
HAL Id: tel-03356307
https://theses.hal.science/tel-03356307

Submitted on 27 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing Language-Agnostic Code Transformation
Engines

Jason Lecerf

To cite this version:
Jason Lecerf. Designing Language-Agnostic Code Transformation Engines. Programming Languages
[cs.PL]. Université de Lille, 2019. English. �NNT : �. �tel-03356307�

https://theses.hal.science/tel-03356307
https://hal.archives-ouvertes.fr

Université de Lille

Département de formation doctorale en informatique École doctorale SPI Lille

Designing Language-Agnostic Code
Transformation Engines

Construction de moteurs de transformation de code

automatique agnostiques du langage

THÈSE

présentée et soutenue publiquement le 26/11/2019

pour l’obtention du

Doctorat de l’Université de Lille

(spécialité informatique)

par

Jason Lecerf

Composition du jury

Président : Pierre-Etienne Moreau (Professeur des Universités, Université de Lorraine)

Rapporteurs : Julia Lawall (Directrice de recherche, Inria)
Johan Fabry (Ingénieur de recherche, Raincode Labs)

Directeur de thèse : Stéphane Ducasse (Directeur de recherche, Inria Lille - Nord Europe)

Encadrant de thèse : Thierry Goubier (Ingénieur de Recherche, CEA-LIST)

Département Architecture, Conception et Logiciels Embarqués
CEA-LIST

Acknowledgements

First of all, I would like to thank my advisor Stéphane Ducasse for his con-
tinuous involvement in this thesis. Despite the distance and the resulting
complications, he managed to stay up to date and give me critical feedback
to finish my PhD. He also introduced me to members of the Smalltalk com-
munity and of his lab in Lille, many of which are now my friends.

I would also like to thank my day-to-day supervisor Thierry Goubier.
Without his knowledge and guidance, I would have drowned in the parsing
abyss. Our conversations, work-related or not, were always insightful.

Besides my supervisors, I would like to thank my thesis committee: Julia
Lawall and Johan Fabry for their reviews on this text and their precise ques-
tions during my defense, but also Pierre-Etienne Moreau for presiding said
defense.

My next thanks go to my friends at CEA for making the daily grind
exciting in the best periods and bearable in the worst ones: Pierre-Guillaume,
Thibault, Thibaut, Guillaume, Gabriel, Johannes, Vincent, Joël, Aurore,
Emmanuel, Dina. . . I probably forgot some of you, but know that if you
cheered me up after a disastrous review from reviewer 2, came by for a game
night or had heated beer arguments with me, you deserve your spot here.

And last but not least, my special thanks go to my almost life-long friends.
Thomas Poullain is always there to discuss anything and everything, and
crucially is not afraid to strongly disagree with me on tons of topics. Auriane
Duquesne continuously supported me even in her harshest moments, always
seeing a bright side to every situation. Gautier Berthou is one of the few
souls that does not relinquish talking about personal problems, and solved
most of mine in the process. My room-mate Alexandre Coden trained my
cat to be the cute little pest he is (among other things). Douglas Raillard,
Serguëı Lallement, Romain Tching Chi Yen and Sarah Leclerc made the last
eight years feel like a walk in the park.

1

2

Contents

1 Introduction 7
1.1 Context . 7
1.2 User requirements . 9
1.3 Implementor requirements . 10
1.4 Our approach in a nutshell . 11
1.5 Contributions . 11
1.6 Structure of the dissertation 12

2 State of the art 13
2.1 Languages and grammars . 14

2.1.1 Grammars . 15
2.1.2 Sentence representation 16

2.2 Parsing in practice . 19
2.2.1 Deterministic parsing 19
2.2.2 LR parsing . 20

2.3 Generalized parsing . 23
2.3.1 Ambiguities and LR conflicts 23
2.3.2 Generalized parsing algorithms 25
2.3.3 Generalized LR parsing 27
2.3.4 Improvements and variants of GLR 31

2.4 Pattern matching . 32
2.4.1 Pattern matching implementors 32
2.4.2 Pattern and matches 33
2.4.3 Explicit pattern matching 33
2.4.4 Syntactic pattern matching 34

2.5 Code transformation engine 35
2.5.1 Code transformation use cases 36
2.5.2 Transformation rule and transformation pattern 38
2.5.3 Rewriting engine . 39

2.6 Conclusion . 40

3 Parsing as intersection for pattern matching 41
3.1 Hybrid explicit-syntactic pattern matching 42

3.1.1 Deficiencies of explicit pattern matching 42
3.1.2 Alternatives to explicit pattern matching 43
3.1.3 Syntactic pattern (code template) 45
3.1.4 Hybrid syntactic-explicit patterns 45

3

4 CONTENTS

3.1.5 Metavariables . 46
3.1.6 Type inference to support syntactic pattern matching . 46
3.1.7 Unification . 48
3.1.8 Towards a language-agnostic pattern matching engine . 49

3.2 Implementing syntactic pattern matching 49
3.2.1 Type inference implementation issues 49
3.2.2 Typing in parser generators 51
3.2.3 Parsing as intersection for type inference 52

3.3 Type inference through GLR-based parsing as intersection . . 55
3.3.1 Gist of the approach 55
3.3.2 Parsing a syntactic pattern 56
3.3.3 Reaching a metavariable 57
3.3.4 Forking the parser . 58
3.3.5 Unification . 60

3.4 Matching complex types . 61
3.4.1 Matching of list idioms 62
3.4.2 AND metavariable types 63
3.4.3 Type inference for AND types 64
3.4.4 Unification for AND types 64
3.4.5 OR metavariable types 65

3.5 Experiments and results . 67
3.5.1 The Smalltalk Compiler-Compiler 67
3.5.2 Industrial Validation 67
3.5.3 Expressiveness of hybrid patterns 69

3.6 Discussion . 71
3.6.1 Prerequisites of the approach 71
3.6.2 Scalability . 72
3.6.3 Application to other parsers and parser generators . . . 72

3.7 Conclusion . 73

4 Side-effect-enabling GLR parser 75
4.1 Ambiguities and conflicts in LR parsing 77

4.1.1 LR limitations . 77
4.1.2 Rewriting the grammar 77
4.1.3 Hacking the parser . 78

4.2 Generalized LR parsing . 79
4.2.1 Differences with LR . 79
4.2.2 Semantic actions in GLR 80

4.3 A scheduling approach to GLR 81
4.4 Structure of the Fibered-GLR Parser 82

4.4.1 FGLR parsing fiber . 82

CONTENTS 5

4.4.2 The LR parser . 83
4.4.3 The FGLR scheduler 83
4.4.4 The FGLR scheduling loop 85
4.4.5 Forking mechanism . 86
4.4.6 Merging mechanism . 86
4.4.7 Rescheduling . 87

4.5 Execution order choices . 87
4.5.1 Inter list ordering . 88
4.5.2 Reducing list ordering 88
4.5.3 Shifting list ordering 89
4.5.4 Waiting list processing 90

4.6 Experiments . 90
4.6.1 Implementation . 91
4.6.2 Experimental setup . 91
4.6.3 Comparison with Bison GLR and SmaCC GLR 91
4.6.4 Scaling of FGLR on highly ambiguous grammars . . . 92
4.6.5 Sensitivity to shift-reduce conflicts 93
4.6.6 Sensitivity to reduce-reduce conflicts 95

4.7 Discussion . 95
4.8 Conclusion . 97

5 Conclusion 99
5.1 Summary of contributions . 99

5.1.1 Hybrid explicit-syntactic pattern matching engine . . . 99
5.1.2 Scheduler-based GLR 100

5.2 Validating the requirements 101
5.2.1 User requirements . 101
5.2.2 Implementor requirements 102

5.3 Perspectives . 103
5.3.1 Improvements on matching complex types 103
5.3.2 Interactive tooling and pattern generalization 104
5.3.3 Code transformation DSL 105
5.3.4 Transformation control flow and strategies 107

6 CONTENTS

Chapter 1

Introduction

Contents
1.1 Context . 7

1.2 User requirements 9

1.3 Implementor requirements 10

1.4 Our approach in a nutshell 11

1.5 Contributions . 11

1.6 Structure of the dissertation 12

1.1 Context

Software systems age away by increasing in complexity, reducing in main-
tainability to satisfy priorities or simply by its experts rarefying. The loss of
knowledge of a system calls for diverse solutions. Rewriting the system from
scratch is one of them but feels like a waste of invested time and resources.
Program exploration and program understanding [KDSD+09, Vok06, GJ05]
tools help bridging the knowledge gap, but require a time investment difficult
to outsource. For highly complex projects with systemic problems, there is
a clear need for modernization. Modernization opportunities can be discov-
ered by bug checkers [BNE16], but in the end, modernization solutions are
implemented through system transformations.

As a result, developers often face the need to perform code transforma-
tions over large bodies of code [SAE+15, AL11]. Such code transformations
are tedious and error-prone to perform when done manually, meaning de-
velopers need tools [BPM04] to assist them in these tasks. Semi-automated
code transformations based on pattern matching facilities are becoming more
and more mainstream as an answer to that issue, and have proven their ef-
fectiveness in real-life code bases [PTS+11], to the point of being integrated
inside Integrated Development Environments (IDE). Those semi-automated
code transformations are based on writing two patterns, a matching pattern
and an associated transformation pattern. A rewriting engine parses the

7

8 CHAPTER 1. INTRODUCTION

matching pattern, finds all its occurrences in the source code and transforms
each occurrence using the transformation pattern. With a simple set of two
patterns, developers are able to rewrite all the targeted code fragments in
very large code bases.

Amongst the common use cases for code transformations, refactorings [RBJO96,
RBJ97, Fow18] are the most mature in terms of their tooling quality. Refac-
torings are a special subset of code transformations, where the functional be-
havior of the program being transformed must be preserved after the transfor-
mation. Refactorings are usually designed to improve code quality by increas-
ing maintainability, readability or performance. These kinds of transforma-
tions are very attractive to developers because they ensure that the functional
semantics of the code are kept, meaning it cannot break their code through
the transformation process. However, formal verification of refactorings is a
difficult problem, with only simple ones with reasonable verification strate-
gies; verifying more complex refactorings remains a computation-hungry
task. In practice, a refactoring engine uses preconditions-postconditions;
properties are checked before the refactoring to ensure that the transforma-
tion can be applied and after to ensure the transformation has been success-
ful, where maintaining functional behavior is assimilated to an absence of
regression in testing. So the transformation is neither proven as correct, nor
is functional behavior considered apart from the tested expected behaviors.

Another complex modernisation task is migrating code from one language
to another. There is no perfect binding between two languages where every
language feature in the first always has an equivalent in the second language.
In addition, a problem of missing code appears if the target language does
not possess a certain library present in the original language. For both these
reasons, transformations for migration do not inherently preserve functional
behavior and require arbitrary, even incomplete, transformations. Migration
transformations need flexibility for experts to craft transformations outputing
correct and readable code.

Refactorings and code migrations already require a large amount of lan-
guage knowledge to be written and as such must be crafted by language
experts. On the other hand, there are other use cases where transformations
would ideally be crafted by standard users. Such cases include source-to-
source transformations for optimization purposes [LRDJ17] where multiple
transformations are applied to a program before the compilation of a High
Performance Computing (HPC) program to perform optimizations that are
badly handled by the compiler alone. Typically, transformations for opti-
mization require in-depth knowledge of the target architecture and experts
in both language transformation and hardware architecture are hard to come
by. Therefore, they are usually handled by standard users (from the point

1.2. USER REQUIREMENTS 9

of view of language transformations) who need easy-to-craft transformations
without deep knowledge of the language’s intermediate representation (IR).

Code specialization is another example of source-to-source transforma-
tions operating just before the compilation. This use case covers simple
transformations of variables to constant values, to fit multiple particular use
cases with a single generic source, all the way to custom data layout trans-
formations [NRL17] for a specific target architecture. Code specialization
in itself combines the metaprogramming and aspect-oriented programming
paradigms: a generic code base is translated into target-specific code bases
based on aspects implemented through scripted code transformations.

We focus our efforts on the two previous use cases: code migration and
specialization. The first one is performed by language expert users, while the
second one is performed by users with experience in their domain but without
language expertise. Both use cases emphasize arbitrary and source-to-source
transformations. In the next section, we will create requirements for a source-
to-source transformation engine, featuring arbitrary transformations, from
these user profiles and use cases. These requirements will serve as a basis to
implement a source-to-source transformation engine targeting code migration
and specialization.

1.2 User requirements

Mainly from the last two use cases (migration and specialization), we derive
requirements for an arbitrary code transformation engine, from the user’s
point of view.

Multi-language. The code transformation engine must be multi-language.
Since code bases usually feature multiple languages for different purposes, it
should reflect in the code transformation engine. If the user already knows
said languages, it should be no harder to match one or the other and it should
be easy to switch between known languages.

No IR knowledge required. The code transformation engine must not
require the user to know internal representation of languages. For standard
users, it is important to not rely on language IRs, meaning they must be
able to craft patterns and transformations with no prior knowledge of the IR
of the language they are currently transforming. This greatly increases the
accessibility of the tool to target standard and expert users alike.

10 CHAPTER 1. INTRODUCTION

Hybrid approach. The code transformation engine should allow access
to the intermediate representation. While the default setting for matching
and transforming should be independent of the IR, not all pattern and trans-
formations are easy to craft in such a language-agnostic way. For experts,
who already know the language and its IR, the engine should also let them
express their patterns and transformations according to the IR. An hybrid
approach defaulting to “no IR” is desirable.

DSL-supported. A well known option to improve productivity and acces-
sibility in niche domains are Domain-Specific Languages (DSL). DSLs provide
custom abstraction for a specific domain, in our case, pattern matching and
transformation of source code, hiding implementation details away from the
users. To help new users and non-expert users, a DSL for source-to-source
code transformations should be implemented on top of the engine.

These user requirements affect the design of the transformation engine,
yielding additional requirements for the engine implementor, discussed in the
following section.

1.3 Implementor requirements

Easy language back-end implementation. The code transformation
engine should support efficiently the implementation of additional back-ends
for additional languages. A language back-end for transformation tools en-
compasses a parser, pattern matching and transformation integration with
the parser. These language back-ends constitute a major engineering effort
when written from scratch for each new language. To easily support mul-
tiple languages for the same transformation engine, the language back-ends
must either reuse existing on-the-shelf back-ends or have tooling to ease their
implementation.

Seamless hybrid integration. The pattern matching engine must not
rely on separate engines for IR-based patterns and non IR-based patterns.
To support an hybrid approach with patterns using or not using IR informa-
tion, there must exist a high level of integration between both kinds of user
patterns. This essentially means being able to combine both at will without
having to support two distinct transformation engines, each for a different
kind of matching mechanism.

1.4. OUR APPROACH IN A NUTSHELL 11

Interchangeable DSL front-end. The code transformation DSL should
be ameneable to different syntax styles. The code transformation DSL must
have a strong modular back-end on top of which different syntaxes could be
implemented. A major point of adoption for DSLs is the familiarity of the
syntax and what it changes for different user groups. It should be possible
to easily craft a new front-end and link it to the transformation back-end.

1.4 Our approach in a nutshell

How do we build a source-to-source code transformation engine whose trans-
formations require no prior knowledge of language constructs at a reduced
cost for the engine implementor?

To answer this question and meet the requirements exposed in the previ-
ous section, we choose to design a pattern matching engine whose pattern use
the same syntax that their matched language as a default, but can also be
expressed by refering to its IR. The pattern matching engine is coupled with
a Generalized LR parser generator to both generate the IR from the source
code, but also to automate part of the matching process to hide the IR com-
plexity from the user. To reunite parsing of the source code and matching of
the pattern under the same algorithm, we adapted the parsing as intersection
result [BHPS61] to pattern matching purposes. Direct IR matching can still
be expressed in the patterns as more traditional approaches, but the default
matching does not require it. In that way, we build a language-IR-agnostic
code transformation engine.

1.5 Contributions

The main contributions of this thesis are:

• An application of parsing as intersection to a GLR parser generator
to ease the implementation of language back-ends required for hybrid
pattern matching,

• A GLR parsing algorithm based on the scheduling of isolated parsing
alternatives to allow for classic LR side-effect disambiguation in GLR,

• A reflection on the required back-end components for a code transfor-
mation engine in the context of a specific LR/GLR parser generator.

12 CHAPTER 1. INTRODUCTION

1.6 Structure of the dissertation

Chapter 2 presents an overview of the domain, at a crossroad between pars-
ing, pattern matching and rewriting engines.

Chapter 3 explains how to automatically obtain a source code pattern
matching engine from language grammars through a modified version of pars-
ing as intersection.

Chapter 4 describes a compromise algorithm between the two main im-
plementations of Generalized LR parsing providing a clearer fork model and
allowing side effects to occur during parsing.

Chapter 5 concludes this work, discusses challenges in the domain and
future work to reach a complete multi-language source-to-source code trans-
formation engine.

Chapter 2

State of the art

In this chapter, we will go over the vocabulary of transformation engines,
in addition to exploring similar works in the domain. Most pattern-based
source-to-source transformation engines parse the program to transform and
create an intermediate representation. As such, the first part of this chapter
is dedicated to grammars, languages and parsing to understand how IRs
(in particular AST) are built from its source. Pattern matching consists in
interpreting a pattern and finding its occurences in the program IR previously
built from parsing the program source. The pattern matching step is the
focus of the second part. The last part of this chapter details what kind of
transformations can be performed on the occurences of the pattern.

Contents
2.1 Languages and grammars 14

2.1.1 Grammars . 15

2.1.2 Sentence representation 16

2.2 Parsing in practice 19

2.2.1 Deterministic parsing 19

2.2.2 LR parsing . 20

2.3 Generalized parsing 23

2.3.1 Ambiguities and LR conflicts 23

2.3.2 Generalized parsing algorithms 25

2.3.3 Generalized LR parsing 27

2.3.4 Improvements and variants of GLR 31

2.4 Pattern matching 32

2.4.1 Pattern matching implementors 32

2.4.2 Pattern and matches 33

2.4.3 Explicit pattern matching 33

2.4.4 Syntactic pattern matching 34

2.5 Code transformation engine 35

13

14 CHAPTER 2. STATE OF THE ART

2.5.1 Code transformation use cases 36

2.5.2 Transformation rule and transformation pattern . 38

2.5.3 Rewriting engine 39

2.6 Conclusion . 40

2.1 Languages and grammars

In this section, we will explain how to obtain an IR, starting from a gram-
mar in the process called parsing. Since parsing usually refers both to the
complete process of deducing an IR from an input string and the parser
component in itself, Figure 2.1 disambiguates the two.

Scanner SemanticsParser

token stream derivation tree

AST

character stream

Figure 2.1: Parsing workflow

Scanner. Before parsing, a scanner preprocesses the input character stream
by tokenizing it according to token definitions expressed through regular ex-
pressions. Working as the token level is far easier for the parser, since working
directly with single characters as tokens tend to explode the number of rules
in the grammar and add a lot of ambiguities. However, there are scanner-
less approaches to parsing [EKV09], where the base element of rules are
characters and not tokens.

Parser. A parser creates a representation of the string if it belongs to the
language through a process called derivation. The semantics of the language
then uses said representation. The two most common representations created
by a parser are the derivation tree and the abstract syntax tree (AST).

In the rest of this work, we assume a parser in working in tandem with
a scanner unless specified otherwise. Now that the scanner is out of the
way, we will explain the derivation of an input string and how to create
a derivation tree or an AST from this derivation, both being the basis for
parser construction.

2.1. LANGUAGES AND GRAMMARS 15

2.1.1 Grammars

A reader already familiar with grammars may directly skip to the next sec-
tion. As a foreword, although other types of grammar exists, for the rest of
this work, a grammar will refer to a Context-Free Grammar (CFG) unless
specified otherwise. A CFG is a subclass of grammars that parses context-
free languages. CFGs are less expressive than other classes of grammars but
are typically sufficient to parse programming languages and, crucially, they
allow for workable implementation of parsers without prohibitive runtimes.

A CFG is a set of production rules describing a language. Let G be the
tuple G = {T,N,R, S}. T is the set of terminal symbols in the language.
Terminals are the most basic elements in a language, usually associated with
words. N is the set of nonterminal symbols in the language. Nonterminals
are more complex elements that are abstracted away from other elements
through production rules. R is the set of production rules of the language. A
production r is of the form A ::= α where α is a string of symbols in T ∪N
or the empty symbol ε. S is the starting symbol of the grammar (S ∈ N).
Usually, the grammar is extended with a unique starting symbol S ′ such as
S ′ ::= S and S ′ /∈ N .

Grammar derivation is the process of applying consecutive derivation
steps to transform the start symbol S ′ into the string to recognize. A deriva-
tion step βAγ ⇒ βαγ derives βαγ from the application of the rule A ::= α.
A is transformed as α in its context βAγ by recognizing that α is another
form of A. If the derivation process terminates with the string s through zero
or more derivation steps S ′ ∗⇒s, the string s belongs to the language defined
by the grammar.

Example. The grammar in Listing 2.1 is described in a variant of the
Extended Backus-Naur Form (EBNF) format. This grammar G1 is defined
by T1 = {“a”, “b”}, N1 = {S,E}, the set of production rules R1 = {S ::=
E“a”, S ::= “a”, E ::= E“b”, E ::= “b”} and a unique start symbol such as
S ′

1 ::= S.

16 CHAPTER 2. STATE OF THE ART

1 S

2 : E "a"

3 | "a"

4 ;

5

6 E

7 : E "b"

8 | "b"

9 ;

Listing 2.1: Toy grammar for the language b + a

As an example, to derive the string bba from G1, we need to go through
the derivation steps described in Listing 2.2.

1 S’ -> start

2 S -> S’ ::= S

3 E "a" -> S ::= E "a"

4 E "b" "a" -> E ::= E "b"

5 "b" "b" "a" -> E ::= "b"

Listing 2.2: Derivation of bba using the grammar of Listing 2.1

2.1.2 Sentence representation

Derivation tree. The most simple representation of a sentence is the
derivation tree (or parse tree) of the string. The derivation tree is obtained
by remembering the path the derivation took throughout the grammar and
creating nodes for each rule whose children are the nodes of the subsequent
rules.

1 <number > : [0-9]+ ;

2 <identifier > : [a-z][a-zA -Z0 -9_]+ ;

3

4 Exp

5 : Exp "+" Exp

6 | Exp "-" Exp

7 | Operand

8 ;

9

10 Operand

11 : <number >

12 | <identifier >

13 ;

Listing 2.3: Toy grammar for an arithmetic expression language.

Listing 2.3) represents a new grammar to handle a subset of arithmetic
expressions.

2.1. LANGUAGES AND GRAMMARS 17

1 + 2 - 3 Expression

-

+

Expression

number(2)

Operand

Expression

number(1)

Operand

Expression

number(3)

Operand

Expression

Figure 2.2: Derivation tree for the string 1 + 2 - 3 according to the grammar
of Listing 2.3

The derivation tree for the input string 1 + 2 - 3 is represented in Fig-
ure 2.2. The tree follows the exact structure of the grammar rules, leading
to multiple nodes of the same type with different kinds of children and su-
perfluous intermediary nodes.

Abstract Syntax Tree. Derivation trees are basically a one-for-one map-
ping of production rules in a tree form. However, in most cases they yield
a tree difficult to interpret, cluttered with intermediary nodes, unnecessarily
increasing its depth. For this reason, parsers tend to generate an Abstract
Syntax Tree (AST) instead, where intermediary recursion nodes can be con-
verted to collections. They are many ways to create an AST, the main point
being to abstract away from the concrete syntax of the language and get a
clear structure that is useful to further tools down the chain.

1 <number > : [0-9]+ ;

2 <identifier > : [a-z][a-zA -Z0 -9_]+ ;

3

4 Exp

5 : Exp "+" Exp {{ Addition }}

6 | Exp "-" Exp {{ Subtraction }}

7 | Operand

8 ;

9

10 Operand

11 : <number > {{ Number }}

12 | <identifier > {{ Variable }}

18 CHAPTER 2. STATE OF THE ART

13 ;

Listing 2.4: Toy grammar for an arithmetic expression language with AST
generation.

Expression example. The grammar in Listing 2.4 is enhanced with cus-
tom AST node creation. Nodes given between double curly braces are created
when the rule is applied and when omitted, their values are pulled up from
previous rules without creating intermediary nodes.

1 + 2 - 3 Subtraction

-

+

Addition

Number

number(2)

Number

number(1)

Number

number(3)

Figure 2.3: AST for the string 1+2−3 according to the grammar of Listing 2.4

An AST example for the same string 1+2-3 is given in Figure 2.3. This
AST is more compact than the derivation tree and its nodes have useful
names for subsequent analysis.

Collection example. Listing 2.5 adds an extra production to the previous
grammar in Listing 2.4.

1 ExpList

2 : ExpList "," Exp

3 | Exp

4 ;

Listing 2.5: Additional production rule to handle lists of expressions in
Listing 2.4.

The production ExpList is used recursively to create a comma-separated
list of expressions.

In Figure 2.4, the resulting parse tree is on the left and the modified AST
is on the right. The recursion introduces additional uninteresting ExpList

nodes that are replaced in the AST by collections of Exp and ",". Note
that multiple other techniques could have been employed to create an AST,

2.2. PARSING IN PRACTICE 19

ExpList

ExpList Exp(4)

Exp(1) Exp(2+3)”,”

”,”

Source: ”1, 2 + 3, 4”

ExpList

{Exp(1), Exp(2+3), Exp(4)} {”,”, ”,”}

Parse tree AST
transformation

Figure 2.4: AST transformation of recursion to collections.

depending on its future use, but both techniques presented in this section
are common to most engines.

2.2 Parsing in practice

Parsing is the process of deriving a structure from a string of language ele-
ments (non-terminals and terminals) according to rules defined by the gram-
mar of the language in question. When an input string has multiple valid
representations according to the grammar, the grammar (and input string)
is said to be ambiguous. The root cause of ambiguities is the possibility
to apply different rules at a single point during the parse. Parsers derived
from such grammars have a worse runtime since they need to pursue all the
possibilities. Deterministic languages are void of ambiguities and are parsed
by classic parsing techniques, whereas generalized parsing techniques should
be used to parse ambiguous languages.

The most common deterministic and generalized parsing techniques will
be detailed in this section. For more, the author refers the readers to the
Parsing Techniques, a Practical Guide book [GJ08b], a massive archive of
parsing algorithms from their inception to 2008.

2.2.1 Deterministic parsing

Deterministic parsing techniques offer efficient parsing without backtracking
for unambiguous grammars. Programming language grammars, contrary to
those of natural languages, tend to be almost deterministic with a few iden-
tifiable ambiguities. Deterministic techniques have been designed to parse
efficiently deterministic languages. Deterministic parsing algorithms are of
three main flavors: LL parsing, LR parsing and parser combinators.

LL parsing. LL [RS70] stands for Left-to-right Leftmost derivation. LL

20 CHAPTER 2. STATE OF THE ART

parsers are top-down parsers that operate the derivation top-down,
meaning it start from the rules and find the terminals. In fact, it starts
from the starting symbol of the grammar, predicts the next rule to
apply based on the next word (called lookahead), applies the rule and
so on.

