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GENERAL INTRODUCTION 

The study of the vertebrate eye cornea is an interdisciplinary subject which involves medical 

science, biology, mechanics, material science, etc. The study of corneal biomechanical 

properties has significant importance in ophthalmology. The present work has been inspired 

by the following research questions. How are the biomechanical properties of the vertebrate 

eye cornea such as elastic moduli distributed through the thickness? Would it be possible to 

establish a 3D map of the cornea with the values of its local properties? These identified 

properties are of great value as they can be used to examine the corneal pathology, in which 

the properties of the pathological corneas differ from that of the healthy ones. This would 

also enable forward numerical models to predict the corneal mechanical behaviour under all 

sorts of conditions to assist, for example, refractive surgery, and take into account corneal 

deformation due to removed tissue and thus reduce refractive erro rs and improve visual 

acuity.  

 To study corneal biomechanical properties, it is first necessary to be able to examine the 

composition and internal structure of the eye cornea. The measurement of depth-resolved 3D 

(depth-resolved) deformation behaviour of cornea under intraocular pressure is a useful 

method to study the local corneal biomechanical properties. Robust 3D inverse problem 

identification methodologies need to be developed to identify the constitutive parameters of 

the cornea by making use of the experimental measurement techniques such as full- field 

measurement of displacement/strain. The above research objectives however have some 

challenges to meet. The examination of the internal features and the measurement of the 

depth-resolved 3D deformation of the cornea need to be implemented in a non-contact way so 

that they can be applied to the practical in vivo studies. High resolution and spatial resolution 

of the deformation measurements are required to enable an accurate identification of the local 

corneal biomechanical properties. In addition, it would be advantageous if the identification 

is less time-consuming. 

 Currently, most of the research that has been undertaken to characterize the corneal 

biomechanical properties was based on uniaxial tensile tests or corneal surface measurements 

using digital image correlation in inflation tests. However, depth-resolved 3D deformation 
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measurements have not been achieved yet, which are essential to better understand the 

internal corneal biomechanical behaviour. Additionally, current identification of material 

constitutive parameters is generally based on finite element model updating (FEMU), which 

often suffers from local optimal results and long processing time. The Virtual Fields Method 

(VFM) has been developed as an alternative identification method that overcomes the 

shortcomings of the finite element model updating method. In the present work, a 

methodology that can be applied to measure depth-resolved 3D displacement and strain fields 

in semi- transparent light-scattering materials by combining optical coherence tomography 

(OCT) with digital volume correlation (DVC) is proposed. To the best of our knowledge, this 

is the first time that volume strain data were derived by performing digital volume correlation 

on optical coherence tomography reconstructed volumes. The proposed methodology has 

been applied to measure the depth-resolved 3D deformation of an inflated porcine cornea. In 

addition, an effective method has been developed to correct the commonly seen refraction 

induced distortions in optical coherence tomography reconstructions, which is another 

original contribution of the present study. Moreover, a 3D implementation of the virtual 

fields method is presented, which enables the identification of material constitutive 

parameters from the 3D deformation measurements. Even though the cornea has inspired and 

guided this work, it is valid for other soft tissues as long as their internal structures can be 

reconstructed by optical coherence tomography with sufficient quality. 

This thesis is organized as follows: 

Chapter 1 presents a literature review on the background knowledge of the cornea such as 

corneal structure, its composition, intraocular pressure, etc. The state-of-the-art on 

experimental studies of corneal biomechanics is introduced. Various volume imaging 

techniques are then reviewed with a view to the corneal internal structure analysis. Different 

approaches to identify the constitutive parameters are then introduced followed by 

methodologies to obtain the required full- field deformation measurements.  

 Chapter 2 details the application of the VFM to 3D strain data with both manually 

defined and piecewise optimized virtual fields, in the case of linear elasticity. Finite element 

models (FEM) were introduced to validate the derivation of these 3D virtual fields. Finally, 

the ability of the manually-defined virtual fields method to retrieve constitutive parameters 

from strain data corrupted by Gaussian noise was compared against the piecewise-optimized 

virtual fields. 
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 Chapter 3 presents depth-resolved 3D deformation measurements of silicone rubber 

phantoms under tension obtained by performing DVC on volume reconstructions of the 

phantoms obtained with OCT. Using stationary tests and rigid body translations of the 

phantoms, the strain measurement performance of the system was studied in terms of the sub-

volume size, strain noise, interpolation bias and strain induced speckle decorrelation. Finally, 

the elastic constitutive parameters of the silicone rubber phantoms were identified with the 

VFM. 

 In Chapter 4, 3D displacement fields of a silicone rubber phantom and of a porcine 

cornea were obtained in controlled inflation tests. However, these fields which were obtained 

from a direct application of DVC onto the OCT reconstructions do not represent the true 

deformation of the materials due to a refraction distortion that affects the OCT 

reconstructions and leads to spurious strain. 

 Chapter 5 presents a method that has been implemented to correct the refraction induced 

distortions in 2D/3D. Rigid body rotation tests, in which non-zero displacement fields with 

zero strain were introduced in silicone rubber phantoms, were carried out to evaluate the 

performance of the refraction correction method and its ability to eliminate the spurious strain. 

Refraction correction was then applied to the porcine cornea to obtain 3D displacement and 

strain fields that arose in an inflation test. 

 In the last chapter, conclusions and perspectives are presented.  
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CHAPTER 1  

LITERATURE REVIEW 

1.1  Study of corneal biomechanics  

The eye is a complex organ, and its primary function is to refract light through a series of 

windows and lenses on to the back of the eye and convert it into electrical signals that can be 

interpreted and understood by the brain via the optic nerve [1]. Among all important parts of 

the eye, the cornea plays the most important role in refracting light and providing a stiff 

protective envelope for the inner ocular contents as well as serving to maintain the shape of 

the eye [2, 3]. The integrity and functionality of the cornea is essential for vision. Any 

abnormalities in its composition or structure due to disorder or disease such as keratoconus, 

corneal dystrophy, glaucoma, mass lesions, etc. severely degrade vision [4-8]. Refractive 

surgery is widely performed to improve the refractive state of the eye, with 1.8 million 

operations in 2001 in US alone [9]. As cornea thickness is used as the criterion to perform 

refractive surgery without taking into account of the corneal biomechanical properties, 

residual refractive errors might remain due to the difference in corneal biomechanical 

properties of different patients. For these reasons, a comprehensive understanding of the 

biomechanical properties and deformation behaviour of cornea is of great importance in 

clinical applications [10-13]. 

1.1.1 Anatomy of the cornea 

The cornea is located at the outer front of the eye ball and has a transparent multi- layer 

structure, as illustrated in Fig 1.1 [1]. It protects the eye from the outer environment, absorbs 

oxygen and nutrients from the tear film and maintains the shape and stability of the eye by 

resisting the intraocular pressure. It also plays an important role in the image formation by 

refracting light to the back of the eye [1, 14, 15].  

 As can be seen from Fig 1.1, the cornea is composed of five layers, namely epithelium, 

Bowman‟s layer, stroma, Descemet‟s membrane, and endothelium. The epithelium, which is 

approximately 10% of the total cornea thickness, is the outermost layer of the cornea. It 
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contains mostly stratified squamous cells and serves as a barrier to protect the eye from the 

external environment. The innermost layer is the endothelium, which is responsible for the 

clarity of the cornea by maintaining a balance between the fluid flowing in and out of the 

cornea. Excess fluid in the cornea can make vision hazy, and thus, the endothelium plays an 

important role in pumping water against the gradient, which is essential for optical 

transparency. Bowman‟s membrane lies below the epithelium, and Descemet‟s membrane 

lies above the endothelium. These two membranes are very thin layers and consist of 

collagen fibrils. They serve as protective barriers against injury and infection. The stroma, 

which locates between Bowman‟s and Descemet‟s membranes, constitutes 90% of the 

cornea‟s thickness and thus dominates the cornea‟s structural performance. It consists of the 

stacked lamellae of regularly arranged collagen fibrils embedded in a hydrated matrix of 

proteoglycans, glycoproteins, and keratocytes. The collagen fibrils are arranged in two 

preferred orientations, which are orthogonal and alternate between the adjacent  lamellae. 

Since the collagen fibril is the stiffest component of the corneal structure, its arrangement and 

distribution mainly determine the mechanical properties and light transparency of the cornea 

[16-18]. 

 

Fig 1.1: Anatomy of cornea: (a) Schematic of the cross-section of human eye. (b) Expanded 

view of the cornea showing five layers. (c) TEM image of the stroma in the cornea showing 

two preferred orientations of collagen fibrils. (Reproduced from reference [1], Ambekar et al).  
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1.1.2 Intraocular pressure 

Intraocular pressure (IOP) is the fluid pressure inside the eye. It is mainly determined by the 

coupling of the production and the drainage of aqueous humor mainly through the trabecular 

network located in the anterior chamber angle. Intraocular pressure is usually measured in 

millimeters of mercury (mmHg) or kilo-Pascal (kPa). Accumulated evidences indicate that 

IOP is positively correlated with age, sex, race, blood pressure, obesity and other cardiac risk 

variables [19, 20]. It is generally accepted that in the total population, the normal IOP reading 

is 15-16 mmHg (2.0-2.1 kPa) on average, with standard deviation of 2.5-3.0 mmHg (0.33-0.4 

kPa). Although the value increases with age, 21-22 mmHg (2.8-2.9 kPa) is generally 

considered the approximate upper limit of the normal value [21, 22]. 

 Intraocular pressure is related to some eye diseases such as glaucoma. Glaucoma is an 

eye disease in which the optic nerve is damaged as a consequence of the elevation of 

intraocular pressure above the physiological level of individuals. Intraocular pressure may 

become elevated due to anatomical problems, inflammation of the eye, genetic factors, or as a 

side-effect from medication. Therefore, it serves as an indication of the physical status of the 

eye. Measuring and monitoring intraocular pressure and its influence in the corneal 

deformation is therefore an extremely important aspect of diagnosis, treatment, and 

management of glaucoma [23, 24].  

1.1.3 Corneal pathology 

There are several types of corneal pathologies that are usually seen by ophthalmologists. The 

first one is keratoconus and related non- inflammatory corneal thinning disorders [8]. It is a 

degenerative disorder of the eye in which structural changes occur within the cornea causing 

it to thin and change to a more conical shape than a normal gradual curve, which distorts and 

decreases vision. The second one is corneal dystrophy. It is a group of disorders, defined as a 

non- inflammatory, inherited, bilateral opacity of the cornea. It appears as grayish white lines, 

circles, or clouding of the cornea [25]. Another one is the inflammation of the cornea such as 

keratitis and corneal ulcer. It is an inflamed condition of the cornea commonly resulting from 

viral infection. It represents a break or disruption in the corneal epithelium or even stroma, 

which can cause a loss of corneal transparency and potentially significant loss of vision in 

serious cases [26, 27]. 

http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Human_eye
http://en.wikipedia.org/wiki/Trabecular_meshwork
http://en.wikipedia.org/wiki/Trabecular_meshwork
http://en.wikipedia.org/wiki/Anterior_chamber
http://en.wikipedia.org/wiki/MmHg
http://en.wikipedia.org/wiki/Inflammation
http://en.wikipedia.org/wiki/Adverse_effect_(medicine)
http://en.wikipedia.org/wiki/Medication
http://en.wikipedia.org/wiki/Degenerative_disease
http://en.wikipedia.org/wiki/Human_eye
http://en.wikipedia.org/wiki/Cornea
http://en.wikipedia.org/wiki/Cone_(geometry)
http://en.wikipedia.org/wiki/Curve
http://en.wikipedia.org/wiki/Cornea
http://en.wikipedia.org/wiki/Cornea
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 Since these corneal pathologies are generally associated with the changes in the shape 

and the composition of the cornea, they are essentially associated with the changes in the 

corneal biomechanical properties as well. Therefore, a method of identifying the corneal 

biomechanical properties would be very useful as it could be utilized in evaluating and 

diagnosing corneal pathology by comparing the identified biomechanical properties of the 

normal and the pathological corneas. 

1.1.4 Experimental study of corneal biomechanical properties 

Many experimental studies have been carried out in order to characterize the biomechanical 

properties of the cornea. Generally, there are two types of tests that are usually adopted to 

examine the mechanical response of the cornea under pressure, which are the inflation and 

strip tensile tests. 

1.1.4.1 Inflation testing method 

The inflation testing method has been applied by many researchers as it can provide a 

physiologically representative mechanical characterization of the cornea. Fig 1.2 shows a 

schematic of a typical inflation test rig which was developed by Anderson et al [28]. In this 

experimental setup, the cornea specimen is fixed by mechanical clamps and glued to the 

fixture along its ring of sclera tissue to provide watertight edge connection and avoid fluid 

leakage during the inflation tests. The cornea specimen is subjected to a changeable posterior 

pressure provided by adjusting a small vertically moveable reservoir. The pressure in the 

chamber is measured using a pressure unit. A water tank equipped with a temperature 

controller is added between the chamber and the reservoir to ensure the temperature in the 

pressure chamber remains constant throughout the test. During the tests, a laser displacement 

sensor is used to measure the displacement at the apex of the cornea from which the corneal 

biomechanical properties can be evaluated through the Pressure-Apical rise relation. Beside 

this, two digital cameras can be positioned in the plane of the cornea-scleral intersection to 

continually record changes in corneal profile during the tests as described by El-sheikh et al 

[29]. 
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Fig 1.2: Schematic of a typical cornea inflation test rig from literature (Reproduced from 

reference [28], Anderson et al). 

The nonlinear material properties of the cornea were studied by Woo et al [30] and were 

confirmed by Anderson et al [28]. In Anderson‟s study, inflation tests were carried out to 

measure the apical rise of porcine cornea specimens subjected to a gradually increasing 

posterior pressure up to a maximum of 105 mmHg. The results show that the stress-strain 

relation experiences two phases: an initial phase of linear behaviour, followed by sudden 

stiffening at about 30 mmHg. The explanation is that the cornea is mainly composed of 

corneal matrix and collagen fibril layers. In the first phase, the collagen fibril layers rema in 

loose and the mechanical behaviour is dominated by the corneal matrix. Thus, apical rise 

increases linearly with the pressure, and the cornea shows low stiffness. After the pressure 

has increased to a relatively large value, the collagen fibril layers become taut. Due to the 

higher stiffness of the collagen fibril layers, they start to dominate the corneal mechanical 

behaviour, and thus the cornea shows higher stiffness. Therefore, the nonlinear behaviour of 

the cornea is due to material property rather than geometry, and it can be characterized by a 

matrix regulated initial phase followed by a collagen regulated phase, as shown in Fig 1.3 

[28]. 
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Fig 1.3: Nonlinear behaviour of cornea specimens under inflation conditions: (a) Curves of 

corneal Pressure-Apical rise, and (b) The two phases of corneal behaviour. (Reproduced from 

reference [28], Anderson et al). 

Elsheikh et al compared mechanical properties of human and porcine corneas using inflation 

tests [29]. They divided the human cornea specimens into 3 groups according to the age of 

the donors and with a single group of the porcine corneas all within the same age range. The 

results showed that when subjected to an increasing posterior inflation pressure of up to 170 

mmHg, both human and porcine corneas exhibit nonlinear behaviour, with all specimens 

demonstrating low initial stiffness and sudden stiffening after a certain pressure level. 

Although human and porcine corneas show differences in the pressure at which they start to 

stiffen, their overall mechanical behaviour is consistent with Fig 1.3. The stress-strain curves 

of the four groups are compared in Fig 1.4 [29]. It shows that cornea stiffens with age and 

human corneas are generally stiffer than porcine corneas. 

 

Fig 1.4: Comparison of the stress-strain relation between human and porcine corneas 

(Reproduced from reference [29], El-sheikh et al). 
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Another experiment was carried out by Elsheikh et al to evaluate the epithelium‟s 

contribution to corneal biomechanics [31]. Two groups of corneas with and without 

epithelium were tested under inflation conditions. Based on the results, they concluded that 

the stiffness of the epithelium was considerably lower than that of the stroma, and might 

therefore be ignored in numerical simulation studies. 

 The viscoelastic properties of bovine cornea and sclera were studied using inflation tests 

coupled with digital image correlation by Boyce et al [32, 33]. They obtained the full- field 

surface deformation maps over a certain pressure range through digital image correlation. 

They found that for pressures near and above the IOP, the majority of the deformation 

localized in the limbus and peripheral regions, and the central cornea remained largely 

undeformed. This result can be explained by the well-known preferred circumferential 

alignment of collagen fibrils in the peripheral regions. Viscoelastic behaviours such as 

hysteresis, creep and relaxation were observed in a broad pressure range of 0-32 kPa. In the 

range of 3.6-8 kPa, which represents the physiological pressure range, small viscoelastic 

deformation was observed, and the cornea within this range can be approximated as a linear 

viscoelastic or linear pseudo-elastic material. 

1.1.4.2 Strip tensile testing method 

Strip tensile tests have been extensively used by researchers to determine the mechanical 

properties of cornea and other soft biological tissues due to their evident implementation 

simplicity [34-37]. Fig 1.5 gives the schematics of the excised cornea strip specimen and the 

strip tensile test as studied by El-sheikh et al [34].  

 

Fig 1.5: Schematics of the excised cornea strip specimen and the strip tensile test 

(Reproduced from reference [34], El-sheikh et al). 
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Compared with the inflation test, the strip tensile test has three inherent limitations due to the 

excised cornea strip specimen. The first limitation is the effect of variation in length in the 

strip specimen as the original cornea has a spherical configuration. Therefore, the central 

length is longer than that of the two sides. This limitation leads to a non-uniform stress 

distribution during the tensile test. When flattening the originally curved specimen, strains are 

generated, which will superimpose to the tensile strain under the test conditions. This is the 

second limitation. In addition, the variation of corneal thickness also influences the 

identification results as constant thickness is generally assumed. Elsheikh et al verified these 

effects by comparing the results of the inflation and strip tensile tests. They found that the 

stress-strain relations derived from the tensile tests exhibited larger stiffness than that from 

the inflation tests [34].  

 The inflation test is a physiologically representative method for determining the 

mechanical properties of the cornea, as can be concluded from the above discussions. 

Therefore, this testing method was selected in the current project when studying the ex-vivo 

depth-resolved mechanical behaviour of the cornea. 

 As the cornea has a complex composite structure, in addition to the fact that some 

pathologies can locally change the internal corneal biomechanical properties, surface 

measurements are not adequate to address the complete mechanical behaviour of the cornea. 

Therefore, it would be useful to develop a method that be used to characterize the internal 

corneal biomechanical properties and the 3D deformation behaviour. 

1.2 Tomographic techniques for structure analysis 

The analysis of the internal microstructure of a material is important for the study of the 

material mechanical properties. Instead of traditional surface imaging, imaging techniques 

that can look within the materials are needed, which are referred to as Tomography. Various 

tomographic techniques based on different mechanisms have been developed, such as X-ray 

computed tomography, magnetic resonance imaging, confocal microscopy, optical coherence 

tomography, etc. These will be introduced in this section.  

1.2.1 X-ray computed tomography 

 X-ray computed tomography (X-ray CT) is a technology that utilizes computer-processed 

series of X-ray projections to produce tomographic volume of a scanned object. It enables the 

http://en.wikipedia.org/wiki/Tomography
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user to see the internal structure of an object in a non- invasive and non-destructive way. X-

ray CT is based on X-ray absorption contrast. The attenuation is characterized by Beer‟s Law, 

which defines the intensity attenuation as a function of incident and detected X-ray intensities, 

path length, and material attenuation coefficient. During a scan, a series of 1D projections of 

the attenuation through an object are obtained by rotating the X-ray source and the detector 

array (mounted on opposite sides of the scanned object) at various angles. These projections 

are then processed by the computer using a specialized algorithm to produce a cross-sectional 

2D distribution of X-ray attenuations (2D X-ray CT image). A 3D volume distribution of X-

ray attenuations can then be obtained by scanning different cross-sections of the object along 

the axis of rotation. This technique has been widely used in medical imaging (e.g. shown in 

Fig 1.6 (a) for a brain CT image) which is very useful for diagnostic and therapeutic purposes 

[38-40]. It is also applied in industrial areas for internal inspection such as structural analysis,  

flaw detection, failure analysis, deformation analysis, etc [41-43]. Fig 1.6 (b) gives an 

example of the 2D view of X-ray CT image of a low density polymeric foam which was 

previously developed by Pierron et al [41].  

 

Fig 1.6: Examples of the X-ray CT images: (a) Brain CT image with aphasia and headache, 

arrows show acute infarct (Reproduced from reference [38], Jordan et al) (b) X-ray CT image 

of low density polymeric foam (Reproduced from reference [41], Pierron et al). 

http://en.wikipedia.org/wiki/Diagnosis
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X-ray CT, however, has some limitations. Not all the scanned objects have sufficient X-ray 

absorption contrast for effective imaging. Some image artefacts such as ring artefact, beam 

hardening, etc can pollute the image acquisition and interpretation. Ring artefacts commonly 

occur due to miscalibration or failure of individual detector elements. They appear in the 

reconstructed images as a number of concentric rings superimposed on the object‟s structure. 

Beam hardening is another common artefact. It arises when the average energy of a 

polychromatic X-ray beam passing through an object increases (becomes harder) as low 

energy photons are absorbed more readily than high energy ones. X-rays passing through the 

central region of the object are said to be „hardened‟ more than those passing through the 

edges because more material is traversed. This can cause a cup appearance in the image 

which differs from the ideal case when there is no beam hardening. Apart from the image 

artefacts, when reconstructing a volume with high spatial resolution, the acquisition can be 

very time-consuming. Although high spatial resolution X-ray CT (with spatial resolution 

about 1 µm) has been developed for industrial applications, most of the medical applications 

of X-ray CT are millimetre scales because a limited dose of low-energy X-rays is coupled 

with high-efficiency detector to meet the requirements of optimized tissue differentiation and 

optimized patient exposure time for medical research as described by Helliwell et al [44]. 

High cost of the machine is another drawback. Due to these limitations, X-ray CT is not a 

suitable technique for imaging cornea. 

1.2.2 Magnetic resonance imaging 

For biological tissues with high water content such as brain, eye or artery tissues, etc. 

magnetic resonance imaging (MRI) is a useful tomographic technique to investigate the 

anatomy and function of these tissues. MRI is based on the nuclear magnetic resonance 

(NMR) phenomenon. During MRI, a strong magnetic field is applied across the tissue to be 

examined. The magnetic field is then oscillated at an appropriate resonance frequency to 

excite the nuclear spins of the hydrogen nuclei. The radio frequency signal emitted by these 

excited hydrogen nuclei in the tissue (e.g. from water, fat molecules) is then detected when 

they relax from the magnetic interaction. As the frequency of the emitted signal is dependent 

on the tissue and the pulse used to excite the spins, locations with different signal frequency 

indicate different amount of hydrogen nuclei. This provides a method to map the tissue in 

terms of hydrogen nuclei density. Thus, for tissues with different hydrogen densities, images 

showing contrast can be obtained. MRI is widely applied in medical areas. It is particularly 

http://en.wikipedia.org/wiki/Medical_imaging
http://en.wikipedia.org/wiki/Anatomy
http://en.wikipedia.org/wiki/Physiology
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well suited for the imaging and diagnosis of soft tissues such as brain, heart, eye, etc. as 

shown in Fig 1.7 [45-47]. However, it can only be used for materials that present MR signal. 

MRI is a safe technique as it does not involve harmful ionizing radiations compared with X-

ray CT. This technique also has limitations. Although many MRI scanners have spatial 

resolution better than 100 µm, only a small number are better than 10 µm as described by 

Glover et al [48]. The machine makes tremendous noise during scanning, and it usually 

requires a long scanning time. In addition, MRI equipment is very expensive. Thus, this 

technique is not suitable for the present study. 

 

Fig 1.7: Examples of the MRI images: (a) Brain MRI image showing generalized cerebral 

atrophy (Reproduced from reference [45], Lee et al) (b) A heart MRI image (Reproduced 

from reference [46], Sommer et al). 

1.2.3 Confocal microscopy 

Confocal microscopy (CM) is a point by point illumination optical imaging technique that 

can provide sharp and high resolution images of a scanned sample. Different from the 

conventional microscopy, CM increases the optical resolution and contrast by using point 

illumination of the specimen and excluding the out of focus light in the specimen. As 

illustrated in Fig 1.8(a), this is implemented by placing a pinhole in the optically conjugate 

plane (conjugates to the focal point of the lens) in front of the detector. As CM uses point 

illumination, less light can be collected for each point. To avoid too much image noise, 

enough light needs to be collected for each point. This is achieved nowadays using laser light 

http://en.wikipedia.org/wiki/Optical_resolution
http://en.wikipedia.org/wiki/Contrast_%28vision%29


16 
 

sources. By combining the point illuminations (in short and regular intervals), 2D and 3D 

imaging can be implemented. The achievable depth is determined by the wavelength of the 

light source and the aperture of the objective lens. It is also determined by the optical 

property of the specimen. CM is popular in the medical and industrial communities and 

typically applied for imaging biological tissues, glass fibre composites, etc. A few examples 

are shown in Fig 1.8 [49, 50].  

 

Fig 1.8: (a) Schematic of CM and examples of CM images, (b) Histological images of tissue 

excised from Mohs surgery for skin cancer (Reproduced from reference [49], Larson et al), (c) 

Cross-section of a glass-epoxy composite (Reproduced from reference [50], Thomason et al). 

CM has very high submicrometre spatial resolution, approximately 200 nm in lateral and 400 

nm in axial depending on the NA of the objective and the wavelength of the emitted light as 
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described by Croixl et al [51]. The imaging depth however is limited to submillimetre scales, 

e.g. 240 µm for a non-compensated setup and 800 µm for a compensated setup which was 

previously studied by McConnell [52]. To image tissues that are thicker than a millimetre 

such as cornea, artery, etc., a technique with larger imaging depth would be more suitable.  

1.2.4 Optical coherence tomography  

Optical coherence tomography (OCT) is a non- invasive, non-contacting imaging technique 

that can acquire micrometer resolution, cross sectional images from within semi-transparent, 

light scattering media such as biological tissues. It is based on low coherence interferometry 

through the use of broadband light sources that can emit light over a broad range of 

frequencies [53]. Basically, OCT can be divided into two types, time domain OCT (TD-OCT) 

and frequency domain OCT (FD-OCT).  

 A typical schematic for the two types of OCT is shown in Fig 1.9 [54]. The light 

generated from the broadband light source is split by the beam splitter into two arms, namely 

reference and object arms. One light beam goes through the reference arm and reflects back 

from a reference mirror. The other light beam in the object arm is moved across the sample 

by the galvanometer scanner and lenses. This beam of light penetrates the sample and 

backscatters from the inner structure. This reflected light then interferes with the light 

reflected from the reference arm. For FD-OCT, the interference signal is recorded and 

analysed by the spectrometer. The light backscattered from different depths in the sample and 

which interferes with the reference light modulates the spectra. The depth information can be 

directly calculated by a Fourier transformation of the acquired spectra. Different from the 

fixed reference mirror and spectrometer in FD-OCT, TD-OCT uses a translating mirror and a 

simple photodiode as the photo detector. The reference mirror is scanned over the imaging 

depth and the time dependent signal is recorded. By demodulating the interference signal a 

reflectivity profile of the sample called A-scan can be obtained. 

