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R2sum?

L2chantillonage en fonction des r2pondants ( Respondent Driven Sampling”, RDS)
peut ftre utilis? pour d2couvrir des r2zseaux sociaux dans des populations cach?2es.
Ceci peut conduire [?tude d'une chae de Markov sur un graphe al?atoire dont les
sommets repr2sentent les individus et dont les ar{tes d2crivent les relations entre les
deux personnes qu'elles relient. Les personnes interrog2es sont invit2zes indiquer
leurs partenaires et un certain nombre de coupons sont remis certaines de ces
personnes. Par cimage on peut ainsi retrouver les noeuds cach?2s dans la population
en suivant au hasard les arftes du r2seau social sous-jacent.

Nous consid2rons un processus renormalis2 de larahde r2f2rence sur le modz+le
Erdos-R2nyi, puis sur le modzle blocs stochastiques ( Stochastic Block Model",
SBM), qui en est une extension lorsque les populations sont partitionn2es en com-
munaut?s. La difficult? r2side dans la gestion de I'h?t?rog?n?it> du graphe. Dans
notre 2tude, le graphe et la marche al?atoire sont construits simultan?ment. Nous
d2montrons que lorsque la taille de la population est grande et les graphes sparses,
le processus al?atoire repr2sentant la fraction du graphe d2couverte, correctement
normalis2, se comporte comme une courbe d2terministe qui est la solution unique
d'un systtme d'ODE.

Par ailleurs, nous nous int2ressons 2galement au probltme de r2cup?rer des informa-
tions statistiques sur un modzle bloc stochastique partir du sous-graphe d2couvert
par une marche al?atoire (correspondant un RDS un coupon). Nous consid?rons

ici le cas dense 00 le r2seau al?atoire peut ftre approch? par un graphon. Tout d'abord,
nous 2crivons la vraisemblance du sous-graphe d2couvert par la marche al?atoire:
des biais 2mergent car les hubs et les types majoritaires sont plus susceptibles
d'ftre 2chantillonn2s. M{me dans le cas 00 les types sont observ2s, |'estimateur du

maximum de vraisemblance n'est plus explicite. Lorsque les types de sommets ne



sont pas observ2s, nous utilisons un algorithme SAEM ( Stochastic Approximation
version of Expectation-Maximization algorithm ) pour maximiser la vraisemblance.
Deuxitmement, nous proposons une strat2gie d'estimation diffzrente en utilisant les
nouveaux r2sultats d’Athreya etdRin. Elle consiste d2-biaiser I'estimateur EM
variationnel propos? par Daudin et al. et qui ignore les biais.

Mots cl?s: graphe al2atoire; Erds-R2nyi graphe; stochastic block model; graphon;
processus stochastique; cha de Markov; th2ortme centrale limite; exploration du
marche al?atoire; sondage biais?; EM estimation; EM approximation stochastique;
vraisemblance incomplzxte; respondent driven sampling



Abstract

The study of Respondent Driven Sampling (RDS) is invested for the discovery of

a social network of hidden populations. It leads to the study of a Markov chain
on a random graph whose vertices represent individuals and whose edges describe
the relationships between the people connected. Respondents are asked to list their
partners and a certain number of coupons are given to some of the latter. The RDS
survey searches for hidden nodes in the population by randomly following the edges
of the underlying social network, which allows us to trace the sampled individuals.

We consider the normalized process of the reference chain on tbe-Retyi model,

then on its generalization, the Stochastic Block Model (SBM) when populations are
partitioned into communities. We prove that when the population size is large and
the graph is sparse, the normalized stochastic process describing the fraction of the
graph discovered behaves like a deterministic curve which is the unique solution of
a system of ODEs. In our model, the graph and the random walk are constructed
simultaneously. The difficulty lies in handling the heterogeneity of the graph.

Furthermore, we are also interested in the problem of recovering statistical informa-
tion on a SBM from the subgraph discovered by an exploring random walk (RDS
with 1 coupon per interviewee). We consider here the dense case where the random
network can be approximated by a graphon. First, we write the probability of the
subgraph discovered by the random walk: biases emerge because the hubs and the
majority types are more likely to be sampled. Even for the case where the types
are observed, the maximum likelihood estimator is not explicit any more. When the
types of the vertices are unobserved, we use an SAEM (Stochastic approximation
of Expectation-Maximization) algorithm to maximize the likelihood. Second, we
propose a different estimation strategy using new results by Athreyaalhd. R
consists in de-biasing the variational EM estimator proposed in Daudin et al. and



that ignores the biases.

Keywords: random graph; Erds-R2nyi graph; stochastic block model; graphon;
stochastic processes; Markov chain; central limit theorem; random walk exploration;
sampling bias; EM estimation; stochastic approximation expectation-maximization;
incomplete likelihood; respondent driven sampling; chain-referral survey
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Glossaries, notations and symbols

In this section, | list all of the acronyms, operators and notations | will use throughout
this thesis. There may be ones that are only defined here and used later without recall
the definition at the place they appear.

Acronyms

Initials Meaning

AIDS  Acquired Immune Deficiency Syndrome
BP branching Process

cdlg (in French) continue droite, limite gauche
CRS Chain referral sampling

ER Erdbs-R2nyi

GWP Galton-Waston process

HCV Hepatitis C virus

ii.d. indentically and independently distributed
MLE maximum likelihood estimator

MSM men who have sex with men



Initials Meaning

PWID  people who inject drugs

RDS Respondent Driven Sampling
resp. respectly

RW random walk

SAEM Stochastic Approxiamtion of Expectation-
Maximization

SBM Stochastic Block Model

SSBM  symmetric Stochastic Block Model

W.I.T. with respect to
Notations
Notations  Meaning Page

ER(N;p) Erdos-R2nyi graph withN vertices, each pair of xi, 11
vertices is connected with probabilipy

x @y the two random variables andY have the same xi, 42
law.

Xn (@ x the sequencgéX ), converges in distribution to xi, 66
X.

# the cardinal of a set. xi, 102

N the set of strictly positive natural numbersi, 4
f1,2;:::0.

N the set of natural numbef®;1; 2;:: :g. Xi, 4

" n choosexk. Xi, 43

[n] the setoff1; ;ngforeveryn2 N . xi, 4

Bin(n; p) the binomial distribution of parametensandp.  xi, 42

CE;F) the space of all continuous functions defined ixi, 25

E, taking value inF.

G(E;F) the space of bounded functions definedEimnd xi, 66
taking values irf-.



Notations  Meaning Page

%) the second largest component. xi, 12

Chax the largest component. xi, 12

D(E;F) the Skorokhod space, where each element ixia25
right continuous with left limits function, defined
in E and taking value ir.

w the space of all graphons. xi, 17

a™b the minimum of two numbers @t andb. Xi, 43

f(n) g(n) two quantitied (n) andg(n) have the same orderxi, 16
asn tends to infinity.

Operators
Operators Meaning Page
(15 2) The cut-metric of two graphons, and ». Xi
hM i quadratic variation of the martingal . Xi

dsun(G; G%

The subgraph distance of two grapBsindG®.  xi
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0.1 Motivations 3

Motivations

A random graph is used to describe a discrete structure composed of nodes or vertices
linked together by edges in some random ways. Graph or network structure is encoun-
tered in various situations and several different scales, from the modeling behaviors
of human society to the microscopic particles in our body. It attracts attention of
researchers in many fields of science and has increasing importance in applications:
General applications Newman et al. gave some general studies of random graphs
applied in internet, epidemics, cellular networks and genetic networks, food webs,
traffic networks (see [99] for detailslublic health Modelling of hepatitis C virus
transmission among people who inject drugs [Z4¢ial networks Modelling the
relationships of people in Facebook, or the interactions in twitter,... [71] and many
more.

In many applications, exploration of random graphs has been used to gather data,
to model and to generate classes of networks that evolve in time like: the flow of
information in the Internet, the transmission of disease, the biological evolution, ...
This procedure is not only applied in describing the mechanism of a system but is also
used to reveal networks which is difficult to observe. One of the main applications
in this thesis comes from public health and deals with the propagation of diseases
associated with sexual or drug exchanges and sociology: how to explore a population,
in which each individual contacts to the others in some way but all the information
about this group is hidden due to the illegal behaviors such as people who inject
drugs (PWID), men having sex with men (MSM),... Discovering the topology of
these social networks may be of primary importance for modeling of the spread of
diseases such as Acquired Immune Deficiency Syndrome (AIDS) or hepatitis C virus
(HCV) in view of public health issues. We refer to [83, 23] for AIDS or to [24, 25,

53] for HCV, for example. Once the random graph or graphon - a continuous version
of the graphs that will be presented in the sequel - are estimated, they can serve in
modeling applications (see e.g. the SIS model of [103]).

The exploration process is based on a peer-to-peer" networking, meaning that from a
source of items chosen, the network is explored step by step through the connections
between relating nodes. Several methods have been proposed to make use of this
feature on the exploration such as: snowball sampling, targeting sampling, chain
referral samplingetc, where respondents recruit their peers [47, 49, 70]. Inherited
from the idea of referral chain, Respondent Driven Sampling (RDS, see [49, 50, 51])
was developed as an efficient method of sampling. During the survey, at every wave
of respondent, all the information of who recruited whom is kept, which is combined
later on with the knowledge of each individual's connections to reweigh the sample.
Henceforth, from a group of initial individuals, the hidden graph is explored step by
step by propagating the walkers along its edges.

The networks in real world are very complex: visualizing them, modeling them,
understanding them, using them raise new challenges. Here, we are interested in the
process of discovering them. Typically, a graph is not known in detail and when we
may have only a partial information about it or even it can be totally hidden. For
this reason, we are encouraged to look for the suitable exploration algorithm with
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0.2.1

the hope that from the initial data, we can capture some features of the underlying
network. Under this circumstance, a random graph model is helpful and can serve
as benchmark. In this thesis, we restrict the mathematics analysis to two classes of
random graphs defined precisely in the next section: the&Rnyi (ER) graph [87,

88, 92, 36, 37, 94] where pairs of vertices are linked independently with a probability

p 2 (0; 1) and the Stochastic Block Model (SBM) [2, 3, 54] allowing to account for
covariates and cluster features in the graph.

In the following of this section, we present the random graphs, some basic models,
their important properties which are used in our work. The principle of the RDS is
explained in details with the basic notations of following chapters. The main results
of this thesis are presented. These results are objects of three papers:

Respondent Driving Sampling on sparse &dR2nyi graph. (in progress)

Chain referral sampling on Stochastic Block Model. (to be published)
Estimation of dense stochastic block models visited by a random walk. (sub-
mitted)

Random graph and some basic models

With the network structure, we are interested in modeling objects with pair inter-
actions between them. Each object is represented by a node (or a vertex) and the
connections between pairs of nodes are indicated by edges.

Basis of graph theory

All the basic definitions in this section are referred from classic bookSraph
theory Bollobjs [87, 88], Diestel [91], Van der Hofstad [94]. We briefly recall here
some notions being used in this thesis.

In our settings, we work with graphs which aenple undirectedand without
self-loopsi.e. there is at most one edge between two nodes, there is no order in the
pair of vertices describing edges, and there is no edge from one node to itself. The
formal definition of agraphis given as follows.

Definition 0.1 Graph. LetV be a countable set aifitl be a subset of distinct

pairs of elements iv. The setG = (V;E) is called a graph of vertices M
and edges ik .

We mainly deal with théinite graphs, which means that the set of vertices is finite.
We will use the notation

[LN]:=f21:::;Ng; 8N 2 N ; (2)

and we enumerate the vertices seVas [1;N], N 2 N . In a graphG, the vertex
set is denoted by (G) and the edge set E5(G).
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Remark 0.1 The maximum number of edges in a simple, undirected and without

: - N(N 1)
self-loops graph oN vertices is———.

Adjacency Consider a grapls. If there is an edge connecting a pair of vertices
andv 2 V(G), we sayu andv areadjacentor neighborsn G. We denote byy ¢ v
or simplyu vif u andv are adjacent, otherwise, we write g voru V. Thus
the setofedges iG is:E(G) = ffu;vg2V V:u ¢ Vg

A graphG is calledcompletdf all the vertices inV (G) are pairwise adjacent. A
complete graph o vertices is denoted b y .

When studying a graph, we are interested in the relations between vertices, con-
cerning the appearance of edges. It can be represented mathematically by a squared
matrix of sizeN N, calledadjacency matrix

Definition 0.2 LetG = (V; E) be a graph of sizdl with V(G) =[1;N]. The
squared matribd = (a; )n ~ defined by:
a = 1 ifi
' 0 otherwise

is called theadjacency matrixof G.

Remark 0.2 In our settings, the adjacency matAxis necessarily symmetric
and all the elements on the diagonal are zeros.

Vertex's degree  An important information needed for the study of networks is the
number of neighbors to a node.

Definition 0.3 LetG = (V; E) be a graph, and be a vertex of5. We define
thedegreeof v by the number of neighbors of It is denoted byds (v) or d(v).

P
Remark 0.3 For every vertex 2 [1; N, the degree ofisd(i) = i2[N] & -

Connectivity One of the essential properties that receives the most attention in
graph theory is connectivity. It is an important measure for the networks recovering
problems.



Definiton 0.4  Path. A path of length k is a non-empty graph
P = (V;E) of the form: V. = fvy:::;wg0. We setE(P) =

Definition 0.5 Connected graph. A graphG is calledconnectedf any

Clearly, the connectivity of vertices in a graph is an equivalence relation, where
if (Vk)x denote the associated equivalence classeEand fu;vg 2 E(G) :

(u;v) 2 Vk ko , then theGy = (Vk; Ex) are connected graph&sy )« can be seen

as partition ofG. We want to give a name to the "sub-part” of a graph.

Definition 0.6 LetG = (V;E) andG®= (V% EY be two graphs. I¥° V

andE® E, we sayGPis asubgraphof G, writtenG° G. And if Glis a
subgraph ofG and if8u;v 2 V%u s Vv, u gov,thenGlis called a
induced subgrapbf G.

A maximal connected subgraph@is called acomponenof G.

Clearly see that a path (@& is a connected subgraph@f Every node in a component
must be adjacent to at least one other node and thus have degree htHésaste
evidently, every connected graph havimgodes has at least 1 edges.

Homomorphism, isomorphism  Let G = (V;E) andG®= (V%EY be two finite
simple graphs.

1. Afunction fromG = (V;E) toG°= (V%E9Y, written :G! GCisa
graph homomorphisrii it is an adjacency preserving map matching every
node inV to some node iv°%i.e. (u;v) 2 E) ( (u); (v)) 2 EC

2. When is a bijection : G! GPpreserving adjacency, we calla graph
isomorphismandG andGPare calledsomorphic, writtenG = G°.

From now on, we have enough basis notions in graph theory field for the next parts
of this thesis. Let us move to the probability approach.
0.2.2 Random graphs

A random graph is a graph in which properties such as the number of vertices, graph
edges and the connections between them are determined by some random procedure.
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Definition 0.7 Random graph. A random graph is a random variable
valued in the quotient set of all graphs modulo isomorphism.

Some examples of random graphs

Erdos-R2nyi graphs : (see Figure 1) The Ea$-R2nyi graph is a simple model of
random graphs, which was introduced in the earliest works ab&athd R2nyi [36,
37]: the graphG(N; p) is generated by linking any pair &f nodes with the same
probability p, independently from the other pairs (see Definition 0.9). We give more
detailed discussions about this random graph later in Section 0.2.4.

P Figure 1. Erdos-R2nyi graph

Stochastic Block Models (SBM) : (see Figure 2) An SBM is a generalization of
Erdos-R2nyi graph, in which (see Definition 0.10)

the vertices irf1; N ] are partitioned into a finite number of classes;
the probability of connecting vertices is no longer equal for every node but
depends on the class of each vertex.

This model presents the community structure of a network by the pattern of con-
nections. More precisely, the set Mf vertices is partitioned int®@ blocks with
proportions =( 1; ; o) and the probability of find an edge joining a vertex
from group” with a vertex of grougk is -« (see Definition 0.10).

D p
/ & P Figure 2. Stochastic Block Model

IS
p

Configuration model (CM) : The third example is
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Definition 0.8 LetN 2 N andd = (di;dy;:::;dy) be a sequence of i.i.d

random variables, whose values are non-negative integers such :fhaﬂi is
even. Then the Configuration Model (CM) with degree sequehisea random
multigraph with vertices s&f = [1; N ], constructed as follows: (see Figure 3)

To each vertex, assignd; half-edges

Take a uniform matching of these half-edges.
For each pair of half-edges in the matching, replace the two half-edges by
an edge to obtain theraultigraphCMy (d), in which each vertex has
degred;.

Note that the construction as in the definition@My (d) can produce multiple
edges and self-loops, meaning tizd¥l (d) is a multigraph. Nevertheless, if we
assume that the distribution of degmtkas finite second moment, then by Durrett
[92, Theorem 3.1.2], the number of self-loops and multiple edges are asymptotically
independent Poisson random variableslagnds to infinity, which are negligible
with respect to the number of edges.

\

with number of vertice®l = 6 ~ 5 / '

1

and the degree sequence K

d=(3;214,22). RGN
L—\l"l‘\’/ 7\.

Apart from those, there are also other models studied for the different purpose of
research: the various and related versions of CM and Preferential attachment models
(PAM),... are described and discussed in [94, 71, 101].

In this thesis, we focus on the simplest model,d&&dR2nyi graph, and its general-
ization, Stochastic Block Models.

A usual approach for the connectivity of random graphs is branching process. Let
us now review some basis notions and standard results about branching processes,
especially Poisson branching processes.

Branching processes

Branching processes serve as a mathematical model for a population evolving in time,
where each individual at th&" generation produces a number of individuals for the
n + 1™ generation and the offspring distribution is the same for every individual in



0.2 Random graph and some basic models 9

the population. A common formulation of branching processes iSGtiton-Waston
proces{GWP) which is defined by iteffspring distribution :

is a random variable taking valueshhwith probability distributionp =
(PJkan: Pk = P( = k) and mean = E[ ]< 1 ;
( ni)ni2n, the ii.d. random variables with the same law asepresent the

Z, is the number of individuals at generationby conventionZy = 1. Thus,
Z, satisfies the equality:

36 1
Zy = n;i - (2)

i=1
Extinction versus survival probabilities: A population is said to be extinct if at
some certain unit of time, there is no more children produced, which n8sgn3 N
suchthaZ, =0;8n ng. The fact is that a population may either become extinct
or survive forever. We are interested in the question: with what probabilities and
under which conditions these events occur. Dendtee extinction probability

=POn2N:Z,=0): 3)

There is well-known result for the extinction probability of branching processes
announced by the following theorem:

Theorem 0.1 Theorem 3.1 [94].  For a branching process with i.i.d. offt
spring distribution : P( = k) = pr;k 2 Nand mean = E[ ]2 [0;+1 ),
then the extinction probability is the smallest solution if9; 1] of equation

=G ()
whereG (s) ::8E[s ] is the generating function of Further,
31 if either( < 1)or( =1 andp; < 1)
= 3 o<1l if > 1 :
-0 ifpp=1

Depending on the expectationof offspring distribution, the branching processes
are classified into three regimes:

subcritical case:< 1, the branching process is extinct almost-surely;
critical case: =1, the branching process is extinct almost-surefy ik 1;

the supercritical case> 1, the branching process survives with probability
1

Total progeny size: From the equatiof2), we see that if a branching process starts
with Zo = 1, the average number of individuals at thf& generation i€[Z,jZ, =
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h i
P . ) )
11=E %' wijZo=1 = E[E[Zy 1jZ0=1]= E[Z, 1jZ0=1]< 1 .By

recurrence, we obtain:
E[ZhjZo=1]= ":

If < 1,P(Z, > 0) ". Consequently, when the expected offspringatisfies
< 1, the probability that the population survives up to timé exponentially
small inn.

Conditionally onZy = 1, denote 2

thetotal progenyof a branching proced¥,,; ). When < 1,
X 1
E[T]=E Z, = 1 <1:
n=0

Poisson branching processes

When studying the connectivity of the ExstR2nyi graphs, a specific branching pro-
cess is utilized for modeling the exploration of graph's component: Poisson branching
process, whose offspring distributions is a Poisson random variable with parameter
. The generating function of the offspring distribution in this case is equal to
b3

k
G (s)= ske = S
k=0 ’

Followed by Theorem 0.1, the extinction probability is the smallest solution of equa-
tion

=el (4)
Then the survival probability is given by

=1 : (5)

For < 1, equation(4) has unique solution = 1, which says that the Poisson
branching process is almost surely extinct. Far 1, equation4) has two solutions,

of which the smaller is 2 (0;1). It means that in this case, both extinction
and survival are possibly occurring with non-zero probabilities. Let us look at the
branching process conditioned on extinction.

Theorem 0.2 [94, Theorem 3.15] Let < 1 <  be the two real values

satisfying equationre = e . The Poisson branching process with mean
, conditioned on extinction, has the same distribution as a Poisson branching
process with mean.
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Define the large deviation rate function for Poisson random variables with mbgn

I = 1 log(): (6)

The law of the total progeny of a Poisson branching process and its asymptotic
behavior is described by the following theorem.

Theorem 0.3 For a Poisson branching process with mearthen the total
progeny is distributed as: (n)n 1
P(T=n)= e "

Further,asn 11 1
P(T =n)= —pﬁe ''n 1+ 0(1=n) ;
n

wherel is defined in (6).

Poisson and binomial branching processes ~ When coupling a Poisson branching
process with offspring meanand a Binomial branching process with parameters
and sucessive probabilityn , the total progeny of those two processes are related in
the following way:

P, (T K)=P (T Kk)+ ek ),

whereje,(k; )j  k 2=n.

Erdos-R2nyi graphs and their properties

Definition 0.9 Letp 2 (0;1) andN 2 N . A random graplG is called an

Erdos-R2nyi (ER) graph with distribution, denoted BR (N; p) if it hasN ver-
tices and each pair of nodés|j gis connected with probability, independently
of the others.

Despite the simplicity of this graph, this model has its own beautiful properties
to work on. We refer to the book of Van der Hofstad [94, Chapters 4 and 5] for
the detailed study. One of the primary properties studied is the emergence of a
giant component. We are interested in a specific class of ER graphs when the local
structure is normalized by the system's sitethatisp= =N , where 2 (0;1 )

is a constant andll . There is a sharp threshold for the emergence of giant
components:
sub-critical graphs: 2 (0; 1), the biggest component &R (N; =N ) has
sizeO(log(N));
super-critical graphs: 2 (1;+1 ), the giant component R (N; =N ) has
sizeO(N).

Here we refer to the Theorem 4.4 and Theorem 4.5 in [94] (the subcritical case:
< 1) and Theorem 4.8 (the supercritical case: 1) in [94] for basic results
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concerning the size of the giant component and the second largest component in
theER(N; =N ) graphs. There are also other results on the giant components for
ER(N;p), see [72] for example.

Connectivity, giant component

DenoteGax andGy) the largest and the second largest componerfERufN; =N ).
There is a phase transition for these quantities whearies from subcritical to
supercritical regimes.

Subcritical case: For < 1, the following theorerhjustifies the lower and upper
bounds for the largest component inBR (N; =N ).

Theorem 0.4 Lower and upper bounds of biggest component. [94, The-

orem 4.4 and Theorem 4.5, page 123] Fothe large deviation rate function
for Poisson random variables with meauwlefined in(6) and for everya; b > 0
such that < ,i <b,thereexist,= (;a)and ,= (;b) suchthat

P (jGnaxi alogN)= O(N *); (7)
andP (jGnaxj blogN)= O(N ©®): (8)

A consequence of this theorem is the size of largest component is oflogder

Proposition 0.1 When < 1, forl defined by (6), we have that

jCnax] , 1
logN e ©)

in probability asN ! 1

Supercritical case: For > 1, there is a constant > 0 such that the largest
connected component has size approximatdy, and the second largest component
hasO(log(N)) vertices. A good approximation result, see [94, Theorem 4.18, page
123] for jGnaxj andjCy)] is illustrated by

Theorem 0.5 The giant and the second largest components' sizes. For
> landevery 2 (1=2;1), there exists = (; ) such that
P (Gax  Nj N)=O(N ) (10)

! this theorem is a combination of two theorems: Theorem 4.4 and 4.5, see Chapter 4, page 123 in
[94].
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where =1 is the survival probability of Poisson branching process wijth
mean offspring , is determined by the smallest solution of equation (4).
And the second largest componé&l satisfies:
G , 1,
— 1 — 11
logN I’ (11)
in probabilityasN !'1 ,where =

The central limit theorem for the giant component's size in the super-critical case is
also proved, see [94, Theorem 4.16, page 137].

Theorem 0.6 Central limit theorem for giant component's size. Fix
> 1,thenwherN !'1

) ) N
‘C”‘—aﬁdﬁ— Lz (12)
in distribution, where&Z is a normal random variable with me8rand variance

2 = @a )
a )"

0.2.5 Stochastic Block Models and their properties

The block structure is often encountered in social, physical and other phenomena
modeled by the complex networks. It gives rise to the idea of partitioning the whole
graph into groups of vertices regarding to the similarity of their connection patterns.
From this viewpoint, White, Boorman and Breiger [81] designed a blockmodel to
interpret the social structure from the patterns of relations among concrete entities.
Based on this deterministic model, Fienberg and Wasserman [38] and then Holland et
al. [54] generalized it to a probabilistic version, the Stochastic Block Model (SBM),
where the variability of data was taken into consideration. It provides a benchmark
for some common tasks such as: community detection, or recovering the patterns of
connections in the underlying network [1, 2, 3, 42, 46].

We give below the definition of SBM given by Abbe [1].

Definition 0.10 [1] Let

N be a positive integer (number of vertices);
Q be a positive integer (number of blocks or types or classes);

=( 1,5, o) be a probability distribution olfg; Q] (the probabilities
on theQ blocks,i.e. a vector of[0; 1]° such that sz1 k =1);
Z be anN dimensional random vector of i.i.d. components with disty
bution ;

= (k)20 be a symmetric matrix with entriese 2 [0; 1]
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(connectivity probabilities).
[1:=1fv2[1N]:Z, = gbe the block (community);
N- := j[']j be the size of block, "~ 2 [1; Q].

The pair(Z; G) is drawn under the distribution SBM;Q; ; ) if Gis an
N verticesf 1;:::; Ng such that each pair of verticesandj are connected
independently of other pairs with probability, 7, .

The SBM is characterized by the number of clag@gethe proportions of each class
and the probability matrix of connections.

Remark 0.4 Remark 3,[2]. By the law of large numbers, almost surely we
have X
1,4 (13)

i=1

L
N

z|z

Remark 0.5 WhenQ = 1, we recover the Emk-R2nyi graph.

