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Abstract

Abstract
This thesis presents studies of acoustic streaming in the vicinity of sharp structures in mi-

crochannels. Sharp Edge Acoustic Streaming (SEAS) is a steady flow induced by the coupling of
low-frequency acoustic wave and fluid around sharp edge. The four-paper thesis includes ex-
perimental and numerical investigation on influence of the geometrical features, viscosity and
frequency on SEAS intensity and pattern, the interaction of SEAS with the throughput in the mi-
crochannel and its application in the mixing process. This research is motivated by the fact that the
mechanism of the very strong streaming phenomenon with audible or lower acoustic is still not
clear and its promising application in process intensification. Besides developing a Direct Numer-
ical Simulation scheme for the fundamental study, some practical information on how to obtain
strong streaming by optimal design sharp-edge geometries and operating condition adjustments
are provided.
Keywords: Acoustofluidics, Sharp Edge Acoustic Streaming, Microchannel, Mixing enhancement

Résumé
Le streaming acoustique peut être généré par un champ acoustique autour d’une singularité

géométrique. Ce streaming à effet géométrique est quantitativement plus intense que le classique
streaming de Rayleigh à énergie injectée égale et peut être généré à basse fréquence. Cette thèse,
à travers ces quatre articles, étudie différents aspects de ce phénomène en allant d’interprétation
fondamentale de son origine jusqu’à son application pour intensifier le mélange liquide-liquide
grâce à l’écoulement induit par champs acoustique. Des approches numériques et expérimen-
tales sont déployées pour résoudre ce phénomène multi-physique et en fournir les conditions
optimales en termes de géométrie, de viscosité du fluide, des conditions d’écoulement et acous-
tiques.
Mots Clés: Acoustofluidiques, Streaming Acoustique, Singularité, Micro-canal, Intensification du
mélange
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Preamble

The main text of this thesis serves to give an introduction to the theory background and corre-
sponding methodology (Chapter 2) utilized in four journal papers attached in Appendices, which
constitute this thesis work. Chapter 3 summarized the main results in a brief way, followed by a
general conclusion and perspectives in Chapter 4.

The sharp-edge acoustic streaming is quantitatively investigated via the direct resolution of
the full Navier-Stokes equation, using Finite Element Method. The influence of viscous boundary
layer δ , curvature radius rc and viscosity ν on the acoustic streaming performance are quantified.
Our results suggest choices of operating conditions and geometrical parameters, via dimension-
less quantities rc /δ and δ/w and provide guidelines on how to obtain strong, optimal sharp-edge
acoustic streaming. These issues have been discussed in Appendix A and Appendix C.

Further, several experiments have been conducted. Vibration velocities are characterized by
directly visualizing the displacement of tracing particles and the generated acoustic streaming is
observed using particle image velocimetry. With a microchannel patterned with a single sharp
edge, by measuring the concentration of a fluorescence dye, we evaluate the mixing performance
for different values of tip angle, vibration amplitude, and flow rate. The sharper the edge tip is,
the larger the vortices size and the spatial extent of the induced streaming are. The Mixing in-
dex, jumps from 0.73 (without acoustic excitation) to 0.38 (with acoustic excitation), resulting in a
highly mixed homogeneous fluid just after the sharp edge. Then experiments are done to quantify
this streaming flow through the influence of liquid viscosity ν, from 1 mm2/s to 30 mm2/s, and
acoustic frequency from 500 Hz to 3500 Hz. Both quantities supposedly influence the thickness
of the viscous boundary layer δ= (ν/π f )1/2. Globally, the streaming velocity is dramatically weak-
ened by a higher viscosity, whereas the flow pattern and the disturbance distance remain simi-
lar regardless of viscosity. Besides viscosity, the frequency also strongly influences the maximal
streaming velocity. Details of the above results can be found in Appendix B.

Finally, three Sharp-Edge Acoustic Streaming (SEAS) micromixers with multiple sharp edge
patterns are investigated as in Appendix D. Simulation with direct numerical simulation (DNS)
and experiments through dye visualizations as well as Iodide-Iodate Reactions are carried out to
unveil the interaction between acoustic streaming and main flow, and to evaluate micromixing
performances. Following this, an optimal structure is found among the three mixers which allows
achieving a decrease of micromixing time from 0.3 s to 0.04 s. A comparison with literature on pas-
sive mixers confirms the equivalent micromixing performance of SEAS mixer in terms of energy
dissipation rate.
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CHAPTER 1. INTRODUCTION

1.1 Acoustic Streaming: basics and theory

1.1.1 A brief classification of acoustofluidic studies

The perception and interpretation of sound by humans, as a type of entertainment, started from
the music, as early as the ancient Greek time GEISSLER et HUNT [1980]. Then, since the 18th cen-
tury, the understanding of sound and acoustics as a scientific endeavor has been rapidly developed
FRIEND et YEO [2011]; RAYLEIGH [2013], during which many phenomenons were recorded and
studied. Related to an ancient phenomenon, Chinese spouting bowl, water spouts out from the
resonant vibration bowl, shown in Fig.1.1(a), was studied by John Tyndall SCHUFLE [1981]. Insta-
bilities of fluid free surface, fluid jet and mechanism of human hearing, acoustic streaming were
studied by RAYLEIGH [1945]. Studies of resonant acoustic cavities and the observation of quartz
wind and surface wave were achieved by FARADAY [1831] and HELMHOLTZ [2009] respectively. In
more recent times, various phenomenons were also observed and studied, such as the resonant
vibration field in Kundt’s tube and as shown in Fig.1.1(b), the complex motion and deformations
of sessile droplets on a substrate where surface acoustic wave are induced.

(a) (b)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 1.1 – Examples of interactions between acoustic waves and a fluid (a) vibration waves formed in a
resonant bowl filmed by FREE et GRUCHY [2017]; (b) successive snapshots of a water drop displaced by sur-
face acoustic wave, showing a periodic creeping and jumping motion BRUNET et collab. [2010]; RENAUDIN

et collab. [2007].
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Figure 1.2 – Spectrum of acoustics from different sources and their applications. Acoustic streaming is
roughly divided into classical Rayleigh streaming and sharp-edge streaming (in red box), the latter being
the main subject of the thesis.
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CHAPTER 1. INTRODUCTION

So far, the frequency range of acoustics applied in scientific research spans 15 orders of mag-
nitude, as shown in Fig.1.2. Most geophysical phenomena appear in the infrasound range below
the limit of human hearing ( < 20Hz), like the earthquakes waves and the low-frequency acoustic
emission by volcanoes. In Fig.1.2, the frequencies of which the most current prominent man-
made applications of acoustics for measurement and manipulations of fluids, reside in the ultra-
sonic range (above 20 kHz), specifically in the range between 20 kHz to 10 MHz; these applications
involve different types of mixing enhancement, particle manipulation, pumping, sensors, imag-
ing, and medical surgery [MITRAGOTRI [2005]], as shown in Fig.1.2. One obvious feature shown
in Fig.1.2 is that fewer previous studies were based on the audible frequency range. However, re-
cently, more and more pioneering studies take advantage of acoustics and vibration fields with
low-frequency at human hearing range. For example, low-frequency fluid oscillation (range 5Hz ∼
200Hz) could accelerate the fluid mixing in microplate well as well as in microchannel GLASGOW

et AUBRY [2003]; OBERTI et collab. [2009]; PETKOVIC-DURAN et collab. [2009]. WHITEHILL et collab.
[2011] demonstrated the droplet spreading on the vibrating surface at 200Hz and particle focusing
in a channel at 1 kHz VAINSHTEIN et SHAPIRO [2008]; interesting phenomenons were observed by
BRUNET et collab. [2007], where droplet moved against gravity on a vertically vibrating inclined
plate at 30 ∼ 200 Hz; in LANGELIER et collab. [2009]’s study, the specific cavities were designed to
absorb the outside vibration and then the audible music as a vibration source was introduced into
the microchannel. Although it is difficult to control the vibration field from low-frequency source
because of its long wavelength, a significant advantage of low frequency actuation is the simple in-
strumentation needed, which is in keeping with the recent trend to develop low cost microfluidic
“lab-on-a-chip” systems for various applications WHITEHILL et collab. [2011].

1.1.2 Acoustic streaming phenomenon

The studies of streaming phenomenon started with several observations. FARADAY [1831] and
Savart BOLURIAAN et MORRIS [2003] observed streaming shown by fine powders, appeared in air
adjacent to a vibration surface of a plate. The trajectory of the particles began from the nodal
point toward to anti-nodal site then outward and moved back to the nodal line. DVOŘÁK [1874]
also observed similar flow circulation while following the opposite direction. The theory behind
such phenomena was not built up until Lord Rayleigh, who first came up with the adequate the-
oretical model to analyze the acoustic streaming phenomena. He utilized a perturbation method
to successively solve first-order equations as a linear problem, then worked out the second-order
ones with the forcing term from the first-order solution. Since then, such approach has become
the dominant analytical tool for the studies of acoustic streaming. Progresses have been contin-
uously made in this area until today: much work has been done on the topic of streaming flow
involving analytical and numerical models, experimental studies and, more recently, the appli-
cations of acoustic streaming to existing problems within microfluidics, which will be presented
in the next section. Hermann Schlichting, after which the ’Schlichting streaming’ was named,
first modelled the inner streaming within the stoke boundary layer SCHLICHTING [1932]. NYBORG

[1958] developed an approximate solution for the steady streaming flow near any portion of fluid-
solid interface. LIGHTHILL [1978] derived Navier-Stokes equations describing the streaming flow
as a time-averaged momentum flux in the fluid, caused by a spatial gradient in the oscillatory
Reynolds stress. Other researchers like in Henrik Bruus’s group, extended the fundamental treat-
ment of the governing equations and solved the equations for various open and closed geometries
MULLER et BRUUS [2015].

Qualitatively, the streaming flow comes from the dissipation of acoustic vibrations within the
fluid. When the acoustic wave propagates through a fluid medium, the velocity and pressure of the
volume elements are described by oscillating terms. With an ideal condition where viscous atten-
uation is null, the time-average displacement of any volume element is zero everywhere. However,
in a real fluid, viscous dissipation combined with nonlinear inertial terms leads to a time-averaged
acoustic momentum flux (analogous as the so-called Reynolds stress well known in turbulence)
and a resulting steady force in the fluid LIGHTHILL [1978]. These streaming flows, by nature, are

3



CHAPTER 1. INTRODUCTION

caused by the attenuation of the acoustic wave WIKLUND et collab. [2012]. As we shall see later,
dissipation can occur either near walls or boundaries, either in the fluid bulk, leading to various
types of streaming flows. Singular geometries are susceptible to enhance these effects. The rel-
ative importance of both effects depends on the frequency, fluid viscosity, but also geometrical
dimensions.

Streaming flows vary greatly in terms of velocity, flow configuration and length scale under dif-
ferent acoustic excitation conditions. To the best of my knowledge, for slow streaming, its velocity
can be as low as µ m/s, while for fast streaming, it can reach as high as 2 m/s ZACHARIAS et OHL

[2013]. However, the terms ”slow” and ”fast” are not just qualitative description of scale of velocity
with an ambiguous bench. If the amplitude of the streaming velocity is considerably smaller than
that of fluid particle (acoustic) velocity, it is called ”slow streaming”. Otherwise, the streaming with
comparable or even larger velocity than the fluid particle velocity is called ”fast streaming”. For the
length scale of streaming flow, its value varies from being on the order of µm as microstreaming up
to the order of cm in bulk-streaming BOLURIAAN et MORRIS [2003]. With respect to the flow con-
figuration, it mainly consists of jet and vortices. It worth noting that, the above characterizations
of the streaming flow are highly influenced by the frequency and amplitude of the acoustic excita-
tion and the geometry where the acoustic field is applied. So the features of the various streaming
flows are just descriptive, not definitive and they are just a reflection of acoustic excitation and the
mechanism of attenuation of acoustic energy WIKLUND et collab. [2012]. The above features may
extend with the advancement of acoustic excitation in novel geometry. Following this section, in-
ner and outer boundary layer streaming, Eckart streaming will be reviewed. Before this, let’s start
with viscous attenuation of an acoustic wave.

In general, the mechanism of the attenuation of the acoustic wave through fluid can be at-
tributed to dissipation of energy either directly into the fluid during passing through fluid or in
viscous stokes boundary layer near the interface between solid and fluid. This classification leads
to two types of streaming. For the latter, the dissipation into the boundary layer is comparatively
larger in comparison to bulk dissipation because of the steep velocity gradient that is formed per-
pendicular to the solid boundary as the acoustic wave propagates parallel to it. The strong velocity
gradient results from the presence of non-slip boundary. This results in an acoustic velocity that
varies from zero at the solid surface, to its free-stream value at a distance δ = p

2ν/ω away from
the surface (the scale order is 1µm for ultrasound in water and 10 µm for audible sound in water)

Then two types of streaming are usually distinguished: the first is the Eckart streaming, also
called quartz wind, which significantly arises within the fluid, during which acoustic energy dis-
sipates; the second is labeled as Rayleigh streaming (this name specifically refers to the outer
streaming). As mentioned above, acoustic energy dissipates within the viscous Stokes layer. Then
Reynolds stress within the layer induces the inner streaming and a slip velocity along the outer
side of the Stokes layer, which in turn drives the outer streaming outside of the Stokes layer, in the
main flow.

Eckart streaming

As an acoustic wave propagates through a fluid, a part of the acoustic energy is absorbed by the
fluid at a rate that is typically proportional to the square of its frequency, as specified in Stokes’s
law of sound attenuation STOKES [2010]. The amplitude of the acoustic wave becomes attenuated
causing the acoustic pressure amplitude to decrease as the distance from the acoustic source in-
creases. The dissipation of acoustic energy results in a steady momentum flux, forming a jet of
fluid inside the acoustic beam in the direction of acoustic propagation. For the case of a fluid jet
formed within the confinement of a microfluidic chamber, vorticity will typically ensue, resulting
in fluid circulation within either part of or the entire chamber. As shown in Fig.1.3, the travelling
wave originating from the vibration source, is attenuated and induces the significant large scale
streaming flow along the direction of its propagation.
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CHAPTER 1. INTRODUCTION

Rayleigh streaming

For Rayleigh streaming, the second-order steady flow comes up with the creation of vorticity in a
viscous boundary layer near the boundary along solid wall and fluid. Due to the no-slip boundary
condition, the vibration or acoustic motion must vanish along the wall, while at a certain distance
form the wall the acoustic vibration is generally parallel to the wall direction. Hence this type of
streaming is also named as "boundary layer driven streaming". Unlike Eckart Streaming, this type
of streaming is at relatively steady state, since the little variations from higher order coupling can
usually be ignored. Since such streaming is closely related to the boundary layer, it can show up
around various geometry walls or obstacles in fluid with acoustic wave or vibration field, resulting
in various configurations of streaming flow under different conditions. As in Fig.1.4(a), when the
piezo-transducer with a 2.17MHz actuation below the chamber turns on, vortices were formed
between pressure node and antinode and the pairs of streaming vortices were symmetrical to the
pressure nodes. Due to the periodic momentum gradient between antinodes and nodes, the size
of a single vortex is equal to the half wavelength of the acoustic wave BRUUS [2007]. Fig.1.4(b)
shows the particles’ trajectories from the stack image near a vibrating beam inserted into a Hele-
Shaw cell. The experiment was performed in a high-viscosity water/glycerin mixture (108.2 mPa·s)
at 200Hz. For the outer streaming flow, the part corresponding to the middle part of the end, was
likely being jetted out, without coming back while the parts near the two edges flowed back to
the edges after bursting out. Fig.1.4(c) gives a schematic presentation of streaming near a chan-
nel wall. With a vibrating boundary condition, inter and outer streaming flows theoretically ap-
pear along the wall with a characterized size of half wavelength, like in Fig.1.4(a). In Fig.1.4(d),
the streamline in which streaming flow around a hemispherical bubble superposed over a certain
throughput, is shown. For Fig.1.4(e), image stack of a vibrating cylinder inserted into silicon oil
(dynamic viscosity: 9.3 mPa·s) is presented. The vibration’s frequency of the cylinder is as low as
5 ∼ 60Hz, which gives rise to a relatively thick boundary layer. The inner streaming flow within
the layer can be very clearly depicted under this low-frequency conditions. From the point of view
of the application, limited by the vibration source, the above streaming flow is usually character-
ized with the low-intensity and high-cost, restricting its usage in many areas like mixing process
in microchannel.

Acoustic Streaming near a Sharp Edge or Sharp Edge Acoustic Streaming(SEAS)

Acoustic steaming near a sharp edge was firstly observed by ZACHARIAS et OHL [2013] in eye
surgery around high-speed vibrating needles. Its origin is associated with the boundary layer, so
it belongs to the Rayleigh streaming. Known as high intensity and low frequency acoustic con-
dition, SEAS has been studied extensively NAMA et collab. [2014]; OVCHINNIKOV et collab. [2014],
as the picture captured by us shown in Fig.1.5(a) and the one obtained from DOINIKOV et collab.
[2020] shown in Fig.1.5(b) in recent years. High intensity means the SEAS can be applied in many
area where the traditional Rayleigh streaming can’t reach, like high-speed streaming near a tip is
used to suppress the cavitation bubbles in eye surgery ZACHARIAS et OHL [2013] and Lab-on-a-
Chip device with SEAS is utilized as sputum liquefier in medical test HUANG et collab. [2015]. Low
frequency means more choices of acoustic or vibration source. Much cheaper and simpler piezo-
electric transducer (like low-cost commercial Piezotransducer used in this thesis), even possible
vibration source from natural environment, instead of the complex and expensive one, like the in-
terdigitated transducer(IDT), can be used to induce SEAS. Based on these advantages, the current
thesis concentrates on the streaming phenomenon near a sharp edge structure in a microchannel.

1.1.3 Theoretical background of acoustic streaming

After showing the streaming phenomena, the thesis should further review the various situations
in which the streaming can be induced and present the relevant fluid mechanics in terms of equa-
tions to be a base to understand the following part of this thesis.
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CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.3 – Eckart streaming formed along propagation of acoustic wave from the vibration source: (a)
image captured by J.M. Lenoir and V.Botton of LMFA lyon; (b)image captured by NOWICKI et collab. [1998]

Oscillatory flow

Let’s start with the equations of a linear sound wave in a fluid, coupled to a flow. The velocity u and
pressure p then contain both the fast acoustic and the slow flow terms. For a compressible flow,
without considering the boundary condition of the fluid domain. Continuity and momentum
equations are flowing respectively:

∂ρ

∂t
+∇· (ρu) = 0 (1.1)

ρ(
∂u

∂t
+u ·∇u) =−∇p +µ∇2u + (β

′ + 1

3
µ)∇(∇·u) (1.2)

the compression and rarefaction of a compressible fluid caused by sound wave can be treated as
a oscillatory motion with a small amplitude. The small disturbances to the pressure and density
can be defined as following:

p = p0 +p
′
; ρ= ρ0 +ρ

′
(1.3)

with p
′ ¿ p and ρ

′ ¿ ρ. Similarly, the velocity is also defined as:

u = u0 +u
′ = u

′
(1.4)

the u0 means the undisturbed state u0 = 0. In addition, since the u
′

is considered to be small
and in the focused region (without solid boundary), there aren’t large changes in the region, the
nonlinear inertial term u · ∇u can be neglected. By ignoring the viscous terms, Eqn.1.1, Eqn.1.2
can be reduced to:

∂ρ
′

∂t
+ρ0∇·u

′ = 0 (1.5)

ρ0
∂u

′

∂t
=−∇p

′
(1.6)

Further, assuming the flow is irrotational, potential function ∇φ = u
′

can be used to describe the
velocity field. Then Eqn.1.6 can be transformed to:

ρ0
∂φ

∂t
=−p

′
(1.7)

If the process of the compression and rarefaction is adiabatic, the relation between ρ
′

and p
′

is
linear:

p
′ = c2ρ

′
(1.8)
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CHAPTER 1. INTRODUCTION

（a）

（b）

（d）

（e）
（c）

Figure 1.4 – Rayleigh steaming under different acoustic or mechanical forcing and with different geome-
tries: (a) acoustic streaming in a square PDMS microchamber at f = 2.17MHz BRUUS [2007]; (b) streaming
flow around a vibrating metal beam inserted into the water/glycerine solution, f = 200Hz COSTALONGA

et collab. [2015]; (c) schematic presentation of a streaming flow in a two-dimensional rectangular chan-
nel LEI et collab. [2017]; (d) streaming flow around an acoustically excited bubble in a microchannel at
f = 16.8kHz WANG et collab. [2012]; (e) streaming flow around a vibrating cylinder immersed within a fluid
at f = 60Hz, the vortex contained by the red square mark refers to the inner streaming within the viscous
boundary layer, and the area out of the layer is dominated by the outer streaming or Rayleigh streaming
BAHRANI et collab. [2020]

where c means the sound velocity in the fluid. Thus based on Eqn.1.5 combined with Eqn.1.7 and
Eqn.1.8, we can get:

1

c2

∂2φ

∂t 2 =∇2φ (1.9)

For one-dimensional plane wave, the solution to Eqn.1.9 can be:

φ(x, t ) = Ae i (ωx/c−ωt ) (1.10)

where ω means angular velocity; ω/c = 2π/λ is known as the wave number, λ is wavelength of the
wave.

For the single frequency with appropriate coordinate reference, the expression of φ(x, t ) can
be:

φ(x, t ) = Acos(ωx/c)cos(ωt ) (1.11)

The velocity and pressure are:

u(x, t ) = ∂φ

∂x
=−A

ω

c
sin(ωx/c)cos(ωt ) = V(x)e iωt (1.12)

p(x, t ) =−ρ0
∂φ

∂t
= ρ0Aωcos(ωx/c)sin(ωt ) = p(x)e iωt (1.13)
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100μm100μm

(a) (b)

Figure 1.5 – (a and b) Streaming flow near a sharp edge in a microchannel excited by an acoustic field. (a) is
captured by Chuanyu ZHANG et al. and (b) is obtained from DOINIKOV et collab. [2020]

Here, we can see that the velocity and pressure in the oscillatory flow can be expressed as a linear
combination of the amplitude of V(x) and p(x) and periodic function e iωt . This will be used in the
following part to analyze the streaming phenomenon.

Navier–Stokes equations with dimensionless parameters

In fluid mechanics, Mach number Ma can be used to evaluate the compressibility of the fluid:

Ma = U/c (1.14)

where U means the local velocity; c refers to the sound speed in a fluid, for water c = 1482 m/s at
20 ◦ C. For the case in which the range of the displacement of the vibration source (from boundary
conditions or vibration of transducer material) resides in the scale of µm or lower, the maximum
local velocity U is much lower than c for frequency equal to or smaller than the order of MHz. In
these cases, Ma ¿ 1 and the fluid can be treated as incompressible.

Following the Riley’s review RILEY [2001], the NS equations for incompressible fluid can be
written as:

∂u
′

∂t
+ (u

′ ·∇)u
′ =−1

ρ
∇p

′ +ν∇2u
′

(1.15)

∇·u
′ = 0 (1.16)

in which the dimensionless factors are used as followings:

x = x
′
/a, t =ωt

′
,u = u

′
/U0,∇= a∇′

,ξ= aξ
′
/U0 (1.17)

where a, U0 refer to the characteristic length and velocity in the acoustic field respectively. With
these dimensionless parameters, Eqn.1.15 can be changed to:

∂u

∂t
+ U0

ωa
(u ·∇)u =− 1

ωρaU0
∇p + U0

a2 ∇2u (1.18)

taking the curl of Eqn.1.18 to eliminate the pressure term:

∂ξ

∂t
+ε∇× (u ·∇)u = ε

R
∇2ξ (1.19)

where ε = U0/ωa and R = U0a/ν. By introducing the stream function: u = ∇×ψ, Eqn.1.18 be-
comes:

∂∇2ψ

∂t
−ε

∂(ψ,∇2ψ)

∂(x, y)
= ε

R
∇4ψ (1.20)
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Analytical solution of streaming flow

For most studies, perturbation method is used to analyze and solve the streaming phenomenon.
And in most situations involving the Rayleigh streaming with relatively high frequency ω, the term
ε can be treated as a very small parameter, namely ε = U0/ωa ¿ 1. For example, within a simple
channel like in Fig.1.4(c), U0 and a refer to the amplitude of acoustic vibration in terms of velocity
and width of the channel (ranging from 200µm to 1mm) respectively. From the previous perspec-
tive of application and engineering, transducers activated with frequency ranging from 50kHz to
several MHz, associated with the vibration amplitude in terms of spatial scale aω at several µm or
nm, can provide a relatively more stable and controllable acoustic field into a focus field. In such
cases:

ε= U0/ωa =π f aω/2π f a = aω/2a ¿ 1 (1.21)

So ε is assumed to be a very small parameter in most previous studies; while in this thesis, this
assumption is not true within the local area near the tip of the sharp edge structure.

With ε ¿ 1, it is possible to introduce the perturbation method, and the expressions of the
small parameter expansion of velocity field u(x, y, t ), vorticity field ξ(x, y, t ) and stream function
ψ(x, y, t ) for a two-dimensional domain are as followings:

u(x, y, t ) = u0(x, y, t )+εu1(x, y, t )+ε2u2(x, y, t )+ ..... (1.22)

ξ(x, y, t0 = ξ0(x, y, t )+εξ1(x, y, t )+ε2ξ2(x, y, t )+ .... (1.23)

ψ(x, y, t ) =ψ0(x, y, t )+εψ1(x, y, t )+ε2ψ0(x, y, t )+ .... (1.24)

substitution of these expansions into the momentum equations above like the stream function
equation gives the leading order equation, by scale order analysis:

In main area
∂∇2ψ0

∂t
= 0 (1.25)

In stokes boundary layer
∂

∂t
(
∂2Ψ0

∂η2 ) = 1

2

∂4Ψ0

∂η4 (1.26)

where the domain is separated into an area far away from the boundary layer and another one
within the boundary layer. And new dimensionless variables are defined: ψ = ( 2ε

R )1/2Ψ and y =
( 2ε

R )1/2η, and η is the coordinate variable along y direction. With the perturbation method, the
leading order equation can be treated without considering the nonlinear convective terms, which
make it possible to solve the equation analytically, here we get the analytical solution of ψ0 within
the boundary layer:

Ψ0(x, y, t ) = U(x)[η− 1

2
(1− i )×1−e−(1+i )η]e i t (1.27)

Further, to the order O(ε) within the boundary layer:

1

2

∂4Ψ1

∂η4 − ∂

∂t
(
∂2Ψ1

∂η2 ) = ∂(∂2Ψ0/∂η2,Ψ0)

∂x,η
(1.28)

taking time-average of Eqn.1.28, we get:

1

2

∂4Ψ1

∂η4 =< ∂(∂2Ψ0/∂η2,Ψ0)

∂x,η
> (1.29)

Here, the expression in term of velocity u, corresponding to the right term < u · ∇ > u∗ is called
Reynolds Stress Force. Based on Eqn.1.29, the slip velocity can be obtained:

usl i p =−3

8
[(1− i )U∗ dU

d x
+ (1+ i )U

dU∗

d x
] (1.30)

where U∗ is the complex conjugate of U; usl i p is the driving mechanism for the steady streaming
in the bulk fluid and is usually used as the value to characterize the streaming.
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Simulation Model with perturbation method and direct solving NS equations

The above process above attempts to analytically find out the solution of the streaming field with
perturbation theory. With the development of Computational Fluid Dynamics(CFD), more and
more studies rely on simulations to analyze the streaming phenomenon in complex geometries
for which it is almost impossible to obtain any accurate analytical solutions. For the mathemat-
ical model of simulations in most studies, mostly utilizing the above process with a perturbation
theory framework, in an incompressible fluid, the physical fields can also be assumed to be a com-
bination of separate fields with very different scale orders. As shown in Eqn.1.12 and Eqn.1.13, in
a periodic vibration field, the velocity and pressure field can be treated as spatial functions of am-
plitude linearly with a periodic term e−iωt . Here, the velocity and pressure can be:

v = vae−iωt + vs (1.31)

p = pae−iωt +ps (1.32)

where vae−iωt and pae−iωt correspond to the oscillatory field and vs and ps refer to the steady
streaming field.

For an incompressible fluid, the N-S equations are:

∂v

∂t
+ (v ·∇)v =−1

ρ
∇p +ν∇2v (1.33)

∇·v = 0 (1.34)

Taking Eqn.1.31 and Eqn.1.32 into Eqn.1.33 and Eqn.1.34, we obtain:

iωva + (v s ·∇)v a + (v a ·∇)v s =−1

ρ
∇pa +ν∇2v a (1.35)

(v s ·∇)v s + 1

2
Re[(v a ·∇)v∗

a] =−1

ρ
∇ps +ν∇2v s (1.36)

∇·v a = 0 (1.37)

∇·v s = 0 (1.38)

where Eqn.1.35 stands for the unsteady part of the momentum equation (periodic term e−iωt has
been left out), and Eqn.1.36 is the steady part. Here, Fs = 1

2 Re[(v a · ∇)v∗
a] called Reynolds Stress

Force, as we mention above, is a steady force source by oscillatory motion vae−iωt . Re[·] means
only real part of the expression. As the assumption for perturbation method: va À vs , (v s ·∇)v a +
(v a ·∇)v s can be neglected because of smaller scale order, then:

iωv a =−1

ρ
∇pa +ν∇2v a (1.39)

(v s ·∇)v s +Fs =−1

ρ
∇ps +ν∇2v s (1.40)

va , amplitude of the oscillatory motion, is solved from Eqn.1.39 combined with Eqn.1.37, similar
to the process from Eqn.1.9 to Eqn.1.12 in the last section. After solving out the oscillatory field,
Fs can be calculated and then steady streaming velocity field can be obtained by solving Eqn.1.38
with Eqn.1.40. Although the classical perturbation method has been widely applied in the stream-
ing studies, its assumption is invalid in some cases, which will be discussed in the following. Beside
the perturbation method, directly solving NS equations (DNS) is another solid method.

Instead of separating the steady motion from the oscillatory parts and solving step by step like
Eqn.1.39 and Eqn.1.40, DNS method means solving Eqn.1.35-1.38 simultaneously with periodic
boundary conditions v = vae iωt . Then the steady streaming velocity field can emerge by taking
the time average of the time-dependent solution. Compared with the perturbation method, DNS
takes the coupling between steady va and vs into consideration. In this thesis, the DNS method is
adopted to predict the streaming field. The details of this method are presented in the next chapter
”Methodology”.
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Failure of perturbation method

Let’s go back to the dimensionless number ε= U0/ωa in the last section and put the Eqn.1.19 here
again:

∂ξ

∂t
−ε∇× (u ×ξ) = ε

R
∇2ξ (1.41)

where ∇× (u · ∇)u = −∇× (u × ξ). Here it is clear that the scale order of ε decides the weight of
nonlinear term in the equation, which means that ∇× (u × ξ) ∼ Fs ∼ O(ε). However, the basic
assumption of the perturbation method is that nonlinear terms in the equation are much smaller
than other parts in terms of scale order, namely ε ¿ 1. In most situations where the frequency
ω and characteristic length a are relatively large, such assumption can be satisfied. As shown in

𝑤𝑤 𝑤𝑤

Parallel wall with sharp edge structure Parallel wall without sharp edge structure(a) (b)

Figure 1.6 – Schematic of geometry with and without sharp edge structures

Fig.1.6, for geometries with and without sharp variation of wall, the characteristic length a might
be very different. For Fig.1.6(b), the classical channel with two parallel wall structure to study
streaming, a is equal to the width of the channel, a = w ∼ 500µm. But for Fig.1.6(a), for most
area between two parallel wall, a ∼ O(w), except that near the tip of the sharp edge where a ∼
2rc ∼ 10µm. Although with the frequency f ∼ MHz, the assumption ε ¿ 1 can still be satisfied
with amplitude U0 at MHz, for geometry like Fig.1.6(a) with f ∼ kHz and U0 ∼ 50 mm/s, at least
in the area near the tip, the ε is comparable to the unit 1, ε ∼ o(1). This means the convective
term ∇× (u × ξ), of which the ε is the weight factor, can’t be neglected during the solving process.
Hence very strong streaming can be induced near the tip OVCHINNIKOV et collab. [2014]; ZHANG

et collab. [2019] and coupling of oscillatory and steady motion are directly observed i experiments
by ZHANG et collab. [2019]. In such a situation, it’s reasonable to say that solving the oscillatory
motion by neglecting the nonlinear terms in NS equation will bring a considerable error in further
simulating the streaming flow.

Formation of streaming near the sharp edge structure: from the perspective of Womersley Num-
ber

Sharp variation of geometry not only leads to the invalidation of perturbation method, but also
is a indispensable condition for inducing the streaming velocity near the sharp edge. Here we
introduce the Womersley Number α , which represents a ratio of transient inertial to viscous force
for vibration flow with a certain frequency, to analyze the formation of streaming:

α2 = transient inertial force

viscous force
= ρωU

µUa−2 = a2

ν/ω
(1.42)

α= ap
ν/ω

= a

δ
(1.43)

where a is the characteristic length scale, near the tip of sharp edge, a = 2rc , and δ refers to the
thickness of boundary layer, shown in the Fig.1.6(a). As we know, formation of streaming comes
from the dissipation of acoustic energy within boundary layers (for Rayleigh streaming). When
α¿ 1, corresponding to a very sharp curvature compared with δ, viscous force dominates the area
and much more acoustic energy is dissipated here to generate streaming flow. On the contrary, for
area far away from the tip, where a = w , αÀ 1, transient force dominate the vibration flow.
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Viscosity

As discussed above, viscosity of fluid plays an important role in the streaming flow. In many situ-
ations, existence of viscosity is the only source of attenuation of acoustic wave, which allows the
gradient of flux momentum and drives the streaming flow. One the other hand, viscosity is also the
main resistance to the extension of the streaming flow out of viscous boundary layer. So without
regard to the specific acoustic field, it is not easy to determine the influence of the variations of
the kinematic viscosity coefficient ν on the streaming flow. For the classical problem of streaming
study, where standing wave is built up between two parallel wall, as early as the first analytical
solutions of the streaming field by RAYLEIGH [1945], the maximum value of the streaming velocity
was independent of value of the coefficient of viscosity even though it’s origin can be attributed
to fluid viscosity. Later, in the study of NYBORG [1958], with regard to the plane wave between
parallel walls with no-slip boundary conditions, it was demonstrated that ν could be cancelled
out in the final analytical solution and this restated the comments of Rayleigh, the "limiting veloc-
ity"(streaming velocity along the viscous boundary layer) is independent of viscosity coefficient
ν. The theory developed by Rayleigh and Nyborg has become a classical treatment and a domi-
nant tool for researchers to investigate the streaming flow driven by attenuation within the viscous
boundary layer.

However, as pointed out by NYBORG [1953] and LIGHTHILL [1978], the classical treatment
might not be valid in situations where the acoustic energy is not attenuated only within the viscous
boundary layer; the curvature of surface between fluid and solid becomes great; the local acoustic
power is very high and the inertia effect of the streaming flow can’t be neglected. When the acous-
tic field fails to satisfy the assumptions, the influence of the viscosity on the streaming flow has to
be considered. Like the Eckart streaming, where propagating acoustic waves induce a streaming
flow far from the walls, as shown in Fig.1.3, the fluid viscosity and other properties significantly
affect the acoustic attenuation coefficient and then the intensity of the steady streaming flow.

As has been discussed in section 1.1.3, the existence of sharp edges puts the validation of the
classical Rayleigh streaming theory into questions. It is reasonable to have a judgement that the
influence of viscosity on SEAS might be different from the classical one.

1.2 Micro- and mini-fluidics

In general, microfluidic systems manipulate and control fluids that are geometrically constrained
within environments having internal dimensions, or hydrodynamic diameters, at a scale of mi-
crometres ELVIRA et collab. [2013]. The motivation behind the development of microfludic is
inspired by its advantages: i) distinct cost advantage in small volumes of precious liquids (like
chemical or bio reagents) where minimal volumes are sufficient for analytical purpose; ii) the pos-
sibility to carry out accurate manipulation of small particles (like biological cells) and to provide
precise management of the reaction or process environment over the local conditions in the mi-
crofludic systems; iii) potential way to transform the microfludic system from Lab to industrial
applications by using parallel reactors system (numbering up rather than scaling up); iv) safety.
More generally, the above advantages are qualified as Process Intensification (PI) technology. PI
refers to enhanced mass and heat transfer in the development of high performing process devices
with significant benefits.

However, on the other side, the above benefits are usually counteracted by some disadvan-
tages typical from low Reynolds number flows. More specifically, within small dimension and
constrained geometries, the flow pattern within a microfluidic is dominated by laminar-plug flow
(Reynolds number is generally lower than 10, down to much lower than 1 with some highly viscous
fluids). For this reason, mixing enhancement is always troublesome in the microfluidic and is lim-
ited by ineffective mass transfer rate, especially along the cross-section direction of the channel.
To overcome such problem, additional techniques, like acoustic vibrations, should be introduced
into microchannels to make them more competitive.
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1.2.1 Application of acoustic in microfluidics

Acoustofluidics, consisting of the actuation of fluids with acoustic waves, usually in particular
within microfluidic channels, has been used in various areas. Fig.1.7 illustrates several examples
of mechanisms and tasks such as particle manipulation, microswimmers, pumping, etc., applied
to sensor technology, among others.

(a) (b) (c)

(d) (e) (f)

Figure 1.7 – Applications of acoustic techniques in several areas: (a) Biosensor with surface acoustic waves;
(b) Particle sorting with streaming flow along the channel wall; (c) Particle sorting by radiation force; (d)
Micro-pumping driven by the streaming flow near the bubble; (e) Swimmer driven the streaming near a
sharp tail; (f) Circulation flow induced by the SEAS in a closed microchannel.

