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PHD THESIS RESEARCH 

 
Î�Chapter 1: Mechanistic models 

 
y [1] Guillaumot C, Saucède T, Morley S, Augustine S, Danis B, Kooijman S (2020a). Can 
DEB models infer metabolic differences between intertidal and subtidal morphotypes of the 
Antarctic limpet Nacella concinna (Strebel, 1908)? Ecological Modelling (IF: 2.5). 430: 
109088. https://doi.org/10.1016/j.ecolmodel.2020.109088. 
 
y [2] Arnould-Pétré M, Guillaumot C, Danis B, Féral J-P, Saucède T (2020). Individual-
based model of population dynamics in Abatus cordatus, a sea urchin of the Kerguelen 
(Southern Ocean), under changing environmental conditions. Ecological Modelling (IF: 
2.5). 440, 109352. https://doi.org/10.1016/j.ecolmodel.2020.109352. 
 

Î�Chapter 2: Correlative models 
 

y [3] Guillaumot C, Danis B, Saucède T (2021). Species Distribution Modelling of the 
Southern Ocean benthos : methods, main limits and some solutions. Antarctic Science (IF: 
1.4), 1-24. doi:10.1017/S0954102021000183. 

 
y [4] Guillaumot C, Artois J, Saucède T, Demoustier L, Moreau C, Eléaume M, Agüera A, 
Danis B (2019). Broad-scale species distribution models applied to data-poor areas. 
Progress in Oceanography (IF: 4.1), 175, 198-207.  
https://doi.org/10.1016/j.pocean.2019.04.007. 

 
y [5] Guillaumot C, Danis B, Saucède T (2020b). Selecting environmental descriptors is 
critical to modelling the distribution of Antarctic benthic species. Polar Biology (IF: 1.7), 1-
19. https://doi.org/10.1007/s00300-020-02714-2. 

 
y [6] Guillaumot C, Moreau C, Danis B, Saucède T (2020c). Extrapolation in species 
distribution modelling. Application to Southern Ocean marine species. Progress in 
Oceanography (IF: 4.1), 188, 102438. https://doi.org/10.1016/j.pocean.2020.102438. 
 

Î�Chapter 3: Integrated approaches 
 
y [7] Guillaumot C / López-Farrán Z (co-firstauthorship), Vargas-Chacoff L, Paschke K, 
Dulière V, Danis B, Poulin E, Saucède T, Gerard K (2021). Current and predicted invasive 
capacity of Halicarcinus planatus (Fabricius, 1775) in the Antarctic Peninsula. Global 
Change Biology (IF: 8.6), 00:1–18. DOI: 10.1111/gcb.15674. 
 
y [8] Fabri-Ruiz S, Guillaumot C, Agüera A, Danis B, Saucède T (2021). Using correlative 
and mechanistic niche models to assess the sensitivity of the Antarctic echinoid Sterechinus 
neumayeri (Meissner, 1900) to climate change. Polar Biology (IF: 1.7). 
https://doi.org/10.1007/s00300-021-02886-5. 
 
y [9] Guillaumot C, Buba Y, Belmaker J, Fourcy D, Danis B, Dubois P, Saucède T 
(submitted). Simple or hybrid ? The performance of next generation ecological models to 
study the response of Southern Ocean species to changing environmental conditions. 
Diversity and Distributions (IF: 3.9). 
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Î�Chapter 4: Dispersal models : lagrangian approach 

 
y [10] Dulière V / Guillaumot C (co-firstauthorship), López-Farrán Z, Lacroix G, Saucède T, 
Danis B, Baetens K (submitted). Potential impact of ballast water exchanges on the 
introduction of invasive species in Marine Protected Areas of the Western Antarctic 
Peninsula. Diversity and Distributions (IF: 3.9). 
 
y [11] Christiansen H, Van de Putte A, Guillaumot C, Barrera-Oro E, Volckaert FAM, Young 
EF (final stages, draft version included in the manuscript). Integrated assessment reveals 
large scale connectivity of a historically overexploited fish in the Southern Ocean.  
 

Î�PhD supplementary material 
 

y [12] Agüera A, Ahn I-Y, Guillaumot C, Danis B (2017). A Dynamic Energy Budget (DEB) 
model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism. PLOS 
One (IF: 2.7).12(8), e0183848. doi: https://doi.org/10.1371/journal.pone.0183848. 

 
y [13] Guillaumot C, Martin A, Saucède T, Eléaume M. (2018) Methods for improving 
species distribution models in data-poor areas: example of sub-Antarctic benthic species on 
the Kerguelen Plateau. Marine Ecology Progress Series (IF: 2.3). 594, 149-164. 
doi: 10.3354/meps12538. 
 
y [14] López-Farrán Z, Frugone MJ, Gerard K, Vargas-Chacoff L, Poulin E, Guillaumot C, 
Dulière V (final stages, draft version). Can the Patagonian crab Halicarcinus planatus 
(Fabricius, 1775) reach Antarctic coasts? Study of the dispersal potential of its larvae using a 
Lagrangian approach.  
 
 

OTHER RESEARCH STUDIES, INTERNATIONAL 
COLLABORATIONS 

 
y [15] Danis B, Christiansen H, Guillaumot C, Heindler FM, Jossart Q, Moreau C, Pasotti F, 
Robert H, Wallis B, Saucède T (submitted as a datapaper). The Belgica121 expedition to the 
Western Antarctic Peninsula: a high resolution biodiversity census. Biodiversity Data 
Journal (IF: 1.3). 
 
y [16] Danis B, Wallis B, Guillaumot C, Moreau C, Pasotti F, Heindler F, Robert H, 
Christiansen H,  Jossart J, Saucède T and (submitted). Nimble vessel cruises as an 
alternative for Southern Ocean biodiversity research: preliminary results from the Belgica121 
expedition. Antarctic Science (IF: 1.4). 
 
y [17] Moreau C, Jossart Q, Danis B, Eléaume M, Christiansen H, Guillaumot C, Downey R, 
Saucède T (2020). The overlooked diversity of Southern Ocean sea stars (Asteroidea) 
reveals original evolutionary pathways. Progress in Oceanography (IF: 4.1), 102472. 
https://doi.org/10.1016/j.pocean.2020.102472. 
 
y [18] Saucède T, Guillaumot C, Michel L, Fabri-Ruiz S, Bazin A, Cabessut M, García-Berro 
A, Mateos A, Mathieu O, De Ridder C, Dubois P, Danis B, David B, Díaz A, Lepoint G, 
Motreuil S, Poulin E & Féral J-P (2019). Modelling species response to climate change. Case 
study of echinoids on the Kerguelen Plateau. In: Welsford, D., J. Dell and G. Duhamel (Eds). 
The Kerguelen Plateau: marine ecosystem and fisheries. Proceedings of the Second 
Symposium. Australian Antarctic Division, Kingston, Tasmania, Australia. ISBN: 978-1-
876934-30-9, pp 95-116, doi: 10.5281/zenodo.3249143. 
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y [19] Féral J-P, Poulin E, Gonzalez-Wevar CA, Améziane N, Guillaumot C, Develay E, 
Saucède T (2019) Long-term monitoring of coastal benthic habitats in the Kerguelen Islands: 
a legacy of decades of marine biology research. In: Welsford, D., J. Dell and G. Duhamel 
(Eds). The Kerguelen Plateau: marine ecosystem and fisheries. Proceedings of the 
Second Symposium. Australian Antarctic Division, Kingston, Tasmania, Australia. 
ISBN: 978-1-876934-30-9, pp 383-402, doi : 10.5281/zenodo.3249143 
 
y [20] Moreau C, Guillaumot C et al. (2018) Antarctic and sub-Antarctic Asteroidea 
database. Zookeys (IF: 1.1), (747), 141. doi: 10.3897/zookeys.747.22751. 
 
 

PEER-REVIEW ARTICLES REALISED BEFORE THE PHD  
 
y [21] Guillaumot C, Fabri-Ruiz S, Martin A, Eléaume M, Danis B, Féral J-P, Saucède T. 
(2018). Benthic species of the Kerguelen Plateau show contrasting distribution shifts in 
response to environmental changes. Ecology and Evolution (IF: 2.4). 8(12), 6210-6225. 
http://dx.doi.org/10.1002/ece3.4091. 
 
y [22] Pagano M, Rodier M, Guillaumot C, Thomas Y, Henry K, Andréfouët S (2017). 
Ocean-lagoon water and plankton exchanges in a semi-closed pearl farming atoll lagoon 
(Ahe, Tuamotu archipelago, French Polynesia). Estuarine, Coastal and Shelf Science (IF: 
2.3). 191: 60-73. https://doi.org/10.1016/j.ecss.2017.04.017. 
 
y [23] Guillaumot C, Martin A, Fabri-Ruiz S, Eléaume M, Saucède T (2016) Echinoids of the 
Kerguelen Plateau – occurrence data and environmental setting for past, present, and future 
species distribution modelling. Zookeys (IF: 1.1). 630: 1-17.  
https://doi.org/10.3897/zookeys.630.9856. 
 
 

EXPEDITION REPORTS 
 

y Danis B, Christiansen H, Guillaumot C, Heindler F, Houston R, Jossart Q, Lucas K, 
Moreau C, Pasotti F, Robert H, Wallis B, Saucède T (2019). Report of the Belgica121 
expedition to the West Antarctic Peninsula. 96 pp. Available at 
http://belgica120.be/index.php/report/ and http:// doi.org/10.5281/zenodo.4551452. 
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DATABASES REALISED DURING THE PHD  
 

yGuillaumot C, Raymond B, Danis B (2018) Marine environmental data layers for Southern 
Ocean species distribution modelling. Australian Antarctic Data Centre - 
doi:10.26179/5b8f30e30d4f3 ; available at 
https://australianantarcticdivision.github.io/blueant/articles/SO_SDM_data.html. 
 
y Asteroidea database| http://ipt.biodiversity.aq/resource?r=asteroidea_southern_ocean, 
28/06/2017.  
 
y Particulate Carbon Export Flux, maps. Australian Antarctic Data Center, 
Particulate_carbon_export_flux_layers, doi:10.4225/15/58fff5231f00a, 27/04/2017. 
 
 
 

DATABASES REALISED BEFORE THE PHD  
 

y Kerguelen environmental datasets | Guillaumot C, Martin A, Fabri-Ruiz S, Eléaume M, 
Saucède T (2016) Environmental parameters (1955-2012) for echinoids distribution 
modelling on the Kerguelen Plateau. Australian Antarctic Data Centre. 
doi:10.4225/15/578ED5A08050F 20/07/2016 
 
y Echinoid database of the Kerguelen Islands | 
http://ipt.biodiversity.aq/resource.do?r=echinoids_kerguelen_plateau_1872_2015, 07/2016. 
 
 

R PACKAGE (created before & updated during the PhD) 
 

yGuillaumot C, A Martin, M Eléaume, Danis B, T Saucède (2016) ‘SDMPlay’: Species 
Distribution Modelling Playground, CRAN. https://cran.r-project.org/web/packages/SDMPlay 
04/08/2016. 
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ORAL PRESENTATIONS (during the PhD) 
* underlined name: presenter 
 
y [1] Guillaumot C, Saucède T, Danis B. Les modèles de niche écologique, outils pour 
évaluer la sensibilité des espèces marines antarctiques face aux changements 
environnementaux: potentiel, limites et méthodes. JCAD, Dijon, France, December 2020 
(lightning talk 5 min in French). 
 
y [2] Guillaumot C, Kooijman S, Saucède T, Danis B. Application des modèles de budget 
énergétique (Dynamic Energy Budget, DEB) à des cas d’étude polaires. CNFRA, La 
Rochelle, France, September 2020 (15 min talk in French). 
 
y [3] Guillaumot C, Kooijman S, Danis B, Saucède T. Application of Dynamic Energy Budget 
(DEB) models to Antarctic case studies. SCAR Symposium, Hobart, Tasmania, August 
2020 (presentation published online, in English). 
 
y [4] Arnould-Pétré M, Guillaumot C, Danis B, Féral J-P, Saucède T. Individual-based model 
of population dynamics in Abatus cordatus, a sea urchin endemic to the Kerguelen Plateau, 
under changing environmental conditions. SCAR Symposium, Hobart, Tasmania, August 
2020 (presentation published online, in English). 
 
y [5] López-Farrán Z, Frugone MJ, Vargas-Chacoff L, Guillaumot C, Gerard K, Poulin E, 
Dulière V. Assessment of the capacity of Halicarcinus planatus to arrive and settle as a 
potential invasor of Antarctic shallow ecosystems. SCAR Symposium, Hobart, Tasmania, 
August 2020 (abstract published online, in English). 
 
y [6] López-Farrán Z, Frugone MJ, Vargas-Chacoff L, Guillaumot C, Gerard K, Poulin E, 
Dulière V Halicarcinus planatus, la primera especie exótica encontrada en la Península 
Antártica: Evaluación de su potencial invasor. Reunión Anual Conjunta 2019, Valdivia, 
Chile, November 2019 (15min talk in English). 
 
y [7] López-Farrán Z, Guillaumot C, Dulière V, Paschke K, Gerard K, Vargas-Chacoff L, 
Poulin E.  Halicarcinus planatus, el cangrejo subantártico con potencial para establecerse en 
Antártica, evaluación del escenario actual y futuro. IX Congreso Chileno de 
Investigaciones Antárticas, Olmue, Chile, October 2019 (15min talk in English). 
 
y [8] Guillaumot C, Artois J, Saucède T, Danis B. Broad-scale species distribution models 
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1. MODELLING IN ECOLOGY 
1.1 Models and their application in ecology 
 

1.1.1 Some generalities on models
Models are “purposeful representations of a system, hypothesis or experiment and include any 
useful form of abstraction to assist thinking” (Starfield et al. 1990). They are used in a substantial 
panel of scientific contexts (e.g. in cosmology to study astronomical object movements or 
compositions, in oncology to predict the effect of a therapy, in biochemistry to determine molecular 
structures, in climatology to forecast weather, in mechanics to design technologies, in epidemiology 
to anticipate the spread of a disease, in archaeology to rebuild an artifact...), and play a crucial role 
to analyse complex situations that are difficult to describe (Frigg and Hartmann 2020).  
Models are built using observations, and can be represented with mathematical equations, computer 
codes (Kennedy and O’Hagan 2001, Hucka et al. 2003), matrices, networks (Keller et al. 2006, 
Kuperstein et al. 2015), schematic diagrams or images (Ludvigsen et al. 2006, Bryson et al. 2017, 
Fisher et al. 2018). Whenever conceptualizing models, it is essential to be aware that they are mere 
simplifications of real processes, and by definition are wrong, as they cannot encompass the 
complexities of the studied system (Knutti 2010). Models do not aim at perfectly representing the 
overall processes, but should be useful enough to enable a part of their understanding (Grimm 
1994). G. Box, a British statistician, used to write in his studies that “all models are wrong; some are 
useful… the practical question is how wrong do they have to be to not be useful”. This sentence 
illustrates the trade-off between model overfit and their explanatory power (Box 1979). 
 
The way models are designed depends on the final objectives of the model and respects a balance 
between generality, realism and precision (Levins 1966, Fig. 0.1). An infinity of models can be 
therefore generated to target a single question.  

 
 
Figure 0.1. Trade-off between model properties when designing a model. The balance between generality, 
precision and realism depends on the questions the modeller addresses. It is also dependent on data 
availability. This scheme highlights the fact that a broad range of models can be generated to represent a 
given system. 
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Models are efficient to enable rapid explorations of mechanisms (Goodman and Gotlib 1999, Villari 
et al. 2016), to test and validate hypotheses (Eren et al. 2016), to identify key interactions (Lorenzo-
Trueba et al. 2010, Gaichas et al. 2016), or to provide testable predictions, that may corroborate (or 
not) with experimental observations and help prioritize new experiments or model improvements 
(Grimm 1994, Marini et al. 2010, Enderling et al. 2019).  
 
After designing a model, a crucial step is the evaluation of its relevance, by assessing whether the 
model is suited to describe the studied process and efficient enough to provide accurate predictions 
(Tropsha et al. 2003, Ivanescu et al. 2016). Though essential, the evaluation step is sometimes 
neglected or fails, because of limited available independent observations or inappropriate methods 
(Fielding and Bell 1997, Steyerberg et al. 2003, Hijmans 2012), which highlights the importance of 
adapting methodologies for this validation step (Robinson et al. 2011, Muscarella et al. 2014). 
Robustness analysis can complete model evaluation by assessing “whether a result depends on the 
essential of the model or on the details of the simplifying assumptions” (Railsback and Grimm 2019). 
This analysis aims at “breaking” the model, by forcefully changing its parameters, structure and/or 
representation of processes in order to evaluate the assumptions that mostly drive model stability 
(Grimm and Berger 2016). The relevance of such evaluation procedures is crucial and validation 
results need to be associated with model predictions to enable complete and accurate 
interpretations (Guisan et al. 2013, Yates et al. 2018).   
 
1.1.2 Ecological modelling in marine environments
A recent review on marine ecology seascape analyses (Kavanaugh 2018) wrote “The technological 
advancement and proliferation of space-, air- and water-based ocean sensing systems, together 
with increased sophistication in geospatial tools and mathematical simulation models […] have 
allowed to collect, integrate, analyse and visualise vast quantities of marine data that have revealed 
unimaginable structural complexity and interconnectedness across the seafloor, sea surface and 
throughout the water column.” These sentences illustrate the huge amount of data collected during 
the past decades to understand ecological processes, the development of new technologies to 
analyse them and the strong desire of disentangling the way elements are interacting between each 
other in natural systems (Borgman et al. 2007, Aanensen et al. 2009, Hallgren et al. 2016). The use 
of ecological models to represent in a simpler way these complex ecological systems and to 
facilitate their understanding by simplifying existing interactions between components is thus fully 
appropriate (Holling 1966, Wu and David 2002, Elsawah et al. 2015).  
 
Ecological models can be used to describe on-going processes but can also be predictive-based 
(Jørgensen and Bendoricchio 2001, Austin 2002). They can be applied to various systems and 
fields, from the scale of a water pond to an entire ocean or continent (Hecnar and M’Closkey 1996, 
Hassall et al. 2011, Xavier et al. 2015) or from the scale of a cell to an entire ecosystem (Klanjšček 
et al. 2013, Blanchard et al. 2017, Dahood et al. 2019). They can be used to predict species 
distribution in space or time under contrasting environmental conditions (Peterson et al. 2011), to 
assess energetic shifts or individuals survival when facing environmental change or toxicant 
exposure (Jager et al. 2016, Lenz et al. 2019, Muller et al. 2019), to predict population dynamics in 
space or time (Martin et al. 2013, Goedegebuure et al. 2018), to evaluate marine individuals 
dispersal in oceans by simulating particle trajectories in marine currents with lagrangian approaches 
(Hays et al. 2010, Thomas et al. 2015). 
 
Representing natural systems is however a difficult exercise (Wu and David 2002), as systems are 
composed of many actors and factors, with variable and complex interactions (Fig. 0.2), influenced 
by intra-individual complexity, at multiple scales, with contrasted environmental conditions and 
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habitats (Jørgensen 1995, Levin 1999, Johnston et al. 2007). Figure 0.3 illustrates well this 
complexity, with the example of zooplankton density in the water column, forced by several nested 
biotic and abiotic factors and challenged by cross-scale interactions that may interact together, and 
that may change according to the way the system is studied (Seidl et al. 2017).  

 
 
Figure 0.2. Diversity and complexity of marine benthic communities in the 
Southern Ocean. Each species interacts with its neighbours and is influenced 
by the coupled actions of physical, chemical and biological processes of the 
surrounding environment. © J. Stark, MEASO 2018. 
 
 
 
 
 
 
 
 
 
 

 
Figure 0.3. Effects of coupled large-scale climate, local physical forcing and environmental chemical 
properties on biological processes in the vicinity of a free-drifting iceberg in the northwest Weddell Sea. Global 
climate forcing induces regional ice melting, causing shifts in water column stratification and water movement 
at local scales, which may affect the survival, behaviour and dynamics of planktonic communities at regional 
scales. This illustrates marine systems’ complexity and inter-scale interactions. Figure extracted from Smith et 
al. (2013). 
 
Understanding such complex processes requires a huge amount of time and studies (Sagarin and 
Pauchard 2012) and implies to study each biological pattern at different scales (Anderson 2018), as 
each system generally shows variability on a range of spatial, temporal and organizational scales 
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(Levin 1992). For ecological models, the choice of grain size and spatial extent to represent a 
system therefore constitutes a strong assumption as it conditions the accuracy in describing the 
system (i.e. estimation of species richness, evaluation of environmental variability, detection of rare 
species; Whittaker et al. 2001, Keil et al. 2015). 
Because there is no general scale to best represent ecological processes (Wiens 1989, Levin 1992, 
Blackburn and Gaston 2002), representing ecological systems as a combination of several simple 
systems at different scales and levels (Gonzalez et al. 2016, Boyd et al. 2018) or by a hierarchical 
approach (Wu 1999, Wu and David 2002) can constitute alternatives to improve the overall 
understanding (Fig. 0.4, Fig. 0.5). Combining these representations by multi-scale analyses also 
constitutes a powerful method to more accurately represent biodiversity patterns (Gonzalez et al. 
2016, Anderson 2018). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 0.4. Theoretical scheme of an experimental design, that aims at isolating the most relevant key drivers 
to optimise the understanding of an ecological process. Main influencing drivers are identified (e.g. Fig. 0.2), 
(b) full-factorial designs are created to study interactions and effects and (c) subsets are defined to isolate 
processes that best explain the research questions. Extracted from Boyd et al. (2018). 

 
 
 
Figure 0.5. Analysis of a marine 
community, using a modelling 
approach, with the individual being the 
central foundation of the model, from 
which processes will be downscaled to 
organs or cells or upscaled to 
population or community levels 
(inspired from Railsback and Grimm 
2019). 
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1.2 Ecological modelling and the species niche
 
1.2.1 Ecological niche theory
The niche theory was initiated by ecologists to analyse the complex question of ‘which set of 
environmental factors allow a species to exist in a given geographic region or biotic community and 
respectively, what effects does this species have on its environment?’ (Peterson et al. 2011). The 
niche concept was defined, used and developed in several founding works, leading to several 
definitions. 
● Grinnell (1917) defines the species niche as the climatic and habitat requirements (environmental 
factors expressed geographically) that enable the species to survive and reproduce. Grinnell (1904) 
pioneered the concept that two species should have some contrasting traits related to their fitness to 
coexist if they want to coexist. Grinnell was also among the first to discuss niche organisation within 
communities, with saturated/unsaturated communities, containing “empty niches”. This concept is 
still discussed nowadays (Peterson et al. 2011). 
● Elton (1927) adopted a contrasting definition that brought new advances in the use of the 
ecological niche concept. The niche was in his works defined as the functional role of the species in 
its community, in other words, as its local effect in the “food cycle”. Grinnell’s and Elton’s definitions 
are contrasting in terms of the considered geographical scales to define the niche concept, but these 
two definitions are interestingly complementary to more accurately understanding the species 
geographic distribution.  
● It was Hutchinson, in 1957, who made the link between these concepts, by defining the ecological 
niche as “an hypervolume of environmental variables, every point of which corresponds to a state of 
the environment which would permit the species to exist indefinitely”. Hutchinson (1957) also 
defined the concepts of fundamental and realised niches, the fundamental niche being the set of 
environmental states which enables the species to exist; and the realised niche a subset of the 
fundamental niche that corresponds to the ensemble of environmental conditions for which the 
species survives and reproduces, adding into consideration the influence of biotic interactions 
(competition, predation, parasitism, symbiosis…). Scale was not considered in the pioneer 
theoretical works of Hutchinson, it was several years later (Hutchinson 1978), that he described 
niches based on case-studies. Hutchinson (1957) did not consider the influence of biogeographic 
barriers neither. The realised niche is not limited by potential geographical barriers, nor by species 
dispersal capabilities in Hutchinson’s definition. 
●Some following studies then revised the definition of the niche concept (Leibold 1995, Chase and 
Leibold 2003). From these, new concepts such as the “potential niche” (i.e. the intersection between 
the fundamental niche space and the available environmental space) or the “occupied niche” (i.e. a 
subset of the fundamental niche that takes into consideration both biogeographical barriers and 
biotic interactions) were introduced (Jackson and Overpeck 2000, Soberón and Nakamura 2009) 
and adopted by the community (Pearman et al. 2008, Barve et al. 2011, Saupe et al. 2012). 
 
Following these concepts, statistical and computing approaches have been developed to go beyond 
the niche description and generate models that provide an effective way of describing the different 
types of species niches (Guisan and Zimmermann 2000, Pulliam 2000, Pearson and Dawson 2003, 
Soberón and Peterson 2005, Soberón 2007, Soberón and Nakamura 2009). 
 
1.2.2 Niche modelling approaches 
Niche models link modelling techniques and niche theory with the aim of explaining as accurately as 
possible the conditions that drive species distribution and help fulfill their best fitness, based on 
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statistical approaches, experimental works and/or in situ observations (Guisan and Zimmermann 
2000, Peterson 2006, Kearney and Porter 2009).  
Methodological issues to design these models have been widely discussed, such as the influence of 
contrasting spatial or temporal scales, the geographical influence of dispersal, biotic interaction 
knowledge, biotic interaction changes according to spatial scales, shift of equilibrium between 
species occurrence and sampling effort, or the nature of occurrence records used to calibrate 
models (Araújo and Guisan 2006, Jiménez -Valverde et al. 2008, Godsoe 2010, Sillero 2011, 
Anderson 2013, Pittman 2017, Fig. 0.6). In parallel, numerous methods have been developed to 
address these issues (Soberón and Peterson 2005, Soberón 2007, Godsoe 2010, Peterson and 
Soberón 2012, Real et al. 2016, Soberón and Arroyo-Peña 2017). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 0.6. Schematic representation of the equilibrium bias, that compromises the definition of occurrence 
occupied space according to sampling effort. Figure extracted from J. Artois PhD thesis (2019). 
 
One of the most recently developed representations of ecological niches is the BAM diagram 
(Soberón 2007, Peterson et al. 2011, Sillero 2011, Saupe et al. 2012). This theoretical framework 
hypothesizes that three main conditions determine the distribution of a species: biotic factors (B), 
abiotic conditions (A) and regions that are accessible through dispersal (M, movement). FN is the 
fundamental niche, corresponding to the ensemble of environmental conditions suitable to the 
species distribution. RN, in the center of the BAM diagram, is the realised niche, that is the real 
space occupied by the species, restrained by A, B and M. Gi is the invadable area, abiotically 
suitable but that has not been explored by the species yet. Biotic interactions and dispersal barriers 
are theoretically a constraint. Gi could play the role of a potential refuge. 
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Figure 0.7. Representation of the BAM diagram. B is the portion of the environment restrained by suitable 
biotic interactions; A is the part of the environment that contains suitable abiotic conditions for the 
development and survival of the species, which corresponds to the fundamental niche FN; M is the region that 
is accessible to the species during a considered amount of time, not limited by dispersal nor geographic 
barriers. The intersection of B, A and M is the realised niche RN. Gi corresponds to an area that contains 
suitable environmental conditions but which has not been explored by the species yet. This area is the focus 
of modelling approaches (interpolations). Areas that are assessed by mechanistic, correlative and dispersal 
models are illustrated in the left bottom corner of the panel. Adapted from Sillero (2011), Saupe et al. (2012). 
 
The BAM diagram can take different shapes, according to the respective size of the different B,A 
and M areas. This has been discussed by Peterson et al. (2011) and Saupe et al. (2012) (Fig. 0.8). 
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Figure 0.8. Examples of different configurations of the BAM diagram, figure from Peterson et al. (2011). Go is 
the realised niche, defined as RN in Figure 0.7. Panel A shows an intuitive hypothetical and theoretical 
configuration. Panel B shows a situation in which all of the abiotic suitable area A is accessible, so the 
invadable distributional area Gi is null. Panel C shows a situation in which A and B are almost coincident, and 
the entire area is accessible to the species, so neither biotic nor movement considerations reduce the 
distributional potential of the species, solely the environmental conditions are limiting the distribution. Panel D 
depicts a situation similar to C, except that substantial restrictions of dispersal exist, such that not all suitable 
potential distributional areas are inhabited. In all panels, open circles denote absences of the species, solid 
circles denote presences of the species, light stippling indicates Gi, and darker stippling indicates Go = RN. 

 
1.2.3 Modelling the fundamental niche 
 

Different physiological models and approaches. 
Physiological models describe the rates at which an individual organism feeds, assimilates or 
utilises energy for metabolic processes (such as maintenance, growth or reproduction) during its 
lifetime and depending on the surrounding environmental conditions (van der Meer 2006). 
Physiological models therefore explore the influence of environmental conditions on species 
physiological performances. They establish a causal relationship between species distribution and 
environmental variables, characterise the range of suitable abiotic conditions for the species to 
reproduce or survive, and consequently constitute a good proxy to characterise species fundamental 
niche (Kearney and Porter 2004, Sillero et al. 2011).  
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One of the most integrative theories of dynamic energy budgets is the DEB theory, developed in the 
late 1980’s (Kooijman 1993, Kooijman 2000, Kooijman 2010), which inspired at least the 
development of 26 other popular empirical models (Comments on DEB 3, Kooijman 2010). 

The Dynamic Energy Budget (DEB) theory: general principle. 
The DEB theory defines individuals as dynamic systems and provides a mathematical framework for 
the life cycle of an organism, from the start of the embryo development to the death by ageing. It 
describes the physiological processes with four primary state variables: reserve, structure, maturity 
and reproduction buffer (the latter for adults only), directly linked to mass and energy flows and 
influenced by two forcing environmental variables: temperature and food resources availability (Fig. 
0.9, Kooijman 2010). DEB theory relies on key concepts such as consistency with biological and 
ecological principles, as well as first laws of thermodynamics for conservation of mass, energy and 
time (Jusup et al. 2017) and assumes that the various energetic processes, such as assimilation 
and maintenance rates are dependent either on surface area or on body volume (van der Meer 
2006).  
The DEB model considers that consumed products are assimilated at a rate (𝑝̇A) into a reserve pool, 
following a functional response of Holling’s type II in the simplest case. This initiated energy is then 
mobilized at a rate (𝑝̇C) from the reserves and allocated to maintenance (𝑝̇M), structural growth (𝑝̇G), 
maturity maintenance ( 𝑝̇ J), maturation of immature individuals ( 𝑝̇ R) or reproduction of mature 
individuals ( 𝑝̇ R) following a so-called κ-rule that controls energy acquisition and priority with 
assumptions related to empirical observations (van der Meer 2006, Sousa et al. 2008, Kooijman 
2010) (Fig. 0.9). Priority is always given to somatic maintenance, followed by structural growth, 
maturity maintenance and reproduction. If the energy utilization rate from the reserves is not 
sufficient to pay for the somatic maintenance costs, the individual is assumed to die. 
Biomass is modelled by the reserve and structure compartments. The non-structural 
complexification of the individual is symbolized by a cumulative investment of energy into maturity. 
The level of energy accumulated in this maturity compartment triggers metabolic switches such as 
the transition between the different life stages (e.g. ability to feed, to reproduce).  
The development cycle of each species is divided into three life stages: (1) development starts at 
the embryo stage, when the organism is not able to feed nor to reproduce and is composed mainly 
of reserve and a negligible amount of structure; (2) the organism comes at the juvenile stage once 
the threshold for “birth” is passed as the organism starts feeding, however it is still not able to 
reproduce; (3) the adult stage is reached at “puberty”, when the organism acquires the ability to 
reproduce. At this time, the maturity compartment stops receiving energy, organism complexification 
has reached its maximum, and this flow of energy is rather directed to reproduction (Kooijman 
2010). 
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Figure 0.9. Conceptual scheme of the basic parameters and theoretical compartments of the DEB theory. 
Food initiates energy availability in the reserve compartment, energy is then allocated to the different 
metabolic processes. Temperature influences metabolism following Arrhenius principle (Kooijman 2010). 
Figure modified from Monaco et al. (2013). 

Each DEB parameter (Table 0.1) is linked to specific physiological processes (van der Meer 2006) 
and the combination of these parameters covers the different energetic processes of the organism 
(feeding, digestion, storage, maintenance, growth, development, reproduction, ageing) (Marques et 
al. 2018).  
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Table 0.1. The 14 main DEB parameters and their units (Kooijman 2010, Marques et al. 2018).  

 
 
DEB theory: model implementation. 
The calibration of a DEB model is fully documented on the DEB portal: 
(https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/, accessed November 2019), where Matlab 
codes and tutorials are provided. A new platform, AMPeps also helps complete these codes 
following a step-by-step tutorial (http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/AmPeps.html).  
Once the DEB model is created, the codes are checked by the administrators of the DEB community 
and shared in the Add-my-Pet collection 
(https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/species_list.html).  
This collection of DEB models is growing fast, with more than 2765 species modelled in February 
2021 (Fig. 0.10). For its creation, the model requires a set of zero-variate (single data) and uni-
variate data (x~y relationship data) that can be extracted from the literature or obtained from 
experiments purposely designed for implementing the DEB model. These data should be recorded 
at different life stages of the individual. Food and temperature conditions at which data were 
recorded should be informed in the model (Table 0.2). 
 

                                         DEB parameter   Notation      Unit 

Specific searching rate  
 

Assimilation efficiency 
 

Maximal specific assimilation rate 
 

Energy conductance 
 
Fraction of energy allocated to somatic maintenance  and growth 
 
Reproduction efficiency 
 
Volume specific somatic maintenance cost 
 

Surface specific somatic maintenance cost 
 
Maturity maintenance rate coeff 
 
Specific cost for structure  
 
Maturity at birth  
 
Maturity at puberty  
 
Gombertz stress coefficient 
 
Weibull ageing acceleration 

{𝐹𝑚̇} 
 

κX 
 

{𝑝𝐴𝑚̇ } 
 

𝑣̇ 
 
κ 
 

κR 
 

[𝑝𝑀̇] 
 

{𝑝𝑇̇} 
 

𝑘𝐽̇ 
 

[EG] 
 

𝐸𝐻
𝑏 
 

𝐸𝐻
𝑝 
 

sG 
 

ℎ𝑎̈ 

cm-2.d-1 
 

- 
 

J.cm-2.d-1 
 

cm.d-1 
 
- 
 
- 
 

J.cm-3.d-1 
 

J.cm-2.d-1 
 

d-1 
 

J.cm-3 
 
J 
 
J 
 
- 
 

d-2 
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Figure 0.10. Number of DEB models built and published in the Add-my-Pet (AmP) collection: 2765 modelled 
species on 8th February 2021. Source:  
https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/about.html. 
 
 
Table 0.2. Example of observations used to calibrate the DEB model of the Antarctic sea star Odontaster 
validus, from Agüera et al. (2015). 

 
 
DEB theory: Parameter estimation. 
DEB parameter estimation follows the covariation method (Lika et al. 2011a, 2011b), based on 
simultaneous minimizations of a weighted sum of squared deviations between observations and 
model predictions (i.e. a loss function), using the Nelder-Mead simplex method, updated and 
explained in Marques et al. (2018, 2019). The loss function that is minimized is: 
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𝑛
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(𝑑𝑖𝑗−𝑝𝑖𝑗) 2

𝑑𝑖̅
2 +  𝑝𝑖̅

2
 

 
where i scans datasets and j points in this dataset. dij and pij are respectively the data and the 
predictions and 𝑑̅i and 𝑝̅i their average values in set i. wij are the attributed coefficients (see below), 
n is the number of data sets, ni denotes the data in a dataset, nj the data in data-points. 
 