 There are mainly two types of FD-OCT. One is the spectral domain OCT (SD-OCT) as 

discussed above. The other is called swept source OCT (SS-OCT). Both of them use a fixed 

reference mirror, but in SS-OCT a frequency scanning light source is used instead of the 

broad band light source. The spectral components are not encoded by spectral separation, but 

encoded by time. Thus, a simple photodiode is used as the photo detector instead of a 

spectrometer, which enables faster imaging.  
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Fig 1.9: Schematics of TD-OCT and FD-OCT systems (Reproduced from reference [54], 

Gambichler et al). 

Compared to TD-OCT, FD-OCT has the advantages of faster signal acquisition and higher 

signal-to-noise ratio [55]. Currently, many commercial OCT systems, especially SD-OCT, 

are available [56]. This rapidly developing imaging technique has already been applied in 

many areas, ranging from diagnostics medicine such as ophthalmology, cardiology, 

gastroenterology and dermatology [53-58] to industrial applications such as the study of glass 

fibre reinforced composites, adhesives, polymers [59-62], etc. Examples of OCT images are 

given in Fig 1.10.  

 Compared to X-ray CT, MRI and CM, OCT is more suitable for the depth-resolved 3D 

imaging of thin soft biological tissues such as cornea, skin, artery, etc. X-ray CT requires the 

scanned objects to have sufficient X-ray absorption contrast for effective imaging, and the 

spatial resolution for medical application is typically millimetre scale. Although MRI is used 

for imaging biological tissues such as brain, heart, etc., its relatively poor spatial resolution 

(<100 µm) is not sufficient for thin tissues such as cornea. In addition, the high cost of X-ray 
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CT and MRI confines the applicability of these techniques. CM can provide very high spatial 

resolution (e.g. 200 nm in lateral and 400 nm in axial), the imaging depth of this technique 

however is limited to submillimetre scale. OCT is more suitable as it can provide larger 

imaging depth (~ 3 mm in air) as well as high spatial resolution (~1 µm in lateral and axial) 

as studied by Safrani et al [63]. Therefore, in the present study, OCT was selected for the 

reconstruction of the soft tissues such as cornea.  

 

Fig 1.10: Examples of OCT images: (a) Healthy human skin on upper back (Reproduced 

from reference [54], Gambichler et al) (b) Photo and OCT image of restoration in the central 

incisor, and arrow shows gap formation beneath resin-based composites material 

(Reproduced from reference [59], Ishibashi et al). 

1.3 Inverse problem to identify material constitutive parameters 

Traditional approaches for the identification of the material constitutive parameters involve 

simple mechanical tests such as tensile or bending tests. They allow the identification of 

constitutive parameters based on analytical relations between these parameters and measured 

data such as local strains and applied load. However, these approaches are usually based on 

some stringent assumptions such as uniform or linear stress distributions, which are difficult 

to ensure experimentally. Therefore, alternative methods are currently being developed to 

relax some of the limitations of these simple tests. The most promising rely on 
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displacement/strain fields obtained from suitable full- field measurement techniques coupled 

with numerical processing and a robust identification strategy that can extract the parameters 

from the strain field. 

 The classical direct problem consists in determining the displacement, strain and stress 

fields assuming that the constitutive equations, the constitutive parameters, the load, the 

boundary conditions and the geometry are known. Using the same set of equations, another 

problem aims at finding the constitutive parameters that govern the constitutive equations 

assuming the displacement/strain fields are known. The displacement/strain fields are usually 

obtained using suitable full- field measurement techniques coupled with numerical processing 

methods such as tomography plus digital volume correlation. The load is measured through 

traditional load sensors. The geometry and the constitutive equations are known a priori. This 

is referred to as an inverse problem. Several methods have been developed to solve the 

inverse problem including finite element model updating (FEMU) [10, 28, 64-66, 71] and the 

virtual fields method (VFM) [67-71]. These methods were reviewed by Avril et al in [71]. 

1.3.1 Finite element model updating 

FEMU is the most widely accepted approach for inverse problem solution. It compares the 

mechanical measurements collected on the specimen with their numerical counterparts 

obtained from a finite element (FE) model. A cost function is built up using the difference 

between the numerical and the experimental values in terms of force and/or displacement or 

strain. The cost function is then minimized with respect to the sought constitutive parameters 

iteratively, and finally provides a solution to the problem. 

 Different constitutive models have been used by the researchers to characterize the 

mechanical properties of cornea using FEMU. Early research applied isotropic constitutive 

models such as linear elastic isotropy, linear transverse isotropy, nonlinear elastic isotropy, 

and hyperelastic isotropy to predict the mechanical response of the cornea under inflation 

conditions [10, 28]. More recently, researchers have studied anisotropic properties of the 

cornea using FEMU. Anisotropic hyperelastic models are often chosen to characterize the 

anisotropic nonlinear behaviour of the cornea [64-66].  

 FEMU however exhibits some shortcomings. It is iterative by essence, even in the 

simplest case of linear elasticity. Therefore, initial values must be provided to start the 

iteration procedure. The choice of the initial values generally affects the convergence rate and 
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the quality of the results as local minima of the cost function may appear. In addition, at least 

one FE model needs to be run for each cost- function evaluation, resulting in computationally 

intensive routines, particularly for highly non- linear problems (large deformation, 

hyperelasticity, etc. 

 The VFM has been developed specifically to solve this inverse problem when full- field 

measurements are available. It avoids the drawbacks of FEMU by taking maximum 

advantage of the availability of full- field deformation measurements. 

1.3.2 The virtual fields method 

The VFM is based on the principle of virtual work as described by Pierron et al [67]. It 

utilizes the full- field deformation measurement data to retrieve the unknown constitutive 

parameters. For VFM, the stress fields are substituted as a function of the unknown 

parameters, and the identification is achieved by making the stress fields validate the 

equilibrium equation of the principle of virtual work with preselected test functions. A 

thorough explanation for the VFM will be given in Chapter 2. 

 The method for identifying the constitutive parameters depends on the nature of the 

material. For linear elastic materials, the equilibrium equation of the principle of virtual work 

depends linearly on the sought parameters. Therefore, a direct identification of the 

constitutive parameters is available by choosing proper test functions and solving the 

correspondent linear equation system. This strategy has been applied to the identification of 

the in-plane, through-thickness and bending stiffness components of linear elastic anisotropic 

materials such as composites [72-75]. It should be noted that certain non- linear constitutive 

models can still be explicitly and linearly expressed as functions of the unknown constitutive 

parameters, which has previously been described [76-78]. 

 For other materials, the constitutive equations of which are not linear functions of the 

constitutive parameters such as anisotropic hyperelasticity or elasto-plasticity, direct 

identification is not feasible. Therefore, an iterative procedure minimizing the residual of the 

equilibrium equation of the principle of virtual work needs to be applied. It has been used to 

identify the elasto-plastic constitutive parameters of metals [79-81] and has been verified to 

be feasible to identify the anisotropic hyperelastic constitutive parameters of the soft and 

biological materials such as arteries [82, 83].  
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1.4 Full-field deformation measurement techniques  

According to the discussions above, it is obvious that the acquisition of the deformation field 

and the corresponding strain field is a prerequisite for the identification of material 

constitutive parameters. Recent advances in surface/volume deformation measurement 

techniques such as the grid method, wavelength scanning interferometry, digital 

image/volume correlation, etc. enable the 2D and/or 3D deformation measurements. These 

techniques are reviewed in this section.  

1.4.1 The grid method 

The grid method is an optical method developed to measure surface deformation which was 

previously studied by Surrel [84]. It is based on the use of a spatial carrier to characterize the 

surface of a specimen. The spatial carrier is made up of a grid pattern with a set of horizontal 

and vertical lines bonded at the surface of the specimen. The intensity pattern reflected by the 

grid is captured by a high resolution camera to extract the phase fields using the spatial phase 

shifting methods. The displacement fields from the reference to the deformed state are then 

calculated from the corresponding phase differences introduced by the deformation. Fig 1.11 

shows typical displacement and strain maps for a glass fibre reinforced epoxy open-hole 

tensile specimen studied by Pierron et al [85]. The specimen was bonded a grid pattern and 

loaded up to surface ply cracking in a tensile machine under controlled displacement. A CCD 

camera was positioned in front of the specimen to record the grid pattern of the specimen 

under various loading conditions. Then, the phase changes between each two consecutive 

images were calculated from which the displacements can be determined incrementally. By 

adding up this series of displacement increments the total displacement field at any load 

where an image was recorded can be determined, In the left column of Fig 1.11, displacement 

fields for both in-plane components Ux and Uy under a load of 4.84 kN are shown. From the 

displacement field, the strain field was then calculated using local differentiation, as 

illustrated in the right bottom of Fig 1.11 for the strain component εyy. The grid method 

however is limited to surface deformation measurement. For tests such as bending as studied 

by Avril et al [86], surface measurement would suffice as deformation is homogeneous 

through the width. For more heterogeneous through-thickness deformations, volume 

deformation measurement is needed. 
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Fig 1.11: Displacement and strain maps from the grid method for a glass fibre reinforced 

epoxy open-hole tensile specimen (Reproduced from reference [85], Pierron et al). 

1.4.2 Wavelength scanning interferometry 

Interferometric techniques such as wavelength scanning interferometry (WSI) have been 

applied to the measurement of depth-resolved displacement fields by Ruiz et al [87-89]. WSI 

is a volume imaging technique in which 2D image sequences are recorded as the 

wavenumber of the light source changes over time. It uses a tunable light source to illuminate 

the sample. First, the phase can be extracted by measuring the light intensity when phase 

shifts are introduced between two interfering waves. The phase shifts are a function of the 

temporal carrier which is introduced by the changing wavenumber and with a frequency that 

is related to the optical path difference. Through Fourier transformation the signal is 

separated into different depth-resolved bands. Then, the phase distribution is used to measure 

the in-depth displacement fields, which is carried out first by calculating the phase change 

between the two phase volumes of the reference and deformed states of the sample. After that, 

the resulting phase difference maps are unwrapped to produce the 3D displacement field by 
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an unwrapping algorithm that connects the phase change to the change in optical path length 

due to the deformation.  

 

Fig 1.12: Cross sections of the measured 3D displacement fields from WSI for an epoxy 

sample under in-plane rotation and out-of-plane tilt (displacement unit: meters). The rows 

from top to bottom indicate the displacement components along the 3 orthogonal directions. 

The columns from left to right indicate sections of the data volume on different planes 

(Reproduced from reference [89], Chakraborty et al). 

A latest WSI system that can measure all orthogonal components of displacement in the 

volume of scattering materials was developed by Chakraborty and Ruiz [89]. In their study, 

an optical setup was developed which used a tunable laser and had three illumination beams 

to illuminate the sample from three non-coplanar directions. Using this optical setup, all the 

displacement components in each voxel of the data volume were obtained by simultaneously 

measuring the interference signal from the different illumination directions during a 

wavelength scan. These interference signals were separated for the different illumination 

directions in the frequency domain by introducing different optical paths between the 

reference and illumination beams so that interference signals from different illumination 

directions will have a different carrier frequency in the spectral domain. To evaluate the 
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performance of the WSI system, an epoxy sample was moved by an in-plane rotation and out-

of-plane tilt, and the displacement fields were measured using the WSI system. First, the 

change in the 3D phase distributions before and after moving the sample was measured. The 

displacement fields were then calculated from the measured phase change. Fig 1.12 gives an 

example of the measured 3D displacement fields. The rows from top to bottom illustrate the 

three displacement components, while the columns from left to right illustrate different 

sections of the data volume. Chakraborty and Ruiz observed excellent agreement between the 

measured and reference displacements.  

1.4.3 Elastography 

Elastography is a medical imaging technique for the mapping of strain and elastic modulus in 

soft tissues. Different ways can be employed to perform elastography including ultrasound 

elasticity imaging [90], magnetic resonance elastography (MRE) [91], and OCT-based 

elastography (OCE) [92-95].  

 Generally, OCE determines the deformation in the OCT image sequences (B-scans) by 

applying 2D cross-correlation algorithms (CCOCE) to calculate the speckle motion due to 

applied forces. Fig 1.13 gives an example of the OCE map for a multi- layer silicone phantom 

under compression. The map clearly shows the difference in stiffness between the two layers. 

Another type of OCE determines the deformation by measuring the phase change between 

successive A-scans or B-scans due to tissue motion, which is called phase-sensitive OCT-

based elastography (PSOCE). Compared with CCOCE, PSOCE is capable of detecting very 

small sub-wavelength deformation, and is faster (capable of real time imaging of 

instantaneous tissue deformations) as described by Wang et al [92]. OCE is a useful method 

to quantify the elastic behaviour of soft tissues. However, most of the applications have so far 

focused on the measurements with only axial sensitivity, espec ially for PSOCE. For a more 

comprehensive study of the material behaviour (e.g. deformation in anisotropic material) as 

well as the prerequisite for the identification of 3D constitutive parameters using FEMU or 

VFM, measurement of the depth-resolved 3D deformation is highly desirable. This can be 

implemented by either 1) using a system with sensitivity to all deformation components 

based on a wavelength scanning OCT system with multiple illumination directions as 

introduced by Chakraborty and Ruiz [89] or 2) using a single channel OCT system coupled 

with digital volume correlation to provide deformation fields with all components.  
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Fig 1.13: Elastographic correlation stability map indicating the stiffness distribution of a 

multi- layer silicone phantom (Reproduced from reference [93], Zaitsev et al). 

1.4.4 Digital image/volume correlation 

1.4.4.1 Digital image correlation 

Digital image correlation (DIC) is a popular measurement technique to measure surface 

deformation of a specimen under load. This method was introduced in the early 1980s by Chu 

et al [96]. It is based on recent advances in computer technology and digital cameras. DIC 

determines the deformation field by tracking and matching the patterns between two digital 

images acquired from the surface of a specimen in the reference and deformed states. To be 

able to perform DIC, the measured surface must present patterns (surface contrast) so that 

they can be tracked. The pattern can be provided either by the intrinsic surface texture of the 

specimen or application of markers such as spray painting and powders, etc. to provide a 

diffusively reflective surface. For DIC, two approaches have been mainly used to quantify the 

surface deformation. The first one, which is the most widely used, is a local approach. In this 

case, the images in the reference and deformed states are first divided into subsets. These 

subsets are then correlated individually through a cross-correlation algorithm between the 

two loading states to determine the displacement vector of each subset. This is realized by 

maximizing the correlation coefficient that measures the degree of similarity of the grey level 

distributions in the subsets of the reference and deformed states. The best prediction of the 

displacement relates to the highest degree of similarity of the grey level distributions thus, to 

the maximal correlation coefficient. Fig 1.14 shows the front views of a tensile bar with 

applied speckle pattern under subsequent load steps and the axial strain maps obtained with 

DIC studied by Parsons et al [97]. The other approach quantifies the deformation field based 

on a continuous global field using a large number of degree of freedom determined at the 
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same time rather than sequentially for the local approach. This is referred to as global 

approach as described by Hild et al [98]. DIC has been widely applied in many disciplines 

such as mechanical engineering, material science, medical science, etc. [32, 33, 99-102]. This 

method however is limited to surface deformation measurement. Thanks to the development 

of the various tomographic techniques, volume deformation measurement based on the same 

principle as DIC becomes possible.  

 

Fig 1.14: Front views of a tensile bar with applied speckle pattern in different load steps and 

the strain maps for Eyy obtained with DIC (Reproduced from reference [97], Parsons et al). 

1.4.4.2 Digital volume correlation 

Digital volume correlation (DVC) is effectively a 3D extension of DIC. DVC was developed 

to measure the internal 3D deformation behavior of materials by tracking internal features 

that resemble 3D speckle patterns contained in the reconstructed volumes, which was 

introduced by Bay et al [103]. Instead of pixels for DIC, the reconstructed volume consists of 

voxels. Similar to DIC, during DVC, a volume is first divided into sub-volumes (for local 

approach), and the displacement vector of each sub-volume is individually determined by a 

3D cross-correlation algorithm.  
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Fig 1.15: X-ray CT reconstructions and deformation distributions obtained with DVC for: (a) 

Wood specimen under three-point bending (Reproduced from reference [104], Forsberg et al) 

and (b) Trabecular bone under compression (Reproduced from reference [105], Gillard et al).  

Like DIC, DVC requires sufficient speckle contrast in the reconstructed volumes to ensure  

that the correlation algorithm runs successfully. For solid materials with cellular or granular 

structures, such as trabecular bone, wood, etc., X-ray CT is suitable for the volume 

reconstruction as these materials present X-ray absorption contrast, as illustrated in Fig 1.15. 

These volume reconstructions are suitable for application of DVC for internal deformation 

measurement [104-107]. Engineering materials such as metals, composites, foams etc. have 

also been studied using X-ray CT coupled with DVC [41, 42, 108, 109]. In some cases, small 

particles need to be seeded into the material during the manufacturing process in order to 

provide sufficient pattern contrast. The application of DVC coupled with X-ray CT requires 

the materials to present proper X-ray absorption contrast. For soft semi-transparent materials 

such as biological tissues (cornea, skin, artery, etc.), more suitable techniques can be used. 

CM is one option for these types of material, which can provide high resolution (submicron) 

volume data. It has been coupled with DVC by Franck et al [110] to measure the internal 3D 

deformation of agarose gel under compression, and showing reasonable results. CM is 
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however limited to very small fields of view. As the penetration depth for CM is generally 

restricted to submillimetre, for thicker specimens such as cornea, skin, artery, etc. this 

technique is not adequate for mapping the whole through-thickness deformation field. It has 

been shown in the previous sections that OCT is capable of obtaining larger penetration 

depths compared to CM, and is widely used to image soft biological tissues. To measure the 

internal 3D deformation of soft biological tissues such as cornea, it would be interesting to 

combine OCT reconstructed volume data with DVC. 

1.5 Conclusions 

Cornea plays a very important role in the optical function of the eye. It has a complex 

composite structure, and is composed of five layers. Different corneal pathologies can cause 

changes in the corneal biomechanical properties, and corneal surgery such as refractive 

surgery requires a comprehensive understanding of the corneal deformation behaviour. 

Therefore, the study of the corneal biomechanical properties and its deformation behaviour is 

of great importance in clinical applications. A number of studies have been undertaken by 

researchers to characterize the corneal biomechanical properties using experimental testing 

methods such as inflation test, tensile test, etc. These studies however are based on surface 

measurement, which are not adequate to fully address the through-thickness information.  

 Tomographic imaging techniques are useful methods for the internal structure analysis of 

materials. Many types of tomographic techniques are available nowadays for depth-resolved 

imaging, such as X-ray CT, MRI, CM, and OCT. Among these techniques, OCT is the most 

suitable for imaging biological tissues such as cornea, skin, artery, etc. considering its 

relatively good resolution and deeper penetration. FEMU is the most widely used approach 

for the identification of material constitutive parameters, which however exhibits limitations 

such as local minima and longer processing time. The VFM is an alternative method 

specifically developed for processing full- field measurements, which overcomes these 

drawbacks to a certain point. To identify material parameters using FEMU or the VFM, full-

field deformation measurements must be provided a priori. DVC is a popular method 

developed to determine the volume deformation, which is generally applied nowadays by 

coupling with X-ray CT reconstructed volume data. To determine the internal 3D 

deformation of soft biological tissues such as cornea, DVC will be performed on the OCT 

reconstructions. 
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CHAPTER 2  

3D VIRTUAL FIELDS METHOD FOR LINEAR ELASTICITY 

2.1 Introduction  

The virtual fields method (VFM) is a useful method for solving identification problems 

which was developed by Pierron et al [67]. It is based on the principle of virtual work and 

retrieves material constitutive parameters by utilizing the full- field deformation 

measurements. This method is less time consuming compared with finite element model 

updating (FEMU) since for the latter at least one FE model needs to be run for each cost-

function evaluation, resulting in computationally intensive routines, particularly for highly 

non- linear problems. So far, the VFM has been applied successfully to the identification of 

constitutive parameters for linear elastic materials such as composites, elasto-plasticity for 

metals as well as hyperelasticity for soft and biological tissues such as arter ial walls, etc. 

However, most of these applications are based on surface deformation measurements and 2D 

VFM (usually with assumption of plane stress or thin plate). For materials with more 

complex structures and stress states, surface deformation measurement and 2D VFM are not 

able to address the complete mechanical property of such materials. In this case, 3D VFM in 

connection with volume deformation measurements would be highly desirable.  

 In this chapter, the derivation of the 3D manually defined VFM and the 3D optimized 

piecewise VFM for linear elasticity is presented in detail. A strategy to select suitable virtual 

fields that enable direct identification and minimize the influence of noise is adopted for the 

optimized piecewise VFM, which has already been proved successful in 2D identification 

[67]. Simple FE models were produced to verify the feasibility of the established 3D virtual 

fields. Finally, the manually defined virtual fields are benchmarked against the piecewise 

optimized virtual fields to compare their performance in retrieving constitutive parameters 

from noise corrupted strain data. 

2.2 3D virtual fields method in linear elasticity 

The virtual fields method, developed to identify the material constitutive parameters, is based 

on the principle of virtual work. This equation, provided below, is the integral form of the 
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global equilibrium equation for the standard deformable continuous solid model. It describes 

the balance between the virtual works of internal and external forces.  

 dVdVdSdV
VVVV

 


****
uaubuTεσ :   (2.1) 

In this equilibrium equation, σ  is the actual stress tensor, *ε  is the virtual strain tensor, *u  is 

the virtual displacement vector, T  is the applied stress vector on the boundary V  of the 

solid volume V, b  is the volume force vector, a  is the acceleration vector and   is the mass 

per unit volume. The “.” Is the vector dot product and “:” is the contracted product for second 

order tensors (or the matrix dot product). In this study, the solid will be assumed to be 

subjected to quasi-static deformation and body forces will be neglected. Therefore, their 

contribution to the virtual work can be canceled out. Thus, the equilibrium equation becomes  

 0:  
VV

dSdV **
uTεσ

 

(2.2) 

This equilibrium equation is valid for any continuous and differentiable virtual displacement 

field. The actual strain field and the load information are provided by the experiment. The 

stress components can be substituted by the material constitutive parameters and the strain 

components through an appropriate constitutive equation. The stress and strain components 

can be denoted in columns as follows 
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In this chapter, the standard contracted notation is used as follows for the sake of legibility.  
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The engineering shear strain is equal to twice the tensorial shear strain component. Thus, 

234 2  , 
135 2  , 

126 2  . 

 After introducing the constitutive relation into the equilibrium equation (2.2) of the 

principle of virtual work, the stress components can be replaced by the actual strain 

components and the sought constitutive parameters. Thus, the equilibrium equation (2.2) 

becomes  

 

]6,,2,1[),(,*  
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Assuming the material to be homogeneous, the equation above becomes 
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For 3D orthotropic elasticity, the stress and strain components are related by the stiffness 

matrix as 
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If the material is isotropic 
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where 11Q  and 12Q  are the two stiffness components relating to Young‟s modulus E and 

Poisson‟s ratio ν through 
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Therefore, for isotropic elasticity, after introducing equations (2.7) and (2.8) into equation 

(2.6), the equilibrium equation (2.6) can be written as  
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For orthotropic elasticity, the equilibrium equation (2.6) becomes 
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Each new virtual field leads to an independent linear equation. Therefore, choosing as many 

virtual fields as the number of unknowns leads to a linear equation system 

 BAQ   (2.12) 

where A  is a square matrix, Q  is a vector containing the sought constitutive parameters ijQ , 

and B  is a vector whose components are the external virtual works done by the applied force 

for each virtual field. For the isotropic case, only two virtual fields are needed as there are 

only two unknowns to identify. Thus,  
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Similarly, for orthotropic elasticity, nine virtual fields need to be chosen for the nine 

unknown constitutive parameters. Thus, the corresponding A  is a     square matrix, and 

Q  and B  are vectors with 9 components. 

 It should be pointed out that due to the discrete nature of the deformation 

measurement, the integrals above must be approximated in practice by discrete sums. This is 

the reason why full- field measurements are necessary for the VFM. If the spatial density of 

the strain measurement points is not large enough to faithfully reproduce the strain gradients, 

this approximation will cause errors that will lead to biases on the  identified stiffness 

components. In practice, this is an important problem to consider but it will not be addressed 

here. For instance, the integral 
V

dV*

11  can be approximated by 
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1  at measurement point  i  and )(iv  the volume associated to measurement 

point  i . In this way, matrix A in (2.12) becomes 
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(2.14) 

If the selected virtual fields are independent, then the determinant of A is different from zero. 

Thus, the linear system is invertible and Q can be directly obtained by 

 BAQ -1  (2.15) 

2.3 Manually defined virtual fields in 3D case and example for validation 

In this section, manually defined virtual fields were selected for the identification of the 

material constitutive parameters based on the method described in the previous section 2.2. A 
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simple case of a cube in compression was designed to illustrate the practical implementation 

of the virtual fields method in 3D. Linear isotropic elasticity was chosen for the sake of 

simplicity.  

2.3.1 Simulation of strain data 

A simple finite element model was produced to supply precise actual strain values and 

applied force from which the constitutive parameters can be extracted using the 3D VFM. If 

the identified values match the theoretical input values, then the 3D VFM is validated. Here, 

a model of a cube with one surface fixed and subjected to a concentrated force  at point A was 

developed using         as shown in Fig 2.1. The dimensions and force were chosen 

arbitrarily. The dimensions of the cube are 303030   mm3. The components of the 

concentrated force are equal to 9000 N along the 1x , 2x

 

and 3x  directions. The model uses 8-

noded linear brick elements and has 151515   elements (measurement points) along each 

direction. Linear isotropic elasticity was set for this model. Therefore, 11Q

 

and 12Q

 

are the 

sought quantities. They are related to the Young‟s modulus E  and Poisson‟s ratio   through 

equation (2.9). The input material constitutive parameters were arbitrarily chosen as in 

Table 2.1. 

 

Fig 2.1: Cube under compression/shear. 
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Table 2.1: Input constitutive parameters for isotropic elasticity. 

11Q  (GPa)

  
12Q  (GPa) Young‟s modulus E (GPa) Poisson‟s ratio ν 

134.6 57.7 100.0 0.3 

After running the simulation, the strain data were exported from ABAQUS for each element. 

The coordinates of the centroid of each element were also output. These quantities were then 

utilized to characterize the constitutive parameters using 3D VFM.  