A special model of SBM is theymmetric stochastic block mod&SBM) , where the
inner probabilities are the same for all groups: = = oo = A and different
with the outer probabilities, which isy = B; 8" 6 k.

Example 0.1 The population of sizé\ is partitioned intoQ = 2 groups WiH]

proportiony ; 1 ) and the probability of connections is given by~ ** 12
21 22
with 12 = 21 by the symmetry of matrix . Ayvisual representation of SSBM with
_ . 06 005 . . . _.
N =100, =(0:3;0:7)and 005 Qg 'sgivenin Figure 4.

This is an example of a network divided in two groups, where the members within a
group is higher connected than any couple coming from different groups.

Connectivity of SBM

SBM is a generalization of Eo$-R2nyi and we also have thresholds for the tran-

sition phases of its connectivity. The sparse case corresponds to the case where

the probabilities of connections grow proportionally to the graph's size, that is
=( W) =( ~-)k» the connectivity depends on the average of degrees.

The following topology properties are proved for the SSBM (see details in [1]).

2Credit: This figure is plotted by the packaiggaph of Csardi and Nepusz [28].
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Figure 4. Plotof an SSBM graph oN = 100 vertices partitioned int@ = 2 classes with
proportion = (0:3;0:7) and the matrix of connection probabilities
11= 22=0:6; 12 =0:05
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Proposition 0.2 [1, see page 18]

1: Fora;b > 0, the SSBM(N; Q; A;B) with A = 2998 B = PO jg
connected with probabilitt  o(N) asN tends to infinity if and only if

E“(%—l)b > 1 (if a orbis equal to0, the graph is of course not connected).

2. TheSSBM(N;Q;A;B) with A = ;B = Nﬁ has a giant component
(i.e. a component of size linear M) if and only ifd := w > 1;

3. For < 1=2, the neighborhood at depth=logy N of a vertexv in
SSBM(N; Q;A;B), whereA = a=N; B = b=N, tends in total variation
to a Galton-Watson branching process of offspring distribution Poidson(
whered := &0 > 1

p—

If a = b, then the SBM collapses with the ErstR2nyi, and the connectivity
properties coincide with the ones we know from the theory obBfR&2nyi graphs.

Convergence of subgraphs, graphons

In this thesis, we are interested in large graphs, which means that we aim to study
some properties of a graphs fam{§y )n 1 whenjV(Gy)j tends to infinity as

N 'l . The convergence of graph sequences have been studied for the purpose
of understanding the large graphs and their approximations. There have been huge
works of Bollobjs [87], Janson [56, 101] on the properties of large graphs: degree
distributions, the evolution of random graphs for the connectivity, giant components,
etc.

In a series of papers [14, 15, 16, 39, 67, 68], Lovjsz and coauthors have developed a
beautiful theory of graph limits, which works best for the two extreme cakase
graphwhere the number of edges in a graph is "close" to its maximum possible
edges V(&) | andsparse graptwhere vertices degrees are bounded or at least the
average degree is bounded [12, 16].

Definition 0.11 Let(Gn)n 1 be a family of graphs such that the sjxg(Gy )]

tends to infinity adN ! 1

The family (G )n 1 is calleddensdf the number of edges is quadratic in the
number of vertices. RigorouslhiE (Gy)j j V(Gy)j? whenjV (Gy )j tends to
infinity.

In the other extreme, a family of grapGy )y 1 is calledsparsef the vertex
degrees are bounded ajfit(Gy )] j V(Gn)j whenjV (Gy )j tends to infinity.

=

The notions of dense and sparse only make sense for families of graphs whose
sizes are sufficiently large, not for a single graph. If a sequence of graphs converges
from the left, it means that the gra®@) has more and more similar homomorphic
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structure of the every small graph embedde@in. For example, th&R (N; p) with
p fixed, is a class of dense graphs since the average number of e%—%p.
While for ER(N; =N ) for fixed , are sparse graph.

Lovjs et al. [15, 16, 18] have introduced a notion of convergence using homomor-
phisms:convergence from the lefivhich is defined in terms of the densities of
homomorphisms from small graphs in&g, . Lovjs and Szegedy [67] have proved
that if a sequence of graphs is convergent "from the left", the limit object is in fact a
measurable symmetric function: [0;1F ! R that represents the limit density of
edges inGy . This limit object is calledyraphon

The general graphon was introduced by Lovjs and Szegedy, see [67]. Here, we restrict
ourselves to non-negative normalized graphons taking val[@ 1

Definition 0.12 Graphon. Let W be the space of all bounded measurable

functions : [0;1F ! [0;1] that are symmetric and integrable. We call the
functions inW graphons

It is quite natural to represent a finite gra@h in terms of graphon as follows:
assume tha¥ (Gy) = [1; N ], we divide the interva]0; 1]into N disjoint intervals

IN;i5 Iy, wherel N = L2 0 foreveryi 2 [N 1]andly = N-i:1 .
Define the function ¢, as
X
cy (X1 y) = 1 N YL o it
ij 2[LN]

The graphGy is then associated to the grapha#), .

In fact, the associated graphog, , however, is not unique for isomorphic unlabeled
graphs: if we re-enumerate the vertices in gr&@h then the associated graphon
cy Will not be the same. To make the associated graphons "unique”, we define the
equivalence relation of two graphons as follows:°2 W areisomorphic up to a
null setif there is an invertible measure preserving map[0; 1]! [0; 1] such that
xy) = () (y) = 4x;y) almost everywhere. Then the isomorphism
up to a null set is an equivalence relation and the two graphomnd are not
"essentially” different.

Then the set of all finite graphs can be embedded in the space of graphons (modulo
isomorphism up to a null set) equipped with a suitable topologyNA®Nds to
infinity, the limit of the sequencéGy )y 1 can be interpreted as limit of the associ-
ated graphoné ¢, )n 1. In the left-convergence sense, we consider the space of all
graphons (including finite graphs) equipped with gubgraph distancevhich is

given in the sequels.
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Subgraph distance, left-convergence of the dense graphs sequence

The convergence from the left was first studied for the dense graphs by Lovjs et
al. [14, 15, 16, 67] and then extended for the sparse case by Borgs et al. [16, 17,
18]. When saying a graph sequence is convergent from the left, we want to look at
the homomorphic structures of every small subgraphs into the sequence of large
graphs. The number of "copies" of the "small" grdplnto the large grapks is de-
termined by counting the number ijective homomorphisn F into G, denoted

by jinj(F; G)j. When we normalize this quantity, it yields the proportiorFofound

in G. Theinjective homomorphism denswy F in G with JE(F)j = k ] V(G)j

andV (G) =[1;N]is defined as

e~y . IIN(F;G)j
t(F;G) : N (14)
where(N)i = % = N(N 1):::(N k+1) isthe number of injective ho-
momorphisms of into the complete grapK y ; and with the convention that if
k>N, t(F;G)=0.

Now let us classify the set of all finite graphs to isomorphic graphs and enumerate
these classes &5;); 1, whereF; is the representative of an isomorphism class. We
introduce the distance between two graph finite grapledG° by

X 1
dsun(G; GY = Ejt(Fi ;G)  t(Fi; GYj:
i1
The distancely,, is often called thesubgraph distance
It is natural to think of two graph& andG°seems to be similar if they have similar

homomorphism densities. And the notion left-convergence is in fact the convergence
of the quantities(F; G) whenjV (G)j tends to infinity.

Definition 0.13 Lovjsz et al. [15]. Let (Gy)n 1 be a sequence of finite
graphs such thg¥/ (Gy)j!1  asN tends to infinity. We say thaiGy )y 1
is convergent from the lefor simplyconvergentf t(F; Gy ) converges for any
simple graph-.

It turns out (Lovjsz et al. [15]) that the limiting object of a convergent graphs se-
guence is a standard kernel represented explicitly by a graptiow . Thus the
homomorphism density(F; G) is naturally extended as the density of a gr&pbf
k vertices on graphon as fogows:
Y
t(F; )= (Xi; X;)dXq 1o dX: (15)
O3 (i )2 (F)

And the distance of a graph to a graphon :
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X

(G )= SItFiG) (R )

i1
Z

= = M (X5 x-0)dXq i dXiEF)j

i1 2 (JV(G)ier); OAVEFDI 0 E ()

|
We can say that the graph is "close" to the graphon if for any finite graph
F, the proportion of copies of into G is "close" to the density(F; ). The
following theorem claims that the graphons is a completiof(Bf); 1;dsuw), S€€
[67].

Theorem 0.7 Theorem 3.1 in [15]. Let(Gy)n 1 beadense graph sequence
which is Cauchy with respect th,. Then there exists a graphorsuch that

dsub(GN; )! 0 (16)

asN tends to infinity.

Proof. The rigorous proof of the theorem above can be found in [67] using the
Szemerz2di partitions and the martingale convergence theory.

Theorem 0.7 is for the convergent sequence of deterministic graphs. For the random
graph, we want to build a model of random graphNowertices from a graphon
and see the distribution of these "type" of models.

Given a graphon it andX™) = (X,)n2p:ny be @ sequence & random

variables taking values ii®; 1], let us denot&y = G(X (N); ) the random graph

constructed by the fashion as follows: connieandj in [1; N] with probability
(Xi; X;) independently with other edges.

ables with uniform distribution ifi0; 1], then by the law of large number, we have that
NIilgn dsun(Gn; ) =0 a7
almost surely.

Remark 0.6 For any graphon 2 W, there is a left-convergent sequence

of graphs(Gy)n 1, for exampleGy = G((Uq;:::;Uy); ), such that
limyiz  dsun(Gn; ) =0.

0.3.2 Cut-distance, convergence in cut-metric of the sparse graphs sequence

For the convergent dense graphs sequence, we have an explicit expression for the
limiting object which is a graphon as in the previous theorems. However, most of
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the large networks of interest are sparse. And by the notions of left-convergence, all
the sparse graphs sequences converge to a zero-graphon, which no longer charac-
terizes the limiting behavior of sparse graphs. For example, thesErényi graphs

ER(N; =N ) converges to a deterministic graphor= 0. In order to have more
interesting limit objects, we think of normalizing the sequence of associated graphons

( GuIN 1.

In the work of Bollobjs and Riordan [10], they studied different types of metric for
sparse graphs: cut distance subgraph distanag,, and partition distance,

(we will not introduce the third metric in this thesis). They built a bridge for the gaps
between the two extremes: under a bounded density assumption, graphons remain
the appropriate limit objects for the sequences of sparse graphs after rescaling. Their
assumption (see [10, Assumption 4.1]) restricts the model setting to the class of
sparse graph&y that have the edge densities in every subgraphs are all of the
same scale. At this extreme, Borgs et al. [12, 13, 17, 18, 19] extended the theory of
graphons to handle the sequence of sparse graphd\wittrtices and(N ) edges,

l.e. it covers the case of graphs containing dense spots.

The most important metric used to study sparse graphs isutiheetric We firstly
give the definition ofcut-distancentroduced by Frieze and Kannan [40]:

Definition 0.14 Cut-distance. TheZcut-norm of a graphonis defined as:

k kK = sup (x; y)dxdy

ST [01] S T
Given ; and , two graphons, let
d ( 1, 2) =k 1 2k .

Thecut-metricof ; and 5 is

(1 2):=infd (45 2); (18)

where the infimum ranges over all measure-preserving bijectiar{§; 1] !
[;1]land  (x;y) = ( (x); (¥)).

We then have the cut-distance of two graphopnand ; as:

Z
(1; 2)=Inf sup 1(Xy) 2(X;y) dxdy ; (29)

S;T2[0;1]] S T

where the infimum ranges over all the measure-preserving bijectiong®drjto
[0; 1].

Since the set of all finite graphs is embedded in the space of graphons, we can define
the cut-distance of two grapliaandG°through their associated graphons:
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(G;GY) = (e o (20)
We also can define the cut-distance between a g&aphd a graphon as:
G )= (o) (21)
Left-convergence vs convergence in cut-metric It is proved that convergence

from the left is equivalent to convergence in the metriclndeed, this assertion is
claimed by the fact that the metric spgt®; ) is compact (see [15, Proposition
3.6]) and the following theorem

Theorem 0.8 [15, Theorem 2.6] The sequence of finite simple graf@s)n 1
is left-convergent if and only if it is a Cauchy sequence in the metric

Exploration of random graph by the RDS method

The Respondent Driven Sampling (RDS) was first introduced by Heckathorn [49] in
a program of prevention of the spread of HIV. The aim of RDS is to detect the iden-
tities of hidden individual and study the large-scale structure of a target population.
The idea of exploring a (random) graph by random walks is natural and has been
investigated in a large literature (e.g. [11, 35]).

Let us first explain the principle of RDS methodology.

RDS description

The sampling process is conducted as follows: from a group of initial recruited
individuals, we ask for their contacts in the social network, whom they know can
offer some more information. The new contacts collected are invited to participate in
the survey and investigators ask them for new referrals. Keep tracing the connections
between subjects, we can recruit the subsequent participants. Intuitively, the wave of
respondents moves from node to node along the edges connecting them. The explored
part of the networki.e. the vertices discovered and the edges used for propagating
the RDS, induce a subgraph of the underlying real graph. The information coming
from the interviews gives knowledge on other non-interviewed individuals and edges,
providing a larger subgraph (which may not be a tree). We aim at understanding this
recruitment process from properties of the explored subgraph.

To handle the two sources of randomness, the graph and the exploring process on it
are constructed simultaneously. In the graph, each vertex is at either one of the three
following states:

inactive if it has not been contacted for interviews;
active constituting the next interviewees;
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off-modeif it has been interviewed already.

At the beginning of the survey, all the nodes of the underlying graph are hidden
and marked as inactive nodes. We then choose some individuals as seeds of the
investigation to do the interview and switch them on active mode. The interviewee

is asked to name his/her contacts and then we will choose among the new contacts
maximumc people to deliver to each of them a coupon. Every carrier of a coupon

Is turn into the active state and can come to a private interview to be asked in turn
to give the names of his/her peers. Whenever a new person is named, one edge
connecting the interviewee and his/her contact is added but they remain inactive until
they receive a coupon. After finishing the interview, a maximum numbemnefv
contacts receive one coupon each and are activated. So if the interviewee names more
thanc people, a number of them are not given any coupon and can be still explored
later provided another interviewee mentions them. After that, the node associated to
the person who has just been interviewed is switched to off-mode and is no longer
recruited again, see Figure 5.

We repeat the procedure of interviewing, referring, distributing coupons until there
IS no more active vertex in the graph (no more coupon is returned). Each person
returning a coupon receives some money as a reward for their participation, and an
extra bonus depending on the number contacts that will later return the coupons.
Notice that each individual in the population is interviewed just once and we assume
here that there is no restriction on the total number of coupons.

In the design of RDS, researcher keep track of the degree of each respondent,
meaning that whenever a person is recruited, we know the number of theirs contacts
and who they are. When interviewed, respondent reports his/her number of neighbors
and select uniformly at random from theirs personal network maximuoew people

to be recruited. The respondent unit is chosen in a random way without replacement.

The advantages of RDS have been discussed in several papers of statistics and soci-
ology research, for example in [49, 63, 70, 80]. The key is restricting the maximum
number of people to be explored in each wave of respondent will reduce the bias
of sampling towards high-degree nodes. This clever idea have helped reduce the
dependence of final sample on the initial one after several waves of respondent,
which allows for inferring the resulting samples without using an ordinary sampling
frame.

Our approach: The quantities we aim at keeping in track are: the degree of each
respondent; the number of candidates keeping coupons and the amount of individ-
uals explored by RDS. On the other hand, the random network considered here is
structured preferably as not a tree due to the methodology of sampling, which make
difficulties in handling the randomness of detection process while the subsequent
referrals are chosen without-replacement. In our work, we describe the RDS as a
Markov process for two models of random network: &eR2nyi and the Stochastic
Block Model on the supercritical case of sparse graph. Under the sparsity assump-
tions, the normalized process of the Markov chain converges in distribution to a
deterministic continuous function, which is quite classic. However, our model is
considered for the generahnd other factors impacting the choice of recruitment
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a. Step 0
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c. Step 2 d. Step 3

e off-mode node (who has been interviewed)
e active node (who has coupon but has not been interviewed yet)
e explored but still inactive node (who has been named but did not receive cot

Figure 5. Description of how the RDS works in the case 2. In our model, the random
network and the RDS are constructed simultaneously. For example at step 3, an edge
between two vertices who are already known at step 2 is revealed.
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units, such as the explored but not treated individuals, are also taken into account.
The details of these studies are found in Chapter 1 and Chapter 2 of this thesis.

Mathematical framework

Consider a population of siZ¢; N 2 N , partitioned inQ classes with proportions

=( 1;: o). Eachindividual in clask is connected with every node in class
independently of each others with probability . Note that forQ = 1, the model
induces an ER graph, which has only one type of connections and is studied in
Chapter 1. And whe® > 1, the model is then an SBM, which is considered in
Chapters 2 and 3. Here, we introduce the notations for the general vaue of

The process of interest counts the number of coupons present in the population. We
also want to know how many people are detected, which means that the number of
people explored (but without coupons) are also kept track in. Denote by

n 2 [0; N] the number of interviews completed;

is the number of individuals of typethat have received coupons but that have
not been interviewed yet (number of active vertices);

By, = (B&:::::B{®) 2 NQ the vector ofQ elements, wher&!’;" 2

[1; Q] is the number of individuals of typecited in the interviews but who
have not been given any coupon (number of found but still inactive vertices);

indicates the total number of individuals of typ&éaving been interviewed
(number of off-mode nodes).

We define the RDS as the following stochastic process= (A,;Bn;U,);n 2
[O;NT]:

B 1 B 1) (Q)
A, AS AR

Xp = %}Bng = %}B,&” BOK: n2 [O;NT:
U, & U@

For the more detailed description af); B Ui, 2 [1; Q] is found in the
subsequent chapters (Section 1.1, Chapter Qferl and Section 2.2, Chapter 2
for Q 2 N in general). Note thaX,, depends o, but for the sake of simplicity,
we do not put thé\ in the notation.

The main objective of this thesis is to establish an approximation result when the
size of the random graph tends to infinity. In this case, the RDS process is correctly
renormalized,

1 A B U
XN = g Xonte = T\IN“; ;’\IN“; ‘;\T“ 2 [0:1F; t2[01] (22)

For allN, the procesX N lives in the space of ¢ dI g process&g[0; 1];[0; 1] <)
equipped with Skorokhod topology (see [93, 55, 59]).



0.4.2

0.4 Exploration of random graph by the RDS method 25

In the chapters 1 and 2 of the thesis, we Igonsider spRteuipped with the
L -norm defined fox = (x%;::;x%) askxk = = ¢_; jxj.

Choice of seeds for the RDS: The RDS is constructed by the similar principle of

an epidemic spread and starts with a single individual. There are two main phases
of evolution (see [8]): the initial phase is well approximated by a branching process
(which we are neglecting here) and the second phase is when the stochastic process
is approximated by an deterministic curve. In the chapters 1 and 2, we focus on the
second phase: the RDS survey begins with a positive fraction of individuals in the
populationji.e. the RDS process is conditioned biimy; kX 'k > Og.

RDS in supercritical Erd 0s-R2nyi graphs

We consider the RDS process on a supercritical ER mB&8€N; =N ) ( > 1).

In this case the model has only one type of vertices,Q = 1. Hence A, andB,
take values ilN, andU,, = n in fact counts the number of steps. Henceforth, in the
ER case, it is sufficient that we only consider the procéss= (An;B,) 2 N?, and
the information ofU, is deduced directly.

The normalized proce$X N )y (defined in (22)) is now written in a simpler form:
1
XtN = W(AbNtc; Bonic) = (A BtN);t 2 [0;1];

which is a process in the Skorokhod sp&ug0; 1]; [0; 1F).

For the supercritical ER graphs, Barbour and Reinert [8], the early phase of an
RDS can be approximated by a supercritical branching process. Hadcerfds to
infinity, when we start with a single individual, after a finite number of steps, we can
reachO(N) individuals with a positive probability. Here, we study the behavior of
the RDS process under the assumption:

Assumption 0.1 Setag;ky 2 [0; 1] with ag > 0 andby = 0. We assume that the

sequenceXy = Nixo converges in probability to the vectgy = (ao; ky) asN
tends to infinity.

Theorem 0.9 The case of ER graph. Under the assumption 0.1, whsh
tends to infinity, the sequence of proces¥es = (AN ; BN) converges in distri-
bution inD([0; 1]; [0; 1F%) to a deterministic patk = (a; b 2 C([0; 1]; [0; 1F),
which is the unique solution of the following system of ordinary differentjal
equations

Z,

Xt = Xg + f (s;Xs)ds; (23)
0

wheref (t;x;) = (f1(t; x¢); f2(t; X¢)) has the explicit formula:
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X 1
fa(t;xy) = ¢ (c Kp(t+a) laso (24)
k=0
X 1
fatx)=2 t a h) + (c Kp(t+a) c (25
k=0
with k k
p(ar) = %e (2, k2f0;:;cg; (26)
andc is the maximum value of coupons distributed at each time step.

The main idea of the proof is using limit theory of ¢ dl g semi-martingale vector
processes embedded with Skorokhod topology (see [93]) and Poisson approximations
(see [84]). It follows four steps: write the Doob's decompositioriXf! )y 1; study

the tightness of the martingale and the finite variation in the decomposition; find the
limiting values and finally prove the uniqueness of ODES' solution.

Proposition 0.3 Let us denote

to:=infft 2 [0;1] : ja;j = 0g: (27)
Thena, = 0;8t 2 [to; 1].

It means that once tha touches0, a stays at0. Hence,to + h, represents the
proportion of explored people in the population.

We also studied the speed of convergence with a central limit theorem for the RDS
process on the giant component of ER graph. When we consider the sequence of
c dl g processefYN)n 1,

X N X 1
W= SR = P (AnieiBovd) (NaoNB) 12 [0l
Theorem 0.10 Central limit theorem. The sequence of procesg®gN )y 1

converges in distribution i ([0; to]; R?) to the procesyV = (W?; W?), which
satisfies 7t

Wi = Wo+  G(S;as; b5;Ws)ds+ M (t;a; ),  t2[0;t]; (28)

where !

T + W

GltabW) = Wi+ W2+ x)Wr

(29)
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X1 1 2" 1 _ L
(2)= ¢ (c k)Te @2 9z) is the derivative of atz;
k=0 )
andM is a zero-mean martinggle with the quadraltic variation
Zt
M (;a;b)i, = @ m; (s: a; ) ds ; (30)
0 ij 2f 1;29
in which 0 1,
Xe Xe
mutab) = (¢ K’t+a) @ (c Kp(t+ A ; (31)
k=0 k=0
0 1
XC
mytab)= 1 t a bh+2 1 t a bH@( 1)+ pt+a)A
k=0
0 tmutab); (32)
C
mptah= (1 t a HO@( 1+ plt+ A mutab:
k=0
(33)

0.4.3 RDS process for the Stochastic Block Model

For the more general model, SBM, see Chapter 2, a convergence theorem similar to
Theorem 0.9 for the proce¢X N)y 1 D ([0;1];[0; 1P 9) is also proved, but the
functionf is a more complicated one, and depend€dQ; ;

Assumption 0.2 For each;k 2 [1; Q], denote « = - k. We assume that the

matrix =( -k)wk2pqj Isirreducibleand the largest eigenvalue ofis larger than
1

Remark 0.7 Under the Assumption 0.2, from the proof of Theorem 3.2 of

Barbour and Reinert [8], the early stages of the RDS can now be approximated
by a multitype branching process with the offspring distributions determined
by the matrix . Thanks to the Assumption 0.2 the multitype branching process
associated with the offspring matrixis supercritical. The analogous results for
the extinction probability and for the number of offspring at tffegeneration

as in the single branching process have been proved in Chapter 5 of [82]: the
mean matrix of the population size at timas proportional to ". And follow

the claim (3.11) of Barbour and Reinert [8], we can deduce thdtténds to
infinity, when we start with a single individual, then after a finite number of
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steps, we can reach a positive fraction of explored individuals in the population
with a positive probability.

P .
Assumption 0.3 Letag; by; U 2 [0;1]2, a0 = (a{”;:::;8Y) suchthat 2, af)) =
kagk 2 [0;1], and sety; up 2 [0;1]°, Wlth by = (O """ :;0) andug = (0;:::;0).
We assume that the sequentgl = Xo converges in probability to the vector

(ag;lp;ug),asN ! +1 .

It means that the initial number of individuals with typat the beginning of the
survey is approximatelba{(, ) N C. A possible way to initializing the process is to draw

Theorem 0.11 Under the assumptions 0.2 and 0.3, we have: wihdands to
infinity, the proces¢X N )y converges in dlstrlbutlon iD([0;1];[0; 1 Q) to

a deterministic vectorial functiorn = (x ) = (a() b ()) in
([0; 1];[0; 1F ), which is the unique solutlon of the system of dlfferential
equations Z,
Xt = Xo + f (xg)ds; (34)
0

Uy

wheref (xs) := (fi (Xs)) 1 i 3 has an explicit formula described as follow
1°Q
Denote W,

to:=infft 2 [0;1]: & +a? =og; (35)
Fors 2 [0; to], 0 1
(k) & Xc h )
a.s ( ) k as
frixg= ———=-@ (c h~—-e :A ; (36)
- kask X heo . kask .
X0 R gk xe ( k)h )
f2‘ (Xs) = s Is(; “s Sk @C (C h) sA :
k=1 kask k=1 kask s h=0
(37)
)
— as .
with o i i ) Xn -
s T K X ag) Ug) , s = s (39)
=1
and K = (- al’ W ul)y:

Fors 2 [to; 11 (xs) = f (Xs,):

Notice that in this model, the time corresponds to the fraction of the population
interviewed. The timey is the first time at whicltka;k reache® and can be seen



044

0.4 Exploration of random graph by the RDS method 29

as the proportion of the population interviewed when there is no more coupon to

keep the CRS going. Necessartly, 1. We see thakak = 0 only if W= =

aﬁQ) = 0. Itimplies thatf (x;) = 0; 8t 2 [to; 1]. Then, the solution of the system of

ODEs (0.11) becomes constant over the inteftall].

RDS and Statistics
Existing RDS estimation

RDS was first used as a sampling method for estimating the size of a hidden popula-
tion. The constitution of a sampfis the number of sampled individuais, the

rest of the population being unknown. There are several estimators being proposed
from the RDS data such as Salganik and Heckathorn [77], Volz and Heckathorn
[80]. In their works, they assume that at each interview stage, respondent chooses
only one person to distribute coupdre( ¢ =1 in the description above). And the
replacement is allowede. one subject might be recruited many times. Also, the
underlying network is supposed to be connected, which means that everybody in the
population can be reached by a finite path. When we distribute only one coupon at
each time we interview someories. ¢ =1, the RDS process can be modeled as a
random walk on a graph and the time scale is counting by the number of interviews
taking place.