Because it is assumed that certain observations have been made with greater confidence and 
accuracy than others, the procedure associates to each data-point a weight coefficient, on the basis 
of this prior knowledge. Complementary to that, the model structure is initiated with pseudo-data, 
being a set of potential parameters that describe a generalised animal, taxonomically close to the 
study species. Whether available, species-specific observations replace pseudo-data. Otherwise, 
pseudo-data are kept but associated with lower weight coefficients (i.e. lower confidence of the data) 
(Lika et al. 2011a). The covariation method has therefore similarities with a Bayesian estimation, but 
is not embedded in a maximum likelihood context, since the stochastic element is not modelled 
(Kooijman et al. 2008). 
 
The goodness of fit of each prediction is quantified by the relative error (RE). The mean relative 
error (MRE) quantifies the overall model performance. RE corresponds to the sum of the absolute 
differences between observed and predicted values, divided by the predicted values. Contrarily to 
the loss function, the MRE does not take into consideration the weights of the different data 
(Marques et al. 2018). MRE values can have values from 0 to infinity, with 0 value meaning that 
predictions match data exactly. 
 
DEB theory: model outputs and applications. 
In complement of the estimated DEB parameters (Table 0.1), several compound parameters can be 
calculated to further describe species physiological traits (some examples are given in Table 3.3 in 
Kooijman 2010 or in Table 1 in Petter et al. 2014). This makes DEB applicable in an important 
number of fields, that continue to increase thanks to an intensive work on model compilation, 
validation and code sharing (van der Meer et al. 2014).  
DEB theory has been widely used in aquaculture, fisheries and biotechnology (i.e. growth rate 
estimations, stock assessment) (Hanegraaf 1997, Ren et al. 2010, Serpa et al. 2013, van der Meer 
and Kooijman 2014), reconstruction of feeding history (Jusup et al. 2014, Agüera et al. 2017), 
description of species traits under contrasting environmental conditions (Pecquerie et al. 2009, 
Petter et al. 2014, Marn et al. 2017) or climate change conditions (Jager et al. 2016, Thomas et al. 
2016, Ren et al. 2020), understanding of species distribution (Montalto et al. 2015, Schwarzkopf et 
al. 2016, Tagliarolo et al. 2016), comparison of species metabolic properties (Marques et al. 2018, 
Marn et al. 2019), ecotoxicology (Bodiguel et al. 2009, Jager and Zimmer 2012, Martin et al. 2014, 
Baas and Kooijman 2015, Sussarellu et al. 2016), or for the adaptation of experimental designs 
(Nisbet et al. 2000, Ashauer et al. 2016). 
 
DEB model equations also provide life-history information for given environmental conditions, which 
makes DEB theory appropriate to study population dynamics (growth, reproduction mortality), that 
can be upscaled at the community or ecosystem levels by assuming body-size relationships or 
matrix population models (Klanjšček et al. 2006, Maury and Poggiale 2013, Guiet et al. 2016). 
Symmetrically, the DEB model can be downscaled to study sub-organismal processes, such as 
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studying the impact of toxic compounds or damaging agents on these processes, using the principle 
of Synthetizing Units (Jager and Kooijman 2005, Muller 2011, Muller et al. 2019). 
 
1.2.4 Modelling the realised niche 
 

Principle and relation to niche theory. 
Species Distribution Modelling (SDM) is also known as ecological niche modelling, habitat suitability 
modelling or climate envelope modelling (Austin 2002, Pearson 2007, reviewed in Sillero 2011). The 
acronym SDM is the most frequently used term in ecological modelling when referring to correlative 
models, that aims at predicting the distribution of a species (Pearson 2007). Soberón and Peterson 
(2005) and Soberón (2010) however distinguish SDM from ecological niche models (ENM), with the 
latter rather described as correlative models based on ecological niche theory, that provide an 
approximation of the species niche by forecasting the environmental conditions that are suitable for 
a species to survive or reproduce, rather than to the species distribution by itself. Considering the 
lack of consensus terminology (Sillero 2011), the term SDM refers in this manuscript to an 
ecological niche model that helps representing species realised niche.  
 
SDM is based on a statistical relationship between occurrence records and environmental data (Elith 
et al. 2006, Elith and Leathwick 2009, Peterson et al. 2011). Environmental conditions at the location 
of available presence-only (or presence-absence) data are extracted to generate a matrix used to 
build the SDM (Fig. 0.11). The complexity of the relationship between occurrence records and 
environmental conditions is conditioned by the chosen mathematical representation of the SDM (i.e. 
the model algorithm: linear or polynomial relationships, classification trees, entropy minimisation) 
(Fig. 0.11) (Elith and Leathwick 2009, Anderson 2013). Model outputs that represent the probability 
distribution of the species are projected on a geographic and/or climatic/environmental space to 
identify areas where the environment fulfills the required environmental conditions (Anderson 2013). 
 
Associated to prediction maps, several model outputs can be generated by SDMs: partial 
dependence plots, that describe how the range of values of each environmental descriptor is 
associated to model predicted suitability; descriptors contribution to the model or interactions 
between these descriptors within the model (see examples in Guillaumot et al. 2018b). 
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Figure 0.11. General principle underlying the construction of a Species Distribution Model (SDM) that 
determines the correlation between occurrence records (presence/absence) using a set of environmental 
descriptors. The chosen algorithm (black arrow) can be chosen to integrate more or less complex relationships 
between data and environment. SDM output is a map that provides the probability of the species to be 
distributed in the area (0: non suitable; 1: highly suitable). 
 
 
A short history of the development of correlative approaches. 
Understanding species distribution has long been a major issue in ecology (von Humboldt 1807, de 
Candolle 1855), and before using modelling approaches, many pioneering works aimed at 
explaining species distribution patterns as a response to environmental factors with experiments and 
observations (Salisbury 1926, Good 1947, Holdridge 1967, McArthur 1972, Box 1981). In the 1990s, 
predictive habitat distribution models were first introduced as efficient tools to test for 
biogeographical hypotheses, improve information provided by atlases, set up conservation priorities 
or assess the impact of environmental changes on species distribution (reviewed in Guisan and 
Zimmermann 2000). These models were initially based on simple algorithms, describing processes 
with empirical or static approaches. More complex methods (e.g. individual-based, stochastic forest 
path models,…) with new algorithms were progressively developed to push forward these theoretical 
limitations (Decoursey 1992, Korzukhin et al. 1996, Lischke et al. 1998). This development 
increased in parallel with the rise of new powerful statistical techniques (e.g. Bayesian approaches) 
and the improvement of Geographic Information Systems (GIS) (Guisan and Zimmermann 2000). 
Methodological works have consequently flourished in the literature with topics such as model 
verification, evaluation, calibration, and sensitivity that took the lead in study titles (Leohle 1983, 
Oreskes et al. 1994, Araújo and Guisan 2006). 
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More recently, following the development of computer sciences and calculation performances, 
‘machine-learning’ approaches have been developed (Araújo and Guisan 2006, Elith et al. 2006). 
They were proved highly powerful to accurately model more complex relationships between 
occurrences and environmental conditions (Elith and Leathwick 2009, Lorena et al. 2011, Merow et 
al. 2014), and can be enriched by more information such as species dispersal abilities or inter-
specific interactions (see section 1.2.6 ; Gobeyn et al. 2019).  
 
Applications. 
SDM is widely used in various fields of ecology, from conservation, biogeography, and 
palaeoecology, to global change biology (Pearson 2007). SDM has already been applied for several 
aims such as predicting the potential of alien species to invade new environments (Thuiller et al. 
2005, Václavík and Meentemeyer 2012, Byrne et al. 2016), exploring speciation mechanisms 
(Graham et al. 2004, Kozak and Wiens 2006), testing evolution hypotheses (Kozak et al. 2008, 
Culumber and Tobler 2016) or discovering new species (de Siqueira et al. 2009), delimiting species 
distribution (Raxworthy et al. 2007, Williams et al. 2009), assessing the impact of land cover change 
(Pearson et al. 2004) or environmental shifts on species’ distribution (Araújo and New 2007, Meier 
et al. 2011, Weinert et al. 2016), guiding the reintroduction of endangered species (Pearce and 
Lindenmayer 1998, Maes et al. 2019) or supporting diverse conservation planning, decisions or 
strategies such as providing a frame to observe and simulate the consequences of such decisions 
(Addison et al. 2013, Syfert et al. 2014, Ferrari et al. 2018) or guiding field survey to find populations 
of known species (Bourg et al. 2005, Guisan et al. 2006). Recent and innovative developments 
include the application of 3-D approaches to marine pelagic case studies (Bertrand et al. 2016, Duffy 
and Chown 2017, Freer 2018), the integration of high resolution oceanographic data with SDM 
(Pearman et al. 2020) or the coupling of SDM with extra knowledge or other models (such as 
mechanistic and/or dispersal models, see section 1.2.6 for further details). Stack-SDMs and Joint-
SDMs constitute an important step towards estimating species richness by stacking several SDM 
predictions of different species and spatially aligning the cells with presence-absence, competition or 
interaction matrices to describe communities composition in space (Pollock et al. 2014, Distler et al. 
2015, Harris 2015, Tikhonov et al. 2019, Zurell et al. 2020). 
 
1.2.5 Modelling dispersal vectors and biogeographic barriers: Lagrangian models 
 
Species distribution patterns do not only depend on abiotic conditions and biotic interactions, they 
are also determined by the possibility of adult individuals and propagules to access and settle in 
suitable areas (Anderson 2013, Caccavo et al. 2018, González-Wevar et al. 2019). Evaluating the 
connectivity between these areas has therefore important implications for the study of species 
distribution and population dynamics. It can be defined as the spatial movement of individuals, gene 
flow or transfer of information between individuals (Kool et al. 2013). Connectivity is important in 
marine environments, where oceanographic features such as currents, eddies, marine fronts, up 
and downwellings, play a crucial role in population structuring (Selkoe et al. 2008). These 
oceanographic features strongly complexify distribution patterns and studying the link between 
species biogeography, spatial distances, genetic differentiation or population structures becomes 
irrelevant without any complete analysis of species dispersal fluxes (Young et al. 2015). 
 
Physical oceanography includes the study of several processes, widening from small scale water 
turbulence to global climate changes (Chelton 1994). The study of water movement constitutes a 
relevant approach to the analysis of larval dispersal, which is difficult to directly observe or measure 
in the water column, given that larvae are generally small compared to the vast ocean scale and that 
dispersal can sometimes occur during long periods (Helmuth et al. 1994, Matschiner et al. 2009). 
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The use of transport models has been widely applied in several contexts, such as the definition of 
connectivity networks that can be helpful for the definition of marine protected areas (Gaines et al. 
2003, Berglund et al. 2012, Burgess et al. 2014, Thomas et al. 2014), the conservation of coral reefs 
(Treml et al. 2008, Wood et al. 2013), the sustainability of fisheries (Gilbert et al. 2010, Scales et al. 
2018), the spread of invasive species (Brandt et al. 2008, Brickman 2014) or aquaculture parasites 
(Salama and Rabe 2013), the identification of barriers to larval dispersal (Lett et al. 2008, Thomas et 
al. 2014) and more recently the tracking of plastic debris (Zambianchi et al. 2017, Liubartseva et al. 
2018).  
Among transport models, the Lagrangian approach aims at following a particle from an initial 
position and along its entire trajectory (Bennett 2006). Such models are the combination of (1) an 
oceanographic model, that takes into consideration bathymetry, water current direction and speed, 
tidal motion, water stratification... in relation with atmospheric forcing (temperatures, winds, 
atmospheric pressure) (Huthnance 1991, Robinson and Golnaraghi 1994) and (2) biological 
properties of the dispersed individual such as size, development rate, buoyancy properties, ability to 
swim or orientate, or behaviour in the water column (e.g. nycthemeral movement to escape 
predation) (McManus and Woodson 2012, Van Sebille et al. 2018).  
 
1.2.6 Integrated approaches 
 

Principle and motivations  
There is a strong trend for developing new methods to improve the ability of models to describe 
species distribution. The integration/coupling of several methods has been long recognized as a 
promising approach to improve model performance and gain in modelling capabilities and analytical 
power (Vincenot et al. 2011, Gutt et al. 2012). Indeed, integrated models are more efficient as they 
can represent a complex system using several accurate and precise submodels (Gray and 
Wotherspoon 2012) which can be totally merged (Vincenot et al. 2017). 
 
Review of the different applications.  
Integrated models have been developed in different fields: engineering, environmental science, 
microbiology, oceanography, demography, epidemiology (Bobashev et al. 2007, Emrich et al. 2008, 
Vincenot and Moriya 2011, Bradhurst et al. 2015), economics/management, health science (Martin 
and Schlüter 2015, Drogoul et al. 2016), in order to answer to contrasted objectives. 
In ecology, there is also a broad range of applications: (1) merging SDM with models that 
dynamically describe landscapes has shown better realism and better predictive performance 
compared to traditional SDMs (Pagel and Schurr 2012, Zurell et al. 2016), as the equilibrium 
between occurrences and environmental conditions is dynamically updated (Brotons et al. 2012). (2) 
Close to these, Eulerian-Lagrangian approaches in oceanography can be coupled with 
biogeochemical models to understand spatial patterns and tracers dynamics in moving fluids 
(Chenillat et al. 2015), or to physiological models to simulate the growth and survival of organisms 
while they are drifting or migrating (Goodwin et al. 2006, Berline et al. 2013, Rivière et al. 2019). (3) 
Adding a dispersal information to SDMs can also improve species potential habitat predictions, as 
the environmental information is complemented by dispersal matrices characterising areas that are 
suitable for colonization (Engler and Guisan 2009, Anderson 2013, Normand et al. 2013). (4) 
Integrating population dynamics information (e.g. carrying capacity of the habitat, mean survival or 
fecundity rates of each stage class, population connectivity) strongly improves the ability of SDMs to 
assess species potential distribution (Keith et al. 2008, Anderson et al. 2009, Nenzén et al. 2012) in 
spatially or climatically contrasting areas (Parrott et al. 2012, Girard et al. 2015, Strauss et al. 2017). 
(5) SDMs can also be linked to phylogenetic analyses, to analyse species distribution in link with 
evolutionary connectivity (Morales-Castilla et al. 2017, Pardo-Gandarillas et al. 2018) or (6) to biotic 
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interactions, to improve process-based understanding (Meier et al. 2010, Dormann et al. 2018) or to 
better characterise the behaviour of a species within its community in future environmental 
conditions (Schweiger et al. 2008, Wisz et al. 2013, Bebber and Gurr 2019). (7) A last example is 
the combination of SDMs with physiological information (e.g. using a mechanistic model) that was 
proved efficient to improve predictions compared to simple correlative SDMs (Buckley et al. 2010, 
Elith et al. 2010, Singer et al. 2016, Pertierra et al. 2020). Whereas SDMs explain the statistical 
correlation between occurrence records and habitat suitability (Elith and Leathwick 2009) and 
assess the main ecological drivers of species distribution (Elith et al. 2006, Peterson et al. 2011), 
they are limited to a static description of the species distribution, and cannot accurately perform in 
non-equilibrium states, which limits their use for future projections (Loehle and Leblanc 1996, 
Schouten et al. 2020). Integrating physiological information enables to explicitly include processes in 
the analysis, offering the opportunity to describe the process-based causes of the species 
distribution (Kearney and Porter 2009, Dormann et al. 2012a), even in non-equilibrium states 
(Kearney et al. 2008, Keith et al. 2008). 
 
Overall, evidence is accumulating that species’ responses to climate changes are best predicted by 
modelling the interaction of physiological limits, biotic processes and the effects of dispersal-
limitation (Fordham 2013, Tingley et al. 2014, Gotelli and Stanton-Geddes 2015). Combining simple 
model results with information from experiments or observed functional traits facilitates interpretation 
and strengthen conclusions (Dormann et al. 2018, Benito Garzón et al. 2019). 
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2. THE SOUTHERN OCEAN AS AN APPLICATION FRAMEWORK 
2.1 The Southern Ocean  
 
Oceanographic features. 
The Southern Ocean (SO) here defined as waters south of 45°S latitude (Breitzke 2014), covers 
8% of the world ocean surface (Barnes and Peck 2008) and plays a crucial role in the global ocean 
circulation (Schlosser et al. 1991, Doney and Hecht 2002). Huge water masses are put into 
movement due to contrasts between water densities (shifts in temperature and salinity values), 
playing a key role in the physico-chemical conditions of the whole world ocean, by connecting 
water masses all together (i.e. the ‘thermohaline circulation‘) (Wunsch 2002, Jacobs 2004, Fig. 
0.12).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Figure 0.12. Spilhaus projection representing the Southern Ocean compared to all other oceans. The global 
thermohaline circulation is represented by red arrows for upper-layer flows (surface water currents) and blue 
arrows for lower-layer flows (deep water currents). The overturning of this ‘conveyor belt’ lasts between 
1,000 and 2,000 years (Döös et al. 2012). Figure from Meredith (2019). 
 
The SO is strongly structured by a major eastward flowing current, the Antarctic Circumpolar 
Current (ACC) that flows at ≈130.106 m3/s on average (Rintoul et al. 2001, Fig. 0.13). The ACC 
reaches the highest width in the Atlantic sector (over 1,000 km) and is narrowed in the region of 
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the Drake Passage, between South America and the Western Antarctic Peninsula (Knox 2007). 
The ACC is associated with circumpolar marine fronts, separated by sharp changes in water 
densities, among which the Polar Front and the Sub-Antarctic Front are the strongest (Orsi et al. 
1995, Rintoul et al. 2001). The Polar Front separates the northern and the southern parts of the 
ACC, and therefore represents a significant biogeographical barrier to the dispersal of Antarctic 
marine benthic faunas northward (Clarke et al. 2005, Sanches et al. 2016). The ACC 
simultaneously promotes the eastward dispersal of marine organisms (plankton larvae and 
propagules) around Antarctica (Fell 1962, Olbers et al. 2004). 
Close to the Antarctic coasts, at about 60-65°S, the Antarctic divergence marks a rupture between 
the ACC and a westward coastal current, and corresponds to an area where deep waters, less 
salty but richer in nutrients, upwell to the surface (Gordon 1971). In the embayments of the 
Weddell and Ross seas are found cyclonic gyres that also have a strong influence on deep water 
properties and a substantial role in atmospheric interactions  (Rintoul et al. 2001, Vernet et al. 
2019, Fig. 0.13). 
  

 
Figure 0.13. Main currents and marine fronts of the Southern Ocean system. The Antarctic Circumpolar 
Current flows eastward in the blue area, contained between the Sub-Antarctic Front in the north and the 
Antarctic Divergence in the south. Modified from https://geographyeducation.org/2017/01/07/the-worlds-
newest-official-ocean/ (accessed January 2020) and Rintoul et al. (2001).  
 
Bathymetry. 
Similarly to other oceans, the SO is dominated by deep-sea habitats (> 3,000m depth) but 
Antarctica contrasts with other continents by a deeper continental shelf (averaging 400-900 m 
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depth) in comparison with other continental shelves (200 m on average) (Uri et al. 1992). The 
deepening of the Antarctic continental shelf is mainly explained by glacial isostasy: the continental 
shelf subsides due to the pressure exerted by ice loads on top of the Antarctic continent (average 
ice thickness of 2,100 m) and the lithosphere gets deformed (Okuno et al. 2012).  
 
2.2 Biodiversity of the Southern Ocean  
 
Biogeographic constraints, past isolation and species endemicity. 
The geographic isolation of the Antarctic continental shelf fauna, along with the specific 
environmental conditions of the SO have led to a substantial proportion of endemic taxa (Clarke et 
al. 2005, Brandt and Gutt 2011), with levels reaching between 50 and 80% of shelf communities 
(Griffiths et al. 2009). Endemism is strongly varying according to SO regions and levels are 
comparable to other large and isolated regions such as New Zealand (Griffiths et al. 2009).  
The SO is also characterised by a substantial species richness (Fig. 0.14), higher than in the Arctic 
for example (Gray 2001), due to the broader area that covers the SO (Dayton 1990), and a higher 
number of habitats and biogeographic provinces (Rosenzweig 1995). This higher species richness 
is also explained by the isolation of the Antarctic continent 20 million years ago (Crame 2000) that 
favoured allopatric speciation events (González-Wevar et al. 2012, Poulin et al. 2014, González-
Wevar et al. 2018a) and by the many physical barriers present in the SO compared to the Arctic 
(i.e. currents, depth, ice coverage, fronts, geomorphological features) (Gray 2001, Clarke et al. 
2005, Venables et al. 2012). Finally, the combined impacts of long-term gradual cooling and past 
glacial-interglacial cycles that occurred during the SO history have also led to diversification in 
biogeographic regions (González-Wevar et al. 2012, Strugnell et al. 2012, Fabri-Ruiz et al. 2020). 
The SO marine communities are also characterised by the absence of some taxa (durophagous 
species, barnacles, most cartilaginous fish) (Clarke and Johnston 2003, Clarke et al. 2004) that are 
known in the fossil records of the SO, but that went extinct probably due to major cooling events 
during the Cenozoic era (Griffiths et al. 2013, Crame 2018).  
 

  
Figure 0.14. Pictures of seafloor communities at Useful Island (Gerlache Strait, Western Antarctic 
Peninsula), 15 m depth, March 2018. Rocky shallows to muddy substrate with gravels, with regular but 
shallow iceberg disturbance. Left picture: high macroalgae coverage, purple sea stars Odontaster validus on 
the left hand corner of the picture and white worm Parborlasia corrugatus on the bottom right corner. Right 
picture: Some Nacella concinna limpets are also present on rocks. © B121 Expedition. 
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Influence of environmental conditions on marine communities.  
Spatial and temporal variabilities in marine community structure and diversity are mainly explained 
by the influence of current speed, ice dynamics, sediment properties, and food availability (i.e. 
chlorophyll-a concentration or sediment organic content) (Grange and Smith 2013, Cummings et 
al. 2018). Ice dynamics strongly influence marine species abundance (Gutt 2001, Palma et al. 
2007, Lagger et al. 2017, Braeckman et al. 2021), as iceberg scouring directly impacts benthic 
communities down to 250 m depth (Barnes and Peck 2008, Barnes and Souster 2011, Barnes et 
al. 2014). Moreover, sea-ice duration and extent along with glacier and ice shelves melting guide 
variations in water mixed layer depth, light availability (Vernet et al. 2008, Venables et al. 2013, 
Schofield et al. 2018), modify wind impact on marine habitats (Saba et al. 2014) and lead to 
significant inputs of fresh water and sediment supplies (Lien et al. 1989, Dierssen et al. 2002, 
Moline et al. 2008, Monien et al. 2017, Barnes et al. 2018) that fertilize water in nutrients (Saba et 
al. 2014, Hendry et al. 2018, Moffat and Meredith 2018). These events lead to seasonal primary 
production blooms that contrast with low energy systems that dominate the major part of the year 
(McClintock 1994). Low temperatures below the 0°C threshold are also very frequent in coastal 
habitats (Jacobs et al. 1979, Ryan et al. 2004) and explain the important physiological and 
plasticity adaptations encountered in SO marine communities (see next paragraph), as observed 
for marine species of higher latitudes (Clarke 1980, Brey and Clarke 1993, Albers et al. 1996).  
  
Physiological peculiarities of Southern Ocean organisms. 
Southern Ocean species are characterised by a metabolism with a low protein production, as low 
temperatures induce increased synthesis costs (Marsh et al. 2001, Robertson et al. 2001, Fraser et 
al. 2004, 2007, Pörtner et al. 2007, Peck 2016). This leads to slower larval development and 
growth rates (Peck et al. 2007, Peck 2016, 2018), between 4 to 18 times slower than tropical water 
counterparts (Kaiser et al. 2013), which induces longer lifespans and generation times (Johnson et 
al. 2001, Higgs et al. 2009, Peck 2018). Another novel adaptation to the cold is the production of 
antigel proteins observed in certain fish species (Scott et al. 1986, Cziko et al. 2014). As SO 
species are highly adapted to these cold conditions, their ability to acclimate to elevated 
temperatures is often poor compared to marine groups elsewhere (Peck et al. 2014), with most of 
the Antarctic marine species having suitable temperature envelopes between 5 to 12°C above the 
minimum sea temperature of -2°C (Peck et al. 2004). 
Due to low and seasonal food availability, most of the SO species have also adapted their mode of 
acquisition and allocation of energy according to food availability (Lawrence and McClintock 1994). 
Some species were also shown to have a substantial trophic plasticity and were proved capable of 
modifying the range of consumed prey according to environmental or community shifts (Calizza et 
al. 2018, Michel et al. 2019). 
  
Reproduction. 
Southern Ocean species present two reproductive behaviours that mainly differ in terms of nutrition 
and dispersal strategy (Moreau et al. 2017). Broadcast spawners (that disperse eggs in the water 
column) produce eggs that are generally 2 to 5 times bigger than those of species of lower latitude 
but in less important number (Bosch and Pearse 1990, Arntz et al. 1994, Leis et al. 2013, Peck 
2018). This implies a greater reserve load enabling either an increase survival if metamorphosis 
occurs quickly, or the capacity to drift over periods of several months in order to coordinate their 
settlement close to the summer period when food is abundant (White 1998, Stanwell-Smith and 
Clarke 1998, Stanwell-Smith et al. 1999, Chiantore et al. 2002). This long range dispersal of 
pelagic larvae facilitates the geographic spreading of many species (Shilling and Manahan 1994, 
Poulin et al. 2002, Young et al. 2015) and played a key role in the evolutionary history of SO 
benthic invertebrates (Thatje 2012). 
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The second main reproductive strategy that characterises SO species is the brooding behaviour, 
where youngs are carried by parents during a long period of time (Pearse et al. 1991, Poulin et al. 
2002, Moreau et al. 2017). The unusually high number of SO benthic marine species with non-
pelagic development is explained by adaptation to current environmental conditions (protection of 
the offspring) and the result of population selection, as a consequence of repetitions in population 
fragmentation over time with isolated units forming new species (Poulin et al. 2002, Pearse et al. 
2009). This results in a lower dispersal capacity of species that promotes geographic isolation of 
populations between provinces (Moreau et al. 2017, Halanych and Mahon 2018). 
 
2.3 Climate change in the Southern Ocean 
 
Observed and predicted environmental changes. 
As in other parts of the world, the SO is facing environmental changes with important regional 
contrasts (Meredith and King 2005, Martinson et al. 2008, Convey et al. 2009). While sea ice has 
significantly been increasing in the Ross Sea both in concentration, extent (Comiso and Nishio 
2008) and duration (Stammerjohn et al. 2012), the Western Antarctic Peninsula has shown 
important temperature warming during the twentieth century, with particularly pronounced events 
during winter, and observed a rise of +3°C in atmospheric temperatures since 1951 (King et al. 
2003, Vaughan et al. 2003, Meredith and King 2005, Henley et al. 2019). Ocean warming has also 
been observed, with a rise of water temperature of +0.17°C in depths between 700 m and 1,100 m 
between the 1950s and the 1980s (Gille 2002). These warmings influence atmospheric variability 
(Meredith and King 2005), and temperatures of water masses connected with the world ocean’s 
deep seas (Fig. 0.12; Sallée et al. 2018). It also resulted in increased surface water freshening 
close to glacier meltwater sources (Schloss et al. 2012, Bers et al. 2013), led to changes in 
duration and extent of ice cover since the 1970’s (Ducklow et al. 2013, Turner et al. 2016, 
Schofield et al. 2017) and changes in glacier retreat (Padman et al. 2012, Cook et al. 2016) (Fig. 
0.15).  
 
In the near future, meta-analyses of several global climate models are predicting continuing 
atmospheric and oceanic warmings of several degrees (Walsh 2009, Bracegirdle and Stephenson 
2012, Mayewski et al. 2015). These climate models (CMIP5, Coupled Model Intercomparison 
Project), are developed by the Intergovernmental Panel on Climate Change (IPCC) to predict water 
temperature of the entire water column south of the Polar Front by the end of the century (IPCC, 
2014). They describe four RCP scenarios (Representative Concentration Pathways, 5th report 
2013), that base the assumptions on different greenhouse gases emissions in the atmosphere in 
coming decades, between moderate (RCP 4.5) to business-as-usual (RCP 8.5) scenarios (Turner 
et al. 2014, Liu and Curry 2010).  
 
Consequences of climate change on Southern Ocean marine communities. 
Impacts on organisms of these cascading environmental changes have already been recognized 
(see Convey and Peck 2019 for a review) and include studies on fish (Bilyk and DeVries 2011, 
Strobel et al. 2012), molluscs (Clark et al. 2008, Peck et al. 2007, Reed and Thatje 2015), 
echinoderms (Peck et al. 2009a, Morley et al. 2016), isopods (Young et al. 2006, Janecki et al. 
2010), foraminifera, nematoda, amphipoda (Ingels et al. 2012) and sponges (Fillinger et al. 2013). 
Warming temperatures directly reduce species survival (Peck et al. 2009b, Morley et al. 2009a, 
2010, Peck 2011, Navarro et al. 2020), as biological functions such as feeding, rasping, swimming 
activities or even respiration ability, that are important for long-term survival are tightly constrained 
by the elevation of temperature (Peck et al. 2004, Morley et al. 2009b). Moreover, ocean warming 
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reduces oxygen availability for marine organisms, as oxygen concentration is lower in warmer 
waters (Benson and Krause 1984, Peck and Uglow 1990). These changes affect species ability to 
produce energy to maintain (in this context of increased metabolic rates) without using anaerobic 
processes that induce toxic end products (Peck 2005, Pörtner et al. 2007). 
In addition, the combined effect of altered sea ice dynamics and increased meltwater runoffs, with 
wind patterns and oceanographic conditions sometimes have a unprecedented impacts on 
plankton communities, with declining habitat suitability (Whitehouse et al. 2008), induced shifts in 
dominating species within planktonic communities, likely to modify relative species abundances 
(Whitehouse et al. 2008, Montes-Hugo et al. 2009, Schloss et al. 2012, Schofield et al. 2017), 
consequently altering community assemblages (Moline et al. 2004, Ashton et al. 2017), functions 
(Braeckman et al. 2021) and predator-prey interactions up in food-webs (Michel et al. 2019). More 
consequent impacts of global change are therefore expected in shallow marine communities and 
coastal habitats (Kidawa and Janecki 2011, Grange and Smith 2013, Obryk et al. 2016) compared 
to deeper ones (Gutt et al. 2015).  
 

 
Figure 0.15. Mean ocean temperatures and overall glacier area changes, from 1945 to 2009 along the 
Western Antarctic Peninsula. Mean in situ ocean temperature at 150 m depth (shaded) and glacier change 
(points). For each of the 674 glaciers along the west coast, the point shows overall change between its 
earliest and latest recorded ice-front position, relative to basin size (% relative change rate a−1). A similar 
spatial pattern is found for changes in absolute area loss per glacier. The point symbols are layered in the 
same order as in the legend (i.e. blue above red). Ocean circulation and water masses are also shown 
schematically: CDW (Circumpolar Deep Water), Shelf Water (SW), BSW (Bransfield Strait Water), and ACC 
(Antarctic Circumpolar Current). From Cook et al. (2016). 
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2.4 Science in the Southern Ocean 
 
Contrarily to the northern pole, there are no permanent inhabitants nor native human populations in 
Antarctica and the surrounding islands, but temporary visitors of research stations ruled by several 
countries (Fig. 0.16).  
 
The distribution of research stations strongly conditions our knowledge of marine life that is 
contrasting between SO regions (Clarke et al. 2007). To cover these gaps, recent organisations 
have promoted connectivity between international scientific programs, data accessibility and data 
cross-checking (Schiaparelli et al. 2013). These programs, such as the International Polar Year 
(IPY 2007-2008), the Census of Antarctic Marine Life (CAML 2005-2010) or the Scientific 
Committee on Antarctic Research, Evolution and Biodiversity in Antarctica (SCAR-EBA 2006-
2013) (non-exhaustive list), were often associated with numerous field campaigns that contributed 
to considerably filling knowledge gaps, also increasing the sampling of the benthos and data 
accessibility (De Broyer et al. 2014). The recent development of underwater imagery in polar 
environments also helped to significantly improve data collection (Piepenburg et al. 2017). For 
several years, many programs have also settled long term high frequency observatories of marine 
life to characterise marine biodiversity and monitor potential shifts in community structures through 
time, in link with recorded environmental changes (e.g. Potter Cove in King George Island since 
1993; MORSea in the Ross Sea since 1994; REVOLTA program in Adélie Land since 2009; 
PROTEKER program in the Kerguelen Islands since 2011). 
In addition to these programs, online platforms that gather samples and their associated metadata 
were developed (RAMS: Registry of Antarctic Marine Species), OBIS (Ocean Biogeographic 
Information System), GBIF (Global Biodiversity Information Facility), SCAR-MarBin (Scientific 
Committee on Antarctic Research, Marine Biodiversity Information Network), which promoted free 
and open access to raw biodiversity data, in order to improve the accuracy of SO biogeographic 
and ecological studies (Pierrat 2011, De Broyer et al. 2014, Fabri-Ruiz 2018). 
 
Despite this progress, the amount and quality of collected data are still limited in comparison to the 
extent of the SO (De Broyer et al. 2014). Sampling is concentrated nearby stations and generally 
performed in summer, as it is challenging to sample during the austral winter due to ice coverage 
(Griffiths 2010, Henley et al. 2019). Experiments in research stations are possible and performed 
since several decades (Féral and Magniez 1988, Peck et al. 2014, Suckling et al. 2015) but the 
possibility to settle long term experiments is often constrained by the harsh conditions 
(remoteness, cold, wind, ice coverage) (Kaiser et al. 2013). 
When studying species distribution, sampled data are restrained to presence-only records, without 
the possibility to trust absence records given that they are not kept in the large biodiversity 
databases and that the entire sampled are not always characterised on board, depending on the 
expertise of the research team participating to the survey (Pierrat et al. 2012, Fabri-Ruiz et al. 
2019). Important uncertainties are finally present in these data platforms, as they consist in a 
collection of several historical databases, and may contain inconsistencies between 
georeferencing systems or taxonomic definitions through time (Newbold 2010) or unchecked 
identification errors while sampling, above all for deep species, more recently studied (Brandt et al. 
2007). 
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Figure 0.16. Political map of Antarctica, from https://www.geographicguide.com/antarctica-political-map.htm, 
accessed November 2019.  
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2.5 Tourism in the Southern Ocean 
 
In parallel to science, tourism has been developing rapidly in the Antarctic region (Wace 1990, 
Lamers et al. 2008, Bender et al. 2016, McCarthy et al. 2019, Hughes et al. 2019). It began in the 
1970’s with the first aviation journeys for commercial purposes (Headland 1994) to reach a number 
of visitors of more than 55,400 people in 2018-2019 (IAATO 2019). The more recent promotion of 
cruise ships has provoked an exponential rise during the last few years, with a total number of 
visitors between summers 2014-15 and 2018-19 shifting from 36,700 to 55,400 people (Hughes 
and Convey 2010, IAATO 2019) and predicted to importantly increase in the coming years 
(Kruczek et al. 2018). 
 
