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GENERAL INTRODUCTION

The study of the vertebrate eye cornea is an interdisciplinary subject which involves medical science, biology, mechanics, material science, etc. The study of corneal biomechanical properties has significant importance in ophthalmology. The present work has been inspired

by the following research questions. How are the biomechanical properties of the vertebrate eye cornea such as elastic moduli distributed through the thickness? Would it be possible to establish a 3D map of the cornea with the values of its local properties? These identified properties are of great value as they can be used to examine the corneal pathology, in which the properties of the pathological corneas differ from that of the healthy ones. This would also enable forward numerical models to predict the corneal mechanical behaviour under all sorts of conditions to assist, for example, refractive surgery, and take into account corneal deformation due to removed tissue and thus reduce refractive erro rs and improve visual acuity.

To study corneal biomechanical properties, it is first necessary to be able to examine the composition and internal structure of the eye cornea. The measurement of depth-resolved 3D

(depth-resolved) deformation behaviour of cornea under intraocular pressure is a useful method to study the local corneal biomechanical properties. Robust 3D inverse problem identification methodologies need to be developed to identify the constitutive parameters of the cornea by making use of the experimental measurement techniques such as full-field measurement of displacement/strain. The above research objectives however have some challenges to meet. The examination of the internal features and the measurement of the depth-resolved 3D deformation of the cornea need to be implemented in a non-contact way so that they can be applied to the practical in vivo studies. High resolution and spatial resolution of the deformation measurements are required to enable an accurate identification of the local corneal biomechanical properties. In addition, it would be advantageous if the identification is less time-consuming.

Currently, most of the research that has been undertaken to characterize the corneal biomechanical properties was based on uniaxial tensile tests or corneal surface measurements using digital image correlation in inflation tests. However, depth-resolved 3D deformation measurements ha ve not been achieved yet, which are essential to better understand the internal corneal biomechanical behaviour. Additionally, current identification of material constitutive parameters is generally based on finite element model updating (FEMU), which often suffers from local optimal results and long processing time. The Virtual Fields Method (VFM) has been developed as an alternative identification method that overcomes the shortcomings of the finite element model updating method. In the present work, a methodology that can be applied to measure depth-resolved 3D displacement and strain fields in semi-transparent light-scattering materials by combining optical coherence tomography (OCT) with digital volume correlation (DVC) is proposed. To the best of our knowledge, this is the first time that volume strain data were derived by performing digital volume correlation on optical coherence tomography reconstructed volumes. The proposed methodology has been applied to measure the depth-resolved 3D deformation of an inflated porcine cornea. In addition, an effective method has been developed to correct the commonly seen refraction induced distortions in optical coherence tomography reconstructions, which is another original contribution of the present study. Moreover, a 3D implementation of the virtual fields method is presented, which enables the identification of material constitutive parameters from the 3D deformation measurements. Even though the cornea has inspired and guided this work, it is valid for other soft tissues as long as their internal structures can be reconstructed by optical coherence tomography with sufficient quality.

This thesis is organized as follows:

Chapter 1 presents a literature review on the background knowledge of the cornea such as corneal structure, its composition, intraocular pressure, etc. The state-of-the-art on experimental studies of corneal biomechanics is introduced. Various volume imaging techniques are then reviewed with a view to the corneal internal structure analysis. Different approaches to identify the constitutive parameters are then introduced followed by methodologies to obtain the required full-field deformation measurements.

Chapter 2 details the application of the VFM to 3D strain data with both manually defined and piecewise optimized virtual fields, in the case of linear elasticity. Finite element models (FEM) were introduced to validate the derivation of these 3D virtual fields. Finally, the ability of the manually-defined virtual fields method to retrieve constitutive parameters from strain data corrupted by Gaussian noise was compared against the piecewise-optimized virtual fields.

Chapter 3 presents depth-resolved 3D deformation measurements of silicone rubber phantoms under tension obtained by performing DVC on volume reconstructions of the phantoms obtained with OCT. Using stationary tests and rigid body translations of the phantoms, the strain measurement performance of the system was studied in terms of the subvolume size, strain noise, interpolation bias and strain induced speckle decorrelation. Finally, the elastic constitutive parameters of the silicone rubber phantoms were identified with the VFM.

In Chapter 4, 3D displacement fields of a silicone rubber phantom and of a porcine cornea were obtained in controlled inflation tests. However, these fields which were obtained from a direct application of DVC onto the OCT reconstructions do not represent the true deformation of the materials due to a refraction distortion that affects the OCT reconstructions and leads to spurious strain.

Chapter 5 presents a method that has been implemented to correct the refraction induced distortions in 2D/3D. Rigid body rotation tests, in which non-zero displacement fields with zero strain were introduced in silicone rubber phantoms, were carried out to evaluate the performance of the refraction correction method and its ability to eliminate the spurious strain.

Refraction correction was then applied to the porcine cornea to obtain 3D displacement and strain fields that arose in an inflation test.

In the last chapter, conclusions and perspectives are presented.

CHAP TER 1

LITERATURE REVIEW

Study of corneal biomechanics

The eye is a complex organ, and its primary function is to refract light through a series of windows and lenses on to the back of the eye and convert it into electrical signals that can be interpreted and understood by the brain via the optic nerve [START_REF] Ambekar | The effect of keratoconus on the structural, mechanical, and optical properties of the cornea[END_REF]. Among all important parts of the eye, the cornea plays the most important role in refracting light and providing a stiff protective envelope for the inner ocular contents as well as serving to maintain the shape of the eye [START_REF] Fatt | Physiology of the eye: An introduction to the vegetative functions[END_REF]3]. The integrity and functionality of the cornea is essential for vision. Any abnormalities in its composition or structure due to disorder or disease such as keratoconus, corneal dystrophy, glaucoma, mass lesions, etc. severely degrade vision [START_REF] Notara | In sickness and in health: Corneal epithelial stem cell biology, pathology and therapy[END_REF][START_REF] Browning | The effect of corneal thickness on intraocular pressure measurement in patients with corneal pathology[END_REF][START_REF] Tarkkanen | Corneal pathology and outcome of keratoplasty in autoimmune polyendocrinopathy-candidiasis ectodermal dystrophy[END_REF][START_REF] Robin | Peripheral corneal disorders[END_REF][START_REF] Krachmer | Keratoconus and related noninflammatory corneal thinning disorders[END_REF]. Refractive surgery is widely performed to improve the refractive state of the eye, with 1.8 million operations in 2001 in US alone [START_REF] Mannis | Making sense of refractive surgery in 2001: why, when, for whom, and by whom?[END_REF]. As cornea thickness is used as the criterion to perform refractive surgery without taking into account of the corneal biomechanical properties, residual refractive errors might remain due to the difference in corneal biomechanical properties of different patients. For these reasons, a comprehensive understanding of the biomechanical properties and deformation behaviour of cornea is of great importance in clinical applications [START_REF] Bryant | Constitutive laws for biomechanical modeling of refractive surgery[END_REF][START_REF] Asejczyk-Widlicka | Material properties of the cornea and sclera: A modelling approach to test experimental analysis[END_REF][START_REF] Norman | Finite element modeling of the human sclera: Influence on optic nerve head biomechanics and connections with glaucoma[END_REF][START_REF] Kwon | Effect of cornea material stiffness on measured intraocular pressure[END_REF].

Anatomy of the cornea

The cornea is located at the outer front of the eye ball and has a transparent multi-layer structure, as illustrated in Fig 1 .1 [START_REF] Ambekar | The effect of keratoconus on the structural, mechanical, and optical properties of the cornea[END_REF]. It protects the eye from the outer environment, absorbs oxygen and nutrients from the tear film and maintains the shape and stability of the eye by resisting the intraocular pressure. It also plays an important role in the image formation by refracting light to the back of the eye [START_REF] Ambekar | The effect of keratoconus on the structural, mechanical, and optical properties of the cornea[END_REF][START_REF] Komai | The 3-dimensional organization of collagen fibrils in the human cornea and sclera[END_REF][START_REF] Snell | Clinical Anatomy of the Eye[END_REF].

As can be seen from Fig 1 .1, the cornea is composed of five layers, namely epithelium, Bowman"s layer, stroma, Descemet"s membrane, and endothelium. The epithelium, which is approximately 10% of the total cornea thickness, is the outermost layer of the cornea. It contains mostly stratified squamous cells and serves as a barrier to protect the eye from the external environment. The innermost layer is the endothelium, which is responsible for the clarity of the cornea by maintaining a balance between the fluid flowing in and out of the cornea. Excess fluid in the cornea can make vision hazy, and thus, the endothelium plays an important role in pumping water against the gradient, which is essential for optical transparency. Bowman"s membrane lies below the epithelium, and Descemet"s membrane lies above the endothelium. These two membranes are very thin layers and consist of collagen fibrils. They serve as protective barriers against injury and infection. The stroma, which locates between Bowman"s and Descemet"s membranes, constitutes 90% of the cornea"s thickness and thus dominates the cornea"s structural performance. It consists of the stacked lamellae of regularly arranged collagen fibrils embedded in a hydrated matrix of proteoglycans, glycoproteins, and keratocytes. The collagen fibrils are arranged in two preferred orientations, which are orthogonal and alternate between the adjacent lamellae.

Since the collagen fibril is the stiffest component of the corneal structure, its arrangement and distribution mainly determine the mechanical properties and light transparency of the cornea [START_REF] Radner | Interlacing and cross-angle dstribution of collagen lamellae in the human cornea[END_REF][START_REF] Scott | Proteoglycan: collagen interactions and corneal ultrastructure[END_REF][START_REF] Studer | Biomechanical model of human cornea based on stromal microstructure[END_REF]. Intraocular pressure is related to some eye diseases such as glaucoma. Glaucoma is an eye disease in which the optic nerve is damaged as a consequence of the elevation of intraocular pressure above the physiological level of individuals. Intraocular pressure may become elevated due to anatomical problems, inflammation of the eye, genetic factors, or as a side-effect from medication. Therefore, it serves as an indication of the physical status of the eye. Measuring and monitoring intraocular pressure and its influence in the corneal deformation is therefore an extremely important aspect of diagnosis, treatment, and management of glaucoma [START_REF] Caprioli | Intraocular pressure: modulation as treatment for glaucoma[END_REF][START_REF] Wang | Intraocular pressure, central corneal thickness, and glaucoma in Chinese adults: The Liwan eye study[END_REF].

Corneal pathology

There are several types of corneal pathologies that are usually seen by ophthalmologists. The first one is keratoconus and related non-inflammatory corneal thinning disorders [START_REF] Krachmer | Keratoconus and related noninflammatory corneal thinning disorders[END_REF]. It is a degenerative disorder of the eye in which structural changes occur within the cornea causing it to thin and change to a more conical shape than a normal gradual curve, which distorts and decreases vision. The second one is corneal dystrophy. It is a group of disorders, defined as a non-inflammatory, inherited, bilateral opacity of the cornea. It appears as grayish white lines, circles, or clouding of the cornea [START_REF] Waring | Corneal dystrophies[END_REF]. Another one is the inflammation of the cornea such as keratitis and corneal ulcer. It is an inflamed condition of the cornea commonly resulting from viral infection. It represents a break or disruption in the corneal epithelium or even stroma, which can cause a loss of corneal transparency and potentially significant loss of vision in serious cases [START_REF] Niederkorn | The pathogenesis of Acanthamoeba keratitis[END_REF][START_REF] Powell | Chapter 41-Vision-Threatening corneal ulcers[END_REF].

Since these corneal pathologies are generally associated with the changes in the shape and the composition of the cornea, they are essentially associated with the changes in the corneal biomechanical properties as well. Therefore, a method of identifying the corneal biomechanical properties would be very useful as it could be utilized in evaluating and diagnosing corneal pathology by comparing the identified biomechanical properties of the normal and the pathological corneas.

Experimental study of corneal biomechanical properties

Many experimental studies have been carried out in order to characterize the biomechanical properties of the cornea. Generally, there are two types of tests that are usually adopted to examine the mechanical response of the cornea under pressure, which are the inflation and strip tensile tests.

Inflation testing method

The inflation testing method has been applied by many researchers as it can provide a physiologically representative mechanical characterization of the cornea. Fig 1 .2 shows a schematic of a typical inflation test rig which was developed by Anderson et al [START_REF] Anderson | Application of structural analysis to the mechanical behaviour of the cornea[END_REF]. In this experimental setup, the cornea specimen is fixed by mechanical clamps and glued to the fixture along its ring of sclera tissue to provide watertight edge connection and avoid fluid leakage during the inflation tests. The cornea specimen is subjected to a changeable posterior pressure provided by adjusting a small vertically moveable reservoir. The pressure in the chamber is measured using a pressure unit. A water tank equipped with a temperature controller is added between the chamber and the reservoir to ensure the temperature in the pressure chamber remains constant throughout the test. During the tests, a laser displacement sensor is used to measure the displacement at the apex of the cornea from which the corneal biomechanical properties can be evaluated through the Pressure-Apical rise relation. Beside this, two digital cameras can be positioned in the plane of the cornea-scleral intersection to continually record changes in corneal profile during the tests as described by El-sheikh et al [START_REF] El-Sheikh | Biomechanical properties of human and porcine corneas[END_REF]. The nonlinear material properties of the cornea were studied by Woo et al [START_REF] Woo | Nonlinear material properties of intact cornea and sclera[END_REF] and were confirmed by Anderson et al [START_REF] Anderson | Application of structural analysis to the mechanical behaviour of the cornea[END_REF]. In Anderson"s study, inflation tests were carried out to measure the apical rise of porcine cornea specimens subjected to a gradually increasing posterior pressure up to a maximum of 105 mmHg. The results show that the stress-strain relation experiences two phases: an initial phase of linear behaviour, followed by sudden stiffening at about 30 mmHg. The explanation is that the cornea is mainly composed of corneal matrix and collagen fibril layers. In the first phase, the collagen fibril layers rema in loose and the mechanical behaviour is dominated by the corneal matrix. Thus, apical rise increases linearly with the pressure, and the cornea shows low stiffness. After the pressure has increased to a relatively large value, the collagen fibril layers become taut. Due to the higher stiffness of the collagen fibril layers, they start to dominate the corneal mechanical behaviour, and thus the cornea shows higher stiffness. Therefore, the nonlinear behaviour of the cornea is due to material property rather than geometry, and it can be characterized by a matrix regulated initial phase followed by a collagen regulated phase, as shown in Fig 1 .3 [START_REF] Anderson | Application of structural analysis to the mechanical behaviour of the cornea[END_REF]. Elsheikh et al compared mechanical properties of human and porcine corneas using inflation tests [START_REF] El-Sheikh | Biomechanical properties of human and porcine corneas[END_REF]. They divided the human cornea specimens into 3 groups according to the age of the donors and with a single group of the porcine corneas all within the same age range. The results showed that when subjected to an increasing posterior inflation pressure of up to 170 mmHg, both human and porcine corneas exhibit nonlinear behaviour, with all specimens demonstrating low initial stiffness and sudden stiffening after a certain pressure level.

Although human and porcine corneas show differences in the pressure at which they start to stiffen, their overall mechanical behaviour is consistent with Another experiment was carried out by Elsheikh et al to evaluate the epithelium"s contribution to corneal biomechanics [START_REF] El-Sheikh | Assessment of the epithelium"s contribution to corneal biomechanics[END_REF]. Two groups of corneas with and without epithelium were tested under inflation conditions. Based on the results, they concluded that the stiffness of the epithelium was considerably lower than that of the stroma, and might therefore be ignored in numerical simulation studies.

The viscoelastic properties of bovine cornea and sclera were studied using inflation tests coupled with digital image correlation by Boyce et al [START_REF] Boyce | Full-field deformation of bovine cornea under constrained inflation conditions[END_REF][START_REF] Myers | The inflation response of the posterior bovine sclera[END_REF]. They obtained the full-field surface deformation maps over a certain pressure range through digital image correlation.

They found that for pressures near and above the IOP, the majority of the deformation localized in the limbus and peripheral regions, and the central cornea remained largely undeformed. This result can be explained by the well-known preferred circumferential alignment of collagen fibrils in the peripheral regions. Viscoelastic behaviours such as hysteresis, creep and relaxation were observed in a broad pressure range of 0-32 kPa. In the range of 3.6-8 kPa, which represents the physiological pressure range, small viscoelastic deformation was observed, and the cornea within this range can be approximated as a linear viscoelastic or linear pseudo-elastic material. Compared with the inflation test, the strip tensile test has three inherent limitations due to the excised cornea strip specimen. The first limitation is the effect of variation in length in the strip specimen as the original cornea has a spherical configuration. Therefore, the central length is longer than that of the two sides. This limitation leads to a non-uniform stress distribution during the tensile test. When flattening the originally curved specimen, strains are generated, which will superimpose to the tensile strain under the test conditions. This is the second limitation. In addition, the variation of corneal thickness also influences the identification results as constant thickness is generally assumed. Elsheikh et al verified these effects by comparing the results of the inflation and strip tensile tests. They found that the stress-strain relations derived from the tensile tests exhibited larger stiffness than that from the inflation tests [START_REF] El-Sheikh | Comparative study of corneal strip extensometry and inflation tests[END_REF].

The inflation test is a physiologically representative method for determining the mechanical properties of the cornea, as can be concluded from the above discussions.

Therefore, this testing method was selected in the current project when studying the ex-vivo depth-resolved mechanical behaviour of the cornea.

As the cornea has a complex composite structure, in addition to the fact that some pathologies can locally change the internal corneal biomechanical properties, surface measurements are not adequate to address the complete mechanical behaviour of the cornea.

Therefore, it would be useful to develop a method that be used to characterize the internal corneal biomechanical properties and the 3D deformation behaviour.

Tomographic techniques for structure analysis

The analysis of the internal microstructure of a material is important for the study of the material mechanical properties. Instead of traditional surface imaging, imaging techniques that can look within the materials are needed, which are referred to as Tomography. Various tomographic techniques based on different mechanisms have been developed, such as X-ray computed tomography, magnetic resonance imaging, confocal microscopy, optical coherence tomography, etc. These will be introduced in this section.

X-ray computed tomography

X-ray computed tomography (X-ray CT) is a technology that utilizes computer-processed series of X-ray projections to produce tomographic volume of a scanned object. It enables the user to see the internal structure of an object in a non-invasive and non-destructive way. Xray CT is based on X-ray absorption contrast. The attenuation is characterized by Beer"s Law, which defines the intensity attenuation as a function of incident and detected X-ray intensities, path length, and material attenuation coefficient. During a scan, a series of 1D projections of the attenuation through an object are obtained by rotating the X-ray source and the detector array (mounted on opposite sides of the scanned object) at various angles. These projections are then processed by the computer using a specialized algorithm to produce a cross-sectional 2D distribution of X-ray attenuations (2D X-ray CT image). A 3D volume distribution of Xray attenuations can then be obtained by scanning different cross-sections of the object along the axis of rotation. This technique has been widely used in medical imaging (e.g. shown in X-ray CT, however, has some limitations. Not all the scanned objects have sufficient X-ray absorption contrast for effective imaging. Some image artefacts such as ring artefact, beam hardening, etc can pollute the image acquisition and interpretation. Ring artefacts commonly occur due to miscalibration or failure of individual detector elements. They appear in the reconstructed images as a number of concentric rings superimposed on the object"s structure.

Beam hardening is another common artefact. It arises when the average energy of a polychromatic X-ray beam passing through an object increases (becomes harder) as low energy photons are absorbed more readily than high energy ones. X-rays passing through the central region of the object are said to be "hardened" more than those passing through the edges because more material is traversed. This can cause a cup appearance in the image which differs from the ideal case when there is no beam hardening. Apart from the image artefacts, when reconstructing a volume with high spatial resolution, the acquisition can be very time-consuming. Although high spatial resolution X-ray CT (with spatial resolution about 1 µm) has been developed for industrial applications, most of the medical applications of X-ray CT are millimetre scales because a limited dose of low-energy X-rays is coupled with high-efficiency detector to meet the requirements of optimized tissue differentiation and optimized patient exposure time for medical research as described by Helliwell et al [START_REF] Helliwell | Applications of X-ray computed tomography for examining biophysical interactions and structural development in soil systems: A review[END_REF].

High cost of the machine is another drawback. Due to these limitations, X-ray CT is not a suitable technique for imaging cornea.

Magnetic resonance imaging

For biological tissues with high water content such as brain, eye or artery tissues, etc. magnetic resonance imaging (MRI) is a useful tomographic technique to investigate the anatomy and function of these tissues. MRI is based on the nuclear magnetic resonance (NMR) phenomenon. During MRI, a strong magnetic field is applied across the tissue to be examined. The magnetic field is then oscillated at an appropriate resonance frequency to excite the nuclear spins of the hydrogen nuclei. The radio frequency signal emitted by these excited hydrogen nuclei in the tissue (e.g. from water, fat molecules) is then detected when they relax from the magnetic interaction. As the frequency of the emitted signal is dependent on the tissue and the pulse used to excite the spins, locations with different signal frequency indicate different amount of hydrogen nuclei. This provides a method to map the tissue in terms of hydrogen nuclei density. Thus, for tissues with different hydrogen densities, images showing contrast can be obtained. MRI is widely applied in medical areas. It is particularly well suited for the imaging and diagnosis of soft tissues such as brain, heart, eye, etc. as shown in Fig 1 .7 [START_REF] Lee | Brain magnetic resonance imaging findings in smith-lemli-opitz syndrome[END_REF][START_REF] Sommer | Magnetic resonance imaging in valvular heart disease: clinical application and current role for patient managemen[END_REF][START_REF] Pan | Visual assessment of brain magnetic resonance imaging detects injury to cognitive regulatory sites in patients with heart failure[END_REF]. However, it can only be used for materials that present MR signal.

MRI is a safe technique as it does not involve harmful ionizing radiations compared with Xray CT. This technique also has limitations. Although many MRI scanners have spatial resolution better than 100 µm , only a small number are better than 10 µm as described by Glover et al [START_REF] Glover | Limits to magnetic resonance microscopy[END_REF]. The machine makes tremendous noise d uring scanning, and it usually requires a long scanning time. In addition, MRI equipment is very expensive. Thus, this technique is not suitable for the present study. CM has very high submicrometre spatial resolution, approximately 200 nm in lateral and 400 nm in axial depending on the NA of the objective and the wavelength of the emitted light as described by Croixl et al [START_REF] St Croix1 | Confocal microscopy: comparisons, applications, and problems[END_REF]. The imaging depth however is limited to submillimetre scales, e.g. 240 µm for a non-compensated setup and 800 µm for a compensated setup which was previously studied by McConnell [START_REF] Mcconnell | Improving the penetration depth in multiphoton excitation laser scanning microscopy[END_REF]. To image tissues that are thicker than a millimetre such as cornea, artery, etc., a technique with larger imaging depth would be more suitable.

Optical coherence tomography

Optical coherence tomography (OCT) is a non-invasive, non-contacting imaging technique that can acquire micrometer resolution, cross sectional images from within semi-transparent, light scattering media such as biological tissues. It is based on low coherence interferometry through the use of broadband light sources that can emit light over a broad range of frequencies [START_REF] Fercher | Optical coherence tomography -development, principles, applications[END_REF]. Basically, OCT can be divided into two types, time domain OCT (TD-OCT)

and frequency domain OCT (FD-OCT).