• Sensor technologies

Fig.1.7(a) presents a basic surface acoustic wave biosensor which is integrated in a sample
flow with Input Interdigitated Transducers (IDTs). Specific analytic molecules can be im-
mobilized on the device from the sample stream. Captured molecules in turn influence the
acoustic velocity field and thus generate output signals LÄNGE et collab. [2008] that can be
correlated to its concentration within the sample. Based on this principle, quartz crystal
microbalances are developed to monitor the growth of the material and biological tissues
FRIEND et YEO [2011]. In addition, quartz crystal microbalances are useful to characterize
fluid viscosity and density properties.

• Particle manipulation

For higher acoustic frequency, usually in the ultrasonic range, radiation force and streaming
flow simultaneously exist in a acoustofluidic device. Using these two forces to create spe-
cific momentum gradients, various strategies have been developed to manipulate particles
within a mainstream flowing through a microstructure. As shown in Fig.1.7(b), when IDTs is
on, the streaming induced along the upside wall drives the droplets to the lower channel of
the branch FRANKE et collab. [2009]. Based on the same principle, particles sorting can also
be achieved as shown in Fig.1.7(c), where particles moving along a wall are concentrated on
the node part of wave through the radiation force within the acoustic wave field AUGUSTS-
SON et collab. [2009].

• Process engineering

More and more acoustic technologies are applied to chemical microreactors, especially to
the preparation phase, i.e., the mixing of reactants. The details will be discussed in the fol-
lowing section.
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• Other applications

Recently, the development of acoustics enables more interesting trails in Lab on Chip area.
Like in Fig.1.7(d) RYU et collab. [2010] shows a novel kind of pump based on the bubble
streaming induced by PZT. The bubble atop the PZT materials is acoustically excited at its
resonance frequency. Only the upward flow of vortex streaming enters into a capillary tube.
Inspired by the streaming flow around the sharp edge, a sharp-edge swimmer has been de-
signed like in Fig.1.7(e). In the acoustic field, streaming plays as the fluid jet out of the tips
of the tails to push the particle following certain direction KAYNAK et collab. [2017]. Another
kind of acoustofludic pump is shown in Fig.1.7(f), in a closed loop with inclined sharp edge
arrays under the acoustic vibration, certain cycle flow driven by streaming flow on one side
can be generated HUANG et collab. [2014].

1.2.2 Mixing process in microchannel

As discussed above, characterized by a typical dimension less than one millimeter, a microchannel
in which the dynamics of flow is usually restricted in a low-Reynolds level, faces several challenges,
like inducing any mass or heat transport in the direction transverse to the main flow, which is gen-
erally strongly diffusion-limited. So mixing is an important aspect in improving the efficiency of
various chemical reactions at high enough throughput. Specifically, in a Y type microchannel,
two parallel flows, injected separately in a microfluidic channel, will stay separated and mix very
slowly with each other, because of the laminar flow conditions that commonly exist in such a sub-
millimeter domain. In most microfluidic systems wherein chemical reactions take place, however,
one of the major issues is the time required for the reactants to develop a large enough contact
surface with each other and to mix efficiently BENGTSSON et LAURELL [2004]. Therefore, it is diffi-
cult to ensure the homogeneity of fluids which is a basic but vital requirement, for many potential
application of microchannel. So mixing is an important aspect in improving the ability to deliver
sufficient reactants and the yield of many chemical reactions.

Because most microfluidic flows are laminar and thus the mixing predominantly relies on dif-
fusion, chemical reactions upon which most practical applications rely proceed very slowly even
though the diffusion distances are smaller than for bench-top-sized reaction vessels. The methods
available to mix fluids chaotically at the microscale are typically separated into passive and active
mixing.

• Passive mixer

Here mixing is simply a consequence of the fluid passing through the device. It is ostensibly
attractive because such mixers do not require a separate power source and or complexity in
design to incorporate extra mechanical or electro-mechanical components. Passive mixers
rely on the structure of the channel itself to reduce the diffusion distance between multiple
miscible fluids. However, passive mixers can be difficult to fabricate at small scales because
of the intricate design usually required to achieve effective performance while avoiding un-
acceptably high losses.

• Active mixer

Active mixers usually displace the required complexity from the fluid structure to external
sources FRIEND et YEO [2011]. It accelerates mixing by bringing energy from outside the
channel into the fluid, for instance with magnetic fields, mechanical motions or acoustic
vibrations etc. This type of mixer might achieve very high mixing efficiency within very
short residence time or distance. Though, the coupling of such an outside field with the
microchannel flow might cause more complexity on the system.

Recently, many attempts and studies focusing on passive or active micromixing can be found.
For example, the continuous oscillatory baffles reactor (COBRs) designed by AVILA et collab. [2020]
achieves good mixing quality through combining the oscillatory flow (active method) with baffles
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(passive method) inside the reactors. Fig.1.8(a) shows a classical passive multi-lamellae mixer.
The thickness of each specie diminishes, with compressing solutions from numbers of sources
into one channel within a short distance. During such a process, the diffusion distance for mixing
is significantly reduced; Another common method relies on the periodic injection from different
solutions into one channel like Fig.1.8(b). With this method, each miscible solution is on purpose
segmented into small parts, which is surrounded by another part, giving rise to much larger inter-
faces. Fig.1.8(c) presents another active mixer using bubble-vibration-induced streaming inside a
mixing chamber. A bubble with certain size is fixed on one side of chamber. Activated by the PZT
material on the bottom, significant streaming vortices around the bubble cause strong advection
flow between separate solutions. Fig.1.8(d) describes an continuous mixer. The high-speed side
flow squeezes the inlet flow into a very thin stream. The width of the inlet flow can be reduced to
a size as small as 50 nm. At such small length scales, molecules from the both side flows rapidly
diffuse across the stream, making for fast mixing. Intensification of the mixing in a common Y
type microfluidic channel has also been studied, as in Fig.1.8(e). A horse-shoe type structure is
designed to fasten the bubble between two solutions. Close to the transducer, strong streaming
vortices bring in the advection between two solutions, thus accelerate the mixing process. In sum-
mary, passive mixers do not require any external source but they require either the fabrication of
highly complicated structures or relatively long channels.

For some mixers which introduce the specific mixing part into the system, as Fig.1.8(b), a draw-
back of these solutions is that the mixing often is separated from the rest of the system. There-
fore, the system might require redesigning and this can increase the dead volume of the system
BENGTSSON et LAURELL [2004]. The mixing process with the help of acoustic field can often avoid
such problem since the integration between vibration source (piezo-transducer) and the channel
system is usually contactless.

Three time parameters in a mixing process

In typical quantitative study of a micromixer, three times are closely related to a micromixing pro-
cess: i) diffusion time, ii) residence time and iii) micromixing time.

• Diffusion time

The approximate average time for a small portion of fluid to diffuse over a distance L can be
estimated by

td = L2/D (1.44)

where D is the mass diffusion coefficient of the liquid, L is the diffusion length. The above
equation can be used to predict the order of time-scale of mass diffusion. As it suggests, one
can dramatically reduce the mixing time by reducing the diffusion length required for mix-
ing or increasing the contact area between two different liquids while keeping the volume
constant.

• Residence time

The terms "contact time" or "residence time" tr are used primarily in discussions of contin-
uous flow processes. They represent the average duration that it takes for a fluid element
to travel from the reactor inlet to the reactor outlet HILL. For stirred tank reactors or other
reactors there should be a distribution of residence times for the different fluid elements.
However, for plug flow reactors, like the conditions in this thesis, all fluid elements will have
the same residence time. The residence time is an important parameter while evaluating the
mixing performance in the chemical reactor. If the time required for local mixing is longer
than the actual residence time that a fluid element stays in the mixer, the process cannot
provide a complete mixing, and it fails its designed purpose.

For a microchannel structure, tr can be determined by the internal reactor volume and the
flow rate:

tr = Vc /Qc (1.45)
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where Vc is the volume of the microchannel and Qc refers to the volume flow rate through
the system.

• Micromixing time

The micromixing time tm is used to characterize the time of local mixing process, at the
molecular level. It is usually measured in the mixing process where two parallel chemical
reactions (like the Villermaux-Dushman reactions, two neutralization reactions with differ-
ent kinematic of reaction, discussed later) proceed with very different reaction time. Based
on the certain ions concentration in the final solution, the micromixing time can be calcu-
lated. A shorter tm means better local mixing and homogeneous distribution of reactants
as fast as the reaction kinetics. Otherwise, if the micromixing time is long, the local con-
centration of one reactant becomes excessive, which gives opportunity for the undesirable
slow reaction go on simultaneously with the fast one. Since this procedure is irreversible,
the production of the parasite product thus increases with long tm . It is clear that the mi-
cromixing time is only influenced by the kinematic constants of two competitive reactions
and local concentration distribution of those reactants, independently of the specific way
in which the mixing process proceeds. So it is an important performance indicator to make
direct comparison between various mixers.

Now, a simple comparison can be made between the td and tr : for the microchannel in this
thesis, the diffusion length L is equal to the width of the channel, 0.5mm. With D = 2.39×10−9m2/s,
the diffusion time td ≈ 104s, while the residence time is as short as tr ≈ 2s. Hence, td ¿ tr , which
means that only by pure diffusion process, the mixing of the studied 0.5*0.05*7 mm microchannel
is far from being satisfactory.

Determination of mixing performance

Flow visualization
Generally, the simplest and most common way to evaluate mixing performance in a microstruc-

ture is done by direct visualization of the flow. This measurement usually comes with mixing be-
tween diluted-dye and transparent streams for which the optical changes can be related to the
variations of the dye concentration through Beer-Lambert law. In most situations where the dye
concentration is low enough, the Beer-Lambert law gives a linear relation between concentration
and grey level, so that one may directly use normalized grey level to quantify concentration. In
addition, microscope and high-speed camera are indispensable tools for capturing the instanta-
neous or steady optical configuration throughout the experiments.

With visualization results, the Mixing Index M can be used to characterize the mixing at spe-
cific positions using:

M =
√√√√ 1

N

∑N
i=1(Ii − Im)2

I2
m

(1.46)

where Ii is the grey level value of ith pixel; Im is the average grey value of N pixels which refers to the
specific area focused in the mixers. M = 1 means totally segregated fluids while M = 0 represents
perfect mixing.

Another way of interpreting and quantifying macromixing performance, instead of measuring
for the whole volume, is to make concentration profiling along the channel’s cross section or per-
pendicular to the direction of main throughput. Depicting such concentration profiles in various
positions gives a spatial evolution of mixing with detailed information.

Despite its wide application and convenience, the main disadvantage of such measurement
resides in the fact that the color configuration is an average of the layers stacked along height path
through the fluid. This can result in an overestimate of mixing performance when the state of
intertwining lamellae of solution is treated as uniform one from height perspective.
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（a）

（b）

（c）

（d）

（e）

Figure 1.8 – Passive and active mixers in the previous studies(a) Multi-lamina (b)Periodic injection (c) bub-
ble streaming (d) Quenched by Side flow (e) bubble streaming within the Y type mixer.

Micromixing characterization
One of the most frequently applied competitive reactions for characterizing the mixing ef-

ficiency is the Villermaux-Dushman reaction FOURNIER et collab. [1996]. This method, initially
proposed to characterize micromxing in the traditional stirred reactor now has become an exten-
sive method to evaluate the continuous mixers FALK et COMMENGE [2010]. Micromixing time, a
concentration-free feature measured through this method can be used to compare different kinds
of mixers. Hence, it has been extensively used to evaluate micromixing performance of micromix-
ers COMMENGE et FALK [2011], or to study other continuous microchannel with mixing functional-
ity through simulations and experiments FONTE et collab. [2020]. This reaction scheme, involving
the neutralization of dihydroborate ions (R1, Eqn.1.47) and a redox reaction (R2, Eqn.1.48), is sen-
sitive to mixing at the molecular level through the formation of Iodine (I2) molecules:

H2BO −
3 +H+ −−*)−− 3HBO3 (1.47)

5I−+ IO −
3 +6H+ −−*)−− 3I2 +3H2O (1.48)

I2 + I− −−*)−− I −
3 (1.49)

Once the molecular Iodine is generated (due to ineffective mixing), an equilibrium is established
between the iodine and the iodide ion that results in the formation of the tri-iodide ion, I –

3 ,
through R3 (Eqn.1.49).
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Reactions R1 and R3 are quasi-instantaneous; while reaction R2 is by several orders of mag-
nitude slower than the two others. Within a perfect mixing process, the product distribution is
solely governed by the chemical kinetics and most H+ are consumed by H2BO –

3 , resulting in no
or very small iodine production. On the other hand, a significant amount of iodine occurs under
bad mixing conditions, which can be attributed to a local excess of H+, not only being consumed
by reaction R1, but also taking part in the reaction R2 and R3. Under the later condition, tri-iodide
appears in the final product and its concentration can characterize the micromixing process. The
whole process is thus considered as a chemical probe to assess the micromixing rapidity. The ad-
vantage of competitive reaction resides in the possibility to quantify the micromixing time, which
allows to make a direct comparison between different types of micromixers based on the same cri-
teria. On the other hand, in some situations, a change of reactant concentrations leads to very high
product concentration which results in spectrometer saturation. So it requires the adjustments of
the reactants concentrations for each specific experiment.

Details and parameters in the micromixing process will be presented in the next chapter.

1.3 Question to answer in this thesis

1.3.1 Mechanism of Sharp Edge Acoustic Streaming (SEAS)

As discussed above, strong streaming phenomenon observed near a sharp edge cannot be simply
formulated and explained by the classic Rayleigh streaming theory, which remains valid only if the
local radius of curvature of the walls is always larger than the boundary layer thickness. Moreover,
as mentioned in Section 1.1.3, in a confined microchannel, the presence of a sharp edge results in
inhomogeneous vibration of fluid. The transmission of acoustic field from solid to liquid is thus
complex and multi-physic. Furthermore, the physical mechanism of the SEAS with respect to the
sharp edge structure is not fully clear.

In particular, the vibration conditions required to generate significant streaming need more
quantitative measurements. The available literature only provides the electrical input into trans-
ducers (mainly excitation frequency and input voltage) which is not a direct physical parameter
to understand and quantify the generation of streaming. The pioneering study from T.J. Huang’s
group HUANG et collab. [2013] attributes the induced streaming flow to the mechanical vibrations
of the sharp structures induced by a transducer stuck on the microchannel wall. Such a vibration
was indeed observed with high-speed imaging, and it raises the question on the adaptation of the
sharp edge geometry to the prescribed frequency in order to ensure a resonance condition. In the
current thesis, an oscillating flow was prescribed to the whole fluid, which also generates strong
streaming around the sharp tip, but without the constraint of operating at a specific frequency.
Although OVCHINNIKOV et collab. [2014] suggests that both situations should in principle lead to
similar streaming flows, the first-order fluid oscillations should be different between the two situ-
ations. Other experimental parameters such as clamping, transducer type and quality can make
reproducing challenging. As a result, the physical interpretation of the fluid–wall interaction in a
confined mini/micro-fluidic structure under acoustic excitation, as well as its influence on acous-
tic streaming generation and mass transfer performances is of fundamental scientific interest

Then, although both experiments HUANG et collab. [2013] and simulations NAMA et collab.
[2014]; OVCHINNIKOV et collab. [2014] confirm the AS intensity depends on the sharpness of the
tip, none of them dissociates the tip angle from the curvature diameter 2rc , as shown in Fig.1.6,
both of which being a sign of sharpness. The difficulty is that in practice, the micro-lithography
techniques make these two quantities related with each other. Therefore, only numerical simula-
tions could help to tackle this challenging question.

Last, while most studies on acoustic streaming generated around obstacles concern situations
where ρ ¿ 2rc and that of OVCHINNIKOV et collab. [2014] deals with the opposite situation (ρ ¿
2rc ), it is unclear how the crossover between the two situations takes place.

From a theoretical point of view, sharp-edge AS remains a ground for a nonlinear framework
in acoustofluidics equations. Indeed nonlinear terms coupling the steady and periodic velocity
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fields can become dominant, or at least non-negligible, a feature which in turn makes the classical
perturbation theory no longer adapted. This situation is the consequence of that, as mentioned
above, the streaming velocity can be locally as strong as the vibration velocity ZHANG et collab.
[2019].

1.3.2 Characterizations of SEAS

Features of SEAS include magnitude of streaming velocity, disturbance distance to the main flow,
vortices size and shape, as discussed in Section 1.1.2. With different geometrical conditions (tip
angles associated with curvature diameters 2rc ) and different channel throughput, SEAS charac-
teristics change. Questions remain to be answered regarding how SEAS varies with different acous-
tic intensities and experimental or geometrical conditions.

As the local characteristic length scale is comparable to the Stokes layer, with a constant local
geometrical structure, the ratio between them is strongly affected by fluid property, mainly the
viscosity ν. The excitation acoustic frequency f also has influence, according to the expression of

the Stokes layer thickness: δ=
√

2ν
ω . With a frequency in the audible range, relative small change of

ω can lead to a sensible variation of boundary layer thickness, which further influences SEAS. How
SEAS varies with different fluid and excitation conditions should also be addressed attentively.

1.3.3 Application: SEAS micromixer

SEAS is a jet-like flow at the transverse direction of the main flow, and it actively brings distur-
bances into the fluid. This makes SEAS a very promising tool to disturb the flow through the chan-
nel. In this thesis, utilizing the SEAS disturbances to improve the mixing process will be investi-
gated. The mixing performances, including both macro- and micro-mixing, as well as involving
microchannel from a single sharp edge to a pattern of multiple sharp edges, will be quantified.
One main question consists in finding the optimal configuration of multiple edges to achieve ef-
ficient SEAS-assisted mixing. Once the best structure is identified, the mixing performance vari-
ation with different excitation conditions and throughput will be characterized and compared to
those of passive mixers reported in the literature.

In particular, from a micromixer application perspective, evaluation of micromixing perfor-
mance of SEAS through parallel chemical reactions (mainly based on micromixing time), to the
best of our knowledge, is still absent in the literature. Micromixing time allows a direct compari-
son with other type of micromixers (both passive and active), in terms of mixing performance and
energy cost.

Finally, from a methodology point of view, as discussed in Section 1.1.3, the simulations of
SEAS with perturbation method can bring in considerable errors, especially under large acoustic
intensity. Developing appropriate numerical scheme to resolve the acoustic-hydrodynamic-mass
transfer coupling phenomenon is of high reference value for other acoustofluidics researches.
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2.1 Experimental characterization

2.1.1 Prototype preparation

The Y-shaped Polydimethylsiloxane (PDMS) channel is designed by 2D photo-lithography. First, a
mould made of SU8 negative photoresist was fabricated: a 50 microns-thick SU8 liquid layer was
spin-coated on a silicon wafer. After a soft baking at 65°C, the resist was exposed to UV through
a photomask. The resist was then immersed in a developer bath and then hard-baked at 95°C.
Then, PDMS (Sylgard 184) was thoroughly mixed with 10% in mass of curing agent, degassed in
a vacuum chamber, and poured on the SU8 mould in order to constitute a 2.5 mm thick layer of
PDMS mixture on top of the wafer. The whole was put in a stove at 65°C during 4 hours.

bake

Magnetic stirrer

Remove air 
bubble

PDMS Sylgard 184 + curing agent  are mixed 

Plasma

The face of the block of PDMS with 
micro-channels and the glass slide are 
treated with plasma

Mixture is poured into the mold 
and heated at 65℃ for 4h

Once the PDMS is hardened, it 
can be taken off the mold. A 
replica of the micro-channels on 
the PDMS block is obtained.

After treatment, 
PDMS bonds 
closely to the 
glass slide

Piezotransducer is stunk 
beside the PDMS with 
glue 

air jet

Clean with isopropanol; 
dry with air jet

air jet

bake

SU-8 mold fabrication Microchannel fabrication

Figure 2.1 – Microfluidic chip preparation process: from SU-8 mold fabrication to the adhesion of PDMS
cured microchannel on glass slide

The PDMS microchannel was then sealed and stuck on a glass microscope slide after a 1 min
oxygen plasma treatment of both sides. The microchannel of a height of 50 µm was then formed
between the PDMS and the glass slide. The plasma treatment enables the microchannel to with-
stand the pressure from inlets without leakage. Key geometrical dimensions of the Y-mixer are
detailed in Fig.2.2. Sharp edges with different angles α (30º, 60º, 80º and 90º), as shown in Fig.2.3,
were fabricated from various moulds. Then, all channels were sealed similarly on glass slides, and
rapid cure epoxy adhesive was used to permanently glue the transducers on glass slides. It turned
out that the best acoustic coupling was obtained this way. The radii of curvatures of the different
tips were measured by visualization through a 120X microscope with five repeated measurements
of each angle. According to our measurement of the curvature diameter 2rc of the sharp edge, its
value ranges from 2.8 µm to 10.3 µm, which is shown in Fig.2.3 and Table 2.1. These values are
all smaller than the viscous boundary layer thickness δ=p

2ν/ω= 11.5 µm, with ν the kinematic
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viscosity of the fluid, and ω the angular acoustic frequency ω= 2π · f and f = 2.5 kHz.

𝑤

ℎ 𝛼

ℎ

𝑑
𝑤 𝑑/2

𝑙

Parameter
Channel with 

single sharp edge
Channel with multiple sharp 

edges

𝑤 500𝜇𝑚 500𝜇𝑚

𝑙 7𝑚𝑚 7𝑚𝑚

ℎ 180𝜇𝑚 180𝜇𝑚

𝛼 30°/60°/80°/90° 30°

𝑑 - 100𝜇𝑚/200𝜇𝑚/300𝜇𝑚

𝑛𝑖 1 24/12/8
𝑛 : number of sharp edges on one 
side in the channel 

𝑙: length of the channel

Figure 2.2 – Sharp-edge geometries in different steps of the study

60° 80°30°

90°

100𝜇𝜇𝑚𝑚 100𝜇𝜇𝑚𝑚 100𝜇𝜇𝑚𝑚

100𝜇𝜇𝑚𝑚100𝜇𝜇𝑚𝑚

Figure 2.3 – Microscopic view of different sharp edge structures

2.1.2 Experimental setup

Fig.2.4 shows our experimental setup as well as the microchannel geometry. In this thesis, two
types of microchannels are fabricated: one is Y-type channel with a single sharp edge on one side;
the other is Y-type channel with multiple sharp edges on both sides. The setup around the Y-
shaped microchannel (left in Fig.2.4) is composed of a syringe pump (Newtown Company & Co)
allowing the injection of fluid from two syringes, under well-controlled flow rate through the chan-
nel and via the two inlets. Meanwhile, the fluid flows out via the outlet and enters into a effluent
receiver (not shown in Fig.2.4). Three valves are fixed on the two inlet pipes and one outlet pipe.
A function generator (Model 33220A Arbitrary waveform generator, Agilent) with a home-made
adjustable power amplifier provides input to a piezoelectric transducer (Model ABT-455-RC, RS
Components). The voltages imposed on the transducer change from 0V to 60V. The transducer
is glued on a standard glass microscope slide (width*length*thickness: 26 mm * 76 mm * 1 mm)
through which the visualization is made using a binocular microscope together with a fast camera
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tip angle α(◦) 30 60 80 90
curvature diameter (µm) 2.8±0.3 5.8±0.4 7.1±0.4 10.3±0.6

Table 2.1 – Curvature diameter corresponding to different tip angles of the sharp edges

(MotionBLITZ Cube4, Mikrotron). The piezoelectric transducer (diameter 35 mm and thickness
0.51 mm, RS PCB Mount Magnetic Buzzer, 85 dB) delivers acoustic vibrations to the glass slide
and to the whole channel stuck onto it, at various resonance frequencies from about 0.2 kHz up
to 40 kHz, especially in range of 0.2 kHz to 3.5 kHz. The coupling of transducer with glass slide is
complicated at audible frequency. In experiment, we chose to operate at these resonance peaks
f , namely that at f = 2.5 kHz, for which strongest vibration is observed, then f = 1.2 kHz, f = 800
Hz . . . . It turns out that the best operating conditions in terms of streaming flow were obtained at
these frequencies.

Amplifier

Signal Generator 

Oscilloscope

Microscope

Piezoelectric 
transducer 

PDMS-glass 
Y-type channel 

Syringe pump

High-Speed 
Camera

PC

Microchannel with single sharp edge Microchannel with multiple sharp edges on both sides

(a) (b)

(c)

Figure 2.4 – Schematic of experimental setup (a) and its photo (b) with single or multiple sharp-edge chan-
nels in (c)

For the experiment without flowrate in the channel, the valves fixed on the inlet tubes and
outlet tube are closed to prevent the disturbances from outside. When throughput is needed, two
syringe pumps provide equal flow rate Qs through the two PDMS microchannel inlets. It should
be noted that hereafter the channel throughput Qc is defined as the flow rate in the main channel.
It is the sum of the two single inlet flow rates provided by each syringe (Qs), the latter being always
kept equal during the study.

The transducers are excited with periodic sinusoidal signal. After amplification, the available
range of peak-to-peak voltage is between 0 V and 60 V. It is important to notice that the speed
of sound (c) in water is 1430 m/s and that in glass is 4540 m/s, so the wavelengths of vibration
(λ = c/ f ) like at 2.5 kHz are respectively 0.57 m and 1.82 m. These values are far greater than
the scales of the channel, whose width is 0.5 mm and length is 25 mm. The acoustic wave, in
term of phase is therefore expected to be uniform in the whole channel. It’s worth noting that the
vibration coupling of the transducer and glass slide is very complex. Measurement of different
vibration amplitudes is shown in Section 2.1.3.
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Streaming velocity visualization

To visualize the flow, the fluid was seeded with fluorescent particles (green polystyrene micro-
spheres, diameter 4.9 µm and 1 µm, Thermo Fisher Scientific). Due to the limited sensitivity of
the high-speed camera, the best contrast and image quality were obtained by direct lighting with
white light, hence with the diffused light instead of the fluorescence-emitted light. To enhance
the contrast, a cold-light beam shined from the bottom of the glass slide. The depth of field of
the microscope lens was about 10 microns, five-times smaller than the channel depth (50 mi-
crons). Hence, after careful focal adjustments (based on finding the position that shows the maxi-
mal transverse velocity for a given flow rate), we obtained high fidelity pictures with clear focus.

Macromixing observation

Two fluids are fed into the two inlets for visualization purpose. The one is Methylene Blue dye
(Fisher BioReagents) diluted into deionized water. The other one is pure deionized water. The
concentration of Methylene Blue was adjusted so that the images kept unsaturated in terms of
grey scale at the strongest concentration.

Micromixing evaluation

The micromixing evaluation follows the Iodide-Iodate (or Villermaux-Dushman) protocol FOURNIER

et collab. [1996], involving two competing parallel reactions. Two reactants are prepared: one is
with sulfuric acid and the other solution contains I – , IO –

3 and HBO –
3 with well controlled concen-

trations.
Precautions are necessary in the choice of reactant concentrations with which the Absorbance

Unit (AU) given by the spectrophotometry under all operation conditions should fall in the range
0.1 < AU < 3. This is to guarantee the linearity in the use of Beer-Lambert law to determine the
molar concentration of tri-iodide yield. To this end, we adopt a trial-and-error approach to find
the best concentration choice, as shown in Table 2.2. Secondly, a micro-cuvette (Hellma, QS105,
50 µL) is necessary since the flow rate is as low as several µL/min.

[H+] [KI] [KIO3] [NaOH] [H3BO3]
C [mol/L] 0.03 0.016 0.003 0.045 0.045

Table 2.2 – Concentration set used to characterize micromixing

2.1.3 Measurement process and data treatment

Measurement of vibration

Generally, vibration field on the glass slide and in the microchannel varies significantly according
to factors like sticking style of transducers, position of transducers and structure of channel, etc.
This makes the vibration adjustment the most tricky and time-consuming part of the thesis ex-
perience. To our best knowledge, no study has been done to accurately investigate the vibration
of glass-slide with fluid-filled microchannel at audible frequency. So this brings in a great chal-
lenge to make a comparison between different structures or among various glass slides if uniform
vibration field can’t be ensured. In many papers of T.J. Huang’s group HUANG et collab. [2013];
NAMA et collab. [2016], they have presented the vibrating state of the tip of the sharp edge dur-
ing acoustic excitation and they treated the displacement of the tip as a parameter to characterize
the amplitude of vibration field in the channel. However, in our experiment, though with similar
setup, we consistently failed to observe the relative motion of the tip to other part of the wall in
our experiment.
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Chip vibration
We first attempted to use a laser vibrometer to quantify the chip vibration in three dimensions.

The measurement was done with a vibrometer (OFV-5000 Modular Vibrometer, Polytec), on an
optical table. For frequency of 3 kHz and input amplitudes, the vibration of the chip is measured.
As shown in Fig.2.5, for the position on the x-y surface of chip, the displacement and velocity at 60
V (maximum voltage in this thesis) are 0.5 ×10−8 m ∼ 3.5 ×10−7 m and 1∼7 mm/s. For the other
two surfaces, its vibration velocities are even smaller. Considering the magnitude order of SEAS
streaming velocity, 7∼60 mm/s, it seems that the vibration of surface of the chip is not the cause of
the streaming inside the channel or at least it cannot be the direct vibration parameter to analyse
the streaming. As discussed by DUAL et MÖLLER [2012], the coupling of piezoelectric materials and
chip is usually very complex, vibration of the surface of the chip, though it proves that the chip has
been excited by the piezotransducer stuck on it, it fails to help us further investigate the streaming
inside the channel. Instead, the focus should be fluid vibration inside of the microchannel, or at
least the stronger of the two vibrations.

Left side 
of PDMS

Right side 
of PDMS

A direction 

B direction 

Glass-slide

Vibrometer laser

(a) (b)

(c) (d)

x

y

Figure 2.5 – Measurement of vibration and displacement and velocity amplitude on the surface of glass
slide at 3 kHz. (a) position of measurement: two positions beside the channel (blue area) and A, B direction
perpendicular to two sides of the glass slide; (b) Doppler laser vibrometer is used to measure the vibration;
(c)(d) variations of vibration displacement and velocity with input voltages

Fluid vibration
To calibrate the vibration field, in this thesis, we try to use image analysis instead of trying to

directly control the vibration field. As shown in the zoom-in picture in Fig.2.6(a), with acoustic
excitation, the particles suspending in the fluid have the almost constant displacement (2A) in
the area far away from the tip. Note that the direction of the vibration is parallel to the wall. As
sinusoidal signal is added on the piezotransducer, we have:

2A =
∫ 1

2 f + n
f

n
f

va sin(2π f t )d t (2.1)

then va can be obtained by
va = 2A ·π f (2.2)
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Based on this method, amplitude of the vibration field can be determined. Fig.2.6(c) shows
the variations of the va with input voltage, and in the most range of input voltage except value
larger than 50 V, their relation is linear. In addition, because of the piezo hysteresis effect, different
change trend of the applied electric field may correspond to different displacement curve of the
piezotransducer material. For Fig.2.6(c), these data is measured with increasing voltage instead
of decreasing input value. This measure process is kept for all experimentations developed in
this thesis. However, as mentioned above, vibration field on the glass-slide can’t be controlled
currently, so relation like Fig.2.6(c) had to be calibrated for every structure studied.

0 10 20 30 40 50 60

0

50

100

150

200

250

2A 2A
2A

(a)

(c)(b)

Figure 2.6 – Measurement of acoustic vibration amplitude in fluid by direct visualization. (a) Zoom-in pic-
ture showing the displacement of particles in the fluid, stack of four images, corresponding to the real time:
one period 1/ f , exposure time 50 µs and fps = 10 000; (b) Streaming motion induced near the sharp edge
structure and (c) Variation of vibration velocity with input voltage

Measurement of streaming velocity

Since the streaming velocity near the tip can be of comparable magnitude to the vibration velocity,
which is different from most previous studies SQUIRES et QUAKE [2005], another challenge is to
observe and measure these two velocities separately. The following methods are used: first, to
detect the motion of the particles during one vibration period and compute the streaming velocity,
the frame rate of the camera is set to as high as 25 kHz and the exposure time as short as 25 µs.
Under this condition, any individual particle appears as a small sphere of a few pixels because the
exposure time is much smaller than the vibration period (1/ f = 400µs). As the schematic shown in
Fig.2.7, a total of ten pictures are captured for every vibrating cycle, making the visualization of the
acoustic vibration possible. To obtain the streaming velocity, we choose sequential images with a
time interval of one acoustic period to “hide” the vibration velocity, just like the red particles in the
Fig.2.7.

During the experiment, the pictures are continuously synchronized with the camera to the
computer. The vibration of particles has been recorded as videos as supplementary materials
of ZHANG et collab. [2019]. Images are processed with open source software ImageJ SCHNEIDER

et collab. [2012]. For vibration velocity, the particles’ displacements are directly measured from the
captured images, as shown in Fig.2.6. For the streaming field, the relative displacement of particles
at a given time phase of the vibration period and at given locations, allows the determination of
the velocity field. Successive frames are converted into an array of displacement vectors for each
particle by the software PIVlab THIELICKE et STAMHUIS [2014]. Second, summing the intensity of
the images of a number of frames allows clear visualization of trajectories and then the location,
form and sizes of vortices.
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Figure 2.7 – Schematic of measuring the streaming velocity

2.1.4 Mixing characterization

Macromixing evaluation

By observing the variations of the concentration of the blue dye across the channel width and
measuring the mixing extent along flow direction, we assess the effect of acoustic excitation on
the mixing process. To qualify the macromixing performance, two parameters are introduced in
this thesis: one is the normalized concentration to describe the concentration profile along the
width of the channel, as shown in Fig.2.8(a), which is to reflect the concentration profile at a spe-
cific position and another is the Mixing Index to present the mixing extent following throughput
direction, as in Fig.2.8(b). Mixing Index has beed defined in Eqn.1.46. The normalized concentra-
tion is obtained by:

Cn = ln
I0

I
/ln

I0

Ib
(2.3)

where Cn stands for the normalized concentration; I0 is the gray value of pure water; Ib is the gray
value of the unmixed blue dye liquid; I is the gray value of pixels.

Micromixing assessment and comparison

As mentioned in Introduction, measurement of micromixing parameters is based on the paral-
lel competitive reactions. In this thesis, Iodide-Iodate reaction is used, known as Villermaux-
Dushman method. As shown in the Fig.2.9, two solutions are injected into the channel, like the
process of the macro-mixing above. Once the two solutions contact with each other, chemical re-
action starts to proceed in the mixing area. The final solution out from the outlet is collected in
the high-precision ultra micro-cuvette (Hellma, QS105 model, 50 µL, light path 10 mm). Each test
is under steady-state condition. Furthermore the sample is collected as close as possible from the
channel outlet. Details of the chemical reactions appear in Appendix D.

Then the determination of micromixing parameters: Segregation Index outlined below and
Micromixing time in the microchannel can be separated into several steps:

a) Measuring the concentration of the I –
3 in the final solution;

b) Calculation of Segregation Index based on the concentrations of reactants in the initial
solutions before mixing and concentration of the I –

3 in the final solution after mixing;

c) Building up the relation between Segregation Index XS and micromxing time tm through
Model of Interaction by Exchange with the Mean (IEM).

Measuring concentration of I –
3
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Figure 2.8 – Macromixing performance visualisation in the microchannel: (a) concentration profile along
width (like in A1 A2 A3 position); (b) Mixing Index along throughput direction (like along A direction)

A spectrophotometer (Jenway 7310) is used to obtain the Absorbance A during the 353 nm
light travels through the final solution in the cuvette. Then concentration of the I –

3 in the final
solution can be quantified based on the Beer-Lambert Law, which relates the attenuation of light
to the properties of materials through which the light is travelling. To determine its concentration
from the Absorbance Unit given by spectrophotometer, we use Eqn.2.4:

CI −
3
= AU/ε353nml (2.4)

where AU is the Absorbance Unit (-) through the cuvette, ε353nm means the molar attenuation co-
efficient of tri-iodide ions at its peak absorptivity wave-length at 353 nm, ε353nm = 26047 L/(mol·cm),
l denotes the optical path length which is l = 10 mm in our case.

Calculation of Segregation Index

The Segregation Index (XS), which characterizes the ratio of consumption of acid ion H+ in two
reactions, is defined as:

XS = Y

YST
(2.5)
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Inlet 1

Inlet 2

Outlet

Solution 1:  𝐻 , 𝑆𝑂

Solution 2:  𝐼 , 𝐼𝑂 , 𝐻𝐵𝑂

Fast mixing 

Bad mixing 
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0.6

spectrophotometerultra micro-
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Figure 2.9 – Schematic of Iodide-Iodate reactions used to micromixing characterization of SEAS micromixer

Calculation of Y and YST from the concentration of reactants as well as that of the tri-iodide
yield follows Eqn.2.6 and 2.7 GUO et collab. [2013]. More specifically, Y is the ratio of acid ion H+

consumed by reactions R2 (Eqn.1.48) and R3 (Eqn.1.49) and its initial concentration in the mixture.
C represents the concentration of ions and Q1, Q2 stand for flow rates of different solutions, in this
study Q1 = Q2. YST is the higher limit of Y in the total segregation case, also based on the initial
boric acid and iodate ions concentrations. Details of calculation are given in Appendix D.

Y =
2(MI2

+MI−3
)

MH+,0
= 2(CI2

+CI−3 )(Q1 +Q2)

2CH2SO4
Q2

(2.6)

YST = 6MIO−
3 ,0/MH2BO−

3 ,0

6MIO−
3 ,0/MH2BO−

3 ,0 +1
= 6CIO−

3 ,0Q1

(6CIO−
3 ,0 +CH2BO−

3 ,0)Q1
(2.7)

Micromixing time determination

In this thesis, IEM model is used to describe the relation between XS and tm . Interaction by Ex-
change with the Mean (IEM) model allows the estimation of the micromixing time GUO et collab.
[2013]; VILLERMAUX et FALK [1994], and makes them independent of the concentration choice of
reactants. The comparison of mixing evaluation results is thus possible. One pre-requisite of using
IEM model is that the residence time of the two solutions from the initial contact and along flow
direction being the same. Our sharp edge Y-mixer satisfies this requirement. Besides, another as-
sumption in this model is that exchange of ions between two solutions occurs at a same constant
in term of micromixing time tm , which is generally true for microchannel continuous mixers.

