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Résumé

Over these years, GNSS technology has attracted many attentions around world and it has been widely applied in navigation for aviation, ground vehicle and marine application. On the other hand, advanced railway operating systems have been widely used to guarantee the safety and efficiency of the railway network. The efficiency of these systems is based on the availability of reliable train positioning. Hence, applying GNSS technology in the train positioning is a very promising research area, since it has such important benefits as lower initial costs and lower maintenance. In this thesis, several algorithmic solutions are proposed for train positioning by using GNSS signals and the railway centerline stored in the onboard computer database. At first, the train travelled distance and speed are estimated by using GNSS signals and an "ideal" railway centerline. The "ideal" model of railway centerline is composed of straight line segments, transition curves and arcs of circles, defined by parametric equations. The impact of the railroad curvature on the train speed and distance estimation is studied.

Secondly, the train travelled distance and speed are estimated by using GNSS signals and a "non-ideal" railway centerline. The "non-ideal" model of railway centerline is defined by a polygonal line with some level of uncertainty. The impact of the track geometric model imprecision on the train speed and distance estimation is studied.

Finally, the train travelled distance and speed are estimated by integrating the GNSS measurements with a track database. The impact of the GNSS measurements and the track database errors on the train speed and distance estimation is studied. 
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et [START_REF] Nikiforov | Integrtiy equations for safe train positioning using GNSS[END_REF]. Moreover, accurate measurement of position, speed and acceleration can increase the railway line capacity (The maximum number of trains which can be moved in each direction over a specified section of track in a 24 hour period.) without adding extra infrastructure [START_REF] Mirabadi | Application of sensor fusion to railway systems[END_REF]. So it can provides not only benefits on performance but also on cost.

Conventional positioning methods in railway systems are based on trackside located technical equipment, i.e. axle counters, track circuits, etc (Becker et al. -2006b,c). The positioning information of an axle counter is available at a special point when the train is passing the counter. These equipments can provide train positioning information with an accuracy of several hundred meters, which is sufficient for existing protection systems but reduces the performance with respect to railway line capacity. These devices are installed on all ground sections, so they require enormous installations and maintenance efforts and exhibit a poor adaptability towards innovation or changing operational requirements. For modern railway management, it's necessary to develop a train positioning system, integrating innovative technologies with the main focus on GNSS positioning, since GNSS can provide the flexibility to change the requirements and has also benefits such as lower initial costs (all necessary equipments can be installed on the locomotive) and lower maintenance. typical positioning system, includes GNSS receivers, odometer, Balise Tracking Module (BTM), aided positioning sensors, e.g., gyroscope, accelerometer, Doppler radar, etc, and a core data process unit with information fusion [START_REF] Liu | A GPS/Compass based train integrated positioning method for high-speed railways[END_REF].

Given all that, driven by technical and economical reasons, a vehicle-based train positioning system to assure safe and precise operation at low costs needs to be made efforts to develop.

I.1.2 Key Issues in Train Positioning

For safety critical rail applications, special attention needs to be drawn to the accuracy, integrity, continuity and availability of the positioning information [START_REF] Ochieng | Advanced transport telematics positioning requirements : an assessment of GPS performance in greater london[END_REF][START_REF] Hartwig | Requirements for safety relevant positioning applications in rail traffic -a demonstrator for a train borne navigation platform called "demoOrt[END_REF]Group -2003).

• Accuracy Accuracy refers to the closeness of the estimated position and speed to the true value.

Different accuracy of these estimated parameters can be reached by using different positioning systems.

• Integrity

Integrity relates to the level of trust that can be placed in the information provided by the navigation system. It includes the ability of the navigation system to provide timely and valid warnings to users when the system must not be used for positioning.

• Continuity

Continuity is the capability of a navigation system to provide required accuracy and integrity during an intended period of operation.

• Availability

Availability stands for the percentage of time when the service of the navigation system is available.

Among the above mentioned requirements, the accuracy and integrity are the two most essential aspects for rail application because the train needs high accuracy position
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and the integrity directly relates to the safety. satellite constellations with Geostationary (GEO) or geosynchronous satellites. The GNSS system is composed of three segments (Wasle -2007) :

I.1.3 Train GNSS Positioning

• Space segment

In order to provide a continuous global positioning capability, a constellation with a sufficient number of satellites must be developed for each GNSS to ensure that at least four satellites are simultaneously visible at every site.

• Control segment

The control segment (also referred to as ground segment) is responsible for steering the whole system. The task includes the deployment and maintenance of the system, tracking of the satellites for the determination and prediction of orbital and clock parameters, monitoring of auxiliary data, and upload of the data message to the satellites.

It is also responsible for a possible encryption of data and the protection of services against unauthorized users.

• User segment

The user segment can be classified into user categories, receiver types and various information services. User categories are subdivided into military and civilian users as I.1. TRAIN POSITIONING well as authorized and unauthorized users. Civilian and unauthorized users do not have access to all signals or services of the GNSS. The receiver types depend on the market today. One characterization is based on the type of observable, i.e., the kind of pseudoranges. Another criterion is the ability to track one, two or even more frequencies.

Several governmental and private information services have been established to provide GNSS status information and data to the users. The information contains constellation status reports, scheduled outages, and orbital data.

Until now, there have been only two fully operational systems, GPS and GLONASS.

The other two systems, Galileo and Beidou, are still being deployed.

GPS

The Navigation System with Timing and Ranging (NAVSTAR) GPS was developed by the United States Department of Defense for military applications in 1973. Then the system was made available for civilian use in 1983. As of August 2008, GPS comprises a constellation of 31 MEO satellites. The present nominal constellation consists of operational satellites deployed in six evenly spaced planes with an inclination of 55 and with four satellites per plane. The orbits are arranged so that at least six satellites are within line of sight from almost everywhere on Earth's surface, and at least four satellites are visible at least 15 0 above the horizon [START_REF] Gao | Towards navigation based on 120 satellites : analyzing the new signals[END_REF]. 
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GLONASS

The GLONASS is the Russian counterpart to GPS and is operated by the Russian military. Development of GLONASS began in the Soviet Union in 1976. Beginning on 12 October 1982, numerous rocket launches added satellites to the system until the constellation was completed in 1995. By 2010, GLONASS had achieved 100% coverage of Russia's territory and in October 2011, the full orbital constellation of 24 satellites was restored, enabling full global coverage.

Galileo

Galileo is a GNSS currently being built by the European Union (EU) and European Space Agency (ESA). On 21 October 2011, the first two of four operational satellites were launched to validate the system. Full completion of the 30-satellite Galileo system (27 operational and three active spares) is expected by 2019.

BeiDou

The BeiDou Navigation Satellite System is a Chinese satellite navigation system.

BeiDou-1 which is the first BeiDou system, consists of three satellites and offers limited coverage and applications, since 2000. The second generation of the system, known as BeiDou-2 or Compass, will be a global satellite navigation system consisting of 35 satellites, and is under development as of January 2013. It became operational in China in December 2011, with 10 satellites in use, and began offering services to customers in the Asia-Pacific region in December 2012. It is planned to begin serving global customers upon its completion in 2020.

I.1.3.2 Coordinate System Definitions

Three coordinate systems are important to our research. These include the geodetic coordinate system, the Earth-Centered, Earth-Fixed (ECEF) coordinate system and the local East, North, Up (ENU) coordinate system.

Geodetic Coordinate System

The geodetic coordinate system is widely used in GNSS-based navigation. It's not a usual Cartesian coordinate system but a system that characterizes a coordinate point M near the Earth's surface in terms of longitude, latitude and height (or altitude), denoted by λ, φ and h (see Fig. 

ECEF Coordinate System

The ECEF is a coordinate frame fixed to the Earth, what means it rotates with the Earth around its spin axis. The origin and axes of the ECEF coordinate system are defined as follows (also see Fig. I.3) :

1. The origin o is located at the center of the Earth.

2. The z-axis is along the spin axis of the Earth, pointing to the North pole.

3. The x-axis intersects the sphere of the Earth at 0 0 latitude and 0 0 longitude.

4. The y-axis is orthogonal to the zand x-axes with the usual right-hand rule.

ENU Coordinate System

The ENU coordinate system is a local system fixed to the Earth's surface. It is formed from a plane tangent to the Earth's surface fixed to a specific location, hence it's also known as the "local tangent plane". In this plane, the unit vector x l points to
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the East, the unit vector y l points to the North and the unit vector z l points Upward, as shown in Fig 

I.1.3.3 Coordinate Transformations

The transformation relationships among these three coordinate systems are introduced in this section.

Geodetic Coordinate System and ECEF Coordinate System

As shown in Fig. I.3, the transformation of the coordinates of a point M for the geodetic coordinate system to the ECEF coordinate system is given by (Tsui -2007) : is the radius of curvature in the prime vertical (which is the vertical plane normal to the astronomical meridian). a and e are the semi-major axis and the eccentricity of the Earth, respectively.

         x = (N + h)
The reverse problem that computes M(λ, φ, h) from M(x, y, z) requires an iteration for φ and h. Directly λ = arctan(y/x). Then the procedure is given as follows :

Initialization : h = 0, N = a, p = √ x 2 + y 2 .

Iteration : sin φ = 

Stop the iteration if |h

i -h i-1 | ≤ ς,
where ς is a small positive constant.

ECEF Coordinate System and ENU Coordinate System

The transformation of the coordinates of a point M 0 (λ 0 , φ 0 , h = 0) from the ECEF coordinate system to the ENU coordinate system is given by (see Fig. I.4) :

   x l y l z l    =   
sin λ 0 cos λ 0 0 sin φ 0 cos λ 0sin φ 0 sin λ 0 cos φ 0 cos φ 0 cos λ 0 cos φ 0 sin λ 0 sin φ 0

      x -N 0 cos φ 0 cos λ 0 y -N 0 cos φ 0 sin λ 0 z -N 0 (1 -e 2 ) sin φ 0    , (I.2)
where N 0 is calculated exactly as in equation (I.1) but with M 0 (λ 0 , φ 0 , h = 0) instead of M (λ, φ, h).

The convert from the ENU coordinate system to the ECEF coordinate system is obtained by inverting the transformation :

   x y z    =    N 0 cos φ 0 cos λ 0 N 0 cos φ 0 sin λ 0 N 0 (1 -e 2 ) sin φ 0    +   
sin λ 0 cos λ 0 0 sin φ 0 cos λ 0sin φ 0 sin λ 0 cos φ 0 cos φ 0 cos λ 0 cos φ 0 sin λ 0 sin φ 0

   T    x l y l z l    .
(I.3)

I.1.3.4 GNSS Classic (3D) Navigation

Two ways of GNSS navigation have been discussed by many authors : point positioning or relative positioning [START_REF] Hofmann-Wellenhof | GPS : Theory and Practice[END_REF][START_REF] El-Rbbany | Introduction to GPS : the Global Positioning System[END_REF][START_REF] Misra | Global Positioning System : Signals, Measurements, and Performance[END_REF]Ahn -2013;[START_REF] Nikiforov | [END_REF]. In this section, the first method is described in details. The navigation solution is based on accurate measuring the distance (range) from several satellites with known locations to a user (see Fig. I.5).

Let us assume that there are n satellites located in three-space at the known positions X i = (x i , y i , z i ) T , i = 1, ..., n, and a user at X u = (x, y, z) T . The pseudo-range r i from
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GNSS satellites

Railway centerline

Train where d i (x, y, z) = X i -X u 2 , i = 1, ..., n, is the true distance from the i-th satellite to the user, b r is a user clock bias, c ≃ 2.9979 • 10 8 m/s is the speed of light and ε i is the pseudo-range noise. Let us introduce the following vectors : R = (r 1 , ..., r n ) T and X = (X T u , cb r ) T . By linearizing the pseudo-range equation with respect to the state vector X around the working point X 0 = (X T u0 , cb 0 ) T , we get the measurement equation

X i X u x = φ(ℓ) y = ψ(ℓ) z = η(ℓ)
      y 1 y 2 . . . y n       =       r 1 -r 10 r 2 -r 20 . . . r n -r n0       ≃       h 1x h 1y h 1z 1 h 2x h 2y h 2z 1 . . . . . . . . . . . . h nx h ny h nz 1       •      x -x 0 y -y 0 z -z 0 cb r -cb 0      +       ε 1 ε 2 . . . ε n      
, (I.5)

where r i0 = d i0 +cb 0 , d i0 = d i (x 0 , y 0 , z 0 ) = X i -X u0 2 , i = 1, ..., n and the coefficients of the Jacobian matrix H 0 of size (n × 4) are given by

h ix = ∂d i ∂x (x 0 , d i0 ) = x 0 -x i d i0 , h iy = ∂d i ∂y (y 0 , d i0 ) = y 0 -y i d i0 , h iz = ∂d i ∂z (z 0 , d i0 ) = z 0 -z i d i0 .
The above linearized measurement equations (I.5) can be written as follows

Y = R -R 0 ≃ H 0 (X -X 0 ) + Ξ, (I.6)
where H 0 is a full rank matrix of size (n × 4) defined in equation (I.5), R 0 = (r 10 , ..., r n0 ) T , Ξ = (ε 1 , ..., ε n ) T . If we assume that n ≥ 5, E(Ξ) = 0 and cov(Ξ) = σ 2 I n , the iterative least square (LS) algorithm provides us with an optimal solution. First, we compute the LS estimate X by using the measurement vector R and the initial working point X 0 :

X = X 0 + (H T 0 H 0 ) -1 H T 0 (R -R 0 ). (I.7)
Then, the working point is set to be X 0 = X for the next iteration. Usually only two or three steps are necessary to reach the convergence of the iterative process. The stopping rule is defined as follows :

stop the iterations if X -X 0 2 = (H T 0 H 0 ) -1 H T 0 (R -R 0 ) 2 ≤ ς, (I.8)
where ς is a small positive constant. When the convergence has been reached, the residual vector e is given by the following equation e = R -R 0 .

(I.9)

Now we assess the quality of this estimator. First, substituting the right side of equation (I.6) into equation (I.7) yields to

X = X + (H T 0 H 0 ) -1 H T 0 Ξ. (I.10)
Then the expectation and variance of this estimator are calculated as follows

E( X -X) = E[(H T 0 H 0 ) -1 H T 0 Ξ] = 0, var( X) = E[( X -X)( X -X) T ] = E[(H T 0 H 0 ) -1 H T 0 ΞΞ T H 0 (H T 0 H 0 ) -1 ] = σ 2 (H T 0 H 0 ) -1 . (I.11)
The first expression shows that the estimator is unbiased. It is also interesting to compare the variance of this estimator with the Cramér-Rao lower bound in the class

K 0 = { X : E( X -X) = 0} of unbiased estimator.
In the following Section I.3, it will be shown that the variance of this estimator var( X) achieves the Cramér-Rao lower bound, i.e., var( X) ≥

1 n F -1 (X) = σ 2 (H T 0 H 0 ) -1 . (I.12)
Hence, the estimator is unbiased and efficient.
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The accuracy of the instant absolute positioning is correlated with the geometry of the satellite constellation in the sky. The satellite geometry effect can be measured by a parameter called the Dilution of Precision (DOP), which can be calculated from the variance-covariance of the coordinates and time. Let us consider the covariance matrix in the ENU coordinate system and we have :

cov( X) =      σ 2 E σ EN σ Eh σ Et σ N E σ 2 N σ N h σ N t σ hE σ hN σ 2 h σ ht σ tE σ tN σ th σ 2 t      .
Let σ be the Standard Deviation (SD) of pseudo-range error. In practice we have several forms of the DOP :

• The vertical dilution of precision (VDOP) : VDOP = σ h σ . • The horizontal dilution of precision (HDOP) : HDOP = √ σ 2 N +σ 2 E σ .
• The position dilution of precision (PDOP) : PDOP = √

σ 2 N +σ 2 E +σ 2 h σ .
• The time dilution of precision (TDOP) : TDOP = σt σ .

• The geometric dilution of precision (GDOP

) : GDOP = √ σ 2 N +σ 2 E +σ 2 h +σ 2 t σ .
The lower the value of the DOP, the better the positioning accuracy. 0.672 0.000 0.000 0.000 0.000 0.672 0.000 0.000 0.000 0.000 1.600 -0.505 0.000 0.000 -0.505 0.409 

    

I.1.3.5 GNSS Train (1D) Navigation

Since trains travel on pre-defined track, 3D navigation becomes 1D navigation problem that fixes the train position along the track. Let us assume that the train track is defined by the following parametric equations in three-space :

     x = φ(ℓ) y = ψ(ℓ) z = η(ℓ)
where ℓ ∈ [0, +∞) is the travelled distance. This situation is also illustrated in Fig.

I.5.
Hence, the measurement model defined by equation (I.4) can be rewritten as follows :

           r 1 = d 1 (φ(ℓ), ψ(ℓ), η(ℓ)) + cb r + ε 1 r 2 = d 2 (φ(ℓ), ψ(ℓ), η(ℓ)) + cb r + ε 2 . . . . . . . . . . . . r n = d n (φ(ℓ), ψ(ℓ), η(ℓ)) + cb r + ε n . (I.13)
By linearizing the pseudo-range equation with respect to the state vector X = (ℓ, cb r ) T around the working point X 0 = (ℓ 0 , cb 0 ) T , we get the measurement equation

      y 1 y 2 . . . y n       =       r 1 -r 10 (ℓ 0 ) r 2 -r 20 (ℓ 0 ) . . . r n -r n0 (ℓ 0 )       ≃        h 1 1 h 2 1 . . . . . . h n 1        • ℓ -ℓ 0 cb r -cb 0 +       ε 1 ε 2 . . . ε n       , (I.14) where r i0 (ℓ 0 ) = d i0 (ℓ 0 ) + cb 0 , d i0 (ℓ 0 ) = d i (φ(ℓ 0 ), ψ(ℓ 0 ), η(ℓ 0 )), i = 1, .
.., n and the coefficients of the Jacobian matrix H 0 of size (n × 2) are given by

h i = ∂d i ∂ℓ (ℓ 0 ) = a φ (ℓ 0 )(φ(ℓ 0 ) -x i ) + a ψ (ℓ 0 )(ψ(ℓ 0 ) -y i ) + a η (ℓ 0 )(η(ℓ 0 ) -z i ) d i (ℓ 0 ) , where a φ (ℓ) = dφ(ℓ) dℓ , a ψ (ℓ) = dψ(ℓ) dℓ , a η (ℓ) = dη(ℓ) dℓ .
By analogy with the case of 3D navigation (see equation (I.6)), the above linearized measurement equation (I.14) can be rewritten as follows

Y = R -R 0 ≃ H 0 ( X -X 0 ) + Ξ, (I.15) GENERAL INTRODUCTION
where H 0 is a full rank matrix of size (n × 2) defined in equation (I.14). The solution ( l, br ) for the 1D navigation is obtained by using a nonlinear LS algorithm by analogy with the 3D solution (I.8)-(I.9).

As discussed in the case of 3D navigation, we also assess the quality of this estimator.

Substituting the right side of equation (I.15) into the LS estimator yields to

X = X + H T 0 H 0 -1 H T 0 Ξ. (I.16)
Then the expectation and variance of this estimator are calculated as follows

E X -X = E H T 0 H 0 -1 H T 0 Ξ = 0, var X = E X -X X -X T = E H T 0 H 0 -1 H T 0 ΞΞ T H 0 H T 0 H 0 -1 = σ 2 H T 0 H 0 -1 .
(I.17)

The first expression shows that the estimator is unbiased. It is also interesting to compare the variance of this estimator with the Cramér-Rao lower bound in the class K 0 = X : E X -X = 0 of unbiased estimator. In the following Section I.3, it will also be shown that the variance var X achieves the Cramér-Rao lower bound, i.e., var

X ≥ 1 n F -1 X = σ 2 H T 0 H 0 -1 . (I.18)
Hence, the estimator is unbiased and efficient.

I.1.4 Previous Research and Literature Review

The following subsection gives a summary of projects and methods of train positioning.

Several research projects have developed systems for the railways navigation by using GNSS, e.g. GaLoRoi (Juliette -2011), GRAIL [START_REF] Meyer Zu Hörste | The GRAIL project : Galileo localisation for the european train control system[END_REF], De-moOrt (Becker et al. -2006a), SATNAB [START_REF] Illgen | Satnab-validation of a satellite based ground navigation system[END_REF], LOCOPROL [START_REF] Mertens | A low cost train location and signalling systems for "low density" lines[END_REF], APOLO [START_REF] Hartwig | Requirements for safety relevant positioning applications in rail traffic -a demonstrator for a train borne navigation platform called "demoOrt[END_REF] and GADEROS [START_REF] Urech | GADEROS, a Galileo deonstrator for railway operation system[END_REF] [START_REF] Nikiforov | Integrtiy equations for safe train positioning using GNSS[END_REF]; [START_REF] Foulardirad | Détection statistique optimale dans un système linéaire en présence deparamètres de nuisance[END_REF]; [START_REF] Lacresse | Statistical fault detection with linear or nonlinear nuisance parameters[END_REF]; [START_REF] Lacresse | Détection de pannes en présence de paramètres de nuisance non-linéaires bornés[END_REF]; [START_REF] Lacresse | Fault detection with nonlinear nuisance parameters and safe train navigation[END_REF] discuss the problem of train positioning integrity monitoring using GNSS (or DGNSS) under the LOCOPROL project and several GNSS integrity methods have been studied thoroughly in order that GNSS can be safely used in rail operations. Recently, they provide several algorithmic solutions which are devoted to the trajectory-aided train positioning by using a GNSS receiver. The aim is to estimate some desired parameters such as the travelled distance, speed with a high level of accuracy (Zhu et al. -23-26 Apr. 2013, 27-28 Jun. 2013, 3-6 Sept. 2013, Apr. 2013). [START_REF] Zheng | Improving accuracy and integrity in rail applications through the integration of GNSS with a digital route map[END_REF][START_REF] Zheng | Integration of satellite positioning and a track database for safetycritical railway control systems[END_REF]; [START_REF] Zheng | Integrated GNSS with different accuracy of track database for safety-critical railway control systems[END_REF] develops a system that integrates GNSS with different accuracy of track database for safety-critical railway control systems. The feature of this system is its ability to take into account uncertainties in both GNSS

GNSS-based Train Positioning
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observables and the spatial railway network data. The impact of accuracy of the track database on positioning accuracy is studied. When the GNSS is integrated with the track database, the accuracy, integrity and availability are improved. Specifically, in the open areas where the satellite visibility is good, compared to the standalone GNSS, the integration system improves the accuracy both in the along track direction and in the across track direction. In the tough environment where the visibility of satellites is low, the improvements of accuracy and the external reliability by the integration system are more apparent than they are in the open areas due to the poor performance of the standalone GNSS in the tough areas. The integration system also increases the availability of the GNSS by using reducing its required satellites. It makes the position to be able to be calculated only if two satellites are available, the RAIM be calculated only if three satellites are visible and only four satellites are required for FDE.

GADEROS is a project aimed at demonstrating the use of GNSS integrity and safety of life characteristics for defining a satellite-based system to perform train location for safe railway application, which is to be integrated into ERTMS/ETCS architecture.

The demonstration on a low density traffic line provides real-life implementation of train location based on a GNSS receiver with integrity and augmentation. [START_REF] Lüddecken | Evaluating multiple GNSS data in a multihypothesis based map-matching algorithm for train positioning[END_REF] introduce a method of improving track-selectivity of positioning taking into account further GNSS observation data instead of additional sensors and thus providing an alternative way of precise and reliable positioning at switches. It is shown that the integration of the direction-dependent standard deviation of GNSS position measurement and the GNSS course observation results in an improved multi-hypothesis based map-matching algorithm. Its positioning accuracy enables a selection of the correct track after having passed a switch at the latest at the clearance point. [START_REF] Malvezzi | Distance and speed evaluation from odometric measurements[END_REF] develop the odometry algorithm for the Italian ATP system named SCMT, exploiting only data coming from two encoders measuring axle angular speed, which is installed on train circulating in Italian railways. A number of algorithms based on fuzzy logic [START_REF] Allotta | Train speed and position evaluation using wheel velocity measurements[END_REF][START_REF] Malvezzi | Distance and speed evaluation from odometric measurements[END_REF] and neural networks (Colla et al. -23-25 Apr. 2003, 3-6 Jun. 2003) have been developed to estimate the train speed and position.

Sensor-based Train Positioning

In the specific application, wheel angular speed sensors give a reliable and accurate estimation of train speed but only the adhesion conditions between the wheel and the rail are good. In presence of wheel sliding (when train is accelerating or braking), [START_REF] Malvezzi | Odometric estmation for automatic train protection and control systems[END_REF][START_REF] Malvezzi | Odometric estmation for automatic train protection and control systems[END_REF] improved both safety and performance only by adding a simple monoaxial accelerometer for the estimation of train longitudinal acceleration.

The results show that the proposed algorithm gives a better estimation of train speed with respective to the SCMT algorithm. The integration of the sensor measuring train acceleration in the odometric device leads to a significant improvement in the precision of both velocity and travelled distance estimation. Vettori et al. (12-15 Sept. 2011) also develop an estimation algorithm for railway vehicles based on odometers and an INS based on Inertial Navigation Unit (IMU).

The objective is to increase the accuracy of the odometric estimation, especially in critical adhesion conditions. The results show a significant improvement of odometric algorithm performance, compared with the conventional SCMT algorithm. Simsky et al. (8-10 Dec. 2004) develop a prototype train-borne positioning system within the framework of the LOCOLOC/LOCOPROL projects. The primary objective of both projects is to develop and demonstrate a complete very low-cost failsafe north direction are calculated. The results demonstrate that the CKF approach earns a high accuracy and efficiency ability than traditional UKF and PF solutions, the integrity performance of the train positioning system could be improved by the PCA based FDD strategies. [START_REF] Filip | GPS/GNSS based train position locator for railways signalling[END_REF][START_REF] Filip | Dynamic properties of GNSS/INS based train position locator for signalling applications[END_REF][START_REF] Filip | The high integrity GNSS/INS based train position locator[END_REF]; [START_REF] Filip | Safety aspects of GNSS based train position determination for railway signalling[END_REF]; [START_REF] Filip | Safety concept of railway signalling based on Galileo safety-of-life service. 11th International Conference on Computer System Design and Operation in the Railway and Other Transit Systems[END_REF] it was demonstrated that after the train passed the same track section (also under SIS absence) including the switch (against the switch blade), there was possible to determine with high probability on which of the parallel tracks the train was located. It should be noted that during these experiments the intentionally generated wheel slips introduced large odometry errors to the distance travelled measurements exceeding of 150 m. It means that there was possible to detect the errors and correct them.

GNSS/INS-based Train Positioning

GNSS/Sensor-based Train Positioning

The objective of the GaLoRoi project is the development of a certifiable safety relevant satellite based on-board train localisation unit to be used on low traffic density railway lines. The safe and precise on-board localisation unit control but also for train integrity monitoring, train and fleet management, green driving and furthermore for track inspection. GaLoRoi allows migrating for conventional localisation techniques towards a satellite based technology. A safe localisation will be enabled by a satellite independent device (eddy current sensor) supported by the EGNOS Safety of Life service.

The German Aerospace Center (DLR)'s Institute of Transportation Systems (ITS) works on the development of a demonstrator for the train borne, self-supporting navigation for safety relevant applications in the project "DemoOrt" in cooperation with the Technical University Braunschweig, the University Karlsruhe and Bombardier Transportation -Rail Control Solutions. The objective is the integration of different navigation systems into an innovative platform, to demonstrate a self-supporting navigation of the rail vehicle. The concept, consisting of a GNSS-receiver, an eddy-current sensor and a digital map, performs the calculation of the positioning information with high accuracy, reliability, integrity and availability. The platform guarantees the positioning of a rail vehicle with the required high precision and availability. It has been tested and demonstrated on a track near Karlsruhe in Germany and a narrow gauge line in the High Tatras in Slovakia [START_REF] Hartwig | Requirements for safety relevant positioning applications in rail traffic -a demonstrator for a train borne navigation platform called "demoOrt[END_REF].

The Railway User Navigation Equipment (RUNE) project demonstrates the use of GNSS integrity and safety of life service characteristics for defining a satellite-based system to perform train location for safe railway applications. The RUNE technical solution is based on GNSS receivers : navigation data will come from GPS with differential EGNOS corrections to enable autonomous and reliable determination of train position, velocity under practically all environmental conditions. The system also offers another technological approach for the train location function : the use of GNSS signals with inertial sensors and on-board odometers (Albanese et al. -16-18 Mar. 2005). [START_REF] Bedrich | GNSS-based sensor fusion for safety-critical applications in rail traffic[END_REF] Among the mentioned projects, most of them sought to develop a train location system by using GNSS and sensors. GaLoRoi allows migrating for conventional locali-
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sation techniques towards a satellite based technology, but the localisation unit is used only on low density railway lines. DemoOrt is the integration of different navigation systems, nowadays GPS, in future the European system GALILEO, into an innovative platform. The project SATNAB deals with the concepts of location with only one satellite, digital map assisted by a rubidium oscillator. GADEROS integrates the GALILEO integrity and augmentation within the train position locator. A few projects develop a onboard train location system by using only GNSS signals. Developing a train location system based on GNSS seems to be very promising.

I.2 Problems Studied in This Thesis

The algorithms described in this thesis are devoted to the train positioning by a low-cost GNSS receiver, using pseudo-distance measurements from satellites. Two approaches of the train travelled distance, speed and acceleration estimation can be considered. The first approach is based on the 3D track geometry model (this is the socalled 1D navigation). In the case of 1D navigation, as discussed in Section I.1.3.5, the GNSS receiver needs measurements from two satellites or more to estimate the train position and clock bias. The information about the train track is stored in the onboard train database. With this information and the knowledge concerning geometric design of train track model, a realistic train track can be made. The second approach does not use any information about the track geometry model (hence, it is a conventional 2D or 3D navigation). The first approach can potentially provide the users with the best precision but some preliminary investigations should be done prior its incorporation.

Hence, the following crucially important questions need to be considered :

1. What is the impact of such a track geometric model imprecision on the estimation of train speed, acceleration and distance ? 2. What is the impact of the railroad curvature or railway curve radius on the train speed, acceleration and distance estimation ? 3. Will a change of acceleration cause imprecise estimation of the train speed, acceleration and distance ?

The proposed methods of statistical estimation permit us to study the above mentioned questions. Estimation is the process of obtaining a set of unknowns of interest from a set of uncertain measurements, according to a definite optimization criterion.

The estimation method used in our research is the LS algorithm, which uses the measurement model. The LS algorithm is the most common estimation procedure in GNSS navigation and its optimization criterion is based on minimizing the sum of the square residual. The LS estimator coincides with the Maximum Likelihood Estimator (MLE).

I.3 Estimation Theory (parametric approach)

The goal of this section is to provide a brief overview of estimation methods that have been used in our research. Some basic concepts of convergence of random variables are given in Appendix A.

Problem Statement

The problem of unknown parameter estimation arises when the statistician wishes to estimate some unknown parameters θ of the parameterized distribution P θ . Therefore, the statistician has to define a function of observations (or statistics) which is used instead of the parameter θ as its approximation θ = θ n (y 1 , y 2 , . . . , y n ).

We will use the symbol .. to denote a function of observations (or statistics), which is usually called "estimator" (or estimation) of θ. It is assumed that we dispose of a parameterized family of distributions P = {P θ , θ ∈ Θ}. We also have a set of possible values Θ for the parameter θ. This idea is illustrated in the following figure.

Maximum Likelihood Method

Let us now discuss one classical method of estimation : maximum likelihood method.

