
HAL Id: tel-03356457
https://theses.hal.science/tel-03356457

Submitted on 28 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic representations of images and videos
Danny Francis

To cite this version:
Danny Francis. Semantic representations of images and videos. Artificial Intelligence [cs.AI]. Sorbonne
Université, 2019. English. �NNT : 2019SORUS605�. �tel-03356457�

https://theses.hal.science/tel-03356457
https://hal.archives-ouvertes.fr

S E M A N T I C R E P R E S E N TAT I O N S O F I M A G E S A N D V I D E O S

danny francis

Credits: xkcd.com

Supervisors: Prof. Bernard Merialdo & Prof. Benoit Huet

November 2019 – version 1.0

Danny Francis: Semantic Representations of Images and Videos, © Novem-
ber 2019

D E C L A R AT I O N O F A U T H O R S H I P

I declare that this thesis has been composed solely by myself. Except
where states otherwise by reference or acknowledgment, the work
presented is entirely my own.

Biot, France, November 2019

Danny Francis

A B S T R A C T

Describing images or videos is a task that we all have been able to
tackle since our earliest childhood. However, having a machine auto-
matically describe visual objects or match them with texts is a tough
endeavor, as it requires to extract complex semantic information from
images or videos. Recent research in Deep Learning has sent the qual-
ity of results in multimedia tasks rocketing: thanks to the creation of
big datasets of annotated images and videos, Deep Neural Networks
(DNN) have outperformed other models in most cases.

In this thesis, we aim at developing novel DNN models for auto-
matically deriving semantic representations of images and videos. In
particular we focus on two main tasks : vision-text matching and im-
age/video automatic captioning.

Addressing the matching task can be done by comparing visual
objects and texts in a visual space, a textual space or a multimodal
space. In this thesis, we experiment with these three possible meth-
ods. Moreover, based on recent works on capsule networks, we define
two novel models to address the vision-text matching problem: Recur-
rent Capsule Networks and Gated Recurrent Capsules. We find that
replacing Recurrent Neural Networks usually used for natural lan-
guage processing such as Long Short-Term Memories or Gated Re-
current Units by our novel models improve results in matching tasks.
On top of that, we show that intrinsic characteristics of our models
should make them useful for other tasks.

In image and video captioning, we have to tackle a challenging
task where a visual object has to be analyzed, and translated into a
textual description in natural language. For that purpose, we propose
two novel curriculum learning methods. Experiments on captioning
datasets show that our methods lead to better results and faster con-
vergence than usual methods. Moreover regarding video captioning,
analyzing videos requires not only to parse still images, but also to
draw correspondences through time. We propose a novel Learned
Spatio-Temporal Adaptive Pooling (L-STAP) method for video cap-
tioning that combines spatial and temporal analysis. We show that
our L-STAP method outperforms state-of-the-art methods on the video
captioning task in terms of several evaluation metrics.

Extensive experiments are also conducted to discuss the interest
of the different models and methods we introduce throughout this
thesis, and in particular how results can be improved by jointly ad-
dressing the matching task and the captioning task.

v

R É S U M É E N F R A N Ç A I S

Décrire des images ou des vidéos est une tâche que nous sommes
tous en mesure d’accomplir avec succès depuis notre plus tendre en-
fance. Toutefois pour une machine, générer automatiquement des de-
scriptions visuelles ou bien associer des images ou vidéos à des textes
descriptifs est une tâche ardue, car elle nécessite d’extraire des in-
formations sémantiques complexes à partir de ces images ou vidéos.
Des recherches récentes en apprentissage profond ont fait monter en
flèche la qualité des résultats dans les tâches multimédias : grâce à
la création de grands ensembles de données d’images et de vidéos
annotées, les réseaux de neurones profonds ont surpassé les autres
modèles dans la plupart des cas. En particulier, nous pouvons citer
le jeu de données ImageNet [16], constitué d’images réparties selon
différentes catégories sémantiques. L’utilisation de cet immense jeu
de données a permis de tirer profit des capacités des réseaux de
neurones convolutionnels, et d’obtenir à partir de 2012 en classifica-
tion d’images des résultats dépassant très largement ceux de l’état
de art de l’époque [50]. Suite à cela, l’engouement pour les tech-
niques d’apprentissage profond a été à l’origine d’un réel bascule-
ment dans les problèmes liés à l’intelligence artificielle, notamment
concernant la vision par ordinateur ou le traitement du langage na-
turel. Ainsi, dans de nombreux problèmes multimédias, les solutions
les meilleures actuellement font souvent appel aux réseaux de neu-
rones convolutionnels en vision par ordinateur, ou aux réseaux de
neurones récurrents [13, 38] en traitement du langage naturel. Cepen-
dant, la recherche de nouveaux modèles plus performants n’est pas
au point mort, et de nouvelles idées semblent aujourd’hui promet-
teuses. Citons notamment les réseaux de capsules en vision par ordi-
nateur, ou les transformateurs (Transformers en anglais) en traitement
du langage naturel.

Dans ce travail de recherche, nous visons à développer de nou-
veaux modèles de réseaux de neurones profonds permettant de générer
automatiquement des représentations sémantiques d’images et de
vidéos. En particulier, nous nous concentrons sur deux tâches prin-
cipales : la mise en relation de la vision et du langage naturel et la
génération automatique de descriptions visuelles.

Nos contributions ont été les suivantes :

• nous avons défini, testé et validé deux modèles nouveaux pour
l’appariement texte-vision :

– les réseaux de capsules récurrentes ;

– les Gated Recurrent Capsules ;

vi

• nous avons défini, testé et validé un modèle nouveau pour la
génération de descriptions visuelles de vidéos, et proposé une
nouvelle méthode d’entraînement des modèles de génération
de descriptions :

– un modèle fondé sur une nouvelle méthode de pooling

adaptatif spatio-temporel que nous proposons, permettant
d’obtenir des représentations sémantiques fines des vidéos
;

– une méthode d’apprentissage par curriculum adaptatif.

Ce résumé se présente ainsi : nous commençons par dresser un état
de l’art du sujet. Nous présentons ensuite nos contributions. Enfin,
nous expliquons de quelle manière nos modèles ont été évalués pour
en justifier la pertinence.

état de l’art

Appariements vision-texte

L’appariement d’images et de textes ou de vidéos et de textes sup-
pose de trouver une représentation commune aux deux modalités en
question. Plusieurs travaux ont en particulier cherché à construire des
représentations vectorielles communes aux images ou vidéos et aux
textes descriptifs. Dans [73], Frome et al. ont construit de telles re-
présentations vectorielles à l’aide d’un modèle de type skip-gram [65]
pour la partie textuelle, et à l’aide d’un réseau convolutionnel Alex-
Net [50] pour la partie visuelle. Karpathy et al. quant à eux ont pro-
posé l’utilisation de représentations vectorielles par fragments [44].
L’idée sous-jacente est la suivante : comme les différentes parties
d’une phrase descriptive correspondent à différentes parties d’une
image, ils ont construit un modèle dressant des correspondances entre
des bouts de phrases et des fragments d’images. Le modèle proposé
par Kiros et al. dans [47] fonctionne de la manière suivante : les
phrases descriptives sont traitées par une LSTM produisant des repré-
sentations vectorielles, lesquelles sont projetées dans un espace mul-
timodal vers lequel sont également projetées des représentations vi-
suelles générées à l’aide d’un réseau convolutionnel. Les deux projec-
tions (textuelle et visuelle) sont mises en correspondance par l’optimi-
sation d’une fonction objectif visant à maximiser la similarité cosinus
entre un vecteur d’image et un vecteur de description textuelle corres-
pondante. La plupart des travaux sur l’appariement vision-langage
portent sur des images ; il convient cependant de noter que des tra-
vaux sur les vidéos existent également, et qu’ils sont dans le principe
assez similaires aux travaux existants sur les images [66].

D’autres travaux reposent sur l’utilisation de vecteurs de Fisher
[73]. Dans [48], Klein et al. calculent des vecteurs de Fisher pour des

vii

phrases en se fondant sur un modèle de mélange gaussien (MMG) et
un modèle de mélange hybride laplacien-gaussien (MMHLG). Dans
[54], Lev et al. proposent un réseau récurrent faisant office de mo-
dèle génératif, utilisé en lieu et place des modèles probabilistes ci-
tés précédemment. Dans les deux derniers travaux cités, les relations
entre vision et texte sont établies à l’aide d’un algorithme d’analyse
canonique des corrélations [40]. Dans [24], Eisenschtat et Wolf cal-
culent également des vecteurs de Fisher à l’aide d’un MMG et d’un
MMHLG. Cependant, l’originalité de leur travail repose sur l’utilisa-
tion d’un réseau de neurones "2-Way" au lieu d’un algorithme d’ana-
lyse canonique des corrélations.

Des architectures plus complexes ont également été proposées par
d’autres auteurs. Niu et al. [68] ont défini une LSTM hiérarchique
multimodale, représentant les phrases sous forme d’arbres, ce qui
permet d’établir des correspondances entre groupes de mots et ré-
gions d’une image. Nam et al. [67] ont proposé un réseau à attention
duale (Dual Attention Network) reposant sur un mécanisme d’atten-
tion conjointe entre régions d’une image et mots d’une phrase des-
criptive. Plus récemment en 2018, Gu et al. [31] ont montré que l’en-
traînement conjoint de modèles génératifs (génération de phrases à
partir d’images et génération d’images à partir de phrases) et de mo-
dèles d’appariement d’images et de textes permettait d’augmenter
significativement l’efficacité de ces modèles d’appariement d’images
et de textes. Enfin, il convient de noter que les derniers travaux en
date reposent sur l’utilisation de caractéristiques locales extraites à
l’aide d’un Faster R-CNN [75], un modèle de détection d’objets [53].

Génération de descriptions visuelles

La génération de descriptions visuelles peut être vue comme une
tâche de traduction : une image ou une séquence d’images doivent
être traduites dans un langage cible.

Certains travaux d’avant-garde comme [77] ont fait usage de mé-
thodes de traduction automatique statistique pour générer des des-
criptions visuelles de vidéos. Cependant aujourd’hui, la plupart des
travaux en génération de descriptions textuelles d’images ou de vi-
déos font usage de techniques d’apprentissage profond, en particu-
lier fondées sur une architecture de type encodeur-décodeur telle que
celle proposée dans [85] pour de la traduction d’un langage source
vers un langage cible. Par ailleurs, l’emploi d’un mécanisme d’atten-
tion lors de la phase de décodage sur les états cachés de l’encodeur
a permis de remarquables progrès en traduction automatique neuro-
nale [60], ce qui a été confirmé par [101] pour la génération de textes
descriptifs.

Pour les images, les principales améliorations de l’architecture ba-
sique encodeur-decodeur avec mécanisme d’attention font usage de

viii

techniques d’apprentissage par renforcement [76] ou de vecteurs de
détections d’objets [3].

Concernant la génération de descriptions visuelles de vidéos, il est
à noter que dans certains travaux, les vidéos sont sont divisées en
trames, des caractéristiques globales sont calculées par trame à l’aide
de réseaux convolutionnels [35, 50, 81, 86], et les vecteurs de caracté-
ristiques ainsi obtenus sont traités séquentiellement par un encodeur
[33, 55, 59, 69, 93, 96]. Le défaut de telles approches est qu’en se
contentant de caractéristiques globales, elles perdent les informations
d’ordre local, et donc de la précision.

D’autres approches permettent de pallier ce problème de perte d’in-
formations locales. Dans [101], les auteurs divisent leur model en
deux parties : un encodeur-décodeur usuel traite des caractéristiques
globales, tandis qu’un réseau convolutionnel à trois dimensions est
utilisé pour calculer des caractéristiques locales aidant à améliorer
la générations des phrases descriptives. Dans [103], les auteurs font
usage de caractéristiques locales pour suivre les trajectoires des diffé-
rents objets présents dans les vidéos. Dans [97] également, les auteurs
proposent une méthode permettant de suivre la trajectoire des objets
au long de la vidéo. Dans les deux cas, les trajectoires sont combinées
avec des vecteurs de caractéristiques globales afin de calculer des re-
présentations sémantiques vectorielles des vidéos. Dans [94], des vec-
teurs de caractéristiques locales sont calculés et utilisés pour générer
des phrases descriptives à l’aide d’un mécanisme d’attention. Enfin,
d’autres travaux ont tenté d’utiliser des réseaux convolutionnels à
trois dimensions [95] ou des réseaux récurrents convolutionnels [94]
pour dresser des correspondances temporelles entre caractéristiques
locales.

nos contributions

Il est possible de traiter la tâche d’appariement en comparant des
images ou vidéos et des textes dans un espace visuel, un espace tex-
tuel ou un espace multimodal. Dans cette thèse, nous expérimentons
ces trois méthodes. De plus, sur la base de travaux récents sur les
réseaux de capsules, nous définissons deux nouveaux modèles pour
résoudre le problème de correspondance vision-texte : les réseaux de
capsules récurrentes (Recurrent Capsule Networks) et les Gated Recur-

rent Capsules, inspirées des Gated Recurrent Units. Nous constatons
que le remplacement des réseaux de neurones récurrents habituel-
lement utilisés pour le traitement du langage naturel, tels que les
Long Short-Term Memories ou les Gated Recurrent Units, par nos nou-
veaux modèles améliore les résultats des tâches de mise en relation
vision-texte. De plus, nous expliquons que les caractéristiques intrin-
sèques de nos modèles pourraient potentiellement les rendre utiles
pour d’autres tâches.

ix

Figure 1 : Une caspsule générique pour vision par ordinateur

Appariement vision-langage

Une partie significative des modèles d’appariement vision-texte au-
jourd’hui utilisés sont constitués d’une partie en charge de l’analyse
visuelle et d’une autre partie en charge de l’analyse textuelle (sou-
vent un réseau de neurones récurrent). Nous nous sommes attachés
à tenter d’améliorer les réseaux de neurones récurrents usuellement
employés pour effectuer des tâches de traitement du langage naturel.

Comme expliqué précédemment, il a été montré que les réseaux de
capsules avaient des résultats prometteurs en vision par ordinateur.
Nous nous sommes demandés si l’idée de l’utilisation de capsules
pouvait également améliorer les résultats obtenus en traitement du
langage naturel. L’idée derrière les capsules telles que décrites dans
[80] pour la vision par ordinateur est représentée dans la Figure 1. En
vision par ordinateur, une capsule a pour rôle d’effectuer des calculs
complexes et de renvoyer en sortie un vecteur de position et une ac-
tivation (au lieu d’une simple activation pour un neurone classique).
Ce vecteur de sortie est ensuite dirigé vers les capsules suivantes par
le biais d’un algorithme de routage prédéfini. Le but de cette archi-
tecture est que chaque capsule apprenne à reconnaître un type de ca-
ractéristique visuelle, indépendamment des transformations qui lui
ont été appliquées. Par exemple, certaines capsules pourraient recon-
naître des yeux, un nez, une bouche et leur positions respectives. Elles
enverraient ensuite leurs activations et vecteurs de positions vers une
capsule suivante qui aurait pour but de reconnaître un visage en-
tier. La sortie d’une capsule contenant non seulement une activation
mais aussi des informations positionnelles, elles ne subissent pas les

x

Figure 2 : Notre modèle. Les capsules sont représentées par des boîtes en
pointillés. Les phrases sont représentées par des séquences d’en-
codages dits one-hot (w1, ...,wn). Elles sont ensuite transformées
en des séquences de vecteurs de mots de dimensions plus pe-
tites par le biais d’une multiplication par une matrice d’enco-
dages Ww. Les phrases sont ensuite traitées par notre réseau
de capsules récurrentes, qui finit par générer une représentation
vectorielle v. Cette représentation vectorielle est comparée à une
représentation vectorielle d’image appartenant au même espace
multimodal.

défauts des opérations de pooling, qui sont obligatoires dans un ré-
seau convolutionnel, et qui entraînent une perte d’information spa-
tiale. Les deux modèles que nous avons imaginés sont inspirés des
réseaux de capsules, et sont adaptés au traitement du langage natu-
rel. Nous ne présenterons pas ici comment nous traitons les images
pour les apparier avec des phrases car nous le faisons de façon très
classique : nous extrayons des vecteurs de caractéristiques à l’aide
d’un réseau convolutionnel, que nous projetons dans le même espace
multimodal que les représentations vectorielles de phrases que nous
générons. Les sections qui suivent font état de nos contributions, qui
ont consisté en la définition de modèles nouveaux pour le traitement
du langage naturel.

Réseaux de capsules récurrentes (voir Figure 2)

Le premier de ces modèles est un réseau de capsules récurrentes. Ici,
chaque capsule contient deux GRU. Le rôle de la première est d’ex-
traire ce que nous appelons un "masque" (l’équivalent d’une activa-
tion pour les capsules en vision par ordinateur). La seconde produit
une représentation vectorielle de phrase, que nous pouvons assimiler
au vecteur de position. La sortie de la première GRU de la i-ème cap-
sule est notée GRUmaski

(input) et la sortie de la deuxième GRU de
la i-ème capsule est notée GRUembi

(input). Dans la première GRU, la
fonction tanh est remplacée par une sigmoïde, de telle sorte que les
masques soient constitués uniquement de nombres positifs entre 0 et
1. Ces masques jouent le rôle d’un mécanisme d’attention.

xi

De façon plus formelle, si s est une phrase, nous codons chaque
mot de s à l’aide d’un encodage one-hot : nous avons s = (w1, ...,wL)

avec L la longueur de s, et w1, ...,wL appartenant à R
D, où D est

la taille de notre vocabulaire. Soit Ww ∈ R
D×V une matrice de re-

présentations vectorielles de mots. On notera dans la suite x = Wws

au lieu de (x1, ..., xL) = (Www1, ...,WwwL) pour simplifier les nota-
tions. Si m est un vecteur de dimension V , alors on notera également
m⊙ x au lieu de (m⊙ x1, ...,m⊙ xL). Dans la suite, m est un masque
et v est une représentation vectorielle de phrase. Ces représentations
vectorielles sont calculées ainsi :

v
(t)
i = GRUembi

(m
(t−1)
i ⊙ x). (1)

Les masques sont calculés en deux étapes. Tout d’abord, les cap-
sules produisent un masque en fonction de leur phrase d’entrée et
des masques calculés à l’étape précédente :

m̃
(t)
i = GRUmaski

(m
(t−1)
i ⊙ x). (2)

Ensuite, les mi sont calculés en effectuant une somme pondérée de
ces masques :

m
(t)
i =

Nc∑

j=1

α
(t)
ij m̃

(t)
i (3)

et les représentations vectorielles finales sont calculées ainsi :

v(t) =

Nc∑

i=1

Nc∑

j=1

β
(t)
ij ṽ

(t)
i . (4)

Les coefficients des sommes pondérées sont calculés selon les for-
mules suivantes (〈v1|v2〉 représente le produit scalaire usuel entre
deux vecteurs v1 et v2) :

α
(t)
ij =

〈

v
(t)
i |v

(t)
j

〉

∑Nc

k=1

〈

v
(t)
i |v

(t)
k

〉 , (5)

β
(t)
ij =

〈

v
(t)
i |v

(t)
j

〉

∑Nc

k=1

∑Nc

l=1

〈

v
(t)
k |v

(t)
l

〉 . (6)

Nous attirons l’attention du lecteur sur le fait que pour t = 0, les
masques sont des vecteurs dont toutes les coordonnées sont égales à

xii

1 : cela revient à simplement entrer les phrases dans les GRU sans leur
appliquer de masque. Les formules que nous avons définies peuvent
être interprétées de façon intuitive : des capsules contribuent d’au-
tant plus au calcul des masques et des représentations vectorielles
finales qu’elles produisent des représentations vectorielles similaires.
C’est en quelque sorte une variante du routage par accord (routing-

by-agreement) tel que défini dans [80].

Gated Recurrent Capsules (GRC, voir Figure 3)

Schématiquement, notre but avec les GRC est de produire différentes
représentations sémantiques pour une même phrase mettant l’accent
sur ses différents éléments. Ainsi, une phrase est en quelque sorte di-
visée en sous-phrases, dont chacune prêterait attention à un élément
particulier d’une image. Ces représentations de sous-phrases sont en-
suite traitées pour construire une représentation globale de la phrase
entière.

Dans notre modèle, toutes les capsules partagent les mêmes para-
mètres et sont similaires à des GRU. Dans la suite, nous allons expli-
quer les différences principales entre celles-ci et les GRU. Formelle-
ment, si nous considérons la k-ème capsule avec k dans {1, ...,Nc}, les
équations des portes des update gates et des reset gates sont les mêmes
que pour une GRU :

u
(k)
t = σ(Wxuxt +Whuh

(k)
t−1 + bu), (7)

r
(k)
t = σ(Wxrxt +Whrh

(k)
t−1 + br), (8)

Nous calculons également h̃(k)t comme nous le ferions dans une
GRU :

h̃
(k)
t = tanh(Wxhxt +Whh(r

(k)
t ⊙ h

(k)
t−1) + bh), (9)

Nous supposons maintenant que pour chaque capsule, pour un
mot donné wt, nous avons un coefficient p(k)t ∈ [0, 1] tel que :

h
(k)
t = (1− p

(k)
t)h

(k)
t−1 + p

(k)
t ĥ

(k)
t (10)

avec

ĥ
(k)
t = u

(k)
t ⊙ h̃

(k)
t + (1− u

(k)
t)⊙ h

(k)
t−1, (11)

ce qui correspond en fait à la mise à jour de l’état caché telle qu’elle
est effectuée dans une GRU. Le coefficient p(k)t est un coefficient de
routage, décrivant à quel point une capsule donnée doit voir son état

xiii

caché être mis à jour par le mot entré. De la même manière que dans
[37], le routage peut être vu comme un mécanisme d’attention ; dans
notre cas, l’attention est portée sur les mots considérés comme étant
pertinents. Cependant, contrairement aux auteurs de [37], qui font
usage de gaussiennes déterminées par espérance-maximisation pour
calculer ce coefficient, nous proposons de le calculer d’une manière
plus simple, comme nous l’expliquons un peu plus loin. Finalement,
nous obtenons l’équation suivante :

h
(k)
t = (1− p

(k)
t u

(k)
t)⊙ h

(k)
t−1 + p

(k)
t u

(k)
t ⊙ h̃

(k)
t . (12)

Nous pouvons remarquer que cela revient à multiplier les update gates

u
(k)
t par un coefficient p(k)t . Il nous reste ensuite à calculer p(k)t . Pour

ce faire, nous définissons un coefficient d’activation a(k)t pour chaque
capsule :

a
(k)
t = |αk|+ log(P(k)t). (13)

Dans la dernière équation, les αk sont des nombres aléatoires tirés
d’une distribution gaussienne de moyenne 0,1 et d’écart-type 0,001.
Ces αk sont importants car les capsules partagent les mêmes para-
mètres : si toutes les activations sont les mêmes au début, elles reste-
ront les mêmes en fin de calcul. Ces nombres aléatoires cassent la sy-
métrie existant de facto entre les différentes capsules. P(k)t a pour rôle
de représenter la similarité sémantique entre l’état caché actuel de la
capsule h(k)t−1 et le mot en entrée xt : si celui-ci est sémantiquement

proche de l’état caché précédent, alors P(k)t doit être haut, et s’il est
très différent cette grandeur doit être faible. On peut intuitivement

imaginer que la similarité cosinus cos(h(k)t−1, ĥ(k)t) =

〈

h
(k)
t−1|ĥ

(k)
t

〉

‖h(k)
t−1‖2×‖ĥ(k)

t ‖2
correspond à une définition pertinente de la similarité sémantique
entre l’état caché actuel de la capsule et le mot en entrée : si le mot
en entrée a un sens différent des mots précédents, on peut s’attendre
à ce que ĥ(k)t reflètera cette différence de sens. C’est pourquoi nous
définissons P(k)t de la façon suivante :

P
(k)
t = cos(h(k)t−1, ĥ(k)t). (14)

Nous pouvons ensuite calculer p(k)t à l’aide de la formule suivante :

pt =
softmax(a

(1)
t

T , ..., a
(N)
t

T)

M
(15)

oùM est la coordonnée de valeur maximale du vecteur softmax(a
(1)
t

T , ..., a
(N)
t

T)

et T est un hyperparamètre contrôlant la finesse de la procédure de
routage : plus T est grand, plus le plus grand poids de routage est
proche de 1 et les autres proches de 0.

xiv

Figure 3 : Gated Recurrent Capsules : toutes les capsules partagent les
mêmes paramètres appris θ. Les entrées de la capsule i au temps
t sont des vecteurs de mots xt et son état caché au temps t− 1
est h(i)t−1. Sa sortie est h(i)t . Cette procédure de routage peut être
vue comme un mécanisme d’attention : chaque sortie dépend des
similarités sémantiques des mots de la phrase traitée avec les pré-
cédents mots de cette même phrase. Elle permet que chaque cap-
sule génère une représentation vectorielle de phrase mettant l’ac-
cent sur un élément particulier de la phrase..

Le routage que nous proposons est différent de celui qui a été pré-
senté dans [37, 80] : les sorties des capsules ne sont pas des combinai-
sons de toutes les précédentes capsules. Seuls les poids de routage
dépendent de ces précédentes capsules.

Génération de descriptions visuelles (voir Figure 4)

Concernant la tâche de génération de descriptions visuelles, nous de-
vons nous attaquer à un problème difficile dans lequel une image
ou une vidéo doivent être analysés et traduits en une description
textuelle en langage naturel. À cette fin, nous proposons deux nou-
velles méthodes d’apprentissage par curriculum. Les expériences sur
les jeux de données de génération de textes descriptifs montrent que
nos méthodes conduisent à de meilleurs résultats et à une conver-
gence plus rapide que les méthodes habituelles. En outre, en ce qui
concerne la génération de descriptions de vidéos, l’analyse de celles-
ci implique non seulement l’analyse d’images fixes, mais également
l’établissement de correspondances dans le temps entre les différentes
trames. Nous proposons une nouvelle méthode de regroupement adap-
tatif spatio-temporel (Spatio-Temporal Adaptive Pooling ou L-STAP) pour
la génération de descriptions de vidéos, qui combine une analyse
spatiale et une analyse temporelle de caractéristiques sémantiques
visuelles de ces vidéos. Nous montrons que notre méthode L-STAP
surpasse les méthodes de l’état de l’art en matière de génération de
descriptions de vidéos selon plusieurs métriques d’évaluation.

xv

Figure 4 : Illustration de notre modèle, fondé sur la méthode L-STAP que
nous proposons. Les trames sont traitées séquentiellement par
un réseau convolutionnel (un ResNet-152 dans notre cas). Ce-
pendant, au lieu d’appliquer un regroupement par moyennage
(average pooling) sur les caractéristiques locales comme cela se
fait dans de nombreux travaux récents, nous faisons usage d’une
LSTM pour détecter les dépendances temporelles. Des états ca-
chés locaux sont calculés pour obtenir un tenseur de dimen-
sions 7x7x1024. Ces états cachés locaux sont ensuite regroupés
ensemble, soit en les moyennant soit en faisant usage d’un mé-
canisme d’attention, et traités par une LSTM permettant de pro-
duire une phrase descriptive.

Learned Spatio-Temporal Adaptive Pooling

La première étape est de générer une représentation vectorielle de la
vidéo dont nous voulons obtenir une description textuelle.

Étant donnée une vidéo V = (v(1), ..., v(T)), nous devons calculer
des vecteurs de caractéristiques pour chaque trame v(t). Une façon
usuelle de faire est de traiter chaque trame à l’aide d’un réseau convo-
lutionnel pré-entraîné sur un grand jeu de données. Dans des travaux
tels que [59], la sortie de l’avant-dernière couche d’un ResNet-152 a
été choisie comme représentation de trame (il s’agit d’un vecteur de
dimension 2048). Cependant, de telles représentations font abstrac-
tions des caractéristiques locales des trames, ce qui cause une perte
d’information. C’est la raison pour laquelle nous avons choisi de ré-
cupérer plutôt la sortie de la dernière couche convolutionnelle d’un
ResNet-152. Cela nous a permis d’obtenir des vecteurs de caractéris-
tiques locales (x(1), ..., x(T)) = X, avec x(t) ∈ R

7×7×2048 pour tout
t. L’étape suivante est de combiner ces représentations locales, afin
d’obtenir une représentation plus fine qu’avec un simple moyennage
de vecteurs de caractéristiques locales.

Le but de la méthode L-STAP que nous proposons est de rempla-
cer en fait l’opération de regroupement par moyennage (average poo-

ling) après la dernière couche convolutionnelle du ResNet-152, et de
prendre en considération dans notre regroupement l’évolution à la

xvi

fois temporelle et spatiale des caractéristiques visuelles. Ainsi, on es-
père récupérer les endroits et moments de la vidéo où des actions
importantes arrivent, et rejeter les endroits et moments n’étant pas
pertinents pour générer une description textuelle concise de la vidéo.
Pour ce faire, nous faisons usage d’une LSTM, prenant les caractéris-
tiques locales comme entrées, ce qui nous permet d’obtenir des états
cachés locaux ceux-ci sont combinés à l’aide d’une somme pondérée
que nous décrivons en fin de section. Plus formellement, soient les
caractéristiques locales x(t)ij ∈ R

2048. Les caractéristiques locales re-

groupées h(t)ij sont calculées de la façon suivante :

i
(t)
ij = σ(Wixx

(t)
ij +Wihh

(t−1)
+ bi) (16)

f
(t)
ij = σ(Wfxx

(t)
ij +Wfhh

(t−1)
+ bf) (17)

o
(t)
ij = σ(Woxx

(t)
ij +Wohh

(t−1)
+ bo) (18)

c
(t)
ij = f

(t)
ij ◦ c

(t−1) + i
(t)
ij tanh(Wcxx

(t)
ij +Wchh

(t−1)
+ bc) (19)

h
(t)
ij = o

(t)
ij ◦ tanh(c(t)ij) (20)

où Wix, Wih, bi, Wfx, Wfh, bf, Wox, Woh, bo, Wcx, Wch et bc sont
des paramètres définis par descente de gradient, et c(t−1) et h

(t−1)

sont respectivement la mémoire et l’état caché de la LSTM. Notons
que les mémoires et états cachés sont partagés en chaque endroit de
la vidéo à l’instant t. La mémoire et l’état caché à l’instant t sont
calculés ainsi :

c(t) =

7∑

i=1

7∑

j=1

α
(t)
ij c

(t)
ij (21)

h
(t)

=

7∑

i=1

7∑

j=1

α
(t)
ij h

(t)
ij (22)

où les α(t)
ij sont des poids locaux. Nous avons testé deux types de

poids locaux. Les premiers sont des poids uniformes :

α
(t)
ij =

1

7× 7
(23)

xvii

ce qui correspond en fait à un moyennage arithmétique simple des
mémoires et des états cachés. Les deuxièmes types de poids ont été
calculés à l’aide d’un mécanisme d’attention, comme suit :

α̃
(t)
ij = wT tanh(Wαxx

(t)
ij +Wαhh

(t−1)
+ bα). (24)

α
(t)
ij =

exp(α̃(t)
ij)

∑7
k=1

∑7
l=1 exp(α̃(t)

kl)
, (25)

où Wαx, Wαh, bα sont des paramètres définis lors de l’entraînement
par descente de gradient.