Details of determination of the kinetics for each reaction, IEM model, relation between XS and
tm refer to Appendix D. The general procedure, as shown in Fig.2.10, is to use a presumed tm and
known initial concentrations of ions, to resolve three differential equations numerically based on
second order Runge-Kutta method. For each step, concentrations and their corresponding mean
values, kinetic data are updated by the results from the previous step. The iteration process moves
forward step by step until the concentration of H+ in the solution decreases under a critically low
value (10−9 mol/L in this study). After this, the H+ is considered to approach zero and the reactions
terminate. The final concentration CI−3 allows to identify corresponding XS value for the given tm .
An algorithm has been built in Matlab to link Segregation Index with micromixing time in a large
range.

Special attention should be paid to the iteration time step h. On the one hand, the step h
should be small enough to avoid unrealistic negative concentrations due to global consumption
of ions in the reactions; on the other hand, too small time step requires heavier computing loads
with more iterations. In this study, the h is kept constant as 10−8s.
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Figure 2.10 – Steps for determining XS and tm with the help of IEM model

Energy dissipation rate

In order to facilitate the comparison with other mixers in terms of energy dispassion, energy Eac

and power Pac of the vibration field are calculated. Here, the energy dissipation rate only refers to
the energy consumed by the fluid inside the channel.

Acoustic energy imposed to a fluid under excitation can be expressed according to vω in an
acoustic period T:

Eac = 1

T

∫T

0

∫
V

1

2
ρvω

2dVdT (2.8)

where V is the volume of the channel.
Acoustic power (or acoustic dissipation rate) is time-dependent and can be expressed as:

Pac =
∫

∂t (
1

2
ρv2

ω)dV (2.9)

In this thesis, the peak value of Pac during an acoustic period is used.
With the viscous boundary layer and throughput in the microchannel, another term of energy

dissipation is related to pressure drop, which is an important parameter, especially for passive
mixers. Simulation is done to the part of channel without connectors, as shown in Fig.2.11 to
obtain the pressure losses with respect to flowrate Qc . The energy dissipation rate per unit mass
(W/kg) εp by pressure drop can be defined as in COMMENGE et FALK [2011]:

εp = Qc ·∆P

ρ ·V
(2.10)

where Qc is the throughput; ∆P is the pressure drop of the part of channel concerned; V refers to
the volume of the part concerned.

In the case of SEAS mixers, the energy dissipation includes both passive (pressure drop) and
active mechanisms (acoustic field). The energy dissipation rate (W/kg) thus includes active and
passive parts:

ε= εp +εa = Qc∆P

ρV
+π f va

2si n(4π f t ) (2.11)
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Figure 2.11 – 3D Model in COMSOL to simulate the pressure drop according to channel throughput

2.2 Numerical investigation

While the streaming phenomena at ultrasonic frequency on a chip can be modelled in good agree-
ment with experimental observations BRUUS [2012]; LEI et collab. [2017], the real challenge of the
simulation at kHz is how to quantitatively describe the vibration field on the chip. Incorporating
the entire chip, including the solid structures surrounding the channel, into the model might be
a more sound however also very difficult solution WIKLUND et collab. [2012]. To avoid this, vibra-
tion field of fluid is directly determined by the displacement of fluorescent particles in the stacked
experimental images, as mentioned above. The results of such measurement are treated as the
boundary conditions in this thesis.

As a commonly used numerical scheme, the Perturbation Theory is generally adapted to ad-
dress acoustofluidics problems in the framework of “weak disturbance”. With limited computing
load during Computational Fluid Dynamics (CFD), PT is a very powerful tool to reduce the N-
S equation, which potentially include non-linear terms that couple the acoustic and streaming
velocity fields, into a simpler one where only the non-linear term involving the acoustic velocity
within the VBL remains significant. Therefore, PT provides a convenient method to bring out the
physical fundamental core of the acoustic streaming problems while retaining relatively simple
mathematical formulation BRUUS [2012]; LIGHTHILL [1978]; NYBORG [1953]; OVCHINNIKOV et col-
lab. [2014]; RILEY [1998]; SADHAL [2012].

Although being particularly useful in qualitative interpretation of the origin of acoustic stream-
ing near sharp edges, the classical Perturbation Theory (PT) fails to accurately predict the magni-
tude of the streaming velocity. The main reason lies in the particularity of sharp edge streaming
for which the streaming velocity vs can be of the same order of magnitude as the vibration velocity
va ZHANG et collab. [2019], which is not the case for classic Rayleigh streaming. More specifically,
the momentum equation Eqn.2.12 can be separated into two parts: oscillatory part (Eqn.2.13) and
steady part (Eqn.2.14). PT method simplifies the coupling of va and vs by neglecting the convec-
tive terms in Eqn.2.13, (vs · ∇)va + (va · ∇)vs . As a consequence, PT method may give inaccurate
resolution of the streaming velocity and the coupling terms in the context of sharp edge streaming
are to be considered.

∂vω

∂t
+{

[vs +Re(vae iωt )] ·∇}
[vs +Re(vae iωt )]

=−1

ρ
∇[ps +Re(pae iωt )]+ν∇2[vs +Re(vae iωt )]

(2.12)

iωva + (vs ·∇)va + (va ·∇)vs =−1

ρ
∇pa +ν∇2va (2.13)

(vs ·∇)vs + 1

2
Re[(va ·∇)v∗a] =−1

ρ
∇ps +ν∇2vs (2.14)

An alternative simulation method consists of directly solving Navier-Stokes equations with pe-
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riodic boundary conditions, using DNS (Direct Numerical Simulation) ZHANG et collab. [2020].
With this technique, the time-dependent variable v = Re(vae iωt )+ vs at a given time-step can be
obtained through directly solving Eqn.2.12 in a 2D domain. The steady velocity field can be ob-
tained by taking temporal mean of transient solutions starting form t = 0.

v̄ = vs + v0 =
∫t

0 vd t

t
(2.15)

where v0 is the steady velocity field corresponding to channel throughput.
Although OVCHINNIKOV et collab. [2014] points out the limitation of PT with respect to DNS

method, PT remains a powerful framework to analyze the underlying physics of the streaming
fields near the sharp tip, especially when the vibration amplitude within the liquid is small enough
so that the acoustic Reynolds number Rea = Aωh

ν remains of the order of one.
Based on the above methodology, simulations of the velocity field can be proceeded as the

first step. Then, species transport (macromixing) can be included by adding the classical mass
transport equation Eqn.2.16 in a second step with species concentration boundary conditions as
shown in Fig.2.12 (b).

−Di∆Ci +v ·∇Ci = 0 (2.16)

where Di is the diffusion constant of the ith species. Ci refers to the molar concentration of the
ith species. Physically, the equation represents equal value of diffusive part Di∆Ci with convective
part v ·∇Ci in a steady-state source-less diffusion-convection phenomenon.

It is worth noting that in this step, we use the mean steady velocity v̄ from the hydrodynamic
solution as v in the convective term. In other words, the periodic acoustic oscillation velocity is
considered to have no influence on mixing. First, this assertion is based on our experimental visu-
alization to a smooth channel, showing no mixing enhancement effect without acoustic streaming
even with acoustic ON. Indeed, the first order vibration, as it mainly follows the longitudinal di-
rection of the mixing channel hence in parallel to the main flow, does not increases the transverse
advection of the two species.

Specifically, two solutions with C1 = 1 and C2 = 0 allow to directly obtain dimensionless con-
centration between 1 to 0 (mixing degree). Then macromixing process between two miscible fluids
intensified by streaming phenomenon in the micro channel with sharp edges array can be simu-
lated.

2.2.1 Implementation of governing equations in COMSOL Multiphysics

In this thesis, the simulation studies are conducted based on the Finite Element Method (FEM).
The equations are implemented and solved in the commercial software COMSOL Multiphysics
5.2.

DNS method

As we mentioned previously, DNS method refers to directly solving Navier-Stokes equations with
periodic boundary conditions. In COMSOL Multiphysics, the NS equations included in the Lami-
nar model are:

ρu t +ρ(u ·∇)u =∇· [−pI+K]+F (2.17)

K =µ(∇u + (∇u)T) (2.18)

ρ∇· (u) = 0 (2.19)

together with an Ordinary Differential Equation (ODE) which is solved simultaneously:

∂ui nt

∂t
= u (2.20)

37



CHAPTER 2. METHODOLOGY

weak form weak expression in COMSOL∫
Ω(ρ∂u

∂t ·ψ1) spf.rho*(-ut*test(u)-vt*test(v))

-
∫
Ω((∇· [−pI+K]) ·ψ1)

(p-spf.K_stress_tensorxx)*test(ux)
-spf.K_stress_tensorxy*test(uy)
-spf.K_stress_tensoryx*test(vx)
+(p-spf.K_stress_tensoryy)*test(vy)∫

Ω(F ·ψ1) spf.Fx*test(u)+spf.Fy*test(v)∫
Ω((ρ(u ·∇)u) ·ψ1)

spf.rho*(-(d(u,x)*u+d(u,y)*v)*test(u)
-(d(v,x)*u+d(v,y)*v)*test(v))∫

Ω((ρ∇· (u)) ·ψ2) -(spf.rho*spf.divu)*test(p)

Table 2.3 – Weak expressions of Eqn.2.17 and Eqn.2.19 in COMSOL Multiphysics software

where u, ρ, I,K and ui nt refer to the velocity, density, unity tensor, viscous stress tensor and inte-
gral of velocity respectively. For FEM, the equations are implemented in terms of weak form. The
weak expressions for domain ω of Eqn.2.17 and Eqn.2.19 in COMSOL are listed in Table 2.3. The
spf.x refers to the x variable of this Laminar flow(single phase flow) model in COMSOL. Here, the
Ψ1 and Ψ2 are the basis functions in the weak form and in COMSOL, Ψ1 and Ψ2 are denoted as
text(u) and text(p).

PT method

The simulation of streaming flow by the perturbation method is based on the study by MULLER

et collab. [2012]. It consists of two steps to resolve the acoustic streaming: i) acoustic field and ii)
streaming field.

Acoustic Field
To resolve the acoustic field in the frequency domain, the model of Thermoviscous Acoustics

in COMSOL is used. At the frequency of several kHz, variation of temperature is negligible. The
equations implemented in COMSOL are:

iωρt +∇· (ρ0u t ) = 0 (2.21)

iωρ0u t =∇· [−pt I+µ(∇u t + (∇ut )T)− (
2

3
µ−µB)(∇·u t )I] (2.22)

ρt = ρ0(βTpt −αp Tt ) (2.23)

As fluid with vibration at kHz can be treated as incompressible one, ρt is 0 in the equations. In
COMSOL, Eqn.2.21 and Eqn.2.22 have to be expressed in weak form, as listed in Table 2.4. In the
table, ta.x refers to the x variable of thermoviscous acoustics (ta) model in COMSOL.

Streaming flow
The equations governing the streaming flow consist of the steady NS equations and the force

source from the acoustic field:

ρ(u2 ·∇)u2 =∇· [−p2I+K]+F (2.24)

K =µ(∇u2 + (∇u2)T) (2.25)

ρ∇· (u2) = 0 (2.26)

Their weak forms are listed in Table 2.3. In addition to this, for equations of streaming flow, the
force source F includes averaged force term by the acoustic first-order velocity field (Reynolds
stress force) and radiation force. The magnitude order of the latter is much smaller at the frequen-
cies in this thesis so only Reynolds stress force are considered.

F =< ρ1∂t u >+ρ0 < (u ·∇)u > (2.27)
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weak form weak expression∫
Ω(iωρt +∇· (ρ0u t ) ·Ψ2

-(ta.rhot+ta.rho0*ta.divu+ta.ut x ∗d(t a.r ho0, x)
+ta.ut y ∗d(t a.r ho0, y))∗ test (p1)∗ (1/(t a.omeg a ∗ i ))

∫
Ω(−iωρ0u t +∇· [−pt I

+ µ(∇u t + (∇ut )T)− ( 2
3µ−µB)(∇·u t )I]

)·Ψ1

(-ta.rho0*ta.utx*test(u1)-ta.rho0*ta.uty*test(v1)
-ta.T_stress_tensorxx*ta.gradtestuxx
-ta.T_stress_tensorxy*ta.gradtestuxy
-ta.T_stress_tensorxz*ta.gradtestuxz
-ta.T_stress_tensoryx*ta.gradtestuyx
-ta.T_stress_tensoryy*ta.gradtestuyy
-ta.T_stress_tensoryz*ta.gradtestuyz
-ta.T_stress_tensorzx*ta.gradtestuzx
-ta.T_stress_tensorzy*ta.gradtestuzy
-ta.T_stress_tensorzz*ta.gradtestuzz)*1/(ta.omega*i)

Table 2.4 – Weak expressions of Eqn.2.21 and Eqn.2.22 in COMSOL Multiphysics software

weak form weak expression∫
Ω F ·Ψ1

(ta.rho0*0.5*(real(conj(u1)*d(u1,x))+real(conj(v1)*d(u1,y))))*test(u2)
+(ta.rho0*0.5*(real(conj(u1)*d(v1,x))+real(conj(v1)*d(v1,y))))*test(v2)

Table 2.5 – Weak form of force source in the Perturbation method

where < A(t )B(t ) >= 1
2 Re[A(0)∗B(0)], asterisk representing complex conjugation. At the frequen-

cies in this thesis, ρ1 ≈ 0, the latter term actually dominates the force source. The weak form of F
is given by Table 2.5.

2.2.2 Boundary conditions (DNS method)

Boundary conditions for hydrodynamic simulation

Only the channel section with sharp-edge patterns is taken into account in the simulation. As
shown in Fig.2.12, for one port of the channel, a periodic velocity boundary condition is given:
vb = Re(vabe iωt ) + v0b , with vab being the acoustic vibration velocity va at boundary, and v0b

being the boundary velocity corresponding to channel throughput (cf Fig.2.12 (a)). The values
of va measured in the area far away from the sharp edge structure, as described in Fig.2.6(c) are
prescribed as vab . On the other port of the channel, p = 0 is set as the boundary condition. Other
lateral sides are set as no-slip wall. With this boundary conditions, vibration field through the
microchannel from left to right side is simulated. For vob , similar to the measurement of vab in
Section 2.1.3, particle’s displacements dp based on the two consecutive images are obtained with
ImageJ SCHNEIDER et collab. [2012], then at different throughput, vob = dp ·fps. fps is the frame rate
of the camera, which is 100Hz during vob measurement. For simulation cases without throughput,
vob = 0.

Boundary conditions for species transport

To simulate the mixing of two separated miscible fluids, the left side is divided into two area, one
with dimensionless concentration C1 = 1, another one with dimensionless concentration C2 = 0.
For the right port as the outlet for hydrodynamic part and other boundaries, variation of concen-
trations perpendicular to boundary is set as 0, n ·∇Ci = 0, as shown in Fig.2.12(b).

2.2.3 Steps of simulation

The procedure of the calculation based on PT consists of two steps: i) Solving the wave equa-
tion Eqn.2.13 to determine the vibration velocity field in the geometry structure, with first-order
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𝑣 𝑒 + 𝑣 𝑝 = 0

a) Boundary conditions for hydrodynamic simulation

b) Boundary conditions for species transport

𝐶 = 1

𝐶 = 0

𝑛 ∇𝐶 = 0

No-slip wall

No-slip wall

�̅�

𝑛 ∇𝐶 = 0

𝑛 ∇𝐶 = 0

Figure 2.12 – Boundary conditions of simulations

time-periodic terms, and ii) Solving the streaming equation Eqn.2.14, in which the force term in
Eqn.2.14 can be determined by the results of the previous step. The second-order terms are steady
ones, from which the streaming velocity vs is deduced. In COMSOL, basic steps to implement
Perturbation Method are:

1. Module ”Thermoviscous Acoustics, Frequency Domain”for solving the acoustic vibration
velocity field; for the boundary conditions, the left and right boundaries are set with the
acoustic velocity oscillating at the prescribed value of amplitude in the normal direction,
and to be in phase with each other. Other boundaries are set as no-slip walls.

2. Module ”Laminar flow” for solving the streaming velocity field with Fs =−ρ
2 〈Re[(va ·∇)v∗a]〉

as the “Volume Force” inserted into the model; The left and right sides of the domain are set
as inlet and outlet at given incoming velocity, and are taken equal to zero with no throughput
in the channel. The other boundaries are set to be no-slip walls.

The detailed description of DNS has been given in Section 2.2.1. Implementing DNS in COM-
SOL includes the following steps:

1. Module ”Laminar Flow” for direct solving the N-S equations with periodic velocity boundary
conditions; Time-independent solver is adopted.

2. Module ”Domain ODEs and DAEs” for calculating the time average values of the velocity
field in step 1; Then the velocity at steady state v̄ is available by time averaging v on an
integer number of acoustic periods.

3. Then v̄ is set as the background velocity field in ’Transport of Diluted Species’ module.
Steady solver is adopted.

2.2.4 Mesh and grid independence study

The mesh grid is built with triangle elements, with the maximum element size being 0.014 mm,
and the minimum one being 0.0002 mm. Smooth transition is performed with a maximum ele-
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ment growth rate of 1.1. Close to the sharp edge, the mesh is refined by inflation layers to better
account for the strong velocity gradients inside the VBL. The number of the layers is 3 and the layer
stretching factor is 1.2.

𝑟

(a)

(b)

𝑟

𝛼

𝛼

ℎ

𝑑
𝑤

(c)

Figure 2.13 – Meshes used in the numerical study, single sharp edge and multiple sharp edges

The mesh independence is assessed by comparing the results from the chosen mesh with
those obtained in a refined mesh, which is generated by increasing the number of cells by 30%.
Comparing the two meshes, the obtained streaming velocity value differs by less than 1%. The
current mesh is thus considered as being a satisfactory balance in terms of accuracy, reliability
and computing time.

2.2.5 Time to reach steady streaming field and time step

For the PT method, the two-steps procedure belongs to a steady computation process which can
be done almost instantaneously by computer. However, for DNS method, the streaming flow ap-
pears after a transient state, and thus needs some time to be fully developed and to reach its steady
state. As shown in Fig.2.14(a), the streaming velocity vsm (vsm refers to the maximum value of
the streaming velocity field, which is obtained by the time average of the total velocity from the
beginning of the simulation to a given time) grows with the number time-steps until reaching a
steady state. The corresponding time duration is roughly 12 ms, hence 30 acoustic cycles under
the acoustic frequency of 2500 Hz (period of 400 µs).

The value of the time-step is also essential to meet the CFL (Courant-Friedrichs-Lewy) stability
condition. The Courant number, given by CFL = va∆t/∆x, should be kept lower than 1 to guar-
antee the numerical iteration stable MULLER et BRUUS [2015]. As shown in Fig.2.14, we test four
time-steps from 1 µs to 120 µs, or from 1/400th to 3/10th of an acoustic period. Only ∆t4 = 120µs
gives a CFL higher than unit but ∆t3 = 80µs is not fine enough to give a satisfactory maximum
streaming velocity vsm , see Fig.2.14(a) and a reliable streaming distribution along the y direction
vs y (y), see Fig.2.14(b). We thus choose ∆t2 = 8µs as a compromise since it gives the same results
as ∆t1 = 1µs but with a shorter computing time. With the chosen time step of 8 µs and a total of
30 acoustic cycles, the DNS computing cost is about 25 mn per case study on an Intel i5-7500 CPU
and 16G RAM.
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Figure 2.14 – Variation of streaming velocity with numerical iteration time (a), and the steady y-direction
streaming velocity at different time steps (b). Time steps ∆t1 = 1µs, ∆t2 = 8µs, ∆t3 = 80µs, ∆t4 = 120µs, cor-
respond to 1/400th , 1/50th ,1/5th and 1/3.33r d of an acoustic period. The whole duration of the simulation
equals 30 acoustic periods.
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CHAPTER 3. RESULTS AND DISCUSSIONS

In this chapter, the experimental and simulation results of the sharp edge acoustic streaming
(SEAS) are presented. They address different aspects of SEAS, from fundamental aspects (phys-
ical origin, fluid viscosity sensibility), to mixing application. Besides, the development of DNS
gives critical comparison with the current analytical theory. These results are separated into four
sections and to be read in combination with four journal papers in Appendix A, B, C and D.

3.1 Unveiling the mechanism of SEAS phenomenon by DNS

Acoustic waves can generate steady streaming within a fluid owing to the generation of viscous
boundary layers near walls, of typical thickness δ = p

2ν/ω. In microchannels, generally, the
acoustic wavelength λ is adjusted to twice the channel width w to ensure a resonance condition,
which implies the use of MHz transducers to induce the surface acoustic wave on the base mate-
rial. However, SEAS is an intense streaming flow generated by acoustic waves of a few kHz (hence
with λ À w), owing to the presence of sharp-tipped structures of curvature radius at the tip rc

smaller than δ. The study in this section quantitatively investigates this SEAS via direct resolu-
tion of the full Navier-Stokes equations in COMSOL. Detailed simulation process has been de-
scribed in Chapter1: Methodology as well as in a paper under revision with "Physics Review E"
https://arxiv.org/abs/2003.01208 in Appendix A.

The influence of VBL δ, curvature radius rc and fluid viscosity ν on the acoustic streaming
performance is quantified. Our results suggest choices of operating conditions and geometrical
parameters, via dimensionless quantities rc /δ and δ/w and provide guidelines on how to obtain
strong, optimal sharp-edge acoustic streaming. In absence of an established analytical model to
describe SEAS mechanism, our numerical scheme and results put a step forward to understand
the fundamentals of SEAS.

Main results in this section include:

1. With the presence of the sharp edge structure, the amplitude and direction of the vibration
of the fluid particle near the tip changes a lot than that in far-away area. Homogeneity of
acoustic vibration field in an area much smaller than the wavelength is broken by the sharp
edge structure. As shown in Fig.3.1(a), the acoustic field takes place in the whole channel.
Far from the walls, fluid particles oscillate with fixed amplitude A and orientation ruled by
that of the nearest wall. As previously stated, while for λÀ (w, l ) no streaming force can de-
velop within the microchannel, the presence of a tip induces a sharp spatial gradient in the
orientation of vibrations, see Fig.3.1(c), where the aforementioned centrifugal effect clearly
appears in the vicinity of the tip.

2. vsm , which is the maximum velocity along y direction from the tip, is introduced to charac-
terize the intensity of the SEAS. Simulation comparison, in term of vsm , between Perturba-
tion Theory (PT)and fully Direct-solving NS (DNS) equation has been done, with different
acoustic intensities. It shows that results by DNS are closer to the experimental studies. As
discussed in Introduction, the particular geometry feature of sharp edge structure makes the
perturbation theory less accurate.

3. Parameter θ = ∆vsm/∆v2
a that is independent of acoustic intensity, is used to characterize

the influence of geometry structure on the streaming intensity, with constant frequency.

4. Dimensionless factor rc /δ is interpreted as the geometrical origin of the SEAS. These results
reveal a decrease of θ with 2rc , and this decrease becomes more significant within the range
2rc > δ, see Fig.3.3. Hence, the conversion of acoustic power into streaming flow is less
efficient when rc becomes large. In Fig.3.3, results from simulations using the PT method
for the two extreme values of α are put, again in the aim to illustrate the gap between both
methods. It confirms that PT systematically over-estimates the magnitude of the streaming
flow, by a factor of roughly 1.2. Once 2rc is increased larger than δ, θ significantly decreases,
which is common for all tip angles (Fig.3.3). This is in accordance with the spreading and
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Figure 3.1 – Acoustic vibration and streaming flow around the sharp edge structure: (a) Sketch of the acous-
tic vibrations of fluid particles near the sharp edge, δ is the acoustic boundary layer, the segment y1 − y ′

1 is
located 0.05 mm below the tip; y2 − y ′

2 intersects the tip; y3 − y ′
3 is located 0.01 mm above the tip, (b) Am-

plitude of the vibration velocity recorded along y1 − y ′
1, y2 − y ′

2 and y3 − y ′
3. Circles stand for experiments

recorded along y3 − y ′
3, (c) Orientation of the vibration velocity αvb = arctan[vay /vax ] along y1 − y ′

1, y2 − y ′
2

and y3 − y ′
3. Circles stand for experiments recorded along y3 − y ′

3. Parameters: α= 60◦, 2rc =5.8 µm, f =2500
Hz, va=37.8 mm/s, δ=11.5 µm.

weakening contour observed in Fig.3.2(g-h). When the tip is no longer sharp, the magnitude
of AS weakens as we should retrieve the classic Rayleigh-Schlichting streaming.

5. Viscosity of the fluid has a significant influence on the intensity of streaming flow. When
rc /δ¿ 1 is satisfied, streaming flow obviously decays with increasing viscosity. In addition,
when rc /δÀ 1, streaming flow shows no variation with larger viscosity, which is consistent
with the previous studies at MHz.
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Figure 3.2 – Vorticity maps of the streaming flow near the tip under different geometrical conditions. Red
color (positive vorticity) and blue color (negative vorticity) respectively correspond to flows in anticlockwise
and clockwise directions. Vibration amplitude va = 101.7mm/s. For all maps, f = 2500 Hz and liquid is
water, so that δ ' 11.3 µm. Figs.(a)-(d) have the same curvature diameter 2rc = 2.8µm but different tip
angles α, (a) α= 12◦; (b) α= 30◦; (c) α= 90◦; (d) α= 120◦. Figs.(e)-(h) have the same tip angle (α= 60◦) but
different curvature diameters (e) 2rc = 1.0 µm; (f) 2rc = 6 µm; (g) 2rc = 20 µm; (h) 2rc = 50 µm.

2𝑟 = 𝛿 = 11.5 um

Figure 3.3 – Coefficient θ, based on the maximal value of streaming velocity, versus ratio between curvature
diameter 2rc and boundary layer thickness δ, for four different tip angles α. θ = ∆vsm/∆(v2

a), fitting effi-
ciency of the momentum conversion from acoustic to streaming flows. DNS results should be considered
as reliable and PT simulation appears to over-estimate the result according to the two extreme cases (α =
12◦ and α = 120◦).
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3.2 Hydrodynamic interpretation by direct visualization

After investigating the mechanism of SEAS close to the tip, it becomes clear that the geometrical
features of the sharp edge play an important role in the generation of acoustic streaming. Qual-
itatively, the nonlinear term, inertial term (v · ∇)v in the NS equations becomes very significant
near the tip area. And stronger streaming is usually accompanied by sharper structure. For SEAS,
the degree of sharpness is characterized by tip angle α and curvature diameter 2rc , as shown in
Fig.1.6(a) in Section 1.1.3. Strong curvature leads to bent trajectories on the time-periodic acous-
tic flow, which provides favorable condition for stronger streaming generation.

In this section, we experimentally investigate the influence of the sharp structure and vibra-
tion velocity on the streaming flow. The geometry of the sharp structure is shown in Fig.2.3. The
vibration velocities are characterized by directly visualizing the displacement of tracing particles
and the generated acoustic streaming is observed using particle image velocimetry, under various
operating conditions. In addition, by measuring the concentration of a fluorescence dye, we eval-
uate the mixing performance for different values of tip angle, vibration amplitude and flow rate
through the microchannel. The followings have been investigated in this section:

Comparison between small rc which is comparable to the thickness of boundary layer and
edge with big rc , the results show that under low-frequency (2.5 kHz) acoustic condition, intense
streaming is only observed near the edge with small rc , which further confirms that local cur-
vature diameter is a key parameter in the mechanism of SEAS. As shown in Fig.3.4(a), a clear
streaming in an extended region appears near the tip when acoustic excitation. The streaming
image in Fig.3.4(c) is obtained by superposition of time sequential individual particle trajecto-
ries. Two streaming vortices are observed on both sides of the sharp edge. In the case of a round,
smooth structure with big enough curvature, as shown in Fig.3.4(d), the acoustic streaming is not
observed. While this is not strictly a parametric study on curvature diameter, the result is in accor-
dance with OVCHINNIKOV et collab. [2014] framework demonstrating that this type of streaming
should be generated with sharp structures.

Coupling of vibration and streaming motion has also been presented in the experiments. In
the left sub-figure in Fig.3.4(c), the particle vibration by taking six images within one vibration
period is shown. This allows the quantification of the acoustic vibration amplitude A. On its right,
the trajectory of one particle during 10 periods is followed. This picture shows that near the tip,
the streaming velocity vs (in the direction of the sharp tip, shown as vertical) has a magnitude
comparable to the vibration velocity vω (in the direction of the fluid channel, shown as horizontal).
There is a coupling between these two motions.

Streaming around different tip angle α and 2rc are measured. Being consistent with the above
analysis, sharpest tip corresponds to the strongest streaming flow, which is characterized by maxi-
mum velocity vsm along Y direction from the tip. Same as the simulation results, the linear relation
of vsm with v2

a can be observed in the experiment.
Further, with and without the throughput Qc , vortex sizes of SEAS around single sharp edge are

measured under different geometry features and acoustic intensity va to present the disturbance
of the streaming flow into the other area of the microchannel and the main flow. SEAS, though
strong near the tip area, decreases quickly in the area far away from the tip. This means that SEAS
is sensitive to the throughput. Influence of the Qc on the vortex size is also investigated in this
section. For example, Fig.3.5 shows the variation of vortex size at both downstream and upstream
of a 30◦ tip, under different flow rates. As the flow rate increases from null to 1 µL/min, the vortices
size reduces drastically from 0.42 to 0.29 (upstream) and 0.26 (downstream). The vortices continue
to shrink after 4 µL/min and they totally disappear when the flow rate is higher than 16 µL/min. In
most cases, the upstream vortex is smaller than the downstream one, i.e., between 4 µL/min and
16 µL/min. However, results suggest that there is a threshold of flow rate around 2 µL/min under
which the upstream vortex is even larger than the downstream one. A possible underlying reason is
that the main stream velocity is lower than the upstream longitudinal AS velocity coming from the
counter-flow direction. In such a situation, part of the fluid of the upstream vortex still flows back
to the sharp edge, enhancing the vortex development. Otherwise, the fluid goes away with the
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Figure 3.4 – (a) the streamline of the acoustic excited particles movement under a stack of 100 images equiv-
alent to a duration of 100 ms, Va = 37.8 mm/s, f = 2.5 kHz; (b) round-edge with a curvature of 100 µ m
under acoustic excitation but with no acoustic streaming, Va = 37.8 mm/s, f = 2.5 kHz; (c) the mechanism
of acoustic streaming explained by high-speed visualization of acoustic vibrations within the fluid, from
particle trajectories over a few periods, the velocity measured is 101.7 mm/s.

Fig.11

Figure 3.5 – Upstream and downstream vortex size (Dv and Dv /w) at different flowrates. Condition: α=30◦,
va = 70.5 mm/s and f = 2.5 kHz
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main flow, thus reducing the vortices size. At higher throughput, comparatively, the downstream
vortex varies relatively more slowly with flow rate and is subjected to less influence from main
flow, presumably because the vortex is squeezed into the low-pressure area formed by the sharp
structure. Although there still exists the upstream vortex at large throughput, it plays little role on
the main flow.

Mixing enhancement through SEAS with single sharp edge has been investigated. Mixing In-
dex significantly drops after sharp edge structure, especially under small throughput.

The results are referred to a paper in Appendix. B appeared in "Microfluidics and Nanofluidics"
https://doi.org/10.1007/s10404-019-2271-5.

3.3 Coupling Influence of Frequency and Viscosity on SEAS

As discussed in the Section 3.1, geometrical features play an important role in the SEAS. However,
for the acoustic frequency f and viscosity ν, as important parameters in acoustic field, their influ-
ences on the SEAS are still not very clear. In this section, Experiments are conducted with Particle
Image Velocimetry to quantify this streaming flow through the influence of liquid viscosity ν, from
1 mm2/s to 30 mm2/s, and acoustic frequency f from 500 Hz to 3500 Hz. Both quantities suppos-
edly influence the thickness of the viscous boundary layer δ= (µ/π f )1/2.

The configuration of the streaming velocity field is presented by the velocity map with PIV. For
all situations, the streaming flow appears as a main central jet from the tip, generating two lateral
vortices beside the tip and outside the boundary layer. The profiles of the streaming velocity along
the y direction from the tip have been plotted. The maximal velocity Vs max (being equivalent to
the vsm of last section) of the profile is located at the distance δ from the tip. Then the position
changes with both ν and f . Similar to the above section, this value is used to the characterized the
intensity of streaming velocity field. Fig.3.6(a-d) present typical streaming velocity fields obtained
from the PIV treatment. The streaming flow appears as a main central jet from the tip, which is
symmetric with respect to the y axis (x=0). It clearly appears that the flow intensity decreases
with an increasing viscosity. The jet induces the formation of two symmetric vortices beside the
sharp edge. In terms of location, the eddies are very near to the tip for the lowest viscosity, and for
more viscous liquids they are pushed away and more aside from the tip. Let us also remark that
at higher viscosity (Fig.3.6(c and d)), the flow in the VBL along the lateral walls becomes relatively
more significant.

The empirical relations with Vs max with f and ν has been introduced. For example, in the
seek for an empirical law quantifying the dependence on f , we tried to plot Vs versus other com-
binations of V2

a and f β, with β being a real exponent, predicted to equal -0.1 from OVCHINNIKOV

et collab. [2014]’s theory, Fig.3.7 shows the two most successful attempts: Fig.3.7(a): the plot of Vs

versus V2
a × f shows a good collapse of data for the three lowest frequency values (500, 800 and

1250 Hz). But the rescaling does not fit with the two other data sets corresponding to the highest
frequencies (2500 and 3500 Hz). Fig.3.7(b): the plot of Vs versus V2

a × f −1/2 shows a fair collapse of
data for all frequencies, though it is more convincing at higher acoustic amplitude.

Detailed results can be found in our paper appeared in "Micromachines" in Appendix.C https:

//doi.org/10.3390/mi11060607.
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Figure 3.6 – Streaming velocity field Vs (x, y) from PIV measurements, with different liquid viscosities. f =
2500 Hz and Va = 35 mm/s. (a) ν = 1.158 mm2/s, (b) ν = 4.32 mm2/s, (c) ν = 13.75 mm2/s, (d) ν = 29.44
mm2/s. Scales are the same for the four cases.
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Figure 3.7 – Attempts of data re-scaling for Vs max (a) versus V2
a × f (insert shows data in the lowest range of
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3.4 SEAS and mixing enhancement in microchannel with multiple sharp
edges

Based on the results of above sections, it is reasonable to assert that significant disturbance can
be caused by SEAS in the microchannel. Without AS disturbance and due to low Re (from 0.002
to 0.012), molecular exchange between two fluids is dominantly achieved through slow diffu-
sion. However, when SEAS is actuated, the generated vortices can strengthen the mixing process
through enlarged interface between fluids. Phenomenologically similar as the Rayleigh streaming,
but with strong local Reynolds stress enhancement near the tip, the sharp-edge acoustic streaming
is viewed as a promising one since it enables strong streaming disturbance to the flow with low en-
ergy input and low-cost transducers and amplifiers. Microchannel SEAS mixer with multiple sharp
edges can achieve effective mixing but requires optimal coupling between acoustic streaming and
main flow, which is the focus of this section. In this section, three Sharp-Edge Acoustic Stream-
ing (SEAS) micromixers with multiple sharp edge patterns actuated by piezoelectric transducers
are investigated to evaluate their mixing performance. To this end, Direct Numerical Simulations
(DNS) are used to resolve the multi-physics phenomena involving acoustics, fluid dynamics and
additionally mass transfer. Besides, macromixing experiments with Methylene blue dye are car-
ried out to validate the numerical results. Further, experiments with Iodide-Iodate reactions are
conducted to evaluate the micromixing performances.

Main findings in this section include:

The mechanism of the mixing process intensified by the SEAS has been clarified. The influence
of the sharp edge pattern i.e., the spacing between individual structures, channel throughput as
well as acoustic intensity are studied. Shown in Fig.3.8 are numerical dye concentration contours
of the three SEAS mixers under the same operating condition (acoustic amplitude va=130 mm/s,
channel throughput Qc =8 µL/min). Additional quantified concentration evolution curves across
the channel width at five critical longitudinal positions are also illustrated. Ci n and Cout are re-
spectively inlet and outlet of the channel. With the same upstream tracer distribution and two
separated fluids, S2 achieves the best mixing result at the downstream while S1 corresponds to
the worst mixing(Fig.3.8). Qualitative concentration evolution curves in Fig.3.8 clearly confirm
the different performances of the three mixers. With the same inlet Ci n , a disturbed concentra-
tion distribution C1 can be shown due to the strong advection at the entrance just before the first
sharp-edge. Here S1 seems to have stronger disturbance than S2 and S3. Moving on with the main
flow, S2 shows higher mixing performance in the whole range between C2 and the outlet. This is
probably due to a large number of effective vortices for mixing enhancement. The performance
of S3 is between those of S1 and S2, presumably as the number of sharp edges is limited, but gen-
erates effective vortices too. As a matter of comparison, S1 shows the most segregated fluid at the
outlet Cout , even though it gets a small advantage at the first sharp edge.