It can be interpreted as realisations of the principle of substitution (see details in Appendix A). First of all, let us start with the definition of Kullback-Leibler "distance" and its property. between F and Q is given by

ρ(g, f ) = log g(x) f (x) g(x)dx.
Lemma 1 (Kullback-Leibler property). The Kullback-Leibler "distance" is always nonnegative. Then

ρ(g, f ) = log g(x) f (x) g(x)dx ≥ 0 and ρ(g, f ) = 0 iff f (x) = g(x) almost everywhere.
Let us consider a parametric family P = {P θ } θ∈Θ . It is assumed that P θ and Q admit the densities, denoted by f θ (x) and g(x), respectively. By using the method of minimum distance with the Kullback-Leibler "distance"

d(P θ , Q) = ρ(g, f θ ) between
the distribution Q and one element P θ from the family P, an estimator θ can be defined as a value of θ which minimize the following expression :

min θ∈Θ ρ(g, f θ ) = min θ∈Θ log g(x) f θ (x) g(x)dx
or which maximize :

max θ∈Θ log f θ (x) g(x)dx.
Definition 2. The observations ξ 1 , . . . , ξ n are assumed to come from P θ , where P θ ∈ P.

The maximum likelihood estimator is given by

θ = arg max θ∈Θ log f θ (x) d G n (x) = arg max θ∈Θ 1 n n i=1 log f θ (y i ). Definition 3. The mapping θ → f θ (Y n ) = n i=1 f θ (y i ), considered as a function of θ, is called the likelihood function and θ → log f θ (Y n ) = n i=1 log f θ (y i ) is called the log-likelihood function.

Bias (or Bias Function) of an Estimator

In statistics, the bias (or bias function) of an estimator is the difference between this estimator's expected value and the true value of the parameter being estimated.

The mean of the sampling distribution of the estimator θ is used to define the bias of the estimator. Hence, it can be defined as follows :

Definition 4. The bias of the estimator θ is b(θ) = E θ ( θθ). The estimator for which b(θ) = 0 is called unbiased. Sometimes, it is useful to define an asymptotic notion of bias. Let us denote by θ n the estimator using first n observations. The asymptotic bias is defined as follows b

(θ) = lim n→∞ E θ ( θ n -θ).

Cramér-Rao Inequality

It is also interesting to compare the variance of the estimator with the Cramér-Rao lower bound in the class K 0 = { θ : E( θθ) = 0} of unbiased estimator. An unbiased estimator which achieves this lower bound is said to be efficient. Let us here consider the vector case θ ∈ Θ ⊆ Ê m (see the scalar case θ ∈ Θ ⊆ Ê in Appendix A). The observations ξ 1 , . . . , ξ n are assumed to come from P θ , where P θ ∈ P. The likelihood function for these observations is given by

L(ξ 1 , . . . , ξ n ; θ) = n i=1 l(ξ i , θ), l(ξ, θ) = log f θ (ξ),
where f θ (x) is the PDF of P θ .

Regularity conditions :

R 1 : the function θ → f θ (x), for almost all values of x, is continuously differentiable in θ i (i = 1, . . . , m) ; R 2 : the integrals

F i,j (θ)=E θ l ′ i (ξ, θ)l ′ j (ξ, θ) =E θ ∂l(ξ, θ) ∂θ i ∂l(ξ, θ) ∂θ j = ∂l(x, θ) ∂θ i ∂l(x, θ) ∂θ j f θ (x)dx,
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where i, j = 1, . . . , m, exist, the Fisher matrix

F (θ) =       F 1,1 (θ) . . . F 1,m (θ) F 2,1 (θ) . . . F 2,m (θ) . . . . . . . . . F m,1 (θ) . . . F m,m (θ)      
is continuous in θ and its determinant is non-zero : det F (θ) = 0.

Theorem 1 (Cramér-Rao inequality). Let θ ∈ K b be an estimator. If the conditions of regularity R 1 and R 2 are satisfied, then

V θ ( θ) ≥ 1 n (I m + B ′ (θ))F -1 (θ)(I m + B ′ (θ)) T
where I m is the identity matrix of order m, B ′ (θ) is the square matrix of order m :

B ′ (θ) =       b ′ 1,1 (θ) . . . b ′ 1,m (θ) b ′ 2,1 (θ) . . . b ′ 2,m (θ) . . . . . . . . . b ′ m,1 (θ) . . . b ′ m,m (θ)      
where b ′ i,j (θ) = ∂b i ∂θ j (θ) and b(θ) = (b 1 (θ), . . . , b m (θ)) T , i, j = 1, . . . , m.

For the class K 0 of unbiased estimators, the so-called Cramér-Rao lower bound is

V θ ( θ) ≥ 1 n F -1 (θ).

Fisher Information

In the above discussion, the quality of Fisher information plays a very important role in parameter estimation. Let us now discuss this quality more details on the scalar case.

Definition 5. Let us consider a parametric family P = {P θ } θ∈Θ . The observations ξ 1 , . . . , ξ n are assumed to come from P θ , where P θ ∈ P. It is assumed that P θ admit the PDF f θ (x). The Fisher information about θ contained in the sample Ξ = (ξ 1 , ..., ξ n ) is

F n (θ) = E θ   ∂L(Ξ, θ) ∂θ 2   = E θ   f ′ θ (Ξ) f θ (Ξ) 2   = • • • f ′ θ (X) f θ (X) dx 1 • • • dx n , where L(Ξ, θ) = n i=1 log f θ (ξ i ), X = (x 1 , ..., x n ) T and f ′ θ (X) = ∂f θ ∂θ (X).
Lemma 2 (Fisher information property). Let us assume that ξ ∼ P θ is a random variable which is defined on D. If the domain D doesn't depend on θ, we have

F n (θ) = E θ   ∂L(Ξ, θ) ∂θ 2   = -E θ ∂ 2 L(Ξ, θ) ∂θ 2
Example I.3.1 Let us consider the linear model often arising in the regression analysis :

      y 1 y 2 . . . y n       =       h 11 h 12 • • • h 1r h 21 h 22 • • • h 2r . . . . . . . . . . . . h n1 h n2 • • • h nr       •       θ 1 θ 2 . . . θ r       +       ε 1 ε 2 . . . ε n       , (I.19)
where Y = Hθ + Ξ, the vector Y are the responses, the matrix of regressors H consists of n observations on each of the r independent variables. The vector θ is unknown and must be estimated. The vector Ξ contains random noise terms which are independently distributed with zero mean and variance σ 2 .

Let us suppose that n > r and the columns of the matrix H are linearly independent.

The likelihood function of the sample Y for given H is equal to

f θ (Y ) = 1 (2π) n 2 σ n exp      - 1 2σ 2 n i=1   y i - r j=1 θ j h ij   2      = 1 (2π) n 2 σ n exp - 1 2σ 2 Y -Hθ 2 2 .
Maximum likelihood method is applied to estimate the unknown vector θ :

θ = arg max θ f θ (Y ) = arg min θ N 2 (θ) = arg min θ Y -Hθ 2 2 .
Hence, in order to find θ that maximizes the likelihood function, we must find θ that minimizes the Euclidean norm of the squared error N 2 (θ) = Y -Hθ 2 2 , that is to say, the maximum likelihood algorithm coincides here with the LS algorithm.

Necessary conditions for extremum :

To find the critical point θ, we solve the system of n equations with r unknown variables θ 1 , ..., θ r :

gradN 2 (θ) = 2H T Hθ -2H T Y = 0,
where the gradient vector gradf (X) is defined by

gradf (X) =        ∂f (X) ∂x 1 ∂f (X) ∂x 2 . . . ∂f (X) ∂xn        for the function X -→ f (X), with X =       x 1 x 2 . . . x n      
, (I.20)
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hence the critical point is

θ = (H T H) -1 H T Y.
Sufficient conditions for extremum : To investigate the nature of the critical point θ, sufficient conditions for extremum is used. Since the square matrix of secondorder partial derivatives is equal to

        ∂ 2 N 2 (θ) ∂θ 2 1 ∂ 2 N 2 (θ) ∂θ 1 ∂θ 2 • • • ∂ 2 N 2 (θ) ∂θ 1 ∂θr ∂ 2 N 2 (θ) ∂θ 2 ∂θ 1 ∂ 2 N 2 (θ) ∂θ 2 2 • • • ∂ 2 N 2 (θ) ∂θ 2 ∂θr . . . . . . . . . . . . ∂ 2 N 2 (θ) ∂θr∂θ 1 ∂ 2 N 2 (θ) ∂θr∂θ 2 • • • ∂ 2 N 2 (θ) ∂θ 2 r         = H T H, (I.21)
accordingly, it is positive definite, the function θ → Y -Hθ 2 2 admits a minimum at the critical point θ.

Properties of maximum likelihood estimator :

Let us now find the statistical properties of this estimator. Because Y = Hθ + Ξ, it's evident that

θ = (H T H) -1 H T (Hθ + Ξ) = θ + (H T H) -1 H T Ξ.
It can be concluded that this estimator is unbiased, because the expectation can be calculated as

E( θ -θ) = E[(H T H) -1 H T Ξ] = 0.
The matrix of central moments of second order of this estimator is equal to

var( θ) = E[( θ -θ) T ( θ -θ)] = E[(H T H) -1 H T ΞΞ T H(H T H) -1 ] = σ 2 (H T H) -1 .
Now it is also interesting to compare the variance of this estimator with the Cramér-Rao lower bound in the class

K 0 = { θ : E( θ -θ) = 0} of unbiased estimator : var( θ) ≥ 1 n F -1 (θ) = F -1 n (θ), (I.22)
where the Fisher matrix

F n (θ) =       F n;1,1 (θ) • • • F n;1,r (θ) F n;2,1 (θ) • • • F n;2,r (θ) . . . . . . . . . F n;r,1 (θ) • • • F n;r,r (θ)       and F n;i,j (θ) = E θ ∂l(Y,θ) ∂θ i ∂l(Y,θ) ∂θ j , l(Y, θ) = log f θ (Y ), the PDF f θ (Y ) = 1 (2π) n 2 σ n exp - 1 2σ 2 Y -Hθ 2 2 . It follows that F n (θ) = 1 σ 4 E θ [ grad Y -Hθ 2 2 grad T Y -Hθ 2 2 ] = 1 σ 4 E θ [(H T Hθ -H T Y )(H T Hθ -H T Y ) T ] = 1 σ 4 E θ (H T ΞΞ T H) = 1 σ 2 H T H,
and for the class K 0 of unbiased estimators, the Cramér-Rao lower bound is

var( θ) ≥ 1 n F -1 (θ) = σ 2 (H T H) -1 . (I.23)
Hence, the maximum likelihood estimator is unbiased and efficient.

Example I.3.2 Let us consider the nonlinear model often arising in the regression analysis (G. Seber et C.Wild -1988) : suppose that we have n observations (X i , y i ), i = 1, 2, ..., n, from a non-random regressor nonlinear model with a known functional relationship f . Thus

y i = f (X i ; θ) + ε i (i = 1, 2, ..., n),
where X i is a k×1 vector, ε i ∼ N (0, σ 2 ) is a random noise, each f (X i ; θ) is differentiable with respect to θ and the vector θ ∈ Θ ⊆ Ê m is unknown and must be estimated. We shall use the notation Y = (y 1 , y 2 , ..., y n ) T , f i (θ) = f (X i ; θ) and

f (θ) = (f 1 (θ), f 2 (θ), ..., f n (θ)) T .
Let us start by first noting that a working point θ 0 and the true value θ, we have the linear Taylor expansion

f (θ) ≃ f (θ 0 ) + H 0 • (θ -θ 0 ),
where the coefficients of the Jacobian matrix H 0 of size (n × m) are

h ij = ∂f i ∂θ j θ=θ 0 .
Hence, the problem of a nonlinear model can be reduced to that of a linear model. The nonlinear model can be rewritten as follows

Y -f (θ 0 ) ≃ H 0 • (θ -θ 0 ) + Ξ, (I.24) GENERAL INTRODUCTION
where H 0 is a full rank matrix of size (n × m), Ξ = (ε 1 , ..., ε n ) T . The iterative LS algorithm provides us with an optimal solution. We compute the LS estimate θ by using the responses Y and the working point θ 0 :

θ = θ 0 + (H T 0 H 0 ) -1 H T 0 [Y -f (θ 0 )].
Then, the working point is set to be θ 0 = θ for the next iteration. Usually only two or three steps are necessary to reach the convergence of the iterative process. The stopping rule is defined as follows :

stop the iterations if θ -θ 0 2 = (H T 0 H 0 ) -1 H T 0 [Y -f (θ 0 )] 2 ≤ ς, (I.25)
where ς is a small positive constant. When the convergence has been reached, the residual vector e is given by the following equation

e = Y -f (θ 0 ), (I.26)
where the working point is equal to the estimation after the final iteration, i.e., θ 0 = θ. with a variance-covariance matrix var( θ). Let us first consider the QR decomposition of the n × m matrix H 0 (assumed to have rank m), namely

Properties of maximum

H 0 = QR 1 = Q m Q n-m R 11 0 = Q m R 11 , (I.27)
where Q is an orthogonal matrix. R 11 is a nonsingular upper triangular matrix. If R 11 is unique, then the matrix Q m can be calculated as

Q m = H 0 R -1 11 = H 0 K. (I.28)
Then we also have the following quadratic Taylor approximation :

f (θ) ≃ f (θ 0 ) + H 0 • (θ -θ 0 ) + 1 2 (θ -θ 0 ) T J 0 (θ -θ 0 ),
where J 0 is a three-dimensional n × m × m array with typical element

j irs = ∂ 2 f i ∂θ r ∂θ s θ=θ 0 .
The bias b(θ) in nonlinear estimation is given by b

(θ) = E( θ -θ) = - 1 2 σ 2 K m r=1 a ′ rr ,
where K is available from equation (I.28), and a

′ rr , r = 1, ..., m is the m-dimensional vectors, extracted from the m × m × m array A ′ = [Q T m ][K T J 0 K].
Here, we define square-bracket by the equation

[D][W ] = {(Dw rs )},
where D is a q × n matrix, W = {(w rs )} is a n × m × m array made up of a m × m array of n-dimensional vectors w rs (r, s = 1, 2, ..., m). The right-hand side {(Dw rs )} is a q × m × m array. For the variance, we have

var( θ) = σ 2 (H T 0 H 0 ) -1 + σ 4 K n-m i=1 (A ′′ i,•,• ) 2 + 1 2 L K T , (I.29)
where

A ′′ i,•,• , i = 1, ..., n -m is the i-th slice of the (n -m) × m × m array A ′′ = [Q T n-m ][K T J 0 K]. L is a m × m matrix with element l rs = tr(A ′ r,•,• A ′ s,•,• ). A ′ r,•,• and A ′ s,•,• (r, s = 1, 2, .
.., m) denote the r-th and s-th slice of array A ′ , respectively. From (I.29) we can see that the first term, namely σ 2 (H T 0 H 0 ) -1 , is the variance-covariance matrix of θ when the linear approximation is valid. The second term underlines the effect of the nonlinearity on the variance.

I.4 Contributions

The analysis, described in this thesis, can be divided into three parts.

In the first part, an "ideal" railway centerline, composed of straight line segments, transition curves and arcs of circles, is defined by parametric equation. The goal of this part is to estimate the train travelled distance and speed by using a low-cost GNSS receiver and to study the impact of railway curvature on these estimations.

Two cases are studied : a constant and variable speed. For both cases, a LS estimator is designed. For the constant speed case, it is assumed that the train travels along the "ideal" railway centerline with a constant speed. The LS algorithm is designed to estimate the train speed by using the GNSS signals and the railway centerline geometric model. The impact of the railroad curvature on the mean error and on the
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second order moment of the estimated speed is estimated. Then it is assumed that the train speed is variable. Assuming that the train acceleration is constant over a short time period, a LS algorithm is designed by using the GNSS signals and the train dynamical model. The algorithm exploits a block of GNSS measurements to succeed in estimating simultaneously the travelled distance, the speed and the acceleration of the train. Using a block of measurements is necessary to overcome the ill-posed nature of the estimation problem. The impact of the railroad curvature on the mean error and on the second order moment of these three estimations is estimated. For both cases, the equations for first two moments of the estimated speed and these three estimations are obtained and compared with the results of Monte-Carlo simulations.

In the second part, a "non-ideal" railway centerline is approximated by a polygonal line with some level of uncertainty. It represents a piecewise linear approximation of the "ideal" model. We also consider two cases : a constant and variable speed. For both cases, a LS estimator is designed. For the constant speed case, the train speed is calculated by using GNSS signals and the "non-ideal" railway centerline. The negative impact of the railway centerline uncertainty on the mean error and on the second order moment of the estimated speed is estimated. For the variable speed case, we also exploit a block of GNSS measurements to estimate the travelled distance, speed and acceleration. The negative impact of the railway centerline uncertainty on the mean error and on the second order moment of these three estimations is estimated. For both cases, the equations for first two moments of the estimated speed and these three estimations are obtained and compared with the results of Monte-Carlo simulations.

At last, we consider that the railway centerline geometry can provide the users with some very reliable a priori information on the smooth character of the train trajectory. But this information is available within a track database with measurement errors. The train travelled distance and speed is estimated by integrating the GNSS signals with this database information. Two cases are studied : a constant and variable speed. For both cases, a rigorous mathematical model for the GNSS/track database integrated system is designed. Then the impact of errors in this integrated system on these estimations is studied.

I.5 Thesis Structure

This thesis is organized as follows.

Chapter II describes the method of train travelled distance and speed estimation by using GNSS signals and an "ideal" railway centerline. Then the impact of the railroad curvature on the train speed and distance estimation is studied.

Chapter III describes the method of train travelled distance and speed estimation by using GNSS signals and a "non-ideal" railway centerline. Then the impact of the track geometric model imprecision on the train speed and distance estimation is studied.

Chapter IV describes the method of train travelled distance and speed estimation by integrating the GNSS measurements with the track database. Then the impact of the GNSS measurements and the track database errors on the train speed and distance estimation is studied.

Chapter V concludes the thesis and discusses the future work.

Chapitre II

Distance and Speed Estimation Based on GNSS and an "Ideal" Train Track

II.1 Introduction

In this chapter, the "ideal" model of railway centerline is composed of straight line segments, transition curves and arcs of circles, defined by parametric equations.

The goal of this chapter is to estimate the travelled distance and speed of the train by using a low-cost GNSS receiver and to study the impact of railroad curvature on these estimations. Two cases are studied : a constant and variable speed. For both cases, a LS estimator is designed. The mean error and the second order moment are theoretically calculated for these estimations and compared with the results of Monte-Carlo simulations.

II.2 Track Geometry Design

Track geometry is 3D geometry of track layouts and associated measurements used in design, construction and maintenance of railroad tracks [START_REF] Lindahl | Track geometry for high-speed railways : a literature survey and simulation of dynamic vehicle responce[END_REF]. The subject is used in the context of standard, speed limits and other regulations in the areas of track gauge, alignment, elevation, curvature and track. In this section several important quantities of track geometry will be introduced as follows 

Track Gauge

Track gauge is the distance between the inner sides (gauge sides) of the heads of the two load bearing rails that make up a single railway line (see Fig. 

Track Cant

In curved track, it is designed to raise the outer rail, allowing trains to maneuver through the curve at higher speeds if the surface was flat. The difference in elevation between the outer rail and the inner rail is called cant (also called superelevation) and is arranged to compensate part of the lateral acceleration (see Fig. 
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A maximum value of cant is set for cant because of the following problems which arise if a train is forced to stop or run slowly in a curve :

• passenger discomfort at standstill or low speed ;

• risk of derailment of freight trains in sharp curves due to the combined effect of high lateral and low vertical load on the outer wheel at low speed ;

• possible displacement of wagon loads.

Transition Curve and Superelevation Ramp

In track geometry, the horizontal layout includes the layout of three main track types : tangent track (straight line), curved track and transition curve which connects between a straight line and a curved track (Deakin -2013a). There are two types of transition curves that are commonly used in railway horizontal alignment : Transition curves introduce cant via superelevation ramps. A superelevation ramp is a section of the track where the cant changes gradually.

Horizontal Curve Radius

The radius R is the radius of the circle at the center line of the track (see Fig. II.4).

The radius is inverse proportional to curvature, κ = 1 R . The shorter the radius, the sharper the curve is. Due to the limitation of maximum speed of train, there is a boundary value of minimum curve radius to control the sharpness of all curves along the railway track.

Vertical Curve and Gradient

The topographical conditions usually require some kind of vertical-longitudinal gradients. Track gradient is relative elevation of the two rails along the track, which can be defined by the distance travelled horizontally for a rise of one unit, or in terms of an angle of inclination or a percentage difference in elevation for a given distance of the track (Dingwall -1998) In road and railway design, gradients are usually expressed in percentage ; e.g., a road of +g% gradient rises g units vertically in 100 units horizontally (Deakin -2013b).

Gradients rising from left to right are positive and falling left to right are negative. A vertical curve is used to allow vehicles to pass smoothly from one gradient to another. Vertical curves connect two gradients, the gradient to the left of the vertical curve will be denoted by g 1 % and the gradient to the right will be denoted by g 2 %. L t is the length of the curve between the tangent points ta and tb (see Fig. II.6).

Vertical curve ta tb

L t g 1 % g 2 % Figure II.
6 -A vertical curve between two adjacent gradients.

II.3 Description of "Ideal" Train Track Models

As described in Section II.2, the horizontal alignment of a transportation engineering design is constructed as a combination of straight line segments and arcs of circles.

On the straight line segment the vehicle can travel at a constant direction, whereas the circular curves are used so that the vehicle can change the travel direction [START_REF] Gikas | A novel geodetic engineering method for accurate and automated road/railway centerline geometry extraction based on the bearing diagram and fractal behavior[END_REF]). However, to achieve the safety and comfort, a transition curve should be interposed for transition from rectilinear to curvilinear motion. Clothoid curves or cubic parabolas can be used for this purpose. In railway engineering the curve commonly used by many railway authorities is the cubic parabola [START_REF] Profillidis | Railway management and engineering[END_REF][START_REF] Mo | Cubic parabola in railway applications[END_REF]Mundrey -2007).

In this section, the railway track consists of a series of three typical segments (straight line-cubic parabola-circle arc-cubic parabola-straight line), as shown in 

(x 0 , y 0 ) (x s , y s ) (x c , y c ) ℓ m+3 -ℓ m+2 R x y x ′ y ′ o ′ α β τ τ + α ℓ m ℓm + 1 ℓm + 2 ℓm + 3
Figure II.7 -Train track composed of three segments on the local tangent plane.

Straight Line Segment

The straight line segment provides a stretch of railway track, on which the train runs at a constant direction. On the straight line, curvature is zero. The equation for the straight line segment (ℓ m ℓ ℓ m+1 ) which is shown in Fig.

II.7 is    x(ℓ) = x 0 + (ℓ -ℓ m ) • cos α y(ℓ) = y 0 + (ℓ -ℓ m ) • sin α, (II.3)
where (x 0 , y 0 ) is the starting point of the m-th segment, ℓ denotes the curvilinear abscissa and α is the initial azimuth of the m-th segment.

Transition Curve

The transition curve is used for connecting the straight line segments and circular arcs. Its radius of curvature r gradually changes from infinity (straight line) to a particular value R (radius of circular arc). The length of transition curve must be designed so that it minimizes passenger discomfort and maximize safety [START_REF] Caulfield | Engineering surveying[END_REF]. The transition curve is illustrated in Fig. II.8.

S t r a i g h t l i n e C ir c u la r a r c Transition curve

Radial acceleration

Radial acceleration Let us suppose that a vehicle of mass m travels, at a constant speed v, along a curve of radius r. At any point the radial force is F = mv 2 /r, so the radial acceleration at any point is a r = v 2 /r. Hence, the passenger discomfort and safety risks (which directly depend on the radial force) increase as a r increases. Design standards recommend the maximum value 0.3 m 2 /s for a r above which passenger discomfort takes place [START_REF] Caulfield | Engineering surveying[END_REF]. The transition curve length L can be determined from a r by the

L r = ∞ r = R = 0 = v 2 /R
formula L = v 3 /(a r R) where v is in m/s.

Start of transition Tangent

End 

y = k c • x 3 with k c = 1 6RL . (II.4)
For example, when the radius R = 7000 m and the transition curve length L = 275 m, the coefficient is k c = 5.1948 × 10 -7 . Let L(x) be the length of the cubic parabola from the start of transition until the point with abscissa x. The length L(x) is given by

L(x) = x 0 1 + 9k 2 c • u 4 du. (II.5)
This integral can be calculated by using the following power series :

1 + 9k 2 c • u 4 ≃ 1 + 1 2 • 9k 2 c • u 4 + . . . , (II.6) "IDEAL" TRAIN TRACK which is valid for 9k 2 c • u 4 < 1.
The terms after the second one in the right side of equation (II.6) can be neglected. Integrating the power series between 0 and x, we get

L(x) = x 0 1 + 9k 2 c • u 4 du ≃ x. (II.7)
Hence, in the transition curve equation (II.4), the cartesian abscissa x can be replaced by the curvilinear abscissa L(x). It follows that the equation for the cubic parabola

(ℓ m+1 < ℓ ℓ m+2 ) in Fig. II.7 is well approximated by    x(ℓ) = x 0 + (ℓ -ℓ m ) cos α -k c (ℓ -ℓ m+1 ) 3 sin α y(ℓ) = y 0 + (ℓ -ℓ m ) sin α + k c (ℓ -ℓ m+1 ) 3 cos α. (II.8)
The calculation of the radius of curvature is also of interest because it constantly changes on the transition curve. For the cubic parabola, the radius of curvature r(x)

at abscissa x is defined by

r(x) = (1 + 9k 2 c • x 4 ) 3/2 6k c • x , (II.9)
where | • | denotes the absolute value. Using equation (II.6) and equation (II.7), r(x) is well approximated by

r(x) = (1 + 9k 2 c • x 4 ) 3/2 6k c • x ≃ 1 6k c • x ≃ R • L L(x) .
(II.10)

Hence, the curvature 1/r(x) for a cubic parabola is proportional to the covered length L(x) and r(L) = R.

Circular Arc

The vehicle always changes its travel direction on the circular arc. On a curve of radius R, the curvature is 1/R. The equation for the circular arc (

ℓ m+2 < ℓ ℓ m+3 ) illustrated in Fig. II.7 is    x(ℓ) = x 0 + x ′ (ℓ) • cos α -y ′ (ℓ) • sin α y(ℓ) = y 0 + x ′ (ℓ) • sin α + y ′ (ℓ) • cos α, (II.11)
where

           x ′ (ℓ) = x c + R sin τ + ℓ -ℓ m+2 R y ′ (ℓ) = y c -R cos τ + ℓ -ℓ m+2 R (II.12)
is the representation of circular arc on the x ′ y ′ -plane, τ = arctan(3k c L 2 ) is the angle of the tangent at the end of transition curve and

   x c = L • (1 -9k 2 c L 4 )/2 + ℓ m+1 -ℓ m y c = (1 + 15k 2 c L 4 )/6k c L (II.13)
is the center of the circular arc.

II.4 Speed Estimation for a Constant Speed Case

This section assumes that the acceleration is negligible for some short periods.

Hence, it is supposed that the train runs along the "ideal" railway track with an unknown constant speed v. The covered distance ℓ t at time t is equal to the product of speed v and duration t, i.e., ℓ t = v • t. Hence, the true train position at time t is defined as :

X t = (x(ℓ t ), y(ℓ t ), 0) T , t = 1, 2, . . . , where (x(ℓ t ), y(ℓ t )
) is the corresponding position on the local tangent plane described in Section II.3.

II.4.1 Exact Pseudo-range Measurement Model and Estimation

Suppose that there are n satellites located at the known positions X s i = (x i , y i , z i ) T , i = 1, . . . , n. The pseudo-range r t i from the i-th satellite to the train position X t at time t can be written as :

           r t 1 = d t 1 (v) + cb t r + ε t 1 r t 2 = d t 2 (v) + cb t r + ε t 2 . . . . . . . . . . . . r t n = d t n (v) + cb t r + ε t n (II.14)
where

d t i (v) = X t -X s i 2 , i = 1, ..., n, is the true distance from the i-th satellite to the train. b t r is a user clock bias, c ≃ 2.9979 • 10 8 m/s is the speed of light and ε t i ∼ N (0, σ 2 ) is a pseudo-range noise, Ξ t = (ε t 1 , ..., ε t n ) T
is the vector of pseudo-range noises. Let us introduce the following vector : R t = (r t 1 , ..., r t n ) T . By linearizing the pseudo-range equation with respect to the state vector V t = (v t , cb t r ) T around the working point DISTANCE AND SPEED ESTIMATION BASED ON GNSS AND AN "IDEAL" TRAIN TRACK

V 0 = (v 0 , cb 0 ) T , we get the measurement equation       y t 1 y t 2 . . . y t n       =       r t 1 -r t 1,0 r t 2 -r t 2,0 . . . r t n -r t n,0       ≃       h t 1,0 1 h t 2,0 1 . . . . . . h t n,0 1       • v t -v 0 cb t r -cb 0 +       ε t 1 ε t 2 . . . ε t n       , (II.15)
where

r t i,0 = d t i,0 (v 0 ) + cb 0 , d t i,0 (v 0 ) = X t,0 -X s i 2
is the distance from the i-th satellite to the working point and X t,0 = (x(ℓ t,0 ), y(ℓ t,0 ), 0) T , ℓ t,0 = v 0 • t and the coefficients of the Jacobian matrix H t 0 of size (n × 2) are given by

h t i,0 = (X t,0 -X s i ) T • ∂Xt ∂v | v=v 0 d t i,0 (v 0 )
.

The above mentioned linearized measurement equation (II.15) can be rewritten in the following matrix form

Y t = R t -R t 0 ≃ H t 0 • (V t -V 0 ) + Ξ t , (II.16)
where H t 0 is a full rank matrix of size (n × 2) defined in equation (II.15), the vector

V t = (v t , cb t r )
T is unknown and must be estimated. The working point at instant t is equal to the previously calculated estimation : V 0 = V t-1 . The LS estimator is given by

V t = V t-1 + H t 0 T H t 0 -1 H t 0 T (R t -R t 0 ).
(II.17)

II.4.2 Impact of The Curve Radius on The Estimation Error

The goal of this subsection is to study the impact of the railway curve radius R on the first and second moments of the LS estimator v t . To do this, we firstly expand the pseudo-range equation (II.14) to second order with respect to v around the working point v 0 , and then the measurement equation (II.15) can be written in the matrix form :

R t -R t 0 ≃ H t 0 • (V t -V 0 ) + 1 2 J t 0 • (v t -v 0 ) 2 + Ξ t , (II.18)
where

J t 0 = (j t 1,0 , j t 2,0 , . . . , j t n,0 ) T and j t i,0 = ∂ 2 [d t i (v)] ∂v 2 v=v 0
. Due to the presence of J t 0 , this equation underlines the role of the railway track curve radius in the measurement model.

The current estimation error is V t -V t . After substituting the right side of equation (II.18) into the LS estimator (II.17), we look at the mean of this error which is computed as

E( V t -V t ) = E B -1 0 H t 0 T 1 2 J t 0 • (v t -v 0 ) 2 + Ξ t , (II.19)
where

B 0 = (H t 0 ) T H t 0 .
If the random vector Ξ t is close enough to its mean E(Ξ t ) = 0 n , we use the delta method and get

E( V t -V t ) ≃ 1 2 B -1 0 H t 0 T J t 0 • (v t -v 0 ) 2 , (II.20)
where

B 0 = H t 0 T H t 0 .
The matrices H t 0 and J t 0 are calculated exactly as in equation (II.18) but with the working point v 0 = v t-1 .