Nous obtenons ainsi des représentations locales agrégées des vi-
déos, lesquelles sont utilisées en entrée d’une LSTM pour générer
des phrases descriptives.

Apprentissage par curriculum

L’apprentissage par curriculum s’intéresse à la façon dont des don-
nées doivent être présentées pendant l’entraînement d’une intelligence
artificielle. De la même manière qu’un professeur suit un programme
(curriculum en anglais) pour enseigner à ses élèves, il peut être perti-
nent de prédéfinir des règles selon lesquelles l’apprentissage d’une in-
telligence artificielle doit être mené. Il a été montré que dans certains
cas, l’apprentissage par curriculum pouvait accélérer la convergence
d’un modèle, voire améliorer ses résultats [9].

Nous avons défini deux méthodes d’apprentissage par curriculum
permettant d’entraîner des modèles de génération de textes descrip-
tifs. La première méthode est une simple adaptation de [9]. La com-
plexité d’une image ou d’une vidéo annotée par des phrases descrip-
tives a été évaluée en calculant le score self-BLEU [108] du corpus
de phrases descriptives correspondantes. En effet, le score self-BLEU
permet de mesurer la diversité d’un corpus de textes : si les phrases
descriptives correpsondant à une même image ou une même vidéo
sont très diverses, on peut en déduire que le contenu de cette image
ou de cette vidéo est sémantiquement complexe. Nous avons ensuite
utilisé ce score pour présenter les données d’entraînement en intro-
duisant petit à petit des éléments plus complexes.

La deuxième méthode que nous avons proposée est une méthode
d’apprentissage par curriculum adaptatif : les données d’entraîne-
ment ont d’autant plus de chances d’être présentées au modèle que
celui-ci est peu performant sur celles-ci. Pour calculer la performance
d’un modèle sur une image ou une vidéo, nous avons procédé de la
façon suivante. Soit V un objet visuel (image ou vidéo), s une phrase
descriptive de la réalité-terrain, et ŝ une phrase générée par notre mo-
dèle. Nous supposons que la fonction r : V , s 7→ r(V , s) associe un
score numérique à un couple objet visuel-phrase descriptive ; dans

xviii

notre cas, nous avons utilisé la métrique CIDEr. Le score associé à
(V , s) pour notre modèle est défini de la manière suivante :

P(V , s, ŝ) = min(1, exp(λ(−α+ r(V , s) − r(V , ŝ)))), (26)

où λ et α sont des hyperparamètres. P(V , s, ŝ) correspond à la pro-
babilité que le couple (V , s) soit présenté au modèle comme donnée
d’entraînement.

évaluer nos résultats

Différents jeux de données et différentes métriques ont été utilisés
pour évaluer nos modèles par rapport à l’état de l’art. Les principaux
jeux de données utilisés sont Flickr8k, Flickr30k et MSCOCO pour
les tâches de type image-texte et MSVD et MSR-VTT pour les tâches
de type video-texte. Pour les tâches d’appariement, nos résultats sont
évalués en termes de rappel, et pour les tâches de génération de textes
descriptifs, nous avons fait usage des métriques BLEU, ROUGE, ME-
TEOR et CIDEr usuellement employées pour évaluer de telles tâches.

conclusions

Notre travail a été l’occasion de proposer de nouveaux modèles et
de nouvelles méthodes pour la création de représentations séman-
tiques d’images ou de vidéos : représentations vectorielles multimo-
dales, utiles pour les tâches d’appariement vision-langage, et aussi
des représentations textuelles en langage naturel générées automati-
quement. En particulier, il convient d’avoir à l’esprit les points sui-
vants :

• Les modèles que nous avons proposés ont été comparés aux
modèles usuellement employés. Nous avons montré que ceux-
ci permettaient d’obtenir de meilleurs résultats qu’avec les mé-
thodes usuelles.

• Par ailleurs, les modèles que nous avons proposés ont été ap-
pliqués à des tâches très spécifiques, mais nous estimons qu’ils
pourraient également être utilisés dans un cadre plus général.

• Des expériences approfondies sont également menées pour dis-
cuter de l’intérêt des différents modèles et méthodes que nous
avons présentés tout au long de cette thèse, et en particulier de
la façon dont les résultats peuvent être améliorés en abordant
conjointement la tâche de mise en correspondance et la tâche de
génération de descriptions visuelles.

Les modèles et méthodes que nous avons proposés ont été appli-
qués dans le cadre du sujet de cette thèse ; néanmoins nous pensons

xix

que leur intérêt pourrait aller au-delà de ce sujet car ceux-ci sont
conceptuellement généralisables à d’autres applications, notamment
liées au traitement du langage naturel pour les réseaux de capsules
récurrentes et les gated recurrent capsules, ou au traitement des vidéos
pour notre méthode L-STAP.

xx

C O N T E N T S

1 introduction 1

2 prolegomena to vision and natural language pro-
cessing 5

2.1 Tackling Complexity with Deep Learning 5

2.1.1 Artificial Neural Networks 5

2.1.2 The Learning Process 8

2.1.3 Convolutions for Vision 12

2.1.4 Recurrences for Sentences 18

2.2 Ties Between Vision and Language 22

2.2.1 Training Models to Match Vision and Language 22

2.2.2 Dealing with Images... 23

2.2.3 ... and Videos . 24

2.3 Tell Me What You See 25

2.3.1 Captioning as a Neural Machine Translation Task 25

2.3.2 Training Captioning Models 26

2.3.3 Image Captioning 28

2.3.4 Video Captioning 28

3 matching vision and language 31

3.1 Introduction . 31

3.2 Visual vs Textual Embeddings 31

3.2.1 EURECOM Runs at TRECVid AVS 2016 33

3.2.2 Experimental Results 35

3.2.3 Discussion . 36

3.2.4 Conclusion of Section 3.2 40

3.3 Recurrent Capsule Networks for Multimodal Embed-
dings . 41

3.3.1 Related Work . 43

3.3.2 A Recurrent CapsNet for Visual Sentence Em-
bedding . 43

3.3.3 Results and Discussion 48

3.3.4 Conclusion of Section 3.3 50

3.4 Gated Recurrent Capsules 51

3.4.1 Related Work . 53

3.4.2 Visual Sentence Embeddings 53

3.4.3 Experimental Results 59

3.4.4 Comparison Image Space vs Multimodal Space 61

3.4.5 Conclusion of Section 3.4 63

3.5 GRCs for the Video-to-Text (VTT) task 63

3.5.1 Our Model . 63

3.5.2 Our runs . 65

3.6 Limits of Multimodal Spaces: Ad-Hoc Video Search . . 67

3.6.1 Related Works . 69

xxi

xxii contents

3.6.2 Cross-Modal Learning 70

3.6.3 Fusion Strategy 71

3.6.4 Experiments . 73

3.6.5 Results on TRECVid AVS 2019 75

3.6.6 Conclusion . 76

3.7 General Conclusion of Chapter 3 76

4 attention and curriculum learning for caption-
ing 79

4.1 Introduction . 79

4.2 Video Captioning with Attention 80

4.2.1 L-STAP: Our Model 81

4.2.2 Training . 86

4.2.3 Experiments . 87

4.2.4 Conclusion of Section 4.2 91

4.3 Curriculum Learning for Captioning 92

4.3.1 Image Captioning with Attention 93

4.3.2 Curriculum Learning with Self-BLEU 94

4.3.3 Adaptive Curriculum Learning 95

4.3.4 Experiments . 97

4.3.5 Conclusion . 99

4.4 General Conclusion of Chapter 4 100

5 general conclusion 103

bibliography 105

L I S T O F F I G U R E S

Figure 1 Une caspsule générique pour vision par ordi-
nateur . x

Figure 2 Notre modèle. Les capsules sont représentées
par des boîtes en pointillés. Les phrases sont
représentées par des séquences d’encodages dits
one-hot (w1, ...,wn). Elles sont ensuite transfor-
mées en des séquences de vecteurs de mots de
dimensions plus petites par le biais d’une mul-
tiplication par une matrice d’encodages Ww.
Les phrases sont ensuite traitées par notre ré-
seau de capsules récurrentes, qui finit par gé-
nérer une représentation vectorielle v. Cette re-
présentation vectorielle est comparée à une re-
présentation vectorielle d’image appartenant au
même espace multimodal. xi

Figure 3 Gated Recurrent Capsules : toutes les capsules
partagent les mêmes paramètres appris θ. Les
entrées de la capsule i au temps t sont des vec-
teurs de mots xt et son état caché au temps
t − 1 est h(i)t−1. Sa sortie est h(i)t . Cette procé-
dure de routage peut être vue comme un mé-
canisme d’attention : chaque sortie dépend des
similarités sémantiques des mots de la phrase
traitée avec les précédents mots de cette même
phrase. Elle permet que chaque capsule génère
une représentation vectorielle de phrase met-
tant l’accent sur un élément particulier de la
phrase.. xv

xxiii

xxiv List of Figures

Figure 4 Illustration de notre modèle, fondé sur la mé-
thode L-STAP que nous proposons. Les trames
sont traitées séquentiellement par un réseau
convolutionnel (un ResNet-152 dans notre cas).
Cependant, au lieu d’appliquer un regroupe-
ment par moyennage (average pooling) sur les
caractéristiques locales comme cela se fait dans
de nombreux travaux récents, nous faisons usage
d’une LSTM pour détecter les dépendances tem-
porelles. Des états cachés locaux sont calculés
pour obtenir un tenseur de dimensions 7x7x1024.
Ces états cachés locaux sont ensuite regrou-
pés ensemble, soit en les moyennant soit en
faisant usage d’un mécanisme d’attention, et
traités par une LSTM permettant de produire
une phrase descriptive. xvi

Figure 5 Illustration of the matching task. Given an im-
age of an old train, and a text saying "this is an
old train", a matching model should be able to
say that the image and the text match. 2

Figure 6 Illustration of the captioning task. Given an
image of an old train, a captioning model should
be able to output a describing sentence such as
"this is an old train". 2

Figure 7 A sketch of a real neuron. Electrical signals (in
orange) go to the cell body through dendrites.
If the sum of signals is above a given threshold,
then another electrical signal (in green) goes to
other neurons through the axon. 6

Figure 8 A sketch of an artificial neuron. Dendrites are
replaced by three inputs x1, x2 and x3. The ar-
tificial neuron makes a weighted sum of these
inputs, and applies a transfer function f to com-
pare it to a threshold b. The output y if actu-
ally the output of f: y is high when the weighted
sum of inputs is high, and low if that weighted
sum is low. 7

Figure 9 Illustration of the Gradient Descent algorithm.
Starting from a random point corresponding
to a certain value of the loss function (here the
height), computing the gradient at this point
gives an information on where the slope is go-
ing down. 8

List of Figures xxv

Figure 10 An illustration of the backpropagation algo-
rithm. We give here an example with two in-
puts, one output and one hidden layer. First,
the partial derivatives of the loss with respect
to the loss are computed. Then, these par-
tial derivatives are backpropagated to the hid-
den layer, to compute the partial derivatives of
the weights leading to intermediate neurons.
Eventually, these weights are also backprop-
agated to obtain weight updates for the first
layer of the neural network. 11

Figure 11 Graphs of the functions f (in blue), x 7→ K(−x)

(in black) and f ∗K (in red). As one can notice,
the convolution f ∗ K corresponds to pattern
recognition: the graph of f ∗ K reaches max-
imums when the graph of f is similar to the
graph of x 7→ K(−x). 13

Figure 12 Illustration of a convolution on an image. The
pattern to be recognized is the matrix repre-
sented at the right of the ∗ sign, the image is
at the left and the rightmost matrix is the re-
sult of the convolution. In this example, the
detected pattern is a type of edge. 13

Figure 13 An illustration of pooling in CNNs. In this
example, we perform max-pooling: the width
and the height of an image is divided by two
by pooling together four neighboring pixels. . 15

Figure 14 Result of classification using a state-of-the-art
ResNet-152 trained on ImageNet. A simple ro-
tation can lead to extremely bad results. 15

Figure 15 Illustration of an Inception unit. Inception units
contain 1× 1 convolutions, which increase the
depth of the CNN without increasing a lot its
number of trainable weights 16

Figure 16 Illustration of a Residual Block. If X is the in-
put of a Residual Block, and f(X) is the result
of the convolutions included in this Residual
Block, its final output is X + f(X). Residual
blocks allow a better backpropagation of errors
during gradient descent training. 17

Figure 17 The skip-gram model from [65]. A vector rep-
resentation is derived from a word. That rep-
resentation is optimized so that it can predict
surrounding words. 18

xxvi List of Figures

Figure 18 Illustration of a simple RNN. The output at a
given iteration depends on the input, but also
in the previous output. 19

Figure 19 Illustration of an LSTM. 21

Figure 20 Illustration of a GRU. 21

Figure 21 The encoder-decoder scheme. A text in a source
language is input to an encoder (usually an
LSTM or a GRU), which derives a vector rep-
resentation of that text. That representation is
then used by the decoder (also an LSTM or a
GRU) to generate a sentence in a target language. 25

Figure 22 EURECOM Runs at TRECVid AVS 2016: Generic
Architecture. The two strategies we mentioned
are represented in this figure: either topics are
input to Google Images to retrieve correspond-
ing images that are compared to keyframes in
a visual space, or keyframes are converted into
textual annotations that are compared to topic
in a textual space. 34

Figure 23 Behavior of our strategies (X-Axis: min = -
0.223, max = 0.041, σ = 0.065; Y-Axis: min =
-0.007, max = 0.011, σ = 0.003) 36

Figure 24 Influence of L2-normalization 37

Figure 25 Influence of GloVe vectors dimensions 37

Figure 26 Topics cannot be easily separated into two groups
(X-Axis: min = -0.465, max = 0.555, σ = 0.244;
Y-Axis: min = -0.434, max = 0.526, σ = 0.217) . 39

Figure 27 Overview of our RCN model: A first part com-
putes image embeddings, a second one com-
putes sentence embeddings through a Recur-
rent CapsNet. The two parts are constrained
by a loss function to produce embeddings in
the same multimodal space. 42

Figure 28 A generic capsule for computer vision 44

List of Figures xxvii

Figure 29 Our model. Capsules are represented with dashed
boxes. In the sentence embedding part, a sen-
tence is represented by a sequence of one-hot
vectors (w1, ..., wn). It is transformed into a
list of word embeddings (x1, ..., xn) through
a multiplication by a word embedding matrix
Ww. The sentence then goes through the Re-
current CapsNet a pre-defined number of times,
and eventually the RCN outputs a sentence
embedding v. In the image embedding part, an
affine transformation is applied to a features
vector to obtain an image embedding. Both
embeddings belong to the same multimodal
space. 45

Figure 30 Performance of GRUs on Flickr8k according to
the size of their hidden states. The x-axis rep-
resents the size of hidden states, the y-axis rep-
resents the performance of the GRUs. This per-
formance is the sum of R@1, R@5 and R@10 for
both Image Annotation and Image Retrieval
tasks. The line corresponds to the performance
of our best model (RCN-0.05 with hidden states
of dimension 1024). 50

Figure 31 Our hypothesis. The cross corresponds to an
image, circles correspond to sentence embed-
dings output by an RCN and triangles corre-
spond to sentence embeddings output by a GRU.
In that case, both the RCN and the GRU out-
put sentence embeddings for a given image
around the same point, but even if the RCN
generates worse embeddings on average, its
best sentence embedding is better than the best
sentence embedding output by the GRU. . . . 50

Figure 32 Word2VisualVec and our variant with a GRC.
In Word2VisualVec, three sentence representa-
tions (Word2Vec, BoW and GRU) are concate-
nated and then mapped to a visual features
space. In our model, we replaced the final hid-
den state of the GRU by the average of all final
hidden states of a GRC. 54

xxviii List of Figures

Figure 33 A Gated Recurrent Unit: for each input xt, a
new value h̃t is computed, based on xt, rt and
ht−1, where rt expresses how much of ht−1

should be reset to compute h̃t. Eventually, ht
is computed based on h̃t, ht−1 and ut, where
ut expresses how much of h̃t should be used
to update ht−1 to ht 55

Figure 34 Gated Recurrent Capsules: all capsules share
the same learned parameters θ. The inputs
of capsule i at time t are a word embedding
xt and its hidden state at time t− 1 h(i)t−1. Its

output is h(i)t , and it is computed through the
routing procedure described in Section 3.2. This
routing procedure can be seen as an attention
model: each output depends on how seman-
tically similar the incoming word is to previ-
ously processed words. It ensures that each
capsule generates a sentence embedding cor-
responding to one important visual element of
the sentence. 58

Figure 35 Compared results of Word2VisualVec and our
model on three images. 62

Figure 36 Our model. RNN can be a GRU, a GRC or a
bidirectional GRU. 65

Figure 37 Results on subset A 67

Figure 38 Results on subset B 67

Figure 39 Results on subset C 67

Figure 40 Results on subset D 68

Figure 41 Results on subset E 68

Figure 42 Principle of AVS. Video Features are derived
from videos and processed by a Video Model
to obtain a vector representation. At the same
time, a text query is processed by a Text Model
that also derives a vector representation. These
two vector representations are then compared
to list all relevant videos with respect to the
text query. 69

Figure 43 Proposed model. We extract embeddings from
three modules: a counting module, an activ-
ity module and a concepts module. These em-
beddings are then concatenated and input to
Fully-Connected layers to obtain new embed-
dings. That model is also trained using a triplet
loss. 72

Figure 44 Best result for each team at TRECVid AVS 2019.
We performed poorly, as we finished last. . . . 76

List of Figures xxix

Figure 45 Overview of our L-STAP method. Frame-level
local features are derived using a ResNet-152.
Then, an LSTM processes these local features,
and updates its hidden state by attending to
them based on previous frames. The result is
that space and time are jointly taken into ac-
count to build video representations. 81

Figure 46 Illustration of our model, based on the pro-
posed L-STAP method. Frames are processed
sequentially by a CNN (a ResNet-152 in this
case). However, instead of applying an average
pooling on local features as some recent works
do, we make use of an LSTM to capture time
dependencies. Local hidden states are com-
puted to obtain a 7x7x1024-dimensional ten-
sor. These local hidden states are then pooled
together (using average pooling or soft atten-
tion), and processed by an LSTM decoder to
output a sentence. 82

Figure 47 Overview of our training losses. The first train-
ing loss is the Cross-Entropy loss, which aims
to make the probability distribution of sentences
in the training set and the probability distri-
bution of the inferred sentences match. The
second one is a ranking loss, aiming to bridge
the semantic gap between video representa-
tions and sentences. 86

Figure 48 Some qualitative results of L-STAP on MSR-VTT. 90

Figure 49 Our second interpretation about the efficiency
of the second term of our loss function. Skip
connections between video representations and
ground-truth sentences improve results. 91

Figure 50 The image captioning model we employed. A
Faster-RCNN derives features vectors correspond-
ing to object detection boxes from an input im-
age. These features vectors are then used by
a decoder through a soft-attention mechanism
to produce a caption for the input image. . . . 93

Figure 51 Examples of images taken from the MSCOCO
dataset and their corresponding self-BLEU scores.
Images that contain few elements and that are
easily described have a high score, whereas
complex images have a low score. 94

xxx List of Figures

Figure 52 Plot of validation scores of the baseline trained
with simple mini-batch gradient descent (in blue)
and using self-BLEU-based Curriculum Learn-
ing (in red). We can notice that Curriculum
Learning make training a bit faster, even though
the best validation loss is eventually nearly the
same for both methods. 99

L I S T O F TA B L E S

Table 1 Results of Our Models on AVS 2016 Data . . . 35

Table 2 Results of the Best Model and the Best Combi-
nation of Two Models 38

Table 3 Examples of visual weights for some words.
It appears that words corresponding to some-
thing that can be visualized have higher weights
than the others. 40

Table 4 Results of our new implementation of our sec-
ond strategy on AVS 2016 data. Visual weights
lead to better results. 40

Table 5 Results of our new implementation of our sec-
ond strategy on AVS 2017 data. Surprisingly,
visual weights lead to better results. 41

Table 6 Results of our experiments on Flickr8k. R@K
denotes Recall at rank K (higher is better). Best
results among other models and among our
models are in bold. Best results among all
models are underlined 49

Table 7 Results of our experiments on MSCOCO. R@K
denotes Recall at rank K (higher is better). Best
results among all models are in bold. 61

Table 8 For each model: number of sentences ranked
in top 9 for the right image by one model and
above rank 100 by the other model. Ten sen-
tences are ranked in top 9 by Word2VisualVec
while ranked above rank 100 by our model,
and seventeen sentences are ranked in top 9

by our model while ranked above rank 100 by
Word2VisualVec. We also reported these num-
bers of sentences without counting sentences
containing "UNK" tokens. This table shows
that GRCs are performing better than GRUs on
much more sentences than GRUs compared to
GRCs. 61

Table 9 Results of our experiments on MSCOCO: com-
parison between image space and multimodal
space. R@K denotes Recall at rank K (higher
is better). Best results among all models are in
bold. 62

Table 10 Our results in terms of Mean Inverse Rank . . 66

Table 11 Results on the MSR-VTT test dataset of three
modules. 74

xxxi

xxxii List of Tables

Table 12 Results on the V3C1 dataset of three modules. 74

Table 13 Results on the MSR-VTT test dataset of fusions
of modules. Sum of best is the sum of M1 +

M2 +M3 and F(M1,M2,M3). 75

Table 14 Results on the V3C1 dataset of fusions of mod-
ules. 75

Table 15 Results on the MSVD dataset. The * sign means
that the model is using reinforcement learning
techniques to optimize over the CIDEr metric.
Best results are in bold characters. 88

Table 16 Results on the MSR-VTT dataset. The * sign
means that the model is using reinforcement
learning techniques to optimize over the CIDEr
metric. Best results are in bold characters. . . . 89

Table 17 Results of ablation study on MSVD. Results
show that a significant improvement can be
reached using our Learned Spatio-Temporal Adap-
tive Pooling instead of the usual average pool-
ing. Pooling hidden states of the encoder using
soft-attention (line 4) instead of average pool-
ing (line 3) does not always improve results.
Our interpretation of that outcome is that the
LSTM actually performs a kind of attention
on local features before local hidden states are
pooled together. 92

Table 18 Our results on the MSCOCO dataset. As one
can notice, the self-BLEU-based Curriculum Learn-
ing algorithm leads to nearly the same results
as the baseline. To the contrary, the Adaptive
Curriculum Learning algorithm improves the
results of the baseline in terms of all metrics.
However, it does not induce as much improve-
ment as a Reinforcement Learning loss induces. 99

A C R O N Y M S & N O TAT I O N S

acronyms

CNN Convolutional Neural Network

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

NLP Natural Language Processing

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

operations

⊙ Hadamard product

AT Transpose matrix of A

f ◦ g Function composition of f and g

〈u|v〉 Scalar product of u and v
∂f
∂x Partial derivative of f with respect to x

∇f Gradient of f

J(f) Jacobian matrix of f

functions

exp Exponential function

log Natural logarithm function

cos Cosine similarity function

σ Sigmoid function

tanh Hyperbolic tangent function

softmax Softmax function

xxxiii

2 introduction

Figure 5: Illustration of the matching task. Given an image of an old train,
and a text saying "this is an old train", a matching model should
be able to say that the image and the text match.

Figure 6: Illustration of the captioning task. Given an image of an old train,
a captioning model should be able to output a describing sentence
such as "this is an old train".

The second task on which we worked is the captioning task (see Fig-
ure 6 for an illustration). The captioning task is the following: given
an image or a video, our goal is to generate a describing sentence in
natural language, which should be as close as possible to the descrip-
tion that a human would have done. It means that giving a vague but
accurate description is not sufficient : that description should also be
as precise as a human description would be.

As we will see, deep neural networks can successfully address
these tasks. In this thesis, we proposed several models or methods
improving usual ones. The outline of this thesis is the following: in
Chapter 2, we give an introduction to deep learning and present ex-
isting works in vision-text matching and in captioning. In Chapter 3,
we introduce our work on the vision-text matching task. In Chapter 4,
we introduce our work on the captioning task. We conclude the thesis
in Chapter 5.

Our contributions in this work are as follows:

• In Chapter 3:

introduction 3

– We proposed a method to weigh words in a sentence with
respect to how the contribute to a visual description (Sec-
tion 3.2.3.4).

– We architectured a novel Recurrent Capsule Network for
sentences embeddings. We showed that it outperformed
usual models for sentences embeddings (Section 3.3).

– We architectured a novel Gated Recurrent Capsule model
for sentences embeddings. The model that we designed
at Section 3.3 was efficient but was too computationally
intensive. That novel model is much lighter, and we also
showed that it outperformed usual models for sentences
embeddings (Section 3.4).

– We proposed a video-to-text matching model at Section
3.5 in the context of TRECVid VTT 2018, an evaluation
campaign for video-to-text matching models. Our model
scored third out of eleven competitors.

– We proposed a fusion model for Ad-Hoc Video Search (Sec-
tion 3.6).

• In Chapter 4:

– We introduced at Section 4.2 a novel learned spatio-temporal
adaptive pooling method that we designed for video pro-
cessing and applied in the context of video captioning.
We showed that a model based on this method outper-
formed state-of-the-art models on a standard video cap-
tioning dataset in terms of several metrics. We also as-
sessed the interest of each element of our method through
an ablation study.

– We proposed an extension of a Curriculum Learning al-
gorithm for captioning, and showed that it improved the
training speed (Section 4.3.2).

– We proposed a novel Adaptive Curriculum Learning algo-
rithm for captioning. We showed on a standard dataset that
our algorithm outperformed the usual gradient descent al-
gorithm in the context of image captioning (Section 4.3.3).

2
P R O L E G O M E N A T O V I S I O N A N D N AT U R A L
L A N G U A G E P R O C E S S I N G

In this chapter, we will give some preliminary insights on Deep Learn-
ing and its applications in Computer Vision and Natural Language
Processing. Then, we will explain how Deep Learning techniques
have been used for matching vision and language, and for generat-
ing descriptions of images and videos in natural language.

2.1 tackling complexity with deep learning

Understanding photos and videos or texts in natural language is
not straightforward for computers. However, Deep Neural Networks
have had appalling results in these fields, even if they rely on artificial
neurons, which are extremely simple mathematical objects, as we will In this thesis,

"artificial neuron"

and "perceptron"

will designate the

same objects

see later in this section. How such simple objects can be used to solve
such difficult problems? This is what we will explain in this section.

2.1.1 Artificial Neural Networks

The idea of using mathematical objects inspired by neurons to mod-
elize problems is not new: in 1943, McCulloch and Pitts make a link
between real neuron networks and propositional logic [62]. In this sec-
tion, we will define artificial neurons and how they can be combined
to form artificial neural networks.

2.1.1.1 The Perceptron

Before defining artificial neurons (or perceptrons), let us describe
briefly how real neurons work. Neurons are the main cells of the
nervous system of all animals 1. As shown on Figure 7, they are com-
posed of dendrites, propagating electrochemical signals towards the
cell body. If the sum of signals is above a certain threshold, then a re-
sulting electrochemical signal is propagated in the axon towards sub-
sequent neurons. According to stimuli from their environments, con-
nections between their neurons, called synapses, are strengthened or
weakened: this phenomenon is called Neuroplasticity. It allows them
to act accordingly to environmental stimuli.

Perceptrons have been designed by Frank Rosenblatt in 1958 [78].
They are inspired by real neurons. As shown on Figure 8, exter-
nal stimuli are represented by numerical values. A weighted sum

1 Apart from sponges and trichoplaxes...

5

6 prolegomena to vision and natural language processing

Figure 7: A sketch of a real neuron. Electrical signals (in orange) go to the
cell body through dendrites. If the sum of signals is above a given
threshold, then another electrical signal (in green) goes to other
neurons through the axon.

combines them; weights correspond to the strength of synapses. A
bias, corresponding to the threshold of real neurons, is added to the
weighted sum. The numerical value thus obtained is then processed
through an activation function, which defines the signal that is out-
put by the perceptron. This activation function is generally a non-
decreasing function. It is assumed to be differentiable, for reasons we
will develop later.

Mathematically, a perceptron corresponds to an affine function from
R

d to R, where d is the number of incoming signals:

y = f(〈w|x〉+ b). (27)

Perceptrons are often combined to deliver multi-dimensional signals.
In that case, the previous equation become:

y = f(Wx+ b) (28)

where y is not a numerical value anymore but a real vector. Such a
combination of perceptrons is called a layer of perceptrons.

A single perceptron, or even a layer of perceptrons are not suffi-
cient to solve complex problems: even simple ones such as the XOR
Problem cannot be solved by perceptrons, which are linear classifiers.
We will see in next section how to combine layers of perceptrons to
solve more complex problems.