DenoteZ; some real-valued variable of interest measured onthadividual of
the samples (for example the degree of. A general estimator form of Horvitz-
Thompson for estimating the averageZofs:
P 1
Ez] pzsP 4. (40)
i2S M

wherep, = P(i 2 S) is the inclusion probability of individual and(z)i,s is a
realization ofZ. Based on this general result, Volz and Heckathorn [80] have given
an estimator when the dagis sampled by an RDS survey. This estimator relies
heavily on the estimation of inclusion probability, which is estimated through the
subjects' degrees:

d

pi Pid (41)
j2s i
When(Z;)i, s is the sequence of vertex's degree in the sarflihen the estimation
(40) becomes Ns
E[Z] P——; (42)
i2S di

which recovers the estimation result for the average degree of Salganik and Heckathorn
[52].

In practice, the inclusion probability is complicated to compute because of the fact
that the sampling is without replacement and the dependencies between subjects
are difficult to control. Some numerical calculations have followed to handle these
difficulties, seee.qg. [44, 45, 70]. Gile [43] proposed an improved estimator for
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population means taking into account the without replacement sampling, and Rohe
established critical threshold for the design effects [65]. Because of the privacy
restrictions, a lot of information is missing in the RDS data. A variant of estimation
methods have been developed to infer the graph's structure,ge6, 27].

These works have focused on estimating quantity such as the size of hidden popula-
tion for the general graph's structure. Here, we are interested in studying the topology
of hidden graphs. We desire to give a rigorous study of the of the RDS process: the
important quantities collected by RDS such as the number of explored individuals
in a hidden population (studied in chapters 1 and 2); the topology of a particular
random graph model (in chapter 3). The advantage of my work in this thesis is that:
the RDS process is described for the general valfemaximum number of coupons
distributed at each wave of respondent; the with-replacement is taken into account;
the explored sub-graphs' structure is also kept in track. However, also due to the lack
of information, we have to restrain ourselves to some more particular structures, in
this thesis, the Emms-R2nyi and more general the Stochastic Block Model.

Topology of sub-graphs explored by the RDS on an SBM graphon

The topology of the sub-graphs induced by the RDS has attracted attention for studies
of random network. In the case of graphons, we can consider that the topology is
given by the knowledge of the function For SBMs, this function is described

by a vectors of parameters and we will focus on this case in what follows. In the
works of Athreya and Bllin [4, 5], they have established the convergence for induced
subgraphs constructed by an RDS process. The underlying network considered is a
random graph defined through a deterministic object: graphon. Athreyaalhd R

have built rigorous theory of RDS on the two extremes of random graphs: the dense
graphs [4] and the case where degrees grow, but sublinearly [5].

For the sparse graphs, as we see in the limit Theorem 0.9: withl, the giant
component of the hidden graph is explored by the RDS process. In chapter 3 of this
thesis, we focus on the dense case, in particular, a dense SBM. The aim is to develop
estimator for the the parameter= ( ; ). Let us have an overview on the results of
Athreya and Rlin [4] for general dense graphs.

[0;1]; be agraphonifV. Assume that there is a probability measoren [0; 1]
such that the following two conditions hold:

Assumption 0.4 (i) for all bounded and measurable functidnave have
Z
X 1

im =7 f(X)=  fx)m(dx) (43)
n!l ni=l 0

almost surely;
(i) 2W iscontinuousn m almost everywhere.

Let H,, be the path whose nodes are theertices visited by the random walk
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vertex if V(H,) = [1;n] and the set of edges B(H,) = [ L,*fi;i + 1g, where
each vertex 2 [1; n] is associated with the valog 2 X (M,

Note that we do not know the size of underlying graphié unknown), anch
indicates then" step of the random walk. We dendB, = G(X(;H,; ) the
random graph, which is completed froHy, w.r.t. graphon by the following
manner:

Definition 0.15 Define the completion ofl, by graphG, = G(X (™;:H,; )
as follows:

V(G,) is the same set of vertices ¥g¢H,) = [1;n];

if i andj are connected iHl,,, then connectandj in G;;

if i andj are not connected iH,,, an edge betwednandj is included in
G, with probability (X;;Xj).

It turns out that the limit object is not the original graphobut its transformation
by the generalized inverse of the cumulative distributiomof

be a sequence taking valued@l], 2 W be a graphonn be a probability
measure and lgb,, be the graph defined in Definition 0.15. Under the Assump-
tion 0.4 and when the number of edges3p is proportional tan?,

im dsup(Gn; 1) =0 (44)
n!

almost surely, where (x) := m([0; x]) is the cumulative distribution ah, the
generalized inverse of is given by

Yx):=inffu2 [0;1]: (u) xg
and where for alk;y 2 [0; 1],

(y)= (0 M)

This result confirms that when sample data are collected from an RDS on a graphon,

there is some bias on the resulting data towards high degree items. And they have
shown how the RDS as above procedures bias the network. The limiting object gives

a framework for the estimation of interesting quantities.

Example 0.2 Let be a graphon taking constant vaju@ [0; 1] and(Uy;:::;U,)

be a sequence of i.i.d uniform random variables in the intg®yal] . The sequence of
graphsG, = (( Uy;:::; Uy); ) is constructed by connectingandj with probability

(U;Y;) = p. ThenG, is an Erabs-R2nyi graph:G, = ER(n; p). By Theorem
0.12,G, converges iy, to the graphon (x;y) = p almost surely.
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Statistic results

Using the convergence result (Theorem 0.12) for the dense graph of Athreya and
Rollin [4], we develop an empirical estimator for the SBM graphs explored by RDS
process, sampled from an ergodic procé$8 under the similar conditions in [4,
Theorem 2.1]. Of course, there are biases but we can recover the true parameter
since the estimation is transformed from the original ones by a measure that can be
estimated as well.

P
Let = ( 3::1; o) 2 (0;1)° be a probability vectorie. ~ 2, o = 1;
=( g)qrzop 2 [0;1R @ be a symmetri€ Q matrix whose entries take
values in the intervdD; 1]. In all the sequels, we denote byhe vector of parameters:

=0 )=( g Qaraf1 Qo

We definel =(14;:::; IQ% a partition of[g; 1], where
X1 X
lq=4 K A q2 [1;Ql: (45)
k=1 k=1

Let be a graphon given by

xR
(xy) = ar 1ig() 11, (¥): (46)

g=1 r=1

Consider the SBM graphon having the form as in equaf#8). DenoteZ =
(Z1;:::;Z,) the types of each node in the Markov chaifn:2 [1,Q];1 i n
andY =(Y;)1 i; n» the adjacency matrix of the gra@, = G(X (M;H,; ). We
want to estimate the SBM parametersand in two cases: the types of the nodes
are observed and unobserved.
Assumption 0.5 We assume that is connectedi.e. for all measurable subset
A [0;1] such thajAj 2 (0;1),

[0;1] fAj 2 ( . )Z

(x;y)dxdy > O:

A A

We define byN 9, g 2 f 1;::;; Qg the number of vertices of typgsampled by the
Markov chain. Foig;r 2 f 1;:::; Qg we also define by:

N®"=# fiijg | XiX;2XM™, Zi=q;Z=r1Y =1 ;
(respNF " =# fijjg j] Xy X;2X™; Zi=q;Z =1 Y5 =0 )

the number of couples of typéq; r) that are connectedgsp.not connected).

When the types are observed: When(Z;j;1 i n) are observed, the likelihood
of complete observations has the form:

\Q ! Ng$q
L(ZY;X; )= = (L gt B2
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! q$ r
Y Nn N2 N
qr (1 qr)NﬁNr'; P q
Q NS 1z,=q
q:l( q=1 ac qo) noTZnza

(47)

Sa

gér

Proposition 0.4  The maximum likelihood estimator (MLFB: (b b)isthe
solution of the system:

NG ¥ Ngb

o P —=0; (48)
9  p=1 =1 BpgoDep
N T N3 T b
g n : NipPg———=0: (49)
qr 1 qr Q%=1 bqqobqo

We want to compare this MLE with the new estimator developed from the conver-
gence result of Athreya and Roellin obtained by Theorem 0.12.

Suppose that the limit object of the sequed@e= G(X(™;H,; ) is an SBM
graphon of blocks proportions = ( 1;:::; o) and the connection probabilities

XX
1 (Xy) = ar Ly (X) 14, (¥):

g=1 r=1
whered = (Jq;::5;Jg) IS azpartition ofl0; iL] defined by
X1t Xxd
Jg=4 ks A q2 [L Q] (50)
k=1 k=1

The empirical estimator for, is given by:

Definition 0.16 Denote by

Ng NG ' oN 98 d
n.— '‘'n. = n = n .
by = n b= AN for q6r and b;: NINT 1) (51)
an estimator of ; ). The graphon associated to this estimator is defined as:
xR
bn(X;y) = b Lo (X) L3p () (52)

g=1 r=1

; n — qu n-Pq n . .
with J¢ = =1 O = B a2 [1,Q]:

We define the empirical cumulative distribution rof
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1 X .
n(X) = - Ix, x and JHy)=inf x2[01] 0 W(x) Yo
i=1
(53)
The consistency dbis claimed by the following proposition.

Proposition 0.5 Under Assumption 0.5,
(i) bis a consistent estimator of and f%rq; r2 |£1; Ql.

xd
n!llrpl bgr = qr; n!|||‘_']-‘]1 bg = @ A @ A =:
- -

It follows that a consistent estimator0 of is L

Xa

b= '@ p'A:
=1

(i) In the special case @ = 2, letus denot¢ ;; ,)=(; 1 ), b"= bf

andb" = bl. An estimator of isb" = 1(b").

When the types are unobserved: When(Z;;1 i n) are unobserved, the quan-
titiesN 9 N %  are intractable. Theb (X; Y;Z; ) can not be used for estimating

In this situation, we can use the stochastic approximation by EM algorithm (SAEM,
see [31, 32]) to generate the typésand the estimation of is now the value at
which the conditional likelihood. ( jX;Z;Y ) attains its maximum.

The SAEM alternates the E-step and M-step as follows:

Initialization: set the initial values© and define the quantitp©@( ) :=
E[logL(Z;Y; ©@)].
At iterationk of algorithm:
E-step:
Simulation: draw the non-observed dat&) with the conditional
distributionq( jY; & );
Stochastic approximation: update the quantity

QW()= Q% V() + s logL(z;Yy; ) Q “ V() ;
(54)

P
Where(lgk)kz,\. is a positive decreasing step sizes sequenq’g'1 Sk =
1 and ,,sf<1.
M-step: Choose ) to be the value of that maximize€Q®

() = argmax QM ( ): (55)

Choosing the appropriate typgsis also a complicated work. We use the variational
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approach (see Latouche et al. [64]) to generate the data &ireach iteratiork.

The likelihoodL (Y; ) of the incomplete data is

X hy Qn Y i
L(Y;sij 2 [Ln]; ) = 124 Q7 TP Y : aq) ;
h; =1l =1 i=1 g=1 Ga a j; XiiX)2(Xn)
(56)
wherel(Y; ; 4q) = c{”q,. (1 4q)' " .Alowerboundl (Ry;)of L(Y; )is:
J(Ry;) = L(Y; ) KL(Ry; (2);L(Z]Y; )); (57)
z d
whereKL(; ):= d log a4 is the Kullback-Leibler divergence of distribu-

tions and , and whereRy. (Z) is an approximation of the conditional likelihood
L(ZjY; ). WhenRy. isagood-approximation @f(ZjY; ),J (Ry. ) is very closed
to the maximum value df (Y; ).

Then we have

Proposition 0.6  Given ; , the optimal parameter
A =argmaxJ (Ry: ); (58)

P
with constraint qQ:1 iqg = 1,81 2f1;::;ng, satisfies the fixed point relation
. Y W _\
ia/ Po—— (Y, o) (59)
=1 q T jsj =1

Presentation of the main results

The main results in this thesis are given in 3 Chapters:

Chapter 1: The RDS process on Erd 0s-R2nyi graph In this chapter, we give the
expression of quantities of interests concerned the RDS: the degree of each vertex
and the coupons distributed at each stage of interview. The model considered is
an Erds-R2nyi graph in the super-critical case: the probability of connecting each
edge is=N , whereN is the size of population,> 1. In this sparse case, the
size of the giant component is closeNowith probability tends tdl asN tends

to infinity and thus we can derive the RDS in wide scope with very few times of
disruptions due to the disconnections within population. The main result in this
chapter is the convergence of the normalized Markov process to a deterministic
continuous function, proved in Theorem 0.9. We also study the central limit theorem
for the RDS process given by Theorem 0.10. This work is in progress with Anthony
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Cousien, Jean-St2phane Dherdiand Viet Chi Tran.

Chapter 2: The RDS process on SBM In this chapter, we generalized the re-
sult in chapter 1 for the Markov chain obtained from deriving RDS process on an
SBM(N;Q; ; ), whereN is the size of populatiorQ is the number of blocks,

representing the probabilities of connecting nodes across blocks. The generalized
result is deduced and extended from the convergence theorem in Chapter 1. We also
conclude that the normalized process converges in distribution to a deterministic
continuous vectorial-function. The proof follows the similar strategy as in the previ-
ous chapter, but with the more carefulness and complexity in treatment. This work
has been submitted to ESAIM.

Chapter 3: Estimation of SBM by RDS process in the associated graphon In

this chapter, we estimate the parameter of an SBM from the RDS data constructed
by a graphon. We consider two situations: the ty{#s:::;Z,) are observed and
unobserved. For each case, we give some statistic results to compare the “classic"
estimator by the maximum likelihood with the new estimators developed from the
result of Athreya and &lin [5]. This work is submitted in collaboration with Viet

Chi Tran.
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1.1 Introduction

Discovering the topology of social networks for hard to reach populations like people
who inject drugs (PWID) or men who have sex with men (MSM) may be of primary
importance for modeling the spread of diseases such as AIDS or HCV in view of
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public health issues for instance. We refer to [83, 23, 41, 73, 74] for AIDS or to
[24, 25, 53] for HCV, for example. To achieve this in cases where the populations
are hidden, it is possible to use chain-referral sampling methods, where respondents
recruit their peers [47, 49, 70]. These methods are commonly used in epidemiological
or sociological survey to recruit hard to reach populations: the interviewees (or ego)
are asked about their contacts (alters), where the term contact depends on the study
population (injection partners for PWID, sexual partners for MSM ...) and some
among the latter are recruited for further interviews. In one of the variant, Respondent
Driven Sampling (RDS, see [27, 43, 48, 49, 65, 80]), an initial set of individuals are
recruited in the population (with possible rules) and each of them is given a certain
number of coupons. The coupons are distributed by recruited individuals to their
contacts. Either the contacts receiving coupons are chosen at random (which is the
case considered in this thesis) or the choice can be guided by information brought by
the interviewees (people who are more likely to respond or who are known to have
more contacts). The coupon holders come to take an interview and receive in turn
coupons to distribute etc. The information of who recruited whom is kept, which, in
combination with the knowledge of the degree of each individual, allows to re-weight
the obtained sample to compensate for the fact that the sample was not collected in
a completely random way. A tree connecting egos and their alters can be produced
from the coupons. Additionally, it is also possible to investigate for the contacts
between alters - which is a less reliable information since obtained from the ego and
not the alters themselves. This provides a network that is not necessarily a tree, with
cycles, triangles etc. For PWID populations in Melbourne, Rolls et al. [75, 76] have
carried such studies to describe the network of PWID who inject together. The results
and the impacts from a health care point of view on Hepatitis C transmission and
treatment as prevention are then studied. A similar study on French data is currently
in progress [58].

In this chapter, we consider a population of fixed sheehat is structured by a
social static random netwoi® = (V; E), where the seV¥ of vertices represents the
individuals in the population anl V2 is the set of non-oriented edges. the

set of couple of vertices that are in contact. Although the graph is non-oriented, the
two vertices of an edge play different roles as the RDS process spreads on the graph.
At the beginning, there is one individual chosen and interviewed. He or she names
their contacts and then receives a maximuro obupons, depending on the number

of their contacts and the number of the remaining coupons to be distributed. If the
degreeD of the individual is larger than, c coupons are distributed uniformly at
random toc people among thede contacts. But whei® < ¢, only D coupons

are distributed. We assume here that there is no restriction on the total number
of coupons. In the classical RDS, the interviewee chooses among his/her contacts
c people (who have not yet participated to the study) to whom the coupons are
distributed. When the latter come with the coupons, they are in turn interviewed.
Each person returning a coupon receives some money, as well as the person who
distributed the coupons and depending on how many of the coupons he or she
distributed were returned.

To the RDS we can associate a random graph where we attach to each vertex the
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contacts to whom he/she has distributed coupons. This tree is embedded into the
graph that we would like to explore and which is unknown. Additionally, we have
some edges obtained from the direct exploration of the interviewees' neighborhood.
This enrich the tree defined by the coupon into a subgraph (not necessarily a tree
any more) of the graph of interest. Here we do not consider the information obtained
from an interviewee between their alters.

RDS exploration process

We would like first to investigate the proportion of the whole graph discovered by the
RDS process. Thus, let us first define the RDS process describing the exploration of
the graph. We sum up the exploration process by considering only sizes of partially
explored components. We thus introduce the process:

Xn=(An;Bn)2f0;:::Ng% n2N: (1.1)

The discrete tima is the number of interviews completefl, corresponds to the
number of individuals that have received coupons but that have not been interviewed
yet, B, to the number of individuals cited in interviews but who have not been given
any coupon. We s = (Ao; Bo): Ap > lindividual is recruited randomly in the
population and we assume that the random graph is unknown at the beginning of
the study. The random network is progressively discovered when the RDS process
explores it. At timen 2 N, the number of unexplored verticedNs (n+ A, + B;).

Let us describe the dynamics ®f = ( X,)n2n. At the timen + 1, if A, > 0,

one individual among thesk, people with coupons is interviewed and is given a
maximum ofc coupons that he/she would distributed to his/her contacss, K O,

a new individual chosen from the unexplored population (including the individuals
mentioned before) is recruited, no coupon is distributed, and we continue the survey.
For the sake of simplicity, we assume that the new seeds are chosen uniformly among
the unexplored individuals. The process stops at N, when all vertices in the
population have been explored. Thus,

Ans1 =An  Lia, 19+ Yo+ N G (1.2)
Brt1 =Bn+ Hpur  (Hpea + Kpig) M C

whereY,.; is the number of new neighbors, who have not received any coupon
before, of thegn + 1) M-individual interviewedH .1 is the number of thén + 1) -
interviewee's new neighbors, who were not mentioned before,kapd is the
number of the(n + 1) M-interviewee's new neighbors, who are chosen amongst
the individuals that we knew but do not have any coupon. Of coufsg, =

Hnh+1 + Koi1 . At this point, we can see that the transitions of the proC¥$3n2n
depend heavily on the graph structure: this will determine the distributions of the
random variable¥,.; , Hy+1 andK 4, and their dependencies with the variables
corresponding to past interviews (indicgsn  1...,0).
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e off-mode node (who has been interviewed)
e active node (who has coupon but has not been interviewed yet)
e explored but still inactive node (who has been named but did not receive coupons)

Figure 1.1. Description of how the chain-referral sampling works. In our model, the random
network and the CRS are constructed simultaneously. For example at step 3, an edge
between two vertices who are already known at step 2 is revealed.

Case of Erd 0s-R2nyi graphs

If the graph that we explore is an ExstR2nyi graph [89, 94], then the process
(X'n)n2n become a Markov process. In this first chapter, we carefully study this simple
case and consider an BstR2nyi graph in the supercritical regime, where each pair
of vertices is connected independently from the other with a given probalbsihty,

with > 1.

In this case, we have, conditionally #3, ; andB, ; at stepn, that

Y, 9Bin N n A, N (1.3)
Ho9Bin N n A,. B, N (1.4)
K, 9Bin B, Ny (1.5)

We recall thaty, = H, + K,, and conditionally tA, ; andB, 1, H, andK, are
independent.
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Plan of the chapter

In Section 1.2, we show that the procé€Xs,),2n IS @ Markov chain and provide

some computation for the time at which the number of coupons distributed touches
zero, meaning that the RDS process has stopped and should be restarted with another
seed. In Section 1.3, the limit of the proc€¥s,),2n, correctly renormalized, is
studied. We show that the rescaled process converges to the unique solJtph]on

of a system of ordinary differential equations. The fluctuations associated with this
convergence are established in Section 1.4

Notation: In all the paper, we consider for the sake of simplicity that the space
RY is quuipped with the norm denoted kyk: for all x = (X1;:::;%Xg) 2 RS,
kxk = L, jxij.

1.2 Study of the discrete-time process describing the RDS ex-
ploration of the graph

1.2.1 Markov property and state space

When the graph underlying the RDS process is aro&i@2nyi graph, the RDS
procesg X )n2n becomes an inhomogeneous Markov process thanks to the identities
(1.3). It is then possible to compute the transitions of this process that depend on the
timen2f0;:::Ng.

Proposition 1.1 Let us consider the Eo$-R2nyi random graph on

f1,:::Ng with probability of connection=N between each pair of dis
tinct vertices. Consider the random proceés = ( X)n2fo0;::ng defined
in (L.1}(1.3). Let F, = (fX;;i ng) be the canonical filtration as-
sociated with the procesSX,)naf o::ng- The procesXn)nao::ng IS @N
inhomogeneous Markov chain with the following transition probabilities:
P(Xn = (5B j X, 1=(ab) = Py((a&;b; (@ 0).

X

Pu(astily= " ) N T P g ek
(hik) k h
(1.6)

where the sum is ranging ovén; k) such thag®= a 1, ;+(h+ k)~ cand
B=b+h (h+k)"c

Proof. Forn < N, we computeP(X,+2 = (&%) j F,) using(1.2) and(1.3).
The fact that this probability depends only ¥R shows the Markov property and
provides the transition probability (1.6).

Of course An; B, 2 f 0;:::Ngbut there are more constraints on the components of
the proces$X ). First, the number of coupons in the population plus the number of
interviewed individuals cannot be greater than the size of the populdtjamplying
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that:
Ap+n N , A, N n (1.7)

Also, assume that attinma 0, X, = ( '; k). Then, the number of coupons dis-
tributed in the population can not increase of more thanl at each step and can
not decrease of more than 1. Thus,

n m A, +(n m) (c 1): (1.8)
Thus, the pointgn;A,), forn m, belong to the gray area on Fig. 1.2. Let us
denote byS this grey region defined by (1.7) and (1.8):
S= (ma2fm;:;Ng f 0N g

maxt™ (n m);0g a minf+(n m) (¢ 1);N ng :

MA,=" (n m) n

Figure 1.2. Grey areaS: Set of states susceptible to be reach from the propg$ started
at timem with A, = 7, as defined by the constraint$.7) and (1.8). The proces$A,) can
be stopped upon touching the abscissa axis, which corresponds to the state when the
interviews stop because there is no coupons in population any more. The chain conditioned
on touching the abscissa axis(@ty; 0) can not cross the dashed line, which is an additional
constraint on the state space.

1.2.2 Stopping events of the RDS process

We now investigate the first timewhenA = 0, i.e. the time at which the RDS
process stops if we do not add another seed because there is no more coupon in the
population. Let us define by
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=inffn 0;A,=0g (1.9)

the first time where the RDS process touches the abscissa axis. This stopping time
corresponds to the size of the population that we can reach without additional seed
other than the initial ones.

Our process evolves in a finite population of si¥e and we have seen that the
procesA, N n.Thus, N < +1 almost surely.

For (ng;m; ") 2 N2, let us define the probability that the RDS process without
additional seed stops after having seevertices and discoverat other existing
potential vertices:

U (M;)=P =ngjAn= " (1.10)

By potential theoryu,,(:;:) : S 7! [0; 1] is the smallest solution of the system
which, thanks to the previous remarks on the state space of the process, involves only
a finite number of equations:

Un,(No; 0) = 1; X 8n 6 ng; Up,(n;0) =0; (1.12)
Uno(N; @) = P, a;du,(n+1;a% n ng 1,a N; (1.12)

a%j (n+1:;a%92s

whereP,(a;a) = P A1 = a% A, = a In fact, the support ofi,, is strictly
included inS;,, defined as follows, wheng < N :

Si,= (ma)2fm;:;Ng f 05N g

maxf- (n m);0g a minf +(n m) (c 1);ng ng

(1.13)

since the maximal number of interviewed individuals (and hence of distributed
coupons) if on the event of interest (see dashed line in Fig. 1.2).

For Erdbs-R2nyi graphs with connection probabilityN , we have more precisely:
Fén (a;8) =

N +1 k N (n+l) a k
% (n+1) a 1

if( 1 a a

=k 1Lk<c)

K N N
. X1 N (n+1) a k L N (n+l) a k
k N N
0 otherwise:

ifa® a=c¢ 1;
k=0
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Let us define fon  O: 0 1
Un,(N; 1)

um =B u,(n;a) (1.14)

Uno (N5 No)

andP{ then, no matrix with entriegP,(a;a%;1  a;a& no).
Then, forn<ngy 1, the system of equations (1.11)-(1.12) becomes

U(n) — P(n)U(n+1):

And forn = n8 1, the boundari/ condition gives that

0
Uno(No 1, 1) Pneo 1(1 0) Pno 1(1 O)
Um)o D= Uno(no 1; a) = no 1(a 0) a
Uno(No 15 Nno) Pno 1(”0,0)

Limit of the normalized RDS process

ForanintegeN 1, let us consider the following renormalizati¥f = (AN;BN)
of the procesX:

XtN = NEXbNtc: Abl\’l\ltci Br\ll\ltc
Notice thatX N is constant by part and jumps at the tintgs= n=N for n 2
f1;:::;N + 1g. Thus the procesXN belongs to the spad® ([0; 1]; [0; 1) of
cdl g processes fronj0; 1] to [0; 1 embedded with the Skorokhod topology [86,
55]. Define the filtration associated ¥ as(F N )i2j0:1; = ( Fontc)tzo:y- We aim to
study the limit of the normalized proceXs' = (AN ;BN) whenN tends to infinity.

2 [0;1F; t2[0;1] (1.15)

Assumption 1.1 Letag; by 2 [0; 1] with ay > 0 andly = 0. We assume that the

sequenceXy = leo converges in probability to the vectgp = (ao; ky) asN
tends to infinity.