LR parsing. LR [AHU74] stands for Left-to-right Rightmost derivation.
LR parsers are bottom-up parsers that operates in the inverse, they
start with the string and try to make sense of the string by applying
the rules bottom-up until the start symbol is reached.

Parser combinators. Parser Expression Grammars (PEG) [For04] using
the Packrat [Gri04] algorithm operates on different grammars than
CFGs, grammars where the unordered choice of rules is replaced by
an ordered choice. It means that for a given non-terminal, the second
rule can only be applied if the first rule did not match. This ordered
choice forces the grammar to be unambiguous by choosing the first rule
(in order) in the event of an ambiguity.

2.2.2 LR parsing

LR usually requires a number of lookahead tokens for the parser to take a
decision: LR(k) has k lookahead tokens, LR(1) one and LR(0) none. LR(k)
is proven to be the most general non-ambiguous parsing technique for deter-
ministic CFGs. In addition, a rewrite of a LR(k) grammar, with k tokens
of lookahead, to a LR(1) grammar is always possible [Knu65]. LR(1) gram-
mars are therefore sufficient to parse deterministic CFGs. Combined with
their parse time depending solely on the length of the input and not its depth,
both aspects make it an attractive option to parse programmming languages.

LR parsers [AHU74] are table-based bottom-up parsers: table-based be-
cause they rely on generated parsing tables and bottom-up because they
create their derivation tree starting from the leaves (terminals) and progres-
sively generalizing until the root non-terminal is reached. They are also called
shift-reduce parsers because they execute two main actions, namely shift and
reduce.

LR parse table. The standard way to create an LR(1) parser from an
LR(1) grammar is to derive a pushdown automaton from the grammar. The
automaton is then converted into two tables. The action table states which
LR actions are available from each automaton state according to the looka-
head token. In the case of a shift, the information in the action table is the

2.2. PARSING IN PRACTICE 21

state to shift to. Otherwise, for a reduce, it contains the grammar rule to ap-
ply to perform the reduction. The goto table holds the reduction information:
the next state to push on the stack after the reduction.

LR actions. LR parsers execute four kinds of actions: shift, reduce, accept
and error. Shift actions push a new state on the state stack and accept the
current token. Reduce actions remove the last m states from the state stack
(where m is the size of the right hand side of the rule associated to the reduce)
and pushes a new state onto the state stack. No token is consumed during
a reduce. Shift and reduce are the two main actions and further references
to LR actions will refer to shift and reduce. The error action occurs when
there is no valid action for the lookahead token, terminating the parse with
an error. In contrast, the accept action acknowledges a valid parse and
terminates without error.

Figure 2.5 shows one example of stack activity for each of the four LR
actions. Given a state stack and lookahead on the first line, the parser will
get an action from the parse tables, resulting in the state stack and lookahead
on the second line.

Shift

Reduce

Error

Accept

state stack lookahead

[1 5 7] ”a”

action

shift 9

[1 5 7 9] nil

state stack lookahead

[1 5 7] ”a”

action

none

[] nil

state stack lookahead

[1] EOF

action

accept

[0] nil

state stack lookahead

[1 5 7] ”a”

action

reduce 2 states,
goto 13

[1 13] ”a”

Figure 2.5: Example of applying an LR action of each type (Shift, Reduce,
Error and Accept) on the state stack and lookahead token of the parser.

LR runtime in a nutshell. The LR runtime starts with an initial state
on its state stack. The parser asks the scanner for the next lookahead token,
then gets the next possible LR action for this token in its parse tables. If the
token is not recognized, i.e., if the parser gets an error action or no action,
the parser stops. Otherwise, it executes the next actions until the next shift,
where it gets a new lookahead token and begins a new loop. Once an accept
action is reached, the input string is recognized.

22 CHAPTER 2. STATE OF THE ART

Parser generation. Creating the automaton and deriving the parse tables
from it is a cumbersome and error-prone task when done by hand. Therefore
most LR parsers are in fact generated by a parser generator that compiles
a grammar into a scanner, parse tables and the LR runtime. Yacc [LMB92,
Joh75] is an early example of a generator producing a table-based scanner-
parser combination. Yacc inspired a plethora of LR/LALR parser gener-
ators such as GNU Bison [Lev09] and SmaCC [BRPP10], but also parser
generators for other parsing techinques such as LL(*) [PF11, AKB15] with
ANTLR [Par13, BP08].

Derivation tree generation. To generate a derivation tree of the input
string, it is common to follow a similar process to the one of the state stack.
Now, the parser holds two separate stacks, the state stack to handle the
path in the automaton and the node stack to build the derivation tree. The
shift actions now also push the current token on the node stack. The reduce
actions now also pop the last m items from the node stack and push a new
node with these items as children onto the same stack.

For a derivation tree, the node type of the created node is the symbol
name on the left-hand side of the reduce production rule. To build another
structure (typically an Abstract Syntax Tree or AST), arbitrary execution
is allowed on reduce in the form of semantic actions. The result of the
execution of a semantic action is the node that will be pushed onto the node
stack, resulting in more freedom in the construction of the tree for a better
semantic analysis. As an example, Figure 2.6 shows one shift of token on the
node stack followed two reduces into nodes Num(2) and Add(1+2), according to
the grammar in Listing 2.4 (node names have been shortened for conciseness).

Semantic actions. Semantic actions are used to alter the parse result
(creating an AST instead of a derivation tree) but also to alter the parse
process by directly modifying the parser state on a reduce (a side effect).

The main side effect used in semantic actions is to manipulate the lexical
analysis, for example by adding symbol information into the lexical analysis.
A typical case is the lexical analysis of the C language, where a distinction
must be made between typenames and identifiers, based on the existence of a
previous definition (famously called the ”lexer hack”). Otherwise typenames
and identifiers, which have the same syntactic definition, can appear in a lot
of the same rules, leading to many ambiguities.

2.3. GENERALIZED PARSING 23

Shift

Reduces

state stack lookahead

[1 5 7] ”2”

action

shift 9

[1 5 7 9] nil

state stack lookahead

[1 5 7 9] ”-”

action

reduce 1 state,
goto 11

[1 5 7 11] ”-”

node stack

[Num(1) ”+”]

[Num(1) ”+” ”2”]

node stack

[Num(1) ”+” ”2”]

[Num(1) ”+” Num(2)] reduce 3 states,
goto 3

[Add(1+2)] ”-”[1 3]

Figure 2.6: AST node creation through a node stack.

2.3 Generalized parsing

Generalized parsing is powerful since it can resolve local conflicts without
having to manually craft code for each conflict. First we will come back to
ambiguities and conflicts, then explain which parsing algorithms solve con-
flicts. The end of the section is focusing on Generalized LR parsing, the gen-
eralized variant of the previously described LR approach (see Section 2.2.2).

2.3.1 Ambiguities and LR conflicts

Conflicts. In LR parsing, when multiple actions could be executed from
the same lookahead token from a single state, there is a conflict. LR conflicts
exist in two forms: shift-reduce and reduce-reduce. Shift-reduce means the
parser either shifts the current token or reduces using a rule, whereas reduce-
reduce is strictly between two different reduces. Note that if a generated LR
parser has conflicts, the grammar is not deterministic anymore. Depending
on implementations, LR parsers either stop or just pick one of the alternatives
and continue parsing.

Figure 2.7 is an example of a famous shift-reduce conflict in grammars of
expressions (see Listing 2.6.

1 <number > : [0-9]+ ;

2 <identifier > : [a-z][a-zA -Z0 -9_]+ ;

3

24 CHAPTER 2. STATE OF THE ART

Expression shift-reduce conflict

state stack lookahead

”*”

actions

shift 17

node stack

[Num(1) ”+” Num(2)]

state stack lookahead

[1 4] ”*”

node stack

[Add(1+2)]

[1 5 7 11]

Reduce 3, 4Shift 17

reduce 3 states, goto 4

state stack lookahead

[1 5 7 11 17] nil

node stack

[Num(1) ”+” Num(2) ”*”]

Figure 2.7: Example of a shift-reduce conflict in the LR parser of an expres-
sion grammar.

4 Exp

5 : Exp "+" Exp {{ Addition }}

6 | Exp "*" Exp {{ Multiply }}

7 | Operand

8 ;

9

10 Operand

11 : <number > {{ Number }}

12 | <identifier > {{ Variable }}

13 ;

Listing 2.6: Ambiguous grammar for expressions.

When the parser reaches 1 + 2 in the input 1+2*3, the next token is "*".
The parse has two choices: shifting the token to end up with the final AST
Add(1,Mult(2,3)), or reducing the current stack to end up with the final AST
Mult(Add(1,2),3). In this case, even if one makes more sense than the other
from a semantical point of view, both are valid according to the grammar.
Since the two different ASTs result from a single string, the shift-reduce
conflict here has caused an ambiguity.

Non-deterministic and unambiguous. A deterministic grammar is parsed
in linear time by a deterministic parser. Deterministic parsers do not feature
any conflict at any point in the grammar. In LR, this translates to never hav-
ing more than one action available at any time. However, even if a grammar
is non-deterministic (meaning it has conflicts), it can still be unambiguous,
because a ”local” conflict could be resolved before the end of the parse.

From a parser point of view, if a generalized parser answers one AST for
a given string, this means the string is unambiguous according to the gram-
mar of the language. Even if conflicts appear in the middle of the parse, if a
single solution subsists, it means the other (faulty) ones originating from the

2.3. GENERALIZED PARSING 25

conflict lead to errors and got discarded. If the parser answers two or more
ASTs however, the grammar is ambiguous. Figure 2.8 illustrates the three
different possibilities here: deterministic, ambiguous or non-deterministic un-
ambiguous.

Deterministic

Non-deterministic unambiguous

Ambiguous

parsing of
the string

AST 1

AST 1

AST 2

conflict

AST 1

conflict

erroneous
parse

parsing of
the string

parsing of
the string

Figure 2.8: Conflicts, ambiguities and generalized LR parsers.

Most programming languages have non-deterministic unambiguous gram-
mars, and even if some can be converted to deterministic grammars, the
resulting grammars are often much more complex and hard to maintain.

2.3.2 Generalized parsing algorithms

We identify four classes of generalized parsing algorithms, most of them orig-
inally designed to handle natural languages.

Earley. Earley’s algorithm [Ear70] builds a set of states using three steps:
prediction, scanning and completion. The prediction phase expands the ex-
isting states of the form A ::= α•Bβ in the set with B ::= •γ. The scanning
phase recognizes terminals by adding the state A ::= αb•β from A ::= α•bβ

26 CHAPTER 2. STATE OF THE ART

when the lookahead is b. The completion phase performs a similar job to
LR reductions by adding the state A ::= αB • β from A ::= α • Bβ and
B ::= γ•. If at the end of the stream, the states contain the end state, the
parse succeeds otherwise if fails. Earley has a complexity of O(n3) in the
general case, O(n2) on unambiguous grammars and O(n) on deterministic
grammars.

CYK and Valiant. CYK’s algorithm [You67], contrary to the other algo-
rithms presented here does not work with BNF grammar, but operates on a
Chomsky Normal Form (CNF) grammar. CNF’s production rules only have
two symbols on their right hand side, meaning they must be of the form
A ::= XY where X, Y ∈ T ∪N . The CYK algorithm builds a table M with
rows giving the recognized nonterminals in the substrings of size 1 to the
size n of the string to recognize. Each M(i, j) holds the set of recognized
nonterminals for the substring s[j; i + j − 1], so that M(n, 1) holds the set
of recognized nonterminals for the entire string. Valiant [Val75] improved
the original O(n3|G|) complexity of CYK by using multiplications of boolean
matrices to lower the input size factor. Although it is possible to transform
BNF grammars to CNF, it leads to an explosion of the number of rules and
since this algorithm scales with the size of the grammar, the runtime for
non-worst-case grammars is usually better with other algorithms. We do not
know of any grammar that justifies the use of CYK or Valiant, since the
constant factor is far too important.

GLR. Originally Tomita’s algorithm [Tom87], the Generalized LR (GLR)
parsing algorithm generalizes the classic bottom-up parsing algorithm to non-
deterministic grammars. GLR is implemented in one of two main ways: list of
stacks or Graph-Structured Stack (GSS), both of which we will discuss in the
following section and in Chapter 4. As implied by the name, GLR parsers
use the same parse tables as a standard LR parser. In terms of runtime,
GLR scales with ambiguities, meaning if ambiguities accumulate the parse
time will explode whereas few ambiguities locally resolved will have a parse
time close to linear. In fact, Tomita’s algorithm has a O(nk+1) where k is
the size of the longest rule, so for pathological grammars on the other hand
it yields disastrous parse times. For both these reasons, we will take a longer
look at GLR in the rest of this work.

GLL. Generalized LL parsing (GLL) [SJ10] is a generalized variant of the
popular top-down LL parsing algorithm. As its non-generalized variant, GLL
using a recursive descent through the grammar, mimicking a derivation by

2.3. GENERALIZED PARSING 27

hand in the grammar. GLL also uses a GSS similar to the one of GLR with
the addition of loops to handle left recursion. To the best of our knowledge,
GLR and GLL are the two generalized parsing techniques used in practice
to parse programming languages.

In the next section, we will discuss the two main implementations of GLR
and explain their differences and shortcomings.

2.3.3 Generalized LR parsing

Premise of GLR

The gist of Generalized LR (GLR) parsing is that, when the parser reaches an
ambiguity, it processes both parsing alternatives in parallel. On one hand, if
the grammar is truly unambiguous, along the way, one of the parses should
reach an error state. In that case, the faulty parse is discarded and the
remaining parse alternative resumes its execution. On the other hand, if the
grammar is truly ambiguous, both parses will successfully finish yielding two
parse trees. For more than one ambiguity, the process is simply repeated
for each ambiguity, leading to possibly many parse alternatives in parallel
yielding a parse forest. GLR parsing can be viewed as a breadth-first traversal
of the grammar rule alternatives, contrary to a backtracking approach which
is a depth-first traversal.

Two main approaches exist to implement GLR parsing: the list-of-stacks
approach and the Graph-Structured Stack approach.

List of stacks implementation

The naive way to implement a GLR algorithm is to fully copy the current
state of the parser when reaching a conflict. That way, both parse alternatives
are straightforward to process in parallel. The state stack from the parser
is copied in another parse alternative process. If an alternative reaches an
error state, it is deleted without concern for the rest of the alternatives since
it is independent. However, with only this forking mechanism and without
merging, this approach is very memory-hungry since for each new ambiguity,
a new parsing process is spawned. A merging technique is mandatory to
achieve non-prohibitive memory consumption and run time.

Example. Figure 2.9 is an example depicting what happens when a list-
of-stacks GLR reaches a conflict. The parser starts with a single stack, the
same as an LR parser. Once a conflict is reached, a copy (fork) of the stack
is performed and each possible action of the conflict is then executed on a

28 CHAPTER 2. STATE OF THE ART

separate forked stack. Each stack continues to parse as if it was alone, except
that it can be merged with another one if they became identical. If a stack
reaches and error, it is discarded. If multiple stacks complete, the string is
ambiguous and two ASTs are produced as it is the case with this example.

List-of-stacks GLR

shift 17
[1 5 7 11]

reduce 3, 4

[1 5 7 11 17]

[1 4]

AST 1

AST 2

Conflict: shift 17 OR reduce 3 states, goto 4

[1 5 7 11]

[1 5 7 11]
fork

Figure 2.9: Example of parsing with a list-of-stacks GLR.

Merging in list-of-stacks GLR. Parser generators, such as Bison [Lev09]
and SmaCC [BRPP10], implement a simple merging algorithm by synchro-
nizing the parse alternatives on shift actions and merging alternatives with
identical state stacks. Parsing alternatives are checked for equality once ev-
ery shift, if their state stacks are equals, they are merged. However, the
merge is only done on shifts, so it is possible that two parse alternatives per-
formed multiple identical reductions and an identical shift before merging.
It means they could have been merged earlier after a reduction, executing
the following actions on a single merged parsing alternatives instead of ex-
ecuting the same actions on both parsing alternatives and merging later on
(on a shift). This merging technique is far from perfect but achieves practi-
cal parse time when parsing programming languages with mainstream parser
generators (i.e. Bison).

GSS implementation

Tomita [Tom87, TN91] designed an algorithm to share the states from the
prefix of the state stacks and merge the identical top states. He called
the resulting structure a Graph-Structured Stack (GSS). This representa-
tion achieves maximum state sharing, leading to a lower memory footprint
than a list of stacks. A significant body of work went into implementing a
complete version of this algorithm, starting with the first Tomita paper in
1984 up to RNGLR from Scott and Johnstone in 2002. We give here a short
overview; we recommend reading [SJ06] for a detailed overview of its state
of the art and implementation.

Intuitively, the algorithm is equivalent to sharing identical stack prefixes
and suffixes in a list-of-stacks implementation, by combining identical states

2.3. GENERALIZED PARSING 29

into a single one. The resulting GSS is a graph with the maximal number
of states shared. However, to construct the GSS in practice, the duplicate
parts are never added in the first place and only non-duplicated states are
added.

A GSS is constructed to never unnecessarily add an already existing state.
The GSS is organized in successive frontiers synchronized on shifts. Fron-
tiers are composed of a set of states, and each state in the current frontier
is connected to states in the current frontier (via reduction arcs) or to states
in previous frontiers (via reduction and shift arcs). The first frontier is com-
posed of the single starting state. Algorithm 1 shows a simplified version of
the GLR algorithm, enough to understand the mechanisms of GLR and its
main differences with LR.

Algorithm 1 Simplified GLR frontier algorithm
1: function CreateFrontier(previousFrontier, reduceSet, shiftSet)
2: U ← ∅
3: while reduceSet 6= ∅ do
4: (m,N, i)← (reduceSize, reduceSymbol, originState) ∈ reduceSet
5: R← reduction paths of size m from i
6: while R 6= ∅ do
7: r ← state ∈ R
8: j ← gotoState(r,N)
9: if j /∈ U then

10: add j to U
11: end if
12: if @ arc(j, r) then
13: add arc(j, r)
14: end if
15: end while
16: add new actions to reduceSet and shiftSet
17: end while
18: while shiftSet 6= ∅ do
19: (i, j)← (originState, destState) ∈ shiftSet
20: if j /∈ U then
21: add j to U
22: end if
23: if @ arc(j, i) then
24: add arc(j, i)
25: end if
26: end while
27: end function

Each new frontier computation follows the same pattern: perform all
possible reductions and then execute the next shift.

Executing the next shift means going through all the states in the previous
frontier, seeing if they accept the lookahead token as a possible shift, creating

30 CHAPTER 2. STATE OF THE ART

the new state in the current frontier and adding a shift arc from the new state
to the corresponding state in the previous frontier. If the new state already
exists in the current frontier, no new state is added, and the shift arc is
simply added from the existing state.

For reductions, the parser gathers all states in the current frontier that
accept a reduce from the current lookahead. Then, it searches for reduction
paths of the size of the production rule of the reduction down the GSS,
starting from the current state down to the initial state in the first frontier.
Then, arcs are added from the goto state of the reduction to the state at the
end of the reduction path previously found. As with shifts, if the goto state
does not exist in the current frontier, it is created with its arc, otherwise only
the arc is added.

As for termination, if a newly built frontier is empty, the parse is consid-
ered terminated. If an accept state is present in the last frontier, the parse
is a success, otherwise it is a failure.

For each shift and reduction, every new state in the frontier is kept unique
to achieve the maximum state sharing.

Differences between list of stacks and GSS

While a list-of-stacks approach copies the stacks and then tries to merge them
to reduce the duplication of states, a GSS approach does not, by construction,
duplicate states between stacks.

A list of stacks is a local structure, each stack has only knowledge of its
own stacks and only when merging does it interact with the other stacks.
It means states are duplicated, but it also means we are always working
with a single stack. The standard LR shift and reduce algorithm are reused,
semantic actions can even be executed. The only additions are: forking when
there is a conflict and trying to merge after before every shift.

On the contrary, a GSS is a global structure, at any time, it contains all
the states the parse went through. Since it is global, it checks whether a new
state should be added or if it already exists and only an arc (symbolizing a
shift or a reduce) needs to be added to the GSS. However, since the GSS is
a global structure, individual stacks cannot be modified without impacting
other stacks. Stack independence is important for reduces with semantic
actions, since code needs to be executed while reducing. Indeed, on a stack,
it is obvious which last m states to remove since it is linear, but on a graph,
multiple paths must be considered and new arcs could still be added in the
future. For these reasons, semantic actions and AST construction are done
once the GSS is complete, when the parse is finished.

2.3. GENERALIZED PARSING 31

Table 2.1 summarizes the differences of approach between a list of stacks
and a GSS.

Table 2.1: List of stacks and GSS differences in GLR

List of stacks GSS

States sharing duplication of states maximal state sharing
Structure local global
Similitude to LR high limited
Reductions online at the end

2.3.4 Improvements and variants of GLR

Tomita’s algorithm builds a GSS where each state is present once and only
once in each layer of the GSS. Tomita then builds a Shared Packed Parse
Forest (SPPF) from the GSS at the end of the parse. A SPPF is a graph of
all the possible parse trees of the input string, that is also constructed with
node sharing in mind. A number of improvements were made to the original
GLR algorithm, mainly to fix termination issues and runtime, leading to
numerous variants of the algorithm.

Farschi’s algorithm. Farshi’s algorithm [NF91] is a correction of the orig-
inal Tomita GLR to ensure termination in the case of hidden left recursion
in the grammar. The fix involved modifying the way reductions are handled
by the original algorithm to search down all paths in the frontier of the GSS,
bringing a significant execution overhead.

RNGLR. RNGLR [SJ06] is another approach to solve the problem of hid-
den left recursion by modifying the LR parse tables. Reductions of size 0
are added to the parse tables when hidden left recursion is discovered dur-
ing the parser generation process. RNGLR also produces more compact
SPPF [Rek92] for ε-reductions.

BRNGLR. BRNGLR [SJE07] improves the worst case runtime of GLR
from O(nk+1) to O(n3) by binarising the recognition process (effectively lim-
iting k to 2). Note that BRNGLR does not binarize the parse tables, only the
search through the tables at parse time. The algorithm also has linear com-
plexity on LR(1) grammars. Johnstone et al [JSE06] compares BRNGLR,

32 CHAPTER 2. STATE OF THE ART

RNGLR and Farschi’s GLR to demonstrate the efficiency of the right-nulled
parse tables with the binarized GLR runtime.

SGLR. Scannerless GLR [EKV09] is a version of the classic GSS-based
GLR parsing algorithm adapted to remove the need for a separate scanning
phase to create tokens. SGLR defines disambiguation filters to improve per-
formance by removing the additional ambiguities introduced by the absence
of a scanner.

Elkhound. Elkhound [MN04] is an LR and GLR parser generator for C++.
Elkhound builds an hybrid parser that switches between a LR and a GLR
mode for a better parse time. The GLR part is GSS-based, but an ordering is
performed on the GSS node construction, contrary to the original algorithm.

2.4 Pattern matching

After discussing parsing of the source code to retrieve an AST, we will now
focus on how to match the subtrees in an AST through patterns. The differ-
ences between explicit and syntactic patterns are covered in this section.

2.4.1 Pattern matching implementors

Pattern matching is the process of finding all the occurences of a given de-
scription in a given source. Pattern matching originates from functional
language and metalanguage research through languages like ML and later
Erlang, Haskell, OCaml, Scala, F#, and so on. In these languages featur-
ing built-in pattern matching, the users can ask for language structures with
respect to certain conditions. The source in built-in pattern matching is di-
rectly the syntactic structures of the language. Many paradigms later incor-
porated built-in pattern matching to their languages, most notably Object-
Oriented (OO) languages [RSDT16, GHB10, EOW07]. TOM [BCM15, MRV03]
is an external pattern matching engine to bring pattern matching extensions
to languages lacking its support.

Other projects created external pattern matching engines whose goals are
to separate the matched language from the implementation of the engine.
External pattern matching can originate from a will to support multiple lan-
guages in a single tool, or because pattern matching for a language is costly
to implement in the language. Pattern matching engines are used by bigger
language tools, such as code transformation engines [YKS+14], refactoring

2.4. PATTERN MATCHING 33

engines [RBJO96, KBD17], search engines [DRI14] or clone detection en-
gine [KT14]. They implement a pattern matching engine, either specific to
the language they work with or more generic when dealing with multiple
languages.

2.4.2 Pattern and matches

A pattern is a description of the IR structure to match in the input. Differ-
ent transformation engines operate on different types of IRs. For example,
Stratego [BKVV08] matches terms while Rascal [HKV12] matches subtrees
in ASTs. For the rest of this work, we will focus on matching subtrees in
ASTs. As such, language IR will refer to ASTs unless specified otherwise.

Classical approaches to pattern matching offer patterns that are a textual
representation of a node (mainly its name). The pattern is then converted
to its corresponding subtree and the pattern matching engine checks for all
of its occurences or matches in the source AST.

Contextual information can also be added to refine a pattern’s matches.
This typically includes precisions on its parent node or its children to get
fewer more accurate matches. Some engines offer wildcards to match any
node.

Listing 2.7 is an example of a simple pattern that matches nodes with
the name ExpressionNode whenever they are encountered in the AST.

1 ExpressionNode

Listing 2.7: Example of pattern.

Listing 2.8 is more specific, only matching such a node when its right
operand is the variable "a". The rest of its children are wildcards, so they
are not restricted to match a specific type of node.

1 ExpressionNode(left=_,operator=_,right=Variable ("a"))

Listing 2.8: Example of pattern with children information.

2.4.3 Explicit pattern matching

Pattern matching [BBC+03, VD03, JK06] feeds a pattern and a program to
an engine and gets in return all the possible matches of the pattern in the
program. A pattern matching engine is a search engine returning elements
of said source code IR. In the context of matching programming languages,
these structures are AST node types. The pattern matching engine will

34 CHAPTER 2. STATE OF THE ART

Explicit pattern
matching engine

Pattern Source

Source AST

Matches

Pattern node

translate to parse

unification

Figure 2.10: Explicit pattern matching engine.

answer all the matches of said entity by simply comparing the node type of the
pattern with the ones in the input AST in a unification process (Figure 2.10).

However, for a single node matching, the set of matches can be massive for
big code bases, so filtering techniques are applied before or after the match
to limit the number of results to more reasonable quantities. Filtering can
be done on the name of sub-entities, actual source code of the nodes, file
location, and so on.

2.4.4 Syntactic pattern matching

Language ASTs are constituted of many nodes that are specific to the lan-
guage. As an example, an AST for a general purpose language such as Java
usually comprises of more than 200 different node types. In the context of
non-expert users crafting their own patterns, this knowledge burden of the
AST adds a high barrier to entry. To somewhat lift this burden, instead of
explicitly describing the node type to match through explicit patterns, syn-
tactic pattern matching proposes to describe the concrete syntax of what to
match and letting the engine infer the node type.

Syntactic patterns are also called code templates, such as in Ekeko/X [MDR16b].
Syntactic pattern matching offers the opportunity for users to express pat-
terns without relying on AST node types. Syntactic patterns are written
using the input language, enhanced with some sort of wildcards. These wild-
cards hold any node type available in the language, and so does the syntactic
pattern. Wildcards are also called holes or metavariables. For consistency
reasons, they will be refered as metavariables in the rest of this work.