2.1.1.2 Multi-Layer Perceptrons

As we stated in the previous section, if the sum of the electrochemical
signals that enter a real neuron is above a certain threshold, it triggers

2.1 tackling complexity with deep learning 7

Figure 8: A sketch of an artificial neuron. Dendrites are replaced by three
inputs x1, x2 and x3. The artificial neuron makes a weighted sum
of these inputs, and applies a transfer function f to compare it to
a threshold b. The output y if actually the output of f: y is high
when the weighted sum of inputs is high, and low if that weighted
sum is low.

another signal that is also transferred to other neurons. One layer of
perceptrons cannot solve complex problems: that is where the interest
of Multi-Layer Perceptrons (or MLPs) relies. In MLPs, the output of a
layer of perceptrons is used as the input of another layer. In that case,
the mathematical expression of the output of an MLP is the following:

y = fn(Wn...f2(W2f1(W1x+ b1) + b2) + ... + bn), (29)

where Wi, bi and fi correspond to the weights, the bias and the acti-
vation of layer i, respectively. Biases can be removed for convenience
by including it in the weights and assuming that the inputs for the
weights corresponding to biases are set to 1. We obtain the following
formula:

y = fn(Wn...f2(W2f1(W1x))...). (30)

We will stick to that convention in the rest of this chapter.
In 1989, George Cybenko showed that MLPs were able to approx-

imate any real-valued function under some hypotheses [14]: MLPs
can potentially solve nearly any complex problem if they are well-
formulated. However, even though an efficient MLP can exist for a
given complex task, how to find it? How to determine the right pa-
rameters? In Section 2.1.2, we explain how to train neural networks,
including MLPs.

8 prolegomena to vision and natural language processing

Figure 9: Illustration of the Gradient Descent algorithm. Starting from a ran-
dom point corresponding to a certain value of the loss function
(here the height), computing the gradient at this point gives an
information on where the slope is going down.

2.1.2 The Learning Process

Training a neural network is not always self-evident, and simple algo-
rithms such as gradient descent are often insufficient to obtain rele-
vant results. In this section, we define the gradient descent algorithm,
and explain how it has been improved for efficient neural network
training.

2.1.2.1 Gradient Descent

We usually try to formulate AI-related problems as unconstrained
optimization problems, with a differentiable function as the objec-
tive function. The gradient descent algorithm can be used to solve
this kind of problems. As this algorithm is based on gradient com-
putations, we must assume that all functions that we use are differ-
entiable almost everywhere, including activation functions of neural
networks. First of all, we define a loss function (also called "cost func-
tion"), which is an objective function to be minimized. Let us call it

2.1 tackling complexity with deep learning 9

LX, where X is the input of the neural network. The gradient descent
algorithm is an iterative algorithm whose goal is to find optimal pa-
rameters, based on an input X. If W(t) are the weights of a neural
network at iteration t, weights at iteration t+ 1 are derived based on
the following update formula:

W(t+1) =W(t) − λ∇WLX(W
(t)), (31)

where λ is a hyperparameter called the learning rate.
Training is usually performed on a dataset containing multiple pos-

sible inputs. When the loss function is averaged over the set X all pos-
sible samples X ∈ X, the algorithm is called Batch Gradient Descent,
and the update formula is the following:

W(t+1) = W(t) − λ∇WLX(W
(t))

where LX(W
(t)) = 1

|X|

∑
X∈XLX(W

(t)).
(32)

However Batch Gradient Descent is too slow if the training dataset
is big: there are too many operations performed before updating the
weights of the neural network. Therefore, Stochastic Gradient De-
scent is preferred: it consists in picking randomly one sample X(t)

at each iteration t and updating weights after every random choice.
The Stochastic Gradient Descent update formula is the following one:

W(t+1) =W(t) − λ∇WLX(t)(W
(t)). (33)

The drawback of Stochastic Gradient Descent is that it is too noisy,
and requires making computations on small pieces of data, which
is not efficient for hardware-related reasons. Therefore, the Gradient
Descent version that is employed in most cases is the Minibatch Gra-
dient Descent. It is a trade-off between Batch Gradient Descent and
Stochastic Gradient Descent: at each iteration t, a small subset X(t)

of X is sampled randomly, and weights are updated based on that
sample of data:

W(t+1) =W(t) − λ∇WLX(t)(W
(t)). (34)

The convergence speed of Gradient Descent algorithms can further
be improved a lot. The three methods that we will introduce are based
on the first and second raw moments of weight updates. For simplic-
ity, L will designate the loss function in the following.

The momentum method [74] consists in adding to the weight up-
date a fraction of previous weight updates: it is based on the first raw
moment of weight updates. It can be compared to Newton’s principle
of inertia: previous updates induce an "inertia" to following updates.

10 prolegomena to vision and natural language processing

It accelerates convergence if many gradients point at a similar di-
rection. Mathematically, the momentum method can be described as
follows:

W(t+1) = W(t) − λM(t+1)

M(t+1) = (1−α)×M(t) +α×∇WL(W(t))
(35)

where α is a hyperparameter between 0 and 1. If α is high, then inertia
is low, and vice versa.

The RMSProp method [87] is based on the second raw moment
of weight updates. It consists in adapting the learning rate for each
parameter: when a parameter is often updated, its learning rate is
reduced, and vice versa. Mathematically, the learning rate for a given
weight is divided by the root mean square of the updates for that
weight, as explained in the following formulas:

W(t+1) = W(t) − λ
∇WL(W(t))√

G(t+1)

G(t+1) = (1−α)×G(t) +α× (∇WL(W(t)))2
(36)

where α is a hyperparameter controlling the importance of last steps
in the moving average of square weight updates.

The Adam method [46] is a combination of Momentum and RM-
SProp. It can be described by the following formulas:

W(t+1) = W(t) − λ
∇WL(M(t+1))√

G(t+1)

G(t+1) = (1−αG)×G(t) +αG × (∇WL(W(t)))2

M(t+1) = (1−αM)×M(t) +αM ×∇WL(W(t))

(37)

where αG and αM are hyperparameters.
Neural networks can contain a lot of layers, and computing weight

updates of early layers can be computationally intensive if done naively.
In the next section, we explain how weight updates can be computed
efficiently, using the backpropagation algorithm.

2.1.2.2 Backpropagation

The backpropagation algorithm consists in applying recursively the
chain rule to compute weight updates from the last layer of a neural
network to the first one. We will describe the backpropagation algo-
rithm for the standard SGD, but it can be used with no modifications
for the other optimization methods we introduced previously (Mo-
mentum, RMSProp and Adam). First, we define the loss function LX

for an input X as follows:

LX(W) = L(fn(Wn(fn−1Wn−1...f1(W1X)...))), (38)

where L : R
d 7→ R is a differentiable function (d is the dimension of

the output of the neural network). For the t-th iteration, the update
formula is:

W(t+1) =W(t) − λ∇LX(t)(W), (39)

2.1 tackling complexity with deep learning 11

Figure 10: An illustration of the backpropagation algorithm. We give here
an example with two inputs, one output and one hidden layer.
First, the partial derivatives of the loss with respect to the loss are
computed. Then, these partial derivatives are backpropagated to
the hidden layer, to compute the partial derivatives of the weights
leading to intermediate neurons. Eventually, these weights are
also backpropagated to obtain weight updates for the first layer
of the neural network.

where X(t) is the input at iteration t.
Let us also define X(t)

i for i in {1, ...,n} as follows:

X
(t)
1 = X(t), X

(t)
i+1 = fi(WiX

(t)
i). (40)

As the backpropagation algorithm computes weight updates recur-
sively, we define a loss function for each layer:

Ln,X(t)(Wn) = L
(

fn

(

WnX
(t)
n

))

Li,X(t)(Wi) = ϕ
(t)
i+1

(

fi

(

WiX
(t)
i

))
(41)

where ϕ(t)
i is defined as follows:

ϕ
(t)
n (Xn) = L

(

fn

(

W
(t)
n Xn

))

ϕ
(t)
i (Xi) = ϕ

(t)
i+1

(

fi

(

W
(t)
i Xi

))
(42)

where W(t)
i is the weights matrix of layer i at iteration t. We also

define the following helper functions:

g
(t)
i (Xi) = fi

(

W
(t)
i Xi

)

h
(t)
i (Wi) = fi

(

WiX
(t)
i

)
. (43)

Let us now compute the weights updates for each layer:

W
(t+1)
i =W

(t)
i − λ∇Li,X(t)

(

W
(t)
i

)

. (44)

12 prolegomena to vision and natural language processing

The partial loss function Li,X(t) can be rewritten as follows:

∇Li,X(t)

(

W
(t)
i

)

= ∇
(

ϕ
(t)
i+1 ◦ h

(t)
i

)(

W
(t)
i

)

(45)

This gradient can be computed using the chain rule. Mathematically,
if g and f are multivariate real functions and g ◦ f is a real-valued
function, then the gradient ∇(g ◦ f) is:

∇(g ◦ f)(x) = ∇g(f(x))TJ(f)(x) (46)

where J(f) is the Jacobian matrix of f. Using that rule, we can compute
the gradient of ϕ(t)

i+1 ◦ h
(t)
i :

∇
(

ϕ
(t)
i+1 ◦ h

(t)
i

)

=
[

∇ϕ
(t)
i+1

(

X
(t)
i+1

)]T [

J
(

h
(t)
i

)(

W
(t)
i

)]

. (47)

In the last expression, J
(

h
(t)
i

)(

W
(t)
i

)

can be easily computed, as

h
(t)
i and W(t)

i are known. Now, we need to derive an expression for

∇ϕ
(t)
i+1

(

X
(t)
i+1

)

. We notice that we have the following relation between

ϕ
(t)
i+1 and ϕ(t)

i+2:

ϕ
(t)
i+1

(

X
(t)
i+1

)

=
(

ϕ
(t)
i+2 ◦ g

(t)
i+1

)(

X
(t)
i+1

)

. (48)

This leads us to the final expression of ∇ϕ(t)
i+1

(

X
(t)
i+1

)

by applying
the chain rule:

∇ϕ
(t)
i+1

(

X
(t)
i+1

)

=
[

∇ϕ
(t)
i+2

(

X
(t)
i+2

)]T [

J
(

g
(t)
i+1

)(

X
(t)
i+1

)]

. (49)

The backpropagation algorithm can be used to train any kind of
neural networks. In the next sections, we will describe Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).

2.1.3 Convolutions for Vision

Convolutions are operations that have been widely used in signal
processing, and in particular in image processing. What are they, and
why do they work well with images and videos? In this section, we
will define them and relate them to Convolutional Neural Networks.

2.1.3.1 What are Convolutions?

Initially, convolutions have been designed as mathematical operations
between functions. The convolution of two numerical functions f and
K is defined by the following formula:

(f ∗K)(x) =

∫

R

f(x− t)K(t)dt. (50)

2.1 tackling complexity with deep learning 13

Figure 11: Graphs of the functions f (in blue), x 7→ K(−x) (in black) and f ∗K
(in red). As one can notice, the convolution f ∗ K corresponds to
pattern recognition: the graph of f ∗ K reaches maximums when
the graph of f is similar to the graph of x 7→ K(−x).

Figure 12: Illustration of a convolution on an image. The pattern to be rec-
ognized is the matrix represented at the right of the ∗ sign, the
image is at the left and the rightmost matrix is the result of the
convolution. In this example, the detected pattern is a type of
edge.

That convolution can be intuitively interpreted as a pattern recogni-
tion operation. If we imagine that the graph of the function t 7→ K(−t)

is a pattern, then (f ∗ K)(x) is high if that pattern is present around
x in the graph of f, and low otherwise. Let us give an example. If
f(x) = sin(x), and K(x) = −2x/π for x ∈ [−π/2,π/2] and K(x) = 0

otherwise, then we find that (f ∗ K)(x) =
4 cos(x)

π . We represented f,
x 7→ K(−x) and (f ∗ K) on Figure 11. As one can notice, f ∗ K reaches
maximums when the graph of f is similar to the graph of x 7→ K(−x),
ie for x = 0 [2π].

Pattern recognition is a way to understand the content of images.
Therefore convolutions have intuitively been adapted to image pro-
cessing, similarly to the convolution operation we defined previously.
If I is an image, represented by a matrix, and F is the pattern that we
want to recognize in I, the convolution of I and F is defined as:

(I ∗ F)(x,y) =
W−1∑

i=0

H−1∑

j=0

I (x−X+ i,y− Y + j) F(i, j) (51)

14 prolegomena to vision and natural language processing

where W is the width of the pattern F, H its height, X =
⌊

W−1
2

⌋

and
Y =

⌊

H−1
2

⌋

. A straightforward application of convolutions is edge
detection, as represented on Figure 12.

The convolution operation for images that we defined is based on
1-channel images. However, images have usually three channels, as
usual images are RGB images. Convolutions have been adapted in
3D fashion, as follows (C is the total number of channels of images):

(I ∗ F)(x,y) =
W−1∑

i=0

H−1∑

j=0

C∑

c=1

I (x−X+ i,y− Y + j, c) F(i, j, c). (52)

Convolutions as we defined them are not sufficient to detect pat-
terns that are more complex than simple edges. Tackling complexity
needs to combine these patterns: this is where the interest of Convo-
lutional Neural Networks lies.

2.1.3.2 From Handcrafted Features to Learned Features

In Convolutional Neural Networks (CNNs), convolution filters are
not predefined but learned. CNNs are special cases of artificial neural
networks, where some weights are set to zero and others are shared:
the backpropagation algorithm used to compute weight updates dur-
ing the gradient descent can be easily extended to train CNNs.

The problem induced by CNNs is that they need a lot of data to
grasp all possible patterns that are relevant to understand images.
Good results on simple datasets such as MNIST have been reached
since 1998 by LeCun et al. [52]. However, results of CNNs on "real-
world datasets" remained very poor until recently because of the lack
of data to train them. At that time, CNNs had to remain shallow and
to be used only on handcrafted features to obtain decent results. In
2012, in the context of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [79], a fully-trained CNN using raw images as in-
puts instead of handcrafted features outperformed by a large margin
its competitors [50]. What had changed at that time? The challenge
was based on ImageNet [16], a huge dataset of annotated images al-
lowed for the first time to train successfully a deep CNN on raw
images. Since then, CNNs are considered as the best models for Com-
puter Vision in most applications.

CNNs are not only composed of learned convolutions detecting
patterns. They also contain pooling operations to pool visual informa-
tion together, as shown on Figure 13. Convolutions in the first layers
of a CNN detect low-level patterns such as edges and simple geomet-
ric shapes. Recognized patterns become more and more complex in
next layers. The last layers of a CNN recognize high-level features,
which become more semantic than only geometric.

Even though CNNs lead to state-of-the-art results in most Com-
puter Vision tasks, they are not perfect. In particular, pooling op-
erations raise the problem of the loss of spatial information: when

2.1 tackling complexity with deep learning 15

Figure 13: An illustration of pooling in CNNs. In this example, we perform
max-pooling: the width and the height of an image is divided by
two by pooling together four neighboring pixels.

Figure 14: Result of classification using a state-of-the-art ResNet-152 trained
on ImageNet. A simple rotation can lead to extremely bad results.

16 prolegomena to vision and natural language processing

Figure 15: Illustration of an Inception unit. Inception units contain 1× 1 con-
volutions, which increase the depth of the CNN without increas-
ing a lot its number of trainable weights

outputs of convolutional layers are pooled together, they do not con-
tain anymore information on how pooled features were located in
the image with respect to the others. On Figure 14, we give an ex-
ample of how a state-of-the-art ResNet-152 [35] image classifier can
be deceived by a simple rotation. Some works have tried to solve
that problem. In particular, Sabour et al. and Hinton et al. proposed
Capsule Networks that get rid of these pooling layers. In Capsule
Networks, neurons are replaced by capsules, that are actually small
neural networks outputting an activation as neurons do, but also a
pose vector containing spatial information. Even though that kind
of architecture has shown promising results, it has not been applied
yet on large-scale problems, because of the computationally intensive
routing algorithms that they need to transfer outputs of one layer of
capsules to the following one.

In the next section, we will give a description of some of the CNN
architectures that we use in our research work.

2.1.3.3 CNN Architectures

In 2014 and 2015, the ILSVRC saw new architectures of CNNs im-
proving the results that had been obtained in 2012. Let us describe
these architectures, that we have been using in our research work.

In 2014, the first runner-up team came from the Visual Geometry
Group (VGG) of the University of Oxford. The model they propose
for the challenge was the VGG16 network, and consisted in a stack of
16 convolutional layers, with pooling layers inserted at some points.
The problem that raises this network is that it is very long to train,
because of its 138 millions of weights. The winner of the 2014 ILSVRC
has proposed an architecture tackling that issue.

18 prolegomena to vision and natural language processing

Figure 17: The skip-gram model from [65]. A vector representation is de-
rived from a word. That representation is optimized so that it can
predict surrounding words.

2.1.4 Recurrences for Sentences

Dealing with texts in natural language raises different issues than
Computer Vision. The first one is that words are not easily repre-
sented by numbers. Applying convolutions to images to recognize
patterns is intuitive, as we stated in Section 2.1.3.1, because they can
be represented by matrices or tensors of numbers. What can be done
with words? The second issue is that texts in natural language are
sequences of words of undefined length, with complex dependences
between them. How to deal with these sequences?

In this section, we will introduce word embeddings that deal with
the first issue, and Recurrent Neural Networks that deal with the
second one.

2.1.4.1 Word Embeddings

The simplest vector representation that we could think of for words
is the one-hot encoding: each word is assigned an index, and is repre-
sented by a one-hot encoding corresponding to that index. However,
even though that representation is simple, it reflects neither syntac-
tic nor semantic information. Some better vector representations of
words, called word embeddings, have been proposed.

Word2vec is one of them. It has been proposed by Mikolov et

al. in [65]. It consists in using a skip-gram model that predicts sur-
rounding words from an input word. More precisely, given the one-
hot encoding of a word, an affine transform reduces the dimension
of that encoding to obtain an embedding, which is used through
other affine transforms to predict surrounding words, as shown on
Figure 17. Another word embedding is GloVe [72]. It derives word
embeddings based on global and local statistics of a text corpus. In
this work, we also used PDC-HDC word embeddings [84], that are
learned by jointly modeling syntagmatic and paradigmatic relations
between words.

2.1 tackling complexity with deep learning 19

Figure 18: Illustration of a simple RNN. The output at a given iteration de-
pends on the input, but also in the previous output.

Recently, word embeddings such as BERT [18] are based on a new
Transformer architecture [88], but we did not use them in this thesis
work.

How to process whole sentences? Making averages of word embed-
dings could be a simple solution, but it does not take into account
relations between words in a sentence. This is where the interest of
Recurrent Neural Networks (RNNs) lies.

2.1.4.2 RNNs

Sentences can be seen as sequences of words. We saw how to make
word vector representations, but we need to combine them in a clever
way. For that purpose, the use of Recurrent Neural Networks has
shown good results. Recurrent Neural Networks are neural networks
whose output depends not only on its current input but also on pre-
vious ones. A simple RNN with input x(t+1) and output h(t+1) can
be described through the following equation:

h(t+1) = f
(

Whh
(t) +W

(t+1)
x x(t+1) + b

)

(53)

where Wh, Wx and b are trainable parameters. That architecture is
represented on Figure 18. The output of an RNN is also called a hid-
den state, because it is used to compute its next output: RNNs can
be seen as state machines whose inputs induce transitions to other
states. This simple RNN however does not give good results on natu-
ral language processing tasks: why? We will see that some tricks are
necessary to obtain desired results.

2.1.4.3 LSTMs and GRUs

The problem that is raised by the simple RNN architecture that we
introduced in Section 2.1.4.2 is the vanishing or exploding gradi-
ent problem: with long sequences of words, during gradient descent
training, it happens that very often, updates become very big or very
small. In that case, the neural network does not train. Why is that

20 prolegomena to vision and natural language processing

happening? Let us understand this problem with a toy example. We
assume that we are considering the architecture we defined in Section
2.1.4.2, with inputs and outputs of dimension 1, Wh = 0 and x(t) = 1
for all t. The partial derivative of the output with respect to Wx is
then the following:

∂h(t+1)

∂Wx
=

t∏

i=1

f ′(Wx + b) = f ′(Wx + b)t (54)

where f ′ is the derivative of f. We can see that the gradient can be
very big if |f ′(Wx + b)| > 1 and very small if |f ′(Wx + b)| < 1. How to
deal with the vanishing or exploding gradient problem?

In [38], the Long Short-Term Memory (LSTM) network has been
proposed. A memory cell is introduced to keep long-term dependen-
cies between words, and is also architectured to avoid the gradient
problems we described previously. An illustration of an LSTM can
be seen on Figure 19. An LSTM can be described by the following
equations:

i(t) = σ
(

Wihh
(t−1) +Wixx

(t) + bi
)

o(t) = σ
(

Wohh
(t−1) +Woxx

(t) + bo
)

f(t) = σ
(

Wfhh
(t−1) +Wfxx

(t) + bf
)

h
(t)

= tanh
(

Whhh
(t−1) +Wixx

(t) + bi
)

c(t) = i(t) ⊙ h
(t)

+ f(t) ⊙ c(t)

h(t) = o(t) ⊙ c(t)

(55)

where Wih, Wix, Woh, Wox, Wfh, Wfx, bi, bo and bf are trainable
parameters.

Let us see with the same toy example as in 2.1.4.2 if the gradient
problem is still raised. We assume that Whh = 0, and all inputs are
equal to 1:

∂h(t+1)

∂Whx
= o(t)

(

i(t) tanh (Whx + b) + f(t)
∂c(t+1)

∂whx

)

. (56)

As one can see, the vanishing or exploding gradient problem does
not appear anymore with that toy example.

Another type of Recurrent Neural Network called the Gated Re-
current Unit (GRU) has been proposed in [13]. We illustrated it on
Figure 20. It usually leads to similar results, but contains less train-
able parameters because the output gate has been removed. It can be
described through the following equations:

i(t) = σ
(

Wihh
(t−1) +Wixx

(t) + bi
)

f(t) = σ
(

Wfhh
(t−1) +Wfxx

(t) + bf
)

h
(t)

= tanh
(

Whh

(

h(t−1) ⊙ f(t)
)

+Wixx
(t) + bi

)

h(t) = i(t) ⊙ h
(t)

+
(

1− i(t)
)

⊙ h(t−1)

(57)

where Wih, Wix, Wfh, Wfx, bh and bx are trainable parameters.

2.1 tackling complexity with deep learning 21

Figure 19: Illustration of an LSTM.

Figure 20: Illustration of a GRU.

22 prolegomena to vision and natural language processing

2.1.4.4 Non-Recurrent Neural Networks for NLP

Some non-recurrent neural networks have been proposed for NLP.
For instance, CNNs for sentence classification have been proposed
in [45], and a Transformer model for neural machine translation has
been presented in [88]. Even though these models give sometimes
better results than LSTMs or GRUs on NLP tasks, we did not have
the opportunity to experiment with them in this thesis work.

2.2 ties between vision and language

In Section 2.1, we explained how Deep Learning techniques could
allow to deal with complex problems of Computer Vision and Nat-
ural Language Processing. However, in this thesis work, our goal is
to derive semantic representations of images and videos. Therefore,
we have to relate vision and language. What kind of semantic repre-
sentations can we derive for images and videos? How to combine the
advantages of CNNs and RNNs to deal with that problem?

In this section, we will give an overview of existing works dealing
jointly with vision and language. The semantic representations that
we will introduce are first vector representations, and then textual
descriptions in natural language.

2.2.1 Training Models to Match Vision and Language

The vision-language matching task consists in designing models telling
whether a given text describes accurately a given image or a given
video. It requires being able to compare visual objects with sentences.
For that purpose, a usual way to make that task feasible is to repre-
sent each modality with a vector belonging to a same space. Using a
similarity metric allows then to compare them. Let S be a similarity
metric such that S(u, v) is high when vectors u and v are close, and
low otherwise. The first intuition would be to try to maximize S, and
so use −S as a loss function. When the model is only trained to con-
struct one of the two vectors, that loss function works well. However
such a loss function is not relevant if both vectors are constructed by
our model: an obvious minimum for that loss function is to project
all inputs to the same vector. In that case, adding contrastive exam-
ples in the training loss function is essential. In most works in vision-
language matching such as [44], a triplet loss is used. If s is a sentence
and v is an image or a video, φW(s) the vector derived by our model
for s and ψW(v) the vector for v (W is the set of all trainable weights),
the triplet loss is defined as:

L(W) = max(0,α− S(φW(s),ψW(v)) + S(φW(s),ψW(v))) (58)

where v is a contrastive example for v and α is a hyperparameter.
Please note that instead of taking a contrastive example for v, a con-

2.2 ties between vision and language 23

trastive example for s could also have been chosen. The first version
actually optimizes a model for image or video retrieval whereas the
second would optimize a model for sentence retrieval. Both losses can
also be summed if both tasks need to be achieved.

Several similarity metrics can be used. The most employed ones
are based on the cosine similarity, and on the mean square error. The
cosine similarity is defined as:

cos(u, v) =
〈u|v〉

‖u‖‖v‖
. (59)

The cosine similarity is already a similarity metric, so in that case, we
have S(u, v) = cos(u, v). The mean square error (or MSE) is defined
as:

MSE(u, v) = ‖u− v‖22 (60)

and in that case, we have S(u, v) = −MSE(u, v). Some other similar-
ity metrics have been proposed such as the order similarity relying
on the intrinsic asymmetry existing between vision and text as a de-
scriptive text is always less precise than the image or the video it is
describing [90]. However we did not experiment on these other simi-
larity metrics in our thesis work.

When should we use the cosine similarity and when should we use
the mean square error? The cosine similarity is interesting because of
its normalizing terms: if the vectors of both modalities are derived
by our model, the MSE loss leads to an unwanted situation where
vector norms are minimized, because the lower the norm the lower
the MSE. However, when the vectors of only one modality are built
by our model, the MSE should be preferred as it keeps the geometry
of the other modality.

2.2.2 Dealing with Images...

Several works have been done on building visual-semantic embed-
dings. In [73], Frome et al. made such embeddings through a model
based on a skip-gram text modeling architecture [65] for the semantic
part, and on AlexNet [50] for the visual part. Karpathy et al. proposed
fragment embeddings in [44]: as the different parts of a descriptive
sentence correspond to different parts of an image, they designed a
model that would draw matches between image fragments and text
fragments. The model proposed by Kiros et al. in [47] is similar to
the models we will present in Section 3.3 and Section 3.4: they de-
rive a sentence embedding with an LSTM and a features vector for
a corresponding image through a CNN. Their objective function im-
poses a constrain on the two modalities so that they belong to the
same space. The main difference between our models and [47] is that
we make use of novel RNN architectures that we designed. More in-
formation is given in Section 3.3 and Section 3.4. Variations of Kiros’

24 prolegomena to vision and natural language processing

model have been suggested. Vendrov et al. have tried to induce an or-
der between images and sentences by replacing the cosine similarity
in the loss function by an order penalty [90]. More recently, Faghri et

al. have shown that emphasizing hard negatives in the loss function
would lead to high improvements [25].

Some other works are based on Fisher Vectors [73]. In [48], Klein et

al. derive Fisher Vectors for sentences from a Gaussian Mixture Model
(GMM) and a Hybrid Laplacian-Gaussian Mixture Model (HLGMM).
In [54], Lev et al. propose an RNN that is used as a generative proba-
bilistic model. In these last two works, matches between images and
texts are made through the Canonical Correlation Analysis algorithm
[40]. In [24], Eisenschtat and Wolf also derive Fisher Vectors for sen-
tences from a GMM and an HLGMM, but they do not use CCA to
match images and sentences. They designed a 2-Way neural network
that projects the two modalities onto a common space.

More complex architectures have also been designed in some pa-
pers. Niu et al. [68] have proposed a hierarchical multimodal LSTM:
a sentence is parsed as a tree and correspondences between phrases
and image regions are drawn. Nam et al. [67] proposed a Dual At-
tention Network that is designed to attend jointly to image regions
and corresponding words in text. Gu et al. [31] proposed a model that
would match texts and images by learning high-level global features,
but also low-level local features thanks to two generative models: one
of them generates sentences from images and the other one gener-
ates images from sentences. More recently, the use of local features
derived through an object detection model has shown good results in
image-sentence matching [53].

2.2.3 ... and Videos

There is less existing research work on video-text matching than in
image-text matching. The principle of works in video-text matching
are often similar to those we find in image-text matching. For instance,
the Word2VisualVec model [20] has been designed for image but has
been very simply extended to video. In [66], authors propose to build
two multimodal spaces to match videos and texts: a first one is based
on a CNN deriving features for video frames (they call it the object
space) whereas a second one is based on an I3D model [11], which
is a 4D-convolutional neural network trained to detect activities in
videos (they call that second space the activity space). Some works
have also been conducted in video search, where multiple videos
need to be retrieved for one given natural language query; in these
works, best results are usually obtained using concept detectors [23,
61]. Some other works have also investigated how natural language
queries could be used to detect moments in videos. These works are
based on the DiDeMo dataset [4], but we considered it was out of the

2.3 tell me what you see 25

Figure 21: The encoder-decoder scheme. A text in a source language is input
to an encoder (usually an LSTM or a GRU), which derives a vector
representation of that text. That representation is then used by
the decoder (also an LSTM or a GRU) to generate a sentence in a
target language.

scope of this thesis work: therefore we did not conduct research work
on it.

2.3 tell me what you see

In the previous section, we explained how images and videos could
be compared to texts. This can be useful for indexing and retrieval
tasks. In this section, we make a review of works in captioning: how
to generate descriptive sentences from images and videos?

2.3.1 Captioning as a Neural Machine Translation Task

Captioning can be seen as a translation task: an image or a sequence
of frames, which can be compared to a sequence of words in a source
language, have to be translated in a target language. Some pioneer-
ing works in image captioning such as [26] and in video captioning
such as [77] make use of Statistical Machine Translation techniques
to generate captions from images or videos, respectively. However
nowadays, most of recent works on image or video captioning rely
on Deep Learning techniques, and more particularly on the encoder-
decoder framework that has been developed in [85] for text transla-
tion [19], and that we represented on Figure 21. Moreover, attending
to the hidden states of the encoder during the decoding phase has
shown to give significant improvements in Neural Machine Transla-
tion [60], which have been confirmed by [99] and [101] in the context
of image captioning and video captioning, respectively.