For the second order moment of the estimation error V t -V t , the delta method yields to

E( V t -V t )( V t -V t ) T ≃ 1 4 B -1 0 H t 0 T J t 0 J t 0 T H t 0 B -1 0 (v t -v 0 ) 4 + σ 2 B -1 0 . (II.21)
The Delta Method [START_REF] Oehlert | A note on the delta method[END_REF][START_REF] Feiveson | Explanation of the delta method[END_REF] The delta method is a technique for approximating the moments of functions of random variables. It essentially expands a function of a random variable about its mean, with the Taylor approximation, and then takes the variance.

Scalar Case

Let ξ be a random variable with mean µ ξ and there exists a function g(ξ) : ξ → g(ξ), which is differentiable. If we want to approximate the variance of g(ξ), then we can try

g(ξ) ≃ g(µ ξ ) + (ξ -µ ξ )g ′ (µ ξ ), so that var(g(ξ)) ≃ var(ξ)[g ′ (µ ξ )] 2 ,
where g ′ () = dg dξ . This is a good approximation only if ξ has a high probability of being close enough to its mean µ ξ so that the Taylor approximation is still good.

Vector Case

It can be expanded to vector-valued functions of random vectors,

var(g(ξ)) ≃ g ′ (µ ξ )var(ξ)[g ′ (µ ξ )] T ,
and that, in fact, is the basis for deriving the asymptotic variance of maximumlikelihood estimators. In the above, ξ is a 1 × m column vector, var(ξ) is its m × m variance-covariance matrix ; g() is a vector function returning a 1×n column vector ; and g ′ () is its n × m of first derivatives. T is the transpose operator. var(g(ξ)) is the resulting n × n variance-covariance matrix of g(ξ).

II.4.3 Numerical Simulations

The following scenario will be used in the sequel. The segments of the simulated train trajectory stored in the onboard train database are summarized in Tab. II.1. 

m Curves Curvilinear abscissa Curvature 1 Straight [ℓ 1 , ℓ 2 ] 0 2 Transition (ℓ 2 , ℓ 3 ] 0 → 1 R 3 Circular (ℓ 3 , ℓ 4 ] 1 R 4 Transition (ℓ 4 , ℓ 5 ] 1 R → 0 5 Straight (ℓ 5 , ℓ 6 ] 0 6 Transition (ℓ 6 , ℓ 7 ] 0 → -1 R 7 Circular (ℓ 7 , ℓ 8 ] -1 R 8 Transition (ℓ 8 , ℓ 9 ] -1 R → 0 9 Straight (ℓ 9 , ℓ 10 ] 0
Tableau II.1 -Segments of the tested simulation scenario. 

II.5 Distance and Speed Estimation for a Variable Speed Case

The goal of this section is to estimate the travelled distance and speed of the train when its acceleration is not neglected. Hence, it is assumed that the train runs along the "ideal" railway centerline with a variable speed. The train dynamical model is described Let ∆t = t kt k-1 be the GNSS sampling interval and t k denotes the instant of the k-th measurement (GNSS epoch). Let us consider a short time period of length T = (q + 1) • ∆t where q is a positive integer. Over this time period, the distance ℓ k covered by the train, its speed v k and its acceleration a k at instant t k (1 ≤ k ≤ q) are given as follows

           ℓ k = ℓ k-1 + v k-1 • ∆t + 1 2 a k-1 • ∆t 2 v k = v k-1 + a k-1 • ∆t a k = a k-1 . (II.22)
Let us consider the block of q +1 last GNSS measurements at time instant t k . Assuming that the acceleration a k is constant during T (s), the train position is given by

X(ℓ k-q+p ) = [x(ℓ k-q+p ), y(ℓ k-q+p ), 0] T ,
where (x(ℓ k-q+p ), y(ℓ k-q+p )) is the corresponding position on the local tangent plane described in Section II.3, p = 0, 1, . . . , q and the distance is calculated as

ℓ k-q+p = 1 (p-q) • ∆t 1 2 (p -q) 2 • ∆t 2    ℓ k v k a k    = ω p • θ k , (II.23)
where the vector

θ k = (ℓ k , v k , a k )
T is unknown and must be estimated.

II.5.1 Exact Pseudo-range Measurement Model and Estimation

Suppose that there are n satellites located at the known positions

X s i = (x i , y i , z i ) T , i = 1, ..., n.
The pseudo-range r i k-q+p from the i-th satellite to the train position X(ℓ k-q+p ) at time kq + p can be written as :

           r 1 k-q+p = d 1 k-q+p (ℓ k-q+p ) + cb k-q+p r + ε 1 k-q+p r 2 k-q+p = d 2 k-q+p (ℓ k-q+p ) + cb k-q+p r + ε 2 k-q+p . . . . . . . . . . . . r n k-q+p = d n k-q+p (ℓ k-q+p ) + cb k-q+p r + ε n k-q+p (II.24) where p = 0, 1, . . . , q, d i k-q+p (ℓ k-q+p ) = X(ℓ k-q+p ) -X s i 2 , i = 1, ..., n, is the true distance from the i-th satellite to the train. b k-q+p r is a user clock bias, c ≃ 2.9979 • 10 8 m/s is the speed of light and ε i k-q+p ∼ N (0, σ 2
) is the pseudo-range noise at time kq + p. Let us introduce the following vector : R k-q+p = (r 1 k-q+p , ..., r n k-q+p ) T . By linearizing the pseudo-range equation with respect to the state variable ℓ k-q+p around the working point ℓ k-q+p,0 , we get the measurement equation

      r 1 k-q+p r 2 k-q+p . . . r n k-q+p       -       d 1 k-q+p,0 d 2 k-q+p,0 . . . d n k-q+p,0       ≃       h 1 k-q+p,0 h 2 k-q+p,0 . . . h n k-q+p,0       • (ℓ k-q+p -ℓ k-q+p,0 ) +       cb k-q+p r cb k-q+p r . . . cb k-q+p r       +       ε 1 k-q+p ε 2 k-q+p . . . ε n k-q+p       , (II.25)
where

d i k-q+p,0 = d i k-q+p (ℓ k-q+p,0 ) = X(ℓ k-q+p,0 ) -X s i 2
is the distance from the i-th satellite to the working point and the coefficients of the Jacobian matrix H k-q+p,0 of size (n × 1) are given by

h i k-q+p,0 = [X(ℓ k-q+p,0 ) -X s i ] T • ∂X(ℓ k-q+p ) ∂ℓ k-q+p ℓ k-q+p,0 X(ℓ k-q+p,0 ) -X s i 2
.

The above mentioned linearized measurement equations (II.25) can be rewritten in the following matrix form

R k-q+p -D k-q+p,0 ≃ H k-q+p,0 • (ℓ k-q+p -ℓ k-q+p,0 ) + 1 n • cb k-q+p r + Ξ k-q+p , (II.26)
where 1 n is a vector of dimension n whose each element is one. It follows that

    R k . . . R k-q     -     D k,0 . . . D k-q,0     ≃     H k,0 • ℓ k + 1 n • cb k r . . . H k-q,0 • ℓ k-q + 1 n • cb k-q r     -     H k,0 • ℓ k,0 . . . H k-q,0 • ℓ k-q,0     +     Ξ k . . . Ξ k-q     .
(II.27)

To estimate the travelled distance, speed and acceleration simultaneously, substituting equation (II.23) into equation (II.27) yields to

    R k . . . R k-q     -     D k,0 . . . D k-q,0     +     H k,0 . . . H k-q,0         ℓ k,0 . . . ℓ k-q,0     ≃     H k,0 • ω q 1 n . . . . . . H k-q,0 • ω 0 1 n           θ k cb k r . . . cb k-q r       +     Ξ k . . . Ξ k-q     .
(II.28)

The pseudo-range measurement model is rewritten in the matrix form as

R k -D k 0 + Y k 0 ≃ H k 0 • β k + Ξ k , (II.29)
where the vector

β k = (θ T k , cb k r , ..., cb k-q r
) T is unknown and must be estimated. Finally, using intuitive notations, the pseudo-range measurement model is rewritten in a traditional form

Y k ≃ H k 0 • β k + Ξ k , (II.30)
where

Y k = R k -D k 0 + Y k 0 ,
so the LS estimator is given by

β k = H k 0 T H k 0 -1 H k 0 T Y k , (II.31)
where the working point is equal to the product of factor ω p and previously calculated

estimation θ k-1 , i.e., ℓ k-q+p,0 = ω p • θ k,0 = ω p • θ k-1 .

II.5.2 Impact of The Curve Radius on The Estimation Error

The goal of this subsection is to study the impact of the railway curve radius R on the first and second moments of these three estimations. To do this, we firstly expand the pseudo-range equation (II.24) to second order with respect to ℓ k-q+p around the point ℓ k-q+p,0 , and then the measurement equation (II.25) can be written in the matrix form :

R k-q+p -D k-q+p,0 ≃H k-q+p,0 • (ℓ k-q+p -ℓ k-q+p,0 ) + 1 2 J k-q+p,0 • (ℓ k-q+p -ℓ k-q+p,0 ) 2 + 1 n • cb k-q+p r + Ξ k-q+p , (II.32)
where J k-q+p,0 = (j 1 k-q+p,0 , j 2 k-q+p,0 , . . . , j n k-q+p,0 ) T and j i k-q+p,0 =

∂ 2 d i k-q+p ∂ℓ 2 k-q+p ℓ k-q+p,0 . It follows that     R k . . . R k-q     -     D k,0 . . . D k-q,0     +     H k,0 . . . H k-q,0         ℓ k,0 . . . ℓ k-q,0     ≃     H k,0 • ω q 1 n . . . . . . H k-q,0 • ω 0 1 n           θ k cb k r . . . cb k-q r       + 1 2     J k,0 • (ℓ k -ℓ k,0 ) 2 . . . J k-q,0 • (ℓ k-q -ℓ k-q,0 ) 2     +     Ξ k . . . Ξ k-q     .
(II.33)

The above equation (II.33) can be written as

R k -D k 0 + Y k 0 ≃ H k 0 • β k + 1 2 J k 0 + Ξ k . (II.34)
Due to the presence of J k-q+p,0 , this equation underlines the role of the railway track curve radius in the measurement model. 

E( β k -β k ) = E B k -1 H k 0 T 1 2 J k 0 + Ξ k , (II.35)
where

B k = H k 0 T H k 0 .
Using the delta method, we get

E( β k -β k ) ≃ 1 2 B k -1 H k 0 T J k 0 , (II.36)
where

B k = H k 0 T H k 0 .
The matrices H k 0 and J k 0 are calculated exactly as in equation (II.34) but with the working point

ℓ k-q+p,0 = ω p • θ k-1 .
For the second order moment of the estimation error β kβ k , the delta method yields to

E( β k -β k )( β k -β k ) T ≃ 1 4 B k -1 H k 0 T J k 0 J k 0 T H k 0 B k -1 +σ 2 B k -1
.

(II.37)

II.5.3 Numerical Simulations

The following scenario will be used in the sequel The negative impact of the sliding window length q on the precision of the estimated distance, speed and acceleration is limited to short periods after changing the acceleration. Trying to reduce the negative impact of the sliding window length on 

II.6 Conclusions

In absence of acceleration, the train speed estimation by GNSS is practically unbiased, even with minimum railway curve radius. The estimated speed second order moment quickly becomes very weak. The negative impact of railroad curvature on the train speed estimation by GNSS is nearly negligible.

In the variable speed case, analytic expressions for first two moments of the estimated travelled distance, speed and acceleration have been obtained to estimate the negative impacts of the railway curve radius on the above parameters. It has been shown that the change of acceleration causes an imprecise estimation of the travelled distance, speed and acceleration for a short time period. The mean error is always practically unbiased except for a short time period after the acceleration changes, but the second order moment remains almost unchanged during this period. Small railway centerline curve radius can augment slightly the second order moment of the train distance, velocity and acceleration estimation.

Chapitre III

Distance and Speed Estimation Based on GNSS and a "Non-ideal" Train Track

III.1 Introduction

In this chapter, the "non-ideal" model of railway centerline is defined by a polygonal line with some level of uncertainty in the train onboard database. It represents a piecewise linear approximation of the "ideal" model. The goal of this chapter is to estimate the travelled distance and speed of the train by using a low-cost GNSS receiver and to study the impact of the centerline uncertainty on these estimations. Two cases are studied : a constant and variable speed. For both cases, a LS estimator is designed.

The mean error and the second order moment are theoretically calculated for these estimations and compared with the results of Monte-Carlo simulations.

III.2 Description of "Non-ideal" Train Track Models

Let us assume that the railway centerline is approximated by a polygonal line (piecewise linear curve), which represents a connected series of line segments in the ECEF coordinates. More formally, the railway centerline is defined by a sequence of vertices 

Z 0 , Z 1 , Z 2 , . . . , Z n , Z i ∈ Ê 3 ,

III.3 Speed Estimation for a Constant Speed Case

In this section, it is assumed that the acceleration is negligible for some short periods. Let us suppose that the train runs along the "non-ideal" railway track with an unknown constant speed v. Hence, the true train position is defined as follows :

X k = X k-1 + A j(k) • v • ∆t k = 1, 2, . . . , (III.1)
where the distance v • ∆t is supposed to be small in comparison with the distance λ between two adjacent vertices.

X k = (x k , y k , z k ) T is the train position at the k-th GNSS measurement (GNSS epoch), t k denotes the instant of the k-th measurement, ∆t = t k -t k-1 represents the GNSS sampling interval, A j = (a j x , a j y , a j z ) T = 1 λ (Z j+1 -Z j )
is the directional vector corresponding to the segment number j, A j 2 = 1. The current segment number j = j(k) is calculated as a function of k by using the following equation

j(k) = min {j ∈ N|j ≥ (v • ∆t • k)/λ} , (III.2)
where N is the set of natural numbers. The train position X k can be rewritten as

X k = X 0 + v∆t k t=1 A j(t) , (III.3)
where X 0 = (x 0 , y 0 , z 0 ) T is the starting point.
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III.3.1 Imprecise Pseudo-range Measurement Model and Estimation

Suppose that there are n satellites located at the known positions X s i = (x i , y i , z i ) T , i = 1, . . . , n. The pseudo-range r k i from the i-th satellite to the train position X k at time t k can be written as :

           r k 1 = d k 1 (v) + cb k r + ε k 1 r k 2 = d k 2 (v) + cb k r + ε k 2 . . . . . . . . . . . . r k n = d k n (v) + cb k r + ε k n where d k i (v) = X 0 + v∆t k t=1 A j(t) -X s i 2
is the true distance from the i-th satellite to the train. b k r is a user clock bias, c ≃ 2.9979 • 10 8 m/s is the speed of light and

ε k i ∼ N (0, σ 2 ) is a pseudo-range noise. Ξ k = (ε k 1 , ..., ε k n ) T
is the vector of pseudorange noises. Let us introduce the following vector : R k = (r k 1 , ..., r k n ) T . By linearizing the pseudo-range equation with respect to the state vector

V k = (v, cb k ) T around the working point V 0 = (v 0 , cb 0 ) T , we get the measurement equation       y k 1 y k 2 . . . y k n       =       r k 1 -r k 1,0 r k 2 -r k 2,0 . . . r k n -r k n,0       ≃       h k 1,0 1 h k 2,0 1 . . . . . . h k n,0 1       • v -v 0 cb k r -cb 0 +       ε k 1 ε k 2 . . . ε k n       , (III.4) where r k i,0 = d k i,0 (v 0 ) + cb 0 , d k i,0 (v 0 ) = X 0 + k t=1 A (t) • v 0 ∆t -X s i 2
is the distance from the i-th satellite to the working point and the coefficients of the Jacobian matrix

H k 0 of size (n × 2) are given by h k i,0 = 1 d k i,0 (v 0 ) X 0 + k t=1 A (t) • v 0 ∆t -X s i T k t=1 A (t) ∆t.
Because the true train speed v is unknown, the current segment number  = (t) is calculated as a function of the working point v 0 by using equation (III.2) with v = v 0 .

The above mentioned linearized measurement equation (III.4) can be rewritten in the following matrix form

Y k = R k -R k 0 ≃ H k 0 • (V k -V 0 ) + Ξ k , (III.5)
where H k 0 is a full rank matrix of size (n × 2) defined in equation (III.4), the vector

V k = (v, cb k r )
T is unknown and must be estimated. The working point at step k is equal to the previously calculated estimation : V 0 = V k-1 . "NON-IDEAL" TRAIN TRACK Let us discuss now an unprecise measurement model. Since the true vertex position Z j is unknown and only its imprecise estimation Z j is available, the linearized measurement equation (III.5) cannot be used to compute the train speed. To estimate the impact of this uncertainty, let us define the directional vector A j = A j + δ j , where the random vector δ j = (δ j

x , δ j y , δ j z ) T is assumed to be uniformly distributed in the cube [-b, b] 3 with b > 0. To measure the imprecise vertex position Z j , some estimated methods have been used. Due to the instrument errors, this value b depends on which methods have been adopted. For example, if a GNSS receiver is used to collect these vertex positions, b depends on the receiver accuracy.

Finally, the imprecise pseudo-range measurement model (III.6) is defined for the imprecise directional vectors A j in the following manner

R k -R k 0 ≃ H k 0 • (V k -V 0 ) + Ξ k , (III.6)
where R k 0 and H k 0 are calculated exactly as in equation (III.4) but with the vector A j instead of A j .

III.3.2 Impact of The Track Geometry Imprecision on The Estimation Error

The goal of this section is to study the impact of the train track uncertainty δ j on the first and second moments of the LS estimator v k . To seek simplicity, let us assume that the track entirely belongs to the local tangent plane. We follow here the analysis of the regression model uncertainties and their impact on the LS estimators developed in [START_REF] Hodges | Data uncertainties and least squares regression[END_REF][START_REF] Davies | The effect of errors in the independent variables in linear regression[END_REF][START_REF] Benee | Rounding errors in the independent variables in a general linear model[END_REF]. First, the measurement equation (III.6) can be rewritten as follows :

Y k + ∆Y k ≃ (H k 0 + ∆H k ) • β k + Ξ k , (III.7)
where Y k = R k -R k 0 are the responses, H k 0 are the matrix of regressors, the data uncertainties in the regression model are

∆Y k = R k 0 -R k 0 =       ∆y k 1 ∆y k 2 . . . ∆y k n      
, whose elements are

∆y k i = - ∂ r i,0 ∂δ j δ j =0 • δ j = - ∂ r i,0 ∂δ j x δ j x - ∂ r i,o ∂δ j y δ j y ,
and it is assumed that the second column of the data uncertainties ∆H k is equal to zero because the impact on the clock bias estimation is of no interest for this study, that is

∆H k = H k 0 -H k 0 =       ∆h k 1 0 ∆h k 2 0 . . . . . . ∆h k n 0      
, whose elements are

∆h k i = ∂ h i,0 ∂δ j δ j =0 • δ j = ∂ h i,0 ∂δ j x δ j x + ∂ h i,0 ∂δ j y δ j y .
The vector β k = V k -V 0 is unknown and must be estimated.

The LS estimator is given by

β k = H k 0 +∆H k T H k 0 +∆H k -1 H k 0 + ∆H k T Y k + ∆Y k . (III.8)
After expanding

H k 0 + ∆H k T H k 0 + ∆H k -1
around H k 0 (see appendix of [START_REF] Hodges | Data uncertainties and least squares regression[END_REF]) and computing the expectation of equation (III.8), it has been shown in Section A1 of the Appendix B that the mean error of V k -V can be given by

E( V k -V ) = B -1 0 (H k 0 ) T Σ H C -F + G β k , (III.9)
where

B 0 = H k 0 T H k 0 , the covariance matrix Σ H of ∆H k is equal to Σ H = b 2 3 •         ∂ h 1,0 ∂δ j x 2 + ∂ h 1,0 ∂δ j y 2 • • • ∂ h 1,0 ∂δ j x ∂ h n,0 ∂δ j x + ∂ h 1,0 ∂δ j y ∂ h n,0 ∂δ j y . . . . . . . . . ∂ h 1,0 ∂δ j x ∂ h n,0 ∂δ j x + ∂ h 1,0 ∂δ j y ∂ h n,0 ∂δ j y • • • ∂ h n,0 ∂δ j x 2 + ∂ h n,0 ∂δ j y 2        
, the two matrices F and G are calculated as

F = tr (Σ H ) 0 0 0 and G = tr[H k 0 B -1 0 (H k 0 ) T Σ H ] 0 0 0 , the first column of a (n × 2) matrix C is equal to the first column of H k 0 B -1 0
and its second column is equal to zero.

Since the random vector ∆Y k acts in the same way as the pseudo-range noise Ξ k , the two errors can be considered together. After expanding and ignoring the terms of order ∆H k 2 and under the assumption that the errors ∆H k are reasonably small, it has also been shown in Section A1 of the Appendix B that the second order moment of V k -V can be given by

E( V k -V )( V k -V ) T = B -1 0 (H k 0 ) T σ 2 I n +Σ Y -β 1 (Σ HY +Σ Y H )+β 2 1 Σ H H k 0 B -1 0 , (III.10)
where

β 1 = v -v 0 , the covariance matrix Σ Y of ∆Y k is equal to Σ Y = b 2 3 •         ∂ r 1,0 ∂δ j x 2 + ∂ r 1,0 ∂δ j y 2 • • • ∂ r 1,0 ∂δ j x ∂ r n,0 ∂δ j x + ∂ r 1,0 ∂δ j y ∂ r n,0 ∂δ j y . . . . . . . . . ∂ r 1,0 ∂δ j x ∂ r n,0 ∂δ j x + ∂ r 1,0 ∂δ j y ∂ r n,0 ∂δ j y • • • ∂ r n,0 ∂δ j x 2 + ∂ r n,0 ∂δ j y 2         , (III.11) the cross-covariance matrix Σ Y H between ∆Y k and ∆ H k is calculate as Σ Y H = - b 2 3 •       ∂ r 1,0 ∂δ j x ∂ h 1,0 ∂δ j x + ∂ r 1,0 ∂δ j y ∂ h 1,0 ∂δ j y • • • ∂ r 1,0 ∂δ j x ∂ h n,0 ∂δ j x + ∂ r 1,0 ∂δ j y ∂ h n,0 ∂δ j y . . . . . . . . . ∂ r n,0 ∂δ j x ∂ h 1,0 ∂δ j x + ∂ r n,0 ∂δ j y ∂ h 1,0 ∂δ j y • • • ∂ r n,0 ∂δ j x ∂ h n,0 ∂δ j x + ∂ r n,0 ∂δ j y ∂ h n,0 ∂δ j y      
, the vector ∆ H k of dimension n is equal to the first column of ∆H k , and Σ Y H = Σ T HY . When the expectation (III.9) of V k -V is almost zero, this second order moment corresponds to the variance of V k .

III.3.3 Numerical Simulations

The following scenario will be used in the sequel. The standard GNSS constella- 

III.4 Distance and Speed Estimation for a Variable Speed Case

The goal of this section is to estimate the travelled distance and speed of the train when its acceleration is not neglected. Hence, it is assumed that the train runs along the "non-ideal" railway centerline with a variable speed. The train dynamical model Let ∆t = t kt k-1 be the GNSS sampling interval and t k denotes the instant of the k-th measurement. Let us consider a short time period of length T = (q + 1) • ∆t where q is a positive integer. Over this time period, the distance ℓ k covered by the train, its speed v k and its acceleration a k at instant t k (1 ≤ k ≤ q) are given as follows

           ℓ k = ℓ k-1 + v k-1 • ∆t + 1 2 a k-1 • ∆t 2 v k = v k-1 + a k-1 • ∆t a k = a k-1 . (III.12)
Let us consider the block of q +1 last GNSS measurements at time instant t k . Assuming that the acceleration a k is constant during T (s), the train position is given by

X(ℓ k-q+p ) = Z j-1 + A j • [ℓ k-q+p -λ • (j -1)] , (III.13)
where p = 0, 1, . . . , q and A j = (a j x , a j y , a j z ) T = 1 λ (Z j+1 -Z j ) is the directional vector corresponding to the segment number j, A j 2 = 1. The current segment number j = j(kq + p), viewed as a function of kq + p, is calculated as :

j(k -q + p) = min {j ∈ N|j ≥ ℓ k-q+p /λ} ,
where N is the set of natural numbers. The distance ℓ k-q+p is given as

ℓ k-q+p = 1 (p-q) • ∆t 1 2 (p -q) 2 • ∆t 2    ℓ k v k a k    = ω p • θ k , (III.14)
where the vector θ k is unknown and must be estimated.

III.4.1 Imprecise Pseudo-range Measurement Model and Estimation

Suppose that there are n satellites located at the known positions

X s i = (x i , y i , z i ) T , i = 1, .
.., n. The pseudo-range r i k-q+p from the i-th satellite to the train position X(ℓ k-q+p ) at time kq + p can be written as :

           r 1 k-q+p = d 1 k-q+p (ℓ k-q+p ) + cb k-q+p r + ε 1 k-q+p r 2 k-q+p = d 2 k-q+p (ℓ k-q+p ) + cb k-q+p r + ε 2 k-q+p . . . . . . . . . . . . r n k-q+p = d n k-q+p (ℓ k-q+p ) + cb k-q+p r + ε n k-q+p (III.15)
where p = 0, 1, . . . , q, d i k-q+p (ℓ k-q+p ) = X(ℓ k-q+p ) -X s i 2 is the true distance from the i-th satellite to the train. b k-q+p r is a user clock bias, c ≃ 2.9979 • 10 8 m/s is the speed of light and ε i k-q+p ∼ N (0, σ 2 ) is the pseudo-range noise at time kq + p.

Ξ k-q+p = (ε 1 k-q+p , ..., ε n k-q+p )
T is the vector of pseudo-range noises. Let us introduce the following vector : R k-q+p = (r 1 k-q+p , ..., r n k-q+p ) T . By linearizing the pseudo-range equation with respect to the state variable ℓ k-q+p around the working point ℓ k-q+p,0 , we get the measurement equation

      r 1 k-q+p r 2 k-q+p . . . r n k-q+p       -       d 1 k-q+p,0 d 2 k-q+p,0 . . . d n k-q+p,0       ≃       h 1 k-q+p,0 h 2 k-q+p,0 . . . h n k-q+p,0       • (ℓ k-q+p -ℓ k-q+p,0 ) +       cb k-q+p r cb k-q+p r . . . cb k-q+p r       +       ε 1 k-q+p ε 2 k-q+p . . . ε n k-q+p       , (III.16)
where

d i k-q+p,0 = d i k-q+p (ℓ k-q+p,0 ) = X(ℓ k-q+p,0 ) -X s i 2
is the distance from the i-th satellite to the working point and the coefficients of the Jacobian matrix H k-q+p,0 of size (n × 1) are given by

h i k-q+p,0 = [X(ℓ k-q+p,0 ) -X s i ] T • ∂X(ℓ k-q+p ) ∂ℓ k-q+p ℓ k-q+p,0 X(ℓ k-q+p,0 ) -X s i 2
.

The above mentioned linearized measurement equations (III.16) can be rewritten in the following matrix form

R k-q+p -D k-q+p,0 ≃ H k-q+p,0 • (ℓ k-q+p -ℓ k-q+p,0 ) + 1 n • cb k-q+p r + Ξ k-q+p , (III.17)
where 1 n is a vector of dimension n whose each element is one. It follows that

    R k . . . R k-q     -     D k,0 . . . D k-q,0     ≃     H k,0 • ℓ k + 1 n • cb k r . . . H k-q,0 • ℓ k-q + 1 n • cb k-q r     -     H k,0 • ℓ k,0 . . . H k-q,0 • ℓ k-q,0     +     Ξ k . . . Ξ k-q     .
(III.18)

To estimate the travelled distance, speed and acceleration simultaneously, substituting equation (III.14) into equation (III.18) yields to

    R k . . . R k-q     -     D k,0 . . . D k-q,0     +     H k,0 . . . H k-q,0         ℓ k,0 . . . ℓ k-q,0     ≃     H k,0 • ω q 1 n . . . . . . H k-q,0 • ω 0 1 n           θ k cb k r . . . cb k-q r       +     Ξ k . . . Ξ k-q     .
Finally, the pseudo-range measurement model is rewritten in the matrix form as

Y k = R k -D k 0 + Y k 0 ≃ H k 0 • β k + Ξ k , (III.19)
where the vector

β k = (θ T k , cb k r , ..., cb k-q r
) T is unknown and must be estimated. The working point is equal to the product of factor ω p and previously calculated estimation

θ k-1 , i.e., ℓ k-q+p,0 = ω p • θ k,0 = ω p • θ k-1 .
Let us discuss now an unprecise measurement model. Since the true vertex position Z j is unknown and only its imprecise estimation Z j is available, the linearized measurement equation (III.19) cannot be used to compute the travelled distance, speed and acceleration. To estimate the impact of this uncertainty, let us assume that the random vector ξ j = Z j -Z j , where ξ j = (ξ j x , ξ j y , ξ j z ) T is assumed to be uniformly distributed in the cube [-b, b] 3 with b > 0. To measure the imprecise vertex position Z j , some estimated methods have been used. Due to the instrument errors, this value b depends on which methods have been adopted. For example, if a GNSS receiver is used to collect these vertex positions, b depends on the receiver accuracy.

Finally, the imprecise pseudo-range measurement model (III.20) is defined for the imprecise vertex position Z j in the following manner

R k -D k 0 + Y k 0 ≃ H k 0 • β k + Ξ k , (III.20)
where D k 0 , Y k 0 , and H k 0 are calculated exactly as in equation (III.19) but with the vector Z j ,

A j = Z j+1 -Z j Z j+1 -Z j 2 instead of Z j , A j .

III.4.2 Impact of The Track Geometry Imprecision on The Estimation Error

The goal of this section is to study the impact of the train track uncertainty ξ j on the first and second moments of the LS estimator βk . To seek simplicity, let us assume that the track entirely belongs to the local tangent plane. We also follow here the analysis of the regression model uncertainties and their impact on the LS estimators.

First, the measurement equation (III.20) can be written as follows :

Y k + ∆Y k ≃ (H k 0 + ∆H k ) • β k + Ξ k ,
where the responses Y k are given by

Y k = R k -D k 0 + Y k 0 =       R k R k-1 . . . R k-q       -       D k,0 D k-1,0 . . . D k-q,0       +       H k,0 ℓ k,0 H k-1,0 ℓ k-1,0 . . . H k-q,0 ℓ k-q,0      
, the matrix of regressors H k 0 are

H k 0 =       H k,0 • ω q 1 n H k-1,0 • ω q-1 1 n . . . . . . H k-q,0 • ω 0 1 n      
, the data uncertainties ∆Y k in the dependent variable are

∆Y k = D k 0 -D k 0 -Y k 0 + Y k 0 =       ∆H k ℓ k,0 ∆H k-1 ℓ k-1,0 . . . ∆H k-q ℓ k-q,0       -       ∆D k ∆D k-1 . . . ∆D k-q      
, the elements of the two n-dimensional column vectors ∆H k-q+p and ∆D k-q+p are

∆h i k-q+p,0 = ∂ h i k-q+p,0 ξ j ξ j =0 • ξ j = ∂ h i k-q+p,0 ∂ξ j x ξ j x + ∂ h i k-q+p,0 ∂ξ j y ξ j y ,
and

∆d i k-q+p,0 = ∂ d i k-q+p,0 ξ j ξ j =0 • ξ j = ∂ d i k-q+p,0 ∂ξ j x ξ j x + ∂ d i k-q+p,0 ∂ξ j y ξ j y ,
respectively. The data uncertainties ∆H k in the independent variable are

∆H k = H k 0 -H k 0 =       ∆H k • ω q 0 n ∆H k-1 • ω q-1 0 n . . . . . . ∆H k-q • ω 0 0 n      
. 0 n is a vector of dimension n whose element is zero.