Theorem 1.1 Under the assumption 1.1, whihtends to infinity, the sequence
of processeX N = (AN;BN) converges in distribution i ([0; 1], [0; 1) to a
deterministic patkx = (a;b) 2 C([0; 1]; [0; 1?), which is the unique solution of
the following system of ordinary differential equations
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Z,

Xt = Xo + f (s;Xs)ds; (1.16)
0

wheref (t; x;) = (f1(t; x¢); f2(t; X¢)) has the explicit formula:

Xl
fi(t;xe) = ¢ (c Kp(t+a) laso (1.17)
k=0 .
fatx)=(1 t a h) + (c Kp(t+a) c (1.18)
k=0
with
Pe(2) = Me @ 2. K2f0;:: 0 (1.19)

k!
andcis the maximum value of coupons distributed at each time step.

Remark 1.1 Since the limiting process 2 C([0; 1]; [0; 1]) is deterministic,

the convergence in distribution of Theorem 1.1 is in fact a convergence in
probability.

The proof of Theorem 1.1 follows the steps below. First, we enounce a semi-
martingale decomposition faX N)y ; that allows us to prove the tightness of
the sequenceX N)y ;1 by using Aldous-Rebolledo criteria. Then, we identify the
equation satisfied by the limiting values @ N ) 1, and show that the latter has a
unique solution.

Let us first have some comments on the solution of (1.16).

Proposition 1.2  Let us denote

to:=infft 2 [0;1]:jaj =0g: (1.20)
Thena; = 0; 8t 2 [to; 1]

Proof. Forc=1, (1.17)-(1.18) gives that

o

a_, tta) L= e @ta<0 ifa>0
dt ~ Po(t+ @) Lao= 1 e @9>0 jfa=0:

Recall also that for ali 2 [0; 1], a; + t 2 [0; 1] since it corresponds to the proportion

of individuals who have received a coupon (already interviewed or not). The right
hand side of1.17)(1.18)has a discontinuity on the abscissa axis that implies that
the solution stays at O aftég. Notice that this was expected since witen 1, f 0; 1g

is an absorbing state for the Markov procéa$ )y .
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Let us now consider the case> 1. We have then that

da
dat = (a+t) laso;
where
X1 X1 k k
(2) = ¢ (c Kp(z)=c¢ (c k)%e @ 2. (1.21)
k=0 k=0 '

By Lemma 1.4, the function is strictly decreasing with(1) =0 and (1 1=)>
1. From this we deduce thatis a positive function orf0; 1) and that there exists
auniquez. 2 (1 1=; 1)suchthat (z.) = 1. Forallt suchthab<t<t ¢, we have

W: (a+t) 1+1= (a+1)>0:

It implies thatt 7! t + & is a strictly increasing function d; to] and thus

aQ<t+a <ty 8t2(0;ty):

If zz>tg,thenl = (z) < (to) < (t+ &) forallt 2 (0;tp). It follows that
ddi; > 0. Hence g is strictly increasing in the intervdD; ty). Notice that + a; is
continuous function ofD; 1], and since + & is strictly increasing, we deduce that
O<ag<a, =0, which is impossible.
If zz<ag<to, thenl= (z)> (t+ &) foralltsuchthat + a >z.. And thus
d - (t+a) 1< Owhenevet+ a >z;anda > 0.
If z. 2 [ap;to], then there exists a unique 2 [O;to] such thatt; + &, = z. It
follows that there is a valug in the interval[0; to] such that (t. + &_.) = 1. Then

(t+a)> 1forallt 2 (0;t;) and (t+ &) > 1lfort 2 (t¢;1). Thus,

da da

E> Owhent 2 (0;t)) and a< Owhent2ft>t.:a > 0Og:

After the timety, there is again a discontinuity in the vector fidida) 7! (t +

a;) 1a-0 Which is directed toward negative ordinates wlzern 0 and positive
ordinate whera < 0. This implies that the solution of the dynamical system stays at
0 after timet,.

Now, for the first step of the proof of Theorem 1.1, we write the Doob's decomposi-
tion of (XN )y 1 as follows.

Lemma 1.1 The procesX N, for N 2 N , admits the following Doob decom
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osition:XN = XN + N+ MN, orin the vectorial form
t 0 I t t i I I

X N1’ AN N;1 M N
xNi2 T BBJ R VT A VR T I (1.22)
The predictable process with finite variationg' is:
| |
1" tc . '
{\l’l - 1 X E[Yn n CJ Fn 1] 1An 11 (1_23)

2 TN | EHn YatcjFq 4]

n=

(7]

The square integrable centered martinddl® has quadratic variation proces
M Ni given as follows:
!

N :iwc Var Y, cjF, 1 CovY,"cH, Ys"c
t N2 _ CovYos"cH, Yo."c VarH, Y,"cjF,:
(1.24)

Notice that the quantities ifl..23)and(1.24)can be computed as functionsAf
andBY forn2f1;::;Ng:

Xl
E[Ya" cjFn 1]=cC (¢ K)P(Yn = kjFq 1) (1.25)
k=0
where
o (N Nty NAN 1) k
P(Yn = kJFn l) - (N Ntn . NA{: . 1 k)|NkE
N@ th 1 Ath ) k 1
— — ; 1.26
1 N 1 N ; ( )
and n
EHnFa 1= 1 3 A . Bl | (1.27)
For the bracket in (1.24), the terms can be computed from:
h i X¢
E (Yo" 0?Fn 1 =+ (K AP(Y,=KFn 1) (1.28)
| 0 k=0 1,
h iy c
E Ya2"CcFn1 =@+ (k ©P(Y,=kjF, )A ; (1.29)
k=0
. n An 1 Bn 1
n n = _ — 1.
Var(HnjF, 1) 1 N N N 1 N (2.30)
and
N XAn 1
E[Hn(Yn * OjFn 1] = (k™ ©E(HnjYn = K)P(Yn = KjFy 1)



50 Chapter 1. The RDS process on supercritical Erdos-R2nyi graphs

, 3
N An 1 Bn1gX | XA -
NN Ans Be1ig™ epry, = kjE, 1)+ ckP(Yy = KjF y 1)
N n A, k=0 k=c+1
) 3
B X
" "L 47 (K cKP(Yo= kjF, 1)+ CE[YajF o o5
N n Ay k=0
3
B, . 4xc , ] n An 1 5
= = + N
L v _ (K cP(Ya = kjFn )+ c 1 & —
(1.31)

Proof. Since the components XN take their values ifi0; 1], the procesX N is
clearly square integrable. It is classical to wik@ as

1 %Itc
XtN = x(,)\l + W (Xn xn 1)
n=1
1 %ltc
= x(')\I + W E[Xn Xn 1an 1]

n=1

1 %Itc

+ W (Xn Xn 1 E[xn Xn 1an 1]):
n=1

Letus call ) the second term in the right hand side, andl the third term. We
will prove that N is anF N -predictable finite variation process and that' is a
square integrable martingale.

Let us first conside( ')o ¢ 1. From (1.2), we have that for the first component:
Ar Abi1=Y"c lfAnl 19> Bn Bn1=Hp, Y,"c

Moreover, foreacm 2 f 1;::;;Ng, E[X, X, 1jFn 1]isF, i-measurable. Hence,
N'is Fynte 1-measurable. The total variation of" is:

1 %Itc
=N JE[An  An 1jFn 1]i+ JE[Bn  Bn 1jFn 4]
n=1

(2c+ )t< +1;

by using (1.2), a¥, * ¢ candE[H, jF, 1]

Furthermore, usingl.2), we can recover the expressi@n23)of N announced in
the lemma as:
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XC
k=0
XC
= kP(Yn = k]Fn 1)+ cl P(Yn CJFn 1)
k=0
XC
=C (c K)P(Yn = KkjFy 1);
k=0
where
_ N Nt NAN 1 k N Ntp NAN 1 k
P(Yn = kJFn 1)= " k tn N 1 W
(N Nt, NA{\:] 1)! k L N Nt, NAN 1 k
~ (N Nt, NANY 1 Kk N N
_ (N Nt, NA}M 1) L K1
~ (N Nt, NAN 1 K)INK N
N1 ta AN)
1 N H.

Let us now show thatM N ), ¢ 1 is a boundedr N -martingale and let us compute
its quadratic integration process. For everd [0; 1], MN is FN-measurable and
bounded and hence square integrable:

MM = XN X N 2+4(2c+ )t 2+2c+ < +1:

Foralls<t,
2 3
1 %Itc
E[MthFsN] = E4W (Xn Xn 1 E[Xn Xn 1an 1]) Fszc]5
n:2Nsc+l 3
1 sc
+ E4N (Xn Xn 1 E[Xn Xn lan 1]) Fszc5
n=1
1 I%sc

= — (Xn Xn 1 E[Xn ><n 1an l]): MsN:

ThenM [ is an(FN)-martingale.

Let us denot&X ! = A, andX 2 = B,,. The quadratic variation process is defined as:
n #

VN ML VN M N2

H\/|N;2;|\/|N;1it H\/|N;2;|\/|N;2it ; (1.32)

HVINit=

where fork; " 2 f 1, 2g,

N:k N; 1 xe h k k : : |
H\A’;M’lt:m E Xy Xp o)X, X, 1) Fna

n=1
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h i h [
E (XK X&DiFn 1 E (Xy X, iFn 2
(1.33)
Using (1.2), we have:
. 1 Rte h X [
H\/IN'lit: m E An Av1 EA, A 4jFn 1] " Fna
n=1
tc
1 . c
= N2 Var(Y, ™ ¢F, 1) W: (1.34)
n=1
Proceeding similarly for the other terms, we obtain
1 %Itc
mMN2i = —  Var(H, Ya"dgFn 1) —;
N 2 - N
1 %Itc Cp_
MNEMNZ = = Cov(Ya» ciHn  Ya N CjFq 1) ~N (1.35)
n=1

This finishes the proof of the Lemma.

1.3.1 Tightness of the renormalized process

Lemma 1.2 The sequenc€X N)y 1 is tight inD([0; 1]; [0; 1]7).

Proof. The proof of tightness is based on the classical criterion of Aldous-Rebolledo
([98, Theorem 2.3.2] and its Corollary 2.3.3). For this we have to check that finite
distributions are tight, and control the modulus of continuity of the sequence of finite
variation parts and of quadratic variation of the martingale parts.

For eacht 2 [0;1], jANj + jBNj 2, implying that(A}N;BN) is tight for every

t 2 [0; 1].
Let0 s;t 1,
kK Sk S
1 %Itc
Bl EA, A, F, 1 + E B, B, {F, 1
n=bNsc+1
(2c+ )Hjt 5

Thus, for each positiveand , there existsg = T suchthatforalD< < o,
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0 1 2 3
1 2c+
P%} sup N> X “E§ sup ¢ 2‘% (e ) ", 8N
jt s jit s
0 st 1 0 st 1

(1.36)
By Aldous criterion, this provides the tightness(ofN )y 2.

Similarly, for the quadratic variations of the martingale parts, uglng4)and(1.35),
we have foral0 s<t 1,

1 %ltc 02
M N h MV = N Var Y,* cF, th Sj;
n=bNsc+1
1 %Itc
I’i\/IN;Zit h MN;Zis = N2 Var Hn YnACFn 1
n=bNsc+1
2( + ). .
—t  s;
N J )
tc
HVIN;l.MN;Zi h MN;l.MN;Zi i % Var(Y A GF ) 1=2
’ t ’ S N2 n J n 1
n=bNsc+1
) Var(Hn Yo A GFn 1) 57
o + Vi o

Thus, using the matrix norm dvl , »(R) associated withk:k; on R?,

sup kiMNiy hMNigk  sup  BMNL, h MNLig + N2, h MN2ig
jt sj jt sj
0 st 1 0 st 1

+2 IMNEMNZ b M N M N2

cra( + A+ o+,
) .

(1.37)

p_
+4( + + +
Consequently, forary> 0; > 0, choose such that -+ C?I < 9 .

" we have 0 1

P% sup jiMMi, hMNig> X< 8N 1
jt sj<
0 st 1

which implies thatiM N is also tight. This achieves the proof of the Lemma.

Identification of the limiting values

Since(X V) 1 istight, there exists a subsequefigg)n 1inNsuchtha{X V)y 1=
(A~;B M)y 1 converges in distribution iD([0; 1];[0; 1) to a limiting value
(a;b) 2 D ([0; 1]; [0; 1) (e.g. [85]). We now want to identify that limiting value.
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Proposition 1.3  The sequence of martingaléd N )y 1 converges uniformly
to 0 in probability whenN ! 1

Proof. With a computation similar the one leading to (1.37), we get

: . e e e e +
khM ik jh MV + M N2+ 2jhm N 2w N2 2 —(602 N4 A
(1.38)
By Doob's inequality,
+
E[sup kMNK?]  4E[KhM i ;K] 4602 4.
t2[0;1] N
For every' > 0,
!
im P supkMNKE>"  lim SE[sup kMMKE  lim 2EEF4) g
N1 t2[0:1] N1 t2[0:1] N1 N

The remaining work is figuring out the limit of finite variation part" . Let us recall
that

fi(t;a):=c Xl(c K)pe(t+ @) 140
k=0
fo(btasb):=(1 t a b +Xl(c Kp(t+ @) c:
k=0
and |
f(tah) = f‘;zt(;t;"?‘z)). (1.39)

the r.h.s. of (1.17)-(1.18), whepg(x) is the function defined in (1.19).

Proposition 1.4 There exists a consta@ = C(;c) > 0 such that for all
N 1,

1 Rt 1A .B
17 n LA B s O g

N
Su
b N ' N N

12[0;1] N N

n=1

Proof. Recall the equations for N in (1.23)and(1.26) Using(1.27) we have that:

1% n 1A By
N N " N ' N

n=1
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19&“‘3 Xc
W C (C k)P Yn: kan 1 1An 11
n=1 k=0
S n 1 A,
c (c  K)p« N TN 1an 1o,
k=0
]_%'tc Xc
+ W E[Hnan 1]+ (C k)PYn:kan 1 C
n=1 k=0
n 1 A,, B,, X n 1 A,
+
S N N (€ kp = N
k=0
2 Rtexe . n 1 A
N (c KPYya=kjFn1 p T l’lll . (1.41)
n=1 k=0

We are thus led to consider more carefully the difference bet®Wé¥n= k jF, 1)
andpc(tn 1+ Al ). We have

(N Nt, ; NAY 1)
(N Nt, 1 NAN 1 K)INK
1 2 k
=1 t,1 A} W)(l th 1 A | W) 1 th1 A} W)
= Q@ ta1 AL )
here fork
where fork c, v K . |
Qx)= (x xn)= (DT ¥
n=1 j=0
i§ a polynomial of degrgdx, with the notationx, = n=N, & = 1; =
1 igenei; kXX, j k. Since
. . X : - L S (SR LR
Q) XK= () e j& jiiX] ( N ) i
j=0 j=0 j=0

this yields:

(N Nt NAY 1) -
(N N NAY k nime Gt A
. P .
LS (S e
o N N

Secondly, we upper bound the difference betwglen =N )N(l o1 Al 1) and

exp( (1 t, 1 A} ). Using a Taylor expansion, we obtain that:

N@ tyh 1 Ath )

N =exp N(1 t, 1 A )log 1 N
=exp N(1 t, 1 A )log 1 N
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2

exp TR 1 ta1 AY

where there exists some constéht= C( ) > Osuch thatd ry < C=N?3.
Usingthatforx > 0,1 x<e * < 1, we obtain that for some constad§ = Co( ),

= e (1tnlA{\‘n1)

)

N@ th AN) C
0 e @ AL 1 _ oo 1.43
N N (1.43)
Lastly, there exists a constait = C,(c; ) 0such that
(k+1)
1 1 N 1+ &: (1.44)

Gathering(1.26) (1.42) (1.43)and(1.44) there thus exists a constady = C,(c; )
such that

Cy(;c)

P(Ya = kiFn 1) p(th 1+ Al\i 1) N : (1.45)
As aresult, from (1.41) and (1.45) we have for some congantC(;c) O
N iwtcf 1. An1.Bn C(;c).
‘" N, N’'N'N N

This proves the proposition.

Corollary 1.1 The limiting values of X N)y 1 are solutions of (1.17)-(1.18).

Proof. Let us consider a limiting valug; b) 2 D ([0; 1]; [0; 1) of (X N)n 1. With
an abuse of notation, we denote@¢" )y 1 the subsequence converging(&h).
From (1.22), Propositions 1.3 and 1.4, we obtain that the process

1 Rt 1
o % AN BN, 2 [0

n=1

X+

converges uniformly to zero whedi ! +1 . Using Lemma 1.3, the process

1 R 1
N f nT;A’;‘Tl;B’r}'Tl 1 t2[0;1]

n=1

converges uniformly to the process
t

f(s;as; by)ds; t2 [0;1] :
0

We deduce from this that the limiting value @ N )y 1 is necessarily solution of
(1.17)-(1.18).
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Uniqueness of the ODE solutions

To prove Theorem 1.1, it remains to prove the uniqueness of the limiting vadue,
that:

Proposition 1.5 The system of differential equatiof$.17)(1.18) admits a
unique solution.

Proof. Suppose thatl.17)(1.18)have two solutionga'; b*) and(a?; ?), then for
allt 2 [0; 1],
Z, Z,
jag & jo(s;a)  g(s;ad)jds+ ltaisog  Lrwsog ds;  (1.46)
0 0
where X 1

g(tas k) =c (¢ Kpe(t+ a): (1.47)
k=0

In the first term of the right hand side of (1.46), we have
jgs;ia) o(s;@) | @(s; s)jas  adj; (1.48)
for some real values betweeral anda?, i.e. minfal;a?g s maxfal;a’g.
For the second term, we want to prove that fort &l [O; 1],
Z t
laso  lazso ds=0: (1.49)
0
In order to do so, we first prove that all the solutiongbfL7)touch zero at the same
point and that after touching zero, they stay at zero. Consider the equation:
day

S=gta) L (L17)

Because the functioft;a) 7! fi(t;a) 1 is continuous with respect tband
Lipschitz with respect ta on [0; 1], Equation(1.17) has unique solutiom for t in
[0; 1]. Let us define _

to:=infft> 0:a =0g

and .
to:=infft> 0:a =0g

wherea, is a solution 0f(1.17) Since the two equatior(&.17)and (1.17") coincide
on[0;to " to], & = ggforallt 2 [O;to " to]. Thus,to = to andal = a2 = a, for all
t tpoimplying that Ot laso laso ds=0,forallt to.

To conclude the proof gfL.49) it remains to show tha! anda? stay at zero after
timety. Indeed, this fact is claimed by the Proposition 1.2.

Consequently, from (1.48) and (1.49), we have
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4

t
& j@gs; sias  ajds: (1.50)
0
And becausé,(:; :; b is differentiable, we also have
t
g ] max j@ o(s; a; o)jjtt  Kjds; (1.51)
o a2[0;1]

where s is a value betweeh! andk?, thatismin(k; 2) s max(k; k2). Ap-
plying the Gronwall's inequality, we obtain
o i+ ittt ,
Z, :
(jag  agj+jth kB exp i@fu(s; o)+ max @ a(sia; ) ds =0;
0 )

for all t in [0; 1]. That means the equatio(ls17)(1.18)have at most one solution.

The function(a(t; x); b(t; x)) is continuous, then by Lemma 1.3, Proposition 1.3, we
conclude that every subsequeri@e™)y 1 (Xn)n 1 converges in distribution to

a solution of the differential equationf$.17)(1.18) And because of the uniqueness
of the solution 0{1.17)(1.18) which is proved above, we conclude that the sequence
(XM)n 1 =(AN;BN)y 1 converges in distribution to that unique solution.

The central limit theorem

For everyN 2 N , let us define:
& =infft> 0,A =0g: (1.52)

When the underlying networks are supercritical @&dR2nyi graphsER(N; =N ),

> 1, the size of the largest and the second largest components (by Theorem 0.5) is
approximated afCnaxj = O(N) andjCy)j = O(log(N)) asN tends to infinity.
The probability that one of the initia individuals belongs to the giant component
converges to 1. Indeed, we can consider that our initial condition consists of the
first nodes explored untbbkxkN c individuals are discovered. Each time there is no
more coupon, a new seed is chosen uniformly in the population, of which the giant
component represents a proportior(see Theorem 0.5). Hence, the number of seeds
S until we first hit the giant component follows roughly a Geometric distribution with
parameter . Since for seeds outside the giant component, the associated exploration
trees are of size at molstg(N ), the number of individuals discovered before finding
the giant component is of orderg(N ) < bkxokN c. Under the assumption 1.1, there
IS a positive fraction of seeds belonging to the giant componeBiRiN; =N )
with a probability converging to 1.
For alln = bNtc with t &, the RDS process restarts by choosing new seeds
from the next components, whose sizes are at @@sig(N )) (by Theorem 0.5) as
N tends to infinity. When we normalize the procé€ss,), , n Ne by the size of the
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populationN, the normalized proceg&\' ; t NN 1 converges in probability
uniformly to 0.

For the central limit theorem, we are interested in the limit of the RDS process in
the giant component R (N; =N ); > 1. By the proposition 1.5, we see that the
Markov procesgAN )y 1 absorbs after the timig with probability approximatelyl

asN tends to infinity. Thus, in the sequels, we work conditionallyfofl  tog and

all the processes are treated only in the intej@gl].

We now consider the process

X N (&; p_—
WwN = 2Nt pﬁ(a{ B) _ NXN  x);t2[0;tg;N 2 N : (1.53)
Assumption 1.2 Let Wo = (W¢;W@) be a Gaussian vectow/y, N (0; ).
Assume thaw)' = = N(XN  xo) converges in distribution té/, asN ! 1

Theorem 1.2 Under Assumption 1.2, conditionally dnl  tog, the process
(WN)N 1 converges in distribution i ([0; to]; R?) to Y, which satisfies

W= Wy + ] G(s; as; bs; Ws)ds+ M (t; ar; b) (1.54)
where 0 |
G(t; a;b;w) = o + OV(VtZ;r a)vg(lt . a)Wl. : (1.55)
(2):=c . 1(c k)%e @ 2. (1.56)
o !

and qz) is the derivative with respect toof ; M is a zero-mean martingale
with the quadratic variation

1
Zt
M (;a;b)iy = ?cp m; (s;as;bs)dsg ; (1.57)
0 i;j 2f 1,29
in which
0 1,
X X
mu(tah) = (¢ K’p(t+a) @ (c Kp(t+aA ; (1.58)
k=0 k=0
Mmoo (t; a; b) ::0 @ t a bh+2 (1 1t a b
XC
@c( 1+ p(t+ a)A + my(tab); (1.59)

k=0
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0 1

XC

mptab:i= 1 t a @ 1)+ pt+ A mu(tab):
k=0

(1.60)

The proof is divided into several steps: first, we whitd! in the form of a Doob's
composition; then we claim the tightness of the sequéWe® )y 1 in D([0; to]; R?)

by proving the tightness of both terms: the finite variation part and the martingale;
next, we identify the limiting values of the sequer®®" )y 1; and finally we
demonstrate that all the limiting values are the same.

Recall from Lemma 1.1 that:
I l ! I

S P A
X" Bo' t M, ’
where
8 9
. 1 %tc< X 1 - =
ey ¢ (6 KP(YiEKF ) L
i=1 ( k=0 ’
N;zziBkdtc 1 1 A Big
t N . N N N
= 0 19
X1 =
@ (c KP(Yi=kiFi DA
k=0 '
and where " , . : L
N: H\/|N,1;MN,1It H\/|N,1;MN,2|t
hM ™y = AV N2 MNSL v N2 M N2 (1.61)
From the proof of Lemma 1.1, we recall the equation (1.40):
i%th n 1An 1_Bn 1 E (1 62)
ON N " N ' N N’ '
n=1
wheref is defined in (1.39)f (t;a;b) = (f.(t; a; b); fo(t; a; b)),
Xl
fi(t;a) :==c (c Kp(t+a 1
k=0
Xl
foltta;b)p=(1 t a b + (c Kp(t+a) c:
k=0

and recall the components of the quadratic varialdr i, given by (1.24):

1 %Itc
N2 Var(Yn N ¢F 1),

n=1

H\A N;lit =
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N;1. N;2; _— 1 %tc . ; .
v Nt M Cies gz Cov(Ya " C;Hn  Ya”CjFn 1);
n=1
N;2: _— 1 e A A .
W ! It - m Var(Hn Yn CJFn l)'
n=1

Notice that in this section, we work conditionally 6n  tog and that all processes
are defined in the time intervfD; to], then alltermd, , 1;1 1 b Ntgc, 1AtN >0
1,0 arereplaced by 1.

ForallN 2 N and for allt 2 [0;to], W is written as:
! ! !

R :
p— AN ao p— N;1 tf (Sasbs)ds p_ MN;l
WN = N 0 + N t 1A=, Gss + L.
‘ BY by e Rifz(s;as;bs)ds M2

— N N N.

We prove tightness of the processif[0; to]; R?) and then identify the limiting
values.

1.4.1 Tightness of the process (WN)y 1

Proposition 1.6 The sequencNN)y 1 is tight in D ([0; to]; R?).

Proof. To prove that the distributions of the semi-martinggM&" )y 1 form a tight
family, we use the Aldous-Rebolledo criterion as in Lemma 1.2. To achieve this, we
start with establishing some moment estimates that will be useful.

Step 1: moment estimates
From (1.38), we have
(1.38) E[khNi k] (662 +4 )t

For the term

. wtc X¢ . ‘
jevyy PRow 1T o o g LI AL
N N N
i=1 k=0
p_ 1 R X i 1A
+ NW__ c (c K)pk N + Nl 1
i=1 k=0
%IC ZN X¢
C (c Kp(s+a) 1 ds

=1 gy k=0
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p 4 X
+ N c (c Kpc(s+a) 1 ds: (1.63)

bN't c=N k=0

Thanks to (1.62), we have that

P— ., 1X° Xe i 1 A .
* — —+
N N C (c  K)pxk N N 1
=1 k=0
p_ 1R i 1A, B C
N N il f . 1, i1 - .
' N N ' N ' N pﬁ

i=1

Becausd ; is continuous and is defined in a compact[®el]®, then the third term

in the r.h.s. of (1.63) is upper bounded By = )ZB%}S a(Gab)

Foralls2 L1:-1

N "N I
i1 A i1 N Px
+ + + i —
P(s+as) P — N as Al szég] 4z @
| (1.64)
1 wNt o
—+ p>= sup ——(z
N N zz[og] dZ( )
(1.65)
The second term in the r.h.s. of (1.63) is bounded by
_ Mtexe EN i 1 A
N (c k) Ps+a) po g+ o s
i=1 k=0 (i 1)=N
c(c 1) 1 4 |
su z — +  jwNijds
Zz[og] OIZ() P W
Thus,
j eny C +max ap)z(oap If 1(t & D) +SUP,z 00y e (z) Ll
t I"W
c(c 1)Zt .
* sup. d Bz i jwttjds:
z )

Using the similar argument, we have that

(4 as R d 1
j eNi2; C + SUP amyaiony I o6 & D) + SUP,o0) P(2) 57 +
t

Y
c(c 1)+

Lz Zt

WNlds+  jwN2jds:

+  sup ()

z2[0;1]
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Hence, 7t

+C%;c) kwlkds (1.66)
0

CY;c)
k €Nk —

Then for everyt 2 [0; tg],
E[kWNK]  E[k €N k] + E[kMNK]
Zt
+C%;c) EKWNK]ds:
0

(6 +4 )+ gC)

And thus by the Gonwall's inequality, we deduce that
sup EKWNK] (62 +4 + CY;c)e™e)=c™ 8N 1L (1.67)
t2[0;to]

Let0 s<t to,
7t

E[RWN  WNK] CO(;%)NE S i@ +a )t 9+ C%Ric) ERWNKdU:

S
(CY;c)+6c+4 +CXc)CT(t 9)
Then for given" > 0; > 0, choose suchthat < " (CY;c)+6c+4 +
C%;c)c™) 1,
0 1 2 3
PR sup kWY WNk> X EQ sup kwM  wNKE < (1.68)

jt sj< jt si<
0 s<t 1 0 s<t 1

By (1.67) and (1.68), we can conclude t@tN )y ; is tight in D([0; to]; R?).