A typical schematic for the two types of OCT is shown in Gambichler et al).

Compared to TD-OCT, FD-OCT has the advantages of faster signal acquisition and higher signal-to-noise ratio [START_REF] Kaluzy | Spectral optical coherence tomography: a novel technique for cornea imaging[END_REF]. Currently, many commercial OCT systems, especially SD-OCT, are available [START_REF] Kiernan | Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems[END_REF]. This rapidly developing imaging technique has already been applied in many areas, ranging from diagnostics medicine such as ophthalmology, cardiology, gastroenterology and dermatology [START_REF] Fercher | Optical coherence tomography -development, principles, applications[END_REF][START_REF] Gambichler | Optical coherence tomography in dermatology: technical and clinical aspects[END_REF][START_REF] Kaluzy | Spectral optical coherence tomography: a novel technique for cornea imaging[END_REF][START_REF] Kiernan | Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems[END_REF][START_REF] Hutchings | Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography[END_REF][START_REF] Welzel | Optical coherence tomography of the human skin[END_REF] to industrial applications such as the study of glass fibre reinforced composites, adhesives, polymers [START_REF] Ishibashi | Swept-source optical coherence tomography as a new tool to evaluate defects of resin-based composite restorations[END_REF][START_REF] Dunkers | Optical coherence tomography of glass reinforced polymer composites[END_REF][START_REF] Wiesauer | Investigation of glass-fibre reinforced polymers by polarization-sensitive, ultra-high resolution optical coherence tomography: Internal structures, defects and stress[END_REF][START_REF] Bista | Nondestructive assessment of current one-step self-etch dental adhesives using optical coherence tomography[END_REF], etc. Examples of OCT images are given in Fig 1 .10.

Compared to X-ray CT, MRI and CM, OCT is more suitable for the depth-resolved 3D imaging of thin soft biological tissues such as cornea, skin, artery, etc. X-ray CT requires the scanned objects to have sufficient X-ray absorption contrast for effective imaging, and the spatial resolution for medical application is typically millimetre scale. Although MRI is used for imaging biological tissues such as brain, heart, etc., its relatively poor spatial resolution (<100 µm ) is not sufficient for thin tissues such as cornea. In addition, the high cost of X-ray CT and MRI confines the applicability of these techniques. CM can provide very high spatial resolution (e.g. 200 nm in lateral and 400 nm in axial), the imaging depth of this technique however is limited to submillimetre scale. OCT is more suitable as it can provide larger imaging depth (~ 3 mm in air) as well as high spatial resolution (~1 µm in lateral and axial) as studied by Safrani et al [START_REF] Safrani | Ultrahigh-resolution full-field optical coherence tomography using spatial coherence gating and quasi-monochromatic illumination[END_REF]. Therefore, in the present study, OCT was selected for the reconstruction of the soft tissues such as cornea. 

Inverse problem to identify material constitutive parameters

Traditional approaches for the identification of the material constitutive parameters involve simple mechanical tests such as tensile or bending tests. They allow the identification of constitutive parameters based on analytical relations between these parameters and measured data such as local strains and applied load. However, these approaches are usually based on some stringent assumptions such as uniform or linear stress distributions, which are difficult to ensure experimentally. Therefore, alternative methods are currently being developed to relax some of the limitations of these simple tests. The most promising rely on displacement/strain fields obtained from suitable full-field measurement techniques coupled with numerical processing and a robust identification strategy that can extract the parameters from the strain field.

The classical direct problem consists in determining the displacement, strain and stress fields assuming that the constitutive equations, the constitutive parameters, the load, the boundary conditions and the geometry are known. Using the same set of equations, another problem aims at finding the constitutive parameters that govern the constitutive equations assuming the displacement/strain fields are known. The displacement/strain fields are usually obtained using suitable full-field measurement techniques coupled with numerical processing methods such as tomography plus digital volume correlation. The load is measured through traditional load sensors. The geometry and the constitutive equations are known a priori. This is referred to as an inverse problem. Several methods have been developed to solve the inverse problem including finite element model updating (FEMU) [START_REF] Bryant | Constitutive laws for biomechanical modeling of refractive surgery[END_REF][START_REF] Anderson | Application of structural analysis to the mechanical behaviour of the cornea[END_REF][START_REF] Nguyen | An inverse finite element method for determining the anisotropic properties of the cornea[END_REF][START_REF] Pandolfi | A model for the human cornea: constitutive formulation and numerical analysis[END_REF][START_REF] Pandolfi | Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations[END_REF][START_REF] Avril | Overview of identification methods of mechanical parameters based on full-field measurements[END_REF] and the virtual fields method (VFM) [START_REF] Pierron | The virtual fields method[END_REF][START_REF] Gré Diac | The virtual fields method for extracting constitutive parameters from full-field measurements: a review[END_REF][START_REF] Avril | General framework for the identification of constitutive parameters from full-field measurements in linear elasticity[END_REF][START_REF] Gré Diac | Numerical issues in the virtual fields method[END_REF][START_REF] Avril | Overview of identification methods of mechanical parameters based on full-field measurements[END_REF]. These methods were reviewed by Avril et al in [START_REF] Avril | Overview of identification methods of mechanical parameters based on full-field measurements[END_REF].

Finite element model updating

FEMU is the most widely accepted approach for inverse problem solution. It compares the mechanical measurements collected on the specimen with their numerical counterparts obtained from a finite element (FE) model. A cost function is built up using the difference between the numerical and the experimental values in terms of force and/or displacement or strain. The cost function is then minimized with respect to the sought constitutive parameters iteratively, and finally provides a solution to the problem.

Different constitutive models have been used by the researchers to characterize the mechanical properties of cornea using FEMU. Early research applied isotropic constitutive models such as linear elastic isotropy, linear transverse isotropy, nonlinear elastic isotropy, and hyperelastic isotropy to predict the mechanical response of the cornea under inflation conditions [START_REF] Bryant | Constitutive laws for biomechanical modeling of refractive surgery[END_REF][START_REF] Anderson | Application of structural analysis to the mechanical behaviour of the cornea[END_REF]. More recently, researchers have studied anisotropic properties of the cornea using FEMU. Anisotropic hyperelastic models are often chosen to characterize the anisotropic nonlinear behaviour of the cornea [START_REF] Nguyen | An inverse finite element method for determining the anisotropic properties of the cornea[END_REF][START_REF] Pandolfi | A model for the human cornea: constitutive formulation and numerical analysis[END_REF][START_REF] Pandolfi | Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations[END_REF].

FEMU however exhibits some shortcomings. It is iterative by essence, even in the simplest case of linear elasticity. Therefore, initial values must be provided to start the iteration procedure. The choice of the initial values generally affects the convergence rate and the quality of the results as local minima of the cost function may appear. In addition, at least one FE model needs to be run for each cost-function evaluation, resulting in computationally intensive routines, particularly for highly non-linear problems (large deformation, hyperelasticity, etc.

The VFM has been developed specifically to solve this inverse problem when full-field measurements are available. It avoids the drawbacks of FEMU by taking maximum advantage of the availability of full-field deformation measurements.

The virtual fields method

The VFM is based on the principle of virtual work as described by Pierron et al [START_REF] Pierron | The virtual fields method[END_REF]. It utilizes the full-field deformation measurement data to retrieve the unknown constitutive parameters. For VFM, the stress fields are substituted as a function of the unknown parameters, and the identification is achieved by making the stress fields validate the equilibrium equation of the principle of virtual work with preselected test functions. A thorough explanation for the VFM will be given in Chapter 2.

The method for identifying the constitutive parameters depends on the nature of the material. For linear elastic materials, the equilibrium equation of the principle of virtual work depends linearly on the sought parameters. Therefore, a direct identification of the constitutive parameters is available by choosing proper test functions and solving the correspondent linear equation system. This strategy has been applied to the identification of the in-plane, through-thickness and bending stiffness components of linear elastic anisotropic materials such as composites [START_REF] Pierron | Identication of the through-thickness properties of thick laminated tubes using the virtual fields method[END_REF][START_REF] Gré Diac | Novel procedure for complete in-plane composite characterization using a single T-shaped specimen[END_REF][START_REF] Gré Diac | The Iosipescu in-plane shear test applied to composites: a new approach based on displacement field processing[END_REF][START_REF] Diac | On the direct determination of invariant parameters governing the bending of anisotropic plates[END_REF]. It should be noted that certain non-linear constitutive models can still be explicitly and linearly expressed as functions of the unknown constitutive parameters, which has previously been described [START_REF] Gré Diac | Applying the virtual fields method to determine the through-thickness moduli of thick composites with a nonlinear shear response[END_REF][START_REF] Chalal | Direct identification of the damage behaviour of composite materials using the virtual fields method[END_REF][START_REF] Guélon | A new characterisation method for rubber[END_REF].

For other materials, the constitutive equations of which are not linear functions of the constitutive parameters such as anisotropic hyperelasticity or elasto-plasticity, direct identification is not feasible. Therefore, an iterative procedure minimizing the residual of the equilibrium equation of the principle of virtual work needs to be applied. It has been used to identify the elasto-plastic constitutive parameters of metals [START_REF] Gré Diac | Applying the virtual fields method to the identification of elastoplastic constitutive parameters[END_REF][START_REF] Pannier | Identification of elasto-plastic constitutive parameters from statically undetermined tests using the virtual fields method[END_REF][START_REF] Avril | Stress reconstruction and constitutive parameter identification in plane-stress elasto-plasticity problems using surface measurements of deformation fields[END_REF] and has been verified to be feasible to identify the anisotropic hyperelastic constitutive parameters of the soft and biological materials such as arteries [START_REF] Avril | Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements[END_REF][START_REF] Kim | Experimental characterization of rupture in human aortic aneurysms using a full-field measurement technique[END_REF].

Full-field deformation measurement techniques

According to the discussions above, it is obvious that the acquisition of the deformation field and the corresponding strain field is a prerequisite for the identification of material constitutive parameters. Recent advances in surface/volume deformation measurement techniques such as the grid method, wavelength scanning interferometry, digital image/volume correlation, etc. enable the 2D and/or 3D deformation measurements. These techniques are reviewed in this section.

The grid method

The grid method is an optical method developed to measure surface deformation which was previously studied by Surrel [START_REF] Surrel | Moire and grid methods: a signal-processing approach[END_REF]. It is based on the use of a spatial carrier to characterize the surface of a specimen. The spatial carrier is made up of a grid pattern with a set of horizontal and vertical lines bonded at the surface of the specimen. The intensity pattern reflected by the grid is captured by a high resolution camera to extract the phase fields using the spatial phase shifting methods. The displacement fields from the reference to the deformed state are then calculated from the corresponding phase differences introduced by the deformation. Fig 1.11 shows typical displacement and strain maps for a glass fibre reinforced epoxy open-hole tensile specimen studied by Pierron et al [START_REF] Pierron | Full-field assessment of the damage process of laminated composite open-hole tensile specimens[END_REF]. The specimen was bonded a grid pattern and loaded up to surface ply cracking in a tensile machine under controlled displacement. A CCD camera was positioned in front of the specimen to record the grid pattern of the specimen under various loading conditions. Then, the phase changes between each two consecutive images were calculated from which the displacements can be determined incrementally. By adding up this series of displacement increments the total displacement field at any load where an image was recorded can be determined, In the left column of however is limited to surface deformation measurement. For tests such as bending as studied by Avril et al [START_REF] Avril | A full-field optical method for the experimental analysis of reinforced concrete beams repaired with composites[END_REF], surface measurement would suffice as deformation is homogeneous through the width. For more heterogeneous through-thickness deformations, volume deformation measurement is needed. 

Wavelength scanning interferometry

Interferometric techniques such as wavelength scanning interferometry (WSI) have been applied to the measurement of depth-resolved displacement fields by Ruiz et al [START_REF] Ruiz | Depth-resolved whole-field displacement measurement by wavelength-scanning electronic speckle pattern interferometry[END_REF][START_REF] Ruiz | Depth-resolved whole-field displacement measurement using wavelength scanning interferometry[END_REF][START_REF] Chakraborty | Measurement of all orthogonal components of displacement in the volume of scattering materials using wavelength scanning interferometry[END_REF]. WSI is a volume imaging technique in which 2D image sequences are recorded as the wavenumber of the light source changes over time. It uses a tunable light source to illuminate the sample. First, the phase can be extracted by measuring the light intensity when phase shifts are introduced between two interfering waves. The phase shifts are a function of the temporal carrier which is introduced by the changing wavenumber and with a frequency that is related to the optical path difference. Through Fourier transformation the signal is separated into different depth-resolved bands. Then, the phase distribution is used to measure the in-depth displacement fields, which is carried out first by calculating the phase change between the two phase volumes of the reference and deformed states of the sample. After that, the resulting phase difference maps are unwrapped to produce the 3D displacement field by an unwrapping algorithm that connects the phase change to the change in optical path length due to the deformation. A latest WSI system that can measure all orthogonal components of displacement in the volume of scattering materials was developed by Chakraborty and Ruiz [START_REF] Chakraborty | Measurement of all orthogonal components of displacement in the volume of scattering materials using wavelength scanning interferometry[END_REF]. In their study, an optical setup was developed which used a tunable laser and had three illumination beams to illuminate the sample from three non-coplanar directions. Using this optical setup, all the displacement components in each voxel of the data volume were obtained by simultaneously measuring the interference signal from the different illumination directions during a wavelength scan. These interference signals were separated for the different illumination directions in the frequency domain by introducing different optical paths between the reference and illumination beams so that interference signals from different illumination directions will have a different carrier frequency in the spectral domain. To evaluate the performance of the WSI system, an epoxy sample was moved by an in-plane rotation and outof-plane tilt, and the displacement fields were measured using the WSI system. First, the change in the 3D phase distributions before and after moving the sample was measured. The displacement fields were then calculated from the measured phase change. Fig 1 .12 gives an example of the measured 3D displacement fields. The rows from top to bottom illustrate the three displacement components, while the columns from left to right illustrate different sections of the data volume. Chakraborty and Ruiz observed excellent agreement between the measured and reference displacements.

Elastography

Elastography is a medical imaging technique for the mapping of strain and elastic modulus in soft tissues. Different ways can be employed to perform elastography including ultrasound elasticity imaging [START_REF] Cespedes | Elastography: Elasticity imaging using ultrasound with application to muscle and breast in vivo[END_REF], magnetic resonance elastography (MRE) [START_REF] Manduca | Magnetic resonance elastography: Non-invasive mapping of tissue elasticity[END_REF], and OCT-based elastography (OCE) [START_REF] Wang | Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time[END_REF][START_REF] Zaitsev | Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability[END_REF][START_REF] Kirkpatrick | OCT-based elastography for large and small deformations[END_REF][START_REF] Sun | Optical coherence elastography: Current status and future applications[END_REF].

Generally, OCE determines the deformation in the OCT image sequences (B-scans) by applying 2D cross-correlation algorithms (CCOCE) to calculate the speckle motion due to applied forces. Fig 1 .13 gives an example of the OCE map for a multi-layer silicone phantom under compression. The map clearly shows the difference in stiffness between the two layers.

Another type of OCE determines the deformation by measuring the phase change between successive A-scans or B-scans due to tissue motion, which is called phase-sensitive OCTbased elastography (PSOCE). Compared with CCOCE, PSOCE is capable of detecting very small sub-wavelength deformation, and is faster (capable of real time imaging of instantaneous tissue deformations) as described by Wang et al [START_REF] Wang | Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time[END_REF]. OCE is a useful method to quantify the elastic behaviour of soft tissues. However, most of the applications have so far focused on the measurements with only axial sensitivity, espec ially for PSOCE. For a more comprehensive study of the material behaviour (e.g. deformation in anisotropic material) as well as the prerequisite for the identification of 3D constitutive parameters using FEMU or VFM, measurement of the depth-resolved 3D deformation is highly desirable. This can be implemented by either 1) using a system with sensitivity to all deformation components based on a wavelength scanning OCT system with multiple illumination directions as introduced by Chakraborty and Ruiz [START_REF] Chakraborty | Measurement of all orthogonal components of displacement in the volume of scattering materials using wavelength scanning interferometry[END_REF] or 2) using a single channel OCT system coupled with digital volume correlation to provide deformation fields with all components. images acquired from the surface of a specimen in the reference and deformed states. To be able to perform DIC, the measured surface must present patterns (surface contrast) so that they can be tracked. The pattern can be provided either by the intrinsic surface texture of the specimen or application of markers such as spray painting and powders, etc. to provide a diffusively reflective surface. For DIC, two approaches have been mainly used to quantify the surface deformation. The first one, which is the most widely used, is a local approach. In this case, the images in the reference and deformed states are first divided into subsets. These subsets are then correlated individually through a cross-correlation algorithm between the two loading states to determine the displacement vector of each subset. This is realized by maximizing the correlation coefficient that measures the degree of similarity of the grey level distributions in the subsets of the reference and deformed states. The best prediction of the displacement relates to the highest degree of similarity of the grey level distributions thus, to the maximal correlation coefficient. Fig 1 .14 shows the front views of a tensile bar with applied speckle pattern under subsequent load steps and the axial strain maps obtained with DIC studied by Parsons et al [START_REF] Parsons | An experimental investigation of the large-strain tensile behavior of neat and rubber-toughened polycarbonate[END_REF]. The other approach quantifies the deformation field based on a continuous global field using a large number of degree of freedom determined at the same time rather than sequentially for the local approach. This is referred to as global approach as described by Hild et al [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF]. DIC has been widely applied in many disciplines such as mechanical engineering, material science, medical science, etc. [START_REF] Boyce | Full-field deformation of bovine cornea under constrained inflation conditions[END_REF][START_REF] Myers | The inflation response of the posterior bovine sclera[END_REF][START_REF] Libertiaux | Experimental verification of brain tissue incompressibility using digital image correlation[END_REF][100][START_REF] Wang | Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation[END_REF][102]. This method however is limited to surface deformation measurement. Thanks to the development of the various tomographic techniques, volume deformation measurement based on the same principle as DIC becomes possible. Like DIC, DVC requires sufficient speckle contrast in the reconstructed volumes to ensure that the correlation algorithm runs successfully. For solid materials with cellular or granular structures, such as trabecular bone, wood, etc., X-ray CT is suitable for the volume reconstruction as these materials present X-ray absorption contrast, as illustrated in Fig 1 .15.

These volume reconstructions are suitable for application of DVC for internal deformation measurement [START_REF] Forsberg | 3D micro-scale deformations of wood in bending: Synchrotron radiation µ CT data analyzed with digital volume correlation[END_REF][START_REF] Gillard | The application of digital volume correlation (DVC) to study the microstructural behaviour of trabecular bone during compression[END_REF][START_REF] Forsberg | 3-D deformation and strain analysis in compacted sugar using X-ray microtomography and digital volume correlation[END_REF][START_REF] Madi | Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis[END_REF]. Engineering materials such as metals, composites, foams etc. have also been studied using X-ray CT coupled with DVC [START_REF] Pierron | Comparison of the mechanical behaviour of standard and auxetic foams by x-ray computed tomography and digital volume correlation[END_REF][START_REF] Leplay | Three-dimensional analysis of an in situ double-torsion test by X-ray computed tomography and digital volume correlation[END_REF][START_REF] Limodin | Influence of closure on the 3-D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3-D volume correlation[END_REF][START_REF] Brault | In-situ analysis of laminated composite materials by X-ray micro-computed tomography and digital volume correlation[END_REF]. In some cases, small particles need to be seeded into the material during the manufacturing process in order to provide sufficient pattern contrast. The application of DVC coupled with X-ray CT requires the materials to present proper X-ray absorption contrast. For soft semi-transparent materials such as biological tissues (cornea, skin, artery, etc.), more suitable techniques can be used.

CM is one option for these types of material, which can provide high resolution (submicron) volume data. It has been coupled with DVC by Franck et al [START_REF] Franck | Three dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation[END_REF] to measure the internal 3D deformation of agarose gel under compression, and showing reasonable results. CM is however limited to very small fields of view. As the penetration depth for CM is generally restricted to submillimetre, for thicker specimens such as cornea, skin, artery, etc. this technique is not adequate for mapping the whole through-thickness deformation field. It has been shown in the previous sections that OCT is capable of obtaining larger penetration depths compared to CM, and is widely used to image soft biological tissues. To measure the internal 3D deformation of soft biological tissues such as cornea, it would be interesting to combine OCT reconstructed volume data with DVC.

Conclusions

Cornea plays a very important role in the optical function of the eye. It has a complex composite structure, and is composed of five layers. Different corneal pathologies can cause changes in the corneal biomechanical properties, and corneal surgery such as refractive surgery requires a comprehensive understanding of the corneal deformation behaviour.

Therefore, the study of the corneal biomechanical properties and its deformation behaviour is of great importance in clinical applications. A number of studies have been undertaken by researchers to characterize the corneal biomechanical properties using experimental testing methods such as inflation test, tensile test, etc. These studies however are based on surface measurement, which are not adequate to fully address the through-thickness information.

Tomographic imaging techniques are useful methods for the internal structure analysis of materials. Many types of tomographic techniques are available nowadays for depth-resolved imaging, such as X-ray CT, MRI, CM, and OCT. Among these techniques, OCT is the most suitable for imaging biological tissues such as cornea, skin, artery, etc. considering its relatively good resolution and deeper penetration. FEMU is the most widely used approach for the identification of material constitutive parameters, which however exhibits limitations such as local minima and longer processing time. The VFM is an alternative method specifically developed for processing full-field measurements, which overcomes these drawbacks to a certain point. To identify material parameters using FEMU or the VFM, fullfield deformation measurements must be provided a priori. DVC is a popular method developed to determine the volume deformation, which is generally applied nowadays by coupling with X-ray CT reconstructed volume data. To determine the internal 3D deformation of soft biological tissues such as cornea, DVC will be performed on the OCT reconstructions.

CHAP TER 2 3D VIRTUAL F IELDS METHOD FOR LINEAR ELASTICITY

Introduction

The virtual fields method (VFM) is a useful method for solving identification problems which was developed by Pierron et al [START_REF] Pierron | The virtual fields method[END_REF]. It is based on the principle of virtual work and retrieves material constitutive parameters by utilizing the full-field deformation measurements. This method is less time consuming compared with finite element model updating (FEMU) since for the latter at least one FE model needs to be run for each costfunction evaluation, resulting in computationally intensive routines, particularly for highly non-linear problems. So far, the VFM has been applied successfully to the identification of constitutive parameters for linear elastic materials such as composites, elasto-plasticity for metals as well as hyperelasticity for soft and biological tissues such as arter ial walls, etc.

However, most of these applications are based on surface deformation measurements and 2D VFM (usually with assumption of plane stress or thin plate). For materials with more complex structures and stress states, surface deformation measurement and 2D VFM are not able to address the complete mechanical property of such materials. In this case, 3D VFM in connection with volume deformation measurements would be highly desirable.