The LS estimator is given by

β k = H k 0 +∆H k T H k 0 +∆H k -1 H k 0 + ∆H k T • Y k + ∆Y k . (III.21)
Since the random vector ∆Y k acts in the same way as the pseudo-range noise Ξ k , the two errors can be considered together. After expanding

H k 0 +∆H k T H k 0 +∆H k -1
around H k 0 and computing the expectation of (III.21), it has been shown in Section A2 of the Appendix B that the mean error is calculated as

E( β k -β k ) = B k -1 H k 0 T C -F + G β k , (III.22)
where

B k = H k 0 T H k 0 .
The matrices H k 0 are calculated exactly as in equation (III.19) but with the working point ℓ k-q+p,0 = ω p •θ k-1 . The matrix functions of second moments

G = E ∆H k T H k 0 B k -1 H k 0 T ∆H k , C = E ∆H k B k -1 H k 0 T ∆H k and F = E ∆H k T
∆H k underline only the impact of data uncertainties in the matrix of regressors on the mean error of the LS estimator.

Let us now define the following matrix

γ ℓ,m = E(∆H ℓ ∆H T m ) = b 2 3 •        ∂ h 1 ℓ,0 ∂ξ j x ∂ h 1 m,0 ∂ξ j x + ∂ h 1 ℓ,0 ∂ξ j y ∂ h 1 m,0 ∂ξ j y • • • ∂ h 1 ℓ,0 ∂ξ j x ∂ h n m,0 ∂ξ j x + ∂ h 1 ℓ,0 ∂ξ j y ∂ h n m,0 ∂ξ j y . . . . . . . . . ∂ h n ℓ,0 ∂ξ j x ∂ h 1 m,0 ∂ξ j x + ∂ h n ℓ,0 ∂ξ j y ∂ h 1 m,0 ∂ξ j y • • • ∂ h n ℓ,0 ∂ξ j x ∂ h n m,0 ∂ξ j x + ∂ h n ℓ,0 ∂ξ j y ∂ h n m,0 ∂ξ j y       
.

The matrix C is given by

C =            q u=0 γ k,k-u χ T 1,u+1 ω T q ω q-u 0 n,(q+1) q u=0 γ k-1,k-u χ T 1,u+1 ω T q-1 ω q-u 0 n,(q+1) . . . . . . q u=0 γ k-q,k-u χ T 1,u+1 ω T 0 ω q-u 0 n,(q+1)           
, where χ T 1,u+1 and ̟ T 2,u+1 are two matrices of size n × 3 and n × (q + 1), respectively, extracted from the following matrix :

B k -1 H k 0 T = χ 1,1 χ 1,2 • • • χ 1,(q+1) ̟ 2,1 ̟ 2,2 • • • ̟ 2,(q+1) .
Finally, let us define the following matrices

F =   q u=0
tr γ k-u,k-u ω T q-u ω q-u 0 3,(q+1)

0 (q+1),3 0 (q+1),(q+1)   and G =   q u=0 q v=0 tr Q u+1,v+1 γ k-v,k-u ω T q-u ω q-v 0 3,(q+1) 0 (q+1),3 0 (q+1),(q+1)   ,
where Q u+1,v+1 is a block of size n × n of the following (q + 1)n × (q + 1)n matrix

Q = H k 0 B k -1 H k 0 T : Q =       Q 1,1 Q 1,2 • • • Q 1,(q+1) Q 2,1 Q 2,2 • • • Q 2,(q+1) . . . . . . . . . . . . Q (q+1),1 Q (q+1),2 • • • Q (q+1),(q+1)      
.

After expanding and ignoring the terms of order (∆H k ) 2 and under the assumption that the uncertainties ∆H k are reasonably small, it has also been shown in Section A2

of the Appendix B that the second moment of βk is given by

E( β k -β k )( β k -β k ) T = B k -1 H k 0 T (σ 2 I + Σ Y -N -N T + M)H k 0 B k -1 , (III.23) where the matrix functions Σ Y = E ∆Y k ∆Y k T , M = E ∆H k β k β T k ∆H k T and N = E ∆Y k β T k ∆H k T
underline the impact of the data uncertainties in both the matrix of regressors and the responses on the second order moment of the LS estimator.

After calculating the covariance of ∆Y k , we get

Σ Y = S =       S 1,1 S 1,2 • • • S 1,q+1 S 2,1 S 2,2 • • • S 2,q+1 . . . . . . . . . . . . S (q+1),1 S (q+1),2 • • • S (q+1),q+1      
, where

S u+1,v+1 =ℓ k-u,0 ℓ k-v,0 γ k-u,k-v -ℓ k-u,0 E(∆H k-u ∆D T k-u ) -ℓ k-v,0 E(∆D k-u ∆H T k-u ) + E(∆D k-u ∆D T k-v ),
is a block of size n × n of matrix S, the covariance matrices

E(∆H k-u ∆D T k-u ), E(∆D k-u ∆H T k-u ) and E(∆D k-u ∆D T k-v ) are given by E(∆H k-u ∆D T k-u ) = E[(∆H k-u ∆D T k-u )] T = b 2 3 •        ∂ h 1 k-u,0 ∂ξ j x ∂ d 1 k-u,0 ∂ξ j x + ∂ h 1 k-u,0 ∂ξ j y ∂ d 1 k-u,0 ∂ξ j y • • • ∂ h 1 k-u,0 ∂ξ j x ∂ d n k-u,0 ∂ξ j x + ∂ h 1 k-u,0 ∂ξ j y ∂ d n k-u,0 ∂ξ j y . . . . . . . . . ∂ h n k-u,0 ∂ξ j x ∂ d 1 k-u,0 ∂ξ j x + ∂ h n k-u,0 ∂ξ j y ∂ d 1 k-u,0 ∂ξ j y • • • ∂ h n k-u,0 ∂ξ j x ∂ d n k-u,0 ∂ξ j x + ∂ h n k-u,0 ∂ξ j y ∂ d n k-u,0 ∂ξ j y       
and

E(∆D k-u ∆D T k-v ) = b 2 3 •        ∂ d 1 k-u,0 ∂ξ j x ∂ d 1 k-v,0 ∂ξ j x + ∂ d 1 k-u,0 ∂ξ j y ∂ d 1 k-v,0 ∂ξ j y • • • ∂ d 1 k-u,0 ∂ξ j x ∂ d n k-v,0 ∂ξ j x + ∂ d 1 k-u,0 ∂ξ j y ∂ d n k-v,0 ∂ξ j y . . . . . . . . . ∂ d n k-u,0 ∂ξ j x ∂ d 1 k-v,0 ∂ξ j x + ∂ d n k-u,0 ∂ξ j y ∂ d 1 k-v,0 ∂ξ j y • • • ∂ d n k-u,0 ∂ξ j x ∂ d n k-v,0 ∂ξ j x + ∂ d n k-u,0 ∂ξ j y ∂ d n k-v,0 ∂ξ j y       
.

The matrix functions M and N are calculated as

M =       M 1,1 M 1,2 • • • M 1,(q+1) M 2,1 M 2,2 • • • M 2,(q+1) . . . . . . . . . . . . M (q+1),1 M (q+1),2 • • • M (q+1),(q+1)       and N =       N 1,1 N 1,2 • • • N 1,(q+1) N 2,1 N 2,2 • • • N 2,(q+1) . . . . . . . . . . . . N (q+1),1 N (q+1),2 • • • N (q+1),(q+1)      
, where

M u+1,v+1 = ℓ k-u ℓ k-v γ k-u,k-v and N u+1,v+1 = ℓ k-u ℓ k-v,0 γ k-u,k-v -ℓ k-u E(∆H k-u ∆D T k-v )
are two blocks of size n×n of matrices, M and N, respectively, ℓ k-u , ℓ k-v are calculated exactly as in equation (III.14) and u, v = 0, ..., q.

III.4.3 Numerical Simulations

The following scenario will be used in the sequel. The standard GNSS constellation with n = 6 visible satellites is used. The GNSS sampling interval is ∆t = 0.5 s.

The pseudo-range SD is assumed to be of σ = 2 m. The true acceleration during the acceleration, free-running and braking period is assumed to be of 0.8 m/s 2 , 0 m/s 2 and -0.8 m/s 2 , respectively. The second order moment of estimated acceleration

Theoretical second order moment Monte-carlo

Figure III.12 -The second order moment of the estimated distance, speed and acceleration for the centerline uncertainty of ξ j ∈ [-2, 2] 2 and q = 20. and III.12).

III.5 Conclusions

In the constant speed case, the train speed estimation by GNSS is practically unbiased, even with an imprecise geometric model of the railway centerline. The centerline uncertainties considerably augment the estimated speed second order moment by comparison with the "ideal" case. The negative impact of centerline uncertainty on the train speed estimation by GNSS is nearly negligible.

In the variable speed case, analytic expressions for the first two moments of the estimated travelled distance, speed and acceleration have been obtained to estimate the negative impacts of the railway centerline uncertainty on the above parameters.

It has been shown that the change of acceleration causes an imprecise estimation of the travelled distance, speed and acceleration for a short time period. The mean error is always practically unbiased except for a short time period after the acceleration changes, but the second order moment remains almost unchanged during this period.

Railway centerline uncertainty also leads to a slight augmentation of the second order

Chapitre IV

Distance and Speed Estimation Based on Integrating GNSS with

The Track Database

IV.1 Introduction

In this chapter, the railway centerline geometry provides the users with some very reliable a priori information on the smooth character of the train trajectory. But this information is available within a track database with measurement errors. The goal of this chapter is to estimate the travelled distance and speed of the train by integrating the GNSS measurements with this database information. Two cases are studied : a constant and variable speed. For both cases, a rigorous mathematical model for the GNSS/track database integrated system is designed. Then the impact of errors in this integrated system on these estimations is studied.

IV.2 Description of Track Database Models

The railway track database is necessary for the GNSS-based train positioning system. It can be generated by using surveying methods, which can install a GNSS low-cost receiver previous on a train or use geodesic measuring to collect the data. Hence, the accuracy of the track database depends on which method has been adopted. Due to the instrument errors during the collection of the track data points, it's necessary to note that these collected track data points do not exactly coincide with the railway centerline in the real world. In this section, two track database models are studied : a continuous and a discrete model.

IV.2.1 Continuous Track Database Models

Let us first recall the parametric equations for an "ideal" railway centerline in the form of traditional design elements that have been discussed in Section II.3. Let us also assume that the track completely belongs to the local tangent plane. 

(x 0 , y 0 ) (x s , y s ) (x c , y c ) ℓ m+3 -ℓ m+2 R x y x ′ y ′ o ′ α β τ τ + α ℓ m ℓm + 1 ℓm + 2 ℓm + 3
(ℓ m < ℓ ℓ m+1 ) is    x(ϕ sl , ℓ) = x 0 + (ℓ -ℓ m ) • cos α y(ϕ sl , ℓ) = y 0 + (ℓ -ℓ m ) • sin α, (IV.1)
where the vector ϕ sl = (x 0 , y 0 , α) T is the geometric parameters of a straight line segment, the subscript "sl" denotes the straight line. (x 0 , y 0 ) is the starting point of the m-th segment, ℓ denotes the curvilinear abscissa and α is the initial azimuth of the m-th segment.

Transition Curve

The equation for the transition curve (ℓ m+1 < ℓ ℓ m+2 ) in Fig. IV.1 is well approximated by

   x(ϕ tc , ℓ) = x 0 + (ℓ -ℓ m ) cos α -k c (ℓ -ℓ m+1 ) 3 sin α y(ϕ tc , ℓ) = y 0 + (ℓ -ℓ m ) sin α + k c (ℓ -ℓ m+1 ) 3 cos α, (IV.2)
where the vector ϕ tc = (x 0 , y 0 , α, k c ) T is the geometric parameters of a transition curve, the subscript "tc" denotes the transition curve. k c = 1 6RL is the coefficient of the transition curve, L and R are the transition curve length and the radius at the end of transition curve, respectively.

Circular Arc

The equation for the circular arc (ℓ m+2 < ℓ ℓ m+3 ) illustrated in Fig.

IV.1 is    x(ϕ ca , ℓ) = x 0 + x ′ • cos α -y ′ • sin α y(ϕ ca , ℓ) = y 0 + x ′ • sin α + y ′ • cos α, (IV.3)
where the vector ϕ ca = (x 0 , y 0 , α, x c , y c , R) T is the geometric parameters of a circular arc, the subscript "ca" denotes the circular arc.

           x ′ = x c + R sin τ + ℓ -ℓ m+2 R y ′ = y c -R cos τ + ℓ -ℓ m+2 R (IV.4)
is the representation of circular arc on the x ′ y ′ -plane, τ = arctan(3k c L 2 ) is the angle of the tangent at the end of transition curve and

   x c = L • (1 -9k 2 c L 4 )/2 + ℓ m+1 -ℓ m y c = (1 + 15k 2 c L 4 )/6k c L (IV.5)
is the center of the circular arc.

IV.2.2 Discrete Track Database Models

Let us now consider that the train has already installed a GNSS receiver for collecting the discrete track database points, runs on an "ideal" railway centerline. The accuracy of a GNSS receiver depends on many factors, such as the quality of the receiver, the position of the satellites at the time the data was recorded, the characteristics of the surroundings (buildings, tree cover, valleys, etc) and even the weather. Hence, it causes the collected track database points to be different from the true track database points. The relationship between them can be represented as (see

Fig. IV.2) :

Z DB,j = X j (ϕ) + ξ DB,j and j = j m , ..., j m+3 , (IV.6) where X j (ϕ) = (x j (ϕ), y j (ϕ)) T is the j-th true track database point and j is calculated as a function of the travelled distance ℓ : j = ⌈ℓ/λ⌉. ϕ denotes the track geometric parameters of the straight line, transition curve and circular arc , i.e., ϕ sl , ϕ tc and ϕ ca . λ = X j (ϕ) -X j-1 (ϕ) 2 = const is the distance between two adjacent true track database points, Z DB,j = (x DB,j , y DB,j ) T denotes the measured track database point, ξ DB,j = (ξ DB,j,x , ξ DB,j,y ) T ∼ N (0, σ 2 DB I 2 ) is the measurement error and the SD σ DB depends on the accuracy of the GNSS receiver. 

ℓ m ℓ m+1 ℓ m+2 ℓ m+3 Z DB,jm Z DB,j m+1 Z DB,j m+2 Z DB,j m+3

Straight Line Segment

When the train runs into the straight line segment (ℓ m < ℓ ℓ m+1 ) of the railway IV.2. DESCRIPTION OF TRACK DATABASE MODELS 77 centerline, the equations for the true track database points are represented as

   x j (ϕ sl ) = x 0 + (jλ -ℓ m ) • cos α y j (ϕ sl ) = y 0 + (jλ -ℓ m ) • sin α, (IV.7)
where ϕ sl = (x 0 , y 0 , α) T denotes the geometric parameters of a straight line, j = j m , ..., j m+1 and the equations for the collected track database points are given by   

x DB,j = x j (ϕ sl ) + ξ DB,j,x y DB,j = y j (ϕ sl ) + ξ DB,j,y .

(IV.8)

Transition Curve

When the train runs into the transition curve (ℓ m+1 < ℓ ℓ m+2 ) of the railway centerline, the equations for the true track database points are represented as

   x j (ϕ tc ) = x 0 + (jλ -ℓ m ) • cos α -k c (jλ -ℓ m+1 ) 3 sin α y j (ϕ tc ) = y 0 + (jλ -ℓ m ) • sin α + k c (jλ -ℓ m+1 ) 3 cos α, (IV.9)
where ϕ tc = (x 0 , y 0 , α, k c ) T denotes the geometric parameters of a transition curve, j = j m+1 , ..., j m+2 and the equations for the collected track database points are given by   

x DB,j = x j (ϕ tc ) + ξ DB,j,x y DB,j = y j (ϕ tc ) + ξ DB,j,y .

(IV.10)

Circular Arc

When the train runs into the circular arc (ℓ m+2 < ℓ ℓ m+3 ) of the railway centerline, the equations for the true track database points are represented as

   x j (ϕ ca ) = x 0 + x ′ j • cos α -y ′ j • sin α y j (ϕ ca ) = y 0 + x ′ j • sin α + y ′ j • cos α, (IV.11)
where ϕ ca = (x 0 , y 0 , α, x c , y c , R) T denotes the geometric parameters of a circular arc, j = j m+2 , ..., j m+3 and

           x ′ j = x c + R sin τ + jλ -ℓ m+2 R y ′ j = y c -R cos τ + jλ -ℓ m+2 R (IV.12)
is the representation of the true track database point (x j (ϕ ca ), y j (ϕ ca )) on the x ′ y ′plane. The equations for the collected track database points are given by  



x DB,j = x j (ϕ ca ) + ξ DB,j,x y DB,j = y j (ϕ ca ) + ξ DB,j,y . (IV.13)

IV.3 Speed Estimation Based on a Model of Integrated System for a Constant Speed Case

This section assumes that the acceleration is negligible for some short periods.

Hence, it is supposed that the train runs along the "ideal" railway track with an unknown constant speed v. The travelled distance ℓ t at time t is equal to the product of speed v and duration t, i.e., ℓ t = v • t and t = 1, 2, . . .. Hence, the true train position is defined as : X t (ϕ, ℓ t ) = (x(ϕ, ℓ t ), y(ϕ, ℓ t ), 0) T , where (x(ϕ, ℓ t ), y(ϕ, ℓ t )) is the corresponding position, described by equations (IV.1), (IV.2), (IV.3) on the local tangent plane.

Since the distance ℓ t = v • t and the speed v is unknown, the corresponding position (x(ϕ, ℓ t ), y(ϕ, ℓ t )) can be regarded as a function of v, i.e., (x(ϕ, v), y(ϕ, v)).

IV.3.1 Model of GNSS/Track Database Integrated System

In this section, a rigorous mathematical model for the GNSS/track database integrated system is designed to estimate the train speed.

Nonlinear GNSS/Track Database Integrated System

Let us first combine the equations (IV.6) -(IV.8) for the discrete track database points collected from the straight segment and the pseudo-range equation r t i from the i-th satellite which located at known position X s i = (x i , y i , z i ) T to the train position X t (ϕ sl , v) at time t, a nonlinear GNSS/track database integrated system can be written as

     Z DB,j = X j (ϕ sl ) + ξ DB,j j = j m , ..., j m+1 r t i = d t i (ϕ sl , v) + cb t r + ε t i i = 1, ..., n
where ϕ sl and v are unknown parameters and must be estimated.

d t i (ϕ sl , v) = X t (ϕ sl , v) -X s i 2 ,
is the true distance from the i-th satellite to the train position. b t r is a user clock bias, c ≃ 2.9979 • 10 8 m/s is the speed of light and ε t i ∼ N (0, σ 2 PD ) is a pseudo-range noise.

The unknown parameters ϕ sl and v appear nonlinearly in the nonlinear integrated system. It's difficult to directly estimate the unknown parameters from such a nonlinear model. To reduce the difficulties, the nonlinear model needs to be transformed to a linear model by means of some transformations. Hence, we follow here the linearization
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of a nonlinear model which has been discussed in Section I.3. The nonlinear discrete track database model and the pseudo-range measurement model will be linearized around the working point, respectively. Then a final linear integrated system will be obtained by combining the two linearized models. Finally, the unknown parameters are estimated from the final linear integrated system.

Linearization of Discrete Track Database Model

Let us now introduce the following vectors Z sl DB = (Z T DB,jm , ..., Z T DB,j m+1 ) T and X sl (ϕ sl ) = (X T jm (ϕ sl ), ..., X T j m+1 (ϕ sl )) T . By linearizing the function ϕ sl -→ Z sl DB (ϕ sl ) with respect to the state vector ϕ sl around the working point ϕ sl,0 = (x 00 , y 00 , α 0 ) T , and we get the system of linear equations

Z sl,0 DB = Z sl DB -X sl (ϕ sl,0 ) ≃ H sl 0 • (ϕ sl -ϕ sl,0 ) + ξ sl DB , (IV.14)
where

H sl 0 = ∂Z sl DB (ϕ sl ) ∂ϕ sl ϕ sl =ϕ sl,0
is the Jacobian matrix of size (2(j m+1j m + 1) × 3), which has been discussed in Appendix C and ξ sl DB = (ξ T DB,jm , ..., ξ T DB,j m+1 ) T .

Linearization of Pseudo-range Measurement Model

Let us introduce the pseudo-range vector R t = (r t 1 , ..., r t n ) T , the state vector β sl t = (ϕ T sl , v, cb t r ) T , the working point β sl t,0 = (ϕ T sl,0 , v 0 , cb 0 ) T and ϕ sl,0 = (x 00 , y 00 , α 0 ) T . By linearizing the function β sl t -→ R t (β sl t ) with respect to the state vector β sl t around the working point β sl t,0 , we get the measurement equation

Y t = R t -R t 0 ≃ H t 0 • (β sl t -β sl t,0 ) + Ξ t , (IV.15) where R t 0 = (r t 1,0 , ..., r t n,0 ) T , r t i,0 = d t i (ϕ sl,0 , v 0 ) + cb 0 , Ξ t = (ε t 1 , ..., ε t n ) T and H t 0 = ∂R t ∂β sl t β sl t =β sl t,0
is the Jacobian matrix of size (n × 5), which has also been discussed in Appendix C.

Linear GNSS/Track Database Integrated System

Finally, by combining the system of linear equations (IV.14) for the straight line and the final linearized measurement equation (IV.15), we can get a linear integrated system

Z sl,0 DB Y t ≃ H sl 0 | 0 H t 0    ϕ sl -ϕ sl,0 v -v 0 cb t r -cb 0    + ξ sl DB Ξ t . (IV.

16) WITH THE TRACK DATABASE

The above linear integrated system (IV.16) can be rewritten in the following manner :

Y sl t ≃ H sl t • (β sl t -β sl t,0 ) + Υ sl t , (IV.17)
where the vector β sl t = (ϕ T sl , v, cb t r ) T is unknown and must be estimated. The working point at instant t is equal to the previously calculated estimation : β sl t,0 = β sl t-1 . To seek simplicity, let us assume that σ 2 PD = σ 2 DB = σ 2 , the LS estimator is given by

β sl t = β sl t-1 + H sl t T H sl t -1 H sl t T Y sl t . (IV.18)
The current estimation error is β sl tβ sl t . After substituting the right side of equation (IV.17) into the LS estimator (IV.18), the mean of this error is calculated as

E( β sl t -β sl t ) = E H sl t T H sl t -1 H sl t T Υ sl t , (IV.19)
and using the delta method which has been described in Section II.4.2, we get

E( β sl t -β sl t ) ≃ 0. (IV.20)
For the second order moment of this error, the delta method yields to

E( β sl t -β sl t )( β sl t -β sl t ) T ≃ σ 2 H sl t T H sl t -1 , (IV.21)
where H sl t is calculated exactly as in equation (IV.17) but with the working point

β sl t,0 = β sl t-1 .
Exactly as in the case of straight line, two linear GNSS/track database integrated systems for the cases of transition curve and circular arc can be obtained by using the same procedure by analogy with (IV.14) -(IV.17), see Appendix D.

IV.3.2 Numerical Simulations

The following scenario will be used in the sequel. The segments of the simulated 

1 Straight [ℓ 1 , ℓ 2 ] 0 [j 1 , j 2 ] 2 Transition (ℓ 2 , ℓ 3 ] 0 → 1 R (j 2 , j 3 ] 3 Circular (ℓ 3 , ℓ 4 ] 1 R (j 3 , j 4 ] 4 Transition (ℓ 4 , ℓ 5 ] 1 R → 0 (j 4 , j 5 ] 5 Straight (ℓ 5 , ℓ 6 ] 0 (j 5 , j 6 ] 6 Transition (ℓ 6 , ℓ 7 ] 0 → -1 R (j 6 , j 7 ] 7 Circular (ℓ 7 , ℓ 8 ] -1 R (j 7 , j 8 ] 8 Transition (ℓ 8 , ℓ 9 ] -1 R → 0 (j 8 ,

IV.4 Speed and Distance Estimation Based on a Model of Integrated System for a Variable Speed Case

The goal of this section is to estimate the travelled distance and speed of the train when its acceleration is not neglected. Hence, it is assumed that the train runs along the "ideal" railway centerline with a variable speed. The train dynamical model is described q is a positive integer. Over this time period, the distance ℓ k covered by the train, its speed v k and its acceleration a k at instant t k (1 ≤ k ≤ q) are given as follows

           ℓ k = ℓ k-1 + v k-1 • ∆t + 1 2 a k-1 • ∆t 2 v k = v k-1 + a k-1 • ∆t a k = a k-1 . (IV.22)
Let us consider the block of q +1 last GNSS measurements at time instant t k . Assuming that the acceleration a k is constant during T (s), the train position is given by

X(ϕ, ℓ k-q+p ) = [x(ϕ, ℓ k-q+p ), y(ϕ, ℓ k-q+p ), 0] T ,
where (x(ϕ, ℓ k-q+p ), y(ϕ, ℓ k-q+p )) is the corresponding position, described by equations (IV.1), (IV.2), (IV.3) on the local tangent plane. p = 0, 1, . . . , q and the distance is calculated as

ℓ k-q+p = 1 (p-q) • ∆t 1 2 (p -q) 2 • ∆t 2    ℓ k v k a k    = ω p • θ k (IV.23)
where the vector θ k is unknown and must be estimated.

IV.4.1 Model of GNSS/Track Database Integrated System

In this section, a rigorous mathematical model for the GNSS/track database integrated system is designed to estimate the train travelled distance and speed. WITH THE TRACK DATABASE

Nonlinear GNSS/Track Database Integrated System

As discussed in the constant speed case, let us also combine the equations (IV.6) -(IV.8) for the track database points collected from the straight segment and the pseudorange equation r i k-q+p from the i-th satellite which located at known position X s i = (x i , y i , z i ) T to the train position X(ϕ sl , ℓ k-q+p ) at time kq + p, a nonlinear integrated system can be written as

     Z DB,j = X j (ϕ sl ) + ξ DB,j j = j m , ..., j m+1 r i k-q+p = d i k-q+p (ϕ sl , ℓ k-q+p ) + cb k-q+p r + ε i k-q+p i = 1, ..., n
where ϕ sl = (x 0 , y 0 , α) T and ℓ k-q+p are unknown parameters and must be estimated.

d i k-q+p (ϕ sl , ℓ k-q+p ) = X(ϕ sl , ℓ k-q+p ) -X s i 2
is the true distance from the i-th satellite to the train position. b k-q+p r is a user clock bias, c ≃ 2.9979 • 10 8 m/s is the speed of light and ε i k-q+p ∼ N (0, σ 2 PD ) is the pseudo-range noise at time kq + p.

To estimate the unknown parameters, the nonlinear integrated system also needs to be transformed to a linear integrated system. Since we have linearized the discrete track database model in equation (IV.14), we need merely to linearize the exact pseudorange measurement model. Then a final linear integrated system will be obtained by combining the two linearized models. Finally, the unknown parameters are estimated from the final linear integrated system.

Linearization of Pseudo-range Measurement Model

Let us now introduce the pseudo-range vector R k-q+p = (r 1 k-q+p , ..., r n k-q+p ) T and the vector

D k-q+p = (d 1 k-q+p (ϕ sl , ℓ k-q+p ), ..., d n k-q+p (ϕ sl , ℓ k-q+p ))
T , the working point ϕ sl,0 = (x 00 , y 00 , α 0 ) T . By linearizing the pseudo-range vector R k-q+p with respect to the state vector (ϕ T sl , ℓ k-q+p ) T around the working point (ϕ T sl,0 , ℓ k-q+p,0 ) T , and we can get the measurement equation

R k-q+p ≃ D k-q+p,0 + H ϕ sl ,k-q+p,0 (ϕ sl -ϕ sl,0 ) + H ℓ,k-q+p,0 (ℓ k-q+p -ℓ k-q+p,0 ) + 1 n • cb k-q+p r + Ξ k-q+p , (IV.24)
where D k-q+p,0 = (d 1 k-q+p (ϕ sl,0 , ℓ k-q+p,0 ), ..., d n k-q+p (ϕ sl,0 , ℓ k-q+p,0 )) T is the vector for the distances from the satellite to the working point and

H ϕ sl ,k-q+p,0 = ∂D k-q+p ∂ϕ sl ϕ sl =ϕ sl,0 , H ℓ,k-q+p,0 = ∂D k-q+p ∂ℓ k-q+p ℓ k-q+p =ℓ k-q+p,0
are two Jacobian matrices of size (n×3) and (n×1),
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respectively. These two Jacobian matrices have also been discussed in Appendix C. 1 n is a vector of dimension n whose each element is one.

The above mentioned linearized measurement equations (IV.24) can be rewritten in the following matrix form

Y k-q+p ≃ H ϕ sl ,k-q+p,0 • ϕ sl + H ℓ,k-q+p,0 • ℓ k-q+p + 1 n • cb k-q+p r + Ξ k-q+p , (IV.25)
where

Y k-q+p = R k-q+p -D k-q+p,0 + H ϕ sl ,k-q+p,0 • ϕ sl,0 + H ℓ,k-q+p,0 • ℓ k-q+p,0 . It follows that     Y k . . . Y k-q     ≃     H ϕ sl ,k,0 • ϕ sl . . . H ϕ sl ,k-q,0 • ϕ sl     +     H ℓ,k,0 • ℓ k + 1 n • cb k r . . . H ℓ,k-q,0 • ℓ k-q + 1 n • cb k-q r     +     Ξ k . . . Ξ k-q     .
(IV.26)

To estimate the distance, speed and acceleration simultaneously, substituting equation

(IV.23) into equation (IV.26) yields to     Y k . . . Y k-q     ≃     H ϕ sl ,k,0 H ℓ,k,0 • ω q 1 n . . . . . . H ϕ sl ,k-q,0 H ℓ,k-q,0 • ω 0 1 n              ϕ sl θ k cb k r . . . cb k-q r          +     Ξ k . . . Ξ k-q     .
(IV.27)

Linear GNSS/Track Database Integrated System

Finally, by combining the system of linear equations (IV.14) for the straight line and the final linearized measurement equation (IV.27), a final linear integrated system can be written as

       Z sl,0 DB Y k . . . Y k-q        ≃       H sl 0 0 H ϕ sl ,k,0 H ℓ,k,0 • ω q 1 n . . . . . . . . . H ϕ sl ,k-q,0 H ℓ,k-q,0 • ω 0 1 n                ϕ sl θ k cb k r . . . cb k-q r          +       ξ sl DB Ξ k . . . Ξ k-q       , (IV.28)
where Z sl,0 DB ≃ Z sl,0 DB + H sl 0 ϕ sl,0 and the final linear integrated system (IV.28) can be rewritten in the following matrix :

Y sl k ≃ H sl k β sl k + Υ sl k , (IV.29)
where the vector

β sl k = (ϕ T sl , θ T k , cb k r , • • • , cb k-q r )
T is unknown and must be estimated. The working point ϕ sl,0 at instant t k is equal to the previously calculated estimation ϕ sl and ℓ k-q+p,0 is equal to the product of factor ω p and previously calculated estimation θ k-1 , i.e., ℓ k-q+p,0 = ω p •θ k,0 = ω p • θ k-1 . To seek simplicity, let us assume that σ 2 PD = σ 2 DB = σ 2 , the LS estimator is given by

β sl k = H sl k T H sl k -1 H sl k T Y sl k . (IV.30)
The current estimation error is β sl kβ sl k . After substituting the right side of equation (IV.29) into the LS estimator (IV.30), the mean of this error is computed as

E( β sl k -β sl k ) = E H sl k T H sl k -1 H sl k T Υ sl k , (IV.31)
and using the delta method, we get

E( β sl k -β sl k ) = E H sl k T H sl k -1 H sl k T Υ sl k ≃ 0. (IV.32)
For the second order moment of this error, the delta method yields to

E( β sl k -β sl k )( β sl k -β sl k ) T ≃ σ 2 H sl k T H sl k -1 , (IV.33)
where H sl k is calculated exactly as in equation (IV.29) but with the working point ϕ sl,0 = ϕ sl and ℓ k-q+p,0 = ω p • θ k-1 .

