ, are sparse graph.

Lovás et al. [15, 16, 18] have introduced a notion of convergence using homomor-
phisms: convergence from the left, which is defined in terms of the densities of
homomorphisms from small graphs into GN . Lovás and Szegedy [67] have proved
that if a sequence of graphs is convergent "from the left", the limit object is in fact a
measurable symmetric function κ : [0, 1]2 → R that represents the limit density of
edges in GN . This limit object is called graphon.

The general graphon was introduced by Lovás and Szegedy, see [67]. Here, we restrict
ourselves to non-negative normalized graphons taking value in [0, 1].

Definition 0.12 — Graphon. LetW be the space of all bounded measurable
functions κ : [0, 1]2 → [0, 1] that are symmetric and integrable. We call the
functions inW graphons.

It is quite natural to represent a finite graph GN in terms of graphon as follows:
assume that V (GN) = [[1, N ]], we divide the interval [0, 1] into N disjoint intervals
IN1 , . . . , I

N
N , where INi =

[
i−1
N
, i
N

)
for every i ∈ [[1, N − 1]] and INN =

[
N−1
N
, 1
]
,.

Define the function κGN as

κGN (x, y) =
∑

i,j∈[[1,N ]]

1INi ×INj (x, y)1i∼GN j.

The graph GN is then associated to the graphon κGN .

In fact, the associated graphon κGN , however, is not unique for isomorphic unlabeled
graphs: if we re-enumerate the vertices in graph GN , then the associated graphon
κGN will not be the same. To make the associated graphons "unique", we define the
equivalence relation of two graphons as follows: κ, κ′ ∈ W are isomorphic up to a
null set if there is an invertible measure preserving map ϕ : [0, 1]→ [0, 1] such that
κϕ(x, y) := κ(ϕ(x), ϕ(y)) = κ′(x, y) almost everywhere. Then the isomorphism
up to a null set is an equivalence relation and the two graphons κϕ and κ are not
"essentially" different.

Then the set of all finite graphs can be embedded in the space of graphons (modulo
isomorphism up to a null set) equipped with a suitable topology. As N tends to
infinity, the limit of the sequence (GN)N≥1 can be interpreted as limit of the associ-
ated graphons (κGN )N≥1. In the left-convergence sense, we consider the space of all
graphons (including finite graphs) equipped with the subgraph distance, which is
given in the sequels.
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0.3.1 Subgraph distance, left-convergence of the dense graphs sequence

The convergence from the left was first studied for the dense graphs by Lovás et
al. [14, 15, 16, 67] and then extended for the sparse case by Borgs et al. [16, 17,
18]. When saying a graph sequence is convergent from the left, we want to look at
the homomorphic structures of every small subgraphs into the sequence of large
graphs. The number of "copies" of the "small" graph F into the large graph G is de-
termined by counting the number of injective homomorphisms of F into G, denoted
by |inj(F,G)|. When we normalize this quantity, it yields the proportion of F found
in G. The injective homomorphism density of F in G with |E(F )| = k ≤ |V (G)|
and V (G) = [[1, N ]] is defined as

t(F,G) :=
|inj(F,G)|

(N)k
, (14)

where (N)k := N !
k!

= N(N − 1) . . . (N − k + 1) is the number of injective ho-
momorphisms of F into the complete graph KN ; and with the convention that if
k > N , t(F,G) = 0.

Now let us classify the set of all finite graphs to isomorphic graphs and enumerate
these classes as (Fi)i≥1, where Fi is the representative of an isomorphism class. We
introduce the distance between two graph finite graphs G and G′ by

dsub(G,G
′) :=

∑
i≥1

1

2i
|t(Fi, G)− t(Fi, G′)|.

The distance dsub is often called the subgraph distance.

It is natural to think of two graphs G and G′ seems to be similar if they have similar
homomorphism densities. And the notion left-convergence is in fact the convergence
of the quantities t(F,G) when |V (G)| tends to infinity.

Definition 0.13 — Lovász et al. [15]. Let (GN)N≥1 be a sequence of finite
graphs such that |V (GN)| → ∞ as N tends to infinity. We say that (GN)N≥1
is convergent from the left, or simply convergent if t(F,GN) converges for any
simple graph F .

It turns out (Lovász et al. [15]) that the limiting object of a convergent graphs se-
quence is a standard kernel represented explicitly by a graphon κ ∈ W . Thus the
homomorphism density t(F,G) is naturally extended as the density of a graph F of
k vertices on graphon κ as follows:

t(F, κ) :=

∫
[0,1]k

∏
(i,j)∈E(F )

κ(xi, xj)dx1 . . . dxk. (15)

And the distance of a graph G to a graphon κ:
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dsub(G, κ) =
∑
i≥1

1

2i
|t(Fi, G)− t(Fi, κ)|

=
∑
i≥1

1

2i

∣∣∣∣∣∣ |inj(F,G)|
(|V (G|)|E(F )|

−
∫
[0,1]|E(Fi)|

∏
(`,`′)∈E(F )

κ(x`, x`′)dx1 . . . dx|E(F )|

∣∣∣∣∣∣ .
We can say that the graph G is "close" to the graphon κ if for any finite graph
F , the proportion of copies of F into G is "close" to the density t(F, κ). The
following theorem claims that the graphons is a completion of ((Fi)i≥1, dsub), see
[67].

Theorem 0.7 — Theorem 3.1 in [15]. Let (GN)N≥1 be a dense graph sequence
which is Cauchy with respect to dsub. Then there exists a graphon κ such that

dsub(GN , κ)→ 0 (16)

as N tends to infinity.

Proof. The rigorous proof of the theorem above can be found in [67] using the
Szemerédi partitions and the martingale convergence theory. �

Theorem 0.7 is for the convergent sequence of deterministic graphs. For the random
graph, we want to build a model of random graph on N vertices from a graphon κ
and see the distribution of these "type" of models.

Given κ a graphon in W and X(N) = (Xn)n∈[[1,N ]] be a sequence of N random
variables taking values in [0, 1], let us denote GN = G(X(N), κ) the random graph
constructed by the fashion as follows: connect i and j in [[1, N ]] with probability
κ(Xi, Xj) independently with other edges.

For the sequence X(N) = (U1, . . . , UN) where (Un)n∈[[1,N ]] are i.i.d random vari-
ables with uniform distribution in [0, 1], then by the law of large number, we have that

lim
N→∞

dsub(GN , κ) = 0 (17)

almost surely.

Remark 0.6 For any graphon κ ∈ W , there is a left-convergent sequence
of graphs (GN)N≥1, for example GN = G((U1, . . . , UN), κ), such that
limN→∞ dsub(GN , κ) = 0.

0.3.2 Cut-distance, convergence in cut-metric of the sparse graphs sequence

For the convergent dense graphs sequence, we have an explicit expression for the
limiting object which is a graphon as in the previous theorems. However, most of
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the large networks of interest are sparse. And by the notions of left-convergence, all
the sparse graphs sequences converge to a zero-graphon, which no longer charac-
terizes the limiting behavior of sparse graphs. For example, the Erdös-Rényi graphs
ER(N, λ/N) converges to a deterministic graphon κ = 0. In order to have more
interesting limit objects, we think of normalizing the sequence of associated graphons
(κGN )N≥1.

In the work of Bollobás and Riordan [10], they studied different types of metric for
sparse graphs: cut distance δ�, subgraph distance dsub and partition distance dpart
(we will not introduce the third metric in this thesis). They built a bridge for the gaps
between the two extremes: under a bounded density assumption, graphons remain
the appropriate limit objects for the sequences of sparse graphs after rescaling. Their
assumption (see [10, Assumption 4.1]) restricts the model setting to the class of
sparse graphs GN that have the edge densities in every subgraphs are all of the
same scale. At this extreme, Borgs et al. [12, 13, 17, 18, 19] extended the theory of
graphons to handle the sequence of sparse graphs with N vertices and O(N) edges,
i.e. it covers the case of graphs containing dense spots.

The most important metric used to study sparse graphs is the cut-metric. We firstly
give the definition of cut-distance introduced by Frieze and Kannan [40]:

Definition 0.14 — Cut-distance. The cut-norm of a graphon κ is defined as:

‖κ‖� = sup
S,T⊂[0,1]

∣∣∣∣∣
∫
S×T

κ(x, y)dxdy

∣∣∣∣∣
Given κ1 and κ2 two graphons, let

d�(κ1, κ2) := ‖κ1 − κ2‖�.
The cut-metric of κ1 and κ2 is

δ�(κ1, κ2) := inf
σ
d�(κσ1 , κ2), (18)

where the infimum ranges over all measure-preserving bijections σ : [0, 1]→
[0, 1] and κσ(x, y) = κ(σ(x), σ(y)).

We then have the cut-distance of two graphons κ1 and κ2 as:

δ�(κ1, κ2) = inf
σ

sup
S,T∈[0,1]

∣∣∣∣∣
∫
S×T

(
κσ1 (x, y)− κ2(x, y)

)
dxdy

∣∣∣∣∣ , (19)

where the infimum ranges over all the measure-preserving bijections from [0, 1] to
[0, 1].

Since the set of all finite graphs is embedded in the space of graphons, we can define
the cut-distance of two graphs G and G′ through their associated graphons:
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δ�(G,G′) := δ�(κG, κG′). (20)

We also can define the cut-distance between a graph G and a graphon κ as:

δ�(G, κ) := δ�(κG, κ). (21)

Left-convergence vs convergence in cut-metric It is proved that convergence
from the left is equivalent to convergence in the metric δ�. Indeed, this assertion is
claimed by the fact that the metric space (W , δ�) is compact (see [15, Proposition
3.6]) and the following theorem

Theorem 0.8 [15, Theorem 2.6] The sequence of finite simple graphs (GN)N≥1

is left-convergent if and only if it is a Cauchy sequence in the metric δ�.

0.4 Exploration of random graph by the RDS method

The Respondent Driven Sampling (RDS) was first introduced by Heckathorn [49] in
a program of prevention of the spread of HIV. The aim of RDS is to detect the iden-
tities of hidden individual and study the large-scale structure of a target population.
The idea of exploring a (random) graph by random walks is natural and has been
investigated in a large literature (e.g. [11, 35]).

Let us first explain the principle of RDS methodology.

0.4.1 RDS description

The sampling process is conducted as follows: from a group of initial recruited
individuals, we ask for their contacts in the social network, whom they know can
offer some more information. The new contacts collected are invited to participate in
the survey and investigators ask them for new referrals. Keep tracing the connections
between subjects, we can recruit the subsequent participants. Intuitively, the wave of
respondents moves from node to node along the edges connecting them. The explored
part of the network, i.e. the vertices discovered and the edges used for propagating
the RDS, induce a subgraph of the underlying real graph. The information coming
from the interviews gives knowledge on other non-interviewed individuals and edges,
providing a larger subgraph (which may not be a tree). We aim at understanding this
recruitment process from properties of the explored subgraph.

To handle the two sources of randomness, the graph and the exploring process on it
are constructed simultaneously. In the graph, each vertex is at either one of the three
following states:

• inactive: if it has not been contacted for interviews;
• active: constituting the next interviewees;
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• off-mode: if it has been interviewed already.

At the beginning of the survey, all the nodes of the underlying graph are hidden
and marked as inactive nodes. We then choose some individuals as seeds of the
investigation to do the interview and switch them on active mode. The interviewee
is asked to name his/her contacts and then we will choose among the new contacts
maximum c people to deliver to each of them a coupon. Every carrier of a coupon
is turn into the active state and can come to a private interview to be asked in turn
to give the names of his/her peers. Whenever a new person is named, one edge
connecting the interviewee and his/her contact is added but they remain inactive until
they receive a coupon. After finishing the interview, a maximum number of c new
contacts receive one coupon each and are activated. So if the interviewee names more
than c people, a number of them are not given any coupon and can be still explored
later provided another interviewee mentions them. After that, the node associated to
the person who has just been interviewed is switched to off-mode and is no longer
recruited again, see Figure 5.

We repeat the procedure of interviewing, referring, distributing coupons until there
is no more active vertex in the graph (no more coupon is returned). Each person
returning a coupon receives some money as a reward for their participation, and an
extra bonus depending on the number contacts that will later return the coupons.
Notice that each individual in the population is interviewed just once and we assume
here that there is no restriction on the total number of coupons.

In the design of RDS, researcher keep track of the degree of each respondent,
meaning that whenever a person is recruited, we know the number of theirs contacts
and who they are. When interviewed, respondent reports his/her number of neighbors
and select uniformly at random from theirs personal network maximum c new people
to be recruited. The respondent unit is chosen in a random way without replacement.

The advantages of RDS have been discussed in several papers of statistics and soci-
ology research, for example in [49, 63, 70, 80]. The key is restricting the maximum
number of people to be explored in each wave of respondent will reduce the bias
of sampling towards high-degree nodes. This clever idea have helped reduce the
dependence of final sample on the initial one after several waves of respondent,
which allows for inferring the resulting samples without using an ordinary sampling
frame.

Our approach: The quantities we aim at keeping in track are: the degree of each
respondent; the number of candidates keeping coupons and the amount of individ-
uals explored by RDS. On the other hand, the random network considered here is
structured preferably as not a tree due to the methodology of sampling, which make
difficulties in handling the randomness of detection process while the subsequent
referrals are chosen without-replacement. In our work, we describe the RDS as a
Markov process for two models of random network: Erdös-Rényi and the Stochastic
Block Model on the supercritical case of sparse graph. Under the sparsity assump-
tions, the normalized process of the Markov chain converges in distribution to a
deterministic continuous function, which is quite classic. However, our model is
considered for the general c and other factors impacting the choice of recruitment
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a. Step 0 b. Step 1

c. Step 2 d. Step 3

off-mode node (who has been interviewed)
active node (who has coupon but has not been interviewed yet)
explored but still inactive node (who has been named but did not receive coupons)

Figure 5. Description of how the RDS works in the case c = 2. In our model, the random
network and the RDS are constructed simultaneously. For example at step 3, an edge

between two vertices who are already known at step 2 is revealed.
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units, such as the explored but not treated individuals, are also taken into account.
The details of these studies are found in Chapter 1 and Chapter 2 of this thesis.

Mathematical framework

Consider a population of size N,N ∈ N∗, partitioned in Q classes with proportions
α = (α1, ..., αQ). Each individual in class k is connected with every node in class `
independently of each others with probability πk`. Note that for Q = 1, the model
induces an ER graph, which has only one type of connections and is studied in
Chapter 1. And when Q > 1, the model is then an SBM, which is considered in
Chapters 2 and 3. Here, we introduce the notations for the general value of Q.

The process of interest counts the number of coupons present in the population. We
also want to know how many people are detected, which means that the number of
people explored (but without coupons) are also kept track in. Denote by

• n ∈ [[0, N ]] the number of interviews completed;
• An = (A

(1)
n , . . . , A

(Q)
n ) ∈ NQ the vector ofQ elements, whereA(`)

n , ` ∈ [[1, Q]],
is the number of individuals of type ` that have received coupons but that have
not been interviewed yet (number of active vertices);
• Bn = (B

(1)
n , . . . , B

(Q)
n ) ∈ NQ the vector of Q elements, where B(`)

n , ` ∈
[[1, Q]], is the number of individuals of type ` cited in the interviews but who
have not been given any coupon (number of found but still inactive vertices);
• Un = (U

(1)
n , . . . , U

(Q)
n ) ∈ NQ the vector ofQ elements, where U (`)

n , ` ∈ [[1, Q]],
indicates the total number of individuals of type ` having been interviewed
(number of off-mode nodes).

We define the RDS as the following stochastic process Xn := (An, Bn, Un), n ∈
[[0, N ]]:

Xn :=

AnBn

Un

 =

A
(1)
n · · · A

(Q)
n

B
(1)
n · · · B

(Q)
n

U
(1)
n · · · U

(Q)
n

 , n ∈ [[0, N ]].

For the more detailed description of A(`)
n , B

(`)
n , U

(`)
n , ` ∈ [[1, Q]] is found in the

subsequent chapters (Section 1.1, Chapter 1 for Q = 1 and Section 2.2, Chapter 2
for Q ∈ N∗ in general). Note that Xn depends on N , but for the sake of simplicity,
we do not put the N in the notation.

The main objective of this thesis is to establish an approximation result when the
size of the random graph tends to infinity. In this case, the RDS process is correctly
renormalized,

XN
t :=

1

N
XbNtc =

(
AbNtc
N

,
BbNtc
N

,
UbNtc
N

)
∈ [0, 1]3, t ∈ [0, 1]. (22)

For all N , the process XN
· lives in the space of càdlàg processes D([0, 1], [0, 1]3×Q)

equipped with Skorokhod topology (see [93, 55, 59]).
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In the chapters 1 and 2 of the thesis, we consider spaces Rd equipped with the
L1-norm defined for x = (x1, ..., xd) as ‖x‖ =

∑d
k=1 |xk|.

Choice of seeds for the RDS: The RDS is constructed by the similar principle of
an epidemic spread and starts with a single individual. There are two main phases
of evolution (see [8]): the initial phase is well approximated by a branching process
(which we are neglecting here) and the second phase is when the stochastic process
is approximated by an deterministic curve. In the chapters 1 and 2, we focus on the
second phase: the RDS survey begins with a positive fraction of individuals in the
population, i.e. the RDS process is conditioned on {limN→∞ ‖XN

0 ‖ > 0}.

0.4.2 RDS in supercritical Erdös-Rényi graphs

We consider the RDS process on a supercritical ER model ER(N, λ/N) (λ > 1).
In this case the model has only one type of vertices, i.e. Q = 1. Hence, An and Bn

take values in N, and Un = n in fact counts the number of steps. Henceforth, in the
ER case, it is sufficient that we only consider the process Xn = (An, Bn) ∈ N2, and
the information of Un is deduced directly.

The normalized process (XN)N (defined in (22)) is now written in a simpler form:

XN
t =

1

N
(AbNtc, BbNtc) = (ANt , B

N
t ), t ∈ [0, 1],

which is a process in the Skorokhod space D([0, 1], [0, 1]2).

For the supercritical ER graphs, Barbour and Reinert [8], the early phase of an
RDS can be approximated by a supercritical branching process. Hence if N tends to
infinity, when we start with a single individual, after a finite number of steps, we can
reach O(N) individuals with a positive probability. Here, we study the behavior of
the RDS process under the assumption:

Assumption 0.1 Set a0, b0 ∈ [0, 1] with a0 > 0 and b0 = 0. We assume that the
sequence XN

0 = 1
N
X0 converges in probability to the vector x0 = (a0, b0) as N

tends to infinity.

Theorem 0.9 — The case of ER graph. Under the assumption 0.1, when N
tends to infinity, the sequence of processesXN = (AN , BN) converges in distri-
bution in D([0, 1], [0, 1]2) to a deterministic path x = (a, b) ∈ C([0, 1], [0, 1]2),
which is the unique solution of the following system of ordinary differential
equations

xt = x0 +

∫ t

0

f(s, xs)ds, (23)

where f(t, xt) = (f1(t, xt), f2(t, xt)) has the explicit formula:
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f1(t, xt) = c−
c−1∑
k=0

(c− k)pk(t+ at)− 1at>0 (24)

f2(t, xt) = (1− t− at − bt)λ+
c−1∑
k=0

(c− k)pk(t+ at)− c, (25)

with
pk(at) :=

λk(1− at)k
k!

e−λ(1−at), k ∈ {0, ..., c}, (26)

and c is the maximum value of coupons distributed at each time step.

The main idea of the proof is using limit theory of càdlàg semi-martingale vector
processes embedded with Skorokhod topology (see [93]) and Poisson approximations
(see [84]). It follows four steps: write the Doob’s decomposition of (XN)N≥1; study
the tightness of the martingale and the finite variation in the decomposition; find the
limiting values and finally prove the uniqueness of ODEs’ solution.

Proposition 0.3 Let us denote

t0 := inf{t ∈ [0, 1] : |at| = 0}. (27)

Then at = 0,∀t ∈ [t0, 1].

It means that once the a touches 0, a stays at 0. Hence, t0 + bt0 represents the
proportion of explored people in the population.

We also studied the speed of convergence with a central limit theorem for the RDS
process on the giant component of ER graph. When we consider the sequence of
càdlàg processes (Y N)N≥1,

WN
t :=

XbNtc −Nxt√
N

=
1√
N

(
(AbNtc, BbNtc)− (Nat, Nbt)

)
, t ∈ [0, t0].

Theorem 0.10 — Central limit theorem. The sequence of processes (WN)N≥1

converges in distribution in D([0, t0],R2) to the process W = (W 1,W 2), which
satisfies

Wt = W0 +

t∫
0

G(s, as, bs,Ws)ds+M(t, at, bt), t ∈ [0, t0], (28)

where
G(t, a, b,W ) :=

(
φ′(t+ x)W 1

t

−λ(W 1
t +W 2

t )− φ′(t+ x)W 1
t

)
; (29)
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φ(z) = c −
c−1∑
k=0

(c − k)

[
λ(1− z)

]k
k!

e−λ(1−z), φ′(z) is the derivative of φ at z;

and M is a zero-mean martingale with the quadratic variation

〈M(·, a·, b·)〉t :=

 t∫
0

mij(s, as, bs)ds


i,j∈{1,2}

, (30)

in which

m11(t, a, b) :=
c∑

k=0

(c− k)2pk(t+ a)−

 c∑
k=0

(c− k)pk(t+ a)

2

; (31)

m22(t, a, b) := λ(1− t− a− b) + 2λ(1− t− a− b)

c(λ− 1) +
c∑

k=0

pk(t+ a)


+m11(t, a, b); (32)

m12(t, a, b) := λ(1− t− a− b)

c(λ− 1) +
c∑

k=0

pk(t+ a)

−m11(t, a, b).

(33)

0.4.3 RDS process for the Stochastic Block Model

For the more general model, SBM, see Chapter 2, a convergence theorem similar to
Theorem 0.9 for the process (XN)N≥1 ⊂ D([0, 1], [0, 1]3×Q) is also proved, but the
function f is a more complicated one, and depends on c,Q, α, π.

Assumption 0.2 For each `, k ∈ [[1, Q]], denote µ`k = λ`kπk. We assume that the
matrix µ = (µ`k)`,k∈[[1,Q]] is irreducible and the largest eigenvalue of µ is larger than
1.

Remark 0.7 Under the Assumption 0.2, from the proof of Theorem 3.2 of
Barbour and Reinert [8], the early stages of the RDS can now be approximated
by a multitype branching process with the offspring distributions determined
by the matrix µ. Thanks to the Assumption 0.2 the multitype branching process
associated with the offspring matrix µ is supercritical. The analogous results for
the extinction probability and for the number of offspring at the nth generation
as in the single branching process have been proved in Chapter 5 of [82]: the
mean matrix of the population size at time n is proportional to µn. And follow
the claim (3.11) of Barbour and Reinert [8], we can deduce that if N tends to
infinity, when we start with a single individual, then after a finite number of
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steps, we can reach a positive fraction of explored individuals in the population
with a positive probability.

Assumption 0.3 Let a0, b0, u0 ∈ [0, 1]Q, a0 = (a
(1)
0 , . . . , a

(Q)
0 ) such that

∑Q
i=1 a

(i)
0 =

‖a0‖ ∈ [0, 1], and set b0, u0 ∈ [0, 1]Q, with b0 = (0, . . . , 0) and u0 = (0, . . . , 0).
We assume that the sequence XN

0 = 1
N
X0 converges in probability to the vector

(a0, b0, u0), as N → +∞.

It means that the initial number of individuals with type ` at the beginning of the
survey is approximately ba(`)0 Nc. A possible way to initializing the process is to draw
A0 from a multinomial distributionM(b‖a0‖Nc; π1, . . . , πQ).

Theorem 0.11 Under the assumptions 0.2 and 0.3, we have: when N tends to
infinity, the process (XN

· )N converges in distribution in D([0, 1], [0, 1]3×Q) to
a deterministic vectorial function x = (x

(`)
· )1≤`≤m = (a

(`)
· , b

(`)
· , u

(`)
· )1≤`≤Q in

C([0, 1], [0, 1]3×Q), which is the unique solution of the system of differential
equations

xt = x0 +

∫ t

0

f(xs)ds, (34)

where f(xs) := (fi`(xs)) 1≤i≤3
1≤`≤Q

has an explicit formula described as follows.

Denote
t0 := inf{t ∈ [0, 1] : a

(1)
t + . . .+ a

(Q)
t = 0}. (35)

For s ∈ [0, t0],

f1`(xs) =

Q∑
k=1

a
(k)
s

‖as‖
λk,`s
Λks

c− c∑
h=0

(c− h)
(Λks)

h

h!
e−Λ

k
s

− a
(`)
s

‖as‖
; (36)

f2`(xs) =

Q∑
k=1

a
(k)
s

‖as‖
µk,`s −

Q∑
k=1

a
(k)
s

‖as‖
λk,`s
Λks

c− c∑
h=0

(c− h)
(Λks)

h

h!
e−Λ

k
s

 ;

(37)

f3`(xs) =
a
(`)
s

‖as‖
; (38)

with
λk,`s := λk`

(
π` − a(`)s − u(`)s

)
; Λks :=

m∑
`=1

λk,`s (39)

and µk,`s := λk`(π` − a(l`)s − b(`)s − u(`)s ).

For s ∈ [t0, 1], f(xs) = f(xt0).

Notice that in this model, the time corresponds to the fraction of the population
interviewed. The time t0 is the first time at which ‖at‖ reaches 0 and can be seen
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as the proportion of the population interviewed when there is no more coupon to
keep the CRS going. Necessarily, t0 ≤ 1. We see that ‖at‖ = 0 only if a(1)t = . . . =

a
(Q)
t = 0. It implies that f(xt) = 0,∀t ∈ [t0, 1]. Then, the solution of the system of

ODEs (0.11) becomes constant over the interval [t0, 1].

0.4.4 RDS and Statistics

Existing RDS estimation

RDS was first used as a sampling method for estimating the size of a hidden popula-
tion. The constitution of a sample S is the number of sampled individuals nS , the
rest of the population being unknown. There are several estimators being proposed
from the RDS data such as Salganik and Heckathorn [77], Volz and Heckathorn
[80]. In their works, they assume that at each interview stage, respondent chooses
only one person to distribute coupon (i.e. c = 1 in the description above). And the
replacement is allowed, i.e. one subject might be recruited many times. Also, the
underlying network is supposed to be connected, which means that everybody in the
population can be reached by a finite path. When we distribute only one coupon at
each time we interview someone, i.e. c = 1, the RDS process can be modeled as a
random walk on a graph and the time scale is counting by the number of interviews
taking place.

Denote Zi some real-valued variable of interest measured on the ith individual of
the sample S (for example the degree of i). A general estimator form of Horvitz-
Thompson for estimating the average of Z is:

E[Z] ≈
∑

i∈S p
−1
i zi∑

i∈S p
−1
i

, (40)

where pi = P(i ∈ S) is the inclusion probability of individual i and (zi)i∈S is a
realization of Z. Based on this general result, Volz and Heckathorn [80] have given
an estimator when the data S is sampled by an RDS survey. This estimator relies
heavily on the estimation of inclusion probability, which is estimated through the
subjects’ degrees:

pi ≈
di∑
j∈S dj

. (41)

When (Zi)i∈S is the sequence of vertex’s degree in the sample S, then the estimation
(40) becomes

E[Z] ≈ nS∑
i∈S d

−1
i

, (42)

which recovers the estimation result for the average degree of Salganik and Heckathorn
[52].

In practice, the inclusion probability is complicated to compute because of the fact
that the sampling is without replacement and the dependencies between subjects
are difficult to control. Some numerical calculations have followed to handle these
difficulties, see e.g. [44, 45, 70]. Gile [43] proposed an improved estimator for
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population means taking into account the without replacement sampling, and Rohe
established critical threshold for the design effects [65]. Because of the privacy
restrictions, a lot of information is missing in the RDS data. A variant of estimation
methods have been developed to infer the graph’s structure, see e.g. [26, 27].

These works have focused on estimating quantity such as the size of hidden popula-
tion for the general graph’s structure. Here, we are interested in studying the topology
of hidden graphs. We desire to give a rigorous study of the of the RDS process: the
important quantities collected by RDS such as the number of explored individuals
in a hidden population (studied in chapters 1 and 2); the topology of a particular
random graph model (in chapter 3). The advantage of my work in this thesis is that:
the RDS process is described for the general value c of maximum number of coupons
distributed at each wave of respondent; the with-replacement is taken into account;
the explored sub-graphs’ structure is also kept in track. However, also due to the lack
of information, we have to restrain ourselves to some more particular structures, in
this thesis, the Erdös-Rényi and more general the Stochastic Block Model.

Topology of sub-graphs explored by the RDS on an SBM graphon

The topology of the sub-graphs induced by the RDS has attracted attention for studies
of random network. In the case of graphons, we can consider that the topology is
given by the knowledge of the function κ. For SBMs, this function is described
by a vectors of parameters and we will focus on this case in what follows. In the
works of Athreya and Röllin [4, 5], they have established the convergence for induced
subgraphs constructed by an RDS process. The underlying network considered is a
random graph defined through a deterministic object: graphon. Athreya and Röllin
have built rigorous theory of RDS on the two extremes of random graphs: the dense
graphs [4] and the case where degrees grow, but sublinearly [5].

For the sparse graphs, as we see in the limit Theorem 0.9: with λ > 1, the giant
component of the hidden graph is explored by the RDS process. In chapter 3 of this
thesis, we focus on the dense case, in particular, a dense SBM. The aim is to develop
estimator for the the parameter θ = (α, π). Let us have an overview on the results of
Athreya and Röllin [4] for general dense graphs.