Segregation Index (XS) and micromixing time (tm) of the optimal channel S2 have been mea-
sured under different Qc conditions. Fig.3.9 shows the values of XS (left axis) and tm (right axis) as
a function of vibration amplitude va , of SEAS mixer S2 at three different flow-rates Qc . Firstly, as
acoustic intensity va increases, XS and tm drop sharply, which means the achievement of better
micromixing performance at the molecular scale. In comparison to the lowest acoustic streaming
at va=40 mm/s, Segregation Index sharply decreases from 0.06 down to 0.01 under the strongest
acoustic intensity (va=150 mm/s), confirming the achievement of good micromixing. Micromix-
ing time based on IEM decreases by a factor of 10: from 0.3 s under mild forcing (va=40 mm/s, at
10 V) to 0.04 s under strong acoustic vibration (va=150 mm/s at 40 V). This is in agreement with
the SEAS mixing enhancement mechanism, according to which strong interactive vortices under
high acoustic vibration enable to achieve effective mixing.

Another influential factor is the flow-rate Qc , which is inversely proportional to the residence
time. The latter can also be described as the time during which the fluid is actively perturbed by
acoustic streaming. As shown in Fig.3.9, a lower channel throughput Qc corresponds to lower XS

and shorter tm , thus better micromixing. This results are in accordance with our previous section,
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Figure 3.8 – Comparison of mixing performance of three micromixers S1/S2/S3. Numerical simulation un-
der conditions va=120 mm/s and Qc = 8 µL/min for the three mixers. The colour evolution shows S2 to
be the optimal sharp edge structure for best mixing application. Concentration curves from Ci n to Cout

quantitatively confirms the performance order from S2>S3>S1, with an identical inlet condition Ci n .

S2

Figure 3.9 – Micromixing performance of SEAS mixer under different flowrate and acoustic intensities. Seg-
regation Index and Micromixing time are shown respectively at the left- and right-axis. Acoustic intensity is
controlled by input voltage to the piezoelectric actuator, for a range of 10 V, 20 V, 30 V and 40 V, correspond-
ing to acoustic vibration magnitude of va from 40-150 mm/s. Uncertainties are shown by repeated tests for
each condition.
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according to which the vortex formed by acoustic streaming near a single sharp edge is strongly
influenced by the throughput. As Qc gets higher, the disturbance from the streaming flow into the
main one decays, resulting in worse mixing performance. Similarly, the differences of values of XS

and tm with different throughput are significant. Under weak acoustic field and high throughput,
the mixing improvement becomes weak or even negligible.

Finally, a comparison with literature on passive mixers confirms the equivalent micromixing
performance of SEAS mixer in terms of Reynolds number and energy dissipation rate.

The above results are part of a manuscript in Appendix.D which is under review at "Chemical
Engineering Journal".
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In this thesis, motivated by the streaming phenomenon near sharp edges, experiments and
simulations are conducted to investigate the mechanism of the SEAS and its corresponding appli-
cation on the mass transfer in a microchannel. Both fundamental interpretation and application
work are done. These works have partially answered the questions raised at the beginning of the
manuscript and they are summarized in this section.

Besides concluding works done, a general perspective is also given. Future works consist of
both fundamental investigations and various speculative applications once we are fully capable to
design a SEAS device with perfectly predictable streaming performance.

4.1 Conclusions

The main conclusions of this thesis are highlighted as follows:

1. For the first-order acoustic velocity field, it turns out that both the orientation of the oscil-
lation and its amplitude are tuned by the sharp structure to give a strongly localized pertur-
bation to the fluid. This effect, which significantly contributes to the streaming efficiency,
depends on the sharp edge structure.

2. For the influence of the tip sharpness, results in Section 3.1 reveals that the two parameters
rc and α are crucial for the generation of acoustic streaming. Sharper the tip (smaller the rc

and α), the stronger streaming field. Results in the Section 3.1 shows that the streaming flow
does not gain much in strength when rc is lowered below δ/2, while streaming magnitude
decays significantly with the increase of rc whenrc > δ/2. The crossover between the SEAS
and classical Rayleigh streaming regimes has been investigated by tuning the value of 2rc /δ.

3. Compared with the perturbation theory method (PT), direct solving the Navier-Stokes equa-
tions (DNS) presents better predictions of the SEAS. Although requiring higher computation
capability and hiding the physical mechanism, the DNS method is proved to provide more
reliable solutions and can be a basis to develop more specific analytical analysis of SEAS.

4. Being different from classic Rayleigh streaming, an increase of viscosity leads to globally
weaken streaming velocity and outer vorticity. At constant va , a decrease of frequency tends
to increase the streaming velocity. Our results, although unexplained by the current theo-
retical state of the art, suggests the empirical law: Vs ∼ V2

a f −1/2. Furthermore, the lower the
frequency f is, the more spread out the streaming vortices are.

5. The streaming flow far from the tip follows an exponential decrease over a certain length
scale (for example roughly 130 µm for the angle of 60◦, and tip height h = 180 µm). Induced
by streaming jet from the tip, symmetrical counter-rotating vortices appear when flow rate is
zero. Meanwhile these vortices are sensitive to the throughput and upstream/downstream
symmetry is broken as the flow rate is turned on. The perturbation distance by streaming is
compressed into a small area as soon as large throughput, like 12 µL/min enters the channel.
In addition, not very intuitively, the disturbance extent is crucial for the mixing application,
but not the vortex size itself.

6. For microchannel with single sharp edge, perhaps not implausibly, stronger streaming (with
sharper tip and under larger vibration magnitude) helps achieve better mixing. Performance
of multiple SEAS micromixers doesn’t simply scale up the performance of single sharp edge
and also depends on the interaction among sharp edges as well as the entrance effect. Com-
paring different sharp edge patterns, a sufficient number of highly disturbed zigzag flow
makes the S2 with d = 0.2 mm best in mixing performance.

7. As an active enhancement device, SEAS mixer corresponds to much smaller micromixing
time tm than the previous mixers, especially passive ones and it shows better performance
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at low Re (small flow rate). With respect to the energy dissipation rate, even if the maxi-
mum value during the periodic vibration is taken, the energy cost by SEAS mixer can still
be comparable to the passive mixers. Considering its disturbance to the fluid, the potential
application in chemical or biological fluids mixing is quite promising.

4.2 Perspectives

The current manuscript opens new perspectives in the research on SEAS and development of new
acoustofluidic device based on SEAS principle.

4.2.1 Fundamentals of SEAS

From the fundamental point of view, an interesting but tricky work is to investigate the vibration
transmission from the source (piezoelectric) to the fluid inside microchannel. From experimenta-
tion, as already shown in our vibration measurement, there is a difference between chip vibration
and fluid oscillation. The tricky side lies in the double knowledge of acoustic and fluid mechanics,
both complex physics branches. A detailed mapping of vibration will be a powerful tool to address
this issue.

In addition, using broad-band vibration sources, like natural vibration, flow induced vibration
(low frequency), or vibration harvesting, can be an interesting perspective. The search of an opti-
mal structure capable to reach high SEAS but without energy consuming excitation actuator will
be appealing. Since we already have a COMSOL scheme who works well, this can be realized in
the very near future.

4.2.2 Numerical schemes of SEAS

Regarding the numerical method, a more efficient model or analytical scheme is desirable to pre-
cisely represent the physical mechanism of SEAS with NS equations. This also will help to reduce
the calculation workload of simulation with FEM, like in COMSOL Multiphysics. After all, the
transient solution of Navier-Stokes equations with a higher frequency might require significant
amount of calculation time, which should be further multiplied by the number of cases (structure,
flow rate, acoustic conditions) to simulate.

4.2.3 Fabrication of SEAS device

Fabrication of acoustofluidic devices has been one of the main challenges throughout this study
and requires clean room facilities. Recently, Tsinghua and MIT researchers WANG et collab. [2018]
developed an interesting simple technique to expand the prototype capacity of tubular device
within the lab. They used thermoforming method to reshape commercial available fluoropolymer
tubes into patterned tubular micromixers. This method can be a promising alternative to achieve
rapid prototyping with relatively precise flow structure.

4.2.4 Application of SEAS

From an applications point of view, coupling SEAS with heat transfer with the aim of enhancing
convection can be a good opportunity. This can be shown as a acoustic driven heat pump similar
to the study of magnetic ferrofluid to realize self pumping cooling by CHAUDHARY et collab. [2017].

Further, another important opportunity is to use natural vibration sources on a lower and
larger frequency band. The current thesis has paved the numerical protocol as well as some an-
alytical conclusions according to which achieving low frequency SEAS is possible. This will help
achieve an vibration energy recovery based process intensification.
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Abstract

Acoustic waves can generate steady streaming within a fluid owing to the generation of viscous

boundary layers near walls, of typical thickness δ. In microchannels, the acoustic wavelength λ is

adjusted to twice the channel width w to ensure a resonance condition, which implies the use of

MHz transducers. Recently though, intense acoustic streaming was generated by acoustic waves

of a few kHz (hence with λ � w), owing to the presence of sharp-tipped structures of curvature

radius at the tip rc smaller than δ. The present study quantitatively investigates this sharp-

edge acoustic streaming via the direct resolution of the full Navier-Stokes equation, using Finite

Element Method. The influence of δ, rc and viscosity ν on the acoustic streaming performance

are quantified. Our results suggest choices of operating conditions and geometrical parameters, in

particular the dimensionless tip radius of curvature rc/δ, but also liquid viscosity.

Keywords: Acoustic Streaming; Microfluidics; Acoustofluidics; Boundary layers
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I. INTRODUCTION

Acoustic streaming (AS) is a time-averaged steady flow generated by an acoustic field in

a fluid, due to second-order nonlinear effects originating from the coupling between acoustics

and hydrodynamics. The phenomenon has attracted researcher’s attention for almost two

centuries, since as early as 1831 when Faraday [1] first observed steady patterns of light

particles on vibrating plates. More recently, AS has been proven to be a useful and non-

invasive solution in various applied situations [2], like mixing under low-Reynolds number

laminar flow conditions [3], particles manipulation and sorting [4–9], particles patterning

[10, 11] or heat transfer [12, 13].

Acoustic streaming originates from the dissipation of acoustic energy within a fluid, which

creates a time-averaged effective forcing [2, 14–22]. Meanwhile, depending on where in the

fluid acoustic attenuation is mainly prevalent, AS can be induced either by viscous bulk

fluid attenuation - denoted as Eckart streaming [15, 17]), or by boundary layer attenuation

- denoted as Rayleigh-Schlichting streaming [2, 18–22]). For the latter, the development of

an unsteady viscous boundary layer (VBL) along walls can lead to non-zero time-averaged

Reynolds stress within this layer [19]. Rayleigh’s theory [18, 19, 22] describes that the

intense vorticity generated within the VBL appears as an array of eddies pairs (called inner

vortices) aligned along the channel walls [7, 23, 24]. This stress extends its influence beyond

the VBL of thickness δ =
(

2ν
ω

) 1
2 from the wall, where ν is the liquid kinematic viscosity and

ω is the angular frequency of the wave, and induces larger-scale eddies of typical width λ/2

[23, 25] in the fluid bulk.

To achieve AS in microfluidics geometries, the channel width w and the wavelength

are generally adjusted to ensure a resonance condition, typically obtained when w ' λ/2

[26]. Given that the sound velocity in water and in most liquids is between 1000 and 1800

m/s,the wave frequency f shall then be of the order of a few MHz. Therefore, while typical

cost-effective transducers and associated amplifiers are generally in a range of a few kHz

to a few tens of kHz, they should in principle fail to generate AS in microchannels, as the

acoustic field would then be homogeneous in space. Although a few studies could circumvent

this limitation by tuning the excitation of immersed bubbles [27], with micropillars [28] or

flexural waves on a flexible wall [13], by prescribing a wavy channel geometry [29–31], or by

tuning streaming modes within the transducer plane [32], the majority of them were carried
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Quantity Abbreviation

Kinematic viscosity ν

Acoustic wavelength λ

Viscous boundary layer thickness δ

Tip angle of sharp edge α

Height of the sharp edge h

Radius of curvature of the tip rc

Width of the microchannel w

Acoustic angular frequency ω

Acoustic frequency f

Streaming velocity vs

Acoustic vibration velocity vω

Amplitude of acoustic vibration velocity va

Spatial amplitude of acoustic vibration A

Orientation angle of the vibration velocity αvb

Maximum streaming velocity vsm

Maximum streaming velocity along the y-axis v
′
sm

Fitting coefficient relating vsm and v2
a θ

Fitting coefficient relating v
′
sm and v2

a θ
′

Table I: Definition of the main physical quantities

out under ideal geometries such as infinite or semi-infinite domains. Still, remaining issues

concern the influence of geometry, for instance the presence of obstacles or non-straight

profiles like constrictions, or a situation of confinement when δ can be comparable to one of

the channel dimensions [25].
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Recent studies have shown that intense AS could be generated via the coupling between

acoustic waves and sharp structures [33–36]. One of the particularities and main advantages

of “sharp-edge AS” is that it is generated at relatively low frequency, typically in the kHz

range. Meanwhile, the order of magnitude of the steady streaming velocity can even be

comparable to the vibration velocity, hence up to several hundreds of mm/s [37]. Benefiting

from this strong disturbance within the fluid, various applications using sharp structures

streaming have been developed in microfluidics: mixing processes [35, 38], bio-particle con-

trol [39, 40], as well as various on-chip devices [34, 41].

However up to now, the underlying mechanisms of this streaming are not yet fully clear

[42]. First, the pioneering study from T.J. Huang’s group [33] attributes the induced stream-

ing flow to the mechanical vibrations of the sharp structures induced by a transducer stuck

on the microchannel wall. Such a vibration was indeed observed with high-speed imaging,

and it raises the question on the adaptation of the sharp edge geometry to the prescribed

frequency in order to ensure a resonance condition. In Zhang et al.’s study [37], an oscil-

lating flow was prescribed to the whole fluid, which also generates strong streaming around

the sharp tip, but without the constraint of operating at a specific frequency. Although

Ovchinnikov et al’ s study [42] suggests that both situations should in principle lead to sim-

ilar streaming flows, the first-order fluid oscillations in both situations should be different

from each other. A very recent study proposed more complete analytical expressions for

the streaming flow, as well as detailed flow profiles from numerics and experiments at much

higher frequency [43]. The same authors evidenced that sharp-edged structures are also

suitable for particle clustering via acoustic radiation pressure [44].

Second, although both experiments [33, 37] and simulations [35, 42] confirm the AS

intensity depends on the sharpness of the tip, none of them dissociates the tip angle α from

the curvature diameter 2rc, as shown in Fig.1(a) and (d), both of which being a sign of

sharpness. The difficulty is that in practice, the micro-lithography techniques make these

two quantities related to each other [37]. Therefore, only numerical simulations could help to

tackle this challenging question. Third, while most studies on acoustic streaming generated

around obstacles concern situations where δ � 2rc and those by Ovchinnikov et al. [42]

and by Doinikov et al. [43] address the opposite situation (δ � 2rc), it is unclear how

the crossover between the two situations takes place. Very recently published experimental

results showed that the dependence on viscosity and frequency can be more complex than
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expected even if δ � 2rc [45], possibly as a consequence of a constrained geometry as δ can

be of the same order as the channel depth d.

Finally, from a theoretical point of view, sharp-edge AS remains a ground for a nonlinear

framework in acoustofluidics equations. Indeed nonlinear terms coupling both the steady

and periodic velocity fields can become dominant, or at least non-negligible, a feature which

in turn is susceptible to make the classical perturbation theory no longer adapted. This

situation is the consequence of that, as mentioned above, the streaming velocity can be

locally as strong as the vibration velocity [37].

Motivated by these unsolved questions, and in the aim to propose quantitative predic-

tions, the current study aims to address the AS flow under different operating conditions

(vibration amplitude A, sound frequency f), fluid properties (kinematic viscosity ν) and

geometries (tip sharpness quantified by both rc and α). This parametric study is made

possible by directly solving the full Navier-Stokes equation using Finite Elements Method.

Results from the DNS (Direct Numerical Simulation) are first validated by recent experi-

ments, and then compared with those from simulations using classical Perturbation Theory

(hereafter denoted as PT). This comparison points out the necessity to treat and include

all non-linear terms in the numerical model. In a more applied purpose, this study aims to

provide a framework for designing the optimal geometrical structure which would provide

the strongest possible AS flow field for a given acoustic forcing.

II. THEORETICAL MODEL

A. Equations of motion

The fundamental equations governing acoustic streaming have been previously presented

in various theoretical studies [2, 14, 16, 20, 21, 46, 47], which we summarize thereafter.

Bold and normal font style respectively represent vectorial and scalar quantities. Without

external body forces nor heat sources and for an isotropic homogeneous fluid, the mass and

momentum conservation equations governing the flow are:

∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

ρ
∂v

∂t
+ ρ(v · ∇)v = ∇ · σ (2)
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where ρ is the liquid density and v the velocity field. The Cauchy stress tensor σ is the sum

of the viscosity (µ) term τ and pressure term −pI. As in our situation, λ � w, and that

the Mach number Ma = va/c � 1, the fluid can be treated as being incompressible, leading

to σ = −pI + µ(∇v + ∇vᵀ). Then, Eqs. (1) and (2) can be reduced to:

∇ · v = 0 (3)

ρ
∂v

∂t
+ ρ(v · ∇)v +

1

ρ
∇p = µ∇2v (4)

To analyse the AS flow, the Perturbation Theory (PT) constitutes a common framework

[2, 14, 16, 20, 21, 46, 47]. The velocity and pressure fields are decomposed into an unper-

turbed state, oscillating and steady streaming parts, hereafter denoted with subscripts 0, ω

and s, respectively:

v = v0 + vω + vs, vω = Re(vae
iωt) (5a)

p = p0 + pω + ps, pω = Re(pae
iωt) (5b)

where v0 = 0 is the unperturbed bulk flow considered to be null in this study, vω is the

acoustic (oscillating) part of the velocity field; va is the complex amplitude of the vibration

velocity, vs is the steady streaming velocity; similarly, pω, pa are the pressure and complex

amplitude of the acoustic pressure field, p0 is the gauge atmospheric pressure and ps is the

steady pressure field associated to the streaming flow. The classical PT assumes ‖vs‖ �
‖va‖ and ps � pω, i.e. that the streaming flow velocity is of considerably lower magnitude

than the driving acoustic velocity [2, 15, 35, 36, 42, 43, 46–49]. Given the strong AS which

is generated near sharp edges, we dismiss these simplifying assumptions.

By injecting the decomposition of Eq. (5) into Eqs. (3) and (4), and after a bit of algebra,

the momentum equation leads to time-dependent (Eq. 6) and steady (Eq. 7) parts:

iωva + (vs · ∇)va + (va · ∇)vs = −1

ρ
∇pa + ν∇2va (6)

(vs · ∇)vs +
1

2
< Re[(va · ∇)v∗a] >= −1

ρ
∇ps + ν∇2vs (7)
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Equations (6) and (7) both contain non-linear terms in velocity, coupling the unsteady

and steady components. By time-averaging Eq. (7), one then sets a body force Fs to account

for the non-linear effects of vibration motions [15, 42]:

(vs · ∇)vs =
1

ρ
(Fs −∇ps) + ν∇2vs (8)

where the body force is:

Fs = −ρ

2
〈Re[(va · ∇)v∗a]〉 (9)

here the operator < . > stands for a time-averaging over one period of acoustic oscillation

1/f .

In the PT framework, the non-linear terms at the left-hand side of eq. (6), coupling va and

vs, are commonly neglected. Also in Eqs. (7) and (8), (vs ·∇)vs is considered as a negligible,

fourth-order term in most previous studies of acoustic streaming [2, 15, 42, 43, 46–48]. As

stated above, in the case of sharp-edge streaming, ignoring these terms should deviate the

modelled results from reality. The primary reason is, as previously mentioned, vs can be of

the same order as va. It implies that the convection of the acoustic field by the streaming one

becomes significant, as it was directly revealed by our previous experimental results, see inset

of Figure 5 in [37], especially in the upper range of acoustic velocity. The second reason lies in

the boundary layer. Under usual situations where δ is much thinner than any other lengths

of the problem - in particular, much smaller than the radius of curvature of the boundary

walls, the resolution is carried out by solving separately the streaming flow within the steady

VBL [20, 47, 48] and that outside of the VBL. It consists of prescribing a distribution of slip

velocities along walls, previously derived from the calculation within the VBL, to the fluid

bulk. In the case of sharp edges when rc < δ, the direct numerical resolution in the whole

domain, and especially within the VBL, becomes necessary. Ovchinnikov et al.’s study [42]

was dedicated to this situation, and our study is partly inspired by their approach. As our

study aims to investigate streaming flows in an extended range of amplitude, we choose to

keep these terms in our simulations.
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B. Qualitative view of the streaming force

Let us now briefly examine the term Fs of Eq. (9). We assume that va = [vax vay 0] is a

vector remaining in the (xy) plane, which is true far from the upper and lower walls. Let us

then calculate va in this plane:

(va · ∇)va =




vax
∂vax
∂x

+ vay
∂vax
∂y

vax
∂vay
∂x

+ vay
∂vay
∂y

0




Results from our previously reported direct high-speed visualization [37] showed that,

near sharp edges, the acoustic velocity field in fluid is aligned in parallel to the nearest wall.

Furthermore, the no-slip boundary condition sets va=0 along walls so that the amplitude

of acoustic oscillations decreases to zero approaching the wall. This velocity gradient is the

origin of shear stress within the VBL.

In summary, gradients of acoustic velocity should originate from at least two effects: (i)

the no-slip boundary condition which creates variation of acoustic velocity amplitude from

va = 0 at the wall to va ' Aω at a distance to the wall farther than δ, here A is the spatial

amplitude of the acoustic vibration, and (ii) the orientation of va bending by an angle of

π − α over a distance of 2rc.

Along a straight horizontal wall, vay is null and vax is invariant with x. Therefore, only vax

and ∂vax
∂y

take non-zero values, which implies that Fs is null along a straight wall. This can

easily be generalised along any straight wall of arbitrary orientation. However, the streaming

force Fs is non zero where there is a steep change of orientation of va, typically achieved

near a sharp tip. This non-zero force is the origin of a centrifugal-like effect emphasised in

previous studies [37, 42].

Let us finally remark that we deliberately choose to keep dimensional quantities in this

study. First, our study aims for a quantitative comparison with previous experiments, which

is made easier with dimensional quantities. Second, our problem involves four length scales

which must be decoupled from each other. More specifically, the acoustic wavelength (λ),

the channel width (w), the VBL thickness (δ) and the tip radius of curvature (rc), must

fulfil the condition: λ � w � δ � rc. This condition would lead to complex formulations

for dimensionless equations. Thirdly, the COMSOL software we use for our simulations,
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naturally handles dimensional quantities.

III. DESCRIPTION OF THE NUMERICAL SCHEME

Most of the numerical results presented in this paper are based on the direct solving of the

Navier-Stokes equation (DNS). We also present a few results obtained from the Perturbation

Theory (PT) inspired from Ovchinnikov et al.’s study [42]; so that the efficiency of the two

methods can be compared under different conditions. Both PT and DNS simulations are

conducted with Finite Element Method (FEM) using COMSOL Multiphysics [50]. Details

of the simulation implementation scheme are described in Appendices A to E.

A. Domain of study

The geometry of the microchannel with a single sharp tip are detailed in Figure 1. Length

and width of the channel are respectively l = 1.5 mm and w = 0.5 mm. A symmetrical

sharp structure with a tip angle α and a curvature diameter 2rc is located on one side of the

channel. While both α and 2rc are taken at different values for different simulation cases,

the height of the sharp structure is kept constant: h=0.18 mm.

It worth noting that the simulations are conducted in the framework of a bidimensional

(2D) geometry. Precisely, the channel is considered infinitely deep. This choice is justified

by two main reasons. First, all previous experiments of sharp-edge streaming including ours,

are conducted with water and f equal to a few kHz, yielding δ between 8 and 15 µm, while

the channel depth d is equal or larger than 50 µm. Second, the cross-sectional depth/width

aspect ratio is roughly 1/10. As a consequence, the streaming develops essentially within

the (xy) plane.

Near the sharp edge, the mesh is refined (Fig. 1) since velocity gradients - thus the

streaming force, are expected to be locally concentrated near the tip, since the mesh step

is locally much smaller than rc. The mesh refining also allows to accurately account for the

sharp geometry of the tip. Furthermore, a similar mesh refinement is also imposed within

the VBL of both channel and sharp-edge walls. This is essential to finely simulate the effect

of viscous shear stress from which AS originates.
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Figure 1: Geometry of the domain of study, sketched in the top-left inset, together with

the acoustic wave parameters in the top-right inset. The mesh for the computation is

shown in the bottom figure, with a magnified view around the sharp edge tip on the right.

B. Boundary conditions

DNS is different from the PT method as it directly computes the fluid motion equations

(6-8) for the acoustic oscillations (time-periodic) and for the steady streaming. Periodic

boundary conditions are set at left and right ends of the channel. The left end (here set as

the inlet) is attributed a periodic velocity vx = vasin(2πft) along the horizontal direction

and vy = 0 along the vertical one. For the right end (outlet), a condition of pressure fixed

at p0 is assigned.

Since the fluid remains incompressible, and the length scale of the domain is much smaller

than the acoustic wavelength (l � λ), the above conditions result in an in-phase periodic

velocity for the right and left borders, as shown in Fig. 1. These conditions are supported by

experimental observations of oscillations of fluid particles within the whole channel, while the

sharp-edged tip remains static in the laboratory frame [37]. A no-slip condition is prescribed

on all other channel boundaries including along the sharp edge itself.

For the time-dependent simulations, each acoustic period is discretized into 50 time steps,

for an overall duration of 30 acoustic periods. It turns out that this duration is sufficient to

allow the full establishment of a quasi-steady acoustic streaming, once the flow is averaged
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over an acoustic period. Moreover, the choice of 50 time steps per acoustic period is validated

by comparing the streaming results from 4 different time steps. This validation process is

documented in Appendix D and shown in Fig. 12.

IV. RESULTS AND DISCUSSIONS

A. Validation of the numerical scheme

The comparison between previous experimental results [37] and present DNS ones, ensures

the validation of our numerical scheme. Figures 2 and 3 intend to illustrate the mechanism

of acoustic streaming, by showing both typical acoustic and steady velocity fields. Figure

2(a) presents a qualitative sketch and Figures 2(b-c) show typical amplitude and orientation

of the acoustic velocity field from both experiments and numerical simulations.

1. Acoustic velocity

As shown in Figure 2(a) and Figures 3(a-d), the acoustic field takes place in the whole

channel. Far from the walls, fluid particles oscillate with fixed amplitude A and with orienta-

tion roughly imposed by that of the nearest wall. As previously stated, while for λ � (w, l)

no streaming force can develop within the microchannel, the presence of a tip induces a

sharp spatial gradient in the orientation of vibrations, see Fig. 2(c), where the aforemen-

tioned centrifugal effect clearly appears in the vicinity of the tip. This effect induces a locally

strong streaming jet shooting from the tip, as shown in Fig. 3(b).

Careful high-speed Particle Image Velocimetry (PIV) measurements of the acoustic flow

reveal that oscillations close to the tip are stronger than elsewhere in the channel, roughly

by a factor of two to three. The exact value of this factor is found to depend on both α and

va, and presumably on the height h.

Figures 2(b) and (c) respectively show the amplitude of the acoustic velocity va and the

vibration orientation, quantified by the angle αvb, obtained from both experiments and sim-

ulations. Approaching x=0, the velocity va sharply increases from its value far from the

tip (38.5 mm/s), to reach its maximum value at x = 0 (here roughly 120 mm/s) and then

sharply decreases back to its value at infinity, see Fig. 2(b). The values of the velocity ampli-

tude va and angle αvb are respectively symmetrical and antisymmetrical about x = 0, along
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Figure 2: Acoustic vibration and streaming flow around the sharp edge structure: (a)

Sketch of the acoustic vibrations of fluid particles near the sharp edge, δ is the acoustic

boundary layer, the segment y1 − y′1 is located 0.05 mm below the tip; y2 − y′2 intersects

the tip; y3 − y′3 is located 0.01 mm above the tip, (b) Amplitude of the vibration velocity

recorded along y1 − y′1, y2 − y′2 and y3 − y′3. Circles stand for experiments recorded along

y3 − y′3, (c) Orientation of the vibration velocity αvb = arctan[vay/vax] along y1 − y′1,

y2 − y′2 and y3 − y′3. Circles stand for experiments recorded along y3 − y′3. Parameters:

α = 60◦, 2rc=5.8 µm, f=2500 Hz, va=37.8 mm/s, δ=11.5 µm.

the vertical direction from the tip. For both quantities, the influence of the sharp structure

is significant mainly within the region from x=-0.2 mm to 0.2 mm, hence comparable to the

height of the structure h=0.18 mm.

As shown in Figure 2(c), the orientation angle αvb of va varies along the x direction. The

evolution of αvb(x) depends much on the distance from the tip y. If y = 0.01 mm (line

[y3 − y′3]), hence roughly equal to δ, αvb increases from 0 far enough from the tip, up to

roughly 32◦. Then it sharply decreases down to its corresponding negative value, roughly

-32◦, continuously and slowly increases back to zero far away from the tip. This profile is

in very good agreement with our previous measurements obtained from high-speed imaging

[37] and extracted at the same distance y from the tip. In Fig. 2(c), we also plot αvb(x)
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Figure 3: Acoustic vibration and streaming flow around the sharp edge : (a-d) Successive

velocity fields at different time (or phase) during an acoustic period, (e) Magnitude and

streamlines of the streaming flow, from a time-average during several acoustic periods.

Parameters: α = 60◦, 2rc=5.8 µm, f=2500 Hz, va=37.8 mm/s, δ=11.5 µm.

along the line [y2 − y′2], which corresponds to y = 0, hence intersecting the edge right at the

tip. The overall profile of αvb(x) resembles the previous one, except near the tip where the

maximal and minimal values have larger absolute values, around 40◦ and -40◦ respectively.

Finally, the values extracted from a line [y1 − y′1] lower than the tip, show the same trend
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for αvb(x), with maximal and minimal values very close to that of the wall, i.e. (π/2−α/2)

and (α/2 − π/2).

At this stage and at a qualitative level, we can conclude that the value of α sets the

amplitude of the jump in the orientation of va, whereas the value of rc sets the sharpness

of the spatial variation of orientation. Both of them should play crucial influence on the

magnitude of acoustic perturbation within the fluid.

2. Streaming velocity

Figure 3(e) shows the steady streaming velocity and corresponding streamlines. We

observe perfectly symmetrical streaming vortices in the vicinity of the sharp tip. This

clearly shows how focused the driving streaming force is, in particular in the vicinity of the

sharp tip, and confirms previous findings [42]. Thereafter, we denote the maximal value,

evaluated within the whole streaming flow, as vsm. In sharp-edge streaming, the velocity is

found to be maximal along the y axis, hence at x=0, and directed toward the y direction.

We shall see that this is no longer the case when rc is large enough with respect to δ.

Figure 4 shows the streaming velocity vsy(x = 0, y) along the y direction, with the frame

origin (x = 0 and y = 0) taken at the tip. For a reason of symmetry, vsy(x = 0, y) is

oriented along y so that only the y component of vs is plotted. Results from DNS are in

very good agreement with experiments extracted from our previous study [37]. In addition,

the numerical study further allows to access velocity within the thin VBL, which was hardly

possible in experiments, due to limitations of the visualization technique. Within the VBL

range y ≤ δ, the streaming velocity sharply increases with y to its maximum value vsm

obtained near y ' δ. Beyond this point, the streaming velocity decreases along the y

direction and vanishes to zero at a distance from the tip roughly equal to w− h, here ' 0.3

mm.

We also define v
′
sm as the maximal streaming velocity determined only on the y axis. Let

us here point out that for most situations investigated in this study, namely the situation

of sharp edge where 2rc < δ, vsm is found to be along the y axis (at x=0 and y ' δ like in

Fig. 4), and then vsm = v
′
sm. However, when rc is significantly larger than δ, the maximal

velocity is found out of the y axis, typically in the periphery of the two eddies of the VBL,

making vsm different from v
′
sm. This is illustrated by the two insets of Fig. 4. In the latter

14



Boundary layer
11.5 𝜇𝑚

𝑣 𝑦

(a). 2𝑟 = 2.8 𝜇𝑚

(b). 2𝑟 = 40 𝜇𝑚

𝑣 ≠ 𝑣

𝑣 = 𝑣

Figure 4: Streaming velocity along the y-direction: comparison between experiments and

simulations. Conditions are: α = 30◦, 2rc=2.8 µm, va = 37.8 mm/s. Due to the finite size

of PIV particles, the flow could not be solved within the boundary layer with a thickness of

11.5 µm. The two inserted maps show the magnitude of the streaming velocity field

(reddish color standing for larger velocity) and its direction (arrows) in respectively two

situations: sharp edge situation (upper map) where the maximal velocity vsm is located on

the y axis and round edge one (lower map) where vsm is located besides the y axis and

hence different from v
′
sm.

situation, these two values shall be treated separately. Let us finally remark that the ratio

rc/δ rules the crossover between sharp-edge and classical Rayleigh streaming.
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3. DNS versus PT

Based on the above analyses, we extract vsm as a relevant quantity to characterise the

streaming velocity field, under the combination of different operating parameters. Other

quantities like the size of streaming vortices and the area influenced by the streaming flow

are directly related to vsm [37]. In order to better quantify the situations where rc > δ, and

in particular to understand and quantify the crossover between sharp-edge and smooth-edge

configurations, we also systematically extract v
′
sm, hence restricting the area to the y axis.

30° 2.8𝜇𝑚

60° 5.8𝜇𝑚

90° 10.1𝜇𝑚

, for different sets of values for angle α and radius of curvature rc. Results are extracted from

experiments (symbols), PT simulation (dashed lines) and DNS (plain lines).

Figure 5: Maximum streaming velocity versus square of acoustic vibration v2
a

First, we quantitatively investigate the influence of the forcing on vsm. Figure 5 shows
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a quadratic dependence between vsm and the acoustic velocity amplitude va. Experimental

results with water are taken from [37] and from three sets of values of α and rc. Results

from DNS and PT simulation are shown respectively as plain and dashed lines for the three

sets of parameters. At low enough acoustic amplitude, both the PT and DNS simulations

give satisfactory agreement with experiments.

However, at larger acoustic velocity, results of DNS are in better agreement with exper-

iments than those from PT. The latter tends to over-estimate the streaming velocity by

roughly 20 % under strong acoustic vibration.

The above results suggest that DNS provides a better prediction of the streaming velocity

around the tip and it can be considered as a reliable method to predict the streaming flows

generated by sharp structures.

B. Quantitative results

1. Vorticity maps

Figure 6 show vorticity maps of the streaming flow, calculated by DNS with different tip

angle α and curvature diameter 2rc. The acoustic forcing velocity is taken relatively strong,

at va = 101.7mm/s, corresponding to the right uttermost points in Figure 5. It reveals that

intense vorticity is localised near the tip, within the VBL, and takes values of opposite signs

in the regions to the left and right of the tip. The inner vortices in turn induce outer vortices

of opposite sign and of larger size, further away from the tip (see in particular subfigs (a-b)).

These outer vortices correspond to the ensemble of streamlines shown in Fig. 3-(b). For all

cases, the extrema of vorticity roughly remain at the same locations: very close to the tip

and in either side of it.

Subfigures (a-d) in Fig. 6 illustrate the comparative influence on vorticity maps of the

different angle α - ranging from acute (α = 12◦) to obtuse (α = 120◦), while keeping rc

constant. More intense vorticity appears for sharper structures (see subfigs (a-b)) while

its magnitude decreases as α increases (see subfigs (c-d)). Subfigures (e-h) illustrate the

influence of the value of rc, while keeping α constant. Two distinct behavior emerge: within

the range 2rc > δ (g-h), increasing rc leads to more spread and weaker vortices, while in the

range 2rc < δ (e-f) the vorticity does not vary significantly with rc.
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Figure 6: Vorticity maps of the streaming flow in the region close to the tip, under

different geometrical conditions. Red color (positive vorticity) and blue color (negative

vorticity) respectively correspond to flows in anticlockwise and clockwise directions. For all

maps, the vibration velocity va =101.7 mm/s, f = 2500 Hz and liquid is water, so that δ '
11.3 µm. Figs.(a-d) correspond to the same curvature diameter 2rc = 2.8µm but different

tip angles α : (a) α = 12◦; (b) α = 30◦; (c) α = 90◦; (d) α = 120◦. Figs.(e-h) correspond to

the same tip angle (α = 60◦) but different curvature diameters : (e) 2rc = 1.0 µm; (f) 2rc

= 6 µm; (g) 2rc = 20 µm; (h) 2rc = 50 µm.

Based on these results, we can conclude that the curvature diameter and tip angle have

qualitatively different influences on streaming vorticity, both inside and outside the VBL.

Smaller and sharper structure provides stronger streaming force and flow.

2. Streaming velocity magnitude per acoustic power

We now aim to define a simple fitting parameter to quantify the efficiency of the response

of streaming flow in regards to the prescribed vibration. The analyses in Ovchinnikov et al.

[42] end up to a general expression for the streaming velocity in cylindrical coordinate (r, φ)

as:

vs(r) =
v2
a

ν

δ2n−1

a2n−2
Hα(

r

δ
) (10)

where n is a coefficient that depends on α, n = π
2π−α ; a is a length scale close to that of

the sharp-edge height h. The function Hα( r
δ
) contains the radial profile of the streaming
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flow. Quantitatively, we mainly focus on the characteristic (and maximal) value of vs(r) at

r = δ and φ = 0, so what follows we shall just consider the constant prefactor 1
ν
δ2n−1

a2n−2 that

relates vs to v2
a. Let us note that this equation, supposedly valid in the range rc < δ, does

not contain any dependence on rc.