In this chapter, the derivation of the 3D manually defined VFM and the 3D optimized piecewise VFM for linear elasticity is presented in detail. A strategy to select suitable virtual fields that enable direct identification and minimize the influence of noise is adopted for the optimized piecewise VFM, which has already been proved successful in 2D identification [START_REF] Pierron | The virtual fields method[END_REF]. Simple FE models were produced to verify the feasibility of the established 3D virtual fields. Finally, the manually defined virtual fields are benchmarked against the piecewise optimized virtual fields to compare their performance in retrieving constitutive parameters from noise corrupted strain data.

3D virtual fields method in linear elasticity

The virtual fields method, developed to identify the material constitutive parameters, is based on the principle of virtual work. This equation, provided below, is the integral form of the global equilibrium equation for the standard deformable continuous solid model. It describes the balance between the virtual works of internal and external forces.

dV dV dS dV V V V V             * * * * u a u b u T ε σ  : (2.1)
In this equilibrium equation, σ is the actual stress tensor, * ε is the virtual strain tensor, * u is the virtual displacement vector, T is the applied stress vector on the boundary V  of the solid volume V, b is the volume force vector, a is the acceleration vector and  is the mass per unit volume. The "." Is the vector dot product and ":" is the contracted product for second order tensors (or the matrix dot product). In this study, the solid will be assumed to be subjected to quasi-static deformation and body forces will be neglected. Therefore, their contribution to the virtual work can be canceled out. Thus, the equilibrium equation becomes
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This equilibrium equation is valid for any continuous and differentiable virtual displacement field. The actual strain field and the load information are provided by the experiment. The stress components can be substituted by the material constitutive parameters and the strain components through an appropriate constitutive equation. The stress and strain components can be denoted in columns as follows 
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In this chapter, the standard contracted notation is used as follows for the sake of legibility.
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The engineering shear strain is equal to twice the tensorial shear strain component. Thus, After introducing the constitutive relation into the equilibrium equation (2.2) of the principle of virtual work, the stress components can be replaced by the actual strain components and the sought constitutive parameters. Thus, the equilibrium equation ( 2
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Assuming the material to be homogeneous, the equation above becomes
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For 3D orthotropic elasticity, the stress and strain components are related by the stiffness matrix as 
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where 11

Q and 12 Q are the two stiffness components relating to Young"s modulus E and

Poisson"s ratio ν through
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Therefore, for isotropic elasticity, after introducing equations (2.7) and (2.8) into equation (2.6), the equilibrium equation (2.6) can be written as
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For orthotropic elasticity, the equilibrium equation (2.6) becomes
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Each new virtual field leads to an independent linear equation. Therefore, choosing as many virtual fields as the number of unknowns leads to a linear equation system

B AQ  (2.12)
where A is a square matrix, Q is a vector containing the sought constitutive parameters ij Q , and B is a vector whose components are the external virtual works done by the applied force for each virtual field. For the isotropic case, only two virtual fields are needed as there are only two unknowns to identify. Thus,
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Similarly, for orthotropic elasticity, nine virtual fields need to be chosen for the nine unknown constitutive parameters. Thus, the corresponding A is a square matrix, and Q and B are vectors with 9 components.

It should be pointed out that due to the discrete nature of the deformation measurement, the integrals above must be approximated in practice by discrete sums. This is the reason why full-field measurements are necessary for the VFM. If the spatial density of the strain measurement points is not large enough to faithfully reproduce the strain gradients, this approximation will cause errors that will lead to biases on the identified stiffness components. In practice, this is an important problem to consider but it will not be addressed here. For instance, the integral
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If the selected virtual fields are independent, then the determinant of A is different from zero. Thus, the linear system is invertible and Q can be directly obtained by

B A Q -1  (2.15)

Manually defined virtual fields in 3D case and example for validation

In this section, manually defined virtual fields were selected for the identification of the material constitutive parameters based on the method described in the previous section 2.2. A simple case of a cube in compression was designed to illustrate the practical implementation of the virtual fields method in 3D. Linear isotropic elasticity was chosen for the sake of simplicity.

Simulation of strain data

A simple finite element model was produced to supply precise actual strain values and applied force from which the constitutive parameters can be extracted using the 3D VFM. If 

Q (GPa) 12 Q (GPa)
Young"s modulus E (GPa) Poisson"s ratio ν 134.6 57.7 100.0 0.3

After running the simulation, the strain data were exported from ABAQUS for each element.

The coordinates of the centroid of each element were also output. These quantities were then utilized to characterize the constitutive parameters using 3D VFM.

3D manually defined virtual fields

As stated in section 2.2, two different virtual fields need to be selected to retrieve the Young"s modulus and Poisson"s ratio for isotropic elasticity. Since the reaction forces on the clamped surface are hard to measure in practice, the selected virtual fields on this surface need to be set to 0 so that the contribution of these reaction forces to the external virtual work can be cancelled out from the VFM equations. Here, two groups of virtual fields were chosen among an infinity of possibilities. For the first group, the virtual displacement field and the corresponding virtual strain field are

        0 0 : 1 ) 1 ( * 3 ) 1 ( * 2 1 ) 1 *( 1 u u x u field Virtual                    0 0 0 0 0 1 ) 1 *( 6 ) 1 *( 5 ) 1 *( 4 ) 1 *( 3 ) 1 *( 2 ) 1 *( 1       (2.16)         0 0 : 2 ) 2 *( 3 3 2 1 ) 2 *( 2 ) 2 *( 1 u x x x u u field Virtual                  3 2 ) 2 *( 6 ) 2 *( 5 2 1 ) 2 *( 4 ) 2 *( 3 3 1 ) 2 *( 2 ) 2 *( 1 0 0 0 x x x x x x       (2.17)
After introducing the above two virtual fields (2.16) and (2.17) into the equilibrium (2.10), a linear equation system can be formed to directly determine the sought stiffness components 11 Q and 12 Q .

For virtual field 1, the left-hand side of the equilibrium equation (2.10) becomes 

  dV Q dV Q dV Q dV Q V V V V                              
* 2 2 * 1 1 11 2 1 2 1 2 1 2 1 2 1 2 1                                  (2.18)
The virtual displacement at point A is equal to

L A u  ) ( * 1 , 0 ) ( * 2  A u , 0 ) ( * 3  A u
. Therefore, the external virtual work at the right-hand side of the equilibrium equation (2.10) is equal to

L F dS x V 1      * u T (2.19)
So the equilibrium equation (2.10) becomes

  L F dV Q dV Q x V V 1 3 2 12 1 11          (2.20)
Similarly, for virtual field 2, the equilibrium equation (2.10) becomes

  3 3 2 6 2 1 4 3 1 3 1 12 3 2 6 2 1 4 3 1 2 11 2 2 1 2 1 ) 2 1 2 1 ( L F dV x x x x x x Q dV x x x x x x Q x V V                        (2.21)
Thus, the linear equation system is equal to

B AQ  (2.22)                                 V V V V dV x x x x x x dV x x x x x x dV dV 3 2 6 2 1 4 3 1 3 1 3 2 6 2 1 4 3 1 2 3 2 1 2 1 2 1 ) 2 1 2 1 ( :           A           12 11 : Q Q Q             3 2 1 : L F L F x x B
After approximating the above integrals by discrete sums over the whole measurement data points, matrix A in the linear equation system (2.22) becomes

                                             n i i i i i i i i i i i i n i i i i i i i i i i i n i i i i n i i i v x x x x x x v x x x x x x v v 1 ) ( ) ( 3 
) ( 2 ) ( 6 
) ( 2 ) ( 1 ) ( 4 ) ( 3 ) ( 1 ) ( 3 ) ( 1 1 ) ( ) ( 3 
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) ( 2 ) ( 1 ) ( 4 ) ( 3 ) ( 1 ) ( 2 1 ) ( ) ( 3 
) ( 2 1 ) ( ) ( 1 2 1 2 1 ) 2 , 2 ( 2 1 2 1 ) 1 , 2 ( ) 2 , 1 ( ) 1 , 1 (           A A A A (2.23)
For this FE model, because the mesh is regular, )

(i v
is constant and equal to n V , where V is the volume of the object and n is the number of elements. Therefore, ) (i v can be taken out of the sum, and a sum in matrix A, for instance, becomes Finally, the linear equation system (2.22) to solve can be written as follows

1 1 ) ( 1 1 ) ( ) ( 1    V n V v n i i n i i i       (2.
                                               V L F V L F Q Q x x x x x x x x x x x x x x 3 12 11 3 2 6 2 1 4 3 1 3 1 3 2 6 2 1 4 3 1 2 3 2 1 2 1 2 1 2 1 2 1 2 1           (2.25)
Young"s modulus and Poisson"s ratio can then be calculated through the relation (2.9). The identification results were obtained after introducing the simulated strain results into the Matlab program of the 3D VFM. The identified values were compared to the reference ones in Table 2.2 and the relative errors were calculated using the following equations

             % 100 _ % 100 _ reference reference identified reference reference identified error E E E E error     (2.26)
It can be seen that the identified results are nearly exactly the same as the input values. Two more complicated virtual fields using sine and exponential functions were also chosen for identification, which are For these virtual fields, for 0 1  x , all the virtual displacement components are zero, as required to filter out the bottom reaction forces. Using the same analysis as for virtual fields 1 and 2, another linear equation system can be formed for the identification of stiffness components 11
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Q and 12 Q . The elements of matrix A in the linear equation system for virtua l fields 3 and 4 is equal to
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Thus, the linear equation system can be expressed as
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The identification results are listed in Table 2 Another two virtual fields with higher degrees were selected, which are 
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Similarly, a linear equation system can be formed using the above two virtual fields, which writes 
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The identified E and  are shown in Table 2.4. Although the results are very close to the references, larger error can be seen. It indicates that this set of virtual fields is less stable and more sensitive to noise. This is caused by the higher order polynomial functions which amplify the small numerical errors from the FE model. The above results show that the exact strain data from simulation can yield very good identification results. However, in practice strain measurements are corrupted by different sources of noise. This will degrade the identification accuracy. To illustrate this, Gaussian white noise with standard deviation of 4 10  was added to the exact strain data, which is tens of percent of the actual strain values. The strain data with noise were then used to extract E and  using the previously defined sets of virtual fields 1 and 2, 3 and 4, 5 and 6, respectively. The results are given in Table 2.5. It can be seen that the error becomes much larger especially for the set of virtual fields 5 and 6. This is not surprising when looking at the condition number of matrix A in the linear equation system for each set of virtual fields, which is 907.07, 3.26, , for virtual fields 1 and 2, 3 and 4, 5 and 6, respectively.

The reason for this is that error in B will introduce larger error in the solution Q when the condition number of A is larger. Thus, the choice of virtual fields can be critical and virtual fields that can minimize noise effect become highly desirable. 

Special virtual fields

Due to the fact that the principle of virtual work is valid for any continuous and differentiable virtual displacement field, there are infinite choices for such virtual fields. Therefore, it is desirable to add some constraints so that better choices of the virtual fields can be reached.

As stated in section 2.3.2, the condition number of A in the linear equation (2.15) generally indicates how inaccurate the solution Q will be after inversion of the linear system.

If the square matrix A is equal to the identity matrix I, then its condition number is equal to one. This condition number indicates that the matrix A is the best conditioned and the solution Q can be less sensitive to the errors in B. In addition, the problem of independence of the virtual fields can be solved when the matrix A is equal to the identity matrix I. Such virtual fields are referred to as special virtual fields as stated by Pierron et al in [START_REF] Pierron | The virtual fields method[END_REF]. In this case

B B I B A Q 1 1      (2.35)
These special virtual fields can be obtained by defining the diagonal components of A as one and the other components as zero. In the isotropic case for instance,

1 ) 1 , 1 (  A , 0 ) 2 , 1 (  A
for the first special virtual field

) 1 ( * u and 0 ) 1 , 2 (  A , 1 ) 2 , 2 (  A
for the second special virtual field ) 2 ( * u . Analogously, the special virtual fields for the orthotropic case can be obtained by defining the virtual fields so that nine diagonal components are equal to one and all the others to zero. The special virtual fields can lead to a straightforward solution.

Piecewise virtual fields

Virtual fields can be constructed using various types of functions such as polynomials, sine functions or piecewise functions. Similar to the approach that is used to construct the actual displacement field in the finite element method, the virtual displacement of a point in an element can be expressed as a function of the virtual displacement at the nodes of this element as 
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where   
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Virtual strains in the element can be calculated using the derivatives of the virtual displacement components and expressed as

) ( * ) ( * u S ε e e  (2.41)
where * ε is a vector containing the six virtual strain components of any point within the virtual element (e).

) ( S e is a 24 6  matrix which contains the partial derivatives of the shape functions.
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Results for each element are assembled, and the global virtual strains can be calculated by

) ( * g Su ε *  (2.44)
where S is the global matrix assembled from the elemental

) ( S e
matrices of each element and expressed in the global coordinate system.

) ( * g u
is the global vector that contains the virtual displacements at all the virtual nodes of the body.

For both isotropic and orthotropic elasticity, there are 12 different types of integrals for the internal virtual work as shown in the equilibrium equations (2.10) and (2.11). Based on the above discussion, these integrals can be approximated by discrete sums. Take 

V dV * 1 1   for example       i n i g i i i i i i V v x x x x x x dV     1 ) ( * ) ( 3 
) ( 2 ) ( 1 1 ) ( 3 ) ( 2 ) ( 1 1 * 1 1 , , , , u S    (2.45)
where n is the number of measurement points. 

  ) ( 3 ) ( 2 ) ( 1 , , i i i x x x
is the coordinate of measurement point (i).

Similarly, other integrals can also be calculated.

Compared to other forms of virtual fields expansions, piecewise virtual fields have the main advantage of flexibility. When specific virtual displacements are required in certain areas for the purposes of simple calculation of the external virtual work or meeting the requirements of different boundary conditions, these conditions are more easily expressed with piecewise virtual fields.

Virtual fields minimizing noise effect

Due to the noise and measurement uncertainties, the measured strain values are different from the actual ones. This can influence the identification results depending on the sensitivity of the identified parameters to the noise. In addition, as there is an infinity of special virtual fields that can be chosen to identify constitutive parameters, some extra constraints need to be added to enable a better identification. In this case, the virtual fields that minimize the effect of noise on the identification results would be useful. The procedure for developing such virtual fields in 2D has been presented by Avril et al in [START_REF] Avril | Sensitivity of the virtual fields method to noisy data[END_REF]. In this section, this approach is extended to 3D. In reality, the noise structure of the measured strain is very complex considering the interpolation errors, speckle decorrelation, change of illumination, possible smoothing, etc. For the sake of simplicity, a simple zero-mean Gaussian noise model with standard deviation of  is assumed here. 

  B Q D I   (2.46)
where D is the matrix indicating the deviation from the actual values due to noise. Thus, the identified stiffness is

DQ B Q   (2.47)
If noise exists but is not considered, the approximate Q is identified and written as

B Q  app (2.48)
An important assumption is that the amplitude of noise  is negligible compared to the L 2 norm of the strain components,

  i   min 
.Under this assumption, equation (2.47) can be approximated as

app app DQ Q Q   (2.49)
Therefore, the variance of Q can be written as follows

          2 2 app E E E ) V( DQ Q Q Q    (2.50)
where   X E is the mathematical expectation of X, and app Q is assumed to be equal to the mathematical expectation of Q .

For the 3D isotropic case, the variances of 11 Q and 12 Q are as follows
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For the orthotropic case, the variances of the nine stiffness components are as follows 
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where i=1:9, and

  1 Q ,   2 Q ,   3 Q ,   4 Q ,   5 Q ,   6 Q ,   7 Q ,   8 Q ,   9 Q represent 11 Q , 22 Q , 33 Q , 23 Q , 13 Q , 12 Q , 44 Q , 55 Q , 66 Q , respectively.
Due to the discrete nature of the measurement, the integrals above in functions (2.51) and

(2.52) must be approximated by discrete sums. Therefore, for the isotropic case, equation 
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where k is the number of measurement points.

For the orthotropic case, equation (2.52) now becomes 
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The variances of the stiffness components can be written as

      2 2 i i ) V(Q    (2.55) Since the     2 i 
depend on the choice of virtual fields that are chosen to extract the stiffness

components ij Q , minimizing the coefficients     2 i 
will lead to the optimal choice of virtual fields in terms of stability with respect to noise.. Here,     2 i  can be rewritten as equation (2.56).

        i T i i * * 2 2 1 HY Y   (2.56)
where

  i *

Y

is the vector containing all the nodal virtual displacements and H is a square matrix obtained by rewriting equation (2.53) (for the isotropic case) or equation (2.54) (for the orthotropic case) after introducing the definition of virtual strain components given in equation (2.44). It has been proved in reference [START_REF] Pierron | The virtual fields method[END_REF] that     2 i  is strictly convex and exhibits a unique minimum. The best choice of the virtual displacements

  i *

Y

is the solution of a minimization problem. The minimization must be performed under constraints, which are the boundary conditions to eliminate the contribution of reaction forces at the supports (KA) and the special conditions to directly provide the constitutive parameters. These two types of constraints can be merged and presented in a more compact form

    i i z AY  * (2.57)
where   i z is a vector containing only zeros apart from one component which is equal to 1, and the location of this "1" component depends on i. This is the 'speciality' condition, one for each virtual field associated to each stiffness component to identify.

Using Lagrangian multipliers this constrained optimization problem becomes

              i i T i i T i i z AY λ HY Y Λ    * * * 2 1
(2.58)

Minimizing   i Λ leads to the linear system                          i i i T z 0 λ Y 0 A A H (2.59)
Since the sought quantities   i Q are unknown and involved in the     2 i  , the linear system is solved iteratively and a random first set of   i Q is chosen to start the iteration. The whole algorithm was implemented using the program. The finite element model described in section 2.3.1 was used to validate the above described identification approach by providing exact strain data.

Verification of the 3D piecewise optimized virtual fields method 2.7.1 Finite element models for validation

In addition to the isotropic model of section 2.3.1, an orthotropic model was developed to study the performance of the 3D piecewise optimized VFM in identifying the nine orthotropic stiffness components. The dimensions, the applied force, the type and number of elements are all the same as for the isotropic model, just the material properties differ. The nine input stiffness components for the orthotropic model are shown in Table 2.6, which were chosen somewhat arbitrarily. 

Q (GPa) 33 Q (GPa) 12 Q (GPa) 13 Q (GPa) 23 Q (GPa) 44 Q (GPa) 55 Q (GPa) 66 Q (GPa)

Identification results

A mesh with 3 3 3   virtual elements was considered here. As illustrated in Fig 2 .3, it has 64 nodes and 192 degrees of freedom. In this case, the vector of global nodal virtual For this model, the traction at the fixed bottom is unknown. Therefore, boundary conditions must be added to eliminate their contribution to the external virtual work. This can be easily achieved by setting all virtual degrees of freedom at the bottom nodes to zero. It can be seen that the identified values are nearly the same as the theoretical input values.

displacement * Y is                     T u u u u u u u u u
For both isotropic and orthotropic cases, the errors of all the stiffness components are much smaller than 1%. To verify that the 3D virtual fields are the truly optimized virtual fields, the sensitivity to noise of each identified stiffness component has been studied. This was implemented by studying the coefficients of variation of each stiffness component for st rain noises with increasing standard deviations. The coefficient of variation (CV) is defined in equation (2.61), which represents the ratio of the standard deviation     i to the identified stiffness component   i Q for a strain noise with standard deviation  .

          i i i Q Q CV  (2.61)
If the predicted

    i i Q  is equal to the theoretical mean     i i Q
 calculated by adding noise to the strain data and working out the scatter of the identified distributions, the virtual fields are confirmed to be the optimized ones. To validate this, a range of Gaussian white noise was added to the simulated strain data, of which the standard deviation  changes from , which is tens of percent of the actual strain values, the fit is less adequate. This is not surprising because such a large noise amplitude does not fit the precondition that the noise amplitude should be small compared with the strain values. 

Benchmarking optimized against manual virtual fields

In this section, the 3D manually defined VFM developed in section 2.3 is compared to the 3D piecewise optimized VFM. The idea is to evaluate the performance of both methods in retrieving Young"s modulus and Poisson"s ratio from noise polluted strain data. The same FE model with isotropic elasticity as introduced in previous sections is used here. As the set of manually defined virtual fields 5 and 6 are very unstable and expected to have very large error in the identification results for the noise polluted strain data, here, only the sets of virtual fields 1 & 2 and 3 & 4 are compared to the piecewise optimized VFM. The identification results are then compared with each other and critically discussed.

A range of Gaussian white noises were added to the exact simulated strain data. The noise amplitude  ranges from 0 to . For each amplitude value of  , 30 copies of noise were added to the simulated strain data. Thus, 30 identifications were run for each  using both the optimized and manually defined VFM. Poisson"s ratio, while the optimized virtual fields have the smallest error.

Based on the above discussions, it can be concluded that both the optimized and manually defined VFM can yield very good identification results. However, when the strain measurements are polluted by noise, the optimized VFM is much more stable and able to give much more accurate identification results. 

Introduction

A wide variety of techniques have been developed to measure the deformation of materials under load, ranging from point-wise sensors such as the resistive strain gauge [START_REF] Coules | Residual strain measurement for arc welding and localised high-pressure rolling using resistance strain gauges and neutron diffraction[END_REF] and optical fibre Bragg gratings [START_REF] Fernández-Valdivielso | Simultaneous measurement of strain and temperature using a fiber Bragg grating and a thermochromic material[END_REF] to 2D full-field measurements including DIC [START_REF] Zaitsev | Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability[END_REF], the grid method [START_REF] Avril | Stress reconstruction and constitutive parameter identification in plane-stress elasto-plasticity problems using surface measurements of deformation fields[END_REF], speckle interferometry [START_REF] An | Speckle interferometry for measurement of continuous deformations[END_REF] and Moiré interferometry [START_REF] Post | High-sensitivity moiré interferometry-A simplified approach[END_REF], to name a few.

For homogeneous and isotropic materials, these techniques usually provide enough information to investigate their mechanical behaviour. However, for materials with more complex structures such as biological tissues and composites, surface measurements are much less adequate to address their complete mechanical behavio ur since the deformation may vary significantly between the bulk and the surface. In this case, a depth-resolved 3D measurement (Depth-resolved represents through the thickness, while 3D refers to the 3 components of the displacement vector for each volume element in the sample) of the deformation would be highly desirable.

Thanks to the development of the various tomographic techniques, DVC has become a popular measurement technique for depth-resolved 3D deformation fields. DVC has made its way into clinical and industrial applications [START_REF] Bay | Digital volume correlation: Threedimensional strain mapping using x-ray tomography[END_REF][START_REF] Forsberg | 3D micro-scale deformations of wood in bending: Synchrotron radiation µ CT data analyzed with digital volume correlation[END_REF][START_REF] Gillard | The application of digital volume correlation (DVC) to study the microstructural behaviour of trabecular bone during compression[END_REF][START_REF] Forsberg | 3-D deformation and strain analysis in compacted sugar using X-ray microtomography and digital volume correlation[END_REF][START_REF] Madi | Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis[END_REF][START_REF] Limodin | Influence of closure on the 3-D propagation of fatigue cracks in a nodular cast iron investigated by X-ray tomography and 3-D volume correlation[END_REF][START_REF] Brault | In-situ analysis of laminated composite materials by X-ray micro-computed tomography and digital volume correlation[END_REF][START_REF] Franck | Three dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation[END_REF], where it is mainly applied on X-ray CT data of materials such as composites, metals, foams and trabecular bones. However, for soft biological tissues dominated by collagen, such as cornea, arter y or skin, OCT is a more suitable technique to reconstruct the material microstructure. With the aid of OCT, the micro structure of the scanned sample can be reconstructed as a data cube which can then be utilized for structure analysis or deformation analysis using DVC. To the best of our knowledge, this is the first time that measurements o f depth-resolved deformations have been undertaken combining OCT and DVC.