2.5. CODE TRANSFORMATION ENGINE 35

Syntactic pattern example. Listing 2.9 shows an example of a syntactic
pattern designed to match a while statement from languages such as C.

1 while(‘aCondition ‘)

2 {

3 ‘someStatements ‘

4 }

Listing 2.9: Syntactic pattern while example.

The pattern is just like C code, with the addition of two metavariables: ‘

aCondition‘ and ‘someStatements‘ acting as wildcards and matching anything
inside a while and inside a block respectively. Nowhere did we have to specify
the types of AST node these metavariables should have.

Retrieving IR types from syntax. Since metavariables are only vari-
ables and not explicit types, no explicit node type information is required
to express syntactic patterns. Of course, since type information is absent
but is still required to perform the actual matching, it needs to be inferred.
Previously, the matching step only consisted in a unification process where a
pattern is unified with the input AST. Now, before the unification, the pat-
tern undergoes a “type inference” step during which a node type is inferred
for the pattern and node types are inferred for each of the metavariables.
Then, the unification proceeds as previously described with the output of
the type inference.

Syntactic pattern matching engine are particularly interesting because
they lower the barrier to entry for non-experts in language representation.
We will also show in Chapter 3 that they rely on a powerful result, ensuring
that the steps described here (matching and inference) are guaranteed to
work for any language for which one can write a context-free grammar.

2.5 Code transformation engine

A code transformation engine automatically transforms the occurences of a
pattern found in an input source according to a transformation pattern and
returns the modified version.

Figure 2.11 summarises a code transformation engine architecture. The
engine is comprised of two sub-engines: a pattern matching engine handling
the search for the occurences of the pattern in the input and a rewriting en-
gine handling the rewriting of these occurences according to a transformation
pattern.

36 CHAPTER 2. STATE OF THE ART

Code transformation
engine

Rewriting
engine

Transformation
pattern

Rewritten source Rewritten AST

Pattern matching
engine

Pattern Source

Source AST

Occurences
(subtrees)

parse

match

rewrite

input

Figure 2.11: Anatomy of a code transformation engine.

2.5.1 Code transformation use cases

Typically, use cases shape code transformation engines since they implicitly
derive requirements.

Refactorings. Refactorings [Rob99, RBJ97, RBJO96] are code transfor-
mations from a language to the same language while preserving the se-
mantics after the transformation. Refactorings modify non-functional re-
quirements such as the code size, the memory consumption, the general
performance, the readability, and so on. The general goal of refactorings
is improving code quality while giving the user confidence in the transfor-
mation. Refactorings are developed by language experts then integrated
into IDEs for end users. Preconditions check that the code base is in a
state to be refactored by a given refactoring, while postconditions validate
the transformation. Refactorings are used in a variety of contexts such as
code clones [KT14], software product lines [KBD17] and pattern match-
ing [WGMH13], and all kinds of languages, even preprocessed languages
such as C [OBH14, Ove13, HOBH13, Spi10, MB05, GG12] notably hard to
refactor into readable code close to the original source [GJ13, GMJ06].

2.5. CODE TRANSFORMATION ENGINE 37

Custom arbitrary transformations. Arbitrary, non behaviour-preserving,
transformations assume nothing on the end result of said transformations.
The ability to craft custom transformations is a powerful tool in expert hands,
but can be confusing and dangerous for others. Arbitrary transformations
tend to be source-to-source since there is no presupposition on the output’s
form. Node rewriting is also a possibility, but mainly inside a language, not
between languages since it would require the user to create an IR for the tar-
get language from scratch. Rascal [HKV12] is a metaprogramming language
leveraging both explicit and syntactic matching through separate engines
for transformation tasks. Rascal, as a full-fledged programming language
and not a DSL, is aimed at language implementors and not at non-expert
users. The Semantic Patch Language (SmPL) of Coccinelle [PLHM08] and
its transformation back-end are designed to handle evolution of C code in
Linux. The patch-like syntax, the accessibility of the patterns and the spe-
cialization to C derive from the target users: driver or kernel experts without
a strong emphasis on language expertise. Ekeko/X [DRI14, MDR16a] is a
transformation engine working with syntactic pattern for transformation of
Java code. Ekeko/X clearly aims at simplifying pattern matching and code
transformation for non-expert users.

Code migration. Code migration transforms a code base in a given lan-
guage to another language. In the context of code transformation engine, it
is meant to be done semi-automatically. This task usually cannot be done
completely automatically since there is no 1-to-1 feature match between the
old and new language. And even in the ideal case of perfect feature mapping
between the two languages, due to the sheer size of code migration projects
have to work with, the old code base is doomed to make use of a library
present in the ecosystem of the first language, but absent in the new lan-
guage. This library would need to be developed from scratch or mapped to a
similar library in the new language. Code migration shares with refactoring
the fact that developers will need to maintain the output code. Thus, the
transformed code must be readable and close to what a human developer
would have written. Such transformation finesse is hard to achieve without
arbitrary transformations that let the expert not only handle the migration
in itself (language mapping) but also readability of the code.

Code specialization. Code specialization is a vast umbrella under which
can be put all processes of applying transformations to a generic code base
to accomodate to features of a given target. The targets cover architecture
specialization, OS specialization, input data specialization. Code specializa-

38 CHAPTER 2. STATE OF THE ART

tion is done online through a Just-In-Time (JIT) compiler or offline before
the compilation or interpretation. Code specialization is usually done from
one language to the same, but it is not always true. For example, part of a
C/C++ program can be modified to use a specialized piece of assembly for a
specific platform for performance reasons instead of using a generic function.
In our case, we are mostly interested in offline code specialization integrated
in the compilation process, since this use case generally involves architecture
experts writing transformations instead of experts.

Language workbenches. Language workbenches [JCB+15, WKV14, KRV10]
offer a large array of features to develop languages, from parsers to refactor-
ing engines, to code generators, and so on. They aim at providing a complete
package to create language syntax and semantics from scratch with all the
support of a state-of-the-art IDE. Inherently, language workbenches are de-
signed with multiple languages in mind, meaning their underlying parsing
and transformation techniques tend to be more generic than engines target
to specific use cases and languages.

2.5.2 Transformation rule and transformation pattern

A transformation rule is the combination of a matching pattern and trans-
formation pattern, the left hand side being the matching part and the right
hand side the transformation part. Both sides of the transformation rule
share the same context, the same binding of its metavariables. A transfor-
mation pattern is a description of the transformation to apply, and can be
either imperative or declarative. Imperative transformation patterns directly
describe the way to transform the matches. These snippets of code need to
be written in the engine’s language (or a DSL) and, given total access to the
matches, perform the transformation. Declarative transformation patterns
describe what the matches must be transformed into, letting the transforma-
tion engine handle the transformation in itself.

1 ‘left ‘ + ‘right ‘ => ‘left ‘ ‘right ‘ +

Listing 2.10: Declarative transformation pattern.

For example, in the rule shown in Listing 2.10, the metavariables left

and right of the matching pattern are reused as context for the declarative
transformation pattern yielding a reverse Polish notation addition.

2.5. CODE TRANSFORMATION ENGINE 39

2.5.3 Rewriting engine

A rewriting engine handles the transformation of subtrees in the AST ac-
cording to a transformation pattern. The transformation is either a source-
to-source rewrite, meaning the source of the matched nodes is modified, or a
node rewrite where a subtree is replaced by another subtree.

Source-to-source rewrites. A source-to-source rewrite transforms the
source code of the matched subtree into a new string. To perform such an
operation, a binding between the node and its source must exist. In addition,
since a pattern can have multiple (overlapping) matches for a single transfor-
mation, the transformation is usually performed by a transaction of individ-
ual transformations of each subtree. Overlapping matches and rewrites ben-
efit from a string structure that represent the transaction and its overlapping
rewrites, so they can be cancelled at any time. String origins [IVDSE14] is an
example of string representation specialized for code transformation. Source-
to-source transformations are fit to arbitrary transformations since the raw
source of the input is modified, allowing for syntax-breaking code transfor-
mations. Code migration is a good example of arbitrary source-to-source
transformations where control over the source output is crucial to produce
readable code for the maintainers of the new code base.

Node rewrites. A node rewrite replaces a matched subtree in the source
AST with a new subtree. Either a binding already exists between the old
and the new subtree in the back-end of the engine, in which case it is done
automatically without user intervention, or it does not. If the binding does
not exist or the user wants different transformations than the one provided
by the engine, the user must convert the subtree by himself. Most node
rewriting engine give the user access to transformation primitives to replace
nodes. Overbey [OJ08] shows how to generate rewritable ASTs with addi-
tional primitives to conserve the original layout.

Rewriting strategies. For a given matching pattern, there usually are
more than one match and due to the tree nature of ASTs, the matches over-
lap each others. A pattern matching additions will match once a top level
addition which can also have additions as children, which will be matched
in turn. If they need to be rewritten using a transformation pattern, there
are multiple ways to rewrite this set of matches. Some may need to be
overwritten by a parent match transformation while other need to be trans-
formed before their parent. Rewritting strategies control the execution of

40 CHAPTER 2. STATE OF THE ART

the transformations. Stratego [BKVV08] for example is a language to define
transformation rules and strategies to control the execution of those rules.

2.6 Conclusion

As it is unreasonable to demand of new users to learn the IR of the language
from scratch, an engine targeting new users should use syntactic pattern
matching. As it is also unreasonable to ask experts to only match using
syntactic patterns and not explicit patterns for which they know the IR, an
hybrid approach is desirable. The challenge now is to build a code transfor-
mation engine based on a hybrid syntactic-explicit pattern matching engine
and source-to-source rewriting engine featuring rewriting syntactic patterns.
The engine also needs to make it easy for the implementor to add support
for new languages without having to write a language back-end from scratch.

Chapter 3

Parsing as intersection for
pattern matching

In this chapter, we discuss the advantages of a hybrid explicit-syntactic pat-
tern matching approach which defaults to syntactic. We show that the im-
plementation of a hybrid pattern matching engine can be language-agnostic
enough to only require an additional line in the grammar of a new language
to be able to match this new language. This is done through an adaptation
of parsing as intersection to handle the type inference in syntactic pattern
matching, the typically language-dependent part of the engine.

Contents
3.1 Hybrid explicit-syntactic pattern matching . . . 42

3.1.1 Deficiencies of explicit pattern matching 42

3.1.2 Alternatives to explicit pattern matching 43

3.1.3 Syntactic pattern (code template) 45

3.1.4 Hybrid syntactic-explicit patterns 45

3.1.5 Metavariables . 46

3.1.6 Type inference to support syntactic pattern match-
ing . 46

3.1.7 Unification . 48

3.1.8 Towards a language-agnostic pattern matching en-
gine . 49

3.2 Implementing syntactic pattern matching 49

3.2.1 Type inference implementation issues 49

3.2.2 Typing in parser generators 51

3.2.3 Parsing as intersection for type inference 52

3.3 Type inference through GLR-based parsing as
intersection . 55

3.3.1 Gist of the approach 55

3.3.2 Parsing a syntactic pattern 56

41

42 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

3.3.3 Reaching a metavariable 57

3.3.4 Forking the parser 58

3.3.5 Unification . 60

3.4 Matching complex types 61

3.4.1 Matching of list idioms 62

3.4.2 AND metavariable types 63

3.4.3 Type inference for AND types 64

3.4.4 Unification for AND types 64

3.4.5 OR metavariable types 65

3.5 Experiments and results 67

3.5.1 The Smalltalk Compiler-Compiler 67

3.5.2 Industrial Validation 67

3.5.3 Expressiveness of hybrid patterns 69

3.6 Discussion . 71

3.6.1 Prerequisites of the approach 71

3.6.2 Scalability . 72

3.6.3 Application to other parsers and parser generators 72

3.7 Conclusion . 73

3.1 Hybrid explicit-syntactic pattern match-

ing

In this section, we examine deficiencies of pure explicit pattern matching and
pure syntactic pattern matching. We promote an hybrid approach featuring
both kinds of matching in a single pattern, and describe the additional step
of type inference to add syntactic matching in an explicit pattern matching
engine.

3.1.1 Deficiencies of explicit pattern matching

Traditional explicit pattern matching (described in Section 2.4.3) expects the
user to explicitly state what should be matched. Explicit pattern matching
relies on the assumption that the user knows the pattern matching engine’s
internal representation of the matched language.

3.1. HYBRID EXPLICIT-SYNTACTIC PATTERN MATCHING 43

This assumption severely limits the use of pattern matching in practice,
as learning an internal representation is a significant knowledge burden. Ba-
sically, the user needs to know the exact node type of the pattern to be
matched, for example it could be IfStatement for an if-then statement.

Table 3.1: Possible IR sizes for popular languages

Language Java C++ C# Delphi JS

Nodes 114 157 149 141 78

Table 3.1 shows IR sizes for some mainstream languages taken from
Eclipse’s JDT plugin (Java), SmaCC (Java, C#, Delphi, JS) and IPR (C++).
IPR [DRS11] is a C++ representation designed specifically to be compact
with as little node duplication as possible, and yet it is still composed of over
150 node types. All these general purpose languages have sizable IRs that
are tedious to learn for a user who is not a language expert. The more com-
plex the language, the more constructs the user has to learn. The problem is
much worse for languages similar to COBOL where the grammar is reverse
engineered from existing code bases [VDBSV+97] (more than 300 production
rules).

Of course, it is still possible to learn one language’s IR for the sake of
rewriting a massive code base for a migration for instance, but most of the
time said code base is written in a multitude of languages handling different
parts of the system. Learning each of the language IRs is time-consuming
for developers. Each language has its own features, differing from the others,
and even when features are similar, they usually do not use the same IR
construct.

Most users do not have the time and resources to become experts in
pattern matching. As a result, only those already experts write patterns,
and package them as extensions inside integrated development environments
for developers to use, in the Refactoring Browser (RB) [RBJO96, Rob99],
Eclipse, IntelliJ, Photran, and many more. And even environments that
have existed for decades such as RB see very little user creation of new
transformation patterns [dSS17].

3.1.2 Alternatives to explicit pattern matching

Alternatives and improvements exist to lessen the knowledge burden caused
by explicit pattern matching.

44 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

Unified representation. Pushing the limits of unification of language rep-
resentation is OMG’s AST Metamodel (ASTM) [Obj11], which aims at uni-
fying language programming concepts (even from different paradigms) under
a common AST model. The concepts in the metamodel corresponds to core
nodes available in most programming languages, such as the notion of ex-
pressions, statements, and so on, arranged in three groups: Generic ASTM,
Language-specific ASTM, and Proprietary ASTM, to be able to cover all
languages. The Generic ASTM is composed of 189 unique types, present in
most languages. This part of the ASTM is not exhaustive and must be com-
pleted with node types from the Language-specific and Proprietary ASTMs.
The unified representation ends up being the union of all the nodes for all
the languages, making the representation even more complex and more of
a burden to learn. Ultimately, this approach does not solve the problem at
hand.

Island parsing. Another solution to reduce the knowledge burden on the
user is to use island parsing. Island parsing [Kur16] allows one to parse a
small select subset of the language, that way the IR only incudes the few
construct the implementer deemed interesting. As a result, it is also easier
to implement at first [BNE16], as only a subset of the language is parsed
and matched. However, island parsing in this context suffers three problems.
First, the engine implementer decides what is interesting in the language,
meaning only those parts are matched. Second, if more constructs of the
language need to be matched, it is an additionnal burden on the engine
implementer to add this support, since he/she is recreating a full parser a
posteriori. Last, this approach works well for a single language, but as soon
as the engine implementer wants to add support for a new language, all
parsing and matching facilities must be rewritten from scratch.

Query-by-example. Query-by-example [Bal15] consists in providing an
example that will be parsed and the engine will retrieve every occurrence
that is significantly similar to the example. The major drawback of this
approach is its heuristic nature: it cannot grasp every single occurrence. As
an example, feeding a + 5 to a query-by-example engine will possibly yield all
additions, but also all other binary expressions or even only additions between
an identifier and a literal depending on the AST and the similarity heuristic
of the engine. While this approach works for program understanding for
example, its heuristic nature makes it unsuitable to program transformation.

A better solution to alleviate the knowledge burden on the user is to
use patterns written in the matched language. Since the user already knows

3.1. HYBRID EXPLICIT-SYNTACTIC PATTERN MATCHING 45

the syntax of the language to match, he/she should be able to write patterns
that closely resemble code snippets of the language. These patterns are called
syntactic patterns or code templates.

3.1.3 Syntactic pattern (code template)

Contrary to explicit pattern matching where the user is expected to name the
type of AST node to match, syntactic pattern matching is based on writing
snippets of code in the syntax of the matched language [PLHM08, Bar13,
Cor06, DRI14, MDR16b].

1 IfStatementNode(_,BlockNode(_*))

Listing 3.1: Explicit conditional statement pattern.

As an example, matching a conditional statement in Java using an explicit
pattern matching engine will look like the pattern in Listing 3.1. To create
this pattern, the user would need to know that the name of the construct to
look for is an IfStatementNode, which has two ordered children (a ConditionNode

and a BlockNode). Since the user wants to match this pattern for every
condition, the first child is replaced by a wildcard ” ” matching anything.
The second child must now be a BlockNode with any number of statements as
its children.

1 if (‘condition ‘)

2 {

3 ‘statements*‘

4 }

Listing 3.2: Syntactic conditional statement pattern.

A syntactic version of the explicit pattern of Listing 3.1 is in Listing 3.2.
Contrary to its explicit counterpart, the syntactic pattern does not require
any knowledge of the IR: the structure of the pattern is inferred from the
pattern syntax and wildcards are replaced by metavariables. The pattern is
expressed in an extension of the syntax of the host language, meaning the
underlying language to match in which metavariables are embedded.

3.1.4 Hybrid syntactic-explicit patterns

If the user is an expert in the IR of the language to match, explicit pat-
tern matching would be beneficial in addition to syntactic pattern matching.
It should be best for a pattern matching engine to support both syntactic
patterns and explicit patterns, such as Rascal [HKV12]. But in addition to
supporting both kind of patterns, it is desirable to have an hybrid pattern

46 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

representation for patterns, so that explicit and syntactic parts coexist in the
same pattern, with the same engine (instead of having a separate engine for
each kind of pattern). An hybrid syntactic-explicit pattern is syntactic by
default, but allows for individual typing of metavariables or patterns. That
way, the strengths of both approaches are kept for language experts: they
can type some metavariables explicitly and fallback on type inference for the
rest.

1 ‘a:Add ‘ + ‘b‘

Listing 3.3: Hybrid explicit-syntactic pattern.

The pattern in Listing 3.3 is by default syntactic but the user specified
that the metavariable ‘a‘ should be of type Add.

3.1.5 Metavariables

A metavariable is a variable in the logic sense, it holds no value until one is
bound to it through matching. Any IR element or collection of IR elements is
a possible value for our metavariables. A metavariable goes through 3 states:
untyped, typed and bound. In the untyped state, the metavariable is simply
an identifier, with no type and no value. For example, before matching, the
metavariable ‘condition‘ from Listing 3.2 is untyped. In the typed state, the
metavariable is also assigned a type and still has no value, but later, its value
will only be of the type it got. Following the previous example, ‘condition‘

would be of type ConditionNode. In the bound state, the metavariable received
a value of its type, the value being a node in the AST to match in our case.
The process through which a metavariable gets from the untyped state to
the typed state is a process we named type inference and the one to go from
the typed state to the bound state is called unification.

3.1.6 Type inference to support syntactic pattern match-
ing

Type inference is a mandatory step of syntactic pattern matching that ex-
plicit pattern matching does not require, since patterns are already typed
by the user. The type inference phase must not only infer the type of the
pattern, but also the types of each of its metavariables. For a single pattern,
there exists a forest of trees where the top node of the tree is of the pattern
type and each of pattern metavariables are leaves inside the tree. Before the
unification phase, metavariables are leaves since no concrete node has been
assigned to it, it is simply given a type. We named this kind of tree with
metavariables as leaves abstract matches.

3.1. HYBRID EXPLICIT-SYNTACTIC PATTERN MATCHING 47

Let L1 be the host language of the pattern, defined in the grammar in
Listing 3.4.

1 <number > : [0-9]+ ;

2

3 Expression

4 : Expression "+" Expression {{Add}}

5 | Expression "-" Expression {{Sub}}

6 | <number > {{Num}}

7 ;

Listing 3.4: Toy expression grammar.

As an example, let us consider the simple addition pattern of Listing 3.5.

1 ‘a‘ + ‘b‘

Listing 3.5: Addition syntactic pattern.

For this pattern, we need to find all the subtrees in the source matching an
addition of two values ‘a‘ and ‘b‘ that themselves match any subtree as long
as it is within an addition. The first step, the type inference consists of getting
abstract matches from the textual description of the pattern. An abstract
match is the abstract syntax tree of the pattern, where metavariables are
special leaf nodes annotated with a given type. Each combination of pattern
type and metavariable types for each metavariable yields a forest of abstract
matches.

a:Add b:Sub+

Add(1)

a:Sub b:Add+

Add(4)

a:Add b:Num+

Add(2)

b:Add+

Add

a:Num

(5)

b:Add+

Add

a:Add

(6)

a:Num b:Num+

Add(3)

Figure 3.1: Abstract matches for the pattern ‘a‘ + ‘b‘. The abstract
matches have been numbered for referencing in Figure 3.2.

For example, Figure 3.1 represents some abstract matches of the pattern
‘a‘ + ‘b‘ according to the grammar of Listing 3.4. The pattern type of this
pattern, meaning the type of its top node, must be Add, while ‘a‘ and ‘b‘

can be any one of Add, Sub or Num.

48 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

3.1.7 Unification

During the unification phase, the AST of the source tree is traversed using
different strategies and nodes are compared to the abstract matches obtained
from the type inference. Metavariables are assigned the values of the subtrees
that match their types. The subtrees with each of their metavariables bound
to a concrete subtree of the source AST are named concrete matches.

a:Num b:Num+

p:Add(3)

1 + 2

Source Concrete matches

1 + 2 + 3

a:Add b:Num+

p:Add(2)

a:Num b:Num+

p:Add(3)

Num(1) Num(2)+

Add

Abstract matches
p: ‘a‘ + ‘b ‘

Add

+ Num(3)

Num(1) Num(2)+

Add

Add

+ Num(3)

Num(1) Num(2)+

Add

a(3) b(3)

p(3),a(2) b(2)

p(2)

Num(1) Num(2)+

Add

a(3) b(3)

p(3)

1 + 2 - 3

a:Num b:Num+

p:Add(3)
Sub

- Num(3)

Num(1) Num(2)+

Add

Sub

- Num(3)

Num(1) Num(2)+

Add

a(3) b(3)

p(3)

Figure 3.2: Concrete matches for the pattern ‘a‘ + ‘b‘. The first column
repeats the abstract matches from Figure 3.1, indexed by a number in paren-
thesis. For each abstract match ”(X)”, we bind its metavariables a(X) and
b(X) and its pattern type p(X) to a subtree in the concrete match column.

If we go back to the previous example of pattern in Listing 3.5, and
unify its abstract matches with a collection of source examples, we get the
concrete matches in Figure 3.2. Metavariables ‘a‘ and ‘b‘ are now bound to
a given subtree of the concrete match. The top node of the matched subtree
represents the inferred pattern type for the concrete match.

3.2. IMPLEMENTING SYNTACTIC PATTERN MATCHING 49

3.1.8 Towards a language-agnostic pattern matching
engine

To build a pattern matching engine supporting hybrid patterns, we need to
translate syntactic patterns and explicit patterns into IR elements. Explicit
patterns are easy in that regard since they already describe an IR element.
Syntactic patterns require additional work, through a type inference phase,
to transform them into a compatible structure. Type inference is heavily
dependent on the matched language, since it will provide the IR. In the next
sections, we will describe a technique to perform the type inference without
having to write by hand a language back-end for each new language.

3.2 Implementing syntactic pattern match-

ing

In this section, we will discuss how parsing as intersection is adapted and
combined with a parser generator to solve the type inference reliance on
hand-crafted language back-ends.

3.2.1 Type inference implementation issues

Unification is a typical step of every pattern matching engine and as such
has been covered in all of them. As explained in Section 3.1.6, type inference
resolves around solving two problems:

• finding the type of the pattern,

• and finding the type of each of its metavariables.

Both problems are intermingled since the type of a pattern depends on
the type of its metavariables. In other words, the problem of type inference
can be reformulated to searching all the unique combinations of metavariable
types for each possible pattern type. We named a single combination of a
pattern type, each of its metavariable types and the pattern tree, an abstract
match, so type inference searches for every valid abstract match for a pattern.

In a syntactic pattern matching engine, this search is performed by pars-
ing the pattern with a parser. Such a parser is a parser for the host language,
modified to handle metavariables.

50 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

Metavariable type problem. First of all, to be fed to a parser, a metavari-
able needs to be recognized by the parser. In parsers for pattern matching,
metavariables are viewed as special tokens but would still require custom code
to handle it. In scannerless parsers, the metavariable could have a special rule
that would need to be checked constantly and, again, would require custom
code to handle. In both cases, custom code is required once a metavariable is
recognized by the parser to get the metavariable to a typed state. Such glue
code is language-dependent and has to be rewritten for each language the
engine aims to support. Syntactic pattern matching engines deal with this
problem by skipping one node, creating a metavariable node that matches
anything in its stead, and try to continue parsing with this incomplete input
leading to backtracking introduction into a possibly non-backtracking parser.

Pattern type problem. In addition to finding a type for every valid type
combination for the metavariable, type inference needs also to provide the
pattern type for each combination. Note that this is also be divided into two
problems: where in the language does the pattern start and from that point
what types are reachable.

1 ‘a‘ + ‘b‘ * ‘c‘

Listing 3.6: Arithmetic expression syntactic pattern.

In the example of Listing 3.6, the pattern is obviously some kind of arith-
metic expression. However, to parse this pattern and get the proper type,
the parser cannot start at the top level (for example, a CompilationUnit for
C) because it would not match this pattern which belongs to the language.
It would require every pattern to be written from the top level to match
anything at all, which is unreasonable and impractical. As such, the parser
needs to start at some intermediary point in the language to get the valid
type. Of course, it is impossible to find the correct starting points for a given
pattern before parsing it, so every possible starting point in the language
must be considered. Identifying those starting points of a pattern is usually
done in two ways: either the engine requires the user to provide the start-
ing point for the pattern or the engine implementer provides the list of all
possible starting points manually by hard coding them in the engine. The
first approach severely limits the specter of users that can write patterns
(essentially experts), whereas the second approach is error prone (missing
a starting point) and has to be repeated for each new language the engine
supports.

Work by Aarssen et al [AVvdS19] provides facilities to ease the writing
of glue code for metavariable typing and pattern typing when using external

3.2. IMPLEMENTING SYNTACTIC PATTERN MATCHING 51

black box parsers. While it is still required to write some glue in a format
or another this helps leverage the power of well known parsers used by the
community.

In this work, the opposite approach is taken: instead of using black box
parsers, we integrate our pattern matching engine to a parser generator to
forgoe completely the problem of glue code. Our approach leverages parser
generators for their automation capabilities and the result of parsing as in-
tersection to add pattern matching to said parser generators.