2.3.2 3D manually defined virtual fields 

As stated in section 2.2, two different virtual fields need to be selected to retrieve the 

Young‟s modulus and Poisson‟s ratio for isotropic elasticity. Since the reaction forces on the 

clamped surface are hard to measure in practice, the selected virtual fields on this surface 

need to be set to 0 so that the contribution of these reaction forces to the external virtual work 

can be cancelled out from the VFM equations.  Here, two groups of virtual fields were chosen 

among an infinity of possibilities. For the first group, the virtual displacement field and the 

corresponding virtual strain field are  
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After introducing the above two virtual fields (2.16) and (2.17) into the equilibrium (2.10), a 

linear equation system can be formed to directly determine the sought stiffness components 

11Q  and 
12Q .  

 For virtual field 1, the left-hand side of the equilibrium equation (2.10) becomes  
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The virtual displacement at point A is equal to LAu )(*

1
, 0)(*

2 Au , 0)(*

3 Au . Therefore, 

the external virtual work at the right-hand side of the equilibrium equation (2.10) is equal to 
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So the equilibrium equation (2.10) becomes 
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Similarly, for virtual field 2, the equilibrium equation (2.10) becomes 
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Thus, the linear equation system is equal to 

 BAQ   (2.22) 
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After approximating the above integrals by discrete sums over the whole measurement data 

points, matrix A in the linear equation system (2.22) becomes 
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For this FE model, because the mesh is regular, 
)(iv  is constant and equal to 

n

V
, where V is 

the volume of the object and n is the number of elements. Therefore, 
)(iv  can be taken out of 

the sum, and a sum in matrix A, for instance, becomes 
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where 1  denotes the arithmetic spatial average of 1  over the whole volume of the solid. 

Finally, the linear equation system (2.22) to solve can be written as follows 

 

 



































































V

LF

V

LF

Q

Q

xxxxxxxxxxxx x

x

3

12

11

3262143131326214312

321

2

1

2

1

2

1

2

1

2

1




  (2.25) 

Young‟s modulus and Poisson‟s ratio can then be calculated through the relation (2.9). The 

identification results were obtained after introducing the simulated strain results into the 

Matlab program of the 3D VFM. The identified values were compared to the reference ones 

in Table 2.2 and the relative errors were calculated using the following equations 
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It can be seen that the identified results are nearly exactly the same as the input values.  

Table 2.2: Identification results for virtual fields 1 and 2.  

Constitutive parameters Reference Identified Error 

Young’s modulus E (GPa) 100.000 100.008 0.008% 

Poisson’s ratio ν 0.300 0.300 0.0% 

Two more complicated virtual fields using sine and exponential functions were also chosen 

for identification, which are 
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For these virtual fields, for 01 x , all the virtual displacement components are zero, as 

required to filter out the bottom reaction forces. Using the same analysis as for virtual fields 1 

and 2, another linear equation system can be formed for the identification of stiffness 
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components 
11Q  and 

12Q . The elements of matrix A in the linear equation system for virtua l 

fields 3 and 4 is equal to 
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Thus, the linear equation system can be expressed as  
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The identification results are listed in Table 2.3. One can see that the identified E  and   are 

even closer to the input values.  

Table 2.3: Identification results for virtual fields 3 and 4.  

Constitutive parameters Reference Identified Error 

Young’s modulus E (GPa) 100.000 100.000 0.0% 

Poisson’s ratio ν 0.300 0.300 0.0% 

Another two virtual fields with higher degrees were selected, which are  
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Matrix A is equal to 
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Similarly, a linear equation system can be formed using the above two virtual fields, which 

writes 
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The identified E and  are shown in Table 2.4. Although the results are very close to the 

references, larger error can be seen. It indicates that this set of virtual fields is less stable and 

more sensitive to noise. This is caused by the higher order polynomial functions which 

amplify the small numerical errors from the FE model.  

Table 2.4: Identification results for virtual fields 5 and 6. 

Constitutive parameters Reference Identified Error 

Young’s modulus E (GPa) 100.000 103.416 3.42% 

Poisson’s ratio ν 0.300 0.294 2.07% 
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The above results show that the exact strain data from simulation can yield very good 

identification results. However, in practice strain measurements are corrupted by different 

sources of noise. This will degrade the identification accuracy. To illustrate this, Gaussian 

white noise with standard deviation of  410  was added to the exact strain data, which is tens 

of percent of the actual strain values. The strain data with noise were then used to extract E  

and   using the previously defined sets of virtual fields 1 and 2, 3 and 4, 5 and 6, 

respectively. The results are given in Table 2.5. It can be seen that the error becomes much 

larger especially for the set of virtual fields 5 and 6. This is not surprising when looking at the 

condition number of matrix A in the linear equation system for each set of virtual fields, 

which is 907.07, 3.26, 81003.1  , for virtual fields 1 and 2, 3 and 4, 5 and 6, respectively. 

The reason for this is that error in B will introduce larger error in the solution Q when the 

condition number of A is larger. Thus, the choice of virtual fields can be critical and virtual 

fields that can minimize noise effect become highly desirable.  

Table 2.5: Identification results for strain data polluted by Gaussian white noise with 

amplitude of 410 . 

Constitutive parameters Reference VFM 1, 2 VFM 3, 4 VFM 5, 6 

Young’s modulus E (GPa) 100.000 102.026 98.535 119.066 

Poisson’s ratio ν 0.300 0.294 0.298 0.256 

2.4 Special virtual fields 

Due to the fact that the principle of virtual work is valid for any continuous and differentiable 

virtual displacement field, there are infinite choices for such virtual fields. Therefore, it is 

desirable to add some constraints so that better choices of the virtual fields can be reached.  

 As stated in section 2.3.2, the condition number of A in the linear equation (2.15) 

generally indicates how inaccurate the solution Q will be after inversion of the linear system.  

If the square matrix A is equal to the identity matrix I, then its condition number is equal to 

one. This condition number indicates that the matrix A is the best conditioned and the 

solution Q can be less sensitive to the errors in B. In addition, the problem of independence 

of the virtual fields can be solved when the matrix A is equal to the identity matrix I. Such 
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virtual fields are referred to as special virtual fields as stated by Pierron et al in [67]. In this 

case 

 BBIBAQ 11    (2.35) 

These special virtual fields can be obtained by defining the diagonal components of A as one 

and the other components as zero. In the isotropic case for instance, 1)1,1( A , 0)2,1( A  

for the first special virtual field 
)1(*

u  and 0)1,2( A , 1)2,2( A  for the second special 

virtual field 
)2(*

u . Analogously, the special virtual fields for the orthotropic case can be 

obtained by defining the virtual fields so that nine diagonal components are equal to one and 

all the others to zero. The special virtual fields can lead to a straightforward solution.  

2.5 Piecewise virtual fields 

Virtual fields can be constructed using various types of functions such as polynomials, sine 

functions or piecewise functions. Similar to the approach that is used to construct the actual 

displacement field in the finite element method, the virtual displacement of a point in an 

element can be expressed as a function of the virtual displacement at the nodes of this 

element as  

 
)(** e

Nuu   (2.36) 

where *u   is a vector containing the virtual displacements *

1u , *

2u  and *

3u  of any point within 

element (e). N is the matrix containing the shape functions serving as interpolation functions, 

and 
)(* e

u  is the vector of nodal virtual displacements of given element (e) in the defined mesh. 

For the 3D case here, an 8-noded brick element was selected, which is shown in Fig 2.2. The 

shape functions are  
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Fig 2. 2 Local coordinate system for the 8-noded brick element 
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where  321 ,,   are the parametric coordinates of a point in the reference element. For an 8-

noded element, each node has three degrees of freedom. Thus, 
)(* e

u  contains 24 components 

and N is a 243  matrix 
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Virtual strains in the element can be calculated using the derivatives of the virtual 

displacement components and expressed as 

 
)(*)(*

uSε
ee  (2.41) 

where *ε  is a vector containing the six virtual strain components of any point within the 

virtual element (e). )(
S

e  is a 246  matrix which contains the partial derivatives of the shape 

functions. 
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Results for each element are assembled, and the global virtual strains can be calculated by   

 
)(* g

Suε
*    (2.44) 

where S  is the global matrix assembled from the elemental )(
S

e  matrices of each element 

and expressed in the global coordinate system. 
)(* g

u  is the global vector that contains the 

virtual displacements at all the virtual nodes of the body.    

 For both isotropic and orthotropic elasticity, there are 12 different types of integrals for 

the internal virtual work as shown in the equilibrium equations (2.10) and (2.11). Based on 

the above discussion, these integrals can be approximated by discrete sums. Take 
V

dV*

11  

for example 
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where n is the number of measurement points. 1S  is a vector that contains the components of 

the first line of the global matrix S .  )(

3

)(

2

)(

1 ,, iii xxx  is the coordinate of measurement point (i). 

Similarly, other integrals can also be calculated.  

 Compared to other forms of virtual fields expansions, piecewise virtual fields have the 

main advantage of flexibility. When specific virtual displacements are required in certain 

areas for the purposes of simple calculation of the external virtual work or meeting the 
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requirements of different boundary conditions, these conditions are more easily expressed 

with piecewise virtual fields.  

2.6 Virtual fields minimizing noise effect 

Due to the noise and measurement uncertainties, the measured strain values are different from 

the actual ones. This can influence the identification results depending on the sensitivity of 

the identified parameters to the noise. In addition, as there is an infinity of special virtual 

fields that can be chosen to identify constitutive parameters, some extra constraints need to be 

added to enable a better identification. In this case, the virtual fields that minimize the effect 

of noise on the identification results would be useful. The procedure for developing such 

virtual fields in 2D has been presented by Avril et al in [111]. In this section, this approach is 

extended to 3D. In reality, the noise structure of the measured strain is very complex 

considering the interpolation errors, speckle decorrelation, change of illumination, possible 

smoothing, etc. For the sake of simplicity, a simple zero-mean Gaussian noise model with 

standard deviation of   is assumed here. The measured strain thus is composed of the actual 

strain plus the noise. Since the principle of virtual work is only rigorously true for the actual 

strain values, the expression of the principle of virtual work in equation (2.35) with special 

virtual fields is only verified when the noise is subtracted from the strain measurements. 

Therefore, a matrix indicating the deviation from the actual values due to noise is subtracted 

from the identity matrix in equation (2.35), and equation (2.35) becomes 

   BQDI   (2.46) 

where D is the matrix indicating the deviation from the actual values due to noise. Thus, the 

identified stiffness is  

 DQBQ   (2.47) 

If noise exists but is not considered, the approximate Q  is identified and written as 

 BQ app  (2.48) 

An important assumption is that the amplitude of noise   is negligible compared to the L2 

norm of the strain components,  i min .Under this assumption, equation (2.47) can be 

approximated as 
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 appapp DQQQ   (2.49) 

Therefore, the variance of Q  can be written as follows 

       22 appEEE)V( DQQQQ   (2.50) 

where  XE  is the mathematical expectation of X, and app
Q  is assumed to be equal to the 

mathematical expectation of Q . 

For the 3D isotropic case, the variances of 
11Q   and 

12Q  are as follows 
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when i=1,  1Q  represents 
11Q , when i=2,  2Q  represents 

12Q . 

For the orthotropic case, the variances of the nine stiffness components are as follows 
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 (2.52) 

where i=1:9, and  1Q ,  2Q ,  3Q ,  4Q ,  5Q ,  6Q ,  7Q ,  8Q ,  9Q represent 
11Q , 

22Q , 33Q , 

23Q , 13Q , 
12Q , 

44Q , 55Q , 66Q , respectively. 

Due to the discrete nature of the measurement, the integrals above in functions (2.51) and 

(2.52) must be approximated by discrete sums. Therefore, for the isotropic case, equation 

(2.51) becomes 
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where k is the number of measurement points.  

For the orthotropic case, equation (2.52) now becomes 
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The variances of the stiffness components can be written as  

  
  22 i

i )V(Q    (2.55) 

Since the   2i  depend on the choice of virtual fields that are chosen to extract the stiffness 

components ijQ , minimizing the coefficients   2i  will lead to the optimal choice of virtual 

fields in terms of stability with respect to noise.. Here,   2i  can be rewritten as equation 

(2.56). 

       iTii **2

2

1
HYY  (2.56) 

where 
 i*

Y  is the vector containing all the nodal virtual displacements and H  is a square 

matrix obtained by rewriting equation (2.53) (for the isotropic case) or equation (2.54) (for 

the orthotropic case) after introducing the definition of virtual strain components given in 

equation (2.44). It has been proved in reference [67] that   2i  is strictly convex and exhibits 

a unique minimum. The best choice of the virtual displacements 
 i*

Y   is the solution of a 
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minimization problem. The minimization must be performed under constraints, which are the 

boundary conditions to eliminate the contribution of reaction forces at the supports (KA) and 

the special conditions to directly provide the constitutive parameters. These two types of 

constraints can be merged and presented in a more compact form  

 
   ii

zAY *  (2.57) 

where  iz  is a vector containing only zeros apart from one component which is equal to 1, 

and the location of this “1” component depends on i. This is the 'speciality' condition, one for 

each virtual field associated to each stiffness component to identify.  

Using Lagrangian multipliers this constrained optimization problem becomes  

             iiTiiTii zAYλHYYΛ  ***

2

1
 (2.58) 

Minimizing  iΛ   leads to the linear system 
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Since the sought quantities  iQ  are unknown and involved in the   2i , the linear system is 

solved iteratively and a random first set of  iQ  is chosen to start the iteration. The whole 

algorithm was implemented using the         program. The finite element model 

described in section 2.3.1 was used to validate the above described identification approach by 

providing exact strain data.   

2.7 Verification of the 3D piecewise optimized virtual fields method 

2.7.1 Finite element models for validation 

In addition to the isotropic model of section 2.3.1, an orthotropic model was developed to 

study the performance of the 3D piecewise optimized VFM in identifying the nine 

orthotropic stiffness components. The dimensions, the applied force, the type and number of 

elements are all the same as for the isotropic model, just the material properties differ. The 

nine input stiffness components for the orthotropic model are shown in Table 2.6, which were 

chosen somewhat arbitrarily.  
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Table 2.6: Input stiffness components for orthotropic elasticity.  

11Q  

(GPa) 

22Q  

(GPa) 

33Q  

(GPa) 

12Q  

(GPa) 

13Q  

(GPa) 

23Q  

(GPa) 

44Q  

(GPa) 

55Q  

(GPa) 

66Q  

(GPa) 

90.0 50.0 70.0 29.0 38.0 12.0 20.0 25.0 15.0 

2.7.2 Identification results 

A mesh with 333   virtual elements was considered here. As illustrated in Fig 2.3, it has 

64 nodes and 192 degrees of freedom. In this case, the vector of global nodal virtual 

displacement *Y  is 
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Fig 2.3: Schematic of the 3D virtual mesh. 

For this model, the traction at the fixed bottom is unknown. Therefore, boundary conditions 

must be added to eliminate their contribution to the external virtual work. This can be easily 

achieved by setting all virtual degrees of freedom at the bottom nodes to zero.  
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 Table 2.7 and Table 2.8 list the identification results for the isotropic and orthotropic 

case, respectively. 

 It can be seen that the identified values are nearly the same as the theoretical input values. 

For both isotropic and orthotropic cases, the errors of all the stiffness components are much 

smaller than 1%. 

Table 2.7: Identification results for isotropic elasticity using 3D piecewise optimized VFM.  

Constitutive parameters Reference Identified Error 

Young’s modulus E (GPa) 100.0 100.053 0.053% 

Poisson’s ratio ν 0.3 0.3003 0.1% 

Table 2.8: Identification results for orthotropic elasticity using 3D piecewise optimized VFM. 

Constitutive parameters Reference Identified Error 

11Q  (GPa) 90.0 90.057 0.063% 

22Q  (GPa) 50.0 50.088 0.176% 

33Q  (GPa) 70.0 70.131 0.187% 

12Q  (GPa) 29.0 29.026 0.090% 

13Q  (GPa) 38.0 38.031 0.082% 

23Q  (GPa) 12.0 12.026 0.217% 

44Q  (GPa) 20.0 20.006 0.030% 

55Q  (GPa) 25.0 25.006 0.024% 

66Q  (GPa) 15.0 15.007 0.047% 
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 To verify that the 3D virtual fields are the truly optimized virtual fields, the sensitivity to 

noise of each identified stiffness component has been studied. This was implemented by 

studying the coefficients of variation of each stiffness component for st rain noises with 

increasing standard deviations. The coefficient of variation (CV) is defined in equation (2.61), 

which represents the ratio of the standard deviation   i  to the identified stiffness 

component  iQ  for a strain noise with standard deviation  .  
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QCV   (2.61) 

If the predicted 
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 is equal to the theoretical mean 

 

 i

i

Q


 calculated by adding noise to the 

strain data and working out the scatter of the identified distributions, the virtual fields are 

confirmed to be the optimized ones. To validate this, a range of Gaussian white noise was 

added to the simulated strain data, of which the standard deviation   changes from 6105   

to 4101   with an increment of 6105  . For each value of  , 30 identifications were run and 

distributions of stiffness components identified. To verify equation (2.61), coefficients of 

variations for different stiffness components as a function of   were plotted. The points were 

fitted by a line to compute the slope which can then be compared to the theoretical value of 

 

 i

i

Q


. For the isotropic case, the coefficients of variation for the two stiffness components 

are plotted as a function of   in Fig 2.4. It can be seen that the CV of 
11Q  is smaller than that 

of 
12Q , which indicates that 

11Q  is more stable than 
12Q  as expected as Poisson‟s ratio has a 

smaller influence on the actual material deformation. The points are fitted by a line and the 

fitted slope 
 

 i

i

Q


 are compared with the theoretical values in Table 2.9. The results show that 

the fitted values match the theoretical values. When the noise amplitude increases to a large 

value like 
4101  , which is tens of percent of the actual strain values, the fit is less adequate. 

This is not surprising because such a large noise amplitude does not fit the precondition that 

the noise amplitude should be small compared with the strain values.  
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Fig 2.4: Coefficients of variation of the different stiffness components as a function of   for 

isotropic elasticity, 3D piecewise optimized VFM. 

Table 2.9: Comparison of the fitted slope 
 

 i

i

Q


 with the theoretical values for isotropic 

elasticity, 3D piecewise optimized VFM.  

 Fitted Theoretical 

11

11
Q

  77.0 81.4 

12

12
Q

  189 198 

The same procedure was carried out for the orthotropic case, and the coefficients of variation 

for the nine stiffness components are plotted as a function of   in Fig 2.5. As can be seen 

from Fig 2.5, 
44Q , 55Q   and 66Q  are the most stable stiffness components and they all have 

very small coefficients of variation. 
11Q , 

22Q  and 33Q  have intermediate coefficients o f 

variation, while the last three components 23Q , 
12Q  and 13Q  have the largest scatter and are 

the most sensitive to noise. 
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Fig 2.5: Coefficients of variation of the different stiffness components plotted as a function of 

  for orthotropic elasticity, 3D piecewise optimized VFM. 

 The fitted slope 
 

 i

i

Q


 for the nine stiffness components are compared with theoretica l 

values in Table 2.10. Similarly to the isotropic case, it can be seen that the fitted values match 

the theoretical values.  

 The above results validate that the 3D piecewise optimized VFM can extract the 

constitutive parameters successfully for both isotropic and orthotropic elasticity even the 

noise amplitude is relatively large. This is the first time that optimized virtual fields have 

been generated for a 3D problem.  
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Table 2.10: Comparison of the fitted slope 
 

 i

i

Q


 with the theoretical values for orthotropic 

elasticity, 3D piecewise optimized VFM.  

 Fitted Theoretical 

11

11
Q

  100 88.6 

22

22
Q

  60.8 57.7 

33

33
Q


 84.5 80.9 

12

12
Q

  146 147 

13

13
Q


 128 151 

23

23
Q


 391 384 

44

44
Q


 23.0 25.6 

55

55
Q


 32.7 30.9 

66

66
Q


 26.0 27.2 

2.8 Benchmarking optimized against manual virtual fields 

In this section, the 3D manually defined VFM developed in section 2.3 is compared to the 3D 

piecewise optimized VFM. The idea is to evaluate the performance of both methods in 

retrieving Young‟s modulus and Poisson‟s ratio from noise polluted strain data. The same FE 

model with isotropic elasticity as introduced in previous sections is used here. As the set of 

manually defined virtual fields 5 and 6 are very unstable and expected to have very large 

error in the identification results for the noise polluted strain data, here, only the sets of 

virtual fields 1 & 2 and 3 & 4 are compared to the piecewise optimized VFM. The 

identification results are then compared with each other and critically discussed.   
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 A range of Gaussian white noises were added to the exact simulated strain data. The 

noise amplitude   ranges from 0  to 4102   with an increment of 5101  . For each 

amplitude value of  , 30 copies of noise were added to the simulated strain data. Thus, 30 

identifications were run for each   using both the optimized and manually defined VFM. 

The mean and standard deviation of the identified Young‟s modulus E are plotted versus the 

noise amplitude    in Fig 2.6 using symmetric error bars that are two standard deviation units 

in length. It can be seen from the figure that all three VFM implementations yield near-exact 

identification of Young‟s modulus when there is no noise (when 0 ). However, when 

noise increases identification results for all three VFM implementations become less stable 

especially for the set of virtual fields 1 and 2. Clearly, for all noise amplitudes, virtual fields 1  

and 2 yield the least accurate mean values and the largest standard deviations. Better results 

can be found for virtual fields 3 and 4, which have smaller standard deviations than virtual 

fields 1 and 2. The piecewise optimized VFM obviously has the smallest standard deviations 

and is the least affected by noise. Even when the noise amplitude reaches 4102  , which is 

already tens of percent of the strain values, the identification results are still rather reasonable. 

Similar results were found for the identification of Poisson‟s ratio   in Fig 2.7. Again, virtual 

fields 1 and 2 yield the least accurate identified Poisson‟s ratio, while the piecewise 

optimized VFM yields the best results, which is what was expected.   

 The relative identification error for Young‟s modulus and Poisson‟s ratio were then 

calculated using equation (2.26). For each noise amplitude  , the mean of the relative errors 

of the 30 identifications was obtained and plotted  as a function of   in Fig 2.8 and Fig 2.9, 

for Young‟s modulus and Poisson‟s ratio, respectively. As expected from Fig 2.6 and Fig 2.7, 

virtual fields 1 and 2 yield the largest identification error for both Young‟s modulus and 

Poisson‟s ratio, while the optimized virtual fields have the smallest error.  

 Based on the above discussions, it can be concluded that both the optimized and 

manually defined VFM can yield very good identification results. However, when the strain 

measurements are polluted by noise, the optimized VFM is much more stable and able to give 

much more accurate identification results.  
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Fig 2.6: Symmetric error bars for Young‟s modulus E plotted as a function of noise amplitude 

  for isotropic elasticity. 

 

Fig 2.7: Symmetric error bars for Poisson‟s ratio   plotted as a function of noise amplitude 

  for isotropic elasticity. 
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Fig 2.8: Mean of the relative errors for the identified Young‟s modulus E plotted as a function 

of   for isotropic elasticity. 

 

Fig 2.9: Mean of the relative errors for the identified Poisson‟s ratio   plotted as a function 

of   for isotropic elasticity. 
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2.9 Conclusions 

In this chapter, 3D manually defined VFM was first developed for the identification of 3D 

elasticity from volume strain data. It was validated using the simulated strain data from a FE 

model with isotropic elasticity. The results showed that the different sets of virtual fields have 

different sensitivity to strain noise and the choice of virtual fields can be critical.  3D 

optimized VFM was then developed in detail. Piecewise virtual fields were selected here. The 

optimization was implemented using Lagrangian multipliers under boundary conditions  

constraints that eliminate the contribution of reaction forces at the supports (KA) and the 

special conditions constraints that directly provide the constitutive parameters. This 3D 

piecewise optimized VFM was validated using simulated strain data from FE models with 

both isotropic and orthotropic elasticity material models. Similar to the manually defined 

VFM, the identified stiffness components from the piecewise optimized VFM are also nearly 

identical to the input reference values, thus verifying the method. Finally, the manually 

defined VFM was compared to the piecewise optimized VFM when the strain data were 

polluted by Gaussian white noise. The idea was to benchmark both approaches in terms of 

sensitivity to noise. The results showed that both methods yielded good identification results. 

However, when the noise amplitude becomes larger, the piecewise optimized VFM led to 

much more stable results, as expected. It was also shown that the standard deviation predicted 

by the optimized approach matched the ones calculated directly from the stiffness 

distributions obtained with different copies of noise with increasing amplitude, thus 

validating the analytical expressions of the variance provided here for the first time for 3D 

elasticity. 

 To identify the constitutive parameters of a material using the VFM, strain data need to 

be obtained. For 3D VFM, depth-resolved full- field deformation measurement is needed. 

This issue is addressed in the following chapter.   
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CHAPTER 3  

3D DEFORMATION MEASUREMENT USING OPTICAL 

COHERENCE TOMOGRAPHY AND DIGITAL VOLUME 

CORRELATION FOR ELASTIC MODULI IDENTIFICATION 

3.1 Introduction 

A wide variety of techniques have been developed to measure the deformation of materials 

under load, ranging from point-wise sensors such as the resistive strain gauge [112] and 

optical fibre Bragg gratings [113] to 2D full- field measurements including DIC [93], the grid 

method [81], speckle interferometry [114] and Moiré interferometry [115], to name a few. 

For homogeneous and isotropic materials, these techniques usually provide enough 

information to investigate their mechanical behaviour. However, for materials with more 

complex structures such as biological tissues and composites, surface measurements are 

much less adequate to address their complete mechanical behaviour since the deformation 

may vary significantly between the bulk and the surface. In this case, a depth-resolved 3D 

measurement (Depth-resolved represents through the thickness, while 3D refers to the 3 

components of the displacement vector for each volume element in the sample) of the 

deformation would be highly desirable.  

 Thanks to the development of the various tomographic techniques, DVC has become a 

popular measurement technique for depth-resolved 3D deformation fields. DVC has made its 

way into clinical and industrial applications [103-110], where it is mainly applied on X-ray 

CT data of materials such as composites, metals, foams and trabecular bones. However, for 

soft biological tissues dominated by collagen, such as cornea, artery or skin, OCT is a more 

suitable technique to reconstruct the material microstructure. With the aid of OCT, the micro 

structure of the scanned sample can be reconstructed  as a data cube which can then be 

utilized for structure analysis or deformation analysis using DVC. To the best of our 

knowledge, this is the first time that measurements of depth-resolved deformations have been 

undertaken combining OCT and DVC.  
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 In this chapter a methodology for stiffness identification of semi-transparent and light  

scattering materials from depth-resolved 3D deformation fields is presented. These were 

obtained by performing digital volume correlation on optical coherence tomography volume 

reconstructions of silicone rubber phantoms. The effect of noise and reconstruction 

uncertainties on the performance of the correlation algorithm was first evaluated through 

stationary and rigid body translation tests to give an indication of the minimum strain that can 

be reliably measured. The phantoms were then tested under tension and the 3D deformation 

fields were used to identify the elastic constitutive parameters using 3D manually defined 

VFM. The identification results for the cases of uniform and heterogeneous strain fields were 

compared with those calculated analytically through a constant uniaxial stress assumption 

and also measured independently using a tensile testing machine. 