The combination of climate changes and tourism development in the SO region  increases the risk 
that non-native species will access and survive in the area (Walther et al. 2009, McCarthy et al. 
2019), which would constitute one of the most critical global threats to native biodiversity (Sax et al. 
2005). Species can be introduced by the release of ballast waters, the fouling on ship hulls, floating 
anthropogenic debris, kelp rafts, or human visits, mainly from the Patagonian Peninsula, where 
cruise ship departures are the most frequent (Barnes 2002, Lewis et al. 2003, Tavares and De 
Melo 2004, Lewis et al. 2005, Lee and Chown 2007, Fraser et al. 2018). With the impressive 
number of tourist visits, along with the scientific activity (4,000 scientists working in Antarctica 
during the summer and 1,000 in winter; Hughes and Convey 2014) the arrival of propagules in 
Antarctic communities is growing (Tavares and De Melo 2004, Lee and Chown 2007, Hellmann et 
al. 2008, Galera et al. 2018, Avila et al. 2020). Consequently, records of terrestrial exotic species in 
Antarctica are increasing over recent decades (Smith and Richardson 2011) including the invasive 
grass Poa annua (Molina-Montenegro et al. 2012, Chwedorzewska et al. 2015), seeds of the toad 
rush Juncus bufonius (Cuba-Díaz et al. 2013), the invasive mosquito Trichocera maculipennis 
(Potocka and Krzemińska 2018), and several South-American invertebrates (e.g. insects, worms, 
freshwater crustaceans; Hughes and Worland 2010, Hughes et al. 2015). In marine habitats, alien 
species have also been reported in shallow areas of the South Shetland Islands (e.g. decapods, 
bivalves, macroalgae) and East Antarctica (i.e. bryozoans, hydrozoans, bivalves and tunicates) 
(Fraser et al. 2018, McCarthy et al. 2019, Avila et al. 2020, Cárdenas et al. 2020) but also from 
Sub-Antarctic waters and SO deep seas, such as anomuran king crabs (Thatje and Fuentes 2003, 
Thatje et al. 2005a, Aronson et al. 2014, 2015).  
 
To date, there is no evidence for any exotic marine species having established in Antarctica, due to 
ecological and physiological constraints (Convey and Peck 2019). However, as climate keeps 
warming, the potential for successful marine invasions and settlement into Antarctica is expected 
to increase substantially (Richardson et al. 2000, Hellmann et al. 2008, Galera et al. 2018). 
Consequences of such invasions on native marine communities will have severe impacts on 
community assemblages, as observed in other regions of the world (shifts in competition, increase 
of predation pressure, colonisation of associated parasites that may infect other species, Falk-
Petersen et al. 2011, David et al. 2017, Britton et al. 2018, Bevins 2019). Although the effects of 
invasive species are impossible to measure, the return of durophagous predators that became 
extinct million years ago (Aronson and Blake 2001, Zachos et al. 2008, Hansen et al. 2013) such 
as decapods, chondrichthyans and teleosteans in Antarctic shallow waters is widely feared, 
because they will fragilize benthic communities, modifying trophic relationships, and homogenizing 
the Antarctic ecosystem (Aronson et al. 2007, 2014).  
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2.6 Conservation of the Southern Ocean marine life 
 
The Antarctic Treaty, signed in 1959 by a current number of 54 parties, regulates international 
relations in link with Antarctica, with an ensemble of 15 articles that rule politics, war, access and 
trade for all countries (Antarctic Treaty 1959). The treaty, which will end in 2048, is complemented 
by the CCAMLR’s work (Commission for the Conservation of Antarctic Marine Living Resources). 
CCAMLR was established by an international convention in 1982 (https://www.ccamlr.org). The 
main aim of the commission is to manage marine communities in response to an increasing 
commercial interest in Antarctic fisheries (such as krill and fish resources) since the past few 
decades (Nicol and Foster 2003, Brooks 2013). This management does not exclude harvesting but 
agrees on the establishment of a set of conservation measures to carry out harvesting of marine 
living resources in a sustainable manner by taking account of the effects of fishing on other 
components of the ecosystem. The conservation of Antarctic marine life also includes the 
establishement and monitoring of marine protected areas (MPAs) 
(https://www.ccamlr.org/en/organisation/home-page, accessed November 2019) and the update of 
a list of  Vulnerable Marine Species and Ecosystems 
(https://www.ccamlr.org/en/compliance/vulnerable-marine-ecosystems-vmes; Thompson et al. 
2016). 
 
The convention area ruled by the CCAMLR represents around 10% of the total surface of Earth’s 
oceans and almost 70% of the SO, with a surface of more than 35 million km2 (Fig. 0.17). Among 
the CCAMLR managed area, two MPAs have been established so far (Fig. 0.17): the South 
Orkney Island (in 2009) and the Ross Sea region (in 2016). In complement, several countries have 
declared national MPAs around sub-Antarctic islands outside of CCAMLR jurisdiction: Heard and 
McDonald Islands (in 2002, extended in 2014; Australia), Crozet and Kerguelen Islands (in 2006, 
extended in 2017; France), South Georgia and South Sandwich Islands (in 2012, United Kingdom) 
and Prince Edward Islands (in 2013, South Africa). In total, about 11.98% of the SO is protected 
with MPAs, with 4.61% being encompassed by no-take areas (Brooks et al. 2020) and negotiations 
are in process to extend protection to East Antarctica, to the Weddell Sea and the Antarctic 
Peninsula regions (Fig. 0.17). 
 
Modelling approaches are broadly used for designing management decisions. Among them, SDMs  
are widely applied to define niche occupation of vulnerable species that are a priority to 
conservation (e.g. sea birds and mammals), to rank areas by importance of species richness or to 
model catch and effort data (Candy 2004, Ballard et al. 2012, Baird and Mormède 2014). The 
software MARXAN (Ardron et al. 2008, Ball et al. 2009, Teschke et al. 2017) is commonly used, as 
an efficient and useful conservation planning software for the decision making process through the 
identification of the most priority areas to be protected (Loos 2006, Klein et al. 2008). MARXAN is 
fully adapted to solve complex solutions for seascapes or landscapes zoning (Smith et al. 2009, 
Watts et al. 2009) and its application for SO case studies consequently follows the popularity it has 
gained in the other regions of the world (Zacharias et al. 2006, Teschke et al. 2015, 2017). 
Constantly updated (Watts et al. 2009), MARXAN is flexible to integrate different types of data, 
such as SDM outputs (Marshall et al. 2014), but is highly sensitive to their initial calibration 
(Loiselle et al. 2003, Wilson et al. 2005). Food-web models and bioregion statistical clustering 
approaches are also developed at local or broad scales (Pinkerton and Bradford-Grieve 2010, 
Sharp et al. 2010, Koubbi et al. 2011a, 2016, Martin et al. 2019, Fabri-Ruiz et al. 2020). Population 
dynamics models can also be used to define fisheries stocks (Mormède et al. 2014a, 2014b).  
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Figure 0.17. Proposed and adopted MPAs, management areas, and fisheries in the CCAMLR area. CCAMLR 
boundary indicated by thick black line with management area delineations labelled numerically. CCAMLR’s 
adopted MPAs and MPA proposals from 2012 to 2018, including the South Orkney Islands Southern Shelf 
MPA (yellow), Ross Sea MPA (blue), East Antarctic (violet), Weddell Sea (purple) and the western Antarctic 
Peninsula (orange). Total Allowable Catch (TAC) for toothfish (blue) and krill (red) in the CCAMLR 
management area; circles proportional to respective TAC (tonnes in 2017/18), transparency indicates 
underutilization. Shaded circles around subantarctic islands reflect delineated exclusive economic zone 
boundaries generated prior to the signing of the CCAMLR Convention. Shaded squares indicate toothfish 
management areas around South Georgia and South Sandwich Islands. Figure does not include subantarctic 
MPAs which fall outside of CCAMLR’s jurisdiction. From Brooks et al. (2020). 
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3. MODELLING THE ECOLOGICAL NICHES OF ANTARCTIC 
MARINE LIFE  
3.1 State of the art 
 
Everywhere on Earth, the observed impact of environmental changes on terrestrial and marine life 
is significant, and predictions of the increase of these changes and associated consequences are 
even further pessimistic. Scientific researches focussing on the consequences of these changes 
on living populations are consequently growing. Among regions and impacted ecosystems, the SO 
has encountered impressive environmental changes over the past fifty years that are also 
expected to increase in the future. In this context, and following the opportunity of technological 
improvements to access polar environments, research activities in Antarctica have substantially 
increased. 
  
Modelling approaches constitute one essential tool nowadays in research to help understand 
ecological processes by synthetically representing complex systems. Methods and applications 
have been widely published worldwide. Models integrate data, imply experiments to validate 
hypotheses and perform predictive simulations. Applying ecological models to the SO has regularly 
been done for many years (De Broyer et al. 2014). Physiological models were used, with the 
pioneer studies applied to pelagic species: the Antarctic krill Euphausia superba (Groeneveld et al. 
2015, Jager and Ravagnan 2015), and the salp Salpa thompsoni (Henschke et al. 2018) in order to 
investigate the effect of environmental changes on individual metabolic activity. These works were 
rapidly followed by the first application to benthic species, with the work of Agüera et al. (2015) that 
built a DEB model for the Antarctic sea star Odontaster validus, to describe its life cycle and better 
understand its adaptations to environmental conditions. More recently, DEB has been also applied 
to SO marine mammals (Goedegebuure et al. 2018) for evaluating population densities and 
structure. Regarding correlative approaches, models were mainly used in studies on commercial 
species such as pelagic fish or crustaceans (Loots et al. 2007, Cheung et al 2008, Pinkerton et al. 
2010, Koubbi et al. 2011b, Basher and Costello 2016, Freer et al. 2019), top predators (Thiers et 
al. 2017) or bottom fisheries (Hibberd 2016), phytoplankton (Pinkernell and Beszteri 2014), sea 
birds (Krüger et al. 2018) and sea mammals (Southwell et al. 2005, Murase et al. 2013, Bombosch 
et al. 2014), by sometimes gathering occurrence records by GPS trackers fixed on animals’ backs 
(Nachtsheim et al. 2017). The development of SDMs for marine invertebrate studies is more recent 
(Gutt et al. 2012), with the analyses of the potential distribution of sea urchins (Gutt et al. 2012, 
Pierrat et al. 2012, Fabri-Ruiz et al. 2019), sea stars (Byrne et al. 2016), crinoids (Hemery et al. 
2011), cephalopods (Xavier et al. 2015) or barnacles (Gallego et al. 2017). Finally, dispersal 
models have been used to localize primary production hot spots (Piñones et al. 2011), study 
species or larvae spatial connectivity (Ashford et al. 2012, Piñones et al. 2013, La Mesa et al. 
2015, Ashford et. 2017) or study the formation or retention of plankton, krill swarms in the context 
of fisheries sustainability or efficiency (Huntley and Niiler 1995, Fach et al. 2002, Hofmann et al. 
2004, Thorpe et al. 2004, Hill et al. 2006, Young et al. 2014). Often, these models are combined 
with phylogeography studies (Young et al. 2015) or with species ecological or physiological 
information to fill knowledge gaps (Ashford et al. 2010, La Mesa et al. 2015).  
 
All these works have faced methological challenges when implementing models, including the poor 
quality and availability of environmental descriptors that reduce the capacity to accurately integrate 
the variability and complexity of natural systems; the spatial aggregation and limited number of 
occurrence records that bias model predictions, influence the performance of model evaluation and 
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reduce the quality of the description of the species occupied space; the choice of the boundaries of 
the projection area, balanced between research objectives and data availability; or data gaps that 
limit the implementation of physiological models or the biological properties of the lagrangian 
approaches... Models should be also adapted to the physiological peculiarities of SO marine 
species (low adaptation to temperature increase, brooding reproductive behaviour with parental 
care or broadcaster species that disperse larvae that can drift in the water column during several 
months…). These points are typical of the broad-scale SO region and it is necessary to conduct 
some analyses to evaluate their real influence on ecological models, which has never been done 
so far.  
 
3.2 Research objectives and motivations  
  
In this context, this PhD thesis aims at analysing the potential and limits of ecological models 
applied to SO case studies. The BAM diagram scheme, presented earlier, is used to structure our 
study in several steps. Thus, using marine benthic species examples, we evaluate models that 
represent species fundamental niche (physiological, DEB models), models that study species 
realised niche (correlative models, SDMs) and models that focus on dispersal capacities 
(lagrangian approaches).  
 
The first objective is to assess the quality of each of these ecological models, generated with such 
datasets, and to analyse their limits. Some correction methods, inspired from methods used in 
other regions of the world, are proposed to improve the performance of models (i.e. improve model 
evaluation procedures when using aggregated datasets, reduce model extrapolation, reduce the 
influence of spatial aggregation on predictions,...) and to provide guidelines for model 
implementation (choice of environmental descriptors, choice of SDM algorithm, cross-checking and 
preparation of datasets,...).  
 
The second objective is to test the performance of “integrated approaches” compared to “simple” 
ones. These integrated approaches combine several types of information or models (e.g. 
combination of SDMs with physiological information, with dispersal capacities, with phylogenetic 
analyses…). Integrated approaches are widely used in other regions of the world and prove a 
better performance to describe species occupied space and environmental preferences compared 
to simple approaches. However, they have not been tested for SO case studies yet. This PhD 
thesis proposes some analyses related to comparisons and integrations of SDMs and physiological 
models (DEB) and SDMs combined with experimental data. All codes to generate these models 
are provided for future applications. 
  
The third objective of this study is, after dealing with these corrections and methodological 
adaptations, to discuss about the capacities of ecological models applied to SO case studies and 
the remaining limits. What can we learn from these models (ecologically-wise)? Can we accurately 
represent the different parts of the species ecological niche? What is still uncertain? What should 
be improved to generate more relevant models? 
  
This PhD thesis is declined into four chapters that present an ensemble of peer-reviewed articles 
submitted or published in international journals. 
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CHAPTER 1 MECHANISTIC MODELS	

 This chapter focusses on the Dynamic Energy Budget (DEB) approach and studies 
the capacity of DEB models to accurately describe the physiology and population dynamics 
of Southern Ocean marine organisms.  
 
�The first study used the example of the limpet species Nacella concinna (Strebel, 1908). 
This species is known to have distinct intertidal and subtidal morphotypes that are 
genetically similar but differ in morphology and physiology. This species case study was 
used (1) to evaluate the potential of the DEB approach, and assess whether a DEB model 
could be built separately for the intertidal and subtidal morphotypes, based on a field 
experiment and data from the literature and (2) to analyse whether models were contrasting 
enough to reflect the two morphotypes’ respective physiology and morphology.  
 
�The second part of this chapter studied population dynamics modelling. Using an 
Individual Based Modelling approach (IBM), DEB models can be upscaled at the population 
level to simulate the response of populations to variations in food resources and 
temperatures. The DEB-IBM approach was applied to an endemic sea urchin of the 
Kerguelen Plateau, Abatus cordatus (Verrill, 1876) and modelled population changes 
through time, according to changes in food and temperature conditions, under present and 
future scenarios.  
 
�A last study, presented in the appendix section, used DEB modelling for better 
understanding the role of low temperature and seasonal food availability conditions on the 
life cycle and reproduction strategy of an Antarctic bivalve, Laternula elliptica (King, 1832). 
The DEB model was also used to describe the effect of varying environmental conditions on 
energy allocation, using an available time-series dataset.  
 
		

 
�Guillaumot C, Saucède T, Morley SA, Augustine S, Danis B and Kooijman S (2020). Can DEB 
models infer metabolic differences between intertidal and subtidal morphotypes of the Antarctic 
limpet Nacella concinna (Strebel, 1908)? Ecological Modelling. 430. 109088. 
  
�Arnould-Pétré M, Guillaumot C, Danis B, Féral J-P and Saucède T (2020). Individual-based model 
of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus 
cordatus, under changing environmental conditions. Ecological Modelling. 440, 109352. 
 
�[Appendix section] Agüera A, Ahn I-Y, Guillaumot C and Danis B (2017). A Dynamic Energy 
Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism. 
PLOS One. 12(8), e0183848.  
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Abstract 
Studying the influence of changing environmental conditions on Antarctic marine benthic 
invertebrates is strongly constrained by limited access to the region, which poses 
difficulties to performing long-term experimental studies. Ecological modelling has been 
increasingly used as a potential alternative to assess the impact of such changes on 
species distribution or physiological performance.  
Among ecological models, the Dynamic Energy Budget (DEB) approach represents each 
individual through four energetic compartments (i.e. reserve, structure, maturation and 
reproduction) from which energy is allocated in contrasting proportions according to 
different life stages and to two forcing environmental factors (food resources and 
temperature).  
In this study, the example of an abundant coastal limpet, Nacella concinna (Strebel 
1908), was studied. The species is known to have intertidal and subtidal morphotypes, 
genetically similar but physiologically and morphologically contrasting. 
The objectives of this paper are (1) to evaluate the potential of the DEB approach, and 
assess whether a DEB model can be separately built for the intertidal and subtidal 
morphotypes, based on a field experiment and data from literature and (2) to analyse 
whether models are contrasting enough to reflect the known physiological and 
morphological differences between the morphotypes. 
We found only minor differences in temperature-corrected parameter values between 
both populations, meaning that the observed differences can be only explained by 
differences in environmental conditions (i.e. DEB considered variables, food resources 
and temperature, but also other variables not considered by DEB). Despite the known 
morphological difference between the populations, the difference in shape coefficients 
was small.  
This study shows that even with the amount of data so far available in the literature, DEB 
models can already be applied to some Southern Ocean case studies, but, more data 
are required to accurately model the physiological and morphological differences 
between individuals.  

 
Keywords  
Ecological modelling, Southern Ocean, marine benthic species, model relevance, model 
accuracy 
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1. INTRODUCTION 
Antarctic regions have faced strong environmental change since the twentieth century (recently 
reviewed in Henley et al. 2019), with a strong warming in some regions, such as in the Western 
Antarctic Peninsula (King et al. 2003, Vaughan et al. 2003, Meredith and King 2005), leading to 
important shifts in sea ice regimes and seasonality, including the duration and extent of sea ice 
cover (Stammerjohn et al. 2012, Turner et al. 2016, Schofield et al. 2017). The increase in the rate 
of glacier melting has been reported as a cause of important disturbance of the physical (currents, 
salinities) and biological environment (phytoplankton blooms, communities) (Meredith and King 
2005, Schloss et al. 2012, Bers et al. 2013). Such changes have a direct impact on marine 
communities and particularly in coastal marine areas (both intertidal and subtidal)(Barnes and 
Peck 2008, Smale and Barnes 2008, Barnes and Souster 2011, Waller et al. 2017, Stenni et al. 
2017, Gutt et al. 2018), which are places of complex land-sea interface and ecological processes. 
The multiple effects of ice retreat and meltwater on nearshore marine habitats have contributed to 
the expansion of intertidal zones and habitat alteration due to seawater freshening and 
stratification, shifting near-shore sedimentation, changes in water properties and current dynamics. 
 
However, studying Antarctic marine life is challenging. Not only do the environmental conditions 
make the region difficult to access and work in, but substantial financial and technical constraints 
make field sampling and experiments difficult to organise (e.g. cold, ice, duration of daylight; Kaiser 
et al. 2013, Kennicutt et al. 2014, 2015, Xavier et al. 2016, Gutt et al. 2018). However, conducting 
physiological studies of Antarctic marine organisms has become urgent as we aim to assess their 
sensitivity and potential response (resilience, distribution shift or local extinction) to environmental 
change, a key issue for the conservation of marine life and special protected areas (Kennicutt et al. 
2014, 2015, 2019 https://www.ccamlr.org/en/organisation/home-page). 
 
An alternative to completing studies in these environments is the use of modelling approaches. 
Ecological modelling is used to describe species distribution and assess their climate envelopes 
(Elith et al. 2006, Peterson et al. 2011), study species tolerances to toxicants and to environmental 
change (Jager et al. 2014, Petter et al. 2014, Baas and Kooijman 2015) and model species 
energetic performance (Serpa et al. 2013, Thomas et al. 2016). Among these ecological models, 
the Dynamic Energy Budget (DEB) theory (Kooijman, 2010) has become increasingly popular. 
DEB parameters have been so far estimated for more than 2,000 animal species and collected in 
the ‘Add-my-Pet’ (AmP) collection (http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/). It constitutes 
one of the most powerful approaches to characterise individual metabolic performances (Nisbet et 
al. 2012, Kearney et al. 2015, Jusup et al. 2017) and can be calibrated for data-poor animals 
(Mariño et al. 2019). DEB models rely on thermodynamic concepts (Jusup et al. 2017) and study 
how energy flows are driven within individuals during their entire life cycle (Kooijman 2010). Each 
individual is divided into four energetic compartments: reserve E, structure V, maturation EH and 
reproduction ER from which the energy is allocated in contrasting proportions according to the 
different life stages and two forcing environmental factors (i.e. food resources and temperature).  
DEB models can be built with data coming from experiments and/or literature, to quantify age, 
length, weight of the different life stages and provide information on reproduction, growth and 
metabolic rates to calibrate the model (van der Meer 2006, Marques et al. 2014). 
 
Application of DEB models to Antarctic species is increasing. They can be easily extracted from 
the AmP collection, using the software AmPtool. The Matlab command “select_eco(‘ecozone’, 
{‘MS’})” presently gives a list of 37 species, where MS stands for “Marine, Southern Ocean”. 
Command “select_eco(‘ecozone’, {‘TS’})” gives another 3 species for the terrestrial Antarctic 
environment, among which the mite Alaskozetes antarcticus. Among the most common and well 
studied Southern Ocean benthic invertebrates are the sea star Odontaster validus (Agüera et al. 
2015), the bivalve Laternula elliptica (Agüera et al. 2017), the bivalve Adamussium colbecki 
(Guillaumot 2019a) and the sea urchins Sterechinus neumayeri (Stainthorp and Kooijman 2017) 
and Abatus cordatus (Arnould-Pétré et al. 2020 - Chapter 1). DEB models have also been 
developed for some pelagic species such as the Antarctic krill Euphausia superba, the salp Salpa 
thompsoni (Jager and Ravagnan 2015, Henschke et al. 2018) and are under development for 
marine mammals such as the elephant seal Mirounga leonina (Goedegebuure et al. 2018). 
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Antarctic species have a range of notable physiological traits when compared to their temperate 
counterparts. Among others, they are physiologically adapted to constant cold temperatures (Peck 
et al. 2009b, Morley et al. 2009b, 2014), shifting day length also imposes a marked seasonal 
feeding behaviour (McClintock 1994, Clarke et al. 2008, Halanych and Mahon 2018), and they 
exhibit slow metabolic and growth rates, explaining their longer lifespans and higher longevities 
compared to species in other regions (Peck and Brey 1996, Peck 2002).  
 
The limpet Nacella concinna (Strebel, 1908) (Mollusca: Patellogastropoda) is a common and 
abundant gastropod of shallow marine benthic communities. Distributed all along the Western 
Antarctic Peninsula (González-Wevar et al. 2011, phylogeny recently reviewed in González-Wevar 
et al. 2018b), it has widely been studied for decades (Shabica 1971, 1976, Walker 1972, Hargens 
and Shabica 1973, Houlihan and Allan 1982, Peck 1989, Clarke 1989, Cadée 1999, Ansaldo et al. 
2007, Fraser et al. 2007, Markowska and Kidawa 2007,  Morley et al. 2011, 2014, Suda et al. 
2015, Souster et al. 2018). The limpet is found from intertidal rocky shores down to over 100 
meters depth (Powell 1951, Walker 1972). It has a 2-5 cm long shell (Fig. 1.1), that grows only a 
few millimeters a year with a seasonal pattern. It is sexually mature after four to six years and has 
a life span of up to 10 years (Shabica 1976, Picken 1980, Brêthes et al. 1994). The limpet mainly 
feeds on microphytobenthos and microalgae (Shabica 1976, Brêthes et al. 1994). It spawns free-
swimming planktonic larvae once a year, when water temperature rises in the austral summer 
(Shabica 1971, Picken 1980, Picken and Allan 1983). Larvae drift in the water column and 
metamorphose after more than two months (Stanwell-Smith and Clarke 1998).  
N. concinna does not have a homing behaviour (Stanwell-Smith and Clarke 1998, Weihe and 
Abele 2008, Suda et al. 2015) and intertidal individuals can either migrate to subtidal areas in 
winter to escape freezing air temperatures that may drop below -20°C (Walker 1972, Branch 1981, 
Brêthes et al. 1994) or shelter in rock cracks and crevices in the intertidal area. In the latter case, 
they do not become dormant but have a limited access to microphytobenthos, as recently 
observed around Adelaide Island (Obermüller et al. 2011).  
 

 
Figure 1.1. Nacella concinna in apical view (a) and lateral view (b). Scale bar: 1 cm. Source: Q. Jossart, 
B121 expedition. 
 
Two morphotypes of N. concinna have been distinguished, an intertidal and a subtidal type, with 
the intertidal type having a taller, heavier and thicker shell compared to the subtidal one that is 
characterised by a lighter and flatter shell (Beaumont and Wei 1991, Hoffman et al. 2010). Initially, 
Strebel (1908) and Powell (1951) referred to these two morphotypes as the ‘polaris’ (intertidal) and 
‘concinna’ types (below 4m depth). From that point, the potential genetic differentiation between 
the two morphotypes has been investigated, some of the studies concluding an absence of genetic 
distinction (Wei 1988, Beaumont and Wei 1991, Nolan 1991) while contrarily, de Aranzamendi et 
al. (2008) reported significant differences based on inter-simple sequence repeat (ISSR) markers. 
More recently, this last method was questioned (Hoffman et al. 2010) and several studies using 
different markers and populations (Chwedorzewska et al. 2010, Hoffman et al. 2010, Gonzalez-
Wevar et al. 2011) have concluded an absence of genetic differentiation between the two 
morphotypes. 
 
Apart from the absence of genetic differences, intertidal and subtidal populations strongly contrast 
in morphology and physiology, which has been explained by the prevalence of habitat 
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heterogeneity and strong environmental gradients along rocky shore habitats, a common feature 
also observed in other gastropods (Johannesson 2003, Butlin et al. 2008, Hoffman et al. 2010). 
For instance, in N. concinna, the higher shell thickness observed in the shallow morphotype was 
hypothesised to play a role in resistance against crushing pack ice (Shabica 1971, Morley et al. 
2010). Intertidal morphotypes are further resistant to air exposure thanks to higher shells, bigger 
inner volumes relative to their shell circumference, a combination that makes them more efficient 
than subtidal individuals, able to store more water and oxygen, reducing desiccation risks and 
delaying the metabolic switch to anaerobic fermentation (Nolan 1991, Weihe and Abele 2008). The 
subtidal morphotype has also proved to be less resistant to cold than the intertidal population 
(Waller et al. 2006), due to extra production of mucus and stress proteins in intertidal morphotypes 
(Clark et al. 2008, Clark and Peck 2009, Obermüller et al. 2011) and due to diverse metabolic 
processes that contrast between both populations (reviewed in Suda et al. 2015). 
 
The development of ecological models enables precise models to be built, that highlight subtle 
differences in parameters between ecologically similar or closely related species (Freitas et al. 
2010, Holsman et al. 2016, Marn et al. 2019, Lika et al. 2020). The idea of building individual-
specific models for understanding of physiological processes is not new (Bevelhimer et al. 1985, 
DeAngelis et al. 1994) and grew from the development of computational ecology that resulted in 
the possibility of generating “individual-oriented” models (IOM’s) (Hogeweg and Hesper 1990, 
DeAngelis et al. 1994). The IOM theory relies on the principle that “no two biological organisms are 
exactly alike, even when they have identical genes”. A group of organisms within a population can 
have contrasting size or physiological performances according to, for example, food conditions or 
competition. Modelling each individual, separately, therefore constitutes a powerful approach to 
enhance the understanding of the entire community (DeAngelis et al. 1994).  
 
In this study, due to the known morphological and physiological differences between the 
morphotypes, we first separately built independent DEB models for the intertidal and subtidal 
morphotypes of the limpet N. concinna, based on field experiment and literature data, to assess 
the potential differences between the models. Secondly, we analyse whether the two model 
outputs suggest contrasting physiologies between the morphotypes, using a method recently 
developed in DEB theory, that tries to reduce differences in parameter values that are still 
consistent with the data (Lika et al. 2020). Using this method -the augmented loss function- we try 
to merge the information of the two species models into a single one. If DEB parameters of the two 
species can be merged, it means that the physiological differences between these two species are 
not strongly different.  
  
These results finally help assess DEB model accuracy giving the amount of data available to build 
the models in the context of Antarctic case studies and help evaluate which type of information is 
necessary to gather in order to fill model gaps. Finally, the study evaluates if such models are 
valuable for studying Southern Ocean organisms in the context of altered environments. 
 

2. MATERIAL AND METHODS 
 
2.1. DEB Model description 
 
DEB models are based on an ensemble of rules that allocate energy flows to four main 
compartments (reserve E, structure V, maturity EH, reproduction ER) according to a set of priorities 
and the level of complexity (i.e. maturity) gained by the organism through time (Fig. 1.2, Kooijman 
2010). Maturity is treated as information, having mass nor energy. Food is first of all ingested and 
assimilated (𝑝̇A) and energetically stored into a reserve compartment (E). A fraction of the energy 
that is mobilised from reserve, 𝑝̇C, is divided into two branches according to the ‘kappa-rule’: a part 
of the energy contained in the reserve compartment (κ. 𝑝̇C) is allocated to somatic maintenance 
and structure growth, whereas the second part (1- κ).  𝑝̇ C contributes to maturity (before the 
‘puberty’ threshold) or reproduction (after the ‘puberty’ threshold).  
The energy is allocated within and in between these branches by the establishment of some 
priorities, where somatic maintenance (𝑝̇M) has priority over growth and maturity maintenance (𝑝̇J) 
has priority over maturity and reproduction. During its lifetime, the organism allocates energy to 

65



MECHANISTIC MODELS CHAPTER 1. 
 

Article. Guillaumot et al. (2020a). Can DEB models infer metabolic differences between intertidal and subtidal 
morphotypes of the Antarctic limpet Nacella concinna (Strebel, 1908)? Ecological Modelling. 

 
 

maturity which symbolizes its complexity and reaches some life stages at some defined thresholds 
(𝐸𝐻

𝑏, birth, when the organism is capable to feed; 𝐸𝐻
𝑗 , metamorphosis; 𝐸𝐻

𝑝, puberty, when it can 
reproduce). After reaching sexual maturity, the energy that was formerly allocated to maturity is 
attributed to the reproduction buffer and the available energy is allocated to the development of 
gametes.  
Different types of DEB models have been developed and coded for parameter estimation, see 
frequently updated https://github.com/add-my-pet/DEBtool_M page (Marques et al. 2018, 2019). 
Here, the abj model was used for N. concinna. This model considers that growth acceleration 
occurs between birth and metamorphosis (Kooijman 2010, Mariño et al. 2019). 
 
The DEB model is forced by food availability and temperature. Temperature acts on metabolic 
rates following the Arrhenius principle (see Kooijman 2010, Jusup et al. 2017 for details). A 
temperature correction factor is applied to each rate that takes into account the lower and higher 
optimal boundaries of the individual tolerance range. Food available for ingestion is represented by 
the functional response f comprised between [0,1], where 0 is starvation condition and 1 very 
abundant food.  

 
 

 
 
Figure 1.2. Schematic representation of 
the standard DEB model, with energy 
fluxes (arrows, in J.d-1) that connect the 
four compartments (boxes). Energy enters 
the organism as food (X), is assimilated at 
a rate of 𝑝̇A into the reserve compartment 
(E). The mobilization rate 𝑝̇C, regulates the 
energy leaving the reserve to cover somatic 
maintenance 𝑝̇𝑀  , structural growth 𝑝𝐺̇ , 
maturity maintenance 𝑝𝐽̇ , maturity 𝑝̇𝑅 
(sexually immature individuals) and 
reproduction 𝑝̇R (mature individuals). κ.  𝑝̇C 
is the proportion of the mobilized energy 
diverted to 𝑝̇M and 𝑝̇G, while the remaining 
part (1- κ). 𝑝̇C is used for 𝑝̇J and 𝑝̇R.  
 
 
 
 

 
 
The parameters of the DEB model can be estimated from multiple data on the eco-physiology of a 
species. The ones studied in this work are presented in Table 1.1. 
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Table 1.1. List of the main DEB parameters, definition and units.  
 

Parameters                                                                  Description                                                                                   Units 

Primary DEB parameters  

{𝑝̇Am} surface-area-specific maximum assimilation rate J.cm-2d-1 

𝑣̇ energy conductance (velocity) cm.d-1 

κ fraction of mobilised reserve allocated to soma - 

[𝑝̇M] specific volume-linked somatic maintenance rate: 𝑝̇M / V J.cm-3d-1 

[EG] volume-specic costs of structure; better replaced by [EV]= κG, where κG is the fraction of growth 
energy fixed in structure: [EV]=[EG] 

J.cm-3 

𝐸𝐻
𝑏 maturity at birth J 

𝐸𝐻
𝑗  maturity at metamorphosis J 

𝐸𝐻
𝑝 maturity at puberty J 

ℎ̈a Weibull ageing acceleration for animals d-2 

sG Gompertz stress coefficient - 

δM shape (morph) coefficient: L=Lw - 

δM_larvae shape (morph) coefficient of the larvae - 

Other parameters  

z zoom factor to compare body sizes inter-specifically; z = 1 for Lm = 1 cm - 

sM Acceleration factor at f =1, it is equal to the ratio of structural length at metamorphosis and birth. - 

[Em] [Em]= {𝑝̇Am}/𝑣̇ ; ratio of specific assimilation over energy conductance J.cm-3 

 
2.2. Data collection and DEB calibration 
 
DEB models were calibrated using zero-variate data (single data points at defined life stages, such 
as length or weight at sexual maturity, number of eggs produced per female) and uni-variate data 
(relationships between two variables such as oxygen consumption and temperature, length~weight 
relationship, weight or size~time relationships)(van der Meer 2006, Guillaumot 2019b). Data that 
were collected from the literature (Table 1.2), paying attention to the different taxonomic names 
adopted for the species through time (see 
http://www.marinespecies.org/aphia.php?p=taxdetails&id=197296, accessed December 2018); to 
the sampling area to enable the two morphotypes to be distinguished (intertidal/subtidal) and to the 
environmental conditions under which each dataset was recorded (available food resources and 
temperature). 
Data from the literature were supplemented by experiments led by S. Morley at Rothera Station 
(Adelaïde Island, Western Antarctic Peninsula) in January-February 2018 (details in Appendix 1.1). 
Individual shells were brought back to Europe and processed with imagery to collect growth ring 
data (Appendix 1.2).  
Some data are shared between the intertidal and subtidal morphotypes due to a lack of information 
on the morphotypes physiology in the literature (Table 1.2). The characteristics of the first 
developmental life stage, when the larvae become able to feed (i.e. age, length and weight at birth) 
and the pace of development (i.e. age at puberty, maximal observed age) are assumed to be 
identical. 
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Each data set was characterised by the corresponding temperature and food resources present in 
the field. Food resources were represented in the model by a scaled functional response f 
constrained between 0 and 1, with 0 meaning no food availability and 1 maximal food abundance. f 
parameters were differentiated between the different stations along with temperatures. Food is 
very abundant in the field for the limpet and f parameters were therefore kept fixed with values ≥ 
0.9. Food availability from the Rothera Station was described by pictures taken in the field and was 
estimated at f=1. Signy and Anvers Islands f was set at 0.9 because physiological traits (growth 
rate, maximal size) are very close (but slightly lower) than Rothera’s observations, but no precise 
information is available for food conditions in the different publications for these stations.  
 