Let X(n) = (X1, . . . , Xn), n ∈ N∗, be a vector of random variables taking values in
[0, 1]; κ be a graphon inW . Assume that there is a probability measure m on [0, 1]
such that the following two conditions hold:

Assumption 0.4 (i) for all bounded and measurable functions f , we have

lim
n→∞

1

n

n∑
i=1

f(Xi) =

∫ 1

0

f(x)m(dx) (43)

almost surely;
(ii) κ ∈ W is continuous m×m−almost everywhere.

Let Hn be the path whose nodes are the n vertices visited by the random walk
X(n) = (X1, . . . , Xn) as in the Assumption 0.4. Then Hn is a graph with the set of
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vertex if V (Hn) = [[1, n]] and the set of edges is E(Hn) = ∪n−1i=1 {i, i + 1}, where
each vertex i ∈ [[1, n]] is associated with the value Xi ∈ X(n).

Note that we do not know the size of underlying graph (N is unknown), and n
indicates the nth step of the random walk. We denote Gn = G(X(n), Hn, κ) the
random graph, which is completed from Hn w.r.t. graphon κ by the following
manner:

Definition 0.15 Define the completion of Hn by graph Gn = G(X(n), Hn, κ)

as follows:

• V (Gn) is the same set of vertices as V (Hn) = [[1, n]];
• if i and j are connected in Hn, then connect i and j in Gn;
• if i and j are not connected in Hn, an edge between i and j is included in
Gn with probability κ(Xi, Xj).

It turns out that the limit object is not the original graphon κ but its transformation
by the generalized inverse of the cumulative distribution of m.

Theorem 0.12 [4, Theorem 2.1 and Corollary 2.2] Let X(n) = (X1, . . . , Xn)

be a sequence taking values in [0, 1], κ ∈ W be a graphon, m be a probability
measure and let Gn be the graph defined in Definition 0.15. Under the Assump-
tion 0.4 and when the number of edges in Gn is proportional to n2,

lim
n→∞

dsub(Gn, κΓ−1) = 0 (44)

almost surely, where Γ (x) := m([0, x]) is the cumulative distribution of m, the
generalized inverse of Γ is given by

Γ−1(x) := inf{u ∈ [0, 1] : Γ (u) ≥ x}
and where for all x, y ∈ [0, 1],

κΓ−1(x, y) = κ(Γ−1(x), Γ−1(y)).

This result confirms that when sample data are collected from an RDS on a graphon,
there is some bias on the resulting data towards high degree items. And they have
shown how the RDS as above procedures bias the network. The limiting object gives
a framework for the estimation of interesting quantities.

Example 0.2 Let κ be a graphon taking constant value p ∈ [0, 1] and (U1, . . . , Un)

be a sequence of i.i.d uniform random variables in the interval [0, 1] . The sequence of
graphs Gn = ((U1, ..., Un), κ) is constructed by connecting i and j with probability
κ(Ui, Uj) = p. Then Gn is an Erdös-Rényi graph: Gn = ER(n, p). By Theorem
0.12, Gn converges in dsub to the graphon κ(x, y) = p almost surely.
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Statistic results

Using the convergence result (Theorem 0.12) for the dense graph of Athreya and
Röllin [4], we develop an empirical estimator for the SBM graphs explored by RDS
process, sampled from an ergodic process X(n) under the similar conditions in [4,
Theorem 2.1]. Of course, there are biases but we can recover the true parameter
since the estimation is transformed from the original ones by a measure that can be
estimated as well.

Let α = (α1, . . . , αQ) ∈ (0, 1)Q be a probability vector, i.e.
∑Q

q=1 αq = 1;
π = (πqr)q,r∈[[1,Q]] ∈ [0, 1]Q×Q be a symmetric Q × Q−matrix whose entries take
values in the interval [0, 1]. In all the sequels, we denote by θ the vector of parameters:

θ := (π, α) = (πqr, αq)q,r∈{1,··· ,Q}.

We define I = (I1, . . . , IQ) a partition of [0, 1], where

Iq =

 q−1∑
k=1

αk,

q∑
k=1

αk

 , q ∈ [[1, Q]]. (45)

Let κ be a graphon given by

κ(x, y) =

Q∑
q=1

Q∑
r=1

πqr 1Iq(x)1Ir(y). (46)

Consider the SBM graphon having the form as in equation (46). Denote Z =
(Z1, . . . , Zn) the types of each node in the Markov chain: Zi ∈ [[1, Q]], 1 ≤ i ≤ n
and Y = (Yij)1≤i,j≤n the adjacency matrix of the graph Gn = G(X(n), Hn, κ). We
want to estimate the SBM parameters α and π in two cases: the types Z of the nodes
are observed and unobserved.

Assumption 0.5 We assume that κ is connected, i.e. for all measurable subset
A ⊂ [0, 1] such that |A| ∈ (0, 1),∫

A

∫
Ac
κ(x, y)dx dy > 0.

We define by N q
n, q ∈ {1, ..., Q} the number of vertices of type q sampled by the

Markov chain. For q, r ∈ {1, ..., Q} we also define by:

N q↔r
n = #

{
{i, j} | Xi, Xj ∈ X(n), Zi = q, Zj = r, Yi,j = 1

}
;

(resp. N q=r
n = #

{
{i, j} | Xi, Xj ∈ X(n), Zi = q, Zj = r, Yi,j = 0

}
)

the number of couples of types (q, r) that are connected (resp. not connected).

When the types are observed: When (Zi, 1 ≤ i ≤ n) are observed, the likelihood
of complete observations has the form:

L(Z, Y,X, θ) =

Q∏
q=1

(
πqq

1− πqq

)Nq↔q
n

(1− πqq)N
q
n(N

q
n−1)/2
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×
∏
q 6=r

(
πqr

1− πqr

)Nq↔r
n

(1− πqr)N
q
nN

r
n ×

Q∏
q=1

αN
q
n

q

(
∑Q

q′=1 πqq′αq′)
Nq
n−1Zn=q

.

(47)

Proposition 0.4 The maximum likelihood estimator (MLE) θ̂ = (π̂, α̂) is the
solution of the system:

N q
n

α̂q
−

Q∑
p=1

Np
nπ̂pq∑Q

q′=1 π̂pq′α̂q′
= 0; (48)

N q↔r
n

π̂qr
− N q=r

n

1− π̂qr
−N q

n

α̂r∑Q
q′=1 π̂qq′α̂q′

= 0. (49)

We want to compare this MLE with the new estimator developed from the conver-
gence result of Athreya and Roellin obtained by Theorem 0.12.

Suppose that the limit object of the sequence Gn = G(X(n), Hn, κ) is an SBM
graphon of blocks proportions γ = (γ1, ..., γQ) and the connection probabilities
ρ = (ρqr)q,r∈{1,...,Q}. It means that the SBM graphon is:

χ∞(x, y) =

Q∑
q=1

Q∑
r=1

ρqr1Jq(x)1Jr(y).

where J = (J1, ..., JQ) is a partition of [0, 1] defined by

Jq =

 q−1∑
k=1

γk,

q∑
k=1

γk

 , q ∈ [[1, Q]]. (50)

The empirical estimator for χ∞ is given by:

Definition 0.16 Denote by

γ̂nq :=
N q
n

n
; ρ̂nqr :=

N q↔r
n

N q
nN r

n

for q 6= r and ρ̂nqq :=
2N q↔q

n

N q
n(N q

n − 1)
. (51)

an estimator of (γ, ρ). The graphon associated to this estimator is defined as:

χ̂n(x, y) :=

Q∑
q=1

Q∑
r=1

ρ̂nqr1Jnq (x)1Jnr (y), (52)

with Jnq =
[∑q−1

k=1 γ̂
n
k ,
∑q

k=1 γ̂
n
k

)
, q ∈ [[1, Q]].

We define the empirical cumulative distribution of m:
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Γn(x) =
1

n

n∑
i=1

1Xi≤x and Γ−1n (y) = inf
{
x ∈ [0, 1] : Γn(x) ≥ y

}
.

(53)
The consistency of ρ̂ is claimed by the following proposition.

Proposition 0.5 Under Assumption 0.5,
(i) ρ̂ is a consistent estimator of π, and for q, r ∈ [[1, Q]],

lim
n→+∞

ρ̂nqr = πqr; lim
n→+∞

γ̂nq = Γ

 q∑
`=1

α`

− Γ
 q−1∑

`=1

α`

 =: γq.

It follows that a consistent estimator of αq is

α̂nq = Γ−1n

 q∑
`=1

γ̂n`

 .

(ii) In the special case of Q = 2, let us denote (α1, α2) = (α, 1− α), α̂n = α̂n1
and γ̂n = γ̂n1 . An estimator of α is α̂n = Γ−1n (γ̂n).

When the types are unobserved: When (Zi, 1 ≤ i ≤ n) are unobserved, the quan-
tities N q

n, N
q↔r
n are intractable. Then L(X, Y, Z, θ) can not be used for estimating θ.

In this situation, we can use the stochastic approximation by EM algorithm (SAEM,
see [31, 32]) to generate the types Z and the estimation of θ is now the value at
which the conditional likelihood L(θ|X,Z, Y ) attains its maximum.

The SAEM alternates the E-step and M-step as follows:

• Initialization: set the initial values θ(0) and define the quantity Q(0)(θ) :=
E[logL(Z, Y, θ(0))].
• At iteration k of algorithm:

– E-step:
∗ Simulation: draw the non-observed data Z(k) with the conditional

distribution q(· |Y, θ(k−1));
∗ Stochastic approximation: update the quantity

Q(k)(θ) = Q(k−1)(θ) + sk

(
logL(Z

(k)
i , Yij, θ)−Q(k−1)(θ)

)
,

(54)

where (sk)k∈N is a positive decreasing step sizes sequence:
∑∞

k=1 sk =
∞ and

∑∞
k=1 s

2
k <∞.

– M-step: Choose θ(k) to be the value of θ that maximizes Q(k)

θ(k) := arg max
θ

Q(k)(θ). (55)

Choosing the appropriate types Z is also a complicated work. We use the variational
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approach (see Latouche et al. [64]) to generate the data for Z at each iteration k.
Suppose that the distribution of Zi isM

(
Q; (τi1, . . . , τiQ)

)
.

The likelihood L(Y, θ) of the incomplete data is

L(Yij; i, j ∈ [[1, n]]; θ) =

Q∑
q1,···qn=1

[ n∏
i=1

1Zi=qi

∏n
i=1 αqi∏n−1

i=1

∑Q
q=1 πqiqαq

×
∏

i,j:Xi,Xj∈(Xn)

b(Yij, πqiqj)
]
,

(56)
where b(Yij, πqiqj) = π

Yij
qiqj(1− πqiqj)1−Yij . A lower bound J (RY,θ) of L(Y, θ) is:

J (RY,θ) := L(Y, θ)−KL(RY,θ(Z),L(Z|Y, θ)), (57)

where KL(µ, ν) :=

∫
dµ log

(
dµ

dν

)
is the Kullback-Leibler divergence of distribu-

tions µ and ν, and where RY,θ(Z) is an approximation of the conditional likelihood
L(Z|Y, θ). WhenRY,θ is a good-approximation of L(Z|Y, θ), J (RY,θ) is very closed
to the maximum value of L(Y, θ).

Then we have

Proposition 0.6 Given α, π, the optimal parameter

τ̂ := arg max
τ

J (RY,θ), (58)

with constraint
∑Q

q=1 τiq = 1,∀i ∈ {1, ..., n}, satisfies the fixed point relation

τiq ∝
αq∑Q

`=1 πq`α`

∏
i 6=j

Q∏
`=1

b(Yij, πq`)
τj` . (59)

0.5 Presentation of the main results

The main results in this thesis are given in 3 Chapters:

Chapter 1: The RDS process on Erdös-Rényi graph In this chapter, we give the
expression of quantities of interests concerned the RDS: the degree of each vertex
and the coupons distributed at each stage of interview. The model considered is
an Erdös-Rényi graph in the super-critical case: the probability of connecting each
edge is λ/N , where N is the size of population, λ > 1. In this sparse case, the
size of the giant component is close to N with probability tends to 1 as N tends
to infinity and thus we can derive the RDS in wide scope with very few times of
disruptions due to the disconnections within population. The main result in this
chapter is the convergence of the normalized Markov process to a deterministic
continuous function, proved in Theorem 0.9. We also study the central limit theorem
for the RDS process given by Theorem 0.10. This work is in progress with Anthony
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Cousien3, Jean-Stéphane Dhersin4 and Viet Chi Tran5.

Chapter 2: The RDS process on SBM In this chapter, we generalized the re-
sult in chapter 1 for the Markov chain obtained from deriving RDS process on an
SBM(N,Q, α, π), where N is the size of population, Q is the number of blocks,
α = (α1, . . . , αQ) is the proportion of each block and π = (πk`)k,`∈[[1,Q]] is the matrix
representing the probabilities of connecting nodes across blocks. The generalized
result is deduced and extended from the convergence theorem in Chapter 1. We also
conclude that the normalized process converges in distribution to a deterministic
continuous vectorial-function. The proof follows the similar strategy as in the previ-
ous chapter, but with the more carefulness and complexity in treatment. This work
has been submitted to ESAIM.

Chapter 3: Estimation of SBM by RDS process in the associated graphon In
this chapter, we estimate the parameter of an SBM from the RDS data constructed
by a graphon. We consider two situations: the types (Z1, . . . , Zn) are observed and
unobserved. For each case, we give some statistic results to compare the "classic"
estimator by the maximum likelihood with the new estimators developed from the
result of Athreya and Röllin [5]. This work is submitted in collaboration with Viet
Chi Tran.

3French Institute of Health and Medical Research
4University Sorbonne Paris Nord
5University Paris Gustave Eiffel
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The work in this chapter is in progress in collaboration with Anthony Cousien1,
Jean-Stéphane Dhersin2 and Viet Chi Tran3.

1.1 Introduction

Discovering the topology of social networks for hard to reach populations like people
who inject drugs (PWID) or men who have sex with men (MSM) may be of primary
importance for modeling the spread of diseases such as AIDS or HCV in view of

1French Institute of Health and Medical Research
2University Sorbonne Paris Nord
3University Paris Gustave Eiffel
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public health issues for instance. We refer to [83, 23, 41, 73, 74] for AIDS or to
[24, 25, 53] for HCV, for example. To achieve this in cases where the populations
are hidden, it is possible to use chain-referral sampling methods, where respondents
recruit their peers [47, 49, 70]. These methods are commonly used in epidemiological
or sociological survey to recruit hard to reach populations: the interviewees (or ego)
are asked about their contacts (alters), where the term “contact” depends on the study
population (injection partners for PWID, sexual partners for MSM ...) and some
among the latter are recruited for further interviews. In one of the variant, Respondent
Driven Sampling (RDS, see [27, 43, 48, 49, 65, 80]), an initial set of individuals are
recruited in the population (with possible rules) and each of them is given a certain
number of coupons. The coupons are distributed by recruited individuals to their
contacts. Either the contacts receiving coupons are chosen at random (which is the
case considered in this thesis) or the choice can be guided by information brought by
the interviewees (people who are more likely to respond or who are known to have
more contacts). The coupon holders come to take an interview and receive in turn
coupons to distribute etc. The information of who recruited whom is kept, which, in
combination with the knowledge of the degree of each individual, allows to re-weight
the obtained sample to compensate for the fact that the sample was not collected in
a completely random way. A tree connecting egos and their alters can be produced
from the coupons. Additionally, it is also possible to investigate for the contacts
between alters - which is a less reliable information since obtained from the ego and
not the alters themselves. This provides a network that is not necessarily a tree, with
cycles, triangles etc. For PWID populations in Melbourne, Rolls et al. [75, 76] have
carried such studies to describe the network of PWID who inject together. The results
and the impacts from a health care point of view on Hepatitis C transmission and
treatment as prevention are then studied. A similar study on French data is currently
in progress [58].

In this chapter, we consider a population of fixed size N that is structured by a
social static random network G = (V,E), where the set V of vertices represents the
individuals in the population and E ⊂ V 2 is the set of non-oriented edges i.e. the
set of couple of vertices that are in contact. Although the graph is non-oriented, the
two vertices of an edge play different roles as the RDS process spreads on the graph.
At the beginning, there is one individual chosen and interviewed. He or she names
their contacts and then receives a maximum of c coupons, depending on the number
of their contacts and the number of the remaining coupons to be distributed. If the
degree D of the individual is larger than c, c coupons are distributed uniformly at
random to c people among these D contacts. But when D < c, only D coupons
are distributed. We assume here that there is no restriction on the total number
of coupons. In the classical RDS, the interviewee chooses among his/her contacts
c people (who have not yet participated to the study) to whom the coupons are
distributed. When the latter come with the coupons, they are in turn interviewed.
Each person returning a coupon receives some money, as well as the person who
distributed the coupons and depending on how many of the coupons he or she
distributed were returned.
To the RDS we can associate a random graph where we attach to each vertex the
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contacts to whom he/she has distributed coupons. This tree is embedded into the
graph that we would like to explore and which is unknown. Additionally, we have
some edges obtained from the direct exploration of the interviewees’ neighborhood.
This enrich the tree defined by the coupon into a subgraph (not necessarily a tree
any more) of the graph of interest. Here we do not consider the information obtained
from an interviewee between their alters.

RDS exploration process

We would like first to investigate the proportion of the whole graph discovered by the
RDS process. Thus, let us first define the RDS process describing the exploration of
the graph. We sum up the exploration process by considering only sizes of –partially–
explored components. We thus introduce the process:

Xn = (An, Bn) ∈ {0, . . . N}2, n ∈ N. (1.1)

The discrete time n is the number of interviews completed, An corresponds to the
number of individuals that have received coupons but that have not been interviewed
yet, Bn to the number of individuals cited in interviews but who have not been given
any coupon. We set X0 = (A0, B0): A0 > 1 individual is recruited randomly in the
population and we assume that the random graph is unknown at the beginning of
the study. The random network is progressively discovered when the RDS process
explores it. At time n ∈ N, the number of unexplored vertices is N − (n+An +Bn).

Let us describe the dynamics of X = (Xn)n∈N. At the time n + 1, if An > 0,
one individual among these An people with coupons is interviewed and is given a
maximum of c coupons that he/she would distributed to his/her contacts. If An = 0,
a new individual chosen from the unexplored population (including the individuals
mentioned before) is recruited, no coupon is distributed, and we continue the survey.
For the sake of simplicity, we assume that the new seeds are chosen uniformly among
the unexplored individuals. The process stops at n = N , when all vertices in the
population have been explored. Thus,

An+1 =An − 1{An≥1} + Yn+1 ∧ c, (1.2)
Bn+1 =Bn +Hn+1 − (Hn+1 +Kn+1) ∧ c

where Yn+1 is the number of new neighbors, who have not received any coupon
before, of the (n+ 1)th-individual interviewed; Hn+1 is the number of the (n+ 1)th-
interviewee’s new neighbors, who were not mentioned before, and Kn+1 is the
number of the (n + 1)th-interviewee’s new neighbors, who are chosen amongst
the individuals that we knew but do not have any coupon. Of course, Yn+1 =
Hn+1 +Kn+1. At this point, we can see that the transitions of the process (Xn)n∈N
depend heavily on the graph structure: this will determine the distributions of the
random variables Yn+1, Hn+1 and Kn+1 and their dependencies with the variables
corresponding to past interviews (indices n, n− 1..., 0).
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Step 0 Step 1

Step 2 Step 3
off-mode node (who has been interviewed)
active node (who has coupon but has not been interviewed yet)
explored but still inactive node (who has been named but did not receive coupons)

Figure 1.1. Description of how the chain-referral sampling works. In our model, the random
network and the CRS are constructed simultaneously. For example at step 3, an edge

between two vertices who are already known at step 2 is revealed.

Case of Erdös-Rényi graphs

If the graph that we explore is an Erdös-Rényi graph [89, 94], then the process
(Xn)n∈N become a Markov process. In this first chapter, we carefully study this simple
case and consider an Erdös-Rényi graph in the supercritical regime, where each pair
of vertices is connected independently from the other with a given probability λ/N ,
with λ > 1.

In this case, we have, conditionally to An−1 and Bn−1 at step n, that

Yn
(d)
=Bin

(
N − n− An−1,

λ

N

)
(1.3)

Hn
(d)
=Bin

(
N − n− An−1 −Bn−1,

λ

N

)
(1.4)

Kn
(d)
=Bin

(
Bn−1,

λ

N

)
. (1.5)

We recall that Yn = Hn +Kn and conditionally to An−1 and Bn−1, Hn and Kn are
independent.
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Plan of the chapter

In Section 1.2, we show that the process (Xn)n∈N is a Markov chain and provide
some computation for the time at which the number of coupons distributed touches
zero, meaning that the RDS process has stopped and should be restarted with another
seed. In Section 1.3, the limit of the process (Xn)n∈N, correctly renormalized, is
studied. We show that the rescaled process converges to the unique solution on [0, 1]
of a system of ordinary differential equations. The fluctuations associated with this
convergence are established in Section 1.4

Notation: In all the paper, we consider for the sake of simplicity that the space
Rd is equipped with the norm denoted by ‖.‖: for all x = (x1, . . . , xd) ∈ Rd,
‖x‖ =

∑d
i=1 |xi|.

1.2 Study of the discrete-time process describing the RDS ex-
ploration of the graph

1.2.1 Markov property and state space

When the graph underlying the RDS process is an Erdös-Rényi graph, the RDS
process (Xn)n∈N becomes an inhomogeneous Markov process thanks to the identities
(1.3). It is then possible to compute the transitions of this process that depend on the
time n ∈ {0, . . . N}.

Proposition 1.1 Let us consider the Erdös-Rényi random graph on
{1, . . . N} with probability of connection λ/N between each pair of dis-
tinct vertices. Consider the random process X = (Xn)n∈{0,...N} defined
in (1.1)-(1.3). Let Fn := σ({Xi, i ≤ n}) be the canonical filtration as-
sociated with the process (Xn)n∈{0,...N}. The process (Xn)n∈{0,...N} is an
inhomogeneous Markov chain with the following transition probabilities:
P(Xn = (a′, b′) | Xn−1 = (a, b)) = Pn((a, b), (a′, b′)).

Pn((a, b), (a′, b′)) =
∑
(h,k)

(
b

k

)(
N − n− a− b

h

)
ph+k(1− p)N−n−a−h−k,

(1.6)
where the sum is ranging over (h, k) such that a′ = a− 1a≥1 + (h+ k) ∧ c and
b′ = b+ h− (h+ k) ∧ c.

Proof. For n < N , we compute P(Xn+1 = (a′, b′) | Fn) using (1.2) and (1.3).
The fact that this probability depends only on Xn shows the Markov property and
provides the transition probability (1.6). �

Of course, An, Bn ∈ {0, . . . N} but there are more constraints on the components of
the process (Xn). First, the number of coupons in the population plus the number of
interviewed individuals cannot be greater than the size of the population N , implying
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that:
An + n ≤ N ⇔ An ≤ N − n. (1.7)

Also, assume that at time m ≥ 0, Xm = (`, k). Then, the number of coupons dis-
tributed in the population can not increase of more than c− 1 at each step and can
not decrease of more than 1. Thus,

`− (n−m) ≤ An ≤ `+ (n−m)× (c− 1). (1.8)

Thus, the points (n,An), for n ≥ m, belong to the gray area on Fig. 1.2. Let us
denote by S this grey region defined by (1.7) and (1.8):

S =

{
(n, a) ∈ {m, ..., N} × {0, ..., N − `}

∣∣
max{`− (n−m), 0} ≤ a ≤ min{`+ (n−m)× (c− 1), N − n}

}
.

n

An

m

`

An = (n−m)(c− 1) + `

An = `− (n−m)

N

An = N − n

n0

Figure 1.2. Grey area S: Set of states susceptible to be reach from the process (An) started
at time m with Am = `, as defined by the constraints (1.7) and (1.8). The process (An) can

be stopped upon touching the abscissa axis, which corresponds to the state when the
interviews stop because there is no coupons in population any more. The chain conditioned
on touching the abscissa axis at (n0, 0) can not cross the dashed line, which is an additional

constraint on the state space.

1.2.2 Stopping events of the RDS process

We now investigate the first time τ when Aτ = 0, i.e. the time at which the RDS
process stops if we do not add another seed because there is no more coupon in the
population. Let us define by
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τ := inf{n ≥ 0, An = 0} (1.9)

the first time where the RDS process touches the abscissa axis. This stopping time
corresponds to the size of the population that we can reach without additional seed
other than the initial ones.
Our process evolves in a finite population of size N , and we have seen that the
process An ≤ N − n. Thus, τ ≤ N < +∞ almost surely.

For (n0,m, `) ∈ N3, let us define the probability that the RDS process without
additional seed stops after having seen n vertices and discovered n0 other existing
potential vertices:

un0(m, `) = P
(
τ = n0 | Am = `

)
. (1.10)

By potential theory, un0(., .) : S 7→ [0, 1] is the smallest solution of the system
which, thanks to the previous remarks on the state space of the process, involves only
a finite number of equations:

un0(n0, 0) = 1, ∀n 6= n0, un0(n, 0) = 0, (1.11)

un0(n, a) =
∑

a′ | (n+1,a′)∈S

Pn
(
a, a′

)
un0(n+ 1, a′), n ≤ n0 − 1, a ≤ N, (1.12)

where Pn(a, a′) = P
(
An+1 = a′ | An = a

)
In fact, the support of un0 is strictly

included in Sn0 defined as follows, when n0 < N :

Sn0 =

{
(n, a) ∈ {m, ..., N} × {0, ..., N − `}

∣∣
max{`− (n−m), 0} ≤ a ≤ min{`+ (n−m)× (c− 1), n0 − n}

}
(1.13)

since the maximal number of interviewed individuals (and hence of distributed
coupons) is n0 on the event of interest (see dashed line in Fig. 1.2).

For Erdös-Rényi graphs with connection probability λ/N , we have more precisely:

Pn(a, a′) =

(
N − (n+ 1)− a

k

)(
λ

N

)k(
1− λ

N

)N−(n+1)−a−k

if (−1 ≤ a′ − a
= k − 1, k < c);

1−
c−1∑
k=0

(
N − (n+ 1)− a

k

)(
λ

N

)k(
1− λ

N

)N−(n+1)−a−k

if a′ − a = c− 1;

0 otherwise .
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Let us define for n ≥ 0:

U(n)
n0

:=


un0(n, 1)

...
un0(n, a)

...
un0(n, n0)

 (1.14)

and P
(n)
n0 the n0 × n0 matrix with entries (Pn(a, a′); 1 ≤ a, a′ ≤ n0).

Then, for n < n0 − 1, the system of equations (1.11)-(1.12) becomes

U(n)
n0

= P(n)
n0

U(n+1)
n0

.

And for n = n0 − 1, the boundary condition gives that

U(n0−1)
n0

:=


un0(n0 − 1, 1)

...
un0(n0 − 1, a)

...
un0(n0 − 1, n0)

 =


Pn0−1(1, 0)

...
Pn0−1(a, 0)

...
Pn0−1(n0, 0)

 =


Pn0−1(1, 0)

0
...
...
0

 .

1.3 Limit of the normalized RDS process

For an integerN ≥ 1, let us consider the following renormalizationXN = (AN , BN)
of the process X:

XN
t :=

1

N
XbNtc =

(
AbNtc
N

,
BbNtc
N

)
∈ [0, 1]2, t ∈ [0, 1]. (1.15)

Notice that XN is constant by part and jumps at the times tn = n/N for n ∈
{1, . . . , N + 1}. Thus the process XN belongs to the space D([0, 1], [0, 1]2) of
càdlàg processes from [0, 1] to [0, 1]2 embedded with the Skorokhod topology [86,
55]. Define the filtration associated to XN as (FNt )t∈[0,1] = (FbNtc)t∈[0,1]. We aim to
study the limit of the normalized process XN = (AN , BN) when N tends to infinity.

Assumption 1.1 Let a0, b0 ∈ [0, 1] with a0 > 0 and b0 = 0. We assume that the
sequence XN

0 = 1
N
X0 converges in probability to the vector x0 = (a0, b0) as N

tends to infinity.

Theorem 1.1 Under the assumption 1.1, when N tends to infinity, the sequence
of processes XN = (AN , BN) converges in distribution in D([0, 1], [0, 1]2) to a
deterministic path x = (a, b) ∈ C([0, 1], [0, 1]2), which is the unique solution of
the following system of ordinary differential equations
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xt = x0 +

∫ t

0

f(s, xs)ds, (1.16)

where f(t, xt) = (f1(t, xt), f2(t, xt)) has the explicit formula:

f1(t, xt) = c−
c−1∑
k=0

(c− k)pk(t+ at)− 1at>0 (1.17)

f2(t, xt) = (1− t− at − bt)λ+
c−1∑
k=0

(c− k)pk(t+ at)− c, (1.18)

with
pk(z) :=

λk(1− z)k

k!
e−λ(1−z), k ∈ {0, ..., c}, (1.19)

and c is the maximum value of coupons distributed at each time step.

Remark 1.1 Since the limiting process x ∈ C([0, 1], [0, 1]2) is deterministic,
the convergence in distribution of Theorem 1.1 is in fact a convergence in
probability.

The proof of Theorem 1.1 follows the steps below. First, we enounce a semi-
martingale decomposition for (XN)N≥1 that allows us to prove the tightness of
the sequence (XN)N≥1 by using Aldous-Rebolledo criteria. Then, we identify the
equation satisfied by the limiting values of (XN)N≥1, and show that the latter has a
unique solution.

Let us first have some comments on the solution of (1.16).