3.2.2 Typing in parser generators

Parser generators are used when building language independent tools for a
collection of languages. A parser generator takes a grammar of the language
to parse as its input and from it, generates a parser for the language. That
way, when maintaining the parser, only the grammar (typically orders of
magnitude smaller in lines of code) has to be maintained, the code for the
parser is generated. While the generation allows one to do a lot with very
little lines of code, grammars in BNF are an entirely different beast from
standard code, leading to difficult debugging tasks on a grammar when not
equipped with a parser debugger.

As explained in Section 2.2.2, LR parsers are a popular parsing technique
and are always generated through parser generators (referencing an LR parser
usually means referencing its generator). In LR parsers, the grammar is
distilled into parse tables and the AST creation code is also generated. Since
we want to infer AST node types, all the generated information is sufficient
to perform type inference.

In a parser generation environment, two kinds of types coexist in a single
typing system. The first kind is the symbol types, they consist of the types of
the grammar itself, so terminals and non-terminals. Note that these are also
the types used by the parse tree since the names of the parse tree nodes are
non-terminal names in the grammar. The second kind is the node types, they
consist of the types of the AST nodes. In most parser generators that provide
AST generation, the creation of ASTs is either done by transducers that
transform the parse tree into an AST or by directly building the AST during
the parse, without going through an intermediate parse tree node. In this
work, we focus on the second approach with intermediate parse tree nodes.
This approach relies on semantic actions to build the AST from scratch in
the same way they would be needed to build a parse tree. Semantic actions
are tied to production rules in the grammar, from which we obtain a binding
between symbol types and AST node types.

52 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

1 <number > : [0-9]+ ;

2

3 Expression

4 : Expression "+" Expression {{ Addition }}

5 | Expression "-" Expression {{ Subtraction }}

6 | <number > {{ Number }}

7 ;

Listing 3.7: Example of grammar with AST generation.

In the example of Listing 3.7, the symbol type Expression leads to three
different node types: Addition, Subtraction and Number.

The job of the type inference phase is to get the abstract matches of a
pattern by typing its metavariables and recognizing a root node type. The
types in question are AST node types, but syntactic patterns will be parsed
during the type inference, so it is important to have a binding between the
grammar types and the node types.

3.2.3 Parsing as intersection for type inference

Type inference is needed to solve the metavariable type problem and the
pattern type problem. A grammar result called parsing as intersection can
be adapted to perform type inference without rewriting language back-ends
by hand. The rest of this section is dedicated to an explanation of the
principle of parsing as intersection and its adaptation to suit type inference
in a pattern matching engine.

Parsing as intersection is a property on context-free grammars described
by Bar-Hillel et al. [BHPS61]. This property has been studied and explained
in a chapter of Parsing Techniques: a Practical Guide [GJ08a], but the book
questions its use cases.

Parsing as intersection. Parsing as intersection states: “the intersection
of a context-free language with a regular language is again a context-free
language”. In other terms, L∩LR = LI , where L is the original context-free
language (defined by a Chomsky Type-2 grammar), LR the regular language
(Chomsky Type-3) and LI is the context-free language resulting from the
intersection.

While this result is daunting and quite abstract in its original form, we
will discuss its implication for the pattern matching domain and how to
implement it.

In the context of a pattern matching engine, the original language L is
described by grammarG, and corresponds to the host language, the one being
matched. The regular language LR is assimilated to our syntactic pattern

3.2. IMPLEMENTING SYNTACTIC PATTERN MATCHING 53

Grammar
world

CFG Regular language Intersection CFG

Typed Abstract Match
Forest

Pattern
matching

world

Example

Matched language
CFG

GLR parser
Syntactic
pattern

distilled into

parsing with GLR

‘a‘ + ‘b‘

a:Num b:Num+

Add(3)

a:Add b:Num+

Add(2)

Figure 3.3: Parsing as intersection: from the grammar world to the pattern
matching world

language. This language is simply using the same symbols as G, with the
caveat that metavariables hold the function of regular language wildcards
and that Kleene operators (star, union and concatenation) are valid on those
symbols.

The intersection grammar GI of language LI is obtained by applying the
intersection operator between G and the syntactic pattern. In this context,
where the syntactic pattern language and the host language both have the
same set of symbols, the intersection operator ∩ is assimilated to a gener-
alized parser of the host language trying all the possible parses of the pat-
tern. Performing this will result in a forest of abstract matches, one abstract
match per pattern type - metavariable types combination. Note that instead
of generating all the abstract matches (trees), we could instead generate the
grammar which once we expand all of its possible branches would give us
back the abstract matches. However, since the later purpose is to compare
trees during the unification phase, we prefer to directly generate abstract
matches.

Figure 3.4 shows a pattern matching engine updated with type inference
based on parsing as intersection.

Solving the metavariable type problem. The gist of the approach to
solve the problem of finding all the possible types for a metavariable is to
treat metavariables in the same way as ambiguities (see Section 2.3.1). Upon
reaching an ambiguity in a generalized parser, the parser will fork for each
possible parsing alternative, processing them in parallel until one fails. In our

54 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

Source

Source AST

Syntactic Pattern

parsing type inference

unification

Concrete Matches

Parser Generator

generating

Parsing-as-intersection
Parser

Typed Abstract
Match Forest

Figure 3.4: Pattern matching engine using parsing as intersection

case, upon reaching a metavariable, the generalized parser will fork for each
possible type the metavariable can have at this point in the parse (not all
possible symbol types) and then continue the parse as usual. This set of types
is obtained from the binding between grammar types and AST node types.
If the parse reaches an error state, as for ambiguities, the current parsing
fork is discarded without impacting the others. All the successful parsing
forks yield a valid abstract match according to the grammar. Reusing the
forking mechanism of generalized parsers that are generated further lessens
the burden on the engine implementer.

Solving the pattern type problem. Since it is not acceptable to define
all patterns from the start of the grammar, a solution must find the possible
starting states automatically, without relying on glue code from the engine
implementer. Solving this problem is also done using a generalized parser.
Once the possible starting locations for the pattern are identified, the parser
simply performs an initial fork for each of those locations in the grammar.
The possible starting locations correspond to the start of production rules
in the grammar that accept a token, meaning all rules that only reduce to
other rules must be excluded. Since the starting locations can be deduced
from every CFG and incorporated in a generated parser, it removes the need
for glue code.

3.3. TYPE INFERENCE THROUGH GLR-BASED PARSING AS INTERSECTION55

3.3 Type inference through GLR-based pars-

ing as intersection

3.3.1 Gist of the approach

Fitting all together, we want to use a parser generator to generate a GLR
parser aware of metavariables to use a single algorithm to parse the host
language and the syntactic patterns, thus improving back-end reuse between
languages of the pattern matching engine.

Parser generators give us access to type information from the grammar
(through semantic actions) and to the parser generation process. Having both
enables us to generate parsers fully compatible with our pattern matching
engine with almost no overhead.

Our approach implements a version of parsing as intersection using a
specific kind of generalized parser: GLR parsers. We modify the GLR parsing
runtime to handle metavariables as ambiguities and automated identification
of starting locations. This solves the metavariable type and pattern type
problems by a clever use of the GLR parser forking mechanisms.

In addition, the pattern matching engine also supports an explicit-inferred
hybrid approach that lets the user specify explicitly individual metavariable
or pattern types while relying on inferrence for the rest.

Figure 3.5 presents the main components of our approach to syntactic
pattern matching. The gist of the parsing as intersection approach is to
use the same parsing algorithm to parse the program source and the pat-
tern. Whereas the program parsing yields an AST, the pattern parsing cor-
responding to type inference yields a forest of trees corresponding to each
valid abstract match.

The GLR parse starts and when it reaches a metavariable, the parser forks
into multiple subparsers, one for each possible type that appears at this spe-
cific point during the parse. The parser does it by inspecting its own LR
parse tables, it checks for all the available transitions from the current state,
relates them to potential AST node types and forks for each one of them.
If a subparser fails to parse, it means the configuration is invalid and it is
discarded. The subparsers that survive at the end of the parse will each gen-
erate one tree, each tree having a specific configuration of metavariable-type
pair, an abstract match. Each abstract match in the forest is then confronted
against the program AST. For the matching subtrees, each metavariable is
bound to the concrete AST node (meaning subtree) it represents.

Activating pattern matching for a new language is easy if a grammar is
available. It consists of only a single line of code to add the metavariable

56 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

AST
generation

Next types
identification

Forking
mechanism

Standard LR
parser

Program
AST

Abstract matches
forest

unification

Concrete matches

Parsing-as-intersection parser

Program

Metavariable tokenGrammar

Pattern

generates
parses

Parser
generator

Figure 3.5: General pipeline of the pattern matching engine.

token into the grammar, so that the scanner recognizes it.

3.3.2 Parsing a syntactic pattern

Performing parsing as intersection on a pattern to get the pattern’s abstract
matches requires some modification of the parsing runtime of GLR that we
will now present.

First, to be able to gather every type of the pattern and not describe
the pattern and parse it from the root of the grammar, we need to identify
candidate starting states in the parser. Without other assumptions about the
pattern in question, the best starting points we can find are the production
rules that accept a token. In other words, we only reject production rules
that are only reductions of other rules. This simply means that the parser
must be able to consume a token first, without any previous input.

In LR terms, starting states corresponds to states in the automaton that
display at least one outgoing shift transition. That way, if all the possible
actions are reduces, accepts or errors, the state is not selected as a starting
candidate.

3.3. TYPE INFERENCE THROUGH GLR-BASED PARSING AS INTERSECTION57

1 <number > : [0-9]+ ;

2 <identifier > : [a-z][a-zA -Z0 -9_]+ ;

3

4 Expression

5 : Expression "+" Term {{Add}}

6 | Expression "-" Term {{Sub}}

7 | Term

8 ;

9

10 Term

11 : Term "*" Factor {{Mult}}

12 | Term "/" Factor {{Div}}

13 | Factor

14 ;

15

16 Factor

17 : "(" Expression ")"

18 | Operand

19 ;

20

21 Operand

22 : <number > {{ Number }}

23 | <identifier > {{ Variable }}

24 ;

Listing 3.8: Unambiguous arithmetic expression grammar.

1 ‘a‘ + ‘b:Mult ‘

Listing 3.9: Hybrid explicit-syntactic expression pattern example.

According to the grammar of Listing 3.8, the pattern of Listing 3.9 can
start from any of the production rules because none of them only reduces.

For each starting state candidate, a subparser is created with its own
state as the top of the state stack. Obviously, this will overshoot the number
of starting states that will yield a correct result in the end. However, since
we are dealing with a GLR parser, a subparser reaching an error state will
be discarded. Uninteresting starting states will rapidly reach an error state
resulting in their removal. The subparsers behave normally until they reach
metavariables.

3.3.3 Reaching a metavariable

To be able to recognize metavariables, a token definition needs to be added
to the grammar, so that the compiled scanner recognizes it and creates a
proper metavariable token. To this end, a metavariable token must first be
defined in the host grammar. Since it will coexist with the rest of the host

58 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

language, it is imperative the token definition does not conflict with other
token definitions in the language.

In all examples of syntactic patterns, the metavariable token will enclose
metavariables with the backquote character ‘ since it is mostly absent from
programming languages. As stated in Section 3.3.1, our approach is hybrid,
meaning the default matching method is syntactic but the user can still
choose to explicitly type individual metavariables or patterns. To do so, a
dedicated metavariable parser is called from the generated scanner to ensure
the metavariable token holds the type the user specified if any.

When reaching a metavariable token, the subparser inspects the parse
tables and retrieves all the possible actions for the current parsing state
(every reduce and shift)1.

If we go back to our previous example in Listing 3.9 the metavariable
‘a‘ could of types {Number, Variable, Add, Sub, Mult, Div, "(", <number>, <

identifier>} depending on the parser’s starting states, while an explicitly
typed ‘b‘ is of type Mult.

3.3.4 Forking the parser

To support an hybrid approach, if a node type is specified by the user, the
subparser selects only the actions tied to a symbol whose node types in-
clude the user node type. If no user type is provided (the default case), the
subparser forks for each action.

Algorithm 2 describes the main steps leading to forking of the sub-
parser. The algorithm forks the parser for every possible interpretation of
the metavariable token and shifts it on the node stack. To do this, it goes
over all symbols defined by the parser and possible parser actions for the
symbol in the current parser state. If this set is empty (lines 4 to 6), it
means the parser is in an error state, unable to accept any token at the time.
The function returns and the parser in question will be discarded later on.

In lines 8 to 10, the symbol type is checked for compatibility with the
metavariable user type if one is specified by the user in the pattern. The
symbol type is compatible to the metavariable user type if it is the same
type or one of the metavariable subtypes.

If the symbol type is a token (lines 14 to 17), two LR actions are possible:
shift and reduce, or in fact one shift and possibly one or more reduces. The
shift is always performed but reduces may be executed earlier to put the
parser in a state where the metavariable can be pushed onto the node stack

1It also makes sure to retrieve only reduces that do not pop more states than available
on the state stack of the subparser.

3.3. TYPE INFERENCE THROUGH GLR-BASED PARSING AS INTERSECTION59

Algorithm 2 Forking on metavariable algorithm.

1: function ForkOnMetavariable(currentState, metavariableToken)
2: userType ← type(metavariableToken)
3: transitions ← transitionsFrom(currentState)
4: if transitions = ∅ then
5: return
6: end if
7: for all (symbol, action) ∈ transitions do
8: if defined(userType) & ! compatible(symbol,userType) then
9: continue

10: end if
11: if isNode(symbol) then
12: subparser ← forkParser(symbol, action)
13: emulateNodeShift(subparser, action, symbol, metavariableTo-

ken)
14: else if isToken(symbol) then
15: subparser ← forkParser(symbol, action)
16: performReducesAndShift(subparser, action, symbol, metavari-

ableToken)
17: end if
18: end for
19: end function

(as for any LR shift). Some of these reductions may be invalid, but their
subparsers will quickly be killed when no valid action is found at the newly
reduced state.

In the case of the symbol type being a node (lines 11 to 13), the only
possible action is a shift, but instead of pushing a token on the stack, the
metavariable is pushed onto the node stack. The parser forks itself into a new
subparser instance before executing the LR actions in question. This new
subparser now continues its parse with the type of the metavariable being
identical to this specific symbol type.

Each subparser continues its parse and invokes ForkOnMetavariable
each time it encounters a metavariable token. If a parser reaches an impos-
sible configuration, it is invalidated and discarded.

At the end of the parse, we collect all the possible types for a pattern
in the form of one abstract match per successful subparser. The result is
a forest of the valid abstract matches where each AST has a unique set of
metavariable-type pairs. From this point on, unification (the second phase of
pattern matching) finds the subtrees in the source AST matching the abstract

60 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

matches, and if it does, binds each typed metavariable to its concrete subtree.

3.3.5 Unification

The next phase is more standard, unification works in the same way as for
an explicit pattern matching engine, it is not tied to syntactic patterns.
Although not part of type inference, the unification process (the next step in
pattern matching) is described here for the sake of clarity.

The unification process compares the pattern forest of abstract matches
(special ASTs) with the subtrees of the program. This step consists in con-
fronting each possible pattern solution to the program AST. If part of the
program AST matches, the subtree should be returned and if no match is
found, the algorithm stops there. We focus on a simple depth-first traversal
of the program AST (see Algorithm 3).

Algorithm 3 Unification algorithm.

1: function Unify(programAST, patternForest)
2: for all programNode ∈ programAST do
3: programRoot ← programNode
4: for all patternAST ∈ patternForest do
5: patternRoot ← root(patternAST)
6: if patternRoot = programRoot then
7: acceptMatch(patternAST)
8: else
9: discard(patternAST)

10: end if
11: end for
12: end for
13: end function

For each node of the program AST, we consider it as a root node and
compare it to the top node of each pattern AST.

For the node equality (see Algorithm 4, we first check for type equality
and then if they have the same type, each child (being a node or a token)
is compared for equality with its counterpart. If all the subnodes of the
pattern root node and the current program node match, we consider that
this pattern tree is a valid concrete match. If any of the subnodes fails to
match, the pattern tree is discarded.

For tokens (see Algorithm 5), the actual token strings are compared and
the result of the equality is returned to the calling node.

3.4. MATCHING COMPLEX TYPES 61

Algorithm 4 AST node equality.

1: function Equals(firstNode, secondNode)
2: if type(firstNode) = type(secondNode) then
3: return subnodes(firstNode) = subnodes(secondNode)
4: else
5: return false
6: end if
7: end function

Algorithm 5 AST token equality.

1: function Equals(firstToken, secondToken)
2: return source(firstToken) = source(secondToken)
3: end function

If a now typed metavariable node matches in the program AST, it is
bound in a dictionary to its concrete match. Note that if the same metavari-
able is used multiple times in a pattern, their respective match in the program
AST should be identical. For example, ‘i‘ + ‘i‘ cannot successfully match
3 + 4. The dictionary is reused, at the end of the comparison, as context for
the match. The subsequent rewriting or analysis is then based on the typed
matches and their respective contexts.

Trying to match a pattern that has no metavariable may too result in
multiple abstract matches, but only if the target language is inherently am-
biguous. Intuitively, if our pattern (regular language) is simply a string
belonging to our host language, the type inference through parsing as inter-
section is just a standard parse: if the language is ambiguous, the pattern
could be ambiguous too. For example, the pattern (‘a‘) * ‘b‘ in C has (at
least) two abstract matches, one for the multiplication expression, and the
second one for the declaration of a pointer variable of type a.

3.4 Matching complex types

Parsing as intersection is a result on grammars, and by extension on the
derivation tree that parsing theoretically yields. However, parser and parser
generator implementations transform derivation trees into ASTs. This trans-
formation exists to simplify the tree by removing artifacts of no use in repre-
sentation and analysis, artifacts that only exist for recognition purposes. Our
technique is adapted to work with ASTs and works well when the mapping
between AST nodes and derivation tree nodes is given. In the case of list

62 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

idioms, the mapping is more complex and requires work described in the rest
of this section.

3.4.1 Matching of list idioms

When building the AST, a parser generated from a parser generator gener-
aly uses techniques to reduce the tree from its parse tree size into a more
manageable size, without insignificant intermediate nodes. As presented in
Section 2.1.2, recursion (being left or right) is one of the main culprits for
the potential node cluttering. In EBNF grammars, recursion is explicitly
specified either via rules or by Kleene star and plus operators, leaving the
generator to handle the conversion (Listing 3.10).

1 <number > : [0-9]+ ;

2

3 NumberListLeftRecursion

4 : <number > NumberListLeftRecursion

5 | <number >

6 ;

7

8 NumberListRightRecursion

9 : NumberListRightRecursion <number >

10 | <number >

11 ;

12

13 NumberListKleenePlus

14 : <number > +

15 ;

16

17 NumberCommaList

18 : Number ("," Number) *

19 ;

20

21 Number

22 : <number >

23 ;

Listing 3.10: Recursion in parser generators.

Instead of storing the head or tail of the recursion in a separate node and
the value of the current list element in the current node, some parser gener-
ators aggregate all list elements into a collection. For the user, it also crucial
to being able to match such list idioms through patterns and metavariables.
While the implementation described in the previous section matches nodes
and tokens in an AST through syntactic patterns, there is no clear way to de-
scribe these list idioms in a pattern. If these list idioms cannot be described

3.4. MATCHING COMPLEX TYPES 63

in a pattern, they cannot be matched.

1 ‘list: <number > *‘

2 ‘list: <number > +‘

3 ‘commaList: Number ("," Number)*‘

Listing 3.11: List matching examples.

Listing 3.11 shows examples of common list matching patterns using
Kleene star and Kleene plus. In our case, a comma separated list in a pro-
duction will yield two different child collections for the parent node: one for
all the commas, and the other for the other node (here, Number). This section
is dedicated to explaining how to implement the matching of such collections
and its impacts on the syntactic patterns.

3.4.2 AND metavariable types

Since the pattern matching language is a regular language over the symbols
of the host language, supporting Kleene operators is in theory possible. The
aggregation of nodes into collections complicates the parsing as intersection
inference algorithm to generate abstract matches and the unification algo-
rithm to search through the source AST. The type inference must be able
to handle metavariables featuring common AND types, types denoting of
sequences of other types, and create abstract matches for those to be unified
later on. To this end, we propose that metavariables now hold one or more
types in a sequence with optional Kleene plus, Kleene star, option operator
and group operator.

AND Type *Num

AND Type

”,” Num

cList: Num ("," Num)*

Figure 3.6: Metavariable model with AND types.

Figure 3.6 illustrates the model of the last example of Listing 3.11, ‘

commaList: Number ("," Number)*‘. The model of an AND type created by a
user is essentially a tree of subtypes. As any other type, a AND type has a

64 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

cardinality resulting from Kleene operators. Group operators create a new
AND type with elements of the group being subtypes.

3.4.3 Type inference for AND types

During type inference, when the parse reaches this metavariable, it decon-
structs the AND type into primitive types that the parser can expect. Fig-
ure 3.7 summarizes the steps of parsing the metavariable in Figure 3.6 which
has an AND type.

AND Type *Num

AND Type

”,” Num

cList: Num ("," Num)* Node stack:Lookahead:

M(AND Type) M(Num)

M(Num), M(”,”*)M(AND Type*)

M(Num), M(”,”*), M(Num*)M(Num*)

EOF NumberCommaList

shift

shift

shift

reduces

Figure 3.7: Parsing an AND type metavariable.

First, the parser will react as if a Number was its next symbol to parse
and shift it. Then, the group ("," Number)* will be separated into ",", which
the parser will parse immediately, and Number. Once the second Number has
been shifted, the pattern is reduced to a NumberCommaList. The cardinality
of the group must be shared by its children to remove any problem of them
matching a different number of elements in the unification phase. The group
will be spread into two different collections (a comma collection and a number
collection), but they will crucially reference the same cardinality object. All
the subtypes in an AND type metavariable are still referencing their original
metavariable.

The resulting NumberCommaList (Figure 3.8) holds both number and comma
collections, themselves containing the AND type metavariable divided into
three metavariables.

3.4.4 Unification for AND types

The unification algorithm also needs to be adapted to accomodate the new
abstract matches produced by the type inference of AND types. The Kleene
star and plus operators force collection matches, and we choose to implement
a greedy matching algorithm for those collections.

3.4. MATCHING COMPLEX TYPES 65

cList: Number ("," Number)*

NumberCommaList

{ M(Number), M(Number*) } { M(”,”*) }

shared cardinality

numbers commas

Figure 3.8: AND type abstract match.

Algorithm 6 matchesmatchCollection of the abstract match with sourceCollection
of the source AST starting respectively at matchIndex and sourceIndex.
Lines 2 to 4 initialize a temporary index for the sourceCollection, the cur-
rent abstract match node in the collection and the collection of matching
nodes in the source collection. Lines 5 to 12 greedily match the current
abstract match node with as many source collection nodes. The matching
nodes are added to the temporary currentNodes collection. Lines 13 to 15
exit the function with a failed match if there are no matched nodes and the
cardinality of the abstract match node is not a Kleene star (meaning it could
be empty). Lines 16 to 20 register currentNodes in the context as a valid
match for the abstract match node unless it already existed. This occurs if
multiple metavariables with the same name are used, they should all match
the same kind of subtree. If the current match and the existing match differ,
the function fails to match. Lines 21 to 23 ensure that if we reach the end
of the matchCollection, we also reach the end of the sourceCollection, oth-
erwise the match fails. Line 24 recursively calls the function with the next
abstract match index and the next source index.

3.4.5 OR metavariable types

On the language expert side of the hybrid approach, it is useful for the user
to specify multiple types for a single metavariable or pattern. The resulting
abstract matches contain only metavariables of one of the given type. We call
these OR types since they are a disjunction of multiple types. Listing 3.12
provides examples of ways to express metavariable OR types on an expression
language.

1 ‘a: Add | Sub ‘ + ‘b: Num | Mult ‘

66 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

Algorithm 6 Greedy collection matching algorithm.

1: function greedyMatchCol(matchCollection, matchIndex,
sourceCollection, sourceIndex, context)

2: currentIndex ← sourceIndex
3: matchNode ← matchCollection[matchIndex]
4: currentNodes ← []
5: while true do
6: if currentIndex <= size(sourceCollection) & matchN-

ode.match(sourceCollection[currentIndex]) then
7: currentNodes.append(sourceCollection[currentIndex])
8: else
9: break

10: end if
11: currentIndex ← currentIndex +1
12: end while
13: if currentNodes = [] & ! matchNode.isStar() then
14: return false
15: end if
16: if matchNode.isMetavariable() then
17: if context[matchNode] = ∅ then
18: context[matchNode] ← currentNodes
19: else if context[matchNode] ! = currentNodes then
20: return false
21: end if
22: end if
23: if size(matchCollection) < matchIndex +1 then
24: return currentIndex > size(sourceCollection)
25: end if
26: return greedyMatchCol(matchCollection, matchIndex +1,

sourceCollection, currentIndex, context)
27: end function

Listing 3.12: OR type pattern on expressions.

In comparison to AND types, OR types are relatively easy to integrate
in the type inference phase and costless for the unification phase. During
the type inference phase, the parsing as intersection parser will provide all
the different types that appear at this point in the parse. The valid types
are retrieved from the intersection of this set and the set of types the user

3.5. EXPERIMENTS AND RESULTS 67

specified in its OR type metavariable. The rest of the matching process works
in the exact same way as with a single or no user type.

3.5 Experiments and results

This section presents the implementation technology of the pattern matching
engine, gives a use case of code migration for an unformalized version of
the approach and discusses the expressivenes of patterns in the formalized
approach introduced in this chapter.

3.5.1 The Smalltalk Compiler-Compiler

This approach was implemented on top of the Smalltalk Compiler-Compiler
(SmaCC) [BRPP10]. SmaCC is a parser generator producing LR(1), LALR(1)
and GLR parsers from an EBNF grammar. SmaCC is written entirely in
Smalltalk and generates Smalltalk code. In addition to a parser, SmaCC also
generates AST node classes from annotated productions in the grammar, and
a generic visitor for said AST that is easily extended. At parse time, an AST
is created from those annotations and the generated node classes. SmaCC
automatically detects recursions in the grammar and converts them into col-
lections of nodes in the AST, reducing the need for intermediate nodes. A
BlockNode may hold a child collection of StatementNodes for example.

To make the pattern matching available for a given language, the gener-
ated parser must be GLR and the metavariable token needs to be added to
the grammar of the language. Of course, the metavariable token must not
conflict with existing token definitions.

Currently, the engine already has open-source back-ends for the following
languages: C#, Java, Javascript, Delphi, Swift and Smalltalk. Parsers for
Powerbuilder, C, IDL and Ada have also been built with SmaCC, but remain
closed-source.

3.5.2 Industrial Validation

The rewriting engine of SmaCC had an intuition of this technique to per-
form type inference, which we later formalized and adapted to better reflect
parsing as intersection.

This previous version has been used on several industrial projects us-
ing different programming languages: Delphi, PowerBuilder, C#, Java and
Ada [BRPP10]. These projects range from refactorings to migrations from

68 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

one language to another. A typical migration project with SmaCC is com-
posed of two transformation passes.

First pass: migration. The first pass converts all of the source code in
the original language to the new target language. The transformation pass
involves applying numerous rules in bulk on the same valid input, not by
applying a rule, parsing the new program and applying another one, etc.
The entire source code is transformed into the target language by applying
all the transformations to generate a new code from the AST.