The results presented in Figure 5 confirm that for a given combination of geometry,

acoustic frequency and liquid viscosity - and actually for most experimental conditions, vsm

varies quadratically with the amplitude of vibration velocity va. Therefore, we define the

fitting parameter θ = ∆vsm
∆(v2a)

as a measurement of the efficiency of the momentum conversion

from acoustic to streaming flows. In the following, we shall consider θ to quantify the

influence of the different varying parameters, namely α, rc and ν. Similarly, we define

θ
′

= ∆v
′
sm

∆(v2a)
.

3. Influence of tip angle

In this first series of results, we quantify the strength of the streaming flow for different

values of angle α, from 12◦ to 180◦, keeping all other quantities constant. In particular, as

illustrated in the vorticity maps of Figures 6-(a-d), rc can be kept constant for different α,

except of course for α = 180◦ that corresponds to case of a flat, straight wall. Figure 7

shows vsm versus v2
a for different values of α. As previously stated, the more acute the angle,

the stronger the streaming flow for a given va. Besides, a flat wall with α = 180◦ does not

generate any streaming flow even for high va.

Since the vast majority of cases exhibited a robust quadratic dependence between vsm

and va, we extracted θ for each value of α. The results are shown in Figure 8, where θ is

plotted versus (180 − α).

Keeping all other parameters constant, here, 2rc = 2.8 µm, f = 2500 Hz and liquid

properties being those of water (δ = 11.5 µm), θ achieves its highest value with the sharpest

angle, α = 12◦. The maximal efficiency of the momentum conversion is slightly below 10−2

s/mm. When α reaches 90◦, θ drops to roughly 3×10−3 s/mm, and it vanishes to zero when

α approaches 180◦. Thus the dependence of θ with π − α is strongly non-linear.

19



180°

12°

180°

𝑎𝑟𝑐𝑡𝑎𝑛(𝜃)

Figure 7: Maximum velocity versus square of the vibration velocity v2
a, with different tip

angles. The coefficient θ is extracted from a linear fit, which holds very well within the

whole range of va. Other conditions are: 2rc = 2.8 µm, f = 2500 Hz.

4. Influence of tip curvature

We now investigate the influence of rc on θ, for a series of four values of α, from 12◦ to

120◦. As previously, simulations were carried out under the same liquid viscosity (water,

ν=10−6 m2/s) and frequency f = 2500 Hz, so that δ was kept constant at 11.5 µm and only

rc was varied. Figure 9 shows the dependence of θ versus 2rc/δ.

These results reveal a decrease of θ with rc, and this decrease becomes more significant

within the range 2rc > δ, see Figure 9. Let us note that in Figure 9, we also put results

from simulations using the PT method for the two extreme values of α, again in the aim

to illustrate the gap between both methods. This confirms that PT systematically over-
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Figure 8: Coefficient θ = ∆vsm/∆(v2
a) (efficiency of the momentum conversion from

acoustic to streaming flows) versus the supplementary of the tip angle 180 − α. Other

conditions are: 2rc=2.8µm (except for α = 180◦ where rc is infinite), f=2500 Hz.

estimates the magnitude of the streaming flow, by a factor of roughly 1.2.

This constitutes a quantitative confirmation of what was suggested in the vorticity maps

of Figures 6(a-d). Also, the influence of rc is more pronounced when the tip angle is more

acute.

Once 2rc is increased and become larger than δ, θ significantly decreases, which is observed

for all tip angles (Fig.9). This is in accordance with the spreading and weakening contour

observed in Figure 6-(g-h). Hence in the range 2rc > δ, the conversion of acoustic power into

streaming flow is less efficient, which again emphasizes that the sharpness of the structure

is determinant for the generation of intense streaming. In other words, when the tip is no

longer sharp, the magnitude of AS weakens as we should retrieve the classical Rayleigh-
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2𝑟 = 𝛿 = 11.5 um

Figure 9: Coefficient θ = ∆vsm/∆(v2
a) (efficiency of the momentum conversion from

acoustic to streaming flows) based on the maximal value of streaming velocity, versus ratio

between curvature diameter 2rc and boundary layer thickness δ, for four different tip

angles α. DNS results should be considered as reliable and PT simulation appears to

over-estimate the result according to the two extreme cases (α = 12◦ and α = 120◦).

Schlichting streaming. Let us mention that the analytical prediction of Doinikov et al.’s

study (eq. (27) of [43]) suggests a power law dependence on r0 of the streaming velocity.

However, it is hard to directly compare it with our results, since the values of r0/δ in this

latter study can be very different from those used here.

5. Influence of viscosity

One of the remarkable and non-intuitive features of Rayleigh-Schlichting streaming is its

independence on viscosity, providing that the typical size of the container is much larger than

22



the thickness of the VBL, δ [14, 20]. This classical result, which expresses that streaming

is both spawned and hindered by viscosity, can be retrieved by simple scaling arguments

[48, 51], though it is no longer true in confined geometries [51]. Here in the case of sharp-edge

streaming, we show that, despite δ can remain small compared to the channel size, viscosity

has a strong influence on the sharp-edge induced streaming. As previously, we extracted θ

as a fitting parameter that relates vsm with v2
a over a large range of va, for different values

of ν and keeping rc and α at fixed values.

Figure 10 shows a strong decrease of θ with kinematic viscosity ν in Log-Log axes. We

span a large range of values for ν, from that of water (10−6 m2/s) to a 1000-times more

viscous liquid, with a corresponding δ ' 357 µm, which in practice would correspond for

instance to pure glycerin. In particular for 2rc = 6 µm, together with f = 2500 Hz and

constant α = 30◦, we remain in a sharp-edge streaming situation since 2rc < δ. The decrease

can be well fitted by a power-law, with an exponent of -0.867 giving the best fit, see Fig. 10.

We now change the value of 2rc from 6 µm to 25 and 50 µm. The cases investigated with

2rc= 25 and 50 µm reveal that the decrease of θ with viscosity is much less pronounced for

higher values of 2rc/δ, hence in the lower viscosity range. Actually, for these two values, the

evolution of θ shows a crossover from sharp-edge streaming to classical Rayleigh-Schlichting

streaming. Therefore if 2rc > δ, it turns out that the dependence of θ on viscosity is not

captured by a power law. Let us note that, while we ran our simulations up to ν=10−3 m2/s,

the relationship between vsm and v2
a is no longer purely linear within this high-viscosity range.

Therefore, the value of θ could not be extracted for the highest values of ν.

Conversely, the value of θ is independent on rc in the high viscosity range, i.e. when

2rc/δ < 1: this is a trademark of sharp-edge streaming.

Equation (10) taken from Ovchinnikov et al.’s study [42] predicts a decrease of θ with ν

via a power-law of negative exponent, as θ ∼ ν(n− 3
2). For the chosen angle θ = 30◦, n '

0.54, yielding an exponent
(
n− 3

2

)
of -0.96, close to but different from the value of -0.867

found empirically. The corresponding analytical prediction of Doinikov et al.’s study [43]

propose an exponent of -1.

Let us here give more details on an apparent contradiction between the results of Figure 9

and those of Figure 10, concerning the dependence of θ with ν. The results of Figure 9 were

obtained by varying rc while keeping ν, ω constant (and thus δ at 11.5 µm). Conversely,

the results of Fig 10 were obtained by varying ν, while keeping rc constant for the same set
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Figure 10: Coefficient θ = ∆vsm/∆(v2
a) (efficiency of the momentum conversion from

acoustic to streaming flows), versus kinematic viscosity ν. Other parameters are: α = 30◦,

f = 2500 Hz. The fitting power-law curve is based on the results for 2rc = 6µm. For ν >

5×10−5 m2/s, the data points coincide with each others, showing that θ is almost

independent on rc.

of data. Hence, the apparent paradox of the influence of ν on θ comes from that :

- the decrease of θ with rc/δ in Figure 9 is attributed to that the streaming is weaker

when rc increases, in particular when it becomes of the same order as, or larger than, δ : in

this latter condition, the tip is no longer considered as sharp with respect to δ. Conversely

in a situation of sharp edge streaming, the streaming flow is almost independent on rc, as

shown in the left region of the plot.

- the decrease of θ with ν is effective only in the situation of sharp edge streaming, where

24



10-6 10-5 10-4 10-3
10-6

10-5

10-4

10-3

10-2
Simulation at 2r

c
= 6 m

Simulation at 2r
c
= 25 m,

Simulation at 2r
c
= 50 m,

Fitting:y=5.02e-8x(-0.867),R2=0.9998

Figure 11: Coefficient θ
′

versus kinematic viscosity ν. θ
′
= ∆v

′
sm/∆(v2

a), fitting efficiency

from of the momentum conversion from acoustic to streaming flows. Other parameters are:

α = 30◦, f = 2500 Hz. The fitting power-law curve is based on the simulation when 2rc=6

µm.

rc is significantly smaller than δ. If this latter condition is true for water, it will of course

remain true for more viscous liquids, as for the results in Figure 10.

The dependence of θ
′

with ν also shows a global decrease, see Figure 11. But the main

difference with θ, is that within the range where rc/δ is large enough hence, the edge is not

sharp), the value of θ
′

is independent on ν. It is clearly evidenced for rc = 50 µm in the low

viscosity range. The distinction between θ and θ
′
is mostly significant where rc/δ > 1, which

corresponds to situations depicted in the vorticity maps of Figs. 6-(g,h). In these situations,

the maximum of streaming velocity is not localized along the y axis, and ressembles classical
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Rayleigh streaming. In any case, the behavior of v
′
sm follows a quadratic increase with va,

so that θ
′

remains well defined. More surprisingly, beyond ν=10−4 m2/s, the decrease of θ
′

with ν deviates from a power law. Also, θ
′

remains dependent on rc in the whole range of

ν investigated.

V. DISCUSSIONS AND CONCLUSION

Let us now recall and summarize the main results. Motivated by experimental results on

the generation of intense acoustic streaming near sharp edges [33–37, 42, 45], the results of

our DNS simulations allow a characterization of the streaming flow both outside and inside

the VBL, here of typical thickness δ = 11.5 µm for water at f = 2500 Hz. This constitutes

a significant step forward with respect to the state of the art, since it is experimentally

hard to access the flow details within the VBL [37]. Furthermore, few studies employed the

DNS method so far [43], and our study provided results of better precision than the classical

PT, especially at high forcing. In particular, providing 2rc is smaller than δ (which is the

case of sharp-edge streaming), the maximum of streaming velocity is found near the apex

of the sharp tip, at a distance of roughly y = δ, inducing regions of strong and concentrated

vorticity aside and within the VBL, as well as larger outer vortices, which ensure efficient

mixing across the whole channel [33, 35–37].

Furthermore, we gained better understanding of the first-order acoustic velocity field. It

turns out that both the orientation of the oscillations and their amplitude are influenced by

the sharp structure, which leads to a strong and sharply localized perturbation to the fluid.

Namely, the norm of va(x, y) is maximal near the tip, precisely around the location of the

maximum of streaming velocity (x = 0, y = δ). Surprisingly, this velocity va is found twice

to three times larger than that far away from the tip. Let us note that this confirms recent

experiments [37]. This effect, which significantly contributes to the streaming efficiency,

depends on the sharp edge structure. Though, it remains to be explained and quantified in

more details.

Our study also focuses on the influence of the tip sharpness, and reveals that the two

parameters rc and α are crucial for the generation of acoustic streaming. While their respec-

tive influences were difficult to dismantle in experiments, our numerical results provided a

better understanding. Since the acoustic flow direction (angle αvb) follows that of the walls,
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the sudden change of oscillation orientation beside the tip leads to such a centrifugal effect.

Along a typical length as short as 2rc, the orientation jumps from αvb = π/2 − α/2 for

x � rc to αvb = α/2 − π/2 for x � rc, hence an overall rotation of ∆αvb = π − α. This

gradient generates strong values for the effective streaming force Fs.

One of the remaining challenging issue, is the detailed determination of the radial and

azimuthal flow profile. In this aspect, the study by Doinikov et al. constitutes a step

forward, and offer results complementary to ours. This latter study revealed in particular

the occurrence of secondary vortices along the sharp edge, when the angle of the wedge α

is large enough. the origin of these secondary vortices remain unclear, and could be specific

to situations of higher frequencies. Very recent experiments [45] also emphasized the non

trivial influence of f and ν when δ is no longer small compared to channel depth and width.

Let us briefly comment on Eq. (8). Due to relatively local strong values for vs, i.e. com-

parable in magnitude to va, the non-linear term (vs ·∇)vs should in principle be significant.

The physical meaning of this term can be viewed as the self-advection of the streaming flow,

which in practice leads to vortex elongation in Rayleigh-Schlichting streaming [52]. However,

this is somewhat contradictory with the robust quadratic relationship found between vsm

and va, regarding Eq. (8). To explain this apparent contradiction, we retain two possible

hypotheses:

i) although the magnitude of vs can locally be relatively large, the term (vs · ∇)vs could

be negligible, especially in the region around the maximum vsm.

ii) the term (vs · ∇)vs could be irrotational, so that it can be exactly compensated by

the pressure gradient term ∇ps.

To check these two assumptions, we plotted the maps of the norms of both quantities

(vs · ∇)vs and ν∇2vs. The results are shown in Fig. 13, for a typical value of va in the

intermediate range. It turns out that the first assumption is the right one, as it shows

that the magnitude of ‖ν∇2vs‖ overcomes that of ‖(vs · ∇)vs‖ by a factor of roughly 70.

Therefore, the non linear term (vs · ∇)vs can be considered as negligible in Eq. (8), which

explains the extension of the quadratic behavior between vsm and va in sharp-edge streaming.

Furthermore, it underlines that the differences between PT and DNS simulation results, and

the fact that DNS matches better experiments of sharp-edge streaming should be explained

by the importance of the other non-linear terms (va · ∇)vs and (vs · ∇)va in Eq. (6).

In the seek for optimal operating conditions of sharp edge AS, the efficiency of conver-

27



sion from acoustic vibrations to streaming flow is quantified by θ. In particular, while the

fabrication of sharp tips requires in practice careful and expensive techniques, especially for

rc as small as a few microns, Fig. 9 shows that the streaming flow does not gain much in

strength when rc is lowered below δ/2. The precise identification of the influence of rc and

α was made possible thanks to the DNS simulations.

The role of viscosity was also investigated. The power-law decrease of θ with ν, predicted

by Ovchinnikov et al. [42] was confirmed by our simulations, although the exponent was

found weaker than the predicted one. We also confirmed the independence of θ on rc in the

range 2rc < δ, and we investigated the crossover between the sharp edge AS and classical

Rayleigh streaming regimes by tuning the value of 2rc/δ. In particular, we recover the

independence of θ on ν if 2rc/δ � 1 (as in classical Rayleigh streaming).

Also, our simulations showed that the quadratic relationship vsm ∼ v2
a fails at high enough

viscosity. This has to be considered as a geometrical constraint, since with higher range of

va, the size of the outer vortices is comparable to that of the channel width w. For high

enough va, the streaming can then be limited by the size of the microfluidic channel.

Let us also suggest a quantitative criterion of efficiency in the context of (macro-)mixing

under a typical imposed flow-rate Q through the channel. Previous experiments quantifying

both the maximal streaming velocity and mixing efficiency revealed that a satisfying mixing

rate could be obtained if the averaged flow velocity, here < V >= Q
w·d , was comparable to

the maximal streaming velocity [37]. For the width w = 500 µm and depth d = 50 µm

used in these experiments, and a middle-range value of Q = 10 µl/mn, it yields: < V >'
6.7 mm/s. Therefore in practice, the velocity set point vsm =< V > shall be related to

specific conditions on both the tip geometry and liquid viscosity, both ruling the value of

θ, also to take into account the maximal va that the transducer can generate. It is worth

noting though, that micro-mixing at the molecular scale also depends on the form of vortices

generated by AS and one of our upcoming study addresses this issue using Iodate-Iodide

reaction as a chemical probe [53, 54].

To sum up, the FEM-based DNS method gives very satisfactory agreement with experi-

mental results and it over-performs the classical PT model. The latter does not consider the

non-linear terms in the streaming force calculation and tends to over-estimate the streaming

velocity. In this sense, our study shows that, providing the right boundary conditions are

prescribed and all non-linear terms are kept in the calculation, AS streaming can be suc-
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cessfully studied in a quantitative way, with minimal inexpensive computing material, i.e.

without computer cluster nor MP - and a FEM commercial software. In this sense, we can

finally state that the assumption of a 2D flow is necessary to carry out DNS simulations

by keeping a reasonable computational cost, which would be very expensive for simulations

under an equivalent 3D geometry. Still, we checked that the flow remained 2D, even by

prescribing a 3D geometry similar to that of the experimentally studied channel, under a

few typical situations. This is presumably due to the high width/depth ratio in our channel

geometry.

APPENDICES

A. Perturbation Theory and its implementation

The Perturbation Theory is generally well adapted to address acoustofluidics problems in

the framework of “weak disturbances”. With limited access to Computational Fluid Dynam-

ics (CFD), PT is a very powerful tool to reduce the N-S equation, which potentially includes

non-linear terms that couple the acoustic and streaming velocity fields, into a simpler one.

Therefore, PT provides an convenient method to bring out the physical fundamental core of

the acoustic streaming problems while retaining relatively simple mathematical formulation

[15, 16, 21, 42, 46, 47].

For the present study, va and vs are governed by both Eq. (6) and Eq. (7), which set

respectively the oscillating and steady terms in the velocity field. The PT assumes va � vs

so that the inertial terms in the Eq. (6), (vs ·∇)va and (va ·∇)vs, can be neglected. Without

these terms, Eq. (6) and Eq. (7) can then be solved separately to obtain va and vs.

The procedure of the calculation based on PT can be proceeded following two steps : i)

Solving the wave equation Eq. (6) to determine the vibration velocity field in the geome-

try structure, with first-order time-periodic terms, and ii) Solving the streaming equation

Eq. (7), in which the force term in Eq. (9) can be determined by the results of the previ-

ous step. The second-order terms are steady ones, from which the streaming velocity vs is

deduced.

Although Ovchinnikov et al. [42] pointeed out the limitation of PT with respect to

DNS method, PT remains a powerful framework to analyze the underlying physics of the
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streaming fields near the sharp tip, especially when the vibration amplitude within the liquid

is small enough so that the acoustic Reynolds number Rea = Aωh
ν

remains of the order of

one or lower.

In COMSOL, basic steps to implement Perturbation Theory are:

1. Module “Thermoviscous Acoustics, Frequency Domain”for solving the acoustic vibra-

tion velocity field;

2. Module “Laminar flow” for solving the streaming velocity field with Fs = −ρ
2
〈Re[(va · ∇)v∗a]〉

as the “Volume Force” inserted into the model;

3. Boundary conditions: to solve the vibration velocity, the left and right boundaries

(labelled as 1 and 6) are set with the acoustic velocity oscillating at the prescribed

value of amplitude in the normal direction, and to be in phase with each other Other

boundaries are set as no-slip walls.

For the second-order streaming velocity, the left and right sides of the domain are set

as inlet and outlet at given incoming velocity, here taken equal to zero. The other

boundaries are set to be no-slip walls.

B. Direct Numerical Simulation implementation

The detailed description of DNS has been given in Section II. Implementing DNS is

COMSOL includes the following steps:

1. Module “Laminar Flow” for direct solving the N-S equations with periodic velocity

boundary conditions;

2. Module “Domain ODEs and DAEs” for calculating the time average values of the

velocity field in step 1;

3. Boundary conditions: the acoustic velocity (in form of a sinusoidal function of time) is

set as the left boundary condition and the right boundary condition is set as a pressure

p0. Other boundaries are set as no-slip walls.
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C. Mesh and grid independence study

The mesh grid is built with triangle elements, with the maximum element size being

0.014 mm, and the minimum one being 0.0002 mm. Smooth transition is performed with

a maximum element growth rate of 1.1. Close to the sharp edge, the mesh is refined by

inflation layers to better account for the strong velocity gradients inside the VBL. The

number of the layers is 3 and the layer stretching factor is 1.2.

The mesh independence is assessed by comparing the results from the chosen mesh with

those obtained in a refined mesh, which is generated by increasing the number of cells by

30%. Comparing the two meshes, the obtained streaming velocity value differs by less than

1%. The current mesh is thus considered as being as satisfactory balance between both in

terms of accuracy, reliability and computing time.

D. Time to reach steady streaming field and time step

For the PT method, the two-steps procedure consists in a readily computation process.

For the DNS however, the streaming flow appears after a transient state, and thus needs

some time to be fully developed and reach its steady state. As shown in Figure 12 (a),

the streaming velocity vsm (the time average of the total velocity from the beginning of

the simulation to a given time) grows with the number time-steps until reaching a steady

state. The corresponding time duration is roughly 12 ms, hence 30 acoustic cycles under

the acoustic frequency of 2500 Hz (period of 400 µs).

The value of the time-step is also essential to meet the CFL (Courant-Friedrichs-Lewy)

stability condition. The Courant number, given by CFL = va∆t/∆x, should be kept lower

than 1 to guarantee the numerical iteration stable [55]. As shown in Figure 12, we test

four time-steps from 1 µs to 120 µs, or from 1/400th to 3/10th of an acoustic period. Only

∆t4 = 120µs gives a CFL higher than unit but ∆t3 = 80µs is not fine enough to give

a satisfactory maximum streaming velocity vsm, see Fig. 12-(a) and a reliable streaming

distribution along the y direction vsy(y), see Fig. 12-(b). We thus choose ∆t2 = 8µs as a

compromise since it gives the same results as ∆t1 = 1µs but with a shorter computing time.

With the chosen time step of 8 µs and a total of 30 acoustic cycles, the DNS computing

cost is about 25 mn per case study on an Intel i5-7500 CPU and 16 GB of RAM.
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（a） （b）

Figure 12: Variation of streaming velocity with numerical iteration time (a), and the

steady y-direction streaming velocity at different time steps (b). Time steps ∆t1 = 1µs,

∆t2 = 8µs, ∆t3 = 80µs, ∆t4 = 120µs, correspond to 1/400th, 1/50th,1/5th and 1/3.33rd of

an acoustic period. The whole duration of the simulation equals 30 acoustic periods.

E. Convective versus viscous terms

Equation (7) suggests that the quadratic dependence of vsm with va should be right only

if the term (vs · ∇)vs is negligible compared to the other ones. Therefore, we compared the

relative magnitude of ‖ν∇2vs‖ and ‖(vs · ∇)vs‖, in the form of colormaps shown in Figure

13. The chosen va = 70.5 mm/s corresponds to a value in the median range of investigation,

but this remains true even for the largest investigated va, i.e. 107 mm/s. This confirms

that although vs can be comparable to va in magnitude, the term (vs · ∇)vs remains small

compared to the others of Equation (7).
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Abstract
Acoustic streaming can be generated in microchannels by low-frequency acoustic transducer in the vicinity of sharp struc-
tures. Close to the tip, the strong curvature induces bent trajectories on the time-periodic acoustic flow, locally enhancing 
the streaming-generating force. In this study, we investigate the influence of the sharp structure and vibration velocity on 
the streaming flow. The vibration velocities are characterized by directly visualizing the displacement of tracing particles 
and the generated acoustic streaming is observed using particle image velocimetry, under various operating conditions. By 
measuring the concentration of a fluorescence dye, we evaluate the mixing performance for different values of tip angle, 
vibration amplitude, and flow rate through the microchannel. Our results confirm that intense streaming is generated under 
low-frequency (2.5 kHz) acoustic condition when the local curvature of the boundary is close to or smaller than the viscous 
boundary-layer thickness. It is shown that the sharpest the edge tip, the largest the vortices size and the spatial extent of 
the induced streaming, therefore greatly enhancing the mixing between two miscible liquids. The mixing index, linearly 
characterizing the mixing degree between 1 (totally separated) and 0 (perfectly mixed), jumps from 0.73 (without acoustic 
excitation) to 0.38 (with acoustic excitation), resulting in a highly mixed homogeneous fluid just after the sharp edge. This 
emphasizes the promising potential of acoustic streaming to enhance mass transfer inside microchannels which is usually 
limited by the laminar flow conditions.

Keywords Acoustic streaming · Sharp structure · Mixing performance · Fluorescence flow visualization

1 Introduction

Increasing interests in milli- or micro-fluidic devices rep-
resent both advantages and challenges. Their advantages in 
efficiency and compactness make them attractive for a large 
range of industrial (Whitesides 2006), biological, and phar-
maceutical (Elvira et al. 2013) applications. However, due to 
geometry and pressure drop constraints, the flow regime in 
most micro-fluidic devices is laminar. Consequently, trans-
port phenomena are generally considered as a challenge. 
Acoustic Streaming (AS) has gained interest in recent years 
due to its ability to generate flows even at very low Reyn-
olds number, therefore making it advantageous in various 
applications (Gopinath and Mills 1994; Boluriaan and Mor-
ris 2003; Whitesides 2006; Lee and Loh 2007; Legay et al. 
2012; Huang et al. 2013b, 2018b; Elvira et al. 2013).

Physically, the AS phenomenon is generated in a quies-
cent fluid subjected to a periodical acoustic or mechanical 
vibration field. A net mean flow originates from the dissi-
pation of the vibration energy by viscosity of the fluid; the 
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latter can be either Newtonian or non-Newtonian. Theoreti-
cally, the phenomenon can be modeled by the time-averaged 
non-linear term of the Navier–Stokes (NS) equation coupled 
with vibration perturbation. The first AS phenomenon was 
observed as early as 150 years ago, but continuous research 
efforts have been done until today due to the diversity of 
mechanisms and applications (Faraday 1831; Eckart 1948; 
Nyborg 1953; Stuart 1966; Lighthill 1978; Boluriaan and 
Morris 2003).

Recently, the observation of intense flow and vortices 
generated by acoustic fields within sawtooth-shaped micro-
channels have brought a renewal of interest to boundary-
driven streaming flows in micro-fluidics (Huang et al. 2013a, 
b, 2018a, b; Nama et al. 2014a, b; Ovchinnikov et al. 2014; 
Tobias et al. 2015). Huang et al. (2013a) first try to apply 
such type of streaming into mixing enhancement. (Ovchin-
nikov et al. 2014) conducted theoretical and experimental 
works to fundamentally investigate such a phenomenon. In 
their validation experiments, the sharp edge (tip of a nee-
dle) provides a 461 Hz mechanical vibration, i.e., the actua-
tion inside the liquid. They pointed out that such streaming 
velocities can be of several orders of magnitude higher than 
Rayleigh streaming velocities under similar amplitudes of 
vibration. They attributed the origin of this new type of 
streaming to the centrifugal force around the sharp vibrat-
ing structure. For instance, in eye surgery process, the jets 
coming from ultrasonically vibrating needles can reach a 
speed of as high as 2 m/s (Zacharias and Ohl 2013). In addi-
tion to high streaming velocity, another significant charac-
teristic of such streaming is its relatively low acoustic fre-
quency (Huang et al. 2013a; Ovchinnikov et al. 2014) and 
energy input, which can be particularly adapted to transfer 
enhancement in micro-fluidics geometries. In the realm of 
acoustic excitations on microchannels, the vast majority of 
solutions (Bruus 2012) uses waves of a few MHz or higher 
frequency, so that the acoustic wavelength in water (λc = c/f, 
with c = 1430 m/s) is of the order of the largest dimension 
of the channel, namely around half a millimeter or so. The 
most common setups use two transducers facing each other 
or a transducer and a reflector (Wiklund et al. 2012; Barnkob 
et al. 2012; Lei et al. 2013), to generate a resonance condi-
tion when the channel width is equal to the half of λc. The 
counterpart of this technique is the necessity to use expen-
sive devices like high-frequency transducers or amplifiers. 
On the contrary, the use of sharp structures is adapted to 
low-frequency acoustic waves, even below the ultrasound 
range, typically of a few kHz, allowing the use of low-cost 
transducers and amplifiers. While the acoustic wavelength, 
of several tens of cm, is then much larger than the channel 
dimensions, the sharp structures induce a local intensifica-
tion of the acoustic actuation to the fluid.

With the advantages of high streaming velocity and low 
excitation frequency, the sharp-edge acoustic streaming 

could potentially efficiently improve processes such as mix-
ing, particle selection, heat transfer, etc. Studies, especially 
those from Huang’s group, reported the characterization 
of sharp-edge streaming flow and its application in mix-
ing (Huang et al. 2013b, 2018b; Nama et al. 2014a), bio-
particle and liquid-drop control (Leibacher et al. 2015; Cao 
and Lu 2016; Ozcelik et al. 2016), as well as various on-chip 
devices (Huang et al. 2014, 2015a, b; Bachman et al. 2018; 
Zhao et al. 2019).

Although experiments and simulations on acoustic 
streaming in sawtooth-shaped microchannel have been done 
in the aforementioned studies (Huang et al. 2013b; Ovchin-
nikov et al. 2014), several issues remain to be investigated. 
In particular, the vibration conditions required to generate 
significant streaming need more quantitative measurements. 
The available literature only provides the electrical input into 
transducers (mainly excitation frequency and input voltage) 
which is not a direct physical parameter to understand the 
generation of streaming. Other experimental variables such 
as clamping, transducer type, and quality can make repro-
ducing challenging. As a result, the physical interpretation 
of the fluid–wall interaction in a confined mini/micro-fluidic 
structure under acoustic excitation, as well as its influence 
on acoustic streaming generation and mass transfer perfor-
mances is of both fundamental scientific interest and appli-
cational significance.

In this study, we investigate the streaming flow proper-
ties and mixing efficiency of acoustic streaming generated 
in Y-shaped microchannels with sharp-edged structures. 
We design an experimental setup that allows to visualize 
streaming vortices by high-speed imaging and to investi-
gate the key influencing parameters such as acoustic ampli-
tudes, sharp-edge angle, as well as flow rate. A visualization 
based on fluorescence dye concentration tracking is used to 
assess the mixing performance of the Y-mixer. The paper 
is organized as follows: Sect. 2 summarizes the AS theory 
near sharp edges; Sect. 3 presents the experimental setup and 
the typical flow visualization; then, Sects. 4 and 5 present 
experimental results, respectively, on the flow properties and 
mixing performances, and finally, Sect. 6 concludes on the 
main findings as well as some perspectives.

2  Theoretical background

The usual framework of AS studies describes the velocity 
and pressure fields via a decomposition into a first-order 
time-periodic component and a second-order steady com-
ponent, with the acoustic vibration velocity (and the sub-
sequent induced periodic flow) being of much larger mag-
nitude than the steady (streaming) flow response (Lighthill 
1978; Rayleigh 2013).
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In the time-dependent acoustic vibration field, velocity 
and pressure are denoted as follows:

where V�,p� are the velocity and pressure variation ampli-
tudes due to the acoustic excitation; V1 , p1 are, respectively, 
the first-order acoustic velocity and pressure at time t. Re 
means the real part of the complex terms.

The total velocity and pressure fields comprise thus two 
components:

where V and p are the total velocity and pressure of fluid; V0 , 
p0 are the steady-flow velocity and pressure.

The sharp-edge AS in this study uses acoustic wavelength 
(λc = c/f, in the order of ~ m) much higher than the character-
istic flow dimensions (the height of the sharp edge or width 
of the channel, < 1 mm). Both acoustic and streaming veloci-
ties are much lower than the sound speed (c = 1430 m/s 
in water), the flow in the present study can be treated as 
incompressible flow. Inserting Eq. 2 into the incompress-
ible Navier–Stokes and continuity equations leads to two 
relationships with time-dependent terms in Eqs. 3 and 4:

Averaging these two equations over a period yields to 
the following:

Here, Fs =
1

2
Re

[(
V� ⋅ ∇

)
VT
�

]
 is the time-averaged inertia 

term due to the first-order acoustic field, and is treated as a 
steady-force term in the second-order steady equation.

Applying a spatial derivative to the first-order acoustic 
equations (Eqs. 3 and 4), we further reduce them to their 
equivalent form Eq. 7, which is the classical wave equation 
for the acoustic field:

From the form of Fs , it is clear that a homogeneous acous-
tic field cannot generate any streaming flow, as the effective 
force would be null. However, the sharp tip structures with 
strong local curvature on the channel walls induce strong 
heterogeneity in the acoustic oscillating flow in the fluid. As 
sketched in Fig. 1, at a given time, the vibration of the fluid 

(1)
V1 = Re

(

V�e
i�t)

p1 = Re
(

p�e
i�t),

(2)
V = V1 + V0

p = p1 + p0,

(3)i�V� = −
1

�
∇p� + �∇2V�

(4)∇ ⋅ V� = 0.

(5)
(

V0 ⋅ ∇
)

V0 = −
1

�
∇p0 − Fs + �∇2V0

(6)∇ ⋅ V0 = 0.

(7)∇2p� = 0.

is uniformly distributed except for the local zone around the 
sharp edge, the latter being the source of AS. More specifi-
cally, close to the tip, both the orientation of the acoustic 
field and the vibration amplitude provide favorable condition 
of an intense Fs very near the tip. Far from the tip, the force 
is null or negligible. Therefore, the non-uniformity of the 
acoustic field caused by the sharp structure makes acoustic 
streaming at relatively low frequencies (several kHz) pos-
sible. This is furtherly confirmed by our direct observation 
presented later in Fig. 5 as well as in the Supplementary 
video (Supplementary material 1).

With acoustic frequencies of the order of kHz and low-
viscosity liquids like water, the dissipation length is much 
larger than the system size, and hence, most of the dissipa-
tion is due to the viscous friction at the solid–liquid inter-
faces. This friction is located in a viscous boundary layer of 
width δ. (Ovchinnikov et al. 2014) point out that the stream-
ing only appears in the situation where the radius of curva-
ture of the walls is smaller than δ, meaning that streaming 
is generated by the sharp, local gradient of velocity near the 
tip. Therefore, we operated with sharp tips with curvature 
radius of a few microns, fabricated with photolithography 
techniques.

As shown in Fig. 2, while no particle motion can be 
observed in the absence of acoustic field (Fig. 2b), a clear 
streaming in an extended region appears near the tip when 
acoustic excitation is prescribed via the transducer stuck on 
the glass slide (Fig. 2c). The streaming image in Fig. 2c is 
obtained by superposition of time sequential individual par-
ticle trajectories. Two streaming vortices are observed on 
both sides of the sharp edge. In the case of a round, smooth 
structure with big enough curvature, as shown in Fig. 2d, 
the acoustic streaming is not observed. While this is not 
strictly a parametric study on curvature diameter, the result 
is in accordance with Ovchinnikov et al.’s framework, dem-
onstrating that this type of streaming should be generated 
with sharp structures.

Since we can briefly describe that the fluid is jetted from 
the tip, the resulting vortices and the strong directional 

Fig. 1  Sketch of acoustic oscillating flow around a tip edge



 Microfluidics and Nanofluidics          (2019) 23:104 

1 3

  104  Page 4 of 15

flow will actively bring disturbance into the flow along 
the channel. The ensemble of the phenomena is potentially 
applicable in a large number of engineering process, such 
as mixing, heat transfer enhancement, etc.

3  Experiment and post‑processing

Figure 3 shows our experimental setup as well as the micro-
channel geometry. The setup around the Y-shaped micro-
channel (shown in Fig. 3a) is composed of a syringe pump 

Fig. 2  Mechanism of acoustic streaming under zero flow rate. a 
Acoustic streaming condition, sharp-edge curvature should be lower 
than the acoustic boundary layer 2 rc < δ; b fluorescent particles dis-
tribution around a sharp-edge ( � = 60◦ ) without acoustic field; c the 
streamline of the acoustic excited particles movement under a stack 

of 100 images equivalent to a duration of 100  ms, V� = 37.8  mm/s, 
f = 2.5 kHz ; d round edge with a curvature of 100 μm under acous-
tic excitation but with no acoustic streaming, V� = 37.8  mm/s, 
f = 2.5 kHz

Fig. 3  Sketch of the experimen-
tal setup. a Fluid circulation and 
visualization system; b Y-type 
micro-channel with a sharp 
edge
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(Newtown Company & Co) allowing the injection of fluid 
from two syringes, under well-controlled flow rate through 
the channel and via the two inlets. A function generator 
(Model 33220A Arbitrary waveform generator, Agilent) 
with a home-made adjustable power amplification provides 
input to a piezoelectric transducer (Model ABT-455-RC, 
RS Components). The transducer is glued on a stand-
ard glass microscope slide (width × length × thickness: 
26 mm × 76 mm × 1 mm) through which the visualization is 
made using a binocular microscope together with a fast cam-
era (MotionBLITZ Cube4, Mikrotron). The piezoelectric 
transducer (diameter 35 mm and thickness 0.51 mm) deliv-
ers acoustic vibrations to the glass slide and to the whole 
channel stuck onto it, at various resonance frequencies from 
about 1 kHz up to 40 kHz. We chose to operate at one of 
these resonance peaks f, namely that at f = 2.5 kHz. It turns 
out that the best operating conditions in terms of streaming 
flow were obtained at this frequency.

The Y-shaped Polydimethylsiloxane (PDMS) channel 
is designed by 2D photolithography. First, a mold made of 
SU8 negative photoresist was fabricated: a 50 µm-thick SU8 
liquid layer was spin-coated on a silicon wafer. After a soft 
baking at 65 °C, the resist was exposed to UV through a pho-
tomask. The resist was then immersed in a developer bath 
and then hard-baked at 95 °C. Then, PDMS (Sylgard 184) 
was thoroughly mixed with 10% in mass of curing agent, 
degassed in a vacuum chamber, and poured on the SU8 mold 
to constitute a 2.5-mm-thick layer of PDMS mixture on top 
of the wafer. The whole is put in a stove at 65 °C during 4 h.