In this chapter a methodology for stiffness identification of semi-transparent and light scattering materials from depth-resolved 3D deformation fields is presented. These were obtained by performing digital volume correlation on optical coherence tomography volume reconstructions of silicone rubber phantoms. The effect of noise and reconstruction uncertainties on the performance of the correlation algorithm was first evaluated through stationary and rigid body translation tests to give an indication of the minimum strain that can be reliably measured. The phantoms were then tested under tension and the 3D deformation fields were used to identify the elastic constitutive parameters using 3D manually defined VFM. The identification results for the cases of uniform and heterogeneous strain fields were compared with those calculated analytically through a constant uniaxial stress assumption and also measured independently using a tensile testing machine.

Sample preparation

In the present study, two rectangular flat phantom strips were fabricated using silicone rubber (MM240-TV), one of them with a notch. The material comprises of two parts, a rubber base and a hardener. They were mixed to a ratio of 10:1. The nominal Young"s modulus of the silicone rubber is 1.88 MPa, which can change with the proportion of hardener. Since the silicone rubber does not present suitable speckle contrast for the application of DVC, copper particles (with an average particle size of about 1 µm ) were seeded into the silicone rubber mixture to provide the speckle contrast. The mixture was then put into molds and left to cure at room temperature for approximately 24 hours. The flat strips were cut from a larger piece using a scalpel to 

Experimental set-up and image acquisition

The experimental set-up consists of a tensile test fixture and a swept-source OCT system (SS-OCT, Thorlabs OCS1300SS, lateral resolution 25 µm, depth resolution 12µm in air), as shown in Fig 3 .2. For the test, the phantom strip was mounted with one end fixed to the fixture and the other end loaded by a dead weight. At first, a dead weight of 50 g was applied as a preload to insure the phantom strip was taut and vertical. This is a necessary step since the silicone rubber is rather compliant. The preload state was taken as the reference state. A 10 g dead weight was then added to the preload and considered as the deformed state, referred to as "load step 1" hereafter. of the sub-volumes in the reference and deformed states. This is performed b y maximizing the correlation coefficient which measures the degree of similarity of the grey level distributions in the sub-volumes in the reference and deformed states. The best prediction of the displacement leads to the highest degree of similarity of the grey level distributions thus the maximal correlation coefficient (a correlation coefficient value close to 1 indicates a perfect match). In the present study, the displacement fields were calculated using the DaVis® (LaVision) software package based on a fast Fourier transform (FFT) algorithm. It evaluates a normalized cross-correlation coefficient (NCC) defined as
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where u

x , u y , and u z are the rigid body displacement components of the sub-volume centre in the x, y and z-direction, respectively. x  , y  and z  , represent the distance between the sub-volume centre and the point   z y x , ,

. A double-pass approach was used whereby large sub-volumes were initially used to capture large displacements. Subsequent to this, these initially calculated displacements were used to displace smaller sub-volumes, and thus ensure the pattern was followed and the signal to noise ratio increased. Gaussian curve-fitting of the correlation function peak was used to detect the position of the displacement with sub-voxel resolution. The strains were then determined from the centred finite difference of the calculated displacement fields, without any additional smoothing.

Evaluation of measurement performance

A fundamental condition in image correlation techniques is that the changes in the intensity pattern are in one-to-one correspondence with the displacements of the surface. DVC results from OCT volume reconstructions of the reference and deformed states ar e likely to be affected by a variety of factors such as: 1) electronic noise of the detectors; 2) light source stability; 3) reconstruction algorithms; 4) contrast reduction through the sample thickness due to material absorption, scattering, dispersion, defocusing and spectral roll-off; and 5) straininduced speckle decorrelation due to "speckle boiling", a phenomenon in which the intensity of the speckle pattern changes considerably due to large, uncorrelated phase changes; speckle grains change from dark to bright and vice versa. We studied the combined effect of 1-4 by performing a stationary test and a rigid body translation test of the phantoms. The effect of strain induced speckle decorrelation was explored through a numerical simulation described below in section 3.5.4.

Influence of sub-volume size

The DVC algorithm requires sufficient contrast in a sub-volume in order to determine a displacement vector. The size of the sub-volumes influences the value of the correlation coefficient and thus the displacement and strain uncertainties. In the present study, four different sub-volume sizes were selected and compared to determine an optimal size considering the displacement and strain spatial variation as well as the spatial resolution. A double-pass approach used initial sub-volumes sizes 24 3 , 48 3 , 72 3 and 96 3 in the first pass, followed by 12 3 , 24 3 , 36 3 and 48 3 in the second path and each had 50% overlap with the six adjacent neighbours. Thus, the distance between each sub-volume centre with its immediate neighbours is 6, 12, 18 and 24 voxels, respectively.

From the DVC results on the OCT reconstructions of the stationary specimen, the influence of sub-volume size was analysed quantitatively by comparing the standard deviations of the strain components for a central z-slice   y x, for the four final sub-volume sizes. All the six strain components were derived from the centred finite difference of the spurious displacements as follows without any smoothing From the figure, one can see that the standard deviations of the strain components drop from when the sub-volume size increases from 12 3 to 24 3 . When the sub-volume size is further increased to 36 3 . This is not surprising when analysing the 3D views of the four sub-volumes in Fig 3 .5. As it can be seen, the 48 3 sub-volume contains the largest number of features which assist the convergence of the volume correlation algorithm and enable more accurate tracking of the sub-volume deformation. A smaller number of features in the 12 3 sub-volume lead to bigger tracking errors. However, although 48 3 sub-volumes provide the highest strain resolution among the four, it is not necessarily the optimal choice because the spatial resolution must also be taken into consideration. This is important especially for those specimens with very small thickness compared to the spatial resolution of the SS-OCT system such as the porcine cornea studied by Fu et al in [START_REF] Fu | Assessment of corneal deformation using optical coherence tomography and digital volume correlation[END_REF]. For the flat phantom in the present study, 36 3 sub-volumes were found to be a good compromise between strain resolution and spatial resolution. As a consequence, a sub-volume size of 36 3 was kept for this study. Depending on the OCT spatial sampling rate, the speckle field may be undersampled, leading to interpolation bias [START_REF] Sutton | Image correlation for shape, motion and deformation measurements[END_REF]. This issue will be discussed later on in the chapter. 

  i j j i ij u u , , 2 1  

Stationary test

Prior to performing tests that induce deformation of the sample, it is necessary to evaluate the errors caused by all sources of noise and reconstruction uncertainties. This can be done by performing DVC on two reconstructed volumes of the stationary phantom strip. Since the stationary specimen was not subjected to any applied force, the correlation results should show zero displacement and strain fields over the whole field of view. This is not the case in practice due to the influence of electronic noise in the SS-OCT system, environmental vibration, the volume reconstruction algorithm, etc. Therefore, any non-zero results should be attributed to the contribution of noise and other reconstruction uncertainties. The standard deviations of the spurious strains were calculated to evaluate the resolution (uncertainty) of the strain measurement.

Based on the volume strain fields of the stationary test, the standard deviation of each strain component was calculated for each z-slice and the results are plotted in Fig 3 .6. It can be observed that the standard deviations of all the strain components generally remain stable along the different z-slices, with a slight increase towards the ends. This is expected as the DVC results are usually noisier near edges due to the lack of data. Although with fluctuation, all the standard deviations are generally between overlap in a stationary test.

Rigid body translation test

Two reconstructed volumes were recorded after introducing a rigid body translation of 40 µm (about 10 voxels) in the y-direction between the two volumes. This not only tests the effect of all sources of noise but also tests the performance of DVC sub-voxel interpolation (tri-linear in the present study) and accuracy of the correlation algorithm in determining the displacement fields for a translated specimen. The same procedure of data processing used for the stationary test was applied to the rigid body translation test and the strain measurement resolution was computed. The above tests give an overall idea of the resolution of the whole set-up so that the significance of the tensile test results can be better analysed.

Slightly larger values of strain std, between Although the strain standard deviations for the rigid body translation test are larger than those for the stationary test, these noise levels are still low compared to the strain levels of approximately ~1% in the tensile tests and were thus considered satisfactory. overlap in a rigid body translation test.

Strain-induced speckle decorrelation

Due to the backscatter illumination/observation configuration, the complex 3D point spread function (PSF) of the OCT system has ~18 fringes across it along the axial direction (ratio between the depth resolution, 8.3 µm, and the half wavelength of the light source in the medium of refractive index 1.45, i.e. 1.325µm/(21.45)=0.457 µm). The magnitude of the measured OCT signal corresponds to the convolution between the 3D PSF and the scattering particles within the phantom. This magnitude, which determines the brightness of the 3D speckle grain at any particular position within the sample, does not change with rigid body motion of the sample as relative phase differences between scatterers within the 3D PSF remain constant. In case of strain, however, there is a limit within which the magnitude of the speckle remains nearly unchanged and beyond which an incremental DVC approach would be required.

In order to estimate the level of OCT speckle decorrelation due to strain, we performed a 2D (on the xy plane) numerical simulation involving the following steps:

1. Generate a 2D random distribution of scatterers such that there are many of them (~100) inside the point spread function of the OCT system.

2. Evaluate the 2D speckle field due to the spatial distribution of scatterers considering the numerical aperture of the system, the central wavelength and bandwidth of the source, and the refractive index of the medium. This was done by Coupland et al using linear systems theory [START_REF] Coupland | Optical tomography and digital holography[END_REF][START_REF] Ruiz | Depth-resolved imaging and displacement measurement techniques viewed as linear filtering operations[END_REF] by first calculating the transfer function of the OCT system, then evaluating the complex PSF and convolving it with the scatterers.

The speckle field was oversampled to recover phase information within the PSF. In this way, the correlation coefficient evaluation is free from under-sampling effects.

We used images of 1024×1024 pixels with a speckle size given by the dimensions of the PSF (~1024/4 pixels in the axial direction y and ~1024/2 pixels in the lateral direction x). Using the Rayleigh resolution criteria, this leads to ~8×4=32 speckles in the simulated subset, as shown in . This latter strain corresponds to a total maximum through-thickness relative displacement of the scatterers in the PSF of ~70nm. This is equivalent to ~1/6 th of the fringe period inside the PSF and is inversely proportional to the Poisson"s ratio. NCC drops to ~0.9 for xx  ~ 4%, which corresponds to yy  ~1.7% using 42 . 0   . This strain level is probably a good estimate to the maximum strain that we can measure with OCT and DVC without using an incremental approach. Above this level, the correlation coefficient is too low to guarantee a good estimate of displacements. When the changes in the magnitude of the interference of light scattered by particles within the PSF are large, the speckle is said to "boil", i.e. its structure changes while only the average speckle size is preserved. Even though these results correspond to a 2D case (B-scan), a 3D simulation is expected to render similar results to those reported here. Zaitsev et al [START_REF] Zaitsev | Elastographic mapping in optical coherence tomography using an unconventional approach based on correlation stability[END_REF] have found similar results performing a numerical simulation and evaluating the zero mean normalized cross correlation coefficient (ZMNCC) as a function of strain. They report that speckle boiling fully decorrelates the speckle for axial strain levels of ~1.5%, which compares well with our figure of ~1.7% mentioned above. 

DVC results for tensile tests

Correlation coefficient maps

The 3D deformation field was measured under tension after performing DVC on the OCT reconstructed volume data for the rectangular and notched phantom strips. As DVC was performed using the sub-volume size of 36 3 For both specimens, it can be observed that the correlation coefficient is larger in regions at the top of the samples and smaller in regions at the bottom (along y-direction). For y-slice 18 at the top of the rectangular specimen, the mean value of the correlation coefficient is 0.95, while it is 0.92 for y-slice 1 at the bottom. Similar results were obtained for the notched specimen: 0.95 and 0.84, respectively. This decrease in correlation coefficient through the thickness can be attributed to a depth-dependent speckle contrast reduction as a result of signal attenuation due to light scattering, defocusing and spectral roll-off. In our experiments, the maximum xx  was ~1.4%

(see results for "load step 2" in Section 3.6.2) and therefore speckle boiling was not an issue.

The correlation coefficient is considered as satisfactory. Poisson"s contraction along the corresponding directions. It is interesting to note that zz  is very small (close to zero) at the right-hand side, where the grip prevents Poisson"s contraction in the z-direction. Regarding yy  , it is not zero at the right-hand side because the constraint from the grip acts only at the surface. The reason why yy  is actually larger in magnitude may be from some material non-linearity due to the compression in the grip. Figure 3.15

shows that the measured strain components are significantly larger than the corresponding strain noise obtained for the stationary test. Since this is a pure tensile test for the rectangular strip, all the shear strain components should be close to noise level, as confirmed in Figs 3.13 and 3.14. Some irregularities, however, can be seen from these strain maps. In the xx  strain component, apparent fringes can be observed in interpolation bias [START_REF] Sutton | Image correlation for shape, motion and deformation measurements[END_REF]. A bias in displacement directly leads to bias in strain, proportional to the slope of the displacement bias. For OCT reconstructions with fine speckle patterns e.g. for the present phantom strips, the displacement values obtained when comparing sub-volumes between reference and deformed states are likely to suffer from larger interpolation bias due to undersampling of the speckle patterns which is further amplified when strain is calculated. It has been shown that the correlation results for the under-sampled images typically show up as a moiré -like fringe pattern in the displacement and strain fields and that it is more obvious in the latter.

In order to bring more evidence to the above discussions, a second load step was performed on the same rectangular phantom strip with an extra 10 g dead weight (we refer to this case as "load step 2"). The idea is to see the strain maps after the tension load is doubled.

Ideally, when the load is doubled, the deformation should also be doubled assuming the material is elastic. Therefore, the number of fringes for xx  is because it is the tension direction (larger deformation in x- direction). As stated in the text, 2 voxels deformation corresponds to 1 bias fringe. Since the deformation along z is smaller than in x, it is not surprising that fewer fringes are observed. It has been found that after the tension load was doubled, the number of fringes in both xx  and zz  was doubled.

One way to reduce interpolation bias is to perform pre-smoothing (before the correlation) on both the reference and deformed volume data using a Gaussian low-pass filter to reduce high spatial frequency components [START_REF] Lava | Assessment of measuring errors in DIC using deformation fields generated by plastic FEA[END_REF][START_REF] Pan | Bias error reduction of digital image correlation using Gaussian pre-filtering[END_REF]. Another way is to increase the sampling density of the OCT reconstruction. These will be further discussed in Section 3.7. 

Reduction of interpolation bias

Bias reduction using Gaussian pre-smoothing

Pre-smoothing of the grey level images before performing DIC using e.g. a Gaussian filter has proved effective in reducing interpolation bias [START_REF] Lava | Assessment of measuring errors in DIC using deformation fields generated by plastic FEA[END_REF][START_REF] Pan | Bias error reduction of digital image correlation using Gaussian pre-filtering[END_REF]. This is because Gaussian presmoothing can blur an image and reduce high-frequency components, which improves the image sampling and thus reduces the interpolation bias due to image under-sampling. A 3D Gaussian low-pass filter is expressed as
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x are the distances from the origin in the 3 directions, respectively.  is the standard deviation of the Gaussian distribution. Gaussian smoothing is achieved by using the 3D distribution in Eqn. (3.4) as PSF and convolving it with the original OCT data cube. As the data cube is stored as a set of discrete voxels, a discrete approximation of the Gaussian distribution function is required. Since the Gaussian distribution is non-zero everywhere, it would require an infinitely large convolution kernel. However, in practice it is considered effectively zero for pixels at a distance more than about three standard deviations. Therefore, the kernel can be truncated at this point, and contributions from pixels outside that range can be ignored. Once a suitable kernel has been selected, the Gaussian smoothing can be performed using standard convolution methods. Gaussian smoothing outputs a new value for each pixel using a weighted average of that pixel"s neighbourhood. The value of the original pixel receives the heaviest weight and values of the neighbouring pixels receive smaller weights as their distance to the original pixel increases.

To determine a proper Gaussian filter that can reduce the interpolation bias due to image under-sampling, 4 Gaussian filters were selected with the kernel size increasing successively.

The four Gaussian filters are defined as: for the rectangular phantom strip. The difference is substantially reduced after pre-smoothing, which is expected according to [START_REF] Lava | Assessment of measuring errors in DIC using deformation fields generated by plastic FEA[END_REF][START_REF] Pan | Bias error reduction of digital image correlation using Gaussian pre-filtering[END_REF]. Gaussian smoothing was also applied to the volume data of the stationary and rigid body translation tests in order to check its influence in the strain resolution. The results show an increase in the strain standard deviations with presmoothing, generally ranging from 

Bias reduction by increasing sampling density

It was stated in section 3.6.2 that for the samples studied in this work, the reconstructed OCT images are under-sampled due to the fine speckle patterns. In this section, two tensile tests were performed on two rectangular silicone rubber phantom strips of different dimensions.

Larger copper particles with an average particle size of about 10 µm , about 10 times larger than the fine particles stated in section 3.2, were used with the hope that this would increase the OCT signal. This choice, however, is not recommended as the speckle field could turn too sparse as the particles are close to the resolving power of the OCT system (a situation common in particle image velocimetry) with a loss of spatial resolution in the displacement fields. Another drawback of using large scattering particles is that they can increase wavefront distortion of the imaging beam, which compromises image quality as stated by

Wang et al [START_REF] Wang | Advanced biophotonics: tissue optical sectioning[END_REF]. The average speckle size corresponds to the 3D PSF of the SS-OCT system, which is 8.3 µm (axial) × 25 µm (transverse) and is a function of the source central wavelength and the effective NA of the OCT objective.

In  strain map, one can see about 2.5 fringes, which correspond to about 5 voxels total x u deformation. Similarly, fringes can also be observed from the zz  strain map. As compared with the results in section 3.6.2, increasing the size of the seeded particles does not reduce the interpolation bias, as expected. Therefore, to conclude this section, the interpolation bias due to image under-sampling can be reduced either by performing pre-smoothing (e.g. Gaussian smoothing) to the grey level data volumes prior to the volume correlation or by increasing the sampling density of the OCT reconstructions, even though this latter approach leads to a reduced field of view on the specimen.

Identification of elasticity for phantom specimens

The objective of this section is to evaluate the availability of utilizing the strain measurements from section 3.6 (for the rectangular and notched phantom strips) to identify the elasticity of the silicone rubber phantoms. Isotropic elasticity was chosen here as the material constitutive model, and Young"s modulus E and Poisson"s ratio  are the sought quantities. Since the two specimens were manufactured using the same material, the identification results for all these tensile tests are expected to be consistent with each other.

Efforts are also made to identify the shear modulus G and bulk modulus K from the strain results of the rectangular phantom strip tensile test. For all the simple tension configurations, 3D manually defined virtual fields were selected for the identification.

Identification of Young's modulus

E and Poisson's ratio 

Selection of 3D manually defined virtual fields

According to section 2.2, two different virtual fields are required to retrieve the Young"s modulus E and Poisson"s ratio  for isotropic elasticity. The first virtual displacement fields and the corresponding virtual strain fields are: 
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FL 

represents the external virtual work done by the tension load.

Finally, similar to the discussion in section 2.3.2, the linear equation system (3.7) can be written as: 
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Identification results

Using the experimental strain results in the linear equation system (3.8), the material stiffness components xx Q and xy Q can then be directly determined for the two tensile tests. The identification results with and without pre-smoothing are listed in Tables 3.1 and 3.2, respectively. From these results Young"s modulus E and Poisson"s ratio  can be calculated through the relations stated in equation (2.9). In order to provide a reference for the stiffness parameters obtained through the VFM, Young"s modulus and Poisson"s ratio were also calculated for the rectangular strip based on the assumption of constant uniaxial stress through the relation:
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where uniform stress x  in the yz cross-section of the rectangular phantom strip was determined through the equation

A F x  
. F is the tension load and A is the yz cross-sectional area.

x  and y  are the average values of the corresponding strain components over the whole field of view. Thus, both Young"s modulus and Poisson"s ratio can be derived and the results are listed in Tables 3.1 and 3.2. In both tensile tests the results obtained from the VFM are consistent with each other and also with those calculated from the constant uniaxial stress assumption. They are also consistent with the Young"s modulus 1.47 MPa measured with a tensile testing machine for the rectangular phantom strip. This indicates that the 3D VFM is an effective tool to identify the constitutive parameters of materials with non-uniform stress/strain states when the constant uniaxial stress assumption is no longer applicable.

Moreover, the identification results with pre-smoothing are in agreement with those without pre-smoothing when comparing Table 3.1 to Table 3.2. 

Equations

In some cases, it might be inconvenient to identify the stiffness components ij Q when the Poisson"s ratio of materials is very close to 0.5. As can be seen from the equation (2.9), ij Q will become very large when  is very close to 0.5. In this case, a small error in  will lead to a large error in ij Q . Bulk modulus K and shear modulus G are other constitutive parameters for measuring the stiffness of materials. Bulk modulus K measures the material"s resistance to uniform compression, while Shear modulus G measures the material"s resistance to shear deformation. Instead of identifying ij Q , K and G offer another option for measuring the material properties when  is very close to 0.5.

For linear elasticity, the general form of Hook"s law can be written as
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Tr is the trace operator and   
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After introducing equation (3.11) into equilibrium equation (2.2), the equilibrium equation
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For homogeneous materials, the equation above becomes
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Two virtual fields are needed to identify the bulk modulus K and shear modulus G . Thus, similar to the identification for ij Q , a linear equation system can be formed, which is written
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After introducing the same two virtual fields (3.5) and (3.6) into the linear equation system (3.14) and substituting the integrals using discrete sums, a linear equation system to identify K and G can be formed, which is written 
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Identification results

It should be pointed out that it is impossible to reliably extract K and G from the strain data of the rectangular phantom strip tensile test because there is no shear deformation in this test configuration. Therefore, only the strain data of the notched phantom strip tensile test (load step 1) was used here for identification. After solving the linear equation system (3.15) in Matlab ® , K and G were determined as:

MPa K 56 . 2 
, and

MPa G 53 . 0  .
In order to provide a reference for the above identification results, K and G were also calculated from the Young"s modulus E and Poisson"s ratio  identified for the notched phantom strip (load step 1) using VFM as listed in Table 3.1. K and G are related to E and
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The results from the above equations are

MPa K 54 . 2 
, and MPa G 53 . 0  , which are highly consistent with the results calculated from equation (3.15).