Let us focus a little on attention mechanisms. The attention mecha-
nisms that are usually employed in captioning tasks work as follows:
the t-th generated word is used as a reference to help the decoder to
generate the following t+ 1-th word. More formally, if x is the word
embedding of the last generated word, and v1, ..., vn are n visual fea-
tures vectors (corresponding to image regions or video regions), then

26 prolegomena to vision and natural language processing

the features vector that will be input to the decoder to help it generate
the next word is:

v =

n∑

i=1

αivi, (61)

where the αi are non-negative weights. These weights are derived
through the following computations:

(α1, ...,αn) = softmax(r1, ..., rn), (62)

where ri for i ∈ {1, ...,n} is defined as:

ri = f(Wvvi +Wxx+ b), (63)

where f is an activation function. In the last equation, Wv, Wx and
b are trainable parameters that are derived training by gradient de-
scent. The weighted sum of features vectors that is thus obtained
emphasizes important regions for word prediction, and obliterates
non-relevant ones. Let us now describe how captioning models are
trained.

2.3.2 Training Captioning Models

In this section, we will explain how to train a captioning model, and
how to evaluate it.

2.3.2.1 Loss Functions

The goal of a captioning model is to output a descriptive sentence
given an image or video input. That task is usually performed using
a cross-entropy function. Mathematically, given an image or video V ,
and a ground-truth sentence s = (x1, ..., xL) of length L, the cross-
entropy loss is defined as:

L(W) = −

L∑

l=1

log (pW (xl|x1, ..., xl−1,V)) (64)

where W is the set of trainable weights of our captioning model. The
problem of the cross-entropy loss is that there is a discrepancy with
the metric that is used for evaluation. For that reason, some works
such as [76] introduced a Reinforcement Learning loss aiming at di-
rectly optimizing the captioning model with respect to its evaluation
metric. More formally, let r(s) be the score assigned to a descriptive
sentence s for a given input image or video (r(s) is high when the
sentence is good and low otherwise). Then, the new loss function is:

L(W) = −r(s), s ∼ pW . (65)

2.3 tell me what you see 27

That loss function is not differentiable, therefore it is not usable di-
rectly for gradient descent. However the expectation of L can be writ-
ten as:

∇E [L(W)] = ∇E [−r(s)]

= −
∑

s r(s)∇pW(s)

= −
∑

s r(s)pW(s)∇ log(pW(s))

= −E [r(s)∇ log(pW(s))]

= ∇E [−r(s) log(pW(s))]

(66)

Therefore, it boils down to optimizing on the loss function L ′, defined
as:

L ′(W) = −r(s) log(pW(s)), s ∼ pW

= −r(s)
∑L

l=1 log (pW (xl|x1, ..., xl−1,V)) .
(67)

Let us now describe the evaluation metrics that are used for evaluat-
ing captioning models.

2.3.2.2 Evaluation Metrics

Several metrics have been designed to evaluate translation tasks or
captioning models. As we explained before, the captioning task can
be seen as a translation task: evaluation metrics for translation tasks
are actually widely used to evaluate captioning. Let us describe the
ones we used in this thesis work.

The BLEU-n metric has been defined in [70]. It counts the propor-
tion of n-grams in the reference sentences that appear in the candi-
date sentence, which is called the n-gram precision. If an n-gram is
not more than p times in any reference sentence, we count it not more
than p times in the candidate, even if there are more occurrences of
that n-gram in the candidate sentence. Let us give an example:
Candidate sentence: "a cat is lying on a blue couch"
Reference sentence 1: "there is a black cat on a couch"
Reference sentence 2: "the cat is lying on the couch"
BLEU-1 = 0.875 (a cat is lying on a blue couch)
BLEU-2 = 0.429 (a cat, cat is, is lying, lying on, on a, a blue, blue
couch).

The ROUGEL [57] metric is based on the longest common subse-
quence (LCS) between the candidate sentence and a reference sen-
tence. It is computed as follows:

ROUGEL(c, r) =
(1+β2)RP

R+β2P
, (68)

where c is the candidate sentence, r a reference, P =
LCS(c,r)
length(c) , R =

LCS(c,r)
length(r) and β = P

R . In the previous example, the ROUGEL score of

28 prolegomena to vision and natural language processing

the candidate sentence with respect to the first reference sentence is
0.625, its ROUGEL score with respect to the second candidate sen-
tence is 0.661. Therefore, its global ROUGEL score is 0.643.

The METEOR [17] and CIDErD [89] metrics are more computation-
ally intensive: therefore we will not do the computations here by hand
but only give the idea behind.

The METEOR metric is computed by first aligning candidate and
reference sentences based on synonyms, stemming and phrase corre-
spondences. Once the alignment done, a similarity score is computed
between both sentences.

The CIDErD metric is derived as an average of cosine similarities of
TF-IDF vectors of references and candidate based on 1-gram, 2-gram,
3-gram and 4-gram tokenizations.

For convenience, the ROUGEL and the CIDErD metrics will be des-
ignated as ROUGE and CIDEr in the rest of this work.

2.3.3 Image Captioning

First works in image captioning were based on the simple Encoder-
Decoder scheme we described, with no attention mechanism. Neu-
ralTalk by Karpathy et al. [43] and Show and Tell by Vinyals et al. [92]
fall into this category. After the image captioning model proposed by
[99], using an attention mechanism to improve that Encoder-Decoder
scheme has quickly become a standard in image captioning. From
that Encoder-Decoder with attention baseline, different models for
image captioning have been proposed, often taking into account local
features [32] or object detections [3] instead of only global features.

2.3.4 Video Captioning

In some works, videos are split into frames, global features are de-
rived for each frame using a CNN [35, 50, 81, 86], and the obtained
features vectors are sequentially processed by the encoder [33, 55, 59,
69, 93, 96]. The drawback in such approaches is that spatial informa-
tion is lost. In the approach we proposed in [27], we aim at taking
into account this spatial information.

Other approaches take into account locality. However, these ap-
proaches have some significant differences with our approach. In
[101], the authors separate their model into two parts: a usual encoder-
decoder based on global features of frames, and a 3D-CNN that de-
rives a single representation for a whole video. The 3D-CNN they
employ does take into account locality, but it has two major concep-
tual differences with respect to our work in [27]. First, it is based
on handcrafted features, which do not provide as much semantic in-
formation as CNN features. Moreover, the pooling operations that
are used to get their video representations are neither learned nor

2.3 tell me what you see 29

adaptive. In our approach, pooling takes into account the relevance
of local features in a frame with respect to previous frames. In [103],
authors use local features to trace semantic concepts along videos,
which is conceptually different from our approach, as we aim to de-
rive a video representation based on these local features. In [97], au-
thors propose another method to compute trajectories through videos.
In both papers, these trajectories are combined with global features
to build video representations. In [94], local features are used to gen-
erate video representations. However, local features from different
spatial locations are not related together, contrary to the work we con-
ducted in 4.2 and that we will introduce in 4.2, which proposes to at-
tend to local features based on all local features from previous frames.
Eventually, some other works used 3D-CNN architectures [95] or con-
volutional RNNs [94] to relate local features through time. However,
due to the nature of convolution operations, relations drawn through
these methods remain local: they are not able to spatially relate ob-
jects from the video which are far from each other in a video for
instance.

2.3.4.1 Dense Captioning

Some works we did not cite yet focused on what is called Image
Dense Captioning and Video Dense Captioning. The goal of the Im-
age Dense Captioning task is to extracts all regions of interest of an
image and to annotate them with natural language sentences. One
of the pioneering works in Image Dense Captioning is DenseCap by
Johnson et al. [42]. Video Dense Captioning is similar to Image Dense
Captioning, but instead of annotating regions of interest, models aim
at annotating moments of interest [107]. We did not have the oppor-
tunity to experiment with these kinds of models, even though they
could have fallen in the category of image captioning or video cap-
tioning.

3
M AT C H I N G V I S I O N A N D L A N G U A G E

In this chapter, the subject of study is the vision-language matching
task: how to tell whether texts describe accurately images or videos?

3.1 introduction

Humans can intuitively match sensorial perceptions such as vision
with language. For instance, one can easily describe a landscape, or
imagine how one looks like after reading its description in a novel.
For a computer, that seemingly mundane task raises some questions:
how to represent sentences and images and how to link these repre-
sentations of two different modalities? Some successful works have
been done in that field, such as automatic image captioning [43] or
visual question answering [2].

How has that been possible? As we explained in Section 2.1.3.2,
big annotated databases of multimedia contents such as ImageNet
[16] were built recently, and these collections permitted the emer-
gence of deep neural networks, because they can perform very well
if they are trained with a sufficient amount of training examples. In
computer vision, convolutional neural networks (CNN) [35, 50] are
now widely used. In natural language processing, recurrent neural
networks (RNN) such as long short-term memory units (LSTM) [38]
or gated recurrent units (GRU) [13] are a common choice. As men-
tioned in Chapter 2, these neural networks can learn representations
of images and texts, and some works have shown that these repre-
sentations can be used as a basis for comparisons [25, 31, 47, 67, 68,
90].

In this chapter, we will present our results in image-sentence match-
ing and in video-sentence matching.

3.2 visual vs textual embeddings

Our work for this thesis has started in 2016, in the context of the
TRECVid Ad-hoc Video Search (AVS) campaign. But before introduc-
ing AVS, let us have some words about video retrieval. Managing
large databases of multimedia content such as videos is more and
more a topical issue. The problem is that in such databases, video
content cannot be manually annotated. Therefore, searching videos in
big video databases is especially a matter of using self-contained in-
formation. In addition, the lack of structure in such databases implies
that queries must be built as freely as possible; preferably in natural

31

32 matching vision and language

language. Pattern Recognition techniques seem to be nowadays one
of the most adapted to such problems: they offer great performance
in both natural language and computer vision.

Natural Language Processing and Computer Vision problems can
be addressed with Deep Learning techniques. In Natural Language
Processing, Recurrent Neural Networks (RNN) [64] are now widely
used to model languages: sentences are divided into word vectors [65,
72] that are processed one after the other by such networks. Convo-
lutional Neural Network are well-adapted to Computer Vision tasks.
After being trained they can detect visual concepts with very high
precision [35, 50, 81]. Recent works have shown that these networks
could be combined to match visual content with text content. For in-
stance neural networks such as NeuralTalk [43] or DenseCap [42] can
produce sentences to describe visual content and some combinations
of techniques make it possible to perform zero-shot video search with
simple text descriptions [15, 34].

The National Institute of Standards and Technology (NIST) orga-
nizes every year TRECVID [6], an international evaluation campaign
on video information retrieval. In 2016, a new task called “Ad-Hoc
Video Search” (AVS) was proposed. The goal was to process Natu-
ral Language queries to retrieve relevant shots from a large database
containing about 600 hours of video, representing 300,000 shots. Par-
ticipating teams were provided with 30 test topics, and could submit
up to four runs. Each run had to be a list of 1,000 shots, ranked from
the most relevant shot to the least one. The NIST performed a manual
evaluation of the runs and gave the Mean Inferred Average Precision
(an approximation of the Mean Average Precision) for each of them.

Our work for this thesis started at the end of the AVS TRECVid cam-
paign of 2016. EURECOM took part in that AVS task and even though
participants were allowed to submit only four runs many possible
systems have been implemented. The data that were used to evaluate
runs were published after the campaign, therefore we could evaluate
all these systems. In this section, we present and analyze the perfor-
mances of all the approaches EURECOM implemented for the AVS
task. These approaches were built upon two orthogonal strategies:

• Strategy 1: use the natural language queries to take images from
a web search engine, and compare keyframes with these images
to select the best ones.

• Strategy 2: generate a text-based description of the keyframes
and compare them to the queries.

These strategies have been implemented using tools that are freely
available from the Internet.

• We got images from the Google ImageSearch engine to imple-
ment Strategy 1: we entered a text query and the search engine

3.2 visual vs textual embeddings 33

returned a list of images related to it. The implementation of
this search engine is not open-source, but we think that it is
likely to be based on the textual content that surrounds images.

• To get a text description from an image, we used several tools:

– the VGG Deep Networks [81], which have been trained
on part of the ImageNet [16] database and can analyze an
image to provide scores for 1,000 predefined concepts,

– the ImageNet Shuffle [63], which provides classifiers trained
on a larger share of the ImageNet database, and analyze
images to produce scores for up to 13,000 concepts,

– the NeuralTalk [43] model, which generates sentences de-
scribing the visual content of images.

• To compare visual contents, we compute a visual feature vec-
tor for an image by applying the VGG Deep Network to each
image and extracting the outputs of the one-before-last and two-
before-last layers, to build visual vectors. The similarity between
visual vectors is computed as the usual scalar product, some-
times with normalization.

• To compare textual content, we use the GloVe vector represen-
tations of words [72], to build a textual vector from either the
topic description, the concept name or the descriptive sentence.
The similarity between textual vectors is again computed as the
usual scalar product.

We implemented several types of runs inasmuch as many combina-
tions of these modules are possible, as well as different values of the
parameters involved. These runs boil down to three types: runs based
on Strategy 1, runs based on Strategy 2 and runs mixing both strate-
gies. We noticed that performances where not the same depending
on topics and on some other parameters. We will elaborate on what
worked and what did not.

3.2.1 EURECOM Runs at TRECVid AVS 2016

In this section, we will describe how EURECOM runs were built.

3.2.1.1 Generic Architecture

The Figure 22 illustrates the generic architecture that we have put
in place, corresponding modules. The green modules represent text-
based information, the blue modules contain visual information, the
yellow modules represent similarity computations. We tried various
combinations to define the four runs that we submitted to the final
evaluation.

34 matching vision and language

Figure 22: EURECOM Runs at TRECVid AVS 2016: Generic Architecture.
The two strategies we mentioned are represented in this figure:
either topics are input to Google Images to retrieve correspond-
ing images that are compared to keyframes in a visual space, or
keyframes are converted into textual annotations that are com-
pared to topic in a textual space.

All our runs are of the “Fully Automatic” category, since no manual
processing was done at any stage, and with the “D” training type, as
we are using tools which were trained on data external to TRECVID.

3.2.1.2 Runs Using the First Strategy

For each of the topic, we performed a search using the Google Im-
ages engine, and retained the first 100 pictures of the ranked list. To
each image, we applied the VGG Deep network, and kept either the
last, the penultimate or the antepenultimate layer as feature vector
of dimension 4K. Thus we obtained vectors for each of the 100 pic-
tures. We tried to normalize them using L2-normalization and not
to normalize them. We applied the same visual processing to each
of the TRECVID keyframes in the test collection, and ranked them
according to a Nearest Neighbor distance from Google images.

3.2.1.3 Runs Using the Second Strategy

We implemented two types of systems based on the second approach.
The first one uses 13,000 ImageShuffle concepts. The second one is
based on NeuralTalk. In both case we make a comparison between
vectors. We tried to normalize them using L2-normalization and not
to normalize them.
With ImageNet Shuffle Concepts – We used the ImageShuffle sys-
tem to obtain scores for 13,000 concepts, which we used as feature
vectors for each TRECVID keyframe. We used these scores as weights
to compute a semantic vector of dimension 50 (resp. 100, 200 or 300)
by a linear combination of the GloVe vectors corresponding to the

3.2 visual vs textual embeddings 35

concepts. For each topic, we constructed a semantic vector of dimen-
sion 50 (resp. 100, 200 or 300) by averaging the GloVe vectors of the
words appearing in the topic. Then we used the cosine similarity to
find the images whose semantic vectors were most similar to the top-
ics.
With NeuralTalk – We used the NeuralTalk system to generate text
descriptions for each of the TRECVID keyframes. Then, we built a
semantic vector of dimension 50 (resp. 100, 200 or 300) by averaging
the GloVe vectors of dimension 50 (resp. 100, 200 or 300) of the words
appearing in these descriptions. We did the same for the test topics.
Finally, we used again the cosine similarity to find the images whose
semantic vectors were most similar to the topics.

3.2.1.4 Runs Combining both Approaches

During the development phase, we experimented with a number of
combinations of the modules that we have described, using different
dimensions, different projections, different layers, different similarity
measures. We tried several combinations of our previous approaches
and computed a score for each image by averaging its inverse ranks
in all results lists.

3.2.2 Experimental Results

We evaluated all our models. Their results are summed up in Table 1.

Type Best MAP Average MAP

Strategy 1 0.0173 0.0098

Strategy 2 (ImageNet Shuffle) 0.0285 0.0219

Strategy 2 (NeuralTalk) 0.0021 0.0016

Mix of both strategies 0.0167 0.0113

Table 1: Results of Our Models on AVS 2016 Data

The best strategy seems to be the second one, with ImageShuffle
concepts. But we also found out that the efficiency of our strategies
depended on the topic. The graph that is represented on Figure 23

is a PCA of the different runs: we built a vector for each run, whose
coordinates are the AP corresponding to the different topics.

As one can notice on Figure 23, the two strategies seem to have or-
thogonal behaviors, and the mix of both strategies seems to be a “mid-
dle ground”. Therefore, we argue that trying to find the best strategy
for a given topic instead of mixing strategies would be worthwhile.
We will elaborate on that later on.

36 matching vision and language

Figure 23: Behavior of our strategies (X-Axis: min = -0.223, max = 0.041, σ =
0.065; Y-Axis: min = -0.007, max = 0.011, σ = 0.003)

3.2.3 Discussion

Let us now discuss the effect of different settings, and how one strat-
egy performs with respect to the other.

3.2.3.1 Effect of L2-Normalisation

As said in the introduction, all our runs were based on vectors, and
we wondered if it was worth normalizing them. Therefore we made
tests with raw vectors and with L2-normalized vectors. In Figure 24,
each point corresponds to a model. Its abscissa corresponds to its
Mean Average Precision (MAP) without L2-normalization and its or-
dinate corresponds to its MAP with L2-normalization. The red line is
the line of equation y = x.

As one can notice, L2-normalization often improves our results,
and never deteriorates them.

3.2.3.2 Dimension of GloVe Vectors

Our models based on Strategy 2 need a word embedding. We used
GloVe vectors, and tried different dimensions (50, 100, 200 and 300).
In Figure 25 we give the MAP for the best five models based on Strat-
egy 2, according to the dimension of the GloVe vectors we chose.

As expected the higher the dimension is, the higher the MAP.

3.2 visual vs textual embeddings 37

Figure 24: Influence of L2-normalization

Figure 25: Influence of GloVe vectors dimensions

38 matching vision and language

3.2.3.3 How to Choose the Right Strategy?

As we said in Section 3.2.2, Strategy 1 and Strategy 2 are orthogonal in
that they do not have good results on the same topics. It would be an
interesting challenge to find a way to decide whether we should use
the first or the second strategy. More precisely our goal is to choose
the best combination of two models from the ones we implemented
and use a binary classifier to use the most adapted to a given topic.
As expected, we found out that the best combination for the 30 topics
of TRECVID was composed of one model based on Strategy 1 and
one model based on Strategy 2:

• the first one uses the penultimate layer of the VGG Deep Net-
work, with L2-normalization, to compute the vectors for Google
images;

• the second one uses GloVe vectors of dimension 300 to represent
ImageShuffle concepts (with L2 normalization).

The results we obtained are reported in Table 2.

Model MAP

Best Model among All 0.0285

Best Combination of Two Models 0.0371

Table 2: Results of the Best Model and the Best Combination of Two Models

As one can notice the MAP increases by 30% if we choose the best
combination of two models, and then apply the most relevant one for
a given topic: it would be a significant improvement.

We tried to check if such a system was feasible. For each group
of 29 topics, we found the best combination of two models. Then
for each topic, we averaged the GloVe vectors of their words, thus
getting an overall vector. Next we trained a linear SVM to classify
topics according to which model is the most adapted. We eventually
applied the SVM on the remaining topic.

Unfortunately we did not get good results, as the MAP of the re-
sulting system was only 0.0084. We think that there are two main
reasons explaining these bad results:

• as we only had 30 topics it was difficult to build a general model
that would generalize to new topics;

• averaging GloVe vectors to obtain topic vectors may not be adapted,
as one can see on Figure 26, representing a PCA of the topic vec-
tors.

3.2 visual vs textual embeddings 39

Figure 26: Topics cannot be easily separated into two groups (X-Axis: min =
-0.465, max = 0.555, σ = 0.244; Y-Axis: min = -0.434, max = 0.526,
σ = 0.217)

3.2.3.4 Boosting the Second Strategy with Visual Weights

After our participation in TRECVid AVS in 2016, we noticed that sim-
ply averaging word embeddings to make a sentence embedding was
less efficient when sentences contained visually ambiguous words
such as articles, pronouns or general concepts. As a result of that
observation we decided to derive weights associated to their visual
explicitness. For that purpose we used the MSCOCO database, con-
taining 40k images with five sentence labels each. We computed 1k
ImageNet scores for each image using a VGG Deep Network, thus
obtaining 1k-dimensional vectors. If I is an image, let VI denote its
corresponding vector of ImageNet scores. Let w be a word and let
Sw be the set of all image-sentence couples (I, s) in MSCOCO with s
containing w. Eventually let V be the average vector of all images in
MSCOCO. Then we derived word scores according to the following
formula:

score(w) =

∥

∥

∥

∥

∥

∥

V −
1

|Sw|

∑

(I,s)∈Sw

VI

∥

∥

∥

∥

∥

∥

2

. (69)

We found that these scores worked like a visual tf-idf weighting:
they were high both when words were uncommon and when they
were explicitly designating a visual element of an image, as shown

40 matching vision and language

Word Visual weight

a 0.12

while 0.53

make 0.61

plenty 1.03

stuff 1.08

cat 1.22

piano 1.23

banana 1.29

clock 1.31

Table 3: Examples of visual weights for some words. It appears that words
corresponding to something that can be visualized have higher
weights than the others.

Model Mean Average Precision

Without weights 0.039

With weights 0.047

Table 4: Results of our new implementation of our second strategy on AVS
2016 data. Visual weights lead to better results.

on Table 3. We wondered if making a weighted average of words em-
beddings based on these visual weights could lead to better results.

For that purpose, we replicated our second strategy based on 1k
ImageNet concepts. To improve our results, we used a better concept
extractor, released by [61] after AVS 2016, and PDC word embeddings
[84] giving better results than GloVe word embeddings. We evaluated
that new implementation of the second strategy with and without
visual weights. As shown in the results we report in Table 4, visual
weights seemed to improve results significantly.

Therefore, we decided to participate in AVS 2017 using these visual
weights. Unfortunately, as shown on Table 5, the improvement we saw
on AVS 2016 data did not appear on AVS 2017 data.

3.2.4 Conclusion of Section 3.2

We evaluated different models based on two main strategies, aiming
at doing ad-hoc video search. The result of any of these models is a
vector space that we use to compare queries and keyframes. We stud-
ied the importance of two factors: the suitability of L2-normalization
and the dimension of word embeddings if they are needed. We also
showed that our two strategies were orthogonal: they do not give
good results on the same topics. We proposed visual weights, that

3.3 recurrent capsule networks for multimodal embeddings 41

Model Mean Average Precision

Without weights 0.094

With weights 0.090

Table 5: Results of our new implementation of our second strategy on AVS
2017 data. Surprisingly, visual weights lead to better results.

lead to a significant improvement on AVS 2016 data, but not on AVS
2017 data.

Would it be possible to improve results by embeddings sentences
and images or videos in a same multimodal space? State-of-the-art
works seem to show that it is the case. This is the reason why we
decided to focus on multimodal embeddings, as we did in the next
section.

3.3 recurrent capsule networks for multimodal embed-
dings

In the previous section, we discussed methods for comparing visual
objects and text using visual or textual embeddings. Another way of
comparing them is by representing them in a common multimodal
space, with multimodal embeddings. This can be done by defining
a constraint on the neural networks that are used to represent the
two different modalities, so that they learn the same representation
for them: in that case they would output a vector representation of
images or texts so that an image and a corresponding text are close
according to some similarity measure. This is what the model we in-
troduce in this part is doing: we use a first neural network to compute
an image embedding, a second one to compute a sentence embed-
ding, and we train them jointly to make images and corresponding
sentences match together.

At the end of 2017, a novel architecture of neural networks called
“capsule” [80] has shown promising results on some computer vision
tasks. A capsule is a group of neurons whose role is to make some
complex computations, and to output a simple vector as a result of
these computations. These outputs are then routed towards higher-
level capsules. During training they are supposed to specialize in the
recognition of specific patterns; lower capsules learn to recognize sim-
ple shapes and higher capsules use the results of the computation of
the lower capsules to recognize complex shapes. The advantage of
capsules with respect to more common CNNs is that they do not con-
tain pooling operations losing spatial information in high-level layers.
We think that the idea of capsule-like units can be generalized to other
fields than computer vision. The model we introduce here uses cap-
sule units to analyze sentences – we expect each capsule to perform
well on a certain type of sentences. In our model, outputs of capsules

42 matching vision and language

Figure 27: Overview of our RCN model: A first part computes image em-
beddings, a second one computes sentence embeddings through
a Recurrent CapsNet. The two parts are constrained by a loss
function to produce embeddings in the same multimodal space.

are not routed towards higher level capsules but towards capsules of
the same layer in a recurrent fashion: Figure 27 depicts our proposed
recurrent capsule network (Recurrent CapsNet or RCN) architecture.
We will elaborate on this new deep model in subsequent parts of this
section.

In this section, we present the model for visual sentence embed-
dings that we described in [28]. It is divided into two parts: the first
part computes sentence embeddings thanks to an RCN – each cap-
sule contains two GRUs as we will explain later on. The second part
computes image embeddings based on feature vectors obtained with
a ResNet-152 [35] (ResNet-152 often provides state-of-the-art results
in computer vision tasks). We compare our model with some state of
the art models used for image captioning and retrieval on the Flickr8k
dataset [39] and show that our RCN performs better than most ap-
proaches and better than a simple GRU. Our contributions are the
definition of the RCN, and the presentation of its results on an Image
Annotation task and on an Image Retrieval task when it is used to
produce sentence embeddings.

The rest of the presentation is organized as follows: in Section 3.3.1
we present some recent and related works. In Section 3.3.2 we give a
formal definition of our model. In Section 3.3.3 we present the results
of experiments we made on our model. We conclude our presentation
in Section 3.3.4.

3.3 recurrent capsule networks for multimodal embeddings 43

3.3.1 Related Work

The model we propose here is inspired by a kind of neural network
architecture called “capsule” [36, 80]. A capsule is a group of neurons
that is supposed to do some complex and very specific computations,
and then output a low dimensional vector as a result of these compu-
tations. In computer vision, this architecture is worthy of interest be-
cause it could overcome the problem of pooling operations in CNNs
that lose all spatial information in higher layers. As far as we know,
capsules have only been proposed in computer vision. Our model
is the first one using capsules in natural language processing. Our
architecture is also the first recurrent one: CapsNet have only been
proposed in a feed-forward fashion.

3.3.2 A Recurrent CapsNet for Visual Sentence Embedding

Let us now describe our novel Recurrent CapsNet (RCN) model in
detail.

3.3.2.1 Gated Recurrent Units (GRU)

As stated in Section 2.1.4.3, Gated Recurrent Units were introduced
by Cho et al. in [13]. They are similar to LSTMs: they have similar
performances and are well adapted to NLP because they can handle
long-term dependencies in sentences. We preferred GRUs to LSTMs
because they have less parameters for similar performances. More
formally, a GRU is composed of an update gate is and a reset gate fs,
and can be described with the following expressions:

is = σ (Wihhs−1 +Wixxs + bi)

fs = σ (Wfhhs−1 +Wfxxs + bf)

hs = tanh (Whh (hs−1 ⊙ fs) +Wixxs + bi)

hs = is ⊙ hs + (1− is)⊙ hs

(70)

with xs the s-th input and hs the s-th output of the GRU. Here and
throughout the presentation, ⊙ denotes the Hadamard product and σ
denotes the sigmoid function. For more informations on the interest
of GRUs, please refer to Section 2.1.4.3.

3.3.2.2 Our Model

Our model can be divided into two parts: a first part aims at deriving
sentence embeddings based on an RCN and the second part is de-
signed to project an image features vector onto the same space as the
aforementioned sentence embeddings. Let us first describe the first
part of our model.

44 matching vision and language

Figure 28: A generic capsule for computer vision

The idea behind capsules as they were designed by [80] for image
processing is represented on Figure 28. It consists in making com-
plex computations and outputting a pose vector and an activation.
This output is then routed towards subsequent capsules according to
some predefined routing algorithm. The goal of that architecture is
to have each capsule learning to recognize a visual feature based on
what previous capsules have recognized before. For instance, some
capsules could recognize eyes, a nose, a mouth and their respective
positions. Then they would send their outputs to another capsule
aiming at recognizing a whole face. It is architectured to avoid losing
spatial information as common CNN do due to pooling operations.
We think that capsules can also successfully perform other tasks such
as NLP-related tasks, as our proposed model does.

In our case, each capsule contains two GRUs. The role of the first
GRU is to output what we call a “mask” (the equivalent of the acti-
vation for computer vision) and the second one outputs a sentence
embedding (the equivalent of the pose). The output of the first GRU
of the i-th capsule is denoted by GRUmaski

(input) and the output of
the second GRU of the i-th capsule is denoted by GRUembi

(input).
In the first GRU, the tanh function is replaced by a sigmoid function
so that masks are composed of positive numbers. The mask that is
output plays the role of an attention mechanism; we will give more
details in the following. The biggest difference with capsules as they
were described in [80] is that they are applied in a recurrent fash-
ion: masks that are produced at time step t are applied to the input
sentence, which is then fed into the same capsules at time step t+ 1.
Sentence embeddings are built according to the following steps:

• we represent each word of a given sentence by a one-hot vector;

3.3 recurrent capsule networks for multimodal embeddings 45

Figure 29: Our model. Capsules are represented with dashed boxes. In the
sentence embedding part, a sentence is represented by a sequence
of one-hot vectors (w1, ...,wn). It is transformed into a list of
word embeddings (x1, ..., xn) through a multiplication by a word
embedding matrix Ww. The sentence then goes through the Re-
current CapsNet a pre-defined number of times, and eventually
the RCN outputs a sentence embedding v. In the image embed-
ding part, an affine transformation is applied to a features vector
to obtain an image embedding. Both embeddings belong to the
same multimodal space.