3.2 Sample preparation 

In the present study, two rectangular flat phantom strips were fabricated using silicone rubber 

(MM240-TV), one of them with a notch. The material comprises of two parts, a rubber base 

and a hardener. They were mixed to a ratio of 10:1. The nominal Young‟s modulus of the 

silicone rubber is 1.88 MPa, which can change with the proportion of hardener.  Since the 

silicone rubber does not present suitable speckle contrast for the application of DVC, copper 

particles (with an average particle size of about 1 µm) were seeded into the silicone rubber 

mixture to provide the speckle contrast. The mixture was then put into molds and left to cure 

at room temperature for approximately 24 hours. The flat strips were cut from a larger piece 

using a scalpel to 104.160   mm3 ( widththicknesslength  ).  Fig 3.1 shows the phantom 

specimen after the manufacturing process.  

3.3 Experimental set-up and image acquisition 

The experimental set-up consists of a tensile test fixture and a swept-source OCT system (SS-

OCT, Thorlabs OCS1300SS, lateral resolution 25µm, depth resolution 12µm in air), as 

shown in Fig 3.2. For the test, the phantom strip was mounted with one end fixed to the 

fixture and the other end loaded by a dead weight. At first, a dead weight of 50 g was applied 

as a preload to insure the phantom strip was taut and vertical. This is a necessary step since 

the silicone rubber is rather compliant. The preload state was taken as the reference state. A 

10 g dead weight was then added to the preload and considered as the deformed state, 

referred to as „load step 1‟ hereafter.  
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 For both reference and deformed states, a 3D volume reconstruction of the specimen was 

generated using the SS-OCT system. It uses a rapidly tuned narrowband light source with 

central wavelength of 1325 nm and spectral bandwidth of 100 nm and records the 

information with a single photo detector. The frequency of the interference signal is 

proportional to the optical path difference between the sample and reference arms of an 

interferometer. Depth profiles (A-scans) of the sample are obtained by evaluating the Fourier 

transform of the signal for each wavelength scan. The 5-6 mm coherence length of the laser 

enables a depth range of approximately 3 mm. Adjacent A-scans are then synthesized to 

create an image in the xy plane. Multiple adjacent 2D images in the z-direction then form the 

reconstructed 3D volume. In the present work, a region with dimensions of 11311   mm3  

was scanned, corresponding to x, y and z directions, respectively. A 3D data volume of 

10245121024   voxels was obtained. The acquisition time for each 3D volume is 

approximately 5 minutes. It should be pointed out that each time, before acquiring the volume 

data, the specimen was left 10 minutes under load to accommodate significant short term 

viscoelastic creep. Along the lateral scanning directions x and z, the image voxel size was 

determined by dividing the 11 mm dimension by the number of corresponding 1024 voxels, 

which is equal to 10.7 µm. Regarding the through-thickness y-direction, which corresponds to 

optical path, the voxel size depends on the refractive index of the medium. For the silicone 

rubber phantom the voxel size inside the medium along the y-direction is 4.1 µm determined 

by dividing its thickness 1.4 mm by the number of corresponding voxels, here 345. The 

reconstructed volume and a typical central transverse z-slice ( 5121024  voxels) of the 

specimen are given in Fig. 3.3 (a) and (b), respectively. Due to light saturation, the voxels at 

the top surface exhibit very high intensity values, as can be seen from the white line at the top 

of the phantom in Fig. 3.3(b). It should be pointed out that all the regions outside the phantom 

strip and the saturated voxels at the top surface were masked out in Fig. 3.3 (a) for a better 

visualization of the 3D reconstructed volume. The reconstructed volumes for the reference 

and deformed states were recorded and DVC was then used to compute the 3D displacement 

and strain fields. 
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Fig 3.1: Image of the fabricated silicone rubber phantom specimen. 

 

 

Fig 3.2: Schematic and image of the experimental set-up. 
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Fig 3.3: OCT reconstructions of the rectangular silicone rubber phantom strip: (a) 3D view of 

the reconstructed volume and (b) 2D view of the central transverse z-slice generated through 

the SS-OCT system. 

3.4 Digital volume correlation 

DVC is the 3D extension of the widely applied DIC used to measure surface deformations. 

During the DVC procedure, the correlated volumes are first divided into sub-volumes. The 

displacement vector of each sub-volume is determined by tracking and matching the voxels 
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of the sub-volumes in the reference and deformed states. This is performed by maximizing 

the correlation coefficient which measures the degree of similarity of the grey level 

distributions in the sub-volumes in the reference and deformed states. The best prediction of 

the displacement leads to the highest degree of similarity of the grey level distributions thus 

the maximal correlation coefficient (a correlation coefficient value close to 1 indicates a 

perfect match). In the present study, the displacement fields were calculated using the 

DaVis® (LaVision) software package based on a fast Fourier transform (FFT) algorithm. It 

evaluates a normalized cross-correlation coefficient (NCC) defined as 

 
   

         

  


22
ˆ,ˆ,ˆ,,

ˆ,ˆ,ˆ,,

zyxGzyxF

zyxGzyxF
C  (3.1) 

where  zyxF ,,  represents the grey level at a voxel  zyx ,,  in the sub-volume of the 

reference state, while  zyxG ˆ,ˆ,ˆ  represents the grey level at a point  zyx ˆ,ˆ,ˆ  in the sub-volume 

of the deformed state. The coordinates  zyx ,,  and  zyx ˆ,ˆ,ˆ  stand for the same material point 

in the reference and deformed states, respectively, and are related by the 3D affine 

transformation in the form of rigid body motion combined with displacement gradients  
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where ux, uy, and uz are the rigid body displacement components of the sub-volume centre in 

the x, y and z-direction, respectively. x , y  and z , represent the distance between the 

sub-volume centre and the point  zyx ,, . A double-pass approach was used whereby large 

sub-volumes were initially used to capture large displacements. Subsequent to this, these 

initially calculated displacements were used to displace smaller sub-volumes, and thus ensure 

the pattern was followed and the signal to noise ratio increased. Gaussian curve-fitting of the 

correlation function peak was used to detect the position of the displacement with sub-voxel 

resolution. The strains were then determined from the centred finite difference of the 

calculated displacement fields, without any additional smoothing.   
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3.5 Evaluation of measurement performance 

A fundamental condition in image correlation techniques is that the changes in the intensity 

pattern are in one-to-one correspondence with the displacements of the surface. DVC results 

from OCT volume reconstructions of the reference and deformed states are likely to be 

affected by a variety of factors such as: 1) electronic noise of the detectors; 2) light source 

stability; 3) reconstruction algorithms; 4) contrast reduction through the sample thickness due 

to material absorption, scattering, dispersion, defocusing and spectral roll-off; and 5) strain-

induced speckle decorrelation due to “speckle boiling”, a phenomenon in which the intensity 

of the speckle pattern changes considerably due to large, uncorrelated phase changes; speckle 

grains change from dark to bright and vice versa. We studied the combined effect of 1-4 by 

performing a stationary test and a rigid body translation test of the phantoms. The effect of 

strain induced speckle decorrelation was explored through a numerical simulation described 

below in section 3.5.4. 

3.5.1 Influence of sub-volume size 

The DVC algorithm requires sufficient contrast in a sub-volume in order to determine a 

displacement vector. The size of the sub-volumes influences the value of the correlation 

coefficient and thus the displacement and strain uncertainties. In the present study, four 

different sub-volume sizes were selected and compared to determine an optimal size 

considering the displacement and strain spatial variation as well as the spatial resolution. A 

double-pass approach used initial sub-volumes sizes 243, 483, 723 and 963 in the first pass, 

followed by 123, 243, 363 and 483 in the second path and each had 50% overlap with the six 

adjacent neighbours. Thus, the distance between each sub-volume centre with its immediate 

neighbours is 6, 12, 18 and 24 voxels, respectively. 

 From the DVC results on the OCT reconstructions of the stationary specimen, the 

influence of sub-volume size was analysed quantitatively by comparing the standard 

deviations of the strain components for a central z-slice  yx,  for the four final sub-volume 

sizes. All the six strain components were derived from the centred finite difference of the 

spurious displacements as follows without any smoothing 
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where the commas stand for the partial derivatives. The standard deviations over the whole 

field of view are compared in Fig 3.4 for 
xx , xy  and yy  only, for the sake of legibility. 

From the figure, one can see that the standard deviations of the strain components drop from 

~ 3103   to about 4105   when the sub-volume size increases from 123 to 243. When the 

sub-volume size is further increased to 363 and 483
  –see Fig 3.5, the strain std fluctuations 

further reduced to about 4102  . This is not surprising when analysing the 3D views of the 

four sub-volumes in Fig 3.5. As it can be seen, the 483 sub-volume contains the largest 

number of features which assist the convergence of the volume correlation algorithm and 

enable more accurate tracking of the sub-volume deformation. A smaller number of features 

in the 123 sub-volume lead to bigger tracking errors. However, although 483 sub-volumes 

provide the highest strain resolution among the four, it is not necessarily the optimal choice 

because the spatial resolution must also be taken into consideration. This is important 

especially for those specimens with very small thickness compared to the spatial resolution of 

the SS-OCT system such as the porcine cornea studied by Fu et al in [116]. For the flat 

phantom in the present study, 363 sub-volumes were found to be a good compromise between 

strain resolution and spatial resolution. As a consequence, a sub-volume size of 363 was kept 

for this study. Depending on the OCT spatial sampling rate, the speckle field may be under-

sampled, leading to interpolation bias [117]. This issue will be discussed later on in the 

chapter. 

 

Fig 3.4:  Comparison of the strain standard deviations for different sub-volume sizes, 

calculated for a stationary rectangular phantom strip. 
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Fig 3.5: 3D views of the OCT sub-volumes with different sizes. The granular structure 

corresponds to the 3D speckle. 

3.5.2 Stationary test 

Prior to performing tests that induce deformation of the sample, it is necessary to evaluate the 

errors caused by all sources of noise and reconstruction uncertainties. This can be done by 

performing DVC on two reconstructed volumes of the stationary phantom strip. Since the 

stationary specimen was not subjected to any applied force, the correlation results should 

show zero displacement and strain fields over the whole field of view. This is not the case in 

practice due to the influence of electronic noise in the SS-OCT system, environmental 

vibration, the volume reconstruction algorithm, etc. Therefore, any non-zero results should be 

attributed to the contribution of noise and other reconstruction uncertainties. The standard 

deviations of the spurious strains were calculated to evaluate the resolution (uncertainty) of 

the strain measurement. 
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 Based on the volume strain fields of the stationary test, the standard deviation of each 

strain component was calculated for each z-slice and the results are plotted in Fig 3.6. It can 

be observed that the standard deviations of all the strain components generally remain stable 

along the different z-slices, with a slight increase towards the ends. This is expected as the 

DVC results are usually noisier near edges due to the lack of data. Although with fluctuation, 

all the standard deviations are generally between 4105.1   and 4105.2   without any 

smoothing, which is considered as satisfactory compared with the strain levels in the tensile 

tests later on. 

 

Fig 3.6: Standard deviation of the spurious strain obtained with 363 voxels sub-volume and 50% 

overlap in a stationary test. 

3.5.3 Rigid body translation test 

Two reconstructed volumes were recorded after introducing a rigid body translation of 40 µm 

(about 10 voxels) in the y-direction between the two volumes. This not only tests the effect of 

all sources of noise but also tests the performance of DVC sub-voxel interpolation (tri- linear 

in the present study) and accuracy of the correlation algorithm in determining the 

displacement fields for a translated specimen. The same procedure of data processing used 

for the stationary test was applied to the rigid body translation test and the strain 
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measurement resolution was computed. The above tests give an overall idea of the resolution 

of the whole set-up so that the significance of the tensile test results can be better analysed. 

 Slightly larger values of strain std, between 4102   and 4105.3  , were obtained for the 

rigid body translation test – see Fig 3.7. Compared with the results of the stationary test, the  

strain std for the translation test have larger fluctuation. This is so as the errors not only come 

from all the error sources presented in the stationary test, but also arise from the sub-voxel 

interpolation error as the DVC algorithm tracks the sub-volumes between the reference and 

displaced states as well as defocusing and spectral roll-off. Therefore, higher noise levels can 

be expected. It was observed that lateral translations (in the xz plane) lead to strain standard 

deviations values between those obtained for the stationary and the axial translation tests.  

Although the strain standard deviations for the rigid body translation test are larger than those 

for the stationary test, these noise levels are still low compared to the strain levels of 

approximately ~1% in the tensile tests and were thus considered satisfactory.  

 

Fig 3.7: Standard deviation of the spurious strain obtained with 363 voxels sub-volume and 50% 

overlap in a rigid body translation test. 
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3.5.4 Strain-induced speckle decorrelation 

Due to the backscatter illumination/observation configuration, the complex 3D point spread 

function (PSF) of the OCT system has ~18 fringes across it along the axial direction (ratio 

between the depth resolution, 8.3 µm, and the half wavelength of the light source in the 

medium of refractive index 1.45, i.e. 1.325µm/(21.45)=0.457 µm). The magnitude of the 

measured OCT signal corresponds to the convolution between the 3D PSF and the scattering 

particles within the phantom. This magnitude, which determines the brightness of the 3D 

speckle grain at any particular position within the sample, does not change with rigid body 

motion of the sample as relative phase differences between scatterers within the 3D PSF 

remain constant. In case of strain, however, there is a limit within which the magnitude of the 

speckle remains nearly unchanged and beyond which an incremental DVC approach would 

be required.  

 In order to estimate the level of OCT speckle decorrelation due to strain, we performed a 

2D (on the xy plane) numerical simulation involving the following steps:  

1. Generate a 2D random distribution of scatterers such that there are many of them 

(~100) inside the point spread function of the OCT system.  

2. Evaluate the 2D speckle field due to the spatial distribution of scatterers considering 

the numerical aperture of the system, the central wavelength and bandwidth of the 

source, and the refractive index of the medium. This was done by Coupland et al 

using linear systems theory [118, 119] by first calculating the transfer function of the 

OCT system, then evaluating the complex PSF and convolving it with the scatterers.  

The speckle field was oversampled to recover phase information within the PSF. In 

this way, the correlation coefficient evaluation is free from under-sampling effects. 

We used images of 1024×1024 pixels with a speckle size given by the dimensions of 

the PSF (~1024/4 pixels in the axial direction y and ~1024/2 pixels in the lateral 

direction x). Using the Rayleigh resolution criteria, this leads to ~8×4=32 speckles in 

the simulated subset, as shown in Fig 3.8, which compares well with the number of 

speckles observed on the xy face of the 363 sub-volume shown in Fig 3.5.   
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Fig 3.8: Simulated speckle field in a sub-set or sub-image: horizontal axis is x, vertical axis is 

observation axis y. 

3. Deform the spatial distribution of scatterers with a horizontal strain xx  from 0 to 0.5 

in steps of 0.001 from 0 to 0.02 and steps of 0.05 thereafter. Poisson‟s contraction in 

the vertical direction was also considered, using 42.0  as estimated for our 

phantoms in Section 3.7. For each deformation state, the intensity of the 

corresponding speckle field was calculated.  

4. Finally, the normalized cross correlation as defined in equation (3.1) was evaluated 

between the first speckle field for 0xx  and all others in the sequence.   

Figure 3.9 shows that NCC drops to ~0.987 for %1xx  and to ~0.961 for %2xx . This 

latter strain corresponds to a total maximum through-thickness relative displacement of the 

scatterers in the PSF of ~70nm. This is equivalent to ~1/6th of the fringe period inside the PSF 

and is inversely proportional to the Poisson‟s ratio.  NCC drops to ~0.9 for xx ~ 4%, which 

corresponds to yy ~1.7% using 42.0 . This strain level is probably a good estimate to the 

maximum strain that we can measure with OCT and DVC without using an incremental 

approach. Above this level, the correlation coefficient is too low to guarantee a good estimate 

of displacements. When the changes in the magnitude of the interference of light scattered by 

particles within the PSF are large, the speckle is said to „boil‟, i.e. its structure changes while 

only the average speckle size is preserved. Even though these results correspond to a 2D case 

(B-scan), a 3D simulation is expected to render similar results to those reported here. Zaitsev 

et al [93] have found similar results performing a numerical simulation and evaluating the 
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zero mean normalized cross correlation coefficient (ZMNCC) as a function of strain. They 

report that speckle boiling fully decorrelates the speckle for axial strain levels of ~1.5%, 

which compares well with our figure of ~1.7% mentioned above. 

 

Fig 3.9: Normalized cross correlation of a speckle field in a simulated B-scan as a function of 

longitudinal strain xx . 

3.6 DVC results for tensile tests 

3.6.1 Correlation coefficient maps  

The 3D deformation field was measured under tension after performing DVC on the OCT 

reconstructed volume data for the rectangular and notched phantom strips. As DVC was 

performed using the sub-volume size of 363-voxel and 50% overlap, the reconstructed 

volume of interest thus contained 501855   measurement points, corresponding to 

dimensions of 104.15.10   mm3. The reliability of the deformation measurements was 

assessed in terms of the 3D correlation coefficient maps, shown in Figs. 3.10 (a) and (b) for 

the rectangular and notched phantom strips, respectively. In order to see the correlation 

coefficients within the specimens, sub-volumes of the whole fields are represented here 

obtained by cutting the volumes in the xy plane at z-slice 25. For both specimens, it can be 

observed that the correlation coefficient is larger in regions at the top of the samples and 

smaller in regions at the bottom (along y-direction). For y-slice 18 at the top of the 
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rectangular specimen, the mean value of the correlation coefficient is 0.95, while it is 0.92 for 

y-slice 1 at the bottom. Similar results were obtained for the notched specimen: 0.95 and 0.84, 

respectively. This decrease in correlation coefficient through the thickness can be attributed 

to a depth-dependent speckle contrast reduction as a result of signal attenuation due to light 

scattering, defocusing and spectral roll-off. In our experiments, the maximum 
xx  was ~1.4% 

(see results for „load step 2‟ in Section 3.6.2) and therefore speckle boiling was not an issue.  

The correlation coefficient is considered as satisfactory.  

 

Fig 3.10: 3D views of the correlation coefficient maps for: (a) Rectangular phantom strip and 

(b) Notched phantom strip, cut at the position 25z , load step 1. 

3.6.2 Results for the rectangular phantom strip 

xu  displacement maps for the rectangular phantom strip, which denote the displacement 

along the tension direction, are shown in Fig 3.11. Changes of xu  in cross sections cut at 

different z-slices can be seen along the x-axis. It can be observed that the absolute value of 

xu  increases continuously along the x-direction from the fixed side to the other, ranging from 

0 to 0.07 mm, as expected from the loading configuration. When plotting the mean value of 

xu  in each cross section yz along the x direction in Fig 3.12(a), one can see that generally the 

mean value evolves linearly along the x-direction. Nevertheless a sinusoidal oscillation is 

apparent when the difference between the actual values and a linear fit is plotted as a function 
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of x in Fig. 3.12(b). An analysis of these displacement oscillations is provided below in this 

Section. 

 

Fig 3.11: xu displacement distribution obtained for a rectangular phantom strip under tension 

(load step 1), showing different sub-regions of the data volume. 

The strain maps were derived using the same procedure as for the noise analysis (centred 

finite difference of the displacement data, without any smoothing). All six strain components 

for central z-slice 25 and central y-slice 10 are shown in Figs. 3.13 and 3.14, respectively. As 

expected from the loading configuration, the xx  strain maps for both z- and y- slices show 

positive values around 0.007. Strain maps yy  and zz  show negative values indicating a 

Poisson‟s contraction along the corresponding directions. It is interesting to note that zz  is 

very small (close to zero) at the right-hand side, where the grip prevents Poisson‟s contraction 

in the z- direction. Regarding yy , it is not zero at the right-hand side because the constraint 

from the grip acts only at the surface. The reason why yy  is actually larger in magnitude 

may be from some material non- linearity due to the compression in the grip. Figure 3.15 

shows that the measured strain components are significantly larger than the corresponding 

strain noise obtained for the stationary test. Since this is a pure tensile test for the rectangular 

strip, all the shear strain components should be close to noise level, as confirmed in Figs 3.13 

and 3.14. Some irregularities, however, can be seen from these strain maps. In the xx  strain 

component, apparent fringes can be observed in Fig 3.13 and Fig 3.14, which is expected 

from the oscillation in the xu  displacement. The fringes observed in the xx  strain component 
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in Figs 3.13 and 3.14 could be due to either: 1) a spatial variation of the elastic modulus, or 2) 

interpolation bias [117].  

 

Fig 3.12: (a) xu  displacement averaged within yz-cross sections along the x-direction and a 

linear data fit obtained for a rectangular phantom strip under tension (load step 1); (b) 

Difference between the averaged xu  and the linear fit shown in (a). 
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Fig 3.13: Spatial distribution of the strain components obtained for a rectangular phantom 

strip under tension (load step 1). The central z-slice 25 is shown. 

To analyse the sinusoidal oscillation in the displacement and strain results, the study of 

interpolation bias in digital image correlation from reference [117] by Sutton et al is cited 

here. In the reference, 20 images were produced by the authors, corresponding to sub-pixel 

shift increments of 0.05 pixel between images. The displacement of each image with respect 

to the original image was determined using DIC that implements different interpolation filters. 

The plot of interpolation bias is cited here in Fig 3.16. It can be seen that the general shapes 

of the errors are the same for all interpolation filters, which are sinusoidal, only the 

magnitudes of the errors being different. In the present study, it is apparent that the sinusoidal 

oscillation in Fig 3.12 for the rectangular phantom strip is consistent with the results stated in 

reference [117], indicating that it is the result of interpolation bias. In the case of the FFT 

based DIC algorithm used here, the period of the oscillation due to interpolation bias has been 

proved to correspond to a displacement equivalent to 2 voxels [107, 120, 121]. This is 

consistent with 2.5 fringes observed in Fig 3.12(b) for a total deformation corresponding to 

5 voxels. 
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Fig 3.14: Spatial distribution of the strain components obtained for a rectangular phantom 

strip under tension (load step 1). The central y-slice 10 is shown. 
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Fig 3.15: Normal strain components obtained at z-slice 25 for a rectangular phantom strip 

under tension (load step 1) and the corresponding strain noise obtained in the stationary test. 

A bias in displacement directly leads to bias in strain, proportional to the slope of the 

displacement bias. For OCT reconstructions with fine speckle patterns e.g. for the present 

phantom strips, the displacement values obtained when comparing sub-volumes between 

reference and deformed states are likely to suffer from larger interpolation bias due to under-

sampling of the speckle patterns which is further amplified when strain is calculated. It has 

been shown that the correlation results for the under-sampled images typically show up as a 

moiré-like fringe pattern in the displacement and strain fields and that it is more obvious in 

the latter. 

 In order to bring more evidence to the above discussions, a second load step was 

performed on the same rectangular phantom strip with an extra 10 g dead weight (we refer to 

this case as „load step 2‟). The idea is to see the strain maps after the tension load is doubled. 

Ideally, when the load is doubled, the deformation should also be doubled assuming the 

material is elastic. Therefore, the number of fringes for xx  as shown in Figs 3.13 and 3.14 

are expected to double according to the above discussion. This is confirmed by the xx  strain 

maps in Fig 3.17, in which (a) central z-slice 25 and (b) central y-slice 10 are illustrated. 

Around 5 fringes can be observed confirming that these are due to interpolation bias in this 
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elastic material. It should also be pointed out that there are fewer fringes in the strain map of 

the other lateral strain component 
zz  in Fig 3.14, showing about 1.5 fringes. The reason why 

there are more fringes in 
xx  is because it is the tension direction (larger deformation in x-

direction). As stated in the text, 2 voxels deformation corresponds to 1 bias fringe. Since the 

deformation along z is smaller than in x, it is not surprising that fewer fringes are observed. It 

has been found that after the tension load was doubled, the number of fringes in both 
xx  and 

zz  was doubled. 

 One way to reduce interpolation bias is to perform pre-smoothing (before the correlation) 

on both the reference and deformed volume data using a Gaussian low-pass filter to reduce 

high spatial frequency components [122, 123]. Another way is to increase the sampling 

density of the OCT reconstruction. These will be further discussed in Section 3.7.  

 

Fig 3.16: Interpolation bias as a function of sub-pixel position for different interpolation 

filters (Reproduced from reference [117], Sutton et al). 
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Fig 3.17: Spatial distribution of the normal strain xx obtained for a rectangular phantom strip 

under tension (load step 2): (a) central z-slice 25 and (b) central y-slice 10. 

3.6.3 Results for the notched phantom strip 

xu  displacement maps for the notched phantom strip are shown in Fig 3.18. The left hand 

side shows the internal xu  displacement in a cross section cut at the central z position (z-slice 

25), while the right had side shows the whole volume. It can be seen that in each z-slice the 

absolute value of  xu  increases continuously along the x-direction from the fixed side to the 

other, as expected from the loading configuration and consistent with the displacement maps 

for the rectangular phantom strip as shown in Fig 3.11. In Fig 3.18, a slight bending of the 

strip can be observed from the larger xu  displacement values at the top half of the strip 

compared to those at the bottom half. This is probably due to the slight geometrical 
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asymmetry between the two notches. The geometrical asymmetry was induced during the 

manufacturing process when cutting the strip to a notched shape from a larger piece.  

 

 

Fig 3.18: xu displacement distribution obtained for a notched phantom strip under tension 

(load step 1), showing different sub-regions of the data volume. 

For the notched phantom strip, all six strain components for a central z-slice (slice z=25) and 

a central y-slice (slice 10y ) are shown in Figs 3.19 and 3.20, respectively. The xx  strain 

map shows positive values while the yy  and zz  strain maps show negative (compressive) 

values. The analysis is the same as for the strain results of the rectangular phantom strip. Due 

to the notched shape of the strip, larger deformation is expected in the notched region. This 

can be observed in the maps of normal strain components in Figs 3.19 and 3.20. In addition, 

strain concentration is observed near the top notch tip of the strip in Figs 3.20. This is 

consistent with the larger xu  displacement found near the top notch in Fig 3.18. The 

explanation for this local strain concentration is the geometrical asymmetry of the notched 

strip, which has already been stated earlier. In Fig 3.20, the xz  strain map shows an anti-

symmetric shear strain distribution. Regarding the other two shear strain components, they 

are close to zero. These results are consistent for this type of test. It should be pointed out 
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however that these results also suffer from large interpolation bias, especially evident in 
xx . 

Although the fringes are not as visible in Fig 3.20 compared with Fig 3.14, about 3 fringes 

still can be observed in the 
xx strain map. The reason why these fringes are not so regular is 

because of the relatively more complex stress state (with more spatial variation) in the 

notched phantom compared with the rectangular phantom under uniaxial tension. 