Table 1.2. Zero and uni-variate data used to build the intertidal and subtidal models. AFDW stands for ‘Ash 
Free Dry Weight’. 
 

INTERTIDAL GROUP SUBTIDAL GROUP 

Zero-variate data, (unit) Value Reference Value                     Reference 

Age at birth  ab (days) 10 Peck et al. (2016)   Same as intertidal 

Age at puberty ap (years) 4 Shabica (1976)   Same as intertidal 

Maximal observed age am (years) 14 Shabica (1976)   Same as intertidal 

Length at birth Lb (cm) 0.0228 Peck et al. (2016)   Same as intertidal 

Length at puberty Lp (cm) 1.54 S. Morley experiment (2018) 1.59  Picken (1980) 

Maximal observed shell length Li (cm) 5.8* Shabica (1976)  5.52**  S. Morley experiment (2018) 

Wet weight of the egg Ww0 (g) 5.8.10-6*** Peck et al. (2016)                  Same as intertidal 

AFDW at puberty Wdp (g) 0.0236 Shabica (1976) 0.057 S. Morley experiment (2018) 

Uni-variate data, (unit)                          Reference Reference 

Length ~ AFDW  
LWd_signy (cm, g) 

Nolan (1991), Signy Island           Nolan (1991),  Signy Island 

Length ~ AFDW 
LWd (cm, g) 

S. Morley experiment (2018)           S. Morley experiment (2018) 

Length ~ Gonado somatic index 
LGSI (cm, -) 

S. Morley experiment (2018) S. Morley experiment (2018) 

Length ~ Oxygen consumption 
LJO (cm, μmol/h) 

S. Morley experiment (2018) S. Morley experiment (2018) 

Temperature ~ Oxygen consumption 
TJO (K, μL/h) 

Peck (1989) Peck (1989) 

Time ~ Length 
 tL (d, cm) 

S. Morley experiment (2018)**** S. Morley experiment (2018)**** 

*       Max sized collected individual on the field during Belgica121 expedition (Danis et al. 2019) 
**     Shabica (1976) indicates an observed value of 5.8 cm and S. Morley measurements indicate a ratio between intertidal/subtidal    

lengths of the morphotypes of 1.05. The unknown subtidal Li value was calculated as 5.8/1.05= 5.52 cm. 
***    based on egg diameter of 221 μm 
****   imagery and growth ring measurements, see Appendix 1.2  

 
2.3. DEB parameter estimation and goodness of fit 
 
Sets of zero and uni-variate data, supplemented by pseudo-data were used to estimate the DEB 
primary parameters. Pseudo-data are extra data coming from different taxa that help calibrate the 
model estimation similarly to a prior element (Lika et al. 2011a). This procedure has similarities 
with Bayesian estimation, but are not embedded in a maximum likelihood context, since the 
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stochastic component is not modelled. Before parameter estimation, each data set can be 
subjectively linked by a weight coefficient to quantify the realism of reducing variation in parameter 
values. Selected weight coefficients are always selected small enough in order to hardly affect 
parameter estimation if the information contained in the real data set is sufficient. 
The DEB parameters estimation is done by simultaneously estimating each parameter using these 
empirical and pseudo-data by minimizing a loss function, using the Nelder-Mead simplex method, 
updated and explained in Marques et al. (2018, 2019). The loss function that is minimized is 
 

∑  𝑛
𝑖=1 ∑  𝑛𝑖

𝑗=1
𝑤𝑖𝑗

𝑛𝑗
  (𝑑𝑖𝑗−𝑝𝑖𝑗)2

𝑑𝑖̅̅ ̅ 2+ 𝑝𝑖̅ 2
             

 
where i scans datasets and j points in this dataset. dij and pij are respectively the data and the 
predictions and 𝑑i and 𝑝i their average values in set i. wij are the attributed coefficients, 𝑛 is the 
number of data sets, ni denotes the data in a dataset, nj the data in data-points. 
 
The value of the loss function is evaluated for each parameter trial. The goodness of fit of each 
prediction was quantified by the relative error (RE). The mean relative error (MRE) quantifies the 
overall model performance. RE corresponds to the sum of the absolute differences between 
observed and predicted values, divided by the predicted values. Contrarily to the loss function, the 
MRE does not take into consideration the weights of the different data (Marques et al. 2018). MRE 
values can have values from 0 to infinity, with 0 value meaning that predictions match data exactly.  
 
2.4. Merging parameters  
 
The augmented loss function approach developed by Lika et al. (2020) is a new extension that 
enables to compare small variations in parameter values between (close) species. The second 
term (in bold) of the following equation is the new extension of the ‘symmetric bounded (sb)’ loss 
function: 
 

Fsb = ∑  𝑛
𝑖=1 ∑  𝑛𝑖

𝑗=1
𝑤𝑖𝑗

𝑛𝑗
 (𝑑𝑖𝑗−𝑝𝑖𝑗)2

𝑑𝑖̅̅ ̅ 2+ 𝑝𝑖̅ 2
 + ∑ 𝒘𝒌 𝒗𝒂𝒓(𝜽𝒌)

𝒎𝒆𝒂𝒏(𝜽𝒌)𝟐 𝑵
𝒌=𝟏                     

 
where w's are weights, d's data, p's predictions, 𝜃's parameters, j scans data-points with a data-
set of ni points (ni = 1 is allowed), i scans the data-sets and k the parameters.  
In this second term, when wk=0, the parameter 𝜃 k between species are different, but when 
increasing wk, the parameter 𝜃k tends to be similar between species. Therefore, the augmented 
loss function method uses this mathematical principle to spot potential differences between 
parameters of different species. First, the set of DEB parameters are separately estimated for each 
species and weight coefficients are set to zero. Then, for each parameter, the weight coefficient 
will be step-wise increased, making the loss function shift as a result. If a maximal weight value is 
reached without sharp changes in the loss function value along the weight increase, it means that 
the parameter value has a minimum variance between species. Contrarily, if the loss function 
value presents a sharp increase due to the change in weight coefficient, it means that the studied 
parameter should present contrasting values between the related species. 
 
By applying this method to the case study of an intertidal and subtidal morphotype of the limpet N. 
concinna, we aim to evaluate whether there are any differences between both morphotypes 
caused by differences in parameters, or whether these differences are explained only by 
differences in environmental conditions (i.e. food resources and temperature). Initially, the sets of 
parameters have been estimated separately for both morphotypes and all weight coefficients are 
set to zero. By step-wise increasing the weight coefficient for a particular shared parameter, the 
overall loss function may increase and a common merged DEB parameter is reached. If a common 
value of the DEB parameter can be found without important increase in MRE or loss function 
values, it means that the intertidal and subtidal morphotypes do not significantly differ for this 
parameter. A similar procedure is applied for each DEB parameter separately and iteratively. In 
order to have a quick idea of replicability in the results, the procedure was replicated five times, 
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contrasting in different orders of DEB parameters merging (Appendix 1.3). The order of 
permutation of merged parameters of these five replicates was chosen randomly among the 11! 
possible solutions. Changes in MRE and loss function values at each weight modification were 
reported and the predictions of the intertidal, subtidal and merged models were compared.   
 

3. RESULTS 
3.1. Parameters of DEB models  
 
DEB predictions for the separate intertidal and subtidal models are accurate, with MRE values 
lower than 0.2 (Table 1.3). Average MRE value of the AmP collection is close to 0.06. Relative 
Errors are quite low, with the highest values obtained for length~GSI data (RE= 0.6089 and 0.8702 
for intertidal and subtidal models respectively) and time~length relationships, obtained from the 
sclerochronology measurements, that are highly variable between each measured shell 
(respectively RE= 0.3645 and 0.5924 for intertidal and subtidal models) (Fig. 1.3, Table 1.3, 
Appendix 1.2).  
 
In view of the substantial morphological difference between the populations, we expected to see a 
clear difference in the shape coefficient δM. We found a slightly larger value of δM for the intertidal 
morphotype, meaning that for the same shell length, it has slightly more structure, compared to the 
subtidal one. 
 
Subtidal morphs have a lower energy conductance 𝑣̇ as well as double the value of maximum 
surface area specific assimilation rate {𝑝̇Am} with respect to the intertidal morphs. The ratio of 
specific assimilation over energy conductance [Em]= {𝑝̇Am}/𝑣̇ , determines the maximum reserve 
capacity of a species. 
The fraction of mobilised reserve allocated to soma κ is also bigger (0.9368 for subtidal vs. 0.9084 
for intertidal type), and the intertidal individuals also present a lower value for somatic maintenance 
rate [𝑝̇M] compared to the subtidal ones. This highlights contrasts between the morphotypes in 
energy allocated to maturation along the first life stages (𝐸𝐻

𝑏, 𝐸𝐻
𝑗 ) and more available energy for 

growth for the intertidal morphotype that has lower values of somatic maintenance. Intertidal 
morphotypes seem to accelerate metabolism with a two-fold difference in acceleration factor sM 
between intertidal and subtidal types (respectively 7.862 and 4.049). The maturity threshold to 
reach puberty, 𝐸𝐻

𝑝  is also lower for the intertidal morphotype than the subtidal.  
 
The MRE values of the merged models stay below 0.25 and the value of the loss function for the 
merged situation is only a little larger than the sum of both populations, reflecting that a substantial 
reduction in the total number of parameters by almost a factor 2 hardly affects the goodness of fit 
(Table 1.3, Appendix 1.3).  
DEB parameters of the merged models are quite close to the values of the intertidal and subtidal 
models, with [𝑝̇M], δM, 𝐸𝐻

𝑝, 𝐸𝐻
𝑏, [EG] and 𝑣̇ merged values being almost exactly in between the values 

of the intertidal and the subtidal morphotypes. Parameters κ, 𝑧, 𝐸𝐻
𝑗 , {𝑝̇Am} and ℎ̈a are closer to the 

intertidal predictions.  
Univariate predictions are also extremely close between the two models and the merged model 
(Fig. 1.3), with only a small difference for the subtidal model for which the GSI~length predictions 
are higher than the intertidal and merged predictions, mainly due to errors in predictions and 
scatter in the data. This higher potential of energy allocation to reproduction can, however, be 
linked to the higher 𝐸𝐻

𝑝 values estimated for the subtidal type (Table 1.3). 
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Table 1.3. Summary of goodness of fit, DEB model estimates at a reference temperature of Tref= 20°C. RE: 
Observed and predicted values for zero-variate data, relative error (RE) for the uni-variate data. See Fig. 1.3 for 
comparisons for uni-variate predictions between models. MRE= Mean Relative Error. For the merged model, 
the MRE values respectively correspond to the mean relative error of model prediction for data of both intertidal 
and subtidal populations. All DEB parameters indicated were allowed to vary during covariance estimation. The 
abj parameters that are not mentioned in that table were kept constant with the standard initial values.  
 

 INTERTIDAL SUBTIDAL MERGED  

MRE 0.166 0.192 0.196        0.227 

Loss function 0.2441 0.2345 0.7936 

Parameters 

z (-)  0.3055 0.4317 0.2579 

{𝒑̇Am}  (J/d. cm-2) 8.361 19.07 8.859 

𝒗̇  (cm/d) 0.0501 0.0426 0.0499 

Κ  (-) 0.9084 0.9368 0.9256 

[𝒑̇M]  (J/d. cm-3) 19.62 31.68 24.62 

[EG]  (J. cm-3) 3956 3949 3952 

𝑬𝑯
𝒃   (J) 0.00174 0.00115 0.0014 

𝑬𝑯
𝒋   (J) 0.8749 0.0779 0.9206 

𝑬𝑯
𝒑   (J) 75.23 121.4 94.66 

𝒉̈a   (1/d-2) 5.003.10-8 8.335.10-8 4.24.10-8 

sG   (-) 10-4 10-4 10-4 

δM  (-) 0.4517 0.3866 0.4247 

δM_larvae  (-) 0.7167 0.7125 0.7215 

sM  (-) 7.862 4.0491 8.5372 

Zero-variate 

 Data // prediction// RE Data // prediction// RE prediction// RE 

ab (d) 10             10.62       0.0619 10           10.59         0.0586    10.61             0.0609 

ap (y) 4               3.54         0.1141    4             3.75           0.0607     3.66              0.0845 

am (y) 14             14            9.4.10-5 14           13.99         4.8.10-4     14                 1.6.10-4 

Lb (cm) 0.0228     0.02279    2.4.10-4 0.0228     0.0228    6.05.10-4    0.0228           1.424.10-6 

Lp (cm) 1.54        1.225         0.2045 1.59         1.81          0.1384    1.49               0.0323 

Li (cm)  6.5          5.319         0.1816 5.52         4.515        0.1827    5.184             0.2024    

Ww0 (g) 5.8.10-6       5.8.10-6     0.0181 5.8.10-6       5.7.10-6     0.0157   5.72.10-6         0.0138 

Wdp (g) 0.0236     0.0263      0.1181 0.057       0.05649     0.0089   0.0396            0.6762 
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Uni-variate 

 RE RE RE 

LWd_signy (cm, g) 0.1443 0.1698 0.1274 

LWd (cm, g) 0.1469 0.1834 0.216 

LGSI (cm, -) 0.6089 0.8702 0.5835 

LJO (cm, μmol/h) 0.2567 0.2831 0.2487 

TJO (K, μL/h) 0.1034 0.1216 0.0876 

tL (d, cm) 0.3645 0.5924 0.4097 
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Figure 1.3. Comparison of model predictions (uni-variate data). Blue dots joined by lines: subtidal model 
predictions, blue stars: subtidal data (observations); orange dots joined by lines: intertidal model predictions, 
orange stars: intertidal data (observations); black triangle joined by lines: merged model predictions. 
Prediction points may overlap (D).  
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3.2. Merging process  
 

Along the merging procedure, the loss function and MRE values of the model at each step of the 
merging procedure are observed, one ‘step’ corresponding to the interative increase of the weight 
coefficient of the studied parameter (i.e. merging step, Fig. 1.4). Changes in MRE values are not 
that important between the initial step and the final step of the merging procedure (Fig. 1.4, 
Appendix 1.4) (respectively from 0.170 to 0.196 and from 0.192 to 0.227 for the MRE intertidal and 
MRE subtidal values), meaning that merging parameters is possible. 𝐸𝐻

𝑝 and δM seem to be the 
parameters that are the most influencing the model during the merging procedure for both the 
intertidal and subtidal models and [𝑝̇M] seems to further influence the intertidal model.  

 
Figure 1.4. Evolution of Mean Relative Error (MRE) values along the merging of the different parameters.  
 
 
MRE intertidal in solid blue line, MRE subtidal in dashed purple line. Example of Trial #5 (merging 
of z, [𝑝̇M], δM_larvae, κ, ℎ̈a, 𝑣̇, EH

b, [EG], EH
j, EH

p, δM).  
 

4. DISCUSSION 
 
4.1. DEB models relevance  
 
DEB models are powerful tools enabling predictions of the individuals energetic scope for survival, 
growth and reproduction, given the considered environmental conditions (Kooijman 2010, Jusup et 
al. 2017). These mechanistic approaches have been of interest for several years to the marine 
Antarctic community (Gutt et al. 2012, Constable et al. 2014a, Gutt et al. 2018), and have been 
increasingly developed during recent years (e.g. Agüera et al. 2015, 2017, Goedegebuure et al. 
2018, Henschke et al. 2018).  
This study is based on the example of the limpet Nacella concinna and uses data from literature 
supplemented by experiments conducted in Antarctica in February 2018, to build the DEB models 
of the intertidal and subtidal morphotypes of the species. The separately produced models were 
accurate, with a reduced error between observations and model predictions, except for some 
scatter among data such as Length~GSI relationship. Such accuracy was mainly possible thanks 
to the important amount of uni-variate data that were provided by the complementary experiments 
conducted in Rothera, which filled knowledge gaps about reproduction, collected more precise 
length weight relationships to observe the morphological contrasts between intertidal and subtidal 
individuals and collected more precise information on the limpet’s metabolic performance through 
its development.  
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Rates (and ages) depend on temperature. Here we correct for differences in temperature using an 
Arrhenius relationship. However, in order to meaningfully compare differences in parameters 
between species living in different habitats, it is useful to standardize all parameters to a common 
reference temperature: Tref= 20°C. This is the standard for presenting and comparing DEB 
parameters across the 2,000 different species in AmP. When comparing DEB parameters 
estimations of N. concinna to those of their temperate counterpart Patella vulgata (Kooijman et al. 
2017) at Tref= 20°C, we notice clear differences between the species in term of metabolic 
strategies, although the limpets morphology and therefore size and volume are close between the 
two species (close length and predicted shape coefficient δM). For N. concinna, predicted κ is much 
higher and close to 1 (0.9256 vs 0.617 for P. vulgata), meaning that almost all the energy available 
in the reserve compartment is allocated to somatic maintenance and growth, and only a small 
amount is available for reproduction. This is clearly visible with the ultimate rate of reproduction 
more than 40 times lower for the Antarctic limpet compared to the temperate one. The capacity to 
assimilate resources {𝑝̇Am} was estimated to be 10 times higher for P. vulgata, explaining the 2.5-
fold lower growth rate for N. concinna. The two metabolisms also contrast by the fact that P. 
vulgata is predicted to store more reserves than N. concinna in similarly abundant food conditions. 
These results are consistent with published experiments, where it was shown that rasping rates 
(i.e. feeding potential) were higher for temperate and tropical species than for N. concinna (Morley 
et al. 2014) and that development rates of Antarctic marine molluscs are much slower than at 
higher temperatures (Peck et al. 2007, 2016), which could be partially due to the increased costs 
of protein production in the cold (Marsh et al. 2001, Robertson et al. 2001, Pörtner et al. 2007). 
Such examples of comparison of energetic performance between these two species highlight the 
performance of DEB models to be efficiently applied for Antarctic case studies and powerful and 
accurate enough to enhance physiological contrasts even between closely related species; as 
previously discussed in other works (van der Veer et al. 2006, Gatti et al. 2017, Marques et al. 
2018, Marn et al. 2019).  
 
4.2. Comparison between morphotypes  
 
In a second step, we evaluated if known contrasts in physiological traits between the morphotypes 
could be highlighted by the modelling approach. By simply comparing the two single models, we 
observed minimal energetic contrasts between the intertidal and subtidal morphotypes (small 
differences in assimilation rate and ability to store reserves, Table 1.3, Fig. 1.3). By using the 
augmented-loss-function method, we tried to merge the models into a single one, parameter by 
parameter, to evaluate the contrasts in parameters between the types (Lika et al. 2020). Results 
show that models were merged without generating significant changes in MRE and loss function 
values (Fig. 1.4, Appendix 1.4). Predictions of the uni-variate data are really similar between the 
three models (Fig. 1.3), with only minor differences in temperature-corrected parameter values 
between both populations, meaning that the observed differences are best explained by 
differences in environmental conditions (temperature and food availability).  
Despite the known physiological contrasts in the field, the available data did not allow the models 
to capture these physiological differences between the morphotypes, using only the available data. 
Scatter distribution of the data used to calibrate the model (Fig. 1.3) can hide metabolic 
differences, which calls for more experiments to describe the physiology of the different 
morphotypes. Using more complete datasets, for which all parameters are independent between 
intertidal and subtidal morphotypes, may also help to further constrain the differences. In our case 
study, several zero-variate data are shared between the intertidal and subtidal models, among 
which age, length and weight at birth, that control the very beginning of the development. The 
observed results of a two-fold difference in metabolism acceleration of intertidal morphotypes 
compared to subtidal ones (sM ≈ 8 and 4 for intertidal and subtidal) is in fact an artefact caused by 
common parameters related to birth and puberty stages (age, length, weight). Indeed, specific 
assimilation at birth for the subtidal is two times larger than that for the intertidal, which indicates 
that subtidal individuals develop faster. However, according to available data provided in the 
model, puberty is reached at the same time for both types. 𝐸𝐻

𝑝 consequently needs to be smaller 
for the intertidal type to reach puberty at the same age ap and length Lp, explaining the observed 
contrasts between the intertidal and subtidal groups.  
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Improving the completeness of these models would therefore be necessary to enable further 
detailed conclusions. 
A common approach in biology is to focus on differences between individuals, populations and 
species. Here we adopt a contrasting strategy in which we force models to determine in what 
manner the populations are similar in order to quantify in what manner they differ. This work is a 
first step to compare the energetics of both populations, and we discovered how (given the data) 
they seem more metabolically similar than what their appearance would suggest as first. We also 
highlight some artefacts that come from the quality of the data and the scatter therein. New data 
(so new knowledge) that fill current knowledge gaps will yield further insight into how the 
metabolisms of these populations have diverged to adapt to differences in environment. The 
current work is a contribution to understanding the relationship  between observations (data) and 
metabolism for these two populations.   
 
4.3. Models drawbacks and improvements 
 
Apart from data availability, a drawback of our model construction is the lack of information about 
environmental properties that makes comparisons between estimations of the two morphotypes 
quite difficult to perform. In the models, we just considered an average temperature for intertidal or 
subtidal habitats from where the limpets come from, but do not add any supplementary detail on 
environmental contrasts between these habitats nor in the difference of food availability between 
the morphotypes. However, contrasting environmental pressures (desiccation, salinity, 
hydrodynamism) and habitat characteristics (immersion time, substratum type, and surrounding 
physico-chemical factors) contribute to contrasting adaptative strategies among which 
morphological adaptation is really important for limpets, but have not been integrated into our DEB 
models (because it requires more data we do not have) (Vermeij 1973, Branch 1981, Denny & 
Blanchette 2000, Sa Pinto et al. 2008, Bouzaza and Mezali 2013, Grandfils 1982, Gray & Hodgson 
2003, Espinosa et al. 2009). Desiccation is one of the strongest hypothesis to explain the 
morphological differences between the intertidal and subtidal morphotypes (Mauro et al. 2003, 
Bouzaza & Mezali 2018). The presence of high upstream shifted apex form for the intertidal 
morphotypes, more exposed to desiccation, could help to store more water and absorb more 
oxygen, as described for Patella ferruginea (Branch 1985, Paracuellos et al. 2003). Similarly, shell 
volumes are bigger for the intertidal type and help reduce water loss (Vermeij 1973, Wolcott 1973, 
Branch 1975, Branch 1981) but also infer resistance to the effects of ice damage (Morley et al. 
2010). Differences in the energetic responses of the two morphotypes of  N. concinna to the 
difference in mean intertidal (0.45°C) and subtidal (-0.1°C), or the much greater difference in 
maximum (12.3 versus 1.7°C respectively; Morley et al. 2012), could be a proximate cause of the 
morphological differences. Taking into consideration differences between environments is 
therefore important but strongly lacking in the analysis presented here.  
 
In our study, field data show a slight difference in shell length of +5% and a small difference also in 
the predicted shape coefficient of 0.45 against 0.39 (Table 1.3) for respectively the intertidal and 
subtidal individuals. This indicates very small differences in inner volumes between the studied 
populations as calculated by the DEB, meaning that the DEB model does not adequately reflect 
the difference in morphology between the intertidal and subtidal morphotypes. In the raw data, 
shell heights present a 33% difference between intertidal and subtidal individuals (Appendix 1.1) 
but shell length was used, rather than shell height, in the model to characterise the growth 
structure of the species. Fine tuning the models with extra shape information could have helped to 
bring further contrasts between the two models, but also requires much more information on shell 
growth. 
 
Moreover, the difference in food availability and quality was hypothetized between the 
morphotypes when calibrating the model, despite food abundance and quality knowledge being 
responsible for strong contrasts in DEB model outputs (Kooijman 2010, Thomas et al. 2011, 
Saraiva et al. 2012, Sarà et al. 2013). During winter time, the intertidal type seems to have 
supplementary access to ice-algae and microphytobenthos in rock crevices, whereas the subtidal 
type mainly grazes on the diatoms films growing on encrusing red algae (Appendix 1.1, Obermüller 
et al. 2011). But food abundance and quality were assumed for the construction of the models, as 
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no data accurate enough were available to characterise the feeding behaviour of the limpets. 
Moreover, in the case of intertidal type, no clear hypothesis is available for their behaviour during 
winter period, as several authors hypothesize either a migration into the subtidal or a dormance 
period hidden into crevices during the period where ice is covering their habitat (Brêthes et al. 
1994, Obermüller et al. 2011). However, this information would be essential to explain how these 
individuals energetically behave during this period.  
 
4.4. Potential of the approach  
 
This study showed that it is feasible to build a DEB model for a marine Antarctic species, with few 
available data. Adding extra information from sampling and experiments during a single expedition 
in the field considerably increased the accuracy of the model and highlighted some small 
differences in energy allocation priorities, maintenance costs and reproductive potential between 
the intertidal and subtidal morphotypes. But the method is then limited by model calibration and 
data availability since it could not prove that these contrasts are explained by anything else but 
environmental conditions.  
 
Such DEB models would already be sufficient to (1) describe the performance of the species 
physiological traits in spatially or temporally contrasting environmental conditions (Kearney et al. 
2012, Teal et al. 2012), (2) to be upscaled to the population level to assess population structure 
and density dynamics (Klanjšček et al. 2006, Arnould-Pétré et al. 2020 - Chapter 1), or (3) to be 
integrated into a dynamic network by adding knowledge about interaction with other species (Ren 
et al. 2010, 2012). Adding some data from extra experiments would easily enable further 
development of these models for ecophysiological or ecotoxicological applications (Muller and 
Nisbet 1997, Pouvreau et al. 2006, Peeters et al. 2010, Sarà et al. 2011), or to improve knowledge 
about development stages, behaviour or reproduction (Pecquerie et al. 2009, Rico-Villa et al. 2010, 
Kooijman et al. 2011). 
 
In this study, we wanted to explore whether the amount of data that was available to build these 
models were sufficient to see the known physiological and morphological differences between the 
two morphotypes, and results show that more data are necessary.  
 
To conclude, we advise the use of DEB approach for ecological modelling for Antarctic case 
studies but modellers should be aware of the necessity to calibrate models with accurate data to 
fine tune results. Among these data, the description of the species habitat is complex information 
to be integrated into a model and most of the time only partial information is available. Working in 
narrow scale areas where habitat is known and described and where experiments can be run 
might be a good option.  
Our study also hightlights the interest of DEB models to reuse data from experiments from 
historical published works from Antarctic campaigns and highlights the importance of precisely 
documenting the associated metadata (notably the description of the environment and the 
conditions in which the limpets are living), data that is not always available.   
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APPENDIX 1.1. Experimental design S. Morley February 2018, Rothera Station 
 

Collection of limpets 

Intertidal N. concinna were collected from East Beach at low tide and subtidal N. concinna by SCUBA divers 
at 30m depth off the wharf at the British Antarctic Survey Research Station, Rothera Point, Adelaide Island 
(67°34.25′S, 68°08.00′W). Representative habitats are shown in Figure S1.1. 

 
Figure S1.1. Left panel, image of the intertidal Nacella concinna habitat at low tide. Right panel, representative image of 
the N. concinna habitat at 30m. In the right panel the urchin Sterechinus neumayeri and the limpet N. concinna are 
clearly visible on the rock in the foreground. 

 

Measurement of routine metabolic rate 

After collection animals were transported in seawater to the Rothera flow through aquarium where they were 
maintained without supplementary feeding for 10-20 days to allow the majority of their last meal to be 
processed and the peak in specific dynamic action to have passed before routine metabolic rate was 
measured. 

Routine metabolic rate was measured in closed cell respirometers, following the methodology of Peck 
(1989), except that oxygen concentration was measured with a Fibox-3 oxygen meter (Presens GmbH, 
Regensberg, Germany; e.g. Morley et al. 2009a). Oxygen sensitive foils were calibrated before each 
measurement using 5% w/w sodium dithionite for 0% and fully aerated water for 100%. During trials oxygen 
concentration was not allowed to fall below 70% of air saturation, which is above the threshold for oxy-
regulation of N. concinna (Morley et al. 2009a). Two empty chambers (controls) were run with each trial to 
account for background oxygen consumption, which was routinely less than 10% of the animal's 
consumption. After each trial the volume of each limpet was measured (through displacement) and this was 
subtracted from the volume of the respirometer to measure the volume of water within each respirometer. 

To calculate the oxygen consumption of organic tissue per gram, wet weights of whole animals and wet 
weights of all tissues, minus the shell, were measured. Tissue was then dried in an oven at 60°C for 24 
hours and then reweighed every 24 hours until a constant dry weight, ± 0.010g, was achieved. The dried 
tissue was then ashed in a furnace at 475°C for 24 hours and ash free dry mass was measured. 
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Supplementary results 

Table S1.1A. Size, dry mass, Ash Free Dry Mass and routine metabolic rate of Nacella concinna collected from the 
intertidal and 30m depth in January 2018. 

Shore Height Shell Length/mm Shell height / mm Tissue Wet Mass/g Ash Free Dry Mass/g MO2/ 
μmol.O2hr-1 .g AFDM-1 

Intertidal 23.0 7.9 1.39 0.23 31.92 

Intertidal 27.1 11.4 1.89 0.34 6.09 

Intertidal 27.1 9.7 1.45 0.20 8.05 

Intertidal 19.2 6.4 0.59 0.11 16.58 

Intertidal 22.8 8 1.08 0.18 7.20 

Intertidal 22.6 7.7 0.88 0.16 6.66 

Intertidal 28.8 11.7 2.53 0.35 18.18 

Intertidal 21.3 6.1 0.73 0.12 9.57 

Intertidal 25.7 11.3 1.70 0.23 5.65 

Intertidal 21.5 7.4 0.93 0.14 8.62 

Intertidal 16.6 5.3 0.39 0.08 9.38 

Intertidal 24.8 9.3 1.41 0.18 7.94 

Intertidal 22.1 7.5 1.01 0.16 9.99 

Intertidal 30.5 15.3 2.85 0.55 7.45 

Intertidal 31.4 12.3 3.02 0.47 10.65 

Intertidal 23.2 7.8 0.97 0.20 5.62 

Intertidal 20.2 5.8 0.52 0.08 4.39 

Intertidal 38.1 19.7 2.06 0.29 6.34 

Intertidal 26.0 10.8 1.81 0.27 9.80 

Intertidal 19.9 6.4 0.49 0.08 9.80 

Intertidal 30.2 11.6 2.32 0.40 17.98 

Intertidal 28.7 10.4 2.56 0.40 7.20 

Intertidal 22.0 8.4 0.88 0.12 10.09 

Intertidal 20.3 6.6 0.69 0.09 8.19 

Intertidal 27.0 10.9 1.79 0.25 5.96 

Intertidal 21.2 6.6 0.72 0.10 9.03 

Intertidal 16.2 5 0.35 0.06 8.74 

Intertidal 25.4 7.9 1.11 0.19 7.13 

Intertidal 25.6 9.6 1.60 0.32 7.69 
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30m 23.3 5.8 0.95 0.16 11.29 

30m 26.0 6.8 1.28 0.14 9.81 

30m 28.2 7.2 1.22 0.09 9.63 

30m 17.5 4.3 0.35 0.05 14.93 

30m 20.9 5.8 0.77 0.11 9.60 

30m 21.5 5.8 0.60 0.09 7.47 

30m 24.5 7.3 1.15 0.18 4.22 

30m 27.5 6.8 1.57 0.18 6.56 

30m 18.3 4.6 0.33 0.03 14.63 

30m 20.3 4.7 0.43 0.07 6.12 

30m 23.8 6.5 0.92 0.15 7.21 

30m 26.0 7.5 1.34 0.16 11.78 

30m 20.8 6.2 0.62 0.08 18.07 

30m 23.0 6.7 0.76 0.10 8.03 

30m 27.8 6.6 1.59 0.24 6.83 

30m 30.4 9.1 1.62 0.18 8.90 

30m 22.5 4.9 0.58 0.07 21.05 

30m 25.5 5.6 1.02 0.16 8.04 

30m 21.1 4.9 0.65 0.07 5.48 

30m 22.5 5.4 0.60 0.11 11.36 

30m 31.7 10.9 2.26 0.26 5.53 

30m 33.2 6.9 3.25 0.41 9.02 

30m 22.9 6.4 0.76 0.08 7.49 

30m 18.1 4.1 0.42 0.05 10.57 

30m 17.1 4.6 0.25 0.02 10.25 

30m 22.3 6 0.85 0.11 8.67 

30m 21.6 5.3 0.60 0.07 8.77 

30m 17.4 3.8 0.23 0.04 10.90 

30m 19.6 6 0.47 0.07 8.82 
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Table S1.1B. Size at first reproduction for both intertidal and subtidal (30m depth) Nacella concinna collected from 
Rothera Point, Adelaide Island. Sex was determined where possible; otherwise individuals were classified as immature. 
There was only one ripe male in January when measurements were made. 