Conclusions

We have shown that DVC can provide, by means of OCT data, multicomponent displacement fields from which all the strain components required by inversion methods such as the 3D

VFM can be evaluated. OCT+DVC has low displacement sensitivity compared to phasesensitive OCT elastography, and seems appropriate for strain as large as ~2% (in the axial direction) above which an incremental approach should be used to avoid speckle decorrelation. A strain uncertainty in the order of ~210 -4 to ~3.510 -4 was observed by performing noise analysis. Strain below this uncertainty level would require an alternative approach such as phase-sensitive OCT, capable of detecting sub-wavelength displacements with low noise. In the cases studied in this work, one fringe across a 10 mm field of view would correspond to a relative axial displacement equal to 0.45 µm and an average strain of 4.510 -5 , an order of magnitude better than the uncertainty we report for OCT+DVC. Even though most phase-sensitive OCT elastography systems have so far focused on phase measurements with only axial sensitivity, a new system with sensitivity to all displacement components has been recently developed by Chakraborty and Pablo based on a wavelength scanning OCT system using multiple illumination directions and a single observation direction [START_REF] Chakraborty | Measurement of all orthogonal components of displacement in the volume of scattering materials using wavelength scanning interferometry[END_REF]. In the present study, strain was evaluated with a centred finite difference operator applied to the displacement field. No displacement smoothing was used before strain calculation in order to achieve maximal spatial resolution with a view to further studies on thin biological tissues such as the vertebrate eye cornea. In cases where strain accuracy is paramount, a weighted-least squares strain estimator would be more appropriate as studied by Kennedy et al [125].

The spurious fringes observed in the strain maps were analysed, and interpolation bias in the DVC algorithm was found to be the reason. Two approaches were verified to be feasible to reduce the interpolation bias due to image under-sampling. For the first approach, pre-smoothing using a Gaussian low-pass filter was performed on the volume data prior to correlation. The results confirmed that pre-smoothing is effective in reducing interpolation bias although it causes slight increase in strain standard deviations (noise increases to a level between ~410 -4 and ~810 -4 after pre-smoothing). For the second approach, no apparent spurious fringes were observed in the strain maps when the sampling density of the SS-OCT was doubled, even though the field of view was halved.

Uniform and non-uniform 3D strain fields measured with OCT+DVC were used to identify the elastic stiffness components ij Q of rectangular and notched silicone rubber phantoms using the VFM with 3D manually defined virtual fields. In order to test the proposed identification methodology, simple uniaxial tensile tests and isotropic materials were used. The material moduli (Young"s modulus E and Poisson"s ratio  ) extracted from this approach are consistent with those calculated from the constant uniaxial stress approach and the results obtained with a micro tensile machine. Another 3D VFM was also developed to identify the bulk modulus K and shear modulus G by utilizing the strain data obtained from the notched phantom strip tensile test. This offers another option for measuring the material stiffness when  is very close to 0.5.

The proposed methodology can be applied to study the depth-resolved 3D deformation behaviour of soft biological tissues such as cornea under more complex loading conditions. This will be presented in the following chapter. Introduction So far, most of the research work that has been done towards identification of corneal mechanical properties from full-field measurements was based on surface deformation measurements in corneal inflation tests using stereoscopic camera systems and DIC [START_REF] Boyce | Full-field deformation of bovine cornea under constrained inflation conditions[END_REF].

However, depth-resolved 3D deformation fields have not been undertaken yet, which is essential to better understand the local response of the cornea through its thickness.

In this chapter, DVC was carried out on a series of volume data obtained with the SS-OCT system described in section 3.3. Silicone rubber phantoms as well as porcine corneal trephinates were loaded under inflation in a pressure controlled chamber. The effect of noise and OCT reconstruction uncertainties and the performance of volume correlation were first evaluated in a similar way as described in Chapter 3 for flat samples using static a nd rigid body translation tests. The 3D displacement fields obtained due to a change in intraocular pressure were then evaluated by applying DVC directly to the OCT data volume. This, however, does not lead to correct results due to the fact that the microstructure reconstructed under the sample surface is distorted due to the refraction of light at the air/sample interface. This Chapter thus illustrates the consequences of ignoring this critical fact and sets the scene for Chapter 5, in which the refraction induced distortion is accounted for and eliminated, thus getting rid of spurious strains.

Sample preparation for inflation tests

Porcine corneas were used in this study instead of human corneas to avoid wasting corneas from donor banks until the methodology is fully developed and tested. A fresh ocular globe was collected from the local abattoir within 6 hours after slaughter and the corneas were tested within 12 hours post-mortem. The ocular globes were stored in a refrigerator below 4℃ to prevent tissue degeneration. It was then brought to room temperature half an hour before testing to ensure thermal equilibrium with the environment. A corneal trephinate (circular cut-off that includes the cornea and a 2mm sclera ring, shown in Fig 4 .1 from different views), was excised from the corneal globe using a pair of scissors and a scalpel and stored in saline solution 0.9% NaCl. The central corneal thickness was measured using a Direct Computer Control (DCC) Coordinate Measuring machine. During the measurement, the coordinates of the apex of a corneal shaped support were first recorded when the touch-point sensor made contact with it. The corneal trephinate was then mounted on the support with its apex over the apex of the support. The coordinates of the corneal apex were recorded and the thickness of the cornea determined by evaluating the axial distance between the two measured points. The corneal trephinate thickness was 1.53±0.03mm, which includes a slight swelling due to water absorption in the sclera.

In order to have a stable sample, an artificial corneal phantom was fabricated using silicone rubber (MM240-TV A/B). A rubber base and a hardener were mixed to a ratio of 10:1. Titanium oxide particles were seeded into the silicone rubber mixture to supply the speckle contrast. The mixture was then put into a special mould designed to replicate the average dimensions of the Arizona eye model [START_REF] Macrae | Customized and low spherical aberration corneal ablation design[END_REF] and left to cure at room temperature for approximately 24 hours. 3×10 -4 and 8×10 -4 . These noise levels are about one order of magnitude below the strain levels due to deformation in the inflation tests. 

Finite elements modeling of corneal inflation test

In order to visualize what kind of displacement and strain distributions we should expect through the thickness of the cornea under inflation, a simple finite element model was absolute strains of about 2%, which exceed the strain standard deviation due to noise of about 0.08% shown in Fig. 4.6. This means that the strain due to the deformation dominates the strain noise floor and therefore these distributions are the results of material behaviour rather than noise artefacts. Positive strain can be observed on the bottom surface of the cornea in yy  strain map, which is not consistent with the FE model. One explanation for this is that DVC results near the edge are noisier due to lack of data. 

Silicone rubber phantom

Human corneas are thinner than porcine corneas with the thickness normally ranging from 0.5-0.6 mm in the centre and 0.6-0.8 mm at the periphery. A question that comes to mind is whether the spatial resolution of the measured displacements and strains would be sufficient to capture the spatial variations of the strain field and for the VFM to identify elastic parameters through the thickness of the cornea. is large than that of the porcine cornea (~0.3 MPa). From Fig 4 .12(a), it can be observed that u y reaches a maximum of about 0.12 mm in the central region. Regarding the strain distributions in Fig. 4.12(b), agreement is also found between the results for the phantom and the porcine cornea. As for the cornea inflation, the central region of the phantom is decreasing gradually from centre to periphery, the measured strain is dominated by noise with a small background trend that is not clearly observed in the simulated results. Strain noise is also apparent in the strain components yy  and xy  .

With regards to the FE model, it was developed to assist a qualitative comparison with the DVC measurements. The material property was defined as homogeneous and isotropic for the sake of simplicity, which, however, is not true in the case of the cornea. The cornea has five different layers and a complex composite structure composed of the corneal matrix and embedded collagen fibrils, which makes it heterogeneous and anisotropic. Moreover, the Young"s modulus and Poisson"s ratio used here for the FE model were chosen from the literature and represent average values for the porcine corneas. The true modulus of the present cornea can be different from these average values and be position dependent, thus leading to different FE results. Slightly different strain distributions would be expected from a more realistic model, which is beyond the scope of this Thesis.

Due to the time limitation of the present project, added complexity to the VFM in an inflation test with pressure field, and poorer strain results near the bottom regions due to inadequate image quality, constitutive parameters of the porcine cornea have not been identified yet. Future work will be aimed at identifying the constitutive parameters once these issues are solved.

We should not forget that the displacements and strain maps presented in this chapter are fundamentally flawed as the OCT reconstructions are not a true (geometrically and dimensionally) representation of the corneal structure due to the distortion introduced by refraction of the illumination and observation beams. The study on the refraction induced distortion will be provided in next chapter.

Conclusions

In this chapter, a method was developed to measure depth-resolved displacement and strain fields inside a porcine corneal trephinate due to changes in the intraocular pressure. DVC was performed on the reconstructed OCT data volumes for the silicone rubber phantom and porcine cornea samples. Stationary and rigid body translation tests indicate that the strain noise in the absence of deformation is up to 0.08% when a 24 3 voxel sub-volume is used, which leads to a good compromise between the strain resolution and spatial resolution.

Reasonable displacement and strain spatial distributions were obtained for both the phantom and the cornea. These results show a good overall qualitative agreement with the results of a simple FE model and suggest that better results should be achievable once refraction correction is implemented. silicone rubber phantom are described, which establish the effect of the refraction induced distortion in the strain fields obtained with DVC. 

Refraction induced distortion in OCT reconstructions

The SS-OCT system used in this work was designed to eliminate fan distortion, and therefore flat surfaces are reconstructed as flat in the OCT data volume. This was done by placing the galvo scanners in the back focal plane of the objective lens so that the beam pivots about it and leaves the lens always parallel to the optical axis. The scanning beam is therefore assumed to be always vertical, which can be confirmed by looking at the reconstructed image for the flat silicone rubber phantom in Fig 3 .3. Therefore, if still present, the fan distortion is considered negligible in this work, and the study of geometric distortions will only focus on the refraction induced distortion at the air/sample interface. A further simplification is that we will consider a uniform distribution of refractive index within the sample.

For a sample with a flat top surface, it is free of the distortion problem if the scanning ray is perpendicular to the sample surface. As the scanning ray moves parallel to the optical axis, the reconstructed volume data represent the real configuration of the scanned sample.

However, for a sample with curved surface such as cornea in ( It can be seen that a point I in the image space actually corresponds to the point B in the object space. Therefore, the reconstructed volume is actually expanded and deformed outwards compared to the real configuration of the object. The distorted data volume would then introduce errors in the displacement and strain measurements obtained by performing DVC on the OCT reconstructions, leading to spurious values that need to be assessed.

Refraction correction in OCT images has already been dealt with in the literatures using

Fermat"s principle and Snell"s law [START_REF] Podoleanu | Correction of distortions in optical coherence tomography imaging of the eye[END_REF][START_REF] Westphal | Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle[END_REF]. The approach based on Fermat"s principle, even though computationally demanding, does not require any assumptions on the cornea surface shape (e.g. approximation to a sphere). This principle states that the path taken between two points by a ray of light is the path that can be reached in the least time. Thus, point B is reached by a unique ray refracted at point A. Therefore, given B, point A can be found using a minimization algorithm of the optical path defined in equation (5.2). Then, the corresponding point I in the image space (to point B in object space) can be searched along path OA at a distance AB n 1 from point A. Once the exact (non-integer) coordinates of point I are determined, the light intensity value at this image point is evaluated through interpolation (bilinear in our case), and the value is associated to the coordinates of point B, which belong to a Cartesian grid in object space. By applying the same procedure to all other object points, the corrected images are obtained.

Alternatively, the refraction correction can also be implemented from the image space. In this case, the coordinate x A for any A-scan is known from the column location in the image. Both approaches can be used to correct the refraction induced distortion and both involve interpolation: the Fermat"s approach interpolates the intensity between grid points in the image space, which is fast and can be done for instance by the "interp2" function in Matlab ® ; the direct approach requires interpolation of scattered data (non-integer coordinates in object space) into a regular grid. This can be done using functions like "griddata" in Matlab ® , which fits a surface of the form v = f(x, y) to the scattered data in the vectors (x, y, v). The griddata function interpolates the surface at scattered query points and returns the interpolated values, the surface always passing through the data points defined by x and y.

As shown in

In the present study, the first approach was implemented, following the steps of previous published work. We attempted the second approach to save computation time, but at the time we were not aware of interpolation functions such as griddata that would solve the problem of given scattered data, interpolate them in a regular grid. It is expected that this second approach would save computation time and we have plans to apply it and compare the performance of both.

It should be pointed out that there can also be internal refraction at the interfaces between the different layers of the cornea considering the slight difference in their refractive indices e.g. 1.401 and 1.373-1.380 for the human corneal epithelium and stroma, respectively, as previously studied by Patel et al [START_REF] Patel | Refractive index of the human corneal epithelium and stroma[END_REF]. This difference in refractive index between different corneal layers is insignificant compared to that between the air and cornea interface (1 and 1.38). Therefore, for the sake of simplicity, the refractive index of the cornea in the present study was assumed to be uniform when performing refraction correction. A detailed approach would require solving refraction at each interface, which position and functional form should be found in the order in which the illuminating beam propagates through them.

Correction of refraction induced distortion in OCT reconstructions

Refraction correction in 2D

To perform the correction for the refraction induced distortion, the refractive indices of the media and the parametric equation of the interface must be known as a prerequisite. In . For the corresponding incident point A, the coordinates can be expressed as

    A A x f x ,
. As stated in equation (5.2), the optical path difference (OPD) of a ray is equal to the physical path length multiplied by its refractive index. Thus, OPD can be written as

          2 1 2 2 1 0 A B A B A x f y x x n x f n OPD      (5.4)
where   B B y

x , are known as they are defined in a Cartesian grid in the object space for each point. Therefore, the only unknown in equation (5.4) is

A

x . In this case, OPD is a function of

A x . Replacing A x by x , OPD becomes             2 1 2 2 1 0 x f y x x n x f n x OPD B B      (5.5) 
According to Fermat"s principle, for a given point B there is only one incident point A that can lead to the minimal OPD. Therefore, by minimizing OPD, x of the incident point can be found. Then, the coordinates of point A can be decided. where AB is

        2 1 2 2 A B A B x f y x x AB    
(5.8) 

           x x x y
(5.10)

In practice, it is very useful to mask out all the unwanted points outside the cornea as this can reduce the number of data points to be corrected thus reducing calculation time. In this case, a third order polynomial function was also fitted for the bottom interface, which is

          420 150 490 3 . 1 150 490 43 150 490 1 . 2 2 3            x x x y (5.11)
The masked cornea image is represented in correction method has a limitation regarding the calculation time. For this 2D cornea image, the calculation time is about 10 hours, which is rather time-consuming due to the fact that the used "fminsearch" (Nelder-Mead simplex direct search algorithm) is not the most efficient minimization algorithm and the minimization algorithm needs to be executed for too many data points. When dealing with a 3D data volume, the calculation time would be amplified thousands of times, making the correction unachievable. In this case, a refraction correction method working in a more computationally efficient way becomes necessary. This will be discussed in the following section. One question that comes to mind is whether this approach loses refraction correction accuracy as compared with the approach in which minimization is performed for all the object points.

To bring an answer to that question, the error map between the corrected cornea image obtained with point by point minimization ( 

Refraction correction in 3D

The approach of performing minimization on grid points has been proved to be effective in reducing computation time and maintaining refraction correction accuracy compared with the approach in which minimization is executed for all object points. Therefore, in this subsection this approach was applied to correct the refraction induced distortion in 3D volume reconstructions.

Functions for refraction correction in a data volume

The refraction correction for a data volume was implemented with the same procedure detailed for a 2D image. The first step is to determine the parametric equation of the top interface, which can be expressed as

  z x f y ,  (5.12)
For an arbitrary object point B, its coordinates are  

B B B z y x , ,
. The coordinates of the corresponding incident point A can be expressed as

    A A A A z z x f x , , ,
. Then, the OPD can be calculated as

            2 1 2 2 2 1 0 , , A B A A B A B A A z z z x f y x x n z x f n OPD        (5.13)
where  

B B B z y x , ,
are known as they are defined in a 3D Cartesian grid in the object space for each object point. Therefore, the unknowns in equation (5.13) are A x and A z . In this case, OPD becomes a function of A x and A z , which writes

              2 1 2 2 2 1 0 , , , z z z x f y x x n z x f n z x OPD B B B        (5.14) 
By minimizing OPD, the coordinates where AB is

    A A A A z z x f x
          2 1 2 2 2 , A B A A B A B z z z x f y x x AB      
(5.17)

After determining the coordinates of the image point I, the intensity value at that point can be calculated for the object point B using 3D linear interpolation.

Refraction correction of an OCT volume

To determine the parametric function of the top interface of the porcine cornea, a number of points were picked on the top cornea surface using Matlab command "Ginput". These points were then used to fit a fourth order polynomial function. 

               (5.18)
where the parameters in the function are listed in Table 5.1. For the deformed state, another fourth order polynomial function was also fitted, and its parameters are listed in Table 5.2. along the x, y and z directions, respectively, for the reconstructed cornea volume in each pressure state. The minimization algorithm was then performed on the 3D grid points, as already explained in the previous subsection. Following the subsequent procedures, these distorted cornea volume reconstructions were corrected.

DVC results from refraction corrected OCT volumes

As we want to know how the refraction correction affects the deformation measurement, thus, the refraction correction was performed on the reconstructed cornea volumes obtained from the cornea inflation test introduced in chapter 4. DVC was then performed on the corrected cornea volumes at both load steps to obtain the corrected displacement and strain fields. In 

Validation

In the previous subsections, the refraction correction methods were introduced in detail.

Examples were given for the correction of OCT images as well as DVC results obtained with the corrected cornea volumes. These results look very promising. However, one question that naturally arises is whether this correction method really corrects the OCT reconstructions.

Does it really improve the DVC deformation measurement?

To bring an answer to this question, tilt tests using different phantoms were designed in this section.

Tilt tests

In the tilt tests, stable silicone rubber phantoms were placed on a rotation stage and rotated 0.5° in the xy-plane. At each state (reference and rotated state), a 3D volume was reconstructed using the SS-OCT system. Then, the reconstructed volumes were brought to perform DVC, and strain and rotation maps were obtained. Ideally, there should be no strain as this is a pure rigid body rotation. The rotation map should show exact input value, which is 0.5°. The idea is to check how the computed strain and rotation results differ from the reference case. Then, the refraction correction algorithm was applied to the reconstructed volumes and DVC was performed to obtain the corrected strain and rotation results. By doing so, one can see whether the strain and rotation results are consistent with the reference values after refraction correction.

Sample preparation

Two phantoms with different shapes were fabricated using silicone rubber (MM240-TV).

One is a rectangular flat strip while the other is hemispherical, as illustrated in Fig 5 .12.

Copper particles (with an average particle size of about 1 µm ) were seeded into them to provide the speckle contrast. The reason for choosing these two different shapes is that by doing so, one can study the different distortions induced by a uniform refraction angle (here, a tilted flat top surface) and non-uniform refraction angles (hemispherical top surface). It should be pointed out that there is an increase in standard deviation for the strain and rotation components as can be seen in Table 5.3. This is probably because the refraction correction is based on interpolation. DVC itself is also based on interpo lation. Therefore, it is not really surprising that more errors were introduced to the final results after this multiinterpolation process. CONCLUSIONS AND PERSPECTIVES

Conclusions

In this thesis, an effective methodology has been developed to measure the depth-resolved 3D deformation of semi-transparent, light scattering materials such as cornea. These 3D deformation measurements can be utilized to identify the material constitutive parameters using the VFM.

The VFM was extended into 3D to accommodate to the now available depth resolved 3D deformation measurements. Both manually defined virtual fields and the optimized piecewise virtual fields were developed. They were validated to be feasible to accurately extract the material constitutive parameters through simple FEM simulations. The manually defined virtual fields were compared with the optimized piecewise virtual fields when the strain data was corrupted by different amounts of Gaussian white noise. The result shows that both methods can yield reasonable identification results. However, when the noise becomes larger, the piecewise optimized virtual fields are much more stable, and can yield more accurate identification results.

DVC can provide, by means of a single channel OCT system, multicomponent displacement fields. From these displacement fields all the strain components required by inversion methods such as the 3D VFM can be determined. A strain uncertainty in the order of ~210 -4 to ~3.510 -4 was observed for the OCT+DVC approach by performing noise analysis. This approach is appropriate for strain as large as ~2% (in the axial direction) above which an incremental approach should be used to avoid speckle decorrelation.

Interpolation bias in the DVC algorithm was found to be the reason for the spurious fringes observed in the strain maps. Two approaches were verified to be feasible to reduce the interpolation bias due to image under-sampling. The first approach is to perform presmoothing (e.g. Gaussian low-pass filter) to the volume data prior to correlation. For the second approach, the interpolation bias can be reduced by increasing the sampling density of set to zero so that the external virtual work done by the unknown reaction force can be cancelled out. For each measurement point at the bottom cornea/vitreous interface, the component of virtual displacement along the normal direction of the bottom interface at this point must be determined to calculate the external virtual work at this measurement point. Based on this, the total external virtual work done by the inflation pressure can be determined by the integral of the external virtual work at individual measurement points.

Then, the constitutive parameters of the cornea can be identified following the same procedure as for the examples in section 2.7.

-The present deformation measurements are based on single layer specimens such as the introduced silicone rubber phantoms. Even though the cornea is composed of five layers, the stroma consists of over 90% of the corneal thickness. Therefore, it would be interesting to create a phantom with multi-layers (e.g. double-layers with the same thickness and different stiffness), and measure the heterogeneous deformation fields of each layer using OCT+DVC. It would be useful to develop a 3D VFM which takes into account of the material heterogeneity. This 3D VFM could be used to extract the material constitutive parameters of each layer from the heterogeneous deformation fields of a single test. This recommended future study could significantly advance the applicability of the proposed methodology.

-One limitation of the current OCT+DVC system for identifying the different mechanical properties of different corneal layers from the inflation test is the limited spatial resolution of the OCT system compared to the very small thickness of each layer, especially for epithelium, Bowman"s layer, Descemet"s membrane, and endothelium. Due to this limitation, the current OCT system cannot provide OCT images with sufficient independent measurement points in each corneal layer. Therefore, in the future, an OCT system with improved spatial resolution should be used to obtain OCT images with sufficient measurement points in each corneal layer, from which the different strain distribution in each layer (due to the difference in material mechanical properties for each layer) of the inflation test can be measured. It should be pointed out that, as in a tensile test configuration, the strain distributions in layers with different material mechanical properties should show differences even though they are loaded equally in the inflation configuration. Based on this strain measurement, constitutive parameters of each layer should be identified using the 3D VFM developed specifically for material heterogeneity.

-The methodology (Inflation Test+OCT+DVC) presented in chapter 4 can be used in the future to study the corneal deformation behaviour at different pressure range (from low pressure to high pressure) to fully address the linear and non-linear mechanical properties of the cornea.

-Due to light reflection and absorption, current volume data tend to have weak quality in deeper regions of the sample, which leads to inaccurate DVC results there, and affects the identification of the constitutive parameters. Thus, efforts can be targeted at the improvement of image quality and depth range of the OCT system in the future. In order to reduce refraction distortions the illumination path could be adjusted by adding a negative lens close to the cornea to make the illumination beam perpendicular to the interface so that refraction can be reduced. This would require an OCT system with deeper penetration depth and reduced spectral roll-off.