Exactly as in the case of straight line, two linear GNSS/track database integrated systems for the cases of transition curve and circular arc can be obtained by using the same procedure by analogy with (IV.24) -(IV.29), also see Appendix D.

IV.4.2 Numerical Simulations

The following scenario will be used in the sequel. The segments of the simulated train trajectory stored in the onboard train database are summarized in Tab. IV.1. The standard GNSS constellation with n = 6 visible satellites is used. The GNSS sampling interval is ∆t = 0.5 s. The pseudo-range SD is assumed to be of σ PD = 2 m. The true acceleration during the acceleration, free-running and braking period is assumed to be of 0.8 m/s 2 , 0 m/s 2 and -0.8 m/s 2 , respectively. and acceleration for a short time period. The mean error is always practically unbiased except for a short time period after the acceleration changes, but the second order moment remains almost unchanged during this period. Small railway centerline curve radius can augment slightly the second order moment of the train distance, velocity and acceleration estimation.

In Chapter III, the "non-ideal" model of railway centerline is defined by a polygonal line with some level of uncertainty in the train onboard database. It represents a piecewise linear approximation of the "ideal" model. The train travelled distance and speed are estimated by using GNSS measurements and the "non-ideal" railway centerline. Two cases have been considered : a constant and variable speed. For both cases, a LS estimator is designed. For the constant speed case, the train speed estimation is practically unbiased, even with an imprecise geometric model of the railway centerline.

The centerline uncertainties considerably augment the estimated speed second order moment by comparison with the "ideal" case. For the variable speed case, the results show that the change of acceleration causes an imprecise estimation of the travelled distance, speed and acceleration for a short time period. The mean error is always practically unbiased except for a short time period after the acceleration changes, but the second order moment remains almost unchanged during this period. Railway centerline uncertainty also leads to a slight augmentation of the second order moment of these estimations by comparison with the "ideal" case.

In Chapter IV, the travelled distance and speed of the train are estimated by integrating GNSS with a track database with measurement errors. Two cases have been considered : a constant and variable speed. For both cases, a rigorous mathematical model for the GNSS/track database integrated system is designed. For the constant speed case, the train speed estimation is practically unbiased. The estimated speed second order moment quickly becomes very weak, as in the "ideal" case. The impact of both the centerline uncertainty and the railroad curvature on the mean error and on the second order moment of the estimated speed is nearly negligible. For the variable speed case, it has been shown that the change of acceleration causes an imprecise estimation of the travelled distance, speed and acceleration for a short time period, as in the precedent cases. The negative impact of both the centerline uncertainty and the railroad curvature on these estimations is nearly negligible.

V.2. FUTURE RESEARCHES

V.2 Future Researches

In this section, we briefly discuss a number of promising directions for future researches.

Using Real Data to Test the Proposed Algorithms

When testing the performance of these proposed algorithms, we used simulated track database and a few assumptions. Currently, the real track database available is limited, we look forward to a more solid analysis of performance of train positioning information in a real world.

Extending 2D Train Trajectory to 3D Train Trajectory

It's interesting to extend the 2D train trajectory (on the local tangent plane) to approximate a 3D train trajectory in a real world.

Applying Kalman Filter in Train GNSS Positioning

Throughout this dissertation, the train positioning information is obtained by using the LS algorithm. It's interesting to apply the Kalman filter in train positioning, because it's very useful for a dynamical model.

Comparing the Obtained Results with that from Other Positioning Methods

We would like to compare the results obtained from our algorithms with that from other positioning methods, for example, using the odometric measurements (see details in [START_REF] Malvezzi | Odometric estmation for automatic train protection and control systems[END_REF][START_REF] Malvezzi | Odometric estmation for automatic train protection and control systems[END_REF]).

Using Doppler Measurements to Estimate the Speed

It's very common and useful to estimate the speed of the receiver by using Doppler measurements.

Integrating GNSS-based Navigation with Other Positioning Solutions

To reach the required safety level, we would like to perform the GNSS-based navigation with other positioning solutions, such as odometer, eddy current sensor, radar sensors and inertial systems. The integration of additional independent sensors can improve the accuracy of the train positioning.

Designing Integrity Monitoring Algorithms for Train Positioning Using

GNSS

Finally, we would like to develop the integrity monitoring algorithms for train positioning using GNSS. When the train always travels through deep cuttings, urban areas, forests and tunnels, the problem of integrity monitoring becomes very important.

Annexe A

Basic Notions in Estimation Theory

The Appendix A introduces some basic notions in estimation theory.

Convergence of Random Variables

Definition 6 (Convergence in law). Let (ξ n ) n≥1 = ξ 1 , ξ 2 , . . . be a sequence of random variables and let {F n (x)} n≥1 = F 1 (x), F 2 (x), . . . be a sequence of their distribution functions. A sequence (ξ n ) n≥1 of random variables is said to converge in distribution, or converge weakly, or converge in law to a random variable ξ if

lim n→∞ F n (x) = F (x),
where F (x) is the distribution function of ξ, for every number x ∈ Ê at which F is continuous. This fact is denoted as 

ξ n → L ξ or L(ξ n ) → L L(ξ).
ξ n + η n → P ξ + η, ξ n • η n → P ξ • η. Definition 8 (Converges almost surely (a.s.)). A sequence (ξ n ) n≥1 = ξ 1 , ξ 2 , . . . of
ξ 1 + • • • + ξ n n → P E(ξ), strong law : ξ 1 + • • • + ξ n n → a.s. E(ξ)
Theorem 4 (Central limit theorem). Let ξ 1 , . . . , ξ n be a sequence of i.i.d. random variables with means E(ξ) and variances var(ξ) positive and finite 0 < var(ξ) < ∞.

Consider the sum S

n = ξ 1 + • • • + ξ n . Then, ∀x < y P   x < S n -nE(ξ) nvar(ξ) < y   → Φ(y) -Φ(x) = y x 1 √ 2π e -u 2 2 du when n → ∞.

Substitution Principle

Almost all estimation methods are based on the following substitution principle. θ n → a.s. θ.

Asymptotic Normality

Definition 9. An estimator θ is said to be asymptotically normal if

( θ n -θ) √ n → L ζ with L(ζ) = N (0, σ 2 ).
Let θ n = G( P n ) be a substitution estimator belonging to the first class, i.e.

G(P

) = h g(x)dF (x) and θ n = G( P n ) = h 1 n n i=1 g(y i ) . Let ξ ∼ F 0 . If the function h : u → h(u) is differentiable at the point u 0 = g(x)dF 0 (x)
where 0 < dh du (u 0 ) < ∞ and g 2 (x)dF 0 (x) < ∞, then θ n is an asymptotically normal estimator :

( θ n -θ) √ n → L ζ where L(ζ) = N (0, σ 2 )
and

σ 2 = dh du (u 0 ) 2 (g(x) -u 0 ) 2 dF 0 (x).

Cramér-Rao Inequality

Scalar case : regularity conditions

Let us consider a parametric family P = {P θ } θ∈Θ . The observations ξ 1 , . . . , ξ n are assumed to come from P θ , where P θ ∈ P. The likelihood function for these observations is given by

L(ξ 1 , . . . , ξ n ; θ) = n i=1 l(ξ i , θ), l(ξ, θ) = log f θ (ξ),
where f θ (x) is the PDF of P θ . Let us also define the function

a(θ) = E θ ( θ) = θ + b(θ).
Suppose that the following condition is satisfied :

r 1 : the function θ → f θ (x),
for almost all values of x, is continuously differentiable in θ (i.e. f θ (x) ∈ 1 ) 1 r 2 : the integral

F (θ) = E θ (l ′ (ξ, θ)) 2 = E θ   ∂l(ξ, θ) ∂θ 2   = E θ   f ′ θ (ξ) f θ (ξ) 2   = (f ′ θ (x)) 2 f θ (x) dx,
where f ′ θ (x) = ∂f θ ∂θ (x), exists and θ → F (θ) is positive and continuous in θ 2 .

Theorem 6 (Cramér-Rao inequality). Let θ ∈ K b be an estimator. If the conditions of regularity r 1 and r 2 are satisfied, then

var θ ( θ) ≥ [1 + b ′ (θ)] 2 nF (θ) , where b(θ) = E θ ( θ) -θ and b ′ (θ) = db dθ (θ).
It follows that

E θ [( θ -θ) 2 ] ≥ [1 + b ′ (θ)] 2 nF (θ) + b 2 (θ).
For the class K 0 of unbiased estimators, the so-called Cramar-Rao lower bound is

E θ [( θ -θ) 2 ] ≥ 1 nF (θ)
.

1. A condition, say A, is satisfied for almost all values of x if there exists a set M : P(ξ ∈ M) = 0 such that the condition A is satisfied for all x / ∈ M. 2. It is considered that the integrals E θ [ϕ(ξ, θ)] are defined over the set

D P θ = {x : f θ (x) > 0}.

Annexe B

Mathematical Derivations

The Appendix B provides the derivation of equations (III.9), (III.10), (III.22) and (III.23) in Chapter III.

A1. Derivation of Equations (III.9) And (III.10) :

As described in Section III.3.2, the imprecise pseudo-range measurement equation (III.6) can be written as follows :

Y k + ∆Y k ≃ (H k 0 + ∆H k ) • β k + Ξ k ,
where the unknown vector is β k = (β 1 , β 2 ) T , the responses are

Y k =       y k 1 y k 2 . . . y k n      
, the matrix of regressors are

H k 0 =       h k 1,0 0 h k 2,0 0 . . . . . . h k n,0 0      
, the data uncertainties in the dependent variable are

∆Y k =       ∆y k 1 ∆y k 2 . . . ∆y k n      
, whose elements are
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and the data uncertainties in the independent variable are

∆H k =       ∆h k 1 0 ∆h k 2 0 . . . . . . ∆h k n 0      
, whose elements are

∆h k i = ∂ h i,0 ∂δ j δ j =0 • δ j = ∂ h i,0 ∂δ j x δ j x + ∂ h i,0 ∂δ j y δ j y .

Derivation of Equation (III.9) :

We compute the expectation of the LS estimator :

E( β k -β k ) =B -1 0 H k 0 T E ∆H k B -1 0 H k 0 T ∆H k -E ∆H k T ∆H k -E ∆H k T H k 0 B -1 0 H k T ∆H k β k . (B.1)
In the above equation (B.1), firstly three matrix functions are calculated as follows

(1) Calculation of E ∆H k B -1 0 H k 0 T ∆H k Let B -1 0 (H k 0 ) T = C 2×n = [ c ij ] 2×n and we have ∆H k B -1 0 (H k 0 ) T ∆H k =       ∆h k 1 0 ∆h k 2 0 . . . . . . ∆h k n 0       c 11 c 12 • • • c 1n c 21 c 22 • • • c 2n       ∆h k 1 0 ∆h k 2 0 . . . . . . ∆h k n 0       =       ∆(h k 1 ) 2 ∆h k 1 ∆h k 2 • • • ∆h k 1 ∆h k n ∆h k 2 ∆h k 1 (∆h k 2 ) 2 • • • ∆h k 2 ∆h k n . . . . . . . . . . . . ∆h k n ∆h k 1 ∆h k n ∆h k 2 • • • (∆h k n ) 2             c 11 0 c 12 0 . . . . . . c 1n 0       = ∆H k (∆H k ) T C. Taking expected values of ∆H k (∆H k ) T C gives E ∆H k B -1 0 H k 0 T ∆H k = E ∆H k ∆H k T C = Σ H C, (B.2)
where the covariance Σ H is equal to

Σ H = b 2 3 •         ∂ h 1,0 ∂δ j x 2 + ∂ h 1,0 ∂δ j y 2 • • • ∂ h 1,0 ∂δ j x ∂ h n,0 ∂δ j x + ∂ h 1,0 ∂δ j y ∂ h n,0 ∂δ j y . . . . . . . . . ∂ h 1,0 ∂δ j x ∂ h n,0 ∂δ j x + ∂ h 1,0 ∂δ j y ∂ h n,0 ∂δ j y • • • ∂ h n,0 ∂δ j x 2 + ∂ h n,0 ∂δ j y 2         . (2) Calculation of E ∆H k T ∆H k
The matrix product (∆H k ) T ∆H k is calculated as

(∆H k ) T ∆H k = ∆h k 1 ∆h k 2 • • • ∆h k n 0 0 • • • 0       ∆h k 1 0 ∆h k 2 0 . . . . . . ∆h k n 0       =   n i=1 (∆h k i ) 2 0 0 0   ,
so computing the expectation yields to

E ∆H k T H k =   E( n i=1 ∆h 2 i ) 0 0 0   = tr( H ) 0 0 0 = F. (B.3) (3) Calculation of E ∆H k T H k 0 B -1 0 H k 0 T ∆H k Now let ∆ H k = (∆h k 1 , ∆h k 2 , . . . , ∆h k n ) T , which is equal to the first column of ∆H k . It's clear that H k 0 B -1 0 H k 0 T = D = [d ij ]
n×n is a symmetric matrix, and then we have

∆H k T H k 0 B -1 0 H k 0 T ∆H k = ∆h k 1 ∆h k 2 • • • ∆h k n 0 0 • • • 0       d 11 d 12 • • • d 1n d 21 d 22 • • • d 2n . . . . . . . . . . . . d n1 d n2 • • • d nn             ∆h k 1 0 ∆h k 2 0 . . . . . . ∆h k n 0       =    n i,j=1 d ij ∆h k i ∆h k j 0 0 0    =   ∆ H k T H k 0 B -1 0 H k 0 T ∆ H k 0 0 0   . It's evident that ∆ H k T H k 0 B -1 0 H k 0 T ∆ H k is a quadratic form, the expectation E ∆H k T H k 0 B -1 0 H k 0 T ∆H k is calculated as E ∆H k T H k 0 B -1 0 H k 0 T ∆H k =   tr H k 0 B -1 0 H k 0 T Σ H 0 0 0   = G. (B.4)
Finally, substituting the equations (B.2), (B.3), (B.4) into the right side of equation (B.1) yields to equation (III.9).

Derivation of Equation (III.10) :

Now the LS estimator is written as

β k -β k = B -1 0 H k 0 T Ξ k + ∆Y k -∆H k β k ,
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E β k -β k β k -β k T = B -1 0 H k 0 T E Ξ k + ∆Y k -∆H k β k Ξ k + ∆Y k -∆H k β k T H k 0 B -1 0 = B -1 0 H k 0 T σ 2 I n + Σ Y -E ∆Y k β T k ∆H k T -E ∆H k β k ∆Y k T + E ∆H k β k β T k ∆H k T H k 0 B -1 0 .
(B.5)

In the above equation (B.5), firstly four matrix functions are calculated as follows

(1) Calculation of the covariance Σ Y

The covariance 

Σ Y = E ∆Y k ∆Y k T is equal to Σ Y = b 2 3 •         ∂ r 1,0 ∂δ j x 2 + ∂ r 1,0 ∂δ j y 2 • • • ∂ r 1,0 ∂δ j x ∂ r n,0 ∂δ j x + ∂ r 1,0 ∂δ j y ∂ r n,0 ∂δ j y . . . . . . . . . ∂ r 1,0 ∂δ j x ∂ r n,0 ∂δ j x + ∂ r 1,0 ∂δ j y ∂ r n,0 ∂δ j y • • • ∂ r n,0 ∂δ j x 2 + ∂ r n,0 ∂δ j y 2         . (B.6) (2) Calculation of E ∆Y k β T k ∆H k T and E ∆H k β k ∆Y k T The matrix product ∆Y k β T k ∆H k T is calculated as ∆Y k β T k ∆H k T =       ∆y k 1 ∆y k 2 . . . ∆y k n       β 1 β 2 ∆h k 1 ∆h k 2 • • • ∆h k n 0 0 • • • 0 = β 1       ∆y k 1 ∆y k 2 . . . ∆y k n       ∆h k 1 ∆h k 2 • • • ∆h k n = β 1 ∆Y k (∆ H k ) T , (B.7) so taking the expected value of ∆Y k β T k ∆H k T gives E ∆Y k β T k ∆H k T = E β 1 ∆Y k ∆ H k T = β 1 Σ Y H , (B.8) where the covariance Σ Y H is Σ Y H = - b 2 3 •       ∂ r 1,0 ∂δ j x ∂ h 1,0 ∂δ j x + ∂ r 1,0 ∂δ j y ∂ h 1,0 ∂δ j y • • • ∂ r 1,0 ∂δ j x ∂ h n,0 ∂δ j x + ∂ r 1,0 ∂δ j y ∂ h n,0 ∂δ j y . . . . . . . . . ∂ r n,0 ∂δ j x ∂ h 1,0 ∂δ j x + ∂ r n,0 ∂δ j y ∂ h 1,0 ∂δ j y • • • ∂ r n,0 ∂δ j x ∂ h n,0 ∂δ j x + ∂ r n,0 ∂δ j y ∂ h n,0 ∂δ j y       . Because ∆H k β k ∆Y k T = ∆Y k β T k ∆H k T T , we get E ∆H k β k ∆Y k T = β 1 Σ Y H T = β 1 Σ HY . (B.9) (3) Calculation of E ∆H k β k β T k ∆H k T The matrix product ∆H k β k β T k ∆H k T is calculated as ∆H k β k β T k ∆H k T =       ∆h k 1 0 ∆h k 2 0 . . . . . . ∆h k n 0       β 1 β 2 β 1 β 2 ∆h k 1 ∆h k 2 • • • ∆h k n 0 0 • • • 0 = β 2 1       ∆(h k 1 ) 2 ∆h k 1 ∆h k 2 • • • ∆h k 1 ∆h k n ∆h k 2 ∆h k 1 (∆h k 2 ) 2 • • • ∆h k 2 ∆h k n . . . . . . . . . . . . ∆h k n ∆h k 1 ∆h k n ∆h k 2 • • • (∆h k n ) 2       = β 2 1 ∆H k ∆H k T , so computing the expectation of ∆H k β k β T k ∆H k T gives E ∆H k β k β T k ∆H k T = E β 2 1 ∆H k ∆H k T = β 2 1 Σ H . (B.

A2. Derivation of Equations (III.22) And (III.23) :

As described in Section III.4.2, the imprecise pseudo-range measurement (III.20) can also be written in the following form :

Y k + ∆Y k ≃ (H k 0 + ∆H k ) • β k + Ξ k ,
where the responses are

Y k = R k -D k 0 + Y k 0 =       R k R k-1 . . . R k-q       -       D k,0 D k-1,0 . . . D k-q,0       +       H k,0 ℓ k,0 H k-1,0 ℓ k-1,0 . . . H k-q,0 ℓ k-q,0      
, the matrix of regressors are

H k 0 =       H k,0 • ω q 1 n H k-1,0 • ω q-1 1 n . . . . . . H k-q,0 • ω 0 1 n      
, the data uncertainties in the dependent variable are

∆Y k = D k 0 -D k 0 -Y k 0 + Y k 0 =       ∆H k ℓ k,0 ∆H k-1 ℓ k-1,0 . . . ∆H k-q ℓ k-q,0       -       ∆D k ∆D k-1 . . . ∆D k-q      
, the elements of the two n-dimensional column vectors ∆H k-q+p and ∆D k-q+p are

∆h i k-q+p,0 = ∂ h i k-q+p,0 ξ j ξ j =0 • ξ j = ∂ h i k-q+p,0 ∂ξ j x ξ j x + ∂ h i k-q+p,0 ∂ξ j y ξ j y and ∆d i k-q+p,0 = ∂ d i k-q+p,0 ξ j ξ j =0 • ξ j = ∂ d i k-q+p,0 ∂ξ j x ξ j x + ∂ d i k-q+p,0 ∂ξ j y ξ j y ,
respectively. The data uncertainties in the independent variable are

∆H k = H k 0 -H k 0 =       ∆H k • ω q 0 n ∆H k-1 • ω q-1 0 n . . . . . . ∆H k-q • ω 0 0 n      
. 0 n is a vector of dimension n whose element is zero.

Derivation of Equation (III.22) :

We compute the expectation of the LS estimator :

E( β k -β k ) = B k -1    H k 0 -1 E ∆H k B k -1 H k 0 T ∆H k -E ∆H k T ∆H k + E ∆H k H k 0 B k -1 H k 0 T ∆H k    β k , (B.11) where B k = H k 0 T H k 0 .
The matrices H k 0 are calculated exactly as in equation (III.19) but with the working point ℓ k-q+p,0 = ω p • θ k-1 . At first, we calculate three matrix functions in the above equation (B.11) :

(1) Calculation of

E ∆H k B k -1 H k 0 T ∆H k MATHEMATICAL DERIVATIONS 105 The matrix product B k -1 H k 0
T is denoted to be the 2 × (q + 1) matrix :

B k -1 H k 0 T = χ 1,1 χ 1,2 • • • χ 1,q+1 ̟ 2,1 ̟ 2,1 • • • ̟ 2,q+1 ,
where χ 1,u+1 and ̟ 2,u+1 are two matrices of size 3 × n and (q + 1) × n, respectively.

The following matrix product is calculated as

∆H k B k -1 H k 0 T ∆H k =       ∆H k • ω q 0 n,q+1 ∆H k-1 • ω q-1 0 n,q+1 . . . . . . ∆H k-q • ω 0 0 n,q+1       χ 1,1 χ 1,2 • • • χ 1,q+1 ̟ 2,1 ̟ 2,1 • • • ̟ 2,q+1       ∆H k • ω q 0 n,q+1 ∆H k-1 • ω q-1 0 n,q+1 . . . . . . ∆H k-q • ω 0 0 n,q+1       =       ∆H k • ω q χ 1,1 ∆H k • ω q χ 1,2 • • • ∆H k • ω q χ 1,q+1 ∆H k-1 • ω q-1 χ 1,1 ∆H k-1 • ω q-1 χ 1,2 • • • ∆H k-1 • ω q-1 χ 1,q+1 . . . . . . . . . . . . ∆H k-q • ω 0 χ 1,1 ∆H k-q • ω 0 χ 1,2 • • • ∆H k-q • ω 0 χ 1,q+1             ∆H k • ω q 0 n,q+1 ∆H k-1 • ω q-1 0 n,q+1 . . . . . . ∆H k-q • ω 0 0 n,q+1       =            q u=0 ∆H k ω q χ 1,u+1 ∆H k-u ω q-u 0 n,(q+1) q u=0 ∆H k-1 ω q-1 χ 1,u+1 ∆H k-u ω q-u 0 n,(q+1) . . . . . . q u=0 ∆H k-q ω 0 χ 1,u+1 ∆H k-u ω q-u 0 n,(q+1)           
.

Let us now define the following matrix

γ ℓ,m = E(∆H ℓ ∆H T m ) = b 2 3 •        ∂ h 1 ℓ,0 ∂ξ j x ∂ h 1 m,0 ∂ξ j x + ∂ h 1 ℓ,0 ∂ξ j y ∂ h 1 m,0 ∂ξ j y • • • ∂ h 1 ℓ,0 ∂ξ j x ∂ h n m,0 ∂ξ j x + ∂ h 1 ℓ,0 ∂ξ j y ∂ h n m,0 ∂ξ j y . . . . . . . . . ∂ h n ℓ,0 ∂ξ j x ∂ h 1 m,0 ∂ξ j x + ∂ h n ℓ,0 ∂ξ j y ∂ h 1 m,0 ∂ξ j y • • • ∂ h n ℓ,0 ∂ξ j x ∂ h 1 m,0 ∂ξ j x + ∂ h n ℓ,0 ∂ξ j y ∂ h n m,0 ∂ξ j y        . The expectation of ∆H k B k -1 H k 0 T ∆H k is given by E ∆H k B k -1 H k 0 T ∆H k =            q u=0 γ k,k-u χ T 1,u+1 ω T q ω q-u 0 n,(q+1) q u=0 γ k-1,k-u χ T 1,u+1 ω T q-1 ω q-u 0 n,(q+1) . . . . . . q u=0 γ k-q,k-u χ T 1,u+1 ω T 0 ω q-u 0 n,(q+1)            . (B.12) (2) Calculation of E ∆H k T ∆H k
The matrix product ∆H k T ∆H k is computed as

∆H k T ∆H k =       ∆H k • ω q 0 n,q+1 ∆H k-1 • ω q-1 0 n,q+1 . . . . . . ∆H k-q • ω 0 0 n,q+1       T       ∆H k • ω q 0 n,q+1 ∆H k-1 • ω q-1 0 n,q+1 . . . . . . ∆H k-q • ω 0 0 n,q+1       =   q u=0 ω T q-u ∆H T k-u ∆H k-u ω q-u 0 3,(q+1) 0 (q+1),3 0 (q+1),(q+1)   , so the expectation of ∆H k T ∆H k is E ∆H k T ∆H k =   q u=0 tr γ k-u,k-u ω T q-u ω q-u 0 3,(q+1) 0 (q+1),3 0 (q+1),(q+1)   . (B.13) (3) Calculation of E ∆H k H k 0 B k -1 H k 0 T ∆H k
Let us define the following matrix :

Q =       Q 1,1 Q 1,2 • • • Q 1,q+1 Q 2,1 Q 2,2 • • • Q 2,q+1 . . . . . . . . . . . . Q (q+1),1 Q (q+1),2 • • • Q (q+1),q+1       , where Q u+1,v+1 is a block of size n × n of matrix Q = H k 0 B k -1 H k 0 T .
The following matrix product is calculated as 

∆H k H k 0 B k -1 H k 0 T ∆H k =       ∆H k • ω q 0 n,q+1 ∆H k-1 • ω q-1 0 n,q+1 . . . . . . ∆H k-q • ω 0 0 n,q+1       T       Q 1,1 Q 1,2 • • • Q 1,q+1 Q 2,1 Q 2,2 • • • Q 2,q+1 . . . . . . . . . . . . Q (q+1),1 Q (q+1),2 • • • Q (q+1),q+1             ∆H k • ω q 0 n,q+1 ∆H k-1 • ω q-1 0 n,q+1 . . . . . . ∆H k-q • ω 0 0 n,q+1       =   q u=0 q v=0 ω T q-u ∆H T k-v Q u+1,v+1 ∆H k-u ω q-v 0 3,(q+1) 0 (q+1),3 0 (q+1),(q+1)   , so the expectation of ∆H k H k 0 B k -1 H k 0 T ∆H k is E ∆H k H k 0 B k -1 H k 0 T ∆H k =   q u=0 q v=0 tr Q u+1,v+1 γ k-v,k-u ω T q-u ω q-v 0 3,(q+1) 0 (q+1),3 0 (q+1), (q+1) 

Derivation of Equation (III.23) :

The second order moment of β k can be calculated as

E( β k -β k )( β k -β k ) T = B k -1 H k 0 T    E Ξ k Ξ k T + E ∆Y k ∆Y k T -E ∆Y k β T k ∆H k T -E ∆H k β k ∆Y k T + E ∆H k β k β T k ∆H k T    H k 0 B k -1 . (B.15)
We also firstly calculate four covariance functions in the above equation (B.15) :

(1) Calculation of E ∆Y k ∆Y k T

The matrix product ∆Y k ∆Y k T is calculated as

∆Y k ∆Y k T =       ∆H k ℓ k,0 -∆D k ∆H k-1 ℓ k-1,0 -∆D k-1 . . . ∆H k-q ℓ k-q,0 -∆D k-q             ∆H k ℓ k,0 -∆D k ∆H k-1 ℓ k-1,0 -∆D k-1 . . . ∆H k-q ℓ k-q,0 -∆D k-q       T =       ℓ 2 k,0 ∆H k ∆H T k ℓ k,0 ℓ k-1,0 ∆H k ∆H T k-1 • • • ℓ k,0 ℓ k-q,0 ∆H k ∆H T k-q ℓ k-1,0 ℓ k,0 ∆H k-1 ∆H T k ℓ 2 k-1,0 ∆H k-1 ∆H T k-1 • • • ℓ k-1,0 ℓ k-q,0 ∆H k-1 ∆H T k-q . . . . . . . . . . . . ℓ k-q,0 ℓ k,0 ∆H k-q ∆H T k ℓ k-q,0 ℓ k-1,0 ∆H k-1 ∆H T k-1 • • • ℓ 2 k-q,0 ∆H k-q ∆H T k-q       -       ℓ k,0 ∆H k ∆D T k ℓ k,0 ∆H k ∆D T k-1 • • • ℓ k,0 ∆H k ∆D T k-q ℓ k-1,0 ∆H k-1 ∆D T k ℓ k-1,0 ∆H k-1 ∆D T k-1 • • • ℓ k-1,0 ∆H k-1 ∆D T k-q . . . . . . . . . . . . ℓ k-q,0 ∆H k-q ∆D T k ℓ k-q,0 ∆H k-q ∆D T k-1 • • • ℓ k-q,0 ∆H k-q ∆D T k-q       -       ℓ k,0 ∆D k ∆H T k ℓ k-1,0 ∆D k ∆H T k-1 • • • ℓ k-q,0 ∆D k ∆H T k-q ℓ k,0 ∆D k-1 ∆H T k ℓ k-1,0 ∆D k-1 ∆H T k-1 • • • ℓ k-q,0 ∆D k-1 ∆H T k-q . . . . . . . . . . . . ℓ k,0 ∆D k-q ∆H T k ℓ k-1,0 ∆D k-q ∆H T k-1 • • • ℓ k-q,0 ∆D k-q ∆H T k-q       +       ∆D k ∆D T k ∆D k ∆D T k-1 • • • ∆D k ∆D T k-q ∆D k-1 ∆D T k ∆D k-1 ∆D T k-1 • • • ∆D k-1 ∆D T k-q . . . . . . . . . . . . ∆D k-q ∆D T k ∆D k-q ∆D T k-1 • • • ∆D k-q ∆D T k-q      
, so the expectation of E ∆Y k ∆Y k T is given by

E ∆Y k ∆Y k T = S =       S 1,1 S 1,2 • • • S 1,q+1 S 2,1 S 2,2 • • • S 2,q+1 . . . . . . . . . . . . S (q+1),1 S (q+1),2 • • • S (q+1),q+1       , (B.16)
where