Shore 
Height 

Shell 
Length/mm 

Tissue wet 
mass/g 

Gonad wet 
mass/ g 

Somatic wet 
mass/ g 

Gonad somatic 
Index 

sex Note 

intertidal 18.8 0.38 0.01 0.38 0.02 F   

intertidal 26.1 1.63 0.20 1.43 0.12 M   

intertidal 26.2 1.43 0.11 1.31 0.08 F   

intertidal 26.3 1.29 0.11 1.18 0.08 F   

intertidal 25.8 1.49 0.18 1.31 0.12 F   

intertidal 17.5 0.30 0.01 0.29 0.02 M   

intertidal 30.7 2.57 0.65 1.92 0.25 M ripe 

intertidal 15.4 0.35 0.04 0.31 0.11 M   

intertidal 30.0 2.04 0.34 1.70 0.17 M   

intertidal 17.0 0.34 0.03 0.31 0.09 M   

intertidal 27.5 1.45 0.15 1.30 0.10 F   

intertidal 26.8 1.52 0.17 1.35 0.11 M   

intertidal 22.1 0.85 0.06 0.78 0.08 M   

intertidal 25.2 1.30 0.07 1.23 0.06 M   

intertidal 22.8 0.87 0.07 0.80 0.08 F   

intertidal 24.2 1.10 0.11 0.99 0.10 F   

intertidal 29.5 1.64 0.10 1.54 0.06 F   

intertidal 29.8 2.31 0.23 2.07 0.10 F   

intertidal 33.5 2.79 0.32 2.48 0.11 F   

intertidal 19.9 0.55 0.00 0.55 0.01 F   

intertidal 17.8 0.38 0.03 0.35 0.09 M   

intertidal 20.1 0.59 0.03 0.57 0.05 F   

intertidal 19.5 0.51 0.03 0.48 0.06 M   

intertidal 21.8 0.68 0.02 0.66 0.03 M   

intertidal 17.2 0.34 0.00 0.34 0.00 I no gonad visible 

intertidal 18.3 0.54 0.01 0.53 0.01 F   

intertidal 26.3 1.15 0.21 0.94 0.18 M   

intertidal 21.7 0.65 0.00 0.65 0.00 M   

intertidal 18.5 0.49 0.03 0.45 0.07 M   

30m 24.4 1.18 0.00 1.18 0.00 I   
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30m 25.5 1.28 0.03 1.25 0.02 M   

30m 22.5 0.86 0.01 0.84 0.01 M   

30m 41.2 4.79 0.54 4.26 0.11 M   

30m 41.8 5.50 0.30 5.19 0.05 M   

30m 24.4 0.96 0.44 0.52 0.46 M   

30m 31.1 1.92 0.01 1.91 0.01 F   

30m 24.2 0.85 0.00 0.85 0.00 M   

30m 24.1 0.89 0.01 0.87 0.01 M   

30m 21.9 0.68 0.01 0.68 0.01 M   

30m 17.7 0.31 0.01 0.31 0.02 M   

30m 28.3 1.72 0.06 1.67 0.03 M   

30m 18.7 0.56 0.00 0.56 0.00 I   

30m 20.1 0.44 0.00 0.44 0.00 I   

30m 18.2 0.33 0.00 0.33 0.00 I   

30m 30.1 2.25 0.05 2.20 0.02 M   

30m 21.7 0.84 0.02 0.82 0.02 M   

30m 22.5 0.89 0.01 0.89 0.01 M   

30m 25.6 1.16 0.10 1.06 0.09 M   

30m 23.1 1.15 0.04 1.11 0.03 M   

30m 24.1 1.04 0.02 1.02 0.02 M   

30m 20.3 0.61 0.00 0.61 0.00 I   

30m 18.5 0.42 0.00 0.42 0.00 I   

30m 27.7 1.24 0.06 1.18 0.05 M   

30m 30.2 1.91 0.13 1.78 0.07 M   

30m 28.0 1.31 0.03 1.28 0.02 F   

30m 23.8 0.88 0.01 0.87 0.01 F   

30m 32.8 2.06 0.00 2.05 0.00 M   

30m 27.1 1.63 0.02 1.62 0.01 F   

30m 29.0 2.07 0.02 2.04 0.01 M   

30m 26.8 1.54 0.02 1.52 0.01 F   

30m 34.7 3.54 0.04 3.50 0.01 F   

30m 40.0 4.88 0.49 4.39 0.10 M   

30m 29.5 2.18 0.14 2.04 0.07 M   
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30m 29.8 1.29 0.04 1.25 0.03 F   

30m 41.0 5.28 0.56 4.72 0.11 M   

30m 30.3 2.29 0.05 2.24 0.02 F   

30m 25.7 1.39 0.00 1.39 0.00 I   

30m 39.3 4.72 0.00 4.72 0.00 I   

30m 28.3 1.44 0.08 1.36 0.05 M   

30m 26.7 1.52 0.07 1.44 0.05 M   

30m 25.5 1.05 0.01 1.03 0.01 F   

30m 32.9 2.63 0.13 2.50 0.05 M   

30m 34.7 2.95 0.12 2.83 0.04 F   

30m 32.7 2.91 0.32 2.59 0.11 M   

30m 29.0 1.44 0.02 1.43 0.01 F   

30m 24.4 0.91 0.00 0.91 0.00 I   

30m 28.6 0.71 0.11 0.60 0.15 F   

30m 23.9 0.92 0.02 0.91 0.02 F   

30m 31.2 2.53 0.01 2.53 0.00 F   

30m 26.5 1.38 0.07 1.31 0.05 M   

30m 29.0 1.60 0.09 1.52 0.05 M   

30m 26.4 1.24 0.03 1.20 0.03 M   

30m 36.7 3.11 0.17 2.94 0.05 M   
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APPENDIX 1.2. Sclerochronology protocol 
 
Based on the literature (Picken 1980, Fig. S1.2A), the distance between the apex of the shell and the 
different black rings are measured using a ‘mesuroscope’ at Biogeosciences Laboratory (Université de 
Bourgogne Franche-Comté, France). According to Picken (1980), black rings correspond to winter growth, 
and lighter bands to summer growth, which can be a proxy to characterise growth dynamics through time 
(Fig. S1.2A).  

 
Figure S1.2A. Picken (1980)’s protocol to characterise ring growth through time. Dark rings correspond to winter growth 
and light rings to summer growth periods. 
 
The ‘mesuroscope’ (Fig. S1.2.B) is a binocular microscope connected to a computer that enables 
coordinates to be marked and reported onto an excel sheet; the x,y position (movement of the horizontal 
plateau where the shell is fixed) and the z position (measured by the vertical movement of the plate, 
corresponding to zooming in or out and therefore to the height of the shell). The shell is observed with the 
binocular microscope, a pointer helps at positioning the focus on the screen and a button automatically 
saves the x, y, z positions on the excel sheet, making measurements fast, efficient and precise. Precision is 
10µm. The position of each black ring, on the left side and on the right side of the apex is measured and 
summed to assess the total shell growth between two rings (Fig. S1.2.B). Each shell was photographed 
before the procedure to estimate the position of each dark ring, which is not that precise and simple for all 
cases (Fig. S1.2.B).  
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Figure S1.2.B. Details of the ‘mesuroscope’ (a,b) with the binocular loop connected to the computer, which automates 
the acquisition of the x,y,z measurements. (c) Schematic representation of the procedure adopted for the measurements 
of the rings. First, the apex was positioned, and the distance from the apex to the right and left part of each ring was 
measured (x, y) and summed to get the diameter of each dark ring (M#1, M#2, M#3). (d) Example of picture captured by 
P. Pernet to prepare ahead the measurement the position of the black rings.  
 
Each of the 60 shells was measured following this protocol and 20 of them were measured twice for replicate 
analysis. No significant difference was observed between the replicates. 
The length ~ time measurements were added to the intertidal and subtidal DEB models.  
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APPENDIX 1.3. Merged models, replicates 
 
Table S1.3. Summary of goodness of fit, DEB parameter estimates at a reference temperature of Tref= 20°C of the 
different merging trials. Predicted values for zero-variate data, relative error (RE) for the uni-variate data. MRE= Mean 
Relative Error. ‘Trials’ are defined as merging procedures where the parameters are merged in different orders, namely, 
Trial #1: Merge ℎ̈a, EHp, κ, EHb, z, [𝑝̇M], [EG], 𝑣̇, EHj, δM_larvae, δM; Trial #2: merge [EG], EHj, EHb, 𝑣̇, ℎ̈a, κ, δM_larvae, [𝑝̇M], δM, 
EHp, z; Trial #3: merge δM, EHb, EHj, EHp, ℎ̈a, κ, [𝑝̇M], 𝑣̇, z, δM_larvae, [EG]; Trial #4: merge z, EHp, δM, [𝑝̇M], δM_larvae, κ, ℎ̈a, 𝑣̇, 
EHb, EHj, [EG]; Trial #5: Merge z, [𝑝̇M], δM_larvae, κ, ℎ̈a, 𝑣̇, EHb, [EG], EHj, EHp, δM. 
 

 TRIAL #1 TRIAL #2 TRIAL #3 TRIAL #4 TRIAL #5  

MRE intertidal 0.196 0.197 0.196 0.196 0.196         

MRE subtidal 0.227 0.228 0.227 0.227 0.227 

Loss function 0.7936 0.7937 0.79363 0.79364 0.79363 

DEB parameters 

z 0.2586 0.259 0.2576 0.2582 0.2579 

{𝒑̇Am} 6.8590 6.8688 6.86581 6.85855 6.8617 

𝒗̇ 0.0498 0.04984 0.04987 0.04988 0.04989 

κ 0.9257 0.925 0.9254 0.9261 0.9256 

[𝒑̇M] 24.56 24.54 24.66 24.6 24.62 

[EG] 3953 3952 3952 3952 3952 

𝑬𝑯
𝒃  0.0014 0.0014 0.0014 0.001409 0.0014 

𝑬𝑯
𝒋  0.9179 0.9324 0.9252 0.9145 0.9206 

𝑬𝑯
𝒑  94.56 95.7 95.01 93.96 94.66 

𝒉̈a 4.248.10-8 4.328.10-8 4.234.10-8 4.242.10-8 4.24.10-8 

sG 10-4 10-4 10-4 10-4 10-4 

δM 0.4249 0.4247 0.4247 0.4248 0.4247 

δM_larvae 0.7215 0.7233 0.7215 0.7215 0.7215 

sM 8.5311 8.5484 8.54249 8.53997 8.5372 

Zero-variate 

 prediction// RE prediction// RE prediction// RE prediction// RE prediction// RE 

ab (d) 10.62            0.0618 10.62            0.6158 10.61           0.0611 10.61           0.0611 10.61              0.0609 

ap (y) 3.66              0.0839 3.66              0.0855 3.66             0.0849 3.66             0.0850 3.66                0.0845 

am (y) 14                 3.10-4 13.92            0.0054 14              1.34.10-5 14               3.75.10-5 14                  1.6.10-4 

Lb (cm) 0.0228         1.7.10-6 0.02274        0.0026 0.0228       2.93.10-5 0.0228        2.64.10-5 0.0228         1.42.10-6 

Lp (cm) 1.49             0.0325 1.492            0.0617 1.491            0.0624 1.49            0.0323 1.49                0.0323 

Li (cm)  5.192           0.2013 5.212            0.0564 5.182            0.0618 5.19             0.201 5.184              0.2024    

Ww0 (g) 5.72.10-6       0.0137 5.72.10-6     0.0133 5.72.10-6     0.0136 5.72.10-6     0.0144 5.72.10-6             0.0138 
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Wdp (g) 0.03956       0.6762 0.03967        0.3038 0.0396          0.3057 0.03957        0.677 0.03956          0.6762 

Uni-variate 

 RE RE RE RE RE 

LWd_signy 
(cm, g) 

0.1271 0.3323 0.3322 0.1273 0.1274 

LWd (cm, g) 0.2156 0.3307 0.3306 0.2158 0.216 

LGSI (cm, -) 0.5828 1.061 1.054 0.5812 0.5835 

LJO  
(cm, μmol/h) 

0.2488 0.3133 0.3138 0.2487 0.2487 

TJO (K, μL/h) 0.0878 0.0882 0.0874 0.08764 0.08757 

tL (d, cm) 0.4096 0.4772 0.475 0.4101 0.4097 
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APPENDIX 1.4. Merged models, replicates: changes in MRE 
 

 
Figure S1.4. Evolution of Mean Relative Error (MRE) values along the merging of the different parameters. MRE 
intertidal in solid blue line, MRE subtidal in dashed purple line. ‘Trials’ are defined as merging procedures where the 
parameters are merged in different orders, namely, Trial #1: Merge ℎ̈a, EHp, κ, EHb, z, [𝑝̇M], [EG], 𝑣̇, EHj, δM_larvae, δM; Trial 
#2: merge [EG], EHj, EHb, 𝑣̇, ℎ̈a, κ, δM_larvae, [𝑝̇M], δM, EHp, z; Trial #3: merge δM, EHb, EHj, EHp, ℎ̈a, κ, [𝑝̇M], 𝑣̇, z, δM_larvae, [EG]; 
Trial #4: merge z, EHp, δM, [𝑝̇M], δM_larvae, κ, ℎ̈a, 𝑣̇, EHb, EHj, [EG]; Trial #5: Merge z, [𝑝̇M], δM_larvae, κ, ℎ̈a, 𝑣̇, EHb, [EG], EHj, 
EHp, δM. Trial 5 is presented in the main manuscript (Figure 1.4).  
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Abstract 
The Kerguelen Islands are part of the French Southern Territories, located at the limit of 
the Indian and Southern oceans. They are highly impacted by climate change, and 
coastal marine areas are particularly at risk. Assessing the responses of species and 
populations to environmental change is challenging in such areas for which ecological 
modelling can constitute a helpful approach. In the present work, a DEB-IBM model 
(Dynamic Energy Budget – Individual-Based Model) was generated to simulate and 
predict population dynamics in an endemic and common benthic species of shallow 
marine habitats of the Kerguelen Islands, the sea urchin Abatus cordatus. The model 
relies on a dynamic energy budget model (DEB) developed at the individual level. 
Upscaled to an individual-based population model (IBM), it then enables to model 
population dynamics through time as a result of individual physiological responses to 
environmental variations. The model was successfully built for a reference site to 
simulate the response of populations to variations in food resources and temperature. 
Then, it was implemented to model population dynamics at other sites and for the 
different IPCC climate change scenarios RCP 2.6 and 8.5.  
Under present-day conditions, models predict a more determinant effect of food 
resources on population densities, and on juvenile densities in particular, relative to 
temperature. In contrast, simulations predict a sharp decline in population densities 
under conditions of IPCC scenarios RCP 2.6 and RCP 8.5 with a determinant effect of 
water warming leading to the extinction of most vulnerable populations after a 30-year 
simulation time due to high mortality levels associated with peaks of high temperatures. 
Such a dynamic model is here applied for the first time to a Southern Ocean benthic and 
brooding species and offers interesting prospects for Antarctic and sub-Antarctic 
biodiversity research. It could constitute a useful tool to support conservation studies in 
these remote regions where access and bio-monitoring represent challenging issues. 
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Ecological modelling, Kerguelen, climate change, model sensitivity, endemic echinoderm, Dynamic 
Energy Budget, Individual-based model 
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1. INTRODUCTION 
The Kerguelen Islands are part of the French Southern Territories (Terres australes françaises - 
Taf), located at the limit of the Indian and Southern oceans, in the sub-Antarctic area. The region is 
highly impacted by climate change, and coastal marine ecosystems and habitats are particularly at 
risk given that species have long adapted to cold and stable conditions (Waller et al. 2017, Gutt et 
al. 2018, Convey and Peck 2019). Coastal marine species of the Kerguelen Islands are threatened 
by temperature and seasonality shifts, which are expected to intensify in a near future (Turner et 
al. 2014, IPCC 5th report). Future predictions of the Intergovernmental Panel on Climate Change 
(IPCC 5th report) are provided as possible Representative Concentration Pathways (RCP) 
scenarios of climate change and can be used to infer the potential response of ecosystems to 
future environmental conditions. However, the insufficient spatial and time resolutions of such 
models constitute serious limitations for assessing the effects of future environmental changes on 
sub-Antarctic species (Murphy and Hofmann 2012, Constable et al. 2014b).  
The echinoid Abatus cordatus (Verrill, 1876) is endemic to the Kerguelen oceanic plateau and 
common in coastal benthic habitats of the Kerguelen Islands. It is reported in the northern 
Kerguelen plateau, and around Heard and Kerguelen islands but most records are from shallow, 
coastal areas of the Kerguelen Islands where dense populations are commonly observed (Agassiz 
1881, De Ridder et al. 1992, Mespoulhé 1992, Poulin 1996, David et al. 2005, Hibberd and Moore 
2009, Guillaumot et al. 2016, Guillaumot et al. 2018a,b). This makes the species particularly at risk 
considering the synergetic effects of the multiple factors (temperature variations, significant shifts 
in coastal currents, sedimentation rates and phytoplanktonic blooms) affecting coastal marine 
communities at high latitudes (Waller et al. 2017, Stenni et al. 2017, Gutt et al. 2018). The species’ 
endemicity can be partly related to low dispersal capabilities, which is a consequence of a 
particular life trait: A. cordatus broods its young in incubating pouches located on the aboral side of 
the test, and has a direct development with no larval stage and no metamorphosis. The low 
dispersal capacity of A. cordatus likely increases its vulnerability to environmental changes 
(Ledoux et al. 2012). 
Benthic fauna of sub-Antarctic regions remains under-studied compared to pelagic species 
(Améziane et al. 2011, Xavier et al. 2016). Ecological niche models can represent relevant tools to 
study the consequences of environmental changes on the biology of these benthic organisms and 
on their population dynamics. Correlative niche models were used to predict the distribution of 
suitable areas for A. cordatus on the Kerguelen plateau (Guillaumot et al. 2018a,b). However, 
supplementary data and analyses are still needed to depict and understand the species’ response 
to environmental changes.  
In the present work, a mechanistic modelling approach using a Dynamic Energy Budget – 
Individual-Based Model (DEB-IBM) was used to analyse the biological response of A. cordatus to 
various environmental conditions. An individual mechanistic model (DEB) was first built using 
experimental and literature data (Guillaumot 2019c). A DEB model aims to represent the 
physiological development of an organism, from the embryo to its death based on energetic fluxes 
and allows considering the metabolic state of the individual at any given moment of its life cycle. It 
relies on biological principles and first laws of thermodynamics to recreate the metabolic 
development as a function of two environmental parameters, food resources and temperature 
(Kooijman 2010). 
The DEB model was then upscaled to the population level (IBM), wherein it was implemented as 
iterative mathematical calculations of each organism’s individual development in the population. 
The IBM relies on the simulation of individuals as autonomous entities forming a complex 
population within a dynamic system (Railsback and Grimm 2019). The DEB-IBM is used to analyse 
population dynamics emerging from the development and the physiological traits of individuals as 
a function of environmental forcing variables (i.e. food resources and temperature). The DEB-IBM 
can then be used to simulate population dynamics under different environmental scenarios, 
enabling a better quantification of the vulnerability of populations to changing environmental 
conditions.  
Modelling population dynamics using a DEB-IBM model for a sub-Antarctic and brooding 
invertebrate brings a feature so far unseen in other published DEB models. The main objectives of 
the study were to develop a DEB-IBM model for A. cordatus (1) to simulate population structure 
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and dynamics at different sites under both current environmental conditions and future IPCC 
climate scenarios RCP 2.6 and RCP 8.5, and (2) to assess the feasibility of such a model for 
organisms in a region where low data availability and resolution may limit model building and 
validation. The current resolution and accuracy of future climate scenarios in sub-Antarctic areas 
do not allow building precise and reliable predictions for the future but they were used here as a 
proof of concept to test population responses to various, conceivable conditions. Sensitivity 
analyses were performed to test the robustness, potential and relevance of models (Grimm and 
Berger 2016) considering data availability. Simulations performed for various temperature 
conditions and food resource availabilities, if validated, may constitute a promising tool to address 
conservation issues.  
 

2. MATERIAL AND METHODS 
 
2.1. Study area 
 
The DEB-IBM population model was generated in the geographic and environmental context of the 
Kerguelen Islands (Fig. 1.5) using data of the study site of Anse du Halage, a fieldwork station that 
has regularly been investigated through several biological studies since the 1980s (Magniez 1980, 
Schatt and Féral 1991, Mespoulhé 1992, Poulin 1995, Poulin and Féral 1998, Ledoux et al. 2012). 
The Kerguelen Islands show jagged coastlines and numerous islets and fjords that provide a large 
variety of habitats to the marine benthic fauna. The nature of the seafloor varies from rocky to 
sandy and muddy shores. The predominance of the giant kelp Macrocystis pyrifera is a main 
feature of the Kerguelen as this engineer and key species plays a decisive role in the protection 
and structuring of benthic shallow habitats in many places of the archipelago (Lang 1967, 1971, 
Arnaud 1974, Féral et al. 2019).  
Located in the Morbihan Bay, a 700 km2 semi-enclosed shallow embayment (50m depth on 
average) of the Kerguelen Islands, Anse du Halage is situated at the bottom of a small and shallow 
(2m depth) cove dominated by fine to medium sands (Magniez 1979, Poulin 1996) (Fig. 1.5). The 
tidal range is comprised between 0.4 and 2.1m, so that the area can exceptionally be uncovered at 
the lowest tides (Schatt and Féral 1991, Mespoulhé 1992). Sea surface temperature varies 
between 1 and 2°C in winter (September) to 7 to 8°C in summer (March), with sporadic peaks of 
+11°C in some places, for certain years (Schatt and Féral 1991, Féral et al. 2019). Salinity varies 
between 31.89 and 33.57 (Arnaud 1974). 
Temperature data used in the model were collected in the framework of the Proteker program 
(French Polar Institute n°1044) (Féral et al. 2019) and accessed online (IPEV programme n°1044, 
http://www.proteker.net/-Thermorecorders-.html?lang=en accessed on 08/05/2019). They were 
recorded from 2012 to 2018 at three sites used in the model (Fig. 1.5): Ile Longue (for the model at 
Anse du Halage), Ile Haute, an island in the North-Western corner of the Morbihan Bay, and Port 
Couvreux, a coastal site outside the Morbihan Bay, in the Gulf of the Baleiniers on the Northern 
coast of the archipelago (Fig. S1.5). 
The organic matter deposited on the seabed varies with seasonal phytoplankton blooms and 
remineralization by bacteriae (Delille et al. 1979). The sediment organic content and 
phytoplanktonic blooms are particularly important at Anse du Halage, with average values of 4.5% 
of organic carbon content. The sediment organic carbon (OC) content was monthly measured as a 
percentage of sediment dry weight by Delille and Bouvy (1989). 
 
Environmental data time-series are available at a monthly timestep. The model was scaled on a 
single square metre patch, supposing no connectivity between neighbour locations, as no data on 
horizontal nor vertical water movements and matter fluxes were available. 
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Figure 1.5. Location of the studied sites in the Kerguelen Islands, calibration site (Anse du Halage, red star) 
and projection sites (Ile Haute and Port Couvreux, red triangles). 
 
2.2. Study species 
 
Abatus cordatus (Fig. 1.6) is a shallow deposit-feeder and sediment swallower, living at 5°C 
average, full or half buried into soft sediments (De Ridder and Lawrence 1982). It is distributed all 
around the Kerguelen Islands, but population densities are highly variable depending on depth, 
substrate nature and exposure to the open sea. Distributed from the intertidal area to the deep 
shelf over 500m depth, populations highest densities are found in very shallow (0-2m depth) and 
sheltered areas with soft bottoms of fine to medium sand (Poulin 1996). In shallow areas, observed 
density vary from less than 5 individuals/m2 (in the Fjord des Portes Noires, Poulin and Féral 1995) 
to 10 ind./m2 (at Port-aux-Français, Mespoulhé 1992), 130 ind./m2 (Ile Haute, Mespoulhé 1992, 
Poulin 1996), 168 ind./m2 (Port Couvreux, Poulin 1996) and up to 280 ind./m2 (Anse du Halage, 
Magniez 1980, Poulin 1996). Juveniles are commonly found sheltered in between holdfasts of the 
giant kelp Macrocystis pyrifera bordering with sandy shallow areas. 
The species is relatively resistant to low salinities locally induced by freshwater run-off from the 
main island (Guille and Lasserre 1979). It is tolerant to temperature variations, particularly marked 
in shallow areas, but temperature tolerance does not exceed +12°C (personal observations). The 
maximum size ever observed is 4.9 cm in length (Mespoulhé 1992). Lifespan is assumed to be 
around six years old (Mespoulhé 1992), although it cannot be excluded that some individuals may 
grow older. Identified predators are gastropods, crustaceans and seagulls (Poulin and Féral 1995, 
Poulin 1996) from which the specimens are hidden when burrowing into the sediment (Magniez 
1979, Poulin and Féral 1995). 
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Figure 1.6. Specimens of Abatus cordatus. (a) Aboral view of a specimen half buried in sand, (b) Aboral 
view of a female showing the brood pouches with juveniles inside. © Féral J.P. 
 
Sexual reproduction in A. cordatus occurs every year, with all mature females producing eggs 
(Magniez 1983) and incubating their young in their four brood pouches located on the aboral side 
of the test (Fig. 1.6). After brooding, juveniles exit the pouches and start their autonomous 
development on the seabed, in the vicinity of their mother (Magniez 1983, Schatt 1985). 
Reproduction time can greatly differ between sites: generally extending from March to May (as in 
Anse du Halage and Ile Haute), reproduction can also occur from June to August (Ile Suhm), from 
December to February (Port Matha) or from August to November (Port Couvreux) (Poulin 1996). 
Females usually spawn once a year (Poulin 1996). Brooding and burrowing behaviours imply a 
relative sedentary lifestyle and can explain a part of the species endemicity, with dense 
populations scattered all around the archipelago and only a few older individuals that may be found 
isolated from core populations (Mespoulhé 1992, Poulin and Féral 1995). 
 
 
2.3. DEB modelling 
 
Principles 
DEB theory defines individuals as dynamic systems and provides a mathematical framework for 
modelling organisms’ life cycle. It describes physiological processes using four primary state 
variables -reserve, structure, reproduction buffer and maturity- directly linked to mass and energy 
flows and influenced by two forcing variables, temperature and food availability (Fig. 1.7, Kooijman 
2010, Jusup et al. 2017). Based on feeding, growth and reproduction processes, DEB models 
predict the metabolic and development states of organisms through time (Sousa et al. 2008, 
Kooijman 2010). Metabolic processes are linked to shape and size of the organism, represented 
by the structural volume and the structural area. Structural volume is related to maintenance 
processes, while structural area is closely linked to food ingestion and assimilation processes and 
controls the amount of energy arriving into the reserve compartment E (Fig. 1.7, van der Meer 
2006).  
 
The energy contained in the reserve compartment is allocated to organism maintenance (‘somatic’ 
and ‘maturity’ maintenances, priority processes that condition the organism’s survival), to growth 
(increase of structural volume V), and to the increase of complexity (EH) or reproduction buffer 
(ER) (Fig. 1.7) according to the kappa-rule (Kooijman 2010). The complexity is represented as the 
maturity level. The amount of energy accumulated into this compartment triggers metabolic 
switches such as the transition (i.e. ability to feed, to reproduce) between life stages, defined in 
DEB theory (namely embryo, juvenile and adult life stages) (Kooijman 2010). 
 

96



MECHANISTIC MODELS CHAPTER 1. 
 

Article. Arnould-Pétré et al. (2020). Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau 
(Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling.  

 

 
 
Figure 1.7. Schematic representation of the DEB-IBM (Dynamic Energy Budget – Individual-Based Model). 
Individuals (A) undergo development through the DEB model and reproduce (purple arrow). Altogether and 
with a slight inter-individual variability in DEB parameters (*), they form the population of the IBM (B) which 
undergoes population-specific processes (temperature and background mortalities) at the scale of a simple 
square metre patch at the reference site (C). The IBM population is embedded within this specific 
environment, whose environmental conditions (temperature and food resources) affect individual and 
population dynamics. Additionally, the population influences the resources availability following a density-
dependence regulation. 
 
 
Application of DEB model to A. cordatus 
Parameter estimation. An individual mechanistic DEB model was developed for A. cordatus 
(Guillaumot 2019c). Estimated DEB parameters are reported in Table 1.4. The DEB model 
considers a larval growth accelerated compared to the adult stage (Schatt 1985), so-called ‘abj’ 
type model. The model was constructed using data from the literature (Table 1.5). The goodness 
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of fit of the DEB model to the data was evaluated by calculating the Mean Relative Error (MRE) of 
each dataset, which is the sum of the absolute differences between observed and expected 
values, divided by the expected values. MRE values are contained in the interval [0, infinity). The 
MRE is considered to be a reference method to assess DEB modelling performance (Lika et al. 
2011b), for which the closer to 0, the better model predictions match the data.  
 
Table 1.4. Parameters estimated for the DEB model developed for Abatus cordatus. Values are given for the 
reference temperature of 20°C. The MRE of the model is 0.121. 
 

Parameter Symbol Value Unit 

Basic DEB parameters 

Volume of specific somatic maintenance1 
Somatic maintenance rate coefficient1 
Fraction of energy allocated to somatic maintenance and growth1 
Volume-specific cost of structure1 
Energy of maturity at birth1 
Energy of maturity at metamorphosis1 
Energy of maturity at puberty1 
Arrhenius temperature3 

[ṗM] 
k̇M 
κ 

[EG] 
[EH

b ] 
[EH

j ] 
[EH

p ] 
TA 

13.84 
5.10-3 
0.78 
2395 

0.5693 
8.325 
1638 
9000 

J.d-1.cm-3 
d-1 
- 

J.cm-3 
J.cm-3 
J.cm-3 
J.cm-3 

K 

DEB compound parameters 

Energy conductance1 
Maturity maintenance rate coefficient3 
Shape coefficient2 
Maximum structural length 1 
Acceleration factor1  

v̇ 
k̇J 
δ 
Lm 
sM 

0.02722 
0.002 
0.6718 

2.93 
2.397 

cm.d-1 
d-1 
- 

cm 
- 

Reproduction parameters  

Yield of structure on reserve1  
Contribution of reserve to weight1  

yVE 
w 

0.865 
0.647 

#mol.mol-1 
- 

Ageing parameters  

Weibull ageing acceleration1  
Gompertz stress coefficient3 

ḧa 
sG 

5.02.10-6 
0.0001 

d-2 
- 

1 Estimated using the covariation method (Lika et al. 2011a, 2011b, Marques et al. 2018) 
2 Calculated from data for initial value and then estimated with the covariation method 
3 Fixed, guessed value 
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Table 1.5. Zero and uni-variate data used for the estimation of the DEB model parameters. All values are 
given at a measured temperature of 5°C. MRE: Mean Relative Error. Plots related to uni-variate data can be 
found in Appendix 1.6. 

Variable Symbol Obs. Prediction Unit MRE Reference 

Zero-variate data  

Age at metamorphosis1  
Age at puberty2 
Life span 
Length at metamorphosis 
Length at puberty 
Maximal observed length (at 6 years old) 
Ultimate maximal length 
Wet weight of the egg 
Wet weight at metamorphosis 
Wet weight at puberty 
Wet weight at 6 years old 
Gonado-somatic index3 

aj 
ap 
am 
Lj 
Lp 
L6 
Li 

Ww0 
Wwj 
Wwp 
Ww6 
GSI 

142 
1098 
2190 
0.276 
1.9 
4.2 
8 

1.78.10-3 
1.03.10-2 

2.9 
25 

0.07 

143 
1018 
2190 
0.324 
1.824 
3.65 

9.507 
1.59.10-3 
1.70.10-2 

3.03 
24.18 
0.078 

d 
d 
d 

cm 
cm 
cm 
cm 
g 
g 
g 
g 
- 

0.0072 
0.0731 
5.10-8 
0.1738 
0.0399 
0.1321 
0.1883 
0.1081 
0.6482 
0.0448 
0.0328 
0.1194 

Schatt (1985) 
Mespoulhé (1992) 
Mespoulhé (1992) 

Schatt (1985) 
Mespoulhé (1992) 
Mespoulhé (1992) 

guessed 
Schatt (1985) 
Schatt (1985) 

Féral and Magniez (1988) 
Féral and Magniez (1988) 

Magniez (1983) 

 

Variable Symbol Obs. /Prediction Unit MRE Reference 

Uni-variate data  

Time since birth vs. length 
Egg diameter vs. egg wet weight 
Length vs. Wet weight adult 
Length vs. O2 consumption 

tL 
LW_egg 

LW 
LJO 

See Appendix 1.6 
 

d // cm 
cm // g 
cm // g 

cm // µL/h 

0.2259 
0.1262 
0.3248 
0.2872 

Schatt and Féral (1996) 
Mespoulhé (1992) 

Féral and Magniez (1988) 
Féral and Magniez (1988) 

1 moment at which the juveniles leave the brooding pouch of the mother  
2 moment at which the sea urchin is able to reproduce  
3 maximum gonad index for an animal of the maximum size, gonad index as gonad weight/total wet weight. 
 
Maturation and development. Embryos of A. cordatus have a direct development in brood pouches 
of females (Magniez 1983, Schatt 1985). They start feeding inside pouches after 142 days of 
incubation (i.e. 5 months) and leave the pouches as fully developed sea urchins after 8.5 months 
(Schatt 1985). According to DEB theory, individuals are considered embryos until they can feed 
(Kooijman 2010). Before the fifth month, feeding inside the maternal pouches is not clearly 
attested, but feeding through epidermal uptake of Dissolved Organic Matter (DOM) is considered 
as the possible mechanism (Schatt and Féral 1996). At each growth step, energy is supplied to the 
reserve by the ingested food (Fig. 1.7, ṗA) and then leaves the reserve compartment to be directed 
to growth, maturation or reproduction processes through the mobilisation flux (Fig. 1.7, ṗC). This is 
performed following the kappa-rule: a κ fraction is directed towards the structure (growth 
compartment and somatic maintenance, Fig. 1.7, and the remaining (1-κ) fraction towards 
complexity (maturation, reproduction compartments and maturity maintenance, Fig. 1.7). 
 
During the juvenile stage, the individual does not supply energy into reproduction, but accumulates 
energy in its maturity compartment EH until reaching the ‘puberty’ threshold that, according to DEB 
theory, defines the moment when the organism is mature enough to reproduce (Kooijman 2010). 
After reaching this threshold, at around 2.5 to 3 years old (Schatt 1985, Mespoulhé 1992), the 
organism can allocate energy into the reproduction buffer ER for gamete production (Fig. 1.7). The 
structural volume increases continuously along the individual’s life, from birth to death, supplied in 
energy left from what has not been allocated to priority maintenance costs ṗM and ṗJ.  
 

Starvation mortality. Magniez (1983) observed that the gonadal index continues to decrease 
slightly for around two months after reproduction. He hypothesized that it was related to the 
season: as the reproduction period finishes at the start of winter, food resources decrease and 
energy investment into reproductive organs is momentary diverted towards the maintenance of 
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somatic elements. This was demonstrated in the other sea urchin species Strongylocentrotus 
purpuratus (Lawrence et al. 1966) and Arbacia lixula (Fenaux et al. 1975) confronted with 
starvation.  
 
In the model, when scaled reserve e (reserve relative to reserve capacity, no dimension) falls 
below the scaled structural length l (length relative to maximum length, no dimension), it is 
assumed that the individual is confronted to starvation: the kappa-rule is then altered as energy is 
entirely redirected to the somatic maintenance and all other fluxes (growth, reproduction or 
maturation) are set to 0. When e < 0, the organism does not have enough energy to allocate the 
amount necessary for survival (somatic maintenance costs) and dies. See section 
“7.Submodels/Starvation” in Appendix 1.12 for further details and implemented equations. 
 
Ageing mortality. Death probability by senescence was calculated in the model using the ageing 
sub-model, a simulation of damages induced by lethal compounds such as free radical or other 
reactive oxygen species (ROS), following the DEB theory for ageing (Kooijman 2010).  
The density of damage inducing compounds in the body increases as the reserve compartment is 
fuelled with energy that is allocated through the entire organism. It influences the hazard mortality 
rate ḣ, which is a function of the damage accumulated in the body and simulates the vulnerability 
of the individual to damages, such as the risk of dying from illness increases with age. In the 
model, the hazard mortality rate ḣ is supplemented by a stochastic parameter (Martin et al. 2010) 
to control the ageing mortality rate. See section “7.Submodels/Ageing” in Appendix 1.12 for further 
details and implemented equations. 
 

2.4 Individual-based modelling for the population 
 
Principles 
The individual DEB model is used to simulate each individual as an entity of the individual-based 
population model (IBM). An IBM represents the individual components (individuals of A. cordatus) 
of an environmental system (Anse du Halage) and their behaviours, enabling to feature each 
individual as an autonomous entity and looking at results at the scale of the whole population 
(DeAngelis and Mooij 2005, Grimm and Railsback 2005, Railsback and Grimm 2019). In our 
model, each individual does not have any direct interaction nor adaptive behaviour towards their 
environment nor the other members of the population. They follow a continuous development 
governed by metabolic fluxes (DEB model) that are influenced by environmental conditions 
(temperature and food resources) along their entire life. Each individual is a component of the 
modelled population, which is itself affected by population death rate and density-dependent 
processes.  
The IBM was built with the software Netlogo version 6.0.4 (Wilensky 1999), using the DEB-IBM 
model developed by Martin et al. (2010) for the species Daphnia magna. The NetLogo code is 
available at http://modelingcommons.org/browse/one_model/6201. It contains the script to run the 
model, the input files of monthly food resources and temperatures for the three stations and a 
detailed description of the model following the ODD (« Overview, Design concepts, Details ») 
protocol from Grimm et al. (2010) and the associated list of variables present in the code. This 
detailed ODD was also included in Appendix 1.12.  
 