-Other soft tissues such as artery, skin, esophagus, etc. could also be studied using the proposed methodology to study their deformation behaviour and material properties. It will be interesting to measure the depth-resolved full-field deformation of these tissues under high pressure to study their non-linear properties and failure response (e.g. aneurysm rupture).

-In the present work, the 3D VFM has been implemented for linear elasticity. However, considering the non-linear behaviour of the biological tissues in large deformation, it will be useful to develop a 3D non-linear VFM. Different non-linear models can be used such as hyper-elasticity. These models could serve to a more comprehensive identification of the material constitutive parameters. 
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 11 Fig 1.1: Anatomy of cornea: (a) Schematic of the cross-section of human eye. (b) Expanded view of the cornea showing five layers. (c) TEM image of the stroma in the cornea showing two preferred orientations of collagen fibrils. (Reproduced from reference [1], Ambekar et al).
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 12 Fig 1.2: Schematic of a typical cornea inflation test rig from literature (Reproduced from reference [28], Anderson et al).
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 13 Fig 1.3: Nonlinear behaviour of cornea specimens under inflation conditions: (a) Curves of corneal Pressure-Apical rise, and (b) The two phases of corneal behaviour. (Reproduced from reference [28], Anderson et al).
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 1314 Fig 1.4: Comparison of the stress-strain relation between human and porcine corneas (Reproduced from reference [29], El-sheikh et al).
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 14215 Fig 1.5: Schematics of the excised cornea strip specimen and the strip tensile test (Reproduced from reference [34], El-sheikh et al).
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 16 Fig 1.6 (a) for a brain CT image) which is very useful for diagnostic and therapeutic purposes[START_REF] Jordan | Quality outcomes of reinterpretation of brain CT studies by subspecialty experts in stroke imaging[END_REF][START_REF] Watarai | Congenital lung abnormalities: A pictorial review of imaging findings[END_REF][START_REF] Zeina | Computed tomographic diagnosis of traumatic fetal subdural hematoma[END_REF]. It is also applied in industrial areas for internal inspection such as structural analysis, flaw detection, failure analysis, deformation analysis, etc[START_REF] Pierron | Comparison of the mechanical behaviour of standard and auxetic foams by x-ray computed tomography and digital volume correlation[END_REF][START_REF] Leplay | Three-dimensional analysis of an in situ double-torsion test by X-ray computed tomography and digital volume correlation[END_REF][START_REF] Bock | X-ray micro-computed tomography imaging of open-cell metal foams[END_REF]. Fig 1.6 (b) gives an example of the 2D view of X-ray CT image of a low density polymeric foam which was previously developed by Pierron et al [41].
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 16 Fig 1.6: Examples of the X-ray CT images: (a) Brain CT image with aphasia and headache, arrows show acute infarct (Reproduced from reference [38], Jordan et al) (b) X-ray CT image of low density polymeric foam (Reproduced from reference [41], Pierron et al).

Fig 1 . 7 : 1 . 2 . 3

 17123 Fig 1.7: Examples of the MRI images: (a) Brain MRI image showing generalized cerebral atrophy (Reproduced from reference [45], Lee et al) (b) A heart MRI image (Reproduced from reference [46], Sommer et al).
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 18 Fig 1.8: (a) Schematic of CM and examples of CM images, (b) Histological images of tissue excised from Mohs surgery for skin cancer (Reproduced from reference [49], Larson et al), (c) Cross-section of a glass-epoxy composite (Reproduced from reference [50], Thomason et al).

  Fig 1.9 [54]. The light generated from the broadband light source is split by the beam splitter into two arms, namely reference and object arms. One light beam goes through the reference arm and reflects back from a reference mirror. The other light beam in the object arm is moved across the sample by the galvanometer scanner and lenses. This beam of light penetrates the sample and backscatters from the inner structure. This reflected light then interferes with the light reflected from the reference arm. For FD-OCT, the interference signal is recorded and analysed by the spectrometer. The light backscattered from different depths in the sample and which interferes with the reference light modulates the spectra. The depth information can be directly calculated by a Fourier transformation of the acquired spectra. Different from the fixed reference mirror and spectrometer in FD-OCT, TD-OCT uses a translating mirror and a simple photodiode as the photo detector. The reference mirror is scanned over the imaging depth and the time dependent signal is recorded. By demodulating the interference signal a reflectivity profile of the sample called A-scan can be obtained.There are mainly two types of FD-OCT. One is the spectral domain OCT (SD-OCT) as discussed above. The other is called swept source OCT (SS-OCT). Both of them use a fixed reference mirror, but in SS-OCT a frequency scanning light source is used instead of the broad band light source. The spectral components are not encoded by spectral separation, but encoded by time. Thus, a simple photodiode is used as the photo detector instead of a spectrometer, which enables faster imaging.

Fig 1 . 9 :

 19 Fig 1.9: Schematics of TD-OCT and FD-OCT systems (Reproduced from reference [54],

Fig 1 . 10 :

 110 Fig 1.10: Examples of OCT images: (a) Healthy human skin on upper back (Reproduced from reference [54], Gambichler et al) (b) Photo and OCT image of restoration in the central incisor, and arrow shows gap formation beneath resin-based composites material (Reproduced from reference [59], Ishibashi et al).

Fig 1 .

 1 11, displacement fields for both in-plane components U x and U y under a load of 4.84 kN are shown. From the displacement field, the strain field was then calculated using local differentiation, as illustrated in the right bottom of Fig 1.11 for the strain component εyy. The grid method

Fig 1 . 11 :

 111 Fig 1.11 : Displacement and strain maps from the grid method for a glass fibre reinforced epoxy open-hole tensile specimen (Reproduced from reference [85], Pierron et al).

Fig 1 . 12 :

 112 Fig 1.12: Cross sections of the measured 3D displacement fields from WSI for an epoxy sample under in-plane rotation and out-of-plane tilt (displacement unit: meters). The rows from top to bottom indicate the displacement components along the 3 orthogonal directions. The columns from left to right indicate sections of the data volume on different planes (Reproduced from reference [89], Chakraborty et al).

Fig 1 . 13 :

 113 Fig 1.13: Elastographic correlation stability map indicating the stiffness distribution of a multi-layer silicone phantom (Reproduced from reference [93], Zaitsev et al).

Fig 1 . 14 :

 114 Fig 1.14: Front views of a tensile bar with applied speckle pattern in different load steps and the strain maps for E yy obtained with DIC (Reproduced from reference [97], Parsons et al).

Fig 1 .

 1 Fig 1.15: X-ray CT reconstructions and deformation distributions obtained with DVC for: (a) Wood specimen under three-point bending (Reproduced from reference [104], Forsberg et al) and (b) Trabecular bone under compression (Reproduced from reference [105], Gillard et al).
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 21 Fig 2.1: Cube under compression/shear.

24 ) where 1  1 

 2411 denotes the arithmetic spatial average of over the whole volume of the solid.

  the parametric coordinates of a point in the reference element. For an 8noded element, each node has three degrees of freedom. Thus,

1 S

 1 is a vector that contains the components of the first line of the global matrix S .

Fig 2 . 3 :

 23 Fig 2.3: Schematic of the 3D virtual mesh.

.

  value of  , 30 identifications were run and distributions of stiffness components identified. To verify equation (2.61), coefficients of variations for different stiffness components as a function of  were plotted. The points were fitted by a line to compute the slope which can then be compared to the theoretical value of For the isotropic case, the coefficients of variation for the two stiffness components are plotted as a function of  in Fig 2.4. It can be seen that the CV of[START_REF] Asejczyk-Widlicka | Material properties of the cornea and sclera: A modelling approach to test experimental analysis[END_REF] Q is smaller than that of[START_REF] Norman | Finite element modeling of the human sclera: Influence on optic nerve head biomechanics and connections with glaucoma[END_REF] Q , which indicates that 11 Q is more stable than 12 Q as expected as Poisson"s ratio has a smaller influence on the actual material deformation. The points are fitted by a line and the fitted slope are compared with the theoretical values in Table2.9. The results show that the fitted values match the theoretical values. When the noise amplitude increases to a

Fig 2 . 4 :

 24 Fig 2.4: Coefficients of variation of the different stiffness components as a function of  for isotropic elasticity, 3D piecewise optimized VFM.

Fig 2 . 6 :

 26 Fig 2.6: Symmetric error bars for Young"s modulus E plotted as a function of noise amplitude  for isotropic elasticity.

Fig 2 . 7 :

 27 Fig 2.7: Symmetric error bars for Poisson"s ratio  plotted as a function of noise amplitude  for isotropic elasticity.

Fig 2 . 8 :

 28 Fig 2.8: Mean of the relative errors for the identified Young"s modulus E plotted as a function of  for isotropic elasticity.

Fig 2 . 9 :

 29 Fig 2.9: Mean of the relative errors for the identified Poisson"s ratio  plotted as a function of  for isotropic elasticity.

  3.1 shows the phantom specimen after the manufacturing process.

Fig 3 . 1 :

 31 Fig 3.1: Image of the fabricated silicone rubber phantom specimen.

Fig 3 . 2 :

 32 Fig 3.2: Schematic and image of the experimental set-up.

  same material point in the reference and deformed states, respectively, and are related by the 3D affine transformation in the form of rigid body motion combined with displacement gradients

  stand for the partial derivatives. The standard deviations over the whole field of view are compared in Fig 3.4 for xx  , xy  and yy  only, for the sake of legibility.

Fig 3 . 4 :

 34 Fig 3.4: Comparison of the strain standard deviations for different sub-volume sizes, calculated for a stationary rectangular phantom strip.

Fig 3 . 5 :

 35 Fig 3.5: 3D views of the OCT sub-volumes with different sizes. The granular structure corresponds to the 3D speckle.

Fig 3 . 6 :

 36 Fig 3.6: Standard deviation of the spurious strain obtained with 36 3 voxels sub-volume and 50%

  for the rigid body translation testseeFig 3.7. Compared with the results of the stationary test, the strain std for the translation test have larger fluctuation. This is so as the errors not only come from all the error sources presented in the stationary test, but also arise from the sub-voxel interpolation error as the DVC algorithm tracks the sub-volumes between the reference and displaced states as well as defocusing and spectral roll-off. Therefore, higher noise levels can be expected. It was observed that lateral translations (in the xz plane) lead to strain standard deviations values between those obtained for the stationary and the axial translation tests.

Fig 3 . 7 :

 37 Fig 3.7: Standard deviation of the spurious strain obtained with 36 3 voxels sub-volume and 50%

Fig 3 . 8 ,

 38 which compares well with the number of speckles observed on the xy face of the 36 3 sub-volume shown in Fig 3.5.

Fig 3 . 8 : 7 .

 387 Fig 3.8: Simulated speckle field in a sub-set or sub-image: horizontal axis is x, vertical axis is observation axis y.3. Deform the spatial distribution of scatterers with a horizontal strain xx  from 0 to 0.5 in steps of 0.001 from 0 to 0.02 and steps of 0.05 thereafter. Poisson"s contraction in the vertical direction was also considered, using 42 . 0  

Figure 3 .

 3 Figure 3.9 shows that NCC drops to ~0.987 for % 1  xx 

Fig 3 . 9 :

 39 Fig 3.9: Normalized cross correlation of a speckle field in a simulated B-scan as a function of longitudinal strain xx  .

mm 3 .

 3 The reliability of the deformation measurements was assessed in terms of the 3D correlation coefficient maps, shown in Figs. 3.10 (a) and (b) for the rectangular and notched phantom strips, respectively. In order to see the correlation coefficients within the specimens, sub-volumes of the whole fields are represented here obtained by cutting the volumes in the xy plane at z-slice 25.

Fig 3 . 10 : 3 . 6 . 2

 310362 Fig 3.10: 3D views of the correlation coefficient maps for: (a) Rectangular phantom strip and (b) Notched phantom strip, cut at the position 25  z , load step 1.

Fig 3 .

 3 13 and Fig 3.14, which is expected from the oscillation in the x u displacement. The fringes observed in the xx  strain component in Figs 3.13 and 3.14 could be due to either: 1) a spatial variation of the elastic modulus, or 2)

Fig 3 .

 3 Fig 3.12: (a) x u displacement averaged within yz-cross sections along the x-direction and a linear data fit obtained for a rectangular phantom strip under tension (load step 1); (b) Difference between the averaged

Fig 3 . 15 :

 315 Fig 3.15: Normal strain components obtained at z-slice 25 for a rectangular phantom strip under tension (load step 1) and the corresponding strain noise obtained in the stationary test.



  as shown in Figs 3.13 and 3.14 are expected to double according to the above discussion. This is confirmed by the xx  strain maps in Fig 3.17, in which (a) central z-slice 25 and (b) central y-slice 10 are illustrated. Around 5 fringes can be observed confirming that these are due to interpolation bias in this elastic material. It should also be pointed out that there are fewer fringes in the strain map of the other lateral strain component zz  in Fig 3.14, showing about 1.5 fringes. The reason why there are more fringes in xx

Fig 3 . 16 :

 316 Fig 3.16: Interpolation bias as a function of sub-pixel position for different interpolation filters (Reproduced from reference [117], Sutton et al).

Fig 3 . 17 : 3 . 6 . 3

 317363 Fig 3.17: Spatial distribution of the normal strain xx  obtained for a rectangular phantom strip under tension (load step 2): (a) central z-slice 25 and (b) central y-slice 10.

Fig 3 . 19 :

 319 Fig 3.19: Spatial distribution of the strain components obtained for a notched phantom strip under tension (load step 1). The central z-slice 25 is shown.

Fig 3 . 20 :

 320 Fig 3.20: Spatial distribution of the strain components obtained for a notched phantom strip under tension (load step 1). The central y-slice 10 is shown.

Fig 3 .

 3 Fig 3.22: xx  strain maps with and without pre-smoothing for a transverse z-slice.

Fig 3 . 25 :

 325 Fig 3.24: Strain standard deviations obtained with 36 3 voxels sub-volume, 50% overlap and Gaussian pre-smoothing for: (a) Stationary test and (b) Rigid body translation test.

Fig 3 .Fig 3 . 26 :

 3326 Fig 3.26 (a) shows the 2D view of a transverse z-slice in the 10 4 . 1 60   mm 3 phantom strip while Fig 3.26 (b) shows the 5 4 . 1 60   mm 3 strip. It can be observed that the speckle grains appear larger for the second strip in Fig. 3.26(b) as twice as many lateral scans are used to sample them in that direction. Note that the same number of voxels is used in both cases in all directions.

Fig 3 . 27 :Fig 3 . 28 :

 327328 Fig 3.27: Spatial distribution of the displacement component x u and the lateral strain components

  where L is the length (dimension along the x-direction) of the phantom strips. After introducing the above two virtual fields (3.5) and (3.6) into the equilibrium equation (2.10), a linear equation system (3.7) can be formed to directly determine the sought stiffness components xx Q and xy Q .

  identity matrix. The stress and strain components are related by K and G as

  Fig 4.2 shows one of the corneal phantoms that were fabricated in this way. Its outer edge spherical diameter and central thickness are 15.6 mm and 0.58 mm, respectively.

Fig 4 . 1 :

 41 Fig 4.1: Porcine corneal trephinate from different views.

Fig 4 . 3 :

 43 Fig 4.3: (a) Schematic diagram, and (b) experimental set-up.

Fig 4 . 4 :

 44 Fig 4.4: Part of the reconstructed porcine corneal trephinate volume obtained with the SS-OCT system.

Fig 4 . 6 :

 46 Fig 4.6: Strain standard deviations obtained with 24 3 voxels sub-volume and 50% overlap for: (a) Stationary test and (b) Rigid body translation test.

Fig 4 . 8 :

 48 Fig 4.8: u y displacement maps measured with DVC for different z-slices of the porcine cornea with voxels sub-volume and 50% overlap.

Fig 4 . 9 :

 49 Fig 4.9: u x displacement maps measured with DVC for different z-slices of the porcine cornea with voxels sub-volume and 50% overlap.

Fig 4 .

 4 Fig 4.10: (a) Displacement maps measured with DVC for the central z-slice of the porcine cornea inflated from 2 to 2.5 kPa with 24 3 voxels sub-volume and 50% overlap, and (b) Simulation results.

Fig 4 .

 4 Fig 4.11 : (a) Strain maps measured with DVC for the central z-slice of the porcine cornea inflated from 2 to 2.5 kPa with 24 3 voxels sub-volume and 50% overlap, and (b) Simulation results.

Fig 4 .

 4 [START_REF] Norman | Finite element modeling of the human sclera: Influence on optic nerve head biomechanics and connections with glaucoma[END_REF] shows the displacement and strain measured with DVC in the phantom inflation test, in which the phantom with 0.58 mm thickness was inflated from 2 to 2.5 kPa. Qualitatively, the displacement maps of the inflated phantom are consistent with those of the porcine cornea when comparing the displacement maps in Fig 4.12(a) to Fig 4.10. However, since the phantom is almost 1/3 of the thickness of the porcine cornea, it experienced a larger deformation under the same pressure change, especially in the y-direction, though the Young"s modulus of the silicone rubber (~1.5 MPa)

Fig 4 . 13 :

 413 Fig 4.13: Low speckle contrast leads to incorrect displacement and strain values. (a) measured yy  strain; (b) The same region in the raw OCT image

Fig 5 . 1 1  , 2 

 5112 Fig 5.1 Distorted image of a microscope slide when scanned with a fan of rays (Reproduced from reference [128], Podoleanu et al). Point O and I are the object and corresponding image point, respectively. 1  , 2  are the top and bottom object surfaces, while S 1 , S 2 are the corresponding surfaces in the image.

n and 1 nFig 5 . 2 :

 152 Fig 5.2: Refraction of the incident beam in an OCT scanning system. During a scan, the beam moves parallel to the indicated direction along the x and z axes.

Fig 5 . 2 ,

 52 assuming the parametric function of the top interface is known, the incident angle θ 0 for each scanning ray OA can be determined after calculating the surface normal at incident point A, from which the refractive angle θ 1 can be determined based on the Snell"s law as defined in equation (5.1). Then, the parametric function of the refractive ray AB can be determined. For each image point I, the corresponding object point B in the object space can be searched along the path AB at a distance 1 n AI from point A. Once the exact (non-integer) coordinates of point B in the object space are determined, the light intensity value at the image point I is associated to the coordinates of point B. Since the corresponding object points of the image points are at non-integer positions, interpolation is needed to determine the light intensity value at the integer positions defined on a Cartesian grid in the object space.

Fig 5 . 2 ,

 52 Fig 5.2, the equation of the top interface of the object can be expressed as

  Now the task is to find where in the image space we should look at for this given object point B. Let"s use   coordinates of the corresponding image point I. Since the OCT system registers the optical path in the image as a vertical A-scan, the horizontal coordinate' 

Fig 5 . 4 :

 54 Fig 5.4: Central transverse z-slice of the OCT reconstructed volume for porcine cornea

  Fig 5.5(a). The refractive indices within and outside the porcine cornea is 1.38 and 1, respectively. Fig 5.5(b) shows the cornea after refraction correction.

Fig 5 . 5 :

 55 Fig 5.5: Masked OCT images (a) before and (b) after refraction correction

Fig 5 . 6 :

 56 Fig 5.6: Plots of (a) x and (b) y coordinates in the image space for each object point

Fig 5 . 5 Fig 5 . 8 :

 5558 Fig 5.8: Error map between the corrected cornea image obtained with point by point minimization and the corrected cornea image obtained with minimization on grid points

  point A can be found for a given object point B. Then, let"s use   coordinates of the corresponding image point I. The lateral coordinates '

Fig 5 . 9

 59 shows the fitted top surface of the porcine cornea in the reference state. The fitted polynomial function for the

Fig 5 . 9 :

 59 Fig 5.9: Plot of the fitted top surface of the porcine cornea using a forth order polynomial.

Fig 5 .

 5 Fig 5.10, the displacement maps after refraction correction are represented in column (b) and compared with the corresponding results before correction in column (a). It can be seen that the overall displacement distributions before and after refraction correction are consistentwith each other although some differences can be observed. Take x u displacement for example, it becomes larger after refraction correction with the maximal displacement now located closer to the inner interface compared with the

Fig 5 . 10 :

 510 Fig 5.10: Displacement maps for the central z-slice 25 of the porcine cornea inflated from 2 to 2.5 kPa: (a) before and (b) after refraction correction.

Fig 5 . 11 :

 511 Fig 5.11 : Strain maps for the central z-slice 25 of the porcine cornea inflated from 2 to 2.5 kPa: (a) before and (b) after refraction correction.

Fig 5 .

 5 13 (a) and (b) show the central z-slices of the OCT reconstructed volumes of the flat and hemispherical phantoms, respectively. The dashed lines in the two OCT images illustrate the position of these phantoms after rigid body rotation. It should be pointed out that the quality of the OCT images starts to weaken in deeper regions, especially evident in the hemispherical phantom, where the correlation coefficient values are smaller than 0.8. Therefore, the strain and rotation results in those regions were discarded.

Fig 5 . 12 :

 512 Fig 5.12: Photo of the flat and hemispherical silicone rubber phantoms for tilt tests.

Fig 5 . 15 :

 515 Fig 5.15: Strain and rotation maps for the hemispherical phantom tilt test: (a) before and (b)after refraction correction, 363 -voxel sub-volume, 50% overlap.