Proposition 1.7 The martingale(i(/l NN 1 converges in distribution to a Gaus
sian proces§Mi)o ¢ t, on[0; to].

Proof. Keeping in mind thaA, A, 1= Y,~c¢c landB, B, :1=H, Y,~cC
and by (1.33), we have

1 %‘tc( h i h i 2)
i, = EM"0*Fn1  E Ya"cFni1
n=1
(1.69)
g o L xten . N
Ty = N Var(HpjFn 1) 2 E[Ha(Ya " QjFn 1]
n=1

(0]
E[HnjFn 1JE[Yn "~ dF, 4] + Ht/' N;lit; (1.70)
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Hant fpnig = L Rten _h A !
! ; ! It = W E Hn(Yn C) Fn 1

n=1 0

E HojFn 1 E Ya~rgFn 1 h BN, (1.72)

From (1.69), (1.28), (1.29) and (1.45),

Ho N2 1wtcm i 1A 1B

" N_ " N NN
e 128K X e WeCk) (e ICGT)  Daie).
o N oo N N N

From (1.70), (1.30), (1.31) and (1.45),

hiA N2 i%tc I 1 A 1 Bj Dz(;C)+D1(;C)_
CON N N N N N
P . ) P .
whereD,(;c)= +2 [,(k® ckC(;k)+2c +1+ [ _,(c K)C(;k)
and from (1.71), (1.31),

e, L X i 1A . B Ds(;c)  Da(:c)
WN,l.MN,z -+ A1, Bia 3\, + AW .
; It N B mi2 N ' N N N N
P : :
whereD3(;c) = k=0 (K> ¢ck)C(;k )+ c . And since the vectorial func-

tion (M )1 k- » are continuous, then by Lemma 1.3, we obtain thét'i; con-
R

verges uniformly in distribution to (M (S; as; b))k 2f 1.240S. By Theorem 2 in
0

[100], we can conclude th&aM N)y 1 converges uniformly in distribution to the
Gaussian proceg$/)2(0:1,), Which is identified by its quadratic variatidiv i, =

R
(mjj (S; as; b)) ij 2f 1.290S.
0

Proposition 1.8 The finite variation €} ;t 2 [0;t(] converges in dis-
N 1

tribution to the process ;t 2 [0;to] , which is the unique solution of the
stochastic differential
Z t
1= G(s;as; by We)dt (1.72)
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0 1
Zt
1R o1 p_
+ @— Nf S AN BN, N (s: a; by) dsi
N N N N
i=1 0
=DM+ EN; (1.73)
where 0 X 1 K 1

c (€ K @ t ake Tt 1
f(ta;b) = k=0 xe K
(1 t a (1 t a)

b c+ (c k)F(l t  a)ke

! k=0
fi(t;a;b)
f,(t; a; b) (1.74)
From (1.62), we have
0 " 1
tc )
kDNk = pﬁ@{\' L f :;AL;BL A ¢ f):
N i1 N N N N
We need to find the limit oE} .
xep 2y J
EY = N (g ALGBLL) f(siaih) ds N f(siash)ds
i=1 i1 " " bNt ¢
N N
(1.75)

Becauséd is continuous function, defined in the compact[€elL]°, the second term

in the r.h.s. 0{1.75)is bounded by )28%3 K&K and thus converges fbas
NI1

We writef as !

Cail (t+a)
FEab=" qrarp (t+a)
X! (1 2"
where (z)= ¢ (c k) kl e ®2and (2= (1 2z).Then
k=0 ’
IN + AN, (s+ as)
R U G I LIS
2
R i) (- 9+(AN.  ay)
i1 o 11 whil i
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|
* 2
i1 A
T S + ‘psﬁ 0? i;s);

where ;. takes the value betweég! + AY , ands+ as;  is) (resp. X is))) is
first derivative ¢esp.the second derivative) ofat ;.s. And

i1
——tAL+BY,  (stath)
N N N

CF 9+(AYL a)+(BY, by
|

i1 whit Nz

= _— s+—p—s_+—p—_
N N N

So the firsct) term in the right hand side of (1.75) can be wiitten as

mtc% Wi * i AL §
N i=1 WiN;ll + WiN12 0 114 A’I\l 1 WiN;ll
N N N N N
0 ( ) 1
R p_ .
gite N s ©LL+ AN, ds
i1 N
+ N )
i=1 R P i1 0 i1 N
N s 1+ St Aivl d
i1
"0 1
ﬁ p— . N; 1 2
%tc% - N IN_l S + gsﬁ O? i;s) d
+ N
— . . 2
=1 P N IN—l S + yg—SNWl 0({ is) ds
i1
N
(1.76)

BecausédWN)y 1 is tight, there exists a subsequencg\Wwf )y 1, denoted again
(WN)n 1, which converges in distribution &/ = (W?1; W?) 2 D ([0;to]; R?). The
second and the third term of (1.76) converge in distributiod $o1ce
2z _ .
Xt p N | 1 g 0| 1
N N

+Al, ds supj (2N
N

=1, , z2[0;1]

N

and withtvN @ WN defined as in the Skorokhod's representation Theofa,

converges uniformly almost surelny & W, we have(f/VN )N 1 is bounded and
that
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'

Xiedp g vt ©
N — s + P {is) ds
=1 4 N N

N

supj %z)j +sup kwNlk N 2
z2[0;1] N 1

Then by Lemma 1.3, €V)y 1 converges in distribution to a process, which satisfies
equation
|
Zt -
e _ s+ as)Wy

L= W1+ W2) s+ awi 9 (377

The uniqueness of the SDEs

Since the proceg®VN )y ; defined in a closed intervdl; to] and tight inD ([0; 1]; R?),
so uniqueness of the solution of the SQIES4)is proved if the criteria in Theorem
3.1 of [95, page 178] is verified. We need to justify that the functi@(sw;) and

(t;wy) = WM (;w)i are Lipschitz continuous.e. for everyN 1, there exists
Ky > 0such that:

kG(t;u) G(t;w)k+ k (t;u) (tw)k Kyku wk; 8u;w2By;
whereBy = fx :kxk Ng:
Indeed, this condition holds because

kG(t;u) G(t;w)k 2r2n[gi<]j “2)j+ ku wk;

and (t;w) does not depend on. Hence, the pathwise uniqueness of solutions
holds for the equation(1.54).

Some lemmas used in the proof

Lemma 1.3 Letf be a function inG,([0; 1; R?), and let(XN)y 1 be a se-

quence of stochastic processeBi(0; 1]; [0; 1%). If X N @D x 2 C([0; 1]; [0; 1)

for the Skorokhod topology oB ([0; 1]; [0; 1F%), then

Zt
1 W°f n 1

f (s; Xg)ds:
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Proof. Sincex N 19 X, by Skorokhod's representation theorem [86, Th.25.6,
p.287], there exis€N 2 D ([0; 1];[0; 1) andX 2 C([0; 1];[0; 1]?) defined on a
common probability spacg® F;P) such that€N Dxn 2D x andeN 1

X a.s. Forany 2 [0;1]and foranyN 2 N ,

7t
1 Xte 1
S ”T;%L f (s:@.)ds
n=1 N 0
1 itc no1 tc Z Zt
N f N el f(s;%)ds + f (s;%,)ds
n=1 N n=1, ;4 bNt ¢
N N
%Itc ZNL

n 1 gy _ kf ky
. fT,)@nTl f (s;XRs) ds+ N

Let " > 0. From the uniform continuity of , there exists a positive constant
= (x) > Osuch that for al(t;x); (t%x%9 2 [0;1] [O; 1P satisfyingjt tJ +
kx  x%; < ,jf(t;x) f(t%x9j<"=2 Now,

ite 20 n 1 .y
f T,)eu f(S;ﬁS) ds
n=l, , "
ite 20 n 1 .y
_ PR TSR Loiwen e, ds
il E N Rk
n=1n 1
wite 20 n 1 .y
+ f N ;)eu f(S;%S) 1Ni+k)@§‘ ®ski< ds:
n=l, ,

Becausé€" converges uniformly tif a.s., there existdo(! ) such thasups, p.1(1=N+
KN Xk)<; 8N Npa.ss.FoP-almostall 2 ,whenN  max(No(!);2kf ky ="),

Zt
1 %Itc n 1 N
N f < ')e”Tl f (s;%5)ds
n=1 0
tc 27
SUpkfk 9@ n 1 .
o N R
n=l, ,
. . N
2727

The upper bound is independenttand thus we have that for &l O:
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Zt
. R noa N
lim sup — f —

N! +1 t2[0;1] N n=1 N

This finishes the proof.

X 1 f(s;R;)ds " a.s: (1.78)

Lemma 1.4 Denote

X1 K
(2)=c (c k)%e

k=0

Then there exists a uniqug 2 [0; 1] such that (zg) =1 andzo> 1 1= .

@2 ¢ 2> 1 (1.79)

Proof. For allz 2 [0; 1], 1
(@ 2z)¢*
2)= ce @2+ c k——5—e ¢ 7

3

K1 (k)
k
5 i (c k)%e 1 2)
X2 X 1
=e ®24 c+ (c k 1)( (1k' 2u (c k)-( (1k' 2)"s
2 k=0 ' k=l3 ’
. X2(@ 20 (@ 2)°%% _ .
— e @24 1 B K © 1 S < o)

which gives that is decreasing. Furthermore, we hay@ 1= ) > 1forc
and (1) = 0. So the equation(z) = 1 has unique root, denoted lay 2 (1
1=; 1).

Lemma 1.5 We have that

Jim P(Q to)=1: (1.80)
Proof. For" > 0, let
Ni=infft> 0;A) g (1.81)
and
t.:=infft> 0;a "g: (1.82)

Because\N is c dl g and ais continuousinfz(o.1; & NIilgn infi2(0:1 A[\'A n- Then

forany0<" <" © by Fatou's lemma:
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1=P( inf ]A[\' >")  P(lim inf AN\, >")= lim  P( N> tu):

t2[0;t.0

N1  t2[0;t.0]

Let"%! 0, we have

N|i'£n P(o to)=1: (1.83)
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The work in this chapter is submitted to the journal ESAJMnder the major revision
[105].

The discovery of the hidden population”, whose size and membership are unknown,
is made possible by assuming that its members are connected in a social network
by their relationships. We explore these groups by a chain-referral sampling (CRS)
method, where participants recommend the people they know. This leads to the study
of a Markov chain on a random graph where vertices represent individuals and edges
connecting any two nodes describe the relationships between corresponding people.
We are interested in the study of CRS process on the stochastic block model (SBM),
which extends the well-known Eog8-R2nyi graphs to populations partitioned into
communities. The SBM considered here is characterized by a number of véttiees
number of communities (blocks), proportion of each community = ( 4;:::; m)

'European Series in Applied and Industrial Mathematics
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we give a precise description of the dynamic of CRS process in discrete time on an
SBM. The difficulty lies in handling the heterogeneity of the graph. We prove that
when the population's size is large, the normalized stochastic process of the referral
chain behaves like a deterministic curve which is the unique solution of a system of
ODEs.

Introduction

In Sociology, some populations may be hidden because their members share com-
mon attributes that are illegal or stigmatized. These hidden groups may be hard
to approach because these individuals try to conceal their identities due to legal
authorities (e.g. drugs users) or because of the social pressure (e.g. men having sex
with men). In such populations, all the information is unknown: there is no sampling
frame such as lists of the members of the population or of the relationship between
the latter. It causes many challenges for researchers to identify these groups. The
discovery of the hidden populations is made possible by assuming that its members
are connected by a social network. The population is described by a graph (network)
where each individual is represented by a vertex and any interaction or relationship
(e.g. friendship, partnership) between a couple of individuals is represented by an
edge matching the corresponding vertices. Thanks to this important feature, we are
allowed to investigate these populations by using a Chain-referral Sampling (CRS)
technique, such as snowball sampling, targeting sampling, respondent driven sam-
pling etc. (see the review of [78] or [47, 49, 50]). CRS consists in detecting hidden
individuals in a population structured as a random graph, which is modeled by a
stochastic process that we study here. The principle of CRS is that from a group
of initially recruited individuals, we follow their connections in the social network

to recruit the subsequent participants. The exploration proceeds from node to node
along the edges of the graph. The interviewees induce a sub-tree of the underlying
real graph, and the information coming from the interviews gives knowledge on
other non-interviewed individuals and edges, providing a larger sub-graph. We aim
at understanding this recruitment process from the properties of the explored random
graph. The CRS showed its practicality and efficiency in recruiting a diverse sample
of drug users (see [6]).

CRS models are hard to study from a theoretical point of view without any assumption
on the graph structure. In this paper, we consider a particular model with latent
community structure: the stochastic block model (SBM) proposed by Holland et
al.[54]. This model is a useful benchmark for some statistical tasks as recovering
community (also called blocks or types in the sequel) structure in network science [7,
42, 46]. By block structure, we mean that the set of vertices in the graph is partitioned
into subsets called blocks and nodes connect to each other with probabilities that
depend only on their typebe. the blocks to which they belong. For example, edges
may be more common within a block than between blocks (e.g. group of people
having sexual contacts). We recall here the definition of SBM (we refer the reader to
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the survey in [1]):

Definition 2.1 LetN be a positive integer (number of vertices) be a positive

integer (number of blocks or types),= ( 1;:::; m) be a probability distri-
bution 0||1j 1, :::mg (the probabilities of then types,i.e. a vector of{0; 1]"

entriespy 2 [0; 1] (connectivity probabilitiéé). The pafr; G ) is drawn under
the distribution SBMN; ;P ) if the vector of types is anN -dimensional

, andG is a simple graph of sizBl where vertices andj are connected
independently of other pairs of vertices with probabifity ;. We also denote
the blocks (community sets) by] :== fv2f1;::;;Ng: = "gwith the size
N-:= [ ]i;12f1;::;mg.

Notice that whemm = 1, i.e. there is only one type. Any arbitrary pair of vertices is
connected independently to the others with the same probabilitysBM becomes

the Erabs-R2nyi graph, which is studied in [102].

Here, we consider the Poisson case where the connectivity probalglitidspend

onN and are given by, = =N. This means that each individual of the bldck
contacts in average. - individuals of the block. This implies that the network
examined is sparse. In the present work, we give a rigorous description of a CRS on
such SBM and study the propagation of the referral chain on this sparse model.

The CRS relies on a random peer-recruitment process. To handle the two sources of
randomness, the graph and the exploring process on it are constructed simultaneously.
In the construction, the vertices of the graph will be in 3 different states: inactive
vertices that have not being contacted for interviews, active vertices that constitute
the next interviewees and off-mode vertices that have been already interviewed. The
idea to describe the random graph as a Markov exploration process with active,
explored and unexplored nodes is classical in random graphs theory. It has been used
as a convenient technique to expose the connections inside a cluster, especially to
discover the giant component in a random graph models, for example see [92, 94]. In
our case, there is a slight difference in the recruiting process: the number of nodes
being switched to the active mode is set to be bounded by a constant. This trick helps
to improve the bias towards high-degree nodes in the population (see [50]). At the
beginning of the survey, all individuals in the population are hidden and are marked
as inactive vertices. We choose some people as seeds of the investigation and activate
them. During the interview these individuals name their contacts and a maximum
numberc of coupons are distributed to the latter, who become active nodes. One
by one, every carrier of a coupon can come to a private interview and is asked in
turn to give the names of her/his peers. Whenever a new person is named, one edge
connecting the interviewee and her/his contact is added but they remain inactive
until they receive a coupon. After finishing the interview, a maximum number of

C new contacts receive one coupon each and are activated. So if the interviewee
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names more thaopeople, a number of them are not given any coupon and can be
still explored later provided another interviewee mentions them. After that, the node
associated to the person who has just been interviewed is switched to off-mode and
Is no longer recruited again, see Figure 1.1. We repeat the procedure of interviewing,
referring, distributing coupons until there is no more active vertex in the graph (no
more coupon is returned). Each person returning a coupon receives some money as a
reward for her/his participation, and an extra bonus depending on the number con-
tacts that will later return the coupons. Notice that each individual in the population

is interviewed just once and we assume here that there is no restriction on the total
number of coupons.

The process of interest counts the number of coupons present in the population. We
also want to know how many people are detected, which leads to the number of peo-
ple explored but without coupons. Denote by the discretetirleN = f0;1;2;:::9
the number of interviews completedl,, corresponds to the number of individuals
that have received coupons but that have not been interviewed yet (number of active
vertices);B,, to the number of individuals cited in the interviews but who have not
been given any coupon (number of found but still inactive vertices)ini the
total number of individuals having been interviewed (number of off-mode nodes).
Because of the connectivity properties of the SBM graphs, we need to keep track of
the types of the interviewees and the coupons distributed not only to one community
but also in general to each of the communities at every step. We then associate to
the chain-referral the following stochastic vector procégs= (A,;Bn;U,); n2
N:

0O 1 0

A(l) Agm)
E@B g = B B{VA; n2N;

(1) (m)

whereA!’ (resp.Br({) andug)) corresponds to the number of active nodes (resp. of
found but inactive nodes and of off-mode nodes) of type stepn. In all the paper,
we will use the notatioiX 7'C?; X 20; x 3Oy = (AD; B Ul)).

The main object of the paper is to establish an approximation result when the size
of the SBM graph tends to infinity. In this case, the chain-referral process correctly
renormalized is:

1 Ap By Uy
XtN = WXbNtc: I\II\”C; I\'I\”C; I\II\”C

2[0,1F ™ t2[0;1 (2.1)

In all the paper, we corﬁlder spadé% equipped with the.*-norm defined for
x = (xY i x9) askxk = ¢, jxXj. For allN, the procesgX N )i2(0.1; lives in the
space of ¢ dl g processed([0; 1];[0; 1]* ™) equipped with Skorokhod topology
(see [93, 55, 59)).

There exist to our knowledge a few works of studying CRS form a probabilistic
point of view, for example Athreya anddRin [5]. In their work, they obtained a
result in a slightly different framework: they consider random walks on the limiting
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graphon to construct a sequence of sub-graphs, which converges almost surely to
the graphon underlying the network in the cut-metric. Whereas we take here to the
limit both the graph and its exploring random walk simultaneously. The main result
of this paper is that the sequence of proce¢Xe%)y 1 converges to a system of
ordinary differential equations (ODES). There has also been literature on random
walks exploring graphs possibly with different mechanism (see [11, 35] for instance).
Here we allow the exploring Markov process to branch. Also, our process bares
similarities with epidemics spreading on graphs (see [8, 90, 30, 57]) but with the
additional constraint of a maximum number of distributed coupons here.

The CRS is constructed by the similar principle of an epidemic spread and starts with
a single individual. There are two main phases of evolution (see [8]): the initial phase
is well approximated by a branching process (which we are neglecting here) and the
second phase is when the stochastic process is approximated by an deterministic
curve. In this paper, we focus on the second phase, but let us comment quickly on
the first phase. In the sequel, we will assume that:

thanl.

Remark 2.1 Under the Assumption 0.2, from the proof of Theorem 3.2 of

Barbour and Reinert [8], the early stages of the CRS now can be approximated
by a multitype branching process with the offspring distributions determined
by the matrix . Thanks to the Assumption 2.2 the multitype branching process
associated with the offspring matrixis supercritical. The analogous results for
the extinction probability and for the number of offspring at tffegeneration

as in the single branching process have been proved in Chapter 5 of [82]: the
mean matrix of the population size at timas proportional to ". And follow

the claim (3.11) of Barbour and Reinert [8], we can deduce that if we start with
a single individual, then after a finite steps, we can reach a positive fraction of
explored individuals in the population with a positive probability.

P .
Assumption 2.2 Setag; by; Up 2 [0;1]", 8 = (ay’;:::;ai™) suchthat ™, af’ =

kagk 2 (0;1], and sety; ug 2 [0;1]", withkpy = (0;:::;0) andug = (0;:::;0).
We assume that the sequentg = Nixo converges in probability to the vector
(a; ki Up), asN | +1 .

It means that the initial number of individuals with typat the beginning of the
survey is approximatelbaf)') N c. A possible way to initializing the process is to draw
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Theorem 2.1 Under the assumptions 2.2 and 2.2, we have: whkdends to
infinity, the proces¢X N)y 1 converges in distribution i ([0; 1];[0; 1 ™)
to a deterministic vectorial functiox = (x(‘))l m = (a(‘); b(‘); u(\))l “m

in ¢([0; 1]; [0; 1F ™), which is the unique solution of the system of differential

equations
Z t
X = Xo+ f (Xs)ds; (2.2)
0

U

wheref (xs) = (i (Xs)) 1 i 3 has an explicit formula described as follow:
o
Denote "

to:=infft 2 [0;1]: kak = & + :::+ a™ = 0g: (2.3)
Fors 2 [0; to],
0 1
X0k Xe kyh ¢
as ()"« 3s
f1\ (XS) = = S @C (C h);e <A —, (24)
k=1 kask |§ h=0 ht kask
0 1
xn (k) xn (k) Kk Xe kyh
B as K as s ( s) KA .
f206)= & v @ hige fA,
k=1 kack k=1 kask 5 h=0 !
(2.5)
)
_ &
f(Xo) = = (2.6)
with xn
|;§ = . ag) ug) ; I;:: l;; (27)
=1
and K= (- & B uf)

Fors 2 [to; 1], Xs = Xy,:

Remark 2.2 Notice that in this model, the time corresponds to the fraction of
the population interviewed. The tintgis the first time at whicha;j reache®

and can be seen as the proportion of the population interviewed when there is no

more coupon to keep the CRS going. Necessdgly, 1. We see thakak = 0
only if W= = afm) = 0. Itimplies thatf (x;) = 0;8t 2 [to; 1]. Then, the
solution of the system of ODE®.2) becomes constant over the interital 1].

The rest of this paper is organized in the following manner. First, in Section 2, we
give a precise description of the chain-referral process on a SBM random graph. This
relies heavily on the structure of the random graph that we construct progressively
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when the exploration process spreads on it. In Section 3, we prove the limit theorem.
The proof uses limit theory of ¢ dl g semi-martingale vector processes equipped
with Skorokhod topology (see [93]) and Poisson approximations (see [84]). Then in
Section 4, we present simulation results of the stochastic process and the solution of
the system of limiting ODEs. We conclude with some discussions on the impacts of
changing parameters of the models on the evolution of the chain-referral process.

Definition of the chain-referral process

Let us describe the dynamics ®f = ( X,)n2n. Recall thatkApk = P |r21 AS{)

is the total number of individuals having coupons but who have not yet been in-
terviewed. We start witldy seeds, whose types are chosen independently accord-
ing to . Ag is an m-dimensional random vector with multinomial distribution
M (bkaokNg,' 1,55 m), e P (A(l);:::;AE)m)) = (kg k) = ‘1‘1::: Km:k; 2

N such that i";l ki = bkagkN c and Assumption 2.2 is satisfied. Al&y = Uy =

(O; ::;0) and we seX o = (Ag; Bo; Up).

We now defineX , given the statéX,, ; previous to then™-interview and given the

the type of the upcoming interviewee is chosen uniformly at random according to the
number of active coupons of each type in the present time. To choose the type of the
next interviewee, we define an-dimensional vector, := (Irﬁl); o rﬂm)), which

takes valuel at coordinaté andO elsewhere if the™ interviewee belongs to block

*. Thisn™-interviewee is chosen uniformly among tk&, .k active coupons o

typesi.e. |, has multinomial distribution
|

1 :
| :(|(1).....|(m)) ©) M1 Ag)l . Agm)l
n n 1 lnp ,kAn 1k,...,kAn lk

(2.8)

If the chosen one belongs to blofk, Al is reduced by 1 and a number of new
coupons distributed are added up, depending on how many new contacts he/she
has. In the meantime, the number of interviewees of tyje increased byil.

ie. U = U+ 1. Among the new contacts of the" interviewee, de-

fine H{’ the number of new contacts of typewho have not been mentioned
before:K {’ the number of new contacts of typewhose identities are already
known but who are still inactive. Thid{’ new connections are chosen indepen-
dently among\- Ag) 1 Bf]\)l ¢) indiyjduals in the hidden population where

probability of each successful connection ig. , I p« - Hence, conditioning on
(Ng;:::;Nm); X 1, the random variablil’ follows the binomial distribution:
1
") 9 gin@ ) ") 0. ® A
Hy,” = Bin@N- Ay, Bp/p Ui 177puh e (2.9)

k=1

And theK { individuals are chosen independentlytt§’ from Br(]‘)1 individuals
and independently of the others with probability,_, | {0 P« - In that way, condi-
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tioning on(Nq;:::;Nm); Xn 1,Kn0also has the blnolmlal distribution:
O @ ag() X K A
K, Bin@B,’; I3 P (2.10)
k=1

In total, there ar&,, := H, + K, candidates, who can pOSSIb|y receive coupons at

stepn. Notice that, conditioning o(N+4; :::;Nm); X 1, (H ) =1:om and(K()) =1 :om
are independent, hencefortg, L
YO O 0.«
zOEBin@N- AV, UO; 1 Wp. A (2.11)
k=1
LetC, = (C(l) o r(\m)) ( = 1;::;m) be the numbers of coupons that are dis-

tributed at stem. By the setting of the survey, the total coupg@gj must be
maximumec. If the numbelZ, of candidates is less than or equattave deliver ex-
actly Z, coupons. Otherwise, we choose new people to be enrolled in the study by an

m dimensional random variab@?’ = (qu)' m)) having the multivariate
hypergeometric distribution with paragetém C; (Z(l) o Zrﬁm))) and the support
f(cy;iGn) 2 N8 m;c rﬁ); G = cg, thatis

-

Q 0
— G
P (CW;:;;cI™) = (¢ i6n) = o 7
=1 4n
Cc
In another words, (
. =) .
(") i m (")
. if z C
cO) = . I=1 =N : 2.12
" cy)  otherwise (2.12)
Let define by
no:=inffn2f1;::;Ng A, =0g (2.13)

the first step thatA,j reaches zero. The dynamicsXf can be described by the
following recurS|on

%An =Ay1 I+ G,

:E;n 1*Ha Gt for n2fLinneg (2.14)
§U = I
i=1
and Xn =Xp1 when n>ng:

The random network is progressively discovered when the referrals chain process
explores it.