• we multiply each one-hot vector by a word embedding matrix;

• at each time step we apply masks onto the initial input sentence,
and produce new masks based on the new input;

• we eventually output a sentence embedding.

Let us describe more formally how we compute that sentence em-
bedding. Let s be a sentence. We encode each word of s with a one-
hot vector: we have s = (w1, ...,wL) with L the length of s, and
w1, ...,wL belonging to R

D with D the size of our vocabulary. Let
Ww ∈ R

D×V be the word embedding matrix. Then x = Wws will
denote (x1, ..., xL) = (Www1, ...,WwwL) in the following. If m is a
V-dimensional vector, then m⊙ x will denote (m⊙ x1, ...,m⊙ xL). In
what follows m denotes a mask and v denotes an embedding. Embed-
dings are computed according to the following:

v
(t)
i = GRUembi

(m
(t−1)
i ⊙ x). (71)

Masks are computed in two steps. First, capsules compute a mask
according to the input sentence and the masks that were computed
at the previous step:

m̃
(t)
i = GRUmaski

(m
(t−1)
i ⊙ x). (72)

46 matching vision and language

Then, the mi are computed as linear combinations of these masks,
as follows:

m
(t)
i =

Nc∑

j=1

α
(t)
ij m̃

(t)
i (73)

and the final embeddings are computed in a similar way:

v(t) =

Nc∑

i=1

Nc∑

j=1

β
(t)
ij ṽ

(t)
i . (74)

The coefficients of the linear combinations are computed according
to the following formulas (〈v1|v2〉 denotes the scalar product between
two vectors v1 and v2):

α
(t)
ij =

〈

v
(t)
i |v

(t)
j

〉

∑Nc

k=1

〈

v
(t)
i |v

(t)
k

〉 , (75)

β
(t)
ij =

〈

v
(t)
i |v

(t)
j

〉

∑Nc

k=1

∑Nc

l=1

〈

v
(t)
k |v

(t)
l

〉 . (76)

Please note that for t = 0, the masks are vectors whose coordinates
are all equal to one: we actually just input sentences in the GRUs with-
out applying any masks to them. These formulas can be interpreted
in an intuitive way: if there are many capsules whose embeddings are
similar to its own embedding, then they contribute a lot in the com-
putation of masks and embeddings. If the embedding of a capsule
is very different from other embeddings, its participation remains
marginal. It can be viewed as a variation of the routing-by-agreement
that is proposed in [80]: when other capsules output a sentence em-
bedding that is very similar to the output of a given capsule, then this
particular capsule plays an important role in the computation of the
final embedding. If other capsules “do not agree”, then it becomes
more marginal. Regarding masks that are assigned to capsules, one
can notice that a capsule contributes to the derivation of the mask of
another capsule only if both capsules output a similar embedding. In
that sense, embeddings that are output by capsules can be related to
the pose vectors and masks can be viewed as activations as they were
described in [80]: capsules send their activations to capsules agreeing
to their pose. However, masks are not simple activations: multiplying
term-by-term input words vectors by masks composed of positive
numbers is more an attention mechanism that attends to a particular
domain of the word embedding space.

3.3 recurrent capsule networks for multimodal embeddings 47

The second part of our model is much simpler. First, we compute
features vectors of images by keeping the output of the penultimate
layer of a ResNet-152 that has been pre-trained on ImageNet 1000

classes and finetuned on MSCOCO [25]. More precisely we make
nine crops of an image in the same way as it has been done in [90],
and we compute the average of the corresponding features vectors of
these crops. Then, we just apply an affine transform to these vectors.
The parameters of that affine transform are derived during training.
Figure 29 gives a summary of how our model has been defined.

3.3.2.3 Loss Function

The loss function that we apply is the hard-negative-based triplet loss
that has been presented in [25]. If Nb is the number of samples in the
mini-batch then we draw Nb image-sentence pairs in the training
dataset. Then, for each pair of the mini-batch we take the contrastive
image and the contrastive sentence for which our model is less effi-
cient, and apply a penalty for these contrastive image and sentence.
More formally the loss function is defined as follows (ε is a hyperpa-
rameter):

L1 =

Nb∑

k=1

max
ul 6=uk

max(−ε,− cos(uk, vk) + cos(ul, vk))

Nb
(77)

L2 =

Nb∑

k=1

max
vl 6=vk

max(−ε,− cos(uk, vk) + cos(uk, vl))

Nb
(78)

L = L1 + L2 (79)

Optimizing the model boils down to finding parameters that min-
imize L. More information on triplet losses can be found in Section
2.2.1.

3.3.2.4 Regularization

Since we want to avoid having the same masks in each capsule, and
we do not want a capsule to output only zero-masks, we added the
following regularization term to the loss function

V =

(∑Nc

i=1 ‖mi −m‖
2
2

Nc‖m‖22
min
i
‖mi‖2

)−1

(80)

48 matching vision and language

where m denotes the average mask. The new loss function is then

L ′ = L+ λV , (81)

with λ a hyperparameter. As we will see in the next section, that
regularization term can lead to better results.

3.3.3 Results and Discussion

We will now present the experimental results of our model and dis-
cuss on them.

3.3.3.1 Parameters and implementation

We evaluated how our models performed on both the image annota-
tion and the image retrieval tasks on the Flickr8k dataset [39]. This
dataset comes with a predefined split between training, validation
and testing samples; we use that split in our experiments. This dataset
is composed of 8000 images with 5 sentences each: there are 6000 im-
ages in the training set, 1000 images in the validation set and 1000

images in the testing set.
Regarding the sentence embedding part of our model, we set its

parameters as follows: we set the maximum sentence length to 16 (if
longer the sentence is cut after the 16-th word), D = 5000 (we kept
only the 5000 most common words and replaced all the other words
by an “UNK” token) and V = 300. Ww was initialized according to
precomputed Word2Vec embeddings [65]. Regarding the RCN, we
found that a model with four capsules performed well. For a given
sentence we kept v(5) as its corresponding embedding. For the im-
age embedding part of our model, the dimension of image features
vectors was 2048. The final embeddings dimension was 1024.

In the loss function, we set ǫ = 0.2 and we tried different values
for λ. We found that λ = 0.05 was giving good results. We trained
our models using the Adam method [46] with mini-batches of 16

image-sentence pairs. The learning rate was 0.0002. We made all our
implementations using the TensorFlow [1] library for Python.

3.3.3.2 Experiments

We compared our results on Flickr8k with some recent state-of-the-art
models. In addition, we trained two different models on the Flickr8k
dataset.

GRU. That model is simply the one we described in Section 3.3.2,
but with a simple GRU instead of the RCN. It is also a special case
of our model where the number of capsules is 1 and the number of
recursions is 0.

3.3 recurrent capsule networks for multimodal embeddings 49

RCN-λ. This is the model we described in Section 3.3.2. As men-
tioned in Section 3.3.3.1, we found that four capsules and four recur-
sions lead to better results. λ is the same as in Section 3.3.2.

Table 6: Results of our experiments on Flickr8k. R@K denotes Recall at rank
K (higher is better). Best results among other models and among our
models are in bold. Best results among all models are underlined

Flickr8k

Model
Image Annotation Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

Random 0.1 0.6 1.1 0.1 0.5 1.0

[48] 31.0 59.2 73.7 21.2 50.0 64.8

[54] 31.6 61.2 74.3 23.2 53.3 67.8

[68] 27 - 68.6 24.4 - 68.1

[24] 43.4 63.2 - 29.3 49.7 -

GRU 37.8 67.9 79.3 29.7 59.5 71.5

RCN-0 38.8 67.0 78.9 30.3 60.4 72.5

RCN-0.05 41.5 70.6 81.2 29.9 59.9 72.4

As one can notice looking at Table 6, results with our RCN are at
state-of-the-art level. On top of that, capsules improve results of a sin-
gle GRU, especially in the Image Annotation task. The regularization
term seems to improve results for the Image Annotation task without
having notable effects on the Image Retrieval task.

3.3.3.3 Effect of the size of a simple GRU

In this section, we investigated if simply increasing the number of
hidden states in a GRU could lead to the same improvements as our
RCN. For that purpose, we computed the sum of the recalls at 1, 5

and 10 for the Image Annotation task and the Image Retrieval task
for our best model (RCN-0.05) and for GRUs with 64 to 2200 hidden
states.

As one can notice on Figure 30, there is no improvement if the size
of the hidden states GRU is increased above 800.

3.3.3.4 Effect of the regularization term

One can notice that the regularization term improves results with
respect to simple GRU or non-regularized RCN. Why is that hap-
pening? Our hypothesis is that the regularization term imposes that
capsules attend to different domains of the word embedding space.
Therefore, sentence embeddings of different capsules tend to be more

50 matching vision and language

Figure 30: Performance of GRUs on Flickr8k according to the size of their
hidden states. The x-axis represents the size of hidden states, the
y-axis represents the performance of the GRUs. This performance
is the sum of R@1, R@5 and R@10 for both Image Annotation and
Image Retrieval tasks. The line corresponds to the performance of
our best model (RCN-0.05 with hidden states of dimension 1024).

Figure 31: Our hypothesis. The cross corresponds to an image, circles corre-
spond to sentence embeddings output by an RCN and triangles
correspond to sentence embeddings output by a GRU. In that
case, both the RCN and the GRU output sentence embeddings for
a given image around the same point, but even if the RCN gener-
ates worse embeddings on average, its best sentence embedding
is better than the best sentence embedding output by the GRU.

different than for a GRU or an RCN without normalization. As the
Image Annotation task consists in retrieving one of five sentences for
an image, the distribution that capsules induce may lead to have one
out of these five sentences being closer to its corresponding image.
We summarized our hypothesis in Figure 31.

3.3.4 Conclusion of Section 3.3

In [28], we proposed the RCN (Recurrent Capsule Network), a novel
deep architecture for visual sentence embedding. It is based on the

3.4 gated recurrent capsules 51

CapsNet architecture that was recently proposed in [80], but it differs
from it in three important ways: we applied it to natural language pro-
cessing, it is built in a recurrent fashion whereas the original CapsNet
was built in a fully-connected fashion and the routing is performed
using one of the GRUs.

We obtained some promising results, especially for the Image An-
notation task where our RCN performs better than GRUs. We ex-
plained these performances improvements by the distribution that
the capsules induced in the computation of sentence embeddings. In
addition, we showed that the results of our capsules could not only
be explained by the fact that they had more parameters than their cor-
responding GRUs: Figure 30 showed that increasing the size of GRUs
hidden states did not result in as good results as our models.

The main drawback of our model is that it is very large, and very
long to train on bigger datasets such as MSCOCO [58]. Therefore, we
architectured Gated Recurrent Capsules, requiring much less train-
able parameters than the RCN we introduced in this section. The
next section is dedicated to these Recurrent Gated Capsules.

3.4 gated recurrent capsules

In [29], we proposed another novel deep network architecture for the
caption retrieval task: given a set of images and a set of sentences,
we build a model that ought to find the closest sentence to an input
image. As stated in Section 2.2.2, numerous works have attempted to
address that task; most of them are making use of a multimodal space
where sentences and images are projected and compared [25, 31, 44,
53]. Word2VisualVec [20, 21] relies on another approach, the authors
built a model to project sentences directly in a space of visual features:
as the quality of visual features is constantly improving, the authors
stated that learning visual sentence embeddings rather than project-
ing them in a more complicated multimodal space was a promising
approach. In our paper [29], a model following this unconventional
approach is proposed.

Projecting images and sentences in the same space, whether mul-
timodal or simply visual, implies that representations of images and
sentences as mathematical objects must be derived. Since the recent
breakthrough of deep learning, Convolutional Neural Networks (CNNs)
have shown compellingly good performances in computer vision tasks.
In particular, some of them [35, 50] are able to learn visual features
that they use to classify images from a big dataset such as ImageNet
[16]. Most recent works on caption retrieval have used features com-
ing from a ResNet [35] which had been trained on ImageNet for a
classification task [25, 31]. In our work, we extract features thanks
to a ResNet that had been finetuned on MSCOCO [58] by the au-
thors of [25], as we did for the RCN in Section 3.3. Deriving visual

52 matching vision and language

sentence representations is the main part of our work. Recurrent
Neural Networks (RNNs) such as Long Short-Term Memory units
(LSTMs) [38] and Gated Recurrent Units (GRUs) [13] have proved
to deliver state-of-the-art results on various language modeling tasks
such as translation [85], automatic image captioning [92] or caption
retrieval [25]. In the last version of Word2VisualVec [21], the authors
showed that concatenating a representation derived by a GRU with
a Word2Vec [65] representation and a bag-of-words representation
to get a multi-scale sentence representation lead to better results in
visual sentence embedding for caption retrieval. However, we argue
that using these kinds of representations cannot be optimal: pool-
ing all words together without putting attention on relevant parts of
the sentence does not reflect the complexity of images; and the cur-
rent state-of-the-art model for image and caption retrieval is based
on object-detection and cross-attention [53], which corroborates our
statement that sentences should be processed in a finer way. Our work
aims at proposing a new architecture corresponding to and address-
ing that issue: how to analyze a sentence so that important visual
elements are emphasized?

As for the RCN, our research has been inspired by recent works
on capsule networks [37, 80]. This new architecture shows promising
results in computer vision. In capsule networks, the routing proce-
dure can be seen as an attention mechanism that routes the output
of capsules from one layer to the relevant ones in the next layer. We
think that this principle can be successfully used in Recurrent Neural
Networks, and the Gated Recurrent Capsule that we introduce in this
section is a novel architecture, and is to our best knowledge the very
first occurrence of recurrent unit using capsules.

The contributions that we presented in [29] are three-fold:

• we introduce Gated Recurrent Capsules (GRCs), a novel RNN
architecture which extents conventional GRUs so that informa-
tion flow focuses on critical data items;

• we propose to address the caption retrieval task using the newly
proposed GRCs architecture;

• we demonstrate experimentally that GRC enable higher perfor-
mance when compared to state of the art Word2VisualVec (em-
ploying GRUs) in the MSCOCO caption retrieval task.

Our presentation is divided in five sections. Having introduced the
extent of the work we published in [29] in the current section, we
will describe related works in Section 3.4.1. In Section 3.4.2 we will
describe our model for caption retrieval. Section 3.4.3 details results
obtained by our model. We will conclude our presentation in Section
3.4.5.

3.4 gated recurrent capsules 53

3.4.1 Related Work

Several works have been done on building visual-semantic embed-
dings. Most of them are based on the construction of a multimodal
space where sentences and images are projected and compared. In
[25], Faghri et al. used a GRU to map sentences to a multimodal
space; images were simply mapped to that space through a linear
transform. They obtained good results by finetuning the ResNet they
used to produce visual features: that is the reason why we used one
of their finetuned ResNets to produce visual features in our model.
Another more complex model proposed by Gu et al. [31] showed that
results could be boosted by the use of two generative models (one
generating images and one generating sentences) in addition to a
GRU and a ResNet. More recently, [53] has shown that even better
performances could be reached by processing images with an object
detection model combined with cross-attention instead of deriving
global visual features.

Another approach has been proposed recently: instead of mapping
images and sentences to a multimodal space, [20, 21] proposed to de-
rive visual features from images and to map directly sentences to the
space of visual features. This approach is promising as the quality
of visual features is constantly increasing. Moreover, it avoids map-
ping images to a more complex space. Our work follows that uncon-
ventional approach. It has been inspired by recent works on capsule
networks [37, 80]. Capsule networks have shown promising results in
computer vision. However to our best knowledge they have not been
used yet in a recurrent fashion for natural language processing apart
from the work we introduced in Section 3.3 that we published in [28];
however, the architecture presented in [28] is using a complex GRUs
setup to process and route the information, leading to much more
learnable parameters, which is a drawback that our architecture does
not have.

3.4.2 Visual Sentence Embeddings

Word2VisualVec is a non-conventional approach to caption retrieval,
as it maps sentences directly to a visual features space. We decided
to test that approach. We eventually compare it to the multimodal
approach.

3.4.2.1 Word2VisualVec

In [20], a first version of Word2VisualVec was proposed. It consisted
in applying a multilayer perceptron on vectorized sentences to project
these sentences in a space of visual features. Three vectorization meth-
ods were discussed in that paper: bag-of-words, word hashing and av-
eraging Word2Vec embeddings. In [21], the authors of [20] improved

54 matching vision and language

Figure 32: Word2VisualVec and our variant with a GRC. In Word2VisualVec,
three sentence representations (Word2Vec, BoW and GRU) are
concatenated and then mapped to a visual features space. In our
model, we replaced the final hidden state of the GRU by the av-
erage of all final hidden states of a GRC.

Word2VisualVec by concatenating three sentence representations. In
that paper, a sentence representation was produced by concatenating
a bag-of-words, a Word2Vec and a GRU representation of the sen-
tence. Then, it was projected in a space of visual features through a
multilayer perceptron. Figure 32 shows how Word2VisualVec works
in practice.

On top of good performances in caption retrieval, this visual repre-
sentation of sentences showed an interest in multimodal query com-
position: the authors showed that visual words features could be
added or subtracted to images features and form multimodal queries.
Authors also stated that further gains could be expected by including
locality in Word2VisualVec representations.

3.4.2.2 Gated Recurrent Capsules

Gated Recurrent Units were introduced by Cho et al. in [13]. They
are similar to LSTMs: they have similar performances and are well
adapted to NLP because they can handle long-term dependencies
in sentences. We preferred GRUs to LSTMs because they have less
parameters for similar performances. More formally, a GRU is com-
posed of an update gate ut and a reset gate rt, and can be described
with the following expressions:

ut = σ(Wxuxt +Whuht−1 + bu), (82)

3.4 gated recurrent capsules 55

Figure 33: A Gated Recurrent Unit: for each input xt, a new value h̃t is
computed, based on xt, rt and ht−1, where rt expresses how
much of ht−1 should be reset to compute h̃t. Eventually, ht is
computed based on h̃t, ht−1 and ut, where ut expresses how
much of h̃t should be used to update ht−1 to ht

rt = σ(Wxrxt +Whrht−1 + br), (83)

h̃t = tanh(Wxhxt +Whh(rt ⊙ ht−1) + bh), (84)

ht = (1− ut)⊙ ht−1 + ut ⊙ h̃t, (85)

with xt the t-th input and ht the t-th output or hidden state of the
GRU. The equations above can be explained as follows: for each in-
put xt, the GRU computes rt and ut based on the input and the
previous state ht−1. It computes a new value h̃t based on xt, rt and
ht−1, and rt expresses how much of ht−1 should be reset to compute
h̃t. Eventually, ht is computed based on h̃t, ht−1 and ut, and ut ex-
presses how much of h̃t should be used to update the hidden state
ht of the GRU. Learned parameters are Wxu, Whu, bu, Wxr, Whr, br,
Wxh, Whh, and bh. GRUs are described with more details in Section
2.1.4.3.

In our case, the xt correspond to word embeddings: if s is a sen-
tence of length L, then it is first converted into a list (w1, ...,wL) of
one-hot vectors, and each one-hot vector is mapped to a word em-
bedding using a lookup matrix We. Therefore, we have (x1, ..., xL) =
(Wew1, ...,WewL). The coefficients ofWe are learned, but they are ini-
tialized to precomputed word embeddings to avoid overfitting prob-
lems.

Capsules were designed by [80] for image processing. The idea be-
hind capsules for computer vision consists in making complex com-
putations and outputting a pose vector and an activation. This output
is then routed towards subsequent capsules according to some prede-
fined routing algorithm. The goal of that architecture is to have each
capsule learning to recognize a visual feature based on what previous
capsules have recognized before. For instance, some capsules could
recognize eyes, a nose, a mouth and their respective positions. Then

56 matching vision and language

they would send their outputs to another capsule aiming at recogniz-
ing a whole face. It is architectured to avoid losing spatial information
as common CNN do due to pooling operations. We think that cap-
sules can also successfully perform other tasks such as NLP-related
tasks, as our proposed model does.

In a nutshell, what we would like to do is to produce different em-
beddings that would attend to different semantic sides of the input
sentence. A sentence would be divided into sub-sentences, and each
of those sub-sentences would attend to a particular element of an im-
age. These sub-sentences representations are then processed to build
an embedding for the whole sentence.

In our model, all capsules share the same parameters and are simi-
lar to GRUs. In the following, we will explain the differences between
them and actual GRUs. A recurrent capsule layer should process a
sentence word-by-word and make updates in a way that would put
attention on important words: the hidden state of each capsule should
reflect one semantic side of the input sentence. Therefore, we need to
define a routing procedure depending on current states and incom-
ing words. For that purpose, we will use hidden states of capsules at
time t− 1 and the incoming word xt to find how relevant a word is to
a given capsule. More formally, if we consider the k-th capsule with
k ∈ {1, ...,Nc}, update gates and reset gates will be the same as for a
GRU:

u
(k)
t = σ(Wxuxt +Whuh

(k)
t−1 + bu), (86)

r
(k)
t = σ(Wxrxt +Whrh

(k)
t−1 + br), (87)

We also compute h̃(k)t as we do in a GRU:

h̃
(k)
t = tanh(Wxhxt +Whh(r

(k)
t ⊙ h

(k)
t−1) + bh), (88)

We would like to make our routing procedure trainable via gradi-
ent descent, so we need to define differentiable operations. For that
purpose, we will assume that for each capsule, for a given word wt,
we have a coefficient p(k)t ∈ [0, 1] such that

h
(k)
t = (1− p

(k)
t)h

(k)
t−1 + p

(k)
t ĥ

(k)
t (89)

with

ĥ
(k)
t = u

(k)
t ⊙ h̃

(k)
t + (1− u

(k)
t)⊙ h

(k)
t−1, (90)

which is the actual update computed in a GRU. The coefficient p(k)t is
a routing coefficient, describing to what extent a given capsule needs

3.4 gated recurrent capsules 57

to be updated by the incoming word. As in [37], routing can be seen
as an attention mechanism, putting attention on relevant words in our
case. However, while the authors of [37] use Gaussians determined by
EM-routing to compute this coefficient, we propose to compute it in
a simpler manner. More details are provided in the next section. We
can expand the last equation to get the following update:

h
(k)
t = (1− p

(k)
t u

(k)
t)⊙ h

(k)
t−1 + p

(k)
t u

(k)
t ⊙ h̃

(k)
t (91)

We can notice that it boils down to multiplying the update u(k)t by
a coefficient p(k)t . Then, how to compute p(k)t ? For that purpose, we
define an activation coefficient a(k)t for each capsule:

a
(k)
t = |αk|+ log(P(k)t). (92)

In the last equation, the αk are random numbers drawn from a nor-
mal probability distribution (we found that 0.1 and 0.001 were good
values for the mean and the standard deviation of the normal prob-
ability distribution). The αk are important to our model because all
capsules share the same parameters: if all activations are the same
when they start processing a sentence, they will be all the same at the
end. These random numbers break the symmetry between capsules;
this is needed for our model to work properly. We assume P(k)t ought
to represent the semantic similarity between the current hidden state
of the capsule h(k)t−1 and the incoming word xt: if the incoming word is

semantically similar to the previous hidden state, P(k)t should be high,
and if it is different, then it should be low. One can intuitively imag-

ine that the cosine similarity cos(h(k)t−1, ĥ(k)t) =

〈

h
(k)
t−1|ĥ

(k)
t

〉

‖h(k)
t−1‖2×‖ĥ(k)

t ‖2
corre-

sponds to a relevant definition of the semantic similarity between the
current hidden state of the capsule and the incoming word: if the in-
coming word has a different meaning than previous words, then one
can expect that ĥ(k)t will reflect that different meaning. Therefore we
define P(k)t as:

P
(k)
t = cos(h(k)t−1, ĥ(k)t). (93)

Then we can compute p(k)t according to the following formula:

pt =
softmax(a

(1)
t

T , ..., a
(N)
t

T)

M
(94)

whereM is the maximal coordinate of the vector softmax(a
(1)
t

T , ..., a
(N)
t

T)

and T is a hyperparameter controlling the sharpness of the routing
procedure (the higher T , the more we have one routing weight equal
to 1 and all others equal to 0).

58 matching vision and language

Figure 34: Gated Recurrent Capsules: all capsules share the same learned
parameters θ. The inputs of capsule i at time t are a word em-
bedding xt and its hidden state at time t− 1 h(i)t−1. Its output is

h
(i)
t , and it is computed through the routing procedure described

in Section 3.2. This routing procedure can be seen as an attention
model: each output depends on how semantically similar the in-
coming word is to previously processed words. It ensures that
each capsule generates a sentence embedding corresponding to
one important visual element of the sentence.

Our routing is different from those that were introduced in [37, 80]:
the outputs of capsules are not combinations of all previous capsules
outputs. Only the weights of the routing procedure depend on these
previous capsules outputs.

Please note that if T → +∞, then all capsules receive the same
inputs and produce the same hidden states: it is strictly equivalent to
a GRU. Therefore, GRCs are an extension of the GRUs. The interest
of GRCs over GRUs is that they can provide different representations
of the same sentence, with attention put on some relevant parts of
it. This idea is shown on Figure 34. Moreover, a GRC has the same
number of trainable parameters as a GRU, but it has the ability to
make more complex computations: for that reason we think that this
architecture could be successfully used for other tasks than caption
retrieval.

The model we propose for caption retrieval is similar to Word2VisualVec,
but we replace the GRU by a GRC, as shown on Figure 32. Instead
of concatenating the last hidden state of a GRU to a Word2Vec and a
bag-of-words representations, we concatenate the average of the last
hidden states of a GRC. We also tried to derive a weighted average
of the hidden states of a GRC based on a soft-attention mechanism
described in [22] but results did not improve. We reported our results
in Section 3.4.3 for information.

3.4.2.3 Improving Word2VisualVec with GRC

As we said in Section 3.4.2.1, Word2VisualVec relies on three represen-
tations of sentences: bag-of-words, average of Word2Vec embeddings
and GRU. GRCs provide another representation that we can concate-
nate to the three previous ones. More precisely, let us assume that we
processed a sentence of length L with a GRC containing Nc capsules.
Then, if h(1)L , ...,h(Nc)

L are the final hidden states of its capsules, the

3.4 gated recurrent capsules 59

corresponding representation vGRC of the sentence is the average of
all these hidden states:

vGRC =
1

Nc

Nc∑

k=1

h
(k)
L . (95)

This representation is intermediate between the GRU and the Word2Vec
representations: it is the sum of Nc different hidden states, each of
them corresponding to a particular part of a whole sentence.

Our goal is to map sentences to corresponding images in a space
of visual features. One way to measure the efficiency of that kind
of mappings is to evaluate the model on caption retrieval. When the
model projects both images and sentences in a common multimodal
space, recent works have shown that triplet ranking losses were ef-
ficient [25]. However in our case, sentences are directly mapped to
a space of visual features, no transformation is made on image fea-
ture vectors. We found, in accordance with [21], that using the mean
squared error (MSE) gave better results than a triplet ranking loss.
Therefore, considering a mini-batch B = ((s1, x1), ..., (sNb

, xNb
)) of

sentence-image pairs (Nb is the size of the mini-batch), we defined
the loss function LMSE(B) as follows:

LMSE(B) =
1

Nb

Nb∑

k=1

‖fθ(sk) −φ(xk)‖
2
2 , (96)

where φ is a function mapping images to image features and fθ is a
function mapping sentences to image features where θ is the set of all
trainable parameters. Our objective is to find a θ̂ minimizing LMSE:

θ̂ = argminθ(LMSE(B̄)) (97)

where B̄ is the set of all possible image-sentence pairs. We detail the
advantages of the MSE loss in Section 2.1.2 for more information. We
use the RMSProp method to optimize fθ, following the procedure we
describe in Section 2.1.2.1.

3.4.3 Experimental Results

In this section, we present our experimental results. We first introduce
the dataset we used to perform our experiments, then we give some
implementation details, and eventually we present and discuss our
results with respect to the actual Word2VisualVec model, and with
respect to a multimodal version of our model.

3.4.3.1 Dataset

We evaluated how our models performed on the caption retrieval task
on the MSCOCO dataset [58]. This dataset contains 123000 images

60 matching vision and language

with 5 captions each, and we split it into a training set, a validation
set and a test set according to [43]. The training set contains 113000

images, the validation set contains 5000 images and the test set con-
tains 5000 images.

As for data preprocessing, we converted all sentences to lowercase
and removed special characters (apart from spaces and hyphens). We
limited the vocabulary to 5000 most used words, and replaced all
other words by an "UNK" token. Regarding images, we projected
them to a space of visual features. For that purpose, we used the
penultimate layer of the ResNet-152 from [25] to get 2048-dimensional
features vectors.

3.4.3.2 Parameters

Regarding the sentence embedding part of our model, we set its pa-
rameters as follows: we set the maximum sentence length to 24 (if
longer the sentence is cut after the 24-th word). We initialized We

using 500-dimensional Word2Vec embeddings trained on Flickr. We
also used these embeddings to compute the Word2Vec part of sen-
tences representations. These embeddings are the same as the ones
that the authors of Word2VisualVec used in [21]. Regarding the GRC,
we found that a model with 4 capsules and T = 0.4 performed well.
The GRU in Word2VisualVec and the GRC capsules in our model
have 1024-dimensional hidden states.

We trained our models using the RMSProp method [87] with mini-
batches of 25 image-sentence pairs during 25 epochs. We followed the
same learning rate decay procedure as in [21]: the learning rate was
initially 0.0001 and we divided it by 2 when the performance of the
model on the validation set did not increase during three consecutive
epochs. We made all our implementations using the TensorFlow [1]
library for Python and used the default parameters of the RMSProp
optimizer: decay = 0.9, momentum = 0.0 and epsilon = 1e-10.