Proposition 1.2 Let us denote

t0 := inf{t ∈ [0, 1] : |at| = 0}. (1.20)

Then at = 0,∀t ∈ [t0, 1].

Proof. For c = 1, (1.17)-(1.18) gives that

da

dt
= 1− p0(t+ a)− 1a>0 =

{
−e−λ(1−t−a) < 0 if a > 0

1− e−λ(1−t) > 0 if a = 0.

Recall also that for all t ∈ [0, 1], at + t ∈ [0, 1] since it corresponds to the proportion
of individuals who have received a coupon (already interviewed or not). The right
hand side of (1.17)-(1.18) has a discontinuity on the abscissa axis that implies that
the solution stays at 0 after t0. Notice that this was expected since when c = 1, {0, 1}
is an absorbing state for the Markov process (AN)N≥1.
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Let us now consider the case c > 1. We have then that

da

dt
= φ(a+ t)− 1a>0,

where

φ(z) := c−
c−1∑
k=0

(c− k)pk(z) = c−
c−1∑
k=0

(c− k)
λk(1− z)k

k!
e−λ(1−z). (1.21)

By Lemma 1.4, the function φ is strictly decreasing with φ(1) = 0 and φ(1−1/λ) >
1. From this we deduce that φ is a positive function on (0, 1) and that there exists
a unique zc ∈ (1−1/λ, 1) such that φ(zc) = 1. For all t such that 0 < t < t0, we have

d(at + t)

dt
= φ(a+ t)− 1 + 1 = φ(at + t) > 0.

It implies that t 7→ t+ at is a strictly increasing function on [0, t0] and thus

a0 < t+ at < t0, ∀t ∈ (0, t0).

If zc > t0, then 1 = φ(zc) < φ(t0) < φ(t + at) for all t ∈ (0, t0). It follows that
dat
dt
> 0. Hence, at is strictly increasing in the interval (0, t0). Notice that t + at is

continuous function on [0, 1], and since t+ at is strictly increasing, we deduce that
0 < a0 < at0 = 0, which is impossible.
If zc < a0 < t0, then 1 = φ(zc) > φ(t+ at) for all t such that t+ at > zc. And thus
dat
dt

= φ(t+ at)− 1 < 0 whenever t+ at > zc and at > 0.
If zc ∈ [a0, t0], then there exists a unique tc ∈ [0, t0] such that tc + atc = zc. It
follows that there is a value tc in the interval [0, t0] such that φ(tc + atc) = 1. Then
φ(t+ at) > 1 for all t ∈ (0, tc) and φ(t+ at) > 1 for t ∈ (tc, 1). Thus,

dat
dt

> 0 when t ∈ (0, tc) and
dat
dt

< 0 when t ∈ {t > tc : at > 0}.

After the time t0, there is again a discontinuity in the vector field (t, a) 7→ φ(t +
at) − 1a>0 which is directed toward negative ordinates when a > 0 and positive
ordinate when a < 0. This implies that the solution of the dynamical system stays at
0 after time t0.

�

Now, for the first step of the proof of Theorem 1.1, we write the Doob’s decomposi-
tion of (XN)N≥1 as follows.

Lemma 1.1 The process XN , for N ∈ N∗, admits the following Doob decom-
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position: XN
t = XN

0 +∆N
t +MN

t , or in the vectorial form(
XN,1

XN,2

)
=

(
AN0
BN

0

)
+

(
∆N,1

∆N,2

)
+

(
MN,1

MN,2

)
. (1.22)

The predictable process with finite variations ∆N is:(
∆N,1
t

∆N,2
t

)
=

1

N

bNtc∑
n=1

(
E[Yn ∧ c | Fn−1]− 1An−1≥1
E[Hn − Yn ∧ c | Fn−1]

)
(1.23)

The square integrable centered martingale MN has quadratic variation process
〈MN〉 given as follows:

〈MN〉t =
1

N2

bNtc∑
n=1

(
Var
(
Yn ∧ c | Fn−1

)
Cov

(
Yn ∧ c,Hn − Yn ∧ c

)
Cov

(
Yn ∧ c,Hn − Yn ∧ c

)
Var
(
Hn − Yn ∧ c | Fn−1

) ) .
(1.24)

Notice that the quantities in (1.23) and (1.24) can be computed as functions of ANtn−1

and BN
tn−1

for n ∈ {1, ..., N}:

E[Yn ∧ c | Fn−1] = c−
c−1∑
k=0

(c− k)P(Yn = k|Fn−1) (1.25)

where

P(Yn = k|Fn−1) =
(N −Ntn−1 −NANtn−1

− 1)!

(N −Ntn−1 −NANtn−1
− 1− k)!Nk

λk

k!

×
(

1− λ

N

)N(1−tn−1−ANtn−1
)(

1− λ

N

)−k−1
, (1.26)

and
E[Hn|Fn−1] = λ

(
1− n

N
− ANtn−1

−BN
tn−1

)
. (1.27)

For the bracket in (1.24), the terms can be computed from:

E
[
(Yn ∧ c)2

∣∣Fn−1] = c2 +
c∑

k=0

(k2 − c2)P(Yn = k|Fn−1); (1.28)

E
[
Yn ∧ c

∣∣Fn−1]2 =

c+
c∑

k=0

(k − c)P(Yn = k|Fn−1)

2

; (1.29)

Var(Hn|Fn−1) = λ

(
1− n

N
− An−1

N
− Bn−1

N

)(
1− λ

N

)
; (1.30)

and

E[Hn(Yn ∧ c)|Fn−1] =

N−n−An−1∑
k=0

(k ∧ c)E(Hn|Yn = k)P(Yn = k|Fn−1)
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=
N − n− An−1 −Bn−1

N − n− An−1

 c∑
k=0

k2P(Yn = k|Fn−1) +

N−n−An−1∑
k=c+1

ckP(Yn = k|Fn−1)


=

(
1− Bn−1

N − n− An−1

) c∑
k=0

(k2 − ck)P(Yn = k|Fn−1) + cE[Yn|Fn−1]


=

(
1− Bn−1

N − n− An−1

) c∑
k=0

(k2 − ck)P(Yn = k|Fn−1) + cλ

(
1− n

N
− An−1

N

) .
(1.31)

Proof. Since the components of XN take their values in [0, 1], the process XN is
clearly square integrable. It is classical to write XN

t as

XN
t = XN

0 +
1

N

bNtc∑
n=1

(Xn −Xn−1)

= XN
0 +

1

N

bNtc∑
n=1

E[Xn −Xn−1|Fn−1]

+
1

N

bNtc∑
n=1

(Xn −Xn−1 − E[Xn −Xn−1|Fn−1]).

Let us call ∆N
t the second term in the right hand side, and MN

t the third term. We
will prove that ∆N is an FNt -predictable finite variation process and that MN is a
square integrable martingale.

Let us first consider (∆N
t )0≤t≤1. From (1.2), we have that for the first component:

An − An−1 = Yn ∧ c− 1{An−1≥1}, Bn −Bn−1 = Hn − Yn ∧ c.

Moreover, for each n ∈ {1, ..., N}, E[Xn−Xn−1|Fn−1] is Fn−1-measurable. Hence,
∆N
t is FbNtc−1-measurable. The total variation of ∆N is:

V (∆N
t ) =

bNtc∑
n=1

‖∆N
tn −∆N

tn−1
‖

=
1

N

bNtc∑
n=1

|E[An − An−1 | Fn−1]|+ |E[Bn −Bn−1 | Fn−1]|

≤ (2c+ λ)t < +∞,

by using (1.2), as Yn ∧ c ≤ c and E[Hn | Fn−1] ≤ λ.

Furthermore, using (1.2), we can recover the expression (1.23) of ∆N announced in
the lemma as:
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E[Yn ∧ c|Fn−1] =
c∑

k=0

kP(Yn = k|Fn−1) + cP(Yn > c|Fn−1)

=
c∑

k=0

kP(Yn = k|Fn−1) + c
(
1− P(Yn ≤ c|Fn−1)

)
= c−

c∑
k=0

(c− k)P(Yn = k|Fn−1),

where

P(Yn = k|Fn−1) =

(
N −Ntn −NANtn − 1

k

)( λ
N

)k(
1− λ

N

)N−Ntn−NANtn−1−k
=

(N −Ntn −NANtn − 1)!

(N −Ntn −NANtn − 1− k)!k!

( λ
N

)k(
1− λ

N

)N−Ntn−NANtn−1−k
=

(N −Ntn −NANtn − 1)!

(N −Ntn −NANtn − 1− k)!Nk

(
1− λ

N

)−k−1
×
(

1− λ

N

)N(1−tn−ANtn ) λk

k!
.

Let us now show that (MN
t )0≤t≤1 is a bounded FNt -martingale and let us compute

its quadratic integration process. For every t ∈ [0, 1], MN
t is FNt -measurable and

bounded and hence square integrable:

|MN
t | =

∣∣∣XN
t −XN

0 −∆N
t

∣∣∣ ≤ 2 + (2c+ λ)t ≤ 2 + 2c+ λ < +∞.

For all s < t,

E[MN
t |FNs ] = E

 1

N

bNtc∑
n=bNsc+1

(Xn −Xn−1 − E[Xn −Xn−1|Fn−1])
∣∣∣∣FbNsc]


+ E

 1

N

bNsc∑
n=1

(Xn −Xn−1 − E[Xn −Xn−1|Fn−1])
∣∣∣∣FbNsc


=

1

N

bNsc∑
n=1

(Xn −Xn−1 − E[Xn −Xn−1|Fn−1]) = MN
s .

Then MN
t is an (FNt )-martingale.

Let us denote X1
n = An and X2

n = Bn. The quadratic variation process is defined as:

〈MN〉t =

[
〈MN,1,MN,1〉t 〈MN,1,MN,2〉t
〈MN,2,MN,1〉t 〈MN,2,MN,2〉t

]
, (1.32)

where for k, ` ∈ {1, 2},

〈MN,k,MN,`〉t =
1

N2

bNtc∑
n=1

{
E
[
(Xk

n −Xk
n−1)(X

`
n −X`

n−1)
∣∣Fn−1]
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− E
[
(Xk

n −Xk
n−1)|Fn−1

]
E
[
(X`

n −X`
n−1)|Fn−1

]}
.

(1.33)

Using (1.2), we have:

〈MN,1〉t =
1

N2

bNtc∑
n=1

E
[(
An − An−1 − E[An − An−1|Fn−1]

)2 ∣∣Fn−1]
=

1

N2

bNtc∑
n=1

Var(Yn ∧ c|Fn−1) ≤
c2

N
. (1.34)

Proceeding similarly for the other terms, we obtain

〈MN,2〉t =
1

N2

bNtc∑
n=1

Var(Hn − Yn ∧ c|Fn−1) ≤
λ

N
,

〈MN,1,MN,2〉t =
1

N2

bNtc∑
n=1

Cov(Yn ∧ c,Hn − Yn ∧ c | Fn−1) ≤
c
√
λ

N
. (1.35)

This finishes the proof of the Lemma. �

1.3.1 Tightness of the renormalized process

Lemma 1.2 The sequence (XN)N≥1 is tight in D([0, 1], [0, 1]2).

Proof. The proof of tightness is based on the classical criterion of Aldous-Rebolledo
([98, Theorem 2.3.2] and its Corollary 2.3.3). For this we have to check that finite
distributions are tight, and control the modulus of continuity of the sequence of finite
variation parts and of quadratic variation of the martingale parts.

For each t ∈ [0, 1], |ANt | + |BN
t | ≤ 2, implying that (ANt , B

N
t ) is tight for every

t ∈ [0, 1].

Let 0 ≤ s, t ≤ 1,

‖∆N
t −∆N

s ‖ = |∆N,1
t −∆N,1

s |+ |∆N,2
t −∆N,2

s |

≤ 1

N

bNtc∑
n=bNsc+1

(∣∣∣E [An − An−1|Fn−1]∣∣∣+
∣∣∣E [Bn −Bn−1|Fn−1

]∣∣∣)
≤ (2c+ λ)|t− s|.

Thus, for each positive ε and η, there exists δ0 =
εη

2c+ λ
such that for all 0 < δ < δ0,
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P

 sup
|t−s|≤δ
0≤s,t≤1

∣∣∣∆N
t −∆N

s

∣∣∣ > η

 ≤ 1

η
E

 sup
|t−s|≤δ
0≤s,t≤1

∣∣∣∆N
t −∆N

s

∣∣∣
 ≤ (2c+ λ)δ

η
≤ ε, ∀N ≥ 1.

(1.36)
By Aldous criterion, this provides the tightness of (∆N)N∈N.

Similarly, for the quadratic variations of the martingale parts, using (1.34) and (1.35),
we have for all 0 ≤ s < t ≤ 1,∣∣∣〈MN,1〉t − 〈MN,1〉s

∣∣∣ =
1

N2

bNtc∑
n=bNsc+1

Var
(
Yn ∧ c

∣∣Fn−1) ≤ c2

N
|t− s|;

∣∣∣〈MN,2〉t − 〈MN,2〉s
∣∣∣ =

1

N2

bNtc∑
n=bNsc+1

Var
(
Hn − Yn ∧ c

∣∣Fn−1)
≤ 2(λ+ c2)

N
|t− s|;∣∣∣〈MN,1,MN,2〉t − 〈MN,1,MN,2〉s

∣∣∣ ≤ 1

N2

bNtc∑
n=bNsc+1

(
Var(Yn ∧ c|Fn−1)

)1/2
×
(
Var(Hn − Yn ∧ c|Fn−1)

)1/2
≤ c(
√
λ+ c)

N
|t− s|.

Thus, using the matrix norm onM2×2(R) associated with ‖.‖1 on R2,

sup
|t−s|≤δ
0≤s,t≤1

‖〈MN〉t − 〈MN〉s‖ ≤ sup
|t−s|≤δ
0≤s,t≤1

(∣∣〈MN,1〉t − 〈MN,1〉s
∣∣+
∣∣〈MN,2〉t − 〈MN,2〉s

∣∣
+ 2
∣∣〈MN,1,MN,2〉t − 〈MN,1,MN,2〉s

∣∣)
≤ c2 + 4(λ+ c2) + c(

√
λ+ c)

N
δ. (1.37)

Consequently, for any ε > 0, η > 0, choose δ such that
c2 + 4(λ+ c2) + c(

√
λ+ c)

ηN
δ <

ε, we have

P

 sup
|t−s|<δ
0≤s,t≤1

|〈MN〉t − 〈MN〉s| > η

 < ε, ∀N ≥ 1,

which implies that 〈MN〉 is also tight. This achieves the proof of the Lemma. �

1.3.2 Identification of the limiting values

Since (XN)N≥1 is tight, there exists a subsequence (`N)N≥1 inN such that (X`N )N≥1 =
(A`N , B`N )N≥1 converges in distribution in D([0, 1], [0, 1]2) to a limiting value
(ā, b̄) ∈ D([0, 1], [0, 1]2) (e.g. [85]). We now want to identify that limiting value.
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Proposition 1.3 The sequence of martingales (MN)N≥1 converges uniformly
to 0 in probability when N →∞.

Proof. With a computation similar the one leading to (1.37), we get

‖〈M〉t‖ ≤ |〈MN,1〉t|+ |〈MN,2〉t|+ 2|〈MN,1〉t|1/2|〈MN,2〉t|1/2 ≤
(6c2 + 4λ)t

N
(1.38)

By Doob’s inequality,

E[ sup
t∈[0,1]

‖MN
t ‖2] ≤ 4E[‖〈M〉1‖] ≤ 4

6c2 + 4λ

N
.

For every ε > 0,

lim
N→∞

P

(
sup
t∈[0,1]

‖MN
t ‖2 > ε

)
≤ lim

N→∞

1

ε
E[ sup

t∈[0,1]
‖MN

t ‖2] ≤ lim
N→∞

4(6c2 + 4λ)

εN
= 0.

�

The remaining work is figuring out the limit of finite variation part ∆N . Let us recall
that

f1(t, a) := c−
c−1∑
k=0

(c− k)pk(t+ a)− 1at>0

f2(t, a, b) := (1− t− a− b)λ+
c−1∑
k=0

(c− k)pk(t+ a)− c.

and

f(t, a, b) :=

(
f1(t, a)
f2(t, a, b)

)
(1.39)

the r.h.s. of (1.17)-(1.18), where pk(x) is the function defined in (1.19).

Proposition 1.4 There exists a constant C = C(λ, c) > 0 such that for all
N ≥ 1,

sup
t∈[0,1]

∥∥∥∆N
t −

1

N

bNtc∑
n=1

f

(
n− 1

N
,
An−1
N

,
Bn−1

N

)∥∥∥ ≤ C

N
(1.40)

Proof. Recall the equations for ∆N in (1.23) and (1.26). Using (1.27), we have that:∥∥∥∆N
t −

1

N

bNtc∑
n=1

f
(n− 1

N
,
An−1
N

,
Bn−1

N

)∥∥∥
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≤
∣∣∣ 1

N

bNtc∑
n=1

(
c−

c∑
k=0

(c− k)P
(
Yn = k | Fn−1

)
− 1An−1≥1

)
−
(
c−

c∑
k=0

(c− k)pk
(n− 1

N
+
An−1
N

)
− 1An−1

N
>0

)∣∣∣
+
∣∣∣ 1

N

bNtc∑
n=1

(
E[Hn | Fn−1] +

c∑
k=0

(c− k)P
(
Yn = k | Fn−1

)
− c
)

−
(
λ
(
1− n− 1

N
− An−1

N
− Bn−1

N

)
−

c∑
k=0

(c− k)pk
(n− 1

N
+
An−1
N

))∣∣∣
≤ 2

N

bNtc∑
n=1

c∑
k=0

(c− k)

∣∣∣∣∣P(Yn = k | Fn−1
)
− pk

(
n− 1

N
+
An−1
N

)∣∣∣∣∣ . (1.41)

We are thus led to consider more carefully the difference between P(Yn = k | Fn−1)
and pk(tn−1 + ANtn−1

). We have

(N −Ntn−1 −NANtn−1
− 1)!

(N −Ntn−1 −NANtn−1
− 1− k)!Nk

= (1− tn−1 − ANtn−1
− 1

N
)(1− tn−1 − ANtn−1

− 2

N
) · · · (1− tn−1 − ANtn−1

− k

N
)

= Qk(1− tn−1 − ANtn−1
),

where for k ≤ c,

Qk(x) =
k∏

n=1

(x− xn) =
k∑
j=0

(−1)k−jek−jx
j

is a polynomial of degree k, with the notation xn = n/N , e0 = 1, ej =∑
1≤i1<...<ij≤k xi1 ...xij ,1 ≤ j ≤ k. Since

|Qk(x)− xk| =

∣∣∣∣∣∣
k−1∑
j=0

(−1)k−jek−jx
j

∣∣∣∣∣∣ ≤
k−1∑
j=0

|ek−j||xj| ≤
k−1∑
j=0

((k − 1)

N

)k−j
|xj|,

this yields: ∣∣∣∣∣ (N −Nti −NANti − 1)!

(N −Nti −NANti − k − 1)!Nk
− (1− ti − ANti )k

∣∣∣∣∣
≤

k−1∑
j=0

(
k − 1

N

)k−j
≤
∑k

`=1(k − 1)`

N
. (1.42)

Secondly, we upper bound the difference between (1 − λ/N)
N(1−tn−1−ANtn−1

) and
exp(−λ(1− tn−1 − ANtn−1

)). Using a Taylor expansion, we obtain that:(
1− λ

N

)N(1−tn−1−ANtn−1
)

= exp
(
N(1− tn−1 − ANtn−1

) log
(

1− λ

N

))
= exp

(
N(1− tn−1 − ANtn−1

) log
(

1− λ

N

))
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= e
−λ(1−tn−1−ANtn−1

)
exp

(
−
( λ2

2N
+ rN

)
(1− tn−1 − ANtn−1

)
)

where there exists some constant C = C(λ) > 0 such that 0 ≤ rN < C/N3.
Using that for x > 0, 1−x < e−x < 1, we obtain that for some constant C0 = C0(λ),

0 ≤ e−λ(1−tn−A
N
tn

) −
(

1− λ

N

)N(1−tn−ANtn ) ≤ C0

N
. (1.43)

Lastly, there exists a constant C1 = C1(c, λ) ≥ 0 such that

1 ≤
(

1− λ

N

)−(k+1)

≤ 1 +
C1

N
. (1.44)

Gathering (1.26), (1.42), (1.43) and (1.44), there thus exists a constant C2 = C2(c, λ)
such that ∣∣∣P(Yn = k|Fn−1)− pk(tn−1 + ANtn−1

)
∣∣∣ ≤ C2(λ, c)

N
. (1.45)

As a result, from (1.41) and (1.45) we have for some constant C = C(λ, c) ≥ 0∥∥∥∆N
t −

1

N

bNtc∑
n=1

f
(n− 1

N
,
An−1
N

,
Bn−1

N

)∥∥∥ ≤ C(λ, c)

N
.

This proves the proposition. �

Corollary 1.1 The limiting values of (XN)N≥1 are solutions of (1.17)-(1.18).

Proof. Let us consider a limiting value (ā, b̄) ∈ D([0, 1], [0, 1]2) of (XN)N≥1. With
an abuse of notation, we denote by (XN)N≥1 the subsequence converging to (ā, b̄).
From (1.22), Propositions 1.3 and 1.4, we obtain that the process(

Xt −
1

N

bNtc∑
n=1

f

(
n− 1

N
,ANn−1

N
, BN

n−1
N

)
, t ∈ [0, 1]

)
converges uniformly to zero when N → +∞. Using Lemma 1.3, the process( 1

N

bNtc∑
n=1

f
(n− 1

N
,ANn−1

N
, BN

n−1
N

)
, t ∈ [0, 1]

)
converges uniformly to the process(∫ t

0

f(s, ās, b̄s)ds, t ∈ [0, 1]
)
.

We deduce from this that the limiting value of (XN)N≥1 is necessarily solution of
(1.17)-(1.18). �
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1.3.3 Uniqueness of the ODE solutions

To prove Theorem 1.1, it remains to prove the uniqueness of the limiting value, i.e.
that:

Proposition 1.5 The system of differential equations (1.17)-(1.18) admits a
unique solution.

Proof. Suppose that (1.17)-(1.18) have two solutions (a1, b1) and (a2, b2), then for
all t ∈ [0, 1],

|a1t − a2t | ≤
∫ t

0

|g(s, a1s)− g(s, a2s)|ds+

∫ t

0

∣∣∣∣1{a1s>0} − 1{b2s>0}

∣∣∣∣ds, (1.46)

where
g(t, at, bt) := c−

c−1∑
k=0

(c− k)pk(t+ at). (1.47)

In the first term of the right hand side of (1.46), we have

|g(s, a1s)− g(s, a2s)| ≤ |∂ag(s, ξs)||a1s − a2s|, (1.48)

for some real value ξs between a1s and a2s, i.e. min{a1s, a2s} ≤ ξs ≤ max{a1s, a2s}.
For the second term, we want to prove that for all t ∈ [0, 1],∫ t

0

∣∣1a1s>0 − 1a2s>0

∣∣ ds = 0. (1.49)

In order to do so, we first prove that all the solutions of (1.17) touch zero at the same
point and that after touching zero, they stay at zero. Consider the equation:

dāt
dt

= g(t, āt)− 1. (1.17)’

Because the function (t, a) 7→ f1(t, a) − 1 is continuous with respect to t and
Lipschitz with respect to a on [0, 1], Equation (1.17)’ has unique solution āt for t in
[0, 1]. Let us define

t̄0 := inf{t > 0 : āt = 0}

and
t0 := inf{t > 0 : at = 0}

where at is a solution of (1.17). Since the two equations (1.17) and (1.17’) coincide
on [0, t0 ∧ t̄0], at = āt for all t ∈ [0, t0 ∧ t̄0]. Thus, t̄0 = t0 and a1t = a2t = at for all
t ≤ t0 implying that

∫ t
0

∣∣1a1s>0 − 1a2s>0

∣∣ ds = 0, for all t ≤ t0.

To conclude the proof of (1.49), it remains to show that a1 and a2 stay at zero after
time t0. Indeed, this fact is claimed by the Proposition 1.2.

Consequently, from (1.48) and (1.49), we have
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|a1t − a2t | ≤
∫ t

0

|∂ag(s, ξs)||a1s − a2s|ds. (1.50)

And because f2(., ., b) is differentiable, we also have

|b1t − b2t | ≤
∫ t

0

max
a∈[0,1]

|∂bf2(s, a, ζs)||b1s − b2s|ds, (1.51)

where ζs is a value between b1s and b2s, that is min(b1s, b
2
s) ≤ ζs ≤ max(b1s, b

2
s). Ap-

plying the Gronwall’s inequality, we obtain

|a1t − a2t |+ |b1t − b2t |

≤ (|a10 − a20|+ |b10 − b20|) exp

(∫ t

0

[
|∂af1(s, ξs)|+ max

a∈[0,1]
|∂bf2(s, a, ζs)

]
ds

)
= 0,

for all t in [0, 1]. That means the equations (1.17)-(1.18) have at most one solution.
�

The function (a(t, x), b(t, x)) is continuous, then by Lemma 1.3, Proposition 1.3, we
conclude that every subsequence (X`N )N≥1 ⊂ (XN)N≥1 converges in distribution to
a solution of the differential equations (1.17)-(1.18). And because of the uniqueness
of the solution of (1.17)-(1.18), which is proved above, we conclude that the sequence
(XN)N≥1 = (AN , BN)N≥1 converges in distribution to that unique solution.

1.4 The central limit theorem

For every N ∈ N∗, let us define:

τN0 := inf{t > 0, ANt = 0}. (1.52)

When the underlying networks are supercritical Erdös-Rényi graphs: ER(N, λ/N),
λ > 1, the size of the largest and the second largest components (by Theorem 0.5) is
approximated as |Cmax| = O(N) and |C(2)| = O(log(N)) as N tends to infinity.
The probability that one of the initial A0 individuals belongs to the giant component
converges to 1. Indeed, we can consider that our initial condition consists of the
first nodes explored until b‖x0‖Nc individuals are discovered. Each time there is no
more coupon, a new seed is chosen uniformly in the population, of which the giant
component represents a proportion ζλ (see Theorem 0.5). Hence, the number of seeds
S until we first hit the giant component follows roughly a Geometric distribution with
parameter ζλ. Since for seeds outside the giant component, the associated exploration
trees are of size at most log(N), the number of individuals discovered before finding
the giant component is of order log(N) < b‖x0‖Nc. Under the assumption 1.1, there
is a positive fraction of seeds belonging to the giant component of ER(N, λ/N)
with a probability converging to 1.
For all n = bNtc with t ≥ τN0 , the RDS process restarts by choosing new seeds
from the next components, whose sizes are at most O(log(N)) (by Theorem 0.5) as
N tends to infinity. When we normalize the process (An)n≥bNτN0 c by the size of the
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population N , the normalized process (ANt ; t ≥ τN0 )N≥1 converges in probability
uniformly to 0.

For the central limit theorem, we are interested in the limit of the RDS process in
the giant component of ER(N, λ/N), λ > 1. By the proposition 1.5, we see that the
Markov process (ANt )N≥1 absorbs after the time t0 with probability approximately 1
as N tends to infinity. Thus, in the sequels, we work conditionally on {τN0 ≥ t0} and
all the processes are treated only in the interval [0, t0].

We now consider the process

WN
t :=

XbNtc −N(at, bt)√
N

=
√
N(XN

t − xt), t ∈ [0, t0], N ∈ N∗. (1.53)

Assumption 1.2 Let W0 = (W 1
0 ,W

2
0 ) be a Gaussian vector: W0 ∼ N (0;Σ).

Assume that WN
0 =

√
N(XN

t − x0) converges in distribution to W0 as N →∞.

Theorem 1.2 Under Assumption 1.2, conditionally on {τN0 ≥ t0}, the process
(WN)N≥1 converges in distribution in D([0, t0],R2) to Y , which satisfies

Wt = W0 +

t∫
0

G(s, as, bs,Ws)ds+M(t, at, bt) (1.54)

where

G(t, a, b, w) :=

(
φ′(t+ a)w1

−λ(w1 + w2)− φ′(t+ a)w1

)
; (1.55)

φ(z) := c−
c−1∑
k=0

(c− k)
λk(1− z)k

k!
e−λ(1−z), (1.56)

and φ′(z) is the derivative with respect to z of φ; M is a zero-mean martingale
with the quadratic variation

〈M(·, a·, b·)〉t :=

 t∫
0

mij(s, as, bs)ds


i,j∈{1,2}

, (1.57)

in which

m11(t, a, b) :=
c∑

k=0

(c− k)2pk(t+ a)−

 c∑
k=0

(c− k)pk(t+ a)

2

; (1.58)

m22(t, a, b) := λ(1− t− a− b) + 2λ(1− t− a− b)

×

c(λ− 1) +
c∑

k=0

pk(t+ a)

+m11(t, a, b); (1.59)
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m12(t, a, b) : = λ(1− t− a− b)

c(λ− 1) +
c∑

k=0

pk(t+ a)

−m11(t, a, b).

(1.60)

The proof is divided into several steps: first, we write WN in the form of a Doob’s
composition; then we claim the tightness of the sequence (WN)N≥1 in D([0, t0],R2)
by proving the tightness of both terms: the finite variation part and the martingale;
next, we identify the limiting values of the sequence (WN)N≥1; and finally we
demonstrate that all the limiting values are the same.