Proposition 2.1 Consider the discrete-time process,): » n defined in
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(2.14) Forn 2 N, we denote by, = Xj;i n;(Ny;:::;Np)g the
canonical filtration associated witiX ,); » ~. Then the process(,), is an
inhomogeneous Markov chain with respect to the filtra(ibg),.

Proof. The proposition is deduced from the recursf{@ri4)of (X,); » n andthe
fact that the random variablés;; |1 ,; H, are defined conditionally oX, ; and

setting of the CRS survey: there is no replacement in the recruitment procedure.
For example, whem = 1, the definition ofH{ in (2.9) depends on time as

() =

n’ =N,

2.3 Asymptotic behavior of the chain-referral process

Let us now consider the renormalized chain-referral process givéhlinin the

time interval[0; to]. The main theorem (Theorem 2.1) shows the convergence of the
sequencéX N)y 1 to a deterministic process. For this, we look for an expression of
the equationg$2.14)as a vector of semi-martingales. We start by writing the Markov
chain(X,)1 n ~n asthe sum of its increments in discrete time.

X0 Ao X0 G
Xn= Xo+  (Xi X 1)= @BoX+ [BH CKX:
Uo li

i=1 i=1

Each element of the incremeXt,.; X, are binomial variables conditioned on
all the events having been occurring until stefWhen we fixn and letN tend to
infinity, the conditional binomial random variables can be approximated by some

Poisson random variables. The normalizatigh of X, becomes:
0O 1 0 1

Ag Rlte Ci I
XtN = %%Bog + Ni %H; c:llg :
Uo i=1 Ii

The Doob decomposition of the renormalized procegXe%).20:1,; given in Section

2.3.1 consists of a finite variation process and_.dmartingale. We use Aldous
criteria (conditionally on the past see e.g. [93, 98]) to show the tightness of the
distributions of these processes in Section 2.3.2. Once the tightness is established,
we identify the limiting values of this tight sequence and finally we prove that the
limiting values of all converging subsequences are the same, hence it is the limit of
processeéX N)y 1. This proves Theorem 2.1.

Denote by(F N )t210:1) := ( Fnte)iz o1 the canonical filtration associated(® )iz o1

2.3.1 Doob's decomposition
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Lemma 2.1 The proces¢X N )i20:1] @dmits the Doob's decompositiol:N =
X¢+ N+ MM XY = 2Xo. ( ¥z is anFN  predictable process
defined by

0 N'11 0 . 1
t 1 Rite E[C, In]_Fn 1]
{\l = % {\IZX = N %E[Hn CnJFn 1]£; (2.15)
. =t E[lnjFn 4]

(MM)i20.17 is @anFN  square integrable centered martingale with quadratic
variation procesghM Ni)i2(0.1) given by: for every(;k) 2 f 1;:::; mg?,
tc
E X' EXVjFa 4]
n=1 #
T
X©  EXWOjF, 1] Fn1; t2[01] (2.16)

N . 1
()N (k);N&  —
v ON M 0ON =

whereX is a column vector an¥{ T is its transpose.

Proof. In order to obtain the Doob's decomposition, we writetf@ [O; 1],

tc
X, 1X
XN=224 20 (Xp X, o2)
N N __
1 %Itc 1 %tc
=Xo+ 3 BXa XadFaadt g (Xa Xa1 EXa Xa 4jFa )
n=1 n=1

— yN N N.
=Xog +  + M

It is clear that the conditional expectations above are all well-defined since the com-
ponents ofX, andX,, ; are all bounded by, that N isF predictable and
that(MN )20y is anF{  martingale. We first check thét M)y 1 is a sequence

of finite variation processes and then we can concludeXiiats XY + N+ MN

is the Doob's decomposition.

Denote by = max « . Notice that
Sk2f 1;mg
KE[B, Bn 1jFn 1k=KE[H, CujF, 1k m( max k)t c=m +c
nk2f 1;mg
(2.18)

thenkE[X, X, 1jF, 1]k 2c+ m + 1. So the total variation of tN)tz[o;l] is

1 %Itc " " 1 %Itc -

N K nien (n pen K= N KE[Xn Xn 1jFn 1]k
n=1 n=1

(2c+ m +1)t;

V(D) =
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which is finite. It follows that( )20 is anFN  predictable with finite varia-
tions.

The quadratic variation ¢M N )2 0.1 is computed as follow. For eveky ™ 2 [1; m],

tc
) KN T 1 X ’ ‘ \ RN
Mt()N Mt()N - 2 Xr(1) Xr(1)l E[Xr(m) Xr(])lJFn 1]
n=1
T
X X,ﬁk)l E[X Xr(lk)lan 1]
%tc%tc . .
+ X0 xPy EXO XD
n=1 nf=1
n%n
T
X8 x® | EXY X1 jF ]
::L{\I+L§N:

The term LN is an FM martingale since whenevem® < n,
XU x  EXE X&) Fe i is Fn, 1 measurable. To see that
the quadratic variation df1 N has the forn{2.16) we write the ternLN as follows:

1 %Itc T #
LN =z E XU EXVjF, 1 X EXWF, ] Faa
n=1
1 tc T
" N2 X EXOFL 4 X EXFjF, 4]
n=1 "
1 %Itc T #
7 B OXE EXPIFal XEO EX{OFa 0] Fas
n=1 ,
1 %Itc T #
=qz B XY BXPIFaal X(0 O EXPOIFa a0 Faoo o+ LM
n=1
= HVINit+ L?N:
As a result,

“. . T
MM MBI NG LN+ L (2.20)

Because both N andL?® areFN martingaleL™ + L® isanFN martingale
as well. The ternfiM Ni,), is FN adapted with the variation

1 %Itcxn

2
N n=1 k;"=1

vN (v Niy) = E XU EXOjF, 4]

m
]
X® EXPOF, 1] Fai @ (221)
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The integrand in the right hand side is the conditional covariance between
Xrﬁ) aner(lk) conditionally toF,, ;. Becausé(r(]) anerﬁk) are vectors, this co-

variance is a matrix of siz2 3andforl i;j 3, theterm(i;] ) of this matrix is:
" #

E XiO EXEOF, 1 XxE® EXEOF, 1 Fno

- 1=2 ) ey 1=2
Var(XiO XrOF, 1) var(xE® xEQE )

by the Cauchy-Schwarz inequality. Thus:

1 Rte yn X3 . 1=0
N2 Var(X ;) I()JFn 1)
n=1 k;"=1 ij=1

VN (MM Vi)

) .. 1=2
Var(Xi® - xE®E

where(Xn() x20). X3())—(A() Bﬁ,),Ur(,)) By Cauchy-Schwarz's inequality,

we have
x3 1=2 ) o 1=2
Var(X,';( ) rll( )JFn 1) Var(Xﬂ;(k) X#(kl)JFn 1)
i5j =b 10 1
x3 o 1=2 x3 , ) 1=2
=@ var(X;O X QiFn ) A@  var(Xi®  XiOF, ) A
i=1 i=1
3 X =
5 Var(XpO XgOiFa )+ var(XE® XiQF, ) (2.22)

i=1
From(2.17)(2.19)and by Cauchy-Schwarz's inequality, we obtain the following
inequalities

var(CO) 10F, 1) & var(1VjF, 1) 1

and Var(HO? CUjF, 1) 2( max 2 + &), (2.23)
nk2f 1;umg
As a consequence,
tc
vN N, Nz 3m2(cz+2( max “+ A +1)
=1 1mmg

1
W3m2(3c2+2 2+1) <1 :

Thus, the proof of the Lemma is completed.

2.3.2 Tightness of the renormalized process

Lemma 2.2 The sequence of processgsN )y 1 is tight in the Skorokhod
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spaceD([0; 1],[0; 1B ™).

Proof. To prove the tightness X N)y 1, we use the criteria of tightness for
semi-martingales in [98, Theorem 2.3.2 (Rebolledo)]: first, we verify the marginal
tightness of each sequen@éN )y 1 for eacht 2 [0; 1], then we show the tightness
for each process in the Doob's decompositiorXdf, the finite variation process

( M)n 1 and the quadratic variation of the martingé@ ™)y 1. For anyt 2 [0; 1],

the tightness of marginal sequer(¢€" )y is easily deduced from the compactness
of a sequence of random variables taking values in a compal; 4§t ™. Since

the sequence of martigal@s N )y 1 is proved to be convergent (to zero)liA as

N !I'1 (which is done by Proposition 2.2), we have the tightnesdvof )y 1.
Thus, it is sufficient to check the tightness condition for the modulus of continuity of
( Mn 1(seee.q., [85, Theorem 13.2, p.139)).

Forall0O< < 1andforevery;t 2 [0;1]suchthajt sj< ,we have that

1 %tc
ko k= g EXn Xn 1Fn 4]
n=bNsc+1
1 R .
W kE[Xn Xn 1JFn 1]k:
n=bNsc+1

By (2.17)-(2.19), we get
bNtc b Nsc 1

k N Nk N (c+m +c+1) (2c+m +1) g
Thus, for eac(l)’1> 0, choose W,We have that
1
P%} sup k §k>"g=0; 8 08N > —;
jt sj< 0

0 s<t 1

which allows us to conclude that the sequeqcé )y is tight and finishes the proof
of the lemma.

To complete the proof of Lemma 2.2, we now prove that:

Proposition 2.2 The sequence of martingal® N )y 1 converges t® in L2
asN goes to infinity.

Proof. Consider the quadratic variation ¢ N)y 1: According to the fomula
(2.16) we apply the Cauchy-Schwarz's inequality and then use the ineq2I&2)
to obtain that for every 2 [0; 1],

khv C)N M (k);N ik



84 Chapter 2. The RDS process on Stochastic Block Model

1 %Itc " . #
= Nz B OX§) EXPFaad X§0 EXPJFa ] Fas
n=1

1 Kte x3 . .. 1=2 ) . 1=2

N2 Var(X§O XiiFa 1) T Var(XE® XG5, )
n=1 i;j=1

N o Va0 XgUiFs )+ var( X% XTQGF, 5)
n=1 i=1

where(X ¥ x 20 x 30y = (AL B USY). From(2.17)(2.19)and(2.23), we
deduce that

1 X' 3m2
N ; = - 2
kb Nk NZ 2 c2+2(\;k2rfnii;:>§;mg -+ ) +1

1 3m? »

— + + 1)t )

N (3 +2 1)t (2.24)

Applying the Doob's inequality for martingale, for evetry [0; 1], we have

1

E Oma>§kMSNk2 4E khm Vi k N6m2(3<:2+2 2¢1) 1 0 as N!1
S

This concludes the proof of Prop. 2.2 and hence of Lemma 2.2.

2.3.3 Identify the limiting value

Since the sequendX N)y ; is tight, for any limiting valuex = (a;b;u of the
sequencgXN)y 1, there exists an increasing sequeificq )y in N such that

(X' ~)n 1 converges in distribution te in D([0; 1], [0; 17 ™). Because the sizes of
the jumps converge to zero wilth, the limit is in fact inC([0; 1]; [0; 1] ™). We want

to identify that limit. In order to simplify the notations, we also write the subsequence
(X V)N ras(XM)y 1= (AN; BN UN)y 1.

We consider separately the martingale and finite variation parts. Proposition 2.2
implies that the sequence martingélié" )y 1 converges t® in distribution and
hence(M N)y 1 converges to zero in probability. It remains to find the limit of the
finite variation proces¢ M)y 1 given in Equatior(2.15)and prove that the limit
found is the same (which is done later in the proof for the uniqueness of the system of
the ODEg2.1)) for every convergent subsequence extracted from the tight sequence

XMN 1.

Proposition 2.3  WhenN goes to infinity, we have the following convergences
in distribution inD([0; 1], [0; 1F ™):
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8 0 19
1R d)Zt<Xn al) K X (" T
o ECOF. g 7 2@ (e h)iie A ds
n=1 o - k=1 a's S h=0 . ]
(2.25)
Z
L PN P
o EHOIF, 4 (& o Sds: (2.26)
n=1 0 k=1 asl
t t S Zt N
l%CE[I OfFy 1= = XA, KA sk @ © A
n n - N1 H ,
N __ N . N N  kack
(2.27)
where ;X X" are defined as in Theorem 2.1. This provides the convergence
of ( N)n 1toa solutionx of (2.2).

Since the limits are deterministic, the convergences hold in probability. Moreover
the uniqueness of the solution (.2) will be proved later, which will imply the
convergence of the whole sequerf¥e" )y 1 to this solution.

Proof. Recall that since the sequen@eN)y 1 is tight, we have extracted a con-
verging subsequence also denotedXy' )y 1 of which we study the limit.

The proof of the Proposition 2.3 is separated into three steps.

Step 1:We consider the most complicated teEfC,jF, 1]. We prove that: for each
T 210 mg,

0 1
R (‘) XC h + 1
ECOF, ] @ (e mile ra MEXD 0
. h=0 '
where
1 |
N A(‘) (") xn
e T VI T L L
k=1 i=1
(2.29)
Notice that , = 0 only if for eachl 2 f 1;:::;mg, () =0.1t happens when

Af{) L+ Ui’ = N, meaning that all the nodes of typdave been discovered. In this

caseCl’ =0 and (2.28) is satisfied.
Let us write
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2 3
@)
o . c
E[COFn 1= E Z01Py L (Foo + E4pﬁlprzl 2(0sg Fn 12
j=1 40
(2.30)

For every” = 1;::;m and every fixedh, when all the parameters are positive,
we have thatN- Aﬁ,)l Us )) N 41 . Then we work conditionally on

a.s.
N\;Aﬁ,) 1 ) and! {? and use the Poisson approximatieng; see Equation (1.23)
and Theorem 2.A, 2.B by Barbour, Holst and Janson in [84]) for the approximation:
the binomial random variab&,’ may be approximated by a Poisson random vari-

5@ o P o AD )
ablez{? £ P (L 11 )% St Ye) suchthat
. . |
oA U P 2

drv(Z$); Z3)

. . P
(N- Ag) Ur(1 )) k=1 )
2maXk o
N \
As a consequence, the first term in the right hand sid@ &0)can be approximated
as

n # n #
. . 2mc
E z{)1p moz0) Fn1  E Z{)1p mozd Fn1 N (2.31)
and
2 3 2 3
7z 74 om

4p =0 , 5 4p =0 , 5 = .
- J'm=1 Zr(1j)1P fu 2> o - jm:1 Z"r(ﬂ-):l-'D Loz Fin 1 N °
(2.32)

It follows that we need to deal with the Poisson random variab’,i.8$‘ 2f1;::;;mg).
Because of the result that the sum of two independent Poisson random variables is a
Poislgon random variable whose parameter is the sum of the two parlgmeters, we have

that |g- 0 =: 2 has a Poisson distribution with parametér := s 0.
And hence,
) Xe X ( g))hl(’\g))h hy
E Z 1Pm (i) F 1 = hl e "
n mozd) e n bt hoet hi!(h  hy)!
X h 1 X h
o7 (e o ™ RGN,
het (h 1) heo M h!
and
(") X xh k( (‘))k (’\(‘))h k ) AC)
E Pn—lpm Z'(])> Fn 1 = - n n n e n
1 z e heor keo 1 KD (0 K



2.3 Asymptotic behavior of the chain-referral process 87
1 . .
_ (‘))@ X 1 () (/\g))hlke O "0
no —h k' (h 1 K)!
h=c+l k=0
-0 X1+ )" Te (D470
N h (h 1)
I R OF) L
o h!
h=c+1
g) Xc ( )h
=1 r:l e ") (2.33)
n h=0 |
Using (2.30), we obtain:
2 3
. \ z{)
EICHIFn 11= BAZ1Pw 20 % PP, s Fn 2°
i= n
o ' 1
g) Xc ( )h
=" @ (c h) r:]l e "A;
n h=0 '
which finishes step 1.
Step 2:W% decompose the second tfrm in the left hand side of (2.28) as follow
S N ST
" @c (c h) e A= Ot O S =10em: (2.34)
n h=0 ’
where
0 1
. g) Xc ( )h
D= @ (c h2e "AF, ,
h=0
0 1
. () xc ( )h
0= 1 @ (c h)~——T—e A
h=0
0 1
g) Xc ( )h
E — @c (c h) r:‘Ie"AFnl
n h=0 :
By writing
0 1
. k;® C ( k)h .
W= PP =A@ (¢ h)tpre BA;
k=1 n h=0 )

where
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!
k' o N_ Aﬁ\)l Ur(1)1 lik="g and K- X k;j
noT kKON N N N n

we obtain that for evezrgyz [0; 1],

19
1 Rte 1 REe<H A0 ke xe kyh =
N () = N .A”—l.Lk @c (c h)(h—”|e "A: (2.36)
n=1 n=1 " k=g o0 don h=0 ' ’
P
It is obvious that: Vi L isanFN martigale with the quadratic variation,
P Re g R 1 Xt m(c+1)2
hﬁ it = 7 E 3F, 1 N m(c+ 1)? —N
n=1 n=1 n=1
By the Doob's inequality, we have
2 3 " 3
tc C
1 1 . 4m(c+1)2 .
E4 maxk— k25 4E4Kkh— ni ko am(c+1)” N0
0st N N
n=1 n=1
which deduces that as N tends to infinity, we have that
1 9@tc )
S o (2.37)
n=1

uniformly int 2 [0; 1]. Together with the points given {{2.28), (2.34)and(2.37),
take the limitasN ! 1 in the right hand side .36), we obtain the right hand
side of (2.25).

Step 3:We use similar arguments as in step 2 to obtain the limit in right hand side

of (2.26). Denote by
0 1

xn
Y k
O=@ 10 A
k=1

!
NOAD, B, U
N N N N

Recall from (2.9) that conditioning df, 1,

|
o (d) . . N P m |r(]k) k\.
HO ¥ Bin N A, B, U§>;—k=1l\I :

then
1 9@tc 1 9@tc
N EH{jFn 1] = N N (2.38)
n=1 n=1
We write
1 Re 1 Rte .
5 Ty (V) (2.39)
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89
where
20 ! ") ") : °
\ xn N. Al B( ul)
0= gl@ 10 A N VL 5
k=1
0 1 !
X0 i 0) 0) 0)
0@ oA AV BY U
" " N N N N
°0 ! 0) 0) : °
X N- Al B¢ ul’
E @ |(k) ‘A o n 1 n 1 n F :
2 - n k N N N N n 1%

Using a similar argument as in step 2, we have

I
tc tc N N N .
iw () = i% X PIM =1) N_ Ag)l Bg)l U,f)l like g
n n
N e N o1 e N N N N N
t t .
_ i%‘ RUNCRE 19@ 0 AN ) Lics g
n N ]
N n=1 k=1 KAn 1K N n=1 k=1 kAR 1K N
. ) ) )
where K :8 N A?“ L Bki UT\I L Then,
tc k tc K
E% @ O Ay, KA i% AN . lieg .
N n=1 n k:]_ kAn 1k n N n=1 k:l kAw lk N N
(2.40)
Take the limitadN ! +1 , we have that
tc k Z K
m LXO0 AR T
1+ n s .
N. 1 N n:1 k:l kAn 1k O k:l ka.sk

c

. 1 . . . .
Further, theF N martlngaleﬁ () converges in_2 to 0 uniformly int 2 [0; 1].
n=1

Thus, (2.26) is proved.

For the proof of (2.27), by the definition of as in (2.8), we have
tc %Itc ) %Itc o) _
3. 1 A 1 A, =N
- E[lr(l)an J= = n 1 -+ n 1 :
_ N _ kAn lk N _ kAn lk=N
n=1 n=1 n=1

Take the limit asN !

+1 , we obtain the limit in the right hand side of (2.27).

The preceding steps allow to conclude the proof of Proposition 2.3.
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The uniqueness

It remains to prove that the limiting value= ( a;b;u we have found is unique
solution of the system of he ODER.2). If it is the case, then the proce®$N )y 1
admits a unigue limiting value and thus converges.to

Assume that there exist two solutionsandx? to ODEs(2.2) on the interva[O0; tJ],
where

to=infft 2 [0;1]: ap = 0 orap = 0g:

Then using the intermediate value theorem, there exis) 2 [xﬁ (s); xﬁ (s)] such
that
Z t Z t)@ )(n @f
kx! x?k = (f(xd) f(x3)ds ——( () X;(s) x{(s)ds
0 ZO i=1 j=1 @x

t
L(s)kx: x2kds;
0

X3 xn @f

wherexX = (x;(s))1 i 3 (k 2 f 1;,2g) andL(s) = max ——(Xs) , of

tiom i=1 j=1 @x
which the maximum is ovex(s) = (x; (s))j 2 [0;1P™ such tha®i;j : x; 2
[xﬁ ;xﬁ], where by an abuse of notation, the bounds of intebvi’;al xﬁ] can be
switched depending on the minimum or maximum of the bounds.
By the Gonwall's inequality, we get

Z t

kxt  x?k k x5 x3kexp( L(s)ds)=0:
0

This shows thak!  x2 for all t 2 [0; tJ]. It also followst] = t,.

Simulation

The simulations show that the deterministic solution of the system of GRE¥fits
well with our stochastic process, see Figure 2.1. The sequence of stochastic process
(XN)y 1 that we have constructed describes how the chain-referral process works
on a network. When we consider the population with a very large number of people,
the proces$X N )y 1 is asymptotically a deterministic function, which is a solution
of a system 0f2.2). To see numerically the convergence, we do a simulation: for
c = 3, we varyN from 500 to 50000 and plot as a functionfthe log of the
guantity:
yA 1
(kAY  ak+ kB hk+ kUN uk)dt;
0
Figure 2.3. The speed of convergence has been studied in the casesHRryi
graphs in the PhD-thesis, by establishing a central limit theorem: Theorem 0.10.
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By studying the solution of2.2), we can obtain an approximation of the fraction of
the population that has been interviewed when the CRS process stops. The proportion
of the population discovered is then approximateddy

The number of maximum couparplays an important role in how many people we

could explore before there is no distributed coupons any more (kéér= 0).

By keeping all other parameters fixed and changinig the simulations of Figure

2.1, we see that the tintg are different. For example, witm = 2, = (1=3;2=3),
11=2; »=4; 1,=3,we obtain the table 2.1.

c 1 2 3 4 5 6
to 0.18 091 0.94 0.95 0.95 0.95

Table 2.1. Numerical computation dfy for varying parameters.

If c=1, even though the average number of neighbors are biggedttibe simple
random walk describing the survey reaches only a very small number of people, see
Figure 2.1.a.. The random walk stops when it encounters a node of degree 1 and can
not propagate any more.

Furthermore, the parameteralso impacts the peaks (time and size) the curves
corresponding to the number of distributed coupons. In case of a limited budget
with a fixed number of interviews, a higher valueaan imply that we discover a
larger fraction of the population since it allows more flexibility in the interviewees.
From the Figure 2.4, we observe that the proportion of people receiving coupons
gets bigger asincreases. It = 1, the fraction of discovered population is small,
which means that the survey is not so efficient. Wheakes values from to 6,

the corresponding curves ké:k are "close" and so are the timgs However, in

these cases, the number of coupons spent during the CRS survey is large. We can
also be interested in seeing hownpacts the part of population discovered when the
survey stops after a fixed number of interviewed individuals. For example, consider
the case wheil = 1000 and assume that we start witly = 10. The parameters

of the SBM are =(1=3;2=3), 11 =2; 2 =4; 1, =3. Then when there have
been approximatelp0:2N c individuals interviewed, the proportion of the explored
individuals:kAj,k + kBJ,k for eachc varying from1to 6 is given in Table 2.2.

c 1 2 3 4 5 6
KALD% + kB9 0.213 0.308 0.268 0.308 0.310 0.260

attimet =0:2andN = 1000;Ag=10; =(1=3;2=3), 11=2; 22=4; 12=3:

Changing the parameterg: impacts the discovered proportion of types. For instant,
let us take a bipartite random model= (1=3;2=3);c=3 and 13 = 2 =0,

12 = 4, which means that the people between communities are highly connected
and there is no connection within community. In this case, the number of explored
people without coupon of type 1 is quite small compared to the one of type 2, see
Figure 2.2.
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a.c=1 b.c=2
c.c=3 d.c=4
e.c=5 f.c=6

Figure 2.1. Plots of the proportions of classes in the population of Kize 10000 whenc
varies froml to 6 and all the others parameters are fixk8yk = 100 the parameters
=(1=3,2=3), 11=2; 12=3; 22=4.
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Figure 2.2. Plot the proportion of classes in the case

c=3;N =1000;Ap =10;
1=

= (1 =3; 2=3) and the graph is bipartite
22=0; 12=4.
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Figure 2.3. Scatter plot ofn di (X N; x) along with the smoothing line suggesting the linear

relationship betweelm d;(X N ;x) andN . The plot is done for the case= 3, the number

of initial individuals arel% of the population and the si2¢ varies from500to 10000 All
other parameters are fixed:= (1=3;2=3), 11=2; 12=3; 22=4.
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Figure 2.4. Plot the functiorkak for 6 casesc takes values from to 6. All other parameters
are fixed:kagk = 0:05;, =(1=3;2=3), 11 =2; 12=3; 22 =4. The valueka;k
represents the proportion of individuals having coupons attime






~ ™
3. Estimation of dense stochastic

block models visited by random

walks
. _/

Contents

3.1 Introduction 98
3.2 Probabilistic setting 100
3.3 Likelihood estimation 104
3.4 Estimation via biased graphon and “classical likelihood' 115
3.5 Numerical results 123

The work in this chapter is in collaboration with Viet Chi Tteand is submitted to
Electronic Journal of Statistics (EJS) [104].

Keywords: random graph; graphon; random walk exploration; sampling bias; EM
estimation; stochastic approximation expectation-maximization; incomplete likeli-
hood; respondent driven sampling; chain-referral survey.