3.4.3.3 Results and Discussion

To prove the interest of our model, we compared it to Word2VisualVec.
We compared the two versions we described in Section 3.4.2.2: the
one with the average of final hidden states of capsules and the one
with the soft-attention mechanism proposed in [22]. We reported our
results in Table 7. They show that our model performs better than
Word2VisualVec, and that the attention mechanism does not provide
much improvement.

Moreover, we also wanted to see on which kind of sentences GRCs
were more efficient than GRUs. For that purpose, we listed all the
sentences that our model ranked in the top 9 sentences and that were
ranked worse than rank 100 by Word2VisualVec. We also listed sen-

3.4 gated recurrent capsules 61

Table 7: Results of our experiments on MSCOCO. R@K denotes Recall at
rank K (higher is better). Best results among all models are in bold.

MSCOCO

Model
Caption Retrieval

R@1 R@5 R@10

Word2VisualVec 32.4 61.3 73.4

W2V + BoW + GRC 33.4 62.2 74.0

W2V + BoW + GRC + Attention 32.8 62.3 74.2

tences ranked by Word2VisualVec in the top 9 that were ranked worse
than rank 100 by our model. Our results are summarized in Table 8.

Table 8: For each model: number of sentences ranked in top 9 for the
right image by one model and above rank 100 by the other
model. Ten sentences are ranked in top 9 by Word2VisualVec while
ranked above rank 100 by our model, and seventeen sentences are
ranked in top 9 by our model while ranked above rank 100 by
Word2VisualVec. We also reported these numbers of sentences with-
out counting sentences containing "UNK" tokens. This table shows
that GRCs are performing better than GRUs on much more sen-
tences than GRUs compared to GRCs.

Word2VisualVec Our model

Total 10 17

Total without UNK tokens 3 11

We noticed that sentences on which GRCs were outperforming
GRUs were more likely sentences containing multiple visual concepts.
We provide some examples in Figure 35. We think that this observa-
tion implies that GRCs could be used efficiently to derive finer visual
sentence embeddings, taking into account important local elements.

3.4.4 Comparison Image Space vs Multimodal Space

We have also trained a multimodal version of our model, replacing
the visual features extractor by the visual embedding model we pre-
sented in Section 3.4.2.1. The results we obtained are reported in Table
9.

As one can notice, the multimodal model is much more efficient
than the visual model on the caption retrieval task.

62 matching vision and language

Figure 35: Compared results of Word2VisualVec and our model on three
images.

Table 9: Results of our experiments on MSCOCO: comparison between im-
age space and multimodal space. R@K denotes Recall at rank K
(higher is better). Best results among all models are in bold.

MSCOCO

Model
Caption Retrieval

R@1 R@5 R@10

Image Space 33.4 62.2 74.0

Multimodal Space 33.5 64.1 77.0

3.5 grcs for the video-to-text (vtt) task 63

3.4.5 Conclusion of Section 3.4

In [29], we introduced a novel RNN architecture called Gated Re-
current Capsules (GRCs). We built a model to address the caption
retrieval task by mapping images and sentences to a visual features
space. We showed in our experimental work that the models obtained
using the proposed GRCs are surpassing those from earlier works
(employing GRUs). Moreover, we stated that GRCs could potentially
be used in any typical RNN tasks, as they are an extension of GRUs.
Eventually, we showed that a multimodal version of our model was
more efficient than the visual one. Therefore, as we wanted to assess
our results at the TRECVid VTT Matching task that we will describe
in Section 3.5, aiming at performing video caption retrieval, we de-
cided to focus on multimodal models.

3.5 grcs for the video-to-text (vtt) task

EURECOM participated in the Sentence Matching subtask of the TRECVid
2018 [7] Video-to-Text (VTT) task for the first time. The approach
we followed was to adapt the model we presented in Section 3.4 for
video-sentence matching, following the setup of the winning team of
2017 [22]. The Sentence Matching subtask of the VTT task requires
to link videos and sentences describing these videos. Testing data is
composed of 1,000 videos, and five datasets of 1,000 sentences, each
sentence corresponding to one video. For each video and for each
dataset of sentences, teams are asked to rank sentences from the clos-
est to the most dissimilar. Evaluation is performed on each sentence
dataset using the Mean Inverse Rank measure.

3.5.1 Our Model

In this section, we will present the model that we used at TRECVid
VTT and some variations we also submitted.

3.5.1.1 Definition of our model

As stated in the introduction of Section 3.5, our model aims at adapt-
ing the model we presented in Section 3.4 for video-sentence match-
ing, following the setup of the winning team of 2017 [22]. In [22],
video embeddings are derived as follows:

- frames are extracted every 0.5 second for each video;

- features vectors (v1, ..., vn) are derived from these frames using
the penultimate layer of a ResNet-152 [35];

- these features vectors are then fed sequentially into a GRU [13],
whose hidden states (h1, ...,hn) are concatenated to correspond-

64 matching vision and language

ing features vectors, to obtain contextualized features vectors
(s1, ..., sn) = (v1‖h1, ..., vn‖hn);

- these contextualized features vectors are combined through a
soft attention mechanism to form a vector v, which is actually a
weighted sum of s1, ..., sn;

- this vector v is then projected into a vector space after two fully-
connected layers with ReLU activations, where each activation
is preceded by a batch normalization.

In our model, the same process is applied for computing video
embeddings. However, before feeding v into the two fully-connected
layers, we concatenated it with a vector that we derived from the
video using the last layer of an RGB-I3D [11]. Moreover, [22] used a
ResNet-152 trained on ImageNet [16] whereas we used the ResNet-
152 trained on ImageNet and finetuned on MSCOCO [58] proposed
by [25].

In [22], text-embeddings are derived as follows:

- three text representations are derived (one using an average of
Word2Vec [65] embeddings, a second one is a BoW representa-
tion and a third one is derived by taking the last hidden state of
a GRU) and concatenated;

- the resulting vector is then fed into two consecutive fully-connected
layers following the same process as for videos.

Regarding the text-embeddings part of our model, we tried to re-
place the GRU by GRCs [29] or a bidirectional GRU. GRCs are exten-
sions of GRUs that we proposed in [29], where we showed that they
could improve results of GRUs on multimodal matching tasks. Our
model is summarized by Figure 36.

3.5.1.2 Training

We trained our model using a common hard-negative triplet ranking
loss [25]. More formally, if v is the embedding computed for a video, s
the embedding computed for a sentence corresponding to that video,
then the loss l(v, s) corresponding to the couple (v, s) is defined as
follows:

l(v, s) = max
s 6=s

(max(0,α− cos(v, s) + cos(v, s))), (98)

where α is a hyperparameter that we set to 0.2.
We used several datasets for training and validation:

- MSVD [12];

- MSR-VTT [98];

3.5 grcs for the video-to-text (vtt) task 65

Figure 36: Our model. RNN can be a GRU, a GRC or a bidirectional GRU.

- TGIF [56] (for computer memory problems, we only used 60,000

sentence-video pairs from TGIF);

- TrecVid VTT 2016 test data [5];

- TrecVid VTT 2017 test data [6].

Our validation set was composed of 200 videos from TrecVid VTT
2016 test data and 200 videos from TrecVid VTT 2017 test data with
corresponding sentences. Therefore, the validation set contained 400

different videos. We used MSVD, MSR-VTT and TGIF for training,
for a total of 65,782 different videos with all corresponding sentences.
Eventually, we used the remaining data from TrecVid VTT 2016 and
TrecVid VTT 2017 to form a finetuning dataset of 3,088 videos.

We trained our models using the RMSProp method [87] with Ten-
sorFlow default parameters and gradient clipping between -5 and 5.
We first trained our model on the training set, applying a learning
rate of 0.00003 during 20 epochs (dividing the learning rate by two
if validation loss did not improve during three consecutive epochs),
with mini-batches of size 25. Then, we set the learning rate to 0.00002,
and finetuned our model on the finetuning dataset during 60 epochs,
dividing the learning rate by two if validation loss did not improve
during three consecutive epochs.

3.5.2 Our runs

Now, we will describe the runs we actually submitted to TRECVid
VTT, and the results we obtained with respect to other teams.

66 matching vision and language

Table 10: Our results in terms of Mean Inverse Rank

Runs Subset A Subset B Subset C Subset D Subset E

Run 1 0.194 0.190 0.194 0.193 0.199

Run 2 0.197 0.197 0.197 0.184 0.204

Run 3 0.202 0.209 0.206 0.186 0.212

Run 4 0.231 0.240 0.234 0.224 0.241

3.5.2.1 Definition of runs

EURECOM submitted four different runs to the VTT Sentence Match-
ing subtask. The runs are numbered from 1 to 4, with the expected
best runs having the highest numbers. For each run and for each
video, sentences are ranked by decreasing cosine similarity.

run 1 : We apply the model we described in Section 3.5.1. The
RNN we used for computing sentence embeddings was a simple
GRU.

run 2 : This run was similar to RUN 1, but we replaced the GRU
by a GRC.

run 3 : In this run, the GRU of RUN 1 is replaced by a bidirectional
GRU.

run 4 : This final run is a merge of previous runs. The merge is
performed by summing the cosine similarities of the three previous
runs, to obtain a new score for each sentence.

3.5.2.2 Results

We reported our results in Table 10. Our runs are ranked as we ex-
pected on subsets A, B, C and E. It is not the case for subset D, as
the simple GRU obtained better results than the GRC and the bidirec-
tional GRU.

In Figures 37-41, all results on different sentences subsets are pre-
sented. Our results are in red. As one can see, our ensemble method
did better than other methods.

Our results were very encouraging, as we ended third out of eleven
teams. Thinking of our tries at AVS 2016 and AVS 2017 with textual
and visual embeddings, we planned to participate in AVS 2019 with
multimodal embeddings. However, results were not as good as we
expected.

3.6 limits of multimodal spaces : ad-hoc video search 67

Figure 37: Results on subset A

Figure 38: Results on subset B

Figure 39: Results on subset C

3.6 limits of multimodal spaces : ad-hoc video search

As mentioned in Section 3.2, Ad-Hoc Video Search (AVS) is a chal-
lenging task consisting in using natural language queries to retrieve
relevant video segments from large datasets (see Figure 42). “Ad-Hoc”
implies that the query follows no pattern, and the terms are drawn
from an open vocabulary that is not restricted to any particular do-
main. Due to this nature, a query can be very specific (e.g., "find shots
of a surfer standing on a surfboard, not in the water") or open ended

68 matching vision and language

Figure 40: Results on subset D

Figure 41: Results on subset E

(e.g., "find shots inside a moving car"). Therefore, a "good" model for
AVS should be able to extract relevant high-level features from videos,
parse text queries, and find a common representation of both modal-
ities for relevance judgement. TRECVID, an evaluation campaign, is
organized yearly by the NIST to evaluate state-of-the-art models for
different video processing tasks, including the AVS task [6]. In this
section, the focus of study is automatic AVS using external training
data.

Most recent works in image and video processing and in text pro-
cessing rely on Deep Learning techniques. For image processing, com-
monly used feature extractors or concepts detectors are deep Convo-
lutional Neural Networks (CNNs) which have been pretrained on Im-
ageNet 1000 categories [16]. For video processing, I3D trained on the
Kinetics dataset has shown excellent results in activity detection [11].
Regarding text processing, recent works have shown that RNNs such
as LSTMs [38] or GRUs [13] could be used to build efficient language
models.

In [30], we proposed using a fusion of three multimodal modules
trained on different datasets to tackle the AVS task. Our contributions
in that work are two-fold:

3.6 limits of multimodal spaces : ad-hoc video search 69

Figure 42: Principle of AVS. Video Features are derived from videos and
processed by a Video Model to obtain a vector representation. At
the same time, a text query is processed by a Text Model that also
derives a vector representation. These two vector representations
are then compared to list all relevant videos with respect to the
text query.

- joint exploitation of object counting, activity detection and se-
mantic concept annotation for query interpretation;

- a new fusion method that combines three modules trained on
different datasets and shows competitive performance.

We also show the limits of the use of multimodal spaces to tackle the
AVS task with respect to methods based on visual spaces or word
spaces.

Our presentation is organized as follows. Section 3.6.2 introduces
the related works in AVS. Section 3.6.3 introduces the cross-modal
learning employed for training three different modules, while Section
3.6.3 describes the proposed fusion method. Section 3.6.4 provides
empirical insights and Section 3.6.6 concludes this presentation.

3.6.1 Related Works

From AVS 2018 [7], the general approaches from the participants can
be summarized as follows: linguistic analysis for query understand-
ing combining different techniques for concept selection and fusion;
or learning joint embedding space of textual queries and images; or
the integration of two mentioned approaches. From the results of ten
participants, we conclude that the approach of learning the embed-
ding space is the key of success for AVS task. Following up this direc-
tion, we propose to learn three embedding spaces including objects

70 matching vision and language

counting, activities and semantic concepts separately, and a fusion
method to incorporate these models.

3.6.2 Cross-Modal Learning

In this section we will describe the multimodal models we employed.
More precisely we will first define their architecture and then how
we trained them. Please note that in this section, we will consider
images and videos, even though our models will be used for Ad-Hoc
Video Search. The reason is that some of our models will be trained
on images and applied at frame-level on videos. More informations
will be given at Section 3.6.4.2.

3.6.2.1 Feature Representation

Let Q be a textual query and V an image or a video. We want to build
a model so that Q and V can be compared. More precisely, we want
to be able to assign a score to any (Q,V) to describe the relevance of
V with respect to Q. For that purpose, we use a similar model to [25].

For processing textual queries, we represent any query Q of length
L as a sequence (w1, ...,wL) of one-hot vectors of dimension N, where
N is the size of our vocabulary. These one-hot vectors are then em-
bedded in a vector space of dimension D. More formally, we obtain a
sequence of word embeddings (x1, ..., xL) where xk = wkWe for each
k in {1, ...,L}. The weights of the embedding matrix We ∈ R

D×N are
trainable.

The obtained sequence of word embeddings is then processed by a
GRU, whose last hidden state is kept and input to a Fully-Connected
layer to get a sentence embedding. Formally, a GRU is defined by the
following equations:

ut = σ(htWuh + xt+1Wux + bu) (99)

rt = σ(htWrh + xt+1Wrx + br) (100)

h̄t = tanh((ht ⊙ rt)Whh + xt+1Whx + bu) (101)

ht+1 = (1− ut)⊙ ht + ut ⊙ h̄t (102)

where Wuh, Wux, Wrh, Wrx, Whh, Whx, bu, br and bu are trainable
parameters. More information on GRU is given in Section 2.1.4.3. If
the length of the input sequence is L, then the final sequence embed-
ding vs is defined as:

vs = hLWs + bs (103)

3.6 limits of multimodal spaces : ad-hoc video search 71

where Ws and bs are trainable parameters.
Regarding visual objects, the generic process we employ is to ex-

tract a vector representation ϕ(V) of a visual object V where ϕ corre-
sponds to any relevant concepts or features extractor. Then, we input
ϕ(V) to a Fully-Connected layer to obtain a visual embedding vv:

vv = ϕ(V)Wv + bv (104)

where Wv and bv are trainable parameters.
Our goal is to train these models to be able to compare vs and vv.

We will explain how these models are trained in Section 3.6.2.2.

3.6.2.2 Model Training

The objective is to learn a mapping such that the relevancy of a pair
of a query and a video (Q,V) can be evaluated. As explained in Sec-
tion 3.6.2.1, our model derives a query representation vs from Q and
a video representation vv from V . Triplet loss is used as the loss func-
tion for model training. Mathematically, if we consider a query repre-
sentation vs, a positive video representation vv (corresponding to vs)
and a negative video representation v̄v (that does not correspond to
vs), the triplet loss L for (vs, vv, v̄v) to minimize is defined as follows:

L(vs, vv, v̄v) = max(0,α− cos(vs, vv) + cos(vs, v̄v)) (105)

where α is a margin hyperparameter. We chose to employ the hard-
margin loss presented in [25], where v̄v is chosen to be the representa-
tion of the negative video with the highest similarity with the query
representation vs among all videos in the current training mini-batch.

3.6.3 Fusion Strategy

In this section we will describe the three multimodal modules we
used and how we fused them.

3.6.3.1 Multimodal Modules

Our model relies on three multimodal modules: a counting module,
an activity module and a concepts module (see Figure 43). Each of
them has the architecture we described in Section 3.6.2.1 and has been
trained according to the optimization scheme we defined in Section
3.6.2.2.

The counting module is based on a Faster-RCNN [75] trained on
the OpenImagesv4 dataset [51]. It takes images as inputs. For each
input, it detects objects belonging to the 600 classes of OpenImagesv4

and counts them to obtain a vector of dimension 600, where the value
at index i corresponds to the number of detected objects of class i.
Embeddings are then derived from that vector.

72 matching vision and language

Figure 43: Proposed model. We extract embeddings from three modules:
a counting module, an activity module and a concepts mod-
ule. These embeddings are then concatenated and input to Fully-
Connected layers to obtain new embeddings. That model is also
trained using a triplet loss.

The activity module relies on an I3D trained on Kinetics-600 and
takes video inputs. Each input is processed by the I3D, which re-
turns a vector of 600 logits corresponding to the 600 activities of the
Kinetics-600 dataset. That vector is then processed as described in
Section 3.6.2.1 to obtain an embedding.

The concepts module takes as input concepts detections coming
from four different concept detectors. These concept detectors are
ResNet [35] models trained on ImageNet1k, Places-365 [106], TRECVID
SIN [105] and HAVIC [83]. Following the same process as for other
two modules, we generate embeddings from the concatenation of the
concept detections coming from these four detectors.

3.6.3.2 Fusion Model

Instead of simply averaging similarity scores to compare videos and
queries, we chose to train a model to draw finer similarities between
them. For that purpose, we derived embeddings from our modules
for videos and queries, and passed them through Fully-Connected
layers to obtain new embeddings. More formally, if v1v, v2v and v3v are
video embeddings respectively generated by the counting module,
the activity module and the concepts module, we derived the new
video embedding vv as follows:

vv = concat(v1v, v2v, v3v)W
fuse
v + bfuse

v (106)

where Wfuse
v and bfuse

v are trainable parameters. Similarly, if v1s , v2s
and v3s are query embeddings, we obtain a new query embedding as
follows:

vs = concat(v1s , v2s , v3s)W
fuse
s + bfuse

s (107)

where Wfuse
s and bfuse

s are trainable parameters.

3.6 limits of multimodal spaces : ad-hoc video search 73

We trained our fusion models using the same triplet loss as we did
for multimodal modules, as decribed in Section 3.6.2.2.

3.6.4 Experiments

In this section, we describe how we implemented and trained our
models, and present our experimental results.

3.6.4.1 Datasets

We used the MSCOCO [58] dataset to train the counting module (not
the Faster-RCNN itself) and the concepts module. MSCOCO is com-
posed of about 120k images, and five captions per image. We trained
modules on the whole dataset, using 1k images for validation: we did
not employ the usual train/validation/test split.

Regarding the activity module, it has been trained on the TGIF
[56] dataset (containing about 100k animated GIF images and 125k
captions) and on the MSVD [12] dataset (containing 1970 videos and
about 70k captions).

Fusion models have been trained on the MSR-VTT [98] dataset, con-
taining 10k videos with 20 captions each. We used the usual split:
6513 videos for training, 497 for validation and 2990 for testing.

Our models have also been evaluated in terms of mean average
precision based on 10,000 retrieved shots on V3C1 [10], containing
7475 videos split into 1,082,657 shots, using the provided ground-
truth results for six queries.

3.6.4.2 Implementation details

We implemented our models using the Tensorflow [1] framework for
Python. Each of them has been trained for 150k iterations with mini-
batches of size 64. We used the RMSProp [87] algorithm, with gradi-
ents capped to values between -5 and 5 and a learning rate of 10−4.
Hidden dimensions of GRUs are always 1024, and embeddings out-
put by multimodal modules and fusion models are of dimension 512.
The size of vocabularies has been set to 20k. We applied dropout [82]
with rate 0.3 to all outputs of Fully-Connected layers, and batch nor-
malization [41] to the inputs of our models. In triplet losses, the α
parameter has been set to 0.2.

Modules trained on images (counting and concepts modules) are
used for videos during testing in two different ways. For tests on
MSR-VTT, we extracted uniformly one frame every fifteen frames, ap-
plied the extractor on each frame (Faster-RCNN for the counting mod-
ule or concepts extractors for the concepts module) and averaged ob-
tained vectors. For tests on V3C1, we processed provided keyframes
instead of entire videos.

74 matching vision and language

3.6.4.3 Performance of Modules

Model R@1 R@5 R@10 medR

M1 (Counting) 2.95% 7.16% 11.40% 264

M2 (Activity) 2.83% 8.80% 13.59% 167

M3 (Concepts) 3.88% 10.69% 15.44% 168

Table 11: Results on the MSR-VTT test dataset of three modules.

Model mAP

M1 (Counting) 2.15%

M2 (Activity) 0.00%

M3 (Concepts) 2.15%

Table 12: Results on the V3C1 dataset of three modules.

In this section, we report results of each module on the unique
video retrieval task (evaluated on MSR-VTT) and the multiple videos
retrieval task (evaluated on V3C1). Results are reported in Table 11

and Table 12.
One can notice that relative results of modules are completely dif-

ferent with respect to the task. On the unique video retrieval task, the
counting module has the worst results, and the concepts module has
the best results. On the multiple videos retrieval task, the counting
module and the concepts module perform similarly, and the activity
module has very bad results.

We think that these results are due to the fact that shots in the V3C1

datasets are much shorter than the videos on which the I3D activity
extractor has been trained. For that reason, we will not report results
of fusions involving the I3D on V3C1 in the following. Regarding the
fact that the counting module performs as well as the concepts mod-
ule on the multiple videos retrieval task, our hypothesis is that the
multiple videos retrieval task requires less precision than the unique
video retrieval task: the concepts module covers a large range of vi-
sual concepts, which is useful when looking for a specific video, but
less useful when the goal is to retrieve as many videos as possible.

In the next section, we will present results of fusions

3.6.4.4 Performance of Fusions

Results of fusion models are reported in Table 13 and Table 14. Two
types of fusions have been tested : Mi +Mj means that we summed
up similarity scores between modules Mi and Mj, and F(Mi,Mj)

means that we applied the fusion scheme we described in Section
3.6.3.

3.6 limits of multimodal spaces : ad-hoc video search 75

Model R@1 R@5 R@10 medR

M1 +M2 3.91% 11.31% 16.87% 133

M1 +M3 4.29% 11.56% 16.22% 149

M2 +M3 4.69% 13.31% 19.19% 105

M1 +M2 +M3 5.00% 13.70% 19.37% 104

F(M1,M2) 5.20% 15.78% 23.69% 59

F(M1,M3) 4.80% 14.70% 22.09% 70

F(M2,M3) 5.90% 18.00% 26.39% 49

F(M1,M2,M3) 6.48% 19.27% 27.99% 42

Sum of best 6.72% 17.80% 24.72% 67

Table 13: Results on the MSR-VTT test dataset of fusions of modules. Sum
of best is the sum of M1 +M2 +M3 and F(M1,M2,M3).

Model mAP

M1 +M3 4.54%

F(M1,M3) 4.01%

F(M1,M3) +M1 +M3 5.41%

Table 14: Results on the V3C1 dataset of fusions of modules.

In each case, the best model involves a fusion according to our
fusion method. In the unique video retrieval task, the fusion alone
performs better than other models whereas in the multiple videos
retrieval task, the sum of similarity scores of modules and of their
fusion has the best results. The reason may be that our fusion scheme
makes finer representations of videos, which is less useful for multi-
ple videos retrieval than for unique video retrieval.

3.6.5 Results on TRECVid AVS 2019

For AVS 2019, we submitted three runs: one was based on our count-
ing module, another one on our concepts module and the last one
was a fusion of both modules. Best results of each team have been
reported on Figure 44.

As one can notice, we performed very poorly, as we ended as the
last team. It seems that using concepts detectors without multimodal
embeddings and big ensemble methods leads to better results. Look-
ing at these results, we think that the approach to AVS must be dif-
ferent from the approach to VTT. In the VTT task, we have the prior
knowledge that there is one and only one textual description corre-
sponding to a given video. However for AVS, we just need to retrieve
as many videos possible corresponding to one given query. Training
a model on matching data may induce too much attention to details,

76 matching vision and language

Figure 44: Best result for each team at TRECVid AVS 2019. We performed
poorly, as we finished last.

which can be relevant when the task is to find the only corresponding
text to a video. However, even though transforming a textual query
into a list of visual concepts may be less precise, it is probably more
inclined to find a high number of videos that are related to a given
textual query.

3.6.6 Conclusion

In [30], we proposed to tackle the AVS problem using three modules:
a counting module, an activity module and a concepts module. Each
of these modules analyzes videos and derives embeddings in a mul-
timodal space. We showed that jointly taking advantage of counting
objects, detecting activities and detecting semantic concepts in videos
allowed to deal efficiently with the complexity of the AVS task. More-
over, we proposed a method to fuse modules trained on different
datasets that appeared to lead to significantly better results than sim-
pler fusion methods.

However, we also showed that using fully learned multimodal spaces
was not efficient for the AVS task, even though it was efficient for the
VTT task, as mentioned in Section 3.6.5.

3.7 general conclusion of chapter 3

In this chapter, we tackled several tasks related to matching images
and texts or videos and texts. For that purpose, we architectured two
neural network models inspired by capsule networks: the Recurrent
Capsule Network and the Gated Recurrent Capsules. We also showed

3.7 general conclusion of chapter 3 77

that for matching a single image or a single video to a single text,
embedding both modalities in a multimodal space was more efficient
than embedding them in a visual space. We assessed our results using
common datasets such as Flickr 8k and MSCOCO.

However, we found that the multimodal approach was not as ef-
ficient for the AVS task, where multiple videos need to be retrieved
based on one natural language query. We think that in that case, a
method based on concepts extraction would be a better idea, and we
think that it should be the right research direction to improve results
on the AVS task.

4
AT T E N T I O N A N D C U R R I C U L U M L E A R N I N G F O R
C A P T I O N I N G

4.1 introduction

In Chapter 3, we introduced models for image-sentence matching and
video-sentence matching. The semantic representations that we used
for these matching tasks were mostly multimodal embeddings. In this
chapter, we propose to generate descriptive sentences from images
and videos, which is another type of semantic representation. These
representations can be useful for other applications than multimodal
embeddings. Automatic image captioning can be useful for visually
impaired people, to give automatically a textual descriptions of im-
ages they cannot see, on websites for instance. Automatic video cap-
tioning can be used for instance to enrich TV programs with textual
information on scenes, that can improve the user experience. Mul-
timodal embeddings are not straightforwardly readable by humans,
therefore they are mostly useful for back-end applications, such as
multimedia indexing and retrieval.

The image captioning task and the video captioning task consist
in automatically generating short textual descriptions for images and
videos respectively. They are challenging multimedia tasks as they re-
quire to grasp all information contained in a visual document, such
as objects, persons, context, actions, location, and to translate this in-
formation into text. This task can be compared to a translation task:
except instead of translating a sequence of words in a source language
into a sequence of words in a target language, the aim is to translate a
photograph or a sequence of frames into a sequence of words. There-
fore, most of recent works in captioning rely on the encoder-decoder
framework proposed in [85], initially for text translation. In image
or video captioning, the encoder aims at deriving an image or video
representation, respectively. Recent advances in deep learning have
shown to fit very well to that task. In particular, Convolutional Neu-
ral Networks (CNNs) have proved to give excellent results in produc-
ing highly descriptive image representations or video representations.
The decoder part aims at generating a sentence based on the repre-
sentation produced by the encoder. Long Short-Term Units (LSTMs)
[38] and Gated Recurrent Units (GRUs) [13] are usually chosen for
that task. Image captioning [92] and video captioning can seem to
be similar tasks, as both of them require to "translate" a visual object
into a textual one. However, video captioning poses a problem that

79

80 attention and curriculum learning for captioning

makes it more challenging than image captioning: it requires to take
into account temporality.

Our contributions in that chapter are two-fold:

• we propose a Learned Spatio Temporal Pooling (L-STAP) method
to tackle both temporal and spatial complexity in videos to gen-
erate video captions;

• we propose two Curriculum Learning algorithms to improve
results in captioning.

Section 4.2 deals with the L-STAP method. In Section 4.3, we in-
troduce our two Curriculum Learning algorithms. We conclude the
chapter in Section 4.4.

4.2 video captioning with attention

In the work we will introduce in this section, we aim at attending to
relevant regions of a video based on previous frames, because the rele-
vance of objects, persons or actions relies on the context in which they
appear; and that context should be inferred from previous frames.
More precisely, after deriving frame-level local features using the last
convolutional layer of a ResNet-152 [35], we do not apply an average
pooling to pool these local features. We process them by Learned Spa-
tio Temporal Adaptive Pooling (L-STAP). L-STAP attends to specific
regions of a frame based on what occurred previously in the video.
Our pooling method is learned because it is based on an LSTM whose
parameters are learned. It is spatio-temporal because it takes into ac-
count space and time in a joint fashion. In addition, it is adaptive
because the attention paid to local regions is based on previous hid-
den states of the LSTM; pooling depends not only on the processed
frame but also on previous ones. A high-level schematic view of our
proposed model is depicted in Figure 45.

We evaluated our results on two common datasets used for bench-
marking video captioning tasks: MSVD [12] and MSR-VTT [98]. Re-
sults show that our model based on L-STAP outperforms state-of-the-
art models in terms of several metrics. An ablation study also shows
that our method leads to significant improvements with respect to
state-of-the-art methods.

Our contributions can be summarized as follows: we propose a
novel pooling method for video processing, which we evaluate on
the video captioning task, even though it could be applied to any
other task involving video processing, such as video classification.
Moreover, we demonstrate the interest of our pooling method over
usual approaches.

4.2 video captioning with attention 81

Figure 45: Overview of our L-STAP method. Frame-level local features are
derived using a ResNet-152. Then, an LSTM processes these local
features, and updates its hidden state by attending to them based
on previous frames. The result is that space and time are jointly
taken into account to build video representations.