1 165Chapitre 2 5 6 Conclusions

 1256 mé thode des champs virtuels a é té développée en remplacement de cette mé thode d'identification, surmontant les lacunes de la mise à jour du modè le d'é lé ments finis. Cette mé thode peut ê tre appliqué e pour l'identification des paramè tres des maté riaux dans la pré sente é tude.Le travail pré sent vise à développer une mé thodologie qui peut ê tre appliqué e pour mesurer le champ de dé formation total en 3-D des maté riaux semi-transparents et diffusant la lumiè re, tels que la corné e. Ensuite, l'idendificationdes paramè tres constitutifs de ces mesures de dé formation 3-D est réalisé e en utilisant la mé thode des champs virtuels. Les problè mes spé cifiques qui seront abordé s comprennent:-Extension de la mé thode des champs virtuels en 3-D.-Développer les montages expé rimentaux pour les tests de traction et les tests d'inflation pour les spé cimens de fantôme en caoutchouc de silicone et de corné e porcine.-Dé termination du champ de dé formation total en 3-D avec profondeur ré solue utilisant la tomographie par cohé rence optique (OCT) couplée avec la corré lation volumique numé rique (DVC).-Développer une mé thode pour corriger les distorsions induites par ré fraction dans les reconstitutions obtenues par OCT.Cette thè se est organisée comme suit. Le chapitre 1 pré sente une revue bibliographique sur les connaissances de base de la corné e tels que la structure, la composition et la pression intraoculaire, etc. L'é tat de l'art dans l'é tude expé rimentale des proprié té s biomé caniques de la corné e est introduit. Ensuite, diverses techniques d'imagerie volumique sont examiné es en vue de l'analyse de la structure interne de la corné e. Aprè s cela, diffé rentes mé thodes pour identifier les paramè tres constitutifs sont introduites. Et enfin, les mé thodes d'obtention des mesures du champ de dé formation sont également introduites.Le chapitre 2 pré sente en dé tail l'établissement de la mé thode des champs virtuels en 3-D pour des champs virtuels dé finis manuellement et des champs virtuels optimisés par morceaux. Ensuite, de simples modè les par é lé ments finis sont introduits pour valider la faisabilité de ces champs virtuels en 3-D. Enfin, les champs virtuels dé finis manuellement sont comparé s avec les champs virtuels optimisés par morceaux en ajoutant aux donné es de dé formation une gamme de bruits pour comparer leurs performances respectives à ré cupé rer les paramè tres constitutifs de ces donné es pollué es par le bruit. Le chapitre 3 pré sente les mesures du champ de dé formation 3-D avec ré solution en profondeur pour les fantômes en caoutchouc de silicone sous tension, obtenues en effectuant la tomographie par cohé rence optique couplé e avec la corré lation volumique numé rique. L'é tude de l'effet du bruit et des incertitudes de reconstructions ainsi que de la dé corré lation des mouchetures (speckles) induits par la dé formation est d'abord introduite. Le biais d'interpolation est ensuite analysé. Enfin, les paramè tres é lastiques constitutifs des fantômes sont identifié s. Dans le chapitre 4, le champ de dé formations 3-D du fantôme de corné e en caoutchouc de silicone et de la corné e porcine dans les conditions d'inflation posté rieure sont mesurées. Un modè le d'é lé ments finis avec les mê mes conditions d'inflation de la corné e est introduit et comparé aux ré sultats expé rimentaux. Une mé thode pour corriger les distorsions induites par ré fraction des reconstructions 2-D/3-D de la tomographie par cohé rence optique est pré senté e dans le chapitre 5. Cette mé thode de correction est appliquée à corriger les images en volume reconstruites à partir de la corné e porcine. Des tests d'inclinaison des diffé rents fantômes en caoutchouc de silicone sont introduits pour évaluer la performance de la mé thode pour corriger les reconstructions distordues. Dans le dernier chapitre, les conclusions et perspectives sont pré senté es.ChapitreLa corné e est localisé e sur la face externe du globe oculaire et possè de une structure multi-couches et semi-transparente. Elle protè ge l'oeil contre l'environnement exté rieur, absorbe l'oxygè ne et les nutriments du film lacrymal et maintient la forme et la stabilité de l'oeil en ré sistant à la pression intraoculaire. Elle joue é galement un rôle important dans la formation de l'image par réfraction de la lumière à l'arrière de l'oeil. La corné e est composé e de cinq couches, à savoir l'é pithé lium, la couche de Bowman, le stroma, la membrane de Descemet et l'endothé lium. Le stroma constitue 90% de l'é paisseur de la corné e et domine la performance structurelle de la corné e. Il est constitué de lamelles empilé es de fibrilles de collagè ne disposé es ré guliè rement et noyé es dans une matrice hydraté e. Parce que la fibrille de collagè ne est le composant le plus rigide de la corné e, son agencement et sa distribution dé terminent essentiellement les proprié té s mé caniques et la transparence lumineuse de la corné e. Plusieurs é tudes expé rimentales ont é té réalisé es afin de caracté riser les proprié té s biomé caniques de la corné e. Gé né ralement, il existe deux types de test qui sont souvent adopté s pour examiner la réponse mé canique de la corné e sous pression, qui sont le test d'inflation et le test de traction, respectivement. Le test d'inflation est une mé thode physiologiquement repré sentative pour dé terminer les proprié té s mé caniques de la corné e. Par consé quent, cette mé thode a é té sé lectionnée dans notre projet pour é tudier le comportement mé canique avec ré solution en profondeur des corné es ex-vivo. Parce que la corné e a une structure composite complexe, en plus du fait que certaines pathologies peuvent changer les proprié té s biomé caniques internes de la corné e localement, les é tudes basé es sur la mesure d'un point ou de surface ne sont pas suffisantes pour examiner complè tement le comportement mé canique de la corné e. Par consé quent, il serait utile de développer une mé thode qui puisse utilisé e pour caracté riser les proprié té s biomé caniques internes et le champ de dé formation total en 3-D de la corné e. L'analyse de la microstructure interne d'un maté riau est importante pour l'é tude des proprié té s mé caniques du maté riau. Au lieu de l'imagerie traditionnelle de surface, des techniques d'imagerie qui peuvent regarder à l'inté rieur des maté riaux sont né cessaires, englobé es dans le terme Tomographie. Diverses techniques tomographiques basé es sur diffé rents mé canismes ont é té développées, telles que la tomographie à rayons X (X-CT), l'imagerie par ré sonance magné tique (MRI), la microscopie confocale (CM), la tomographie par cohé rence optique (OCT), etc. Par rapport aux X-CT, MRI et CM, l'OCT est plus appropriée pour l'imagerie 3-D des tissus biologiques tels que les corné es, les peaux, les artè res, etc. L'X-CT exige que les objets dé tecté s aient suffisamment de contraste d'absorption des rayons X pour une imagerie efficace. L'X-CT est gé né ralement appropriée pour l'imagerie de solides. Bien que la MRI soit utilisé e pour l'imagerie de tissus biologiques, elle n'est pas autant appropriée que l'OCT à l'imagerie des tissus morphologiques en raison de sa ré solution relativement faible. En outre, le coû t é levé de MRI ré duit aussi l'applicabilité de cette technique. CM peut fournir des images de la structure interne des tissus biologiques minces à haute ré solution. Toutefois, la profondeur de pé né tration de cette technique est beaucoup moins grande que l'OCT. Par consé quent, dans la pré sente é tude, OCT est sé lectionnée pour la reconstruction des tissus biologiques. contraste d'absorption des rayons X. Pour certains maté riaux souples et semi-transparents tels que les tissus biologiques (corné es, peaux, artè res, etc.), des techniques plus approprié es doivent ê tre sé lectionnées. La CM est une option, qui peut fournir des donné es de volume de haute ré solution (infé rieure au micron). Elle a é té couplée avec la DVC pour mesurer la dé formation interne en 3-D. Cependant, son application est limité e par la faible porté e de la ré gion dé tectée. En effet, la profondeur de pé né tration de la CM est gé né ralement limité e en dessous du millimè tre, pour les spé cimens plus é pais tels que les corné es, les peaux, les artè res, etc. cette technique n'est pas suffisante pour mapper champ de dé formation dans toute l'épaisseur. Il a é té introduit dans les sections pré cé dentes que l'OCT est capable d'obtenir une plus grande profondeur de péné tration par rapport à CM. L'OCT est largement utilisé e pour l'imagerie des tissus biologiques. Pour mesurer le champ de dé formation en 3-D des tissus biologiques tels que la corné e, la DVC sera appliqué e aux donné es volumiques reconstruites par OCT. Ceci, cependant, n'a pas encore é té entrepris au mieux de notre connaissance. Diffé rents ensembles de champs virtuels 3-D dé finis manuellement ont é té sé lectionné s pour l'identification des paramè tres constitutifs de maté riaux. Le cas simple d'un cube en compression a é té conç u pour illustrer la mise en oeuvre de la mé thode des champs virtuels en 3-D. L'élasticité liné aire isotrope a é té choisie dans un but de simplicité. Les ré sultats montrent que ces ensembles de champs virtuels ont une sensibilité diffé rente au bruit sur encoches. Le module d'Young nominal du caoutchouc de silicone est de 1.88 MPa, pouvant changer avec la proportion du durcisseur. Le montage expé rimental est constitué d'un appareil de test en traction et un systè me de tomographie par cohé rence optique à source de signal balayé (SS-OCT). Pour les deux é tats de ré fé rence et dé formé s, une sé quence d'images en volume du spé cimen a é té acquise à l'aide du systè me SS-OCT. Ensuite, la DVC a é té utilisé e pour calculer les champs de déplacement en 3-D des reconstructions obtenues par SS-OCT. Avant les tests de traction, l'effet combiné du bruit et des incertitudes de reconstruction a é té é tudié par l'exé cution d'un test stationnaire et un test de de corps rigide en translation du fantôme. L'effet de dé corré lation des speckles induite par dé formation a é té é tudié par une simulation numé rique. Une incertitude sur la dé formation de l'ordre de ~210 -4 à ~3.510 -4 a é té observé e pour les tests stationnaire et de translation. L'OCT+DVC couplé es sont jugé es approprié es pour la mesure de déformations jusqu'à ~2% (dans le sens axial), valeur au-dessus de laquelle une approche incré mentale devrait ê tre utilisée pour éviter la dé corré lation des speckles. Des valeurs raisonnables des champs de dé placement et de dé formation ont é té obtenues pour le fantôme rectangulaire et pour le fantôme avec encoches. Les franges parasites observées dans les champs de dé formation ont é té analysées, et sont causé es par le repliement d'image (aliasing). Ceci est confirmé par l'exé cution d'un test de traction en doublant la charge sur le fantôme rectangulaire. Deux approches ont é té prouvé es faisables pour ré duire le biais d'interpolation causé par l'aliasing. Dans la premiè re approche, le avec les résultats du modè le EF et montrent la faisabilité de cette mé thode appliqué e aux é tudes de la dé formation interne de la corné e humaine. Chapitre Pour un spé cimen avec une surface supé rieure plate, on est exempt du problè me de distorsions si le rayon de balayage est perpendiculaire à la surface du spé cimen. Cependant, pour un spé cimen avec une surface courbe telle que la corné e, une distorsion induite par la ré fraction se produit. Cela introduit des erreurs de dé termination de la position ré elle de la microstructure dans la corné e. Les images volumiques distordues introduisent ensuite des erreurs dans les mesures de déplacement et de dé formation. Des mé thodes de correction de ré fraction pour les cas 2-D et 3-D ont é té développées basé es sur le principe de Fermat. Un algorithme de minimisation point-par-point a é té développé d'abord pour corriger les images 2-D distordues obtenues par OCT. Cette mé thode pré sente cependant l'inconvénient d'un long temps de traitement. Par consé quent, une mé thode plus efficace a é té développée, dans laquelle l'algorithme de minimisation est exé cuté uniquement sur les points dé finis d'une grille. Ensuite, les coordonné es des points objets intermé diaires dans l'espace d'image sont obtenues en interpolant les coordonné es de ces points de grille. Par rapport à la mé thode avec minimisation point-par-point, cette derniè re permet de ré duire le temps de traitement considé rablement, par exemple, de ~10 heures à ~1 minute pour une image typique d'OCT ( 512 1024  pixels), sans perte de pré cision de correction. Cela rend la correction du volume ré alisable. La correction des distorsions a é té effectué e sur les reconstructions volumiques de la corné e obtenues à partir du test d'inflation introduit dans le chapitre 4. La DVC a ensuite é té effectué e sur les volumes corrigé s de la corné e pour obtenir les champs corrigé s des dé placements et des dé formations. Il montre que les ré sultats de DVC aprè s correction des distorsions sont plus compatibles avec les ré sultats de la simulation. Des tests d'inclinaison sur des fantômes ont é té effectués pour é valuer la performance de la mé thode de correction à corriger les reconstructions distordues et les mesures de dé formation obtenues par DVC. Deux fantômes ont é té fabriqué s. L'un est une bande plate tandis que l'autre est hé misphé rique. Les fantômes ont é té placé s sur un plateau de rotation et tourné s de 0.5° dans le plan xy. A chaque é tat, un volume a é té reconstruit par le systè me SS-OCT. La DVC a é té appliqué e aux reconstructions volumiques. Les champs de dé formation et de rotation ont é té obtenus. Ensuite, la mé thode de correction des distorsions a é té effectuée sur reconstructions volumiques, et une DVC a é té effectué e pour obtenir les dé formations et rotations corrigées. L'objectif est de voir si les ré sultats de dé formation et de rotation sont amé lioré s aprè s la correction des distorsions. Les ré sultats montrent que, aprè s la correction la dé formation parasite induite par la distorsion de ré fraction a é té ré duite, et la mesure de rotation s'est rapprochée de la valeur d'entré e. Ceci indique que la mé thode peut corriger les reconstructions distordues d'OCT à leur configuration ré elle. Ceci permettra d'amé liorer la pré cision de mesure par OCT couplé e avec DVC lors de la mesure en 3-D des dé formations des spé cimens avec surface courbé e. Chapitre Dans cette thè se, une mé thode efficace a é té mise au point pour mesurer le champ de dé formation total en 3-D de maté riaux semi-transparents et diffusant la lumiè re tels que la corné e. Ces mesures de dé formation 3-D peuvent ê tre utilisées pour identifier les paramè tres constitutifs de maté riaux, au moyen de la VFM. La VFM a é té é tendue en 3-D pour accueillir les mesures du champ total de dé formation en 3-D. Les champs virtuels dé finis manuellement et les champs virtuels optimisé s par morceaux ont é té développé s. Leur capacité à extraire les paramè tres constitutifs pré cisé ment des simulations FEM simples a é té montré e faisable. Les champs virtuels dé finis manuellement ont é té comparé s avec les champs virtuels optimisé s par morceaux en ajoutant à leurs donné es de dé formation une gamme de bruits blancs Gaussiens afin de comparer leurs ré sultats respectifs. Les ré sultats montrent que toutes les mé thodes peuvent fournir les bons ré sultats d'identification. Toutefois, lorsque le bruit devient plus grand, les champs virtuels optimisés par morceaux sont beaucoup plus stables et peuvent fournir des ré sultats d'identification plus pré cis. La DVC peut fournir, au moyen d'un systè me d'OCT avec un seul canal, les champs de dé placement multi-composants. De ces champs de dé placement tous les composants de dé formation requis par les mé thodes d'inversion telles que la VFM 3-D peuvent ê tre dé terminé s. Une incertitude sur la dé formation de l'ordre de ~210 -4 à ~3.510 -4 a é té observé e pour l'approche OCT+DVC en effectuant une analyse de bruit. L'approche OCT+DVC est approprié e pour des déformations n'allant pas au-delà de de ~2% (dans le sens axial), point au-dessus duquel une approche incré mentale devrait ê tre utilisée pour éviter la dé corré lation des speckles. L'aliasing s'est montré la raison des franges parasites observées dans les champs de dé formation. Deux approches ont montré ê tre possible pour ré duire le biais d'interpolation en raison de l'aliasing. La premiè re approche consiste à effectuer le pré-lissage (par exemple un filtre passe-bas de Gaussien) aux images volumiques avant la corré lation. Pour la deuxiè me approche, le biais d'interpolation peut ê tre ré duit en augmentant la densité d'é chantillonnage du systè me SS-OCT. Les champs 3-D de dé formation ont é té utilisé s pour identifier les paramè tres constitutifs é lastiques des fantômes en caoutchouc de silicone en utilisant la VFM 3-D. Les ré sultats de l'identification des cas des champs de dé formation uniformes et hé té rogè nes ont é té comparés avec ceux calculés analytiquement dans l'hypothè se de contrainte uniaxiale constante et ceux mesuré s par la machine de traction micro, montrant de bons accords. Les champs de dé formation 3-D dans la profondeur de la corné e porcine et du fantôme de silicone dans les conditions d'inflation posté rieure ont é té mesurés en utilisant OCT+DVC. De bons ré sultats de déplacement et dé formation des tests d'inflation ont é té obtenus pour les spé cimens du fantôme et la corné e. Ces ré sultats montrent un bon accord avec ceux du modè le FE. Des mé thodes de correction pour les deux cas 2-D et 3-D ont é té développées basé es sur le principe de Fermat pour corriger la distorsion induite par la ré fraction dans les reconstructions d'OCT. Un moyen plus efficace a é té développé qui permet de ré duire considé rablement le temps de calcul sans perte de pré cision de correction. Les tests d'inclinaison ont é té effectués pour évaluer la performance de la mé thode de correction. Les ré sultats montrent que, aprè s la correction des distorsions les dé formations parasites ont é té ré duites, et les mesures de rotation ont é té augmenté es, devenant plus proches des valeurs d'entré e. Ceci indique que la correction des distorsions peut corriger les reconstructions distordues d'OCT par rapport à leur configuration ré elle. La mé thode de correction a é té appliquée pour corriger les reconstructions volumiques de la corné e du test d'inflation. Les ré sultats de DVC aprè s correction sont plus cohé rents avec ceux de la simulation. Perspectives Les mesures actuelles de dé formation sont basé es sur les spé cimens avec une seule couche tels que les fantômes de silicone introduits. Même si la corné e est composé e de cinq couches, le stroma constitue plus de 90% de l'é paisseur de la corné e. Par consé quent, il serait inté ressant de cré er des fantômes avec multi-couches (par exemple, double-couches avec la même é paisseur et les rigidités diffé rentes), et de mesurer les champs de dé formation hé té rogè nes de chaque couche dans le mê me temps en utilisant OCT+DVC. Il serait utile de développer une VFM 3-D qui prend en compte l'hé té rogé né ité des maté riaux. Cette VFM 3-D peut ê tre utilisé e pour extraire les paramè tres constitutifs de chaque couche en utilisant des champs de dé formation hé té rogè nes et un seul test. Cette é tude future recommandé e pourrait amé liorer considé rablement l'applicabilité de la mé thodologie proposé e. En raison de la ré flexion et de l'absorption de la lumiè re, les images volumiques actuelles tendent à avoir une mauvaise qualité dans les ré gions infé rieures. Cela conduit à des ré sultats de DVC inexacts à cet endroit, et affecte l'identification des paramè tres constitutifs. Ainsi, des efforts peuvent ê tre entrepris en l'amé lioration de la qualité des images à l'avenir. Cela peut ê tre effectué en ajustant le trajet d'illumination, tel que par l'ajout d'une lentille approprié e pour rendre le faisceau d'illumination perpendiculaire à l'interface afin que la ré flexion puisse ê tre ré duite (Cela peut aussi ré duire la distorsion induite par la ré fraction). Autrement, un systè me OCT avec une plus grande profondeur de pé né tration est é galement une solution. D'autres tissus biologiques tels que les artè res, les peaux, etc. peuvent aussi ê tre é tudié s en utilisant la mé thodologie proposé e pour é tudier leur comportement de dé formation et proprié té s de maté riaux. Il serait inté ressant de mesurer les champs de dé formation de ces tissus sous haute pression pour é tudier leurs proprié té s non liné aires et ré ponse aux dommages (par exemple la rupture de l'anévrisme). Dans le pré sent travail, la VFM 3-D a é té mise en oeuvre ené lasticité liné aire. Cependant, en considé rant le comportement non liné aire des tissus biologiques sous grandes dé formations, il serait utile d'é laborer une VFM
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 2 [START_REF] Mannis | Making sense of refractive surgery in 2001: why, when, for whom, and by whom?[END_REF] Comparison of the fitted slope

1.1.2 Intraocular pressure

  Intraocular pressure (IOP) is the fluid pressure inside the eye. It is mainly determined by the coupling of the production and the drainage of aqueous humor mainly through the trabecular network located in the anterior chamber angle. Intraocular pressure is usually measured in

	millimeters of mercury (mmHg) or kilo-Pascal (kPa). Accumulated evidences indicate that
	IOP is positively correlated with age, sex, race, blood pressure, obesity and other cardiac risk
	variables [19, 20]. It is generally accepted that in the total population, the normal IOP reading
	is 15-16 mmHg (2.0-2.1 kPa) on average, with standard deviation of 2.5-3.0 mmHg (0.33-0.4
	kPa). Although the value increases with age, 21-22 mmHg (2.8-2.9 kPa) is generally
	considered the approximate upper limit of the normal value [21, 22].
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 2 1: Input constitutive parameters for isotropic elasticity.
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Table 2 .

 2 2: Identification results for virtual fields 1 and 2.

	Constitutive parameters	Reference	Identified	Error
	Young's modulus E (GPa)	100.000	100.008	0.008%
	Poisson's ratio ν	0.300	0.300	0.0%

Table 2 . 3 :

 23 .3. One can see that the identified Identification results for virtual fields 3 and 4.

	Constitutive parameters	Reference	Identified	Error
	Young's modulus E (GPa)	100.000	100.000	0.0%
	Poisson's ratio ν	0.300	0.300	0.0%

E and  are even closer to the input values.

Table 2 .

 2 4: Identification results for virtual fields 5 and 6.

	Constitutive parameters	Reference	Identified	Error
	Young's modulus E (GPa)	100.000	103.416	3.42%
	Poisson's ratio ν	0.300	0.294	2.07%

Table 2 .

 2 

	Constitutive parameters	Reference	VFM 1, 2	VFM 3, 4	VFM 5, 6
	Young's modulus E (GPa)	100.000	102.026	98.535	119.066
	Poisson's ratio ν	0.300	0.294	0.298	0.256

5: Identification results for strain data polluted by Gaussian white noise with amplitude of 4 10  .
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 2 6: Input stiffness components for orthotropic elasticity.

	11 Q	22
	(GPa)	

Table 2 .

 2 7 and Table 2.8 list the identification results for the isotropic and orthotropic case, respectively.

Table 2 .

 2 7: Identification results for isotropic elasticity using 3D piecewise optimized VFM.

	Constitutive parameters	Reference	Identified	Error
	Young's modulus E (GPa)	100.0	100.053	0.053%
	Poisson's ratio ν	0.3	0.3003	0.1%

Table 2 .

 2 8: Identification results for orthotropic elasticity using 3D piecewise optimized VFM.

	Constitutive parameters	Reference	Identified	Error
	11 Q (GPa)	90.0	90.057	0.063%
	22 Q (GPa)	50.0	50.088	0.176%
	33 Q (GPa)	70.0	70.131	0.187%
	12 Q (GPa)	29.0	29.026	0.090%
	13 Q (GPa)	38.0	38.031	0.082%
	23 Q (GPa)	12.0	12.026	0.217%
	44 Q (GPa)	20.0	20.006	0.030%
	55 Q (GPa)	25.0	25.006	0.024%
	66 Q (GPa)	15.0	15.007	0.047%

Table 2 . 9

 29 The same procedure was carried out for the orthotropic case, and the coefficients of variation for the nine stiffness components are plotted as a function of  in Fig 2.5. As can be seen

					Fitted	Theoretical
		11	Q 11	77.0	81.4
		12	Q 12	189	198
	from Fig 2.5, 44 Q , 55 Q and 66 Q are the most stable stiffness components and they all have
	very small coefficients of variation. 11 Q , 22 Q and 33 Q have intermediate coefficients o f
	variation, while the last three components 23 Q , 12 Q and 13 Q have the largest scatter and are
	the most sensitive to noise.	

: Comparison of the fitted slope     i i Q  with the theoretical values for isotropic elasticity, 3D piecewise optimized VFM.

Table 2 .

 2 10: Comparison of the fitted slope

	    i i Q  with the theoretical values for orthotropic

  The mean and standard deviation of the identified Young"s modulus E are plotted versus the noise amplitude  in Fig 2.6 using symmetric error bars that are two standard deviation units in length. It can be seen from the figure that all three VFM implementations yield near-exact identification of Young"s modulus when there is no noise (when 0  ). However, when noise increases identification results for all three VFM implementations become less stable especially for the set of virtual fields 1 and 2. Clearly, for all noise amplitudes, virtual fields 1 and 2 yield the least accurate mean values and the largest standard deviations. Better results can be found for virtual fields 3 and 4, which have smaller standard deviations than virtual fields 1 and 2. The piecewise optimized VFM obviously has the smallest standard deviations and is the least affected by noise. Even when the noise amplitude reaches

	2	10	4

 

, which is already tens of percent of the strain values, the identification results are still rather reasonable.