AMS Classification: 62D05; 05C81; 05C80; 60J20; secondary: 82C20

Acknowledgements:The authors thank Jean-St2phane Dhersin, Sophie Donnet,
St?phane Robin and Timoth2e Tabouy for discussions. This work was supported by
the GdR GeoSto 3477, by the ANR Econet (ANR-18-CE02-0010), by Labex B2zout

tUniversity Gustave Eiffel



3.1

98 Chapter 3. Estimation of dense stochastic block models visited by random walks

(ANR-10-LABX-0058) and by the Chair Modzlisation Mathzmatique et Biodiver-
sit?" of Veolia Environnement-Ecole Polytechnique-Museum National d'Histoire
Naturelle-Fondation X.

Introduction

A way to infer a random structure such as the graph of a social network and discover
its properties is to explore it with random walks (e.g. [72]). This mathematical idea
can be put into practice to reveal hidden populations such as drug users by using
referral chain sampling where each new person provides information on her/his
contacts: see for example the snowball sampling [47] or the “respondent-driven
sampling' (RDS) introduced by Heckathorn [49]. These methods were first used to
estimate the size of the hidden population or to infer population means, under the
assumption that subjects' network degree determines their probability of being sam-
pled, see Volz and Heckathorn [80] (see also [65]). Because the inclusion probability
of a subject is complicated to compute, due to the dependencies associated with the
graph and the fact that the sampling should be in practice without replacement, an
important numerical literature on the subject has followed (see e.qg. [44, 45, 70]).
Gile [43] proposed an improved estimator for population means taking into account
the without replacement sampling, and Rohe established critical threshold for the
design effects [65]. Because of privacy restrictions, the social-network information
is usually only a tree, as each interviewee has been ‘invited' into the survey by
a previously interviewed subject. Crawford, Wu and Heimer [27] use a Bayesian
approach to integrate over the missing edge between recruited individuals.

It appears that the information gathered in chain-referral surveys can also be used in
estimating the social network itself or at least properties associated with its topology.
Recent surveys allow to gather connectivity information for recruited members: see
for example the Rolls et al. [76] and Jauffret-Roustide et al. [58]. Interviewees are
asked for a description of their contacts, and for a first name or a nickname. This
information allows to reconstruct partially the social network and obtain a subgraph
that is not a tree. It is then natural to wonder how much information on the total graph
can be recovered from the observation of the subgraph obtained by the chain-referral
sampling. Of course, biases have been emphasized as individuals of high degrees
(hubs) are sampled with higher probability and ‘common profiles' are much more
likely to be discovered (e.g. [61]). This motivates the present paper. To fix the frame-
work of study, we consider a particular class of random graphs, namely the Stochastic
Block Models (SBM) that are popular models for social networks (see [54] and the
review [1]). For this parametric model, inferring the distribution of the random graph
boils down to a finite dimensional parameter estimation. Also, for simplification, we
consider here a model of random walk on the continuous version of the SBM graph,
namely the SBM graphon that is introduced in the next paragraph. Two estimations
strategies are considered in this paper. First, we establish the likelihood of a random
walk exploring this structure, and which accounts for the sampling biases. Two cases
are classically considered, depending on whether the types of the visited nodes are
observed or not. Even in the case of a complete observation, the maximum likelihood
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estimator has no explicit form. When the types of the vertices are unobserved, we
adapt the Stochastic Approximation Expectation-Maximization algorithm (SAEM)

as introduced in [20, 62]. Second, we propose a new estimation using new theoretical
probabilistic results by Athreya andoRin [4] who compute an exact formula for the

bias. We provide a consistent estimator in the case of complete observations and a
de-biasing strategy for the usual maximum likelihood estimator of Daudin et al. [29]

in the case where the types of the explored nodes are unknown.

We consider as a toy model a Stochastic Block Model graphon @ittasses.
Graphons, considered here as symmetric integrable functions[€idf to R,

can be seen as limit of dense graphs (see e.g. [66]). Recall that SBM graphs are
a generalization of Eabk-R2nyi graphs, where each nodé characterized by a

variables (r.v.)Z; are assumed independent and identically distributed (i.i.d.) with
P(Zi = q = 4 > 0. The graph is non oriented. Each pair of nodie$ g is
connected independently with a probability .z, 2 (0; 1) that depends only on the
types. When the number of vertices of the graph tends to infinity, it is known that
the dense graph converges to a limiting continuous object called graphon, see e.g.
[15, 16, 66]. Let us recall the definition of the SBM graphon.

For the sequel, we introduce the partition@f1] defined by

Xt X
lq = K; K g2f1;:::Qg: (3.1)
k=1 k=1
The SBM graphon is the function froff; 1F* to [0; 1] defined as follows:
xR
(xy) = ar 1i,(¥) 11, (y): (3.2)
g=1 r=1

Heuristically, we can sef@; 1] as a continuum of vertices, ands the limit of the
adjacency matrix of the graph in the sense th{at y) measures the probability of
connection betweex andy.

We consider a random walk on the graphgn.e. the procesX = (X y)m 1 With
values in[0; 1] and transition kernel:
"o Pe 1w 1My
X;y)d g=1 r=1 ar L1l lq
K(x;dy):Rl( y)dy = Po P :
0 =

(X;V)dV 1 ?:1 qr r 1|q(x)

This random walk is the analogous of the classical random walk on a graph that
jumps from a vertex to one of its neighboring vertices chosen uniformly at random.
From the exploration of this random walk, we can construct a subgraph of the
‘nodes' visited. Assume that we observateps of the random walk, i.%. (M =

(3.3)

(Vh; En) with verticesV,, = f Xq;::: X,gand edge&, = [ ﬂ,:}fxm;xmﬂ g. This
chain is completed by sampling independently edges between vertices that are not
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already connected with probability according to their types. Following the notation
of Athreya and RlIlin [4], we denote byG, := G(X(™; :H ,) the random graph,
which is completed front,, w.r.t. the graphon:

Definition 3.1 The vertices of5, = G(X(™; ;H ) are the nodeX (™, and
the edges are as follows. Lieand] be two vertices.

If there is an edge betweerandj inH,,i 4, j then there is also an
edge between these nodeGp:i ¢, j .

If there is no edge betweerandj in H,, we connect andj in G, with
probability (Xi;X;).

This subgraplt, is the RDS graph. We assume that this is the model generating
our data and that the observation corresponds to a realizati@p. dh the sequel,

we denote the parameter of the SBM by ( 1;::: q; ¢air 2 £1;:::QQ).

Our purpose is to estimateusing the subgrap@,. In the literature, the estimation

of SBM graphs has been extensively studied, but often in a framework where the
number of nodes is known. In particular, variational EM approaches have been used
In many cases where types are unknown, see [29, 69, 79]. The estimation of SBM
graphs, when the total population size is unknown and when we only have a subgraph
obtained by a chain-referral method, is not studied to our knowledge. We develop in
this paper two approaches that we compare in a final numerical section (Section 3.5).

First, it is possible to write the likelihood & ,. Here, because graph is explored
through an RDS random walk, our likelihood differs from the likelihoods in these
papers: it accounts both on the transitions of the random walk and on the connectivity
of vertices given their types. We study in Section 3.3 the maximum likelihood
estimator (MLE) in our setting for both cases, when the nodes types are observed or
not. Even when the observation is complete, the maximum likelihood estimator does
not have an explicit form. When the types are unknown, we adapt to our likelihood
the variational EM approach of [29].

The second approach developed in Section 3.4 is inspired by the recent work of
Athreya and RIlin [4]. These authors showed that when we observe the random
walk sufficiently long ! +1 ), the sequence of grapfi&(H,; ))n 1 converges

to a biased graphon of Based on their probabilistic result, a natural estimator of
the biased graphon turns out to be the MLE in the “classical' case studied by [29].
Based on this estimator that is not consistent in our case, we propose a new consistent
estimator of .

Probabilistic setting

In this section, we give some important properties of the RDS Markov ¢héih
in particular on its long term behavior. Then we explain the biases that appear when
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estimating the graphonfrom the RDS subgrap,,.

Exploration by a random walk

Assumption 3.1 In all the paper, we assume thats the graphon of an SBM graph

(see(3.2) and that is connectedi.e. that for all measurable subget [0; 1] such
thatjAj 2 (0; 1),
Z Z
(x;y)dx dy > O

A A

Proposition 3.1 Under Assumptions 3.1, the random walk= ( X,), 1 ad-
mits a unique invariant probability measure

R P P
Epl (x; v)dv qu1 S v Lig(x) dx
m(dx) = R dx = PP (3.4)

o o (U;v)dudv

The general proof is given in [4, Prop. 4.1] but for the case of SBM graphons, the
result is easy to prove.

From expressiofi3.4), we see that the stationary measorglx) put more weight on
the intervald  corresponding to frequent types (largg or hubs ( 4. close to one).
Becausen(dx) is not the uniform measure, we expect biases in how the graphon
is discovered bys,.

Convergence of dense graphs

We are interested in the case wharé +1 . Then, the (dense) RDS grafh

might converge to a graphon, and it is natural to compare the possible limit to the
graphon on which the random walk moves. Let us recall briefly some topological
facts. We refer the interested reader to [66].

Let us give first some notations. For integarandk n, [1;n] = f1,2 ng
and(n)y =n(n 1) (n k+1).ForagraplG, E(G) denotes the edges &
andi ¢ j meansthati;j g 2 E(G). We can define the subgraphdensity inG by:

# finjections fromF to G 1 X Y
t(F;6)= J- T
(M (MK s iz wze )
(3.5)
where ;.. opn IS @sumranging over all vectofs; k) with mutually dif-

ferent coordinates ifil; n]. This notion of subgraph density can be generalized to a
graphon by:
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z Y
t(F; )= (X+;X0)dxy  dXy: (3.6)
[O:21 - og2 (F)

Let F denote the class of isomorphism classes on finite graphs a(f Jet 1 be
a particular enumeration & . Then, the distance of two grap@sandGVis:

X 1
dsu(G; GY) = 5 U(Fi;G) t(Fi; G9 (3.7)

i 0

The convergence of the large graphs to graphons can be expressed with this distance
[66, Chapter 11].

Biases in the discovery of

Let us denote by the cumulative distribution function eh(dx):

P, P h P '
Q Q ; . q1l
=1 r=1 gqr r MIn g X kst ko
(x) = Po—Pg (3.8)
g=1 r=1 4ar q r

Athreya and RIlin [4] have proved that the graphon discovered by the RDS is
biased:

Proposition 3.2 Corollary 2.2 [4]. We have under Assumptions 3.1 that:
Ilm dsub Gn, 1 = 0,
n' +1
where the generalized inverse ofis

Ywy=inffu2[0;1]: (u) vg;
and where for alk;y 2 [0; 1],

(X y) = 'x); My) (3.9)

This proposition, that is true not only for SBM graphons but also in more general
cases, as developed in [4], says that the topology of the subgraph discovered by the
RDS is biased compared with the true underlying structuyédécause the random

walk visits more likely the nodes with high degrees (hubs) and the frequent types.

Example 3.1 WhenQ = 2, the graphon is given:
8
2 1, 0 xy

(xy)=_ 12 (<x land0o y ) or (0 x )and <y 1)
- 22; Otherwise

The invariant probability measure is:
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(12 + 20 Nlop (X)+( 2 + 2(1 ))1x2(;1](x)dx,
1 2+2 1 (1 )+ @A )2 .
Then the cumulative distribution of is:
(11 + 1201 )X 1
m2+2 5 (1 )+ @ )T
1 %+ 12(1 )
1 2+2 1 (1 )+ 1 )2
(12 + 200 )X )
1 2+2 1 (1 )+ 1 )2
The biased graphon 81 is here:

3 1 if (6y)2100 () [0 ()

1(Xyy) = 5 22, 0 (y)2 [ ()1 [ ()1 (3.10)
- 12, otherwise

m(dx) =

(x) =

1x

where

(1 + (1 ) )
1 2+2 1 (1 )+ 1 )*
It can be seen that( ) = when(1 ) 12 2) = (12 11). This is

satisfied for example when; = 1, = 2, (Erdos-R2nyi) or when = 1=2and
11 = 2o (both types are symmetric).

()= (3.11)

Empirical cumulative distribution

As seen in the previous paragraph, the bias linked with the discovery of the graphon
by the RDS subgrapB, is expressed in term of the cumulative distribution
of the stationary distributiom of X (™. In the sequel, the empirical cumulative
distribution ofm will be useful and we recall here some facts:
1 X
a(X) = - Ix, « and JHy)=inf x2[0;1] 0 W(x) Yy

i=1

(3.12)

Lemma3.1 ,and ,!converge a.s.uniformlyto and ! respectively.

Proof. The almost sure point-wise convergence pfto is a consequence of the

ergodic theorem. Then, the a.s. uniform convergence is obtain by the Glivenko-

Cantelli theorem.

Let us prove the uniform convergence qf* to  '. Because all the 4's are posi-

tive, is a non-decreasing and piece-wise affine bijection and the inverse bijection
1is also non-decreasing and piece-wise affine."let0 andng 2 N sufficiently

large so thatforalh  ng, k , ki ".Lety2[0;1]. Forn ny,



3.3

3.3.1

104 Chapter 3. Estimation of dense stochastic block models visited by random walks

%) y) C (,'y) vy:

Because the jumps of,, are a.s. of sizd=n, we necessarily have that
(n'y) y+"+ 5 Thus,

SO M) Gt

which proves the uniform convergence gf 1 to 1.

Likelihood estimation

In this section, we write the likelihood @, and compute the MLE of the parameters

. Here our likelihood is specific to the RDS exploration. The MLE does not have
an explicit formula and we explain how to compute it numerically. Then, we study
the case where the typ&s of the nodes are unobserved. Notice that the estimation
in this Section 3.3 makes only use of the connectivity information carried by the
random variable¥; , whereY = (Yj )i; 2. IS the associated adjacency matrix
of G,,. The estimators here do not depend on the positkond he typesZ; may be
known or unobserved.

Let us introduce some notations. We defineNyy, g 2 f 1; :::; Qg the number of
vertices of typeg sampled by the Markov chain. Fqrr 2 f 1;:::; Qg we also define

by:
N®T=# (j) § ij2x™zi=qz=rYy=1;
N =# (i) | §j2X™;Z=q;Z=rY;=0

the number of couples of typ€q; r) that are connected (resp. not connected).

Complete observations

Assume that we observe a subset of explored n¥d&s= (X 4;:::X,) [0, 1]
discovered by the RDS, with their classes and connectiGhsl; ; X;; X; 2
XxXM:igj)2f1, Qg" f 0;1g"(" b,

Proposition 3.3 The complete likelihood of the observations is

L(Z:Y:X: — W qq 1 NJ(NT 1)=2
(Z:Y: X, )= 1

|
NEL
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q$ r
Y Nn N2 N

Sa

Q

=
—~
[EN

o]

~—

z

Sa

Z

5=
v

g6 ar =1 ( qQ°=1 qp @7 zn=a
(3.13)

Proof. We have that

Y
L(Z|,Y|J,|,] 2 X(n); ): 7, I,.}mZmﬂ Zm+1

\Z(Ii:lzj 1 2z NSIRCRE
i XX 2x M,
fXi;Xjg2Hn
where the first product corresponds to the likelihood of the types sampled along
the Markov chain, and the second product corresponds to the likelihood of edges
between vertices that are not visited successively by the Markov chain. Thus:

Qn 7. Y
L(Zi;Yysi) 2 X5 ) = QeePH— oYi: zz); (3.14)
i=1 g=1 Ziq q ij 2[1;n]
Xi:Xj2xm

wherel(Yj ; z.z)= ;?zj (1 zz)' " . Finally, rewriting the above likelihood
usingN 9, N " we obtain (3.13).

Proposition 3.4 The MLE b= (b b) is the solution of the following system
of equations:

xXn 17,-q X1

pQLqO =0; (3.15)
m=1 0 q m=1 =1 Zmd® q 1
1
X @1(Zm;zm+1 )=(ar) p Qr 1z,=q A
m=1 ar =1 qd d° |
X Y. 1 VY. .
+ — 1 " lzz)=(an =0:  (3.16)
i XX 2x M ar ar
in;Xj gZHn

Proof. The log likelihood of the observations is:

x x
logL = Nilog ¢ (N3 1z,-¢)log aP o
g=1 q*=1
NINg 1
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x X
+ N% " log % + NIN!log(1 )

g=1 réq ar

When we take the derivative of functidog L with respect to the parameters, we
obtain:

N NP

- P —H—=0; (3.17)
q p=1 =1 po

N g$ N &=
n 1 n NiP— ’ =0: (3.18)
ar ar =1 ad d°

The identifiability of the model is a result by Allman et al. [33]. Since the likelihood
is differentiable, there exists a sequence of solutior(8.df7)that converge to the
true parameter.

Remark 3.1 Notice that in absence of bias, the classical likelihood, as obtained
in Daudin et al. [29] is:

| Y Y
et VAR (H I z (Y zz)
i=1 i 2(Xn)
v oo e
= glﬁ qq (1 qq)Nﬁ(Nﬂ 1)=2
=1 =1 L
(3.19)
! $r
Y qr . NINT .
1 (1 gr) "N (3.20)
gér ar

The difference betweef8.19)and(3.14)is the first product which corresponds

of the likelihood of the node types. In the classical case, these types are chosen
independently whereas here they are discovered by the successive states of the
Markov chain. In this classical case, the MLE has an explicit formula:

N Nr?$ ' . bclass_ 2Nr?$ d

bclass: “'n. bclass: — .
a NSNS “@ NN 1)

(3.21)

Here, for the likelihood3.13) the MLE which solve$3.15)is not explicit any more.
In Section 3.3.1, we detail in the case of two clas§gs(2) the computation of the
MLE.

Case where Q=2

Let us solve the likelihood equations whén= 2. The parameter is then =
(; 11 127 22)- Defineb = (b c1; Ci2; &) the estimator of . Then the estima-

tors Pis the solution of
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Ny Ni Cua Ni Cro = 0; (3.22)
b cub+ ca(l b) cib+ c(l b)
N7 N2 N2 cy —0: (3.23)
1 b cub+ el b) cib+ cp(l b)
N 1$ 1 N 1=1 l
n n nD =0; (3.24)
Cu1 1 c1 cub+ 012(1 b)
N 1% 2 N 1=2 N 1 1 b
n n n ) =0; (3.25)
C12 1 c2 cub+ c(l b)
N 2% 1 N 1=2 2
n n 0P =0; (3.26)
Ci2 1 ¢ cCpb+ C22(1 b)
N 2% 2 N 2=2 2 1
n n N b) =0: (3.27)

C22 1 c» Cpb+ cp(l b)

Proposition 3.5 The MLE b= (b cu1; c1o; ) can be expressed as a function

of b12:
o = (Nr}$l+ Nr:]L$2 Nr:]L) (N1N2 N1+ N1$1)C12 (328)
11 (N%(Nzr:.l'- l) Nr:]l"l' Nr}$ 2) (N (N 1) + N1N2 Nr:]l) Clz’ .
& = (N§$ 2 4 an$ 2 Nr?) (N 2% 2 + N 1N 2 2) Cio (3.29)
(Nﬁ(Nzﬁ U N2+ NS 2) (NENE D (N D+ NIN2 N2
b
b= X 3.30
—F (3.30)
with
q 2
b_ (Nr:]L NE)C12+ (N% N,%)chz +4N%Nr$011022.
- N7 . (3.31)
n
and whereb,, is one of the root of
. 2 _ (N1$1+ N1$2 Nr::-) (N1N2 N1+ Nl$1)C12
12 (w N1+ NS 2) (NN D (N D4+ NINZ ND)cp
(N§$2+ Nr}$2 Nr?) (N2$2+ N1N2 N2)012
(N%(Nz% 1) N2+ N2$ 2) (N gINE 1) o NIN2 N2)cp.
(Np®2 Nr}Nncﬂ)z .
[((N3®2 N (NINZ NDcpl[(NM®2 N2)  (NIN2 N2)c]
(3.32)

Proof. Multiply (3.24) by ¢;; and (3.25) byc;,, and sum them up, we have

- C - C
Nr:]L—l 11 +Nr}‘2 12 :N,}$1+an$2 an:
C11 C12

(3.33)
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Similarly, from equations (3.26) and (3.27), we deduce

= C12 = Co2
Nl 2 +N2 2 :N1$2+ N2$2 NZ: 3.34
n 1 C12 n 1 022 n n n ( )

Also, the system of equations (3.24)-(3.27) gives
! ! !

Nr:1L$l Nr:]I.=1 NnZ$2 NnZ=2 _ Nr}$2 Nri]l.=2 : (335)

C11 1 ¢ Co2 1 o» C12 1 o

Notice thatN 2= 2+ N 18 2= NIN2, N2 14 N2 1= Na®e D gpgN2=24 N2$ 2 =
w and we considec;, as a parameter. Solving the systér83)(3.34)for
C11, G2 provides the two first equations (8.28) Using this,(3.35)is equivalent to:

(N2 2 NINZcp)? C11 C2 ~1-

[((NF®2 N (NINZ NHCpl(NFB2 N2 (NINZ2 N2)cp] ¢y’
(3.36)

This gives the (3.32).

For the estimator of , let us denote = - Then equation§3.22)and(3.23)
are the same and equivalent to

Ny _ N2°

N - N .
Cia *+ Cpo Co + Cp

(3.37)

The unique positive solution iS and provides in turtb.

Let usbexplain how the preceding proposition allows us to compute numerically the
MLE V.

First: there might be several solutions(@32) see Fig. 3.1. For each of them, we
compute the corresponding estimators gf, ,, and , which allows us to obtain

the corresponding likelihood of the observations. We choose the set of estimators
that provides the best likelihood for our observations.

Second:to solve numerically the equatidB.32) we use the bisection method with
the following constraints:

The equation (3.32) has 4 excluded values that make the denominator zero:

2 2 2
1 _ Nl':ll$ Nn 2 — Nr:1L$ NI':IL (3 38)
?OONANZ N ?OONANZ NG '
Na(Ng 1) 1 1$ 2 NEZ(NF 1) 2 1$ 2
3 _ 2 Nn + Nn . and fz — 2 Nn + Nn

N2(N2 1) Nr%_l_ N%Nr%

127 NA(NE 1) 1 N2’
a I\In'l_ I\InNn 2

2
It is observed thamax( i,; 2,) < min( 3,; £,). Andif N} <N 2, we have
themordered: 1, < 2,< 3,< 1.
All the estimatorsc,s; Ci2; G andb take values in the intervg0; 1).
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Figure 3.1. Equation (3.32) can be rewritten ag 12) = 0. The function is represented
graphically on the figure above as a function @$. The vertical dotted lines correspond to
the excluded valuesi,;::: 1, given in (3.38).

Taking care of the points above, we so{@32)with the bisection method on a grid
that includes the excluded poirfts},;i 2 f 1;2; 3; 4gg.

For each root 0{3.32), corresponding to a possible valuela$, we compute the
corresponding estimators of;, .

For the numerical simulations, we refer the reader to Section 3.5.

Incomplete observations: SAEM Algorithm

of the observed dai@; ; i;j 2 [1;n]) is obtained by summing the complete-data
likelihood (3.14) over all the possible values of the unobserved variables

X hy @
L(Yi i) 2 [Lnk )= 1724 Q1P
q; oh=1 =1 i:1Y g=1 449 49 i
inJ'; qiqj) ; (3-39)
B XX 2X (M)

Unfortunately, this sum is not tractable and it is classical to use the Expectation-
Maximization (EM) algorithm to compute the maximum likelihood. Here we follow
the steps in [29] by adapting the expression to our setting with the likelif®aad)

Let us sum up the EM algorithm (see e.qg. [20, 21, 62]). Given the observed data:
the Markov chainX (™, the connectiongY; ; i;j 2 X ™) and the number of
blocksQ and the current estimatog and given the value® v at the(k 1)
iteration of the EM, on th&™ step, we compute the conditional expectation of the
log-likelihoodL (ZjX;Y; ®) givenX;Y for the current fit ). Here there is no
explicit expression for the latter likelihood because the exact distributi@ngifen

X;Y is unknown and this we need to approximate it numerically by using an SAEM
algorithm [20, 62], proceeding as follows.
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The SAEM algorithm

Given the information of thé& 1 iteration & D = ( & D, (k 1) at thek®
iteration of SAEM:

Step 1: Choosing the appropriateZ )

- Simulate a candidat&® following the proposal distributioq « 1 (;jZ* ).

The choice of proposal distribution is discussed in Section 3.3.2, where we use
a variational approach.

- Calculate the acceptance probability

coy- (k 1) X (k 1);j7c
I (Z(k 1),ZC) ‘= min 11 L(Zk |lY1 — )1 q « )(Z . Jzk )1 :
L(Z( ),Y, ( )) q « 1)(2 ]Z( ))
(3.40)

- Accept the candidat&® with probability! : P(Z® = z°¢ = 1! and
Pz =zk Dy=1 1

Step 2: Stochastic approximationUpdate the quantity
QW()=Q® V() + s logl(z;Yy; ) Q ® V() ;  (3.41)

with the initializationQ® () := E[logL (g;Y; )] and(sk)gen is @ positive
decreasing step sizes sequence satisfyirf[g1 sk =1 and izl s2< 1.

Step 3: Maximization Choose ) to be the value of that maximize€Q®

() = argmax QM ( ): (3.42)

Kuhn and Lavielle studied the convergence of the sequeff¢én [62]. In the
particular case of SBM, the consistency of EM and variational methods has been
studied by C2lisse et al. [22] and the asymptotic normality has been studied by Bickel
et al. [9]. The likelihood that is considered here differs and these results can not be
directly applied, but a study along these lines could be investigated.

Variational approach

For the proposal distributiog « 1 (:j Z* V) of Z®), we follow Daudin et al. [29],
who use a variational approach. Let us recall the main idea of this approach. The
general strategy has been described in Jordan et al. [60] or Jaakkola [96].

Recall the likelihood_(Y; ) of the incomplete daté3.39) The idea of the varia-
tional approach is to replace the likelihood by a lower bound:

J(Ry;) = L(Y; ) KL(Ry; (2);L(Z]Y; )); (3.43)
Z
whereKL(; )= d log 3— is the Kullback-Leibler divergence of distribu-

tions and , and whereRy. (Z) is an approximation of the conditional likelihood
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L(ZjY; ). WhenRy. isagood-approximation df(ZjY; ),J (Ry. ) is very closed

toL(Y; ).
Here,Z takes discrete values fri; :::; Qg. Then,
X Ry. (Z
3 (Rv.)=log L(Y; ) Ry, (2)log {5
(Z1;35Zn)2f 1;::5Q0" J !
=log L(Y; ) Ry; (Z)logRy; (2)
Z2f 1;:5Q9" X
+ Ry. (Z)logL(ZjY; )
X Z2f 1;::5,Q9"
=log L(Y; ) Ry; (Z)logRy; (2)
Z2f 1;:5;Qgn X
+ Ry; (Z)logL(Z;Y; ) Ry; (Z)logL(Y; )
X Z2f 1;:5;Qg9n X Z2f 1;:5;,Q90
= Ry. (Z)logL(Z;Y; ) Ry. (Z)logRy.: (2):
Z2f 1;::5;Q49N Z2f 1;:;Q9"

Following [29], we restrict to distributionRy. that belong to the family of multi-
nomial probability distributions parameterized by ( 1; o), as approximated
conditional distribution oZ givenY and . If we look for the parameter that
maximize(3.43), we will hence obtain the best approximationdiZjY; ) among

the multinomial distributions. We will chose the latter to be the proposal distribution
for Z in the Step 1 of the SAEM algorithm.