4.2.1 L-STAP: Our Model

Let us first formulate the problem we are to deal with. Given a video
V , which is a sequence of T frames (v(1), ..., v(T)), our goal is to derive
a descriptive sentence Y = (y1, ...,yL). The approach that we have
followed is based on the encoder-decoder framework. The encoder
first derives frame-level representations (x(1), ..., x(T)) = X, and then
pool these representations together to form frame-level video repre-

sentations (h
(1)

, ...,h
(T)

). Based on these representations, the decoder
reconstructs a descriptive sentence in a recurrent fashion. Figure 46

summarizes the important steps our model. In the following section,
we will describe it in detail and report how we train it.

4.2.1.1 Grasping Spatio-Temporal Dependencies with L-STAP

As we stated above, the first step is to produce a representation of the
input video. In the following subsections, we will explain how we
derive frame-level features, and how we pool them together.

Given a video V = (v(1), ..., v(T)), we need to derive features for
each frame v(t). A common way to do so is to process each frame
using a CNN, which has been previously pretrained on a large-scale
dataset. In works such as [59], the outputs of the penultimate layer
of a ResNet-152 have been chosen as frames representations, which
consist of 2048-dimensional vectors. However, such representations

82 attention and curriculum learning for captioning

Figure 46: Illustration of our model, based on the proposed L-STAP method.
Frames are processed sequentially by a CNN (a ResNet-152 in
this case). However, instead of applying an average pooling on lo-
cal features as some recent works do, we make use of an LSTM to
capture time dependencies. Local hidden states are computed to
obtain a 7x7x1024-dimensional tensor. These local hidden states
are then pooled together (using average pooling or soft attention),
and processed by an LSTM decoder to output a sentence.

discard locality, which results in loss of information. Therefore, in
this work, we choose to take the output of the last convolutional
layer of a ResNet-152. Thus, we obtain frame-level representations
(x(1), ..., x(T)) = X, where x(t) ∈ R

7×7×2048 for all t. The next step
is to process these dense frame-level representations to derive com-
pact frame-level representations, using the proposed L-STAP method
instead of conventional pooling.

L-STAP aims at replacing the average pooling operation after the
last convolutional layer in a CNN, and to pool local features accord-
ing to previous frames. The goal is to capture where important ac-
tions are occurring, and to discard locations that are not relevant to
summarize what is happening in a video. For that purpose, we use
an LSTM, taking local features as inputs, resulting in local hidden
states, which are then combined in a way we will describe later in
this subsection. More formally, given local features x(t)ij ∈ R

2048, the

aggregated local features h(t)ij are computed recursively as follows:

i
(t)
ij = σ(Wixx

(t)
ij +Wihh

(t−1)
+ bi) (108)

f
(t)
ij = σ(Wfxx

(t)
ij +Wfhh

(t−1)
+ bf) (109)

o
(t)
ij = σ(Woxx

(t)
ij +Wohh

(t−1)
+ bo) (110)

4.2 video captioning with attention 83

c
(t)
ij = f

(t)
ij ◦ c

(t−1) + i
(t)
ij tanh(Wcxx

(t)
ij +Wchh

(t−1)
+ bc) (111)

h
(t)
ij = o

(t)
ij ◦ tanh(c(t)ij) (112)

where Wix, Wih, bi, Wfx, Wfh, bf, Wox, Woh, bo, Wcx, Wch and
bc are trainable parameters, and c(t−1) and h

(t−1)
are respectively

the memory cell and the hidden state of the LSTM. Please note that
memory cells and hidden states are shared for computing all aggre-
gated local features. The memory cell and the hidden state at time t
are computed as follows:

c(t) =

7∑

i=1

7∑

j=1

α
(t)
ij c

(t)
ij (113)

h
(t)

=

7∑

i=1

7∑

j=1

α
(t)
ij h

(t)
ij (114)

where α(t)
ij are local weights. In our work, we experimented with two

types of local weights. We first tried to use uniform weights:

α
(t)
ij =

1

7× 7
(115)

which actually correspond to an average pooling of aggregated local
features. The second solution that we tried was to derive local weights
using an attention mechanism, as follows:

α̃
(t)
ij = wT tanh(Wαxx

(t)
ij +Wαhh

(t−1)
+ bα). (116)

α
(t)
ij =

exp(α̃(t)
ij)

∑7
k=1

∑7
l=1 exp(α̃(t)

kl)
, (117)

where Wαx, Wαh, bα are trainable parameters.

4.2.1.2 Encoding Videos

In our model, we encode videos using the L-STAP method we pre-
sented previously. We initialized the memory cell and the hidden
state of the LSTM using the output of an I3D [11] (before the final

84 attention and curriculum learning for captioning

softmax) which had been trained on Kinetics-600 [11]. More formally,
if V is an input video:

c
(0)
ij = tanh(We

ce(V) + be
c) (118)

h
(0)
ij = tanh(We

he(V) + be
h) (119)

where We
c, be

c, We
h and be

h are trainable parameters. The decoder pro-

duces c(T) and h
(T)

as outputs, where T is the length of the input
video. These outputs will be used to initialize the sentence decoder
that we will introduce in the next section.

4.2.1.3 Decoding Sentences

For decoding sentences, we chose to use an LSTM. In the following,
we assume that sentences Y are represented by sequences of one-hot
vectors y1, ...,yL ∈ R

N where N is the vocabulary size. The aim of
the LSTM is to compute the probabilities P(yl|yl−1, ...,y1,V ; θ) for
l ∈ {1, ...,L}, where θ is the set of all parameters in the encoder and
the decoder, and V an input video. In the following, we will describe
formally how we compute these probabilities.

We initialize the memory cell and the hidden state of the decoder
LSTM using the last memory cell and the last hidden state of the
encoder:

cd0 = c(T), (120)

hd0 = h
(T)

. (121)

It has been shown in [60] for text translation tasks that attending
to hidden states of the encoder during the decoding phase improved
results. Some works in video captioning have followed that approach
successfully [100, 101]. We followed a similar approach for our decod-
ing phase. More precisely, at each step l, we compute a weighted sum
of hidden states of the encoder:

ϕ(h,hdl−1) =

T∑

t=1

β
(t)
l h

(t)
(122)

where β(1)
l , ..., β(T)

l are computed as follows:

β̃
(t)
l = wT

β tanh(Wβeh
(t)

+Wβhh
d
l−1 + bβ), (123)

4.2 video captioning with attention 85

β
(t)
l =

exp(β̃(t)
l)

∑L
k=1 exp(β̃(t)

k)
, (124)

where Wβe, Wβh, bβ are trainable parameters. Assuming that the
word yl−1 has been decoded at step l− 1, we aim to decode yl based
on yl−1 and ϕ(h,hdl−1). For that purpose, we first compute a word
embedding xdl :

wd
l =Wembyl−1, (125)

where Wemb is a learned embedding matrix. Then, we concatenate
wd

l and ϕ(h,hdl−1) to obtain and xdl :

xdl = [wd
l ;ϕ(h,hdl−1)] (126)

Eventually, we input xdl to the decoder LSTM:

idl = σ(Wd
ixx

d
l +Wd

ihh
d
l−1 + b

d
i) (127)

fdl = σ(Wd
fxx

d
l +Wd

fhh
d
l−1 + b

d
f) (128)

odl = σ(Wd
oxx

d
l +Wd

ohh
d
l−1 + b

d
o) (129)

cdl = fdl ◦ c
d
l−1 + i

d
l tanh(Wd

cxx
d
l +Wd

chh
d
l−1 + b

d
c) (130)

hdl = odl ◦ tanh(cdl) (131)

where Wd
ix, Wd

ih, bdi , Wd
fx, Wd

fh, bdf , Wd
ox, Wd

oh, bdo , Wd
cx, Wd

ch and
bdc are trainable parameters.

The last step is to infer a word yl. For that purpose, we derive ỹl
as follows:

ỹl = softmax(Wdh
d
l) (132)

where Wd is a trainable parameter. We state that yl is the one-hot
vector corresponding to the maximum coordinate of ỹl.

86 attention and curriculum learning for captioning

Figure 47: Overview of our training losses. The first training loss is the
Cross-Entropy loss, which aims to make the probability distribu-
tion of sentences in the training set and the probability distribu-
tion of the inferred sentences match. The second one is a ranking
loss, aiming to bridge the semantic gap between video represen-
tations and sentences.

4.2.2 Training

Assuming that y1, ...,yL correspond to ground-truth words, we aim
to minimize the following cross-entropy loss:

Ld(θ) = −

L∑

l=1

log P(ỹl|yl−1, ...,y1,V ; θ) (133)

where V is a video corresponding to the caption (y1, ...,yL). More
information is given on the cross-entropy loss in Section 2.3.

In addition to that, some works have shown that regularizing the
cross-entropy loss with a matching loss between video encodings
and ground-truth sentences could improve results by bridging the
semantic gap between them [33, 59]. As reported in Section 4.2.2,
such improvement has been noticed in our experiments. The match-
ing model we employed is described in the following. Let us assume
that Y = (y1, ...,yL) is a sentence corresponding to a video V . First, we
translate this sequence of one-hot vectors into a sequence of word em-
beddings (xs1, ..., xsL) using the matrixWemb from Section 4.2.1.3. Then,
we compute a sentence embedding ψ(Y) by processing this sequence
of word embeddings into another LSTM: each word embedding is
entered sequentially as an input to that LSTM, and ψ(Y) is defined to
be its last hidden state. We want the initialization of the decoder to
be as close as possible to an accurate representation of its correspond-

ing sentence. Therefore, if ϕ(V) = h
(T)

is the initial hidden state of

4.2 video captioning with attention 87

the decoder, we will aim to minimize the following ranking loss from
[25]:

Lm(θ) = max
V 6=V

(

max(0,α− S(ϕ(V),ψ(Y)) + S(ϕ(V),ψ(Y)))
)

+ max
Y 6=Y

(

max(0,α− S(ϕ(V),ψ(Y)) + S(ϕ(V),ψ(Y)))
) (134)

where V is a negative video sample, and Y is a negative sentence sam-
ple coming from another video than V . More information on ranking
losses is given in Section 2.2.1 The final loss is the following:

L(θ) = Ld(θ) + λLm(θ) (135)

where λ is a hyperparameter that we set to 0.4 according to results on
validation.

4.2.3 Experiments

In this section, we will deal with our experimental results.

4.2.3.1 Datasets

We evaluated our models on two video captioning datasets: MSVD
[12] and MSR-VTT [98]. MSVD is a dataset composed of 1,970 videos
from YouTube, which have been annotated by Amazon Mechanical
Turks (AMT). Each video has approximately 40 captions in English.
We split that dataset following [91]: 1,200 videos for training, 100

videos for validation and 670 videos for testing. MSR-VTT is a similar
dataset, but with much more videos, and less captions per video. It
is composed of 10,000 videos, and 20 captions per video. Following
[98], we split that dataset into 6,513 videos for training, 497 videos for
validation and 2,990 videos for testing.

For both datasets, we uniformly sampled 30 frames per video as
done in [104], and extracted features for each frame based on the last
convolutional layer of a ResNet-152 [35], which had been trained on
the image-text matching task on MSCOCO [58], after pre-training on
ImageNet-1000 [16] following [25]. In addition, we extracted activity
features for each video using an I3D pretrained on Kinetics-600 [11].
For MSVD, we converted sentences to lowercase and removed special
characters, which lead to a vocabulary of about 14k words. We con-
verted each word into an integer, and cut sentences after the thirtieth
word if their lengths were higher than thirty. The same approach for
MSR-VTT lead to a much bigger vocabulary size of about 29k words.
Therefore, we kept only the 15k most common words, and replaced
all the others by an <UNK> token. We applied the same process oth-
erwise.

88 attention and curriculum learning for captioning

4.2.3.2 Implementation Details

Our models have been implemented with the TensorFlow framework
[1]. We use 1024-dimensional LSTMs in both encoder and decoder.
Soft attention spaces are 256-dimensional. Word embeddings are 300-
dimensional.

We trained our model using the RMSProp algorithm [87], with de-
cay = 0.9, momentum = 0.0 and epsilon = 1e-10. Batch size is set to
64. Learning rate is 1e-4, and we apply gradient clipping to a thresh-
old of 5. Eventually, we apply dropout on the output of the decoder
(before the prediction layer) with a rate of 0.5 to avoid overfitting.

4.2.3.3 Results on MSVD and MSR-VTT

Model Bleu-4 ROUGE METEOR CIDEr

TSL [97] 51.7 - 34.0 74.9

RecNet [93] 52.3 69.8 34.1 80.3

mGRU [71] 53.8 - 34.5 81.2

AGHA [104] 55.1 - 35.3 83.3

SAM [94] 54.0 - 35.3 87.4

E2E* [55] 50.3 70.8 34.1 87.5

SibNet [59] 54.2 71.7 34.8 88.2

L-STAP (Ours) 55.1 72.7 35.4 86.7

Table 15: Results on the MSVD dataset. The * sign means that the model
is using reinforcement learning techniques to optimize over the
CIDEr metric. Best results are in bold characters.

We evaluated our models in terms of BLEU [70], ROUGE [57], ME-
TEOR [17] and CIDEr [89] scores, which are metrics commonly used
to evaluate automated captioning tasks. We compared them to the
following recent models for video captioning. Our results on MSVD
are presented in Table 15. Results on MSR-VTT are presented in Table
16.

On MSVD, it can be noticed that L-STAP achieves the best results
on three out of four metrics. It is also relevant to mention that E2E
[55], which achieves better CIDEr results than our model, has been
trained using reinforcement learning techniques to be optimized re-
garding that CIDEr metric. Works on image captioning and video
captioning have shown that significant improvements could be done
using such techniques [3, 76, 96], at the price of much longer training
times. We did not use reinforcement learning to train our models, in-
stead we use cross-entropy minimization which has the advantage of
being fast and simpler to implement.

Results on MSR-VTT show that our model outperforms models
trained using a cross-entropy loss on two metrics out of four (ME-

4.2 video captioning with attention 89

TEOR and ROUGE). HRL [96] obtains better results overall, however
it makes use of reinforcement learning techniques, which leads to
better results as stated in the previous paragraph.

We report some qualitative results of our model on MSR-VTT in
Figure 48. On the second video, the man who is singing appears dur-
ing a very limited amount of time. This shows that our model has
been able to attend to important frames to identify what the main ac-
tion of the video was. In the first video, a woman starts talking about
makeup, and then puts some lipstick on her lips. The caption gen-
erated by our model shows that it has been able to draw a relation
between the first and the second parts of the video. Moreover, the
lipstick is applied on a very localized part of the video frames: we
can infer that our model could efficiently attend to the right part of
the frame to generate a caption. The fourth video shows that results
could be improved by adding sound processing to our model: it was
not possible from the video only to know that colors were said.

Model Bleu-4 ROUGE METEOR CIDEr

RecNet [93] 39.1 59.3 26.6 42.7

E2E* [55] 40.1 61.0 27.0 48.3

SibNet [59] 40.9 60.2 27.5 47.5

HRL* [96] 41.3 61.7 28.7 48.0

L-STAP (Ours) 40.7 61.2 27.6 44.8

Table 16: Results on the MSR-VTT dataset. The * sign means that the model
is using reinforcement learning techniques to optimize over the
CIDEr metric. Best results are in bold characters.

4.2.3.4 Ablation Study

Results of an ablation study on the MSVD dataset are reported in Ta-
ble 17. The encoder we used in our baseline model is an Long-term
Recurrent Convolutional Network (LRCN) [19]. As shown in previ-
ous works such as [33, 59], adding a component to the training loss to
make video representations match sentence representations improves
results. Two interpretations can be given to these results. A first one
is that adding a ranking loss to match video representations and sen-
tence representations helps bridging the semantic gap between these
two modalities. A second one could be that propagating the gradi-
ent across all the layers of the decoder could make it vanish through
depth. Thus, adding a matching loss to the cross-entropy loss could
be seen as a skip-connection between the sentence to be generated
and the video representation used by the decoder. We illustrate that
second interpretation in Figure 49.

Replacing the average pooling at the end of a CNN by our L-STAP
induces a major improvement with respect to all metrics as reported

90 attention and curriculum learning for captioning

Figure 48: Some qualitative results of L-STAP on MSR-VTT.

4.2 video captioning with attention 91

Figure 49: Our second interpretation about the efficiency of the second term
of our loss function. Skip connections between video representa-
tions and ground-truth sentences improve results.

in Table 17. On top of that, results shown in Table 15 demonstrate
that L-STAP leads to better results than other models based on local
features such as AGHA and SAM, and results shown in both Table
15 and Table 16 show the interest of L-STAP over average pooling.

We can notice in Table 17 that using a soft-attention mechanism to
pool local hidden states in the encoder does not provide significant
improvements over average pooling for all metrics except from CIDEr.
Our interpretation is that the LSTM of the encoder can learn to attend
to relevant local features by itself: before applying the average pool-
ing, attention has already been drawn quite efficiently.

4.2.4 Conclusion of Section 4.2

In [27], we presented a novel Learned Spatio-Temporal Adaptive Pool-
ing (L-STAP) method for video captioning. It consists in taking into
account spatial and temporal information jointly in a video to pro-
duce good video representations. As we have shown, these video rep-
resentations can be successfully used to perform automated video
captioning. We demonstrated the quality of our models based on
L-STAP by comparing them with state-of-the-art models on MSVD
and MSR-VTT, which are two video captioning datasets. On top of
that, we assessed the interest of L-STAP through an ablation study.
Although this presentation concentrates on video captioning we be-

92 attention and curriculum learning for captioning

Model Bleu-4 ROUGE METEOR CIDEr

Baseline 52.7 71.4 34.1 79.5

Baseline + matching 53.3 71.2 34.5 82.2

L-STAP (avg) + matching 55.1 72.3 35.4 84.3

L-STAP (att) + matching 55.1 72.7 35.4 86.8

Table 17: Results of ablation study on MSVD. Results show that a significant
improvement can be reached using our Learned Spatio-Temporal
Adaptive Pooling instead of the usual average pooling. Pooling
hidden states of the encoder using soft-attention (line 4) instead
of average pooling (line 3) does not always improve results. Our
interpretation of that outcome is that the LSTM actually performs
a kind of attention on local features before local hidden states are
pooled together.

lieve that the proposed L-STAP method could be also applied to other
video-related tasks such as video classification.

4.3 curriculum learning for captioning

In [9], Bengio et al. proposed a training method called Curriculum
Learning. Instead of training models based on randomly drawn mini-
batches from a training set, their method incrementally widens the
training set, starting from easiest samples, and adding some harder
ones after each epoch. They showed that training could get faster,
and sometimes lead to better results. In this section, we propose two
Curriculum Learning methods for captioning. The first one is a sim-
ple adaptation of the algorithm that has been introduced in [9]: we
propose to evaluate the complexity of training samples based on the
self-BLEU [108] metric. The second one is an Adaptive Curriculum
Learning algorithm: instead of using a predefined curriculum, we
propose an algorithm that adapts the content of the training set to
the actual performances of our model. We apply our method to im-
age captioning, but it can also be straightforwardly adapted to video
captioning.

Our contributions in this section are two-fold:

• we show in the context of curriculum learning that the self-
BLEU metric that has initially been proposed to evaluate di-
versity can also be used to assess the complexity of captioned
images;

• we propose an Adaptive Curriculum Learning algorithm and
we show experimentally that it performs better than the usual
mini-batch gradient descent algorithm.

The rest of this section is organized as follows: in Section 4.3.1, we
define the image captioning model we use in our experiments. In Sec-

4.3 curriculum learning for captioning 93

Figure 50: The image captioning model we employed. A Faster-RCNN de-
rives features vectors corresponding to object detection boxes
from an input image. These features vectors are then used by a
decoder through a soft-attention mechanism to produce a caption
for the input image.

tion 4.3.2, we explain how self-BLEU can assess the complexity of a
captioned image. In Section 4.3.3, we present our novel Adaptive Cur-
riculum Learning algorithm. We show and discuss our experimental
results in Section 4.3.4, and we conclude in Section 4.3.5.

4.3.1 Image Captioning with Attention

The model that we use for image captioning is the one on Figure 50. A
Faster-RCNN [75] pretrained on VisualGenome [49] is used to extract
detection boxes and corresponding features vectors. These features
vectors are then used as the input of a decoder GRU via an attention
mechanism to guide the generation of a caption. More formally, let
(v1, ..., vn) be n object detections features vectors obtained by a Faster-
RCNN on a given image. Let wt be the t-th decoded word. Then, the
input xt+1 of the decoder GRU for decoding the t+ 1-th word is as
follows:

xt+1 =

n∑

i=1

αi,t+1vi, (136)

where the αi,t+1 are non-negative weights. These weights are derived
through a soft-attention mechanism:

(α1,t+1, ...αn,t+1) = softmax(r1,t+1, ..., rn,t+1), (137)

where for each i ∈ {1, ...,n}, ri,t+1 is derived as:

ri,t+1 = 〈Wvvi|Wwxt〉 , (138)

where Wv and Ww are trainable parameters. The output of the de-
coder GRU is then converted into a word through an affine transform,
as we did in Section 4.2.

Let us now describe the two Curriculum Learning methods that we
propose.

94 attention and curriculum learning for captioning

Figure 51: Examples of images taken from the MSCOCO dataset and their
corresponding self-BLEU scores. Images that contain few ele-
ments and that are easily described have a high score, whereas
complex images have a low score.

4.3.2 Curriculum Learning with Self-BLEU

BLEU [70] has initially been proposed as a metric to assess the quality
of automatic translations. It has been also widely used for evaluating
captioning models. In [108], Zhu et al. propose self-BLEU, a method
to evaluate the diversity of generated text data. It consists in averag-
ing the BLEU scores of all generated texts with respect to the others.
More formally, let S = {s1, ..., sp} a corpus of generated texts, and let
BLEUA(s) be the BLEU score of s with respect to the set A. Then, the
self-BLEU score of S is derived as follows:

self-BLEU(S) =
1

p

p∑

i=1

BLEUS\{si}(si). (139)

As shown on Figure 51, this self-BLEU metric can also be used to
measure the complexity of visual contents that have been captioned
by human beings. If there is a big diversity in captions for a given
image, it means that describing this image is not a straightforward
task. Conversely, if the self-BLEU score is high, it means that inde-
pendent humans use approximately the same sentences to describe it:
the content is easily understandable.

We propose then an algorithm to train an image captioning model
with Curriculum Learning based on the self-BLEU score. The princi-
ple is simple: training starts with a subset of easy samples from the
training set (with a high self-BLEU score), and after each epoch, we
add a fixed number of samples of increasing difficulty from the train-

4.3 curriculum learning for captioning 95

ing set to the training subset we mentioned. That training process is
described in the following algorithm. In that algorithm, we define a

Algorithm 1 Curriculum Learning with self-BLEU (α is a hyperpa-
rameter)

Ensure: self-BLEU(si) > self-BLEU(si+1) ∀i ∈ {1, ...,n− 1}

train_set← {s1, ..., sn}
k← k0
for epoch ∈ {1, ..., #epochs} do

train_subset← {s1, ..., sk}
k← min(k+α,n)
Train model on train_subset

end for

hyperparameter α corresponding to how much we increase the size
of the training subset after each epoch.

4.3.3 Adaptive Curriculum Learning

The idea of Curriculum Learning comes from an analogy between a
student and an artificial intelligence: in both cases, they are taught
thanks to data that they are provided with in an increasing order of
difficulty. However, even though [9] has showed that training could
be made significantly faster with Curriculum Learning, it is not clear
that final results of models trained with that method obtain system-
atically better results than with a simple mini-batch gradient descent.
We think that the reason is that after all, a model ends by being pro-
vided with all training data, and therefore it is always optimized to
fit the same data distribution.

How to avoid that issue? We think that despite these problems, the
idea of Curriculum Learning should be further investigated: using a
fixed curriculum is only one possible way of providing a model with
training data. In this section, we propose an Adaptive Curriculum
Learning algorithm, that adapts a curriculum to the model that is
training. The idea behind our algorithm is simple. If our model is
doing well on some data, that data should not be often shown to it.
However, if its results on that data is bad, then it should be provided
more often to it.

An analogy between our Adaptive Curriculum Learning algorithm
and flashcard-based spaced repetition [8] could be made: it has been
shown that humans could learn efficiently and in the long term if
they were provided with difficult data frequently, and less frequently
with easy data. For a neural network model, we made the assumption
that easy data correspond to frequent data in the training set, and
difficult data correspond to rare data: neural networks perform better
on data containing features they are often provided with because they

96 attention and curriculum learning for captioning

are optimized to fit their training data. Applying that principle to
neural networks training using our Adaptive Curriculum Learning
algorithm can be seen as compensating imbalance in training data.

More formally, at each iteration t, we draw randomly a mini-batch
from the training set. In the following, the expression CIDErA(s) de-
notes the CIDEr score [89] of a sentence s based on a reference set
A, and model(I) denotes the sentence generated by our captioning
model for an image I. Each sample xi = (Ii, si,Si) from that mini-
batch (Ii is an image, si is a corresponding sentence randomly drawn
from the set Si of annotations) is then assigned a score ai, defined as
follows:

ai = CIDErSi\si(si) − CIDErSi\si(model(Ii)). (140)

That score ai if then used to compute the probability pi that the
corresponding sample is actually used for training:

pi = min
(

exp
(

ai − µ

σ

)

, 1
)

, (141)

where µ and σ are two hyperparameters. The more our model is
doing well on a given sample, the more that sample has a chance
to be dismissed during training. The algorithm, that we called the
Flashcard Algorithm accordingly to the analogy we made before, is
described below (p is the size of mini-batches).

Algorithm 2 The Flashcard algorithm: an Adaptive Curriculum
Learning algorithm (µ and σ are hyperparameters)

train_set← {s1, ..., sn}
for epoch ∈ {1, ..., #epochs} do

while Training data is remaining do

minibatch← {(I1, s1,S1), ..., (Ip, sp,Sp)}
for i ∈ {1, ...,p} do

ai = CIDErSi\si(si) − CIDErSi\si(model(Ii))
pi = min

(

exp
(

ai−µ
σ

)

, 1
)

minibatch← minibatch \ (Ii, si,Si) with probability 1− pi
end for

Train model on resulting minibatch
end while

end for

Let us now describe how we trained our image captioning models.

4.3.3.1 Optimization

Assuming that y1, ...,yL correspond to ground-truth words for a given
image, we aim to minimize the following cross-entropy loss:

L(θ) = −

L∑

l=1

log P(ỹl|yl−1, ...,y1, I; θ) (142)

4.3 curriculum learning for captioning 97

where I is an image corresponding to the caption (y1, ...,yL) and ỹl
is the output of the decoder at iteration l. More information is given
on the cross-entropy loss in Section 2.3.

We use the Curriculum Learning algorithms that we defined pre-
viously to guide training. In Section 2.3, we also stated that an al-
ternative to the usual cross-entropy loss to train captioning models
was using reinforcement learning. Reinforcement learning has shown
to lead to very significant improvements in image or video caption-
ing. We wondered if using one of our Curriculum Learning methods
could compensate the drawbacks of the cross-entropy loss that the
reinforcement learning loss do not have. Therefore, we also train our
image captioning model using reinforcement learning with CIDEr
reward. The reinforcement learning loss to minimize is defined as
follows:

LRL(θ) = −r(s), s ∼ pθ (143)

where r(s) is the reward for a sentence s. As neural networks are
trained by gradient descent, that loss needs to be adapted to be differ-
entiable with respect to θ. As we showed in Section 2.3, minimizing
the reinforcement learning loss was equivalent to minimizing the fol-
lowing loss:

L ′
RL(θ) = −r(s) log(pθ(s)), s ∼ pθ

= −r(s)
∑L

l=1 log (pθ (yl|y1, ..., xl−1, I; θ)) .
(144)

4.3.4 Experiments

In this section, we give our experimental results. First, we explain
how we implemented our models, then we describe the dataset on
which we train them, and eventually we give our results and discuss
them.

4.3.4.1 Implementation Details

All our models have been implemented using the Tensorflow frame-
work for Python [1]. We use 1024-dimensional LSTMs in both encoder
and decoder. Soft attention spaces are 256-dimensional. Word embed-
dings are 300-dimensional.

We trained our model using the RMSProp algorithm [87], with de-
cay = 0.9, momentum = 0.0 and epsilon = 1e-10. Batch size is set to 64.
Learning rate is 8e-5, and we apply gradient clipping to a threshold
of 5. Neither dropout nor batch normalization have been applied. Re-
garding the hyperparameters of the Adaptive Curriculum Learning
algorithm, we found by cross-validation that µ = −0.6 and σ = 1.0
lead to the best results.

98 attention and curriculum learning for captioning

4.3.4.2 Dataset

We evaluated how our models performed on the caption retrieval task
on the MSCOCO dataset [58]. This dataset contains 123,000 images
with 5 captions each, and we split it into a training set, a validation
set and a test set according to [43]. The training set contains 113000

images, the validation set contains 5000 images and the test set con-
tains 5000 images.

As for data preprocessing, we converted all sentences to lowercase
and removed special characters (apart from spaces and hyphens). We
limited the vocabulary to 10,000 most used words, and replaced all
other words by an "<UNK>" token. Regarding images, we utilized the
ResNet-101 features of object detections that have been released by
[3]. These object detections have been derived using a Faster-RCNN
which has been trained on the VisualGenome dataset. For each image,
we utilized a fixed amount of 36 object detections.

4.3.4.3 Results and Discussion

We reported the experimental results we obtained on MSCOCO in Ta-
ble 18. As one can notice, the self-BLEU-based Curriculum Learning
algorithm leads to nearly the same results as the baseline. We think
that the reason why results do not improve is that eventually, with or
without a simple Curriculum Learning algorithm, models are trained
on the same data distributions: therefore we can intuitively deduce
that they obtain on average nearly the same results.

The Adaptive Curriculum Learning algorithm leads to an improve-
ment in terms of all metrics with respect to the baseline. The main
difference between the usual Curriculum Learning algorithm based
on self-BLEU and our Adaptive Curriculum Learning algorithm is
that the latter does not always lead to training a model on the same
distribution of training data, but on a more balanced distribution as
it adapts the probability to deliver training data to the actual results
of the model.