Recall from Lemma 1.1 that:(
XN,1
t

XN,2
t

)
=

(
AN0
BN

0

)
+

(
∆N,1
t

∆N,2
t

)
+

(
MN,1

t

MN,2
t

)
,

where

∆N,1
t =

1

N

bNtc∑
i=1

c−
c−1∑
k=0

(c− k)P(Yi = k|Fi−1)− 1

 ,

∆N,2
t =

1

N

bNtc∑
i=1

{
λ

(
1− i

N
− Ai−1

N
− Bi−1

N

)

−

c− c−1∑
k=0

(c− k)P(Yi = k|Fi−1)

 ,

and where
〈MN〉t =

[
〈MN,1,MN,1〉t 〈MN,1,MN,2〉t
〈MN,2,MN,1〉t 〈MN,2,MN,2〉t

]
. (1.61)

From the proof of Lemma 1.1, we recall the equation (1.40):∥∥∥∆N
t −

1

N

bNtc∑
n=1

f
(n− 1

N
,
An−1
N

,
Bn−1

N

)∥∥∥ ≤ C

N
, (1.62)

where f is defined in (1.39): f(t, a, b) = (f1(t, a, b), f2(t, a, b)),

f1(t, a) := c−
c−1∑
k=0

(c− k)pk(t+ a)− 1

f2(t, a, b) := (1− t− a− b)λ+
c−1∑
k=0

(c− k)pk(t+ a)− c.

and recall the components of the quadratic variation 〈MN〉t given by (1.24):

〈MN,1〉t =
1

N2

bNtc∑
n=1

Var(Yn ∧ c|Fn−1),
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〈MN,1,MN,2〉t =
1

N2

bNtc∑
n=1

Cov(Yn ∧ c,Hn − Yn ∧ c | Fn−1),

〈MN,2〉t =
1

N2

bNtc∑
n=1

Var(Hn − Yn ∧ c|Fn−1).

Notice that in this section, we work conditionally on {τ 0N ≥ t0} and that all processes
are defined in the time interval [0, t0], then all terms 1Ai−1≥1, 1 ≤ i ≤ bNt0c, 1ANt >0,
1at>0 are replaced by 1.

For all N ∈ N∗ and for all t ∈ [0, t0], WN
t is written as:

WN
t =
√
N

(
AN0 − a0
BN

0 − b0

)
+
√
N

(
∆N,1
t −

∫ t
0
f1(s, as, bs)ds

∆N,2
t −

∫ t
0
f2(s, as, bs)ds

)
+
√
N

(
MN,1

t

MN,2
t

)
=WN

0 + ∆̃N
t + M̃N

t .

We prove tightness of the process in D([0, t0],R2) and then identify the limiting
values.

1.4.1 Tightness of the process (WN)N≥1

Proposition 1.6 The sequence (WN)N≥1 is tight in D([0, t0],R2).

Proof. To prove that the distributions of the semi-martingales (WN)N≥1 form a tight
family, we use the Aldous-Rebolledo criterion as in Lemma 1.2. To achieve this, we
start with establishing some moment estimates that will be useful.

Step 1: moment estimates

From (1.38), we have
E[‖〈M̃N〉t‖] ≤ (6c2 + 4λ)t.

For the term ∆̃N
t :

|∆̃N,1
t | ≤

√
N

∣∣∣∣∣∣∆N,1
t − 1

N

bNtc∑
i=1

{
c−

c∑
k=0

(c− k)pk

(
i− 1

N
+
Ai−1
N

)
− 1

}∣∣∣∣∣∣
+
√
N

∣∣∣∣∣ 1

N

bNtc∑
i=1

{
c−

c∑
k=0

(c− k)pk

(
i− 1

N
+
Ai−1
N

)
− 1

}

−
bNtc∑
i=1

i/N∫
(i−1)/N

(
c−

c∑
k=0

(c− k)pk (s+ as)− 1

)
ds

∣∣∣∣∣
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+
√
N

∣∣∣∣∣∣∣
t∫

bNtc/N

(
c−

c∑
k=0

(c− k)pk (s+ as)− 1

)
ds

∣∣∣∣∣∣∣ . (1.63)

Thanks to (1.62), we have that

√
N

∣∣∣∣∣∣∆N,1
t − 1

N

bNtc∑
i=1

{
c−

c∑
k=0

(c− k)pk

(
i− 1

N
+
Ai−1
N

)
− 1

}∣∣∣∣∣∣
≤
√
N

∥∥∥∥∥∥∆N
t −

1

N

bNtc∑
i=1

f

(
i− 1

N
,
Ai−1
N

,
Bi−1

N

)∥∥∥∥∥∥ ≤ C√
N
.

Because f1 is continuous and is defined in a compact set [0, 1]3, then the third term
in the r.h.s. of (1.63) is upper bounded by

max(t,a,b)∈[0,1]3 |f1(t,a,b)|√
N

.

For all s ∈
[
i−1
N
, i
N

)
,∣∣∣∣∣pk(s+ as)− pk

(
i− 1

N
+
Ai−1
N

)∣∣∣∣∣ ≤
(∣∣∣∣s− i− 1

N

∣∣∣∣+

∣∣∣∣as − ANi−1
N

∣∣∣∣
)

sup
z∈[0,1]

∣∣∣∣dpkdz (z)

∣∣∣∣
(1.64)

≤
(

1

N
+

∣∣∣∣WN,1
s√
N

∣∣∣∣
)

sup
z∈[0,1]

∣∣∣∣dpkdz (z)

∣∣∣∣.
(1.65)

The second term in the r.h.s. of (1.63) is bounded by

√
N

bNtc∑
i=1

c∑
k=0

(c− k)

i/N∫
(i−1)/N

∣∣∣∣∣pk(s+ as)− pk
(
i− 1

N
+
Ai−1
N

)∣∣∣∣∣ ds
≤ sup

z∈[0,1]

∣∣∣∣dpkdz (z)

∣∣∣∣c(c− 1)

2

(
1√
N

+

∫ t

0

|WN,1
s |ds

)
.

Thus,

|∆̃N,1
t | ≤

C + max(t,a,b)∈[0,1]3 |f1(t, a, b)|+ supz∈[0,1]
∣∣dpk
dz

(z)
∣∣ c(c−1)

2√
N

+ sup
z∈[0,1]

∣∣∣∣dpkdz (z)

∣∣∣∣c(c− 1)

2

∫ t

0

|WN,1
s |ds.

Using the similar argument, we have that

|∆̃N,2
t | ≤

C + sup(t,a,b)∈[0,1]3 |f2(t, a, b)|+ supz∈[0,1]
∣∣dpk
dz

(z)
∣∣ c(c−1)

2
+ λ√

N

+

(
sup
z∈[0,1]

∣∣∣∣dpkdz (z)

∣∣∣∣c(c− 1)

2
+ λ

) t∫
0

|WN,1
s |ds+ λ

t∫
0

|WN,2
s |ds.
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Hence,

‖∆̃N
t ‖ ≤

C ′(λ, c)√
N

+ C ′′(λ, c)

t∫
0

‖WN
s ‖ds (1.66)

Then for every t ∈ [0, t0],

E[‖WN
t ‖] ≤ E[‖∆̃N

t ‖] + E[‖M̃N
t ‖]

≤ (6c2 + 4λ)t+
C ′(λ, c)√

N
+ C ′′(λ, c)

t∫
0

E[‖WN
s ‖]ds.

And thus by the Grönwall’s inequality, we deduce that

sup
t∈[0,t0]

E[‖WN
t ‖] ≤ (6c2 + 4λ+ C ′(λ, c))eC

′′(λ,c) = C
′′′
, ∀N ≥ 1. (1.67)

Let 0 ≤ s < t ≤ t0,

E[‖WN
t −WN

s ‖] ≤
C ′(λ, c)(t− s)√

N
+ (6c2 + 4λ)(t− s) + C ′′(λ, c)

t∫
s

E[‖WN
u ‖]du,

≤ (C ′(λ, c) + 6c2 + 4λ+ C ′′(λ, c)C
′′′

)(t− s)

Then for given ε > 0, η > 0, choose δ such that δ < ηε(C ′(λ, c) + 6c2 + 4λ +
C ′′(λ, c)C

′′′
)−1,

P

 sup
|t−s|<δ
0≤s<t≤1

‖WN
t −WN

s ‖ > η

 ≤ η−1E

 sup
|t−s|<δ
0≤s<t≤1

‖WN
t −WN

s ‖

 < ε. (1.68)

By (1.67) and (1.68), we can conclude that (WN)N≥1 is tight in D([0, t0],R2). �

Proposition 1.7 The martingale (M̃N)N≥1 converges in distribution to a Gaus-
sian process (Mt)0≤t≤t0 on [0, t0].

Proof. Keeping in mind that An−An−1 = Yn∧c−1 and Bn−Bn−1 = Hn−Yn∧c
and by (1.33), we have

〈M̃N,1〉t =
1

N

bNtc∑
n=1

{
E
[
(Yn ∧ c)2

∣∣Fn−1]− (E [Yn ∧ c∣∣Fn−1])2
}

;

(1.69)

〈M̃N,2〉t =
1

N

bNtc∑
n=1

{
Var(Hn|Fn−1)− 2

(
E[Hn(Yn ∧ c)|Fn−1]

− E[Hn|Fn−1]E[Yn ∧ c|Fn−1]
)}

+ 〈M̃N,1〉t; (1.70)
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〈M̃N,1, M̃N,2〉t =
1

N

bNtc∑
n=1

{
E
[
Hn(Yn ∧ c)

∣∣Fn−1]
− E

[
Hn|Fn−1

]
E
[
Yn ∧ c|Fn−1

] }
− 〈M̃N,1〉t (1.71)

From (1.69), (1.28), (1.29) and (1.45),∣∣∣∣∣∣〈M̃N,1〉t −
1

N

bNtc∑
i=1

m11

(
i− 1

N
,
Ai−1
N

,
Bi−1

N

)∣∣∣∣∣∣
≤

c∑
k=0

(c− k)2
C(λ, k)

N
+

c∑
k,`=0

(
(c− k)C(λ, k)

N
+

(c− `)C(λ, `)

N

)
≤ D1(λ, c)

N
.

From (1.70), (1.30), (1.31) and (1.45),∣∣∣∣∣∣〈M̃N,2〉t −
1

N

bNtc∑
i=1

m22

(
i− 1

N
,
Ai−1
N

,
Bi−1

N

)∣∣∣∣∣∣ ≤ D2(λ, c)

N
+
D1(λ, c)

N
,

where D2(λ, c) = λ+ 2
∑c

k=0(k
2 − ck)C(λ, k) + 2cλ+ 1 +

∑c
k=0(c− k)C(λ, k)

and from (1.71), (1.31),∣∣∣∣∣∣〈M̃N,1, M̃N,2〉t −
1

N

bNtc∑
i=1

m12

(
i− 1

N
,
Ai−1
N

,
Bi−1

N

)∣∣∣∣∣∣ ≤ D3(λ, c)

N
+
D1(λ, c)

N
,

where D3(λ, c) =
∑c

k=0(k
2 − ck)C(λ, k) + cλ. And since the vectorial func-

tion (mk`)1≤k,`≤2 are continuous, then by Lemma 1.3, we obtain that 〈M̃N〉t con-

verges uniformly in distribution to
t∫
0

(mk,`(s, as, bs))k,`∈{1,2}ds. By Theorem 2 in

[100], we can conclude that (MN)N≥1 converges uniformly in distribution to the
Gaussian process (Mt)t∈[0,t0], which is identified by its quadratic variation 〈M〉t =
t∫
0

(mij(s, as, bs))i,j∈{1,2}ds. �

Proposition 1.8 The finite variation
(
∆̃N
t , t ∈ [0, t0]

)
N≥1

converges in dis-

tribution to the process
(
∆t, t ∈ [0, t0]

)
, which is the unique solution of the

stochastic differential

∆t =

∫ t

0

G(s, as, bs,Ws)dt (1.72)

Proof.

∆̃N
t =
√
N

∆N
t −

1

N

bNtc∑
i=1

f

(
i− 1

N
,ANi−1

N
, BN

i−1
N

)
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+

 1

N

bNtc∑
i=1

√
Nf

(
i− 1

N
,ANi−1

N
, BN

i−1
N

)
−

t∫
0

√
Nf(s, as, bs)ds


= DN

t + EN
t , (1.73)

where

f(t, a, b) :=


c−

c−1∑
k=0

(c− k)
λk

k!
(1− t− a)ke−λ(1−t−a) − 1

(1− t− a− b)λ− c+
c∑

k=0

(c− k)
λk

k!
(1− t− a)ke−λ(1−t−a)


=

(
f1(t, a, b)
f2(t, a, b)

)
(1.74)

From (1.62), we have

‖DN
t ‖ =

∥∥∥∥∥∥√N
∆N

t −
1

N

bNtc∑
i=1

f

(
i− 1

N
,ANi−1

N
, BN

i−1
N

)∥∥∥∥∥∥ ≤ C(λ, c)√
N

.

We need to find the limit of EN
t .

EN
t =

bNtc∑
i=1

√
N

i
N∫

i−1
N

(
f(
i− 1

N
,ANi−1

N
, BN

i−1
N

)− f(s, as, bs)

)
ds−

√
N

t∫
bNtc
N

f(s, as, bs)ds

(1.75)

Because f is continuous function, defined in the compact set [0, 1]3, the second term
in the r.h.s. of (1.75) is bounded by

max(t,a,b)∈[0,1]3 ‖f(t,a,b)‖√
N

and thus converges to 0 as
N →∞.

We write f as

f(t, a, b) =

(
φ(t+ a)

ψ(t+ a+ b)− φ(t+ a)

)

where φ(z) = c−
c−1∑
k=0

(c− k)

[
λ(1− z)

]k
k!

e−λ(1−z) and ψ(z) = λ(1− z). Then

φ

(
i− 1

N
+ ANi−1

N

)
− φ(s+ as)

=φ′
(
i− 1

N
+ ANi−1

N

)(
(
i− 1

N
− s) + (ANi−1

N
− as)

)
− φ′′(ξi,s)

(
(
i− 1

N
− s) + (ANi−1

N
− as)

)2

=
(i− 1

N
− s
)
φ′
(
i− 1

N
+ ANi−1

N

)
+
WN,1
s√
N
φ′
(
i− 1

N
+ ANi−1

N

)



66 Chapter 1. The RDS process on supercritical Erdös-Rényi graphs

−
((i− 1

N
− s
)

+
WN,1
s√
N

)2

φ′′(ξi,s),

where ξi,s takes the value between i−1
N

+ANi−1
N

and s+ as; φ′(ξi,s) (resp. φ′′(ξi,s))) is
first derivative (resp. the second derivative) of φ at ξi,s. And

ψ

(
i− 1

N
+ ANi−1

N
+BN

i−1
N

)
− ψ(s+ as + bs)

= −λ
(

(
i− 1

N
− s) + (ANi−1

N
− as) + (BN

i−1
N
− bs)

)
= −λ

((i− 1

N
− s
)

+
WN,1
s√
N

+
WN,2
s√
N

)
.

So the first term in the right hand side of (1.75) can be written as

1

N

bNtc∑
i=1


WN,1

i−1
N

φ′
(
i−1
N

+ ANi−1
N

)
−λ
(
WN,1

i−1
N

+WN,2
i−1
N

)
− φ′

(
i−1
N

+ ANi−1
N

)
WN,1

i−1
N



+

bNtc∑
i=1



i
N∫

i−1
N

{
√
N
(
i−1
N
− s
)
φ′
(
i−1
N

+ ANi−1
N

)}
ds

−
i
N∫

i−1
N

{
√
N
(
i−1
N
− s
)(

1 + φ′
(
i−1
N

+ ANi−1
N

))}
ds



+

bNtc∑
i=1


−

i
N∫

i−1
N

√
N

{((
i−1
N
− s
)

+ WN,1
s√
N

)2
φ′′(ξi,s)

}
ds

i
N∫

i−1
N

√
N

{((
i−1
N
− s
)

+ WN,1
s√
N

)2
φ′′(ξi,s)

}
ds


(1.76)

Because (WN)N≥1 is tight, there exists a subsequence of (WN)N≥1, denoted again
(WN)N≥1, which converges in distribution to W = (W 1,W 2) ∈ D([0, t0],R2). The
second and the third term of (1.76) converge in distribution to 0 since

bNtc∑
i=1

i
N∫

i−1
N

√
N

∣∣∣∣∣(i− 1

N
− s
)
φ′
(
i− 1

N
+ ANi−1

N

)∣∣∣∣∣ ds ≤ sup
z∈[0,1]

|φ′(z)|N−1/2,

and with W̃N (d)
= WN defined as in the Skorokhod’s representation Theorem, W̃N

converges uniformly almost surely to W̃
(d)
= W , we have (W̃N)N≥1 is bounded and

that
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bNtc∑
i=1

i
N∫

i−1
N

√
N

∣∣∣∣∣∣
((i− 1

N
− s
)

+
W̃N,1
s√
N

)2

φ′′(ξi,s)

∣∣∣∣∣∣ ds
≤
(

sup
z∈[0,1]

|φ′′(z)|+ sup
N≥1
‖W̃N,1‖

)
N−1/2.

Then by Lemma 1.3, (∆̃N)N≥1 converges in distribution to a process, which satisfies
equation

∆̃t =

t∫
0

(
φ′(s+ as)W

1
s

−λ(W 1
s +W 2

s )− φ′(s+ as)W
1
s

)
ds (1.77)

�

1.4.2 The uniqueness of the SDEs

Since the process (WN)N≥1 defined in a closed interval: [0, t0] and tight inD([0, 1];R2),
so uniqueness of the solution of the SDE (1.54) is proved if the criteria in Theorem
3.1 of [95, page 178] is verified. We need to justify that the functions G(t, wt) and
σ(t, wt) = 〈M(·, w·)〉t are Lipschitz continuous, i.e. for every N ≥ 1, there exists
KN > 0 such that:

‖G(t, u)−G(t, w)‖+ ‖σ(t, u)− σ(t, w)‖ ≤ KN‖u− w‖, ∀u,w ∈ BN ,

where BN = {x : ‖x‖ ≤ N}.

Indeed, this condition holds because

‖G(t, u)−G(t, w)‖ ≤
(
2 max
z∈[0,1]

|φ′(z)|+ λ
)
‖u− w‖,

and σ(t, w) does not depend on w. Hence, the pathwise uniqueness of solutions
holds for the equation(1.54).

1.5 Some lemmas used in the proof

Lemma 1.3 Let f be a function in Cb([0, 1]3,R2), and let (XN)N≥1 be a se-

quence of stochastic processes inD([0, 1], [0, 1]2). IfXN (d)−→ X ∈ C([0, 1], [0, 1]2)
for the Skorokhod topology on D([0, 1], [0, 1]2), then

1

N

bNtc∑
n=1

f

(
n− 1

N
,XN

n−1
N

)
(d)−→

t∫
0

f(s,Xs)ds.
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Proof. Since XN (d)−→ X , by Skorokhod’s representation theorem [86, Th.25.6,
p.287], there exist X̃N ∈ D([0, 1], [0, 1]2) and X̃ ∈ C([0, 1], [0, 1]2) defined on a

common probability space (Ω̃, F̃ , P̃) such that X̃N (d)
= XN , X̃

(d)
= X and X̃N −→

X̃ a.s. For any t ∈ [0, 1] and for any N ∈ N∗,∣∣∣∣∣∣∣
1

N

bNtc∑
n=1

f
(n− 1

N
, X̃N

n−1
N

)
−

t∫
0

f(s, X̃s)ds

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
1

N

bNtc∑
n=1

f
(n− 1

N
, X̃N

n−1
N

)
−
bNtc∑
n=1

n
N∫

n−1
N

f(s, X̃s)ds

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
t∫

bNtc
N

f(s, X̃s)ds

∣∣∣∣∣∣∣∣
≤
bNtc∑
n=1

n
N∫

n−1
N

∣∣∣∣f(n− 1

N
, X̃N

n−1
N

)
− f(s, X̃s)

∣∣∣∣ ds+
‖f‖∞
N

.

Let ε > 0. From the uniform continuity of f , there exists a positive constant
δ = δ(x) > 0 such that for all (t, x), (t′, x′) ∈ [0, 1] × [0, 1]2 satisfying |t − t′| +
‖x− x′‖∞ < δ, |f(t, x)− f(t′, x′)| < ε/2. Now,

bNtc∑
n=1

n
N∫

n−1
N

∣∣∣∣f(n− 1

N
, X̃N

n−1
N

)
− f(s, X̃s)

∣∣∣∣ ds
=

bNtc∑
n=1

n
N∫

n−1
N

∣∣∣∣f(n− 1

N
, X̃N

n−1
N

)
− f(s, X̃s)

∣∣∣∣1 1
N
+‖X̃N

s −X̃s‖1≥δ
ds

+

bNtc∑
n=1

n
N∫

n−1
N

∣∣∣∣f(n− 1

N
, X̃N

n−1
N

)
− f(s, X̃s)

∣∣∣∣1 1
N
+‖X̃N

s −X̃s‖1<δ
ds.

Because X̃N converges uniformly to X̃ a.s., there existsN0(ω) such that sups∈[0,1](1/N+

‖X̃N
s −X̃s‖) < δ, ∀N ≥ N0 a.s. For P-almost all ω ∈ Ω, whenN ≥ max(N0(ω), 2‖f‖∞/ε),∣∣∣∣∣∣∣

1

N

bNtc∑
n=1

f
(n− 1

N
, X̃N

n−1
N

)
−

t∫
0

f(s, X̃s)ds

∣∣∣∣∣∣∣
≤ sup ‖f‖

N
+

bNtc∑
n=1

n
N∫

n−1
N

∣∣∣∣f(n− 1

N
, X̃N

n−1
N

)
− f(s, X̃s)

∣∣∣∣1 1
N
+‖X̃N

s −X̃s‖1<δ
ds

≤ ε

2
+
ε

2
= ε.

The upper bound is independent of t and thus we have that for all ε > 0:
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lim
N→+∞

sup
t∈[0,1]

∣∣∣∣∣∣∣
1

N

bNtc∑
n=1

f
(n− 1

N
, X̃N

n−1
N

)
−

t∫
0

f(s, X̃s)ds

∣∣∣∣∣∣∣ ≤ ε a.s.. (1.78)

This finishes the proof.

�

Lemma 1.4 Denote

φ(z) := c−
c−1∑
k=0

(c− k)

[
λ(1− z)

]k
k!

e−λ(1−z), c ≥ 2, λ > 1. (1.79)

Then there exists a unique z0 ∈ [0, 1] such that φ(z0) = 1 and z0 > 1− 1/λ.

Proof. For all z ∈ [0, 1],

φ′(z) = −cλe−λ(1−z) + λ
c−1∑
k=1

(c− k)
(λ(1− z))k−1

(k − 1)!
e−λ(1−z)

−λ∑c−1
k=1(c− k)

(λ(1− z))k

k!
e−λ(1−z)

= λe−λ(1−z)

−c+
c−2∑
k=0

(c− k − 1)
(λ(1− z))k

k!
−

c−1∑
k=1

(c− k)
(λ(1− z))k

k!


= λe−λ(1−z)

−1−
c−2∑
k=1

(λ(1− z))k

k!
− (λ(1− z))c−1

(c− 1)!

 < 0,

which gives that φ is decreasing. Furthermore, we have φ(1− 1/λ) > 1 for c ≥ 2
and φ(1) = 0. So the equation φ(z) = 1 has unique root, denoted by z0 ∈ (1 −
1/λ, 1). �

Lemma 1.5 We have that

lim
N→∞

P(τN0 ≥ t0) = 1. (1.80)

Proof. For ε > 0, let

τNε := inf{t > 0, ANt ≤ ε} (1.81)

and

tε := inf{t > 0, at ≤ ε}. (1.82)

Because AN is càdlàg and a is continuous, inft∈[0,1] at ≤ lim
N→∞

inft∈[0,1]A
N
t∧τNε

. Then

for any 0 < ε < ε′, by Fatou’s lemma:
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1 = P( inf
t∈[0,tε′ ]

ANt > ε) ≤ P( lim
N→∞

inf
t∈[0,tε′ ]

ANt∧τNε > ε) = lim
N→∞

P(τNε > tε′).

Let ε′ → 0, we have

lim
N→∞

P(τN0 ≥ t0) = 1. (1.83)

�
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The work in this chapter is submitted to the journal ESAIM1, under the major revision
[105].

The discovery of the “hidden population", whose size and membership are unknown,
is made possible by assuming that its members are connected in a social network
by their relationships. We explore these groups by a chain-referral sampling (CRS)
method, where participants recommend the people they know. This leads to the study
of a Markov chain on a random graph where vertices represent individuals and edges
connecting any two nodes describe the relationships between corresponding people.
We are interested in the study of CRS process on the stochastic block model (SBM),
which extends the well-known Erdös-Rényi graphs to populations partitioned into
communities. The SBM considered here is characterized by a number of verticesN , a
number of communities (blocks) m, proportion of each community π = (π1, ..., πm)

1European Series in Applied and Industrial Mathematics
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and a pattern for connection between blocks P = (λk`/N)(k,`)∈{1,...,m}2 . In this paper,
we give a precise description of the dynamic of CRS process in discrete time on an
SBM. The difficulty lies in handling the heterogeneity of the graph. We prove that
when the population’s size is large, the normalized stochastic process of the referral
chain behaves like a deterministic curve which is the unique solution of a system of
ODEs.

2.1 Introduction

In Sociology, some populations may be hidden because their members share com-
mon attributes that are illegal or stigmatized. These hidden groups may be hard
to approach because these individuals try to conceal their identities due to legal
authorities (e.g. drugs users) or because of the social pressure (e.g. men having sex
with men). In such populations, all the information is unknown: there is no sampling
frame such as lists of the members of the population or of the relationship between
the latter. It causes many challenges for researchers to identify these groups. The
discovery of the hidden populations is made possible by assuming that its members
are connected by a social network. The population is described by a graph (network)
where each individual is represented by a vertex and any interaction or relationship
(e.g. friendship, partnership) between a couple of individuals is represented by an
edge matching the corresponding vertices. Thanks to this important feature, we are
allowed to investigate these populations by using a Chain-referral Sampling (CRS)
technique, such as snowball sampling, targeting sampling, respondent driven sam-
pling etc. (see the review of [78] or [47, 49, 50]). CRS consists in detecting hidden
individuals in a population structured as a random graph, which is modeled by a
stochastic process that we study here. The principle of CRS is that from a group
of initially recruited individuals, we follow their connections in the social network
to recruit the subsequent participants. The exploration proceeds from node to node
along the edges of the graph. The interviewees induce a sub-tree of the underlying
real graph, and the information coming from the interviews gives knowledge on
other non-interviewed individuals and edges, providing a larger sub-graph. We aim
at understanding this recruitment process from the properties of the explored random
graph. The CRS showed its practicality and efficiency in recruiting a diverse sample
of drug users (see [6]).

CRS models are hard to study from a theoretical point of view without any assumption
on the graph structure. In this paper, we consider a particular model with latent
community structure: the stochastic block model (SBM) proposed by Holland et
al.[54]. This model is a useful benchmark for some statistical tasks as recovering
community (also called blocks or types in the sequel) structure in network science [7,
42, 46]. By block structure, we mean that the set of vertices in the graph is partitioned
into subsets called blocks and nodes connect to each other with probabilities that
depend only on their types, i.e. the blocks to which they belong. For example, edges
may be more common within a block than between blocks (e.g. group of people
having sexual contacts). We recall here the definition of SBM (we refer the reader to
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the survey in [1]):

Definition 2.1 Let N be a positive integer (number of vertices), m be a positive
integer (number of blocks or types), π = (π1, ..., πm) be a probability distri-
bution on {1, . . .m} (the probabilities of the m types, i.e. a vector of [0, 1]m

such that
∑m

k=1 πk = 1) and P = (pk`)(k,`)∈{1,...,m}2 be a symmetric matrix with
entries pkl ∈ [0, 1] (connectivity probabilities). The pair (Γ,G) is drawn under
the distribution SBM(N, π, P ) if the vector of types Γ is an N -dimensional
random vector, whose components are i.i.d., {1, . . . ,m}-valued with the law
π, and G is a simple graph of size N where vertices i and j are connected
independently of other pairs of vertices with probability pΓiΓj . We also denote
the blocks (community sets) by: [`] := {v ∈ {1, ..., N} : Γv = `} with the size
N` := |[`]|, l ∈ {1, ...,m}.

Notice that when m = 1, i.e. there is only one type. Any arbitrary pair of vertices is
connected independently to the others with the same probability p11, SBM becomes
the Erdös-Rényi graph, which is studied in [102].
Here, we consider the Poisson case where the connectivity probabilities pk` depend
on N and are given by pk` = λk`/N . This means that each individual of the block k
contacts in average λk`π` individuals of the block `. This implies that the network
examined is sparse. In the present work, we give a rigorous description of a CRS on
such SBM and study the propagation of the referral chain on this sparse model.

The CRS relies on a random peer-recruitment process. To handle the two sources of
randomness, the graph and the exploring process on it are constructed simultaneously.
In the construction, the vertices of the graph will be in 3 different states: inactive
vertices that have not being contacted for interviews, active vertices that constitute
the next interviewees and off-mode vertices that have been already interviewed. The
idea to describe the random graph as a Markov exploration process with active,
explored and unexplored nodes is classical in random graphs theory. It has been used
as a convenient technique to expose the connections inside a cluster, especially to
discover the giant component in a random graph models, for example see [92, 94]. In
our case, there is a slight difference in the recruiting process: the number of nodes
being switched to the active mode is set to be bounded by a constant. This trick helps
to improve the bias towards high-degree nodes in the population (see [50]). At the
beginning of the survey, all individuals in the population are hidden and are marked
as inactive vertices. We choose some people as seeds of the investigation and activate
them. During the interview these individuals name their contacts and a maximum
number c of coupons are distributed to the latter, who become active nodes. One
by one, every carrier of a coupon can come to a private interview and is asked in
turn to give the names of her/his peers. Whenever a new person is named, one edge
connecting the interviewee and her/his contact is added but they remain inactive
until they receive a coupon. After finishing the interview, a maximum number of
c new contacts receive one coupon each and are activated. So if the interviewee
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names more than c people, a number of them are not given any coupon and can be
still explored later provided another interviewee mentions them. After that, the node
associated to the person who has just been interviewed is switched to off-mode and
is no longer recruited again, see Figure 1.1. We repeat the procedure of interviewing,
referring, distributing coupons until there is no more active vertex in the graph (no
more coupon is returned). Each person returning a coupon receives some money as a
reward for her/his participation, and an extra bonus depending on the number con-
tacts that will later return the coupons. Notice that each individual in the population
is interviewed just once and we assume here that there is no restriction on the total
number of coupons.