Second pass: artifact elimination. Small transformations post-migration
are important to make the code more natural to future developers handling
the project. Listing 3.13 is an example of a Delphi to C# transformation
rule that is a special case of the general loop conversion. The Delphi for loop
used "- 1" in the end condition. In C#, we could eliminate the "- 1" from
the converted code by using "<" instead of "<=".

1 for ‘a‘ := ‘b‘ to ‘c‘ - 1 do ‘d‘

2 >>>

3 for (‘a‘ = ‘b‘; ‘a‘ < ‘c‘; ‘a‘++) ‘d‘

Listing 3.13: Delphi to C# syntactic pattern in SmaCC

The second pass overwrites some transformations through specific use
cases to make the code easier to maintain and more akin to what code in the
target language looks like. While this transformation step was not necessary,
it eliminates some conversion artifacts.

Powerbuilder to C# example. An example of such a project was the
migration from a PowerBuilder application to C#. Code migration is a good
example to illustrate the pattern matching capabilities of the engine. The
PowerBuilder code contained almost 3 200 DataWindow components and
over 700 code components. The code base contained over 1.1 MLOC2 and
were 153MB in size. The resulting C# code contained almost 7 600 files
with 3.3 MLOC and was 161MB in size. The number of files increased since
some files were split into their code and designer components. Also, most
of the increase in overall size is due to formatting. For example, code in
methods were indented with two tab characters in C#, and not indented
in PowerBuilder. These files were converted using 578 conversion rules. Of

2DataWindows are generally automatically generated, declarative components where
many properties are assigned on a single line of code. Lines of code are not necessarily a
good measure for these components, but they are included here.

3.5. EXPERIMENTS AND RESULTS 69

the 578 rules, 356 (62%) of them used syntactic patterns, and the other 222
rules used more traditional explicit pattern matching. The first pass (mi-
gration) accounted for 509 conversion rules, while the second pass (artifact
elimination) accounted for 69 rules. Running these two steps using the Pharo
environment [BDN+09] on a six core Intel E5-1650 on the 153MB of Power-
Builder source took 2 minutes 55 seconds. Only running the first pass took 1
minute 30 seconds. While the pattern parsing described in this chapter may
cause much forking during the parsing of the pattern, it does appear to be
acceptable in practice. For example, parsing the 356 patterns used by the
conversion rules takes 300 milliseconds.

While no project of such a scale has yet been performed with the ap-
proach formalizing parsing as intersection, the study gives us confidence in
the practicality of the approach.

3.5.3 Expressiveness of hybrid patterns

Pattern language. As our approach to type inference is derived from
parsing as intersection, it suffers from the same limitations in terms of ex-
pressiveness. The pattern matching language is a regular language on top
of symbols from the grammar of the matched language. As such, it only
supports sequences and Kleene operators. Union could also be supported
but is not implemented at the moment, since its interaction with AND types
would need to be carefully looked at. For convenience, metavariables act
as any symbol from the alphabet unless explictly typed. While limited, the
language is still powerful enough to infer all types of the AST and sequences
of types in the case of AND types.

Hybrid patterns on grammars. We explore the expressiveness of hybrid
patterns on the metagrammar of SmaCC. As an example, the grammar from
Listing 3.14 acts as the input program of the pattern matching engine. The
grammar itself and its syntactic patterns are written in the language defined
by the metagrammar of SmaCC.

1 S

2 : A B "c"

3 | A "c"

4 ;

5

6 A

7 : "a"

8 ;

9

10 B

70 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

11 : "b"

12 ;

Listing 3.14: Source code of the grammar to match with patterns written in
the metagrammar of SmaCC.

The first pattern (Listing 3.15) is a hybrid pattern, mostly syntactic with
a metavariable featuring an AND type to match the alternates of the pro-
duction rule A.

1 A : ‘alts: AlternativeNode ("|" AlternativeNode)*‘ ;

Listing 3.15: Hybrid pattern to match production rule A and get its
alternates.

The result of applying this pattern to the input grammar is a single match
of the ProductionRuleNode of A. The match context contains the alternates of
the rule indexed at the ‘alts‘ metavariable.

To achieve the same result using only explicit pattern matching would
require the user to first get all the ProductionRuleNode nodes through this
type. Then, a custom visitor would go through all the matched production
rules and gather those of production name A (which is a SymbolNode in this
case). And, for those, the collection of AlternateNode should be found in
the ProductionRuleNode children. The two first part of this explicit matching
could be matched with an explicit pattern of the form ProductionRuleNode(

SymbolNode("A"),_), but it would require the user to know that this particular
node has two children. The purely explicit matching requires to know 3
different node types and their hierarchy in the AST, while the hybrid one
only requires one.

Using syntactic patterns for filtering. In the next example, we want
to find the production rule that has a given pattern as its right hand side.
The pattern in question (Listing 3.16), alone, matches an AlternateNode with
a metavariable of type TermNode in its context.

1 ‘firstSymbol ‘ "c"

Listing 3.16: Syntactic pattern to match all the alternates featuring a first
unknown symbol followed by "c".

To find its production rule, we could add code to follow the parent chain
of the node and find that the parent is a ProductionRuleNode, but it is extra
code written in the engine language. Instead, we can use the hybrid pattern
in Listing 3.17 to get all the production rules on the input.

3.6. DISCUSSION 71

1 ‘prodName ‘ : ‘alts: AlternativeNode ("|" AlternativeNode)*‘ ;

Listing 3.17: Hybrid pattern to matches all the production rules in the
grammar and get their names and alternates.

Then, we can filter those production rules by running the previous syntac-
tic pattern (Listing 3.16), on each matched subtree and get only the produc-
tion rule for which the syntactic pattern matches. Creating a long pattern
to match this in a single pattern could be done, but it would be much more
complex than to use a second pattern as a filter for the matches of the first.

3.6 Discussion

3.6.1 Prerequisites of the approach

Our approach assumes the following:

Generalized parser generation. The approach requires a generalized
parser to handle metavariables as ambiguities. In our case, we implemented
it using a GLR parser. Originally, Earley’s algorithm [Ear70] was used to
describe parsing as intersection [GJ08b], so we believe other generalized pars-
ing techniques (such as GLL [SJ10]) could also be used to implement pattern
matching based on parsing as intersection, as long as it fulfills the other
requirements.

Grammar for the language. Since the approach is based on a parser
generator, a grammar should be available for the language. Having or cre-
ating the grammar remains the biggest requirement, but since it is one for
most language tools, we do not deem it unreasonnable.

AST generation. The LR parser should be able to generate an AST of
the source source at parse time. Note that our approach also works at the
parse tree level if it is generated from the grammar. The key point is to
generate the tree at parse time, which is difficult to achieve in some parsing
technologies and algorithms.

Next type identification. During the parse of the pattern, the parser
should be able to find the next types from any state in the parser. In our
engine, the binding between state, grammar type and node type is available
in the parse tables.

72 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

Forking mechanism. The parser should have a forking mechanism. If a
GLR-style parser is already generated, it can be used directly by forking on
metavariables in addition to ambiguities.

3.6.2 Scalability

LR and LALR parsers have the nice property of their parse time being only
dependent on the input length and not the input depth [AHU74]. This leads
to a linear parse time. This property does not hold for GLR-type parsing,
where the worst case is O(nk+1) in complexity, with n being the size of
the input and k being the size of the longest production rule. Note that
the run-time complexity is heavily dependent on the number and density of
ambiguities, the more ambiguities, the more we fork, the more subparsers
we need to maintain in parallel and the higher density of ambiguities; the
longer they take to resolve. Even if it is easy to create a worst case grammar
that reaches the worst case complexity, the average programming language
grammar with few local ambiguities.

In practice, for the subparsers created for pattern matching purposes,
the average complexity depends mostly on the quantity of metavariables and
their position in the pattern. We tend to think that the quantity of metavari-
ables, and thus of fork points, is not an issue. Every time a metavariable is
added, it adds specificity to the pattern. Since it is parsed, it means fewer
configurations will be accessible with each specificity. Fewer and fewer sub-
parsers will be created as the parse progresses on the pattern and some will
even get discarded. What would need to be examined with caution how-
ever are patterns consisting of a sequence of untyped metavariables, which
may lead to exceptionally bad runtime. Such patterns could match almost
anything, which probably means these are uninteresting patterns in the first
place.

3.6.3 Application to other parsers and parser genera-
tors

Parsing as intersection, in essence, is independent of the parsing technique
used. As long as they respect the previously described requirements (Sec-
tion 3.6.1), the technique could be applied as is to other GLR-based parser
generators.

As for other parser classes such as GLL, the implementation of the pre-
requisites would change, as forking and type identification for metavariables
would need to be introduced. Equivalents to these concepts would be re-
quired to work with parsing techniques other than LR.

3.7. CONCLUSION 73

3.7 Conclusion

A previous version of this work [LBGD18] has been published in the Inter-
national Conference on Software Maintenance and Evolution (ICSME’18).

In this chapter, we proposed a syntactic pattern matching engine using
parsing as intersection to perform type inference. This approach allows for
complete automation of the type inference implementation for a given lan-
guage by generating a modified GLR parser, removing the need to implement
new hand-crafted back-ends for the engine. As a result, users may express
their patterns combining both syntactic and explicit pattern matching, while
defaulting to syntactic to remove the need to learn internal representation
of pattern matching engines. The engineering cost for the implementer is
lowered to finding or writing the grammar. Integrated to a parser genera-
tion framework, activating the pattern matching engine for a new language
requires only a single line in the grammar.

74 CHAPTER 3. PARSING AS INTERSECTION FOR PATTERN MATCHING

Chapter 4

Side-effect-enabling GLR
parser

Pattern matching based on parsing as intersection provides an easily gener-
ated type inference mechanism relying on a generalized LR parser treating
metavariables in a similar way to ambiguities. In cases where the original
grammar is non-deterministic, forking for both metavariables and ambigui-
ties could lead to an impractical runtime. To ensure this does not happen,
we would need to allow custom online disambiguation of individual forks.
Custom disambiguation consists mainly of adding temporary data structures
such as a symbol table and inspecting those data structures during the parse
to choose an action to perform instead of forking and trying all valid actions.
Since this new behaviour modifies the parse, we use the term “side effect”
and side-effect parsing when a parser involves side effects. In standard LR
parsers, side effects are expressed through semantic actions executed on re-
duce. In a GSS implementation of GLR, side effects are difficult to obtain
since they impact the parser in its entirety since forks are implicit (and lost
in the GSS) and semantic actions are delayed until the end of the parse or
a minima to the end of the frontier. In a list-of-stacks implementation of
GLR, forks are explicit and thus it is easier to write side effects to modify
forks, but the merge mechanism is not as efficient as a GSS implementation.

We propose a compromise GLR algorithm named Fibered-GLR (FGLR).
Each parsing fork is explicitly modeled as a separate entity, a non-preemptive
task called a fiber (or coroutine). Thanks to a scheduler controlling the order
of the parsing alternative execution, semantic actions are executed online (at
the same time as their LR action) and can alter their own parse independently
by modifying all their local fiber elements. While being less efficient than
the memory-optimal GSS approach, FGLR allows parse-altering semantic
actions. Compared to the list of stacks approach, FGLR is more efficient by
merging earlier.

Contents
4.1 Ambiguities and conflicts in LR parsing 77

4.1.1 LR limitations . 77

75

76 CHAPTER 4. SIDE-EFFECT-ENABLING GLR PARSER

4.1.2 Rewriting the grammar 77

4.1.3 Hacking the parser 78

4.2 Generalized LR parsing 79

4.2.1 Differences with LR 79

4.2.2 Semantic actions in GLR 80

4.3 A scheduling approach to GLR 81

4.4 Structure of the Fibered-GLR Parser 82

4.4.1 FGLR parsing fiber 82

4.4.2 The LR parser . 83

4.4.3 The FGLR scheduler 83

4.4.4 The FGLR scheduling loop 85

4.4.5 Forking mechanism 86

4.4.6 Merging mechanism 86

4.4.7 Rescheduling . 87

4.5 Execution order choices 87

4.5.1 Inter list ordering 88

4.5.2 Reducing list ordering 88

4.5.3 Shifting list ordering 89

4.5.4 Waiting list processing 90

4.6 Experiments . 90

4.6.1 Implementation . 91

4.6.2 Experimental setup 91

4.6.3 Comparison with Bison GLR and SmaCC GLR . . 91

4.6.4 Scaling of FGLR on highly ambiguous grammars . 92

4.6.5 Sensitivity to shift-reduce conflicts 93

4.6.6 Sensitivity to reduce-reduce conflicts 95

4.7 Discussion . 95

4.8 Conclusion . 97

4.1. AMBIGUITIES AND CONFLICTS IN LR PARSING 77

4.1 Ambiguities and conflicts in LR parsing

A grammar is ambiguous when a string belongs to the language and has
multiple valid derivations. In other words, at a point during the parsing of the
string two different rules could be applied, expressing two different parsing
alternatives, both succeeding to parse and yielding different derivation trees.
On the other hand, an unambiguous grammar should have only one single
interpretation for each string in the language.

A popular example of ambiguity is a basic grammar for arithmetic ex-
pressions (see Listing 4.1).

1 <number > : [0-9]+ ;

2

3 Expression

4 : Expression "+" Expression

5 | Expression "*" Expression

6 | "(" Expression ")"

7 | <number >

8 ;

Listing 4.1: Ambiguous arithmetic expression grammar.

Such arithmetic expressions are present in a similar form in most pro-
gramming languages. Here, if the parser receives the input string 1+2*3,
it cannot determine whether the correct parse is (1+2)*3 or 1+(2*3). Sec-
tion 2.3.1 provided more in-depth examples.

4.1.1 LR limitations

In LR(1), ambiguities manifest through multiple actions being available for
the current lookahead token, instead of a single one. When two different
reductions could occur, this is a reduce-reduce conflict. If the actions are a
shift and a reduce, it is called a shift-reduce conflict.

There are unambiguous grammars that are not deterministic, and thus
cannot be parsed by an LR(1) parser. It means that for some grammars,
even if their LR parsers have conflicts, the grammars could still be unam-
biguous. Programming languages often fall in this category, and as such many
techniques have been developed to adapt LR parsers to slightly conflicting
grammars.

4.1.2 Rewriting the grammar

The first option is simply to remove the conflict, if possible, by eliminating
the local ambiguity (one that is resolved after a few more tokens). Rewriting

78 CHAPTER 4. SIDE-EFFECT-ENABLING GLR PARSER

the grammar to remove the ambiguous production rules removes the origin
of the problem.

If we rewrite our previous example of Listing 4.1, the resulting grammar
contains more rules and is of greater depth (Listing 4.2).

1 <number > : [0-9]+ ;

2

3 Expression

4 : Term "+" Expression

5 | Term

6 ;

7

8 Term

9 : Factor "*" Term

10 | Factor

11 ;

12

13 Factor

14 : "(" Expression ")"

15 | <number >

16 ;

Listing 4.2: Rewritten unambiguous arithmetic expression grammar

Grammar rewriting proves tedious since changes to remove a conflict
could lead to another conflict to appear with another production rule. Gram-
mars are difficult artifacts to handle. Rewriting the grammar is also detri-
mental to its maintainability, because it leads to an increased size and com-
plexity. As such, while rewriting the grammar does not impact the parsing
technology, it is not always desirable.

4.1.3 Hacking the parser

The second option consists in adding some disambiguation mechanisms that
will modify the parser. Thus, precedence rules have been introduced to
handle conflicts. They consist in annotating tokens with a priority and an
associativity. For example, the "+" operator has a lower priority than the
"*" operator for arithmetic reasons and both are left-associative. In typ-
ical Yacc/Bison/SmaCC formalism, precedence rules are represented as in
Listing 4.3.

1 %left "+" ;

2 %left "*" ;

3 <number > : [0-9]+ ;

4

5 Expression

6 : Expression "+" Expression

4.2. GENERALIZED LR PARSING 79

7 | Expression "*" Expression

8 | "(" Expression ")"

9 | <number >

10 ;

Listing 4.3: Unambiguous expression grammar using operator precedence.

Precedence rules are an enhancement technique of deterministic parsing
techniques, but they solve a specific conflict for a specific target grammar and
requires modifying grammar. Actually, when a precedence rule is added, the
generated LR parse tables are modified to prefer an LR action over another.
The change does not affect the runtime performance because it is performed
at parser generation time, but it hides the conflicts in the grammar making
it hard to determine what the underlying language is. A more generalized
parsing technique is needed to parse ambiguous grammars without having to
attack specific conflicts.

4.2 Generalized LR parsing

As explained in Section 2.2.2, LR(1) parsers can be derived from any deter-
ministic CFG written as a LR(1) grammar. However, not all unambiguous
CFGs are deterministic CFGs, meaning a LR(1) parser cannot be derived. In
addition, for readability and maintainability reasons, it may not be possible
or reasonable to rewrite a grammar from LR(k) to LR(1) since it greatly in-
creases its size. For both of these reasons, a generalized LR parsing technique
is desirable. Past generalized parsing algorithms such as Earley [Ear70] or
CYK [Coc70] had major problems in terms of parse time. Generalized LR
parsing brings efficient compiled parse tables to the generalized parsing of
Earley, yielding far better results.

4.2.1 Differences with LR

The reduction and shift algorithms in GLR are vastly more complex than the
classic LR ones and share almost no similarity. While the GSS is theoretically
the best performing algorithm with minimal data duplication, it has evolved
over a long time to solve its initial problems of non-termination in the pres-
ence of hidden left recursion [GJ08b, NF91, SJ06]. The added complexity
of implementing a correct GLR and surrounding structures is a real burden,
which tends to lead parser generator developers to choose a much simpler
structure (list of stacks), even if it means less optimal memory management

80 CHAPTER 4. SIDE-EFFECT-ENABLING GLR PARSER

(for example in Bison). Also, the GSS and the necessary memoization1 to
make it optimal are considered to bring a significant overhead, as shown by
Elkhound [MN04] and its toggle between LR-mode and GSS-mode, the latter
being used only if necessary. GSS GLR is a difficult algorithm to handle due
to its remoteness to LR, and besides its obvious advantage of maximal state
sharing presents the drawback of delaying semantic actions, forbidding the
use of semantic actions.

4.2.2 Semantic actions in GLR

A list-of-stack approach keeps track of individual stacks separately. Each
stack is viewed as a unique reduction path: applying a reduction does not
impact the other stacks, at the price of state duplication. The GSS takes the
opposite approach, state duplication is minimum but the unique reduction
path information is not retained. This is why reduction paths must be found
again by searching the reduction arcs down the GSS.

Online semantic actions are tightly coupled with reductions since they
are executed at the same time, during the parse, hence the ”online” com-
ponent. Since semantic actions are allowed to modify their current parsing
alternative, they should be executed as soon as their reduction is encoun-
tered so the parsing alternative can be discarded, merged or altered. If all
the reduction paths are recovered only at the end of the computation of each
frontier (meaning between shifts), as it is done in the GSS, semantic actions
cannot be applied at the proper time: the parser could have taken a parse
decision based on the “old” configuration of the parsing alternative before
the semantic action is executed [MN04].

Even if GLR is powerful enough to take care of conflicts, it is not suf-
ficient to completely disambiguate a grammar. Disambiguation is usually
present in various attire, ranging from precedence rules, priority of alter-
natives in grammar rules (PEG parsers [For04]), filters [EKV09] or custom
side-effect-based disambiguation in semantic actions. Support for side effects
in semantic actions is crucial for disambiguation even in GLR.

Online semantic actions are also used to create custom ASTs for each
parsing alternatives during the parse. They can then be used to debug pars-
ing by having a rich partial structure of each parsing alternative.

In the next section, we will propose a compromise between list-of-stacks
GLR and GSS GLR. This approach is less memory-efficient than the GSS
approach but it allows one to use semantic actions to impact the parse (side-
effect parsing). Additionally, when compared to the list of stacks approach,

1Memoization of reduction paths is key to not search for them multiple times.

4.3. A SCHEDULING APPROACH TO GLR 81

FGLR merges stacks ealier.

4.3 A scheduling approach to GLR

We propose a scheduling approach to GLR parsing. The concurrent parsing
possibilities are be viewed as execution threads (or fibers in our case, since
they cannot be preempted) and a scheduler formalizes the architecture for
the ordering of concurrent parsing alternatives (forks).

Individual parser forks are isolated in their respective fiber. Side effects
affect the fiber’s inner components but not the other parse fibers. It works
the same way for other semantic actions, they only impact the AST or parser
state of their fiber, providing a good encapsulation.

Each fiber holds a single valid reduction path down an LR state stack
and its own node stack. Since the reduction path is unique to a fiber, there
is no need to search down the stack to perform a semantic action on reduce.
Semantic actions are always executed online and modify the entire fiber freely.
Both LR actions and semantic actions are executed in a bottom-up order
fitting of a standard LR parser.

Of course, keeping a path in the state stack instead of states decreases
state sharing compared to a GSS. Fortunately, an ordering of fiber execution
makes sure FGLR fibers merge as soon as possible and as such do not exe-
cute more LR actions than necessary. The scheduler’s ordering ensures the
number of concurrent fibers is reduced to its minimum.

Current fiber
Cooperative scheduler

node stack
state stack
lookahead LR
action
position

LR parser

F’
execute LR action

get next LR actions

get lookahead

accepted

shifting

reducing

waiting

F’ F F F ...

priority

F F F ...F

...

...F

on

Basic operations:

Figure 4.1: Global FGLR architecture with its three main components: the
LR parser, the FGLR scheduler and the parsing fibers.

Figure 4.1 illustrates the general approach of FGLR and its scheduling
activities. The LR parser exposes three main functions as an API to the

82 CHAPTER 4. SIDE-EFFECT-ENABLING GLR PARSER

scheduler: it executes an LR action, gets the next possible actions for a given
lookahead token, or gets the new lookahead token. Instead of manipulating
an internal state, the LR parser manipulates the current parsing fiber as its
execution context. The scheduler initiates the parse by starting a scheduling
loop over its priority lists. A list of lower priority cannot have its elements
scheduled unless all the other lists of higher priority are empty. The parser
is given access to the currently scheduled parser fiber before executing the
functions of its API. The execution of an element of the two lists of higher
priority (Reducing and Shifting) leads to the execution of the LR action of
the parsing fiber. The execution of Waiting means getting the new lookahead
token and the possible LR actions for each parsing fiber, then proceeding to
schedule them in the lists according to their actions. At the end of the parse,
the Accepted list contains all the parser fibers that successfully completed
their parse.

Section 4.4 goes more in depth on the fibers, the LR parser and the
fiber scheduler, while Section 4.5 develops the execution order choices in the
scheduler.

4.4 Structure of the Fibered-GLR Parser

The Fibered Generalized LR parsing technique relies on 3 main components:
an evolving set of GLR parser fibers, a slightly-modified LR parser and a
FGLR fiber scheduler.

4.4.1 FGLR parsing fiber

The FGLR scheduler works with GLR parsing fibers (we will refer to those
as ”fibers” in the rest of this chapter). Fibers (or coroutines) are a general
concept in scheduling similar to threads. Fibers must finish their execution
(cooperative scheduling) before the scheduler executes another fiber, contrary
to threads that can be preempted by the scheduler at any point in their
execution. In our context, fibers describe an execution context (a parser fork
internal state) for the parser tasks (processing LR actions, getting a new
lookahead token). A task will be executed once, then the scheduler takes
over and schedules another fiber.

FGLR fibers describe the internal state of the LR parser required for their
execution. A FGLR parser fiber contains:

• the state stack,

• the node stack,

4.4. STRUCTURE OF THE FIBERED-GLR PARSER 83

• the lookahead token,

• the LR action to be executed,

• the position in the input.

In this scheduling approach, each fork gets a different lookahead accord-
ing to its internal state. A different lookahead means a different position in
the scanner, and this needs to be stored for merging purposes. Additional
information can be added depending on what needs to be available to the
semantic actions due to specific use case in a parser or due to the implemen-
tation of the parser generator. A good example is parsers requiring scopes
to distinguish identifiers from typenames (and more generally for any parser
which needs to inspect and modify its internal structures to parse success-
fully). These scopes are added to the fiber.

The fibers are the structure holding all the parser internals for an alterna-
tive, it is modified by the LR parser and scheduled by the FGLR scheduler.

4.4.2 The LR parser

FGLR requires a modified LR parser and scanner. Since the fibers contain
all the specific information of a fork, every access to an attribute in the
parser (or scanner) must be replaced by an access to the corresponding fiber
attribute.

As for the behaviour side of the modification, the standard LR parsing
loop, in Algorithm 7, must be replaced by the scheduling loop of the FGLR
scheduler (Section 4.4.4).

The entire parse is directed by the scheduler. Three fiber-relient routines
exist in an LR parser:

• execute the LR action of the current fiber,

• get a new lookahead token for the current fiber,

• get the next actions for the current fiber.

Every routine is called from the scheduler using the same pattern. The
scheduler plugs a chosen fiber in the LR parser, then the scheduler asks the
parser to run the routine and finally the scheduler unplugs the current fiber.

4.4.3 The FGLR scheduler

The FGLR scheduler is organized around 4 lists of fibers, each having a
distinct priority in its execution and a distinct ordering of its fibers.

84 CHAPTER 4. SIDE-EFFECT-ENABLING GLR PARSER

Algorithm 7 Classic LR parsing loop.

1: function parsingLoop
2: while lookahead 6= EOF do
3: if lookahead = null then
4: lookahead ← getLookahead(scanner)
5: end if
6: action ← getAction(lookahead, stateStack)
7: if action = REDUCE then
8: performReduce(action, lookahead, stateStack, nodeStack)
9: else if action = SHIFT then

10: performShift(action, lookahead, stateStack, nodeStack)
11: lookahead ← null
12: else if action = ACCEPT then
13: return first(nodeStack)
14: else
15: return error
16: end if
17: end while
18: end function

Reducing. This list contains all the fibers which next LR action is re-
duce. This Reducing list is sorted using a specific metric described later in
Algorithm 10. The Reducing list has the highest priority of execution.

Shifting. This list contains all the fibers which next LR action is shift.
While not sorted in the current algorithm, the scheduler’s structure allows
for specific sorting mechanisms to be added effortlessly. The Shifting list has
a lower priority than the Reducing list: its fibers will only be executed after
all the fibers from Reducing have been processed.

Waiting. This list contains all fibers that previously shifted and thus are
waiting for a new lookahead token from the scanner. Whereas the Reduc-
ing list is processed element by element since processing one may add new
elements, the Waiting list is processed in a single step. Furthermore, the
Waiting list has a lower priority than the two previous lists.

Accepted. This list contains all the fibers having successfully completed
their parse. Fibers are only added to this list once we are sure they cannot
be merged with fibers from other lists. Once in the accepted list, a fiber

4.4. STRUCTURE OF THE FIBERED-GLR PARSER 85

will never be executed again (lowest priority list). At the end of the whole
parsing process, all accepted fibers node stacks are returned to the caller.

4.4.4 The FGLR scheduling loop

Main loop. The main LR parsing loop is replaced by the scheduling loop
described in Algorithm 8.