 

Fig 3.19: Spatial distribution of the strain components obtained for a notched phantom strip 

under tension (load step 1). The central z-slice 25 is shown. 
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Fig 3.20: Spatial distribution of the strain components obtained for a notched phantom strip 

under tension (load step 1). The central y-slice 10 is shown. 
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3.7 Reduction of interpolation bias 

3.7.1 Bias reduction using Gaussian pre-smoothing 

Pre-smoothing of the grey level images before performing DIC using e.g. a Gaussian filter 

has proved effective in reducing interpolation bias [122, 123]. This is because Gaussian pre-

smoothing can blur an image and reduce high-frequency components, which improves the 

image sampling and thus reduces the interpolation bias due to image under-sampling. A 3D 

Gaussian low-pass filter is expressed as  
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where 1x , 2x , 3x  are the distances from the origin in the 3 directions, respectively.   is the 

standard deviation of the Gaussian distribution. Gaussian smoothing is achieved by using the 

3D distribution in Eqn. (3.4) as PSF and convolving it with the original OCT data cube. As 

the data cube is stored as a set of discrete voxels, a discrete approximation of the Gaussian 

distribution function is required. Since the Gaussian distribution is non-zero everywhere, it 

would require an infinitely large convolution kernel. However, in practice it is considered 

effectively zero for pixels at a distance more than about three standard deviations. Therefore, 

the kernel can be truncated at this point, and contributions from pixels outside that range can 

be ignored. Once a suitable kernel has been selected, the Gaussian smoothing can be 

performed using standard convolution methods. Gaussian smoothing outputs a new value for 

each pixel using a weighted average of that pixel‟s neighbourhood. The value of the original 

pixel receives the heaviest weight and values of the neighbouring pixels receive smaller 

weights as their distance to the original pixel increases.  

 To determine a proper Gaussian filter that can reduce the interpolation bias due to image 

under-sampling, 4 Gaussian filters were selected with the kernel size increasing successively. 

The four Gaussian filters are defined as: 65.0  with kernel size 333  , 0.1  with 

kernel size 555  , 5.1  with kernel size 777   and 0.2  with kernel size 999  , 

respectively. These filters were applied to the reconstructed volume data for both the 

reference and deformed states prior to correlation. Figure 3.21 shows a transverse z-slice of 

the rectangular phantom strip in the reference state before and after pre-smoothing. It can be 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/convolve.htm
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observed that the image is apparently blurred for the Gaussian filter with 0.2  and kernel 

size 999   and also the larger filter. High-frequency details are attenuated.  

 

Fig 3.21: 2D views of a transverse z-slice of the reference state of the rectangular phantom 

strip before and after Gaussian pre-smoothing. 

The smoothed data volume was then used to perform DVC. The resulting xx  strain maps 

with and without pre-smoothing are shown in Fig 3.22 for a transverse z-slice. One can see 

that the fringes become less evident as the Gaussian filter becomes larger. However, this also 

leads to an increase in the strain standard deviation, as can be seen from the  xx  strain map 

with the 999   Gaussian filter. The reason for this increase has been explained  by Pan in 

[123], which states that the sum of squares of subset intensity gradient (SSSIG) is reduced 
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after smoothing, and the standard deviation error is inversely proportional to the SSSIG value. 

In this case, the Gaussian filter with 5.1  and kernel size 777   was kept for this study.  

 

Fig 3.22: xx  strain maps with and without pre-smoothing for a transverse z-slice. 

The difference between the measured and the fitted mean xu  displacement of each yz-cross 

section as a function of x-position with and without pre-smoothing are compared in Fig 3.23 

for the rectangular phantom strip. The difference is substantially reduced after pre-smoothing, 

which is expected according to [122, 123]. Gaussian smoothing was also applied to the 

volume data of the stationary and rigid body translation tests in order to check its influence in 

the strain resolution. The results show an increase in the strain standard deviations with pre-

smoothing, generally ranging from 4104   to 4108  , as shown in Figs 3.24 (a) and (b) for 

the stationary and rigid body translation tests, respectively. The reason for this increase has 

been explained earlier for the xx  strain maps for the different Gaussian filters in Fig 3.22. In 

any case, these noise levels may still be considered as acceptable compared with the strain 

levels of the tensile tests (about one order of magnitude larger). Fig 3.25 shows the central y-

slice 10 for the xx  strain maps with and without pre-smoothing for the rectangular and 
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notched phantom strips. The fringes due to interpolation bias are eliminated after pre-

smoothing. 

 

Fig 3.23: Difference between the xu  displacement averaged within yz-cross sections along 

the x-direction and a linear data fit obtained for a rectangular phantom strip under tension 

(load step 1), with and without pre-smoothing. 
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Fig 3.24: Strain standard deviations obtained with 363 voxels sub-volume, 50% overlap and 

Gaussian pre-smoothing for: (a) Stationary test and (b) Rigid body translation test. 
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Fig 3.25: Spatial distributions of the normal strain xx obtained at central y-slice 10 for 

phantom strips under tension (load step 1): (a) Rectangular, without pre-smoothing (b) 

Rectangular, with pre-smoothing, (c) Notched, without pre-smoothing, (d) Notched, with pre-

smoothing. 

3.7.2 Bias reduction by increasing sampling density 

It was stated in section 3.6.2 that for the samples studied in this work, the reconstructed OCT 

images are under-sampled due to the fine speckle patterns. In this section, two tensile tests 

were performed on two rectangular silicone rubber phantom strips of different dimensions. 

Larger copper particles with an average particle size of about 10 µm, about 10 times larger 

than the fine particles stated in section 3.2, were used with the hope that this would increase 

the OCT signal. This choice, however, is not recommended as the speckle field could turn too 

sparse as the particles are close to the resolving power of the OCT system (a situation 



94 
 

common in particle image velocimetry) with a loss of spatial resolution in the displacement 

fields. Another drawback of using large scattering particles is that they can increase 

wavefront distortion of the imaging beam, which compromises image quality as stated by 

Wang et al [124]. The average speckle size corresponds to the 3D PSF of the SS-OCT system, 

which is 8.3 µm (axial) × 25 µm (transverse) and is a function of the source central 

wavelength and the effective NA of the OCT objective.  

In the first test, a 104.160   mm3 rectangular phantom strip ( widththicknesslength  ) as 

the one in section 3.2 was tested. A 11311   mm3 region was scanned, corresponding to x, y 

and z directions, respectively. A 3D data volume of 10245121024   voxels was obtained.  

In the second test, a narrower strip 54.160   mm3 ( widththicknesslength  ) was tested. 

The scanned region for this second strip was 5.55.25.5   mm3
, corresponding to x, y and z 

directions, respectively. The corresponding voxel dimensions of this scanned region remained 

the same at 10245121024   voxels. For both tests, the same loading configuration as „load 

step 1‟ was applied (50 g dead weight preload plus 10 g dead weight load). Thus, in the first 

test the lateral image voxel size remained unchanged (10.7 µm) as in the tests described in 

section 3.3, only the average particle size becoming larger. In the second test, the lateral 

voxel size was reduced to 5.35 µm as the sampling density was doubled.  

Fig 3.26 (a) shows the 2D view of a transverse z-slice in the 104.160   mm3 phantom strip 

while Fig 3.26 (b) shows the 54.160   mm3 strip. It can be observed that the speckle grains 

appear larger for the second strip in Fig. 3.26(b) as twice as many lateral scans are used to 

sample them in that direction. Note that the same number of voxels is used in both cases in all 

directions. 
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Fig 3.26: 2D views of a transverse z-slice of the rectangular phantom strips seeded with 

10m copper particles: (a) 104.160   mm3 rectangular phantom strip, 11311   mm3  

region of interest and (b) 54.160   mm3 rectangular phantom strip, 5.55.25.5   mm3 

region of interest. Data cubes in both cases contain 10245121024   voxels. 

The spatial distribution of the displacement component xu  and the lateral strain components  

xx  and zz  obtained for the 104.160   mm3 phantom strip are shown in Fig 3.27 for the 

central y-slice 10. From the xx  strain map, one can see about 2.5 fringes, which correspond 

to about 5 voxels total xu  deformation.  Similarly, fringes can also be observed from the  zz  

strain map. As compared with the results in section 3.6.2, increasing the size of the seeded 

particles does not reduce the interpolation bias, as expected. 
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Fig 3.27: Spatial distribution of the displacement component xu  and the lateral strain 

components xx  and zz  obtained for the 104.160   mm3 rectangular phantom strip seeded 

with 10m copper particles under tension (load step 1). Dimensions of the scanned region are 

11311   mm3 corresponding to 10245121024   voxels. The central y-slice 10 is shown.  

In Fig 3.28, the spatial distribution of the displacement component xu  and the lateral strain 

components  xx  and zz  obtained for the 54.160   mm3 phantom strip are shown for the 

central y-slice 10. As the total xu  deformation is about 12 voxels, similar to the strain 

distribution shown in Fig 3.17, the xx  strain map here should also show about 6 fringes if 

the reconstructed images were aliased. However, in Fig 3.28 one can see that there are not 

apparent fringes in the xx  strain map nor in the zz  strain map. Besides, as can be seen in 

Fig 3.26 (b) the speckle size increases substantially in terms of voxels. The interpolation bias 
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is thus substantially reduced by doubling the lateral sampling density of the OCT 

reconstructions.  

 

Fig 3.28: Spatial distribution of the displacement component xu  and the lateral strain 

components xx  and zz  obtained for the 54.160   mm3 rectangular phantom strip seeded 

with 10m copper particles under tension (load step 1). Dimensions of the scanned region are 

5.55.25.5   mm3 corresponding to 10245121024   voxels. The central y-slice 10 is 

shown. 

Therefore, to conclude this section, the interpolation bias due to image under-sampling can be 

reduced either by performing pre-smoothing (e.g. Gaussian smoothing) to the grey level data 

volumes prior to the volume correlation or by increasing the sampling density of the OCT 

reconstructions, even though this latter approach leads to a reduced field of view on the 

specimen. 
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3.8 Identification of elasticity for phantom specimens 

The objective of this section is to evaluate the availability of utilizing the strain 

measurements from section 3.6 (for the rectangular and notched phantom strips) to identify 

the elasticity of the silicone rubber phantoms. Isotropic elasticity was chosen here as the 

material constitutive model, and Young‟s modulus E  and Poisson‟s ratio   are the sought 

quantities. Since the two specimens were manufactured using the same material, the 

identification results for all these tensile tests are expected to be consistent with each other. 

Efforts are also made to identify the shear modulus G  and bulk modulus K  from the strain 

results of the rectangular phantom strip tensile test. For all the simple tension configurations, 

3D manually defined virtual fields were selected for the identification.  

3.8.1 Identification of Young’s modulus E  and Poisson’s ratio   

3.8.1.1 Selection of 3D manually defined virtual fields 

According to section 2.2, two different virtual fields are required to retrieve the Young‟s 

modulus E  and Poisson‟s ratio   for isotropic elasticity. The first virtual displacement fields 

and the corresponding virtual strain fields are: 
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For the second virtual field:  
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where L is the length (dimension along the x-direction) of the phantom strips.  
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 After introducing the above two virtual fields (3.5) and (3.6) into the equilibrium 

equation (2.10), a linear equation system (3.7) can be formed to directly determine the sought 

stiffness components xxQ  and xyQ . 

 BAQ   (3.7) 
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where F  is the tension load at the position 0x , and L  represents the virtua l  

displacement at the same position calculated from equation (3.5) for the first virtual field. 

FL  represents the external virtual work done by the tension load.  

 Finally, similar to the discussion in section 2.3.2, the linear equation system (3.7) can be 

written as: 
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  (3.8) 

3.8.1.2 Identification results 

Using the experimental strain results in the linear equation system (3.8), the material stiffness 

components xxQ  and xyQ  can then be directly determined for the two tensile tests. The 

identification results with and without pre-smoothing are listed in Tables 3.1 and 3.2, 

respectively. From these results Young‟s modulus E and Poisson‟s ratio   can be calculated 

through the relations stated in equation (2.9). In order to provide a reference for the stiffness 

parameters obtained through the VFM, Young‟s modulus and Poisson‟s ratio were also 

calculated for the rectangular strip based on the assumption of constant uniaxial stress 

through the relation: 
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where uniform stress 
x  in the yz cross-section of the rectangular phantom strip was 

determined through the equation 
A

F
x  . F is the tension load and A is the yz cross-sectional 

area. 
x  and y  are the average values of the corresponding strain components over the 

whole field of view. Thus, both Young‟s modulus and Poisson‟s ratio can be derived and the 

results are listed in Tables 3.1 and 3.2. In both tensile tests the results obtained from the VFM 

are consistent with each other and also with those calculated from the constant uniaxial stress 

assumption. They are also consistent with the Young‟s modulus 1.47 MPa measured with a 

tensile testing machine for the rectangular phantom strip. This indicates that the 3D VFM is 

an effective tool to identify the constitutive parameters of materials with non-uniform 

stress/strain states when the constant uniaxial stress assumption is no longer applicable. 

Moreover, the identification results with pre-smoothing are in agreement with those without 

pre-smoothing when comparing Table 3.1 to Table 3.2.  

Table 3.1: Identified material elastic stiffness parameters without pre-smoothing. 

 xxQ  (MPa) xyQ  (MPa) E (MPa)   

VFM 

(rectangular, load step 1) 
3.45 2.44 1.44 0.41 

VFM 

(rectangular, load step 2) 
3.48 2.44 1.47 0.41 

Constant Stress 

(rectangular, load step 1) 
3.65 2.64 1.43 0.42 

VFM (Notched, load step 1) 3.24 2.18 1.49 0.40 
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Table 3.2: Identified material elastic stiffness parameters with pre-smoothing. 

 xxQ  (MPa) xyQ  (MPa) E (MPa)   

VFM 

(rectangular, load step 1) 
3.39 2.40 1.40 0.41 

VFM 

(rectangular, load step 2) 
3.26 2.23 1.45 0.41 

Constant Stress 

(rectangular, load step 1) 
3.55 2.57 1.39 0.42 

VFM (Notched, load step 1) 3.18 2.09 1.51 0.40 

 

3.8.2 Identification of shear modulus G  and bulk modulus K  

3.8.2.1 Equations 

In some cases, it might be inconvenient to identify the stiffness components ijQ  when the 

Poisson‟s ratio of materials is very close to 0.5. As can be seen from the equation (2.9), ijQ  

will become very large when   is very close to 0.5. In this case, a small error in   will lead 

to a large error in ijQ . Bulk modulus K  and shear modulus G  are other constitutive 

parameters for measuring the stiffness of materials. Bulk modulus K  measures the material‟s 

resistance to uniform compression, while Shear modulus G  measures the material‟s 

resistance to shear deformation. Instead of identifying ijQ , K  and G  offer another option for 

measuring the material properties when   is very close to 0.5. 

For linear elasticity, the general form of Hook‟s law can be written as  

     







 IεεIεσ TrGKTr

3

1
2  (3.10) 

where Tr  is the trace operator and   332211  εTr . I  is the identity matrix. The stress 

and strain components are related by K  and G  as 
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After introducing equation (3.11) into equilibrium equation (2.2), the equilibrium equation 

(2.2) becomes 
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  (3.12) 

For homogeneous materials, the equation above becomes 
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Two virtual fields are needed to identify the bulk modulus K  and shear modulus G . Thus, 

similar to the identification for ijQ , a linear equation system can be formed, which is written 

 BAM   (3.14) 

with 
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After introducing the same two virtual fields (3.5) and (3.6) into the linear equation system 

(3.14) and substituting the integrals using discrete sums, a linear equation system to identify 

K  and G  can be formed, which is written 
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  (3.15) 

3.8.2.2 Identification results 

It should be pointed out that it is impossible to reliably extract K  and G from the strain data 

of the rectangular phantom strip tensile test because there is no shear deformation in this test 

configuration. Therefore, only the strain data of the notched phantom strip tensile test (load 

step 1) was used here for identification. After solving the linear equation system (3.15) in 

Matlab®, K  and G  were determined as: MPaK 56.2 , and MPaG 53.0 .  

 In order to provide a reference for the above identification results, K  and G  were also 

calculated from the Young‟s modulus E  and Poisson‟s ratio   identified for the notched 

phantom strip (load step 1) using VFM as listed in Table 3.1. K  and G  are related to E  and 

  through  
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The results from the above equations are MPaK 54.2 , and MPaG 53.0 , which are 

highly consistent with the results calculated from equation (3.15). 

3.9 Conclusions 

We have shown that DVC can provide, by means of OCT data, multicomponent displacement 

fields from which all the strain components required by inversion methods such as the 3D 

VFM can be evaluated. OCT+DVC has low displacement sensitivity compared to phase-

sensitive OCT elastography, and seems appropriate for strain as large as ~2% (in the axial 

direction) above which an incremental approach should be used to avoid speckle 

decorrelation. A strain uncertainty in the order of ~210-4 to ~3.510-4 was observed by 

performing noise analysis. Strain below this uncertainty level would require an alternative 

approach such as phase-sensitive OCT, capable of detecting sub-wavelength displacements 

with low noise. In the cases studied in this work, one fringe across a 10 mm field of view 

would correspond to a relative axial displacement equal to 0.45 µm and an average strain of 

4.510-5, an order of magnitude better than the uncertainty we report for OCT+DVC. Even 

though most phase-sensitive OCT elastography systems have so far focused on phase 

measurements with only axial sensitivity, a new system with sensitivity to all displacement 

components has been recently developed by Chakraborty and Pablo based on a wavelength 

scanning OCT system using multiple illumination directions and a single observation 

direction [89]. In the present study, strain was evaluated with a centred finite difference 

operator applied to the displacement field. No displacement smoothing was used before strain 

calculation in order to achieve maximal spatial resolution with a view to further studies on 

thin biological tissues such as the vertebrate eye cornea. In cases where strain accuracy is 

paramount, a weighted- least squares strain estimator would be more appropriate as studied by 

Kennedy et al  [125].  

 The spurious fringes observed in the strain maps were analysed, and interpolation bias in 

the DVC algorithm was found to be the reason. Two approaches were verified to be feasible 

to reduce the interpolation bias due to image under-sampling. For the first approach, pre-
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smoothing using a Gaussian low-pass filter was performed on the volume data prior to 

correlation. The results confirmed that pre-smoothing is effective in reducing interpolation 

bias although it causes slight increase in strain standard deviations (noise increases to a level 

between ~410-4 and ~810-4 after pre-smoothing). For the second approach, no apparent 

spurious fringes were observed in the strain maps when the sampling density of the SS-OCT 

was doubled, even though the field of view was halved. 

 Uniform and non-uniform 3D strain fields measured with OCT+DVC were used to 

identify the elastic stiffness components ijQ  of rectangular and notched silicone rubber 

phantoms using the VFM with 3D manually defined virtual fields. In order to test the 

proposed identification methodology, simple uniaxial tensile tests and isotropic materials 

were used. The material moduli (Young‟s modulus E  and Poisson‟s ratio  ) extracted from 

this approach are consistent with those calculated from the constant uniaxial stress approach 

and the results obtained with a micro tensile machine. Another 3D VFM was also developed 

to identify the bulk modulus K  and shear modulus G  by utilizing the strain data obtained 

from the notched phantom strip tensile test. This offers another option for measuring the 

material stiffness when   is very close to 0.5.   

 The proposed methodology can be applied to study the depth-resolved 3D deformation 

behaviour of soft biological tissues such as cornea under more complex loading conditions. 

This will be presented in the following chapter.  
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CHAPTER 4  

 DEPTH-RESOLVED FULL-FIELD MEASUREMENT OF 

CORNEAL DEFORMATION  

4.1  Introduction 

So far, most of the research work that has been done towards identification of corneal 

mechanical properties from full- field measurements was based on surface deformation 

measurements in corneal inflation tests using stereoscopic camera systems and DIC [32]. 

However, depth-resolved 3D deformation fields have not been undertaken yet, which is 

essential to better understand the local response of the cornea through its thickness.  

 In this chapter, DVC was carried out on a series of volume data obtained with the SS-

OCT system described in section 3.3. Silicone rubber phantoms as well as porcine corneal 

trephinates were loaded under inflation in a pressure controlled chamber. The effect of noise 

and OCT reconstruction uncertainties and the performance of volume correlation were first 

evaluated in a similar way as described in Chapter 3 for flat samples using static a nd rigid 

body translation tests. The 3D displacement fields obtained due to a change in intraocular 

pressure were then evaluated by applying DVC directly to the OCT data volume. This, 

however, does not lead to correct results due to the fact that the microstructure reconstructed 

under the sample surface is distorted due to the refraction of light at the air/sample interface. 

This Chapter thus illustrates the consequences of ignoring this critical fact and sets the scene 

for Chapter 5, in which the refraction induced distortion is accounted for and eliminated, thus 

getting rid of spurious strains. 

4.2 Sample preparation for inflation tests 

Porcine corneas were used in this study instead of human corneas to avoid wasting corneas 

from donor banks until the methodology is fully developed and tested. A fresh ocular globe 

was collected from the local abattoir within 6 hours after slaughter and the corneas were 

tested within 12 hours post-mortem. The ocular globes were stored in a refrigerator below 4℃ 
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to prevent tissue degeneration. It was then brought to room temperature half an hour before 

testing to ensure thermal equilibrium with the environment. A corneal trephinate (circular 

cut-off that includes the cornea and a 2mm sclera ring, shown in Fig 4.1 from different views), 

was excised from the corneal globe using a pair of scissors and a scalpel and stored in saline 

solution 0.9% NaCl. The central corneal thickness was measured using a Direct Computer 

Control (DCC) Coordinate Measuring machine. During the measurement, the coordinates of 

the apex of a corneal shaped support were first recorded when the touch-point sensor made 

contact with it. The corneal trephinate was then mounted on the support with its apex over the 

apex of the support. The coordinates of the corneal apex were recorded and the thickness of 

the cornea determined by evaluating the axial distance between the two measured points. The 

corneal trephinate thickness was 1.53±0.03mm, which includes a slight swelling due to water 

absorption in the sclera. 

 In order to have a stable sample, an artificial corneal phantom was fabricated using 

silicone rubber (MM240-TV A/B). A rubber base and a hardener were mixed to a ratio of 

10:1. Titanium oxide particles were seeded into the silicone rubber mixture to supply the 

speckle contrast. The mixture was then put into a special mould designed to replicate the 

average dimensions of the Arizona eye model [126] and left to cure at room temperature for 

approximately 24 hours. Fig 4.2 shows one of the corneal phantoms that were fabricated in 

this way. Its outer edge spherical diameter and central thickness are 15.6 mm and 0.58 mm, 

respectively. 

 

Fig 4.1: Porcine corneal trephinate from different views. 
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4.3 Experimental set-up and image acquisition 

The experimental set-up is illustrated in Fig 4.3, which contains an inflation configuration 

and the SS-OCT system (Thorlabs OCS1300SS). The samples were mounted and fixed on an 

artificial anterior chamber (AAC) by a locking ring. This chamber has inlet and outlet ports 

for the fluid to adjust the internal pressure and another port connected to the pressure 

transducer. The simulated intraocular pressure was achieved by adjusting a 1 ml micro-

syringe. Both the porcine corneal trephinate and the silicone rubber phantom were first 

inflated to 2 kPa. Under this pressure state the samples maintained a smooth and taut anterior 

surface and served as the reference configuration. They were then inflated to 2.5 kPa, which 

is close to the physical porcine intraocular pressure to study the corneal deformation under 

the pressure change. All the tests were carried out at room temperature.  

 At each pressure state, a 3D volume data cube of the specimen was acquired using the 

SS-OCT system. The dimensions of the reconstructed volumes were 10245121024  voxels, 

corresponding to a 11311   mm3 region of interest. Fig 4.4 shows a quarter of the 

reconstructed corneal volume. Typical central transverse z-slices of the porcine cornea and 

silicone rubber phantom are shown in Fig 4.5 (a) and (b), respectively. Along the lateral 

scanning directions x and z, the voxel size is 10.7 µm. Along the vertical y direction, which is 

the optical path, the voxel size depends on the refractive index of the medium (1.45 for 

phantom and 1.38 for cornea) and is 4.8 µm and 4.5 µm for the phantom and porcine corneal 

trephinate, respectively. 

 

Fig 4.2: Corneal silicone rubber phantom. 
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Fig 4.3: (a) Schematic diagram, and (b) experimental set-up. 

 

 

Fig 4.4: Part of the reconstructed porcine corneal trephinate volume obtained with the SS-

OCT system. 
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Fig 4.5: Central transverse z-slice of the: (a) Porcine corneal trephinate and (b) Silicone 

rubber phantom obtained with the SS-OCT system. 

4.4 Noise analysis 

Considering the relatively small thickness of the porcine cornea and corneal phantom to the 

spatial resolution of the SS-OCT system, 24×24×24-voxel sub-volume with 50% overlap was 

selected to perform DVC. Based on this sub-volume size, a noise analysis equivalent to the 

one described in Chapter 3 for the flat phantom was repeated here, i.e. a stationary test in 

which two reconstructions are compared maintaining a constant pressure and with no 

displacements, and a controlled rigid body translation of 40 µm in the vertical y-direction. 

 The strain standard deviation (a measure of the strain uncertainty) was evaluated for both 

cases and this is shown in Fig 4.6. It can be seen that there is an increase in the strain standard 

deviations compared with those plotted in Fig 3.6 (for stationary test) and Fig 3.7 (for 

translation test) for the 36×36×36-voxel sub-volume size, which is expected on the basis of a 

smaller sub-volume size. The strain standard deviations mostly fall in the range between 
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3×10-4 and 8×10-4. These noise levels are about one order of magnitude below the strain 

levels due to deformation in the inflation tests. 

 

Fig 4.6: Strain standard deviations obtained with 243 voxels sub-volume and 50% overlap for: 

(a) Stationary test and (b) Rigid body translation test. 

4.5 Finite elements modeling of corneal inflation test 

In order to visualize what kind of displacement and strain distributions we should expect 

through the thickness of the cornea under inflation, a simple finite element model was 
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developed using the commercial software package ABAQUS 6.11®. The simulation results 

were aimed at a qualitative comparison with those measured with DVC. According to ref. 

[28], the porcine cornea behaves linearly while the intraocular pressure remains below 4 kPa. 

Therefore, a linear elastic material with Young‟s modulus E=0.3 MPa and Poisson‟s ratio 

ν=0.49 (see ref. [127] by Hamilton and Pye) was chosen for the FE model. A study by 

Anderson et al [28] shows that a model that assumes constant corneal thickness only results 

in a very small average change in predictions compared to the model with actual thickness 

variation. Therefore, in the present work, a constant corneal thickness of 1.53 mm was chosen 

for the sake of simplicity. A hex-dominated first-order reduced- integration element type was 

selected for the FE model. The corneal volume with FE mesh and a cross section are shown 

in Fig 4.7. The peripheral boundary was fixed. Uniform normal pressure was applied to the 

inner surface to simulate the intraocular pressure. The model was inflated from 2 kPa to 2.5 

kPa. The displacement and strain simulation results were then exported to compare them 

against the DVC measurements. 