The process of interest counts the number of coupons present in the population. We
also want to know how many people are detected, which leads to the number of peo-
ple explored but without coupons. Denote by the discrete time n ∈ N = {0, 1, 2, . . . }
the number of interviews completed, An corresponds to the number of individuals
that have received coupons but that have not been interviewed yet (number of active
vertices); Bn to the number of individuals cited in the interviews but who have not
been given any coupon (number of found but still inactive vertices) and Un to the
total number of individuals having been interviewed (number of off-mode nodes).
Because of the connectivity properties of the SBM graphs, we need to keep track of
the types of the interviewees and the coupons distributed not only to one community
but also in general to each of the m communities at every step. We then associate to
the chain-referral the following stochastic vector process Xn := (An, Bn, Un), n ∈
N:

Xn :=

AnBn

Un

 =

A
(1)
n · · · A

(m)
n

B
(1)
n · · · B

(m)
n

U
(1)
n · · · U

(m)
n

 , n ∈ N,

where A(`)
n (resp. B(`)

n and u(`)n ) corresponds to the number of active nodes (resp. of
found but inactive nodes and of off-mode nodes) of type ` at step n. In all the paper,
we will use the notation (X

1,(`)
n , X

2,(`)
n , X

3,(`)
n ) = (A

(`)
n , B

(`)
n , U

(`)
n ).

The main object of the paper is to establish an approximation result when the size N
of the SBM graph tends to infinity. In this case, the chain-referral process correctly
renormalized is:

XN
t :=

1

N
XbNtc =

(
AbNtc
N

,
BbNtc
N

,
UbNtc
N

)
∈ [0, 1]3×m, t ∈ [0, 1]. (2.1)

In all the paper, we consider spaces Rd equipped with the L1-norm defined for
x = (x1, ..., xd) as ‖x‖ =

∑d
k=1 |xk|. For all N , the process (XN

t )t∈[0,1] lives in the
space of càdlàg processes D([0, 1], [0, 1]3×m) equipped with Skorokhod topology
(see [93, 55, 59]).

There exist to our knowledge a few works of studying CRS form a probabilistic
point of view, for example Athreya and Röllin [5]. In their work, they obtained a
result in a slightly different framework: they consider random walks on the limiting
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graphon to construct a sequence of sub-graphs, which converges almost surely to
the graphon underlying the network in the cut-metric. Whereas we take here to the
limit both the graph and its exploring random walk simultaneously. The main result
of this paper is that the sequence of processes (XN)N≥1 converges to a system of
ordinary differential equations (ODEs). There has also been literature on random
walks exploring graphs possibly with different mechanism (see [11, 35] for instance).
Here we allow the exploring Markov process to branch. Also, our process bares
similarities with epidemics spreading on graphs (see [8, 90, 30, 57]) but with the
additional constraint of a maximum number of distributed coupons here.

The CRS is constructed by the similar principle of an epidemic spread and starts with
a single individual. There are two main phases of evolution (see [8]): the initial phase
is well approximated by a branching process (which we are neglecting here) and the
second phase is when the stochastic process is approximated by an deterministic
curve. In this paper, we focus on the second phase, but let us comment quickly on
the first phase. In the sequel, we will assume that:

Assumption 2.1 For each `, k ∈ {1, . . . ,m}, denote µ`k = λ`kπk. We assume that

the matrix µ = (µ`k)`,k∈{1,...,m} is irreducible and the largest eigenvalue of µ is larger
than 1.

Remark 2.1 Under the Assumption 0.2, from the proof of Theorem 3.2 of
Barbour and Reinert [8], the early stages of the CRS now can be approximated
by a multitype branching process with the offspring distributions determined
by the matrix µ. Thanks to the Assumption 2.2 the multitype branching process
associated with the offspring matrix µ is supercritical. The analogous results for
the extinction probability and for the number of offspring at the nth generation
as in the single branching process have been proved in Chapter 5 of [82]: the
mean matrix of the population size at time n is proportional to µn. And follow
the claim (3.11) of Barbour and Reinert [8], we can deduce that if we start with
a single individual, then after a finite steps, we can reach a positive fraction of
explored individuals in the population with a positive probability.

Assumption 2.2 Set a0, b0, u0 ∈ [0, 1]m, a0 = (a
(1)
0 , . . . , a

(m)
0 ) such that

∑m
i=1 a

(i)
0 =

‖a0‖ ∈ (0, 1], and set b0, u0 ∈ [0, 1]m, with b0 = (0, . . . , 0) and u0 = (0, . . . , 0).
We assume that the sequence XN

0 = 1
N
X0 converges in probability to the vector

(a0, b0, u0), as N → +∞.

It means that the initial number of individuals with type i at the beginning of the
survey is approximately ba(i)0 Nc. A possible way to initializing the process is to draw
A0 from a multinomial distributionM(b‖a0‖Nc; π1, . . . , πm).
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Theorem 2.1 Under the assumptions 2.2 and 2.2, we have: when N tends to
infinity, the process (XN)N≥1 converges in distribution in D([0, 1], [0, 1]3×m)

to a deterministic vectorial function x = (x
(`)
· )1≤`≤m = (a

(`)
· , b

(`)
· , u

(`)
· )1≤`≤m

in C([0, 1], [0, 1]3×m), which is the unique solution of the system of differential
equations

xt = x0 +

∫ t

0

f(xs)ds, (2.2)

where f(xs) := (fi`(xs)) 1≤i≤3
1≤`≤m

has an explicit formula described as follows.

Denote

t0 := inf{t ∈ [0, 1] : ‖at‖ := a
(1)
t + . . .+ a

(m)
t = 0}. (2.3)

For s ∈ [0, t0],

f1`(xs) =
m∑
k=1

a
(k)
s

‖as‖
λk,`s
Λks

c− c∑
h=0

(c− h)
(Λks)

h

h!
e−Λ

k
s

− a
(`)
s

‖as‖
; (2.4)

f2`(xs) =
m∑
k=1

a
(k)
s

‖as‖
µk,`s −

m∑
k=1

a
(k)
s

‖as‖
λk,`s
Λks

c− c∑
h=0

(c− h)
(Λks)

h

h!
e−Λ

k
s

 ;

(2.5)

f3`(xs) =
a
(`)
s

‖as‖
; (2.6)

with
λk,`s := λk`

(
π` − a(`)s − u(`)s

)
; Λks :=

m∑
`=1

λk,`s (2.7)

and µk,`s := λk`(π` − a(l`)s − b(`)s − u(`)s ).

For s ∈ [t0, 1], xs = xt0 .

Remark 2.2 Notice that in this model, the time corresponds to the fraction of
the population interviewed. The time t0 is the first time at which |at| reaches 0
and can be seen as the proportion of the population interviewed when there is no
more coupon to keep the CRS going. Necessarily, t0 ≤ 1. We see that ‖at‖ = 0

only if a(1)t = . . . = a
(m)
t = 0. It implies that f(xt) = 0,∀t ∈ [t0, 1]. Then, the

solution of the system of ODEs (2.2) becomes constant over the interval [t0, 1].

The rest of this paper is organized in the following manner. First, in Section 2, we
give a precise description of the chain-referral process on a SBM random graph. This
relies heavily on the structure of the random graph that we construct progressively
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when the exploration process spreads on it. In Section 3, we prove the limit theorem.
The proof uses limit theory of càdlàg semi-martingale vector processes equipped
with Skorokhod topology (see [93]) and Poisson approximations (see [84]). Then in
Section 4, we present simulation results of the stochastic process and the solution of
the system of limiting ODEs. We conclude with some discussions on the impacts of
changing parameters of the models on the evolution of the chain-referral process.

2.2 Definition of the chain-referral process

Let us describe the dynamics of X = (Xn)n∈N. Recall that ‖An‖ :=
∑m

l=1A
(`)
n

is the total number of individuals having coupons but who have not yet been in-
terviewed. We start with A0 seeds, whose types are chosen independently accord-
ing to π. A0 is an m-dimensional random vector with multinomial distribution
M(b‖a0‖Nc; π1, ..., πm), i.e. P

(
(A

(1)
0 , ..., A

(m)
0 ) = (k1, ..., km)

)
= πk11 ...π

km
m , ki ∈

N such that
∑m

i=1 ki = b‖a0‖Nc and Assumption 2.2 is satisfied. Also B0 = U0 =
(0, ..., 0) and we set X0 = (A0, B0, U0).

We now define Xn given the state Xn−1 previous to the nth-interview and given the
number N1, . . . , Nm of nodes of each type. At step n ≥ 1, after the nth-interview,
the type of the upcoming interviewee is chosen uniformly at random according to the
number of active coupons of each type in the present time. To choose the type of the
next interviewee, we define an m-dimensional vector In := (I

(1)
n , ..., I

(m)
n ), which

takes value 1 at coordinate ` and 0 elsewhere if the nth interviewee belongs to block
`. This nth-interviewee is chosen uniformly among the ‖An−1‖ active coupons of m
types i.e. In has multinomial distribution

In = (I(1)n , ..., I(m)
n )

(d)
= M

(
1;

A
(1)
n−1

‖An−1‖
, ...,

A
(m)
n−1

‖An−1‖

)
. (2.8)

If the chosen one belongs to block [`], A(`)
n is reduced by 1 and a number of new

coupons distributed are added up, depending on how many new contacts he/she
has. In the meantime, the number of interviewees of type ` is increased by 1.
i.e. U

(`)
n = U

(`)
n−1 + I

(`)
n . Among the new contacts of the nth−interviewee, de-

fine H(`)
n the number of new contacts of type `, who have not been mentioned

before; K(`)
n the number of new contacts of type ` whose identities are already

known but who are still inactive. The H(`)
n new connections are chosen indepen-

dently among N` −A(`)
n−1 −B(`)

n−1 − U (`)
n individuals in the hidden population where

probability of each successful connection is
∑m

k=1 I
(k)
n pkl. Hence, conditioning on

(N1, . . . , Nm), Xn−1, the random variable H(`)
n follows the binomial distribution:

H(`)
n

(d)
= Bin

N` − A(`)
n−1 −B(`)

n−1 − U (`)
n ,

m∑
k=1

I(k)n pkl

 . (2.9)

And the K(`)
n individuals are chosen independently of H(`)

n from B
(`)
n−1 individuals

and independently of the others with probability
∑m

k=1 I
(k)
n pkl. In that way, condi-
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tioning on (N1, . . . , Nm), Xn−1, K
(`)
n also has the binomial distribution:

K(`)
n

(d)
= Bin

B(`)
n−1,

m∑
k=1

I(k)n pkl

 . (2.10)

In total, there are Zn := Hn +Kn candidates, who can possibly receive coupons at
step n. Notice that, conditioning on (N1, . . . , Nm), Xn−1, (H

(`)
n )`=1,...,m and (K

(`)
n )`=1,...,m

are independent, henceforth,

Z(`)
n

(d)
= Bin

N` − A(`)
n−1 − U (`)

n ,
m∑
k=1

I(k)n pk`

 . (2.11)

Let Cn = (C
(1)
n , ..., C

(m)
n ) (` = 1, ...,m) be the numbers of coupons that are dis-

tributed at step n. By the setting of the survey, the total coupons |Cn| must be
maximum c. If the number Zn of candidates is less than or equal to c, we deliver ex-
actly Zn coupons. Otherwise, we choose new people to be enrolled in the study by an
m−dimensional random variable C ′(`)n = (C

′(1)
n , ..., C

′(m)
n ) having the multivariate

hypergeometric distribution with parameters (m; c, (Z
(1)
n , ..., Z

(m)
n )) and the support

{(c1, ..., cm) ∈ Nm : ∀` ≤ m, c` ≤ Z
(`)
n ,

m∑̀
=1

ci = c}, that is

P
(

(C ′(1)n , ..., C ′(m)
n ) = (c1, ..., cm)

)
=

m∏
l=1

(
Z

(`)
n

cl

)
(∑m

l=1 Z
(`)
n

c

) .
In another words,

C(`)
n :=

{
Z

(`)
n if

∑m
l=1 Z

(`)
n ≤ c

C
′(`)
n otherwise

. (2.12)

Let define by

n0 := inf{n ∈ {1, ..., N}, An = 0} (2.13)

the first step that |An| reaches zero. The dynamics of Xn can be described by the
following recursion:

An = An−1 − In + Cn

Bn = Bn−1 +Hn − Cn
Un =

n∑
i=1

Ii

, for n ∈ {1, ..., n0} (2.14)

and Xn = Xn−1 when n > n0.

The random network is progressively discovered when the referrals chain process
explores it.

Proposition 2.1 Consider the discrete-time process (Xn)1≤n≤N defined in
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(2.14). For n ∈ N, we denote by Fn := σ
(
{Xi, i ≤ n, (N1, . . . , Nm)}

)
the

canonical filtration associated with (Xn)1≤n≤N . Then the process (Xn)n is an
inhomogeneous Markov chain with respect to the filtration (Fn)n.

Proof. The proposition is deduced from the recursion (2.14) of (Xn)1≤n≤N and the
fact that the random variables Cn, In, Hn are defined conditionally on Xn−1 and
(N1, . . . , Nm). The fact that the Markov process is inhomogeneous comes from the
setting of the CRS survey: there is no replacement in the recruitment procedure.
For example, when m = 1, the definition of H(`)

n in (2.9) depends on time as
U

(`)
n = n. �

2.3 Asymptotic behavior of the chain-referral process

Let us now consider the renormalized chain-referral process given in (2.1) in the
time interval [0, t0]. The main theorem (Theorem 2.1) shows the convergence of the
sequence (XN)N≥1 to a deterministic process. For this, we look for an expression of
the equations (2.14) as a vector of semi-martingales. We start by writing the Markov
chain (Xn)1≤n≤N as the sum of its increments in discrete time.

Xn = X0 +
n∑
i=1

(Xi −Xi−1) =

A0

B0

U0

+
n∑
i=1

Ci − Ii
Hi − Ci

Ii

 .

Each element of the increment Xn+1 −Xn are binomial variables conditioned on
all the events having been occurring until step n. When we fix n and let N tend to
infinity, the conditional binomial random variables can be approximated by some
Poisson random variables. The normalization XN

t of Xn becomes:

XN
t =

1

N

A0

B0

U0

+
1

N

bNtc∑
i=1

Ci − Ii
Hi − Ci

Ii

 .

The Doob decomposition of the renormalized processes (XN
t )t∈[0,t0] given in Section

2.3.1 consists of a finite variation process and an L2-martingale. We use Aldous
criteria (conditionally on the past see e.g. [93, 98]) to show the tightness of the
distributions of these processes in Section 2.3.2. Once the tightness is established,
we identify the limiting values of this tight sequence and finally we prove that the
limiting values of all converging subsequences are the same, hence it is the limit of
processes (XN)N≥1. This proves Theorem 2.1.

Denote by (FNt )t∈[0,1] := (FbNtc)t∈[0,1] the canonical filtration associated to (XN
t )t∈[0,1].

2.3.1 Doob’s decomposition
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Lemma 2.1 The process (XN
t )t∈[0,1] admits the Doob’s decomposition: XN

t =

XN
0 + ∆N

t + MN
t , XN

0 = 1
N
X0. (∆N

t )t∈[0,1] is an FNt −predictable process
defined by

∆N
t =

∆N,1
t

∆N,2
t

∆N,3
t

 =
1

N

bNtc∑
n=1

E[Cn − In|Fn−1]
E[Hn − Cn|Fn−1]
E[In|Fn−1]

 ; (2.15)

(MN
t )t∈[0,1] is an FNt − square integrable centered martingale with quadratic

variation process (〈MN
· 〉t)t∈[0,1] given by: for every (`, k) ∈ {1, ...,m}2,

〈M (`),N
· ,M (k),N

· 〉t =
1

N2

bNtc∑
n=1

E
[(
X(`)
n − E[X(`)

n |Fn−1]
)

(
X(k)
n − E[X(k)

n |Fn−1]
)T ∣∣∣∣Fn−1

]
, t ∈ [0, 1] (2.16)

where X is a column vector and XT is its transpose.

Proof. In order to obtain the Doob’s decomposition, we write for t ∈ [0, 1],

XN
t =

X0

N
+

1

N

bNtc∑
n=1

(Xn −Xn−1)

= XN
0 +

1

N

bNtc∑
n=1

E[Xn −Xn−1|Fn−1] +
1

N

bNtc∑
n=1

(Xn −Xn−1 − E[Xn −Xn−1|Fn−1])

= XN
0 +∆N

t +MN
t .

It is clear that the conditional expectations above are all well-defined since the com-
ponents of Xn and Xn−1 are all bounded by N , that ∆N

t is FNt −predictable and
that (MN

t )t∈[0,1] is an FNt −martingale. We first check that (∆N)N≥1 is a sequence
of finite variation processes and then we can conclude that XN

t = XN
0 +∆N

t +MN
t

is the Doob’s decomposition.
Denote by λ := max

`,k∈{1,...,m}
λk`. Notice that

‖E[An − An−1|Fn−1‖ = ‖E[Cn − In|Fn−1‖ ≤ c, (2.17)
‖E[Bn −Bn−1|Fn−1‖ = ‖E[Hn − Cn|Fn−1‖ ≤ m( max

`,k∈{1,...,m}
λk`) + c = mλ+ c,

(2.18)

‖E[Un − Un−1|Fn−1‖ ≤ 1, (2.19)

then ‖E[Xn −Xn−1|Fn−1]‖ ≤ 2c+mλ+ 1. So the total variation of (∆N
t )t∈[0,1] is

V N(∆N
t ) =

1

N

bNtc∑
n=1

‖∆N
nt/N −∆N

(n−1)t/N‖ =
1

N

bNtc∑
n=1

‖E[Xn −Xn−1|Fn−1]‖

≤ (2c+mλ+ 1)t,
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which is finite. It follows that (∆N
t )t∈[0,1] is an FNt − predictable with finite varia-

tions.

The quadratic variation of (MN
t )t∈[0,1] is computed as follow. For every k, ` ∈ [[1,m]],

M
(`),N
t

(
M

(k),N
t

)T
=

1

N2

bNtc∑
n=1

{(
X(`)
n −X(`)

n−1 − E[X(`)
n −X(`)

n−1|Fn−1]
)

×
(
X(k)
n −X(k)

n−1 − E[X(k)
n −X(k)

n−1|Fn−1]
)T}

+
1

N2

bNtc∑
n=1

bNtc∑
n′=1
n′ 6=n

{(
X(`)
n −X(`)

n−1 − E[X(`)
n −X(`)

n−1|Fn−1]
)

×
(
X

(k)
n′ −X

(k)
n′−1 − E[X

(k)
n′ −X

(k)
n′−1|Fn′−1]

)T}
=: LNt + L′Nt .

The term L′Nt is an FNt −martingale since whenever n′ < n,(
X

(k)
n′ −X

(k)
n′−1 − E[X

(k)
n′ −X

(k)
n′−1|Fn′−1]

)
is Fn−1−measurable. To see that

the quadratic variation of MN
t has the form (2.16), we write the term LNt as follows:

LNt :=
1

N2

bNtc∑
n=1

E

[(
X(`)
n − E[X(`)

n |Fn−1]
)(

X(k)
n − E[X(k)

n |Fn−1]
)T ∣∣∣∣Fn−1

]

+
1

N2

bNtc∑
n=1

(
X(`)
n − E[X(`)

n |Fn−1]
)(

X(k)
n − E[X(k)

n |Fn−1]
)T

− 1

N2

bNtc∑
n=1

E

[(
X(`)
n − E[X(`)

n |Fn−1]
)(

X(k)
n − E[X(k)

n |Fn−1]
)T ∣∣∣∣Fn−1

]

=
1

N2

bNtc∑
n=1

E

[(
X(`)
n − E[X(`)

n |Fn−1]
)(

X(k)
n − E[X(k)

n |Fn−1]
)T ∣∣∣∣Fn−1

]
+ L′′Nt

= 〈MN〉t + L′′Nt .

As a result,

M
(`),N
t

(
M

(k),N
t

)T
= 〈MN〉t + L′Nt + L′′Nt . (2.20)

Because both L′Nt and L′′Nt are FNt −martingale, L′Nt + L′′Nt is an FNt −martingale
as well. The term (〈MN〉t)t is FNt −adapted with the variation

V N(〈MN
· 〉t) =

1

N2

bNtc∑
n=1

m∑
k,`=1

∥∥∥∥∥E
[(
X(`)
n − E[X(`)

n |Fn−1]
)

×
(
X(k)
n − E[X(k)

n |Fn−1]
)T ∣∣∣∣Fn−1

]∥∥∥∥∥∥ . (2.21)
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The integrand in the right hand side is the conditional covariance between
X

(`)
n and X(k)

n conditionally to Fn−1. Because X(`)
n and X(k)

n are vectors, this co-
variance is a matrix of size 3×3 and for 1 ≤ i, j ≤ 3, the term (i, j) of this matrix is:

E

[(
X i,(`)
n − E[X i,(`)

n |Fn−1]
)(

Xj,(k)
n − E[Xj,(k)

n |Fn−1]
) ∣∣∣∣Fn−1

]

≤
(

Var(X i,(`)
n −X i,(`)

n−1|Fn−1)
)1/2 (

Var(Xj,(k)
n −Xj,(k)

n−1 |Fn−1)
)1/2

,

by the Cauchy-Schwarz inequality. Thus:

V N(〈MN
· 〉t) ≤

1

N2

bNtc∑
n=1

m∑
k,`=1

∣∣∣∣∣∣
3∑

i,j=1

(
Var(X i,(`)

n −X i,(`)
n−1|Fn−1)

)1/2
×
(

Var(Xj,(k)
n −Xj,(k)

n−1 |Fn−1)
)1/2∣∣∣∣ ,

where (X
1,(`)
n , X

2,(`)
n , X

3,(`)
n ) = (A

(`)
n , B

(`)
n , U

(`)
n ). By Cauchy-Schwarz’s inequality,

we have
3∑

i,j=1

(
Var(X i,(`)

n −X i,(`)
n−1|Fn−1)

)1/2 (
Var(Xj,(k)

n −Xj,(k)
n−1 |Fn−1)

)1/2
=

 3∑
i=1

(
Var(X i,(`)

n −X i,(`)
n−1|Fn−1)

)1/2 3∑
j=1

(
Var(Xj,(k)

n −Xj,(k)
n−1 |Fn−1)

)1/2
≤ 3

2

3∑
i=1

(
Var(X i,(`)

n −X i,(`)
n−1|Fn−1) + Var(X i,(k)

n −X i,(k)
n−1 |Fn−1)

)
. (2.22)

From (2.17)-(2.19) and by Cauchy-Schwarz’s inequality, we obtain the following
inequalities

Var(C(`)
n − I(`)n |Fn−1) ≤ c2, Var(I(`)n |Fn−1) ≤ 1,

and Var(H(`)
n − C(`)

n |Fn−1) ≤ 2( max
`,k∈{1,...,m}

λ2`k + c2), (2.23)

As a consequence,

V N
(
〈MN
· 〉t
)
≤ 1

N2

bNtc∑
n=1

3m2(c2 + 2( max
`,k∈{1,...,m}

λ2lk + c2) + 1)

≤ 1

N
3m2(3c2 + 2λ2 + 1) <∞.

Thus, the proof of the Lemma is completed. �

2.3.2 Tightness of the renormalized process

Lemma 2.2 The sequence of processes (XN)N≥1 is tight in the Skorokhod
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space D([0, 1], [0, 1]3×m).

Proof. To prove the tightness of (XN)N≥1, we use the criteria of tightness for
semi-martingales in [98, Theorem 2.3.2 (Rebolledo)]: first, we verify the marginal
tightness of each sequence (XN

t )N≥1 for each t ∈ [0, 1], then we show the tightness
for each process in the Doob’s decomposition of XN , the finite variation process
(∆N)N≥1 and the quadratic variation of the martingale (MN)N≥1. For any t ∈ [0, 1],
the tightness of marginal sequence (XN

t )N is easily deduced from the compactness
of a sequence of random variables taking values in a compact set [0, 1]3×m. Since
the sequence of martigales (MN)N≥1 is proved to be convergent (to zero) in L2 as
N → ∞ (which is done by Proposition 2.2), we have the tightness of (MN)N≥1.
Thus, it is sufficient to check the tightness condition for the modulus of continuity of
(∆N)N≥1 (see, e.g. , [85, Theorem 13.2, p.139]).

For all 0 < δ < 1 and for every s, t ∈ [0, 1] such that |t− s| < δ, we have that

‖∆N
t −∆N

s ‖ =

∥∥∥∥∥∥ 1

N

bNtc∑
n=bNsc+1

E[Xn −Xn−1|Fn−1]

∥∥∥∥∥∥
≤ 1

N

bNtc∑
n=bNsc+1

‖E[Xn −Xn−1|Fn−1]‖.

By (2.17)-(2.19), we get

‖∆N
t −∆N

s ‖ ≤
bNtc − bNsc

N
(c+mλ+ c+ 1) ≤ (2c+mλ+ 1)

(
δ +

1

N

)
.

Thus, for each ε > 0, choose δ0 ≤ ε
2(2c+mλ+1)

, we have that

P

 sup
|t−s|<δ
0≤s<t≤1

‖∆N
t −∆N

s ‖ > ε

 = 0, ∀δ ≤ δ0,∀N >
1

δ0
,

which allows us to conclude that the sequence (∆N
· )N is tight and finishes the proof

of the lemma. �

To complete the proof of Lemma 2.2, we now prove that:

Proposition 2.2 The sequence of martingale (MN)N≥1 converges to 0 in L2

as N goes to infinity.

Proof. Consider the quadratic variation of (MN)N≥1: According to the fomula
(2.16), we apply the Cauchy-Schwarz’s inequality and then use the inequality (2.22)
to obtain that for every t ∈ [0, 1],

‖〈M (`),N ,M (k),N〉t‖
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=

∥∥∥∥∥∥ 1

N2

bNtc∑
n=1

E

[(
X(`)
n − E[X(`)

n |Fn−1]
)(

X(k)
n − E[X(k)

n |Fn−1]
)T ∣∣∣∣Fn−1

]∥∥∥∥∥∥
≤ 1

N2

bNtc∑
n=1

∣∣∣∣∣∣
3∑

i,j=1

(
Var(X i,(`)

n −X i,(`)
n−1|Fn−1)

)1/2 (
Var(Xj,(k)

n −Xj,(k)
n−1 |Fn−1)

)1/2∣∣∣∣∣∣
≤ 1

N2

bNtc∑
n=1

3

2

3∑
i=1

(
Var(X i,(`)

n −X i,(`)
n−1|Fn−1) + Var(X i,(k)

n −X i,(k)
n−1 |Fn−1)

)
,

where (X
1,(`)
n , X

2,(`)
n , X

3,(`)
n ) = (A

(`)
n , B

(`)
n , U

(`)
n ). From (2.17)-(2.19) and (2.23), we

deduce that

‖〈MN
· 〉t‖ ≤

1

N2

bNtc∑
n=1

3m2

2

(
c2 + 2( max

`,k∈{1,...,m}
λ2`k + c2) + 1

)
≤ 1

N

3m2

2
(3c2 + 2λ2 + 1)t. (2.24)

Applying the Doob’s inequality for martingale, for every t ∈ [0, 1], we have

E
[

max
0≤s≤t

‖MN
s ‖2

]
≤ 4E

[
‖〈MN

· 〉t‖
]
≤ 1

N
6m2(3c2+2λ2+1)→ 0 as N →∞.

This concludes the proof of Prop. 2.2 and hence of Lemma 2.2. �

2.3.3 Identify the limiting value

Since the sequence (XN)N≥1 is tight, for any limiting value x = (a, b, u) of the
sequence (XN)N≥1, there exists an increasing sequence (ϕN)N in N such that
(XϕN )N≥1 converges in distribution to x in D([0, 1], [0, 1]3×m). Because the sizes of
the jumps converge to zero with N , the limit is in fact in C([0, 1], [0, 1]3×m). We want
to identify that limit. In order to simplify the notations, we also write the subsequence
(XϕN )N≥1 as (XN)N≥1 = (AN , BN , UN)N≥1.

We consider separately the martingale and finite variation parts. Proposition 2.2
implies that the sequence martingale (MN)N≥1 converges to 0 in distribution and
hence (MN)N≥1 converges to zero in probability. It remains to find the limit of the
finite variation process (∆N)N≥1 given in Equation (2.15) and prove that the limit
found is the same (which is done later in the proof for the uniqueness of the system of
the ODEs (2.1)) for every convergent subsequence extracted from the tight sequence
(XN)N≥1.