Algorithm 8 Scheduling loop

1: function schedulingLoop
2: while reducing ∪ shifting ∪ waiting 6= ∅ do
3: while reducing 6= ∅ do
4: executeLRaction(nextReduce())
5: end while
6: while shifting 6= ∅ do
7: executeLRaction(nextShift())
8: end while
9: if waiting 6= ∅ then

10: processWaiting()
11: end if
12: end while
13: return accepted
14: end function

The scheduling loop is straightforward: while there are reduces in the
Reducing list, choose the next reduce and execute it. The shifts are then
processed in the same way once Reducing has been emptied. Lastly, Waiting
fibers get new lookahead tokens and fork if more than one action is assigned to
a fiber. New and old fibers are scheduled in Reducing or Shifting depending
on their action. The next iteration of the scheduling loop then starts.

Executing an LR action. Executing an LR action with the LR parser
impacts the scheduler since the fiber state changes (see Algorithm 9).

First, the scheduler gives the reference of the new fiber to the parser, then
depending on the action related to the fiber, a shift or a reduce is asked of
the parser. Every modification of state stack, node stack, and so on occurs
on the fiber and not on the parser itself. Then, if the current fiber can be
merged with other fibers in the scheduling lists, it is done, leaving the current
fiber as sole fiber from this pool. The current fiber is rescheduled by getting
the next action without changing the lookahead (otherwise it is rescheduled
to Waiting).

86 CHAPTER 4. SIDE-EFFECT-ENABLING GLR PARSER

Algorithm 9 Execute LR action

1: procedure executeLRaction(fiber)
2: restoreFiber(parser, fiber)
3: if action(fiber) = REDUCE then
4: performReduce(parser, fiber)
5: else if action(fiber) = SHIFT then
6: performShift(parser, fiber)
7: end if
8: if canBeMerged(fiber) then
9: merge(fiber)

10: end if
11: reschedule(fiber)
12: end procedure

4.4.5 Forking mechanism

Each time the scheduler queries the parser for the next actions on the current
fiber, the fiber is forked into a fiber per new action2. The new fibers are then
scheduled in the correct list according to their action. Forking is performed
during the reschedule process (for actions following a reduce) and during
the processWaiting process (after getting the new lookahead token). For
now, a fork entails copying the entire fiber. We are aware that this is far
from the best in terms of memory footprint and alternative implementations
are discussed in Section 4.7. It is important to note that both forking and
merging heavily influence the peak memory consumption of a parse.

4.4.6 Merging mechanism

GSS-based implementations try to minimize the number of states by never
adding a state twice on the frontier of the GSS. However, new edges need to
be added: the reduction paths through the GSS. FGLR allows duplication of
states to always have a unique path for a reduce, leading to straightforward
reductions (identical to an LR reduction) applied down a single path. In
other words, the GSS has unique states but multiple reduction paths and
FGLR has unique reduction paths but duplicate states. While Tomita’s
GLR minimizes the number of states in parallel, FGLR tries to minimize the
number of state stacks in parallel, and, by extension, the number of fibers
in parallel. To do that, after each LR action, the state stack of the current
fiber must be confronted with the state stacks of the other active fibers in the

2The original fiber is still reused.

4.5. EXECUTION ORDER CHOICES 87

system. All the other active fibers (from Reducing, Shifting and Waiting)
are candidates for merge. The fibers merge if their state stacks are identical
and if their positions in the scanner are identical.

If the merge condition is respected, the top of each node stack is merged
into the top node of the current fiber 3. The merge is done by moving each
top node of each node stack into a new “ambiguous” node, and replacing the
top node of the current fiber by the ambiguous node 4. This ambiguous node
now keeps track of ambiguous parts in the new node stack. As a side note,
when parsing is done, an AST with ambiguous nodes could be converted into
a forest of unambiguous ASTs or other formats such as SPPFs.

Then, after merging the node stacks, all the “mergeable” fibers except the
current one are dropped from the scheduling list and the current ”merged”
fiber is rescheduled. Since the parsing is done on fibers, fibers can be cus-
tomized with additional merge conditions should the parser implementor
need it.

4.4.7 Rescheduling

Immediately after attempting to merge the current fiber with other active
fibers, the scheduler reschedules the fiber. If the executed action was a shift,
the fiber is waiting for a new lookahead and as such will be transfered to
the waiting list. However, if the action was a reduce, we ask the parser for
the next possible actions and schedule them (if more than one, we fork the
current fiber for each new action). This means adding new reducing fibers
and new shifting fibers, but more importantly it ensures that all possible
fibers are available for merging and execution in the scheduling lists. The
ordering of fibers in the different lists and the priority of the lists will be
discussed in the next section.

4.5 Execution order choices

To ensure the LR actions and their respective semantic actions are executed
at the same time, we must execute semantic actions in a bottom-up order
and without delaying. If we do not want to delay semantic actions (executed
during reductions), we need a valid reduction path at this point.

3As a reminder, if two fibers are merged, the rest of the node stacks are identical, and
thus does not concern us here.

4 As is common in AST nodes, recursion is represented by a collection of nodes. It
adds a step in the node stack merging: the ambiguous node must be pulled down the lists
and nodes to the lowest level in the subtree.

88 CHAPTER 4. SIDE-EFFECT-ENABLING GLR PARSER

Of course, if we keep track of the valid reduction paths, we need to du-
plicate more states. To prevent an explosion of the number of concurrent
fibers, it is important to merge identical fibers as soon as possible. A special
ordering of fiber execution is required to ensure we do not execute more ac-
tion than would be necessary before merging fibers. This results in a global
scheduling of all active fibers during the parse.

The global scheduling of fibers is influenced by two local orderings: the
priority of the scheduling lists and the ordering in each list. The former is
used to make sure LR actions execute in the right LR order and the latter is
used to merge sooner.

4.5.1 Inter list ordering

The Reducing list is of the highest priority because a reducing fiber produces
new actions (new reduces or a new shift) without affecting the lookahead
token. The scanner part of the merging condition states that to merge as
soon as possible, the scanner should be kept as stable as possible too. That
is why, the Reducing list is scheduled first: its execution schedules new LR
actions (Reducing) without modifying the lookahead token.

Then, the Shifting list should be scheduled since it modifies the state
stack and resets the lookahead. The modifications from the shifts offer fewer
merging opportunities, so they should be scheduled after every current re-
ductions are done. When no actions are executed (the Reducing and Shifting
lists are empty), all active fibers are present in the Waiting list.

Fibers from the Waiting list can be merge candidates, but they do not ex-
ecute LR actions thus will never initiate merging themselves. Waiting fibers
modify the scanner part (position) of the fiber by getting a new lookahead
from the scanner, but do not touch the state stack. Due to those two factors,
the Waiting list is the last list to be executed, filling the other two of higher
priority. This essentialy functions in the same way as the GSS, the synchro-
nization is done on the next lookahead, with the shifts being the previous
action and reduces before that (a loop of reduces, shifts and lookahead).

The Accepting list is never merged and all node stack tops from accepted
fibers will be returned. Each list that contains active fibers (not accepted
ones) will be ordered as described in the next sections.

4.5.2 Reducing list ordering

The Reducing list is ordered using the sort function described in Algo-
rithm 10.

4.5. EXECUTION ORDER CHOICES 89

Algorithm 10 Reducing list sort metric

1: function Sort(first, second)
2: firstReduceSize = size(first.stateStack) − size(first.action)
3: secondReduceSize = size(second.stateStack) − size(second.action)
4: return firstReduceSize >= secondReduceSize
5: end function

Given two fibers f1 and f2, f1 is scheduled first iff the size of its stack after
the reduce would be greater than or equal to the one of f2 after its own reduce.
In other words, |s′1| >= |s′2| where |s′1| = |s1| − |r1| and |s′2| = |s2| − |r2|, |sk|
and |rk| being respectively the size of the stack before the reduce and the
size of the right-hand side of the rule of the reduce5.

This metric ensures we always perform the smallest reductions with min-
imum impact on the stacks first. Since the merge is done on every LR action
(shift and reduce on any fiber), this should allow one to merge as soon as pos-
sible. No LR action should be executed multiple times due to this merging
mechanism.

While we leave a formal proof that this ordering leads to the earliest merg-
ing possible to future work, the scheduler is designed to be easily modified
to introduce another sorting mechanism in case this metric proves obsolete.
This metric is similar to the approach used in Elkhound [MN04], giving us
confidence in our ordering.

4.5.3 Shifting list ordering

The Shifting list ordering is unimportant in this setting. To merge, both
fibers must have the same state stack and the same scanner position. Let
us consider fibers F1 with stack1 = (s0, ..., sn), action1 = shift(k) (where k
is its new state), position p1 and F2 with stack2 = (s0, ..., sn, sm), action2 =
shift(l) (where l is its new state), position p2. stack′1 = (s0, ..., sn, sk) is
the hypothetical state after action1 has been executed. Shifts add a state
to the state stack, the only way they merge is if the stacks become equal
(in other words, the new added state k is the top of the stack stack2) and
p1 = p2. stack′1 = stack2 only if sk = sm and the rest of the stacks are equals,
meaning F1 and F2 had an identical state stack and token (position). This
is impossible, as two such fibers with identical actions cannot be scheduled,
so they must occur after an action and, in this case, they would have been
merged beforehand (after a reduce).

5The actual size of the stacks would in fact be 1 more (each reduce’s goto), but it is
omited since it does not affect the comparison.

90 CHAPTER 4. SIDE-EFFECT-ENABLING GLR PARSER

4.5.4 Waiting list processing

The Waiting list processing algorithm is presented in Algorithm 11.

Algorithm 11 Waiting list processing

1: procedure processWaiting
2: for all fiber ∈ waiting do
3: restoreFiber(parser, fiber)
4: getLookahead(parser, scanner, fiber)
5: actions ← getNextActions(parser, fiber)
6: unregister(fiber)
7: if size(actions) = 1 then
8: register(fiber, first(actions))
9: else

10: for all action ∈ actions do
11: forkFiberForAction(fiber, action)
12: end for
13: end if
14: end for
15: end procedure

Each fiber queries the parser for a new lookahead and then for new actions
given the new lookahead token. The fiber is then removed from the scheduling
lists. If there is a single possible action, the fiber is registered with its new
action. If there are multiple actions (a conflict) for the fiber’s lookahead, the
fiber is forked for every action. Each new fiber is registered in the scheduling
lists with its new action.

As a side note, the scheduler puts fibers whose next actions are AC-
CEPT inside the Waiting list (once) so they can be merged before joining
the Accepting list. It was not included in Algorithm 11 due to being an im-
plementation choice (one could have created a new list instead for example)
dependent upon the node stack merging mechanism. That way identical or
compatible ending nodes on the node stack can be merged into an ambiguous
node.

4.6 Experiments

This section is dedicated to evaluating FGLR’s scaling with regards to the
two different types of conflicts: shift-reduce and reduce-reduce. We also take
a look at FGLR’s number of executed actions compared to Bison using a

4.6. EXPERIMENTS 91

list of stacks and SmaCC also using a list of stacks, all on the same micro
grammar and input.

4.6.1 Implementation

FGLR has been implemented in SmaCC (Smalltalk Compiler-Compiler) [BLG+17],
a parser generator written in Smalltalk and originally developed by John
Brant and Don Roberts. The FGLR implementation is purely a runtime
change to LR/GLR and does not impact the LR/LALR parse table genera-
tion. The only modifications are the addition of the scheduler, fibers and the
access patterns of the LR parser. The whole FGLR runtime implemented
in SmaCC also contains an implementation of syntactic pattern matching
through parsing as intersection [LBGD18].

4.6.2 Experimental setup

While Bison and SmaCC GLR cannot hope to compete against a proper
GSS GLR in terms of memory footprint and complexity, they are still used
in practice when parsing programming languages. We want to validate that
the FGLR algorithm follows the same trend and does not become prohibitive
in terms of memory or computation. We also validate that FGLR merges
more often than the Bison or SmaCC GLR, thus executing fewer actions.
In that vein, we first evaluate FGLR against Bison and SmaCC on a small
ambiguous grammar. Then we compare FGLR’s scaling in the presence of
reduce-reduce and shift-reduce conflicts relative to the one of SmaCC GLR.

4.6.3 Comparison with Bison GLR and SmaCC GLR

To illustrate FGLR differences with standard Bison and SmaCC GLR, we
propose an example of an ambiguous grammar containing both shift-reduce
and reduce-reduce conflicts (in Listing 4.4).

1 S

2 : S "a" S

3 | S "b" S

4 | C

5 | D

6 ;

7

8 C

9 : "n"

10 ;

11

92 CHAPTER 4. SIDE-EFFECT-ENABLING GLR PARSER

12 D

13 : "n"

14 ;

Listing 4.4: Ambiguous grammar featuring reduce-reduce and shift-reduce
conflicts.

The input string "nanbn" has 3 reduce-reduce and 1 shift-reduce conflicts.
Every "n" results in a reduction to C or D. Every "nan,b", meaning "nan

" has been recognized and "b" is the lookahead, results in a shift of "b"

or a reduction of "nan" to S. Parsing this input string with each parser
derived from this same grammar leads to the number of actions presented in
Table 4.1.

Table 4.1: Action comparison of GLR implementations with FGLR

Shifts # Reduces # Actions

Bison GLR 8 24 32
SmaCC GLR 10 24 34
FGLR 7 20 27

On this simple example, FGLR executes slightly fewer actions than Bison
or SmaCC GLR because it merges faster than the other two approaches. On
highly ambiguous inputs, the number of concurrent ambiguities (and thus
the number of forks) shapes the general profile of the runtime performance:
exponential with concurrent ambiguities. However, the number of concur-
rent ambiguities can be reduced if they can be resolved earlier (by merging)
thus impacting the performance of the parse. So we decided to take highly
ambiguous input (reduce-reduce and shift-reduce conflicts) and check their
parse time to deduce information about the number of executed actions on
ambiguous input.

4.6.4 Scaling of FGLR on highly ambiguous grammars

We reuse the previous conflicting grammar in Listing 4.4 on input strings of
increasing size to compare the scaling of FGLR to SmaCC GLR. We gener-
ated input strings of the form of n([ab]n){k}, where k is a repetition factor,
and fed these to their respective FGLR and GLR parsers in SmaCC. These
experiments were realized on Pharo 6.16 using an OpenSmalltalk Virtual

6Pharo Smalltalk: https://pharo.org/

https://pharo.org/

4.6. EXPERIMENTS 93

Machine7, monothreaded on an Intel i7-7700. Figure 4.2 shows the resulting
parse times. These results should be taken with a grain of salt since they ran
on a monothreaded virtual machine, but they are useful for comparison.

10 20 30 40 50

0

2

4

6

·105

Input string size (tokens)

P
ar

se
ti

m
e

(m
s)

FGLR
GLR

Figure 4.2: FGLR and GLR execution time for highly ambiguous inputs.

Both approaches exhibit an exponential growth, which should not come
as a surprise because GLR algorithms are highly sensitive to the density
of ambiguities. Here, every token leads to an ambiguity (shift-reduce or
reduce-reduce) which is a very bad case for GLR. Even if both are expo-
nential, FGLR grows slower due to merging some forks earlier and thus not
duplicating unnecessary actions between forks. On the contrary, the SmaCC
GLR implementation merges later and thus performs the same actions in
parallel before merging the two forks.

To identify on which type of ambiguity FGLR performs best, two new
grammars are introduced: the first one has been rewritten to only contain
shift-reduce conflicts (Listing 4.5) and the second one to only contain reduce-
reduce conflicts (Listing 4.6). Since FGLR adds the possibility to merge
after a reduce, we expect it to show a better run time gain on reduce-reduce
conflicts compared to shift-reduce.

4.6.5 Sensitivity to shift-reduce conflicts

Next, we evaluate the impact of shift-reduce conflicts on FGLR compared to
SmaCC GLR. The grammar is modified to remove the reduce-reduce conflict,

7OpenSmalltalk initiative: http://opensmalltalk.org/

http://opensmalltalk.org/

94 CHAPTER 4. SIDE-EFFECT-ENABLING GLR PARSER

10 20 30 40 50

0

1

2

3
·105

Input string size (tokens)

P
ar

se
ti

m
e

(m
s)

FGLR
GLR

Figure 4.3: Shift-Reduce: FGLR and GLR execution time for highly am-
biguous inputs.

leaving only shift-reduce conflicts as illustrated in Listing 4.5.

1 S

2 : S "a" S

3 | S "b" S

4 | C

5 ;

6

7 C

8 : "n"

9 ;

Listing 4.5: Ambiguous grammar with shift-reduce conflicts.

Figure 4.3 presents the results of parsing the same generated input strings
n([ab]n){k}. The difference of FGLR vs list-of-stacks GLR is not as clear
cut on a shift-reduce only grammar and slightly worse on lower input size.
This is mainly due to the overhead of the scheduler when there is no good
merge opportunity to be found, even with a good scheduling. Shift-reduce
conflicts are often resolved much later, after all the token of their common
”ancester” rule have been consumed, leading to an impossibility to merge.
For example, the input "nanbn" has two possible parses na(nbn) and (nan)bn

which cannot be merged before the end of the parse where they both become
an S. FGLR works best on local conflicts that have a short delay between
their appearance and their possibility to be resolved.

4.7. DISCUSSION 95

4.6.6 Sensitivity to reduce-reduce conflicts

Lastly, we evaluate the run time impact of reduce-reduce conflicts by creating
a new grammar (Listing 4.6) where shift-reduce conflicts are removed.

1 S

2 : E S

3 |

4 ;

5

6 E

7 : C

8 | D

9 ;

10

11 C

12 : "n"

13 ;

14

15 D

16 : "n"

17 ;

Listing 4.6: Ambiguous grammar with reduce-reduce conflicts.

The results of parsing input strings generated from n{k} are presented
in Figure 4.4. The list-of-stacks (with merging) implementations will tend
to reduce "n" to C then E and "n" to D then E before merging the two forks
whereas FGLR will reduce "n" to C, "n" to D, merge and reduce only once to
E. FGLR is effective to detect merge opportunities inside a deep reduction
list. In other words, when two reduces are followed by the same reductions,
they will merge to keep only one unique reduction path. Most reduce-reduce
conflicts tend to be localized and thus easier to resolve for FGLR compared
to shift-reduce ones.

FGLR exhibits a similar general behaviour to list-of-stacks GLR on highly
ambiguous input string while having slightly better performance due to merg-
ing earlier.

4.7 Discussion

FGLR on LR(1) grammars. FGLR behaves identically to an LR parser
on LR(1) grammars since there will only be a single fiber, always being
scheduled alone, never being merged. Reductions and semantic actions are
trivially compatible. FGLR also trivially behaves akin to a LR parser on
unambiguous parts of the parse or if no ambiguities are encountered.

96 CHAPTER 4. SIDE-EFFECT-ENABLING GLR PARSER

2,000 4,000 6,000 8,000

0

0.2

0.4

0.6

0.8

1

·104

Input string size (tokens)

P
ar

se
ti

m
e

(m
s)

FGLR
GLR

Figure 4.4: Reduce-Reduce: FGLR and GLR execution time for highly am-
biguous inputs.

Targeted grammars. Due to the fiber fork, FGLR is not suited for parsing
natural languages or other highly ambiguous languages. FGLR works best for
grammars that are near-deterministic with a few local ambiguities. FGLR’s
main targets are programming languages: generic ones or Domain Specific
Languages (DSL) which mostly respect this condition.

Memory footprint. Compared to a GSS with unicity of state on the fron-
tier, FGLR is worse in terms of memory consumption. It is the price to pay
to have unique paths for reductions. Compared to list of stacks where the
merge only happens on shifts, FGLR merges more often (thanks to the or-
dering) and performs fewer LR actions, leading to less memory consumption.
In certain occurences, a reduce triggers the merge of fibers even before they
are executed (as long as they have been scheduled).

The fiber duplication is costly in theory if many hard-to-resolve ambigui-
ties appear, but this limitation is true for every GLR algorithm. Optimizing
FGLR by prefix sharing may seem a good idea at first glance, but semantic
actions typically cost more than simple LR actions on the automaton, thus
state stack operation should not be optimized at the expense of semantic
actions, defying the purpose of the approach.

As for memory optimizations, these should be treated carefully to not
deviate from the original purpose of the algorithm and adding complexity in
the handling of semantic actions.

4.8. CONCLUSION 97

Execution time. LR actions in FGLR have the same cost as in standard
LR parsing. FGLR adds an extra scheduling cost that is decomposed into
three main parts: sorting the reducing list, checking for merge candidates and
unregistering fibers from the scheduler. According to McPeak et al. [MN04],
the GSS costs lie in handling state sharing to avoid duplication and its mem-
oization of work items to avoid unnecessary computation. All of FGLR’s
costs (sorting, checking for merge and unregistering) are dependent on the
number of parallel fibers, in the same way as other list of stacks. Many of the
FGLR checks for merge could use some sort of memoization to avoid multiple
identical checks. In addition, better data structures could be introduced in
the scheduler to make unregistering easier to perform.

4.8 Conclusion

A previous version of this work [LG19] has been submitted to the journal
Science of Computer Programming, and at the time of the writing is still
under review.

In this chapter, we proposed the Fibered-GLR parsing algorithm, a rein-
terpretation of the original GLR parsing algorithm designed to enable side-
effect-based parsing. To the difference of classic GLR implementations,
FGLR does not delay semantic actions and ensures the same order of execu-
tion between LR actions and semantic actions, a bottom-up order. FGLR is
based on a scheduler ordering fibers, a clear representation of parser internals
for a given parsing alternative. This enables for side effects to be executed
in an online fashion, a mandatory requirement to disambiguate during the
parse. The algorithm scales better with ambiguities than a list of stacks
GLR and while having a worse complexity than a GSS GLR, it allows for
side-effect parsing.

98 CHAPTER 4. SIDE-EFFECT-ENABLING GLR PARSER

Chapter 5

Conclusion

Contents
5.1 Summary of contributions 99

5.1.1 Hybrid explicit-syntactic pattern matching engine 99

5.1.2 Scheduler-based GLR 100

5.2 Validating the requirements 101

5.2.1 User requirements 101

5.2.2 Implementor requirements 102

5.3 Perspectives . 103

5.3.1 Improvements on matching complex types 103

5.3.2 Interactive tooling and pattern generalization . . . 104

5.3.3 Code transformation DSL 105

5.3.4 Transformation control flow and strategies 107

5.1 Summary of contributions

In this work, we built a source-to-source code transformation engine. This
transformation engine is designed to handle arbitrary source-to-source trans-
formations written by both language experts and non experts alike. Our
main contributions are its pattern matching engine to handle hybrid pat-
terns while requiring grammars to generate a language back-end, and the
generated GLR parser for side-effect-based disambiguation.

Both contributions have been implemented on top of SmaCC, a Smalltalk
parser generator. The Smalltalk source code for our engine is available on a
fork of SmaCC’s original repository at: https://github.com/ToshRaka/SmaCC.

5.1.1 Hybrid explicit-syntactic pattern matching en-
gine

Pattern matching engines in transformation tools come in two forms. Explicit
pattern matching requires the user to write patterns in the form of element

99

https://github.com/ToshRaka/SmaCC

100 CHAPTER 5. CONCLUSION

of the IR of the matched language. Learning an IR for a language is typically
a heavy knowledge burden, making explicit patterns ill-suited for new users.
On the contrary, syntactic pattern matching feature patterns written in the
syntax of the matched language, with metavariables to act as wildcards.
Syntactic patterns are great for new users, because they do not need to learn
the IR to match the language, but some patterns are still easier to express
with explicit patterns. Thus, an hybrid explicit-syntactic pattern matching
engine is desirable.

Implementing the syntactic part of the engine requires an additional step
compared to the explicit part: the type inference phase relying heavily on
hand-written language back-ends. To ease the implementation of the type
inference, we reduce language back-ends to their parsers, generated by a
parser generator. With an adaptation of parsing as intersection for pattern
matching, we can use the same parsing algorithm for parsing the source
code of the program to match and to perform the type inference of the
hybrid pattern. We modified SmaCC’s GLR parser generator to generate
parsers compatible with type inference from the BNF/EBNF grammar of the
language. The grammar needs only a single additional line of code, defining
how to recognize a metavariable, and the parser generator can generate the
language back-end.

Parser generators typically perform a number of modifications to the parse
tree of the language to create a compact and reasonable AST. An example of
modification is the removal of intermediate recursion nodes and the addition
of lists of nodes to represent recursion instead. Matching this list idiom
is challenging since it removes the direct mapping between AST nodes and
parse tree nodes. We also proposed a method to express and match said AST
list idioms in our hybrid explicit-syntactic patterns.

5.1.2 Scheduler-based GLR

Our modified GLR parsers relies on exploring all type alternatives for each
metavariable in the same way these parsers explore all parsing alternatives
when they reach a conflict. Exploring the alternatives is done by forking,
and forking for both conflicts and metavariables is runtime and memory
intensive. Other disambiguation techniques would prove beneficial for the
engine, however the main alternative disambiguation technique of exploiting
side effects in the parser is not available in GLR. Side effects let implementors
write disambiguation code and use additional structures to choose between
alternatives during the parse, to be precise, during the semantic actions.
Semantic actions need to run in an online fashion to allow for side effects. In
other words, semantic actions need to be executed in bottom-up order, the

5.2. VALIDATING THE REQUIREMENTS 101

same order as reductions.
We proposed a GLR parser based on a scheduler to ensure the execution

order of the parsing alternatives in a bottom-up order. Parsing alternatives
are isolated as independent structures, not only containing all the parser in-
ternals for said alternative, but also any additional structure the implementor
choose to implement for disambiguation. As in list-of-stacks implementa-
tions of GLR, Fibered-GLR has separated state stacks for each alternatives,
merged when identical. Due to its ordering, FGLR merges faster than stan-
dard list-of-stacks GLR implementations. Keeping independent stacks is vital
to implementing online semantic actions. The other technique to implement
GLR uses a single graph, a GSS, instead of independent stacks to represent
the state stacks. While reducing the algorithm complexity by sharing the
maximum number of states, it cannot execute online semantic actions with
side effects.

5.2 Validating the requirements

In the introduction (Chapter 1), we derived requirements from our two main
use cases: code migration and code specialization. We divided the require-
ments in two categories, those from the point of view of the user and those
from the point of view of the language implementor. In this section, we will
discuss their realizations and the shortcomings of the said realizations.

5.2.1 User requirements

Multi-language. The transformation engine is designed to support mul-
tiple languages through multiple grammars. The language back-ends are
in fact our parsers generated from those grammars with a modified parser
runtime to handle hybrid explicit-syntactic patterns. These hybrid patterns
validate the second part of the requirement: easily match a language that
is already known to the user. A combination of syntax-based metavariables
and patterns for unknown IR constructs and IR-based patterns for known
ones fit this requirement.

No IR knowledge required. As for not needing to learn a language’s IR
to match it, we only partially validate this requirement. The patterns can be
purely syntactic without IR types, and will match every simple type, just as
an explicit pattern could. However, the current implementation of complex
types does not yet support the matching of AND types (sequences) without
adding some type information.

102 CHAPTER 5. CONCLUSION

Listing 5.1 shows an example of a pattern containing a single metavariable
with an AND type. Both Node and "," are explicit type information, the first
one refers to a specific AST node and the second a specific token.

1 ‘aList: Node ("," Node)*‘

Listing 5.1: AND types with IR knowledge.