However, results using a Reinforcement Learning loss are still above
our Adaptive Curriculum Learning algorithm. But both methods are
not exclusive, and there is no reason why the Reinforcement Learning
method cannot be combined with our Adaptive Curriculum Learning
algorithm. We think that an interesting direction of research would be
to investigate to what extent Adaptive Curriculum Learning can im-
prove results of Reinforcement Learning in captioning.

We also plotted the validation curves of the baseline model trained
with a simple mini-batch gradient descent, and using the self-BLEU-
based Curriculum Learning algorithm. That plot has been reported
on Figure 52. We can see that training is slightly faster using Cur-
riculum Learning, accordingly to the findings of [9]. However, both
curves end with similar validation scores. An interesting direction of

4.3 curriculum learning for captioning 99

Model BLEU-4 ROUGE METEOR CIDEr

Baseline 30.9 53.8 25.2 98.5

Baseline + Self-BLEU 31.1 53.7 25.0 97.3

Baseline + Adaptive 31.1 54.1 25.7 100.4

Baseline + Reinforcement 32.2 54.8 25.8 108.5

Table 18: Our results on the MSCOCO dataset. As one can notice, the self-
BLEU-based Curriculum Learning algorithm leads to nearly the
same results as the baseline. To the contrary, the Adaptive Cur-
riculum Learning algorithm improves the results of the baseline in
terms of all metrics. However, it does not induce as much improve-
ment as a Reinforcement Learning loss induces.

Figure 52: Plot of validation scores of the baseline trained with simple mini-
batch gradient descent (in blue) and using self-BLEU-based Cur-
riculum Learning (in red). We can notice that Curriculum Learn-
ing make training a bit faster, even though the best validation loss
is eventually nearly the same for both methods.

research would be to define a metric making the training of a caption-
ing model with Curriculum Learning even faster.

4.3.5 Conclusion

In this section, we introduced our results in image captioning using
two methods of Curriculum Learning we designed: the first one is
similar to [9] using the self-BLEU metric to measure the complexity
of annotated images, whereas the second one is an Adaptive Curricu-
lum Learning method, that adapts the distribution of training data to
the actual performances of the captioning model during training. We
experimented with these methods on the MSCOCO dataset for im-

100 attention and curriculum learning for captioning

age captioning, but our methods can be easily extended also to video
captioning.

We found that, even though results on test data for the self-BLEU-
based Curriculum Learning algorithm were similar to the usual mini-
batch gradient descent, training could be made faster, accordingly
to the findings of [9]. We also found that our Adaptive Curriculum
Learning algorithm lead to an improvement in terms of all the met-
rics we used with respect to the mini-batch gradient descent baseline.
However, this improvement is not as big as the improvement induced
by a reinforcement learning loss.

We think that two interesting directions of research would be to try
to find a complexity metric making the usual Curriculum Learning al-
gorithm even faster for captioning, and to find a way to combine our
Adaptive Curriculum Learning algorithm with reinforcement learn-
ing to further improve results.

4.4 general conclusion of chapter 4

In this chapter, we introduced models we developed for image and
video captioning. In particular, we proposed the Learned Spatio Tem-
poral Adaptive Pooling (L-STAP) method for video captioning, that
can be used to replace the final global pooling in a CNN when used
to process videos. With that pooling method, one can derive local em-
beddings where temporality is taken into account. Our video caption-
ing model based on the L-STAP method outperforms state-of-the-art
video captioning models according to our experiments. An ablation
study has been able to show to what extent each component of our
method contributes to improving results. We think that the interest
of our L-STAP method is not restricted to video captioning: the same
method can be applied to any other task related to video processing.

We also proposed two Curriculum Learning algorithms. The first
one is based on the self-BLEU score, that we used to measure the
complexity of an annotated image: if the self-BLEU score of such an
annotated image is high, it means that annotators agreed a lot on the
captions they proposed. In that case, we can infer that describing the
image was straightforward: the complexity of the image is low. To
the contrary, if the self-BLEU score is low, it means that annotators
did not agree on the captions, which allows us to say that the image
was complex. Using the self-BLEU score with a usual Curriculum
Learning algorithm improved the speed of training, but not the final
result. We proposed an explanation to that: with the usual Curricu-
lum Learning algorithm, models are eventually trained to fit the same
distribution of data as models trained without Curriculum Learning.
Therefore, to tackle that issue, we proposed a novel Adaptive Cur-
riculum Learning algorithm that we called the Flashcard algorithm.
It consists in showing data to the model with high probability when

4.4 general conclusion of chapter 4 101

it does not perform well on it, and with low probability if it does.
With that Flashcard algorithm, results improved with respect to a
simple mini-batch gradient descent. However, we also showed that it
did not improve results as much as Reinforcement Learning did. An
interesting direction of research would be to find how to combine our
Adaptive Curriculum Learning algorithm with Reinforcement Learn-
ing to further improve results in captioning.

5
G E N E R A L C O N C L U S I O N

Our research work was the occasion to propose novel models and
novel methods for the creation of semantic representations of images
or videos: multimodal vector representations that are useful in the
context of vision-text matching, and also textual representations in
natural language that are automatically generated. In particular, we
would like to emphasize the following points:

• The models that we proposed in this thesis work have been
compared to models usually employed for the same tasks. We
assessed that our models lead to better results than usual mod-
els through experiments on standard datasets evaluated using
standard metrics.

• Moreover, the models that we proposed have been applied to
specific tasks, but we think that they can also be applied in a
more general context.

• Extensive experiments have been conducted throughout this
work to assess the interest of each element of our models and
methods.

The models and methods we have proposed have been applied in
the context of this thesis research work; nevertheless we think that
their interest could go beyond our research topic because they are
conceptually generalizable to other applications, in particular related
to natural language processing regarding our Recurrent Capsule Net-
works and our Gated Recurrent Capsules, or related to video process-
ing regarding our L-STAP method. Our work could for instance be
extended to tasks that we did not have the opportunity to deal with
in that thesis work, such as Dense Captioning, or Visual Question
Answering.

We think that the main idea to be remembered from our work is
that, as says [88], "Attention Is All You Need". The models we pro-
posed throughout this thesis are actually based on attention mech-
anisms, emphasizing relevant data and obliterating irrelevant data.
Also, the Curriculum Learning algorithms that we proposed can be
seen as attention in a certain way: the right data is attended to dur-
ing mini-batch selection, and given to the model we train. We started
this manuscript with a citation of John Locke: "Reading furnishes the
mind only with materials of knowledge; it is thinking that makes
what we read ours." This is exactly the message we would like to
convey: big datasets have given birth to the current AI trend, mak-

103

104 general conclusion

ing it grow up will need that models "think" and "understand" these
datasets.

That leads us to the future perspectives of our work. We showed in
Section 3.4 with our Gated Recurrent Capsules that focusing on sub-
parts of a sentence was a way to improve results in image-sentence
matching. We also showed in Section 4.2 that our L-STAP method,
based on local features, was more efficient than using global features.
Locality in both text and vision improved our results: would it be
also beneficial to study how sub-parts of sentences and local features
of images or videos match? We think that this perspective should be
further investigated.

We showed in Chapter 3 that even though multimodal models were
efficient for matching vision and text, they lost their efficiency in tasks
such as Ad-Hoc Video Search (AVS), and concept detectors seemed
to be more efficient. We think that it is worth focusing on what kind
of information should preferably be extracted from vision-text data
to address the AVS task.

We have showed in Section 4.3 how our Adaptive Curriculum Learn-
ing algorithm was able to improve image captioning. However, the
improvement induced by Reinforcement Learning is bigger. How could
we combine both Adaptive Curriculum Learning and Reinforcement
Learning?

The matching term of the loss function of the model we imple-
mented and tested, based on out L-STAP method induced an im-
provement of our results. What are the links between vision-text match-
ing and captioning? How solving one task can provide information
to help solving the second one?

As a conclusion and a general summary, we showed that attention
was a key to success to derive semantic representations for images
and videos. We think that a right direction for pursuing our research
would be to focus on attention models on one hand, and on analyzing
how and what training data is fed to models during optimization on
the other hand.

B I B L I O G R A P H Y

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geof-
frey Irving, Michael Isard, et al. “Tensorflow: A system for
large-scale machine learning.” In: 12th {USENIX} Symposium

on Operating Systems Design and Implementation ({OSDI} 16).
2016, pp. 265–283.

[2] Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Margaret Mitchell,
C Lawrence Zitnick, Devi Parikh, and Dhruv Batra. “Vqa: Vi-
sual question answering.” In: International Journal of Computer

Vision 123.1 (2017), pp. 4–31.

[3] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney,
Mark Johnson, Stephen Gould, and Lei Zhang. “Bottom-up
and top-down attention for image captioning and visual ques-
tion answering.” In: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition. 2018, pp. 6077–6086.

[4] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic,
Trevor Darrell, and Bryan Russell. “Localizing moments in
video with natural language.” In: Proceedings of the IEEE In-

ternational Conference on Computer Vision. 2017, pp. 5803–5812.

[5] George Awad, Jonathan Fiscus, David Joy, Martial Michel, Alan
Smeaton, Wessel Kraaij, Maria Eskevich, Robin Aly, Roeland
Ordelman, Marc Ritter, et al. “Trecvid 2016: Evaluating video
search, video event detection, localization, and hyperlinking.”
In: 2016.

[6] George Awad, Jonathan Fiscus, David Joy, Martial Michel, Alan
F Smeaton, Wessel Kraaij, Georges Quénot-Georges, Maria Eskevich-
M, Roeland Ordelman, Marc Ritter, et al. “TRECVID 2016:
Evaluating Video Search, Video Event Detection, Localization,
and Hyperlinking.” In: (2017).

[7] George Awad, Asad Butt, Keith Curtis, Yooyoung Lee, Jonathan
Fiscus, Afzad Godil, David Joy, Andrew Delgado, Alan Smeaton,
Yvette Graham, et al. “Trecvid 2018: Benchmarking video ac-
tivity detection, video captioning and matching, video story-
telling linking and video search.” In: 2018.

[8] Alan D Baddeley. Human memory: Theory and practice. Psychol-
ogy Press, 1997.

[9] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Ja-
son Weston. “Curriculum learning.” In: Proceedings of the 26th

annual international conference on machine learning. ACM. 2009,
pp. 41–48.

105

106 Bibliography

[10] Fabian Berns, Luca Rossetto, Klaus Schoeffmann, Christian
Beecks, and George Awad. “V3C1 Dataset: An Evaluation of
Content Characteristics.” In: Proceedings of the 2019 on Inter-

national Conference on Multimedia Retrieval. ICMR ’19. Ottawa
ON, Canada: ACM, 2019, pp. 334–338. isbn: 978-1-4503-6765-
3. doi: 10.1145/3323873.3325051. url: http://doi.acm.org/
10.1145/3323873.3325051.

[11] Joao Carreira and Andrew Zisserman. “Quo vadis, action recog-
nition? a new model and the kinetics dataset.” In: proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 6299–6308.

[12] David L Chen and William B Dolan. “Collecting highly paral-
lel data for paraphrase evaluation.” In: Proceedings of the 49th

Annual Meeting of the Association for Computational Linguistics:

Human Language Technologies-Volume 1. Association for Com-
putational Linguistics. 2011, pp. 190–200.

[13] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Ben-
gio. “Learning phrase representations using RNN encoder-decoder
for statistical machine translation.” In: arXiv preprint arXiv:1406.1078

(2014).

[14] George Cybenko. “Approximation by superpositions of a sig-
moidal function.” In: Mathematics of control, signals and systems

2.4 (1989), pp. 303–314.

[15] Jeffrey Dalton, James Allan, and Pranav Mirajkar. “Zero-shot
video retrieval using content and concepts.” In: Proceedings of

the 22nd ACM international conference on Information & Knowl-

edge Management. ACM. 2013, pp. 1857–1860.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. “Imagenet: A large-scale hierarchical image database.”
In: 2009 IEEE conference on computer vision and pattern recogni-

tion. Ieee. 2009, pp. 248–255.

[17] Michael Denkowski and Alon Lavie. “Meteor universal: Lan-
guage specific translation evaluation for any target language.”
In: Proceedings of the ninth workshop on statistical machine trans-

lation. 2014, pp. 376–380.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding.” In: arXiv preprint arXiv:1810.04805 (2018).

[19] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,
Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and
Trevor Darrell. “Long-term recurrent convolutional networks
for visual recognition and description.” In: Proceedings of the

Bibliography 107

IEEE conference on computer vision and pattern recognition. 2015,
pp. 2625–2634.

[20] Jianfeng Dong, Xirong Li, and Cees GM Snoek. “Word2visualvec:
Image and video to sentence matching by visual feature pre-
diction.” In: arXiv preprint arXiv:1604.06838 (2016).

[21] Jianfeng Dong, Xirong Li, and Cees GM Snoek. “Predicting vi-
sual features from text for image and video caption retrieval.”
In: IEEE Transactions on Multimedia 20.12 (2018), pp. 3377–3388.

[22] Jianfeng Dong, Shaoli Huang, Duanqing Xu, and Dacheng
Tao. “Dl-61-86 at TRECVID 2017: Video-to-text description.”
In: 2017.

[23] Jianfeng Dong, Xirong Li, Chaoxi Xu, Shouling Ji, Yuan He,
Gang Yang, and Xun Wang. “Dual Encoding for Zero-Example
Video Retrieval.” In: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition. 2019, pp. 9346–9355.

[24] Aviv Eisenschtat and Lior Wolf. “Linking image and text with
2-way nets.” In: Proceedings of the IEEE conference on computer

vision and pattern recognition. 2017, pp. 4601–4611.

[25] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja
Fidler. “Vse++: Improving visual-semantic embeddings with
hard negatives.” In: arXiv preprint arXiv:1707.05612 (2017).

[26] Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh K Srivas-
tava, Li Deng, Piotr Dollár, Jianfeng Gao, Xiaodong He, Mar-
garet Mitchell, John C Platt, et al. “From captions to visual
concepts and back.” In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2015, pp. 1473–1482.

[27] Danny Francis and Benoit Huet. “L-STAP : Learned Spatio-
Temporal Adaptive Pooling for Video Captioning.” In: First

International Workshop on AI for Smart TV Content Production

(AI4TV)@MM19. ACM. 2019.

[28] Danny Francis, Benoit Huet, and Bernard Merialdo. “Embed-
ding images and sentences in a common space with a recur-
rent capsule network.” In: 2018 International Conference on Content-

Based Multimedia Indexing (CBMI). IEEE. 2018, pp. 1–6.

[29] Danny Francis, Benoit Huet, and Bernard Merialdo. “Gated
Recurrent Capsules for Visual Word Embeddings.” In: Interna-

tional Conference on Multimedia Modeling. Springer. 2019, pp. 278–
290.

[30] Danny Francis, Phuong Anh Nguyen, Benoit Huet, and Chong-
Wah Ngo. “Fusion of Multimodal Embeddings for Ad-Hoc
Video Search.” In: Proceedings of the IEEE International Confer-

ence on Computer Vision Workshops. IEEE. 2019.

108 Bibliography

[31] Jiuxiang Gu, Jianfei Cai, Shafiq R Joty, Li Niu, and Gang Wang.
“Look, imagine and match: Improving textual-visual cross-modal
retrieval with generative models.” In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 2018, pp. 7181–
7189.

[32] Jiuxiang Gu, Jianfei Cai, Gang Wang, and Tsuhan Chen. “Stack-
captioning: Coarse-to-fine learning for image captioning.” In:
Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[33] Zhao Guo, Lianli Gao, Jingkuan Song, Xing Xu, Jie Shao, and
Heng Tao Shen. “Attention-based LSTM with semantic consis-
tency for videos captioning.” In: Proceedings of the 24th ACM

international conference on Multimedia. ACM. 2016, pp. 357–361.

[34] Amirhossein Habibian, Thomas Mensink, and Cees GM Snoek.
“Composite concept discovery for zero-shot video event detec-
tion.” In: Proceedings of International Conference on Multimedia

Retrieval. ACM. 2014, p. 17.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
“Deep residual learning for image recognition.” In: Proceedings

of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[36] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. “Trans-
forming auto-encoders.” In: International Conference on Artifi-

cial Neural Networks. Springer. 2011, pp. 44–51.

[37] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. “Matrix
capsules with EM routing.” In: (2018).

[38] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term
memory.” In: Neural computation 9.8 (1997), pp. 1735–1780.

[39] Micah Hodosh, Peter Young, and Julia Hockenmaier. “Fram-
ing image description as a ranking task: Data, models and
evaluation metrics.” In: Journal of Artificial Intelligence Research

47 (2013), pp. 853–899.

[40] Harold Hotelling. “Relations between two sets of variates.” In:
Breakthroughs in statistics. Springer, 1992, pp. 162–190.

[41] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Ac-
celerating Deep Network Training by Reducing Internal Co-
variate Shift.” In: International Conference on Machine Learning.
2015, pp. 448–456.

[42] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. “Densecap:
Fully convolutional localization networks for dense caption-
ing.” In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2016, pp. 4565–4574.

Bibliography 109

[43] Andrej Karpathy and Li Fei-Fei. “Deep visual-semantic align-
ments for generating image descriptions.” In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2015,
pp. 3128–3137.

[44] Andrej Karpathy, Armand Joulin, and Li F Fei-Fei. “Deep frag-
ment embeddings for bidirectional image sentence mapping.”
In: Advances in neural information processing systems. 2014, pp. 1889–
1897.

[45] Yoon Kim. “Convolutional Neural Networks for Sentence Clas-
sification.” In: ().

[46] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochas-

tic Optimization. cite arxiv:1412.6980Comment: Published as
a conference paper at the 3rd International Conference for
Learning Representations, San Diego, 2015. 2014. url: http:
//arxiv.org/abs/1412.6980.

[47] Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel. “Uni-
fying visual-semantic embeddings with multimodal neural lan-
guage models.” In: arXiv preprint arXiv:1411.2539 (2014).

[48] Benjamin Klein, Guy Lev, Gil Sadeh, and Lior Wolf. “Associat-
ing neural word embeddings with deep image representations
using fisher vectors.” In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2015, pp. 4437–4446.

[49] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji
Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-
Jia Li, David A Shamma, et al. “Visual genome: Connecting
language and vision using crowdsourced dense image annota-
tions.” In: International Journal of Computer Vision 123.1 (2017),
pp. 32–73.

[50] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-
genet classification with deep convolutional neural networks.”
In: Advances in neural information processing systems. 2012, pp. 1097–
1105.

[51] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings,
Ivan Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov,
Matteo Malloci, Tom Duerig, et al. “The open images dataset
v4: Unified image classification, object detection, and visual re-
lationship detection at scale.” In: arXiv preprint arXiv:1811.00982

(2018).

[52] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner,
et al. “Gradient-based learning applied to document recogni-
tion.” In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

110 Bibliography

[53] Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, and Xi-
aodong He. “Stacked cross attention for image-text matching.”
In: Proceedings of the European Conference on Computer Vision

(ECCV). 2018, pp. 201–216.

[54] Guy Lev, Gil Sadeh, Benjamin Klein, and Lior Wolf. “Rnn
fisher vectors for action recognition and image annotation.” In:
European Conference on Computer Vision. Springer. 2016, pp. 833–
850.

[55] Lijun Li and Boqing Gong. “End-to-end video captioning with
multitask reinforcement learning.” In: 2019 IEEE Winter Con-

ference on Applications of Computer Vision (WACV). IEEE. 2019,
pp. 339–348.

[56] Yuncheng Li, Yale Song, Liangliang Cao, Joel Tetreault, Larry
Goldberg, Alejandro Jaimes, and Jiebo Luo. “TGIF: A new
dataset and benchmark on animated GIF description.” In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2016, pp. 4641–4650.

[57] Chin-Yew Lin. “Rouge: A package for automatic evaluation of
summaries.” In: Text Summarization Branches Out (2004).

[58] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick.
“Microsoft coco: Common objects in context.” In: European con-

ference on computer vision. Springer. 2014, pp. 740–755.

[59] Sheng Liu, Zhou Ren, and Junsong Yuan. “SibNet: Sibling
Convolutional Encoder for Video Captioning.” In: 2018 ACM

Multimedia Conference on Multimedia Conference. ACM. 2018, pp. 1425–
1434.

[60] Minh-Thang Luong, Hieu Pham, and Christopher D Manning.
“Effective approaches to attention-based neural machine trans-
lation.” In: arXiv preprint arXiv:1508.04025 (2015).

[61] Foteini Markatopoulou, Damianos Galanopoulos, Vasileios Mezaris,
and Ioannis Patras. “Query and keyframe representations for
ad-hoc video search.” In: Proceedings of the 2017 ACM on Inter-

national Conference on Multimedia Retrieval. ACM. 2017, pp. 407–
411.

[62] Warren S McCulloch and Walter Pitts. “A logical calculus of
the ideas immanent in nervous activity.” In: The bulletin of

mathematical biophysics 5.4 (1943), pp. 115–133.

[63] Pascal Mettes, Dennis C Koelma, and Cees GM Snoek. “The
imagenet shuffle: Reorganized pre-training for video event de-
tection.” In: Proceedings of the 2016 ACM on International Confer-

ence on Multimedia Retrieval. ACM. 2016, pp. 175–182.

Bibliography 111

[64] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ,
and Sanjeev Khudanpur. “Recurrent neural network based lan-
guage model.” In: Eleventh annual conference of the international

speech communication association. 2010.

[65] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. “Distributed representations of words and phrases
and their compositionality.” In: Advances in neural information

processing systems. 2013, pp. 3111–3119.

[66] Niluthpol C Mithun, Juncheng Li, Florian Metze, and Amit
K Roy-Chowdhury. “Joint embeddings with multimodal cues
for video-text retrieval.” In: International Journal of Multimedia

Information Retrieval 8.1 (2019), pp. 3–18.

[67] Hyeonseob Nam, Jung-Woo Ha, and Jeonghee Kim. “Dual at-
tention networks for multimodal reasoning and matching.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2017, pp. 299–307.

[68] Zhenxing Niu, Mo Zhou, Le Wang, Xinbo Gao, and Gang Hua.
“Hierarchical multimodal lstm for dense visual-semantic em-
bedding.” In: Proceedings of the IEEE International Conference on

Computer Vision. 2017, pp. 1881–1889.

[69] Yingwei Pan, Ting Yao, Houqiang Li, and Tao Mei. “Video cap-
tioning with transferred semantic attributes.” In: Proceedings

of the IEEE conference on computer vision and pattern recognition.
2017, pp. 6504–6512.

[70] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. “BLEU: a method for automatic evaluation of machine
translation.” In: Proceedings of the 40th annual meeting on associa-

tion for computational linguistics. Association for Computational
Linguistics. 2002, pp. 311–318.

[71] Ramakanth Pasunuru and Mohit Bansal. “Multi-task video
captioning with video and entailment generation.” In: arXiv

preprint arXiv:1704.07489 (2017).

[72] Jeffrey Pennington, Richard Socher, and Christopher Manning.
“Glove: Global vectors for word representation.” In: Proceed-

ings of the 2014 conference on empirical methods in natural lan-

guage processing (EMNLP). 2014, pp. 1532–1543.

[73] Florent Perronnin and Christopher Dance. “Fisher kernels on
visual vocabularies for image categorization.” In: 2007 IEEE

conference on computer vision and pattern recognition. IEEE. 2007,
pp. 1–8.

[74] Boris T Polyak. “Some methods of speeding up the conver-
gence of iteration methods.” In: USSR Computational Mathe-

matics and Mathematical Physics 4.5 (1964), pp. 1–17.

112 Bibliography

[75] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster
r-cnn: Towards real-time object detection with region proposal
networks.” In: Advances in neural information processing systems.
2015, pp. 91–99.

[76] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret
Ross, and Vaibhava Goel. “Self-critical sequence training for
image captioning.” In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2017, pp. 7008–7024.

[77] Marcus Rohrbach, Wei Qiu, Ivan Titov, Stefan Thater, Man-
fred Pinkal, and Bernt Schiele. “Translating video content to
natural language descriptions.” In: Proceedings of the IEEE In-

ternational Conference on Computer Vision. 2013, pp. 433–440.

[78] Frank Rosenblatt. “The perceptron: a probabilistic model for
information storage and organization in the brain.” In: Psycho-

logical review 65.6 (1958), p. 386.

[79] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael Bernstein, et al. “Imagenet large scale visual
recognition challenge.” In: International journal of computer vi-

sion 115.3 (2015), pp. 211–252.

[80] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. “Dy-
namic routing between capsules.” In: Advances in neural infor-

mation processing systems. 2017, pp. 3856–3866.

[81] Karen Simonyan and Andrew Zisserman. “Very deep convo-
lutional networks for large-scale image recognition.” In: arXiv

preprint arXiv:1409.1556 (2014).

[82] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. “Dropout: a simple way to prevent
neural networks from overfitting.” In: The journal of machine

learning research 15.1 (2014), pp. 1929–1958.

[83] Stephanie M Strassel, Amanda Morris, Jonathan G Fiscus, Christo-
pher Caruso, Haejoong Lee, Paul Over, James Fiumara, Bar-
bara Shaw, Brian Antonishek, and Martial Michel. “Creating
HAVIC: Heterogeneous Audio Visual Internet Collection.” In:
Citeseer.

[84] Fei Sun, Jiafeng Guo, Yanyan Lan, Jun Xu, and Xueqi Cheng.
“Learning word representations by jointly modeling syntag-
matic and paradigmatic relations.” In: Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers). 2015, pp. 136–145.

[85] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to se-
quence learning with neural networks.” In: Advances in neural

information processing systems. 2014, pp. 3104–3112.

Bibliography 113

[86] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Van-
houcke, and Andrew Rabinovich. “Going deeper with convo-
lutions.” In: Proceedings of the IEEE conference on computer vision

and pattern recognition. 2015, pp. 1–9.

[87] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the

gradient by a running average of its recent magnitude. COURS-
ERA: Neural Networks for Machine Learning. 2012.

[88] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. “Attention is all you need.” In: Advances in neural

information processing systems. 2017, pp. 5998–6008.

[89] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh.
“Cider: Consensus-based image description evaluation.” In: Pro-

ceedings of the IEEE conference on computer vision and pattern

recognition. 2015, pp. 4566–4575.

[90] Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel Urtasun.
“Order-embeddings of images and language.” In: arXiv preprint

arXiv:1511.06361 (2015).

[91] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue,
Raymond Mooney, Trevor Darrell, and Kate Saenko. “Sequence
to sequence-video to text.” In: Proceedings of the IEEE interna-

tional conference on computer vision. 2015, pp. 4534–4542.

[92] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru
Erhan. “Show and tell: A neural image caption generator.” In:
Proceedings of the IEEE conference on computer vision and pattern

recognition. 2015, pp. 3156–3164.

[93] Bairui Wang, Lin Ma, Wei Zhang, and Wei Liu. “Reconstruc-
tion network for video captioning.” In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 2018, pp. 7622–
7631.

[94] Huiyun Wang, Youjiang Xu, and Yahong Han. “Spotting and
aggregating salient regions for video captioning.” In: 2018 ACM

Multimedia Conference on Multimedia Conference. ACM. 2018, pp. 1519–
1526.

[95] Junbo Wang, Wei Wang, Yan Huang, Liang Wang, and Tieniu
Tan. “M3: multimodal memory modelling for video caption-
ing.” In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2018, pp. 7512–7520.

[96] Xin Wang, Wenhu Chen, Jiawei Wu, Yuan-Fang Wang, and
William Yang Wang. “Video captioning via hierarchical rein-
forcement learning.” In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2018, pp. 4213–4222.

114 Bibliography

[97] Xian Wu, Guanbin Li, Qingxing Cao, Qingge Ji, and Liang
Lin. “Interpretable Video Captioning via Trajectory Structured
Localization.” In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 2018, pp. 6829–6837.

[98] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. “Msr-vtt: A large
video description dataset for bridging video and language.”
In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. 2016, pp. 5288–5296.

[99] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron
Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Ben-
gio. “Show, attend and tell: Neural image caption generation
with visual attention.” In: International conference on machine

learning. 2015, pp. 2048–2057.

[100] Ziwei Yang, Yahong Han, and Zheng Wang. “Catching the
temporal regions-of-interest for video captioning.” In: Proceed-

ings of the 25th ACM international conference on Multimedia. ACM.
2017, pp. 146–153.

[101] Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas, Christo-
pher Pal, Hugo Larochelle, and Aaron Courville. “Describing
videos by exploiting temporal structure.” In: Proceedings of the

IEEE international conference on computer vision. 2015, pp. 4507–
4515.

[102] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.
“How transferable are features in deep neural networks?” In:
Advances in neural information processing systems. 2014, pp. 3320–
3328.

[103] Youngjae Yu, Hyungjin Ko, Jongwook Choi, and Gunhee Kim.
“End-to-end concept word detection for video captioning, re-
trieval, and question answering.” In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 2017, pp. 3165–
3173.

[104] Junchao Zhang and Yuxin Peng. “Hierarchical Vision-Language
Alignment for Video Captioning.” In: International Conference

on Multimedia Modeling. Springer. 2019, pp. 42–54.

[105] W Zhang, H Zhang, T Yao, Y Lu, J Chen, and CW Ngo. “VIREO@
TRECVID 2014: instance search and semantic indexing.” In:
NIST TRECVID Workshop. 2014.

[106] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and
Antonio Torralba. “Places: A 10 million Image Database for
Scene Recognition.” In: IEEE Transactions on Pattern Analysis

and Machine Intelligence (2017).

Bibliography 115

[107] Luowei Zhou, Yingbo Zhou, Jason J Corso, Richard Socher,
and Caiming Xiong. “End-to-end dense video captioning with
masked transformer.” In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2018, pp. 8739–8748.

[108] Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang,
Jun Wang, and Yong Yu. “Texygen: A benchmarking platform
for text generation models.” In: The 41st International ACM

SIGIR Conference on Research & Development in Information Re-

trieval. ACM. 2018, pp. 1097–1100.