Proposition 2.3 When N goes to infinity, we have the following convergences
in distribution in D([0, 1], [0, 1]3×m):



2.3 Asymptotic behavior of the chain-referral process 85

1

N

bNtc∑
n=1

E[C(`)
n |Fn−1]

(d)→
∫ t

0


m∑
k=1

a
(k)
s

‖as‖
λk,`s
Λks

c− c∑
h=0

(c− h)
(Λks)

h

h!
e−Λ

k
s

 ds,

(2.25)

1

N

bNtc∑
n=1

E[H(`)
n |Fn−1]

(d)−→
∫ t

0

m∑
k=1

a
(k)
s

‖as‖
µk,`s ds, (2.26)

1

N

bNtc∑
n=1

E[I(`)n |Fn−1] =
1

N

bNtc∑
n=1

(
A

(`)
n−1

N

)/(‖An−1‖
N

)
(d)−→

t∫
0

a
(`)
s

‖as‖
ds,

(2.27)

where λk,`s , Λks , µ
k,`
s are defined as in Theorem 2.1. This provides the convergence

of (∆N)N≥1 to a solution x of (2.2).

Since the limits are deterministic, the convergences hold in probability. Moreover
the uniqueness of the solution of (2.2) will be proved later, which will imply the
convergence of the whole sequence (XN)N≥1 to this solution.

Proof. Recall that since the sequence (XN)N≥1 is tight, we have extracted a con-
verging subsequence also denoted by (XN)N≥1 of which we study the limit.

The proof of the Proposition 2.3 is separated into three steps.

Step 1: We consider the most complicated term E[Cn|Fn−1]. We prove that: for each
` ∈ {0, ...,m},∣∣∣∣∣∣E[C(`)

n |Fn−1]−
λ
(`)
n

Λn

c− c∑
h=0

(c− h)
(Λn)h

h!
e−Λn

∣∣∣∣∣∣ ≤ m(c+ 1)λ

N
, (2.28)

where

λ(`)n :=

 m∑
k=1

I(k)n λk`

(N`

N
− A

(`)
n−1

N
− U

(`)
n

N

)
and Λn :=

m∑
j=1

λ(j)n .

(2.29)

Notice that Λn = 0 only if for each l ∈ {1, . . . ,m}, λ(`)n = 0. It happens when
A

(`)
n−1 +U

(`)
n = N`, meaning that all the nodes of type ` have been discovered. In this

case, C(`)
n = 0 and (2.28) is satisfied.

Let us write
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E[C(`)
n |Fn−1] = E

[
Z(`)
n 1∑m

j=1 Z
(j)
n ≤c

∣∣Fn−1]+ E

 cZ
(`)
n∑m

j=1 Z
(j)
n

1∑m
j=1 Z

(j)
n >c

∣∣∣∣Fn−1
 .

(2.30)

For every ` = 1, ...,m and every fixed n, when all the parameters are positive,
we have that (N` − A

(`)
n−1 − U

(`)
n )

N→∞−→
a.s.

+∞. Then we work conditionally on

N`, A
(`)
n−1, U

(`)
n and I(`)n and use the Poisson approximation (e.g. see Equation (1.23)

and Theorem 2.A, 2.B by Barbour, Holst and Janson in [84]) for the approximation:
the binomial random variable Z(`)

n may be approximated by a Poisson random vari-

able Z̃(`)
n

(d)
= P

(
(
∑m

k=1 I
(k)
n λk`)(

N`
N
− A

(`)
n−1

N
− U

(`)
n

N
)
)

such that

dTV(Z(`)
n , Z̃(`)

n ) ≤ 2

(N` − A(`)
n − U (`)

n )

(∑m
k=1 I

(k)
n λk`

N

) N`−A
(`)
n −U

(`)
n∑

i=1

(∑m
k=1 I

(k)
n λk`

N

)2

≤
2 max

k,`
λk`

N
=

2λ

N
.

As a consequence, the first term in the right hand side of (2.30) can be approximated
as ∣∣∣∣∣∣E

[
Z(`)
n 1∑m

j=1 Z
(j)
n ≤c

∣∣∣∣Fn−1
]
− E

[
Z̃(`)
n 1∑m

j=1 Z̃
(j)
n ≤c

∣∣∣∣Fn−1
]∣∣∣∣∣∣ ≤ 2mcλ

N
, (2.31)

and∣∣∣∣∣∣E
 Z

(`)
n∑m

j=1 Z
(j)
n

1∑m
j=1 Z

(j)
n >c

∣∣∣∣Fn−1
− E

 Z̃
(`)
n∑m

j=1 Z̃
(j)
n

1∑m
j=1 Z̃

(j)
n >c

∣∣∣∣Fn−1
∣∣∣∣∣∣ ≤ 2mλ

N
.

(2.32)
It follows that we need to deal with the Poisson random variables Z̃(`)

n (` ∈ {1, ...,m}).
Because of the result that the sum of two independent Poisson random variables is a
Poisson random variable whose parameter is the sum of the two parameters, we have
that

∑
j 6=` Z̃

(j)
n =: Ẑ

(`)
n has a Poisson distribution with parameter λ̂(`)n :=

∑
j 6=` λ

(j)
n .

And hence,

E
[
Z̃(`)
n 1∑m

j=1 Z̃
(j)
n ≤c

∣∣Fn−1] =
c∑

h=1

h∑
h1=1

h1
(λ

(`)
n )h1(λ̂

(`)
n )h−h1

h1!(h− h1)!
e−Λn

= λ(`)n

c∑
h=1

(Λn)h−1

(h− 1)!
e−Λn = λ(`)n

c∑
h=0

h

Λn

(Λn)h

h!
e−Λn

and

E
[

Z̃
(`)
n∑m

j=1 Z̃
(j)
n

1∑m
j=1 Z̃

(j)
n >c

∣∣∣∣Fn−1] =
∞∑

h=c+1

h∑
k=0

k

h

(λ
(`)
n )k

k!

(λ̂
(`)
n )h−k

(h− k)!
e−λ

(`)
n e−λ̂

(`)
n
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= λ(`)n

∞∑
h=c+1

h−1∑
k=0

1

h

(λ
(`)
n )k

k!

(λ̂
(`)
n )h−1−k

(h− 1− k)!
e−λ

(`)
n e−λ̂

(`)
n

= λ(`)n

∞∑
h=c+1

1

h

(λ
(`)
n + λ̂

(`)
n )h−1

(h− 1)!
e−(λ

(`)
n +λ̂

(`)
n )

=
λ
(`)
n

Λn

∞∑
h=c+1

(Λn)h

h!
e−Λn

=
λ
(`)
n

Λn
(1−

c∑
h=0

(Λn)h

h!
e−Λn). (2.33)

Using (2.30), we obtain:

E[C(`)
n |Fn−1] = E

Z̃(`)
n 1∑m

j=1 Z̃
(j)
n ≤c

+
Z̃

(`)
n∑m

j=1 Z̃
(j)
n

1∑m
j=1 Z̃

(j)
n >c

∣∣∣∣Fn−1


=
λ
(`)
n

Λn

c− c∑
h=0

(c− h)
(Λn)h

h!
e−Λn

 ,

which finishes step 1.

Step 2: We decompose the second term in the left hand side of (2.28) as follow

λ
(`)
n

Λn

c− c∑
h=0

(c− h)
(Λn)h

h!
e−Λn

 = α(`)
n + ξ(`)n , ` = 1, ...,m. (2.34)

where

α(`)
n := E

[
λ
(`)
n

Λn

c− c∑
h=0

(c− h)
(Λn)h

h!
e−Λn

∣∣∣∣Fn−1]

ξ(`)n :=
λ
(`)
n

Λn

c− c∑
h=0

(c− h)
(Λn)h

h!
e−Λn


− E

[
λ
(`)
n

Λn

c− c∑
h=0

(c− h)
(Λn)h

h!
e−Λn

∣∣∣∣Fn−1].
By writing

α(`)
n =

m∑
k=1

P(I(k)n = 1)
λk,`n
Λkn

c− c∑
h=0

(c− h)
(Λkn)h

h!
e−Λ

k
n

 ,

where
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λk,`n := λk`

(
N`

N
− A

(`)
n−1

N
− U

(`)
n−1

N
− 1{k=`}

N

)
and Λkn :=

m∑
j=1

λk,jn (` = 1, ...,m),

(2.35)
we obtain that for every t ∈ [0, 1],

1

N

bNtc∑
n=1

α(`)
n =

1

N

bNtc∑
n=1


m∑
k=1

A
(k)
n−1

|An−1|
λk,`n
Λkn

c− c∑
h=0

(c− h)
(Λkn)h

h!
e−Λ

k
n

 . (2.36)

It is obvious that 1
N

∑bNtc
n=1 ξn is an FNt −martigale with the quadratic variation,

〈 1

N

bN ·c∑
n=1

ξn〉t =
1

N2

bNtc∑
n=1

E
[
ξ2n|Fn−1

]
≤ 1

N2

bNtc∑
n=1

m(c+ 1)2 ≤ m(c+ 1)2

N
.

By the Doob’s inequality, we have

E

max
0≤s≤t

‖ 1

N

bNtc∑
n=1

ξn‖2
 ≤ 4E

‖〈 1

N

bN ·c∑
n=1

ξn〉t‖

 ≤ 4m(c+ 1)2

N

N→∞−→ 0,

which deduces that as N tends to infinity, we have that

1

N

bNtc∑
n=1

ξn
(L2)→ 0 (2.37)

uniformly in t ∈ [0, 1]. Together with the points given in (2.28), (2.34) and (2.37),
take the limit as N →∞ in the right hand side of (2.36), we obtain the right hand
side of (2.25).

Step 3: We use similar arguments as in step 2 to obtain the limit in right hand side
of (2.26). Denote by

µ(`)
n :=

 m∑
k=1

I(k)n λk`

(N`

N
− A

(`)
n−1

N
− B

(`)
n−1

N
− U

(`)
n

N

)
.

Recall from (2.9) that conditioning on Fn−1,

H(`)
n

(d)
= Bin

(
N` − A(`)

n−1 −B(`)
n−1 − U (`)

n ,

∑m
k=1 I

(k)
n λk`

N

)
,

then

1

N

bNtc∑
n=1

E[H(`)
n |Fn−1] =

1

N

bNtc∑
n=1

µ(`)
n . (2.38)

We write

1

N

bNtc∑
n=1

µ(`)
n =

1

N

bNtc∑
n=1

(β(`)
n + ζ(`)n ) (2.39)
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where

β(`)
n := E


 m∑

k=1

I(k)n λk`

(N`

N
− A

(`)
n−1

N
− B

(`)
n−1

N
− U

(`)
n

N

)∣∣∣∣Fn−1
 ;

ζ(`)n :=

 m∑
k=1

I(k)n λk`

(N`

N
− A

(`)
n−1

N
− B

(`)
n−1

N
− U

(`)
n

N

)

− E


 m∑

k=1

I(k)n λk`

(N`

N
− A

(`)
n−1

N
− B

(`)
n−1

N
− U

(`)
n

N

)∣∣∣∣Fn−1
 .

Using a similar argument as in step 2, we have

1

N

bNtc∑
n=1

β(`)
n =

1

N

bNtc∑
n=1

m∑
k=1

P(I(k)n = 1)λk`

(
N`

N
− A

(`)
n−1

N
− B

(`)
n−1

N
− U

(`)
n−1

N
− 1{k 6=`}

N

)

=
1

N

bNtc∑
n=1

m∑
k=1

A
(k)
n−1

‖An−1‖
µk,`n −

1

N

bNtc∑
n=1

m∑
k=1

AN,kn−1

‖ANn−1‖
λk`

1{k 6=`}
N

,

where µk,`n := λk`

(
N`
N
− A

(`)
n−1

N
− B

(`)
n−1

N
− U

(`)
n−1

N

)
. Then,∣∣∣∣∣∣ 1

N

bNtc∑
n=1

β(`)
n −

m∑
k=1

A
(k)
n−1

‖An−1‖
µk,`n

∣∣∣∣∣∣ ≤ 1

N

bNtc∑
n=1

m∑
k=1

AN,kn−1

‖ANn−1‖
λk`

1{k 6=`}
N

≤ λ

N
.

(2.40)
Take the limit as N → +∞, we have that

lim
N→+∞

1

N

bNtc∑
n=1

m∑
k=1

A
(k)
n−1

‖An−1‖
µk,`n =

∫ t

0

m∑
k=1

a
(k)
s

‖as‖
µk,`s ds.

Further, the FNt −martingale
1

N

bN ·c∑
n=1

ζ(`)n converges in L2 to 0 uniformly in t ∈ [0, 1].

Thus, (2.26) is proved.

For the proof of (2.27), by the definition of In as in (2.8), we have

1

N

bNtc∑
n=1

E[I(`)n |Fn−1] =
1

N

bNtc∑
n=1

A
(`)
n−1

‖An−1‖
=

1

N

bNtc∑
n=1

A
(`)
n−1/N

‖An−1‖/N
.

Take the limit as N → +∞, we obtain the limit in the right hand side of (2.27).

The preceding steps allow to conclude the proof of Proposition 2.3. �
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2.3.4 The uniqueness

It remains to prove that the limiting value x = (a, b, u) we have found is unique
solution of the system of he ODEs (2.2). If it is the case, then the process (XN)N≥1
admits a unique limiting value and thus converges to x.
Assume that there exist two solutions x1 and x2 to ODEs (2.2) on the interval [0, t′0],
where

t′0 = inf{t ∈ [0, 1] : a1t′0 = 0 or a2t′0 = 0}.

Then using the intermediate value theorem, there exist ξij(s) ∈ [x1ij(s), x
2
ij(s)] such

that

‖x1t − x2t‖ =

∥∥∥∥∥
∫ t

0

(f(x1s)− f(x2s))ds

∥∥∥∥∥ ≤
∫ t

0

3∑
i=1

m∑
j=1

∣∣∣∣∣ ∂f∂xij (ξij(s))

∣∣∣∣∣ ∣∣x1ij(s)− x2ij(s)∣∣ds
≤
∫ t

0

L(s)‖x1s − x2s‖ds,

where xks = (xij(s)) 1≤i≤3
1≤j≤m

(k ∈ {1, 2}) and L(s) =
3∑
i=1

m∑
j=1

max

∣∣∣∣∣ ∂f∂xij (xs)

∣∣∣∣∣, of

which the maximum is over x(s) = (xij(s))ij ∈ [0, 1]3m such that ∀i, j : xij ∈
[x1ij, x

2
ij], where by an abuse of notation, the bounds of interval [x1ij, x

2
ij] can be

switched depending on the minimum or maximum of the bounds.
By the Grönwall’s inequality, we get

‖x1t − x2t‖ ≤ ‖x10 − x20‖ exp(

∫ t

0

L(s)ds) = 0.

This shows that x1t ≡ x2t for all t ∈ [0, t′0]. It also follows t′0 = t0.

2.4 Simulation

The simulations show that the deterministic solution of the system of ODEs (2.2) fits
well with our stochastic process, see Figure 2.1. The sequence of stochastic process
(XN)N≥1 that we have constructed describes how the chain-referral process works
on a network. When we consider the population with a very large number of people,
the process (XN)N≥1 is asymptotically a deterministic function, which is a solution
of a system of (2.2). To see numerically the convergence, we do a simulation: for
c = 3, we vary N from 500 to 50000 and plot as a function of N the log of the
quantity: ∫ 1

0

(‖ANt − at‖+ ‖BN
t − bt‖+ ‖UN

t − ut‖)dt,

Figure 2.3. The speed of convergence has been studied in the case of Erdös-Rényi
graphs in the PhD-thesis, by establishing a central limit theorem: Theorem 0.10.
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By studying the solution of (2.2), we can obtain an approximation of the fraction of
the population that has been interviewed when the CRS process stops. The proportion
of the population discovered is then approximated by t0.

The number of maximum coupon c plays an important role in how many people we
could explore before there is no distributed coupons any more (when ‖at‖ = 0).
By keeping all other parameters fixed and changing c, in the simulations of Figure
2.1, we see that the time t0 are different. For example, with m = 2, π = (1/3, 2/3),
λ11 = 2, λ22 = 4, λ12 = 3, we obtain the table 2.1.

c 1 2 3 4 5 6 ...
t0 0.18 0.91 0.94 0.95 0.95 0.95 ...

Table 2.1. Numerical computation of t0 for varying parameters c.

If c = 1, even though the average number of neighbors are bigger than 1, the simple
random walk describing the survey reaches only a very small number of people, see
Figure 2.1.a.. The random walk stops when it encounters a node of degree 1 and can
not propagate any more.
Furthermore, the parameter c also impacts the peaks (time and size) the curves
corresponding to the number of distributed coupons. In case of a limited budget
with a fixed number of interviews, a higher value of c can imply that we discover a
larger fraction of the population since it allows more flexibility in the interviewees.
From the Figure 2.4, we observe that the proportion of people receiving coupons
gets bigger as c increases. If c = 1, the fraction of discovered population is small,
which means that the survey is not so efficient. When c takes values from 4 to 6,
the corresponding curves of ‖at‖ are "close" and so are the times t0. However, in
these cases, the number of coupons spent during the CRS survey is large. We can
also be interested in seeing how c impacts the part of population discovered when the
survey stops after a fixed number of interviewed individuals. For example, consider
the case when N = 1000 and assume that we start with A0 = 10. The parameters
of the SBM are π = (1/3, 2/3), λ11 = 2, λ22 = 4, λ12 = 3. Then when there have
been approximately b0.2Nc individuals interviewed, the proportion of the explored
individuals: ‖AN0.2‖+ ‖BN

0.2‖ for each c varying from 1 to 6 is given in Table 2.2.

c 1 2 3 4 5 6
‖A1000

0.2 ‖+ ‖B1000
0.2 ‖ 0.213 0.308 0.268 0.308 0.310 0.260

Table 2.2. Numerical computation of ‖ANt ‖+ ‖BN
t ‖ for varying parameters c ∈ {1, . . . , 6}

at time t = 0.2 and N = 1000, A0 = 10, π = (1/3, 2/3), λ11 = 2, λ22 = 4, λ12 = 3.

Changing the parameters λk` impacts the discovered proportion of types. For instant,
let us take a bipartite random model π = (1/3, 2/3), c = 3 and λ11 = λ22 = 0,
λ12 = 4, which means that the people between communities are highly connected
and there is no connection within community. In this case, the number of explored
people without coupon of type 1 is quite small compared to the one of type 2, see
Figure 2.2.
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Figure 2.1. Plots of the proportions of classes in the population of size N = 10000 when c
varies from 1 to 6 and all the others parameters are fixed: ‖A0‖ = 100 the parameters

π = (1/3, 2/3), λ11 = 2, λ12 = 3, λ22 = 4.
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Figure 2.2. Plot the proportion of classes in the case
c = 3, N = 1000, A0 = 10, π = (1/3, 2/3) and the graph is bipartite

λ11 = λ22 = 0, λ12 = 4.
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Figure 2.3. Scatter plot of ln d1(X
N , x) along with the smoothing line suggesting the linear

relationship between ln d1(X
N , x) and N . The plot is done for the case c = 3, the number

of initial individuals are 1% of the population and the size N varies from 500 to 10000. All
other parameters are fixed: π = (1/3, 2/3), λ11 = 2, λ12 = 3, λ22 = 4.
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3.1 Introduction

A way to infer a random structure such as the graph of a social network and discover
its properties is to explore it with random walks (e.g. [72]). This mathematical idea
can be put into practice to reveal hidden populations such as drug users by using
referral chain sampling where each new person provides information on her/his
contacts: see for example the snowball sampling [47] or the ‘respondent-driven
sampling’ (RDS) introduced by Heckathorn [49]. These methods were first used to
estimate the size of the hidden population or to infer population means, under the
assumption that subjects’ network degree determines their probability of being sam-
pled, see Volz and Heckathorn [80] (see also [65]). Because the inclusion probability
of a subject is complicated to compute, due to the dependencies associated with the
graph and the fact that the sampling should be in practice without replacement, an
important numerical literature on the subject has followed (see e.g. [44, 45, 70]).
Gile [43] proposed an improved estimator for population means taking into account
the without replacement sampling, and Rohe established critical threshold for the
design effects [65]. Because of privacy restrictions, the social-network information
is usually only a tree, as each interviewee has been ‘invited’ into the survey by
a previously interviewed subject. Crawford, Wu and Heimer [27] use a Bayesian
approach to integrate over the missing edge between recruited individuals.
It appears that the information gathered in chain-referral surveys can also be used in
estimating the social network itself or at least properties associated with its topology.
Recent surveys allow to gather connectivity information for recruited members: see
for example the Rolls et al. [76] and Jauffret-Roustide et al. [58]. Interviewees are
asked for a description of their contacts, and for a first name or a nickname. This
information allows to reconstruct partially the social network and obtain a subgraph
that is not a tree. It is then natural to wonder how much information on the total graph
can be recovered from the observation of the subgraph obtained by the chain-referral
sampling. Of course, biases have been emphasized as individuals of high degrees
(hubs) are sampled with higher probability and ‘common profiles’ are much more
likely to be discovered (e.g. [61]). This motivates the present paper. To fix the frame-
work of study, we consider a particular class of random graphs, namely the Stochastic
Block Models (SBM) that are popular models for social networks (see [54] and the
review [1]). For this parametric model, inferring the distribution of the random graph
boils down to a finite dimensional parameter estimation. Also, for simplification, we
consider here a model of random walk on the continuous version of the SBM graph,
namely the SBM graphon that is introduced in the next paragraph. Two estimations
strategies are considered in this paper. First, we establish the likelihood of a random
walk exploring this structure, and which accounts for the sampling biases. Two cases
are classically considered, depending on whether the types of the visited nodes are
observed or not. Even in the case of a complete observation, the maximum likelihood
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estimator has no explicit form. When the types of the vertices are unobserved, we
adapt the Stochastic Approximation Expectation-Maximization algorithm (SAEM)
as introduced in [20, 62]. Second, we propose a new estimation using new theoretical
probabilistic results by Athreya and Röllin [4] who compute an exact formula for the
bias. We provide a consistent estimator in the case of complete observations and a
de-biasing strategy for the usual maximum likelihood estimator of Daudin et al. [29]
in the case where the types of the explored nodes are unknown.

We consider as a toy model a Stochastic Block Model graphon with Q classes.
Graphons, considered here as symmetric integrable functions from [0, 1]2 to R,
can be seen as limit of dense graphs (see e.g. [66]). Recall that SBM graphs are
a generalization of Erdös-Rényi graphs, where each node i is characterized by a
type, Zi ∈ {1, . . . , Q}, with Q the number of different possible values. The random
variables (r.v.) Zi are assumed independent and identically distributed (i.i.d.) with
P(Zi = q) = αq > 0. The graph is non oriented. Each pair of nodes {i, j} is
connected independently with a probability πZi,Zj ∈ (0, 1) that depends only on the
types. When the number of vertices of the graph tends to infinity, it is known that
the dense graph converges to a limiting continuous object called graphon, see e.g.
[15, 16, 66]. Let us recall the definition of the SBM graphon.

For the sequel, we introduce the partition of [0, 1] defined by

Iq =
[ q−1∑
k=1

αk,

q∑
k=1

αk
)
, q ∈ {1, . . . Q}. (3.1)

The SBM graphon is the function from [0, 1]2 to [0, 1] defined as follows:

κ(x, y) =

Q∑
q=1

Q∑
r=1

πqr 1Iq(x)1Ir(y). (3.2)

Heuristically, we can see [0, 1] as a continuum of vertices, and κ is the limit of the
adjacency matrix of the graph in the sense that κ(x, y) measures the probability of
connection between x and y.

We consider a random walk on the graphon κ, i.e. the process X = (Xm)m≥1 with
values in [0, 1] and transition kernel:

Kκ(x, dy) =
κ(x, y)dy∫ 1

0
κ(x, v)dv

=

∑Q
q=1

(∑Q
r=1 πqr 1Ir(y)

)
1Iq(x) dy∑Q

q=1

(∑Q
r=1 πqrαr

)
1Iq(x)

. (3.3)

This random walk is the analogous of the classical random walk on a graph that
jumps from a vertex to one of its neighboring vertices chosen uniformly at random.
From the exploration of this random walk, we can construct a subgraph of the
‘nodes’ visited. Assume that we observe n steps of the random walk, i.e. X(n) =
(X1, . . . , Xn). The associated path (up to its nth step) is a subgraph (chain) Hn =
(Vn, En) with vertices Vn = {X1, . . . Xn} and edges En = ∪n−1m=1{Xm, Xm+1}. This
chain is completed by sampling independently edges between vertices that are not
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already connected with probability according to their types. Following the notation
of Athreya and Röllin [4], we denote by Gn := G(X(n), κ,Hn) the random graph,
which is completed from Hn w.r.t. the graphon κ:

Definition 3.1 The vertices of Gn = G(X(n), κ,Hn) are the nodes X(n), and
the edges are as follows. Let i and j be two vertices.

• If there is an edge between i and j in Hn, i ∼Hn j then there is also an
edge between these nodes in Gn: i ∼Gn j.
• If there is no edge between i and j in Hn, we connect i and j in Gn with

probability κ(Xi, Xj).

This subgraph Gn is the RDS graph. We assume that this is the model generating
our data and that the observation corresponds to a realization of Gn. In the sequel,
we denote the parameter of the SBM by θ = (α1, . . . αQ, πqr; q, r ∈ {1, . . . Q}).
Our purpose is to estimate θ using the subgraph Gn. In the literature, the estimation
of SBM graphs has been extensively studied, but often in a framework where the
number of nodes is known. In particular, variational EM approaches have been used
in many cases where types are unknown, see [29, 69, 79]. The estimation of SBM
graphs, when the total population size is unknown and when we only have a subgraph
obtained by a chain-referral method, is not studied to our knowledge. We develop in
this paper two approaches that we compare in a final numerical section (Section 3.5).

First, it is possible to write the likelihood of Gn. Here, because graph is explored
through an RDS random walk, our likelihood differs from the likelihoods in these
papers: it accounts both on the transitions of the random walk and on the connectivity
of vertices given their types. We study in Section 3.3 the maximum likelihood
estimator (MLE) in our setting for both cases, when the nodes types are observed or
not. Even when the observation is complete, the maximum likelihood estimator does
not have an explicit form. When the types are unknown, we adapt to our likelihood
the variational EM approach of [29].
The second approach developed in Section 3.4 is inspired by the recent work of
Athreya and Röllin [4]. These authors showed that when we observe the random
walk sufficiently long (n→ +∞), the sequence of graphs (G(Hn, κ))n≥1 converges
to a biased graphon of κ. Based on their probabilistic result, a natural estimator of
the biased graphon turns out to be the MLE in the ‘classical’ case studied by [29].
Based on this estimator that is not consistent in our case, we propose a new consistent
estimator of κ.

3.2 Probabilistic setting

In this section, we give some important properties of the RDS Markov chain X(n),
in particular on its long term behavior. Then we explain the biases that appear when
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estimating the graphon κ from the RDS subgraph Gn.

3.2.1 Exploration by a random walk

Assumption 3.1 In all the paper, we assume that κ is the graphon of an SBM graph

(see (3.2)) and that κ is connected, i.e. that for all measurable subset A ⊂ [0, 1] such
that |A| ∈ (0, 1), ∫

A

∫
Ac
κ(x, y)dx dy > 0.

Proposition 3.1 Under Assumptions 3.1, the random walk X = (Xn)n≥1 ad-
mits a unique invariant probability measure

m(dx) =

∫ 1

0
κ(x, v)dv∫ 1

0

∫ 1

0
κ(u, v)du dv

dx =

∑Q
q=1

(∑Q
r=1 πqrαr

)
1Iq(x) dx∑Q

q=1

∑Q
r=1 πqr αq αr

. (3.4)

The general proof is given in [4, Prop. 4.1] but for the case of SBM graphons, the
result is easy to prove.

From expression (3.4), we see that the stationary measure m(dx) put more weight on
the intervals Iq corresponding to frequent types (large αq) or hubs (πq. close to one).
Because m(dx) is not the uniform measure, we expect biases in how the graphon κ
is discovered by Gn.

3.2.2 Convergence of dense graphs

We are interested in the case where n → +∞. Then, the (dense) RDS graph Gn

might converge to a graphon, and it is natural to compare the possible limit to the
graphon κ on which the random walk moves. Let us recall briefly some topological
facts. We refer the interested reader to [66].

Let us give first some notations. For integers n and k ≤ n, [[1, n]] = {1, 2 · · ·n}
and (n)k = n(n− 1) · · · (n− k + 1). For a graph G, E(G) denotes the edges of G
and i ∼G j means that {i, j} ∈ E(G). We can define the subgraph F density inG by:

t(F,G) =
#{injections from F to G}

(n)k
=

1

(n)k

∑
(i1,···ik)∈[[1,n]]

∏
{`,`′}∈E(F )

1i`∼Gi`′

(3.5)
where

∑
(i1,···ik)∈[[1,n]] is a sum ranging over all vectors (i1, · · · ik) with mutually dif-

ferent coordinates in [[1, n]]. This notion of subgraph density can be generalized to a
graphon κ by:
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t(F, κ) =

∫
[0,1]k

∏
{`,`′}∈E(F )

κ(x`, x`′)dx1 · · · dxk. (3.6)

Let F denote the class of isomorphism classes on finite graphs and let (Fi)i ≥ 1 be
a particular enumeration of F . Then, the distance of two graphs G and G′ is:

dsub(G,G
′) =

∑
i≥0

1

2i
∣∣t(Fi, G)− t(Fi, G′)

∣∣ (3.7)

The convergence of the large graphs to graphons can be expressed with this distance
[66, Chapter 11].