 

Fig 4.7: FE model of porcine cornea. 



114 
 

4.6 DVC measurements Vs. FE simulations 

4.6.1 Porcine corneal trephinate 

uy displacement maps, which represent the axial displacement, for the z-slices of the volume 

are illustrated in Fig 4.8 from different views. For the sake of legibility, these displacement 

maps are only plotted every five z-slices. In Fig 4.9, ux displacement maps, which represent 

the horizontal displacement along x-direction, for the z-slices are shown. From these maps,  

continuity of the displacement distribution can be observed. One can see clearly how the 

corneal volume deforms in different directions when the pressure increases. More detailed 

analysis for the displacements is given for the central z-slice of the porcine cornea and the FE 

model in Fig 4.10. Due to the limited A-scan depth of the SS-OCT system, the corneal outer 

circumference (region where the cornea meets the sclera) was left outside the field of view, 

leaving only the upper part of the cornea around the apex. The measured displacement maps 

in Fig 4.10(a) thus correspond to the FE counterparts within the rectangle sketched in Fig 

4.10(b). From the DVC results, it can be seen that the horizontal displacement ux is close to 

zero near the central region, and increases symmetrically when it moves to two sides. The 

half positive and half negative displacement distribution is expected from the FE model, 

which is the result of applying a normal inflation pressure. The distribution of the horizontal 

displacement uz is the same as ux due to the rotational symmetry around the y-axis. 

The maximum uy is located near the centre of the endothelium, and uy decreases from the 

endothelium to the epithelium, which is compatible with an compressive state through the 

thickness. Qualitatively, the measured displacement maps are consistent in terms of the 

observed spatial distributions with the displacements predicted by the FE model. 
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Fig 4.8: uy displacement maps measured with DVC for different z-slices of the porcine cornea 

with 243 voxels sub-volume and 50% overlap. 

 

Fig 4.9: ux displacement maps measured with DVC for different z-slices of the porcine cornea 

with 243 voxels sub-volume and 50% overlap. 
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Fig 4.10: (a) Displacement maps measured with DVC for the central z-slice of the porcine 

cornea inflated from 2 to 2.5 kPa with 243 voxels sub-volume and 50% overlap, and (b) 

Simulation results. 

The strain maps were obtained from the centred finite difference of the displacement data and 

are shown in Fig 4.11(a). The measured strains show a good overall agreement in terms of 

spatial distribution with those predicted by the FE model, as shown in Fig 4.11(b). The 

distribution of the normal strain components xx  and yy  indicates a tensile deformation 

along the horizontal x-axis and a compressive deformation along the vertical y-axis which 

dominates the central region. Near the peripheral regions, however, the cornea experiences 

considerable shear strains, as illustrated in the xy strain maps. It indicates that in the 

peripheral regions lying between the central region and the fixed support, the cornea 

primarily experiences shear deformation. The colour bars in Fig 4.11 show maximum 

absolute strains of about 2%, which exceed the strain standard deviation due to noise of about 

0.08% shown in Fig. 4.6. This means that the strain due to the deformation dominates the 

strain noise floor and therefore these distributions are the results of material behaviour rather 

than noise artefacts. Positive strain can be observed on the bottom surface of the cornea in 

yy  strain map, which is not consistent with the FE model. One explanation for this is that 

DVC results near the edge are noisier due to lack of data.   
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Fig 4.11: (a) Strain maps measured with DVC for the central z-slice of the porcine cornea 

inflated from 2 to 2.5 kPa with 243 voxels sub-volume and 50% overlap, and (b) Simulation 

results. 

4.6.2 Silicone rubber phantom  

Human corneas are thinner than porcine corneas with the thickness normally ranging from 

0.5-0.6 mm in the centre and 0.6-0.8 mm at the periphery. A question that comes to mind is 

whether the spatial resolution of the measured displacements and strains would be sufficient 

to capture the spatial variations of the strain field and for the VFM to identify elastic 

parameters through the thickness of the cornea. Fig 4.12 shows the displacement and strain 

measured with DVC in the phantom inflation test, in which the phantom with 0.58 mm 

thickness was inflated from 2 to 2.5 kPa. Qualitatively, the displacement maps of the inflated 

phantom are consistent with those of the porcine cornea when comparing the displacement 

maps in Fig 4.12(a) to Fig 4.10. However, since the phantom is almost 1/3 of the thickness of 

the porcine cornea, it experienced a larger deformation under the same pressure change, 

especially in the y-direction, though the Young‟s modulus of the silicone rubber (~1.5 MPa) 

is large than that of the porcine cornea (~0.3 MPa). From Fig 4.12(a), it can be observed that 

uy reaches a maximum of about 0.12 mm in the central region. Regarding the strain 

distributions in Fig. 4.12(b), agreement is also found between the results for the phantom and 

the porcine cornea. As for the cornea inflation, the central region of the phantom is 
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dominated by horizontal tension and vertical compression deformations while the peripheral 

regions are dominated by shear deformation. It should be pointed out that some abnormality 

of the strain values can be observed on the top and bottom surfaces such as the positive 

values on the top surface in the yy  strain map. This is probably due to the edge effect of 

DVC. Thus, only the values of the internal layers are reliable. This however is the best result 

one can get from the current OCT system for specimens with such small thickness taking into 

account the strain resolution and spatial resolution.   

 

Fig 4.12: (a) Displacement and (b) Strain maps for the central transverse z-slice of the 

silicone rubber phantom inflated from 2 to 2.5 kPa with 243 voxels sub-volume and 50% 

overlap. 

4.7 Limitations 

As highlighted in Fig 4.13, the strain map of yy  shows incorrect results at the bottom left 

and right. This is due to a loss of speckle contrast in those regions (caused by a combination 

of spectral roll-off, transmission of light at the air/specimen interface and material scattering) 

which leads to inadequate values of the correlation coefficient in DVC as can be seen from 

the correlation coefficient map in Fig 4.14. In this correlation coefficient map,  values at the 

peripheral bottom regions are below 0.5 and thus not reliable. Only the central region is 

reliable where the correlation coefficient values are over 0.8. This limitation of the OCT 

system is currently unavoidable. 
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Fig 4.13: Low speckle contrast leads to incorrect displacement and strain values. (a) 

measured yy  strain; (b) The same region in the raw OCT image  

 

Fig 4. 14 Correlation coefficient map for the central transverse z-slice of the porcine cornea 

inflated from 2 to 2.5 kPa with 243 voxels sub-volume and 50% overlap 

Although the experimental results show a good overall agreement with the results from the 

FE model, differences can still be seen between them, especially in the strain maps. Take the 

strain maps of xx  in Fig 4.11 as an example. While the strain distribution in the FE model is 

smooth and continuous, with the maximal tension strain in the inner central region and 

decreasing gradually from centre to periphery, the measured strain is dominated by noise with 

a small background trend that is not clearly observed in the simulated results. Strain noise is 

also apparent in the strain components yy  and xy .  
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 With regards to the FE model, it was developed to assist a qualitative comparison with 

the DVC measurements. The material property was defined as homogeneous and isotropic for 

the sake of simplicity, which, however, is not true in the case of the cornea. The cornea has 

five different layers and a complex composite structure composed of the corneal matrix and 

embedded collagen fibrils, which makes it heterogeneous and anisotropic. Moreover, the 

Young‟s modulus and Poisson‟s ratio used here for the FE model were chosen from the 

literature and represent average values for the porcine corneas. The true modulus of the 

present cornea can be different from these average values and be position dependent, thus 

leading to different FE results. Slightly different strain distributions would be expected from 

a more realistic model, which is beyond the scope of this Thesis.  

 Due to the time limitation of the present project, added complexity to the VFM in an 

inflation test with pressure field, and poorer strain results near the bottom regions due to 

inadequate image quality, constitutive parameters of the porcine cornea have not been 

identified yet. Future work will be aimed at identifying the constitutive parameters once these 

issues are solved. 

 We should not forget that the displacements and strain maps presented in this chapter are 

fundamentally flawed as the OCT reconstructions are not a true (geometrically and 

dimensionally) representation of the corneal structure due to the distortion introduced by 

refraction of the illumination and observation beams.  The study on the refraction induced 

distortion will be provided in next chapter. 

4.8 Conclusions 

In this chapter, a method was developed to measure depth-resolved displacement and strain 

fields inside a porcine corneal trephinate due to changes in the intraocular pressure. DVC was 

performed on the reconstructed OCT data volumes for the silicone rubber phantom and 

porcine cornea samples. Stationary and rigid body translation tests indicate that the strain 

noise in the absence of deformation is up to 0.08% when a 243 voxel sub-volume is used, 

which leads to a good compromise between the strain resolution and spatial resolution. 

Reasonable displacement and strain spatial distributions were obtained for both the phantom 

and the cornea. These results show a good overall qualitative agreement with the results of a 

simple FE model and suggest that better results should be achievable once refraction 

correction is implemented.  
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CHAPTER 5  

CORRECTION OF REFRACTION INDUCED DISTORTION 

IN OCT RECONSTRUCTIONS FOR VOLUME 

DEFORMATION MEASUREMENTS  

5.1  Introduction 

Accurate displacement and strain measurements based on DVC require that the reference and 

deformed data volumes accurately represent the spatial position of all the internal features of 

reconstructed specimen, i.e. that no geometrical distortions should be present. However, OCT 

reconstructions usually suffer from different types of geometric distortions.  

 Refraction induced distortion is one type of these errors. It arises when the sample has a 

curved surface or the sample has a flat surface which does not lie perpendicular to the 

scanning beam. In this case the scanning beam changes its propagation direction at the 

air/sample interface but the OCT system reconstructs the scattered light as if light had 

propagated without such a change. A consequence of this is that internal features appear to be 

in a different position in the OCT reconstruction. Apart from this, as the dimension along the 

propagation direction in an OCT image is optical path rather than physical distance, thus the 

position of features depends on the knowledge of the refractive index of the medium. 

Pioneering work on these issues has been done and solutions provided for the correction of 

2D OCT images based on Fermat‟s principle and Snell‟s law [128, 129].  

 Another type of distortion is caused by the „fan‟ scanning of certain OCT systems [128, 

130, 131], in which a fan of scanning rays cause a flat surface to appear curved in the OCT 

reconstruction, as illustrated in Fig 5.1 [128]. 

 This chapter presents a method to correct the refraction induced distortion in 2D/3D 

OCT reconstructions based on Fermat‟s principle [132]. A more computationally efficient 

way was developed in which a minimization algorithm was only executed on a sub-set of 

voxels. This method was compared to the point-by-point minimization method in which the 

algorithm was executed for every voxel. Controlled tilt tests of a flat and a hemispherical 
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silicone rubber phantom are described, which establish the effect of the refraction induced 

distortion in the strain fields obtained with DVC.  

 

Fig 5.1 Distorted image of a microscope slide when scanned with a fan of rays (Reproduced 

from reference [128], Podoleanu et al). Point O and I are the object and corresponding image 

point, respectively. 1 , 2  are the top and bottom object surfaces, while S1, S2 are the 

corresponding surfaces in the image.  

5.2 Refraction induced distortion in OCT reconstructions 

The SS-OCT system used in this work was designed to eliminate fan distortion, and therefore 

flat surfaces are reconstructed as flat in the OCT data volume. This was done by placing the 

galvo scanners in the back focal plane of the objective lens so that the beam pivots about it 

and leaves the lens always parallel to the optical axis. The scanning beam is therefore 

assumed to be always vertical, which can be confirmed by looking at the reconstructed image 

for the flat silicone rubber phantom in Fig 3.3. Therefore, if still present, the fan distortion is 

considered negligible in this work, and the study of geometric distortions will only focus on 

the refraction induced distortion at the air/sample interface. A further simplification is that we 

will consider a uniform distribution of refractive index within the sample.  

 For a sample with a flat top surface, it is free of the distortion problem if the scanning ray 

is perpendicular to the sample surface. As the scanning ray moves parallel to the optical axis, 

the reconstructed volume data represent the real configuration of the scanned sample. 

However, for a sample with curved surface such as cornea in (Fig 4.5), refraction induced 
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distortion arises. This will cause an error in the actual position of the microstructure features 

inside the cornea. Fig 5.2 illustrates how this distortion arises. In this figure, let us use K to 

represent the plane of zero optical path difference (a datum surface relative to which distance 

is measured). A is an arbitrary incident point on the top surface at which light, travelling 

perpendicular to K, enters the cornea from the OCT scanning ray. AC is the normal to the 

surface at the incident point A. The incident ray OA subtends an angle θ0 to the surface 

normal at A. The refracted ray passes through point B within the corneal tissue (object space), 

subtending angle θ1 to the surface normal at A, following the Snell‟s law: 

 1100 sinsin  nn   (5.1) 

where 0n  and 1n  represent the refractive indices outside and within the cornea (in the air 

10 n , in the cornea 38.11 n ), respectively. The OCT system records this refracted optical 

path in the image as a vertical A-scan line, denoted OI in Fig. 5.2, where point I is the 

corresponding point of the object point B in the reconstructed image space . As the optical 

path difference is equal to the physical distance in the medium multiplied by the refractive 

index, OI in the image space is equal to: 

 ABnOAnOI 10   (5.2) 

 

Fig 5.2: Refraction of the incident beam in an OCT scanning system. During a scan, the beam 

moves parallel to the indicated direction along the x and z axes. 
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It can be seen that a point I in the image space actually corresponds to the point B in the 

object space. Therefore, the reconstructed volume is actually expanded and deformed 

outwards compared to the real configuration of the object. The distorted data volume would 

then introduce errors in the displacement and strain measurements obtained by performing 

DVC on the OCT reconstructions, leading to spurious values that need to be assessed.  

 Refraction correction in OCT images has already been dealt with in the literatures using 

Fermat‟s principle and Snell‟s law [128, 129]. The approach based on Fermat‟s principle, 

even though computationally demanding, does not require any assumptions on the cornea 

surface shape (e.g. approximation to a sphere). This principle states that the path taken 

between two points by a ray of light is the path that can be reached in the least time. Thus, 

point B is reached by a unique ray refracted at point A. Therefore, given B, point A can be 

found using a minimization algorithm of the optical path defined in equation (5.2). Then, the 

corresponding point I in the image space (to point B in object space) can be searched along 

path OA at a distance ABn1  from point A. Once the exact (non-integer) coordinates of point 

I are determined, the light intensity value at this image point is  evaluated through 

interpolation (bilinear in our case), and the value is associated to the coordinates of point B, 

which belong to a Cartesian grid in object space. By applying the same procedure to all other 

object points, the corrected images are obtained.  

 Alternatively, the refraction correction can also be implemented from the image space. In 

this case, the coordinate xA for any A-scan is known from the column location in the image. 

As shown in Fig 5.2, assuming the parametric function of the top interface is known, the 

incident angle θ0 for each scanning ray OA can be determined after calculating the surface 

normal at incident point A, from which the refractive angle θ1 can be determined based on the 

Snell‟s law as defined in equation (5.1). Then, the parametric function of the refractive ray 

AB can be determined. For each image point I, the corresponding object point B in the object 

space can be searched along the path AB at a distance 
1n

AI
 from point A. Once the exact 

(non- integer) coordinates of point B in the object space are determined, the light intensity 

value at the image point I is associated to the coordinates of point B. Since the corresponding 

object points of the image points are at non- integer positions, interpolation is needed to 

determine the light intensity value at the integer positions defined on a Cartesian grid in the 

object space.  
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 Both approaches can be used to correct the refraction induced distortion and both involve 

interpolation: the Fermat‟s approach interpolates the intensity between grid points in the 

image space, which is fast and can be done for instance by the „interp2‟ function in Matlab®; 

the direct approach requires interpolation of scattered data (non-integer coordinates in object 

space) into a regular grid. This can be done using functions like „griddata‟ in Matlab®, which 

fits a surface of the form v = f(x, y) to the scattered data in the vectors (x, y, v). The griddata 

function interpolates the surface at scattered query points and returns the interpolated values, 

the surface always passing through the data points defined by x and y.  

 In the present study, the first approach was implemented, following the steps of previous 

published work. We attempted the second approach to save computation time, but at the time 

we were not aware of interpolation functions such as griddata that would solve the problem 

of given scattered data, interpolate them in a regular grid. It is expected that this second 

approach would save computation time and we have plans to apply it and compare the 

performance of both. 

 It should be pointed out that there can also be internal refraction at the interfaces between 

the different layers of the cornea considering the slight difference in their refractive indices 

e.g. 1.401 and 1.373-1.380 for the human corneal epithelium and stroma, respectively, as 

previously studied by Patel et al [133]. This difference in refractive index between different 

corneal layers is insignificant compared to that between the air and cornea interface (1 and 

1.38). Therefore, for the sake of simplicity, the refractive index of the cornea in the present 

study was assumed to be uniform when performing refraction correction. A detailed approach 

would require solving refraction at each interface, which position and functional form should 

be found in the order in which the illuminating beam propagates through them.  

5.3 Correction of refraction induced distortion in OCT reconstructions 

5.3.1 Refraction correction in 2D 

To perform the correction for the refraction induced distortion, the refractive indices of the 

media and the parametric equation of the interface must be known as a prerequisite. In 

Fig 5.2, the equation of the top interface of the object can be expressed as 

  xfy   (5.3) 
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It should be pointed out that the dc term in  xf  is not critical as refraction only depends on 

the local gradient. The refractive indices within and outside the medium are 
1n  and 0n , 

respectively. For an arbitrary object point B, the coordinates are  BB yx , . For the 

corresponding incident point A, the coordinates can be expressed as   AA xfx , . As stated in 

equation (5.2), the optical path difference (OPD) of a ray is equal to the physical path length 

multiplied by its refractive index. Thus, OPD can be written as 

        2
1

22

10 ABABA xfyxxnxfnOPD   (5.4) 

where  BB yx ,  are known as they are defined in a Cartesian grid in the object space for each 

point. Therefore, the only unknown in equation (5.4) is Ax . In this case, OPD is a function of 

Ax . Replacing Ax  by x , OPD becomes 

          2
1

22

10 xfyxxnxfnxOPD BB   (5.5) 

According to Fermat‟s principle, for a given point B there is only one incident point A that 

can lead to the minimal OPD. Therefore, by minimizing OPD, x  of the incident point can be 

found. Then, the coordinates of point A can be decided. 

 Now the task is to find where in the image space we should look at for this given object 

point B. Let‟s use  '' , II yx  to represent the coordinates of the corresponding image point I. 

Since the OCT system registers the optical path in the image as a vertical A-scan, the 

horizontal coordinate 
'

Ix  of point I is 

 AI xx '
 (5.6) 

The vertical coordinate 
'

Iy  is 

   ABnxfny AI 10

'   (5.7) 

where AB  is 

      2
1

22

ABAB xfyxxAB   (5.8) 
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After determining the coordinates of the image point I, the intensity value at that point will be 

associated with the object point B. As the coordinates of point I can be non- integer values, 

interpolation is needed to determine the intensity value of that point. Here, linear 

interpolation was used. The above method was implemented using MatLab® R2007a. 

5.3.1.1 Example with a simulated fringe pattern 

The first attempt for refraction correction was implemented on an image with a simulated 

fringe pattern. The idea is to see how these fringes look like after refraction correction. As 

illustrated in Fig 5.3(a), a 128128 pixels image was produced. The pattern in the image was 

created by a 2D cosine function. In Fig 5.3(b), a 1-D cosine function was selected to 

represent the parametric function of the interface, which is  

 

















64
cos132128

x
y


 (5.9) 

This cosine function (in pixel units) not only works as the mask for the fringe pattern, but 

also it is required when calculating the OPD. It should be pointed out that in this simulation 

the choice of the parametric function for the interface is somewhat arbitrary as long as it is 

curved.  

 The masked fringe pattern is shown in Fig 5.3(c). Thus, a simulated sample with curved 

interface and speckle contrast was produced. The refractive indices within and outside the 

simulated sample are 1.38 and 1, respectively (selected according to the indices of cornea and 

air). Then, the refraction correction algorithm as introduced previously was implemented on 

this simulated image, and the corrected fringe pattern is shown in Fig 5.3(d). Comparing 

Fig 5.3 (c) and (d), it is clear that after refraction correction the simulated sample becomes 

thinner. This is not surprising as the vertical axis now represents physical distance instead of 

optical path. It is also clear that the horizontal and vertical fringes in Fig 5.3(c) now become 

tilted, indicating how the inner points move to their actual positions after refraction correction.  
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Fig 5.3: Procedure of 2D refraction correction on a simulated fringe pattern 

5.3.1.2 2D refraction correction of an OCT image 

The example of refraction correction on simulated fringe pattern visually shows how the 

correction algorithm works. In this section, the correction method was applied to correct a 

central z-slice of the OCT reconstructed volume of the porcine cornea, which is shown in 

Fig 5.4. 
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Fig 5.4: Central transverse z-slice of the OCT reconstructed volume for porcine cornea  

The first step is to decide the parametric function for the interface of the porcine cornea, as 

already explained in the previous sections. This was implemented by picking points on the 

top interface (using command „Ginput‟ in Matlab) and then fitting a third order polynomial 

function using these selected points. The fitted polynomial function for the top interface is 

shown below and the units are pixels.  

         30360510113605101603605105.1
23

 xxxy  (5.10) 

In practice, it is very useful to mask out all the unwanted points outside the cornea as this can 

reduce the number of data points to be corrected thus reducing calculation time. In this case, a 

third order polynomial function was also fitted for the bottom interface, which is  

         4201504903.1150490431504901.2
23

 xxxy  (5.11) 

The masked cornea image is represented in Fig 5.5(a). The refractive indices within and 

outside the porcine cornea is 1.38 and 1, respectively. Fig 5.5(b) shows the cornea after 

refraction correction.  
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Fig 5.5: Masked OCT images (a) before and (b) after refraction correction 

As expected, the corrected cornea now becomes thinner. The materials displace inwards and 

upwards compared to the uncorrected cornea image. It can be seen that several vertical 

shadow lines within the cornea in Fig 5.5(a) become tilted after the correction. This is 

consistent with the correction results for the fringe pattern. It should be pointed out that this 

correction method has a limitation regarding the calculation time. For this 2D cornea image, 

the calculation time is about 10 hours, which is rather time-consuming due to the fact that the 

used ‟fminsearch‟ (Nelder-Mead simplex direct search algorithm) is not the most efficient 

minimization algorithm and the minimization algorithm needs to be executed for too many 

data points. When dealing with a 3D data volume, the calculation time would be amplified 

thousands of times, making the correction unachievable. In this case, a refraction correction 

method working in a more computationally efficient way becomes necessary. This will be 

discussed in the following section. 
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5.3.1.3 Sub-grid approach 

The reason why the refraction correction is very time-consuming is that the minimization 

algorithm is executed for every point in the object space. For a typical 2D cornea image, the 

image size is 5121024  pixels. For a reconstructed 3D volume, the number will raise to 

10245121024   voxels. Such a large number of data points will make the correction time 

unachievable. Thus, to make the correction method feasible for data volumes, the idea is to 

reduce the number of data points where the minimization algorithm is performed. In this case, 

the image space coordinates are computed not for all the object points but in a subset of them 

arranged in a grid. Here, a grid was defined as  1024:5:1 ,  512:5:1  along x and y 

directions, respectively, for the cornea image.  

First, the minimization algorithm was performed on these grid points to determine their 

coordinates in the image space. Then, the coordinates of intermediate object points in the 

image space were found by interpolating the coordinates of those grid points. Fig 5.6 shows 

the plots of x and y coordinates in the image space for each object point obtained by using the 

above mentioned method.   

After determining the coordinates (non-integer values) of each object point in the image 

space, the intensity value at that coordinates was interpolated (linear interpolation) and 

associated with the corresponding object point. The corrected cornea image then can be 

obtained, which is shown in Fig 5.7. Using this method, the calculation time for a typical 2D 

cornea image ( 5121024  pixels) was significantly reduced from 10 hours to 73 seconds, 

which is about 500 times more efficient. This makes the correction for volume achievable.  
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Fig 5.6: Plots of (a) x and (b) y coordinates in the image space for each object point 

 

Fig 5.7: Corrected cornea image obtained with minimization on grid points  
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One question that comes to mind is whether this approach loses refraction correction 

accuracy as compared with the approach in which minimization is performed for all the 

object points. To bring an answer to that question, the error map between the corrected 

cornea image obtained with point by point minimization (Fig 5.5(b)) and the corrected cornea 

image obtained with minimization on grid points (Fig 5.7) is plotted in Fig 5.8. As can be 

seen, the difference in intensity values between the two images is very small. The mean and 

standard deviation values of the difference were computed, which are 5102.5   and 0.02, 

respectively. Compared with the intensity value of the cornea (mean intensity 32), this 

difference is insignificant.  

 

Fig 5.8: Error map between the corrected cornea image obtained with point by point 

minimization and the corrected cornea image obtained with minimization on grid points  

5.3.2 Refraction correction in 3D 

The approach of performing minimization on grid points has been proved to be effective in 

reducing computation time and maintaining refraction correction accuracy compared with the 

approach in which minimization is executed for all object points. Therefore, in this 

subsection this approach was applied to correct the refraction induced distortion in 3D 

volume reconstructions. 

5.3.2.1 Functions for refraction correction in a data volume 
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The refraction correction for a data volume was implemented with the same procedure 

detailed for a 2D image. The first step is to determine the parametric equation of the top 

interface, which can be expressed as 

  zxfy ,  (5.12) 

For an arbitrary object point B, its coordinates are  BBB zyx ,, . The coordinates of the 

corresponding incident point A can be expressed as   AAAA zzxfx ,,, . Then, the OPD can be 

calculated as 

          2
1

222

10 ,, ABAABABAA zzzxfyxxnzxfnOPD   (5.13) 

where  BBB zyx ,,  are known as they are defined in a 3D Cartesian grid in the object space 

for each object point. Therefore, the unknowns in equation (5.13) are Ax  and Az . In this case, 

OPD becomes a function of Ax  and Az , which writes 

            2
1

222

10 ,,, zzzxfyxxnzxfnzxOPD BBB   (5.14) 

By minimizing OPD, the coordinates   AAAA zzxfx ,,,  of the incident point A can be found 

for a given object point B. Then, let‟s use  ''' ,, III zyx  to represent the coordinates of the 

corresponding image point I. The lateral coordinates '

Ix  and '

Iz  of point I is 

 AI xx '  (5.15a) 

 AI zz '  (5.15b) 

The vertical coordinate '

Iy  is 

   ABnzxfny AAI 10

' ,   (5.16) 

where AB  is 

        2
1

222
, ABAABAB zzzxfyxxAB   (5.17) 
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After determining the coordinates of the image point I, the intensity value at that point can be 

calculated for the object point B using 3D linear interpolation. 