To remove type information entirely from the patterns would require to
get rid of these node and token types in AND types. Section 5.3.1 gives leads
on how to match list idioms without type information.

Hybrid approach. Our transformation engine is indeed featuring hybrid
explicit-syntactic patterns. By default, the pattern behave in a syntactic
way, except individual metavariables can be typed explicitly by the user.
Pattern types can also be specified, but they are only checked at the end.
The current implementation does not yet use this type to reduce the set
of possible starting states. This would be an immediate improvement and
remove impossible parsing alternatives for the pattern from the start.

DSL-supported. Sadly, the transformation engine does not feature a DSL
for code transformation. Work has been done on the back-end to fit a DSL,
such as filtering aid to narrow down the matches of a pattern. Pattern
refinement is a process by which a pattern can be applied on the result of
another pattern (its matches) to get other more interesting matches. This
iterative process makes each individual pattern easier to write than a single
complex pattern would be. Pattern refinement primitives have been added to
the engine. Currently, both filtering and pattern refinement need to be used
in the engine’s implementation language and not a dedicated DSL, which
would be desirable.

5.2.2 Implementor requirements

Easy language back-end implementation. To ease the creation of lan-
guage back-ends, we chose to go the way of automated tooling to generate the
back-end instead of going for on-the-shelf back-ends. In that regard, having
a single algorithm to parse the source code and to perform the type inference
of the patterns helps. The language back-end implementation is reduced to
finding a grammar for the language (the best case) or creating one. Gram-
mars contain orders of magnitude less raw lines of code than typical language
back-ends in a general purpose languages. However, it can be opposed that
grammars are more complex objects and harder to create. We think that

5.3. PERSPECTIVES 103

it is better to invest time in creating tools to help with the development of
grammars, rather than invest this time in implementing language back-ends
for pattern matching from scratch.

Seamless hybrid integration. Our pattern matching engine is unique for
both explicit and syntactic pattern matching. Patterns feature both explicit
and syntactic matching inside a single pattern. We achieved a seamless inte-
gration between the two kinds of patterns: their is no need for two separate
engines or back-ends, and no need to isolate the two kinds of patterns.

Interchangeable DSL front-end. Since the user requirement of develop-
ing a transformation DSL was not achieved, this one was not either. Their is
no one-size-fits-all syntax across multiple domains and since we designed the
engine to support multiple languages, with experts and non experts in mind,
the syntax for a future transformation DSL would need to be appropriate to
the domain. The back-end (the engine) should be suited to accept different
syntaxes.

5.3 Perspectives

In this last section, we will explore perspectives to this work, ranging from
direct improvements to the pattern matching engine, to general tools and
techniques for transformation engines that would benefit an hybrid syntactic-
explicit code transformation engine such as ours.

5.3.1 Improvements on matching complex types

Matching complex list idioms resulting from the parser generator’s trans-
formations of recursion into lists is done through AND types. AND types
as their name suggest are a sequence of explicit types. For new users, it
is always desirable to have all constructions in the AST to be matchable
with syntactic patterns only. AND types, even if they solve the problem
of matching collections in ASTs, go against the philosophy of matching ev-
erything syntactically. To remove this dependency on explicit types, we see
multiple leads.

Submetavariables. The first method is to replace node types by sub-
metavariables, metavariables defined inside another metavariable of AND
type. In the example ‘aList: Node ("," Node)*‘, Node types would be re-
placed by two submetavariables ‘x‘ each matching a different set of nodes,

104 CHAPTER 5. CONCLUSION

but both of the same type. However, even with Node types, "," is still type
information present in the pattern. Token types are harder to get rid of since
they contain syntactic information.

Subpatterns. The second method is to formalize the definition of a subpat-
tern, a syntactic pattern embedded in a metavariable. The subpattern could
even be defined outside of the metavariable and linked during the type infer-
ence. There are a number of problems to solve with syntactic subpatterns.
Their abstract matches are highly dependent on the their parent pattern since
the position of the subpattern in its parent determines its starting state. How
should patterns with subpatterns be parsed? The regular language operators
such as Kleene star are not part of the matched language. Should they be
added as non-conflicting tokens in the same vein as metavariables? Should
there be a preprocessor handling the regular language operators instead? Or
should it be dealt with in the implementation of the parser? We hope that
in time the community formalizes the concept.

5.3.2 Interactive tooling and pattern generalization

Interactive match tooling. To gain broader acceptance in other domains,
syntactic pattern matching would greatly benefit from interactive tools that
could relate the user to the IR and then to the grammar of the matched
language. Interactive visualisation of matches (abstract and concrete) helps
in explaining why a given pattern matches an unusual piece of code or on
the contrary, why something is not matched even if we thought it should.

Conceptualy, a grammar is a finite representation of a potentially infinite
set of sentences (trees) that derives from it. In the same way, a pattern is
a finite representation of a potentially infinite set of matches. When the
pattern is compared with one source AST, we get the set of matches for this
AST, which contains only a small portion of what the pattern could match
as a whole in the language, but that crucially we did not get to encounter in
this AST. Visualization of the abstract and concrete matches, and the link
between the two, would help the user understand what is being matched and
why it is being matched.

Pattern generalization. In the same vein of getting the user to progres-
sively know better how to match a program, it is desirable to have an addi-
tional tool to generalize and mutate syntactic patterns. The generalization
of patterns comes in two ways. First, a syntactic pattern is created from an
example of the source code and progressively generalized with metavariables

5.3. PERSPECTIVES 105

to match similar snippets of code. Second, a syntactic pattern is generalized
from another syntactic patterns by mutating it (e.g., replacing syntactic el-
ements with a metavariable). The idea of pattern generalization is not new,
it has been for example implemented in Ekeko/X [MDR16a] through propo-
sition of mutation operators. Proposing similar and generalized patterns
automatically to the user is a great way to help understand the tool.

5.3.3 Code transformation DSL

The code transformation engine we are developing aims mainly at helping
code specialization and migration, through scripted arbitrary code transfor-
mations written by experts and non experts alike. Creating code transforma-
tions and ordering code transformations is a cumbersome task in a general
purpose language. However, it is specific enough to be a good target for a
dedicated DSL for automated arbitrary code transformations.

Transformation DSLs have been proposed in the past, mainly focusing on
the refactoring subset of transformations. RefactoringScript [YKS+14] and
Wrangler [LT12] are both examples of DSLs to combine atomic refactorings
into composite refactorings and combining those in turn. Refactoring im-
plementations are inherently tightly coupled with their language. Another
great example of transformation DSL is SmPL (Semantic Patch Language),
the DSL of the Coccinelle [PLM07] transformation engine. Coccinelle was
created to tackle collateral evolution of drivers in Linux (written in C) by
providing ways to write easy-to-distribute semantic patches to automatically
rewrite APIs. From the patch-like syntax of SmPL to the control-flow-based
matching of Coccinelle, every part of the engine is designed with the work-
flow of Linux kernel and driver developers in mind. These DSL examples
give an idea of what kind of DSL should we aim towards.

DSL rationale. The idea of this DSL is to provide a highly flexible lan-
guage for arbitrary source code transformations, mainly with compile-time
code specialization and code migration in mind. A scripting and textual for-
mat is ideal, since a transformation would be executed in a pipeline in an
offline manner. As far as the syntax go, it should be quickly understood by
the users and as such close to known languages in the space. Since domains
and use cases for code specialization and migration are numerous, we should
not restrict ourselves to a particular syntax and first consolidate a strong
back-end.

The main components of the language are the syntactic patterns, metavari-
ables, concrete matches, contexts and transformations. Each of these com-
ponents should be a first-class citizen in the language. It must be possible

106 CHAPTER 5. CONCLUSION

to assign them to variables, to modify them, to pass them as arguments and
to use them as return values.

Syntactic patterns. Syntactic patterns can either represent matching pat-
terns or rewriting patterns (see Listing 5.2). The same representation is used
for the two use cases.

1 ‘a‘ + ‘a‘

2 >>>

3 ‘a‘ ^ 2

Listing 5.2: Syntactic patterns for matching and rewriting.

Syntactic patterns expose their context and their source code. Their
context can be modified in the case of input metavariables, or queried in
the case of output metavariables. A syntactic pattern can be compiled into
its corresponding abstract matches according to a parser. While abstract
matches do not offer much use as is for the user, a debugger could exploit
them for user feedback, if the pattern does not belong to the language for
example.

Metavariables. Metavariables expose their name, type, cardinality, parent
and children. The type results from the type inference yielding abstract
matches, and the cardinality is the one specified by the user if any using
Kleene operators. Child metavariables are the sub-metavariables holding the
sub-types of a parent metavariable with an AND type.

Contexts. Contexts are dictionaries whose keys are metavariables and val-
ues are nodes of the source AST, or collections of nodes in case of an AND
type metavariable. Metavariables in a context can be bound to a node or
collection of nodes and can be accessed using their name. It is still unclear
if child metavariables should be addressed through name aliasing of their
parent, by index or both.

Matches. Here, matches correspond to concrete matches, actual source
code AST subtrees matched by a syntactic pattern. Matches exposes their
subtree and their context, which contains the metavariables and their match-
ing nodes or collection of nodes. Matches can then be transformed using a
rewriting pattern.

Transformations. Transformations apply a transformation pattern, a syn-
tactic pattern, to a set of concrete matches. Each individual transformation

5.3. PERSPECTIVES 107

uses the context of its concrete match to fill in the metavariables in its pat-
tern. The transformation should be transactional with operators to commit
or abort a transformation or set of transformations.

5.3.4 Transformation control flow and strategies

Code migration is an example of sizable transformation use case where all the
transformations need to be applied in one pass. Applying one transformation,
parsing the result and applying another transformation is complex since it
would create an intermediate result in between the original language and the
new language. If we cannot iterate on intermediate transformation results,
it is necessary to control the order and scope of application of our rewriting
rules.

Strategies, or rewriting strategies, control the order of application of
rewriting rules, both in depth, i.e. should we rewrite children before their
parents, and in breadth, i.e. which transformation among those possible for
a node should take precedence over the others. While transformations define
actual rewriting to be performed locally, strategies provide the control flow of
execution of those transformations. Some transformations need other trans-
formations to have occured, or certain conditions to be met, before being
executed.

Stratego [BKVV08] is a strategy language for term rewriting, and other
strategy-based rewriting systems should be an inspiration to integrate strate-
gies in transformation engines, particularly for a migration use case. A com-
bination of global strategies and customizable local strategies is necessary to
scale to the rewriting of hundreds of rules to a code base, without having to
write the entire control flow of the rule application by hand.

108 CHAPTER 5. CONCLUSION

Bibliography

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison Wesley, Reading,
Mass., 1974.

[AKB15] A. M. AbdelLatif, A. Kamel, and R. Bahgat. An implementa-
tion of a fast threaded nondeterministic ll (*) parser generator.
International Journal of Computer Applications, 130(5), 2015.

[AL11] N. Anquetil and J. Laval. Legacy software restructuring: An-
alyzing a concrete case. In Proceedings of the 15th Euro-
pean Conference on Software Maintenance and Reengineering
(CSMR’11), pp. 279–286, Oldenburg, Germany, 2011.

[AVvdS19] R. Aarssen, J. Vinju, and T. van der Storm. Concrete syntax
with black box parsers. In International Conference on the
Art, Science, and Engineering of Programming, 2019.

[Bal15] V. Balachandran. Query by example in large-scale code reposi-
tories. In Software Maintenance and Evolution (ICSME), 2015
IEEE International Conference on, pp. 467–476. IEEE, 2015.

[Bar13] B. M. Bartman. SRCQL: A Syntax-aware Query Language
for Exploring Source Code. PhD thesis, Kent State University,
2013.

[BBC+03] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández,
M. Kay, J. Robie, and J. Siméon. XML path language (XPath).
World Wide Web Consortium (W3C), 2003.

[BCM15] E. Balland, H. Cirstea, and P.-E. Moreau. Bringing strategic
rewriting into the mainstream. 2015.

[BDN+09] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou,
and M. Denker. Pharo by Example. Square Bracket Associates,
Kehrsatz, Switzerland, 2009.

[BHPS61] Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties
of simple phrase structure grammars. STUF-Language Typol-
ogy and Universals, 14(1-4):143–172, 1961.

109

110 BIBLIOGRAPHY

[BKVV08] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser.
Stratego/xt 0.17. a language and toolset for program transfor-
mation. Science of computer programming, 72(1):52–70, 2008.

[BLG+17] J. Brant, J. Lecerf, T. Goubier, S. Ducasse, and A. Black.
SmaCC: a Compiler-Compiler. The Pharo Booklet Collection.
Pharo, 2017.

[BNE16] F. Brown, A. Nötzli, and D. Engler. How to build static check-
ing systems using orders of magnitude less code. In ACM
SIGOPS Operating Systems Review, volume 50, pp. 143–157.
ACM, 2016.

[BP08] J. Bovet and T. Parr. ANTLRWorks: an ANTLR grammar
development environment. Software: Practice and Experience,
38(12):1305–1332, 2008.

[BPM04] I. D. Baxter, C. Pidgeon, and M. Mehlich. DMS: Program
transformations for practical scalable software evolution. 26th
International Conference on Software Engineering, pp. 625–
634, 2004.

[BRPP10] J. Brant, D. Roberts, B. Plendl, and J. Prince. Extreme main-
tenance: Transforming Delphi into C#. In ICSM’10, 2010.

[Coc70] J. Cocke. Programming languages and their compilers: Pre-
liminary notes. 1970.

[Cor06] J. R. Cordy. The txl source transformation language. Science
of Computer Programming, 61(3):190–210, 2006.

[DRI14] C. De Roover and K. Inoue. The ekeko/x program transforma-
tion tool. In Source Code Analysis and Manipulation (SCAM),
2014 IEEE 14th International Working Conference on, pp. 53–
58. IEEE, 2014.

[DRS11] G. Dos Reis and B. Stroustrup. A principled, complete, and
efficient representation of C++. Mathematics in Computer
Science, 5(3):335–356, 2011.

[dSS17] G. J. de Souza Santos. Assessing and Improving Code Trans-
formations to Support Software Evolution. PhD thesis, Uni-
versity Lille 1 - Sciences et Technologies - France, feb 2017.

BIBLIOGRAPHY 111

[Ear70] J. Earley. An efficient context-free parsing algorithm. Com-
mun. ACM, 13(2):94–102, 1970.

[EKV09] G. Economopoulos, P. Klint, and J. Vinju. Faster scannerless
glr parsing. In International Conference on Compiler Con-
struction, pp. 126–141. Springer, 2009.

[EOW07] B. Emir, M. Odersky, and J. Williams. Matching objects with
patterns. In European Conference on Object-Oriented Pro-
gramming, pp. 273–298. Springer, 2007.

[For04] B. Ford. Parsing expression grammars: a recognition-based
syntactic foundation. In POPL ’04: Proceedings of the 31st
ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pp. 111–122, New York, NY, USA, 2004.
ACM.

[Fow18] M. Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[GG12] P. Gazzillo and R. Grimm. Superc: parsing all of c by tam-
ing the preprocessor. ACM SIGPLAN Notices, 47(6):323–334,
2012.

[GHB10] F. Geller, R. Hirschfeld, and G. Bracha. Pattern matching for
an object-oriented and dynamically typed programming lan-
guage. Master’s thesis, Universitätsverlag Potsdam, 2010.

[GJ05] A. Garrido and R. Johnson. Analyzing multiple configurations
of a c program. In Software Maintenance, 2005. ICSM’05.
Proceedings of the 21st IEEE International Conference on, pp.
379–388. IEEE, 2005.

[GJ08a] D. Grune and C. J. Jacobs. Parsing as intersection. In Parsing
Techniques, pp. 425–442. Springer, 2008.

[GJ08b] D. Grune and C. J. Jacobs. Parsing Techniques — A Practical
Guide. Springer, 2008.

[GJ13] A. Garrido and R. Johnson. Embracing the c preprocessor dur-
ing refactoring. Journal of Software: Evolution and Process,
25(12):1285–1304, 2013.

112 BIBLIOGRAPHY

[GMJ06] A. Garrido, J. Meseguer, and R. Johnson. Algebraic seman-
tics of the c preprocessor and correctness of its refactorings.
Technical report, University of Illinois at Urbana-Champaign,
Urbana IL 61801, USA., 2006.

[Gri04] R. Grimm. Practical packrat parsing. Technical report, New
York University, 2004.

[HKV12] M. Hills, P. Klint, and J. J. Vinju. Scripting a refactoring with
rascal and eclipse. In 5th Workshop on Refactoring Tools, pp.
40–49, 2012.

[HOBH13] M. Hafiz, J. Overbey, F. Behrang, and J. Hall. Openrefac-
tory/c: An infrastructure for building correct and complex c
transformations. In Proceedings of the 2013 ACM workshop on
Workshop on refactoring tools, pp. 1–4. ACM, 2013.

[IVDSE14] P. Inostroza, T. Van Der Storm, and S. Erdweg. Tracing
program transformations with string origins. In International
Conference on Theory and Practice of Model Transformations,
pp. 154–169. Springer, 2014.

[JCB+15] J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and
F. Fouquet. Mashup of metalanguages and its implementa-
tion in the Kermeta language workbench. Software & Systems
Modeling, 14(2):905–920, 2015.

[JK06] B. Jay and D. Kesner. Pure pattern calculus. In European
Symposium on Programming, pp. 100–114. Springer, 2006.

[Joh75] S. Johnson. Yacc: Yet another compiler compiler. Computer
Science Technical Report #32, Bell Laboratories, Murray Hill,
NJ, 1975.

[JSE06] A. Johnstone, E. Scott, and G. Economopoulos. Evaluating
GLR parsing algorithms. Science of Computer Programming,
61(3):228–244, 2006.

[KBD17] J. Kim, D. Batory, and D. Dig. X15: A tool for refactoring java
software product lines. In Proceedings of the 21st International
Systems and Software Product Line Conference-Volume B, pp.
28–31. ACM, 2017.

BIBLIOGRAPHY 113

[KDSD+09] A. Kellens, K. De Schutter, T. D’Hondt, L. Jorissen, and
B. Van Passel. Cognac: A framework for documenting and ver-
ifying the design of cobol systems. In Software Maintenance
and Reengineering, 2009. CSMR’09. 13th European Confer-
ence on, pp. 199–208. IEEE, 2009.

[Knu65] D. E. Knuth. On the translation of languages from left to right.
Information and control, 1965.

[KRV10] H. Krahn, B. Rumpe, and S. Völkel. MontiCore: a framework
for compositional development of domain specific languages.
International journal on software tools for technology transfer,
12(5):353–372, 2010.

[KT14] G. P. Krishnan and N. Tsantalis. Unification and refactoring of
clones. In Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), 2014 Software Evolution Week-
IEEE Conference on, pp. 104–113. IEEE, 2014.

[Kur16] J. Kurš. Parsing For Agile Modeling. PhD thesis, University
of Bern, Oct. 2016.

[LBGD18] J. Lecerf, J. Brant, T. Goubier, and S. Ducasse. A reflexive
and automated approach to syntactic pattern matching in code
transformations. In IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME’18), Madrid, Spain,
Sept. 2018.

[Lev09] J. Levine. Flex & Bison: Text Processing Tools. ” O’Reilly
Media, Inc.”, 2009.

[LG19] J. Lecerf and T. Goubier. A scheduling approach to generalized
LR parsing. Science of Computer Programming, 2019.

[LMB92] J. R. Levine, T. Mason, and D. Brown. Lex & yacc. O’Reilly
Media, Inc., 1992.

[LRDJ17] Y. Lebras, A. S. C. Rubial, R. Dolbeau, and W. Jalby. AS-
SIST: An FDO source-to-source transformation tool for HPC
applications. In International Workshop on Parallel Tools for
High Performance Computing, pp. 39–56. Springer, 2017.

114 BIBLIOGRAPHY

[LT12] H. Li and S. Thompson. A domain-specific language for script-
ing refactorings in erlang. In International Conference on Fun-
damental Approaches to Software Engineering, pp. 501–515.
Springer, 2012.

[MB05] B. McCloskey and E. Brewer. Astec: a new approach to refac-
toring c. ACM SIGSOFT Software Engineering Notes, 30:21–
30, 2005.

[MDR16a] T. Molderez and C. De Roover. Automated generalization and
refinement of code templates with ekeko/x. In Software Analy-
sis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd
International Conference on, volume 1, pp. 669–672. IEEE,
2016.

[MDR16b] T. Molderez and C. De Roover. Search-based generalization
and refinement of code templates. In International Symposium
on Search Based Software Engineering, pp. 192–208. Springer,
2016.

[MN04] S. McPeak and G. C. Necula. Elkhound: A fast, practical GLR
parser generator. In International Conference on Compiler
Construction, pp. 73–88. Springer, 2004.

[MRV03] P.-E. Moreau, C. Ringeissen, and M. Vittek. A pattern match-
ing compiler for multiple target languages. In International
Conference on Compiler Construction, pp. 61–76. Springer,
2003.

[NF91] R. Nozohoor-Farshi. Glr parsing for ε-grammers. In General-
ized LR parsing, pp. 61–75. Springer, 1991.

[NRL17] K. Narasimhan, C. Reichenbach, and J. Lawall. Interactive
data representation migration: exploiting program dependence
to aid program transformation. In PEPM 2017 Workshop on
Partial Evaluation and Program Manipulation, 2017.

[OBH14] J. L. Overbey, F. Behrang, and M. Hafiz. A foundation for
refactoring c with macros. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, pp. 75–85. ACM, 2014.

BIBLIOGRAPHY 115

[Obj11] Object Management Group. Abstract syntax tree metamodel
(ASTM) version 1.0. Technical report, Object Management
Group, 2011.

[OJ08] J. L. Overbey and R. E. Johnson. Generating rewritable ab-
stract syntax trees. In International Conference on Software
Language Engineering, pp. 114–133. Springer, 2008.

[Ove13] J. L. Overbey. Immutable source-mapped abstract syntax tree:
a design pattern for refactoring engine apis. In Proceedings of
the 20th Conference on Pattern Languages of Programs, pp. 7.
The Hillside Group, 2013.

[Par13] T. Parr. The definitive ANTLR 4 reference. Pragmatic Book-
shelf, 2013.

[PF11] T. Parr and K. Fisher. Ll (*): the foundation of the antlr
parser generator. ACM Sigplan Notices, 46(6):425–436, 2011.

[PLHM08] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Doc-
umenting and automating collateral evolutions in linux device
drivers. In ACM SIGOPS Operating Systems Review, vol-
ume 42, pp. 247–260. ACM, 2008.

[PLM07] Y. Padioleau, J. L. Lawall, and G. Muller. Smpl: A domain-
specific language for specifying collateral evolutions in linux
device drivers. Electronic Notes in Theoretical Computer Sci-
ence, 166:47–62, 2007.

[PTS+11] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and
G. Muller. Faults in linux: Ten years later. In ACM SIG-
PLAN Notices, volume 46, pp. 305–318. ACM, 2011.

[RBJ97] D. Roberts, J. Brant, and R. E. Johnson. A refactoring tool for
Smalltalk. Theory and Practice of Object Systems (TAPOS),
3(4):253–263, 1997.

[RBJO96] D. Roberts, J. Brant, R. E. Johnson, and B. Opdyke. An auto-
mated refactoring tool. In Proceedings of ICAST ’96, Chicago,
IL, Apr. 1996.

[Rek92] J. G. Rekers. Parser generation for interactive environments.
PhD thesis, Universiteit van Amsterdam, 1992.

116 BIBLIOGRAPHY

[Rob99] D. B. Roberts. Practical Analysis for Refactoring. PhD thesis,
University of Illinois, 1999.

[RS70] D. J. Rosenkrantz and R. E. Stearns. Properties of determin-
istic top-down grammars. Information and Control, 1970.

[RSDT16] M. Rizun, G. Santos, S. Ducasse, and C. Teruel. Phorms: Pat-
tern Combinator Library for Pharo. In International Workshop
on Smalltalk Technologies IWST’16, Prague, Czech Republic,
Aug. 2016.

[SAE+15] G. Santos, N. Anquetil, A. Etien, S. Ducasse, and M. T. Va-
lente. System specific, source code transformations. In 31st
IEEE International Conference on Software Maintenance and
Evolution, pp. 221–230, 2015.

[SJ06] E. Scott and A. Johnstone. Right nulled GLR parsers.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 28(4):577–618, 2006.

[SJ10] E. Scott and A. Johnstone. GLL parsing. Electronic Notes in
Theoretical Computer Science, 253(7):177–189, 2010.

[SJE07] E. Scott, A. Johnstone, and R. Economopoulos. BRNGLR:
a cubic tomita-style glr parsing algorithm. Acta informatica,
44(6):427–461, 2007.

[Spi10] D. Spinellis. Cscout: A refactoring browser for c. Science of
Computer Programming, 75(4):216–231, 2010.

[TN91] M. Tomita and S.-K. Ng. The generalized LR parsing algo-
rithm. In Generalized LR parsing, pp. 1–16. Springer, 1991.

[Tom87] M. Tomita. An efficient augmented-context-free parsing algo-
rithm. Computational linguistics, 13(1-2):31–46, 1987.

[Val75] L. G. Valiant. General context-free recognition in less than cu-
bic time. Journal of computer and system sciences, 10(2):308–
315, 1975.

[VD03] J.-Y. Vion-Dury. Xpath on left and right sides of rules: toward
compact xml tree rewriting through node patterns. In Proceed-
ings of the 2003 ACM symposium on Document engineering,
pp. 19–25. ACM, 2003.

BIBLIOGRAPHY 117

[VDBSV+97] M. Van Den Brand, M. Sellink, C. Verhoef, et al. Obtaining a
cobol grammar from legacy code for reengineering purposes. In
Proceedings of the 2nd International Workshop on the Theory
and Practice of Algebraic Specifications, electronic Workshops
in Computing. Springer verlag, 1997.

[Vok06] M. Vokác. An efficient tool for recovering design patterns from
c++ code. Journal of Object Technology, 5(1):139–157, 2006.

[WGMH13] M. Wang, J. Gibbons, K. Matsuda, and Z. Hu. Refactor-
ing pattern matching. Science of Computer Programming,
78(11):2216–2242, 2013.

[WKV14] G. H. Wachsmuth, G. D. Konat, and E. Visser. Language
design with the Spoofax language workbench. IEEE software,
31(5):35–43, 2014.

[YKS+14] L. Yang, T. Kamiya, K. Sakamoto, H. Washizaki, and
Y. Fukazawa. Refactoringscript: A script and its processor
for composite refactoring. In SEKE, pp. 711–716, 2014.

[You67] D. H. Younger. Recognition and parsing of context-free lan-
guages in time n3. Information and control, 10(2):189–208,
1967.

118 BIBLIOGRAPHY

Résumé

Introduction

Les systèmes informatiques vieillissent par l’augmentation de leur complexité,
la réduction de leur maintenance pour satisfaire d’autres priorités ou simple-
ment par la raréfaction de ses experts. La perte de connaissance sur un
système appelle à différentes solutions suivant la gravité de la perte et les
buts du mainteneur. Réécrire le système en entier en partant de zéro est
certainement une possibilité, mais est considérée comme une perte nette de
temps et de ressources investis. Les outils d’exploration et de compréhension
de code aident à récupérer une partie de la connaissance perdue, mais ils
requièrent un important investissement en temps humain. Pour des pro-
jets complexes aux problèmes systémiques, le besoin de modernisation est
clair. Les opportunités de modernisation peuvent être découvertes par des
vérificateurs de bogues, mais au final, les solutions de modernisation de code
sont implémentées sous la forme de transformations de code.