If 1, follows the multinomial distributioM (1; (i1;::5; iq)), With i = P(Z; =
gY; );fori 2f1;:::;ng;q2f1;:::;Qgthen,
A4

Ry; (Z) = i;zi: (344)
i=1

As a consequencé, (Elg?x) is revgritten as

X <y X X 1 )
J(Ry;)= , iz, @ log 7, log( 24 q
Z2f 1;::Qqg" j=1 i=1 i=1 =1
Qg J 19 q 0 .
X 2 X oW X0
. 10gb(Y; § 2,2,)K 2 @ log g A
Bj i XiXj2x ’ Z2f 1;::Qg" j=1 i=1

We aim at calculating the parametethat maximizes the lower bound b{Y; ).
Then the proposal distributiap« 1 (:j Z* V) for updating the types will be given
by (3.44) with the parametelsgiven in the next proposition:
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Proposition 3.6 Given ; , the optimal parameter
AN =argmaxJ (Ry. ); (3.45)

P
with constraint qu1 iqg = 1;8i 2 f1;::; ng, satisfies the fixed point relation
; Y Y _‘
=1 9 jgj =1

Proof. To simplify J (Ry. ), we have

X Y X X Xy
iZ i log z = th( hzi|Og ZJ
Z2f 1;::Qqgn i=1 i=1 z2f 1;::Qgn i=1 j=1
j6i
xR X Y
= iZi |Og Zj iz
i=1 Zj=1 th:::;ZnnZi j6i
X R Y X A
= wlog ¢ @ iz
i=1 g=1 jgi  zj=1
xR
= iql0g ¢
i=1 g=1
Similarly, 0 1
X Y X xR
Bz @ IOg i;ZiA = inOQ iq -
Z2f 1;::Qgn j=1 i=1 i=1 g=1
In addition, 0 1
X Y X1 X X1X ¥ X
iz log( Ziq q) = ( j;Zj)|09@ Ziq qA iZ
zZ j=1 i=1 g=1 i=1 zZnz; j=10 qil
X 1R X
= log@ zig o iz
i=1 g=1 g=1
&NCyn X X X Y X
K;Zk IOng” ; Zi;Zj) = ( k;Zk) l:XYI] ; Zi;Zj) JiZ j;Zj
Z k=1 i<j i< Znfz;:Z;g k6ij Zi:Z;
X X
= iq jrk(\m ; qr):
i<j qr=1
In conclusion,
X e X R 1X R
J(Ry;)= iq 109 q q 109 iq + 5 iq jr 10gb(Yj; qr)

i=1 ¢=1 i=1 o=1 i6) q;r=1
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0 1
X 1R X
Iog@ ar rA iq-
i=1 g¢=1 r=1
(3.47)

To solve the optimization problearg max J (Ry. ) with constraintp 2—1 iqg =1,
we use the method of Lagrange multipliers, that is finding thg optlmabparameters
that maximize the Lagrangian functiblag( ; ) := J (Ry; )+ 2; i( q 1 iq

1), where ; is the Lagrange multiplier. Take the derivativeladgw.r.t. ; and ,
We have

%@ag:_ . 1
; o,

x
a
g =log ¢ log g+ i 1 log ar v
P P r=1 P P
+3 i6i er1 ir 10gh(Yj; o)+ 3 isi ?:1 ir 10gb(Yji; rq)
The optimal solution must satis%‘lg = %ag = 0, which implies
i iq
X X X
log g =log 4+ i 1 log gr r T ir logh(Yi; qr):
r=1 j6i r=1
In another word,
iqg=€' "Pg——— b(Yi 5 qr) ' (3.48)

r=1 dar rjgjr=1

In the case = 2, it turns out the problem is more simple since for each
f1,::;ng; i1+ 2 = 1. For sake of simplification, we denote byinstead of ;.
Hence, ;=1 i1=1 i

Proposition 3.7 WhenQ = 2, the variational parametey has formula:

_ i) . .
vt i ); (3.49)
where [
()= 2+ ) 27 WY 1)
I 1n+(1 ) 12 g, (Y 22)
-
Y (Y5 1)b(Y; 22)
isi B(Yi; 12)?

(3.50)
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Proof. We solve directly the optimization problemax J (Ry. ) without using the
Lagrangian multiplier . The quantityd (Ry. ) is written explicitly as:

X X
J(Ry;)= | (ilog +(1 i)log(d )) | (ilogi+(1 )log(1 )
|=11x i=1
*5 i jlogh(Y; 1)+ (1 j)logh(Yj; 12)
i8]
+(@ i) jlogh(Yi; 20)+(1 D@ )logh(Y; 22)
X 1

[ilog( 1u+(1 ) 12)+(1 i)log( 21+(1 ) 22l

i=1

Take the derivative ad (Ry. ) w.r.t. §,

( )
Q 11X b(Yi 5 11) (Y 12)
=lo +lo + = jlo 1 i)log ———=
@ 91 g i 21.6i gb(Yu, 21) + 1) gb(Yi,-; 22)
+(1 ) 12
|O 11
J 21+ (1 ) 22 X
i +(1 ) 12 1 (Y 10)b(Yj; 22)
=log—— lo log—2t + = log = )
91 91 i J 21+ (1 ) 22 2j6i J (Y ; 12)?
X .
+ 1‘ |Og kXYIJ ’ 12)
dYI]s 22)
Then the variational parameteris the solution of equatio% =0, which gives
% ! 1=2
o 1+ ) 12 (Y5 12)
1 i 1 21+ (1 ) 22 6 B(Yi 5 22)
|
L)
Y b(Yi 5 1)b(Yy; 22) j
isi (Y 12)?
= () (3.51)
Itimplies that ; = 45 = ().

Proposal distribution for the Step 1 of SAEM

For the sake of simplicity, we treat here the c&se 2, but generalization is straight-
forward. Using the previous results, we can now detail the Step 1 of the SAEM algo-
rithm. Given the parameter$< b, the typeZ ¢ Y and the datgY; ;i;j 2 [1;n]),

we proceed as follows.

Step 1: We compute the parameterg‘) as in Proposition 3.7. The parameters in
(3.50)are given by * D andthetermi(Y; ; % V), b(Y;; & Yyandu(y;; & )
are computed with the typegsk .
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Step 2:We simulate a candida® 2 f 1;2g" for Z such thaZ® 1 follows the
law Ber( ). Recall that the acceptance probability is

I—complet&zc;Y; (k l))q(k 1) (Z(k 1)jzc)

z® ;2% = min 1, . ; (3.52
( ) L compled Z ¢ D;Y; & D)q o (22K D) (3:52)
where the complete likelihood with respectia Z;Y is
Lcomplete(Z;Y; )= 99 (1 qq)N'?(N'? 1)=2
o1
=1
Y l Nrg4$ r W Nr?
- (L N P ,
®r Lo 1 (g1 o N 1zn=a
and Y . )
q« v (ZCjZ(k 1)) = i2 Zi 1 i)Zi 1.
i=1
Y (k1)
qe n(z® Vjz9= 25 @ pE T

i=1

Estimation via biased graphon and “classical likelihood'

In Section 3.3, the MLE are computed but they do not have explicit formula in the
case of RDS exploration. We thus investigate other estimators. The most natural one
is the graphon estimator corresponding3@®1) It turns out that we can study the
asymptotic bias of this estimator thanks to the result of Athreya aiihR4]. Here,

we need some to have the knowledge on the positionsf the Markov chainX (™,

The typesZ; may be observed or not.

Complete observations

Assume in this section that we obseX&) = (X 1;:::X,), the typeqZ,)ia 1::ng
and the adjacency matr{Yj )i; 2r 1.::ng Of the subgrapi@, = G(X™; ;H ,).

It is natural thaiG, converges to an SBM graphon of parameters( 1;::;; o)
and the connection probabilities= ( 4r)q;r211;07-

xR
1 (X; y) = quJq(X)lJr (y)

g=1 r=1
whered = (Jq;::1; Jg) is a partition of[0; 1] defined by
Xt X
Jg = K k q2 [LQl: (3.53)

k=1 k=1
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The parameters correspond to the frequencies of the types and the parameters
give the probabilities of connection. Thus, a natural estimator fors given by:

Definition 3.2 Denote by

N NG ON 98 d
by == —; B} = —4 fi 8 d B, = —«-%——:
R ST VT RN O

(3.54)

an estimator of ; ). The graphon associated to these estimators is defined as:

xR
bn(x;y) = b Lag () Lap (¥); (3.55)
g=1 r=1
P P
withd? = Jbf b bl q2f1:::Qg:

We notice that this estimator corresponds to the MLE in the “classical case' (see
(3.21). Thanks to the Proposition 3.2 (due to [4]), we can study the asymptotic limit
of b,,.

Limit of by

We have two empirical approximations of the limiting graphan: the graphG,
and the graphoib,. These two approximations are asymptotically equal:

Proposition 3.8 We have under Assumption 3.1 that:
()whenn! +1

nlIir+nl dsun(Gn; b)) = 0: (3.56)
(ii) The limit of the empirical graphom, is thus the biased graphon ..

lim  dsu(bn; 1) =0: (3.57)
n! +

Proof. We postpone the proof of Proposition 3.8 (i) to the Section 3.4.1. For the
point (ii), we have:

dsul{bn; 1) dsub(bn;G(Hn; ))+ dsub(G(Hn; ); 1):

The first term in the right hand side is upper boundeby by Proposition 3.8.
The second term is the Proposition 3.2 shown in [4, Corollary 2.2].

As a consequence, using the result of Athreya aollifiR[4] (see Proposition 3.2),
we obtain:



3.4 Estimation via biased graphon and “classical likelihood' 117

Proposition 3.9  Under Assumptions 3.1,
() bis a consistent estimator of and forq;r 2 [1; Q],

_ _ ] X X1
n!I|r+nl b = ars and n!Ilrpl by = ( r) r= g
r=1 r=1
(3.58)
It follows that a consistent estimator of; is
X X1
bg= ,* b - bl : (3.59)
r=1 r=1

(i) In the special case d) = 2, an estimator of ; is b} = (b}).

Proof. Let us consider point (i). The limit fdo follows from the ergodic theorem.
Indeed, we can write that

So

1 P P :
XfMZ] ?:f rore ol

b" = =

n
97 n

i=1
The ergodic theorem for the Markov chdiX "),, says that

1 X xa X1
le”Zm = Em[lxlmq]: ( r) ( ()= g

i=1 r=1 r=1

Iim —
n +1 N

It remains to prove thaff}, is a consistent estimator of,,. Rewritelj, as

bn_N,$$r:n2_ 1 1, 6.

ar — T NINL T pnpnp2 N
T bgbrn

Recall that the subgrap®, is constructed from the Markov chai(™ and that each

pair of non-consecutive vertice§ andX; are connected with probabilitZ;; Z;)
depending on theirs types and independently of the others edges. Let us focus on the
number of edgesl % ": two cases have to be distinguished.

Case 1,g6 r: The number of edges of typ€g; r) is

s X1 X
r — .
NPT = Ixi 214X 21, + i 6 ilxi21gx 210"
i=1 10 n
in;ngzE(Hn)
Then,
0 1
1
1 1 X ALl X 1i o, i Ixi214%; 21,
qr — b"bn ﬁ 1Xi2|q;xi+12|r + ﬁ bnpn
q-r i=1 10 n q-r

fXi:Xj9ZE(Hn)

(3.60)
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By the ergodic theorem for Markov cha(", we have

1X?
n!”rpl n 120X 21, = Em[Ixo21gx021,] = q ar < +1:
i=1
Sinc_elimn! +1 bg = 4> 0in probability, there exists a constamt 0 such that
c |nfq261;;;;Qg q(;and . . 1
1 1
n!"rpl P%bgérnn @}%{1 1xi2|q;xi+12|,A % %Xl 1Xi2|q;Xi+12|rA£ =1;
1= 1=

and hence the first term in the right hand sid¢260)converges to 0 in probability.

Consider now the second term in the r.h.s. of (3.60). Let us define the function
1 X
f(Gn) = 0z i 6.0 1xi21g% 2105
16 n
in;ngzE(Hn)
thenf is afunction ofthen(n 1)=2 (n 1)=(n 1)(n 2)=2random edges
onn vertices. We see that

1 X n 1)(n 2
E[f (Gh)]=E nz ) Li 6 ilxi2igx21, = ( r)1(2 ) qr q r-
in;]i(jlngn(Hn)
We have
5 i X L o i1xi214%; 21 i >
n2 bnbn
10§ n q-r
in;ngzE(Hn)
p 1 f(Gn) E[f(Gp)] >" L E[f (Gn)]
bgby " " bgbp — 2
=P f(Gn) E[f(Gn)] >"bgby j E[f(Gn)] bgb qfj |
n 1n 2
=P 1(G) EFG > bjy o DDy
Forc < infgr 1209
!
n 1(n 2
P (G E(G)] >"bJb g r),(z P
!
2n C3"
P f(Gn) E[f(Gn)] >C E
!
Lp (0 131(2” 2 bibp > 203 + P(BIBY < c?): (3.61)
qr

Sincelimpy +1 bg = 4> 0in probability, for fixed" > 0,
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. (n 1(n 2 nen c"
nl!llm P 2 qr bqbr < 2 o

and bjb! >¢c* =1

Thus the second and the third terms on the right hand si¢ie &1)tend to zero as
tends to infinity. It remains the first term to be treated. When one edge is changed,
the value off is changed by most=n?. Applying McDiarmid's concentration [97]

for functionf , we obtain:
I

P f(Gy) E[f(Gn)] >c* ; 2 exp 25

v~ 27 4n2c2(1 c=2)".
(n 1)(n 2) 1 2e '
2 n4

Note thatO < ¢ < 1thenc?(1 c¢=2) > 0. We use Borel-Cantelli's Theorem to

conclude that
!

lim P f(Gy) EIf(G)] >c* ; =0

and hence,

1 X Li 6.0 1xi21g%; 21, L0
2 nhn ar -
n 14 n bqbr

fXiXj9ZE(Hn)

in probability asn ' 1 . This finishes the proof for Case 1.

Case 2,g= r: The proof follows by similar arguments, with notice that there are a
few modifications because the expressiolNgf 9 is slightly different:

sa_ X 1 X
Ng™ 9= 214X 210 F 2 Li epilxizigx;aig:
i=1 16 n
fXi:Xj92E(Hn)
Then,
0 1
1
= —1 EX Ig:210Xiun 2 A+i X L G”jlxiZIq;ijIq

g iclg:Ai+1 2lqg 2 =

b(? I']b('q1 1 n i=1 n 10 n bc? ba 1=n

fXi;Xj92E(Hn)
(3.62)
We have that the first term on r.h.s. @.62)converges in probability t0 as in case
1. For the second term on r.h.s. of (3.62), we define the funétias in Case 1 by
1 X

f(Gn)= 55 Li 6 ilxi2igx 2140
2n T Q) <iq

fXi;Xj9ZE(Hn)

For a fixed" > 0,
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0
P% 1 X 1i o, 1xi214%; 214 >..§
— — aq
n2 L on bf by 1=n

£Xi:X ] G2E (Hn)
P f(Gn) E[f(Gn)] >"by by 1=n

(n D(n 2
n2

(@2 bl b 1=n
!

1, c, .
P f(Gn) EIf(G)] >cc =" 2" +P(bf<c)

qaq

I
(n L(n 2
n2

1
+ 2 n pKn BN .
P (@) by by - 2w
As in Case 1, the second and the third term on r.h.s. of above inequality are negligi-

ble. Applying McDiarmid's concentration fdr with notice that when changing 1
edge inG,, the value of changes at moﬂlznzl,

o, 2(2 c=n <)
P (G E[f(G] >cc 1=n)" =" 2exp g
2 n*

2e 2(n2c2(1 ¢=2) nc)".

Finally, using Borel-Cantelli's Theoreny, (G,) E[f (G,)]j! 0almost surely as
n tends to infinity. Thus, the point (i) is proved.

Proof of Proposition 3.8

From now on, for the sake of simplicity, we assume for the that there are two classes
of vertices in the graph, i.€ = 2. The proof can be generalized to genépaby
following the same steps. Our parameters' notations are simplified as , and

t=11= ()

Our purpose is to prove a convergence of graphons for the distipdatroduced in
(3.7)using the densitie.5). If F is an edge (meaning that= K, the complete
graph of2 vertices), then the density &f in G,, := G(X;Hpn; ) is the proportion
of edges,

FiGy= L "
t(F;Gp) = ——— 1 o
n(n 1) T 02[1;n]
Z X
and t(F; ,)= b, (X1; X2)dx,dx, = bgb{‘bgr:
[o:12 qr=t

In general case, ¥ is a graph ok vertices,
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1 X Y
t(F;Gn): W 1. cio (3.63)
K (i 2MLnY 7 B2E (F) 1
Z % X
t(F, n): @ bﬁrljg Jrn(X‘;X‘O)A Xm ka (364)
01t ogoE(F)  qir=1
Let us first consider the case whdfas an edge.
: . 1 X z
tFEGr) R W= Li ¢, by (X1; X2) dX1dxz
M2 G opum oy
1 X
W 1i Gnl bZi;Zj
2 (ij)21Ln]
1 X
+ bz.z,  (b)?H; 200(1 bY)B, (1 bY)’L,
(n)2 (i )2[L:n]
’ ' 0 1
1 X X 1
oF Li qj bzz + 0,@ o (b)?A
2(i6)2[1;n1| ()1 @z 2
X 1
+ b, @ —— (1 b})?A
(i) (ZiZ))=@2 :z)o(n)2 L

X 1
+ Ub% OF 2b7 (1 b;')%;

()i (Zi:Z;)=(1 ;2)
Onzi;z;)=(2 ;1)

By the law of large numbers and usi(®58)whose proof does not depend on the
Proposition 3.8, the four terms converge to zero.

In the general case, proceeding in a similar way leads to:

jtF;Gn)  t(F; )i
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0 1
1 X Y 1 X Y x
W 1i\ Gi‘O W @ bgrlzi‘:q;zi\(FI’A
K (i ik)2I[1;n]f‘:‘092E(Fd K (i :i:t)f‘;‘OQZE(F) q;r=1
1 X Y X
+ (n) @ bgl’er:CI?Zi\O:rA
(1 0 g2EF) A=l 0 1
1 X Y x
W @ bgrlzi:q;zi\o:rA
1 i1;0 dk nf0g2E(F) q;r:i
1 X Y X
+ W @ bgr]-Zr:q:Zi\o:rA
1 i1; ik nf;02E(F) qr=1
Z 0 1
Y X
) @ bgrl-]{f JP(X‘;X‘O)A Xm ka:
01 ¢ ogoE(F)  qgir=1
Q Q Pq

AS " toapery Lic cio@Nd T fuager)  qren Birlzi=gzi,=r  are bounded by
1, there exist(k) such that the first term and the second term in the right hand side
are bounded bg(k)=n. For the tt(w)ird term, itis equal to

X Y 1 X
b g0 @ 12, =q.: Zi.=q
Y 1 Il =l I
1 ouyinge Qf 992E(F) 1 i1; ik N 1

1 (Xn)dXs dx A
[Orl]k h=1

Since0 Qf\;‘ogZE(F) Piq, landfZy, =gq,; :Z,=qg9="1f (Xi)2

Ja: 5 (Xi,) 2 g9, the third term is thus bounded by
X 1 X Z
K 1 (%0230 5 (X1,)29, Lg (Xp)dxy  dxi
1 g Q 1 i1; ;ig n (01 h=q
X 1 X K v £
= K 1 (xi)24: 150 dx:
1 ;g Q 1 i1; gk n'=1 = 0]
Qk P Z
- X =1 2=1 1 (Xi.)23q, dx-
..... nk In
1 gk Q =1 ‘o
. .
n
1 oo Q =1 =1

Hencelim,, .1 jt(F;G,) t(F; »)j = 0. Becausd(F;G,) andt(F; ,) are
bounded independently from this provides the announced result.
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Incomplete observations and graphon de-biasing

In Proposition 3.9, it is shown that the “classical' SBM estim#Bo21) obtained

by neglecting the bias coming from the sampling scheme can be corrected by using
the inverse of the cumulative distribution functionof m. When the types are
unobserved, we proceed in the same way. We assume here that th& tygres
unobserved, but we need the observation of the mérkstherwise no de-biasing

is permitted since the cumulative distribution functiorcan not be estimated. We
detail this estimation procedure in the c&3e 2 for the sake of simplicity, but
generalization is straightforward.

Step 1:First, we perform an estimation of the SBM neglecting the sampling biases.
This amounts to computing the estimator proposed in [29]:

We follow the algorithm described in Section 3.3.2, but with the likeli-
hoodL “2{Z;;Y; ; ) given in(3.19) We denote the parameter here by

(1 1, 11 120 21 22)-

For the proposal distribution of the typgs, it is simpler since we assume
that theX;'s are known. Assume that we are at skepnd that we dispose of
the parameters . We initialize the types by attributing the types 1 to the
Xi ©) and 2 to the others. At each step, the threshold is modified from

& Uto W py following a random walk: a gaussian increment (mean 0 and
variances?) is added. All theX; smaller than this increment are given the type
Z; = 1 and the others the typg = 2.

Step 1 corresponds to a variational EM for the classical likelihood, for which the
consistency and asymptotic normality have been established by Celisse et al. [22]
and Bikel et al. [9].

Step 2:We estimate the cumulative distribution functiop (see(3.12) and deduce
the graphon estimatds} of ; using (3.59). This provides the estimator of

xR
bn(x;y) = b 1P @ tpp.” 9 bE)(x)l[P oo P bE)(y): (3.65)

n
k' k=1 k* k=1
g=1 r=1

Numerical results

For the simulation, we consider RDS graphs obtained from the exploration of SBM
graphons withQ = 2 classes, of respective proportlon§ 2=3and , =1=3.

The connection probabilities are:
07 04

04 08

The RDS graphs consist af= 50 vertices.
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We proceed to the four estimations presented in this paper:

the algorithm of Section 3.3.1 for complete observations by assuming that
the type<Z; 2 f 1; 2g are observed. In the estimation, the system of equations
(3.22)(3.27)is solved. For this, we look numerically for the zerog®#32)and
choose the solution corresponding to the highest likelihood. For the bisection
method ([34]), we use a grid of stdf 2.

the SAEM algorithm of Section 3.3.2 when the tygsare unobserved. The
SAEM is based on an iteration dmand we perfornK = 200 iterations.

the computation of the estimators given in Proposition 3.9 assuming complete
observations,

the debiasing of the Variational EM Algorithm (VEM) of Daudin et al. pre-
sented in Section 3.4.2. Again, we u§e= 200 iterations for the EM iterations.

We proceed to a Monte-Carlo study of the estimators' distributions. We simulate
200 RDS graphs, and for each of them, apply the four estimation strategies. The
empirical distribution of the estimators are represented in Fig. 3.2, and this allows us
to estimate the associated mean squares errors (MSE) for each method, see Table 3.1.

Complete SAEM De-biased De-biased
Parameters likelihood graphon  graphon with VEM
11 374104 96910° 44510% 443104
12 488104 132102 6:6310% 892104
22 1:3010°% 270102 145103 1:36 103
1:0410% 377102 93510% 760104

Table 3.1. Mean square errors.

Without surprise, the estimation is better when we have complete observations
(columns 1 and 3). The estimation olbased on the estimat(8.59)is better than
the MLE obtained in column 1 from an MSE point of view.
To understand the difficulty in estimating recall that for the MLE estimators based
on the true likelihoodp is estimated fronP (see(3.30)). The shape of function

= 1— (see figure 3.3) indicates that values ogmaller tharl=2 give similar
values of and thus, when 2 (0;1=2), its estimation from is more difficult.
For that reason, when< 1=2, we can not obtain a good estimation, even though
might be well-estimated. Nevertheless, in the cage(1=2;1), varies sufficiently
to allow an estimation of with better precision. So our recommendation is that
when there are 2 classes of vertices, to choose as type 1 the majority type so that

> 1=2. However, it seems that estimatingrom (see(3.59) rather than from

IS much more precise.

When the type&; are not observed, we achieve better MSEs with the debiasing
of the classical SAEM method of Daudin et al. (column 4 of Table 3.1). Notice
first that the columns 2 and 4 of Table 3.1 are not completely equivalent, since the
debiasing methods of Section 3.4 necessitate the knowledge of the poXitions
of the Markov chain, when the likelihod@.13)necessitates only the connections

Y; and the type&;'s. Second, the updating of the types in the SAEM algorithm
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(@) (b)

(©) (d)

Figure 3.2. Estimation on complete data for a graphrof 50 vertices withQ = 2 classes
and parameters; =2=3, 11 =0:7, 12= 21 =0:4and 2, =0:8. 200 such graphs are
simulated and the empirical distributions of the estimators are represented here with the true
parameters in red line. (a): estimator qf(b): estimator of 11, (c): estimator of 1, (d)
estimator of »,.

is easier in Section 3.4.2 when tKg's are known since it amounts to choosing
the threshold that separates the types 1 and 2. Finally, the SAEM algorithm on the
classical likelihood3.19) seems to converge more easily than for the likelihood
(3.13).

Conclusion

Four statistical methods are studied in this paper, for estimating SBM parameters us-
ing a subgraph obtained from the exploration of the graphon by a Markov chain. This
is a toy model for estimating random networks from chain-referral sampling tech-
nigues and there exist sampling biases. The two first methods compute the maximum
likelihood estimator when the types of the nodes are known or unknown. On simula-
tions, it appears that the SAEM algorithm used when the types are unobserved is not
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Figure 3.3. The correlation of and .

very robust and provides relatively large MSEs. An alternative approach is proposed
by taking advantage of recent results by Athreya antiifR[4]: this allows to correct

the classical SBM estimators that would be proposed if one ignores the sampling
biases. These methods provide good estimators but rely on the precise knowledge
of the Markov chain exploring the SBM graphon (in particular the positkys),

which is not always available.
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