Application of IBM model to A.cordatus 
Model structure. The model includes two types of entities: the individuals and the environment. 
Individuals are divided into 4 types of sub-agents, depending on their life stage and sex: embryos, 
juveniles, adult males and adult females. The values of four primary state variables are attributed 
to each individual (scaled reserve UE, volumetric structural length L, scaled maturity UH and 
scaled reproduction buffer UR). The level of energy contained in the scaled maturity UH thresholds 
the life stages. These four variables are ‘scaled’, meaning here that the energy dimension has 
been removed by dividing with the surface-area-specific maximum assimilation rate {ṗAm} (in J.L-2.t-
1), based on DEB theory (Kooijman 2010). 
Simulations were run with a monthly timestep for calculation, in regard to the slow growth of the 
species and the available data (an analysis of the effect of the timestep on the individual model 
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was conducted, Appendix 1.7). At each timestep, food and temperature conditions are first input 
into the model, state variable values of each individual are calculated in order to assess whether 
new maturity thresholds are reached or whether energy is sufficient for survival, growth or 
reproduction. The population state is reassessed at the end of each month. Spatially, population 
structure and density are simulated on a patch of one square metre at each site and individuals do 
not leave the patch during their entire life. 
 
Initialisation. The initial population density value was set to 120 ind./m2 and this figure was split into 
classes of equal densities of 20 individuals of different age-classes, between 0 and 5 years old, in 
order to stabilize the initialisation between the different replicates. An initial run is realised to 
capture the values of the four state variables that characterise the individual of each age class (at 
October 2012 temperatures and f=1), in order to initiate the model (Appendix 1.12).   
The first decade of the simulation period was always considered as the initialisation phase and 
was removed from the analysis, the model showing important outliers (in individual metabolism 
and population structure) during these first ten years. 
 
Inter-individuals variability. Each individual is characterised by similar energetic performances 
estimated by the DEB estimation (Table 1.4). Five DEB parameters were divided by a scatter-
multiplier parameter that was generated in order to create inter-individual variability. These five 
DEB parameters were selected because they are associated to the four state variables that 
characterise the individuals and are not null at the time the individual is initiated into the model 
(following Martin et al. 2010): (1) maturity level at birth (UH

b , d.cm2), that is the amount of energy 
accumulated in the maturity compartment needed to reach the juvenile stage; (2) maturity level at 
puberty (UH

p , d.cm2), the amount of energy accumulated into the maturity compartment to reach the 
adult stage; (3) energy investment ratio (g, no dimension), the cost of the added volume relative to 
the maximum potentially available energy for growth and maintenance; (4) the initial energy 
reserve at birth (UE, d.cm2); and (5) the initial structural length (L, cm).  
 
The scatter-multiplier is the exponential of a random number from a normal distribution of mean 0 
and standard deviation cv (0.1 by default, can be set by the user in the interface of the model). The 
value is therefore small enough to not affect tremendously the initial variable and generate trade-
off between parameters. It is applied as soon as the individual is created in the system. 
 
Reproduction. Sex-ratios (ratio males/females) in the studied populations are slightly contrasting 
between localities, from 0.94 (Ile Haute) to 0.99 (Anse du Halage) and 1.04 (Port Couvreux) 
(Poulin 1996). The average ratio of 0.99 was chosen in the model. By approximation, it was 
considered that only females undergo physiological changes during the reproduction process, 
males being only used as a component of the total population. 
 
To this date, few monitoring studies have been performed on A. cordatus reproduction. Magniez 
(1983) is the only one who studied the Gonado Somatic Index (GSI), that is the proportion of ash-
free gonads dry weight over the ash-free body dry weight, therefore directly linked to the 
accumulation of energy into the reproduction buffer. According to Magniez (1983), reproduction 
can occur if the GSI reaches at least 0.07%. This condition was used in our model to control the 
ability of the female to reproduce when time comes.  
 
The GSI parameter was only attributed to females and was estimated for each month, with this 
equation (Kooijman 2010, section 4.10, eq. 4.89):  
 

GSI = time_of_accumulation ∗ k̇M∗g  
f3∗(f+ϰ∗g∗yVE) ∗  ((1 − ϰ) ∗ f 3 −   k̇J∗UH

p  
Lm2 ∗ sM

3  
),  

 
where the time of accumulation is the number of days spent since the end of the reproduction 
period, k̇M is the somatic maintenance rate coefficient (in d-1), g the energy investment ratio (no 
dimension), f the scaled functional response (no dimension), κ the fraction of energy directed 
towards structure, yVE the parameter for the yield of structure on reserve (mol/mol), that is the 
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number of moles of structure that can be produced with one mole of reserve, (1-κ) the fraction of 
energy directed towards complexity, k̇J the maturity maintenance rate coefficient (in d-1), UH

p  the 
scaled energy in the complexity compartment at puberty (d.cm2), sM the acceleration factor (no 
dimension) and Lm the maximum structural length (cm).  

 
The reproduction period is constant from March to May for the individuals at Anse du Halage, and 
they only spawn once a year (Magniez 1983, Schatt and Féral 1996, Poulin 1996). After each 
monthly step, the model checks the GSI value for each female. If the GSI reaches the 0.07% 
threshold at the onset of the period (March), reproduction is triggered for this considered female.  
According to the literature, when reproducing, females invest around 52% of their reproductive 
organs’ energy into reproduction (Magniez 1983). This energy is released during the three months 
when spawning occurs. That is, the GSI of the female will decrease by 52% of its initial value over 
the 3 months period (so a decrease of one third of 52% per month, with ∂GSI = (GSIstart - 0.52 * 
GSIstart) / 3, where GSIstart is the level of gonadal index at the onset of reproduction). In parallel, 
the usual ∂UR (change in energy density in the reproduction buffer outside of the reproduction 
period, no unit) is set to 0 for the three months, while UR (energy density in the reproduction 
buffer) is forced to decrease in a similar fashion to the GSI: ∂2UR = (UR_start - 0.52 * UR_start) / 3, 
with UR_start being the reproduction buffer at the start of the period. 
Reproduction induces the introduction of 27 embryos in average in the system (Magniez 1983), 
added proportionally along the three months (9 per month).  
 
Background mortality. No specific adult mortality rates are mentioned in the literature, as no cause 
have been defined precisely. Background population mortality annual rates were estimated based 
on size frequency distribution provided by Mespoulhé (1992), and using the formula from Ebert 
(2013) N(t) = N0 * e-M*t with N(t) the population size at time t, N0 the initial population size,  M the 
mortality rate and t the time (in months). Two yearly mortality rates were defined: one for juveniles 
(41%) and one for adults (24%).  
 
A percentage of embryos mortality in the pouches was calculated based on data from Poulin 
(1996), determining an egg survival of 65%.This mortality is associated to the fact that when the 
first juveniles start leaving the maternal pouches at the beginning of January, they push aside the 
protecting spikes of the pouch, and eggs remaining in the brood are no longer protected and die 
(Magniez 1980).  
 
Mortality induced by temperatures. As no precise information is available to accurately describe A. 
cordatus temperature tolerance, three different types of sensitivity were designed to cover different 
hypotheses (Fig. S1.8.B). Based on experimental results obtained in the Kerguelen Islands 
(personal observation), mortality gradient due to temperature was applied to the population for 
temperatures comprised between 8 and 12°C. Over 12°C, all individuals are considered to die in 
the model, as none survived in the experiment. (1) A 'vulnerable' type was defined with population 
death rates of 25%, 35% and 45% when the sea urchins are exposed to temperatures respectively 
reaching 8, 9.5 and 11°C during two consecutive months. (2) The 'resistant' type was defined with 
a mortality rate 15% lower than the vulnerable one for the same temperature thresholds (e.g. 10% 
instead of 25% population mortality at +8°C), for similar exposure duration (i.e. two months). (3) 
The ‘intermediate’ type is similar to the ‘resistant’ type but individuals are considered to die after 
one month of exposure to each temperature instead of two (Fig. S1.8.B). 
 
Density-dependent regulation. Population density autoregulates through competition for food 
resources. This procedure relies on the monitoring of population density in relation to the carrying 
capacity and allows stabilizing the model. The model calculates the current population density and 
quantifies the competition effect on food availability depending on how far from the carrying 
capacity (K) the population density (P) is, and updates food availability in accordance.  
It is considered that at each timestep, a certain amount of food is available in the environment (fenv) 
but according to population size, competition for food (FC, quantified food competition) is present 
and influences effective food availability (feff), with feff= fenv + FC, following Goedegebuure et al. 
(2018). feff and fenv are contained between 0 and 1. FC is calculated with the following equations: 
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If P < 1.9 * K, then FC = (1-fenv). (1 - P
2.K−P) 

If P ≥ 1.9 * K, then FC = (1-fenv). (1 - P
K/10) 

FC is positive if P < K, and feff tends to its maximal value 1 with a decreasing population size, as 
FC becomes very low and tends towards 1-fenv. When P > K, FC turns negative and make feff 
decrease, with the minimal value reached at P= 2K.    
 
Two equations are used because if P = 2K, the first formula gives an error due to a division by 0, 
and if P > 2K, then the formula gives the untrue result of less competition with a bigger population 
(hence the use of 1.9 as a pivot value). Competition is only effective if food availability is less than 
the maximum (hence the use of ‘1 - fenv’ in the equation).  
 
2.5. Summary of model parameterization and sensitivity analysis  
 
The model was constructed following the ecological and physiological observations available in the 
literature for A. cordatus. These observations are summarised in the following table (Table 1.6). 
Once these elements were added, the ageing submodel and the carrying capacity parameters, for 
which no in situ observations are defined, were calibrated until obtaining a model stable in time, 
over several centuries.  
The sensitivity of the model to different parameters was tested. This sensitivity analysis also 
served as a first form of validation in the absence of wider means of validation. Initial population 
number, inter-individuals variation coefficient, juvenile and adult background mortalities, number of 
eggs produced per female during a reproduction event, and egg survival rate were each applied 
variations of -30%, -20%, -10%, +10%, +20% and +30% (Table 1.6). The influence of changes in 
these parameter values was assessed on the average population density (ind/m2), the average 
juvenile/adult ratio, the average physical length, the average reserve energy and the average 
structural length variation over the period of 200 years. For each analysis, models were replicated 
100 times. A model was considered to ‘crash’ when the population is not stable and collapses 
entirely before the end of the simulation period. The proportion of crashes relates to the number of 
crashes counted for 100 simulations (i.e., for 15 crashes and 100 simulations, the proportion is 
15/(100+15)~13%). Due to computing time limitations, the analysis was stopped when reaching a 
proportion higher than 66% of crashes (indicated by a black cross in Appendix 1.9).  
 
The model sensitivity to the GSI threshold assumption was tested with the upper and lower values 
of the GSI calculated at the onset of reproduction in Magniez (1983). The minimum value did not 
impact the model at all, but the higher threshold value prevented most of the females from 
reproducing (results not presented). 
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Table 1.6. List of parameters integrated in the individual and population models. Descriptions and values. The source reference that justifies the choice of the 
parameterization is provided in the ‘reference’ column. The last column synthetises which parameters where modified to performed a sensitivity analysis, whose 
results are presented in Appendix 1.9. 
 

Parameters Model parameterization Reference Sensitivity analysis 
Individuals 
Time of development until birth 8 months 254 days (Schatt 1985) MRE DEB model 
Time of development until puberty Thresholded by UH

b  value 2.5 to 3 years old (Schatt 1985, Mespoulhé 1992) MRE DEB model 
Starvation  e < l  Kooijman (2010) Not tested 
Ageing Probability depending on 

accumulated cell damages, 
constrained by stochasticity 

Damage probability: following Martin et al. (2010) and 
Kooijman (2010) rules for ageing 
 

Stochasticity: calibrated at the end of model construction 
until reaching model stability  

Not tested, calibrated parameter 

Population 
Initial population density 120 ind./m2 Rounded from literature (Guille and Lasserre 1979, 

Magniez 1980, Mespoulhé 1992, Poulin 1996) 
-30 to +30% variation tested 

Initial population structure 5 age-classes of 20 individuals Follow average population structure observed by 
Mespoulhé (1992) 

Not tested 

Variation coefficient (cv) from the inter-
individual variability 

0.1 Follow IBM parameterization of Martin et al. (2010) study -30 to +30% variation tested 

Ratio females/males 50/50  Sex-ratio: 0.99 (Poulin 1996) Not tested 
Initial GSI  0.03% Magniez (1983) Not tested  
GSI threshold for reproduction 0.07% Magniez (1983) Tested with the upper (0.116) and lower (0.028) values 

of the GSI calculated at the onset of reproduction in 
Magniez (1983) 

Reproduction period 3 months once a year Magniez (1983), Schatt and Féral (1996), Poulin (1996) Not tested 
Energy investment into reproduction 52% of the reproductive energy at 

the onset of the period 
Magniez (1983) Not tested 

Number of eggs 27 eggs per adult female Magniez (1983), Schatt (1985) -30 to +30% variation tested 
Eggs survival to juvenile stage (birth) 65% Poulin (1996) -30 to +30% variation tested 
Yearly background mortality rates 41% of juveniles 

24% of adults  
Equation provided in Ebert et al. (2013), implemented 
with population data from Mespoulhé (1992) 

-30 to +30% variation tested 

Mortality induced by temperature tolerance Three sensitivity scenarios  Designed from experimental results Not tested 
Carrying capacity  200 ind./m2 Calibrated at the end of model construction until reaching 

model stability, no information available in the literature  
Not tested, calibrated parameter 
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2.6. Forcing environmental variables  
 
Temperature  
In the frame of DEB theory, temperature influences metabolic rates following the Arrhenius 
function which defines the range of temperatures that affect enzyme performance, considering that 
metabolic rates are controlled by enzymes that are set inactive beyond an optimal temperature 
tolerance (Kooijman 2010, Thomas and Bacher 2018). The Arrhenius response is characterised by 
five parameters that describe the species tolerance range: the Arrhenius temperature TA, the 
temperature at the upper and lower limits of the species tolerance range TH and TL respectively, 
and the Arrhenius temperature beyond upper and lower limits of the tolerance range TAH and TAL 
respectively.  
In our study, the available information is not sufficient to define the complete relationship between 
temperature and metabolic performances, and the temperature correction factor (TC) is only 
calculated using one of the five Arrhenius parameter TA (in K), following the equation r(T) = r * 
exp(TA/Tref - TA/T) with r a given metabolic rate, Tref the reference temperature (293K ≈ 20°C), T the 
environmental temperature (in Kelvin) and exp(TA/Tref - TA/T) being the temperature correction 
factor TC. The correction is applied to the metabolic rates v̇, k̇M, k̇J, ḧa (Table 1.4). 
 
Temperatures recorded since 1993 at Port aux Français, another site in the Gulf of Morbihan, 
show a clear 6-year cycle of increasing and decreasing temperatures (Appendix 1.5). The [2012-
2018] temperature dataset selected as input forcing variable in the model therefore constitutes an 
interesting proxy of temperature conditions at Anse du Halage which includes a complete overview 
of the environmental variability at the station. However, it is important to take this choice into 
consideration during the interpretation of results, as it needs to be differentiated from a cycle that 
would be inherent to the biology of the species. 
 

Food resources  
In DEB theory, energy is supplied to the reserve of the organism through the ingestion process 
which is proportional to food availability, represented in the model by a functional response f (from 
0 to 1). Food assimilation (ṗA, Fig. 1.7) is proportional to the surface of the structure of each 
individual and contributes to the filling of the reserve compartment E (Fig. 1.7). The functional 
response f was calibrated using the values of organic carbon (OC) content in sediment as a 
percentage of dry weight of sediment at the station Anse du Halage at the end of each month, 
available in Delille and Bouvy (1989). The maximum value of 1 for f corresponds here to the 
maximum value of organic carbon content that was found (6.94%) and a f minimum of 0 
corresponds to 0% OC. 
 

2.7 Model projection  
 
Present-day conditions at Anse du Halage  
To assess the influence of varying environmental conditions on model outputs, after being 
constructed for the site Anse du Halage, the model was implemented in two other sites, Ile Haute 
and Port Couvreux, where A. cordatus is reported in high densities (Poulin 1996) (Fig. 1.4). The 
implementation to these two other stations was done with contrasting temperatures (from the 
Proteker program, as previously explained in 2.1). Food conditions at these two sites are not 
available and were estimated at the end of the summer to be 50% to 30% of the organic carbon 
values measured at Anse du Halage according to the comparative study of Delille et al. (1979). 
These rates were applied to year-long conditions (Fig. S1.5). Models were launched for a period of 
200 years.  
 

Future conditions  
Two future scenarios predicting environmental conditions for 2100 were used, based on the IPCC 
scenario RCP 2.6 and 8.5 (respectively optimistic and pessimistic scenarios, IPCC 5th report), 
accessed at https://www.esrl.noaa.gov/psd/ipcc/ocn/ (in August 2019). Coarse IPCC predictions 
(1°x1° resolution) of chlorophyll a concentration were used to roughly evaluate potential changes 
of food availability on the east coast of the Kerguelen Island in future conditions. Scenario RCP 2.6 
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shows an average decrease of 10% of current food resources availability, while scenario RCP 8.5 
shows an average decrease of 20% (Fig. S1.8.C). As for temperature, we defined RCP 2.6 with a 
linear increase of +1.1°C and +1.7°C for RCP 8.5. Models were launched for a period of 30 years. 
 

3. RESULTS 
3.1. The individual-based model  
 
Variations in energy allocated to the reserve and the maturation buffer are the main controls of 
individual development. Monthly variations (∂UE and ∂UR, ∂X here stands for dX

dt  ) were simulated 
over one year under present-day environmental conditions (Fig. 1.8).  
Energy in the reserve (Fig. 1.8) shows variations between -2.5 and 8 on average (no unit), with 
extreme range values reaching -5.8 and 13.7. This shows a relative constant energy density inside 
the reserve throughout the year with, however, a noticeable increase from October to December 
and a sharp decrease from December to January (Fig. 1.8). According to DEB theory (Kooijman 
2010), the more energy is stored inside the reserve (through food assimilation), the more it can be 
distributed to other compartments, and the more energy can be assimilated into the reserve anew. 
Availability of food resources for A. cordatus is the highest in December (f = 1) (Fig S1.5), it is 
assimilated and stored as energy into the reserve compartment. Based on the energy available in 
the reserve at the end of December, energy is supplied in January to other compartments (such as 
the reproduction buffer, Fig. 1.8 and growth, Fig. S1.10), while the individual ingests the food 
available to replenish its reserve anew. As food availability decreases in January (f = 0.748), the 
reserve loses energy (Fig. 1.8) because the individual cannot assimilate as much energy as the 
amount transferred to other compartments. 
 
The energy density entering the reproduction buffer (Fig. 1.8) of mature females varies between 0 
and 4.9 on average in the course of the year, with a maximum of 10.7. The rate of energy input 
increases at an average pace of +1.1% per month from October to the onset of the reproduction 
period in March, when it decreases and remains null until the end of the spawning period in June. 
Then, energy starts accumulating again until the next reproduction period. During the three months 
of the spawning period, from March to May, no energy is allocated from the reserve to the 
reproduction buffer and the energy stored in this buffer is progressively delivered to gametes. Only 
females that are mature in March undergo reproduction and deliver the energy contained in the 
reproductive buffer to the gametes. Females that become mature during the reproduction period 
undergo a normal increase of the energy in the reproduction buffer, which explains the small 
increasing trend observed during the March-May period (Fig. 1.8).  
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Figure 1.8. Simulation of the variation of energy allocated to the reserve (a) and the reproduction buffer (b) 
compartments over one year. Males were not considered in the model when simulating reproduction 
processes, and thus results presented here only take females into consideration. Average results for all 
mature females, in 100 model simulations are presented by the green line. The grey area corresponds to the 
variation range (variation induced by differences between individuals: age, size, energy allocation) between 
all females among the 120 individuals that initiate the model. The variation in energy allocated is the change 
in a scaled variable X: ∂X here stands for dX

dt
 (for an explanation of the term “scaled” here, see section 2.4). 

 

3.2. The population model  
 
Modelled population dynamics at the calibration site  
Based on the individual model, population dynamics were simulated over a time period of 30 
years, showing a constant population density comprised between 120 and 220 individuals per 
square metre. Overall, the population structure remains constant through time but with well-marked 
yearly variations, mainly in juvenile density (Fig. 1.9). Juveniles indeed represent around 83% of 
the total population density and show important yearly variations due to (1) important seasonal 
reproductive outputs causing a surge in population density, (2) strong mortality rates causing 
gradual decreases in the population, (3) the transfer of the large juvenile cohort to the adult 
population after around 3 years, and (4) the influence of inter-individual competition for food 
limiting population densities and even causing its decrease. In contrast, the adult population is 
much more stable relative to the juvenile one, with lower density values (around 40 individuals per 
square metre). Both juvenile and adult population fluctuations follow a general 6-year pattern 
displayed over the 30 years of simulations (rectangle, Fig. 1.9). This pattern is linked to 
temperature cycles over the same time span and includes two sharp decline in population density 
over a 6-year cycle (‘T’ symbol, Fig. 1.9), which corresponds to high temperatures rising above 
+8°C during two consecutive months and causing mortality rates of 10% of the entire population. 
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Figure 1.9. Modelled population structure and density under present-day environmental conditions: monthly 
values of juvenile density (purple) and adult density (orange) over 30 years (for 100 simulations). Bold lines: 
mean density value. Shaded areas: variation range for the 100 simulations. ‘T’ symbol: sharp decrease in 
population density due to temperature-induced mortality. Dashed-line rectangle: 6-year cycle in population 
dynamics (this 6-year pattern is due to the input temperature data and not to a biological cycle inherent to 
the population). 
 

Sensitivity analysis  
Different parameter settings for the model initiation may result in very diverging outputs (Appendix 
1.9). It also influences model stability, and population collapse in particular. Overall, the initial 
number of individuals and the level of the inter-individual variation coefficient are parameters that 
have little influence on model stability and low proportion of population crashes may result. In 
addition, model outputs do not differ significantly between simulations. Increase in juvenile and 
adult mortality levels will also have little influence on model outputs but decreasing mortality levels 
will induce a population burst followed by a strong competition for food and a consequent 
population collapse. 
 
Among all parameters set at the model initialisation, egg number and egg survival are the most 
important determining model stability, as they directly control juvenile density. High juvenile 
densities (induced by a low background juvenile mortality and a high number of eggs and egg 
survival) always result in fast population collapses as a result of high competition for food between 
individuals. As population density increases, the amount of food available for each individual 
decreases and individuals start starving to death. In contrast, a reduction in the number of 
juveniles causes a reduction in the average population density due to a strong mortality rate of 
juveniles. It does not imply model instability and the proportion of modelled population crashes is 
always lower than 15%. The reduction of population density also strongly influences the average 
amount of energy available for each individual: the more energy is available, the more individuals 
can grow in structural length. 
 
Projections of the population dynamics model to other sites  
The dynamic population model built at Anse du Halage was implemented (Appendix 1.11) for the 
two sites of Ile Haute (inside the Morbihan Bay) and Port Couvreux (outside the Morbihan Bay). 
Both models were simulated twice with initial estimates of 50% and 30% of food availability (f) 
compared to Anse du Halage (fH). Temperature inputs were based on local temperature variations 
recorded at the two sites. Model outputs predict lower population densities at both sites compared 
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to Anse du Halage and interestingly, similar ratios between juveniles and adults (Table 1.7). These 
results are consistent with density values found in the literature, which gives between 100 and 136 
individuals/m2 at Ile Haute and 50 to 168 ind./m2 at Port Couvreux (Mespoulhé 1992, Poulin 1996). 
The different observed density values reported in publications for Port Couvreux may be due to 
contrasting conditions that locally prevail among the three small embayments of that locality 
(Poulin 1996). This has recently been confirmed by our personal observations in the field (Saucède 
2020). Model outputs suggest a strong influence of food availability on population densities 
controlled by inter-individual competition for food. Accordingly, simulations predict a drop in density 
values at Port Couvreux when food resources decrease at 30% of fH, while density values are 
relatively stable at Ile Haute in comparison (Table 1.7). This mainly affects juvenile densities and 
results in a lower population ratio (Table 1.7). 
 
Temperatures recorded at the two sites inside the Morbihan Bay (Anse du Halage and Ile Haute) 
are close to each other and slightly higher than outside the Bay at Port Couvreux (Fig. S1.5). 
Contrasting results were therefore expected between Port Couvreux and the two other sites. On 
the contrary, temperatures may not be contrasting enough between sites to affect population 
structure and density. Confidence intervals overlap between all sites for values of both population 
density and juveniles-adults ratio (Table 1.7).  
 
 
Table 1.7.  Modelled population densities (a) and juveniles over adults ratio (b) at the calibration (Anse du 
Halage) and projection (Ile Haute and Port Couvreux) sites. Average and standard deviation values are 
given for 100 model replicates and 200 years of simulation. fH: time series of f value at Anse du Halage 
(Delille and Bouvy 1989). 

(a) Anse du Halage Ile Haute Port Couvreux 

fH, T°Halage 
50% of fH, T°site 
30% of fH, T°site 

182.6 ± 49 
- 
- 

- 
137.6 ± 40 
123.2 ± 38 

- 
137.4 ± 41 
91.8 ± 44 

 

(b) Anse du Halage Ile Haute Port Couvreux 

fH, T°Halage 
50% of fH, T°site 
30% of fH, T°site 

6.53 ± 3.12 
- 
- 

- 
6.31 ± 4.40 
6.04 ± 4.31 

- 
6.32 ± 4.31 
3.87 ± 2.61 

 
 
Population dynamics under future predictions of climate change  
Population structure and density were simulated and implemented for scenarios of temperature 
and food resources changes based on IPCC scenarios RCP 2.6 and 8.5, and for populations of 
'resistant', 'intermediate' and 'vulnerable' organisms (Fig. 1.10). Population dynamics are all 
predicted to be affected by both scenarios (Fig. 1.10) with overall population densities predicted to 
be four to seven times lower than current population predictions. Population structures are also 
predicted to be affected by a lower contribution of juveniles to overall population densities. The 
respective effects of temperature and resource availability were simulated independently. Under 
temperature change only (Fig. 1.10), model predictions are close to model outputs in which both 
variables are combined, with a strong decrease in average population density compared to 
present-day conditions. The effect of changes in resources availability only is less marked, with 
population densities showing a close pattern to present-day models (Fig. 1.10).  
 
Models therefore predict a stronger effect of temperature changes on populations, with population 
densities of ‘vulnerable' organisms predicted as very low (less than one tenth of present-day 
densities on average). Populations of 'vulnerable’ organisms are even predicted to go extinct in 
only 30 years of simulation (Fig. 1.10). Populations of organisms with 'intermediate' sensitivity are 
more resilient and withstand over 30 years of simulation in some cases, but they collapse at the 
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end of the period under IPCC scenario RCP 8.5. Overall densities are very low (around 20 or less 
individuals per square metre on average).  
 

 
Figure 1.10. Model predictions under IPCC scenarios RCP 2.6 and RCP 8.5 (for 100 simulations). Purple: 
adult population, orange: juvenile population. Coloured bold lines show mean values for 100 simulations. 
Shaded areas are simulation variation ranges. (a) Population model under present-day conditions, (b) model 
under IPCC scenario RCP 8.5 of T° change only (+1.7°C compared to present) and for resistant organisms; 
(c) model under IPCC scenario RCP 8.5 of f change only (-20% compared to present) and for resistant 
organisms; (d) model under IPCC scenario RCP 2.6 of T° and f changes (-10% of f and +1.1°C compared to 
present) and for ‘resistant’ organisms; (e) model under IPCC scenario RCP 2.6 of T° and f changes and for 
‘intermediate' organisms; (f) model under IPCC scenario RCP 2.6 of T° and f changes and for ‘vulnerable' 
organisms; (g) model under IPCC scenario RCP 8.5 of T° and f changes and for ‘resistant’ organisms; (h) 
model under IPCC scenario RCP 8.5 of T° and f changes and for ‘intermediate' organisms; (i) model under 
IPCC scenario RCP 8.5 of T° and f changes and for ‘vulnerable' organisms. 
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3.3. Population mortality under present-day and future predictions 
  
Under present-day conditions (Fig. 1.11), background mortality and ageing are the main causes 
that affect population mortality each year (respectively between 65-90% and 5.8-9%). High 
temperatures and starvation have sporadic effects on mortality. High mortality due to high 
temperatures only happened in [2016-2017] and [2017-2018] and starvation contributes at the 
highest to 10% of overall mortality, depending on the year.  
Over the course of a year (Fig. 1.10a), background mortality and ageing affect the population every 
month, while high temperatures (over 8°C) cause the death of half of the population in March and 
April. Starvation is responsible for the death of a weak proportion of the population in November 
and December only (austral summer), in link with the competition for food resources of the 
increasing population during this productive and warm period. 
Under both future scenarios (Fig. 1.10e,f), mortality levels are low compared to present-day model 
(Fig. 1.10b), which is mostly due to small predicted population densities. Background and ageing 
mortalities are therefore very low. Starvation is not a cause of mortality anymore, while high 
temperatures cause mortality of individuals before they may starve to death. When comparing 
between model predictions under scenario RCP 8.5 for changes in food availability only (Fig. 
1.10c), temperature change only (Fig. 1.10d), and the combined variables (Fig. 1.10f), temperature 
clearly appears as the main cause of mortality, at the same level as background mortality. 
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Figure 1.11. Mortality simulations (in individuals/m2) per month (a) and year (b-f) under present-day (a-b) 
and future (c-f) predictions of the two IPCC scenarios (for 100 model simulations). (a) Model under present-
day conditions for 12 months (year #7 [2016-2017] was chosen as an example); (b) Model under present-
day conditions for 50 years of simulations; (c) Simulated mortality under scenario RCP 8.5 for resistant 
organisms and predicted changes in food availability only (f=-20% compared to present); (d) Simulated 
mortality under scenario RCP 8.5 for resistant organisms and predicted changes in temperature only (+1.7°C 
compared to present); (e) Simulated mortality under scenario RCP 2.6 for resistant organisms and predicted 
changes in both food availability and temperature (food reduction of -10%, T° increase of +1.1°C); (f) 
Simulated mortality under scenario RCP 8.5 for resistant organisms and predicted changes in food 
availability and temperature (food reduction of -20%, T° increase of +1.7°C).   
 
 
 
 

112



MECHANISTIC MODELS CHAPTER 1. 
 

Article. Arnould-Pétré et al. (2020). Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau 
(Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling.  

 

4. DISCUSSION 
 
4.1. Potential and limitations of the DEB-IBM approach  
 
In the present work, a DEB-IBM model was built for A. cordatus based on our current knowledge of 
this vulnerable, endemic species of the Kerguelen plateau. On-site monitoring and experiments on 
species tolerance to changing environmental conditions remains challenging issues in the 
Kerguelen Islands, and in the Southern Ocean in general. Difficulties are due to the sensitivity of 
specimens (Magniez 1983, Schatt 1985, Mespoulhé 1992) and their inherent ecological 
characteristics. Models can constitute a powerful tool for Antarctic research as they can provide 
additional support to experimental knowledge and infer the impact of broad-scale climate change 
on populations. The potential of the present mechanistic modelling approach resides in its capacity 
to model the physiology of organisms as a response to environmental factors. Using DEB models 
for the representation of individual components within the IBM enables to upscale a dynamic 
model to an entire population (Railsback and Grimm 2019) as a function of two changing abiotic 
factors: temperature and food resources. Applying such a model to a sub-Antarctic, benthic, and 
brooding species is challenging, and had never been performed so far. The present work shows 
the feasibility and relevance of the DEB-IBM approach to study Southern Ocean species like A. 
cordatus. 
Relevant results were obtained both at the individual and populations levels. First, simulations 
showed the characteristic annual evolution of energy dynamics in the organism (Fig. 1.8, Appendix 
1.10) and second, population structure and density dynamics were modelled over an extended 
period of time decoupling juvenile and adult populations (Table 1.7, Fig. 1.10, Fig. 1.11). 
Projections to other sites also show the potential application of the model to other areas for which 
environmental data are available. Future models give an insight and add some clues to assess the 
potential impact of climate change and predict the biotic response of populations. Models however 
still need some improvements including complementary data on species ecophysiology. The model 
was also shown to be sensitive to mortality rates and some parameters (egg number and egg 
survival) settings while some population characteristics (initial population densities and inter-
individual variability) have little effects (Appendix 1.9).  
 
4.2. Limitations to the DEB-individual model  
 
The dynamic population model built in this work uses outputs from the DEB model developed for 
A. cordatus (Guillaumot 2019c), which allows to represent as faithfully as possible the 
physiological dynamics of individuals during their entire life cycle. The goodness of fit of the DEB 
model shows that estimated parameters accurately described observed data. However, collecting 
additional data at the different stages of the organism's life cycle and under different conditions of 
temperature and food availability would contribute to improving further model accuracy and 
parameter predictions. In particular, data on environmental settings and species ecophysiology are 
still needed to improve the accuracy and relevance of the following parameters. 
 
The Arrhenius function and the optimal temperature range  
In DEB theory, the Arrhenius function determines the optimal temperature range of the organism's 
metabolism as a response to enzymatic tolerance (Kooijman 2010, Thomas and Bacher 2018). In 
the present work, calculation of the Arrhenius function relies on fragmented datasets. The 
ascending part of the Arrhenius curve that is, the temperature range in which faster metabolic rates 
are determined by higher temperatures was estimated, but values are still missing for the 
descending slope (i.e. the temperature range beyond the optimal temperatures in which the 
metabolic rates slow down with higher temperatures) (Kooijman 2010). The present model 
assumes that higher temperatures favour more suitable conditions with no limit (Appendix 1.10), 
which has to be corrected arbitrarily using our personal field and experimental observations on the 
echinoid ecology (Appendix 1.8). Further experiments should help improve the calculation of the 
Arrhenius function. They would consist in measurements of respiratory rates as a function of 
temperature variations (e.g. Uthicke et al. 2014) and will enable more accurate simulations of A. 
cordatus' ecophysiology and the direct effect of temperature on the organism’s metabolism, a 
prerequisite to better model population mortality. 
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Age, size and growth estimates  
Most parameters used in the DEB model were taken from the literature and experimental studies, 
except for some of them that were assumed based on physiological traits of counterparts. In 
particular, organisms' maximum age, growth rate and size are not sufficiently known due to 
difficulties in setting up long-term experiments in the Kerguelen Islands. The relationship between 
echinoid growth, size and shape cannot be assessed based on growth lines measurement 
because there is no linear relationship between echinoid size and age (Ebert 1975) and because 
resorption may occur during periods of starvation (Brockington et al. 2001, Ingels et al. 2012). The 
most reliable method would consist in monitoring organisms’ growth through time using tagging 
methods (Ebert 2013). However, such an approach is time-consuming and challenging as even 
small measurement errors may have a significant effect on results (Ebert 2013) and no 
experimental data are available so far.  

 
Former studies (Mespoulhé 1992) showed that after 4 to 5 years, specimens of A. cordatus only 
slowly increase in size and echinoids’ test tend to become distorted, a common feature in large 
spatangoid echinoids in which test plates tend to overlap while body size does not increase 
anymore (Mespoulhé 1992). However, this slow growth rate in aged specimens could also result 
from other causes affecting optimal food intake for instance. At the calibration site of Anse du 
Halage, a study of echinoid cohorts suggests that few individuals grow older than six years old 
(Poulin and Féral 1994). Overall, the absence or nearly absence of growth in old invertebrate 
organisms makes age estimates delicate to assess. In the present model, based on the 
combination of the ageing sub-model and other mortality processes, most individuals are 
calibrated to die within the assumed maximum age (before 6 years old), although some individuals 
may reach over ten years old due to the chosen stochasticity introduced in the sub-model.   
 