S u+1,v+1 =ℓ k-u,0 ℓ k-v,0 γ k-u,k-v -ℓ k-u,0 E(∆H k-u ∆D T k-u ) -ℓ k-v,0 E(∆D k-u ∆H T k-u ) + E(∆D k-u ∆D T k-v ), is a block of size n × n of matrix S, the covariance matrices E(∆H k-u ∆D T k-u ), E(∆D k-u ∆H T k-u ) and E(∆D k-u ∆D T k-v ) are given by E(∆H k-u ∆D T k-u ) = E[(∆D k-u ∆H T k-u )] T = b 2 3 •        ∂ h 1 k-u,0 ∂ξ j x ∂ d 1 k-u,0 ∂ξ j x + ∂ h 1 k-u,0 ∂ξ j y ∂ d 1 k-u,0 ∂ξ j y • • • ∂ h 1 k-u,0 ∂ξ j x ∂ d n k-u,0 ∂ξ j x + ∂ h 1 k-u,0 ∂ξ j y ∂ d n k-u,0 ∂ξ j y . . . . . . . . . ∂ h n k-u,0 ∂ξ j x ∂ d 1 k-u,0 ∂ξ j x + ∂ h n k-u,0 ∂ξ j y ∂ d 1 k-u,0 ∂ξ j y • • • ∂ h n k-u,0 ∂ξ j x ∂ d n k-u,0 ∂ξ j x + ∂ h n k-u,0 ∂ξ j y ∂ d n k-u,0 ∂ξ j y        and E(∆D k-u ∆D T k-v ) = b 2 3 •        ∂ d 1 k-u,0 ∂ξ j x ∂ d 1 k-v,0 ∂ξ j x + ∂ d 1 k-u,0 ∂ξ j y ∂ d 1 k-v,0 ∂ξ j y • • • ∂ d 1 k-u,0 ∂ξ j x ∂ d n k-v,0 ∂ξ j x + ∂ d 1 k-u,0 ∂ξ j y ∂ d n k-v,0 ∂ξ j y . . . . . . . . . ∂ d n k-u,0 ∂ξ j x ∂ d 1 k-v,0 ∂ξ j x + ∂ d n k-u,0 ∂ξ j y ∂ d 1 k-v,0 ∂ξ j y • • • ∂ d n k-u,0 ∂ξ j x ∂ d n k-v,0 ∂ξ j x + ∂ d n k-u,0 ∂ξ j y ∂ d n k-v,0 ∂ξ j y        . (2) Calculation of E ∆Y k β T k ∆H k T and E ∆H k β k ∆Y k T The matrix product ∆Y k β T k ∆H k T is calculated as ∆Y k β T k ∆H k T =       ∆H k • ω q 0 n,q+1 ∆H k-1 • ω q-1 0 n,q+1 . . . . . . ∆H k-q • ω 0 0 n,q+1             θ k cb k r . . . cb k-q r             ∆H k ℓ k,0 -∆D k,0 ∆H k-1 ℓ k-1,0 -∆D k-1 . . . ∆H k-q ℓ k-q,0 -∆D k-q       T =       ∆H k ℓ k ∆H k-1 ℓ k-1 . . . ∆H k-q ℓ k-q             ∆H k ℓ k,0 -∆D k ∆H k-1 ℓ k-1,0 -∆D k-1 . . . ∆H k-q ℓ k-q,0 -∆D k-q       T =       ℓ k ℓ k,0 ∆H k ∆H T k ℓ k ℓ k-1,0 ∆H k ∆H T k-1 • • • ℓ k ℓ k-q,0 ∆H k ∆H T k-q ℓ k-1 ℓ k,0 ∆H k-1 ∆H T k ℓ k-1 ℓ k-1,0 ∆H k-1 ∆H T k-1 • • • ℓ k-1 ℓ k-q,0 ∆H k-1 ∆H T k-q . . . . . . . . . . . . ℓ k-q ℓ k,0 ∆H k-q ∆H T k ℓ k-q ℓ k-q,0 ∆H k-1 ∆H T k-1 • • • ℓ k-q ℓ k-q,0 ∆H k-q ∆H T k-q       -       ℓ k ∆H k ∆D T k ℓ k ∆H k ∆D T k-1 • • • ℓ k ∆H k ∆D T k-q ℓ k-1 ∆H k-1 ∆D T k ℓ k-1 ∆D k-1 ∆H T k-1 • • • ℓ k-1 ∆H k-1 ∆D T k-q . . . . . . . . . . . . ℓ k-q ∆H k-q ∆D T k ℓ k-q ∆H k-1 ∆D T k-1 • • • ℓ k-q ∆H k-q ∆D T k-q       , so the expectation of ∆Y k β T k ∆H k T is given by E ∆Y k β T k ∆H k T = N =       N 1,1 N 1,2 • • • N 1,(q+1) N 2,1 N 2,2 • • • N 2,(q+1) . . . . . . . . . . . . N (q+1),1 N (q+1),2 • • • N (q+1),(q+1)       , (B.17)
where

N u+1,v+1 = ℓ k-u ℓ k-v,0 γ k-u,k-v -ℓ k-u E(∆H k-u ∆D T k-v ) and ℓ k-u , ℓ k-v are calcu- lated exactly as in equation (III.14) and u, v = 0, ..., q. Because ∆H k β k ∆Y k T = ∆Y k β T k ∆H k T T , we get E ∆H k β k ∆Y k T = E ∆Y k β T k ∆H k T T = N T . (B.18) (3) Calculation of E ∆H k β k β T k ∆H k T MATHEMATICAL DERIVATIONS The matrix product ∆H k β k β T k ∆H k T is calculated as ∆H k β k β T k ∆H k T =       ∆H k • ω q 0 n,q+1 ∆H k-1 • ω q-1 0 n,q+1 . . . . . . ∆H k-q • ω 0 0 n,q+1             θ k cb k r . . . cb k-q r             θ k cb k r . . . cb k-q r       T       ∆H k • ω q 0 n,q+1 ∆H k-1 • ω q-1 0 n,q+1 . . . . . . ∆H k-q • ω 0 0 n,q+1       T =       ∆H k ℓ k ∆H k-1 ℓ k-1 . . . ∆H k-q ℓ k-q             ∆H k ℓ k ∆H k-1 ℓ k-1 . . . ∆H k-q ℓ k-q       T =       ℓ 2 k ∆H k ∆H T k ℓ k ℓ k-1 ∆H k ∆H T k-1 • • • ℓ k ℓ k-q ∆H k ∆H T k-q ℓ k-1 ℓ k ∆H k-1 ∆H T k ℓ 2 k-1 ∆H k-1 ∆H T k-1 • • • ℓ k-1 ℓ k-q ∆H k-1 ∆H T k-q . . . . . . . . . . . . ℓ k-q ℓ k ∆H k-q ∆H T k ℓ k-q ℓ k-1 ∆H k-1 ∆H T k-1 • • • ℓ 2 k-q ∆H k-q ∆H T k-q       , so the expectation of ∆H k β k β T k ∆H k T is given by E ∆H k β k β T k ∆H k T = M =       M 1,1 M 1,2 • • • M 1,q+1 M 2,1 M 2,2 • • • M 2,q+1 . . . . . . . . . . . . M (q+1),1 M (q+1),2 • • • M (q+1),q+1       , (B.19)
where

M u+1,v+1 = ℓ k-u ℓ k-v γ k-u,k-v .
Finally, substituting the equations (B.16), (B.17 

Annexe C

Expressions of Jacobian Matrix

The Appendix C gives the detailed expressions of Jacobian matrix in Chapter IV.

Linear GNSS/Track Database Integrated System for a Constant Speed

Case

In this section, we give the expressions of Jacobian matrix in both the linearized discrete track database model and the linearized GNSS pseudo-range measurement model, respectively.

Jacobian Matrix of the Linearized Discrete Track Database Model

The Jacobian matrix H sl 0 is given by

H sl 0 = ∂Z sl DB (ϕ sl ) ∂ϕ sl ϕ sl =ϕ sl,0 =      ∂Z DB,jm (ϕ sl ) ∂ϕ sl . . . ∂Z DB,j m+1 (ϕ sl ) ∂ϕ sl      , whose element is ∂Z DB,j (ϕ sl ) ∂ϕ sl = ∂Z DB,j (ϕ sl ) ∂x 0 , ∂Z DB,j (ϕ sl ) ∂y 0 , ∂Z DB,j (ϕ sl ) ∂α and ∂Z DB,j (ϕ sl ) ∂x 0 = 1 0 , ∂Z DB,j (ϕ sl ) ∂y 0 = 1 0 , ∂Z DB,j (ϕ sl ) ∂α = -(jλ -ℓ m ) sin α 0 (jλ -ℓ m ) cos α 0 .

Jacobian Matrix of the Linearized GNSS Pseudo-range Measurement

Model

The Jacobian matrix H t 0 is given by

H t 0 = ∂R t ∂β sl t β sl t =β sl t,0 =         ∂r t 1 (ϕ sl ,v) ∂ϕ sl ∂r t 1 (ϕ sl ,v) ∂v 1 ∂r t 2 (ϕ sl ,v) ∂ϕ sl ∂r t 2 (ϕ sl ,v) ∂v 1 . . . . . . . . . ∂r t n (ϕ sl ,v) ∂ϕ sl ∂r t n (ϕ sl ,v) ∂v 1        
, whose element is

∂r t i (ϕ sl , v) ∂ϕ sl = (X t (ϕ sl,0 , v 0 ) -X s i ) T • ∂Xt(ϕ sl ,v) ∂ϕ sl | ϕ sl =ϕ sl,0 d t i (ϕ sl,0 , v 0 ) and ∂r t i (ϕ sl , v) ∂v = (X t (ϕ sl,0 , v 0 ) -X s i ) T • ∂Xt(ϕ sl ,v) ∂v | v=v 0 d t i (ϕ sl,0 , v 0 )
.

Linear GNSS/Track Database Integrated System for a Variable Speed

Case

In this section, the expressions of Jacobian matrix in the linearized GNSS pseudorange measurement model are provided.

Jacobian Matrix of the Linearized GNSS Pseudo-range Measurement

Model

The Jacobian matrix H ϕ sl ,k-q+p,0 is calculated by

H ϕ sl ,k-q+p,0 = ∂D k-q+p ∂ϕ sl ϕ sl =ϕ sl,0 =       ∂d 1 k-q+p (ϕ sl ,ℓ k-q+p ) ∂ϕ sl . . . ∂d n k-q+p (ϕ sl ,ℓ k-q+p ) ∂ϕ sl       , whose element is ∂d i k-q+p (ϕ sl , ℓ k-q+p ) ∂ϕ sl = [X(ϕ sl,0 , ℓ k-q+p,0 ) -X s i ] T • ∂X(ϕ sl ,ℓ k-q+p ) ∂ϕ sl ϕ sl =ϕ sl,0 X(ϕ sl,0 , ℓ k-q+p,0 ) -X s i 2
.

The Jacobian matrix H ℓ,k-q+p,0 is calculated by

H ℓ,k-q+p,0 = ∂D k-q+p ∂ℓ k-q+p ℓ k-q+p =ℓ k-q+p,0 =       ∂d 1 k-q+p (ϕ sl ,ℓ k-q+p ) ∂ℓ k-q+p . . . ∂d n k-q+p (ϕ sl ,ℓ k-q+p ) ∂ℓ k-q+p       , whose element is ∂d i k-q+p (ϕ sl , ℓ k-q+p ) ∂ℓ k-q+p = [X(ϕ sl,0 , ℓ k-q+p,0 ) -X s i ] T • ∂X(ϕ sl ,ℓ k-q+p ) ∂ℓ k-q+p ℓ k-q+p =ℓ k-q+p,0 X(ϕ sl,0 , ℓ k-q+p,0 ) -X s i 2
, where the working point

ℓ k-q+p,0 = ω p • θ k,0 = ω p • θ k-1 .
Annexe D

Integrated System Models

The Appendix D gives two linear GNSS/track database integrated systems for the cases of transition curve and circular arc.

Model of GNSS/Track Database Integrated System for a Constant Speed

Case

This section presents two linear GNSS/track database integrated systems for the cases of transition curve and circular arc when the train travels along the "ideal" railway track with a constant speed v.

Transition Curve

Nonlinear GNSS/Track Database Integrated System

Let us first combine the equations (IV.6), (IV.9) and (IV.10) for the track database points collected from the transition curve and the pseudo-range equation r t i from the i-th satellite which located at known position X s i = (x i , y i , z i ) T to the train position X t (ϕ tc , v) at time t, a nonlinear GNSS/track database integrated system can be written as

     Z DB,j = X j (ϕ tc ) + ξ DB,j j = j m+1 , ..., j m+2 r t i = d t i (ϕ tc , v) + cb t r + ε t i i = 1, ..., n
where ϕ tc and v are unknown parameters and must be estimated.

d t i (ϕ tc , v) = X t (ϕ tc , v) -X s
i 2 is the true distance from the i-th satellite to the train. b t r is a user clock bias, c ≃ 2.9979•10 8 m/s is the speed of light and ε t i ∼ N (0, σ 2 PD ) is a pseudo-range noise.

Linearization of Discrete Track Database Model

Let us now introduce the following vectors Z tc DB = (Z T DB,j m+1 , ..., Z T DB,j m+2 ) T and

INTEGRATED SYSTEM MODELS

X tc (ϕ tc ) = (X T j m+1 (ϕ tc ), ..., X T j m+2 (ϕ tc )) T . By linearizing the function ϕ tc -→ Z tc DB (ϕ tc ) with respect to the state vector ϕ tc around the working point ϕ tc,0 = (x 00 , y 00 , α 0 , k c0 ) T , and we get the system of linear equations

Z tc,0 DB = Z tc DB -X tc (ϕ tc,0 ) ≃ H tc 0 • (ϕ tc -ϕ tc,0 ) + ξ tc DB , (D.1)
where

H tc 0 = ∂Z tc DB (ϕtc) ∂ϕtc ϕtc=ϕ tc,0
is the Jacobian matrix of size (2(j m+2j m+1 + 1) × 4) and ξ tc DB = (ξ T DB,j m+1 , ..., ξ T DB,j m+2 ) T .

Linearization of Pseudo-range Measurement Model

Let us introduce the pseudo-range vector R t = (r t 1 , ..., r t n ) T , the state vector β tc t = (ϕ T tc , v, cb t r ) T , the working point β tc t,0 = (ϕ T tc,0 , v 0 , cb 0 ) T and ϕ tc,0 = (x 00 , y 00 , α 0 , k c0 ) T . By linearizing the function β tc t -→ R t (β tc t ) with respect to the state vector β tc t around the working point β tc t,0 , we get the measurement equation

Y t = R t -R t 0 ≃ H t 0 • (β tc t -β tc t,0 ) + Ξ t , (D.2) where R t 0 = (r t 1,0 , ..., r t n,0 ) T , r t i,0 = d t i (ϕ tc,0 , v 0 ) + cb 0 , Ξ t = (ε t 1 , ..., ε t n ) T and H t 0 = ∂R t ∂β tc t β tc t =β tc t,0
is the Jacobian matrix of size (n × 6).

Linear GNSS/Track Database Integrated System

Finally, by combining the system of linear equations (D.1) for transition curve and the final linearized measurement equation (D.2), we can get a linear integrated system

Z tc,0 DB Y t ≃ H tc 0 | 0 H t 0    ϕ tc -ϕ tc,0 v -v 0 cb t r -cb 0    + ξ tc DB Ξ t . (D.3)
The above linear integrated system (D.3) can be rewritten in the following manner :

Y tc t ≃ H tc t • (β tc t -β tc t,0 ) + Υ tc t , (D.4)
where the vector

β tc t = (ϕ T tc , v, cb t r )
T is unknown and must be estimated. The working point at instant t is equal to the previously calculated estimation : β tc t,0 = β tc t-1 . To seek simplicity, let us assume that σ 2 PD = σ 2 DB = σ 2 , the LS estimator is given by

β tc t = β tc t-1 + H tc t T H tc t -1 H tc t T Y tc t . (D.5)
The current estimation error is β tc tβ tc t . After substituting the right side of equation (D.4) into the LS estimator (D.5), the mean of this error is calculated as

E( β tc t -β tc t ) = E H tc t T H tc t -1 H tc t T Υ tc t , (D.6)
and using the delta method, we get

E( β tc t -β tc t ) ≃ 0. (D.7)
For the second order moment of this error, the delta method yields to

E( β tc t -β tc t )( β tc t -β tc t ) T ≃ σ 2 H tc t T H tc t -1 , (D.8)
where H tc t is calculated exactly as in equation (D.4) but with the working point β tc t,0 = β tc t-1 .

Circular Arc Nonlinear GNSS/Track Database Integrated System

Let us first combine the equations (IV.6), (IV.11) and (IV.13) for the track database points collected from the circular arc and the pseudo-range equation r t i from the ith satellite which located at known position X s i = (x i , y i , z i ) T to the train position X t (ϕ ca , v) at time t, a nonlinear GNSS/track database integrated system can be written as

     Z DB,j = X j (ϕ ca ) + ξ DB,j j = j m+2 , ..., j m+3 r t i = d t i (ϕ ca , v) + cb t r + ε t i i = 1, ..., n
where ϕ ca and v are unknown parameters and must be estimated.

d t i (ϕ ca , v) = X t (ϕ ca , v) -X s
i 2 is the true distance from the i-th satellite to the train position. b t r is a user clock bias, c ≃ 2.9979 • 10 8 m/s is the speed of light and ε t i ∼ N (0, σ 2 PD ) is a pseudo-range noise.

Linearization of Discrete Track Database Model

Let us now introduce the following vectors

Z ca DB = (Z T DB,j m+2 , ..., Z T DB,j m+3 ) T and X ca (ϕ ca ) = (X T j m+2 (ϕ ca ), ..., X T j m+3 (ϕ ca )) T . By linearizing the function ϕ ca -→ Z ca
DB (ϕ ca ) with respect to the state vector ϕ ca around the working point ϕ ca,0 = (x 00 , y 00 , α 00 , x c0 , y c0 , R 0 ) T , and we get the system of linear equations :

Z ca,0 DB = Z ca DB -X ca (ϕ ca,0 ) ≃ H ca 0 • (ϕ ca -ϕ ca,0 ) + ξ ca DB , (D.9)
where

H ca 0 = ∂Z ca DB (ϕca) ∂ϕca ϕca=ϕ ca,0
is the Jacobian matrix of size (2(j m+3j m+2 + 1) × 6) and ξ ca DB = (ξ T DB,j m+2 , ..., ξ T DB,j m+3 ) T .

Linearization of Pseudo-range Measurement Model

Let us introduce the pseudo-range vector R t = (r t 1 , ..., r t n ) T , the state vector β ca t = (ϕ T ca , v, cb t r ) T , the working point β ca t,0 = (ϕ T ca,0 , v 0 , cb 0 ) T and ϕ ca,0 = (x 00 , y 00 , α 00 , x c0 , y c0 , R 0 ) T . By linearizing the function β ca t -→ R t (β ca t ) with respect to the state vector β ca t around the working point β ca t,0 , we get the measurement equation

Y t = R t -R t 0 ≃ H t 0 • (β ca t -β ca t,0 ) + Ξ t , (D.10) where R t 0 = (r t 1,0 , ..., r t n,0 ) T , r t i,0 = d t i (ϕ ca,0 , v 0 ) + cb 0 , Ξ t = (ε t 1 , ..., ε t n ) T and H t 0 = ∂R t ∂β ca t β ca t =β ca t,0
is the Jacobian matrix of size (n × 8).

Linear GNSS/Track Database Integrated System

Finally, by combining the system of linear equations (D.9) for circular arc and the final linearized measurement equation (D.10), we can get a linear integrated system

Z ca,0 DB Y t ≃ H ca 0 | 0 H t 0    ϕ ca -ϕ ca,0 v -v 0 cb t r -cb 0    + ξ ca DB Ξ t . (D.11)
The above linear integrated system (D.11) can be rewritten in the following manner : (D.12) where the vector β ca t = (ϕ T ca , v, cb t r ) T is unknown and must be estimated. The working point at instant t is equal to the previously calculated estimation : β ca t,0 = β ca t-1 . To seek simplicity, let us assume that σ 2 PD = σ 2 DB = σ 2 , the LS estimator is given by

Y ca t ≃ H ca t • (β ca t -β ca t,0 ) + Υ ca t ,
β ca t = β ca t-1 + (H ca t ) T H ca t -1 (H ca t ) T Y ca t . (D.13)
The current estimation error is β ca tβ ca t . After substituting the right side of equation (D.12) into the LS estimator (D.13), the mean of this error is calculated as

E( β ca t -β ca t ) = E (H ca t ) T H ca t -1 (H ca t ) T Υ ca t , (D.14)
and using the delta method, we get

E( β ca t -β ca t ) ≃ 0. (D.15)
For the second order moment of this error, the delta method yields to

E( β ca t -β ca t )( β ca t -β ca t ) T ≃ σ 2 H ca t T H ca t -1 , (D.16)
where H ca t is calculated exactly as in equation (D.12) but with the working point β ca t,0 = β tc t-1 .

Model of GNSS/Track Database Integrated System for a Variable Speed

Case

This section presents two linear GNSS/track database integrated systems for the cases of transition curve and circular arc when the train travels along the "ideal" railway track with a variable speed.

Transition Curve

Since we have linearized the discrete track database model for a transition curve in the constant speed case, we need merely to linearize the exact pseudo-range measurement model.

Linearization of Pseudo-range Measurement Model

Let us suppose that there are n satellites located at the known positions X s i = (x i , y i , z i ) T , i = 1, ..., n. The pseudo-range equation r t i from the i-th satellite to the train position X(ϕ tc , ℓ k-q+p ) at time kq + p can be written as

r i k-q+p = d i k-q+p (ϕ tc , ℓ k-q+p ) + cb k-q+p r + ε i k-q+p (D.17)
where ϕ tc = (x 0 , y 0 , α, k c ) T and ℓ k-q+p are unknown parameters and must be estimated.

d i k-q+p (ϕ tc , ℓ k-q+p ) = X(ϕ tc , ℓ k-q+p ) -X s i 2 , i = 1, .
.., n is the true distance from the i-th satellite to the train. b k-q+p r is a user clock bias, c ≃ 2.9979 • 10 8 m/s is the speed of light and ε i k-q+p ∼ N (0, σ 2 PD ) is the pseudo-range noise at time kq + p. Let us now introduce the pseudo-range vector R k-q+p = (r 1 k-q+p , ..., r n k-q+p ) T and the vector

D k-q+p = (d 1 k-q+p (ϕ tc , ℓ k-q+p ), ..., d n k-q+p (ϕ tc , ℓ k-q+p ))
T , the working point ϕ tc,0 = (x 00 , y 00 , α 0 , k c0 ) T . By linearizing the pseudo-range vector R k-q+p with respect to the state vector (ϕ T tc , ℓ k-q+p ) T around the working point (ϕ T tc,0 , ℓ k-q+p,0 ) T , and we can get the measurement equation (D.18) where D k-q+p,0 = (d 1 k-q+p (ϕ tc,0 , ℓ k-q+p,0 ), ..., d n k-q+p (ϕ tc,0 , ℓ k-q+p,0 )) T is the vector for the distances from the satellite to the working point and

R k-q+p ≃ D k-q+p,0 + H ϕtc,k-q+p,0 (ϕ tc -ϕ tc,0 ) + H ℓ,k-q+p,0 (ℓ k-q+p -ℓ k-q+p,0 ) + 1 n • cb k-q+p r + Ξ k-q+p ,
H ϕtc,k-q+p,0 = ∂D k-q+p ∂ϕtc ϕtc=ϕ tc,0 , INTEGRATED SYSTEM MODELS H ℓ,k-q+p,0 = ∂D k-q+p ∂ℓ k-q+p ℓ k-q+p =ℓ k-q+p,0
are two Jacobian matrices of size (n×4) and (n×1), respectively. 1 n is a vector of dimension n whose each element is one.

The above mentioned linearized measurement equations (D.18) can be rewritten in the following matrix form

Y k-q+p ≃ H ϕtc,k-q+p,0 • ϕ tc + H ℓ,k-q+p,0 • ℓ k-q+p + 1 n • cb k-q+p r + Ξ k-q+p , (D.19)
where

Y k-q+p = R k-q+p -D k-q+p,0 + H ϕtc,k-q+p,0 • ϕ tc,0 + H ℓ,k-q+p,0 • ℓ k-q+p,0 . It follows that     Y k . . . Y k-q     ≃     H ϕtc,k,0 • ϕ tc . . . H ϕtc,k-q,0 • ϕ tc     +     H ℓ,k,0 • ℓ k + 1 n • cb k r . . . H ℓ,k-q,0 • ℓ k-q + 1 n • cb k-q r     +     Ξ k . . . Ξ k-q     .
(D.20)

To estimate the distance, speed and acceleration simultaneously, substituting equation

(IV.23) into equation (D.20) yields to     Y k . . . Y k-q     ≃     H ϕtc,k,0 H ℓ,k,0 • ω q 1 n . . . . . . H ϕtc,k-q,0 H ℓ,k-q,0 • ω 0 1 n              ϕ tc θ k cb k r . . . cb k-q r          +     Ξ k . . . Ξ k-q     .
(D.21)

Linear GNSS/Track Database Integrated System

Finally, by combining the system of linear equations (D.1) for the transition curve and the final linearized measurement equation (D.21), a final linear integrated system can be written as

       Z tc,0 DB Y k . . . Y k-q        ≃       H tc 0 0 H ϕtc,k,0 H ℓ,k,0 • ω q 1 n . . . . . . . . . H ϕtc,k-q,0 H ℓ,k-q,0 • ω 0 1 n                ϕ tc θ k cb k r . . . cb k-q r          +       ξ tc DB Ξ k . . . Ξ k-q       , (D.22)
where Z tc,0 DB ≃ Z tc,0 DB + H tc 0 ϕ tc,0 and the final linear integrated system (D.22) can be rewritten in the following matrix :

Y tc k ≃ H tc k β tc k + Υ tc k , (D.23)
where the vector

β tc k = (ϕ T tc , θ T k , cb k r , • • • , cb k-q r )
T is unknown and must be estimated. The working point ϕ tc,0 at instant t k is equal to the previously calculated estimation ϕ tc and ℓ k-q+p,0 is equal to the product of factor ω p and previously calculated estimation

θ k-1 , i.e., ℓ k-q+p,0 = ω p • θ k,0 = ω p • θ k-1 .
To seek simplicity, let us assume that σ 2 PD = σ 2 DB = σ 2 , the LS estimator is given by

β tc k = H tc k T H tc k -1 H tc k T Y tc k . (D.24)
The current estimation error is β tc kβ tc k . After substituting the right side of equation (D.23) into the LS estimator (D.24), the mean of this error is computed as

E( β tc k -β tc k ) = E H tc k T H tc k -1 H tc k T Υ tc k , (D.25)
and using the delta method, we get

E( β tc k -β tc k ) = E H tc k T H tc k -1 H tc k T Υ tc k ≃ 0. (D.26)
For the second order moment of this error, the delta method yields to

E( β tc k -β tc k )( β tc k -β tc k ) T ≃ σ 2 H tc k T H tc k -1 , (D.27)
where H tc k is calculated exactly as in equation (D.23) but with the working point ϕ tc,0 = ϕ tc and ℓ k-q+p,0 = ω p • θ k-1 .

Circular Arc

Since we have linearized the discrete track database model for a circular arc in the constant speed case, we need merely to linearize the exact pseudo-range measurement model.

Linearization of Pseudo-range Measurement Model

Let us suppose that there are n satellites located at the known positions X s i = (x i , y i , z i ) T , i = 1, ..., n. The pseudo-range equation r t i from the i-th satellite to the train position X(ϕ ca , ℓ k-q+p ) at time kq + p can be written as

r i k-q+p = d i k-q+p (ϕ ca , ℓ k-q+p ) + cb k-q+p r + ε i k-q+p (D.28)
where ϕ ca = (x 0 , y 0 , α, x c , y c , R) T and ℓ k-q+p are unknown parameters and must be estimated. k-q+p (ϕ ca , ℓ k-q+p ), ..., d n k-q+p (ϕ ca , ℓ k-q+p )) T , the working point ϕ ca,0 = (x 00 , y 00 , α 0 , x c0 , y c0 , R 0 ) T . By linearizing the pseudo-range vector R k-q+p with respect to the state vector (ϕ T ca , ℓ k-q+p ) T around the working point (ϕ T ca,0 , ℓ k-q+p,0 ) T , and we can get the measurement equation

d i k-q+p (ϕ ca , ℓ k-q+p ) = X(ϕ ca , ℓ k-q+p )-X s i 2 , i = 1, ...,
R k-q+p ≃ D k-q+p,0 + H ϕca,k-q+p,0 (ϕ ca -ϕ ca,0 ) + H ℓ,k-q+p,0 (ℓ k-q+p -ℓ k-q+p,0 ) + 1 n • cb k-q+p r + Ξ k-q+p , (D.29)
where D k-q+p,0 = (d 1 k-q+p (ϕ ca,0 , ℓ k-q+p,0 ), ..., d n k-q+p (ϕ ca,0 , ℓ k-q+p,0 )) T is the vector for the distances from the satellite to the working point and

H ϕca,k-q+p,0 = ∂D k-q+p ∂ϕca ϕca=ϕ ca,0 , H ℓ,k-q+p,0 = ∂D k-q+p ∂ℓ k-q+p ℓ k-q+p =ℓ k-q+p,0
are two Jacobian matrices of size (n × 6) and (n × 1), respectively. 1 n is a vector of dimension n whose each element is one.

The above mentioned linearized measurement equations (D.29) can be rewritten in the following matrix form (D.30) where

Y k-q+p ≃ H ϕca,k-q+p,0 • ϕ ca + H ℓ,k-q+p,0 • ℓ k-q+p + 1 n • cb k-q+p r + Ξ k-q+p ,
Y k-q+p = R k-q+p -D k-q+p,0 + H ϕca,k-q+p,0 • ϕ ca,0 + H ℓ,k-q+p,0 • ℓ k-q+p,0 . It follows that     Y k . . . Y k-q     ≃     H ϕca,k,0 • ϕ ca . . . H ϕca,k-q,0 • ϕ ca     +     H ℓ,k,0 • ℓ k + 1 n • cb k r . . . H ℓ,k-q,0 • ℓ k-q + 1 n • cb k-q r     +     Ξ k . . . Ξ k-q     .
(D.31)

To estimate the distance, speed and acceleration simultaneously, substituting equation (IV.23) into equation (D.31) yields to

    Y k . . . Y k-q     ≃     H ϕca,k,0 H ℓ,k,0 • ω q 1 n . . . . . . H ϕca,k-q,0 H ℓ,k-q,0 • ω 0 1 n              ϕ ca θ k cb k r . . . cb k-q r          +     Ξ k . . . Ξ k-q     .
(D.32)

Linear GNSS/Track Database Integrated System

Finally, by combining the system of linear equations (D.9) for the circular arc and the final linearized measurement equation (D.32), a final linear integrated system can be written as

       Z ca,0 DB Y k . . . Y k-q        ≃       H ca 0 0 H ϕca,k,0 H ℓ,k,0 • ω q 1 n . . . . . . . . . H ϕca,k-q,0 H ℓ,k-q,0 • ω 0 1 n                ϕ ca θ k cb k r . . . cb k-q r          +       ξ ca DB Ξ k . . . Ξ k-q       , (D.33)
where Z ca,0 DB ≃ Z ca,0 DB + H ca 0 ϕ ca,0 and the final linear integrated system (D.33) can be rewritten in the following matrix : (D.34) where the vector

Y ca k ≃ H ca k β ca k + Υ ca k ,
β ca k = (ϕ T ca , θ T k , cb k r , • • • , cb k-q r
) T is unknown and must be estimated.