The PDMS is then sealed and stuck on a glass micro-
scope slide after a 1-min oxygen plasma treatment of both 
sides. The microchannel of a height of 50 µm is then formed 
between the PDMS and the glass slide. The plasma treat-
ment enables the microchannel to withstand the pressure 
from inlets without leakage. Key geometrical dimensions of 
the Y-mixer are detailed in Fig. 3b. Sharp edges with differ-
ent angles � (30°, 60°, 80°, and 90°) were fabricated from 
various molds. Hence, all channels were sealed on a similar 
glass slide, and rapid cure epoxy resist was used to perma-
nently glue the transducers on each glass slide. It turns out 
that the best acoustic coupling was obtained this way. The 
radius of curvature of the different tips was measured with 
a 120X microscope with five repetition measurements of 
each angle. According to our measurement of the curvature 
diameter 2rc of the sharp edge, its value ranges from 2.8 to 
10.3 µm, which are shown in Fig. 4 and Table 1. These val-
ues are all smaller than the viscous boundary layer thickness 
11.5 µm, determined by � =

√

2�∕� (Boluriaan and Morris 
2003), with � the kinematic viscosity of the fluid, and � the 
angular frequency.

Two syringe pumps provide equal flow rate Qs through 
the two PDMS microchannel inlets. It should be noted that 
hereafter the channel throughput Qc is defined as the flow 

rate in the main channel. It is the sum of the two single inlet 
flow rates provided by each syringe ( Qs).

The transducers are excited with periodic sinusoidal sig-
nal. The available range of peak-to-peak voltage is between 
0 and 30 V (up to ± 15 V). It is important to notice that the 
speed of sound ( c ) in water is 1430 m/s and that in glass 
is 4540 m/s, so the wavelengths of vibration ( � = c∕f  ) at 
2.5 kHz are, respectively, 0.57 m and 1.82 m. These values 
are far greater than the scales of the channel, whose width 
is 0.5 mm and length is 25 mm. The amplitude of the acous-
tic wave is, therefore, expected to be uniform in the whole 
channel.

To visualize the flow, the fluid is seeded with fluorescent 
particles (green polystyrene microspheres, diameter 4.9 m, 
Thermo Scientific). However, due to the limited sensitivity 
of the high-speed camera, the best contrast and image quality 
is obtained by direct lighting with white light, hence with the 
diffused light instead of the fluorescence-emitted light. To 
enhance the contrast, a cold-light beam shines from the bot-
tom of the glass slide. The depth of field of the microscope 
lens is about 10 µm, five times smaller than the channel 
depth (50 µm). Hence, after careful focal adjustments (based 
on finding the position that shows the maximal transverse 
velocity for a given flow rate), we obtain high fidelity pic-
tures with clear focus, as shown in Fig. 2b–d.

Since the streaming velocity near the tip can be of compa-
rable magnitude to the vibration velocity, which is different 
from most previous studies (Squires and Quake 2005) and 
will be discussed later (Sect. 4.3.2), another challenge is to 
observe and measure these two velocities separately. The 

Fig. 4  Measurement of the curvature diameter under a  ×120 micro-
scope, here � = 90◦

Table 1  Curvature diameter corresponding to different tip angles of 
the sharp edges

Sharp edge angle α (°) 30 60 80 90

Curvature diameter 2rc, 
(µm)

2.8 ± 0.3 5.8 ± 0.4 7.1 ± 0.4 10.3 ± 0.6
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following methods are used: first, to detect the motion of 
the particles during one vibration period and compute the 
streaming velocity, the frame rate of the camera is set to 
as high as 25 kHz and the exposure time as short as 25 µs. 
Under this condition, any individual particle appears as a 
small sphere of a few pixels, because the exposure time is 
much smaller than the vibration period ( 1∕f = 400 μs). A 
total of ten pictures are captured for every vibrating cycle, 
making the visualization of the acoustic vibration possi-
ble. To obtain the streaming velocity, we choose sequential 
images with a time interval of one acoustic period to “hide” 
the vibrational velocity. Then, to measure the acoustic vibra-
tion velocity V� , the frame rate of the camera is reduced to 
2.5 kHz with an exposure time extended to 400 µs. Under 
this condition, particles in these pictures appear as threads 
of fixed length that corresponds to the amplitude of its 
acoustic-driven motion (Fig. 5). Results are shown in sup-
plementary video. During the experiment, the pictures are 
continuously synchronized with the camera to the computer.

The obtained images are then treated with open-source 
software ImageJ (Schneider et al. 2012). For vibration veloc-
ity, the particles’ displacements are directly measured from 
the captured images, and the results as well as the uncertain-
ties are discussed in detail in Sect. 4.2. For the streaming 
field, the relative displacement of particles at a given phase 
of the vibration period and at given locations allows the 
determination of the velocity field. Successive frames are 
converted into an array of displacement vectors for each par-
ticle by the software PIVlab (Thielicke and Stamhuis 2014). 
Second, summing the intensity of the images of a number of 
frames allows clear visualization of trajectories and then the 
location, form, and sizes of vortices.

Besides, COMSOL Multiphysics © simulation is used 
as a control study to verify the reliability of the PIV result 
in terms of velocity characterization. The control study is 
done without acoustic excitation using a standard laminar 
flow model. The results are shown to be highly close (See 
Supplementary material 2).

4  Results and discussion

4.1  From acoustic vibration to AS

The direct visualization of fluid motion responding to the 
acoustic forcing is shown in Fig. 5a and the supplementary 
video. The main image Fig. 5 is obtained from acquisitions 
with high-speed imaging (1.25 kfps) of particle trajectories 
over a few vibration periods. No apparent motion of the 
microchannel walls could be evidenced from these visu-
alizations. Hence, the analysis of individual traces left by 
particles gives both the amplitude of the acoustic wave in 
the fluid and the orientation of this field V� . Besides the 

main image, two magnified details are shown on top of it. 
On the left of Fig. 5, we show the particle vibration by tak-
ing six images within one vibration period. This allows the 
quantification of the acoustic vibration amplitude 2A. On 
its right, the trajectory of one particle during ten periods is 
followed. This picture shows that near the tip, the streaming 
velocity V0 (in the direction of the sharp tip, shown as verti-
cal) has a magnitude comparable to the vibration velocity V� 
(in the direction of the fluid channel, shown as horizontal). 
Similar to the idealized sketch of the amplitude and direc-
tion of this first-order flow in Fig. 1, far enough from the 
viscous boundary layer, the amplitude is found constant and 
the fluid displacement is parallel to the channel walls where 
the oscillating fluid movement is possible. However, due to 
the no-slip boundary condition along the wall, the viscous 
shear develops within the layer of thickness δ along the walls 
and this amplitude vanishes within this boundary layer. Fur-
thermore, the orientation of the acoustic fluid motion has to 
locally match that of the walls. Consequently, the acoustic 
velocity field V� is subjected to sharp variation of orienta-
tion around the tip. Furthermore, the acoustic amplitude is 
higher near the tip than elsewhere in the channel, as shown 
in Fig. 5. As emphasized in (Ovchinnikov et al. 2014), this 
leads to an intense streaming force Fs very near the tip, while 
this force is null or negligible far from the tip. Therefore, 
the non-uniformity of the acoustic field caused by the sharp 
structure makes acoustic streaming at relatively low frequen-
cies (several kHz) possible.

Fig. 5  The mechanism of acoustic streaming explained by high-speed 
visualization of acoustic vibrations within the fluid, from particle 
trajectories over a few periods; the velocity measured is 101.7 mm/s 
(see Supplementary video for dynamic visualization effect)



Microfluidics and Nanofluidics          (2019) 23:104  

1 3

Page 7 of 15   104 

4.2  Acoustic vibration speed

As the transmission from electrical transducer power to 
the solid glass then to the fluid is rather complex (Uchida 
et al. 1995), we here only experimentally characterize the 
resulted vibration. Therefore, the vibration amplitude and 
velocity induced by the transducer are measured directly 
on the glass slide and indirectly in the fluid, the former by 
a laser vibrometer, and the second by particle visualization. 
Their comparison allows us to identify the relative oscilla-
tion velocity on the fluid–solid interface, where the acoustic 
streaming develops.

On one hand, a laser vibrometer (OFV-505 model, Poly-
tec) is used to directly measure the vibration on the glass 
slide—near the location of the channels and after the PDMS 
bonding. Within the uncertainties of measurements, the rela-
tionship between the prescribed voltage and the local vibra-
tion velocity V�,glass is found to be linear. We measured for 
instance V�,glass  = 2.2 mm/s, 4.4 mm/s, and 6.9 mm/s cor-
responding, respectively, to input peak-to-peak voltages Upp 
of 10, 20, and 30 V, at 2.5 kHz. In terms of acoustic ampli-
tude Aglass , such that V�,glass = Aglass� , and as f = 2.5kHz , 
it corresponds to displacement of the order of 1 micron or 
smaller on the glass.

On the other hand, acoustic fluid displacement 2A is 
extracted from high-speed imaging, as already shown in 
Fig. 5. Figure 6 shows the linear relation between induced 
vibration velocity of the particles inside the liquid and the 
peak-to-peak voltage of the piezo-transducer, which is con-
sistent with (Franke et al. 2003). The error of measuring 
the vibration velocity mainly comes from the pixel resolu-
tion and uncertainties of 2A are within 1 pixel (representing 
0.75 μm) which corresponds to ± 6.1 mm/s. For instance, 

our results show values of the particles acoustic vibration 
velocity V� = 37.8 mm/s, 50.5 mm/s, 70.5 mm/s, 85 mm/s, 
and 101.7 mm/s at 2.5 kHz and corresponding to a peak-
to-peak voltage Upp of 10 V, 15 V, 20 V, 25 V, and 30 V, 
which will be the main experimental conditions of the pre-
sent study. For higher vibration amplitudes with transducer 
inputs between 30 and 60 V, the vibration velocities are also 
shown in Fig. 6. However, due to experimental limitations 
(mainly exposure time of the fast camera in case of very high 
streaming velocity), our experimental conditions are only 
limited to under 30 V.

Since only the relative fluid–wall vibration accounts for 
the acoustic streaming phenomenon, and considering the 
measured solid vibration is lower than the tenth of the liquid 
vibration, hereafter, we use the particles visualization-based 
vibration speed as the reference, i.e., V� . The following dis-
cussions are all based on this reference (Fig. 6).

4.3  Flow visualization

In this section, we keep the piezoelectric transducer input 
to 2.5 kHz and use three different vibration velocities: V� = 
37.8 mm/s, 70.5 mm/s, and 101.7 mm/s. Different tip angles 
� are used: 30°, 60°, 80°, and 90°, so as to different channel 
flow rates Qc = 0, 1, 4, 8, 12, 16 µL/min. We focus our fol-
lowing discussions on how the acoustic streaming disturbs 
the main flow.

4.3.1  General characteristic of the flow

Acoustic perturbation to the fluid can be clearly observed 
from the velocity field given by the PIV. As shown in 
Fig. 7a, under an acoustic vibration of V� = 37.8 mm/s at 
2.5 kHz, the fluid around the sharp edge is jetted from the tip 
through the transverse direction of the microchannel. Since 
no throughput is imposed in that case, two symmetrical vor-
tices appear besides the sharp edge. Outside of the region 
near the sharp edge (shown in the red square in the upper 
right corner of Fig. 5a), however, no fluid disturbance is 
observed, confirming that AS originates from the geometri-
cal singularity of the tip. As already discussed in Fig. 2d, 
for the “round” structure with 2rc = 100 μm ≫ 𝛿 , there is 
no evident streaming appearing around the structure. This 
confirms the hypothesis given by the perturbation theory 
(Ovchinnikov et al. 2014), that only when the tip curvature is 
narrower than the acoustic boundary layer, that the acoustic 
streaming could appear.

Indeed, considering Fs =
1

2
Re

[(
V� ⋅ ∇

)
VT
�

]
 , it is clear that 

the stress is stronger in areas where the spatial variations of 
V� are sharper. Hence, the streaming vortices around the 
sharp structure can be attributed to the periodical curved 
motion of the fluid around the tip. The streaming force Fs 
generates a jet from the tip, perpendicular to the channel 
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Fig. 6  Acoustic vibration velocity measured by particle visualization 
at different input peak-to-peak voltage of the piezo-transducer. The 
calibration is given by the linear fit V� = aUpp, a = 3.38mm∕(s ⋅ V)
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longitudinal direction, which in turn induces the aforemen-
tioned vortices’ pair.

In Fig. 5b, we trace the velocity distribution along the 
y-direction (following the thick white line shown in the 
upper right corner, y = 0 is taken at the tip) based on the PIV 
results. It clearly shows a rapid increase of the AS velocity 
from zero to a maximum value in a distance as short as 
0.025 mm. After the peak, the AS velocity reduces gradually 
as its momentum transfer to the main fluid in the channel. 
The sharp decrease of the streaming velocity is consistent 
with Ovchinnikov’s estimation (Ovchinnikov et al. 2014), 
the force is localized within a distance of less than � from 
the tip; therefore the velocity along y-direction decreases 

locally and rapidly after reaching the maximum value. Under 
the above condition, the peak value (maximum AS veloc-
ity) is Vm  = 15.4 mm/s and it depends significantly on the 
excitation amplitude, sharp-edge angle, etc. It should be 
noted that uncertainties of streaming velocity mainly come 
from two aspects: the first is the coupling of the acoustic 
vibration with the streaming, which primarily concerns the 
maximal velocity value Vm , and the second lies in the pixel 
resolution. For the first, the error of Vm is proportional to the 
streaming velocity and is estimated to be ± 3% of V� . For 
the second, the pixel resolution (1 pixel = 0.75 μm) during 
two sequential images of a time slaps of 400 μs results in an 
error of ± 0.9 mm/s.

4.3.2  Maximum acoustic‑induced streaming velocity

As a signature of the acoustic streaming intensity, we extract 
from each velocity field the transverse component Vm of the 
maximum velocity along the tip axis, as shown in Fig. 5b.

Figure 8 illustrates the influence of acoustic velocity 
V� and tip angles � of the sharp edge on the maximum AS 
velocity Vm . Sharper edges and stronger acoustic excita-
tion lead to higher maximal velocity. Under our test condi-
tions, the highest maximum AS velocity is 73 mm/s and it 
appears at V� = 101.7 mm/s (peak-to-peak voltage of 30 V) 
with the sharpest edge angle 30° (with 2rc = 2.8 microns). 
This confirms that the two velocities are in the same order of 
magnitude, with a ratio of V�∕Vm = 1.2 . Under lower acous-
tic excitation, the AS effect is lower and the ratio becomes 
V�∕Vm = 1.7 ( V� = 37.8 mm/s, Vm = 20 mm/s, for the 30° 
sharp edge). The fact that V� and Vm are not linearly related 
is consistent with Ovchinnikov et  al.’s theory (Ovchin-
nikov et al. 2014). However, the framework of their work 

Fig. 7  Acoustic streaming velocity field, at V� = 37.8mm∕s and 
f = 2.5 kHz . a Velocity field obtained from PIV and b velocity dis-
tribution along the transverse direction from the tip. The acoustic 
streaming is obtained from a tip with � = 60°, Qc = 0. The red line 
shows qualitatively the velocity evolution profile which is in accord-
ance with the simulation results by (Ovchinnikov et al. 2014)

Fig. 8  Maximum streaming velocity versus acoustic velocity, gen-
erated near sharp tips of different angles, under no-flow condition 
( Qc = 0)
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is V𝜔 ≫ Vm , and hence, a quantitative agreement with our 
results should not be expected. Furthermore, higher stream-
ing velocities are found for structures with sharper tip and 
smaller angle. This is consistent with that sharper tips lead 
to stronger Rayleigh stress near the tip, for the same vibra-
tion velocity and confirms previously observed trends (Nama 
et al. 2014b).

Let us note that the above conclusion is based on results 
Qc = 0 . When Qc > 0 , the streaming vortex is strongly influ-
enced and a detailed visualization on the vortex shapes is 
necessary.

4.4  Vortex shape, size, and flow disturbance

From Fig. 9a, which illustrates the particle trajectories at 
Qc = 0 , it is clear that the acoustic streaming originates from 
the sharp edge and induces two counter-rotating symmetri-
cal vortices. These vortices have significant spatial exten-
sion: the disturbance can extend even to the other side of 
the channel, where streams initially flowing in the centerline 

are dragged to the side of the sharp edge. Furthermore, 
when Qc > 0 , the symmetry of the two vortices is broken 
(Fig. 9b–d). Due to longitudinal convection of momentum, 
both vortices on the upstream and downstream side shrink 
at moderate-flow rate, generally not in a perfectly symmet-
ric way. With the presence of unidirectional main stream, 
the vortices on the downstream are less impacted than the 
upstream ones (Fig. 9c, d). For instance, at a flow rate of 
12 µL/min, the vortex downstream can still exist, while the 
upstream one completely disappeared. Therefore, the influ-
ence of acoustic vibration on the flow, and in particular the 
relative importance of the traverse streaming velocity com-
ponent, vanishes at very high flow rates. Let us underline 
that the maximal throughput flow rate (12 µL/min) corre-
sponds to an averaged longitudinal velocity of about 1 cm/s 
which, except very near the tip, is generally much larger than 
the transverse component of the streaming velocity.

To quantify the disturbance of the streaming flow to 
the main flow Qc , vortex size and disturbance distance are 
measured. For each experimental condition, five repeated 

Fig. 9  Flow visualization near the sharp tip, using particle trajectories 
at different channel throughputs, experimental conditions: � = 30 °, 
Va = 101.7 mm/s and f = 2.5 kHz . The flow direction is from left 

to right. Flowrate: a Qc = 0 , b Qc = 4L/min , c Qc = 8L/min , and d 
Qc = 12L/min
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measurements are conducted with the acoustic excitation. 
In addition, for each measurement, 1000 images (5 s) are 
stacked to assure that the vortex reaches a steady size and 
uncertainties mainly come from the pixel resolution and par-
ticle density near the interface area.

Figure 10 shows, for the case Qc = 0 , how the vortex size 
varies with different acoustic velocity V� and tip angle � . 
The vortex size, Dv , is defined as the diameter of vortices 
appearing, respectively, at the upstream and downstream 
side of the sharp edge. For the particles outside the circle, 
their motions are only driven by inertia force of the main 
flow instead of the acoustic streaming. Hence, Dv charac-
terizes the maximum area influenced by the streaming. As 
the two vortices are symmetrical, we do not distinguish the 
upstream and the downstream vortex size.

The vortex size takes larger values for stronger vibration 
velocities, and for a sharper tip angle (smaller diameter than 
curvature): this is consistent with the similar trends observed 
for the maximal streaming velocity. At V� = 101.7 mm/s and 
� = 30°, the vortex size can reach 0.48 mm. As V� increases, 
the acoustic streaming spreads over the whole channel width 
( Dv∕w approaches 1) for almost all tip angles tested. In such 
a situation, the vortex size is limited by the microchannel 
width. On the other hand, with low acoustic excitation, only 
sharp edge with smaller angle can help to achieve big vor-
tices: at V� = 37.8 mm/s, the value of Dv∕w can reach 0.76 
for the 30° tip but only 0.27 for the 80° one.

Figure 11 shows the variation of vortex size at both 
downstream and upstream of a 30° tip, under different 
flow rates. As the flow rate increases from null to 1 µL/
min, the vortices size reduces drastically from 0.42 to 0.29 
(upstream) and 0.26 (downstream). The vortices continue 

to shrink after 4 µL/min and they totally disappear when 
the flow rate is higher than 16 µL/min. In most cases, the 
upstream vortex is smaller than the downstream one, i.e., 
between 4 and 16 µL/min. However, results suggest that 
there is a threshold of flow rate around 2 µL/min under 
which the upstream vortex is even larger than the down-
stream one. A possible underlying reason is that the main 
stream velocity is lower than the upstream longitudinal AS 
velocity coming from the counter-flow direction. In such a 
situation, part of the fluid of the upstream vortex still flows 
back to the sharp edge, enhancing the vortex development. 
Otherwise, the fluid goes away with the main flow, thus 
reducing the vortices size. At higher throughput, compara-
tively, the downstream vortex varies relatively more slowly 
with flow rate and is subjected to less influence from main 
flow, presumably because the vortex is squeezed into the 
low-pressure area formed by the sharp structure. Although 
there still exists the upstream vortex at large throughput, 
it plays little role on the main flow.

From the point of view of transverse mass transfer in 
the channel, we introduce the disturbance extension Ddis 
to quantify the perturbation of the streaming on the main 
flow. The identification of Ddis requires the definition of a 
critical streamline, as shown in the sub-Fig. 12. The criti-
cal streamline (Wang et al. 2012) separates an active per-
turbation zone (between the tip and the critical line, most 
of the fluid pass by the tip and then jetted out) and a pas-
sive zone (out of the critical line, only a distortion of the 
main flow is witnessed). As illustrated in Fig. 12, the flow 
remains laminar in the passive zone while highly perturbed 
in the active one. The Ddis is defined as the distance from 
the tip to the tangential limit of the critical streamline.

Fig. 10  Vortex size Dv and its relative value to the channel width 
Dv/w, versus acoustic vibration  velocity,  at zero flowrate around 
different sharp edge angles and acoustic stimulations. Condition: 
with = 30◦, 60◦, 80◦ Qc = 0 , V� = 37.8, 70.5 and 101.7mm/s , and 
f = 2.5 kHz ; w = 0.5 mm means the total width of the channel

Fig. 11  Upstream and downstream vortex size (Dv and Dv/w) at 
different flow rates. Condition: � = 30◦ , V� = 70.5mm/s , and 
f = 2.5 kHz
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Relative value is also defined for the disturbance exten-
sion with respect to the transverse distance from the tip, 
noted as RDdis:

where w = 0.5 mm is the channel width, and hv = 0.18 mm 
represents the tip height.

As shown in Fig. 12, despite that the upstream vortex 
may disappear, the disturbance extension might not be zero. 
At high flow rates like 12 µL/min, the perturbation could 
reach 14% of the channel ( RDdis = 0.14). To sum up, the 
flow perturbation is closely coupled with the flow rate and 
the disappearance of vortices does not mean no acoustic 
streaming occurs. Channel throughput should be considered 
as a critical parameter that is coupled with acoustic stream-
ing. Particularly, at high flowrate, vortices are either easily 
flushed or are fully shadowed in the main stream.

5  Mixing performance

From the above analyses, we expect that the acoustic 
streaming brings active disturbance into the channel flow, 
especially at low flow rate and high vibration velocity. To 
confirm this, we performed mixing experiments using two 
miscible fluids. One is deionized water and the other is 
deionized water filled with fluorescent blue dye (Methylene 
Blue, Fisher Scientific S.A.S.). By observing the variations 
of the concentration of the blue dye across the channel width 
and measuring the mixing extent along flow direction, we 
assess the effect of acoustic excitation on the mixing process. 

(8)RDdis =
Ddis

w − hv
,

As a reference, the same flow condition but without acous-
tic excitation is used for comparison. Besides, several flow 
rate scenarios are tested based on identical single inlet flow 
rates Qs , which equals 1

2
Qc . The following discussions are 

based on Qs.
Figure 13 shows how the normalized concentration (in 

Eq. 9, based on Beer–Lambert law) across the transverse 
direction of the channel evolves at different locations. One 
location A1 before and two locations A2–A3 after the sharp 
edge are sampled. We observe that at A1 ahead of the sharp 
edge, the two fluids begin to mix with each other driven by 
the upstream vortex. At the sharp edge position, the mixing 
process is furtherly improved by the intense jet. After the 
sharp edge, the mixing process is no longer influenced by the 
acoustic streaming and, therefore, only mass diffusion con-
tributes to mixing, as shown between A2 and A3 in Fig. 13.

The enhancement of the mixing process around the sharp 
edge can be divided into two steps: (i) the upstream vortex 
pushes some (high-concentration) fluid against the main 
flow, directly making it into contact with the other stream; 
(ii) the fluid jetted by the sharp structure as well as the 
downstream vortex furtherly disrupt the mixing interfaces. 
To quantify the mixing, we introduce the mixing index M 
along the flow direction (Eqs. 9 and 10):

where Cn stands for the normalized concentration; I0 is the 
gray value of pure water; Ib is the gray value of the unmixed 
blue dye liquid; I is the gray value of pixels. In Eq. 10, Ii 
is the gray value of ith pixel; Im is the average gray value of 
N pixels. In this study, Im is the average gray value of pix-
els across the width of the channel at certain pixel position 
along flow direction.

Errors of the Mixing Index in this study are mainly caused 
by dye deposition near the channel border both on the glass 
slide and on the PDMS. For every experimental condition, 
five repeated measures under the same experiment setup are 
conducted and the maximum error for Mixing Index is 0.02.

As shown in Fig. 14, without acoustic excitation and 
as a result of the sole diffusion, the mixing index slowly 
decreases. At V� = 70.5 mm/s, the mixing index decreases 
from 0.8 to 0.6 while crossing the sharp structure and at 
V� = 101.7 mm/s, it furtherly decreases from 0.78 to 0.4. 
Therefore, the stronger the acoustic excitation, the higher the 
mixing index obtained. It is obvious that the mixing process 
within the vicinity regions ahead and after the sharp struc-
ture is accelerated by the upstream and downstream vortices 

(9)Cn = ln
I0

I

/

I0

Ib
; Cn ∈ [0, 1]

(10)M =

�

�

�

�

1

N

∑N

i=1

�

Ii − Im
�2

I2
m

, M ∈ [0, 1],

Fig. 12  Disturbance extension Ddis as a function of channel through-
put. Conditions: � = 30◦ , V� = 70.5mm/s , and f = 2.5 kHz
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discussed above. Actually, diffusive mixing happens before 
the sharp edge, so the mixing index does not start from 1 in 
the figures.

It should be noted that the width of the channel can influ-
ence the calculation of the Mixing Index, so the values 
within the shadow (beside the sharp edge) in Fig. 14 cannot 
be reliable criteria of the mixing. Only values before and 
after sharp edge are directly comparable.

Figure 15 shows the mixing index as a function of dif-
ferent tip angles. Sharper angles clearly allow better mixing 
degree at the outlet, since the mixing index drops from 0.7 
to 0.52 for the 30° tip but only to 0.65 for the 80° one. This 
is consistent with the stronger streaming effect, in terms of 
vortex diameter and disturbance extent, with sharper tips.

The influence of the flow rate Qs on the mixing performance 
is shown in Fig. 16. When the inlet flow rate increases from 0.5 
to 1.5 µL/min, the mixing index at the outlet turns from 0.38 
to 0.6, thus reducing the mixing degree. In case of even higher 
flow rate at the same acoustic condition, the mixing continues 
to degrade. For example, with a flow rate of Qs = 4 µL/min, the 
mixing index is only achieved to 0.68. Above 1.5 µL/min, the 
effect of acoustic streaming on the mixing performance can 
be considered negligible. The short fluid residence time in the 
channel (Guo et al. 2018) in cases of high flow rate seriously 
weakens the mixing efficiency at the outlet. To sum up, with 
low flow rate, one single acoustically excited sharp edge can 

Fig. 13  Concentration field 
across the microchannel section 
in the nearby area before and 
after the sharp edge. X-axis is 
the normalized concentration Cn

(values 0 and 1 represent two 
different fluids, 0.5 means com-
plete mixing); Y-axis is channel 
width. Conditions: � = 30◦ , 
V� = 70.5mm/s , f = 2.5 kHz 
and Qs = 0.5 μL/min

Fig. 14  Mixing index at different acoustic excitation amplitudes. 
Conditions: � = 30◦ , Qs = 2 μL/min, and f = 2.5 kHz
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be enough to accomplish a homogeneous mixing; however, 
under larger flow rates (particularly above Qs = 1.5 µL/min for 
the current study), the disturbance brought by a single sharp 
edge is limited and several additional similar structures should 
be introduced along the microchannel to achieve good mixing 
performance.

6  Conclusions and perspectives

The main outcome of this study is to investigate the mech-
anism of AS by direct particle visualization and demon-
strate the potentiality for mixing enhancement in micro-
channels via acoustic streaming around sharp structures. 
Phenomenologically similar as the Rayleigh streaming, 
but with strong local Reynolds stress enhancement near 
the tip, the sharp-edge acoustic streaming is viewed as 
a promising one, since it enables strong streaming dis-
turbance to the flow with low energy input and low-cost 
transducers and amplifiers. Indeed, within flat channels, 
no streaming would be generated at such frequency and 
amplitude. We use particle visualization and PIV treatment 
to characterize the AS conditions of appearance, spatial 
structure, magnitude, and its disturbance level relative to 
the main stream. The flow characteristics under different 
experimental conditions (tip angle, vibration amplitude/
velocity, and flow rate) are quantitatively investigated.

Our mains conclusions are the following.
First, regarding the AS phenomenon, our study confirms 

the perturbation theory about the boundary layer condi-
tion. Sharp edges, whose curvature radius (1.3–5.2 μm 
in this work) is smaller than the viscous boundary layer 
(11.3 m in this work), can achieve strong acoustic stream-
ing flow. Conversely, a round-edge structure with a cur-
vature diameter of 100 μm, is shown to be inefficient for 
generating acoustic streaming and mixing.

Second, sharper edges and higher vibration amplitude 
give stronger streaming flows. Under our test conditions, 
the highest maximum streaming velocity is 75  mm/s 
and it is obtained for V� = 101.7 mm/s with the sharpest 
edge angle 30°. Meanwhile, the corresponding vortex 
can almost cover the whole channel until reaching the 
opposite channel wall. In terms of shapes of vortices, we 
observe symmetrical counter-rotating vortices when flow 
rate is zero, and the upstream/downstream symmetry is 
broken as the flow rate is turned on. In the latter case, the 
upstream vortex disappears as Qc is set beyond a relatively 
low value, while the downstream one remains within a 
larger range of Qc . The perturbation distance can also be 
as large as the channel width under low flow rate and with 
the sharpest tip, even for moderate vibration magnitude.

Finally, perhaps not implausibly, stronger stream-
ing (with sharper tip and under larger vibration magni-
tude) helps to achieve better mixing. Significant mixing 
improvement is witnessed with the fluorescent dye meas-
urement: a mixing index of 0.38 (mostly mixed) when AS 
is generated, compared to 0.73 when acoustic excitation 
is off, for the case of 2 µL/min, 30° tip and under a vibra-
tion amplitude of 70.5 mm/s. In terms of flowrate, mixing 
enhancement by streaming is obviously weakened at flow 

Fig. 15  Mixing index at different tip angles of the sharp edges. Con-
ditions: V� = 70.5mm/s and f = 2.5 kHz,Qs = 2 μL/min

Fig. 16  Mixing index at different flow rates; the values shown being 
those for each individual inlet. Conditions: � = 30◦ , V� = 70.5mm/s , 
and f = 2.5 kHz
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rates above 1.5 µL/min. In addition, not very intuitively, 
the disturbance extent is crucial for the mixing application, 
but not the vortex size itself.

In further studies, the sharp-edge structure could be rede-
signed in an asymmetrical way, so that the downstream vor-
tices could be restricted while improving the upstream one, 
the latter being favorable to the mixing efficiency. Another 
ongoing work is the evaluation of heat transfer (Guo et al. 
2014), residence time distribution (Guo et al. 2018), and 
micromixing performance using chemical iodide–iodate 
reactions (Guo et al. 2013; Dong et al. 2017). In particu-
lar, sharp edges structures are already available in a large 
number of thermo-fluidic devices, whose performance could 
potentially benefit from AS generation. Examples include 
the micropin fins for efficient heat sink design (Chiu et al. 
2017; Ambreen and Kim 2018), or ratchet-like microchan-
nel Knudsen pumping thanks to thermal transpiration (Chen 
et al. 2016; Wang et al. 2019), etc. In summary, AS gener-
ated by acoustic fields near sharp structures would also be a 
heat transfer enhancement that uses both passive and active 
techniques.
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Abstract: Acoustic streaming can be generated around sharp structures, even when the acoustic
wavelength is much larger than the vessel size. This sharp-edge streaming can be relatively
intense, owing to the strongly focused inertial effect experienced by the acoustic flow near the tip.
We conducted experiments with particle image velocimetry to quantify this streaming flow through
the influence of liquid viscosity ν, from 1 mm2/s to 30 mm2/s, and acoustic frequency f from
500 Hz to 3500 Hz. Both quantities supposedly influence the thickness of the viscous boundary

layer δ =
(

ν
π f

)1/2
. For all situations, the streaming flow appears as a main central jet from the tip,

generating two lateral vortices beside the tip and outside the boundary layer. As a characteristic
streaming velocity, the maximal velocity is located at a distance of δ from the tip, and it increases as
the square of the acoustic velocity. We then provide empirical scaling laws to quantify the influence
of ν and f on the streaming velocity. Globally, the streaming velocity is dramatically weakened by
a higher viscosity, whereas the flow pattern and the disturbance distance remain similar regardless
of viscosity. Besides viscosity, the frequency also strongly influences the maximal streaming velocity.

Keywords: acoustofluidics; microfluidics; acoustic streaming; sharp edge; particle image velocimetry

1. Introduction

Acoustic streaming (AS) denotes the steady flow generated by an acoustic field in a fluid.
Mathematically, it can be explained by the nonlinear coupling between acoustic wave
and hydrodynamic momentum conservation equations. Physically, the underlying mechanism
of AS comes from the dissipation of acoustic energy within the fluid, which induces spatial gradient
of momentum, and in turn creates a time-averaged effective forcing [1–10].

The phenomenon has attracted researcher’s attention since Faraday’s observations
in 1831 [11], who reported that light particles on vibrating plates spontaneously form steady clusters.
More recently and especially in the context of microfluidics, AS has been proven to be a suitable
technique for fluid and particle handling in various situations [4]. We wish to point out the studies
on fluid mixing at a low-Reynolds number [12], particle manipulation and sorting [13–18], particle
patterning [19,20] and heat transfer [21,22], among others.

Amongst different sorts of acoustic streaming, the one relevant in microfluidics situations
usually involves viscous stress along walls or obstacles, generated by no-slip conditions and
resulting in the presence of a viscous boundary layer (VBL). It is referred to Rayleigh–Schlichting
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streaming [4,6–10], and is different from that induced by acoustic attenuation in the bulk of fluid. The
bulk acoustic streaming is denoted as Eckart streaming [2,5] and becomes significant only with high
frequencies (>MHz) or with very viscous liquids, so that the attenuation length is smaller than—
or of the same order as—the vessel size [23–25]. In Rayleigh–Schlichting streaming, a non-zero,

time-averaged vorticity is generated inside the unsteady VBL [7] of typical thickness δ =
( 2ν

ω

) 1
2 , where

ν is the kinematic viscosity and ω = 2π f the acoustic angular frequency. This vorticity appears in the
form of an array of eddies pairs [6,7,10], denoted as inner vortices, along the channel walls [16,26,27].
This vorticity extends its influence beyond the VBL and in turn induces larger-scale eddies of width
λ/2 [26,28] in the fluid bulk, where λ = cs

f is the acoustic wavelength and cs the speed of sound.
Rayleigh–Schlichting streaming is generally treated within the incompressibility framework.

Traditional acoustic streaming in microchannels is achieved by adjusting the channel
width w and the wavelength λ to ensure a resonance condition, typically obtained
when w ' λ/2 [29]. However, recent studies evidenced that relatively intense streaming could be
generated by designing microchannels with sharp structures along the walls [30–36] excited by acoustic
waves. The sharp structures can be easily prototyped by the facilities offered by microfabrication
in clean rooms; e.g., with photolithography. One of the main advantages of "sharp-edge streaming"
is that it can be generated at relatively low frequencies, typically in a range between a few hundred
Hz and several kHz (but it is observed for much higher frequencies as well [34]). Within this
low frequency range, numerous performant and stable piezoelectric transducers are available at
low cost, and can be supplied with inexpensive amplifiers. Other advantages of operating at
relatively low frequency include: efficient acoustic coupling between the transducer and the solid in
contact, and negligible acoustic dissipation within the liquid. Finally, previous experiments reported
that near the tip of the sharp edge, the streaming velocity can be very strong [30–32,37], and can
even be comparable to the vibration velocity, hence up to several hundreds of mm/s [35,36] at
a typical distance δ from the tip. Benefiting from these strong disturbances within the fluid inside a
microchannel, various applications using sharp structures streaming have been developed: mixing
processes [32,38], bio-particle control [39,40] and various on-chip devices [31,41].

The present study aims to investigate the influence of both liquid kinematic viscosity
ν and acoustic frequency f on the streaming flow magnitude and pattern. The focus of this study is
based on the fact that one of the key parameters of sharp-edge streaming is the thickness of the VBL,
which depends on both f and ν. Actually, three main dimensionless numbers involve δ: the ratio of
the tip diameter and δ, d∗ = 2rc

δ , the ratio with respect to the channel depth p, p∗ = p
δ and the ratio

between the channel width w and δ, w∗ = w
δ . Sharp-edge streaming is defined by the sharpness

condition d∗ < 1 [37], and almost no streaming could be noticed, even at relatively high forcing when
d∗ � 1 [35,36]. In the typical framework with water and f of a few kHz (let us say between 2500
and 6000 Hz as in previous studies), δ ranges between 7.3 and 11.3 µm, so that the two other ratios
w∗, p∗ � 1, for microfluidic channels, are typically thicker than 50 µm.

Additionally, quantifying the influence of viscosity distinguishes sharp edge acoustic streaming
from classical ones. In classical Rayleigh–Schlichting streaming, the flow is found to be independent
on viscosity providing that the VBL thickness δ is much thinner than the vessel size [8,9,42]. For
sharp-edge streaming in microchannels or in wider vessels, it is found that this independence on
viscosity is lost even if δ remains thin compared to the channel width w or depth p [37]. Ovchinnikov
et al.’s perturbative theory predicts a decrease of the typical streaming velocity Vs with ν, though
with a subtle dependence on the sharp-edge geometry. With a viscous enough liquid and/or a low
enough frequency, the dimensionless lengths p∗ or w∗ can fall into the order of one. Under this
condition, an overlap between geometrical confinement and the intrinsic nature of sharp-edge
streaming makes it more complex to determine the influence of ν and f on the flow. On this latter
point, Equation (22) from [37] predicted a typical streaming velocity in cylindrical coordinate (r, φ) as:

Vs(r) =
V2

a
ν

δ2n−1

h2n−2 Hα(
r
δ
) (1)
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where Va is the amplitude of the acoustic velocity, n is a coefficient that depends on α as n = π
2π−α ;

h is the length scale of the sharp-edge height. The function Hα(
r
δ ) contains the radial profile of

the streaming flow. It is worth noticing that Equation (1), supposedly valid in the range rc < δ, does
not exhibit any dependence on rc.