Juveniles inside brood pouches were assumed to grow at a constant and same rate as adults but it 
has sometimes been assumed that the brooded young may already feed and develop at a faster 
rate (Schatt 1985, Schatt and Féral 1996). At this stage, offsprings are particularly fragile and need 
protection in the brood pouches to survive, which prevents any monitoring of growth rates and 
feeding behaviours (Magniez 1983, Schatt 1985, Mespoulhé 1992).  
  
4.3. Ecological relevance of the IBM population model  
 
Upscaling the DEB-individual model to the population level in the IBM enables to simulate 
population structure and dynamics as a response to temperature and food resource availability. In 
particular, the IBM enables to predict the targetted effect of environmental changes on the 
population at the different life stages of individuals. Additional environmental data would help 
enhance IBM reliability and improve our knowledge of populations and environmental conditions in 
remote areas.  
Field works are also subject to uncertainties due to the species burrowing habit which renders the 
assessment of  population structure difficult, the brittleness of specimens also limiting counting 
replicates (Magniez 1980, Mespoulhé 1992). Important variations in population densities were 
noted across studies (Guille and Lasserre 1979, Mespoulhé 1992, Poulin 1996, personal 
observations) for a same site, which may suggest either important variations in population density 
and structure through time, which was however refuted by Poulin and Féral (1994), or important 
biases in sampling due to the aggregative behaviour of individuals and the patchiness of 
distribution patterns (Poulin 1996). 
 
The sensitivity analysis (Appendix 1.9) showed that the model is not very much dependent on 
assumptions made on initial population densities because the model density-dependent regulation 
operates through intra-specific competition for food resources only. There is no agonistic behaviour 
among conspecific individuals as it was reported in other echinoid species (e.g. Echinometra sp. 
Shulman 1990) and there is no evidence of competition for space in A. cordatus based on field 
observation. Intra-specific competition in shallow-water echinoids is a common phenomenon under 
food-limited conditions (Stevenson et al. 2015). McClanahan and Kurtis (1991) stated that in 
Echinometra mathaei, when predation pressure and intra-specific competition are low, populations 
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increase without limitation and regulation operates through a decrease in food availability for 
individuals. The same could hold true for A. cordatus as well. 
 
Intra-specific competition for oxygen could also have a regulatory effect (Ferguson et al. 2013) 
since A. cordatus shows a high oxygen consumption rate (Guille and Lasserre 1979, Magniez and 
Féral 1988). In muddy substrates, specimens are usually observed unburied, positioned onto the 
sediment (instead of underneath), which was often interpreted as a result of difficulties to breath 
inside fine sediments.  
 
The sensitivity analysis also showed that the number of eggs produced by females is a controlling 
parameter of model stability as well. There is a high variability in the number of eggs produced 
among females (from 9 to 106 eggs per female, personal communication from P. Magniez). Taking 
into account such a variability would introduce an enhanced stochasticity in the population 
dynamics model if implemented and linked to each female’s reproductive buffer UR and GSI 
values (Martin et al. 2010, e.g. for zebrafish in Beaudouin et al. 2015). 
Finally, the model was also shown to be sensitive to background mortality (Appendix 1.9). 
Although monitoring mortality rates in the field is challenging, such data would greatly enhance the 
reliability of the IBM. 
 
In general, the sensitivity tests showed that the model works with the current quality and quantity of 
data available for this species in this habitat. However, on the matter of the temporal resolution, 
our model needs to be expanded and further consolidated, and we consider this element as a 
limitation to our work in its current state.   
 
Modelled food resources  
The organic content of sediments is one of the main food resources for detritus feeders and 
sediment ingestors like A. cordatus (Snelgrove and Butman 1994) and Antarctic echinoids (Michel 
et al. 2016). In the present model, the organic carbon content of sediments was used as a proxy 
for food availability for A. cordatus. Intra-specific competition for food has a stronger effect on 
resources availability than seasonal variations in resource availability. This is in line with ecological 
evidences that populations of A. cordatus survive periods of low food resources that prevail during 
the austral winter. High seasonality in food resources is a common feature of polar ecosystems 
and species have long adapted their diet accordingly (De Ridder and Lawrence 1982, Michel et al. 
2016). This has been shown in Antarctic benthic invertebrates such as shallow-water brachiopods 
(Peck et al 2005), cnidarians (Orejas et al. 2001), and echinoids (Brockington et al. 2001, Ingels et 
al. 2012). For instance, the Antarctic sea urchin Sterechinus neumayeri is believed to be capable 
of mobilizing energy from gut tissues, gonads and the body wall during the austral winter 
(Brockington et al. 2001), a strategy that may have been evolved in A. cordatus as well (Magniez 
1983). Shrinking and resorption, which are sometimes hypothesized as a survival mechanism in 
other echinoids facing long periods of starvation, are phenomena which are still understudied 
(David and Néraudeau 1989, Ebert 2013) and have not been verified in A. cordatus. In the present 
model, starvation results in the redirection of the energy flow exclusively towards maintenance of 
structure, at the expense of other compartments. Although Magniez (1983) observed a decrease in 
gonadal material after the reproduction period, it is very small in females (- 0.3%) and slightly 
bigger in males (-1.6%), and the exact cause has not been studied. It is not known whether this 
decrease in gonadal material can be directly attributed to a reabsorption for survival purposes or 
some other mechanism. The use of previously stored energy in the different compartments to 
sustain the maintenance of structure is assumed to be non-existent in our model. Such starvation 
processes could be tested in future implementation, provided sufficient data is obtained through 
experimental setups observing the phenomenon.  
 
The two scenarios of future food availability were based on coarse IPCC and NOAA projection 
models for the region. These simulations and associated outputs are here considered as 
conceivable scenarios of the influence of food and temperature changes on population dynamics. 
They are used as a proof of concept and are by no means considered as definite and reliable 
scenarios of population dynamics in the future. Future accurate predictions should imply the 
integration of complex mechanisms influencing the production, transport and deposition of organic 
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matter in the ocean, the possibility of species to adapt to changing environmental conditions, and 
more experimental data are needed to integrate the detailed influence of temperature on 
physiological processes. First observations suggest a low response towards the applied changes 
in food availability, in comparison with the influence of temperature. However, it cannot be 
concluded that the species would not be affected by future conditions in food resources in the 
area.  
 
Temperature resilience  
Important differences were obtained between population structures and densities depending on 
future scenarios and model projections made for contrasting food resources and temperature. 
Most importantly, the 'resistant' population model of A. cordatus at Anse du Halage is predicted to 
sustain the expected changes in temperature and food resources under both future scenarios 
although population density is also predicted to be strongly reduced. In contrast, the 'vulnerable' 
population model predicts population extinction after a few decades of simulation. This implies that 
a precise evaluation of the species resilience to temperatures is needed for more robust and 
decisive models. Moreover, Antarctic echinoids were shown to present varied responses to ocean 
warming depending on species and life stages, with higher vulnerability to warm temperatures in 
juveniles than in adults (Ingels et al. 2012). Such a contrast suggests that more data could help 
fine-tune the present model. 
 
4.4. Relevance of the DEB-IBM approach for Southern Ocean studies  
 
DEB-IBM models are being developed for various applications and research fields. They are 
considered a powerful tool for environmental risk assessment, such as the effect of toxicity (e.g. 
Beaudouin et al. 2015, David et al 2019, Vlaeminck et al. 2019) and the impact of environmental 
changes on population dynamics (e.g. Saraiva et al. 2014, Malishev et al. 2018, Thomas and 
Bacher 2018, Goedegebuure et al. 2018). They can also be used to predict the behaviour of 
microbial systems (Jayathilake et al. 2017) or bring to light underlying mechanisms of life history 
strategies (e.g. Gatti et al. 2017). The DEB model brings ontogenetic and phenotypic variations to 
the population model while the IBM brings stochasticity, population dynamics (e.g. competition for 
food), as well as learning and interaction mechanisms (DeAngelis et al. 1991, Martin et al. 2012) to 
complement the model. The potential of the DEB-IBM approach resides in the combination of both 
models to predict population dynamics as a response to changing environmental conditions (i.e. at 
the individual level in the DEB model and at population level in the IBM). 

 
In the present work, the DEB-IBM was used to improve our understanding of the dynamics of A. 
cordatus’ populations. Applications could be further developed to address conservation issues 
such as the designation of priority areas and the definition of management plan strategies. Vast 
areas of the French Southern Territories have recently been placed under enhanced protection of 
a national nature reserve based on experts' knowledge and ecoregionalisation approaches (Koubbi 
et al. 2010, Fabri-Ruiz et al. 2020). Most areas however could not have benefited from thorough 
benthic field studies, and ecological models can represent interesting tools to assess the relevance 
of defined protection areas for target species and ecosystems. Such models can be useful when 
drafting management plan strategies for determining favored ship traffic routes or areas where 
human activities can be implemented in coastal areas of the national nature reserve of the French 
Southern Territories. Dynamic population models allow testing different ecological scenarios in a 
quite straightforward way to illustrate research designs and proposals. They can provide some 
clues to investigate the potential effect of environmental changes on key species for which 
conservation efforts should be directed in a short to long-term strategy (Fulton et al. 2015). 
Dynamic models can also prove useful for adaptable conservation strategies like the designation of 
dynamic protected areas as a consequence of changing environments and ecosystems. Finally, 
dynamic models could be further implemented into studies of ecosystem functioning and the 
impact of environmental changes on the alteration of sub-Antarctic ecosystems.  
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APPENDIX 1.5. Forcing environmental conditions 

 

 
Figure S1.5.A. Onsite temperature records (monthly mean values) at the three sites used in the model. Red: 
Ile Longue (reference site for Anse du Halage), Green: Ile Haute, Blue: Port Couvreux. Data provided by 
IPEV program Proteker (n°1044); Ile Longue: http://www.proteker.net/Ile-Longue-5m-depth.html?lang=en; Ile 
Haute: http://www.proteker.net/Ile-Haute-5m-depth.html?lang=en; Port Couvreux:  
http://www.proteker.net/Ilot-des-Trois-Bergers-5m-depth.html?lang=en (accessed on 08/05/2019).  
 

 
Figure S1.5.B. f values (food resources) used as input in the model. Black: Anse du Halage (data from 
Delille and Bouvy 1989). Yellow: 50% values of Anse du Halage. Blue: 30% values of Anse du Halage.  
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APPENDIX 1.6. Plots of uni-variate data from the DEB model 

 

 
Figure S1.6. Uni-variate observations (red dots) used to calibrate the DEB model of Abatus cordatus. Blue 
lines correspond to model predictions, with Relative Error provided in Table 1.5. (A) Relationship between 
oxygen consumption (Pl/h) and length (cm) (Féral and Magniez 1988), (B) growth rate (Schatt 1985, 
Mespoulhé 1992), (C) Length (cm)-Weight (g) relationship of adults (Féral and Magniez 1988), (D) Length 
(cm)-Weight (g) relationship of eggs (Schatt 1985). 
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APPENDIX 1.7. Influence of timestep changes 

 
The sensitivity of the model to the chosen timestep was tested by comparing model outputs of the initial 
monthly calibrated model with a daily implementation (simple repetition of the monthly value for each day of 
the corresponding month).  
 
In order to assess whether models can similarly predict individual performances when calibrated with 
different timesteps, models generated with a monthly and a daily timestep were compared. In these models, 
all processes outside of the individual development and the production of new offspring into the model were 
deleted (no competition, no mortality of any cause). Only individual development processes were kept, 
including starvation and reproduction, which directly influence individual energy fluxes without any stochastic 
effect. This facilitates model comparison. The population was assumed to be composed of female individuals 
only that reproduce following the procedure explained in the main manuscript. The model was initialized with 
120 female entities, and individual metabolic performances (dUR, dUE, dL) over five years were compared 
between the two models.  

 

 
Figure S1.7. Comparisons of individual metabolic performances between models calibrated with a monthly 
(black line) or daily (grey line) timestep: (A) variation in scaled reserve (dUE), (B) in the reproduction buffer 
(dUR) or (C) variation in structural length (dL) over time. Models are generated without any process 
structuring populations except for reproduction events (i.e. recruitment of new juveniles). Average values of 
all individuals of the population are represented.  
These results strongly highlight that models calibrated with different timesteps present very close patterns, 
and suggest that changing model timestep does not influence the shape and order of magnitude of individual 
metabolic performances predictions.  
In our model, time is continuous for individual processes (individual development is modelled using ordinary 
differential equations), but not for all population processes which were taken from literature and experimental 
sources. These population processes are based on a monthly scale and used as a baseline to model 
population dynamics over time. Running the model at a smaller timestep implies altering all population 
processes to fit a narrower time increment, which is also not always relevant ecology-wise when studying 
population dynamics, since A. cordatus is a slow growing individual that lives in stable environmental 
conditions. Environmental changes do not occur often enough to significantly influence individual metabolism 
on a day-to-day basis and to consider mortality due to temperature changes at a daily step.  
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Similarly, information used for population background mortality rates were only available in the literature on a 
yearly range (Mespoulhé 1992, Poulin 1996, Ebert et al. 2013), and applying mortality for each day-step 
seems inappropriate for our study. Recruitment of newborn juveniles is also a yearly event, rendered 
possible when the reproduction buffer contains enough energy at a certain period of the year to enable 
females to release gametes. Reproduction development (GSI, reproduction buffer) is a continuous process 
in the model but specific reproduction events (releasing gametes, brooding and releasing offspring) are more 
fitting to monthly rather than daily triggers. In consideration of the ecological basis of these population 
processes and the very low sensitivity of the individual model to changes in timestep, it was therefore 
decided in this study to implement the model on a monthly timestep, although Fig. S1.7 proves that 
methodologically speaking, a different timestep could be applied to the core of our model. 
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APPENDIX 1.8. Future environmental scenarios and population resistance scenarios 
 

 
Figure S1.8.A. Temperatures for the different future projections based on the 2012-2018 dataset. Black: 
reference temperatures at Anse du Halage under present-day conditions. Green: Projection for scenario 
RCP 2.6 (+1.1°C warming). Orange: Projection for scenario RCP 8.5 (+1.7°C warming).  
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Figure S1.8.B. Decision tree explaining the three types of sea urchin sensitivity available in the model for the 
population temperature mortality rates. A triple population resistance scenario was used: ‘resistant’, 
‘intermediate, ‘vulnerable’. For each threshold of the gradient of population mortality due to temperature, the 
‘resistant’ population endures a mortality rate 15% lower than the ‘sensitive population’ (i.e. at 8°C for two 
months, the ‘resistant’ population suffers a 10% mortality rate, the ‘sensitive’ population suffers a 25% 
mortality rate). For the ‘short resistance’ population, rates are the same as for the ‘resistant’ population, but 
mortality takes effect only after one month of temperatures reaching over the threshold (rather than two 
months in the other cases).  
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Figure S1.8.C. f values (food resources availability) estimated over one year for the different future 
projections. Black: reference f at Anse du Halage under present-day conditions from Delille and Bouvy 
(1989). Green: Projection for scenario RCP 2.6 (linear decline of 10% of food availability compared to 
present-day conditions). Orange: Projection for scenario RCP 8.5 (decline of 20% of food availability 
compared to present-day conditions).  
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APPENDIX 1.9. Sensitivity analysis 
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Figure S1.9. Model sensitivity to (a) the initial population number, (b) inter-species variation coefficient, (c, d) 

juvenile and adult background mortalities, (e) egg number produced per female during a reproduction event, 
and (f) the egg survival rate. Variations of -30%, -20%, -10%, +10%, +20% and +30% were tested for these 
parameters (#A to #F). For each analysis, the model was run until 100 simulations of 210 years of simulation 
were obtained. The model is considered as a ‘crash’ when the population is not stable and collapses before 
the end of the simulation period. The proportion of crashes relates to the number of crashes counted for 100 
simulations (i.e., for 15 crashes and 100 simulations, the proportion is 15/(100+15)). Due to computing time 
limitations, the analysis was stopped when reaching a proportion higher than 66% of crashes (indicated by a 
black cross). 
The percentage of changes obtained between the initial and the #A to #F scenarios values was calculated 
for average population density (ind/m2), average juvenile/adult ratio, average physical length (cm), average 
reserve energy dUE and average structural length variation (dL) over the period of 200 years (210 years 
minus the first 10 years needed for model calibration). Decreasing values are indicated in red, increasing 
values in green. 
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APPENDIX 1.10. Individual growth under different scenarios 
 

 
Figure S1.10. Simulation of the monthly variation of structural length (∂L, stands for !"!", dimension L.t-1) over 

one year. Average results for all individuals (all sex and age), in fifty simulations, are presented by the green 
line. The grey area corresponds to the variation range (variation induced by differences between individuals: 
age, size, energy allocation) between all individuals, with the same number of individuals at model initiation 
(population then varies over time). (a) Model under present-day conditions; (b) model under IPCC scenario 
RCP 2.6 of T° and f changes (-10% of f and +1.1°C compared to present); (c) model under IPCC scenario 
RCP 8.5 of T° and f changes (-20% of f and +1.7°C compared to present); (d) model under IPCC scenario 
RCP 8.5 of T° change only (+1.7°C compared to present); (e) model under IPCC scenario RCP 8.5 of f 
change only (-20% compared to present). 
These results give an illustration of what is discussed in section 4.2.1: In the DEB model of this work, we do 
not have the data to infer the descending slope of the Arrhenius curve, that is the temperature range beyond 
the optimal temperatures in which the metabolic rates slow down with higher temperatures. Thus, in its 
current implementation, the model gives better results at the individual level when confronted to higher 
temperatures, which is not in accordance with field and experimental observations. This is corrected at the 
population level with the use of the rate of mortality induced by temperature.  
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APPENDIX 1.11. Projection of the population model 

 
 

 
 
Figure S1.11. Modelled population structure and density under current environmental conditions calibrated 
at Anse du Halage and projected for two sites: Ile Haute (a, b) and Port Couvreux (c, d). Monthly density of 
juveniles (purple) and adults (orange) over 30 years (100 simulations). Bold lines: mean density value. 
Shaded areas: variation range. (a) Projection at Ile Haute based on local temperature records and 50% f 
values (Fig. S1.5.B, yellow), (b) Projection at Ile Haute based on local temperature records and 30% f values 
(Fig. S1.5.B, blue), (c) Projection at Port Couvreux based on local temperature records and 50% f values 
(Fig. S1.5.B, yellow), (d) Projection at Port Couvreux based on local temperature records and 30% f values 
(Fig. S1.5.B, blue). 
The pattern observed at Port Couvreux with f=30% of f values estimated at Anse du Halage (Fig. S1.7) is 
due to local conditions of low food availability and temperatures (2013 and 2014 temperature data for Port 
Couvreux, Fig. S1.5.A, blue) impeding the conception of new individuals when females are few and do not 
reach GSI values high enough to reproduce. Some years, background mortality is not compensated by new 
cohorts and the population continuously decreases. The cyclic pattern is controlled by temperature data 
input in the model (six years period transposed for the entire simulation time).  
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APPENDIX S1.12. ODD of the DEB-IBM model 
  
The ODD is available in the “Info” section of the NetLogo code, found at 
http://modelingcommons.org/browse/one_model/6201. 
 

 
MODEL PRESENTATION   
 
The present DEB-IBM (Dynamic Energy Budget - Individual-Based Model) was built to simulate and predict 
population dynamics in an endemic common benthic species of the Kerguelen Plateau (sub-Antarctic 
region), the sea urchin Abatus cordatus. It upscales the individual mechanistic DEB model to the population 
level, enabling to model the population dynamics through time as a product of individual physiological 
responses, and to predict the species response to a changing environment through comparisons between 
sites and between predicted future scenarios. The main objective of this work was to develop the model 
using the available data for this species living in a remote environment that is impacted by climate change 
and where logistical challenges strongly hinder the scientific research.  
 

 
A few simple steps are necessary to run this model under its basic implementation:  
 
1/ Download the model and the environmental files from the ‘’Files’’ tab in the NetLogo modeling commons 
(http://modelingcommons.org/browse/one_model/6201#model_tabs_browse_files).  
For the basic implementation, the two files needed are “temp_time_monthavg_Halage.txt” for temperatures 
and “inputRSces_M_f_Delille.txt” for resources. Make sure the model (.nlogo) and the data (.txt) files are 
stored in the same folder on your computer.  
 
2/ Once you have opened the model (.nlogo), the interface is generally the first thing that is visible. 
Navigation between the interface, the information page, and the code of the model is done through the three 
tabs at the top of the software (‘Interface’, ‘Info’, ‘Code’). 
Make sure that the following elements are selected in the interface:  

x Sites: ‘Anse du Halage’  
x projection: ‘present’  
x future: ‘mixed temp & food’  
x sensitivity: ‘resistant’  
x competition: ’On’  
x run_time: ‘210’  
x cv: ‘0.1’  
x add-my-pet?: ‘Off’  

Also ensure that none of the green boxes (‘input paramaters’) is empty. If any of them is empty, switch the 
add-my-pet? button ‘On’ and fill the relevant boxes with the basic DEB parameters for A. cordatus as taken 
from the Add-my-Pet database 
(https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/entries_web/Abatus_cordatus/Abatus_cordatus_res.html): 
[ṗM], 𝐸𝐻

𝑏, 𝐸𝐻
𝑝, [EG] and Lm, which correspond to these boxes respectively: p_M, E_H^b, E_H^p, E_G, zoom. 

 
Except in the aforementioned case, do not modify any of the parameters in the green boxes placed under 
the line « Input parameters » on the interface.  

3/ Click on the purple setup button. This initializes the model, and should barely take a second on an 
average computer. A sure way of knowing the model has finished setup, is that color shapes appear in the 
small black square that is on the bottom-right of the purple buttons.  

4/ Once setup is finished, click on the purple go button. This will run the model for the simulated duration 
input in the run_time box (number of years). Clicking on the go button again before the end of the simulation 
will pause the model, clicking on it after the end of the simulation will continue the simulation without a 
temporal limit. The go once button will only run the model for a single loop, that is a simulation of one month.  

How to run this model ? 
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5/ The model can be run for future projections with different combinations of food and/or temperature 
scenarios. For this, select in the interface the desired RCP scenario under projection and the wanted 
combination under future. Three types of sensitivity to high temperature are also available under sensitivity 
(see « Check temperature » submodel in the ODD below for a short explanation of the difference between 
the three types).  

 

x The temporal resolution is a monthly interval. 
x Temperature and functional response f are in the form of time-series. (To test with constant and DEB 

standard values, uncomment the corresponding lines at the beginning of the go procedure in the 
code).  

x This species lives in waters of 5°C in average, however the upper limit of the Arrhenius relationship 
is not available to model Abatus cordatus physiological response to higher temperatures. Because of 
this, the mortality due to temperature was manually forced in the model using survival data obtained 
during an experiment led in Kerguelen in November 2018.  

 

 

MODEL DESCRIPTION 
 
Here is a schematic representation of the DEB-IBM model and a short summary 
description (the letters in brackets refer to the figure):  

For now, the model only fully works if the site Anse du Halage is selected. Sites Port Couvreux and Ile 
Haute can also be selected, however the site-specific data is only available for temperature and not for 
resources. Thus, if one of those two sites is selected, the file for the resources data will be that of Anse du 
Halage. This is merely to test the model for different temperature data using real time-series records 
rather than future projections. 
 
NB: Here again, make sure that the relevant temperature files (“temp_time_monthavg_Couvreux.txt” or 
"temp_time_monthavg_Haute.txt », also available in the ‘’Files’’ tab in the NetLogo modeling commons) 
are stored in the same folder as the model.  
 

Other things to keep in mind in this implementation:  
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Individuals (A) undergo development through the DEB model and reproduce (purple arrow). Altogether and 
with a slight inter-individual variability in DEB parameters (*), they form the population of the IBM (B) which 
undergoes population-specific processes (temperature and background mortalities) at the scale of a simple 
square metre patch at the reference site (C). The IBM population is embedded within this specific 
environment, whose environmental conditions (temperature and food resources) affect individual and 
population dynamics. Additionally, the population influences the resources availability following a density-
dependence regulation. 
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Below is the description of the model following the ODD (Overview, Design concepts and Details) 
protocol from Grimm et al. (2010), where information on the following characteristics can be found:  

1. Purpose                                                  
    Short presentation of the objective of the model 

 

2. Entities, state variables & scales         
    Parameters with their DEB notation, code notation, dimension and signification 

            Types of entities in the model, their state variables 
            Temporal resolution and temporal extent of the model, spatial resolution 

 
        3. Process overview & scheduling           
            Pseudo-code of a simulation (what the model does in one ‘go once’ simulation) 
            Order in which agents execute commands, when variables get updated 
            How time is represented in the model, presentation of calendars and timers 
 

        4. Design concepts 
            •Basic principles                  Underlying DEB theory and principles 
            •Emergence                         Emergent and imposed results 
            •Adaptation                          Adaptative traits of individuals 
            •Interaction                           Individuals interactive behaviours 
            •Stochasticity                       Randomization in processes 
            •Collectives                          How individuals are grouped under types of entities, specific characteristics 
            •Observations                      Outputs of the model for results or tests 
 
          5. Initialisation                                            
              Elements to select and parameters to input for initialisation 
              Initial state of the model at setup 
              Origin of initial parameters, Initialisation of individuals 
              What differs from one initialisation to another 

 
          6. Input data                                               
              Data taken from external files, How the files are compiled and read 
              Specific data for the standard basic model (Anse du Halage) 
 
          7. Submodels                                              
              Detailed description of each submodel, with equations and processes: 
              •Update calendar 
              •Update environmental variables 
             •Competition and f 
             •Convert parameters with TC (temperature correction factor) 

      •Change in reserve 
              •Change in maturity or reproduction buffer 
              •Change in structural length 
              •Starvation 
              •Ageing 
              •Update individuals 
              •Update reproduction and birth timers 
              •Reproduction 
              •Calculate GSI 
              •Background mortality 
              •Check temperature 
   • Population monitoring 
            • Update time  

 

The model was developed from the individual mechanistic Dynamic Energy Budget (DEB) model 
to study the response of the populations of the sea urchin Abatus cordatus, endemic to the  
 
 

1. Purpose 
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Kerguelen Plateau (sub-Antarctic region), to changes in environmental conditions (temperature 
and resources), through comparisons between sites and between predicted future scenarios.  

 
DEB notation Notation in the code Dimension and description 

e e_scaled  (-) scaled reserve density per unit of structure, e = [E]/[Em] 
𝐸𝐻

𝑏  E_H^b  (e) maturity at birth  
𝐸𝐻

𝑝  E_H^p  (e) maturity at puberty  
[EG]  E_G  (e·L-3) volume-specific costs of structure  
g g (-) energy investment ratio  
ḣ  h_rate  (t-1) specific death probability rate  
∂ḣ  dh_rate  (-) change of hazard rate in time  
ḧa  h_a  (t-2) Weibull ageing acceleration  
κ kap  (-) fraction of mobilised reserve allocated to soma  
κ R kap_R  (-) reproduction efficiency  
𝑘̇M  k_M_rate  (t-1) somatic maintenance rate coefficient  
𝑘̇J  k_J_rate  (t-1) maturity maintenance rate coefficient  
L L (L) structural length  
∂L  dL  (-) change of structural length in time  
Lw  Lphy  (L), physical length (L/∂M), with ∂M being the shape coefficient (-) 
Lb  L_b  (L) structural length at birth  
Lm  zoom  (L) maximum volumetric length  
[𝑝̇M]  p_M  (e·L-3·t-1) specific volume-linked somatic maintenance rate  
𝑞̈ q_acceleration  (t-2) ageing acceleration  
∂𝑞̇   dq_acceleration  (-) change of ageing acceleration in time  
SA  S_A  (L2) assimilation flux (scaled)  
SC  S_C  (L2) mobilisation flux (scaled)  
sG  sG  (-) Gompertz stress coefficient  
sM  s_M  (-) acceleration factor  
UE  U_E  (t·L2) scaled reserves, UE = E / {ṗAm}     
∂UE  dU_E  (-) change of scaled reserves in time  
𝑈𝐻

𝑏  U_H^b  (t·L2) scaled maturity at birth  
𝑈𝐻

𝑝 U_H^p  (t·L2) scaled maturity at puberty  
UH  U_H  (t·L2) scaled maturity  
∂UH  dU_H  (-) change of scaled maturity in time  
UR  U_R  (t·L2) scaled energy in reproduction buffer  
∂UR  dU_R  (-) change of energy in reproduction buffer  
𝑣̇  v_rate  (L·t-1) energy conductance  
yVE  y_VE  (mol/mol) yield of structure on reserve  

Other 
variables 

Notation in the code Dimension and description 

f f (-) scaled functional response 
K car-cap (#) carrying capacity 
density pop_density (#/m-2) current population density  
competition food_compet quantification of the scale of competition 
TC TC (-) temperature correction factor 
GSI GSI (-) gonado-somatic index 
eggs eggs (#) number of eggs per female 
Ri Ri (#) reproductive output (number of juveniles born per female) 
Scatter 
multiplier 

scatter-multiplier (-) parameter used to put a random variation in individual 
parameters 

 
 
The model includes two types of entities: individuals and the environment. 
Individuals are divided into 4 types of sub-agents, depending on life-stage and sex: embryos, juveniles, adult 
males and adult females. Life-stages are considered using DEB definitions. 
Individuals are characterised by four primary state variables, based on DEB theory (Kooijman 2010): scaled 

2. Entities, state variables and scales 
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reserve (UE), structural length (L), scaled maturity (UH) and scaled reproduction buffer (UR). Additional state 
variables for individuals are age (in months and in years), ageing acceleration (𝑞̈) and death probability rate 
(ḣ). State variables in DEB are originally dependent on energy (unit of Joules), but in order to simplify the 
calculations of differential equations so that they do not require measurements of energy, each state variable 
was discarded of their energy unit by dividing with the maximum surface-area specific assimilation rate {ṗAm} 
(dimension e.L-2.t-1) following Martin et al. (2010) and Kooijman (2010). Females have supplementary 
attributes linked to reproduction processes for which the state variable is the gonado-somatic index (GSI) 
that is the ratio of gonad weight over the weigth of the entire body. Finally, each individual has a variable 
called scatter-multiplier, used to implement a slight variation in three standard DEB parameters (𝑈𝐻

𝑏, 𝑈𝐻
𝑝, g) 

and initial energy reserve at birth (U_E_0yo). This scatter-multiplier is the exponential of a number taken 
randomly on a normal distribution of mean 0 and standard deviation cv (set by the user in interface).  

The environment in the model is characterised by two state variables, monthly average temperature (T, unit: 
°C) and monthly resources availability represented by the proportion of food an individual can intake on a 
scale of 0 to 1 (f, no dimension). Values for these variables are input into the model from external files, as 
time-series of monthly values. Temperature data was collected from existing thermo-recorders on the 
corresponding sites (implemented by the PROTEKER program, http://www.proteker.net/?lang=en), while 
resources data comes from the publication by Delille and Bouvy (1989) for the site Anse du Halage.  

Models provide results at a monthly resolution, over a temporal extent that can be modified by the user in the 
interface (example set at 210 years). The first ten years are assumed to be the initialisation phase and 
should be removed for the analysis of results. Changes are applied to individuals on a monthly basis and 
thus each update corresponds to the state of the system at the end of the displayed month. In this 
implementation, the model runs on one single patch of environment representing one square meter, and thus 
density of population is equal to the number of individuals present in the model. Movements of individuals 
are not taken into account, and each individual born on the patch grows and dies on that same patch. There 
is no information about water movements in the area, and the species is known to mostly feed on sediment 
matter. This model is non-spatial, and connectivity between the patches (e.g. for food or individual 
movements) is assumed to have little enough significance to be absent from this model.  

At each timestep, the model runs the following commands in that order:  

 

 
 

 

 

3. Process overview and scheduling 
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Individuals execute the same command one by one in a fixed order before going to the next 
command, but all have access to the same state of the environment since it updates once at the 
beginning of the timestep only. 
In this model, time is represented continuously using ordinary differential equations (ODE) for the 
individual state variables, and all other variables are calculated in a discreet manner (every month, 
with one month rounded to 30.5 days).  
Below is an illustration of the different calendars and timers used in the model, beginning at the point 
where the simulation starts (Gregorian calendar for reference):  

Reset the death counts 
 Update calendar 
  
 (For each patch: 
  Update environmental variables 
  If competition ON [ 
   Calculate competition ] 
  Calculate f) 
  
 (For each individual: 
  Remove if marked as deceased  
  Convert relevant parameters with temperature correction factor 
  Calculate change in reserve 
  If not mature [ 
   Calculate change in maturity] 
  If mature [ 
     Calculate change in reproduction buffer ] 
  Calculate change in structural length 
  If scaled reserve < scaled length [  
   Starve] 
  Calculate ageing) 
  
 Update individuals 
  
 (For each individual: 
  Update reproduction timers) 
  
 (For each females: 
  Update birth timer 
  If first month of reproduction period [ 
     If reproduction ON [  
    Mark GSI down  
    Prepare eggs]] 
  Calculate GSI 
  If GSI >= 0.07 [ 
     Turn ON reproduction 
      If month before reproduction period [ 
    Mark U_R down  
    Launch reproduction (with birth_time)]] 
  If GSI < 0.07 [  
   Turn OFF reproduction] 
  If reproduction ON [ 
     If within reproduction period [  
    reproduce] 
     If within birth-giving period [ 
    release offsprings]]) 
  
 Background mortality 
 Check temperature 
 Monitoring of population 
 Update time  
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repro_time 7 8 9 10 11 0 1 2 3 4 5 6 7 8 … 
GSI_time 5 6 7 8 9 10 11 12 1 2 3 4 5 6 … 
birth_time 1 0 0 0 0 8 7 6 5 4 3 2 1 0 … 
month_time 10 11 12 1 2 3 4 5 6 7 8 9 10 11 … 
Gregorian 
calendar 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov … 

‘repro_time’ follows the reproduction year, runs on a twelve steps loop, 
‘GSI_time’ follows the GSI cycle year, runs on a twelve steps loop, 
‘birth_time’ is a countdown tracker for the time between the start of reproduction and the following 
release of offspring in a year. It is triggered by the launching of reproduction and counts backward, 
staying at 0 if not triggered. ‘month_time’ follows the Gregorian calendar  

 

  BASIC PRINCIPLES  
The IBM was built using the DEB-IBM model developed by B. Martin for Daphnia magna, along with its DEB-
IBM user manual and model description (Martin et al. 2010). The underlying theory for the individual 
development in the model follows the Dynamic Energy Budget theory (Kooijman 2010). The population is 
studied following the IBM principles (Railsback and Grimm 2019), as a dynamic system composed of 
autonomous individuals affected by the environmental conditions throughout their life-cycle. Each individual 
undergoes a continuous development from birth till death, following the DEB principles with a slight variation 
between individuals at their initialisation, and represents a component of the IBM population, which is itself 
affected as a whole by variables such as population death rates and density-dependent processes. The 
emerging state of the population is then observed, and compared between different scenarios of 
environmental variations.  

 
  EMERGENCE 

The model illustrates the evolution of the population structure following the response of the individuals to the 
environmental conditions input. Metabolic responses, life-stages, ability to reproduce, starvation and ageing 
processes of the individuals, emerging from the mechanistic representation of their development, affect the 
population structure and average characteristics. A background mortality rate and a mortality caused by 
above normal temperatures are forced into the model, and the same reproductive output is imposed to all 
females that are able to reproduce.  
 