The working point ϕ ca,0 at instant t k is equal to the previously calculated estimation ϕ ca and ℓ k-q+p,0 is equal to the product of factor ω p and previously calculated estimation

θ k-1 , i.e., ℓ k-q+p,0 = ω p • θ k,0 = ω p • θ k-1 .
To seek simplicity, let us assume that σ 2 PD = σ 2 DB = σ 2 , the LS estimator is given by

β ca k = (H ca k ) T H ca k -1 (H ca k ) T Y ca k . (D.35)
The current estimation error is β ca kβ ca k . After substituting the right side of equation (D.34) into the LS estimator (D.35), the mean of this error is computed as

E( β ca k -β ca k ) = E (H ca k ) T H ca k -1 (H ca k ) T Υ ca k , (D.36)
and using the delta method, we get

E( β ca k -β ca k ) = E (H ca k ) T H ca k -1 (H ca k ) T Υ ca k ≃ 0. (D.37)
For the second order moment of this error, the delta method yields to

E( β ca k -β ca k )( β ca k -β ca k ) T ≃ σ 2 H ca k T H ca k -1 , (D.38)
where H ca k is calculated exactly as in equation (D.34) but with the working point ϕ ca,0 = ϕ ca and ℓ k-q+p,0 = ω p • θ k-1 .

E.1 Introduction

Cette thèse porte principalement sur la précision du positionnement du train obtenu à l'aide des satellites GNSS (Global Navigation Satellite System, en anglais). Ici, nous introduisons d'abord les notations, l'importance et les questions fondamentales sur le positionnement du train, puis nous présentons les problèmes étudiés, les contributions principales de cette thèse.

E.1.1 Importance du positionnement du train

Au cours des dernières années, grâce à sa grande capacité, sa grande vitesse, sa haute fiabilité et sa faible consommation d'énergie, le transport ferroviaire joue un rôle de plus en plus important dans les transports en commun. Pour assurer la sécurité, la sûreté et l'efficacité du réseau ferroviaire, les systèmes d'exploitation ferroviaires avancés (par exemple les systèmes de protection/contrôle automatique) sont largement utilisés dans la gestion ferroviaire moderne. L'efficacité de ces systèmes se fonde, en grand partie, sur la précision, la disponibilité et l'intégrité du positionnement du train. Une estimation précise et fiable de la position et de la vitesse du train est donc très importante. Une erreur sur la position du train peut conduire potentiellement, à une surestimation de la distance disponible pour le freinage. De plus, les mesures précises de la position, de la vitesse et de l'accélération peuvent augmenter la capacité de la ligne ferroviaire sans nécessiter d'infrastructure supplémentaire. Ainsi, une amélioration dans l'estimation du positionnement d'un train pourrait nous fournir non seulement des avantages en termes de performances mais aussi en termes de coût.

La navigation par satellite GNSS est appelée à révolutionner le secteur ferroviaire qui a un besoin de connaître la position de chaque train, de chaque wagon. La navigation ferroviaire par satellite offre de nombreux avantages, notamment les suivants :

1. Réduction de la consommation énergétique des trains en optimisant leurs accélérations et freinages en fonction des changements de condition de circulation le long du trajet.

2. Amélioration du service aux utilisateurs, que cela concerne le suivi des marchandises, l'information des retards aux usagers ou l'information aux usagers pendant le transport.

3. Minimisation de la distance entre les trains tout en garantissant la sécurité maximale, ce qui permettra un gain de capacité et de densification du trafic. 

E.1.2 Questions clés dans le positionnement du train

E.1.3 Problèmes étudiés dans cette thèse

Les méthodes décrites dans cette thèse sont consacrées au positionnement du train à l'aide d'un récepteur GNSS à bas coût. Deux approches de l'estimation de la distance parcourue et de la vitesse du train peuvent être considérées. La première approche est basée sur le positionnement classique (la navigation 3D). La deuxième approche est basée sur la connaissance de la trajectoire ferroviaire (la navigation 1D). La navigation 1D est plus efficace que la navigation classique 3D mais il y a trois questions importantes à considérer :

1. Quel est l'impact des incertitudes du modèle géométrique de voie ferroviaire sur l'estimation de la distance et de la vitesse du train ? 2. Quel est l'impact du rayon de courbure de la voie ferroviaire sur l'estimation de la vitesse et de la distance du train ? 3. Est-ce qu'un changement en accélération provoque une estimation imprécise de la vitesse et de la distance du train ? L'algorithme des moindres carrées est une approache couramment utilisée dans la navigation GNSS et son critère d'optimisation est basée sur la minimisation de la somme des carrés résiduels. Cet algorithme sera utilisé dans la thèse. 

E.1.4 Contributions

   x(ℓ) = x 0 + (ℓ -ℓ m ) • cos α y(ℓ) = y 0 + (ℓ -ℓ m ) • sin α, (E.1)
où (x 0 , y 0 ) est le point de démarrage du m-ème segment, ℓ désigne l'abscisse curviligne et α est l'azimut initial du m-ème segment. Ensuite, l'équation de la parabole cubique (ℓ m+1 < ℓ ℓ m+2 ) sur la figure E.1 est bien approchée par

   x(ℓ) = x 0 + (ℓ -ℓ m ) cos α -k c (ℓ -ℓ m+1 ) 3 sin α y(ℓ) = y 0 + (ℓ -ℓ m ) sin α + k c (ℓ -ℓ m+1 ) 3 cos α, (E.2)
où le coefficient k c = 1 6RL , R est le rayon à la fin de la courbe de transition et L est la longueur de la courbe de transition. Enfin, l'équation de l'arc de cercle (ℓ m+2 < ℓ 

(x 0 , y 0 ) (x s , y s ) (x c , y c ) ℓ m+3 -ℓ m+2 R x y x ′ y ′ o ′ α β τ τ + α ℓ m ℓm + 1 ℓm + 2 ℓm + 3
   x(ℓ) = x 0 + x ′ (ℓ) • cos α -y ′ (ℓ) • sin α y(ℓ) = y 0 + x ′ (ℓ) • sin α + y ′ (ℓ) • cos α, (E.3) où            x ′ (ℓ) = x c + R sin τ + ℓ -ℓ m+2 R y ′ (ℓ) = y c -R cos τ + ℓ -ℓ m+2 R (E.4)
est la représentation de l'arc de cercle au x ′ y ′ -plan, τ = arctan(3k c L 2 ) est l'angle de la tangente à la fin de la courbe de transition et

   x c = L • (1 -9k 2 c L 4 )/2 + ℓ m+1 -ℓ m y c = (1 + 15k 2 c L 4 )/6k c L (E.5)
est le centre de l'arc de cercle.

E.2.2 Estimation de la vitesse pour le cas d'une vitesse constante

Dans cette section, on suppose que le train roule sur la voie ferroviaire E. 

: V 0 = V t-1 .

E.2.2.2 Impact du rayon de courbure de la voie ferroviaire sur l'erreur d'estimation

Le but de cette section est d'étudier l'impact du rayon de courbure de la voie ferroviaire R sur les deux premiers moments de l'estimateur v t . Pour cela, l'équation de mesure peut être écrite sous la forme suivante :

R t -R t 0 ≃ H t 0 • (V t -V 0 ) + 1 2 J t 0 • (v t -v 0 ) 2 + Ξ t . (E.7)
En raison de la présence de J t 0 , cette équation souligne le rôle du rayon de courbure de la voie dans le modèle de mesure. L'erreur d'estimation actuelle est V t -V t . L'erreur moyenne et le moment d'ordre deux de cette erreur sont calculés comme suit : 

E( V t -V t ) ≃ 1 2 B -1 0 H t 0 T J t 0 • (v t -v 0 ) 2 , E( V t -V t )( V t -V t ) T ≃ 1 4 B -1 0 H t 0 T J t 0 J t 0 T H t 0 B -1 0 (v t -v 0 ) 4 + σ 2 B -1 0 . (E.8) où B 0 = H t 0 T H t 0 . Les
1 Droit [ℓ 1 , ℓ 2 ] 0 2 Transition (ℓ 2 , ℓ 3 ] 0 → 1 R 3 Cercle (ℓ 3 , ℓ 4 ] 1 R 4 Transition (ℓ 4 , ℓ 5 ] 1 R → 0 5 Droit (ℓ 5 , ℓ 6 ] 0 6 Transition (ℓ 6 , ℓ 7 ] 0 → -1 R 7 Cercle (ℓ 7 , ℓ 8 ] -1 R 8 Transition (ℓ 8 , ℓ 9 ] -1 R → 0 9
Droit (ℓ 9 , ℓ 10 ] 0

Tableau E.1 -Segments de la trajectoire testée. Soit ∆t = t kt k-1 est la période d'échantillonnage des mesures GNSS et t k désigne l'instant du k-ème mesure. Considérons une courte période de temps T = (q + 1) • ∆t où q est un entier positif. Pendant cette période, la distance ℓ k couverte par le train,

E.2.3 Estimation de la distance, vitesse pour le cas d'une vitesse variable

la vitesse v k et l'accélération a k à l'instant t k (1 ≤ k ≤ q) sont données par            ℓ k = ℓ k-1 + v k-1 • ∆t + 1 2 a k-1 • ∆t 2 v k = v k-1 + a k-1 • ∆t a k = a k-1 . (E.9)
Considérons un bloc de dernières q + 1 mesures GNSS à l'instant t k . En supposant que l'accélération a k est constante pendant la période T (s), la position du train est donnée par 

X(ℓ k-q+p ) = [x(ℓ k-q+p ), y(ℓ k-q+p ), 0] T , où (x(ℓ k-q+p ), y(ℓ k-q+p )) est la position correspondante au plan tangent local, p = 0, 1, . . . , q et ℓ k-q+p = 1 (p-q) • ∆t 1 2 (p -q) 2 • ∆t 2    ℓ k v k a k    = ω p • θ k , ( E 
R k-q+p -D k-q+p,0 ≃ H k-q+p,0 • (ℓ k-q+p -ℓ k-q+p,0 ) + 1 n • cb k-q+p r + Ξ k-q+p , (E . 
R k -D k 0 + Y k 0 ≃ H k 0 • β k + Ξ k , (E.12) où le vecteur β k = (θ T k , cb k r , ..., cb k-q r ) T est
-D k 0 + Y k 0 ≃ H k 0 • β k + 1 2 J k 0 + Ξ k . (E.13)
En raison de la présence de J k 0 , cette équation souligne le rôle du rayon de courbure de la voie dans le modèle de mesure.

L'erreur d'estimation actuelle est β kβ k . L'erreur moyenne et le moment d'ordre deux de cette erreur sont calculés comme suit : 

E( β k -β k ) ≃ 1 2 B k -1 H k 0 T J k 0 , E( β k -β k )( β k -β k ) T ≃ 1 4 B k -1 H k 0 T J k 0 J k 0 T H k 0 B k -1 +σ 2 B k -1 . (E.14) où B k = H k 0 T H k 0 . Les matrices J k 0 et H k 0 sont

E.3.2 Estimation de la vitesse pour le cas d'une vitesse constante

Dans cette section, on suppose que le train roule sur la voie ferroviaire E.11 audessus à une vitesse constante inconnue v. Par conséquent, la position du train est définie :

X k = X k-1 + A j(k) • v • ∆t k = 1, 2, . . . , (E.15) où X k = (x k , y k , z k )
T est la position du train au k-ème mesure GNSS, t k désigne l'instant de la k-ème mesure GNSS, ∆t = t kt k-1 représente la période d'échantillonnage des mesures GNSS, A j = (a j x , a j y , a j z ) T = 1 λ (Z j+1 -Z j ) est le vecteur directionnel correspondant au numéro de segment. Le numéro de segment j = j(k) est calculé en fonction de k par utiliser l'équation suivante :

j(k) = min {j ∈ N|j ≥ (v • ∆t • k)/λ} , (E.16)
où N est l'ensemble des nombres naturels. La position du train X k peut être réécrite comme

X k = X 0 + v∆t k t=1
A j(t) , (E.17) où X 0 = (x 0 , y 0 , z 0 ) T est le point de démarrage. 

V k = (v, cb k r )
T autour d'un point de travail V 0 = (v 0 , cb 0 ) T . L'équation de mesure linéaire est donnée sous la forme suivante : 

R k -R k 0 ≃ H k 0 • (V k -V 0 ) + Ξ k , (E.18) où R k 0 est
V 0 = V k-1 .
Maintenant on considére un modèle imprécis de mesure de pseudo-distance. Puisque la vraie position du sommet Z j est inconnue et une seule estimation imprécise Z j est disponible, l'équation de mesure linéarisée (E.18) ne peut être utilisée pour calculer la vitesse du train. Pour estimer l'impact de cette incertitude, nous définissons le vecteur directionnel A j = A j + δ j , où le vecteur aléatoire δ j = (δ j

x , δ j y , δ j Z ) est supposé être réparti uniformément dans le cube [-b, b] 3 avec b > 0. Enfin, un modèle imprécis de mesure de pseudo-distance (E.19) est défini pour le vecteur directionnel imprécis A j de la manière suivante :

R k -R k 0 ≃ H k 0 • (V k -V 0 ) + Ξ k , (E.19) où R k 0 et H k 0 sont
calculés exactment comme dans l'équation (E.18) mais avec le vecteur A j à la place de A j .

E.3.2.2 Impact de l'incertitude des données sur l'erreur d'estimation

Le but de cette section est d'étudier l'impact de l'incertitude δ j sur les deux premiers moments de l'estimateur v k . Pour cela, l'équation de mesure (E.19) peut être écrite sous la forme suivante :

Y k + ∆Y k ≃ (H k 0 + ∆H k ) • β k + Ξ k , (E.20) où Y k = R k -R k 0 , ∆Y k = R k 0 -R k 0 , ∆H k = H k 0 -H k 0 et β k = V k -V 0 .
Nous suivons ici l'analyse de l'incertitude dans le modèle de régression et son impact sur l'estimateur des RÉSUMÉ DE THÈSE EN FRANÇAIS moindres carrés développés dans les articles [START_REF] Hodges | Data uncertainties and least squares regression[END_REF][START_REF] Davies | The effect of errors in the independent variables in linear regression[END_REF][START_REF] Benee | Rounding errors in the independent variables in a general linear model[END_REF]. On peut montrer que les deux premiers moments de l'estimateur β k sont calculés comme

E( V k -V )= B -1 0 (H k 0 ) T Σ H C -F + G β k , B 0 = (H k 0 ) T H k 0 . E( V k -V )( V k -V ) T = B -1 0 (H k 0 ) T σ 2 I n +Σ Y -β 1 (Σ HY +Σ Y H )+β 2 1 Σ H H k 0 B -1 0 . (E.21) où Σ H désigne la matrice de covariance de ∆H k , F = tr(Σ H ) 0 0 0 , G = tr[H k 0 B -1 0 (H k 0 ) T Σ H ] 0 0 0 , la première colonne de la matrice C de dimension (n × 2) est égale à celle de H k 0 B -1 0 et la deuxième colonne est égale à zéro. β 1 = v -v 0 , Σ Y dé- signe la matrice de covariance de ∆Y k , Σ HY = E ∆ H k (∆Y k ) T , le vecteur ∆ H k de dimension n est égal à la première colonne de ∆H k , et Σ Y H = Σ T HY .

E.3.2.3 Simulations numériques

Le scénario suivant sera utilisé : la constellation GNSS avec n = 6 satellites visibles 

X(ℓ k-q+p ) = Z j-1 + A j • [ℓ k-q+p -λ • (j -1)] , (E.22) où p = 0, 1, . . . , q et A j = (a j x , a j y , a j z ) T = 1 λ (Z j+1 -Z j ) est le vecteur directionnel
qui correspond au numéro de segment j, A j 2 = 1. Le numéro de segment actuel j = j(kq + p), considéré comme une fonction de kq + p, est calculé comme :

j(k -q + p) = min {j ∈ N|j ≥ ℓ k-q+p /λ} ,
où N est l'ensemble des nombres naturels.

E.3.3.1 Modèle imprécis de mesure de pseudo-distance et l'estimation.

Comme nous avons discuté dans la section E.2.3.1 ci-dessus, l'équation pour le vecteur de pseudo-distances R k-q+p entre le train et les satellites est obtenue par linéariser l'équation non-linéaire exact autour d'un point de travail ℓ k-q+p,0 . L'équation de mesure finale est calculée exactment comme dans l'équation (E.12), à savoir : 

R k -D k 0 + Y k 0 ≃ H k 0 • β k + Ξ k . ( E 
R k -D k 0 + Y k 0 ≃ H k 0 • β k + Ξ k , (E.24) où D k 0 , Y k 0 , et H k 0 sont calculés exactment comme dans l'équation (E.23) mais avec les vecteurs Z j , A j = Z j+1 -Z j Z j+1 -Z j 2
à la place de Z j , A j .

E.3.3.2 Impact de l'incertitude des données sur l'erreur d'estimation

Le but de cette section est d'étudier l'impact de l'incertitude ξ j sur les deux premiers moments de l'estimateur β k . Nous suivons aussi ici l'analyse de l'incertitude dans le modèle de régression et son impact sur l'estimateur des moindres carrés. L'équation de mesure (E.24) peut être réécrite de la façon suivante :

Y k + ∆Y k ≃ (H k 0 + ∆H k ) • β k + Ξ k , où Y k = R k -D k 0 +Y k 0 sont les réponses, ∆Y k = D k 0 -D k 0 -Y k 0 + Y k 0 et ∆H k = H k 0 -H k 0
désigne l'incertitude des données dans le modèle de régression. On peut montrer que les deux premiers moments de l'estimateur β k sont calculés comme 

E( β k -β k ) = B k -1 H k 0 T C -F + G β k , E( β k -β k )( β k -β k ) T = B k -1 H k 0 T (σ 2 I + Σ Y -N -N T + M)H k 0 B k -1 . (E.25) où B k = H k 0 T H k 0 . Les

E.3.4 Conclusions

Dans le cas d'une vitesse constante, l'estimateur est pratiquement non biaisé, même avec un modèle géométrique imprécis de voie ferroviaire. L'impact négatif de l'incertitude sur l'estimation de la vitesse se manifeste à travers une augmentation très considérable de la variance de vitesse par rapport au cas "idéal". Par ailleurs, deux systèmes intégrés pour la courbe de transition et l'arc de cercle sont obtenus par analogie avec la procédure (E.27) -(E.30) pour le segment de droite.

E.4.2.2 Simulations numériques

Le scénario suivant sera utilisé : la constellation GNSS avec n = 6 satellites visibles En combinant le système d'équations linéaires (E.27) pour les points recueillis dans le segment de droite et l'équation de mesure linéaire (E.33), on peut obtenir un système intégré de la façon suivante : The second order moment of estimated acceleration

       Z sl,0 DB Y k . . . Y k-q        ≃       H sl 0 0 H ϕ sl ,k,0 H ℓ,k,0 • ω q 1 n . . . . . . . . . H ϕ sl ,k-q,0 H ℓ,k-q,0 • ω 0 1 n                ϕ sl θ k cb k r . . . cb k-q r          +       ξ sl DB Ξ k . . . Ξ k-q     
Theoretical second order moment Monte-carlo 

E.4.4 Conclusions

Dans le cas d'une vitesse constante, l'estimateur est pratiquement non biaisé. L'impact négatif de l'incertitude et du rayon de courbure minimum de la voie sur la vitesse estimée est presque négligeable. La variance de l'estimation de la vitesse devient rapidement très faible, presque comme dans le cas "idéal". L'impact négatif de l'incertitude et du rayon de courbure minimum de la voie sur la vitesse estimée est presque négligeable. La variance de l'estimation de la vitesse devient rapidement très faible, presque comme dans le cas "idéal". Dans le cas d'une vitesse variable, le changement d'accélération provoque l'apparition de biais dans les estimations pour une courte période, comme dans les cas précédents. L'impact négatif du rayon de courbure de voie minimal sur ces estimations est presque négligeable.

E.5.2 Recherches futures

Dans cette section, nous discutons brièvement plusieurs directions prometteuses pour la recherche future.

Utiliser des données réelles pour tester les algorithmes proposés

Lors du test de performances de ces algorithmes proposés, nous avons utilisé la base de données de la trajectoire simulée du train et quelques hypothèses. Actuellement, la base de données de la trajectoire realiste disponible est très limitée. Il est intéressant d'approfondir l'analyse des algorithmes proposés à base de données réelles.

Améliorer la base de données d'une voie ferroviaire

Il est intéressant d'élargir le modèle géometrique de voie 2D (dans un plan tangent) pour se rapprocher d'une trajectoire du train en 3D dans un monde réel.

Appliquer un filtre de Kalman dans le positionnement du train

Dans cette thèse, le problème du positionnement du train est résolu à l'aide de la méthode des moindres carrés basée sur la minimisation de la somme des carrés résiduels.

On peut imaginer ici l'application d'un filtre de Kalman, etant donné que le filtre de Kalman est utilisable pour un modèle dynamique.

Comparer les résultats obtenus avec d'autres méthodes de positionnement

On souhaite comparer les résultats obtenus à partir de nos algorithmes avec d'autre méthodes qui utilisant, par exemple, les mesures odométriques.

Intégrer les mesures GNSS avec d'autres capteurs de positionnement

Pour atteindre le niveau de sûreté requis, nous souhaitons également intégrer les mesures GNSS avec d'autres capteurs de positionnement. L'intégration des capteurs indépendants supplémentaires peut améliorer la précision de l'estimation de la position du train. Mots clés : transports ferroviaires -GPSestimation, théorie de l' -analyse de régressionmoindres carrés.
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Trajectory-aided GNSS Land Navigation: Application to Train Positioning Over these years, GNSS technology has attracted many attentions around world and it has been widely applied in navigation for airplanes, ground vehicles and boats. On the other hand, advanced railway operating systems have been widely used to guarantee the safety and efficiency of the railway network. The efficiency of these systems is based on the availability of reliable train positioning. Hence, applying GNSS technology to the train positioning is a very promising research area, since it has such important benefits as lower initial costs and lower maintenance. In this thesis, several algorithms are proposed for train positioning by using GNSS signals and the railway centerline stored in the onboard computer database. At first, the train travelled distance, speed are estimated by using GNSS signals and an ''ideal'' railway centerline which is composed of straight line segments, transition curves and arcs of circles. The impact of the railroad curvature on these estimations is studied. Secondly, the train travelled distance, speed are estimated by using GNSS signals and a ''non-ideal'' railway centerline which is defined by a polygonal line with some level of uncertainty. The impact of the track geometric model imprecision on these estimations is studied. Finally, the train travelled distance, speed are estimated by integrating the GNSS measurements with a track database. The impact of the GNSS measurements and the track database errors on these estimations is studied.
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Fig

  Figure I.1 -Architecture of a typical train positioning system.

  is a system of satellites that provide autonomous geo-spatial positioning with global coverage, which can be termed a global navigation satellite system or GNSS. GNSS implies several existing systems like Global Positioning System (GPS), GLONASS, Galileo or Beidou. In addition, these systems are supplemented by Space-based Augmentation Systems (SBAS) or Ground-based Augmentation Systems (GBAS). Examples of SBAS are the United States (US) Wide-area Augmentation System (WASS), the European Geostationary Navigation Overlay System (EGNOS), or the Japanese Multi-functional Transport Satellite (MTSAT) Space-based Augmentation System (MSAS). These systems augment the existing Medium Earth Orbit (MEO)

  Fig. I.2 shows the orbits and the constellation.

Figure

  Figure I.2 -GPS constellation.

  Figure I.3 -The relationship between geodetic and ECEF coordinate system.

  Figure I.4 -ENU coordinate system.

  cos φ cos λ y = (N + h) cos φ sin λ, (I.1) z = [N(1e 2 ) + h] sin φ
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Figure I. 5 -

 5 Figure I.5 -Train 1D GNSS positioning.

Example I. 1 . 1 .

 11 Let pseudo-range SD be σ = 1 m. Three satellites are equally spaced on the horizon, at minimum elevation angle, with the fourth satellite directly overhead, as listed in Tab. I.1. Typical example values of the above covariance matrix for this

.

  The value of the DOP for this example are : VDOP = √ 1.600 = 1.26, HDOP = √ 0.672 + 0.672 = 1.16,

  Figure I.6 -Methods of train positioning.

  train positioning system based on GNSS. The algorithms are based on the previous knowledge of the track, which makes the positioning problem one-dimensional : only along-track position is to be computed. This significantly increases availability and redundancy of GNSS satellites and hence the integrity of the solution increases to the level required for safety-critical operation. Doppler speed radar is used to provide reference for GNSS-computed velocity and a loosely coupled GNSS/INS system is used to provide the position reference. It has been demonstrated that the LOCOPROL positioning technology of failsafe railway positioning based on the 1D algorithm satisfies both accuracy and safety requirements for low-density traffic lines. It has been shown that the developed 1D algorithm provides adequate confidence intervals for computed position and speed. Liu et al. (2010, 2012) build a GNSS/INS integrated positioning system architecture, GENERAL INTRODUCTION in which the Cubature Kalman Filter (CKF) is employed to solve the problem of nonlinearity and computation efficiency, and the integrity design is realized by the Principal Component Analysis (PCA) based Fault Detection and Diagnosis (FDD). To compare the positioning performance of CKF with other approaches, practical GNSS/INS measurements from Qinghai-Tibet line are adopted for CKF, Unscented Kalman Filter (UKF) and Particle Filter (PF) positioning solutions. The position errors in east and

  design a GNSS/INS based train position locator for railway signalling at Czech Railways. The experiments demonstrated that the GNSS/INS based Train Position Locator (TPL) is able to determine one dimensional position of the train with the accuracy of about 0.5 m on the track section with length of about 1 km under absence of Signal In Space (SIS). Further

  describes a mobile telematics prototype system called INTE-GRAIL aims at achieving significant improvements for the rail traffic operator with regard to cost, redundancy and reliability of the present train speed measurement systems, which are based on odometers, by adding satellite navigation information and the integrity information offered by EGNOS. The basic objective of the INTEGRAIL development is to demonstrate the profitable use of GNSS for advanced rail traffic management. INTEGRAIL is the first step towards providing train position, velocity and heading by means of satellite navigation to safety-critical rail applications. At this stage it allows already for the more profitable exploitation of low-density rail lines. Eventually, INTEGRAIL provides a GNSS-based odometry interface within the already emerging ERTMS standard to serve high-speed lines as well.

Definition 1 .

 1 Figure I.7 -Illustration of the parameter estimation.

  likelihood estimator : It is very difficult to calculate the bias and variance of the estimator in the nonlinear model. The bias and variance are functions of certain arrays of projected second derivatives called curvature arrays. These arrays are fundamental to the study of nonlinearity. The estimator θ has a bias b(θ)

  Figure II.1 -Track gauge.

  Figure II.3 -A transition curve connecting between the straight line and circular curve.

  Figure II.4 -The definition of circular curve radius R.

  . As shown in Fig. II.5, the gradient is given by grad = ∆h d or grad = tan α. (II.2)

  Figure II.5 -Track gradient.

Fig

  Fig. II.3. Hence, we discuss three connected typical segments in the entire train trajectory. It's sufficient to study the impact of railroad curvature on the estimated travelled distance and speed of the train in the following section.

Figure II. 8 -

 8 Figure II.8 -Determination of transition curve length.

Figure

  Figure II.9 -Example of transition curve.

  The centerline curvature and the simulated train trajectory are shown by Fig.II.10 and II.11, respectively. From Fig. II.11, it can be seen that two complete train trajectories are composed of straight line segments, transition curves and circular arcs of radius R. Moreover, these two trajectories of R = 100 m and R = 1000 m have the same travelled distances. The curvature of a transition curve gradually changes between zero and that of a circular arc, i.e. 1/R or -1/R, as shown in Fig. II.10.

Figure

  Figure II.10 -The centerline curvature of the tested simulation scenario.

FigureFigure

  Figure II.11 -The simulated train trajectory on the local horizontal plane.

Figure

  Figure II.14 -The estimated speed mean error for R = 1000 m.

Figure

  Figure II.15 -The estimated speed second order moment for R = 1000 m.

Figure

  Figure II.16 -Typical train motion diagram.

  Figure II.17 -The centerline curvature of the tested simulation scenario.

  Figure II.18 -The simulated train trajectory on the local horizontal plane.

  Figure II.22 -The second order moment of the estimated distance, speed and acceleration for R = 1000 m and q = 20.

  Figure III.1 -Train track model.

  tion has been used with n = 6 visible satellites and σ = 2 (m). The GNSS sampling interval is ∆t = 0.5 s. The distance between two adjacent vertices has been chosen λ = 50 (m). Different values of railway centerline uncertainty have been tested : b = 0 (no uncertainty) ; b = 0.01 (uncertainty ≃ ±0.5 m) ; b = 0.05 (uncertainty ≃ ±2.5 m). The comparison of the theoretical mean error and second order moment given by equation (III.9) and equation (III.10), respectively, with the results of a 10 4 -repetition Monte-Carlo simulation, is shown in Fig. III.2-III.7. From Fig. III.2, III.4 and III.6, we can see that the estimated speed mean error is approaching zero, even with the centerline uncertainties, but the centerline uncertainties considerably augment the estimated speed second order moment by comparison with Fig. III.3, III.5 and III.7.

FigureFigureFigure

  Figure III.2 -The estimated speed mean error for δ j = 0.

  Figure III.7 -The estimated speed second order moment for δ j ∈ [-0.05, 0.05] 2 .

Figure

  Figure III.8 -Typical train motion diagram.

Figure

  Figure III.9 -The mean error of the estimated distance, speed and acceleration for the centerline uncertainty of ξ j = 0 and q = 20.

FigureFigureIII

  Figure III.10 -The second order moment of the estimated distance, speed and acceleration for the centerline uncertainty of ξ j = 0 and q = 20.

  Fig. IV.1 shows three connected typical segments [ℓ m ; ℓ m+1 ], [ℓ m+1 ; ℓ m+2 ] and [ℓ m+2 ; ℓ m+3 ] indexed by ℓ m which is the travelled distance corresponding to the m-th segment (m = 1, 2, . . .).

Figure IV. 1 -

 1 Figure IV.1 -Train track composed of three segments on the local tangent plane.

  Fig. IV.2 shows three connected typical segments [ℓ m ; ℓ m+1 ], [ℓ m+1 ; ℓ m+2 ] and [ℓ m+2 ; ℓ m+3 ] indexed by ℓ m which is the travelled distance corresponding to the m-th segment (m = 1, 2, . ..).The vector Z DB,jm denotes the measured first track database point of the m-th segment, i.e., the straight line segment, which corresponds to the j m -th measured track database point of the whole train trajectory. According, Z DB,j m+1 and Z DB,j m+2 are the measured first track database point of the (m + 1)-th and (m + 2)-th segment, i.e., the transition curve and circular arc, respectively.

Figure IV. 2 -

 2 Figure IV.2 -The measurement errors in the track database.

  train trajectory stored in the onboard train database are summarized in Tab. IV.1. The centerline curvature and the simulated train trajectory are shown by Fig. IV.3 and IV.4, respectively. Fig. IV.4 also shows a complete train trajectory, composed of straight line segments, transition curves and circular arcs of radius R. But the measured track database points don't coincide with the true railway track, due to the existence of the measurement error. IV.3. SPEED ESTIMATION BASED ON A MODEL OF INTEGRATED SYSTEM FOR A CONSTANT SPEED CASE 81 m Curves Curvilinear abscissa Curvature j

Figure

  Figure IV.3 -The centerline curvature of the tested simulation scenario.

Fig

  Fig.IV.6 and IV.8 show that the estimated speed second order moment quickly becomes very weak, as in the "ideal" case.

Figure

  Figure IV.5 -The mean error of the estimated speed for R = 1000 m and σ PD = σ DB = 2 m.

Figure

  Figure IV.6 -The second order moment of the estimated speed for R = 1000 m and σ PD = σ DB = 2 m.

Figure

  Figure IV.7 -The mean error of the estimated speed for R = 100 m and σ PD = σ DB = 2 m.

Figure

  Figure IV.8 -The second order moment of the estimated speed for R = 100 m and σ PD = σ DB = 2 m.

Figure

  Figure IV.9 -Typical train motion diagram.