The present study intends to quantify the coupled role of viscosity and excitation frequency
in both the streaming flow pattern and magnitude. The paper is organised as follows: Section 2
described the experimental setup and visualisation method. Then in Sections 3 and 4 the results at
different viscosities and different frequencies are presented respectively. Finally, Section 5 summarises
the main results and conclusions. The main physical quantities are defined in Table 1.

Table 1. Definition of the main physical quantities.

Quantity Abbreviation

Kinematic viscosity ν

Viscous boundary layer thickness δ

Tip angle of sharp edge α

Height of the sharp edge h
Radius of curvature of the tip rc

Width of the microchannel w
Depth of the microchannel p
Acoustic frequency f
Acoustic angular frequency ω

Amplitude of acoustic displacement A
Amplitude of acoustic velocity Va

Amplitude of acoustic velocity far from the tip Va

Streaming velocity Vs

Maximum streaming velocity Vsmax

Fitting coefficient relating Vsmax and V2
a θ

2. Experimental Setup

2.1. Microchannel and Acoustic Wave

The experimental setup is sketched in Figure 1, and presented in more detail in [35]. It is built
around a Y-shaped polydimethylsiloxane (PDMS) microchannel devised by standard photolithography
techniques: starting from a SU8 resist-made mould of thickness 50 µm made on a silicon wafer,
a mixture of PDMS (Sylgard 184) with 10% in mass of curing agent is poured on the SU8 mould
and forms a 2.5-mm-thick layer on top of the wafer. After a baking at 65 ◦C for 4 h, the PDMS mixture
is then sealed and attached to a glass coverslip after a 1 mn O2 plasma treatment of both faces. A PDMS
microchannel of depth p = 50 µm is then obtained. The width w is equal to 500 µm. Its geometrical
dimensions are detailed in Figure 2a. Sharp edges with different angles (30◦, 60◦, 80◦ and 90◦) could
be fabricated from various moulds, and previous studies evidenced that a sharper tip and more acute
angle would lead to stronger streaming under the same forcing amplitude [30–32,35,36]. For the
present study, since the focus is on the influence of ν and f , we operated with the same angle of α = 60◦,
with a corresponding tip diameter of 2rc = 5.8 ± 0.4 µm.
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Figure 1. Left—Sketch of the experimental setup. A piezoelectric transducer is glued on a glass
microscope slide, which is used as a coverslip for a PDMS microchannel with one or several sharp-edge
structures. The transducer is supplied with a function generator and a home-made amplifier, adjusted
by the peak-to-peak voltage monitored with an oscilloscope. The fluid seeded with fluorescent particles
is brought by a syringe pump through two inlets. The flow inside the microchannel is visualised by
a high-speed camera connected to a binocular microscope. Right —The piezo-transducer generates
an acoustic wave within the Y-shaped channel. In the vicinity of the sharp-edge structure, the acoustic
wave generates a streaming flow.

𝑤 500𝜇𝑚

ℎ 180𝜇𝑚

(a) (b)

Figure 2. (a) Geometry of the microchannel and sharp-edge. (b) Trajectories of individual particles
(diameter 4.9 µm), over several periods, for the left-hand-side zoom-in image. The frame per second
(fps) equals 4 f = 10,000 fps; for the right-hand-side one, the fps equals 10 f = 25,000 fps; the two
images have the same exposure time 1/(10 f ) = 1/25,000 s. Far from the tip, the flow is oscillating
at frequency f and amplitude A, as testified by the segment described by each particle. Close to the tip,
the trajectories of the particles show a superposition of oscillations with higher amplitude due to
the sharp edge and advection due to the intense streaming flow.

The microchannel is fed with liquid seeded with fluorescent and reflective particles (green
polystyrene microspheres, Thermo Scientific, Boston, MA, USA) of diameter 1 µm (The particle
diameter has to be much smaller than δ to get the inner streaming flow, but to measure the amplitude
of acoustic vibration velocity and get a qualitative image of the flow (see Figure 2b), larger
particles of diameter 4.9 µm were more adapted) by a syringe pump (Newtown Company and Co,
Newtown Blvd, Cebu). The acoustic wave is ensured by a piezoelectric transducer (Model ABT-455-RC,
RS Components) glued on an upper glass microscope coverslip (width × length × thickness: 26 mm
× 76 mm × 1 mm) with epoxy resist. The power is brought by a function generator (Model 33220A,
Agilent, Santa Clara, CA, USA) with a home-made power amplifier. The transducer spectral response
shows several resonance peaks between 400 and 40,000 Hz, from which we chose several values of
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frequency from 500 to 3500 Hz. The applied voltage is sinusoidal, within a range between 0 and 60 V
peak-to-peak (up to ± 30 V).

The fluids are mixtures of water (W) and glycerin (G) with different rate in W/G. Table 2 presents
the main physical properties of different mixtures used in this study and the values of δ for the two
extreme values of frequency.

Table 2. Physical properties of water-glycerol mixtures at 20 ◦C for different mass fraction wglyc

and volume fraction xglyc of glycerol. Data for the viscosity ν of the water–glycerol mixture
are extracted from [43], while the sound speed c0 (at 25 ◦C) and the density ρ0 are extracted from [44].
Additionally indicated are values of the VBL thickness δ at the highest and lowest frequency f , 3500
and 500 Hz.

wglyc. xglyc. ν (mm2/s) c0 (m/s) ρ0 (kg/m3) δ3500 (µm) δ500 (µm)

0.00 0.00 1.007 1510 998 9.57 25.3
0.062 0.05 1.158 1580 1012,7 10.3 27.1
0.457 0.4 4.32 1760 1114.5 19.8 52.4
0.654 0.6 13.75 1810 1168.3 35.4 93.6
0.747 0.7 29.44 1840 1193.4 51.7 136.9

2.2. Flow Visualisation and Image Processing

The visualisation is ensured by a fast camera (MotionBLITZ Cube4, Mikrotron) adapted on
a binocular microscope. The depth of field of the microscope lens is about 10 µm, and hence five
times smaller than the channel depth (p = 50 µm) which, after careful adjustments, enables one
to access the streaming velocity near the centre plane. A cold-light beam shines from the bottom
of the glass slide. While the seeded particles are fluorescent (excitation wavelength 480 nm, light
emission wavelength 515 nm), we found that under some conditions of lighting, and due to the limited
sensitivity of the camera, the diffused light could offer better contrast than the fluorescence-emitted
light.

By operating under various exposure times and a frame-rate from 500 fps to 25,000 fps (see
details in [35]), we can access both the steady streaming velocity Vs(x, y) and the acoustic velocity
Va(x, y) = Aω (via the vibration amplitude A); see Figure 2. In particular, it is observed that close to
the tip, Vs can be of the same order as Va. Far from the tip, where the streaming velocity vanishes,
the time-cumulated trajectories of individual particles appear as straight segments, along the parallel
direction with respect to the channel wall. The measurements of the lengths of these segments,
equal to 2A, allow one to determine the prescribed vibration at infinity Va(∞). This appears to us as
the most reliable way to quantitatively measure the forcing amplitude, and we denote thereafter for
simplicity: Va = Va(∞). As previously shown [35], the relationship between the prescribed voltage
V and the vibration velocity Va is found to be linear over the range 0–60 Volts. For each tested frequency,
we proceeded a calibration between voltage and acoustic velocity.

The obtained images are treated with the open-source software ImageJ (https://imagej.net/).
The streaming velocity field in the plane (x, y) is determined from the relative displacement of particles
at a given phase during several vibration periods. Successive frames are converted into displacement
vectors and vorticity maps by the software PIVlab (see: https://pivlab.blogspot.com/).

3. Influence of Viscosity

3.1. Velocity and Vorticity Maps

Figure 3a–d present typical streaming velocity fields obtained from the PIV treatment.
The streaming flow appears as a main central jet from the tip, which is symmetric with respect
to the y axis (x = 0). It clearly appears that the flow intensity decreases with an increasing viscosity.
The jet induces the formation of two symmetric vortices beside the sharp edge. In terms of location,
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the eddies are very near to the tip for the lowest viscosity, and for more viscous liquids they are pushed
away and more aside from the tip. Let us also remark that at higher viscosity (Figure 3c,d), the flow in
the VBL along the lateral walls becomes relatively thicker.
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Figure 3. Streaming velocity field Vs(x, y) from PIV measurements, with different liquid viscosities.
f = 2500 Hz and Va = 35 mm/s. (a) ν = 1.158 mm2/s, (b) ν = 4.32 mm2/s, (c) ν = 13.75 mm2/s, (d) ν =
29.44 mm2/s. Scales are the same for the four cases.

Figure 4 shows the vorticity maps corresponding to the fields of Figure 3. The most remarkable
point is the decrease of the intensity of the vorticity with increasing viscosity, as testified by the scales
of the colourmaps from (a) to (d). However, the size of the vortices, which may characterise the
disturbance distance, remains roughly equal for all liquid samples. Additionally, the thickness of
the inner vorticity areas, and the absolute vorticity within this specific region appear to be roughly
constant for all liquids.
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(a) (b)

(c) (d)

Figure 4. Vorticity maps of the streaming fields corresponding to the cases of Figure 3a–d,
with corresponding colour bars that emphasise the decrease of vorticity. f = 2500 Hz and Va =
35 mm/s. (a) ν = 1.158 mm2/s, (b) ν = 4.32 mm2/s, (c) ν = 13.75 mm2/s, (d) ν = 29.44 mm2/s. Dotted
lines show the boundaries of the sharp edge.

3.2. Maximal Streaming Velocity at Different Viscosities

To further quantify the flow pattern, we extract the flow profile along the y axis: Vs(x = 0, y), for
different viscosities and forcing amplitudes. Figure 5 shows three examples of profiles for the same Va =
35 mm/s and Fluids 2, 3 and 4 (see Table 2). It shows a quantitative confirmation that a higher viscosity
entrains less intense and relatively more spread profiles. Since the velocity fields are symmetrical
with respect to the y axis, the maximal velocity Vsmax can be extracted from these profiles. It turns out
that the maximal velocity is roughly located at a distance y = δ from the tip.

A more careful examination of the decaying of Vs(x = 0, y) suggests that the influence of viscosity
is mainly significant within the region of a few VBLs in thickness. Conversely, the decaying zone
further from the tip seems to follow a decreasing exponential behaviour, which is almost independent
of ν: the profiles are just shifted from each other by a velocity offset. In addition, at a distance of
roughly 130 µm, Vs(x = 0, y) approaches zero for all cases. This length scale seems to depend only
on the sharp edge structure, which is in our case characterised by an angle of 60◦, and tip height h =
180 µm.

Now we focus on the measurements obtained within a large range of Va. Quantitatively, we mainly
focus on the maximal and characteristic value of Vs(x, y) measured around y = δ and at x = 0. In what
follows, we shall also extract the prefactor θ that relates Vs to V2

a , from the whole data set where
the dependence is linear. Back to Equation (1), θ is equal to 1

ν
δ2n−1

a2n−2 , from which the dependence on ν

and on f can be readily predicted, taking α = 60◦ as in our experiments:
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Vs ∼ ν−0.9 f−0.1 V2
a (2)

To verify this theory, Figure 6 show the results of the experimental maximal streaming velocity
Vs max versus the square of the acoustic forcing velocity amplitude V2

a , presented either as raw data
(Left) or via the quantity Vs max × ν−a, with a is an exponent deduced from Ovchinnikov et al.’s
theory [37], equal to −0.9 for an angle α = 60◦ as stated above. In the inset, the quantity Vs max × ν1/2

plotted versus V2
a shows a partial collapse of data in the range of the smallest values of V2

a , roughly
below 800 mm2/s. At this stage of our investigations, we are unable to explain such a trend. From these
results, we can simply conclude that viscosity strongly influences the streaming flow generated around
sharp edges. But the dependence cannot be simply captured by the predictions of the perturbative
theory from Ovchinnikov et al. [37], nor by any arbitrary power-law. In any case, the results show
the quantitative confirmation that the independence on ν observed in classical Rayleigh–Schlichting
streaming is lost in sharp-edge streaming.
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Figure 5. Streaming velocity profile along vertical direction Vs(y), for three different viscosities (Fluids
2, 3 and 4 with ν respectively equal to 1.158, 4.32 and 13.75 mm2/s). The operation condition is at
frequency f = 2500 Hz and acoustic velocity Va = 35 mm/s. Additionally labelled are the values of the
VBL thickness for the three fluids δ2, δ3 and δ4. The inset plots the same data in Lin-log axes.
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Figure 6. Left —Maximal streaming velocity Vs max versus the square of the acoustic forcing velocity
V2

a , for different liquid viscosities ν, indicated in Table 2. Right—Quantity Vs max × ν−a, with a= −0.9.
Inset Vs max × ν1/2. All measurements were obtained at f = 2500 Hz. The averaged typical error bar
is indicated.
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Let us finally point out that for more viscous liquids (4 and 5), there is a clear departure from
a linear dependence between Vsmax and V2

a , typically as V2
a is larger than roughly 800 mm2/s. For these

two liquids, at 2500 Hz, δ4 = 41.8 µm and δ5 = 61.2 µm; hence, p∗ is of the order of one.

4. Influence of Frequency

4.1. Velocity and Vorticity Maps

Figure 7a–d presents typical streaming velocity fields at different frequencies ( f = 3500, 2500, 1250
and 800 Hz) with the same liquid viscosity (ν = 4.32 mm2/s) and forcing amplitude (Va = 22.4 mm/s).
The same global structure with the main central jet and the inner and outer vortices are observed
for all frequencies. The frequency does not seem to significantly influence the order of magnitude
of the flow. Figure 8a–d shows the corresponding vorticity maps. Let us note that the colourmap
scale is comparable for all four frequencies. As frequency gets lower, one observes a thicker and more
intense inner VBL along the walls, while the outer vortices are more spread. The magnitude of vorticity
in the outer vortices does not vary much with f .
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Figure 7. Streaming velocity field Vs(x, y) from PIV measurements, with different excitation frequencies
ν = 4.32 mm2/s (Fluid 3) and Va = 22.4 mm/s. (a) f = 3500 Hz, (b) f = 2500 Hz, (c) f = 1250 Hz,
(d) f = 800 Hz. Scales are the same for the four cases.
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(a) (b)

(c) (d)

Figure 8. Vorticity maps of the streaming fields corresponding to the cases of Figure 7a–d. ν = 4.32
mm2/s (Fluid 3) and Va = 22.4 mm/s. (a) f = 3500 Hz, (b) f = 2500 Hz, (c) f = 1250 Hz, (d) f = 800 Hz.
Dotted lines show the boundaries of the sharp edge.

4.2. Maximal Velocity at Different Frequencies

We extract the velocity profile Vs(x = 0, y) for the four values of frequency, under the same
conditions as those of Figures 7 and 8; in particular, Va is fixed at 22 mm/s. Results are plotted in
Figure 9. The y locations of the maxima roughly correspond to the VBL thickness at respective f :
δ3500 ' 19.8 µm, δ2500 ' 23.4 µm, δ1250 ' = 33.2 µm and δ800 ' 41.5 µm. The maximal velocity itself
is very much dependent on f , but the typical length-scale of the decay along y is comparable for all
four experiments, as revealed by the Lin-log plot in the insert. The four velocity profiles are shifted
from each other with a given offset.

Figure 10 shows the maximal velocity Vs max versus the square of the acoustic forcing velocity V2
a ,

for different values of frequencies f and the same liquid viscosity ν = 4.32 mm2/s. Each data group
obtained at constant f shows a linear trend: Vs max = θV2

a . However, the dependence of the prefactor θ

on f is unclear. Obviously, the theoretical prediction of [37] shown in Equation (2) fails to predict this
strong dependence on f . However, it is possible to make two groups of data:

- One group rather concerns measurements obtained at higher frequencies (2500 and 3500 Hz)
and high Va, for which a good fit is obtained for a value θ = 5×10−4 s/mm.

- The other group is constituted by measurements obtained at lower frequencies (500, 800
and 1250 Hz) and relatively low Va; see insert in Figure 10. In this case, the value of the prefactor
is θ = 0.0011 s/mm.

To further test the possibility of a scaling law that would capture the dependence of the
streaming velocity on f , we attempted to plot Vs max versus potential pertinent combinations of
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powers of Va and f . In classical Rayleigh–Schlichting streaming, Vs max usually depends linearly on
A2 f = V2

a /(4 π2 f ) [42,45]. But it turns out that plotting Vs max versus V2
a /(4π2 f ) leads to even more

scattered data points.
In seeking an empirical law quantifying the dependence on f , we then tried to plot Vs versus other

combinations of V2
a and f β, with β being a real exponent, predicted to equal −0.1 from Ovchinnikov et

al.’s theory [37]; see Equation (2). Figure 11 show the two most successful attempts:

- Figure 11a: the plot of Vs versus V2
a × f shows a good collapse of data for the three lowest

frequency values (500, 800 and 1250 Hz). But the rescaling does not fit with the two other data
sets corresponding to the highest frequencies (2500 and 3500 Hz).

- Figure 11b: the plot of Vs versus V2
a × f−1/2 shows a fair collapse of data for all frequencies,

though it is more convincing at higher acoustic amplitude.
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Figure 9. Streaming velocity profile along vertical direction Vs(y), for four different frequencies. Liquid
viscosity ν = 4.32 mm2/s and Va = 22 mm/s. The inset plots the same data in Lin-log axes.
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Figure 11. Attempts of data rescalling for Vs max (a) versus V2
a × f (insert shows data in the lowest

range of V2
a ) and (b) versus V2

a × f−1/2 showing a fair collapse of data.

Still, there is no clear explanation for such trends. Therefore, it is likely that the dependence of
the streaming flow on f cannot be captured by simple theoretical predictions.

5. Conclusions

Our study presents qualitative and quantitative results of the streaming flow generated by
long-wavelength/low-frequency acoustic fields near a sharp-edge. The main focus has been given
to viscosity (ν from pure water to 30 times higher), with frequency f from 500 to 3500 Hz, allowing
us to tune the VBL thickness δ from 9.5 to 137 µm. The mechanisms of such a streaming flow,
described in previous studies [30–35,37], are distinct from those of the classical Rayleigh–Schlichting
streaming. Our results confirm a strong link of sharp-edge streaming to viscosity and frequency. But
the dependency on both ν and f seems to be more complex than simple power law descriptions; for
instance, those from Ovchinnikov et al.’s study [37]. Let us mention a very recent study [34] where
streaming velocity is predicted analytically and numerically. Equations (27)–(28) and (37)–(38) in [34]
offer a complete prediction, including the structure of the flow itself. By comparing the scaling laws
from this study with our experiments, we could not find agreement. We assume the complex behaviour
in our experiments is due to the fact that δ can become comparable to the channel depth. Therefore, we
hope our results will provide an interesting challenge for future studies involving complex geometries.

Still, our results allow one to draw several conclusions:

- For any conditions, the maximal streaming velocity is roughly located at a vertical distance of
δ from the tip; i.e., just at the limit of the VBL.

- An increase of viscosity leads to globally weaken the streaming velocity and the outer vorticity.
Still, the outer vortices keep their size and shape for all liquids, and the thickness of the inner
flow along the edge lateral walls roughly remains insensitive to viscosity. This is clearly at odds
from what is observed in classical boundary-layer (Rayleigh–Schlichting) streaming.

- At constant Va, a decrease of frequency tends to increase the streaming velocity. Our results,
although unexplained by the current theoretical state of the art, suggests the empirical law:
Vs ∼ V2

a f−1/2. Furthermore, the lower the frequency f is, the more spread out the streaming
vortices are.

- While the flow near the tip (r < δ) is strongly influenced by ν and f , the flow far from the tip
follows an exponential decrease over a length scale of roughly 130 µm, under the test condition
and with angle of 60◦, and tip height h = 180 µm. This length characterises the disturbance distance
and seems to be dependent only on the sharp edge structure rather than the operating conditions.
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- When the VBL thickness is comparable to the channel depth, i.e., when p∗ is of the order one,
the dependence of Vsmax on V2

a is no longer linear. It suggests that p∗ � 1 is a necessary condition
for this linearity, as otherwise the streaming flow cannot fully develop within the channel.
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ABSTRACT

Strong acoustic streaming can be generated inside a microchannel near sharp-edge structures.

In this study, three Sharp-Edge Acoustic Streaming (SEAS) micromixers with multiple sharp edge

patterns actuated by piezoelectric transducers are investigated. Direct Numerical Simulation (DNS)

is used to numerically solve the multi-physics phenomenon involving acoustics, fluid dynamics and

mass transfer. Experiments are carried out to validate the numerical results by visualization, as

well as to evaluate micromixing performance with Iodide-Iodate Reactions. Influence of the sharp

edge pattern (i.e. the spacing between individual structures, the number of sharp edges), channel

throughput as well as acoustic intensity are studied. The shape of flow streamlines first unveils

the interaction between acoustic streaming and main flow, which is shown to be a key for mixing

enhancement. Following this, an optimal structure is found among the three mixers which allows

achieving a decrease of micromixing time from 0.28 s to 0.03 s. Finally, a comparison with

literature on passive mixers confirms the micromixing performance of SEAS mixer in terms of

micromixing time at low Reynolds flow.

KEYWORDS

Acoustic Streaming, Sharp-edge, Micromixing, Process intensification, Active enhancement

INTRODUCTION

Mixing is a vital process for operations in microchannels such as chemical reactions, biological

syntheses as well as food processing. From the point of view of chemical reactions, homogeneous
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and rapid contact between reactants must be realized at themolecular level. As a result, the ability to

rapidly create a homogeneous reactant mixture is crucial for the design of microreactors. However,

as typical microchannel operations usually involve low-Reynolds number flows, mixing is mainly

achieved through molecular diffusion across the interface, especially without external disturbances.

Mixing at micro- or millimetric microfluidics is thus very slow for most liquid reagents (DeMello

2006). In such a situation, the mixing efficiency directly affects the quality of a reaction.

Both passive and active techniques have been used to intensify mixing in microfluidics. Passive

techniques optimise the channel geometry, and in turn the flow streamlines, in order to maximize

the interface between two fluids. Examples for high and intermediate Reynolds numbers include

zigzag-shaped mixing channel (Stroock et al. 2002), tree-like multichannel T-mixer (Guo et al.

2014), chaotic mixer with 3D L-shape channel or with z-connections (DeMello 2006; Qin et al.

2017). For very low Reynolds numbers, structures like staggered-herringbone grooves have been

shown to be effective in mixing (Hossain et al. 2010). While passive mixers only relies on

hydrodynamic energy dissipation to improve mixing, extra pumping power is required due to

the high pressure drop. The strategy of active mixing, on the other hand, introduces external

perturbations (mechanical, ultrasonic, among others) within the fluid. For example, (Li and Kim

2017) designed an water-head-driven microfluidic oscillator to generate periodic fluids bands and

achieve rapidmixing. Their experimental study showed that at Re= 0.3∼1with an external activation
of 14∼20 Hz oscillation, complete (macro)mixing can be achieved within mixing distances as short

as 1.1 cm ∼ 4 cm. Acoustic vibrations as a active enhancement technique are frequently used

to enhance heat and mass transfer (Vainshtein 1995; Setareh et al. 2020; Luo et al. 2018). For

instance, (Luo et al. 2018) improved micromixing and mass transfer by prescribing high-frequency

(20 kHz) ultrasonic wave in a rotating packed bed reactor. The collapse of micro bubbles created

by ultrasound waves produces microjets and microstreams that enhance micromixing.

Acoustic streaming (AS), a steady flow generated by an acoustic field in a fluid, can potentially

be an effective tool to actively enhance mixing. The AS phenomenon is due to second-order

nonlinear effects in the coupling between acoustics and hydrodynamics. Historically, acoustic
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streaming was extensively studied in relatively large fluid volumes like in Kundt’s tubes excited by

kHz-range acoustic forcing (Hutchisson and Morgan 1931). More recently, AS was investigated in

microfluidic channels using transducers in pairs or with reflectors in order to realize a condition

of resonance (Lei et al. 2013; Bruus 2012). In the latter situation, the acoustic wavelength has to

be of the same order of magnitude as the channel width, which imposes a frequency as high as

several MHz. However, recently strong streaming flow around sharp structures has been evidenced

(Ovchinnikov et al. 2014; Huang et al. 2013; Zhang et al. 2019; Zhang et al. 2020b; Doinikov

et al. 2020b; Doinikov et al. 2020a) even in the kHz range or lower, attainable even with low-cost

piezo-transducers. Contrary to MHz-range AS, the wavelength of audible acoustic wave at several

kHz (λ ≈ 0.5 m) is much larger than the typical dimensions of microfluidic devices (smaller than

1 mm). This means the acoustic amplitude within the fluid is homogeneous and the wave has the

same phase everywhere. The presence of sharp edges enables the generation of strong acoustic

streaming, which would be null in a smooth channel according to the classical Rayleigh theory

(Rayleigh 2013). Thanks to its strong transverse (i.e. perpendicular to the main flow) disturbances

within a laminar flow, involving low-cost equipment requirements, such sound-driven steady flows

have promising potential applications in Process Intensification (PI), in particular the micromixing

enhancement in continuous microfluidics. Another advantage of low-frequency sharp-edge AS is

that it can be operated under relatively low power input, avoiding local heating from piezoelectric

actuators. This makes it particularly adapted to be used in microfluidic devices with low Reynolds

number laminar flows. This study deals with Sharp Edge Acoustic Streaming applied to mixing,

which will be abbreviated as SEAS mixers hereafter.

In our earlier experimental (Zhang et al. 2019; Zhang et al. 2020a) and numerical works

(Zhang et al. 2020b), the physical mechanisms of streaming flow around a single edge have been

thoroughly investigated. Features of SEAS were explored under different conditions, including

geometrical (curvature diameters, angles of edge), acoustical (intensity, frequency) and operating

ones (flow rate). In (Zhang et al. 2019), we used direct visualisation using fluorescent particles

to unveil the streaming generation mechanisms, tracking both the acoustic oscillations and steady
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acoustic streaming. The mixing process around one single sharp edge is characterized by dye

visualisation, confirming the enhancement of macromixing thanks to streaming flow transverse

to the main flow. Disturbance distance, vortex size as well as streaming velocity are retained to

quantify the streaming intensity. In a more recent study (Zhang et al. 2020b), we gave guidelines

on how to obtain strong acoustic streaming with the combination of acoustic and geometrical

configurations. We developed DNS (Direct Numerical Simulation) in the finite-element software

COMSOL, which proved to provide better predictions than the classical PT (Perturbation Theory)

modelling, especially at relatively large forcing. Finally, the dependency of SEAS on fluid viscosity

and acoustic frequency was also experimentally studied in (Zhang et al. 2020a). Following our

earlier work, to fabricate a channel with an array of sharp edge structures should be effective to

considerably enhance mixing. Although several experimental and PT-based simulation studies

focusing on chip-scale SEAS mixing have been reported by (Nama et al. 2016; Ozcelik et al. 2014)

and, more recently in (Bachman et al. 2020), the hydrodynamic streaming mixing enhancement

mechanism remains unclear. Namely, several critical questions remain unanswered: i) What is

the best geometrical sharp-edge configuration that enables the best mixing performance? ii) From

a micromixer application perspective, evaluation of micromixing performance of SEAS through

parallel chemical reactions (mainly based on micromixing time), to the best of our knowledge, is

still absent in the literature. In particular, micromixing time allows a direct comparison with other

type of micromixers (both passive and active), in terms of mixing performance and energy cost.

iii) Finally, from a methodology point of view, as we have discussed in our previous study (Zhang

et al. 2020b), simulation of SEAS with perturbation method can bring in a considerable error,

especially under large acoustic intensity. Developing appropriate numerical scheme to resolve the

acoustic-hydrodynamic-mass transfer coupling phenomenon is of high reference value for other

acoustofluidics researches.

In summary, the current study intends to go further on the use of SEAS on mixing in mi-

crochannel. First, we designed three different SEAS mixers with multiple sharp edges in the

aim of unveiling the streaming-mixing interaction and finding the best configuration on mixing
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performance. Following this design, fluorescence particle visualisation validates the simulation

protocol. Then, the effect of streaming on mixing with the three SEAS mixers under specific

acoustic conditions are compared. Streamlines of acoustic streaming combined with the main flow,

provide valuable clues to design an optimal SEAS mixer. Last, micromixing performance evalua-

tion follows a widely accepted methodology, i.e., Iodide-Iodate reactions. Thanks to performance

indicators such as micromixing time and energy dissipation, comparison of SEAS mixer with other

previously-reported micromixers illustrates the relative performance of SEAS devices.

THEORETICAL BACKGROUND

Origin of Sharp-Edge Acoustic Streaming (SEAS)

The sharp-edge AS in this study uses acoustic wavelength λc = c/ f , of the order of half

a meter, hence much larger than the characteristic flow size in microfluidics. There are three

velocities involved : acoustic velocity vω = Re[vaeiωt] (fluid vibration induced by piezo-transducer,
time-dependent part, va is the complex amplitude, Re[·] denotes the real part of a complex term),

streaming velocity vs (steady-state streaming) and mainstream velocity v0. All of them being much

lower than the sound speed (c=1430 m/s in water), the flow is thus incompressible. According to

the classical Perturbation Theory (PT), the steady streaming velocity can be theoretically solved

through the time-averaged second-order momentum and continuity equations in Eq.1 and Eq.2

(Ovchinnikov et al. 2014).

(vs · ∇)vs = −1
ρ
∇ps − Fs + ν∇2vs (1)

∇ · vs = 0 (2)

where vs is the second-order time averaged velocity (streaming flow); Fs = 1
2Re[< (va · ∇)vTa >]

is the time averaged inertia term as a result of the first-order oscillatory field. And it’s also named

averaged Reynolds Stress Force (Lighthill 1978), it represents the driving force of the streaming

flow in the fluid bulk acting within and beyond the viscous boundary layer.

From the form of Fs, it is clear that a homogeneous acoustic field cannot generate any streaming
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flow along straight and smooth walls, as the effective force would be null (Ovchinnikov et al. 2014;

Zhang et al. 2019; Zhang et al. 2020b). Within the boundary layer, the oscillations are subjected

to spatial variations and vanish along the wall due to the no slip boundary condition. Despite the

spatial variations of va, the direction of oscillations keeps parallel to the straight horizontal wall, so

that Fs remains null (Ovchinnikov et al. 2014; Zhang et al. 2020b). However, the presence of sharp

edge structures with strong local curvature on the channel walls induces sharp spatial variations

in the acoustic fluid oscillation near the tip (Zhang et al. 2019; Zhang et al. 2020b), which makes

Fs non-zero locally. As sketched in Fig.1-(a) for a single sharp edge in a channel, the vibration

is uniformly distributed in the channel except for the local zone close to the sharp edge. More

specifically, close to the tip, both the orientation of the acoustic field and the vibration amplitude

provide favorable conditions to induce an intense streaming force Fs. Far enough from the tip,

typically at a distance of a few boundary layers, the force becomes null or negligible. Therefore,

the sharp edge induced non-uniformity of the acoustic field makes acoustic streaming at relatively

low frequency (several kHz) possible.

Since the streaming force Fs generates a jet shooting from the sharp edge in the transverse

direction, a pair of counter-rotating vortices is in turn generated as shown in Fig.1(b). These

counter-rotating vortices in the fluid bulk can induce significant disturbance to the main flow at a

distance much larger than the boundary layer thickness. Outside the boundary layer, the streaming

flow interacts with the main flow, and is susceptible to enhance the advection and mixing of species

along the channel. Enhancement of mass transfer of two parallel fluids is thus possible. From the

basic flow visualisations for a single sharp edge, our study extends to the case of multiple sharp

edges (as shown in Fig.1-(c)). Our expectations are that the interaction and cooperative effects of

these several transverse flows and vortices should be suitable for mixing enhancement.

Numerical modelling of acoustic streaming

Although being particularly adapted in qualitative interpretation of the origin of acoustic stream-

ing near sharp edges, the classical Perturbation Theory (PT) fails to accurately predict themagnitude

of the streaming velocity. The main reason lies in the particularity of sharp edge streaming for
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S2, va = 80mm/s
200 stack, 
500*0.4ms=200m
s

1000 stack, 
1000*0.4ms=400m
s

(a)

(b)

(c)

100 μm

100 μm

Fig. 1. Origin of the acoustic streaming around the sharp edge. (a) Sharp edge of angle α
and curvature diameter 2rc inside a channel, δ shows the boundary layer thickness; Grey arrows
represent acoustic oscillations driven by piezoelectric transducer. Particle visualisation of (b) single
sharp-edge and (c) multiple sharp-edge acoustic streaming.

which the streaming velocity vs can be of the same order of magnitude as the vibration velocity va

(Zhang et al. 2019), which is not the case for classical Rayleigh streaming. As discussed above,

the velocity field v and pressure field p can be separated to three parts, shown in Eq.3 and 4. Then

the momentum equation Eq.5 can be separated into two parts : the oscillatory terms (Eq.6) and the

steady terms (Eq.7). The PT method simplifies the coupling between va and vs + v0 by neglecting

the following terms in Eq.6 : ((vs + v0) · ∇)va + (va · ∇)(vs + v0). As a consequence, our earlier
work (Zhang et al. 2020b) showed inaccurate resolution of the streaming velocity from PT and the

coupling terms in the context of sharp edge streaming are to be considered.
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v = v0 + vω + vs, vω = Re(vaeiωt) (3)

p = p0 + pω + ps, pω = Re(paeiωt) (4)
∂vω
∂t
+

{[vs + v0 + Re(vaeiωt)] · ∇
}[vs + v0 + Re(vaeiωt)]

= −1
ρ
∇[ps + Re(paeiωt)] + ν∇2[vs + v0 + Re(vaeiωt)]

(5)

iωva + ((vs + v0) · ∇)va + (va · ∇)(vs + v0) = −1
ρ
∇pa + ν∇2va (6)

((vs + v0) · ∇)(vs + v0) + 1
2
Re[(va · ∇)v∗a] = −

1
ρ
∇ps + ν∇2(vs + v0) (7)

Recently, we carried out simulations by directly solving theNavier-Stokes equationwith periodic

boundary conditions, using DNS (Zhang et al. 2020b). With this technique, the time-dependent

variable v = Re(vaeiωt) + vs + v0 at a given time-step can be obtained by directly solving Eq.(5) in

a two-dimensional domain with periodic boundary conditions : vb = Re(vabeiωt) + v0b. vab is the

va at boundary, and v0b is the boundary velocity corresponding to channel throughput (cf Fig. 2

(a)). Then the steady velocity < v > is available by time averaging v over several acoustic periods.

Details about DNS implementation can be found in (Zhang et al. 2020b).

v̄ = vs + v0 =

∫ T
0 vdt
T

(8)

where v0 is the steady velocity field corresponding to channel throughput, and T = 1
f is the acoustic

wave period.

Based on the above methodology, simulations of the velocity field can be proceeded as the first

step. Then, species transport (macromixing) can be included by adding the classical mass transport

equation Eq.9 in a second step with species concentration boundary conditions as shown in Fig.2

(b).

− Di∆Ci + v · ∇Ci = 0 (9)
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𝒗 𝑒 + 𝒗 𝑝 = 0

a) Boundary conditions for hydrodynamic simulation

b) Boundary conditions for species transport

𝐶 = 1

𝐶 = 0

𝑛 ∇𝐶 = 0

No-slip wall

No-slip wall

�̅�

𝑛 ∇𝐶 = 0

𝑛 ∇𝐶 = 0

Fig. 2. Boundary conditions used in the DNS modeling

where Di is the diffusion constant of the ith species. Ci refers to the molar concentration of the

ith species. Physically, the equation represents equal value of diffusive part Di∆Ci with convective

part v · ∇Ci in a steady-state source-less diffusion-convection phenomenon.

It is worth noting that in this step, we use the mean steady velocity v̄ from the hydrodynamic

solution as v in the convective term. In other words, the periodic acoustic oscillation velocity

is considered to have no influence on mixing. First, this assertion is based on our experimental

visualization to a smooth channel, showing no mixing enhancement effect without acoustic stream-

ing even with acoustic ON. Indeed, the first order vibration, as it mainly follows the longitudinal

direction of the mixing channel hence in parallel to the main flow, does not increase the transverse

advection of the two species.

Specifically, two solutions with C1 = 1 and C2 = 0 allow to directly obtain dimensionless

concentration between 1 to 0 (mixing degree). Then macromixing process between two miscible

fluids intensified by streaming phenomenon in the micro channel with sharp edges array can be

simulated.
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Mixing enhancement by streaming

The present study addresses an advection dominant mixing process which, without any acoustic

streaming, would be extremely slow. More specifically, the channel flow is characterized by very

low Re, ranging from0.12 to 0.72 for the tested flow rates of 2 µL/min to 12 µL/min, and considering

a channel with smooth walls. It is determined by Re = v0Dh

ν , with Dh being the hydraulic diameter

given by 4A/p; v0 is the mean velocity corresponding to the channel flow-rate divided by its

sectional area. In terms of relative importance between advection and diffusion, the Peclet number

Pe = Re · Sc takes values above 1, typically ranging between 61 and 364, with Sc is the Schmidt

number equal to 502 for Methylene dye in water. This implies that the convective transport along

the flow direction dominates diffusion in the transverse direction. Under these conditions, and with

a laminar Hagen-Poiseuille flow with parabolic velocity field along the channel axial direction, the

mixing of the two fluids is strongly limited along a distance as short as L/w = 14 with L=7 mm

and w=0.5 mm. Jets and vortices driven by acoustic streaming are expected to circumvent this

limitation.