Similar results were found for the identification of Poisson"s ratio  in Fig 2.7. Again, virtual fields 1 and 2 yield the least accurate identified Poisson"s ratio, while the piecewise optimized VFM yields the best results, which is what was expected. The relative identification error for Young"s modulus and Poisson"s ratio were then calculated using equation (2.26). For each noise amplitude  , the mean of the relative errors of the 30 identifications was obtained and plotted as a function of  in Fig 2.8 and Fig 2.9, for Young"s modulus and Poisson"s ratio, respectively. As expected from Fig 2.6 and Fig 2.7, virtual fields 1 and 2 yield the largest identification error for both Young"s modulus and
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	xy Q (MPa)	E (MPa)	

1: Identified material elastic stiffness parameters without pre-smoothing. xx Q (MPa)

Table 3 .

 3 2: Identified material elastic stiffness parameters with pre-smoothing.

		xx Q (MPa)	xy Q (MPa)	E (MPa)	
	VFM (rectangular, load step 1)	3.39	2.40	1.40	0.41
	VFM (rectangular, load step 2)	3.26	2.23	1.45	0.41
	Constant Stress (rectangular, load step 1)	3.55	2.57	1.39	0.42
	VFM (Notched, load step 1)	3.18	2.09	1.51	0.40
	3.8.2 Identification of shear modulus	G and bulk modulus	K

Table 5 . 1 :

 51 Parameters of the 4th order polynomial function for the top surface of the porcine

	cornea in the reference state					
	P 00	P 10	P 01	P 20	P 11	P 02	P 30	P 21
	764.9	-1.885	-2.339	0.002667 0.002941 0.003611	-1.96 ×10 -6	-2.299 ×10 -6
	P 12	P 03	P 40	P 31	P 22	P 13	P 04	
	-3.176	-2.505	1.198	-5.481	2.895	1.487	1.166	
	×10 -6	×10 -6	×10 -9	×10 -10	×10 -9	×10 -10	×10 -9	

Table 5 .

 5 2: Parameters of the 4th order polynomial function for the top surface of the porcine

	cornea in the deformed state												
	P 00	P 10	P 01			P 20				P 11		P 02	P 30	P 21
	859.5	-2.346	-2.774		0.0035		0.004237 0.004376	-2.652 ×10 -6	-3.631 ×10 -6
	P 12	P 03	P 40			P 31				P 22		P 13	P 04
	-4.358	-3.171	1.435		-1.553		3.525	4.676	1.412
	×10 -6	×10 -6	×10 -9		×10 -10		×10 -9	×10 -10	×10 -9
	A 3D grid was defined as  1	:	5	:	 1024	,  1	:	5	:	 512	,  1	:	5	:	 1024

Table 5 .

 5 3: Mean and standard deviation values of the strain and rotation components for the flat phantom tilt test before and after refraction correction.

			Before correction	After correction
		xx	Mean: -2.8×10 -5 Std: 4.7×10 -4	Mean: 5.9×10 -5 Std: 5.8×10 -4
		yy	Mean: 1.5×10 -4 Std: 4.3×10 -4	Mean: 2.8×10 -4 Std: 5.5×10 -4
		xy	Mean: 1.3×10 -3 Std: 9.2×10 -4	Mean: 2.0×10 -4 Std: 7.4×10 -4
			Mean: -0.32°	Mean: -0.49°
		xy					
				Std: 0.053°		Std: 0.067°
	Similar results were obtained for the hemispherical phantom. The strain and rotation maps
	before and after refraction correction for			
						 show distributions close
						yy	
	to the strain noise level while	 shows large positive values, with a mean of	6 . 2		10	3 	, as
				xy			
	listed in Table 5.4. Regarding the rotation,	 is underestimated, with a mean value of only
					xy		
	0.25°. These results were improved after refraction correction with	 dropping to noise
							xy
	level and	xy  increasing to 0.43, closer to the input value 0.5°, as shown in Fig 5.15(b) and

xx  , yy  , xy  and xy  are provided in Fig 5.15 for a central z-slice, and their mean and standard deviation values are listed in Table 5.4. Again, as can be seen in Fig 5.15(a), before refraction correction, xx  and
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[START_REF] Notara | In sickness and in health: Corneal epithelial stem cell biology, pathology and therapy[END_REF]

. One can also observe in Table

5

.4 that there is an increase in the strain and rotation standard deviations after refraction correction. This has already been explained earlier for the flat phantom strip.

  L'é tude de la corné e de l'oeil verté bré est un sujet interdisciplinaire qui implique la médecine, la biologie, la mé canique, la science des maté riaux, etc. L'é tude des proprié té s biomé caniques de la corné e a une importance considé rable dans l'ophtalmologie, et a également le potentiel d'application dans d'autres domaines de high-tech. Par consé quent, pendant des dé cennies de nombreux chercheurs se sont consacré s à ce domaine de recherche. es pathologiques diffè rent de celles normales. Elles peuvent é galement ê tre appliquées à développer les modè les d'é lé ments finis pour simuler et prévoir le comportement biomé canique de la corné e.Actuellement, la plupart des travaux de recherche qui ont é té faits pour caracté riser les proprié té s biomé caniques de la corné e sont basés sur les tests de traction uniaxiale ou les mesures de surface telles que le test de l'inflation conjugué à la corré lation d'images numé riques. Cependant, la mesure du champ de dé formation total en 3-D avec ré solution en profondeur n'a pas encore é té entreprise, ce qui est essentiel pour mieux comprendre le comportement biomé canique interne de la corné e. En outre,

	intraoculaire sont é galement essentiels car ils influencent le comportement
	biomé canique de la corné e de faç on significative. Ces proprié té s
	fondamentales devraient ê tre é tudiées comme des conditions pré alables à la
	construction de mé thodes expé rimentales approprié es et de modè les
	numé riques repré sentatifs afin d'é tudier et de pré dire le comportement
	biomé canique de la corné e. Actuellement, les chercheurs ont développé
	de nombreuses mé thodes expé rimentales qui permettent de repré senter la
	ré ponse physiologique de la corné e sous pression et évalué ses proprié té s
	biomé caniques telles que l'é lasticité , la viscoé lasticité, etc. Basé sur les
	mé thodologies pour l'identification du problè me inverse, les paramè tres
	constitutifs de la corné e peuvent ê tre identifié s en utilisant des mesures
	expé rimentales telles que la mesure du champ de déplacement/dé formation.

Pour é tudier les proprié té s biomé caniques de la corné e, premiè rement il est nécessaire d'avoir une bonne compréhension de la composition et de l'anatomie de l'oeil et sa cornée. Les effets internes tels que la pression Ces proprié té s identifié es ont une grande valeur car elles peuvent ê tre utilisées pour é tudier la pathologie de la corné e, dans laquelle les proprié té s des corné l'identification actuelle des paramè tres constitutifs des maté riaux est gé né ralement basée sur la mise à jour du modè le par é lé ments finis, qui souffre souvent d'optimisation locale et d'un long temps de traitement. La

  Ce travail présente une méthodologie efficace pour mesurer le champ de déformation total en 3D des tissus mous semi-transparents et diffusant la lumière, tels que la cornée de l'oeil vertébré. Cela a été obtenu en utilisant la tomographie par cohérence optique couplée avec la corrélation volumique numérique sur des fantômes en caoutchouc de silicone et de la cornée porcine. Des tests de traction et des tests d'inflation postérieure ont été étudiés. Avant ces tests, l'effet du bruit et la décorrélation des speckles due à la déformation sont d'abord étudiés en utilisant des méthodes expérimentales et numériques. Le biais d'interpolation dans les résultats de déformation a été analysé. Deux approches efficaces ont été prises pour réduire le biais d'interpolation. Pour extraire les paramètres constitutifs des mesures de déformation 3D, la méthode des champs virtuels a été étendue en 3D. Les champs virtuels définis manuellement et les champs virtuels optimisés par morceaux ont été développés et comparés entre eux. Des efforts ont également été déployés pour corriger les distorsions induites par réfraction dans les reconstructions de la tomographie par cohérence optique. Des tests d'inclinaison des différents fantômes de silicone ont été introduits afin d'évaluer la performance de la méthode pour corriger les reconstructions distordues.Identification de la mécanique de la cornée par la tomographie optique et la corrélation de volume numérique Ce travail présente une méthodologie efficace pour mesurer le champ de déformation total en 3-D des tissus mous semi-transparents et diffusant la lumière, tels que la cornée de l'oeil vertébré. Cela a été obtenu en utilisant la tomographie par cohérence optique couplée avec la corrélation volumique numérique sur des fantômes en caoutchouc de silicone et de la cornée porcine. Des tests de traction et des tests d'inflation postérieure ont été étudiés. Avant ces tests, l'effet du bruit et la décorrélation des speckles due à la déformation sont d'abord étudiés en utilisant des méthodes expérimentales et numériques. Le biais d'interpolation dans les résultats de déformation a été analysé. Deux approches efficaces ont été prises pour réduire le biais d'interpolation. Pour extraire les paramètres constitutifs des mesures de déformation 3-D, la méthode des champs virtuels a été étendue en 3-D. Les champs virtuels définis manuellement et les champs virtuels optimisés par morceaux ont été développés et comparés entre eux. Des efforts ont également été déployés pour corriger les distorsions induites par réfraction dans les reconstructions de la tomographie par cohérence optique. Des tests d'inclinaison des différents fantômes de silicone ont été introduits afin d'évaluer la performance de la méthode pour corriger les reconstructions distordues.
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Fig 3.14: Spatial distribution of the strain components obtained for a rectangular phantom strip under tension (load step 1). The central y-slice 10 is shown.

 2.10. Similarly to the isotropic case, it can be seen that the fitted values match the theoretical values.

The above results validate that the 3D piecewise optimized VFM can extract the constitutive parameters successfully for both isotropic and orthotropic elasticity even the noise amplitude is relatively large. This is the first time that optimized virtual fields have been generated for a 3D problem.

Conclusions

In this chapter, 3D manually defined VFM was first developed for the identification of 3D elasticity from volume strain data. It was validated using the simulated strain data from a FE model with isotropic elasticity. The results showed that the different sets of virtual fields have different sensitivity to strain noise and the choice of virtual fields can be critical. 3D optimized VFM was then developed in detail. Piecewise virtual fields were selected here. The optimization was implemented using Lagrangian multipliers under boundary conditions constraints that eliminate the contribution of reaction forces at the supports (KA) and the special conditions constraints that directly provide the constitutive parameters. This 3D piecewise optimized VFM was validated using simulated strain data from FE models with both isotropic and orthotropic elasticity material models. Similar to the manually defined VFM, the identified stiffness components from the piecewise optimized VFM are also nearly identical to the input reference values, thus verifying the method. Finally, the manually defined VFM was compared to the piecewise optimized VFM when the strain data were polluted by Gaussian white noise. The idea was to benchmark both approaches in terms of sensitivity to noise. The results showed that both methods yielded good identification results. However, when the noise amplitude becomes larger, the piecewise optimized VFM led to much more stable results, as expected. It was also shown that the standard deviation predicted by the optimized approach matched the ones calculated directly from the stiffness distributions obtained with different copies of noise with increasing amplitude, thus validating the analytical expressions of the variance provided here for the first time for 3D elasticity.

To identify the constitutive parameters of a material using the VFM, strain data need to be obtained. For 3D VFM, depth-resolved full-field deformation measurement is needed. This issue is addressed in the following chapter.

For both reference and deformed states, a 3D volume reconstruction of the specimen was generated using the SS-OCT system. It uses a rapidly tuned narrowband light source with central wavelength of 1325 nm and spectral bandwidth of 100 nm and records the information with a single photo detector. The frequency of the interference signal is proportional to the optical path difference between the sample and reference arms of an 

Digital volume correlation

DVC is the 3D extension of the widely applied DIC used to measure surface deformations.

During the DVC procedure, the correlated volumes are first divided into sub-volumes. The displacement vector of each sub-volume is determined by tracking and matching the voxels To analyse the sinusoidal oscillation in the displacement and strain results, the study of interpolation bias in digital image correlation from reference [START_REF] Sutton | Image correlation for shape, motion and deformation measurements[END_REF] by Sutton et al is cited here. In the reference, 20 images were produced by the authors, corresponding to sub-pixel shift increments of 0.05 pixel between images. The displacement of each image with respect to the original image was determined using DIC that implements different interpolation filters.

The plot of interpolation bias is cited here in Fig 3 .16. It can be seen that the general shapes of the errors are the same for all interpolation filters, which are sinusoidal, only the magnitudes of the errors being different. In the present study, it is apparent that the sinusoidal oscillation in Fig 3 .12 for the rectangular phantom strip is consistent with the results stated in reference [START_REF] Sutton | Image correlation for shape, motion and deformation measurements[END_REF], indicating that it is the result of interpolation bias. In the case of the FFT based DIC algorithm used here, the period of the oscillation due to interpolation bias has been proved to correspond to a displacement equivalent to 2 voxels [START_REF] Madi | Computation of full-field displacements in a scaffold implant using digital volume correlation and finite element analysis[END_REF][START_REF] Astarita | Analysis of interpolation schemes for image deformation methods in PIV[END_REF][START_REF] Besnard | Finite-element displacement fields analysis from digital images: application to Portevin-Le Châ telier bands[END_REF]. This is consistent with 2.5 fringes observed in that the fringes become less evident as the Gaussian filter becomes larger. However, this also leads to an increase in the strain standard deviation, as can be seen from the xx  strain map with the 9 9 9   Gaussian filter. The reason for this increase has been explained by Pan in [START_REF] Pan | Bias error reduction of digital image correlation using Gaussian pre-filtering[END_REF], which states that the sum of squares of subset intensity gradient (SSSIG) is reduced notched phantom strips. The fringes due to interpolation bias are eliminated after presmoothing. 

Noise analysis

Considering the relatively small thickness of the porcine cornea and corneal phantom to the spatial resolution of the SS-OCT system, 24×24×24-voxel sub-volume with 50% overlap was selected to perform DVC. Based on this sub-volume size, a noise analysis equivalent to the one described in Chapter 3 for the flat phantom was repeated here, i.e. a stationary test in which two reconstructions are compared maintaining a constant pressure and with no displacements, and a controlled rigid body translation of 40 µm in the vertical y-direction.

The strain standard deviation (a measure of the strain uncertainty) was evaluated for both cases and this is shown in were aimed at a qualitative comparison with those measured with DVC. According to ref.

[28], the porcine cornea behaves linearly while the intraocular pressure remains below 4 kPa.

Therefore, a linear elastic material with Young"s modulus E=0.3 MPa and Poisson"s ratio ν=0.49 (see ref. [START_REF] Hamilton | Young"s modulus in normal corneas and the effect on applanation tonometry[END_REF] by Hamilton and Pye) was chosen for the FE model. A study by

Anderson et al [START_REF] Anderson | Application of structural analysis to the mechanical behaviour of the cornea[END_REF] shows that a model that assumes constant corneal thickness only results 

Limitations

As highlighted in 

Introduction

Accurate displacement and strain measurements based on DVC require that the reference and deformed data volumes accurately represent the spatial position of all the internal features of reconstructed specimen, i.e. that no geometrical distortions should be present. However, OCT reconstructions usually suffer from different types of geometric distortions.

Refraction induced distortion is one type of these errors. It arises when the sample has a curved surface or the sample has a flat surface which does not lie perpendicular to the scanning beam. In this case the scanning beam changes its propagation direction at the air/sample interface but the OCT system reconstructs the scattered light as if light had propagated without such a change. A consequence of this is that internal features appear to be in a different position in the OCT reconstruction. Apart from this, as the dimension along the propagation direction in an OCT image is optical path rather than physical distance, thus the position of features depends on the knowledge of the refractive index of the medium.

Pioneering work on these issues has been done and solutions provided for the correction of 2D OCT images based on Fermat"s principle and Snell"s law [START_REF] Podoleanu | Correction of distortions in optical coherence tomography imaging of the eye[END_REF][START_REF] Westphal | Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle[END_REF].

Another type of distortion is caused by the "fan" scanning of certain OCT systems [START_REF] Podoleanu | Correction of distortions in optical coherence tomography imaging of the eye[END_REF][START_REF] Ortiz | Optical coherence tomography for quantitative surface topography[END_REF][START_REF] Van Der Jeught | Realtime correction of geometric distortion artefacts in large-volume optical coherence tomography[END_REF], in which a fan of scanning rays cause a flat surface to appear curved in the OCT reconstruction, as illustrated in Fig 5 .1 [START_REF] Podoleanu | Correction of distortions in optical coherence tomography imaging of the eye[END_REF].

This chapter presents a method to correct the refraction induced distortion in 2D/3D

OCT reconstructions based on Fermat"s principle [START_REF] Schuster | An introduction to the theory of optics[END_REF]. A more computationally efficient way was developed in which a minimization algorithm was only executed on a sub-set of voxels. This method was compared to the point-by-point minimization method in which the algorithm was executed for every voxel. Controlled tilt tests of a flat and a hemispherical After determining the coordinates of the image point I, the intensity value at that point will be associated with the object point B. As the coordinates of point I can be non-integer values, interpolation is needed to determine the intensity value of that point. Here, linear interpolation was used. The above method was implemented using MatLab ® R2007a.

Example with a simulated fringe pattern

The first attempt for refraction correction was implemented on an image with a simulated fringe pattern. The idea is to see how these fringes look like after refraction correction. As 

x y  (5.9) This cosine function (in pixel units) not only works as the mask for the fringe pattern, but also it is required when calculating the OPD. It should be pointed out that in this simulation the choice of the parametric function for the interface is somewhat arbitrary as long as it is curved.

The masked fringe pattern is shown in Fig 5 .3(c). Thus, a simulated sample with curved interface and speckle contrast was produced. The refractive indices within and outside the simulated sample are 1.38 and 1, respectively (selected according to the indices of cornea and air). Then, the refraction correction algorithm as introduced previously was implemented on this simulated image, and the corrected fringe pattern is shown in Fig 5.3(d) 

2D refraction correction of an OCT image

The example of refraction correction on simulated fringe pattern visually shows how the correction algorithm works. In this section, the correction method was applied to correct a central z-slice of the OCT reconstructed volume of the porcine cornea, which is shown in 

Sub-grid approach

The reason why the refraction correction is very time-consuming is that the minimization algorithm is executed for every point in the object space. For a typical 2D cornea image, the image size is 512 1024  pixels. For a reconstructed 3D volume, the number will raise to 1024 512 1024   voxels. Such a large number of data points will make the correction time unachievable. Thus, to make the correction method feasible for data volumes, the idea is to reduce the number of data points where the minimization algorithm is performed. In this case, the image space coordinates are computed not for all the object points but in a subset of them arranged in a grid. Here, a grid was defined as   First, the minimization algorithm was performed on these grid points to determine their coordinates in the image space. Then, the coordinates of intermediate object points in the image space were found by interpolating the coordinates of those grid points. Fig 5.6 shows the plots of x and y coordinates in the image space for each object point obtained by using the above mentioned method.

After determining the coordinates (non-integer values) of each object point in the image space, the intensity value at that coordinates was interpolated (linear interpolation) and associated with the corresponding object point. The corrected cornea image then can be obtained, which is shown in Fig 5 .7. Using this method, the calculation time for a typical 2D cornea image ( 512 1024  pixels) was significantly reduced from 10 hours to 73 seconds, which is about 500 times more efficient. This makes the correction for volume achievable. 

DVC results for tilt tests

A sub-volume size of 36 3 voxels was selected to strike a balance between the displacement and strain noise as well as the spatial resolution. Each sub-volume had 50% overlap with its six adjacent neighbours. The strains and rotations were derived from the centred finite difference of the calculated displacement fields as follows, without any additional smoothing.

Conclusions

In this chapter, it has been described how the refraction induced distortion arises in OCT reconstructions, which is an error source to DVC deformation measurement. Refraction correction methods for both 2D and 3D cases were developed based on Fermat"s principle. A point-by-point minimization algorithm was first developed to correct 2D OCT images. This method however suffers from a shortcoming of long computation time. Therefore, a more computationally efficient way was developed, in which the minimization algorithm was only executed on a sub-set of points. Compared with the point-by-point minimization method, the latter one can significantly reduce the computation time, e.g. from about 10 hours to about 1 minute for a typical OCT image ( 512 1024  pixels), without a noticeable loss in accuracy.

The 3D refraction correction method was applied to correct the reconstructed cornea volumes of the inflation test. The refraction corrected DVC measurements were found to be more consistent with the simulation results presented in Chapter 4. Tilt tests using a flat and a hemispherical silicone rubber phantom were carried out to validate the performance of the refraction correction method. The results show that after correction the refraction distortion induced spurious strain were reduced and the measured local rotation was much closer to the reference value.

the SS-OCT system, even though this leads to a reduction in the field of view. Another option would be to reduce the effective numerical aperture of the OCT imaging optics, to increase the 3D speckle size and maintain large fields of view.

The 3D deformation fields were used to identify the elastic constitutive parameters of silicone rubber phantoms using the 3D VFM. The identification results for the cases of uniform and heterogeneous strain fields were compared with those calculated analytically through the constant uniaxial stress assumption and the micro tensile machine, showing good agreement.

The depth-resolved 3D deformation of the porcine cornea and silicone rubber phantom samples under posterior inflation conditions was measured using OCT+DVC. Reasonable displacement and strain results of the inflation tests were obtained for both phantom and cornea samples. These results show a good overall agreement with the results of a simple FE model.

Correction methods for both 2D and 3D cases were developed based on Fermat"s principle to correct the refraction induced distortion in the OCT reconstructions. A computationally efficient way was developed which can significantly reduce the computation time of the correction method without losing correction accuracy. Tilt tests were carried out to evaluate the performance of the refraction correction method. The re sults show that after correction the refraction distortion induced spurious strain was reduced and the measured rotation results increased closer to the known reference value. Refraction correction was applied to the reconstructed cornea volumes of the inflation test. The DVC results after refraction correction were found to be more consistent with the simulation results and are now suitable and ready for further identification studies of corneal properties with 3D VFM.

Perspectives

-Due to the time limitation of the present project, added complexity to the calculation of external virtual work in an inflation test with pressure field, and poorer strain results near the bottom regions due to inadequate image quality, constitutive parameters of the porcine cornea have not been identified yet. Future work will be aimed at identifying the constitutive parameters once these issues are solved. To realize this, optimized piecewise VFM can be used. The virtual displacement at the clamped peripheral boundary must be La mise à jour de modè le par é lé ments finis est l'approche la plus utilisé e pour l'identification des paramè tres constitutifs, qui pré sente toutefois des limites telles que qu'une optimisation locale et un long temps Cela offre une autre option pour mesurer les paramè tres rigidité du maté riau quand ν est trè s proche de 0.5.

Chapitre 4

Une corné e porcine a é té utilisée dans cette é tude en raison de la difficulté