3.2.3 Biases in the discovery of κ

Let us denote by Γ the cumulative distribution function of m(dx):

Γ (x) =

∑Q
q=1

∑Q
r=1

(
πqrαr

)[
min

(
αq, x−

∑q−1
k=1 αk

)]
+∑Q

q=1

∑Q
r=1 πqr αq αr

(3.8)

Athreya and Röllin [4] have proved that the graphon discovered by the RDS is
biased:

Proposition 3.2 — Corollary 2.2 [4]. We have under Assumptions 3.1 that:

lim
n→+∞

dsub
(
Gn, κΓ−1

)
= 0,

where the generalized inverse of Γ is

Γ−1(v) = inf{u ∈ [0, 1] : Γ (u) ≥ v},
and where for all x, y ∈ [0, 1],

κΓ−1(x, y) = κ
(
Γ−1(x), Γ−1(y)

)
. (3.9)

This proposition, that is true not only for SBM graphons but also in more general
cases, as developed in [4], says that the topology of the subgraph discovered by the
RDS is biased compared with the true underlying structure (κ) because the random
walk visits more likely the nodes with high degrees (hubs) and the frequent types.

Example 3.1 When Q = 2, the graphon is given:

κ(x, y) =


π11, 0 ≤ x, y ≤ α;
π12, (α < x ≤ 1 and 0 ≤ y ≤ α) or (0 ≤ x ≤ α) and α < y ≤ 1);
π22, otherwise.

The invariant probability measure is:
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m(dx) =
(π11α + π12(1− α))1x∈[0,α](x) + (π12α + π22(1− α))1x∈(α,1](x)

π11α2 + 2π12α(1− α) + π22(1− α)2
dx.

Then the cumulative distribution of m is:

Γ (x) =
(π11α + π12(1− α))x

π11α2 + 2π12α(1− α) + π22(1− α)2
1x<α

+

[
π11α

2 + π12(1− α)α

π11α2 + 2π12α(1− α) + π22(1− α)2

+
(π12α + π22(1− α))(x− α)

π11α2 + 2π12α(1− α) + π22(1− α)2

]
1x≥α.

The biased graphon κΓ−1 is here:

κΓ−1(x, y) :=


π11, if (x, y) ∈ [0, Γ (α)]× [0, Γ (α)];

π22, if (x, y) ∈ [Γ (α), 1]× [Γ (α), 1];

π12, otherwise;

(3.10)

where

Γ (α) =
(π11α + π12(1− α))α

π11α2 + 2π12α(1− α) + π22(1− α)2
. (3.11)

It can be seen that Γ (α) = α when (1 − α)(π12 − π22) = α(π12 − π11). This is
satisfied for example when π11 = π12 = π22 (Erdös-Rényi) or when α = 1/2 and
π11 = π22 (both types are symmetric).

3.2.4 Empirical cumulative distribution

As seen in the previous paragraph, the bias linked with the discovery of the graphon
κ by the RDS subgraph Gn is expressed in term of the cumulative distribution Γ
of the stationary distribution m of X(n). In the sequel, the empirical cumulative
distribution of m will be useful and we recall here some facts:

Γn(x) =
1

n

n∑
i=1

1Xi≤x and Γ−1n (y) = inf
{
x ∈ [0, 1] : Γn(x) ≥ y

}
.

(3.12)

Lemma 3.1 Γn and Γ−1n converge a.s. uniformly to Γ and Γ−1 respectively.

Proof. The almost sure point-wise convergence of Γn to Γ is a consequence of the
ergodic theorem. Then, the a.s. uniform convergence is obtain by the Glivenko-
Cantelli theorem.
Let us prove the uniform convergence of Γ−1n to Γ−1. Because all the αq’s are posi-
tive, Γ is a non-decreasing and piece-wise affine bijection and the inverse bijection
Γ−1 is also non-decreasing and piece-wise affine. Let ε > 0 and n0 ∈ N sufficiently
large so that for all n ≥ n0, ‖Γn − Γ‖∞ ≤ ε. Let y ∈ [0, 1]. For n ≥ n0,
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∣∣Γ−1n (y)− Γ−1(y)
∣∣ ≤C∣∣Γ (Γ−1n (y))− y

∣∣.
Because the jumps of Γn are a.s. of size 1/n, we necessarily have that y − ε ≤
Γ (Γ−1n (y)) ≤ y + ε+ 1

n
. Thus,∣∣Γ−1n (y)− Γ−1(y)

∣∣ ≤C( 1

n
+ ε
)
,

which proves the uniform convergence of Γ−1n to Γ−1. �

3.3 Likelihood estimation

In this section, we write the likelihood ofGn and compute the MLE of the parameters
θ. Here our likelihood is specific to the RDS exploration. The MLE does not have
an explicit formula and we explain how to compute it numerically. Then, we study
the case where the types Zi of the nodes are unobserved. Notice that the estimation
in this Section 3.3 makes only use of the connectivity information carried by the
random variables Yij , where Y = (Yij)i,j∈[[1,N ]] is the associated adjacency matrix
of Gn. The estimators here do not depend on the positions Xi. The types Zi may be
known or unobserved.

Let us introduce some notations. We define by N q
n, q ∈ {1, ..., Q} the number of

vertices of type q sampled by the Markov chain. For q, r ∈ {1, ..., Q} we also define
by:

N q↔r
n = #

{
(i, j) | i, j ∈ X(n), Zi = q, Zj = r, Yi,j = 1

}
;

N q=r
n = #

{
(i, j) | i, j ∈ X(n), Zi = q, Zj = r, Yi,j = 0

}
the number of couples of types (q, r) that are connected (resp. not connected).

3.3.1 Complete observations

Assume that we observe a subset of explored nodes X(n) = (X1, . . . Xn) ⊂ [0, 1]n

discovered by the RDS, with their classes and connections: (Zi, Yij;Xi, Xj ∈
X(n), i 6= j) ∈ {1, · · ·Q}n × {0, 1}n(n−1).

Proposition 3.3 The complete likelihood of the observations is

L(Z, Y,X, θ) =

Q∏
q=1

(
πqq

1− πqq

)Nq↔q
n

(1− πqq)N
q
n(N

q
n−1)/2
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×
∏
q 6=r

(
πqr

1− πqr

)Nq↔r
n

(1− πqr)N
q
nN

r
n ×

Q∏
q=1

αN
q
n

q

(
∑Q

q′=1 πqq′αq′)
Nq
n−1Zn=q

.

(3.13)

Proof. We have that

L(Zi, Yij; i, j ∈ X(n); θ) = αZ1

n−1∏
m=1

πZmZm+1αZm+1∑Q
q=1 πZmqαq

×
∏

i,j:Xi,Xj∈X(n),
{Xi,Xj}/∈Hn

π
Yi,j
ZiZj

(1− πZiZj)(1−Yi,j),

where the first product corresponds to the likelihood of the types sampled along
the Markov chain, and the second product corresponds to the likelihood of edges
between vertices that are not visited successively by the Markov chain. Thus:

L(Zi, Yij; i, j ∈ X(n); θ) =

∏n
i=1 αZi∏n−1

i=1

∑Q
q=1 πZiqαq

×
∏

i,j∈[[1,n]]
Xi,Xj∈X(n)

b(Yij, πZiZj), (3.14)

where b(Yij, πZiZj) = π
Yij
ZiZj

(1− πZiZj)1−Yij . Finally, rewriting the above likelihood
using N q

n, N q↔r
n , we obtain (3.13). �

Proposition 3.4 The MLE θ̂ = (α̂, π̂) is the solution of the following system
of equations:

n∑
m=1

1Zm=q

αq
−

n−1∑
m=1

πZmq∑Q
q′=1 πZmq′α

′
q

= 0; (3.15)

n−1∑
m=1

1(Zm,Zm+1)=(qr)

πqr
− αr1Zm=q∑Q

q′=1 πqq′αq′


+

∑
i,j:Xi,Xj∈X(n)

{Xi,Xj}/∈Hn

(
Yi,j
πqr
− 1− Yi,j

1− πqr

)
1(Zi,Zj)=(qr) = 0. (3.16)

Proof. The log likelihood of the observations is:

logL =

Q∑
q=1

(
N q
n logαq − (N q

n − 1Zn=q) log
( Q∑
q′=1

πqq′αq′
))

+

Q∑
q=1

(
N q↔q
n log

( πqq
1− πqq

)
+
N q
n(N q

n − 1)

2
log(1− πqq)

)
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+

Q∑
q=1

(∑
r 6=q

N q↔r
n log

( πqr
1− πqr

)
+N q

nN
r
n log(1− πqr)

)
When we take the derivative of function logL with respect to the parameters, we
obtain:

N q
n

αq
−

Q∑
p=1

Np
nπpq∑Q

q′=1 πpq′αq′
= 0; (3.17)

N q↔r
n

πqr
− N q=r

n

1− πqr
−N q

n

αr∑Q
q′=1 πqq′αq′

= 0. (3.18)

The identifiability of the model is a result by Allman et al. [33]. Since the likelihood
is differentiable, there exists a sequence of solutions of (3.17) that converge to the
true parameter θ. �

Remark 3.1 Notice that in absence of bias, the classical likelihood, as obtained
in Daudin et al. [29] is:

Lclass(Zi, Yij; θ) =
n∏
i=1

αZi ×
∏

i,j∈(Xn)

b(Yij, πZiZj)

=

Q∏
q=1

αN
q
n

q ×
Q∏
q=1

(
πqq

1− πqq

)Nq↔q
n

(1− πqq)N
q
n(N

q
n−1)/2

(3.19)

×
∏
q 6=r

(
πqr

1− πqr

)Nq↔r
n

(1− πqr)N
q
nN

r
n . (3.20)

The difference between (3.19) and (3.14) is the first product which corresponds
of the likelihood of the node types. In the classical case, these types are chosen
independently whereas here they are discovered by the successive states of the
Markov chain. In this classical case, the MLE has an explicit formula:

α̂class
q =

N q
n

n
, π̂class

qr =
N q↔r
n

N q
nN r

n

, π̂class
qq =

2N q↔q
n

N q
n(N q

n − 1)
. (3.21)

Here, for the likelihood (3.13), the MLE which solves (3.15) is not explicit any more.
In Section 3.3.1, we detail in the case of two classes (Q = 2) the computation of the
MLE.

Case where Q = 2

Let us solve the likelihood equations when Q = 2. The parameter is then θ =
(α, π11, π12, π22). Define θ̂ = (α̂, π̂11, π̂12, π̂22) the estimator of θ. Then the estima-
tors θ̂ is the solution of
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N1
n

α̂
− N1

nπ̂11
π̂11α̂ + π̂12(1− α̂)

− N2
nπ̂12

π̂12α̂ + π̂22(1− α̂)
= 0; (3.22)

N2
n

1− α̂ −
N1
nπ̂12

π̂11α̂ + π̂12(1− α̂)
− N2

nπ̂22
π̂12α̂ + π̂22(1− α̂)

= 0; (3.23)

N1↔1
n

π̂11
− N1=1

n

1− π̂11
− N1

nα̂

π̂11α̂ + π̂12(1− α̂)
= 0; (3.24)

N1↔2
n

π̂12
− N1=2

n

1− π̂12
− N1

n(1− α̂)

π̂11α̂ + π̂12(1− α̂)
= 0; (3.25)

N2↔1
n

π̂12
− N1=2

n

1− π̂12
− N2

nα̂

π̂12α̂ + π̂22(1− α̂)
= 0; (3.26)

N2↔2
n

π̂22
− N2=2

n

1− π̂22
− N2

n(1− α̂)

π̂12α̂ + π̂22(1− α̂)
= 0. (3.27)

Proposition 3.5 The MLE θ̂ = (α̂, π̂11, π̂12, π̂22) can be expressed as a function
of π̂12:

π̂11 =
(N1↔1

n +N1↔2
n −N1

n)− (N1
nN

2
n −N1

n +N1↔1
n )π̂12

(N
1
n(N

1
n−1)
2

−N1
n +N1↔2

n )− (N
1
n(N

1
n−1)
2

+N1
nN

2
n −N1

n)π̂12
, (3.28)

π̂22 =
(N2↔2

n +N1↔2
n −N2

n)− (N2↔2
n +N1

nN
2
n −N2

n)π̂12

(N
2
n(N

2
n−1)
2

−N2
n +N1↔2

n )− (N
2
n(N

2
n−1)
2

+N1
nN

2
n −N2

n)π̂12
, (3.29)

α̂ =
β̂

1 + β̂
, (3.30)

with

β̂ =
(N1

n −N2
n)π̂12 +

√
(N1

n −N2
n)2π̂12

2 + 4N1
nN

2
nπ̂11π̂22

2N2
nπ̂11

, (3.31)

and where π̂12 is one of the root of

π̂12
2 =

(N1↔1
n +N1↔2

n −N1
n)− (N1

nN
2
n −N1

n +N1↔1
n )π̂12

(N
1
n(N

1
n−1)
2

−N1
n +N1↔2

n )− (N
1
n(N

1
n−1)
2

+N1
nN

2
n −N1

n)π̂12

× (N2↔2
n +N1↔2

n −N2
n)− (N2↔2

n +N1
nN

2
n −N2

n)π̂12

(N
2
n(N

2
n−1)
2

−N2
n +N1↔2

n )− (N
2
n(N

2
n−1)
2

+N1
nN

2
n −N2

n)π̂12

× (N1↔2
n −N1

nN
2
nπ̂12)

2

[(N1↔2
n −N1

n)− (N1
nN

2
n −N1

n)π̂12][(N1↔2
n −N2

n)− (N1
nN

2
n −N2

n)π̂12]
.

(3.32)

Proof. Multiply (3.24) by π̂11 and (3.25) by π̂12, and sum them up, we have

N1=1
n

π̂11
1− π̂11

+N1=2
n

π̂12
1− π̂12

= N1↔1
n +N1↔2

n −N1
n. (3.33)
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Similarly, from equations (3.26) and (3.27), we deduce

N1=2
n

π̂12
1− π̂12

+N2=2
n

π̂22
1− π̂22

= N1↔2
n +N2↔2

n −N2
n. (3.34)

Also, the system of equations (3.24)-(3.27) gives(
N1↔1
n

π̂11
− N1=1

n

1− π̂11

)(
N2↔2
n

π̂22
− N2=2

n

1− π̂22

)
=

(
N1↔2
n

π̂12
− N1=2

n

1− π̂12

)2

. (3.35)

Notice thatN1=2+N1↔2 = N1
nN

2
n,N1=1+N1↔1 = N1

n(N
1
n−1)
2

andN2=2+N2↔2 =
N2
n(N

2
n−1)
2

and we consider π̂12 as a parameter. Solving the system (3.33)-(3.34) for
π̂11, π̂22 provides the two first equations of (3.28). Using this, (3.35) is equivalent to:

(N1↔2
n −N1

nN
2
nπ̂12)

2

[(N1↔2
n −N1

n)− (N1
nN

2
n −N1

n)π̂12][(N1↔2
n −N2

n)− (N1
nN

2
n −N2

n)π̂12]

π̂11π̂22

π̂12
2 = 1.

(3.36)

This gives the (3.32).

For the estimator of α, let us denote β := α
(1−α) . Then equations (3.22) and (3.23)

are the same and equivalent to

N1
n

π̂11β̂ + π̂12
=

N2
nβ̂

π̂12β̂ + π̂22
. (3.37)

The unique positive solution is β̂ and provides in turn α̂. �

Let us explain how the preceding proposition allows us to compute numerically the
MLE θ̂.

First: there might be several solutions of (3.32), see Fig. 3.1. For each of them, we
compute the corresponding estimators of π11, π22 and α, which allows us to obtain
the corresponding likelihood of the observations. We choose the set of estimators
that provides the best likelihood for our observations.

Second: to solve numerically the equation (3.32), we use the bisection method with
the following constraints:

• The equation (3.32) has 4 excluded values that make the denominator zero:

π̄1
12 =

N1↔2
n −N2

n

N1
nN

2
n −N2

n

π̄2
12 =

N1↔2
n −N1

n

N1
nN

2
n −N1

n

(3.38)

π̄3
12 =

N1
n(N

1
n−1)
2

−N1
n +N1↔2

n

N1
n(N

1
n−1)
2

−N1
n +N1

nN
2
n

; and π̄4
12 =

N2
n(N

2
n−1)
2

−N2
n +N1↔2

n

N2
n(N

2
n−1)
2

−N2
n +N1

nN
2
n

It is observed that max(π̄1
12, π̄

2
12) < min(π̄3

12, π̄
4
12). And if N1

n < N2
n, we have

them ordered: π̄1
12 < π̄2

12 < π̄3
12 < π̄4

12.
• All the estimators π̂11, π̂12, π̂22 and α̂ take values in the interval (0, 1).
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Figure 3.1. Equation (3.32) can be rewritten as φ(π12) = 0. The function φ is represented
graphically on the figure above as a function of π12. The vertical dotted lines correspond to

the excluded values π̄112, . . . π̄
4
12 given in (3.38).

Taking care of the points above, we solve (3.32) with the bisection method on a grid
that includes the excluded points {π̄i12, i ∈ {1, 2, 3, 4}}.
For each root of (3.32), corresponding to a possible value of π̂12, we compute the
corresponding estimators of π11, π22.

For the numerical simulations, we refer the reader to Section 3.5.

3.3.2 Incomplete observations: SAEM Algorithm

Here, we assume that the types (Zi)i=1,...,n are unobserved. In this case, the likelihood
of the observed data (Yij; i, j ∈ [[1, n]]) is obtained by summing the complete-data
likelihood (3.14) over all the possible values of the unobserved variables Z:

L(Yij; i, j ∈ [[1, n]]; θ) =

Q∑
q1,···qn=1

[ n∏
i=1

1Zi=qi

∏n
i=1 αqi∏n−1

i=1

∑Q
q=1 πqiqαq

×
∏

i,j:Xi,Xj∈X(n))

b(Yij, πqiqj)
]
, (3.39)

Unfortunately, this sum is not tractable and it is classical to use the Expectation-
Maximization (EM) algorithm to compute the maximum likelihood. Here we follow
the steps in [29] by adapting the expression to our setting with the likelihood (3.13).

Let us sum up the EM algorithm (see e.g. [20, 21, 62]). Given the observed data:
the Markov chain X(n), the connections (Yij, i, j ∈ X(n)) and the number of
blocks Q and the current estimator θ, and given the value θ(k−1) at the (k − 1)th

iteration of the EM, on the kth step, we compute the conditional expectation of the
log-likelihood L(Z|X, Y, θ(k)) given X, Y for the current fit θ(k). Here there is no
explicit expression for the latter likelihood because the exact distribution of Z given
X, Y is unknown and this we need to approximate it numerically by using an SAEM
algorithm [20, 62], proceeding as follows.
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The SAEM algorithm

Given the information of the k − 1 iteration θ(k−1) = (α(k−1), π(k−1)), at the kth

iteration of SAEM:

Step 1: Choosing the appropriate Z(k)

- Simulate a candidate Zc following the proposal distribution qθ(k−1)(.|Z(k−1)).
The choice of proposal distribution is discussed in Section 3.3.2, where we use
a variational approach.
- Calculate the acceptance probability

ω(Z(k−1), Zc) := min

{
1,
L(Zc, Y, θ(k−1)) · qθ(k−1)(Z(k−1)|Zc)

L(Z(k−1), Y, θ(k−1)) · qθ(k−1)(Zc|Z(k−1))

}
;

(3.40)

- Accept the candidate Zc with probability ω: P(Z(k) = Zc) = ω and
P(Z(k) = Z(k−1)) = 1− ω.

Step 2: Stochastic approximation Update the quantity

Q(k)(θ) = Q(k−1)(θ) + sk

(
logL(Z

(k)
i , Yij, θ)−Q(k−1)(θ)

)
, (3.41)

with the initializationQ(0)(θ) := E[logL(Z, Y, θ(0))] and (sk)k∈N is a positive
decreasing step sizes sequence satisfying

∑∞
k=1 sk =∞ and

∑∞
k=1 s

2
k <∞.

Step 3: Maximization Choose θ(k) to be the value of θ that maximizes Q(k)

θ(k) := arg max
θ

Q(k)(θ). (3.42)

Kuhn and Lavielle studied the convergence of the sequence θ(k) in [62]. In the
particular case of SBM, the consistency of EM and variational methods has been
studied by Célisse et al. [22] and the asymptotic normality has been studied by Bickel
et al. [9]. The likelihood that is considered here differs and these results can not be
directly applied, but a study along these lines could be investigated.

Variational approach

For the proposal distribution qθ(k−1)(. | Z(k−1)) of Z(k), we follow Daudin et al. [29],
who use a variational approach. Let us recall the main idea of this approach. The
general strategy has been described in Jordan et al. [60] or Jaakkola [96].

Recall the likelihood L(Y, θ) of the incomplete data (3.39). The idea of the varia-
tional approach is to replace the likelihood by a lower bound:

J (RY,θ) = L(Y, θ)−KL(RY,θ(Z),L(Z|Y, θ)), (3.43)

where KL(µ, ν) :=

∫
dµ log

(
dµ

dν

)
is the Kullback-Leibler divergence of distribu-

tions µ and ν, and where RY,θ(Z) is an approximation of the conditional likelihood
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L(Z|Y, θ). WhenRY,θ is a good-approximation of L(Z|Y, θ), J (RY,θ) is very closed
to L(Y, θ).
Here, Z takes discrete values in {1, ..., Q}. Then,

J (RY,θ) = logL(Y, θ)−
∑

(Z1,...,Zn)∈{1,...,Q}n
RY,θ(Z) log

RY,θ(Z)

L(Z|Y, θ)

= logL(Y, θ)−
∑

Z∈{1,...,Q}n
RY,θ(Z) logRY,θ(Z)

+
∑

Z∈{1,...,Q}n
RY,θ(Z) logL(Z|Y, θ)

= logL(Y, θ)−
∑

Z∈{1,...,Q}n
RY,θ(Z) logRY,θ(Z)

+
∑

Z∈{1,...,Q}n
RY,θ(Z) logL(Z, Y, θ)−

∑
Z∈{1,...,Q}n

RY,θ(Z) logL(Y, θ)

=
∑

Z∈{1,...,Q}n
RY,θ(Z) logL(Z, Y, θ)−

∑
Z∈{1,...,Q}n

RY,θ(Z) logRY,θ(Z).

Following [29], we restrict to distributions RY,θ that belong to the family of multi-
nomial probability distributions parameterized by τ = (τ1, · · · τQ), as approximated
conditional distribution of Z given Y and θ. If we look for the parameter τ that
maximizes (3.43), we will hence obtain the best approximation of L(Z|Y, θ) among
the multinomial distributions. We will chose the latter to be the proposal distribution
for Z in the Step 1 of the SAEM algorithm.

If 1Zi follows the multinomial distributionM(1; (τi1, ..., τiq)), with τiq = P(Zi =
q|Y, θ), for i ∈ {1, ..., n}, q ∈ {1, ..., Q} then,

RY,θ(Z) =
n∏
i=1

τi,Zi . (3.44)

As a consequence, J (RX) is rewritten as

J (RY,θ) =
∑

Z∈{1,...Q}n


n∏
j=1

τj,Zj

 n∑
i=1

logαZi −
n−1∑
i=1

log(

Q∑
q=1

πZiqαq)

+
∑

i,j:Xi,Xj∈X(n)

log b(Yij; πZiZj)


−

∑
Z∈{1,...Q}n

n∏
j=1

τj,Zj

 n∑
i=1

log τi,Zi

 .

We aim at calculating the parameter τ̂ that maximizes the lower bound of L(Y, θ).
Then the proposal distribution qθ(k−1)(. | Z(k−1)) for updating the types will be given
by (3.44) with the parameters τ̂ given in the next proposition:
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Proposition 3.6 Given α, π, the optimal parameter

τ̂ := arg max
τ

J (RY,θ), (3.45)

with constraint
∑Q

q=1 τiq = 1,∀i ∈ {1, ..., n}, satisfies the fixed point relation

τiq ∝
αq∑Q

`=1 πq`α`

∏
i 6=j

Q∏
`=1

b(Yij, πq`)
τj` . (3.46)

Proof. To simplify J (RY,θ), we have∑
Z∈{1,...Q}n

n∏
i=1

τi,Zi

n∑
i=1

logαZi =
∑

Z∈{1,...Q}n

n∑
i=1

n∏
j=1
j 6=i

τj,Zj(τi,Zi logαZi)

=
n∑
i=1

Q∑
Zi=1

τi,Zi logαZi
∑

Z1,...,Zn\Zi

∏
j 6=i

τj,Zj

=
n∑
i=1

Q∑
q=1

τi,q logαq
∏
j 6=i

 Q∑
Zj=1

τj,Zj


=

n∑
i=1

Q∑
q=1

τiq logαq.

Similarly, ∑
Z∈{1,...Q}n

n∏
j=1

τj,Zj

 n∑
i=1

log τi,Zi

 =
n∑
i=1

Q∑
q=1

τiq log τiq.

In addition,∑
Z

n∏
j=1

τj,Zj

n−1∑
i=1

log(

Q∑
q=1

πZi,qαq) =
n−1∑
i=1

∑
Z\Zi

(
n∏
j=1

τj,Zj) log

 Q∑
q=1

πZi,qαq

 τi,Zi

=
n−1∑
i=1

Q∑
q=1

log

 Q∑
q=1

πZi,qαq

 τi,Zi ,

and∑
Z

n∏
k=1

τk,Zk
∑
i<j

log b(Yij, πZi,Zj) =
∑
i<j

∑
Z\{Zi,Zj}

(
∏
k 6=i,j

τk,Zk)
∑
Zi,Zj

b(Yij, πZi,Zj)τj,Ziτj,Zj

=
∑
i<j

Q∑
q,r=1

τiqτjrb(Yij, πqr).

In conclusion,

J (RY,θ) =
n∑
i=1

Q∑
q=1

τiq logαq −
n∑
i=1

Q∑
q=1

τiq log τiq +
1

2

∑
i 6=j

Q∑
q,r=1

τiqτjr log b(Yij, πqr)
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−
n−1∑
i=1

Q∑
q=1

log

 Q∑
r=1

πqrαr

 τiq.

(3.47)

To solve the optimization problem arg maxτ J (RY,θ) with constraint
∑Q

q=1 τiq = 1,
we use the method of Lagrange multipliers, that is finding the optimal parameters τ, λ
that maximize the Lagrangian function Lag(τ, λ) := J (RY,θ)+

∑n
i=1 λi(

∑Q
q=1 τiq−

1), where λi is the Lagrange multiplier. Take the derivative of Lag w.r.t. λi and τ ,
we have

∂Lag
∂λi

=

Q∑
q=1

τiq − 1

∂Lag
∂τiq

= logαq − log τiq + λi − 1− log

Q∑
r=1

πqrαr

+1
2

∑
j 6=i
∑Q

r=1 τjr log b(Yij, πqr) + 1
2

∑
j 6=i
∑Q

r=1 τjr log b(Yji, πrq)

The optimal solution must satisfy
∂Lag
∂λi

=
∂Lag
∂τiq

= 0, which implies

log τiq = logαq + λi − 1− log

Q∑
r=1

πqrαr +
∑
j 6=i

Q∑
r=1

τjr log b(Yij, πqr).

In another word,

τiq = eλi−1
αq∑Q

r=1 πqrαr

∏
i 6=j

Q∏
r=1

b(Yij, πqr)
τjr . (3.48)

�

In the case Q = 2, it turns out the problem is more simple since for each i ∈
{1, ..., n}, τi1 + τi2 = 1. For sake of simplification, we denote by τi instead of τi1.
Hence, τi2 = 1− τi1 = 1− τi.

Proposition 3.7 When Q = 2, the variational parameter τi has formula:

τi =
φi(τ)

1 + φi(τ)
=: Φi(τ), (3.49)

where

φi(τ) :=
α

1− α
απ21 + (1− α)π22
απ11 + (1− α)π12

∏
j 6=i

(
b(Yij, π12)

b(Yij, π22)

)1/2

×
∏
j 6=i

(
b(Yij, π11)b(Yij, π22)

b(Yij, π12)2

)τj/2

.

(3.50)
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Proof. We solve directly the optimization problem maxτ J (RY,θ) without using the
Lagrangian multiplier λ. The quantity J (RY,θ) is written explicitly as:

J (RY,θ) =
n∑
i=1

(τi logα + (1− τi) log(1− α))−
n∑
i=1

(τi log τi + (1− τi) log(1− τi))

+
1

2

∑
i 6=j

[
τiτj log b(Yij, π11) + τi(1− τj) log b(Yij, π12)

+ (1− τi)τj log b(Yij, π21) + (1− τi)(1− τj) log b(Yij, π22)
]

−
n−1∑
i=1

[τi log(απ11 + (1− α)π12) + (1− τi) log(απ21 + (1− α)π22].

Take the derivative of J (RY,θ) w.r.t. τi,

∂J
∂τi

= log
α

1− α + log
1− τi
τi

+
1

2

∑
j 6=i

{
τj log

b(Yij, π11)

b(Yij, π21)
+ (1− τj) log

b(Yij, π12)

b(Yij, π22)

}

− log
απ11 + (1− α)π12
απ21 + (1− α)π22

= log
α

1− α − log
τi

1− τi
− log

απ11 + (1− α)π12
απ21 + (1− α)π22

+
1

2

∑
j 6=i

τj log
b(Yij, π11)b(Yij, π22)

b(Yij, π12)2

+
1

2

∑
j 6=i

log
b(Yij, π12)

b(Yij, π22)
.