5.3.2.2 Refraction correction of an OCT volume 

To determine the parametric function of the top interface of the porcine cornea, a number of 

points were picked on the top cornea surface using Matlab command „Ginput‟. These points 

were then used to fit a fourth order polynomial function. Fig 5.9 shows the fitted top surface 

of the porcine cornea in the reference state. The fitted polynomial function for the top 

interface is  

4

04

3

13

22

22

3

31

4

40

3

03

2

12

2

21

3

30

2

0211

2

20011000

zpxzpzxpzxp

xpzpxzpzxpxpzpxzpxpzpxppy





  (5.18) 

where the parameters in the function are listed in Table 5.1. 

 

 

Fig 5.9: Plot of the fitted top surface of the porcine cornea using a forth order polynomial. 
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Table 5.1: Parameters of the 4th order polynomial function for the top surface of the porcine 

cornea in the reference state 

P00 P10 P01 P20 P11 P02 P30 P21 

764.9 -1.885 -2.339 0.002667 0.002941 0.003611 
-1.96 

×10-6 

-2.299 

×10-6 

P12 P03 P40 P31 P22 P13 P04  

-3.176 

×10-6 

-2.505 

×10-6 

1.198 

×10-9 

-5.481 

×10-10 

2.895 

×10-9 

1.487 

×10-10 

1.166 

×10-9 
 

For the deformed state, another fourth order polynomial function was also fitted, and its 

parameters are listed in Table 5.2. 

Table 5.2: Parameters of the 4th order polynomial function for the top surface of the porcine 

cornea in the deformed state 

P00 P10 P01 P20 P11 P02 P30 P21 

859.5 -2.346 -2.774 0.0035 0.004237 0.004376 
-2.652 

×10-6 

-3.631 

×10-6 

P12 P03 P40 P31 P22 P13 P04  

-4.358 

×10-6 

-3.171 

×10-6 

1.435 

×10-9 

-1.553 

×10-10 

3.525 

×10-9 

4.676 

×10-10 

1.412 

×10-9 
 

A 3D grid was defined as  1024:5:1 ,  512:5:1 ,  1024:5:1  along the x, y and z directions, 

respectively, for the reconstructed cornea volume in each pressure state. The minimization 

algorithm was then performed on the 3D grid points, as already explained in the previous 

subsection. Following the subsequent procedures, these distorted cornea volume 

reconstructions were corrected. 

5.3.2.3 DVC results from refraction corrected OCT volumes 

As we want to know how the refraction correction affects the deformation measurement, thus, 

the refraction correction was performed on the reconstructed cornea volumes obtained from 

the cornea inflation test introduced in chapter 4. DVC was then performed on the corrected 
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cornea volumes at both load steps to obtain the corrected displacement and strain fields. In 

Fig 5.10, the displacement maps after refraction correction are represented in column (b) and 

compared with the corresponding results before correction in column (a). It can be seen that 

the overall displacement distributions before and after refraction correction are consistent 

with each other although some differences can be observed. Take 
xu  displacement for 

example, it becomes larger after refraction correction with the maximal displacement now 

located closer to the inner interface compared with the 
xu  displacement map before 

correction. Regarding yu , an increase in value is also observed. The strain maps before and 

after refraction correction are compared in Fig 5.11 (a) and (b), respectively. As can be seen, 

apart from the difference in strain values, the strain distribution also becomes more 

concentrated in the central area after refraction correction. This is more consistent with the 

strain results of the FE model shown in Fig 4.11(b). 

 

Fig 5.10: Displacement maps for the central z-slice 25 of the porcine cornea inflated from 2 

to 2.5 kPa: (a) before and (b) after refraction correction. 
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Fig 5.11: Strain maps for the central z-slice 25 of the porcine cornea inflated from 2 to 

2.5 kPa: (a) before and (b) after refraction correction. 

5.4 Validation 

In the previous subsections, the refraction correction methods were introduced in detail. 

Examples were given for the correction of OCT images as well as DVC results obtained with 

the corrected cornea volumes. These results look very promising. However, one question that 

naturally arises is whether this correction method really corrects the OCT reconstructions. 

Does it really improve the DVC deformation measurement? To bring an answer to this 

question, tilt tests using different phantoms were designed in this section. 

5.4.1 Tilt tests 

In the tilt tests, stable silicone rubber phantoms were placed on a rotation stage and rotated 

0.5° in the xy-plane. At each state (reference and rotated state), a 3D volume was 

reconstructed using the SS-OCT system. Then, the reconstructed volumes were brought to 

perform DVC, and strain and rotation maps were obtained. Ideally, there should be no strain 

as this is a pure rigid body rotation. The rotation map should show exact input value, which is 

0.5°. The idea is to check how the computed strain and rotation results differ from the 

reference case. Then, the refraction correction algorithm was applied to the reconstructed 
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volumes and DVC was performed to obtain the corrected strain and rotation results. By doing 

so, one can see whether the strain and rotation results are consistent with the reference values 

after refraction correction. 

5.4.2 Sample preparation 

Two phantoms with different shapes were fabricated using silicone rubber (MM240-TV). 

One is a rectangular flat strip while the other is hemispherical, as illustrated in Fig 5.12. 

Copper particles (with an average particle size of about 1 µm) were seeded into them to 

provide the speckle contrast. The reason for choosing these two different shapes is that by 

doing so, one can study the different distortions induced by a uniform refraction angle (here, 

a tilted flat top surface) and non-uniform refraction angles (hemispherical top surface). Fig 

5.13 (a) and (b) show the central z-slices of the OCT reconstructed volumes of the flat and 

hemispherical phantoms, respectively. The dashed lines in the two OCT images illustrate the 

position of these phantoms after rigid body rotation. It should be pointed out that the quality 

of the OCT images starts to weaken in deeper regions, especially evident in the hemispherical 

phantom, where the correlation coefficient values are smaller than 0.8. Therefore, the strain 

and rotation results in those regions were discarded. 

 

 

Fig 5.12: Photo of the flat and hemispherical silicone rubber phantoms for tilt tests. 
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Fig 5.13: Central z-slices of the OCT reconstructed volumes of: (a) flat and (b) hemispherical 

silicone rubber phantoms. Dashed lines indicate the samples interface after rotation.  

5.4.3 DVC results for tilt tests 

A sub-volume size of 363 voxels was selected to strike a balance between the displacement 

and strain noise as well as the spatial resolution. Each sub-volume had 50% overlap with its 

six adjacent neighbours. The strains and rotations were derived from the centred finite 

difference of the calculated displacement fields as follows, without any additional smoothing.  
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In Fig 5.14, the strain and rotation maps before and after refraction correction are shown for 

xx , yy , xy  and xy  for a central z-slice of the flat phantom strip. The mean and standard 

deviation values of these strain and rotation components are listed in Table 5.3. It can be 

observed from Fig 5.14(a) and Table 5.3 that 
xx  and yy  before refraction correction show 

values that are close to the strain noise level (According to the noise study of OCT coupled 

with DVC in chapter 3, section 3.5, the noise level of different strain components is around 

4104  ) while xy  shows positive values that are larger than the noise level, with a mean 

value of 3103.1  . Regarding rotation, xy  shows values that are smaller than the input value 

0.5°, with a mean value of 0.32°. These results indicate that the refraction induced distortion 

effectively introduces errors to DVC measurements even in the case of flat samples. It mainly 

affects the shear strain components. After refraction correction, as shown in Fig 5.14(b), one 

can see that values of xy  drop to the strain noise level. Regarding the rotation, values of xy  

are now closer to the reference rotation of 0.5°, with a mean value of 0.49°, as listed in Table 

5.3. These results indicate that the DVC measurements are effectively adjusted after 

refraction correction. 

 

Fig 5.14: Strain and rotation maps for the flat phantom tilt test: (a) before and (b) after 

refraction correction, 363-voxel sub-volume, 50% overlap. 
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It should be pointed out that there is an increase in standard deviation for the strain and 

rotation components as can be seen in Table 5.3. This is probably because the refraction 

correction is based on interpolation. DVC itself is also based on interpo lation. Therefore, it is 

not really surprising that more errors were introduced to the final results after this multi-

interpolation process. 

Table 5.3: Mean and standard deviation values of the strain and rotation components for the 

flat phantom tilt test before and after refraction correction. 

 
Before correction After correction 

xx  
Mean: -2.8×10-5 

Std: 4.7×10-4 

Mean: 5.9×10-5 

Std: 5.8×10-4 

yy  
Mean: 1.5×10-4 

Std: 4.3×10-4 

Mean: 2.8×10-4 

Std: 5.5×10-4 

xy  
Mean: 1.3×10-3 

Std: 9.2×10-4 

Mean: 2.0×10-4 

Std: 7.4×10-4 

xy  
Mean: -0.32° 

Std: 0.053° 

Mean: -0.49° 

Std: 0.067° 

 

Similar results were obtained for the hemispherical phantom. The strain and rotation maps 

before and after refraction correction for xx , yy , xy  and xy  are provided in Fig 5.15 for a 

central z-slice, and their mean and standard deviation values are listed in Table 5.4. Again, as 

can be seen in Fig 5.15(a), before refraction correction, xx and yy  show distributions close 

to the strain noise level while xy  shows large positive values, with a mean of 3106.2  , as 

listed in Table 5.4. Regarding the rotation, xy  is underestimated, with a mean value of only 

0.25°. These results were improved after refraction correction with xy  dropping to noise 

level and xy  increasing to 0.43, closer to the input value 0.5°, as shown in Fig 5.15(b) and 

Table 5.4. One can also observe in Table 5.4 that there is an increase in the strain and rotation 

standard deviations after refraction correction. This has already been explained earlier for the 

flat phantom strip. 
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Fig 5.15: Strain and rotation maps for the hemispherical phantom tilt test: (a) before and (b) 

after refraction correction, 363-voxel sub-volume, 50% overlap. 

Table 5.4: Mean and standard deviation values of the strain and rotation components for the 

hemispherical phantom tilt test before and after refraction correction. 

 
Before correction After correction 

xx  
Mean: -2.9×10-4 

Std: 1.2×10-3 

Mean: -2.0×10-4 

Std: 1.7×10-3 

yy  
Mean: 1.9×10-4 

Std: 9.0×10-4 

Mean: -5.6×10-4 

Std: 1.5×10-3 

xy  
Mean: 2.6×10-3 

Std: 1.2×10-3 

Mean: 1.6×10-4 

Std: 2.3×10-3 

xy  
Mean: -0.25° 

Std: 0.069° 

Mean: -0.43° 

Std: 0.13° 
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5.5  Conclusions  

In this chapter, it has been described how the refraction induced distortion arises in OCT 

reconstructions, which is an error source to DVC deformation measurement. Refraction 

correction methods for both 2D and 3D cases were developed based on Fermat‟s principle. A 

point-by-point minimization algorithm was first developed to correct 2D OCT images. This 

method however suffers from a shortcoming of long computation time. Therefore, a more 

computationally efficient way was developed, in which the minimization algorithm was only 

executed on a sub-set of points. Compared with the point-by-point minimization method, the 

latter one can significantly reduce the computation time, e.g. from about 10 hours to about 1 

minute for a typical OCT image ( 5121024  pixels), without a noticeable loss in accuracy. 

The 3D refraction correction method was applied to correct the reconstructed cornea volumes 

of the inflation test. The refraction corrected DVC measurements were found to be more 

consistent with the simulation results presented in Chapter 4. Tilt tests using a flat and a 

hemispherical silicone rubber phantom were carried out to validate the performance of the 

refraction correction method. The results show that after correction the refraction distortion 

induced spurious strain were reduced and the measured local rotation was much closer to the 

reference value.  
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CHAPTER 6  

CONCLUSIONS AND PERSPECTIVES 

6.1 Conclusions 

In this thesis, an effective methodology has been developed to measure the depth-resolved 3D 

deformation of semi-transparent, light scattering materials such as cornea. These 3D 

deformation measurements can be utilized to identify the material constitutive parameters 

using the VFM.  

 The VFM was extended into 3D to accommodate to the now available depth resolved 3D 

deformation measurements. Both manually defined virtual fields and the optimized piecewise 

virtual fields were developed. They were validated to be feasible to accurately extract the 

material constitutive parameters through simple FEM simulations. The manually defined  

virtual fields were compared with the optimized piecewise virtual fields when the strain data 

was corrupted by different amounts of Gaussian white noise. The result shows that both 

methods can yield reasonable identification results. However, when the noise becomes larger, 

the piecewise optimized virtual fields are much more stable, and can yield more accurate 

identification results. 

 DVC can provide, by means of a single channel OCT system, multicomponent 

displacement fields. From these displacement fields all the strain components required by 

inversion methods such as the 3D VFM can be determined. A strain uncertainty in the order 

of ~210-4 to ~3.510-4 was observed for the OCT+DVC approach by performing noise 

analysis. This approach is appropriate for strain as large as ~2% (in the axial direction) above 

which an incremental approach should be used to avoid speckle decorrelation.  

 Interpolation bias in the DVC algorithm was found to be the reason for the spurious 

fringes observed in the strain maps. Two approaches were verified to be feasible to reduce the 

interpolation bias due to image under-sampling. The first approach is to perform pre-

smoothing (e.g. Gaussian low-pass filter) to the volume data prior to correlation. For the 

second approach, the interpolation bias can be reduced by increasing the sampling density of 
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the SS-OCT system, even though this leads to a reduction in the field of view. Another option 

would be to reduce the effective numerical aperture of the OCT imaging optics, to increase 

the 3D speckle size and maintain large fields of view.  

 The 3D deformation fields were used to identify the elastic constitutive parameters of 

silicone rubber phantoms using the 3D VFM. The identification results for the cases of 

uniform and heterogeneous strain fields were compared with those calculated analytically 

through the constant uniaxial stress assumption and the micro tensile machine, showing good 

agreement. 

 The depth-resolved 3D deformation of the porcine cornea and silicone rubber phantom 

samples under posterior inflation conditions was measured using OCT+DVC. Reasonable 

displacement and strain results of the inflation tests were obtained for both phantom and 

cornea samples. These results show a good overall agreement with the results of a simple FE 

model. 

 Correction methods for both 2D and 3D cases were developed based on Fermat‟s 

principle to correct the refraction induced distortion in the OCT reconstructions. A 

computationally efficient way was developed which can significantly reduce the computation 

time of the correction method without losing correction accuracy. Tilt tests were carried out 

to evaluate the performance of the refraction correction method. The re sults show that after 

correction the refraction distortion induced spurious strain was reduced and the measured 

rotation results increased closer to the known reference value. Refraction correction was 

applied to the reconstructed cornea volumes of the inflation test. The DVC results after 

refraction correction were found to be more consistent with the simulation results and are 

now suitable and ready for further identification studies of corneal properties with 3D VFM. 

6.2 Perspectives 

- Due to the time limitation of the present project, added complexity to the calculation of 

external virtual work in an inflation test with pressure field, and poorer strain results near 

the bottom regions due to inadequate image quality, constitutive parameters of the 

porcine cornea have not been identified yet. Future work will be aimed at identifying the 

constitutive parameters once these issues are solved. To realize this, optimized piecewise 

VFM can be used. The virtual displacement at the clamped peripheral boundary must be 
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set to zero so that the external virtual work done by the unknown reaction force can be 

cancelled out. For each measurement point at the bottom cornea/vitreous interface, the 

component of virtual displacement along the normal direction of the bottom interface at 

this point must be determined to calculate the external virtual work at this measurement 

point. Based on this, the total external virtual work done by the inflation pressure can be 

determined by the integral of the external virtual work at individual measurement points. 

Then, the constitutive parameters of the cornea can be identified following the same 

procedure as for the examples in section 2.7.  

- The present deformation measurements are based on single layer specimens such as the 

introduced silicone rubber phantoms. Even though the cornea is composed of five layers, 

the stroma consists of over 90% of the corneal thickness. Therefore, it would be 

interesting to create a phantom with multi- layers (e.g. double- layers with the same 

thickness and different stiffness), and measure the heterogeneous deformation fields of 

each layer using OCT+DVC. It would be useful to develop a 3D VFM which takes into 

account of the material heterogeneity. This 3D VFM could be used to extract the material 

constitutive parameters of each layer from the heterogeneous deformation fields of a 

single test. This recommended future study could significantly advance the applicability 

of the proposed methodology. 

- One limitation of the current OCT+DVC system for identifying the different mechanical 

properties of different corneal layers from the inflation test is the limited spatial 

resolution of the OCT system compared to the very small thickness of each layer, 

especially for epithelium, Bowman‟s layer, Descemet‟s membrane, and endothelium. Due 

to this limitation, the current OCT system cannot provide OCT images with sufficient 

independent measurement points in each corneal layer. Therefore, in the future, an OCT 

system with improved spatial resolution should be used to obtain OCT images with 

sufficient measurement points in each corneal layer, from which the different strain 

distribution in each layer (due to the difference in material mechanical properties for each 

layer) of the inflation test can be measured. It should be pointed out that, as in a tensile 

test configuration, the strain distributions in layers with different material mechanical 

properties should show differences even though they are loaded equally in the inflation 

configuration. Based on this strain measurement, constitutive parameters of each layer 

should be identified using the 3D VFM developed specifically for material heterogeneity. 
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- The methodology (Inflation Test+OCT+DVC) presented in chapter 4 can be used  in the 

future to study the corneal deformation behaviour at different pressure range (from low 

pressure to high pressure) to fully address the linear and non-linear mechanical properties 

of the cornea.  

- Due to light reflection and absorption, current volume data tend to have weak quality in 

deeper regions of the sample, which leads to inaccurate DVC results there, and affects the 

identification of the constitutive parameters. Thus, efforts can be targeted at the 

improvement of image quality and depth range of the OCT system in the future. In order 

to reduce refraction distortions the illumination path could be adjusted by adding a 

negative lens close to the cornea to make the illumination beam perpendicular to the 

interface so that refraction can be reduced. This would require an OCT system with 

deeper penetration depth and reduced spectral roll-off.  

- Other soft tissues such as artery, skin, esophagus, etc. could also be studied using the 

proposed methodology to study their deformation behaviour and material properties. It 

will be interesting to measure the depth-resolved full- field deformation of these tissues 

under high pressure to study their non-linear properties and failure response (e.g. 

aneurysm rupture). 

- In the present work, the 3D VFM has been implemented for linear elasticity. However, 

considering the non- linear behaviour of the biological tissues in large deformation, it will 

be useful to develop a 3D non- linear VFM. Different non-linear models can be used such 

as hyper-elasticity. These models could serve to a more comprehensive identification of 

the material constitutive parameters.  
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RÉSUMÉ EN FRANÇAIS 

L'étude de la cornée de l'œil vertébré est un sujet interdisciplinaire qui 

implique la médecine, la biologie, la mécanique, la science des matériaux, 

etc. L'étude des propriétés biomécaniques de la cornée a une importance 

considérable dans l’ophtalmologie, et a également le potentiel d'application 

dans d'autres domaines de high-tech. Par conséquent, pendant des décennies 

de nombreux chercheurs se sont consacrés à ce domaine de recherche. 

 Pour étudier les propriétés biomécaniques de la cornée, premièrement il 

est nécessaire d’avoir une bonne compréhension de la composition et de 

l'anatomie de l'œil et sa cornée. Les effets internes tels que la pression 

intraoculaire sont également essentiels car ils influencent le comportement 

biomécanique de la cornée de façon significative. Ces propriétés 

fondamentales devraient être étudiées comme des conditions préalables à la 

construction de méthodes expérimentales appropriées et de modèles 

numériques représentatifs afin d'étudier et de prédire le comportement 

biomécanique de la cornée. Actuellement, les chercheurs ont développé  

de nombreuses méthodes expérimentales qui permettent de représenter la 

réponse physiologique de la cornée sous pression et évalué ses propriétés 

biomécaniques telles que l'élasticité, la viscoélasticité, etc. Basé sur les 

méthodologies pour l'identification du problème inverse, les paramètres 

constitutifs de la cornée peuvent être identifiés en utilisant des mesures 

expérimentales telles que la mesure du champ de déplacement/déformation. 

Ces propriétés identifiées ont une grande valeur car elles peuvent être 

utilisées pour étudier la pathologie de la cornée, dans laquelle les propriétés 
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des cornées pathologiques diffèrent de celles normales. Elles peuvent 

également être appliquées à développer les modèles d’éléments finis pour 

simuler et prévoir le comportement biomécanique de la cornée. 

 Actuellement, la plupart des travaux de recherche qui ont été faits pour 

caractériser les propriétés biomécaniques de la cornée sont basés sur les 

tests de traction uniaxiale ou les mesures de surface telles que le test de 

l'inflation conjugué à la corrélation d'images numériques. Cependant, la 

mesure du champ de déformation total en 3-D avec résolution en 

profondeur n'a pas encore été entreprise, ce qui est essentiel pour mieux 

comprendre le comportement biomécanique interne de la cornée. En outre, 

l'identification actuelle des paramètres constitutifs des matériaux est 

généralement basée sur la mise à jour du modèle par éléments finis, qui 

souffre souvent d'optimisation locale et d’un long temps de traitement. La 

méthode des champs virtuels a été développée en remplacement de cette 

méthode d'identification, surmontant les lacunes de la mise à jour du 

modèle d'éléments finis. Cette méthode peut être appliquée pour 

l'identification des paramètres des matériaux dans la présente étude. 

 Le travail présent vise à développer une méthodologie qui peut être 

appliquée pour mesurer le champ de déformation total en 3-D des matériaux 

semi-transparents et diffusant la lumière, tels que la cornée. Ensuite, 

l’idendificationdes paramètres constitutifs de ces mesures de déformation 

3-D est réalisée en utilisant la méthode des champs virtuels. Les problèmes 

spécifiques qui seront abordés comprennent: 

- Extension de la méthode des champs virtuels en 3-D. 

- Développer les montages expérimentaux pour les tests de traction et les 
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tests d'inflation pour les spécimens de fantôme en caoutchouc de silicone et 

de cornée porcine. 

- Détermination du champ de déformation total en 3-D avec profondeur 

résolue utilisant la tomographie par cohérence optique (OCT) couplée avec 

la corrélation volumique numérique (DVC). 

- Développer une méthode pour corriger les distorsions induites par 

réfraction dans les reconstitutions obtenues par OCT. 

 Cette thèse est organisée comme suit. Le chapitre 1 présente une revue 

bibliographique sur les connaissances de base de la cornée tels que la 

structure, la composition et la pression intraoculaire, etc. L'état de l'art dans 

l'étude expérimentale des propriétés biomécaniques de la cornée est 

introduit. Ensuite, diverses techniques d'imagerie volumique sont 

examinées en vue de l’analyse de la structure interne de la cornée. Après 

cela, différentes méthodes pour identifier les paramètres constitutifs sont 

introduites. Et enfin, les méthodes d'obtention des mesures du champ de 

déformation sont également introduites. 

 Le chapitre 2 présente en détail l’établissement de la méthode des 

champs virtuels en 3-D pour des champs virtuels définis manuellement et  

des champs virtuels optimisés par morceaux. Ensuite, de simples modèles 

par éléments finis sont introduits pour valider la faisabilité de ces champs 

virtuels en 3-D. Enfin, les champs virtuels définis manuellement sont 

comparés avec les champs virtuels optimisés par morceaux en ajoutant aux 

données de déformation une gamme de bruits pour comparer leurs 

performances respectives à récupérer les paramètres constitutifs de ces 

données polluées par le bruit. 
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 Le chapitre 3 présente les mesures du champ de déformation 3-D avec 

résolution en profondeur pour les fantômes en caoutchouc de silicone sous 

tension, obtenues en effectuant la tomographie par cohérence optique 

couplée avec la corrélation volumique numérique. L’étude de l'effet du 

bruit et des incertitudes de reconstructions ainsi que de la décorrélation des 

mouchetures (speckles) induits par la déformation est d'abord introduite. Le 

biais d'interpolation est ensuite analysé. Enfin, les paramètres élastiques 

constitutifs des fantômes sont identifiés. 

 Dans le chapitre 4, le champ de déformations 3-D du fantôme de cornée 

en caoutchouc de silicone et de la cornée porcine dans les conditions 

d'inflation postérieure sont mesurées. Un modèle d'éléments finis avec les 

mêmes conditions d'inflation de la cornée est introduit et comparé aux 

résultats expérimentaux.  

 Une méthode pour corriger les distorsions induites par réfraction des 

reconstructions 2-D/3-D de la tomographie par cohérence optique est 

présentée dans le chapitre 5. Cette méthode de correction est appliquée à 

corriger les images en volume reconstruites à partir de la cornée porcine. 

Des tests d'inclinaison des différents fantômes en caoutchouc de silicone 

sont introduits pour évaluer la performance de la méthode pour corriger les 

reconstructions distordues. 

Dans le dernier chapitre, les conclusions et perspectives sont présentées. 

Chapitre 1 
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La cornée est localisée sur la face externe du globe oculaire et possède une 

structure multi-couches et semi-transparente. Elle protège l'œil contre 

l'environnement extérieur, absorbe l'oxygène et les nutriments du film 

lacrymal et maintient la forme et la stabilité de l'œil en résistant à la 

pression intraoculaire. Elle joue également un rôle important dans la 

formation de l'image par réfraction de la lumière à l'arrière de l'œil. La 

cornée est composée de cinq couches, à savoir l'épithélium, la couche de 

Bowman, le stroma, la membrane de Descemet et l'endothélium. Le stroma 

constitue 90% de l'épaisseur de la cornée et domine la performance 

structurelle de la cornée. Il est constitué de lamelles empilées de fibrilles de 

collagène disposées régulièrement et noyées dans une matrice hydratée. 

Parce que la fibrille de collagène est le composant le plus rigide de la 

cornée, son agencement et sa distribution déterminent essentiellement les 

propriétés mécaniques et la transparence lumineuse de la cornée. 

 Plusieurs études expérimentales ont été réalisées afin de caractériser les 

propriétés biomécaniques de la cornée. Généralement, il existe deux types 

de test qui sont souvent adoptés pour examiner la réponse mécanique de la 

cornée sous pression, qui sont le test d'inflation et le test de traction, 

respectivement. Le test d'inflation est une méthode physiologiquement 

représentative pour déterminer les propriétés mécaniques de la cornée. Par 

conséquent, cette méthode a été sélectionnée dans notre projet pour étudier 

le comportement mécanique avec résolution en profondeur des cornées 

ex-vivo. 

 Parce que la cornée a une structure composite complexe, en plus du fait  

que certaines pathologies peuvent changer les propriétés biomécaniques 

internes de la cornée localement, les études basées sur la mesure d’un point 
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ou de surface ne sont pas suffisantes pour examiner complètement le 

comportement mécanique de la cornée. Par conséquent, il serait utile de 

développer une méthode qui puisse utilisée pour caractériser les propriétés 

biomécaniques internes et le champ de déformation total en 3-D de la 

cornée. 