Les transformations requises pour une modernisation sont trop complexes
pour être effectuées efficacement et sans erreur à la main, les développeurs
ont besoin d’outils pour les aider dans cette tâche. Les transformations semi-
automatiques basées sur de la reconnaissance de motifs deviennent de plus
en plus populaires pour répondre à ce problème. Elles ont prouvé leur effi-
cacité sur des bases de code réelles, au point d’être intégrées dans des En-
vironnements de Développpement Intégré (IDE). Ces transformations semi-
automatiques se reposent sur l’écriture de deux motifs : un motif de re-
connaissance et un motif de transformation. Grâce à ces deux motifs, les
développeurs peuvent réécrire toutes les occurrences du premier motif en ce
second motif sur des bases de code importantes.

Parmi les cas d’usage les plus communs des transformations automa-
tiques de code, les refactorings possèdent les outils les plus matures. Les
refactorings sont un sous-ensemble des transformations de code, pour lequel
la fonctionnalité du programme est conservée après la transformation. Ils
sont généralement construits pour améliorer la qualité du code en augmen-
tant sa maintenabilité, sa performance, ou en le rendant plus lisible. Ces
transformations sont attractives pour les développeurs car elles garantissent
que la sémantique du programme est conservée : la transformation ne peut
pas casser un code fonctionnel. Cependant, dans les faits, la vérification
formelle des refactorings est un problème difficile. Seuls les plus simples ont
des stratégies de vérification en temps raisonnable. En pratique, pour vérifier

119

120 RÉSUMÉ

des refactorings complexes, les moteurs de refactoring utilisent des pré et post
conditions qui vérifient l’état du programme avant et après la transforma-
tion. Cette approximation permet une vérification moins coûteuse, mais peut
laisser le programme dans des états instables à chaque étape de la transfor-
mation.

La migration de code d’un langage à un autre est une autre tâche de
modernisation complexe. Toutes les constructions du langage d’origine ne
se retrouvent pas dans le langage cible et ces dernières n’ont pas toujours
leur équivalent. De plus, la migration peut se heurter à des problèmes de
bibliothèques absentes dans le langage cible, mais présentes dans le langage
d’origine. Une migration automatique ne peut donc pas être complète et de-
mande le développement additionnel de cette bibliothèque. Pour ces raisons,
les migrations de code requièrent des transformations arbitraires flexibles qui
ne préservent pas la sémantique du code en question.

Les transformations arbitraires de code sont aussi utilisées pour implémenter
la spécialisation de code avant la compilation. La spécialisation de code vise
principalement à améliorer les performances d’une application pour laque-
lle l’adéquation à la plateforme est mal gérée par le compilateur seul. Les
spécialisations couvrent de simples transformations de variables à constantes
jusqu’aux transformations de l’agencement des données.

Nous concentrons nos efforts sur les deux cas d’usage précédents : la mi-
gration et la spécialisation de code. La migration est réalisée par des experts
des langages, tandis que la spécialisation est réalisée par des experts des
plateformes sans forcément une connaissance poussée des langages. Les deux
cas d’usages mettent l’emphase sur des transformations arbitraires et source
à source. De ces deux cas d’usages, avec leurs spécificités, nous dérivons
diverses exigences pour l’utilisateur et pour l’implémenteur de l’outil.

Exigences

Exigences utilisateur

Multi-langage. Le moteur de transformation de code doit être multi-
langage. Les bases de code sont généralement écrites dans de multiples
langages, pour différents usages. Ceci doit être réfléchi dans le moteur de
transformation. Si l’utilisateur connâıt déjà le langage, il ne doit pas avoir
besoin de plus de connaissance pour en écrire les motifs et il doit être aisé de
changer de langage.

121

Pas de connaissance préalable de l’IR requise. Le moteur de trans-
formation de code ne doit pas requérir de l’utilisateur l’apprentissage de la
représentation intermédiaire du langage. Pour des nouveaux utilisateurs, il
est important de ne pas se reposer sur l’IR des langages, ce qui implique
que les utilisateurs doivent pouvoir écrire des motifs de reconnaissance et
transformation sans connaissance a priori de l’IR. Cela baisse fortement la
barrière à l’entrée de l’outil pour pouvoir cibler des experts comme des non
experts.

Approche hybride. Le moteur de transformation de code devrait tout
de même permettre d’exprimer des motifs avec l’IR si il le souhaite. Même
si le moteur utilise des motifs indépendants de l’IR par défaut, toutes les
transformations ne sont pas faciles à réaliser de cette manière. Un accès
optionnel à l’IR est désirable, particulièrement pour les experts des langages
ayant déjà une bonne connaissance de l’IR en question.

Aidé par un DSL. Un Langage Spécifique au Domaine (DSL) devrait
être ajouter pour aider aux activités de transformation de code source. Les
DSLs sont un moyen connu d’améliorer la productivité et l’accessibilité à des
outils pour des domaines spécifiques et la transformation de code ne fait pas
exception. Les DSLs proposent des abstractions personalisées pour un cer-
tain domaine, qui dans notre cas seraient particulièrement utiles pour cacher
des détails d’implémentation de la reconnaissance de motifs et des transfor-
mations avec des abstractions de plus haut niveau. Pour aider nouveaux
utilisateurs et experts, un DSL de transformation de code source à source est
désirable.

Exigences implémenteur

Implémentation simplifiée des back-ends de langage. Le moteur de
transformation de code doit proposer une manière efficace d’implémenter les
back-ends de langage à moindre coût. Un back-end de langage comprend son
analyseur syntaxique ainsi que ses intégrations au moteur de reconnaissance
de motifs et de transformation. Ces back-ends de langage sont un effort
d’ingénierie non négligeable car écrit à partir de zéro pour chaque nouveau
langage.

Intégration hybride transparente. Le moteur de reconnaissance de mo-
tifs ne doit pas se reposer sur deux moteurs séparés pour gérer les motifs sans

122 RÉSUMÉ

et avec IR. Pour supporter une approche complètement hybride, il doit exis-
ter un grand degré d’intégration entre les deux types de motifs. Cela signifie
que l’implémenteur ne doit pas avoir à gérer un type de motif différemment
de l’autre.

Syntaxe du DSL interchangeable. Le DSL du moteur de transforma-
tion de code doit pouvoir être adapté pour différents styles de syntaxe. Le
DSL doit avoir un back-end modulaire et robuste au dessus duquel pourraient
être implémentée diverses syntaxes pour divers sous-domaines. A point ma-
jeur d’adoption des DSLs est dans la familiarité de sa syntaxe qui dépend elle
du sous-domaine en question. Il devrait être possible de construire facilement
des nouveaux front-ends et de les lier au moteur de transformation.

Notre approche en quelques mots

Comment peut-on construire un moteur de transformation de code source à
source dont les transformations ne requièrent aucune connaissance préalable
des constructions du language tout en ayant un coup réduit pour l’implémenteur
du moteur ?

Pour répondre à cette question et répondre aux exigences que nous nous
sommes fixés dans les paragraphes précédents, nous choisissons de construire
un moteur de reconnaissance de motifs qui utilisent la même syntaxe que
leur langage à reconnâıtre par défaut, mais peut aussi faire référence à l’IR
au besoin. Le moteur de reconnaissance de motifs est couplé à un moteur
de génération d’analyseurs syntaxiques LR généralisés pour générer à la fois
l’IR du code source, mais aussi pour automatiser une partie du processus
de reconnaissance, cachant ainsi la complexité de l’IR à l’utilisateur. Pour
réunir l’analyse syntaxique et la reconnaissance des motifs sous l’ombrelle
d’un unique algorithme, nous adaptons le résultat de parsing as intersection
à la reconnaissance de motifs. La reconnaissance de motifs via l’IR est tou-
jours exprimable dans les motifs comme les approches traditionnelles, mais
le moteur se rabat toujours sur une reconnaissance syntaxique par défaut.
De cette manière, nous construisons un moteur de réconnaissance et trans-
formation de code agnostique vis à vis de l’IR du langage reconnu.

Contributions

Dans cette thèse, nous avons construit un moteur de transformation de code
arbitraire, source à source, dont les transformations sont adaptées aux ex-

123

perts et non-experts. Nos contributions principales résident dans le mo-
teur de reconnaissance de motifs hybrides explicites-syntaxiques et les anal-
yseurs syntaxiques FGLR générés qui permettent la désambigüısation par
effets de bord. Nos contributions sont implémentées au dessus de SmaCC, le
générateur d’analyseurs syntaxiques de Smalltalk.

Moteur de reconnaissance de motifs hybrides explicites-
syntaxiques

Dans les outils de transformation, les moteurs de reconnaissance de mo-
tifs existent sous deux formes. La reconnaissance explicite demande que
l’utilisateur écrive des motifs décrivant explicitement la forme des éléments
à reconnâıtre de l’IR. Apprendre l’IR d’un langage est une lourde tâche, ce
qui rend la reconnaissance explicite inadaptée pour les nouveaux utilisateurs.
Au contraire, la reconnaissance syntaxique propose d’écrire les motifs directe-
ment dans la syntaxe du langage à reconnâıtre, augmentée de métavariables
qui font office de jokers. Les motifs syntaxiques sont plus adaptés aux nou-
veaux utilisateurs, car ils ne requièrent pas l’apprentissage de l’IR pour être
exprimés. Cependant, certains motifs sont plus faciles à exprimer explicite-
ment, il est donc désirable d’avoir un moteur de reconnaissance gérant des
motifs hybrides explicites-syntaxiques.

Implémenter la partie reconnaissance syntaxique d’un tel moteur a be-
soin d’une étape additionnelle par rapport à la partie explicite : une phase
d’inférence de type qui se repose pour beaucoup sur des back-ends de langage
écrits à la main. Pour faciliter l’implémentation de l’inférence de type, nous
réduisons les back-ends de langage à leurs analyseurs syntaxiques, eux-même
générés par un générateur d’analyseurs syntaxiques. Grâce à une adapation
de parsing-as-intersection pour la reconnaissance de motifs, nous pouvons
nous servir du même algorithme pour analyser le code source du program à
transformer et pour effectuer l’inférence de type du motif hybride. Nous
avons modifié le moteur de génération d’analyseurs syntaxiques GLR de
SmaCC pour générer des analyseurs compatibles avec l’inférence de type, à
partir d’une grammaire du langage au format BNF ou EBNF. La grammaire
en question ne nécessite que l’addition d’une unique ligne supplémentaire qui
définit comment reconnâıtre une métavariable, et le générateur se charge de
générer le back-end du langage pour le moteur de reconnaissance.

Les générateurs d’analyseurs syntaxiques effectuent des modifications à
l’arbre de syntaxe pour créer un arbre de syntaxe abstrait plus contact et
raisonnable. Un exemple d’une telle modification est la suppression des
noeuds intermédiaires représentant la récursion et l’ajout de listes de noeuds

124 RÉSUMÉ

comme représentation alternative plus compact. Reconnâıtre cet idiome de
listes est complexe car le lien direct entre les noeuds de l’arbre de syntaxe et
ceux de l’arbre de syntaxe abstrait est brisé. Nous proposons également une
méthode pour exprimer et reconnâıtre ces idiomes de listes dans les arbres
de syntaxe abstraits avec des motifs hybrides explicites-syntaxiques.

GLR ordonnancé

Nos analyseurs GLR modifiés reposent sur l’exploration de tous les types
possibles pour une métavariable, à l’instar de la manière dont ces analyseurs
explorent les alternatives d’analyse possibles lors d’un conflit. L’exploration
des alternatives est rélisée par duplication de l’analyseur lors qu’il rencontre
à la fois des conflits et des métavariables, cette double duplication peut être
stressante en terme de temps d’exécution et de mémoire. D’autres méthodes
de désambigüısation serait bénéfiques pour le moteur pour endiguer cette
potentielle explosion de duplication. Cependant, la principale technique
pour désambigüıser durant l’analyse est l’exploitation d’effets de bord dans
l’analyseur, non disponible dans les analyseurs GLR. Les effets de bord per-
mettent l’implémentation de code de désambigüısation pour faire un choix
entre les alternatives pendant l’analyse, ou plus précisément, pendant les ac-
tions sémantiques. Les actions sémantiques doivent être exécutée en ligne et
dans un ordre bottom-up pour permettre les effets de bord, c’est-à-dire dans
le même ordre que leurs réductions associées.

Nous proposons un analyseur GLR basé sur un ordonnanceur pour s’assurer
de l’exéction des alternatives d’analyse dans l’ordre bottom-up. Les alterna-
tives d’analyse sont isolées dans des structures de données indépendantes qui
contiennent non seulement les données internes à l’analyseur pour l’alternative
en question, mais aussi toute structure de désambigüısation additionnelle que
l’implémenteur aurait choisi d’ajouter. De même que pour les implémentations
list-of-stacks de GLR, Fibered-GLR (FGLR) sépare les piles d’états pour
chaque alternative et les fusionne quand elles redeviennent identiques. Grâce
à son ordre bottom-up, FGLR fusionne plus souvent qu’une implémentation
standard de GLR list-of-stacks. Garder les alternatives indépendantes entre
elles est vital à l’implémentation d’actions sémantiques en ligne. La tech-
nique la plus efficace de GLR utilise un unique graphe, appellé GSS, pour
représenter toutes les alternatives d’analyse au lieu de les séparer. Cette tech-
nique permet de réduire la complexité de l’algorithm en partageant un nom-
bre maximum d’états, mais elle ne peut plus exécuter les actions sémantiques
en ligne et donc pas désambigüıser par effets de bord.

125

Réponse aux exigences et perspectives

Exigences utilisateur

Multi-langage. Le moteur de transformation est construit pour supporter
plusieurs langages à travers leurs grammaires. Les back-ends de langage sont
réduits à leur analyseur syntaxique généré depuis la grammaire du langage
avec un environnement d’exécution modifié pour géré les motifs hybrides
explicites-syntaxiques. Ces motifs hybrides valident la deuxième partie de
l’exigence : permettre l’écriture aisée de motifs pour un langage déjà connu
de l’utilisateur. Une combinaison de métavariables et motifs syntaxiques
pour les constructions inconnues de l’IR et de motifs basés sur l’IR pour
celles qui sont connues répond à l’exigence.

Pas de connaissance préalable de l’IR requise. Pour ce qui est de
ne pas avoir besoin d’une connaissance préalable de l’IR pour écrire des
motifs et faire la reconnaissance, la validation est partielle. Les motifs peu-
vent être purement syntaxiques, sans types de l’IR, et pourront reconnâıtre
n’importe quel type de l’IR tout comme un motif explicite. Cependant,
l’implémentation actuelle des types complexes facilitant la reconnaissance
des arbres transformés repose sur des fondements explicites.

Approche hybride. Notre moteur de transformation est en effet hybride,
il propose des motifs explicites-syntaxiques. Par défaut, le motif se com-
porte de manière syntaxique et c’est seulement lorsque les métavariables
sont individuellement typées que l’on a accès à la reconnaissance explicite.
L’implémentation actuelle n’utilise pas encore les types de motifs pour réduire
le nombre de possibilités explorées. Une amélioration immédiate consisterait
à retirer les alternatives d’analyse pour un motif typé au début de la recon-
naissance.

Aidé par un DSL. Malheureusement, le moteur de transformation n’offre
pas encore de DSL de transformation de code. Certaines fonctionnalités du
moteur ont déjà été ajoutées pour aller dans ce sens, comme le raffinage de
motifs, procédé qui permet d’appliquer des motifs successifs pour récupérer
des éléments plus intéressants. Ce processus itératif permet d’écrire plusieurs
motifs simples plutôt qu’un motif unique très complexe.

126 RÉSUMÉ

Exigences implémenteur

Implémentation simplifiée des back-ends de langage. Pour faciliter
la création des back-ends de langage, nous avons choisi la voie de l’automatisation
via la génération du back-end depuis une grammaire, plutôt que de nous ap-
puyer sur des analyseurs sur étagère. Pouvoir utiliser le même algorithme
pour l’inférence de types et l’analyse syntaxique est le principal critère qui
nous a fait choisir cette route. L’implémentation du back-end du langage est
réduite à trouver une grammaire du langage dans le meilleur des cas et la
créer dans le pire. Les grammaires de langages de programmation généralistes
sont des objets complexes, mais contiennent plusieurs ordres de magnitude
moins de code. Nous pensons qu’il est plus important d’investir dans les out-
ils pour aider au développement des grammaires plutôt que d’investir dans
l’écriture de back-ends de langages.

Intégration hybride transparente. Le moteur de reconnaissance de mo-
tifs est singulier, à la fois explicite et syntaxique. Un unique motif peut
contenir à la fois des parties explicites et syntaxiques. L’exigence d’une
intégration hybride transparente est réalisée : il n’y a ni besoin de séparer
les deux types de moteurs ou les deux types de motifs.

Syntaxe du DSL interchangeable. L’exigence du DSL n’étant pas validée,
celle-ci ne l’est pas non plus. Aucune syntaxe ne convient à tous les usages,
la syntaxe est très dépendante de son domaine et donc public. Le moteur
est construit pour que les motifs soient aisés à écrire pour les experts et non
experts, des syntaxes interchangeables doivent représenter cela aussi.

Perspectives

Reconnaissance syntaxique de types complexes. Reconnâıtre les ar-
bres de syntaxe abstraits, après transformation de la récursion en liste,
est actuellement fait sous la forme de types AND explicites. Ces types
représentent une séquence de types explicites. Pour de nouveaux utilisa-
teurs, il est désirable de pouvoir reconnâıtre n’importe quelle sous-structure
de l’AST via des motifs syntaxiques. Les séquences de types explicites vont à
l’encontre de cette philosophie et il serait intéressant de trouver une solution
purement syntaxique pour reconnâıtre ses structures.

Outils interactifs et généralisation de motifs. Pour faciliter l’accès
aux motifs hybrides, il serait appréciable d’avoir des outils de généralisation
de motifs. Dans un premier temps, les motifs pourraient être généralisés à

127

partir d’exemples de code similaire à reconnâıtre. Le moteur de généralisation
remplacerait certaines parties de syntaxe concrète de l’exemple en métavariables
pour forger un motif syntaxique. Les métavariables pourraient être typées
explicitement par l’utilisateur ou par le moteur. Dans un second temps, de
manière similaire, le moteur pourrait muter un motif en un autre motif en
remplaçant de la syntaxe concrète par une métavariable, en aggrégeant une
métavariable et des éléments de syntaxes adjacent en une nouvelle métavariable,
ou par tout autre opérateur de mutation. Le moteur de généralisation devrait
être interactif pour que l’utilisateur assimile l’impact de sa généralisation sur
les occurrences obtenues.

DSL de transformation de code. Le moteur de transformation de code
bénéficierait grandement de l’ajout d’un DSL pour simplifier l’écriture des
transformations. Parsing as intersection aide dans l’écriture des motifs via
des motifs syntaxiques, mais ne propose rien pour aider à l’après-reconnaissance.
Un langage avec des motifs, des transformations, des métavariables, des con-
textes et des occurrences en tant qu’objets de première classe permettrait la
manipulation de ses concepts plus aisément que dans le langage d’écriture
du moteur de transformation.

Stratégies de transformation. À ce DSL peut venir s’ajouter des stratégies
de transformation. Les stratégies définissent l’ordre d’application et donc
les priorités des transformations. Elles sont particulièrement utiles pour
procéder à des réécritures de base de code avec de très nombreuses trans-
formations ou des transformations qui se chevauchent. Plusieurs stratégies
prédéfinies pourraient être proposées à l’utilisateur, mais il est également im-
portant de les incorporer dans le DSL pour que des stratégies personnalisées
et adaptées puissent être créées par les utilisateurs.

128 RÉSUMÉ

Abstracts

Abstract (English). Code transformations are needed in various cases: refactorings, migra-
tions, code specialization, and so on. Code transformation engines work by finding a pattern in the source
code and rewriting its occurrences according to the transformation. The transformation either rewrites
the occurrences, elements of the intermediate representation (IR) of the language, into new elements or di-
rectly rewrites the source code. In this work, we focused on source rewriting since it offers more flexibility
through arbitrary transformations, especially for migrations and specializations.

Matching patterns come in two different flavours, explicit and syntactic. The former requires the
user to know the IR of the language, a heavy knowledge burden. The latter only relies on the syntax
of the matched language and not its IR, but requires significantly more work to implement the language
back-ends. Language experts tend to know the IR and the syntax of a language, while other users know
only the syntax.

We propose a pattern matching engine offering a hybrid pattern representation: both explicit and
syntactic matching are available in the same pattern. The engine always defaults to syntactic as it is the
lowest barrier to entry for patterns. To counterbalance the implementation cost of language back-ends
for syntactic pattern matching, we take a generative approach. We combine the hybrid pattern matching
engine with a parser generator. The parser generator generates generalized LR (GLR) parsers capable of
not only parsing the source but also the hybrid pattern. The back-end implementer only needs to add one
line to the grammar of the language to activate the pattern matching engine.

This approach to pattern matching requires GLR parsers capable of forking and keeping track of each
individual fork. These GLR implementations suffer the more forking is done to handle ambiguities and
patterns require even more forking. To prevent an explosion, our Fibered-GLR parsers merge more often
and allow for classic disambiguation during the parse through side-effects.

Résumé (Français). Les transformations automatiques de code apparaissent dans diverses
situations, les refactorings, les migrations inter-langages ou encore la spécialisation de code. Les mo-
teurs supportant ces transformations cherchent dans le code source les occurrences de motifs spécifiés par
l’utilisateur, puis les réécrivent grâce à une transformation. Cette transformation peut soit modifier les
occurrences elles-mêmes, des éléments de la représentation intermédiaire (IR) du langage, en nouveaux
éléments ou réécrire leur code source. Nous nous concentrons sur la réécriture de code source qui offre
une meilleure flexibilité grâce à des transformations arbitraires particulièrement utiles à la migration et à
la spécialisation de code.

Les motifs sont divisés en deux catégories : les motifs explicites et syntaxiques. Les premiers de-
mandent que l’utilisateur connaisse l’IR du langage, un effort d’apprentissage non négligeable. Les sec-
onds demandent seulement de connâıtre la syntaxe du langage et non son IR, mais requièrent un effort
d’implémentation supplémentaire pour les back-ends de langage du moteur. Tandis que les experts en
langage connaissent l’IR et la syntaxe du langage, les autres utilisateurs connaissent seulement la syntaxe.

Nous proposons un moteur de reconnaissance de motifs offrant une représentation hybride des motifs
: les motifs peuvent être à la fois explicites et syntaxiques. Par défaut, le moteur se rabat sur un
fonctionnement syntaxique, car la barrière à l’entrée est plus basse. Pour palier au coup d’implémentation
des back-ends de langage pour la reconnaissance syntaxique, nous prenons une approche générative. Le
moteur de reconnaissance hybride est couplé avec un moteur de génération d’analyseurs syntaxiques. Ce
dernier génère des analyseurs syntaxiques LR généralisés (GLR) capables d’analyser non seulement le code
source à réécrire, mais également le motif à reconnâıtre. L’implémenteur du back-end de langage n’a alors
qu’à ajouter une ligne à la grammaire pour avoir accès au moteur de reconnaissance de motifs pour ce
langage.

L’approche est basée sur des analyseurs syntaxiques GLR pouvant se dupliquer et traquant ses sous-
analyseurs. Ces implémentations particulières de GLR ne passent pas à l’échelle quand trop de duplica-
tions sont nécessaires pour gérer les ambigüıtés et notre approche ajoute de la duplication. Pour éviter
une explosion du temps d’exécution, nos analyseurs syntaxiques FGLR fusionnent plus régulièrement et
permettent une désambigüısation à la volée pendant l’analyse via des effets de bord.

129

	Title
	Acknowledgements
	Contents
	Chapter 1 : Introduction
	Context
	User requirements
	Implementor requirements
	Our approach in a nutshell
	Contributions
	Structure of the dissertation

	Chapter 2 : State of the art
	Languages and grammars
	Grammars
	Sentence representation

	Parsing in practice
	Deterministic parsing
	LR parsing

	Generalized parsing
	Ambiguities and LR conflicts
	Generalized parsing algorithms
	Generalized LR parsing
	Improvements and variants of GLR

	Pattern matching
	Pattern matching implementors
	Pattern and matches
	Explicit pattern matching
	Syntactic pattern matching

	Code transformation engine
	Code transformation use cases
	Transformation rule and transformation pattern
	Rewriting engine

	Conclusion

	Chapter 3 : Parsing as intersection for pattern matching
	Hybrid explicit-syntactic pattern matching
	Deficiencies of explicit pattern matching
	Alternatives to explicit pattern matching
	Syntactic pattern (code template)
	Hybrid syntactic-explicit patterns
	Metavariables
	Type inference to support syntactic pattern matching
	Unification
	Towards a language-agnostic pattern matching engine

	Implementing syntactic pattern matching
	Type inference implementation issues
	Typing in parser generators
	Parsing as intersection for type inference

	Type inference through GLR-based parsing as intersection
	Gist of the approach
	Parsing a syntactic pattern
	Reaching a metavariable
	Forking the parser
	Unification

	Matching complex types
	Matching of list idioms
	AND metavariable types
	Type inference for AND types
	Unification for AND types
	OR metavariable types

	Experiments and results
	The Smalltalk Compiler-Compiler
	Industrial Validation
	Expressiveness of hybrid patterns

	Discussion
	Prerequisites of the approach
	Scalability
	Application to other parsers and parser generators

	Conclusion

	Chapter 4 : Side-effect-enabling GLR parser
	Ambiguities and conflicts in LR parsing
	LR limitations
	Rewriting the grammar
	Hacking the parser

	Generalized LR parsing
	Differences with LR
	Semantic actions in GLR

	A scheduling approach to GLR
	Structure of the Fibered-GLR Parser
	FGLR parsing fiber
	The LR parser
	The FGLR scheduler
	The FGLR scheduling loop
	Forking mechanism
	Merging mechanism
	Rescheduling

	Execution order choices
	Inter list ordering
	Reducing list ordering
	Shifting list ordering
	Waiting list processing

	Experiments
	Implementation
	Experimental setup
	Comparison with Bison GLR and SmaCC GLR
	Scaling of FGLR on highly ambiguous grammars
	Sensitivity to shift-reduce conflicts
	Sensitivity to reduce-reduce conflicts

	Discussion
	Conclusion

	Chapter 5 : Conclusion
	Summary of contributions
	Hybrid explicit-syntactic pattern matching engine
	Scheduler-based GLR

	Validating the requirements
	User requirements
	Implementor requirements

	Perspectives
	Improvements on matching complex types
	Interactive tooling and pattern generalization
	Code transformation DSL
	Transformation control flow and strategies

	Bibliography
	Résumé étendu
	Résumé - Abstract

	source: Thèse de Jason Lecerf, Université de Lille, 2019
	d: © 2019 Tous droits réservés.
	lien: lilliad.univ-lille.fr