Then the variational parameter τi is the solution of equation ∂J
∂τi

= 0, which gives

τi
1− τi

=
α

1− α ×
απ11 + (1− α)π12
απ21 + (1− α)π22

×
∏
j 6=i

(
b(Yij, π12)

b(Yij, π22)

)1/2

×
∏
j 6=i

(
b(Yij, π11)b(Yij, π22)

b(Yij, π12)2

)τj/2

= φi(τ). (3.51)

It implies that τi = φi(τ)
1+φi(τ)

= Φi(τ). �

Proposal distribution for the Step 1 of SAEM

For the sake of simplicity, we treat here the caseQ = 2, but generalization is straight-
forward. Using the previous results, we can now detail the Step 1 of the SAEM algo-
rithm. Given the parameters θ(k−1), the types Z(k−1) and the data (Yij; i, j ∈ [[1, n]]),
we proceed as follows.

Step 1: We compute the parameters τ (k)i as in Proposition 3.7. The parameters in
(3.50) are given by θ(k−1) and the terms b(Yij, π

(k−1)
11 ), b(Yij, π

(k−1)
12 ) and b(Yij, π

(k−1)
22 )

are computed with the types Z(k−1).
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Step 2: We simulate a candidate Zc ∈ {1, 2}n for Z such that Zc
i − 1 follows the

law Ber(τi). Recall that the acceptance probability is

µ(Z(k−1), Zc) := min

{
1,
Lcomplete(Z

c, Y, θ(k−1))qθ(k−1)(Z(k−1)|Zc)

Lcomplete(Z(k−1), Y, θ(k−1))qθ(k−1)(Zc|Z(k−1))

}
, (3.52)

where the complete likelihood with respect to α, π, Z, Y is

Lcomplete(Z, Y, θ) =

Q∏
q=1

(
πqq

1− πqq

)Nq↔q
n

(1− πqq)N
q
n(N

q
n−1)/2

×
∏
q 6=r

(
πqr

1− πqr

)Nq↔r
n

(1− πqr)N
q
nN

r
n ×

Q∏
q=1

αN
q
n

q

(
∑Q

q′=1 πqq′αq′)
Nq
n−1Zn=q

.

and
qθ(k−1)(Zc|Z(k−1)) =

∏
i=1

τ
2−Zci
i (1− τi)Z

c
i−1;

qθ(k−1)(Z(k−1)|Zc) =
∏
i=1

τ
2−Z(k−1)

i
i (1− τi)Z

(k−1)
i −1.

3.4 Estimation via biased graphon and ‘classical likelihood’

In Section 3.3, the MLE are computed but they do not have explicit formula in the
case of RDS exploration. We thus investigate other estimators. The most natural one
is the graphon estimator corresponding to (3.21). It turns out that we can study the
asymptotic bias of this estimator thanks to the result of Athreya and Röllin [4]. Here,
we need some to have the knowledge on the positions Xi of the Markov chain X(n).
The types Zi may be observed or not.

3.4.1 Complete observations

Assume in this section that we observe X(n) = (X1, . . . Xn), the types (Zi)i∈{1,...n}
and the adjacency matrix (Yij)i,j∈{1,...n} of the subgraph Gn = G(X(n), κ,Hn).

It is natural that Gn converges to an SBM graphon of parameters γ = (γ1, ..., γQ)
and the connection probabilities ρ = (ρqr)q,r∈[[1,Q]]:

χ∞(x, y) =

Q∑
q=1

Q∑
r=1

ρqr1Jq(x)1Jr(y).

where J = (J1, ..., JQ) is a partition of [0, 1] defined by

Jq =
[ q−1∑
k=1

γk,

q∑
k=1

γk
)
, q ∈ [[1, Q]]. (3.53)
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The parameters γ correspond to the frequencies of the types and the parameters ρ
give the probabilities of connection. Thus, a natural estimator for χ∞ is given by:

Definition 3.2 Denote by

γ̂nq :=
N q
n

n
; ρ̂nqr :=

N q↔r
n

N q
nN r

n

for q 6= r and ρ̂nqq :=
2N q↔q

n

N q
n(N q

n − 1)
.

(3.54)

an estimator of (γ, ρ). The graphon associated to these estimators is defined as:

χ̂n(x, y) :=

Q∑
q=1

Q∑
r=1

ρ̂nqr1Jnq (x)1Jnr (y), (3.55)

with Jnq =
[∑q−1

k=1 γ̂
n
k ,
∑q

k=1 γ̂
n
k

)
, q ∈ {1, . . . Q}.

We notice that this estimator corresponds to the MLE in the ‘classical case’ (see
(3.21)). Thanks to the Proposition 3.2 (due to [4]), we can study the asymptotic limit
of χ̂n.

Limit of χ̂n

We have two empirical approximations of the limiting graphon χ∞: the graph Gn

and the graphon χ̂n. These two approximations are asymptotically equal:

Proposition 3.8 We have under Assumption 3.1 that:
(i) when n→ +∞,

lim
n→+∞

dsub(Gn, χ̂n) = 0. (3.56)

(ii) The limit of the empirical graphon χ̂n is thus the biased graphon κΓ−1 .

lim
n→+∞

dsub(χ̂n, κΓ−1) = 0. (3.57)

Proof. We postpone the proof of Proposition 3.8 (i) to the Section 3.4.1. For the
point (ii), we have:

dsub(χ̂n, κΓ−1) ≤dsub(χ̂n, G(Hn, κ)) + dsub(G(Hn, κ), κΓ−1).

The first term in the right hand side is upper bounded by C/n by Proposition 3.8.
The second term is the Proposition 3.2 shown in [4, Corollary 2.2]. �

As a consequence, using the result of Athreya and Röllin [4] (see Proposition 3.2),
we obtain:
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Proposition 3.9 Under Assumptions 3.1,
(i) ρ̂ is a consistent estimator of π, and for q, r ∈ [[1, Q]],

lim
n→+∞

ρ̂nqr = πqr, and lim
n→+∞

γ̂nq = Γ (

q∑
r=1

αr)− Γ
( q−1∑
r=1

αr
)

=: γq.

(3.58)
It follows that a consistent estimator of αq is

α̂nq = Γ−1n

( q∑
r=1

γ̂nr
)
− Γ−1n

( q−1∑
r=1

γ̂nr
)
. (3.59)

(ii) In the special case of Q = 2, an estimator of α1 is α̂n1 = Γ−1n (γ̂n1 ).

Proof. Let us consider point (i). The limit for γ̂nq follows from the ergodic theorem.
Indeed, we can write that

γ̂nq =
N q
n

n
=

1

n

n∑
i=1

1
X

(n)
i ∈]

∑q−1
r=1 αr,

∑q
r=1 αr]

.

The ergodic theorem for the Markov chain (Xn)n says that

lim
n→+∞

1

n

n∑
i=1

1
X

(n)
i ∈Iq

= Em[1X1∈Iq ] = Γ (

q∑
r=1

αr)− Γ (

q−1∑
r=1

αr) = γq.

It remains to prove that ρ̂nqr is a consistent estimator of πqr. Rewrite ρ̂nqr as

ρ̂nqr =
N q↔r
n /n2

Nq
n

n
Nr
n

n

=
1

γ̂nq γ̂
n
r

1

n2
N q↔r
n .

Recall that the subgraph Gn is constructed from the Markov chain X(n) and that each
pair of non-consecutive vertices Xi and Xj are connected with probability κ(Zi, Zj)
depending on theirs types and independently of the others edges. Let us focus on the
number of edges N q↔r

n : two cases have to be distinguished.

Case 1, q 6= r: The number of edges of types (q, r) is

N q↔r
n =

n−1∑
i=1

1Xi∈Iq ,Xi+1∈Ir +
∑

1≤i,j≤n
{Xi,Xj}/∈E(Hn)

1i∼Gnj1Xi∈Iq ,Xj∈Ir .

Then,

ρ̂nqr =
1

γ̂nq γ̂
n
r n

 1

n

n−1∑
i=1

1Xi∈Iq ,Xi+1∈Ir

+
1

n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gnj1Xi∈Iq ,Xj∈Ir
γ̂nq γ̂

n
r

(3.60)
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By the ergodic theorem for Markov chain X(n), we have

lim
n→+∞

1

n

n−1∑
i=1

1Xi∈Iq ,Xi+1∈Ir = Em[1X0∈Iq ,X1∈Ir ] = γqπqr < +∞.

Since limn→+∞ γ̂
n
q = γq > 0 in probability, there exists a constant c > 0 such that

c ≤ infq∈{1,...Q} γq and

lim
n→+∞

P

 1

γ̂nq γ̂
n
r n

 1

n

n−1∑
i=1

1Xi∈Iq ,Xi+1∈Ir

 ≤ 1

c2n

 1

n

n−1∑
i=1

1Xi∈Iq ,Xi+1∈Ir


 = 1,

and hence the first term in the right hand side of (3.60) converges to 0 in probability.

Consider now the second term in the r.h.s. of (3.60). Let us define the function

f(Gn) =
1

n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gnj1Xi∈Iq ,Xj∈Ir ,

then f is a function of the n(n− 1)/2− (n− 1) = (n− 1)(n− 2)/2 random edges
on n vertices. We see that

E[f(Gn)] = E
[ 1

n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gnj1Xi∈Iq ,Xj∈Ir
]

=
(n− 1)(n− 2)

n2
πqrγqγr.

We have

P
(∣∣ 1

n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gnj1Xi∈Iq ,Xj∈Ir
γ̂nq γ̂

n
r

− πqr| > ε
)

≤P
( 1

γ̂nq γ̂
n
r

∣∣f(Gn)− E[f(Gn)]
∣∣ > ε−

∣∣ 1

γ̂nq γ̂
n
r

E[f(Gn)]− πqr
∣∣)

=P
(∣∣f(Gn)− E[f(Gn)]

∣∣ > εγ̂nq γ̂
n
r − |E[f(Gn)]− γ̂nq γ̂nr πqr|

)
=P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > εγ̂nq γ̂

n
r − πqr

∣∣∣∣(n− 1)(n− 2)

n2
γqγr − γ̂nq γ̂nr

∣∣∣∣
)
.

For c < infq∈{1,...Q} γq,

P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > εγ̂nq γ̂

n
r − πqr

∣∣∣∣(n− 1)(n− 2)

n2
γqγr − γ̂nq γ̂nr

∣∣∣∣
)

≤ P
(∣∣f(Gn)− E[f(Gn)]

∣∣ > c2ε− c3

2
ε

)

+ P

(∣∣∣∣(n− 1)(n− 2)

n2
γqγr − γ̂nq γ̂nr

∣∣∣∣ > c3ε

2πqr

)
+ P(γ̂nq γ̂

n
r < c2). (3.61)

Since limn→+∞ γ̂
n
q = γq > 0 in probability, for fixed ε > 0,
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lim
n→∞

P

(∣∣∣∣(n− 1)(n− 2)

n2
γqγr − γ̂nq γ̂nr

∣∣∣∣ < c3ε

2πqr
and γ̂nq γ̂

n
r > c2

)
= 1

Thus the second and the third terms on the right hand side of (3.61) tend to zero as n
tends to infinity. It remains the first term to be treated. When one edge is changed,
the value of f is changed by most 1/n2. Applying McDiarmid’s concentration [97]
for function f , we obtain:

P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > c2ε− c3

2
ε

)
≤ 2 exp

(
− 2(c2 − c3

2
)ε

(n−1)(n−2)
2

1
n4

)
≤ 2e−4n

2c2(1−c/2)ε.

Note that 0 < c < 1 then c2(1 − c/2) > 0. We use Borel-Cantelli’s Theorem to
conclude that

lim
n→+∞

P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > c2ε− c3

2
ε

)
= 0

and hence, ∣∣∣∣ 1

n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gnj1Xi∈Iq ,Xj∈Ir
γ̂nq γ̂

n
r

− πqr
∣∣∣∣ −→ 0

in probability as n→∞. This finishes the proof for Case 1.

Case 2, q = r: The proof follows by similar arguments, with notice that there are a
few modifications because the expression of N q↔q

n is slightly different:

N q↔q
n =

n−1∑
i=1

1Xi∈Iq ,Xi+1∈Iq +
1

2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gnj1Xi∈Iq ,Xj∈Iq .

Then,

ρ̂nqq =
1

γ̂nq
(
nγ̂nq − 1

)
 1

n

n−1∑
i=1

1Xi∈Iq ,Xi+1∈Iq

+
1

n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gnj1Xi∈Iq ,Xj∈Iq
γ̂nq
(
γ̂nq − 1/n

)
(3.62)

We have that the first term on r.h.s. of (3.62) converges in probability to 0 as in case
1. For the second term on r.h.s. of (3.62), we define the function f as in Case 1 by

f(Gn) =
1

2n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gnj1Xi∈Iq ,Xj∈Iq ,

For a fixed ε > 0,
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P

∣∣ 1

n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gnj1Xi∈Iq ,Xj∈Iq
γ̂nq
(
γ̂nq − 1/n

) − πqq
∣∣ > ε


≤P
(∣∣f(Gn)− E[f(Gn)]

∣∣ > εγ̂nq
(
γ̂nq − 1/n

)
− πqq

∣∣∣∣(n− 1)(n− 2)

n2
(γq)

2 − γ̂nq
(
γ̂nq − 1/n

)∣∣∣∣
)

≤P
(∣∣f(Gn)− E[f(Gn)]

∣∣ > c
(
c− 1

n

)
ε− c3

2
ε

)
+ P(γ̂nq < c)

+ P

(∣∣∣∣(n− 1)(n− 2)

n2
(γq)

2 − γ̂nq
(
γ̂nq −

1

n

)∣∣∣∣ > c3ε

2πqq

)
.

As in Case 1, the second and the third term on r.h.s. of above inequality are negligi-
ble. Applying McDiarmid’s concentration for f with notice that when changing 1
edge in Gn, the value of f changes at most 1/n2,

P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > c(c− 1/n)ε− c3

2
ε

)
≤ 2 exp

(
− 2(c2 − c/n− c3

2
)ε

(n−1)(n−2)
2

1
n4

)
≤ 2e−2(n

2c2(1−c/2)−nc)ε.

Finally, using Borel-Cantelli’s Theorem, |f(Gn)− E[f(Gn)]| → 0 almost surely as
n tends to infinity. Thus, the point (i) is proved. �

Proof of Proposition 3.8

From now on, for the sake of simplicity, we assume for the that there are two classes
of vertices in the graph, i.e. Q = 2. The proof can be generalized to general Q by
following the same steps. Our parameters’ notations are simplified as γ1n =: γn and
γ1∞ =: γ∞ = Γ (α).

Our purpose is to prove a convergence of graphons for the distance dsub introduced in
(3.7) using the densities (3.5). If F is an edge (meaning that F = K2, the complete
graph of 2 vertices), then the density of F in Gn := G(Xn, Hn, κ) is the proportion
of edges,

t(F,Gn) =
1

n(n− 1)

∑
`,`′∈[[1,n]]

1`∼Gn`′

and t(F, χn) =

∫
[0,1]2

χ̂n(x1, x2)dx1dx2 =

Q∑
q,r=1

γ̂nq γ̂
n
r ρ̂

n
qr.

In general case, if F is a graph of k vertices,
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t(F,Gn) =
1

(n)k

∑
(i1,···ik)∈[[1,n]]

∏
{`,`′}∈E(F )

1i`∼Gi`′ (3.63)

t(F, χn) =

∫
[0,1]k

∏
{`,`′}∈E(F )

 Q∑
q,r=1

ρ̂qrn 1Jnq ×Jnr (x`, x`′)

 dx1 · · · dxk (3.64)

Let us first consider the case where F is an edge.

|t(F,Gn)− t(F, χn)| =

∣∣∣∣∣∣ 1

(n)2

∑
(i,j)∈[[1,n]]

1i∼Gnj −
∫
[0,1]2

χ̂n(x1, x2) dx1dx2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

(n)2

∑
(i,j)∈[[1,n]]

(
1i∼Gnj − ρ̂Zi,Zj

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

(n)2

∑
(i,j)∈[[1,n]]

ρ̂Zi,Zj − (γ̂n1 )2ρ̂n11 − 2γ̂n1 (1− γ̂n1 )ρ̂n12 − (1− γ̂n1 )2ρ̂n22

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

(n)2

∑
(i,j)∈[[1,n]]

(
1i∼Gnj − ρ̂Zi,Zj

)∣∣∣∣∣∣+

∣∣∣∣∣∣ρ̂n11
 ∑

(i,j) | (Zi,Zj)=(1,1)

1

(n)2
− (γ̂n1 )2

∣∣∣∣∣∣
+

∣∣∣∣∣∣ρ̂n22
 ∑

(i,j) | (Zi,Zj)=(2,2)

1

(n)2
− (1− γ̂n1 )2

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣ρ̂
n
12

 ∑
(i,j) | (Zi,Zj)=(1,2)

or(Zi,Zj)=(2,1)

1

(n)2
− 2γ̂n1 (1− γ̂n1 )


∣∣∣∣∣∣∣∣∣ .

By the law of large numbers and using (3.58) whose proof does not depend on the
Proposition 3.8, the four terms converge to zero.

In the general case, proceeding in a similar way leads to:

|t(F,Gn)− t(F, χn)|
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≤

∣∣∣∣∣∣ 1

(n)k

∑
(i1,···ik)∈[[1,n]]

∏
{`,`′}∈E(F )

1i`∼Gi`′ −
1

(n)k

∑
(i1,··· ,ik)

∏
{`,`′}∈E(F )

 Q∑
q,r=1

ρ̂nqr1Zi`=q,Zi`′=r

∣∣∣∣∣∣
+

∣∣∣∣∣ 1

(n)k

∑
(i1,··· ,ik)

∏
{`,`′}∈E(F )

 Q∑
q,r=1

ρ̂nqr1Zi`=q,Zi`′=r


− 1

nk

∑
1≤i1,··· ,ik≤n

∏
{`,`′}∈E(F )

 Q∑
q,r=1

ρ̂nqr1Zi`=q,Zi`′=r

∣∣∣∣∣
+

∣∣∣∣∣ 1

nk

∑
1≤i1,··· ,ik≤n

∏
{`,`′}∈E(F )

 Q∑
q,r=1

ρ̂nqr1Zi`=q,Zi`′=r


−
∫
[0,1]k

∏
{`,`′}∈E(F )

 Q∑
q,r=1

ρ̂nqr1Jnq ×Jnr (x`, x`′)

 dx1 · · · dxk
∣∣∣∣∣.

As
∏
{`,`′}∈E(F ) 1i`∼Gi`′ and

∏
{`,`′}∈E(F )

(∑Q
q,r=1 ρ̂

n
qr1Zi`=q,Zi`′=r

)
are bounded by

1, there exist c(k) such that the first term and the second term in the right hand side
are bounded by c(k)/n. For the third term, it is equal to∣∣∣∣∣∣

∑
1≤q1,...,qk≤Q

∏
{`,`′}∈E(F )

ρ̂nq`,q`′

 1

nk

∑
1≤i1,··· ,ik≤n

1Zi1=qi1 ,··· ,Zik=qik

−
∫
[0,1]k

k∏
h=1

1Jnqh (xh)dx1 · · · dxk

∣∣∣∣∣∣ .
Since 0 ≤ ∏{`,`′}∈E(F ) ρ̂

n
q`,q`′

≤ 1 and {Zi1 = qi1 , · · · , Zik = qik} = {Γ (Xi1) ∈
Jq1 , · · · , Γ (Xik) ∈ Jqk}, the third term is thus bounded by

∑
1≤q1,...,qk≤Q

∣∣∣∣∣∣ 1

nk

∑
1≤i1,··· ,ik≤n

1Γ (Xi1 )∈Jq1 ,··· ,Γ (Xik )∈Jqk −
∫
[0,1]k

k∏
h=1

1Jnqh (xh)dx1 · · · dxk

∣∣∣∣∣∣
=

∑
1≤q1,...,qk≤Q

∣∣∣∣∣∣ 1

nk

∑
1≤i1,··· ,ik≤n

k∏
`=1

1Γ (Xi` )∈Ji` −
k∏
`=1

∫
[0,1]

1Jni`
dx`

∣∣∣∣∣∣
=

∑
1≤q1,...,qk≤Q

∣∣∣∣∣∣
∏k

`=1

∑n
i`=1 1Γ (Xi` )∈Jql
nk

−
k∏
`=1

∫
Jnq`

dx`

∣∣∣∣∣∣
=

∑
1≤q1,...,qk≤Q

∣∣∣∣∣∣
k∏
`=1

N q`
n

n
−

k∏
`=1

γ̂nq`

∣∣∣∣∣∣ = 0.

Hence limn→+∞ |t(F,Gn) − t(F, χn)| = 0. Because t(F,Gn) and t(F, χn) are
bounded independently from n, this provides the announced result.
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3.4.2 Incomplete observations and graphon de-biasing

In Proposition 3.9, it is shown that the ‘classical’ SBM estimator (3.21) obtained
by neglecting the bias coming from the sampling scheme can be corrected by using
the inverse of the cumulative distribution function Γ of m. When the types are
unobserved, we proceed in the same way. We assume here that the types Zi are
unobserved, but we need the observation of the marks Xi, otherwise no de-biasing
is permitted since the cumulative distribution function Γ can not be estimated. We
detail this estimation procedure in the case Q = 2 for the sake of simplicity, but
generalization is straightforward.

Step 1: First, we perform an estimation of the SBM neglecting the sampling biases.
This amounts to computing the estimator proposed in [29]:

• We follow the algorithm described in Section 3.3.2, but with the likeli-
hood Lclass(Zi, Yij; θ) given in (3.19). We denote the parameter here by θ =
(γ1, 1− γ1, π11, π12, π21, π22).

• For the proposal distribution of the types Zc, it is simpler since we assume
that the Xi’s are known. Assume that we are at step k and that we dispose of
the parameters θ(k−1). We initialize the types by attributing the types 1 to the
Xi ≤ γ(0) and 2 to the others. At each step, the threshold is modified from
γ
(k−1)
1 to γ(k)1 by following a random walk: a gaussian increment (mean 0 and

variance s2) is added. All the Xi smaller than this increment are given the type
Zi = 1 and the others the type Zi = 2.

Step 1 corresponds to a variational EM for the classical likelihood, for which the
consistency and asymptotic normality have been established by Celisse et al. [22]
and Bikel et al. [9].

Step 2: We estimate the cumulative distribution function Γn (see (3.12)) and deduce
the graphon estimator α̂n1 of α1 using (3.59). This provides the estimator of κ:

κ̂n(x, y) :=

Q∑
q=1

Q∑
r=1

ρ̂nqr1[
∑q−1
k=1 α̂

n
k ,
∑q
k=1 α̂

n
k )

(x)1[
∑r−1
k=1 α̂

n
k ,
∑r
k=1 α̂

n
k )

(y). (3.65)

3.5 Numerical results

For the simulation, we consider RDS graphs obtained from the exploration of SBM
graphons with Q = 2 classes, of respective proportions α1 = 2/3 and α2 = 1/3.
The connection probabilities are:

π =

(
0.7 0.4
0.4 0.8

)
.

The RDS graphs consist of n = 50 vertices.
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We proceed to the four estimations presented in this paper:

• the algorithm of Section 3.3.1 for complete observations by assuming that
the types Zi ∈ {1, 2} are observed. In the estimation, the system of equations
(3.22)-(3.27) is solved. For this, we look numerically for the zeros of (3.32) and
choose the solution corresponding to the highest likelihood. For the bisection
method ([34]), we use a grid of step 10−2.
• the SAEM algorithm of Section 3.3.2 when the types Zi are unobserved. The

SAEM is based on an iteration on k and we perform K = 200 iterations.
• the computation of the estimators given in Proposition 3.9 assuming complete

observations,
• the debiasing of the Variational EM Algorithm (VEM) of Daudin et al. pre-

sented in Section 3.4.2. Again, we useK = 200 iterations for the EM iterations.

We proceed to a Monte-Carlo study of the estimators’ distributions. We simulate
200 RDS graphs, and for each of them, apply the four estimation strategies. The
empirical distribution of the estimators are represented in Fig. 3.2, and this allows us
to estimate the associated mean squares errors (MSE) for each method, see Table 3.1.

Complete SAEM De-biased De-biased
Parameters likelihood graphon graphon with VEM

π11 3.74 10−4 9.69 10−3 4.45 10−4 4.43 10−4

π12 4.88 10−4 1.32 10−2 6.63 10−4 8.92 10−4

π22 1.30 10−3 2.70 10−2 1.45 10−3 1.36 10−3

α 1.04 10−2 3.77 10−2 9.35 10−4 7.60 10−4

Table 3.1. Mean square errors.

Without surprise, the estimation is better when we have complete observations
(columns 1 and 3). The estimation of α based on the estimator (3.59) is better than
the MLE obtained in column 1 from an MSE point of view.
To understand the difficulty in estimating α, recall that for the MLE estimators based
on the true likelihood, α̂ is estimated from β̂ (see (3.30)). The shape of function
β = α

1−α (see figure 3.3) indicates that values of α smaller than 1/2 give similar
values of β and thus, when α ∈ (0, 1/2), its estimation from β is more difficult.
For that reason, when α < 1/2, we can not obtain a good estimation, even though π
might be well-estimated. Nevertheless, in the case α ∈ (1/2, 1), β varies sufficiently
to allow an estimation of α with better precision. So our recommendation is that
when there are 2 classes of vertices, to choose as type 1 the majority type so that
α > 1/2. However, it seems that estimating α from γ (see (3.59)) rather than from β
is much more precise.

When the types Zi are not observed, we achieve better MSEs with the debiasing
of the classical SAEM method of Daudin et al. (column 4 of Table 3.1). Notice
first that the columns 2 and 4 of Table 3.1 are not completely equivalent, since the
debiasing methods of Section 3.4 necessitate the knowledge of the positions Xi

of the Markov chain, when the likelihood (3.13) necessitates only the connections
Yij and the types Zi’s. Second, the updating of the types in the SAEM algorithm
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Figure 3.2. Estimation on complete data for a graph of n = 50 vertices with Q = 2 classes
and parameters α1 = 2/3, π11 = 0.7, π12 = π21 = 0.4 and π22 = 0.8. 200 such graphs are
simulated and the empirical distributions of the estimators are represented here with the true
parameters in red line. (a): estimator of α, (b): estimator of π11, (c): estimator of π12, (d)

estimator of π22.

is easier in Section 3.4.2 when the Xi’s are known since it amounts to choosing
the threshold that separates the types 1 and 2. Finally, the SAEM algorithm on the
classical likelihood (3.19) seems to converge more easily than for the likelihood
(3.13).

3.5.1 Conclusion

Four statistical methods are studied in this paper, for estimating SBM parameters us-
ing a subgraph obtained from the exploration of the graphon by a Markov chain. This
is a toy model for estimating random networks from chain-referral sampling tech-
niques and there exist sampling biases. The two first methods compute the maximum
likelihood estimator when the types of the nodes are known or unknown. On simula-
tions, it appears that the SAEM algorithm used when the types are unobserved is not
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Figure 3.3. The correlation of β and α.

very robust and provides relatively large MSEs. An alternative approach is proposed
by taking advantage of recent results by Athreya and Röllin [4]: this allows to correct
the classical SBM estimators that would be proposed if one ignores the sampling
biases. These methods provide good estimators but rely on the precise knowledge
of the Markov chain exploring the SBM graphon (in particular the positions Xi’s),
which is not always available.
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[23] S. Clémençon et al. “A statistical network analysis of the HIV/AIDS epi-
demics in Cuba”. In: Social Network Analysis and Mining 5 (2015), Art.58
(cited on pages 3, 40).



LIST OF TABLES 135

[24] A. Cousien et al. “Dynamic modelling of HCV transmission among people
who inject drugs: a methodological review”. In: Journal of Viral Hepatitis
22.3 (2015), pages 213–229 (cited on pages 3, 40).

[25] A. Cousien et al. “Hepatitis C treatment as prevention of viral transmission
and level-related morbidity in persons who inject drugs”. In: Hepatology
63.4 (2016), pages 1090–1101 (cited on pages 3, 40).

[26] F. W. Crawford. “The graphical structure of respondent-driven sampling”.
In: Sociological methodology 46.1 (2016), pages 187–211 (cited on page 30).

[27] F. W. Crawford, J. Wu, and R. Heimer. “Hidden population size estimation
from respondent-driven sampling: a network approach”. In: Journal of the
American Statistical Association 113.522 (2018), pages 755–766 (cited on
pages 30, 40, 98).

[28] Gabor Csardi and Tamas Nepusz. “The igraph software package for complex
network research”. In: InterJournal Complex Systems (2006), page 1695
(cited on page 14).

[29] J. J. Daudin, F. Picard, and S. Robin. “A mixture model for random graphs”.
In: Statistics and Computing 18.2 (2008), pages 173–183 (cited on pages 99,
100, 106, 109–111, 123).

[30] L. Decreusefond et al. “Large graph limit for a SIR process in random
network with heterogeneous connectivity”. In: Annals of Applied Probability
22.2 (2012), pages 541–575 (cited on page 75).

[31] B. Delyon, M. Lavielle, and E. Moulines. “Convergence of a stochastic
approximation version of the EM algorithm”. In: Annals of statistics (1999),
pages 94–128 (cited on page 34).

[32] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum Likelihood from
Incoplete Data via the EM Algorithm”. In: Journal of the Royal Statistical
Society. Series B 39.1 (1977), pages 1–38 (cited on page 34).

[33] C. Matias E. Allman and J. Rhodes. “Parameter identifiability in a class
of random graph mixture models”. In: Journal of Statistical Planning and
Inference 141.5 (2011), pages 1719–1736 (cited on page 106).

[34] A. Eiger, K. Sikorski, and F. Stenger. “A bisection method for systems
of nonlinear equations”. In: ACM Transactions on Mathematical Software
(TOMS) 10.4 (1984), pages 367–377 (cited on page 124).

[35] N. Enriquez, G. Faraud, and L. Ménard. “Limiting shape of the depth first
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