 L'analyse de la microstructure interne d'un matériau est importante pour 

l'étude des propriétés mécaniques du matériau. Au lieu de l'imagerie 

traditionnelle de surface, des techniques d'imagerie qui peuvent regarder à 

l’intérieur des matériaux sont nécessaires, englobées dans le terme 

Tomographie. Diverses techniques tomographiques basées sur différents 

mécanismes ont été développées, telles que la tomographie à rayons X 

(X-CT), l'imagerie par résonance magnétique (MRI), la microscopie 

confocale (CM), la tomographie par cohérence optique (OCT), etc. 

 Par rapport aux X-CT, MRI et CM, l’OCT est plus appropriée pour 

l’imagerie 3-D des tissus biologiques tels que les cornées, les peaux, les 

artères, etc. L’X-CT exige que les objets détectés aient suffisamment de 

contraste d'absorption des rayons X pour une imagerie efficace. L’X-CT est 

généralement appropriée pour l'imagerie de solides. Bien que la MRI soit 

utilisée pour l'imagerie de tissus biologiques, elle n'est pas autant 

appropriée que l’OCT à l'imagerie des tissus morphologiques en raison de 

sa résolution relativement faible. En outre, le coût élevé de MRI réduit aussi 

l'applicabilité de cette technique. CM peut fournir des images de la structure 

interne des tissus biologiques  minces à haute résolution. Toutefois, la 

profondeur de pénétration de cette technique est beaucoup moins grande 

que l'OCT. Par conséquent, dans la présente étude, OCT est sélectionnée 

pour la reconstruction des tissus biologiques.  
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 La mise à jour de modèle par éléments finis est l'approche la plus 

utilisée pour l'identification des paramètres constitutifs, qui présente 

toutefois des limites telles que qu’une optimisation locale et un long temps 

de traitement. La méthode des champs virtuels basée sur le principe du 

travail virtuel est une solution de remplacement  spécialement développée à 

des fins d'identification. Elle élimine ces inconvénients. Pour cela, le champ 

de déformation actuel, l'information sur la charge appliquée, et 

l'information d'accélération sont fournis par l'expérimentation. Les 

composantes de contrainte peuvent être exprimées par les paramètres 

constitutifs des matériaux et les composantes de déformation par une 

équation constitutive appropriée. Un bon choix des champs de déplacement 

virtuels permet l'extraction des paramètres constitutifs inconnus. 

 L'acquisition du champ de déformation est un préalable à 

l'identification des paramètres constitutifs. Les récents progrès dans les 

techniques de mesure de la déformation de la surface/du volume telles que 

la méthode de la grille, l’interférométrie, la corrélation d'image/de volume 

numérique, etc. fournissent la mesure du champ de déformation en 2-D et 

en 3-D. 

 La corrélation volumique d’images (DVC) est effectivement une 

extension en 3-D de la corrélation d'images numériques (DIC). La DVC a 

été développée pour mesurer la déformation interne en 3-D des matériaux 

en faisant le suivi de points caractéristiques internes semblables à des 

speckles 3-D contenues dans les volumes reconstruits. 

 Bien que la DVC soit principalement appliquée aux données X-CT 

volumiques, les matériaux sont limités par la nécessité de présenter un 
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contraste d'absorption des rayons X. Pour certains matériaux souples et 

semi-transparents tels que les tissus biologiques (cornées, peaux, artères, 

etc.), des techniques plus appropriées doivent être sélectionnées. La CM est 

une option, qui peut fournir des données de volume de haute résolution 

(inférieure au micron). Elle a été couplée avec la DVC pour mesurer la  

déformation interne en 3-D. Cependant, son application est limitée par la 

faible portée de la région détectée. En effet, la profondeur de pénétration de 

la CM est généralement limitée en dessous du millimètre, pour les 

spécimens plus épais tels que les cornées, les peaux, les artères, etc. cette 

technique n'est pas suffisante pour mapper champ de déformation dans 

toute l’épaisseur. Il a été introduit dans les sections précédentes que l’OCT 

est capable d'obtenir une plus grande profondeur de pénétration par rapport 

à CM. L’OCT est largement utilisée pour l'imagerie des tissus biologiques. 

Pour mesurer le champ de déformation en 3-D des tissus biologiques tels 

que la cornée, la DVC sera appliquée aux données volumiques reconstruites 

par OCT. Ceci, cependant, n'a pas encore été entrepris au mieux de notre 

connaissance. 

Chapitre 2 

Différents ensembles de champs virtuels 3-D définis manuellement ont été 

sélectionnés pour l'identification des paramètres constitutifs de matériaux. 

Le cas simple d'un cube en compression a été conçu pour illustrer la mise 

en œuvre de la méthode des champs virtuels en 3-D. L’élasticité linéaire 

isotrope a été choisie dans un but de simplicité. Les résultats montrent que 

ces ensembles de champs virtuels ont une sensibilité différente au bruit sur 
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la déformation. Par conséquent, le choix des champs virtuels peut être 

critique. 

 La VFM 3-D optimisée a été développée en détail. Des champs virtuels 

par morceaux ont été sélectionnés dans ce cas-ci. L'optimisation a été 

réalisée en utilisant des multiplicateurs Lagrangien aux conditions limites 

qui éliminent la contribution des forces de réaction au niveau des  supports 

et des conditions particulières fournissant directement les paramètres 

constitutifs. Cette VFM 3-D optimisée par morceaux a été validée en 

utilisant des modèles d'éléments finis simples avec élasticité isotrope et 

élasticité orthotrope. Similaire à la VFM 3-D définie manuellement, les 

paramètres constitutifs identifiés par la VFM 3-D optimisée par morceaux 

sont pratiquement identiques aux valeurs d'entrées, montrant donc la 

faisabilité de cette méthode. 

 Une gamme de bruits blancs Gaussiens a été ajoutée aux données 

exactes de déformation simulée. La VFM définie manuellement a été 

comparée à la VFM optimisée par morceaux. L'objectif est de comparer les 

performances de ces champs virtuels dans la récupération de paramètres 

constitutifs des données polluées par le bruit. Les résultats montrent que les 

deux méthodes peuvent fournir de bons résultats d'identification. Toutefois, 

lorsque le bruit devient plus grand, la VFM optimisée par morceaux est plus 

stable et peut fournir des résultats d'identification plus précis. 

Chapitre 3 

Deux bandes plates rectangulaires de fantômes ont été fabriquées en 

utilisant du gel de silicone (MM240-TV), dont l'une d'elles avec des 
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encoches. Le module d'Young nominal du caoutchouc de silicone est de 

1.88 MPa, pouvant changer avec la proportion du durcisseur. Le montage 

expérimental est constitué d'un appareil de test en traction et un système de  

tomographie par cohérence optique à source de signal balayé (SS-OCT). 

Pour les deux états de référence et déformés, une séquence d'images en 

volume du spécimen a été acquise à l'aide du système SS-OCT. Ensuite, la 

DVC a été utilisée pour calculer les champs de déplacement en 3-D  des 

reconstructions obtenues par SS-OCT. 

 Avant les tests de traction, l'effet combiné du bruit et des incertitudes de 

reconstruction a été étudié par l'exécution d'un test stationnaire  et un test de 

de corps rigide en translation du fantôme. L'effet de décorrélation des 

speckles induite par déformation a été étudié par une simulation numérique. 

Une incertitude sur la déformation de l'ordre de ~210
-4

 à ~3.510
-4

 a été 

observée pour les tests stationnaire et de translation. L’OCT+DVC couplées 

sont jugées appropriées pour la mesure de déformations jusqu’à ~2% (dans 

le sens axial), valeur au-dessus de laquelle une approche incrémentale 

devrait être utilisée pour éviter la décorrélation des speckles. 

 Des valeurs raisonnables des champs de déplacement et de déformation 

ont été obtenues pour le fantôme rectangulaire et pour le fantôme avec 

encoches. Les franges parasites observées dans les champs de déformation 

ont été analysées, et sont causées par le repliement d’image (aliasing). Ceci 

est confirmé par l'exécution d'un test de traction en doublant la charge sur le 

fantôme rectangulaire.  

 Deux approches ont été prouvées faisables pour réduire le biais 

d'interpolation causé par l'aliasing. Dans la première approche, le 
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pré-lissage avec un filtre passe-bas de Gaussien a été appliqué aux images 

volumiques avant la corrélation. Les résultats montrent que le pré-lissage 

est efficace pour réduire le biais d'interpolation mais il cause une légère 

augmentation des écarts-types sur les déformations (le niveau de bruit 

augmente de ~410
-4

 à ~810
-4

 après pré-lissage). Dans la deuxième 

approche, il n’y a pas de franges parasites  observées dans les champs de 

déformation lorsque la densité d'échantillonnage du système SS-OCT a été 

doublée. Ceci indique que l'augmentation de la densité d'échantillonnage est 

une approche efficace pour réduire le biais d'interpolation causé par 

l'aliasing.  

 Les champs de déformation 3-D uniformes et non uniformes obtenus 

par OCT+DVC ont été utilisés pour identifier les paramètres constitutifs 

élastiques Qij du fantôme rectangulaire et du fantôme avec encoches en 

utilisant la VFM 3-D définie manuellement. Les modules élastiques (le 

module d'Young E et le coefficient de Poisson ν) extraits de cette approche 

sont compatibles avec ceux calculés par l'approche de contrainte uniaxiale 

constante et les résultats obtenus avec une machine de traction micro. Une 

autre VFM 3-D a également été développée pour identifier le module de 

compression K et le module de cisaillement G en utilisant les données de 

déformation obtenues à partir du test de traction du fantôme avec encoches. 

Cela offre une autre option pour mesurer les paramètres rigidité du matériau 

quand ν est très proche de 0.5. 

Chapitre 4 
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Une cornée porcine a été utilisée dans cette étude en raison de la difficulté 

d'obtenir une cornée humaine intacte. Les globes oculaires frais ont été 

recueillis auprès de l'abattoir local dans les 6 heures après leur abattage et 

testés dans les 12 heures post-mortem. Un fantôme artificiel de cornée 

humaine a été fabriqué en utilisant le gel de silicone. 

 Le montage expérimental  contient un appareil d'inflation et le système 

SS-OCT. Les spécimens ont été montés et fixés sur une chambre antérieure 

artificielle. La cornée et le fantôme ont été gonflés de 2 kPa à 2.5 kPa. A 

chaque état de pression, une séquence d'images en volume du spécimen a 

été acquise par le système SS-OCT. Les reconstructions volumiques ont été 

enregistrées pour l'exécution de la DVC. Ensuite, les champs de 

déplacement et de déformation ont été calculés. 

 L’analyse du bruit a été effectuée avant les tests d'inflation, montrant 

que le sous-volume de 24×24×24 voxels est un bon compromis entre la 

résolution spatiale et la résolution de déformation pour la cornée et le 

fantôme. 

 Le modèle éléments finis du test d'inflation de la cornée porcine a été 

développé en utilisant le progiciel commercial ABAQUS 6.11
®

. Il aide à 

comprendre les distributions de déplacement et de déformation de la cornée  

en condition d'inflation. Les résultats de la simulation sont comparés à ceux 

mesurés par DVC afin de voir s'ils ont une bonne cohérence. 

 Après avoir exécuté la DVC, de bons résultats de déplacement et de  

déformation pour les tests d'inflation ont été obtenus pour les deux 

spécimens du fantôme et de la cornée. Ces résultats montrent un bon accord 
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avec les résultats du modèle EF et montrent la faisabilité de cette méthode 

appliquée aux études de la déformation interne de la cornée humaine. 

Chapitre 5 

Pour un spécimen avec une surface supérieure plate, on est exempt du 

problème de distorsions si le rayon de balayage est perpendiculaire à la 

surface du spécimen. Cependant, pour un spécimen avec une surface courbe 

telle que la cornée, une distorsion induite par la réfraction se produit. Cela 

introduit des erreurs de détermination de la position réelle de la 

microstructure dans la cornée. Les images volumiques distordues 

introduisent ensuite des erreurs dans les mesures de déplacement et de 

déformation. 

 Des méthodes de correction de réfraction pour les cas 2-D et 3-D ont 

été développées basées sur le principe de Fermat. Un algorithme de 

minimisation point-par-point a été développé d'abord pour corriger les  

images 2-D distordues obtenues par OCT. Cette méthode présente 

cependant l’inconvénient d’un long temps de traitement. Par conséquent, 

une méthode plus efficace a été développée, dans laquelle l'algorithme de 

minimisation est exécuté uniquement sur les points définis d’une grille. 

Ensuite, les coordonnées des points objets intermédiaires  dans l'espace 

d'image sont obtenues en interpolant les coordonnées de ces points de grille. 

Par rapport à la méthode avec minimisation point-par-point, cette dernière 

permet de réduire le temps de traitement considérablement, par exemple, de 

~10 heures à ~1 minute pour une image typique  d'OCT ( 5121024  pixels), 
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sans perte de précision de correction. Cela rend la correction du volume 

réalisable. 

 La correction des distorsions a été effectuée sur les reconstructions 

volumiques de la cornée obtenues à partir du test d'inflation introduit dans 

le chapitre 4. La DVC a ensuite été effectuée sur les volumes corrigés de la 

cornée pour obtenir les champs  corrigés des déplacements et des 

déformations. Il montre que les résultats de DVC après correction des 

distorsions sont plus compatibles avec les résultats de la simulation. 

 Des tests d'inclinaison sur des fantômes ont été effectués pour évaluer 

la performance de la méthode de correction à corriger les reconstructions 

distordues et les mesures de déformation obtenues par DVC. Deux 

fantômes ont été fabriqués. L'un est une bande plate tandis que l'autre est 

hémisphérique. 

 Les fantômes ont été placés sur un plateau de rotation et tournés de 0.5° 

dans le plan xy. A chaque état, un volume a été reconstruit par le système 

SS-OCT. La DVC a été appliquée aux reconstructions volumiques. Les 

champs de déformation et de rotation ont été obtenus. Ensuite, la méthode 

de correction des distorsions a été effectuée sur reconstructions volumiques, 

et une DVC a été effectuée pour obtenir les déformations et rotations 

corrigées. L'objectif est de voir si les résultats de déformation et de rotation 

sont améliorés après la correction des distorsions. 

 Les résultats montrent que, après la correction la déformation parasite 

induite par la distorsion de réfraction a été réduite, et la mesure de rotation 

s’est rapprochée de la valeur d'entrée. Ceci indique que la méthode peut 
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corriger les reconstructions distordues d'OCT à leur configuration réelle. 

Ceci permettra d'améliorer la précision de mesure par OCT couplée avec 

DVC  lors de la mesure en 3-D des déformations des spécimens avec 

surface courbée. 

Chapitre 6 

Conclusions 

Dans cette thèse, une méthode efficace a été mise au point pour mesurer le 

champ de déformation total en 3-D de matériaux semi-transparents et 

diffusant la lumière tels que la cornée. Ces mesures de déformation 3-D 

peuvent être utilisées pour identifier les paramètres constitutifs de 

matériaux, au moyen de la VFM. 

 La VFM a été étendue en 3-D pour accueillir les mesures du champ 

total de déformation en 3-D. Les champs virtuels définis manuellement et 

les champs virtuels optimisés par morceaux ont été développés. Leur 

capacité à extraire les paramètres constitutifs précisément des simulations 

FEM simples a été montrée faisable. Les champs virtuels définis 

manuellement ont été comparés avec les champs virtuels optimisés par 

morceaux en ajoutant à leurs données de déformation une gamme de bruits 

blancs Gaussiens afin de comparer leurs résultats respectifs. Les résultats 

montrent que toutes les méthodes peuvent fournir les bons résultats 

d'identification. Toutefois, lorsque le bruit devient plus grand, les champs 

virtuels optimisés par morceaux sont beaucoup plus stables et peuvent 

fournir des résultats d'identification plus précis. 
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 La DVC peut fournir, au moyen d'un système d'OCT avec un seul canal,  

les champs de déplacement multi-composants. De ces champs de 

déplacement tous les composants de déformation requis par les méthodes 

d'inversion telles que la VFM 3-D peuvent être déterminés. Une incertitude  

sur la déformation de l'ordre de ~210
-4

 à ~3.510
-4

 a été observée pour 

l'approche OCT+DVC en effectuant une analyse de bruit. L'approche 

OCT+DVC est appropriée pour des déformations n’allant pas au-delà de  

de ~2% (dans le sens axial), point au-dessus duquel une approche 

incrémentale devrait être utilisée pour éviter la décorrélation des speckles. 

 L’aliasing s’est montré la raison des franges parasites observées dans 

les champs de déformation. Deux approches ont montré être possible pour 

réduire le biais d'interpolation en raison de l'aliasing. La première approche 

consiste à effectuer le pré-lissage (par exemple un filtre passe-bas de 

Gaussien) aux images volumiques avant la corrélation. Pour la deuxième 

approche, le biais d'interpolation peut être réduit en augmentant la densité 

d'échantillonnage du système SS-OCT. 

 Les champs 3-D de déformation ont été utilisés pour identifier les 

paramètres constitutifs élastiques des fantômes en caoutchouc de silicone en 

utilisant la VFM 3-D. Les résultats de l'identification des cas  des champs de 

déformation uniformes et hétérogènes ont été comparés avec ceux calculés 

analytiquement dans l'hypothèse de contrainte uniaxiale constante et ceux 

mesurés par la machine de traction micro, montrant de bons accords. 

 Les champs de déformation 3-D dans la profondeur de la cornée 

porcine et du fantôme de silicone dans les conditions d'inflation postérieure 

ont été mesurés en utilisant OCT+DVC. De bons résultats de déplacement 
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et déformation des tests d'inflation ont été obtenus pour  les spécimens du 

fantôme et la cornée. Ces résultats montrent un bon accord avec ceux du 

modèle FE. 

 Des méthodes de correction pour les deux cas 2-D et 3-D ont été 

développées basées sur le principe de Fermat pour corriger la distorsion 

induite par la réfraction dans les reconstructions d'OCT. Un moyen plus 

efficace a été développé qui permet de réduire considérablement le temps 

de calcul sans perte de précision de correction. Les tests d'inclinaison ont 

été effectués pour évaluer la performance de la méthode de correction. Les 

résultats montrent que, après la correction des distorsions les déformations 

parasites ont été réduites, et les mesures de rotation ont été augmentées, 

devenant plus proches des valeurs d'entrée. Ceci indique que la correction 

des distorsions peut corriger les reconstructions distordues d'OCT par 

rapport à leur configuration réelle. La méthode de correction a été appliquée 

pour corriger les reconstructions volumiques de la cornée du test d'inflation. 

Les résultats de DVC après correction sont plus cohérents avec ceux de la 

simulation. 

Perspectives 

Les mesures actuelles de déformation sont basées sur les spécimens avec 

une seule couche tels que les fantômes de silicone introduits. Même si la 

cornée est composée de cinq couches, le stroma constitue plus de 90% de 

l'épaisseur de la cornée. Par conséquent, il serait intéressant de créer des 

fantômes avec multi-couches (par exemple, double-couches avec la même 

épaisseur et les rigidités différentes), et de mesurer les champs de 

déformation hétérogènes de chaque couche dans le même temps en utilisant 
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OCT+DVC. Il serait utile de développer une VFM 3-D qui prend en compte 

l'hétérogénéité des matériaux. Cette VFM 3-D peut être utilisée pour 

extraire les paramètres constitutifs de chaque couche en utilisant des 

champs de déformation hétérogènes et un seul test. Cette étude future 

recommandée pourrait améliorer considérablement l'applicabilité de la 

méthodologie proposée. 

 En raison de la réflexion et de l'absorption de la lumière, les images 

volumiques actuelles tendent à avoir une mauvaise qualité dans les régions 

inférieures. Cela conduit à des résultats de DVC inexacts à cet endroit, et 

affecte l'identification des paramètres constitutifs. Ainsi, des efforts peuvent 

être entrepris en l'amélioration de la qualité des images à l'avenir. Cela peut 

être effectué en ajustant le trajet d'illumination, tel que par l'ajout d'une 

lentille appropriée pour rendre le faisceau d'illumination perpendiculaire à 

l'interface afin que la réflexion puisse être réduite (Cela peut aussi réduire la 

distorsion induite par la réfraction). Autrement, un système OCT avec une 

plus grande profondeur de pénétration est également une solution. 

 D’autres tissus biologiques tels que les artères, les peaux, etc. peuvent 

aussi être étudiés en utilisant la méthodologie proposée pour étudier leur 

comportement de déformation et propriétés de matériaux. Il serait 

intéressant de mesurer les champs de déformation de ces tissus sous haute 

pression pour étudier leurs propriétés non linéaires et réponse aux 

dommages (par exemple la rupture de l'anévrisme). 

 Dans le présent travail, la VFM 3-D a été mise en œuvre enélasticité 

linéaire. Cependant, en considérant le comportement non linéaire des tissus 

biologiques sous grandes déformations, il serait utile d'élaborer une VFM 
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3-D non linéaire. Différents modèles non linéaires peuvent être utilisés tels 

que l’hyperélasticité. Ces modèles peuvent servir à une identification plus 

complète des paramètres constitutifs des matériaux. 
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IDENTIFICATION OF CORNEAL MECHANICAL PROPERTIES USING 
OPTICAL TOMOGRAPHY AND DIGITAL VOLUME CORRELATION 

ABSTRACT: This work presents an effective methodology for measuring the depth-resolved 
3D full-field deformation of semitransparent, light scattering soft tissues such as vertebrate eye 
cornea. This was obtained by performing digital volume correlation on optical coherence 
tomography volume reconstructions of silicone rubber phantoms and porcine cornea samples. 
Both the strip tensile tests and the posterior inflation tests have been studied. Prior to these tests, 
noise effect and strain induced speckle decorrelation were first studied using experimental and 
simulation methods. The interpolation bias in the strain results has also been analyzed. Two 
effective approaches have been introduced to reduce the interpolation bias. To extract material 
constitutive parameters from the 3D full-field deformation measurements, the virtual fields 
method has been extended into 3D. Both manually defined virtual fields and the optimized 
piecewise virtual fields have been developed and compared with each other. Efforts have also 
been made in developing a method to correct the refraction induced distortions in the optical 
coherence tomography reconstructions. Tilt tests of different silicone rubber phantoms have 
been implemented to evaluate the performance of the refraction correction method in correcting 
the distorted reconstructions. 

Keywords: Soft tissue; Depth-resolved strain; Optical coherence tomography; Constitutive 
parameters identification; Deformation measurement. 

IDENTIFICATION DE LA MÉCANIQUE DE LA CORNÉE PAR LA 
TOMOGRAPHIE OPTIQUE ET LA CORRÉLATION DE VOLUME 

NUMÉRIQUE 

RÉSUMÉ: Ce travail présente une méthodologie efficace pour mesurer le champ de 
déformation total en 3D des tissus mous semi-transparents et diffusant la lumière, tels que la 
cornée de l'œil vertébré. Cela a été obtenu en utilisant la tomographie par cohérence optique 
couplée avec la corrélation volumique numérique sur des fantômes en caoutchouc de silicone et 
de la cornée porcine. Des tests de traction et des tests d'inflation postérieure ont été étudiés. 
Avant ces tests, l'effet du bruit et la décorrélation des speckles due à la déformation sont d'abord 
étudiés en utilisant des méthodes expérimentales et numériques. Le biais d'interpolation dans 
les résultats de déformation a été analysé. Deux approches efficaces ont été prises pour réduire 
le biais d'interpolation. Pour extraire les paramètres constitutifs des mesures de déformation 3D, 
la méthode des champs virtuels a été étendue en 3D. Les champs virtuels définis manuellement 
et les champs virtuels optimisés par morceaux ont été développés et comparés entre eux. Des 
efforts ont également été déployés pour corriger les distorsions induites par réfraction dans les 
reconstructions de la tomographie par cohérence optique. Des tests d'inclinaison des différents 
fantômes de silicone ont été introduits afin d’évaluer la performance de la méthode pour 
corriger les reconstructions distordues. 

Mots clés: Tissu mou; Déformations (mécanique); Tomographie en cohérence optique; 
Identification; Contraintes (mécanique). 
 



 

Identification de la mécanique de la 
cornée par la tomographie optique et la 
corrélation de volume numérique 
 
Ce travail présente une méthodologie efficace pour 
mesurer le champ de déformation total en 3-D des 
tissus mous semi-transparents et diffusant la 
lumière, tels que la cornée de l'œil vertébré. Cela a 
été obtenu en utilisant la tomographie par cohérence 
optique couplée avec la corrélation volumique 
numérique sur des fantômes en caoutchouc de 
silicone et de la cornée porcine. Des tests de 
traction et des tests d'inflation postérieure ont été 
étudiés. Avant ces tests, l'effet du bruit et la 
décorrélation des speckles due à la déformation 
sont d'abord étudiés en utilisant des méthodes 
expérimentales et numériques. Le biais d'inter-
polation dans les résultats de déformation a été 
analysé. Deux approches efficaces ont été prises 
pour réduire le biais d'interpolation. Pour extraire les 
paramètres constitutifs des mesures de déformation 
3-D, la méthode des champs virtuels a été étendue 
en 3-D. Les champs virtuels définis manuellement et 
les champs virtuels optimisés par morceaux ont été 
développés et comparés entre eux. Des efforts ont 
également été déployés pour corriger les distorsions 
induites par réfraction dans les reconstructions de la 
tomographie par cohérence optique. Des tests 
d'inclinaison des différents fantômes de silicone ont 
été introduits afin d’évaluer la performance de la 
méthode pour corriger les reconstructions 
distordues. 
 
 
Mots clés : tissu mou - déformations (mécanique) - 
tomographie en cohérence optique – identification – 
contraintes (mécanique). 
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Identification of Corneal Mechanical 
Properties Using Optical Tomography 
and Digital Volume Correlation 
 
This work presents an effective methodology for 
measuring the depth-resolved 3-D full-field 
deformation of semitransparent, light scattering soft 
tissues such as vertebrate eye cornea. This was 
obtained by performing digital volume correlation on 
optical coherence tomography volume recons-
tructions of silicone rubber phantoms and porcine 
cornea samples. Both the strip tensile tests and the 
posterior inflation tests have been studied. Prior to 
these tests, noise effect and strain induced speckle 
decorrelation were first studied using experimental 
and simulation methods. The interpolation bias in 
the strain results has also been analyzed. Two 
effective approaches have been introduced to 
reduce the interpolation bias. To extract material 
constitutive parameters from the 3-D full-field 
deformation measurements, the virtual fields 
method has been extended into 3-D. Both manually 
defined virtual fields and the optimized piecewise 
virtual fields have been developed and compared 
with each other. Efforts have also been made in 
developing a method to correct the refraction 
induced distortions in the optical coherence 
tomography reconstructions. Tilt tests of different 
silicone rubber phantoms have been implemented to 
evaluate the performance of the refraction 
correction method in correcting the distorted 
reconstructions. 
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