  The centerline curvature and the simulated train trajectory are shown by Fig.IV.10 and IV.11, respectively. 

  Figure IV.10 -The centerline curvature of the tested simulation scenario.

Definition 7 (

 7 Convergence in probability). Let (ξ n ) n≥1 = ξ 1 , ξ 2 , . . . be a sequence of random variables. A sequence (ξ n ) n≥1 = ξ 1 , ξ 2 , . . . of random variables converges in probability to a random variable ξ if ∀ε > 0 : lim n→∞ P(|ξ n -ξ| > ε) = 0. This fact is denoted as ξ n → P ξ. Properties A.0.1 (Convergence in probability). Let ξ n → P ξ and η n → P η. It implies that

  The i.i.d. observations (ξ 1 , . . . , ξ n ) are assumed to come from a law P θ with Cumulative Distribution Function (CDF) F θ (x). Let us assume that the unknown parameter θ can be represented by the following functional relation :θ = G(P )Theorem 5 (Principle of substitution). Let θ = G(P ). It is assumed that the functional G belongs to one of two classes :1. Let G(P ) = h ( g(x)dF (x)), where the function h : u → h(u) is continuous at the point u 0 = g(x)dF 0 (x). BASIC NOTIONS IN ESTIMATION THEORY 97 2. Let G(P ) = G(F ), where the functional G is continuous at the «point» F 0 in a uniform metric : for n → ∞ G(F n ) → G(F 0 ) if sup x |F n (x) -F 0 (x)| → 0and the sample spaces of the distributions F n (x) belong to the sample space of F 0 . Let P n be an empirical distribution. If ξ ∼ F 0 , then θ n = G( P n ) is a strongly consistent estimator :

  10) Finally, substituting the equations (B.6), (B.8), (B.9), (B.10) into the right side of equation (B.5) yields to equation (III.10).

  the equations (B.12), (B.13), (B.14) in the right side of equation (B.11) gives equation (III.22).

  ), (B.18), (B.19) in the right side of equation (B.11) gives equation (III.23).

  n is the true distance from the i-th satellite to the train. b k-q+p r is a user clock bias, c ≃ 2.9979 • 10 8 m/s is the speed of light and ε i k-q+p ∼ N (0, σ 2 PD ) is the pseudo-range noise at time kq + INTEGRATED SYSTEM MODELS p. Let us now introduce the pseudo-range vector R k-q+p = (r 1 k-q+p , ..., r n k-q+p ) T and the vector D k-q+p = (d 1

  Pour les applications ferroviaires critiques au niveau de sécurité, une attention particulière doit être portée à l'exactitude, l'intégrité, la continuité et la disponibilité des informations de positionnement. Précision se réfère à la proximité de la position et la vitesse estimée par rapport aux valeurs réelles. L'intégrité est souvent définie comme la capacité du système de fournir avec un retard acceptable des avertissements aux utilisateurs lorsque le système ne doit pas être utilisé pour le positionnement. La continuité est la capacité d'un système de navigation à fournir l'exactitude et l'intégrité requises pendant une période de fonctionnement prévue. Disponibilité représente le pourcentage de temps durant lequel le système de navigation est disponible pour remplir pleinement sa fonction. Parmi les conditions mentionnées ci-dessus, l'exactitude et l'intégrité sont les deux E.1. INTRODUCTION 125 aspects les plus essentiels pour une application ferroviaire parce que le train a besoin de la position de haute précision pour des raisons économiques et l'intégrité est directement liée à la sécurité.

L

  'analyse, décrite dans cette thèse, peut être divisée en trois parties.Dans la première partie, un modèle "idéal" de voie ferroviaire, composé de lignes droites, de courbes de transition et d'arcs de cercle, est défini par un ensemble d'équations paramétriques. L'objectif de cette partie est d'estimer la distance parcourue, la vitesse et l'accélération du train et d'étudier l'impact du rayon de courbure de la voie ferroviaire sur ces estimations. Deux cas sont étudiés : la vitesse constante et variable.Un algorithme des moindres carrés est conçu pour estimer la vitesse du train à partir des signaux GNSS et du modèle géométrique de voie ferroviaire. L'impact du rayon de courbure de la voie ferroviaire sur l'erreur moyenne et le moment d'ordre deux de la vitesse estimée est calculé. Ensuite, il est supposé que la vitesse du train est variable.En supposant que l'accélération du train est constante pendant une courte période de temps, l'algorithme des moindres carrés à fenêtre glissante est conçu à partir des signaux GNSS et du modèle dynamique du train. L'impact du rayon de courbure de la voie ferroviaire sur l'erreur moyenne et le moment d'ordre deux de ces trois estimations est estimé. Dans les deux cas, les équations pour les deux premiers moments de ces estimations sont calculées de façon théorique et comparées avec les résultats de simulations Monte-Carlo.Dans la deuxième partie, un modèle "non-idéal" de voie ferroviaire est approché par une ligne polygonale avec un certain niveau d'incertitude. Nous considérons également deux cas : la vitesse constante et variable. Dans le cas de vitesse constante, la vitesse du train est calculée en utilisant des signaux GNSS et du modèle "non-idéal" de voie ferroviaire. L'impact négatif de l'incertitude de la voie ferroviaire sur l'erreur moyenne et le moment d'ordre deux de la vitesse estimée est calculé. Dans le cas de vitesse variable, on exploite aussi un algorithme à fenêtre glissante pour estimer la distance parcourue, la vitesse et l'accélération. L'impact négatif de l'incertitude de la voie ferroviaire sur l'erreur moyenne et le moment d'ordre deux de ces trois estimations est estimé. Dans les deux cas, les équations pour les deux premiers moments de ces estimations sont calculées de façon théorique et comparées avec les résultats de simulations Monte-Carlo.Enfin, on considère que la géométrie de voie est disponible dans d'une base de données avec des mesures bruitées (sans l'approximation par une ligne brisée). La distance parcourue, la vitesse du train est estimées en intégrant les mesures GNSS avec celles de la base de données. Nous considérons également deux cas : la vitesse constante et variable. Dans les deux cas, un modèle de système intégré est conçu.Ensuite, l'impact des erreurs dans les mesures GNSS et la base de données sur ces estimations sont étudié.

Figure E. 1 -

 1 Figure E.1 -La voie ferroviaire composée de trois segments au plan tangent local.

  matrices H t 0 et J t 0 sont calculées exactment comme dans l'équation (E.7) mais avec le point de travail v 0 = v t-1 . 130 RÉSUMÉ DE THÈSE EN FRANÇAIS E.2.2.3 Simulations numériques Le scénario suivant sera utilisé : la constellation GNSS avec n = 6 satellites visibles et l'écart-type des erreurs de pseudo-distance σ = 2 m. La période d'échantillonnage des mesures GNSS est ∆t = 0.5 s. La vraie vitesse du train est 20 m/s et le point de travail initial v 0 est 10 m/s. Le rayon de courbure minimum de la voie est R = 100 m. Les segments de la trajectoire du train stockés dans la base de données à bord du train sont résumés dans le tableau E.1. La courbure d'une voie ferroviaire et la trajectoire du train sont présentées sur la figure E.2 et E.3, respectivement. Numéro Courbes Abscisse curviligne Courbure

  Figure E.2 -Courbure calculée pour la trajectoire.

Figure

  Figure E.6 -Schéma de mouvement de train.

  .10) où le vecteur θ k est inconnue et doit être estimé. E.2.3.1 Modèle exact de mesure de pseudo-distance et l'estimation L'équation pour le vecteur de pseudo-distances R k-q+p entre le train et les satellites est obtenue en linéarisant l'équation non-linéaire exacte autour d'un point de travail ℓ k-q+p,0 . L'équation de mesure linéaire est donnée sous la forme suivante :

  11) où D k-q+p,0 est le vecteur de distances entre les satellites et le point de travail. b k-q+p r est le biais d'horloge du récepteur et Ξ k-q+p ∼ N (0, σ 2 I) est un bruit de mesure à l'instant kq + p. Finalement, l'équation de mesure linéaire mentionnée (E.11) est réécrite comme :

  Figure E.11 -Le modèle "non-idéal" de voie ferroviaire.

  le vecteur de distances entre les satellites et le point de travail. b k r est le biais d'horloge du récepteur et Ξ k ∼ N (0, σ 2 I) est un bruit de mesure. Parce que la vraie vitesse du train v est inconnue, le numéro du segment actuel  = (t) est calculé en fonction du point de travail v 0 en utilisant (E.16) avec v = v 0 et le point de travail à l'étape k est égale à l'estimation calculée précédemment :

  et l'écart-type des erreurs de pseudo-distance σ = 2 m. La période d'échantillonnage des mesures GNSS est ∆t = 0.5 s. La distance entre deux sommets adjectifs est choisie λ = 50 m. Le valeur d'incertitude est b = 0.05 (incertitude ≃ ±2.5 m).

  Figure E.12 -L'erreur moyenne de la vitesse estimée pour δ j ∈ [-0.05, 0.05] 2 .

  .23) Puisque la vraie position du sommet Z j est inconnue et une seule estimation imprécise Z j est disponible, l'équation de mesure linéarisée (E.23) ne peut être utilisée pour le calcul. Supposons le vecteur aléatoire ξ j = Z j -Z j est supposé être réparti uniformément dans le cube [-b, b] 3 avec b > 0. Enfin, un modèle imprécis de mesure de pseudo-distance est calculé comme :

matrices H k 0

 0 Figure E.14 -L'erreur moyenne de la distance, de la vitesse et de l'accélération pour l'incertitude de ξ j ∈ [-2, 2] 2 et q = 20.

E. 4 . 1 Figure

 41 Figure E.16 -Les erreurs de mesure dans la base de données.

  Figure E.17 -Courbure calculée pour la trajectoire.

  Figure E.18 -La trajectoire testée au plan tangent local.

  Figure E.19 -L'erreur moyenne de la vitesse estimée pour R = 100 m et σ PD = σ DB = 2 m.

  Figure E.20 -Le moment d'ordre deux de la vitesse estimée pour R = 100 m et σ PD = σ DB = 2 m.

  sl k est calculée exactment comme dans l'équation (E.35) mais avec le point de travail ϕ sl,0 = ϕ sl et ℓ k-q+p,0 = ω p • θ k-1 . Par ailleurs, deux systèmes intégrés pour la courbe de transition et l'arc de cercle sont obtenus par analogie avec la procédure (E.33) -(E.35) pour le segment de droite. E.4.3.2 Simulations numériques Le scénario suivant sera utilisé : la constellation GNSS avec n = 6 satellites visibles et l'écart-type des erreurs de pseudo-distance σ PD = 2 m. La période d'échantillonnage des mesures GNSS est ∆t = 0.5 s. La vraie valeur pour la période de l'accélération, du mouvement uniforme, du freinage est 0.8 m/s 2 , 0 m/s 2 et -0.8 m/s 2 , respectivement. La distance entre deux sommets adjectifs est λ = 10 m. La précision de base de données de la voie est σ DB = 2 m. Le valeur de rayon de courbure est R = 100 m. Le schéma de mouvement de train est représenté sur la figure E.6. Les segments de la trajectoire du train stockés dans la base de données à bord du train sont résumés dans le tableau E.1. La courbure d'une voie ferroviaire et la trajectoire du train sont présentées sur la figure E.21 and E.22, respectivement. La comparaison des deux premiers moments théoriques de ces estimations donnés par (E.37), avec les résultats de simulation Monte-carlo utilisant 10 4 répétitions, est représentée sur la figure E.23-E.24.

Figure

  Figure E.23 -L'erreur moyenne de la distance, de la vitesse et de l'accélération pour R = 100 m, σ PD = σ DB = 2 m et q = 20.

Figure E. 24 -

 24 Figure E.24 -Le moment d'ordre deux de la distance, de la vitesse et de l'accélération pour R = 100 m, σ PD = σ DB = 2 m et q = 20.

  d'une vitesse variable, le changement d'accélération provoque l'apparition de biais dans les estimations pour une courte période, comme dans les cas précédents. L'impact négatif du rayon de courbure de voie minimal sur ces estimations est presque négligeable. Comme mentionné précédemment, certains systèmes d'exploitation ferroviaire ont été largement utilisés pour garantir la sécurité et l'efficacité du réseau ferroviaire. L'efficacité des systèmes est basée sur le positionnement fiable du train. D'autre part, la technologie GNSS a attiré beaucoup d'attention autour du monde et elle a été largement appliquée dans le domaine des transports, tels que l'aviation, le ferroviaire, et la marine. Par conséquent, application de la technologie GNSS au positionnement du train est un domaine de recherche très prometteur. Les algorithmes décrits dans cette thèse sont consacrés à la précision du positionnement du train obtenu à l'aide des satellites GNSS et de l'information sur la trajectoire du train, stockée dans une base de données de l'ordinateur du bord. Dans le chapitre II, un modèle "idéal" de voie ferroviaire, composé de lignes droites, de courbes de transition et d'arcs de cercle, est défini par un ensemble d'équations paramétriques. Le distance parcourue et la vitesse du train sont estimées en utilisant les mesures GNSS et le modèle "idéal" de la trajectoire. Deux cas sont étudiés : la vitesse constante et variable. Dans les deux cas, un estimateur des moindres carrés est conçu. Dans le cas d'une vitesse constante, l'estimateur est pratiquement non biaisé, même avec le rayon de courbure de voie minimal. L'impact négatif du rayon de courbure sur la vitesse estimée du train est presque négligeable. La variance de l'estimation de vitesse devient rapidement très faible. Dans le cas d'une vitesse variable, il a été démontré que le changement d'accélération provoque l'apparition des biais dans les estimations de distance parcourue, de vitesse et d'accélération pour une courte période. Un faible rayon de courbure peut augmenter le moment d'ordre deux de ces estimations. Dans le chapitre III, un modèle "non-idéal" de voie ferroviaire est défini par une ligne polygonale avec un certain niveau d'incertitude dans la base de données à bord du train. La distance parcourue et la vitesse du train sont estimées en utilisant des mesures GNSS et un modèle "non-idéal". Deux cas sont étudiés : une vitesse constante et variable. Dans les deux cas, un estimateur des moindres carrés est conçu. Dans le cas d'une vitesse constante, l'estimateur est pratiquement non biaisé, même avec un modèle géométrique imprécis de voie ferroviaire. L'impact négatif de l'incertitude sur l'estimation de la vitesse se manifeste à travers une augmentation très considérable de la variance de vitesse par rapport au cas "idéal". Dans le cas d'une vitesse variable, les résultats montrent que le changement d'accélération provoque une estimation imprécise de la distance parcourue, la vitesse et l'accélération pour une courte période. L'estimateur est toujours presque non biaisé, à l'exception d'une courte période de temps après le changement d'accélération, mais la variance reste inchangée pendant cette période. L'incertitude des données conduit à une légère augmentation du moment d'ordre deux de ces estimations par rapport au cas "idéal". Enfin, dans le chapitre IV, on considère que la géométrie de voie est disponible dans d'une base de données avec des mesures bruitées (sans l'approximation par une ligne brisée). La distance parcourue et la vitesse du train sont estimées en intégrant les mesures GNSS avec celles de la base de données. Deux cas sont étudiés : une vitesse constante et variable. Dans les deux cas, un modèle de système intégré est conçu. Dans le cas d'une vitesse constante, l'estimateur est pratiquement non biaisé.

  souhaitons ici développer des algorithmes de contrôle d'intégrité pour le positionnement du train à base de GNSS. Lorsque le train se déplace dans les zones urbaines, dans les forêts et dans les tunnels le problème du contrôle d'intégrité devient très important.
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					II.2). A cant angle
	arises where a cant is arranged. The cant angle is defined as
	ϕ t = arcsin	h t 2b o	,	(II.1)
	where 2b o = 1.5 m on standard track gauge.		
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  The almost sure convergence implies the convergence in probability. Let (ξ n ) n≥1 be a sequence of (scalar Ê 1 or vector Ê m ) statistics such that ξ n →

	The convergence in probability implies the convergence in distribution.
	If ξ n → a.s.	ξ, then ξ n →
	a.s. which is continuous almost everywhere with respect to the distribution of the random ξ or ξ n → P ξ and g be a function of m ≥ 1 variables
	variable ξ (that is, g(ξ) is continuous at every point of a set D such that P(ξ ∈ D) = 1). Then g(ξ n ) → a.s. g(ξ), g(ξ n ) →
		ran-
	dom variables converges almost surely or almost everywhere or with probability 1 or
	strongly to a random variable ξ if
		∀ε > 0 : lim

n→∞ P sup k≥n |ξ k -ξ| > ε = 0.

This fact is denoted as ξ n → a.s. ξ. Properties A.0.2. P ξ. If ξ n → P ξ, then ξ n → L ξ Theorem 2 (Continuity theorem). P g(ξ), respectively. Limit Theorems Theorem 3 (Law of large numbers). Let ξ 1 , . . . , ξ n be a sequence of i.i.d. random variables. It is assumed that the random variables are integrable : E(|ξ|) < ∞. Then weak law :

Estimation de la distance, vitesse du train à base de GNSS et une voie ferroviaire "idéale"

  

	E.2. ESTIMATION DE LA DISTANCE, VITESSE DU TRAIN À BASE DE GNSS
	ET UNE VOIE FERROVIAIRE "IDÉALE"	127
	E.2 Dans le chapitre II, le modèle "idéal" de voie ferroviaire, composé de lignes droites,
	de courbes de transition et d'arcs de cercle, est défini par un ensemble d'équations
	paramétriques. L'objectif est d'estimer la distance parcourue et la vitesse du train en
	utilisant un récepteur GNSS à bas coût et d'étudier l'impact de la courbure de la voie
	sur ces estimations. Deux cas sont étudiés : une vitesse constante et variable. Dans les
	deux cas, un estimateur des moindres carrés est conçu. L'erreur moyenne et le moment
	d'ordre deux de ces estimations sont calculés de façon théorique et comparées avec les
	résultats de simulations Monte-Carlo.	

E.

2.1 Description du modèle "idéal" de voie ferroviaire

  Dans cette section, le modèle "idéal" de voie ferroviaire, composé de lignes droites, de courbes de transition et d'arcs de cercle, défini par un ensemble d'équations paramétriques. La ligne droite, la courbe de transition et l'arc de cercle sont décrites par les équations formulées en fonction de l'abscisse curviligne ℓ. Pour simplifier, nous supposons que la trajectoire du train appartient entièrement au plan tangent local. La figure E.1 suivante montre trois segments [ℓ m ; ℓ m+1 ], [ℓ m+1 ; ℓ m+2 ] et [ℓ m+2 ; ℓ m+3 ] indexés par ℓ m ce qui est la distance parcourue correspond au m-ème segment (m = 1, 2, . . .).

	Tout d'abord, l'équation pour le segment de droite (ℓ m ℓ ℓ m+1 ), représentée sur la
	figure E.1 est

Modèle exact de mesure de pseudo-distance et l'estimation L

  La distance parcourue ℓ t au temps t est égale au E.2. ESTIMATION DE LA DISTANCE, VITESSE DU TRAIN À BASE DE GNSS ET UNE VOIE FERROVIAIRE "IDÉALE" 129 produit de la multiplication de la vitesse v par le temps t, soit ℓ t = v •t. Par conséquent, la position du train est définie : X t = (x(ℓ t ), y(ℓ t ), 0) T , t = 1, 2, . . . , où (x(ℓ t ), y(ℓ t )) est la position correspondante au plan tangent local. 'équation pour le vecteur de pseudo-distances R t entre le train et les satellites est obtenue en linéarisant l'équation non-linéaire exacte par rapport au vecteur d'état V t = (v t , cb t r ) T autour d'un point de travail V 0 = (v 0 , cb 0 ) T . L'équation de mesure linéaire est donnée sous la forme suivante : est le vecteur de distances entre les satellites et le point de travail. b t r est le biais d'horloge du récepteur, c ≃ 2.9979•10 8 m/s est la vitesse de la lumière et Ξ t ∼ N (0, σ 2 I) est un bruit de mesure. Le point de travail au temps t est égal à l'estimation calculée précédemment

	E.2.2.1 R t -R t 0 ≃ H t 0 • (V t -V 0 ) + Ξ t ,	(E.6)
	où R t 0	

1 au-dessus à une vitesse constante inconnue v.

2 Impact du rayon de courbure de la voie ferroviaire sur l'erreur d'estimation

  inconnu et doit être estimé. Le point de travail est égal au produit de la multiplication du facteur ω p par l'estimation calculée précédemment : ℓ k-q+p,0 = ω p • θ k-1 .

	E.2. ESTIMATION DE LA DISTANCE, VITESSE DU TRAIN À BASE DE GNSS
	ET UNE VOIE FERROVIAIRE "IDÉALE"	133
	E.2.3.Le but de cette section est d'étudier l'impact du rayon de la courbe R sur les deux
	premiers moments de l'estimateur β k . Pour cela, l'équation de mesure peut être écrite
	sous la forme suivante :	
	R k	

1 Modèle imprécis de mesure de pseudo-distance et l'estimation.

  

	E.3. ESTIMATION DE LA DISTANCE, VITESSE DU TRAIN À BASE DE GNSS
	ET UNE VOIE FERROVIAIRE "NON-IDÉALE"	137
	E.3.2.L'équation pour le vecteur de pseudo-distances R k entre le train et les satellites
	est obtenue en linéarisant l'équation non-linéaire exacte par rapport au vecteur d'état

3 Estimation de la distance, vitesse pour le cas d'une vi- tesse variable

  E.3. ESTIMATION DE LA DISTANCE, VITESSE DU TRAIN À BASE DE GNSS ET UNE VOIE FERROVIAIRE "NON-IDÉALE" 139

	Le but de cette section est d'estimer la distance parcourue et la vitesse du train
	lorsque l'accélération n'est pas négligeable. Par conséquent, supposons que le train roule
	sur la voie ferroviaire E.11 au-dessus à une vitesse variable. En utilisant l'équation pour
	le modèle dynamique du train (E.9), la position du train est donnée par

E.3.

4 Estimation de la distance, vitesse du train à base de l'intégration GNSS avec la base de don- nées

  Dans le chapitre IV, on considère que la géométrie de voie est disponible dans d'une base de données avec des mesures bruitées (sans l'approximation par une ligne brisée).Le but de ce chapitre est d'estimer la distance parcourue et la vitesse du train en intégrant les mesures GNSS avec celles de la base de données. Deux cas sont étudiés : une vitesse constante et variable. Dans les deux cas, un modèle de système intégré est conçu. Ensuite, l'impact des erreurs dans les mesures GNSS et la base de données sur ces estimations sont étudié.

	Dans le cas d'une vitesse variable, les résultats montrent que le changement d'ac-
	célération provoque une estimation imprécise de la distance parcourue, la vitesse et
	l'accélération pour une courte période. L'estimateur est toujours presque non biaisé,
	à l'exception d'une courte période de temps après le changement d'accélération, mais

la variance reste inchangée pendant cette période. L'incertitude des données conduit à une légère augmentation du moment d'ordre deux de ces estimations par rapport au cas "idéal".

E.

E.4.2 Estimation de la vitesse à base du système intégré pour le cas d'une vitesse constante

  Dans cette section, un modèle mathématique rigoureux pour le système intégré est conçu pour estimer la vitesse du train. On suppose que le train roule sur la voie ferroviaire E.1 au-dessus à une vitesse constante inconnue v. La distance parcourue ℓ t au temps t est égale au produit de la multiplication de la vitesse v par le temps

t, soit ℓ t = v • t et t = 1, 2, . . . ,. Par conséquent, la position du train est définie :

X t (ϕ, ℓ t ) = (x(ϕ, ℓ t ), y(ϕ, ℓ t ), 0) T , où (x(ϕ, ℓ t ), y(ϕ, ℓ t )) est

la position correspondante au plan tangent local. Comme la distance ℓ t = v • t et la vitesse v est inconnue, la position correspondante (x(ϕ, ℓ t ), y(ϕ, ℓ t )) peut être considérée comme une fonction de

v, soit, (x(ϕ, v), y(ϕ, v)

).

E.4.2.

1 Modèle du système intégré

  Premièrement, un système d'équations linéaires est obtenu en linéarisant l'équation non-linéarie (E.26) pour les points recueillis dans le segment de droite au vecteur d'état ϕ sl autour d'un point de travail ϕ sl,0 . Le système d'équations linéaires est donné sous la forme suivante : Ensuite, l'équation pour le vecteur de pseudo-distances R t entre les satellites et le train est obtenue en linéarisant l'équation non-linéaire exacte par rapport au vecteur d'état β sl t = (ϕ T sl , v, cb t r ) T autour d'un point de travail β sl t,0 = (ϕ T sl,0 , v 0 , cb 0 ) T . L'équation de measure linéaire est donnée sous la forme suivante : T = (x 0 , y 0 , α, v, cb t r ) T est inconnu et doit être estimé. Ξ t ∼ N (0, σ 2 PD I) est un bruit de mesure.Finalement, avec ces deux équations linéaires (E.27) et (E.28), on peut obtenir un système intégré de la façon suivante :Le système intégré final (E.29) peut être réécrit de la manière suivante :

		Y t = R t -R t 0 ≃ H t 0 • (β sl t -β sl t,0 ) + Ξ t ,	(E.28)
	où le vecteur β sl t = (ϕ T sl , v, cb t r ) Z sl,0 DB Y t ≃ H sl 0 | 0 H t 0	  	ϕ sl -ϕ sl,0 v -v 0 cb t r -cb 0	   +	ξ sl DB Ξ t	.	(E.29)
		Y sl t = H sl t • (β sl t -β sl t,0 ) + Υ sl t ,	(E.30)
	où le point de travail β sl t,0 au temps t est égal à l'estimation calculée précédement :
	β sl t,0 = β sl t-1 . Supposons que σ 2 PD = σ 2 DB = σ 2 , la méthode des moindres carrés est
		β sl t = β sl t-1 + H sl t	T H sl t	-1	H sl t	T Y sl t .	(E.31)
	L'erreur moyenne et le moment d'ordre deux sont calculés comme
		E( β sl t -β sl t ) = E E( β sl t -β sl t )( β sl t -β sl H sl t t ) T ≃ σ 2 H T H sl t -1 sl t	H sl t T H	T t sl	Υ sl t -1	,	≃ 0,	(E.32)
	où la matrice H	sl t est calculée exactment comme dans l'équation (E.30) mais avec le
	point de travail β sl t,0 = β sl t-1 .					

Z sl,0 DB = Z sl DB -X sl (ϕ sl,0 ) ≃ H sl 0 • (ϕ slϕ sl,0 ) + ξ sl

DB , (E.27) où le vecteur ϕ sl est inconnu et doit être estimé. 144 RÉSUMÉ DE THÈSE EN FRANÇAIS

  DB ≃ Z sl,0 DB + H sl 0 ϕ sl,0 , le système intégré final (E.34) peut être écrit dans la matrice suivante :E.4. ESTIMATION DE LA DISTANCE, VITESSE DU TRAIN À BASE DE L'INTÉGRATION GNSS AVEC LA BASE DE DONNÉES 147 où le vecteur β sl k = (ϕ T sl , θ T k , cb k r , ..., cb k-q r ) T est inconnu et doit être estimé. Le point de travail ϕ sl,0 au temps t k est égal à l'estimation calculée précédement ϕ sl et ℓ k-q+p,0 est égal au produit de la multiplication du facteur ω p par l'estimation calculée précédement : ℓ k-q+p,0 = ω p • θ k-1 . Supposons que σ 2 PD = σ 2 DB = σ 2 , la méthode des moindres carrés est

		β sl k = H sl k	T H sl k	-1	H sl k	T Y sl k .	(E.36)
	L'erreur moyenne et le moment d'ordre deux sont calculés comme
		E( β sl k -β sl k ) = E E( β sl k -β sl k )( β sl k -β sl H sl k k ) T ≃ σ 2 H T H sl k -1 sl k	H sl k T H	T k sl	Υ sl k -1	,	≃ 0,	(E.37)
	où la matrice H					
									,
								(E.34)
	où Z	sl,0					
		Y sl k ≃ H sl k β sl k + Υ sl k ,			(E.35)

  La navigation terrestre GNSS assistée par la trajectoire : application au positionnement du train Au cours des dernières années, la technologie GNSS a beaucoup attiré l'attention et elle a été appliquée à de nombreux domaines. Par ailleurs, les systèmes avancés d'exploitation ferroviaire ont largement été utilisés pour garantir la sécurité, la sûreté et l'efficacité du réseau ferroviaire. L'efficacité de ces systèmes se fonde sur un positionnement fiable du train. L'utilisation de la technologie GNSS pour le positionnement des trains est un domaine de recherche très prometteur. Dans cette thèse, plusieurs algorithmes sont proposés pour le positionnement du train en utilisant des signaux GNSS et un modèle géométrique de la voie ferroviaire stocké dans la base de données à bord du train. Tout d'abord, la distance et la vitesse du train sont estimées en utilisant des signaux GNSS et un modèle géométrique "idéal" qui est composé de lignes droites, d'arcs de cercles et de courbes de transitions entre les deux. L'impact du rayon de courbure de la voie sur ces estimations est étudié. Ensuite, la distance et la vitesse du train sont estimées en utilisant des signaux GNSS et un modèle géométrique "non-idéal" de la voie ferroviaire qui est approchée par une ligne polygonale avec un certain niveau d'incertitude. L'impact du niveau d'incertitude sur ces estimations est étudié. Finalement, la distance et la vitesse du train sont estimées en se basant sur une intégration des mesures GNSS avec une base de données bruitées. L'impact des erreurs de mesures GNSS et de la base de données sur ces estimations est étudié.
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IV.5 Conclusions

In absence of acceleration, a linear GNSS/track database integrated system is designed to estimate the train speed. The train speed estimation by GNSS is practically unbiased. The estimated speed second order moment quickly becomes very weak, as in the "ideal" case. The negative impact of both the centerline uncertainty and the minimum railway curve radius on the estimated speed is nearly negligible.

In the variable speed case, a linear GNSS/track database integrated system is designed to estimate the travelled distance and speed of the train. The first two moments of the estimated travelled distance, speed and acceleration have been obtained to estimate the negative impacts of the errors from both the GNSS signals and track database on the above parameters. It has been shown that the change of acceleration causes an imprecise estimation of the travelled distance, speed and acceleration for a short time period, as in the precedent cases. The negative impact of both the centerline uncertainty and the minimum railway curve radius on these estimations is nearly negligible.

Chapitre V

Conclusions and Future Researches

V.1 Conclusions

As mentioned before, some advanced railway operating systems have been widely used to guarantee the safety and efficiency of the railway network. The efficiency of these systems is based on the availability of reliable train positioning. On the other hand, GNSS technology has attracted many attention around world and it has been widely applied in aviation, vehicle and marine application. Hence, applying GNSS technology in the train positioning is a very promising research area.

The algorithms described in this thesis are devoted to the train positioning by using GNSS signals. We have proposed the method of train positioning by using GNSS signals and a railway track. Then the impact of the track geometric model imprecision is studied for train positioning performance. The impact of the geometric characteristic of the railway centerline such as minimum railway curve radius on the train positioning performance is also discussed.

In Chapter II, the "ideal" railway centerline, composed of straight line segments, transition curves and arcs of circles, is defined by parametric equation. The train travelled distance and speed are estimated by using GNSS measurements and the "ideal" railway centerline. Two cases have been considered : a constant and variable speed. For both cases, a LS estimator is designed. For the constant speed case, the train speed estimation is practically unbiased, even with minimum railway curve radius. The estimated speed second order moment quickly becomes very weak. The impact of the railroad curvature on the mean error and on the second order moment of the estimated speed is nearly negligible. For the variable speed case, it has been shown that the