Micromixing characterization

General visualization techniques only show the mixing layers between fluids above the micron

scale, which is the typical scale of macromixing. However, at a molecular scale, especially

when mixing is associated with chemical reactions, quantitative characterization to evaluate the

micromixing becomes necessary. Iodide-Iodate reactions is a commonly accepted protocol to this

aim. Also named Villermaux-Dushman method, the protocol involves two competing parallel

reactions at two distinct reaction rates : a quasi-instantaneous neutralization reaction and a redox

reaction of several order of magnitude slower in terms of reaction rate than the former. This allows

to characterize mixing at the molecular scale through the yield of Iodine (I2) molecules in the final

effluent. It is thus particularly useful to interpret the mixing process as a chemical probe. Details

of the method are given in the Appendix I.

Additionally, combined with a tubular reactor model IEM (Interaction by Exchange with the

Mean), the Iodide-Iodate protocol allows to access micromixing time (tm). This enables to conduct
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a direct and quantitative comparison of performance between different micromixers (Falk and

Commenge 2010).

Chemicals and test procedure

Precautions are necessary in the choice of reactant concentrations with which the Absorbance

Unit (A) given by the spectrophotometry under all operation conditions should fall in the range

0.1 < A < 3. This guarantees to remain in the linear range, that enables the use of the Beer-Lambert

law to determine the molar concentration of tri-iodide. To this end, we adopt a trial-and-error

approach to find the best choice for concentration, as shown in Tab.1. Also, a cuvette with small

enough volume (Hellma, QS105, 50 µL) is required, since the flow rate is as low as several µL/min.

[H+] [KI] [KIO3] [NaOH] [H3BO3]
C [mol/L] 0.03 0.016 0.003 0.045 0.045

TABLE 1. Concentration set used to characterize micromixing

Once the spectrometer results are obtained, we use Beer-Lambert law to determine the I3 – yield

(concentration CI−3 ). Then, the Segregation Index is determined followed by implementing IEM

model to access micromixing time.

Segregation Index

As a quantitative indicator in the Iodide-Iodate reactions scheme, Segregation Index XS can

characterize the mixing efficiency through a given micromixer under a fixed reactant concentration.

It is defined by the ratio of the iodine yield (Y ) in a test (real case) to the maximum yield of iodine

(YST ) in the case of most inefficient mixing (total segregation case), as in Eq.10.

XS =
Y
YST

(10)

In the case of total segregation, the two competitive reactions R1 and R2 (shown in Appendix

I) are quasi-instantaneous with respect to the micromixing time, supposed to be infinitely long.

Conversely, ideal micromixing implies arbitrarily short micromixing time. Thus, with ideal mi-
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cromixing XS = 0, and with total segregation XS = 1. Partial segregation follows the definition

XS = Y/YST and it results in a value between 0 and 1. The calculation of Y and YST involves all

reactant concentrations and it follows the procedure described in the Appendix I.

Micromixing time

Different Segregation Indices XS can be achieved with different presumed tm following the

procedure in Appendix II. Then the relation between the XS and tm can be built up, as shown in

Fig.14 (Appendix II), through which, tm under different conditions can be determined with the

segregation index XS measured by experiment. For tm, its value can be compared with those under

various experimental conditions, like different initial ions’ concentrations. However, the value for

XS depends not only on the mixing performance itself but also on the initial ions concentration.

Previous investigations opted for concentration values according to the specificmixer design. Hence

direct performance comparison between different micromixers by segregation index is not relevant.

In such a situation, the only reliable criteria to estimate the mixing performance has to rely on

the micromixing time, instead of the segregation index. Therefore several recent comparative

micromixing studies have been conducted with the above method (Qin et al. 2017; Li et al. 2019).

EXPERIMENTAL SETUP

Y-type SEAS micromixer

A SEAS mixer is made of Polydimethylsiloxane (PDMS) and contains a Y-mixer and a channel

with successive sharp-edges put as a network, with a specific distance between each other. The

PDMS channel is pre-fabricated using 2D photo-lithography on a wafer (details have been docu-

mented in our previous study (Zhang et al. 2019)) and bonded onto a glass slide by oxygen plasma

treatment. Three models (S1, S2, S3) are fabricated and their main geometrical dimensions are

detailed in Fig. 3 (b-c). Only the channel section with sharp edge patterns is shown, the Y-mixer

being identical for all three models. To provide an acoustic field in a frequency range between 2

and 3 kHz, a piezoelectric transducer is glued with epoxy resist on the glass coverslip slide, next

to the channel (Fig. 3-b). After a careful tuning of f corresponding to one of the resonances of the

12 ZHANG et al., July 25, 2020



transducer, streaming clearly appears near each and every tip. The two main control parameters are

then the acoustic amplitude (or velocity) and the flow-rate.

Chuanyu2: 
comsol/formal_simulation/sharp_edge_a
rray/streamline_without_streaming

Amplifier

Signal 
Generator 

Oscilloscope 

Microscope

Piezoelectric 
transducer 

SEAS mixer

𝑤
ℎ

𝑑

Syringe pumps

PDMS

Glass slide

S1

S2

S3

𝑤 = 500 𝜇𝑚
ℎ = 160 𝜇𝑚

     𝑑 = 100 𝜇𝑚           

𝑤 = 500 𝜇𝑚
ℎ = 160 𝜇𝑚

𝑑 = 200 𝜇𝑚  

𝑤 = 500 𝜇𝑚
ℎ = 160 𝜇𝑚
𝑑 = 300 𝜇𝑚

2x24 sharp 
edges

2x12

2x8

(a)

(b)

(c)

𝛼

𝑙 = 7 𝑚𝑚
𝑙 = 2.4 𝑚𝑚

Fig. 3. Schematic of the experiment in this study: (a) Experimental setupwith (b) themicro-channel
and the transducer glued on the upper coverslip. (c) Three different geometry structures tested,
with ns = 24, 12 or 8, being the number of sharp edges on each side, varying with the distance d
between the tip of two consecutive edges.

The experimental setup shown in Fig.3 (a) is composed of two syringe pumps (Newtown

Company & Co) that enable the continuous injection of fluid from two syringes, under well-

controlled flow-rate via the two inlets through the channel. A function generator (Model 33220A

Arbitrary waveform generator, Agilent) with a home-made adjustable power amplifier provides the

13 ZHANG et al., July 25, 2020



0 10 20 30 40 50 60
0

50

100

150

200

250

Fig. 4. Acoustic vibration amplitude varies with input voltage

signal supplied to the piezoelectric transducer (Model ABT-455-RC, RS Components). The flow

visualization is achieved by a binocular microscope together with a fast camera (MotionBLITZ

Cube4, Mikrotron). The piezoelectric transducer (diameter 35 mm and height 0.51 mm) delivers

acoustic vibrations to the glass slide and to the whole channel stuck onto it, at various resonance

frequencies from 0.1 kHz up to 5 kHz. We chose to operate at a frequency f = 2.5 kHz

corresponding to one of these resonance peaks. It turns out that the best operating conditions

in terms of streaming flow were obtained at this frequency.

The relation between the acoustic vibration amplitude va (va refer to the norm of va) in terms

of velocity and input voltage Vpp is shown in Fig.4. It turns out that va shows a rather linear

variation with Vpp, except in the upper range of values, typically below 45 Volts. In practice, most

of the results shown in this study was obtained in the range Vpp < 45V . We opted to choose va as

the control parameter that quantifies the amplitude of the applied acoustic field. Complementary

measurements showed a rather complex field of vibrations on the glass slide (Zhang et al. 2019).
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Here va directly quantifies the real acoustic excitation, which is effective inside the channel and

enables comparisons between different experimental studies. Here, it should be noted that va is

measured far away enough from the sharp edge, and is adopted as the value of vab in the simulation

part. The details of the measurement of va are given in a previous study (Zhang et al. 2019).

Mixing measurement procedure

For the Iodide-Iodate reaction protocol, a spectrometer (Jenway 7310) is used to measure

the concentration of I3 – . To cope with the small throughput (Qc ≤12 µL/min), we use a high-

precision micro-cuvette (Hellma, QS105 model, 50 µL, light path 10 mm) to collect the solution

as close as possible from the outlet. Each test is conducted under stationary conditions, which is

appreciated from direct visualisations. The sample is then put in spectrometer once the cuvette is

sufficiently filled. To quantitatively analyze the micromixing process, the Segregation Index (Xs)

and Micromixing time (tm) are determined through the IEM model. For each test, values of tm

and Xs are obtained through the measured concentration I3 – collected at the outlet. The relation

between XS and tm at given reactant concentrations is shown in the Appendix II .

Besides micromixing evaluation, the visualisation of the macromixing between two fluids of

different colors also helps to track the mixing process. One fluid is a mixture of Methylene blue

dye (Fisher BioReagents) into deionized water, while the other one is pure deionized water. These

sequences are then used to validate the numerical protocol.

RESULTS AND DISCUSSIONS

Validation of numerical results

Figure 5 shows the validation of numerical results by experimental visualisation (macromixing)

with blue dye. The S1 mixer is used under the following operation conditions: va=85 mm/s, Qc=8

µL/min. For the mass transfer, a mass diffusivity of D = 2.49 × 10−9m2/s (Leaist 1988) is used in

the simulation.

Concentration evolution contours in Fig.5b) and c) obtained both experimentally and numer-

ically show satisfactory agreement, which is also the case over the whole range of tested values
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Fig. 5. Experimental validation of numerical results on active acoustic streaming driven mixing
of two miscible fluids (water, water with Methylene blue) using micromixer S1. a) Concentration
profiles before (upstream, left) and after (downstream, right) the SEAS mixing channel. The
concentration profiles are taken at a distance of 0.5 mm before and after the first/last sharp edge,
where the profiles are not perturbed by remaining vorticity, b) Experimental concentration evolution
in the mixing channel, c) Same concentration field obtained numerically, d) Flow streamlines
obtained numerically. The acoustic amplitude is va=85 mm/s and the flow rate is Qc=8 µL/min.

for va. Similar grey level distribution - thus tracer concentration, are shown before, through and

after the sharp-edge network. Upstream, the two fluids are clearly separated at the centerline of the

channel. This is consistent with the advection-dominant flow (Pe�1) under low-Reynolds laminar

regime (Re<1).

As a quantitative comparison, Fig.5-a) confirms the accuracy of the numerical simulations by

concentration profiles respectively at the upstream and downstream locations of the mixing zone.
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Before entering the sharp-edges zone, the fluids are perfectly separated and the dye normalized

concentration is either close to 0 or to 1. After crossing the sharp-edges region, the two fluids

are brought closer to the 50%-50% line (ideal mixing). However, under a relatively low acoustic

intensity (va=85 mm/s), perfect mixing is not well achieved downstream. For this S1 mixer at least,

the generated AS is too weak.

In addition, the steady-state flow streamlines, resulting from the coupling between the main

longitudinal flow and the acoustic streaming (disregarding acoustic velocity here), and under the

same flow and vibration conditions, are shown in Fig. 5-d). At the centerline, the velocity remains

roughly parallel to the main flow and the interface area between the two fluids is only slightly

thickened by the space-periodic bending of the streamlines. Moreover, the triangular areas between

two adjacent sharp edges do not look disturbed by acoustic streaming. These dead zones show a

clear limitation of mixing, and are to be avoided from a mixing enhancement prospective.

Based on the experimental validated numerical scheme, we conducted a series of simulations

with the three different mixers shown in Fig.3, in the aim of finding the optimal geometry of

sharp-edge mixing channels, under the same acoustic and throughput conditions.

Performance comparison of SEAS mixers

Figure 6 shows concentration maps obtained from numerical simulations with the three SEAS

mixers, under the same operating conditions : acoustic amplitude va=130mm/s, channel throughput

Qc=8 µL/min. From these maps, one extracts the concentration profiles along the channel width,

at five representative longitudinal positions, shown as inserts in Fig.6, with Cin and Cout being

respectively the profiles at the inlet and outlet.

The cross-section concentration profiles extracted at different longitudinal locations, and espe-

ciallyCout , suggest that S2 should be the optimal sharp-edge network for better mixing performance.

Under the same flow conditions, the mixer S2 achieves the best mixing efficiency (evaluated at

the outlet) while S1 corresponds to the worst one (Fig.6). A closer examination of the cross-section

profiles reveals that S2 and S3 seem to allow larger vortices-induced mixing, both at the entrance

(near the first edge) and within the spaces between sharp edges in the middle of the channel. For
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Fig. 6. Comparison of mixing performance of three micromixers S1/S2/S3. Concentration grey
level maps from numerical simulation under the same following conditions: va=120 mm/s and
Qc= 8 µL/min. Cross-section concentration profiles are shown as inserts, for different longitudinal
locations. Concentration curves from Cin to Cout quantitatively confirms the performance order
from S2>S3>S1, with an identical inlet condition Cin.

the case of S1, streaming jets vortices are hindered due to the narrow space between each structure.

Conversely, S2 and S3 enable each streaming jets from each sharp edge to reach the zones between

two consecutive edges at the opposite wall. Therefore, despite S1 corresponds to the densest

network, the small space between edges limits the full development of the streaming flow. As a

result, AS vortices are within each local fluid instead of being useful for the mixing of them. The

first sharp edge of S1, though, seems to play a major role in the mixing before the channel. Strong

advection can be achieved at this entrance when the mainstream is subjected to a strong transversal

streaming, thus mixing can be enhanced. Also, this effect appears with S2 and S3.

The three grey level maps shown in Fig. 6 comparatively illustrate the performances of the

three mixers. With the same inlet Cin, a disturbed concentration distribution C1 can be shown at

the entrance, just before the first sharp-edge. At the entrance area, S1 seems to provide stronger

disturbances than S2 and S3. Further downstream, S2 shows better mixing performance in the
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Fig. 7. Parametric simulation of mixing enhancement indicators by adjusting sharp edge patterns.
Ratio vs/v0 versus (w − 2h)/d for different sharp-edge micromixers (left). Quantity ns × vs/v0
versus (w − 2h)/d, showing S2 as an optimal geometry for mixing (right). The sharp edge section
(l2) is kept the same for the variety of edge densities.

whole area between C2 and the outlet. This is presumably due to a larger number of effective

streaming jets and vortices. The performance of S3 is close to that of S2, although slightly less

efficient : it generates effective vortices too, but with less sharp edges. Finally, S1 shows the most

segregated fluid at the outlet Cout , even though it gets a small advantage at the first sharp edge.

In summary, the above results show a complex nature of SEASmixing enhancementmechanism,

namely in terms of interaction between acoustic streaming and the main flow. It is thus necessary

to provide a detailed interpretation on the mixing enhancement mechanism by AS with different

structures.

At this stage though, we can propose a coarse optimal performance of the S2 mixer from

purely kinetic and geometrical arguments. This optimum results from a compromise between the

streaming velocity generated from a single sharp edge, and the length of the mixing area - or the

number of mixing elements. In short, if the pattern is too narrow, each streaming jet shall not have

enough space to develop toward the opposite wall, reducing the effective transverse velocity. In

contrary, if the pattern is too loose, there will be too few transverse streaming jets and the mixing

efficiency shall drop.
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The orientation angle of the jet is roughly estimated by arctan( vsv0
), and this angle should fit with

arctan(w−2h
d ), which is roughly the angle of the segment relating two consecutive edges at opposite

walls. Let us remark that vs is here evaluated from numerical simulations for the different values

of d, taking a typical averaged value from the jet centerline. Dropping the arctan(), we plot the

quantity vs
v0
versus w−2h

d (see Figure 7), confirming that the transverse disturbances are stronger for

S2 and S3 geometries. Remarkably, there is a sharp drop beyond w−2h
d > 1, i.e. for denser edge

structures like S1. In terms of global mixing efficiency, the number of sharp edges also matters,

so that the narrowest pattern on the plateau (S2) represents an optimum of efficiency. This is

also shown by plotting the quantity vs
v0

versus w−2h
d . Let us mention that this argument remains

qualitative, although it has the merit to show where the optimum of efficiency should come from.

Mechanism of SEAS assisted mixing enhancement

We hereby attempt to explain the mixing enhancement mechanism of multiple sharp-edge

acoustic streaming mixers, by investigating on the streamline patterns of the streaming flow com-

bined with the main channel flow, see Figure 8. Several parameters can describe the intensity of

acoustic streaming, such as maximal streaming velocity, vortex size, disturbance distance, among

others (Zhang et al. 2019). Hence, the determination of the crucial driving factors of the mixing

process would help to understand the link between streaming and mixing. In a more fundamental

aspect, the number of sharp edges, their height, distance, are also influential on the streaming

pattern (including intensity). To address these points, we show in Figure 8 a global view of the

streamlines for the three mixers (lower figures), as well as magnified views on several key locations

(upper figures).

The numerical streamline patterns clearly illustrate two main mechanisms of mixing enhance-

ment from acoustic streaming: entrance effect and interactive vortices. These effects can be shown

when focusing on three zones chosen as: i) Entrance, ii) Sharp-Edges, and iii) Outflow.

First, the entrance zone before the first sharp-edge is critical for the pre-mixing. For all three

mixers, acoustic streaming creates significant transverse velocity component. Due to the space

shift between the sharp edge tips on both sides, the transverse streaming velocity is driven by the
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Fig. 8. Streamlines patterns in multiple sharp-edge acoustic streaming, as an explanation support
for mixing enhancement. Steady-state velocity streamlines of S1, S2 and S3 (lower figures) under
the same condition as in Fig.6. The red line in the zoomed images (upper figures) represents the
deflection of the centerline ’interface’ between the two fluids. In the spaces between sharp edges,
in particular S1, some ’dead zones’ appear, where mixing is very limited.

first edge and the jet shoots towards the opposite wall. According to the sectional area, the main

stream velocity seem the strongest for S1, followed by S2 and S3.

The entrance perturbation appears with a scale as large as the channel width, in particular for

cases S2 and S3. This strong perturbation induces the aforementioned transverse jet, thus disturbing

the layer between the two fluids. Fast and effective mixing is shown at this entrance zone.

Second, after the entrance, as the fluids continue to flow within the sharp edge section, the

size, shape development of vortices and their interaction are main factors that affect mixing. Large
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vortices have more chance to interact with each other and thus to provide larger contact interface

between two mixing fluids. From this point of view, structures with less dense edges (S2 and S3)

provide stronger disturbances under the same vibration condition (Fig.8). Conversely, the sharp

edges network of S1 is too dense, which does not leave enough space for vortices to develop. Also,

S1 shows strong independent self-rotating vortices, competing with those from the opposite edges.

This only slightly increases the contact area between the two fluids around a wavy center line as

vortices are squeezed into narrow spaces.

After the final sharp edge, the streamlines appear as two large vortices, both joining the main

flow. They are much larger than the vortices in the sharp edge zone for S1. For S2 and S3, their

size is more comparable size as those in the mixing area.

Finally, it is worth noting that we used uniform-density streamline pattern in Fig.8 and in this

case, even the dead zones are filled with streamlines. However, a detailed observation shows that

the streamlines in the dead zones of S1 are disconnected with the main stream, which testifies again

the inefficiency for mixing. Comparatively, no dead zone can be observed for S2 and S3 since all

acoustic streaming jets and vortices extend their influence into the space between two consecutive

edges along the opposite wall. This is the main reason why the mixing of S2 and S3 is more

efficient than that of S1.

To sum up, the above interpretation constitutes a step forward in understanding the multiple

SEAS flow on mixing.

Micromixing performance

Since S2 appears to be the most effective SEAS mixer, we keep it to evaluate the micromixing

performance, using the experimental method detailed above. Figure 9 shows values of XS (left

axis) and tm (right axis) versus vibration amplitude va, for the mixer S2, and for three different

flow-rates Qc. Firstly, as acoustic intensity va increases, XS and tm sharply drop, which suggests

the achievement of better micromixing performance at the molecular scale. The Segregation Index

sharply decreases from 0.06 (at va=40 mm/s) down to 0.01 under the strongest acoustic intensity

(va=150 mm/s). Micromixing time based on IEM decreases by a factor of 10: from 0.28 s under
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Fig. 9. Micromixing performance of SEAS S2 mixer under different flow-rate and acoustic
intensities. Segregation index and Micromixing time are shown respectively at the left- and right-
axis. Acoustic intensity is controlled by the input voltage to the piezoelectric actuator, for a range
of 10 V, 20 V, 30 V and 40 V, corresponding to acoustic vibration magnitude of va from 40-150
mm/s. Error bars are determined by repeated tests for each condition.

mild forcing (va=40 mm/s, at 10 V) to 0.03 s under strong acoustic vibration (va=150 mm/s at 40

V).

Another influential factor is the flow-rateQc. As shown in Figure 9, a lower channel throughput

Qc corresponds to lower XS and shorter tm, thus to better micromixing. This results are in agreement

with our previous study (Zhang et al. 2019), according to which each SEAS vortex shape and

perturbative potential is strongly influenced by the throughput. As Qc gets higher, the disturbance

from the streaming flow on the main one decays, resulting in worse mixing performance. Similarly,

the differences of values of XS and tm with different throughput are significant. Under weak acoustic

field and high throughput, the mixing improvement becomes weak or even negligible.

Notably, the trend of SEAS micromixing performance with respect to Qc is the opposite to that

of passive mixers such as (Commenge and Falk 2011; Falk and Commenge 2010; Guo et al. 2013).
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Indeed, passive devices depend on the generation of complex streamlines that in turn can induce

Lagrangian chaos. Most often, passive mixers are more efficient under higher throughput.

Micromixing performance comparison with the literature

Wenow attempt to compare the performance of ourmicromixers with those of passivemixers on

comparable geometries. The review paper (Falk and Commenge 2010) summarized several passive

micromixers and proposed a fair agreement between experimental data and a theoretical relation
tm
d2
c
∼ ln(Pe)

Pe , with dc being the characteristic channel dimension. Figure 10 shows the performances

of our SEAS mixer S2 with respect to the theoretical line tm
d2
c
∼ ln(Pe)

Pe , with the x-axis being Re.

It clearly shows that the SEAS mixer is capable of achieving much faster micromixing that usual

passive ones at relatively low Re (lower than one). The quantity tm/d2
c of all tested data ranges

from 2× 105s/m2 to 6× 105s/m2. Comparatively, at this range, mixing without acoustic streaming

is almost purely diffusive and tm/d2
c of passive mixers is of the order of molecular diffusion time

1/D, i.e., 0.4 × 109s/m2 for water.

The energy consumption in the mixing performance improvement is a crucial factor, both for

passive and active mixers. In classical passive mixer studies, a well established method consist

in using specific energy dissipate rate as an measurement of energy input. The comparison is

thus possible with micromixing time obtained from Iodide-Iodate reaction and the specific energy

dissipation rate obtained either by experimental pressure loss∆P or by numerical simulation through

CFD (Commenge and Falk 2011). In the case of passive mixers, the specific energy dissipation

rate is expressed as εp, (inW/kg) given by:

εp =
Qc · ∆P
ρ · V (11)

with Qc the channel volume throughput, m3/s, V the internal volume of micromixing, including

the inlet and outlet tubing parts, m3, and ∆P pressure loss in Pa. This energy is supposedly exactly

balanced by viscous dissipation.

(Commenge and Falk 2011) summarized a large number of micromixing experimental studies
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according to which a well established correlation exists between tm and the specific pumping power

dissipation εp, see Eq.(12).

tm = 0.15ε−0.45
p (12)

In the case of SEAS mixers, the energy dissipation include both passive (pressure drop) and

active mechanisms (acoustic field). The energy dissipation rate (W/kg) thus includes active and

passive parts:

ε = εp + εa =
Qc∆P
ρV

+ π f va2sin(4π f t) (13)

where the first term εp represents the energy dissipated into the fluid and is time-independent.

The second term εa =
1
ρV

∫
V ∂t(12 ρv2

ω)dV = π f va2 sin(4π f t), referring to the definition in (Muller

et al. 2012), is estimated as its maximum value εa,max = π f va2. More importantly, though, as

the characterized length of our SEAS mixer is much smaller than the vibration wavelength in
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kHz-level, acoustic energy is not dissipated into the liquid but travelling through it. It is thus not

strictly totally used to enhance the mixing, although it is necessary to generate the streaming. In

our estimation, we use numerical pressure drop results (ranging from 71 Pa to 421 Pa, including

channel and bending but without the Y part, corresponding throughput Qc from 2 to 12 µL/min)

through the channel to determine the pumping energy dissipation rate εp.

Figure 11 gives the relative positioning of our experimental dissipation rate results with respect

to the theoretical correlation between tm and ε. For a micromixing time range tm = 0.03 to 0.28

s, classic passive mixer would require a specific energy dissipation rate ε from 0.25 to 27 W/kg.

With experimental throughputs using SEAS micromixer S2, the viscous dissipation rate εp is from

4× 10−5 to 2× 10−3 W/kg, far lower than the range of passive mixers. However, as the real mixing

enhancement driver, acoustic power with maximal values εa,max from 18 to 289 W/kg is necessary.

Thus the pressure related dissipation rate in the case of SEAS mixer can be considered negligible

compared to the acoustic power. At this stage, as we overestimate the acoustic power, the active
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SEAS mixer is not yet competitive with passive mixers in terms of specific energy dissipation rate.

The real acoustic energy dissipation rate εa should be lower than the values shown in Figure 11,

thus closer to passive mixers.

CONCLUSIONS

Acoustic streaming is generated near sharp edges along a microchannel, under low-frequency

acoustic wave excitation. The disturbances due to the streaming flow actively enhance the mixing

process between two miscible fluids injected at the inlets of a Y-mixer. The micromixing would

otherwise be achieved through slow diffusion, due to the low Reynolds number flow - from 0.12

to 0.72. However when SEAS is actuated, the generated vortices strengthen the mixing process.

Microchannel SEAS mixer with multiple sharp edges can achieve effective mixing but requires

optimal coupling between acoustic streaming and main flow, which is the focus of the current study.

The main findings from our results are:

• With a given microchannel, mixing performance depends on i) acoustic intensity, character-

ized by acoustic velocity amplitude va, which itself depends on the driving input voltageVpp;

ii) sharp-edge pattern, including number of sharp edges and pitch distance; and iii) channel

throughput Qc. With Vpp increasing from 10 V to 40 V, the best mixing performance using

S2 enables XS and tm decrease from 0.06 to 0.01 and from 0.28 s to 0.03 s, respectively.

SEAS thus achieves much better micromixing performance at high acoustic input. At low

acoustic intensity (for instance Vpp = 10 V, more sharp edges and lower throughput Qc are

required to achieve relatively low XS and short tm.

• From single SEAS microchannel to chip-level micromixer with multiple sharp edges, con-

sidering the complex interplay of different parameters underlined in the previous point, a

chip-level simulation/experimental study is necessary.

• More specifically, the performance of multiple SEAS micromixers depends on the interac-

tion between the different AS vortices, as well as the specific flow pattern at the upstream

of sharp edges; the latter entrance effect sometimes plays an important role in the mixing
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process.

• In addition, the streamlines patterns confirm the presence of inefficient streaming or dead

zones in the case of non-optimal sharp edge design.

• Comparing three different sharp edge patterns, a sufficient number of highly disturbed

zigzag flow make SEAS mixer S2 the best in mixing performance. It corresponds to the

situation where the ratio of velocities vs
v0
realises a matching geometrical condition with the

pitch between edges and the channel width.

• As an active mixer, a SEAS mixer has better performance at low Re (flow rate) when the

residence time is long enough and the vortices disturbance is relatively strong compared to

the main flow. With Re lower than 1, we did not observe any passive enhancement effect

only due to sharp edges in the channel. Without acoustic actuation, the Reynolds number is

too low so that the flow cannot generate significant stretching and folding of the interfacial

area between the two fluids. The SEAS mixer thus provides a competitive micromixing

solution at low Reynolds regimes.
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APPENDIX I. COMPETITIVE IODIDE-IODATE CHEMICAL REACTION AND DATA

PROCESSING

Competitive Iodide-Iodate chemical reaction, also named the Villermaux-Dushman method

(Fournier et al. 1996), has been extensively used to evaluate micromixing performance of mi-

cromixers (Falk and Commenge 2010; Aubin et al. 2010). This reaction scheme is sensitive to

mixing at the molecular level through the formation of Iodine (I2) molecules. This method is based

on the competitive parallel reactions involving the neutralization of dihydroborate ions (R1, Eq.14)

and a redox reaction (R2, Eq.15):

H2BO3
− + H+ −−−⇀↽−−− 3HBO3 (14)

5 I− + IO3
− + 6 H+ −−−⇀↽−−− 3I2 + 3 H2O (15)

I2 + I− −−−⇀↽−−− I3
− (16)

Once the molecular Iodine is generated (due to ineffective mixing), a equilibrium is established

between the iodine and the iodide ion that results in the formation of the tri-iodide ion, I3 – , through

R3 (Eq.16).

Reactions R1 and R3 are quasi-instantaneous; while reaction R2 is by several orders of mag-

nitude slower than the two others. Within a perfect mixing process, the product distribution is

solely governed by the chemical kinetics and most H+ are consumed by H2BO3
– , resulting in no

or very small iodine yields. On the other hand, a significant amount of iodine occurs under a bad

mixing conditions, which can be attributed to a local excess of H+, not only being consumed by

reaction R1, but also taking part in the reaction R2 and R3. Under the later condition, tri-iodide

appears in the final product and its concentration can characterize the micromixing process. With

an absorption peak to ultraviolet (UV) light at a wavelength of 353 nm, the tri-iodide formation
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Fig. 12. Sketch of Iodide-Iodate reactions used to micromixing characterization of SEAS mi-
cromixers.

can be quantitatively measured by a spectrophotometer. The whole process is thus considered as a

chemical probe to assess the micromixing time.

Figure 12 describes the competing reaction mechanism in the case of our SEAS micromixer

with two inlets (solution 1 and solution 2, with the same flow-rate). The concentration of H+ in

solution 1 being equivalent or lower than that of H2BO3
– , all H+ is consumed by H2BO3

– by the

rapid reaction R1 as long as the micromixing process is fast. This results in no iodine formation.

On the other hand, iodine formation occurs under bad mixing conditions, which can be attributed to

a local excess of H+, not only being consumed by reaction R1, but also taking place in the reaction

R2, followed by R3. The concentration of I3 – is thus positively correlated to the micromixing time.

Beer-Lambert Law

The tri-iodide can be quantified based on the Beer-Lambert Law, which relates the attenuation

of light intensity to the absorption properties of materials through which light travels. To determine

its concentration from the absorbance unit given by spectrophotometer, we use the classical relation

:
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CI3
− = A/ε353nml (17)

where A is theAbsorbanceUnit through the cuvette, (-), ε353nmmeans themolar attenuation coef-

ficient of tri-iodide ions at its peak absorptivity wave-length at 353 nm, ε353nm = 26047L/(mol .cm),
l denotes the optical path length which is l = 10mm in our case.

Calculation of Y and YST

Calculation of Y and YST from the concentration of reactants as well as that of the tri-iodide

yield follows Eqs.18 and 19 (Guo et al. 2013). More specifically, Y is the ratio of acid ion H+

consumed by reactions R2 and R3 and its initial concentration in the mixture. The quantity C

represents the concentration of ions while Q1 and Q2 stand for the flow rates of the two solutions,

in this study Q1 = Q2, YST is the higher limit of Y in the total segregation case, also based on the

initial boric acid and iodate ions concentrations.

Y =
2(MI2 +MI−3 )

MH+,0
=

2(CI2 + CI−3 )(Q1 +Q2)
2CH2SO4Q2

(18)

YST =
6MIO−3 ,0/MH2BO−3 ,0

6MIO−3 ,0/MH2BO−3 ,0 + 1
=

6CIO−3 ,0Q1

(6CIO−3 ,0 + CH2BO−3 ,0)Q1
(19)

With the yield of tri-iodide ions in the final solution, the production of iodine can be determined

based on the equilibrium balance of I in R3 Eq.(16):

MI− = MI−,0 − 5
3
(MI2 + MI−3 ) − MI−3 (20)

CI− =
CI−,0

2
− 5

3
(CI2 + CI−3 ) − CI−3 (21)

with the equilibrium kinetics of reaction R3 given by Eq.(22).
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−5
3
C2

I2
+ (CI−,0

2
− 8

3
CI−3 )CI2 −

CI−3
Keq
= 0 (22)

Then XS is calculated from Eq.(10).

Reaction kinetics

Thee kinetics for each reaction are listed below (Guichardon and Falk 2000) and they will be

used in the IEM model.

r1 = k1CH+CH2BO3
− (23)

r2 = k2C2
H+C

2
I−CIO−3 (24)

r3 = k3+CI−CI2 − k3−CI3
− (25)

where the ki stand for the kinetics constants of each reaction. For r2, fifth-order law are used in

the present study. The coefficients k3+ and k3− are the forward and reverse reaction rate constants,

being respectively equal to k3+ = 5.9 × 109L · (mol · s)−1 and k3− = 7.5 × 106s−1 at 25℃.

For reaction R1, as a neutralization reaction, its rate constant is k1 = 109.2, determined by its

acid dissociation constant with Eq.(26).

log10(k1) = pKa(H3BO3/H2BO−3 ) = 9.2 (26)

The rate constant k2 of redox reaction R2 is a function of the ion strength µ of ions in the

solution. It is determined by Eqs.(28-29) after Eq.(27).

µ =
1
2

∑
CiZ2

i (27)
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log10(k2) = 9.28105 − 3.664
√
µ i f µ < 0.166mol/L (28)

log10(k2) = 8.383 − 1.5115
√
µ + 0.23689µ i f µ >= 0.166mol/L (29)

where Ci and Zi denotes the concentration and charges of ith specie in the solution.

The equilibrium constant of reaction R3 can be determined by:

CI−3
CI2 CI

− = log10(keq) = log10
k3+
k3−
=

555
T
+ 7.355 − 2.575 log10 T (30)

where T is temperature in Kelvin. At 25 ℃, keq = 698L · mol−1.
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APPENDIX II. DETERMINATION OF MICROMIXING TIME

Interaction by Exchange with the Mean (IEM) model is usually used to build up the relation

between Segregation Index andmicromixing time. The IEM allows the estimation of the micromix-

ing time (Guo et al. 2013; Falk and Commenge 2010), and makes them independent of the choice

of concentration of reactants (Commenge and Falk 2011). The comparison of mixing results is

thus possible. One prerequisite of using IEM model is that the residence time of the two solutions

from the initial contact and along flow direction being the same. Our sharp edge Y-mixer satisfies

this requirement. Besides, another assumption in this model is that the exchange of ions between

two solutions occurs at a same micromixing time tm, which is generally true for microchannel

continuous mixers.

At every time step, IEM considers that the concentration of each solution evolves separately

and is governed by the following equations:

dCk,1

dt
=
C − CK,1

tm
+ Rk,1 (31)

dCk,2

dt
=
C − CK,2

tm
+ Rk,2 (32)

C = αvCk,1 + (1 − αv)Ck,2, (33)

where the coefficient Ck,1,2 represent the concentration for specie k in solution 1 and 2, mol/L; tm is

the exchange time constant, considered as the micromixing time, s; Rk,1,2 denotes the change rate

of the concentration for species k in solution 1 and 2, mol/(L · s); αv the volume flow proportion

of solution 1, in our case αv = 0.5.

With a given tm and known initial concentrations of ions, the differential equations can be

numerically integrated based on the second-order Runge-Kutta method or an equivalent one, to

determine the final concentration CI−3 and then the value for XS. For each step, the concentrations

and their corresponding mean values, kinetic data are updated by the results from the previous

step. The iteration process moves forward step by step until the concentration of H+ in the solution
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Fig. 13. Algorithmic steps for identifying the relationship between XS and tm using IEM model

decrease under a lower threshold value (10−9mol/L in this study). After, H+ is considered to

approach zero and the reactions end. With CI−3 , XS can be calculated accordingly. An algorithm

has been built in Matlab to relate the segregation index with the micromixing time in a large range.

This procedure and the resulting relation between XS and tm under the concentration condition are

shown respectively in Figures 13 and 14. As a result, for each micromixing tests, the segregation

index and the corresponding micromixing time can be quantified.

Special attention should be paid on the iteration time step h. On the one hand, the step h should

be small enough to avoid unrealistic negative concentrations due to global consumption of ions in

the reactions; on the other, a too short time step requires heavier computing costs. In this study, h

is kept constant as 10−8s.
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Fig. 14. Segregation index XS versus micromixing time tm, for given values of concentrations in
Table 1.

APPENDIX III. NOTATION

The following symbols are used in this paper:
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Quantity Abbreviation
Absorbance unit from spectrophotometry A
Tip angle of sharp edge α
Height of the sharp edge h
Width of microchannel w

Distance between the tip of two consecutive edges on the same side d
Number of the sharp edges on one side ns
Kinematic viscosity ν
Diffusivity D
Acoustic vibration velocity vω
Amplitude of vibration velocity va
Streaming velocity vs
Amplitude of vibration velocity at boundary vab
Boundary velocity corresponding to channel throughput v0b
Maximum streaming velocity along y direction vsm
Concentration C
Resonance frequency f
Angular frequency ω
Molar quantity of reactants or ions M
Characteristic channel dimension dc
Inlet flow rate Qc
Peak to peak voltage Vpp
Segregation Index XS
Micromixing time tm
Pumping energy dissipation rate εp
Acoustic energy dissipation rate εa
Péclet number Pe
Reynolds number Re
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