ADAPTATION 
Agents do not have an adaptive behavior. Individual traits vary among individuals in a population, but each 
individual carry the same traits along their entire lifespan and do not change nor learn from the events they 
experience or from each other. Consequently, the design concepts “objectives”, “learning”, “prediction”, and 
“sensing” do not apply.  
 
INTERACTION 
Individuals do not have any direct interaction. They only affect each other indirectly, as the size of the 
population influences the resources availability and thus the capacity of each individual to access food. 
 
STOCHASTICITY 
In the model, stochasticity is used in the ageing submodel: there is a 50% chance that the ageing process is 
activated and observed for the individual. This stochastic element can be modified in the code by changing 
the numbers x and y in the ‘update individual’ procedure. Stochasticity is also implemented in four of the 
initial variables for each individual (scaled maturity at birth, scaled maturity at puberty, energy investment 
ratio, energy reserve at birth), using the scatter-multiplier, the exponential of a number taken randomly on a 
normal distribution of mean 0 and standard deviation cv (set by the user in the interface of the model, at 0.1 
for the standard model). (taken from Martin et al. 2010, Kooijman 2010). 
 
COLLECTIVES 
The individuals are grouped under a particular type of entity depending on their life-stage and sex, and 
update their life stage along time: beginning at the “juveniles” type (from around 0 to 2 years old), they are 

4. Design concepts 
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then belonging to the “males” or “females” type after reaching puberty (around 3 years old). The age at which 
a juvenile reaches puberty is an emergent property of its development. The sex is arbitrarily and randomly 
imposed on the individual that becomes an adult so that the sex-ratio (males/females) of the population is 
around 0.99. Depending on which group they belong to, some variables are different: juveniles do not modify 
their reproduction buffers, males and female do not modify their maturity compartment, females possess 
some proper variables such as GSI (Gonado-somatic index), eggs (number of eggs produced) and Ri 
(reproductive output). These collectives do not emerge from individual behaviour, but instead are 
implemented by the modeller in order to distinguish the life stages and sex of the individuals.  
 
OBSERVATIONS 
The main output of the model are plots of population structure with densities of population at the different life-
stages, plots of the cumulative counts of individual deaths (and proportions of associated causes), plots of 
mean values in state variables UR, UE and L and change in these state variables (∂UR, ∂UE and ∂L) for the 
different individual types. These plots allow observing the response of the population to contrasting 
environmental conditions and individual metabolic responses in the population in relation to these 
environmental conditions. Additionally, plots of the mean age at death of individuals dying due to the ageing 
submodel were used to calibrate the ageing submodel itself.  

For the standard model, the following elements must be selected in the interface:  
x Sites: ‘Anse du Halage’  
x projection: ‘present’  
x future: ‘mixed temp & food’  
x sensitivity: ‘resistant’  
x competition: ’On’  
x run_time: ‘210’  
x cv: ‘0.1’  

The initial DEB parameters can be calculated by the model if the ‘add-my-pet?’ switch is set to ON in the 
interface and the basic DEB parameters [ṗM], 𝐸𝐻

𝑏, 𝐸𝐻
𝑝, [EG] and Lm for the species as taken from the Add-my-

Pet database are input into the relevant boxes (respectively: p_M, E_H^b, E_H^p, E_G, zoom).  
The standard model is run for 210 years in total for the site Anse du Halage under present-day conditions, 
with a population sensitivity set to ‘resistant’ and competition affecting resources availability. At setup, the 
values for the temperature and f at the site are taken from the time-series data found in the input files and 
compiled into lists usable by the model. The model is initialised with environmental conditions of October 
(month_time 10). If the model is set for future projections, the values are modified according to the chosen 
scenario (i.e. either one of RCP 2.6 and RCP 8.5 with food only, temperature only or food and temperature 
combined).  
The carrying capacity is set at 200 ind./m2 and the proportion of females at 0.5.  
 
Initial parameters are based on A. cordatus DEB model parameters, developed in Guillaumot (2019c). Two 
simulation procedures are run for the initialisation of individuals: (1) a simulation of embryonic development 
to determine the initial reserve at birth, and (2) a simulation of the development of one individual from 0 till 5 
years old at constant f and temperature values.  
The first simulation uses a bisection method to determine the initial reserve at birth. The loop simulates the 
embryonic development from conception till birth, while testing for different scaled reserve e at conception. 
When the scaled reserve reaches the aimed value after a few loops of development, there are two possible 
situations: either the development is before or after the birth stage, and thus the loop is reset with new 
values of initial scaled reserve e set accordingly and the simulation relaunched, or the development is at 
birth stage and the value of scaled reserve e that was obtained is saved.  
The second simulation starts off where the first one finishes, using the resulting reserve density at birth. It 
runs a loop for the development of the individual from birth till five years old, with standard parameters and a 
constant functional response f = 1. The simulation keeps track of the age of the individual, and for each year 
the values for the state variables are set aside and the simulation continues until the following year. These 
values are stored in variables and will be used to initialise models.  
 
When running a model, an initial population of 120 individuals is created and contains a similar proportion of 
the individuals belonging to six age classes from 0 to 5 years old. Each of these individuals receives the set 
of parameters corresponding to its age class (variables stored in the ‘second simulation’ mentioned in the 
above paragraph), with stochasticity applied on some of these parameters (see section ‘Stochasticity’). 

5. Initialisation 
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Each individual sets its calendars with GSI_time at 5 and repro_time at 7, and females are given initial 
values of 0.03 for their GSI and set their birth_time timer at 0.  
  
The model reads environmental variables from input .txt files containing monthly time-series of food 
resources (from Delille and Bouvy 1989) and temperatures (PROTEKER program IPEV n°1044). 
The text files contain an ordered list of values (see below for Anse du Halage data). The temperature file 
contains 72 values of monthly average temperatures corresponding to temperature records from October 
2012 to September 2018. The food resources file contains 12 values, taken from the measurements of 
organic carbon content in sediments published in Delille and Bouvy (1989) and scaled by the maximal value 
to create a proxy of f, contained between 0 and 1. 
 
Data for resources and temperatures at Anse du Halage: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Update calendar 
The model timestep is a month.  

Update environmental variables 
The model takes the temperature and f values of the corresponding month from the input files.  

 
Competition and f 
The model calculates the current population density and quantifies the competition effect on food availability 
(FC, food competition) depending on how far from the carrying capacity (K) the population density (P) is:  
If P < 1.9 * K, then FC = (1- fenv).(1 - P

2.K−P
) 

If P ≥ 1.9 * K, then FC = (1- fenv).(1 - P
K/10

) 
 
Two equations are used because if P = 2K, the first formula gives an error due to a division by 0, and if P > 
2K, then the formula gives the untrue result of less competition with a bigger population (hence the use of 
1.9 as a pivot value).  
Competition is only effective if food availability is less than the maximum (hence the use of ‘(1 – f)’ in the 
equation). 
 
Then the model updates the f value in accordance with the quantified food competition:   
 feff = fenv + FC, where fenv is the food available in the environment as input into the model from the external 
files, and feff the effective food availability. 
 

 6. Input data 

  Resour ces:  
 mont h  f val ue 
 01 0. 748 
 02 0. 775 
 03 0. 756 
 04 0. 712 
 05 0. 559 
 06 0. 477 
 07 0. 432 
 08 0. 432 
 09 0. 477 
 10 0. 648 
 11 0. 909 
 12 1. 000 
 

    Temper at ur es:  
 ti me   mean t emper at ur e 
 0 3. 576178523 
 1 4. 272769444 
 2 5. 693903226 
 3 6. 680989247 
 4 7. 540075893 
 5 7. 95569852 
….  
 68 4. 157559722 
 69 3. 148745968 
 70 2. 482346774 
 71 2. 836618056 
 

7. Submodels 
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Proportionally to how much f is lessened compared to the maximum, the size of the current population has 
an influence on how important the competition is: If the population is below the carrying capacity (K), then 
food is more available for the present individuals, but if the population is over the carrying capacity, the 
availability of food is lessened. 
 
Therefore, 
if P > K, FC < 0 <=> f decreases 
if P = K, FC = 0 <=> f constant 
if P < K, FC > 0 <=> f increases  
 
Meaning that the competition is actually calculated depending on how far from the carrying capacity is the 
population density, and how far from maximum f is the food availability (fenv). The less food available and the 
bigger the population, the higher the competition.  
The regulatory effect of this competition lies in the starvation of individuals at lower food availability, which 
leads to a reduction of the population size with higher competition (combination of low food availability and 
big population size). f is always contained between 0 and 1.  
If the competition is turned off, f is the direct value taken from the input list.  
 
Convert parameters with TC 
A temperature correction factor (TC) is calculated using the Arrhenius temperature (TA) and applied to 
conductance 𝑣̇, somatic maintenance rate 𝑘̇M, maturity maintenance rate 𝑘̇J and Weibull ageing acceleration 
ḧa, which are all affected in the same way by the correction factor. 
A given metabolic rate X at temperature T is thus modified with: 
X(T) = X * exp(TA/Tref - TA/T) with exp(TA/Tref - TA/T) being the correction factor TC, Tref the reference 
temperature (293.15K), TA = 9000K, and T the actual temperature (in Kelvin) of the organism’s life 
environment.  
 
Change in reserve 
The reserve is supplied from ingested food, that is represented in the model by the functional response f 
(from 0 to 1). Scaled assimilation rate SA is found with 𝑝̇A /{ṗAm}, where 𝑝̇A is the assimilation flux (in energy 
per time) and {ṗAm} the maximal assimilation flux per surface area of structure (in energy per time per 
surface). Since 𝑝̇A  = {ṗAm} * f * L2, with L the structural length, then SA = f * L2. 
A flux of mobilized energy goes outside of the reserve compartment: the scaled mobilisation flux SC is the 
scaled equivalent of 𝑝̇C  / {ṗAm} therefore equal to: 
L2 * (g * e / (g + e)) * (1 + L * 𝑘̇M / 𝑣̇) = SC, where g is the energy investment ratio (the cost of the added 
volume for this timestep relative to the maximum potentially available energy for growth and maintenance), e 
is the scaled reserve density (reserve density relative to maximum reserve density) and L the structural 
length, and with 𝑘̇M the rate of mobilisation of the κ fraction of SC for somatic maintenance, proportional to 
structural length, and 𝑣̇  the energy conductance. The reserve dynamics calculated at each time step 
correspond to ∂UE = SA - SC. 
 
Change in maturity or reproduction buffer 
Before puberty (ability to reproduce), changes in maturity level are calculated as the flux of energy going into 
the maturity compartment, that is the fraction 1-κ of the mobilisation flux after paying for the maintenance 
costs of the maturity compartment UH: 
ṗR = (1-κ) * ṗC - ṗJ.  
The maturity level of the compartment UH changes each month through the scaled formula for ∂UH: 
SR = (1-κ) * SC - 𝑘̇J * UH = ∂UH, when the reproduction buffer UR does not receive, ∂UR is set to 0.  
Juveniles keep growing until they reach puberty, when the maturity level UH is equivalent to 𝑈𝐻

𝑝. At this point, 
they are able to reproduce, thus the energy flux SR is redirected entirely to the reproduction buffer UR and the 
maturity compartment does not increase anymore: UH is constant and equal to 𝑈𝐻

𝑝. 
Therefore, after puberty, and except for females undergoing reproduction: 
SR = (1-κ) * SC - 𝑘̇M  * 𝑈𝐻

𝑝 = ∂UR 

 
Change in structural length 
The structural length L is updated thanks to remaining energy of the fraction κ of the mobilisation flux SC 
after that somatic maintenance has been paid. The structural length change is equal to  
∂L = (1 / 3) * ((𝑣 ̇ / g * L2) * SC - 𝑘̇M * L).  
 
Starvation 
When scaled reserve value is below the scaled structural length l value (length relative to maximum length), 
that is when e < l, it is assumed that the individual is confronted to starving conditions. The kappa rule is 

138



MECHANISTIC MODELS CHAPTER 1. 
 

Article. Arnould-Pétré et al. (2020). Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau 
(Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling.  

 

altered and as energy is entirely redirected to somatic maintenance and all other fluxes (growth, reproduction 
or maturation) are set to 0. The model follows these conditions:  
Mobilisation flux SC = ([ṗM] / L3) / {ṗAm}. 
Since [ṗM] = [EG] * 𝑘̇M  and [EG] = g * κ  * {ṗAm} / 𝑣̇ 
we can rewrite SC = (L3 * 𝑘̇M * g * κ  * {ṗAm} / 𝑣̇) / {ṗAm} = (L3 * 𝑘̇M * g * kap) / 𝑣̇  
then recalculate ∂UE = SA – SC .  
When e < 0, the organism doesn’t have enough energy to pay somatic maintenance and dies.  
The starvation strategy used in the population model was chosen among the ones presented in Kooijman 
(2010) based on Magniez (1983) research on A. cordatus reproduction and development.  
 
Ageing 
Two ordinary differential equations are calculated: changes in ageing acceleration 𝑞̈ (also called the scaled 
density of damage inducing compounds) and changes in hazard mortality rate ḣ: 
∂𝑞̈ = (𝑞̈ * (L / Lm)3 * sG + ḧa) * e * (𝑣 ̇ / L - 𝑟̇) - 𝑟̇ * 𝑞̈ 
∂ḣ = 𝑞̈ - 𝑟̇ * ḣ, with 𝑟̇ = (3 / L) * ∂L  
 
These equations are used for the simulation of the accumulation of damage inducing compounds and their 
effect, following the DEB theory for ageing (Kooijman 2010). Damage inducing compounds density is 
proportional to reserve mobilisation SC and influences the hazard mortality rate ḣ, which is a function of the 
damage accumulated in the body. Damage inducing compounds are diluted via growth 𝑟̇, and additionally 
ageing is calculated with two other parameters, the Weibull ageing acceleration ḧa and the Gompertz stress 
coefficient sG. In other words, the hazard mortality rate is the simulation of the vulnerability of the individual 
towards damage, such as the risk of dying from an illness increasing as the individual ages. Additionally, in 
our model, the ageing submodel relies on a stochastic element, where the individual has a 50% chance of 
looking into its death probability rate ḣ.  
 
Update individuals 
The calculated changes are applied to each state variables of the individual: 
The temporal resolution is a monthly interval: each ODE is calculated then the resulting ∂ is applied * 30.5. 
For a state variable X, X = X + ∂X * 30.5.  
If the individual has reached a maturity level corresponding to a threshold, it updates its life stage (i.e. its 
breed in NetLogo language) accordingly. The individual also updates its age.  
 
Update reproduction and birth timers 
The reproduction calendar (repro_time) and the GSI calendar (GSI_time) advance by one month each 
timestep, and fall back to the start in a twelve months cycle. The starting date of the two calendars is not the 
same (March for repro_time and June for GSI_time, see table previously).  
The birth timer (birth_time) is only owned by females and is not always running. It is set off if the female has 
launched reproduction, and it counts down instead of up (e.g. if it was at 7 the month before, the timer will be 
set to 6 this month). As long as the female has not launched reproduction, the birth timer will stay set at 0. 
Once the reproduction period starts, the birth timer is what allows to verify if the individual is undergoing 
reproduction and to adapt its state variables accordingly: at birth_time 8, 7 and 6, females are reproducing 
(i.e. conceiving offspring by decreasing the energy in their reproduction buffer, see below); at birth_time 3, 2 
and 1, females release offspring (i.e. a number of new juveniles proportional to the number of females 
having reproduced is initiated into the model, see below). 

Reproduction 
Only females are considered in the reproduction processes. The value of the Gonado-somatic index (GSI = 
100 * ((ash-free gonads dry weight) / (ash-free body dry weight)) is increasing monthly until the reproduction 
period, when the amount of energy accumulated will be checked by the model to allow, or not, the female to 
participate to reproduction. Whenever the level of GSI reaches at least 0.07%, the female can reproduce, if 
not, she will continue updating the energy into the reproduction buffer until the next reproduction period.  

When females are reproducing, conception of offsprings causes a decrease in energy in their reproduction 
buffer: their usual ∂UR is set to 0 for the three months, while UR is forced to decrease: for each month of the 
reproduction period the female decreases its buffer by a third of 52% of the energy stored: ∂2UR = (UR_start - 
0.52 * UR_start) / 3, 
 
with UR_start the reproduction buffer at the start of the period (Magniez 1983). The GSI follows a similar 
pattern (see submodel ‘Calculate GSI’).  
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When females release offsprings, five months after conception, 65% of the eggs are assumed to have 
survived until birth. The reproductive output (Ri) is therefore equal to Ri=0.65*eggs number 
For each of the three months of offspring release, the number of juveniles (Ri / 3) are initiated into the model. 
 
Calculate GSI 
The GSI is estimated for each month according to the time of accumulation of energy into the reproduction 
buffer from the end of the reproduction, following the equation:  
 

GSI = time_of_accumulation ∗ k̇M∗g  
f3∗(f+ϰ∗g∗yVE) ∗  ((1 − ϰ) ∗ f 3  −   k̇J∗UH

p

Lm2∗s𝑀
3  ), 

 
where the time of accumulation is the number of days since the end of the reproduction period, 𝑘̇M the 
somatic maintenance rate coefficient and 𝑘̇J the maturity maintenance rate coefficient, g the energy 
investment ratio, f the scaled functional response, yVE is the parameter for the yield of structure on reserve, 
that is the number of moles of structure that can be produced with one mole of reserve, sM the acceleration 
factor, 𝑈𝐻

𝑝 the scaled energy in the complexity compartment at puberty, κ the fraction of energy directed 
towards structure and (1- κ) the fraction of energy directed towards complexity and Lm the maximum 
volumetric length (see “Entities, State variables and scales” for the dimensions and in-code notations).  
The GSI of a reproducing female will decrease by 52% of its initial value over the 3 months period of 
reproduction (i.e. a decrease of one third of 52% per month): 
∂GSI = (GSIstart - 0.52 * GSIstart) / 3, where GSIstart is the level of gonadal index at the onset of reproduction.  
 
Background mortality 
The background mortality rate is applied to the overall population: 3.42% of juveniles and 2% of adults 
(males and females) die each month (calculated from size frequency distribution provided by Mespoulhé 
1992). Depending on the cause of death, the individuals set on a certain flag (deceased_bg or 
deceased_old) and a ‘deceased’ flag and are removed from the system. 
 
Check temperature 
Depending on the temperature for the current and prior month and on the type of sensitivity to temperatures 
chosen for the model, a mortality rate is applied to the population for temperatures from 8 to 12°C. 
For a “vulnerable” setting, temperatures exceeding thresholds of 8, 9.5, 11 and 12°C for two consecutive 
months cause a mortality rate of 25%, 35%, 45% and 100% respectively. For an “intermediate” setting, 
temperatures exceeding thresholds of 8, 9.5, 11 and 12°C for only one month cause a mortality rate of 10%, 
20%, 30% and 100% respectively. 
For a “resistant” setting, temperatures exceeding thresholds of 8, 9.5, 11 and 12°C for two consecutive 
months cause a mortality rate of 10%, 20%, 30% and 100% respectively. 
 
Population monitoring 
At the end of each timestep, population density is calculated and data collected for monitoring and plotting 
mean values of state variables. Plots are built on the lists compiled out of all individual state variable values. 
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CHAPTER 2 CORRELATIVE MODELS	

 Chapter 2 is a synthesis on the potential, limits and methodological issues of Species 
Distribution Models (SDMs) applied to Southern Ocean benthic case studies. SDMs have been 
used for a long time in ecology to assess species realised niche. However, methods that have been 
developed for SDMs in other regions of the world need to be adapted to Southern Ocean dataset 
peculiarities.  
 
�The first study reviewed these Southern Ocean dataset peculiarities, highlighted the main 
methodological limits to SDMs applied to Southern Ocean case studies and provided some new 
methods (from the studies below) to generate more accurate models. 
 
�In the second study, the focus was on model evaluation. Cross-validation procedures aim at 
splitting occurrence datasets into training and test subsets. However, Southern Ocean occurrence 
datasets are often spatially aggregated, which violates the independency criterion between training 
and test subsets and biases model evaluation accuracy. In this study, we compared several cross-
validation procedures (random vs. spatial partition of training-test subsets) for the case study of the 
sea star Odontaster validus Koehler 1906. 
 
�In the third study, six sea star species with a circumpolar distribution were used as case studies to 
generate SDMs with contrasting numbers of environmental descriptors. The influence of the number 
of these environmental predictors and of the collinearity between them was assessed.  
 
�The fourth study focussed on extrapolation uncertainty in SDM predictions. Considering the 
reference dataset of environmental conditions for which species presence records are modelled, 
extrapolation corresponds to the part of the projection area for which one environmental value at 
least falls outside of the reference dataset. Due to the broad extent of the Southern Ocean and data 
gaps in occurrence datasets, extrapolation represents an important part of model predictions. Using 
the case study of six sea stars species, extrapolation was highlighted and methods were provided 
to improve model predictions. 
 
�The last study of this chapter, presented in the appendix section, analysed the influence of spatial 
and temporal aggregation of occurrence datasets on modelling performances. The case study of 
four sea urchin species of the Kerguelen Plateau was analysed. Methods to correct for the effect of 
spatial sampling bias were applied and their efficiency was proved to generate more accurate 
predictions.	
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               Abstract 
Species Distribution Modelling (SDM) studies the relationship between species occurrence 
records and their environmental setting, providing a valuable approach to predicting 
species distribution in the Southern Ocean (SO), a challenging region to investigate due to 
its remoteness and extreme weather and sea conditions. The specificity of SO studies, 
including restricted field access and sampling, the paucity of observations and difficulties 
in conducting biological experiments, limit the performance of SDMs. 
In this review, we discuss some issues that may influence model performance when 
preparing datasets and calibrating models, namely the selection and quality of 
environmental descriptors, the spatial and temporal biases that may affect the quality of 
occurrence data, the choice of modelling algorithms and the spatial scale and limits of the 
projection area.  
We stress the importance of evaluating and communicating model uncertainties, and the 
most common evaluation metrics are reviewed and discussed accordingly. Based on a 
selection of case studies on SO benthic invertebrates, we highlight important cautions to 
take and pitfalls to avoid when modelling the distribution of SO species, and we provide 
some guidelines along with potential methods and original solutions that can be used for 
improving model performance. 
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1. INTRODUCTION  
 
Due to its remoteness and extreme weather and sea conditions, the Southern Ocean (SO) is a 
challenging region in which to carry out biological studies (Kaiser et al. 2013, Gutt et al. 2018). It 
is also one of Earth’s regions where we observe the most rapid and dramatic environmental 
changes in marine ecosystems, motivating the study of these marine communities (Turner et al. 
2014, Ashton et al. 2017, Clark et al. 2019). Ecological modelling approaches are now well 
established and can be used to predict spatial patterns of organisms’, populations’ and species’ 
distributions and assess their environmental drivers (Peterson et al. 2011). Based on field 
observations and experimental datasets, ecological modelling encompasses valuable 
approaches to helping to analyse biological data and interpolating our knowledge of species 
distributions in relation to environmental descriptors (Kennicutt et al. 2014).  
Species distribution models (SDMs) are ecological models that study the statistical relationship 
between species occurrence records and environmental factors, determining the set of 
environmental conditions that is suitable to a species distribution (Elith et al. 2006, Elith and 
Leathwick 2009, Peterson et al. 2011). They represent the species realised niche (Pearson 
2007, Sillero 2011), being the ensemble of abiotic conditions in which the species survives and 
reproduces, adding into consideration the influence of biotic interactions (competition, predation, 
parasitism, symbiosis, etc.) (Hutchinson 1957). SDMs have been widely used in various fields of 
ecology, such as conservation biology, biogeography, palaeoecology and global change biology 
(Pearson 2007). In recent years, a growing number of ecological studies have used SDMs to 
analyse the distribution of marine pelagic and benthic species in the SO (e.g. marine 
invertebrates, fish, seabirds and marine mammals) and to determine species environmental 
preferences (Loots et al. 2007, Pierrat et al. 2012, Xavier et al. 2015, Nachtsheim et al. 2017), to 
compare ecological niche predictions in response to changing environments (Basher and 
Costello 2016, Gallego et al. 2017, Guillaumot et al. 2018b, Jerosch et al. 2019) or to identify 
diversity hotspots for conservation purposes (Pinkerton et al. 2010, Hibberd 2016, Thiers et al. 
2017). 
 
However, the quality of ocean-wide models is often limited by the heterogeneity, amount and 
spatial distribution of data, along with limited temporal and spatial resolutions. For all of these 
reasons, both modelling methods and model construction should be tested for accuracy and 
robustness prior to interpretation, and these indicators should be transparently communicated to 
ensure that model outputs are relevant given the specificities of the datasets used for modelling. 
In the present paper, we review the most common methodological issues encountered in 
species distribution modelling applied to the SO, following the flowchart in Fig. 2.1. Challenges 
regarding occurrence and environmental dataset peculiarities are described. The choice of SDM 
algorithm, and procedures to implement and evaluate models are addressed. Based on benthic 
invertebrate case studies, we stress important precautions to take and pitfalls to avoid during 
common steps of SDM implementation. Finally, we aim to provide some guidelines with a set of 
potential methods and original solutions that can be used for improving model performance. 
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Figure 2.1. Flow chart of the species distribution model construction process. Steps 1 to 4 concern data 
collection and treatment. Steps 5 to 7 integrate procedures for model implementation and evaluation. 
Dashed rectangles allow for a possible step backwards when assessing model uncertainties or evaluating 
model performance. GIS: Georeferencing Information System. AUC = area under the receiver operating 
curve. TSS: True Skill Statistics. COR: Pearson correlation. 
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2. Quality of datasets 
 
2.1.1. Environmental datasets: field data. 
 
Preparing environmental datasets is the first encountered challenge when generating models (Gutt 
et al. 2012, De Broyer et al. 2014). The SO, here defined as waters south of 45°S latitude, covers 
an extensive area of > 20 million km² (Breitzke 2014). Having access to environmental data with 
good temporal and spatial resolutions at such a broad scale is challenging, an issue common to all 
broad-scale oceanographic studies (Robinson et al. 2017). ‘Broad scale’ is defined here as the 
entire SO, ‘regional scale’ as smaller areas of a few hundred square kilometres and ‘local scale’ as 
a few square kilometres to square metres (Gage 2004). 
Oceanographic data acquisition in the field is strongly conditioned by weather and sea conditions 
along with the seasonality of polar regions (polar night and dense sea-ice coverage in winter) that 
prompt recurring gaps in the acquisition of environmental data in the SO. Data are also much more 
frequently sampled close to research stations and along main sailing routes (Guillaumot et al. 2019 
- Chapter 2). This is particularly striking in regions such as the southwestern Weddell Sea, along 
the shores of the western Antarctic Peninsula and in the Bellingshausen and Amundsen seas 
(Clarke et al. 2007, Griffiths et al. 2014). 
 
2.1.2. Environmental datasets: satellite-derived data. 
 
Satellite-derived data form a significant source of information for SO oceanographic studies. 
Providing valuable environmental indicators at broad spatial scale, they can give details about 
continuous and long-term measurements of water masses including sea-ice coverage, extent and 
duration, sea-surface temperatures and salinities, biogeochemical parameters, sea level, primary 
production and typical meteorological parameters (El Mahrad et al. 2020). 
The accuracy of satellite data however should be considered with care, given detection limits, 
interpolations that reduce the influence of atmospheric particulate scatter and the use of 
interpolation and gap-filling methods that smooth raw data at broad spatial and temporal scales 
(Pope et al. 2017, Stock et al. 2020).  
Whenever possible, it is recommended to validate environmental data derived from satellite 
products at regional and local scales by comparing pixels on a satellite image with 'real' field 
observation data (Henson et al. 2015, Trull et al. 2018). Simple correlation analyses or more 
complex ground-truth processes are available to compare satellite and in situ data and to secure 
the interpretation of satellite-derived products (White-Newsome et al. 2013, Allan 2014). This, 
however, constitutes a huge task, even if such in situ data are available, and is not performed 
generally before implementing SDMs. 
 
2.1.3. Environmental datasets: access to datasets. 
 
Environmental data generated at the scale of the entire SO can be accessed for free through 
different web portals such as the NASA's OceanColor Web (https://oceancolor.gsfc.nasa.gov/), 
where satellite-derived data, averaging different temporal measurements down to 4 km resolution 
are available at the scale of the entire SO dating from 2000. These images are post-processed to 
characterize sea-surface temperature or ocean colour as proxies of surface productivity.  
The National Oceanic and Atmospheric Administration's (NOAA) data centre (WOCE2013, 
https://www.nodc.noaa.gov/OC5/woa13/woa13data.html) also makes available post-processed 
data of ocean temperature, salinity, oxygen concentration and nutrients at different grid formats, 
down to 0.25° resolution, averaging over six decades (from 1955 to 2012). Bio-ORACLE 
(https://www.bio-oracle.org/) compiles a large panel of marine data layers at 1° spatial resolution 
for different depth layers and time periods, for the present (2005-2012) and the future (2040-2050; 
2090-2100) (Assis et al. 2018). Finally, GEBCO (https://www.gebco.net/) is the reference platform 
for very-high-resolution bathymetry data (~500 m resolution) of the world’s oceans. 
Several works also make available compilation of these SO datasets dedicated to ecological 
modelling in the SO; they represent a valuable source of information for starting with data 
preparation and modelling (Raymond 2012, Fabri-Ruiz et al. 2017b, Guillaumot et al. 2018c). 
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An increasing amount of environmental data collected during SO oceanographic campaigns have 
been made accessible for regional-scale studies. Several web portals aggregate all of these field 
measurements and provide them open access (e.g. https://www.marine-
geo.org/collections/#!/collection/USAP#summary; https://www.pangaea.de/).  
 
2.1.4. Environmental datasets: spatial and temporal resolutions. 
 
Most environmental data are accessible through broad-scale maps from the aforementioned data 
portals and are available with a finest spatial resolution of ~ 4 km, if not coarser (Raymond 2012, 
De Broyer et al. 2014, Fabri-Ruiz et al. 2017b, Guillaumot et al. 2018c). This low resolution 
strongly hampers the precise assessment of relationships between species occurrences and 
environmental descriptors (Pittman 2017, Staveley et al. 2017) and consequently the accuracy of 
model predictions (Connor et al. 2018), because the relevance of environmental descriptors 
represents a trade-off between their resolution and their spatial and temporal coverage (Guisan et 
al. 2007, Seo et al. 2009, Lauzeral et al. 2013, Vale et al. 2014). It is recommended that the 
resolution of environmental descriptors used in SDM should be in line with the scale of ecological 
processes at play and for which species ecophysiological responses show the highest variations, if 
models are expected to capture most species-environment relationships (Austin and van Niel 
2011).  
 
The published environmental datasets are often averaged over relatively long periods of time (from 
years to decades for WOCE2013 or Bio-ORACLE). The analysis of inter-annual variations can 
complement the interpretation of model predictions: the absence of such information does not 
preclude running models but this should be kept in mind when it comes to interpreting model 
outputs (Guillaumot et al. 2018a - Appendix). Important environmental variations within a reference 
time period may not satisfy the equilibrium criterion between species distribution and 
environmental conditions, which is a strong prerequisite of SDM (Elith et al. 2006) and may affect 
the relevance and accuracy of model predictions (Guillaumot et al. 2018a - Appendix). In this 
respect, an alternative for improving modelling performance would be using seasonal averages or 
extreme values as environmental descriptors rather than pluri-annual to annual averages (Franklin 
2010a, Bradie and Leung 2017). 
 
2.1.5. Environmental datasets: cartographic projections. 
 
Considering the poles in numerical analyses has long been a source of difficulty in spatial 
modelling as the convergence of meridians distorts shapes, surfaces, angles or distances towards 
high latitudes when using standard cylindrical representations such as the Mercator projection 
(Deleersnijder et al. 1993, Eby and Holloway 1994, Murray 1996). Working with conical or 
azimuthal projections (e.g. polar stereographic system) helps maintain the consistency of angles 
and shapes and therefore better meets the requirements of SO studies, although areas and 
distances are progressively distorted when moving away from the pole (Mulcahy and Clarke 2001).   
Mapping environmental descriptors and projecting model predictions can be carried out with either 
square or hexagonal pixels. Each option does not alter image quality and hexagonal shapes may 
even offer some advantages (Kamgar-Parsi and Sander 1989, Tirunelveli et al. 2002). However, 
some contrasts may be present between images using square or hexagonal pixels, as each pixel 
measures the average environmental conditions in the considered surface (Vanden Berghe et al. 
2013). 
Subdividing the study area into sub-regions and using different pixel shapes can be a good 
solution for improving the relevance of representations (Vanden Berghe et al. 2013, Cryer 2015). 
Evaluating the accuracy of environmental values captured both in square and hexagonal pixels 
using baseline in situ field measurements can also be suggested. This is yet to be tested for 
ecological modelling studies for the SO. 
 
2.1.6. Environmental datasets: future forecasts. 
 
Since 1992, future climate models have been constantly updated through the efforts of the 
Coupled Model Intercomparison Projects (CMIP) featured by the Intergovernmental Panel on 
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Climate Change (IPCC) Assessment Reports (ARs) with the aim of providing a plausible 
representation of future climate linked to potential anthropogenic impacts (IPCC 2000, Mearns et 
al. 2001). Recent updates (CMIP5 and CMIP6) of climate models are driven by different possible 
future greenhouse gas emission scenarios (Representative Concentration Pathways RCP2.6, 
RCP4.5, RCP6.0 and RCP8.5, from the least to the most pessimistic scenario for CMIP5 and 
Shared Socioeconomic Pathways, SSP1 to SSP5 for CMIP6) and are built upon the average of an 
ensemble of simulations (Hayhoe et al. 2017). Future climate models for the SO are available 
through two main online platforms, Bio-ORACLE (https://www.bio-oracle.org/, Assis et al. 2018) 
and the NOAA's portal (https://psl.noaa.gov/ipcc/ocn/).  
 
The relevance of using future predictions based on global assessment scenarios for marine 
studies has been widely questioned (Flato et al. 2014, Frölicher et al. 2016, de la Hoz et al. 2018), 
including their use in SDMs, given that, climate models mainly rely on untestable assumptions 
(Beaumont et al. 2008, Gotelli and Stanton-Geddes 2015, Cavanagh et al. 2017, Freer et al. 
2018), future layers are not always available for oceanographic studies (Fabri-Ruiz 2018, 
Guillaumot et al. 2018a - Appendix, 2018b), discrepancies between present observations and 
future predictions can be problematic (Jiménez-Valverde et al. 2020), and models are based on a 
representation of the climate system that has a complex cascading effect on ecological processes 
(Cavanagh et al. 2017). Cavanagh et al. (2017) examined how well IPCC-class models reproduced 
sea-ice conditions. By subsetting CMIP5 models that best describe spatial extent and temporal ice 
cover, they improved the precision of the projected future sea-ice distribution, which was better 
suited to ecological analyses. Extending this method to other key oceanographic parameters 
should contribute to improving the accuracy of future climate models for the SO and their 
relevance to ecological studies. 
 
2.2.1. Occurrence datasets: historical compilation. 
 
Biological sampling in the SO began with the first expeditions of the HMS Challenger (1873-1876). 
Sampling effort has considerably increased over the second part of the twentieth century and 
during these last decades in particular, following technological advances that have enabled the 
access to remote regions and sample processing (Fig. 2.2).  
 

 
Figure 2.2. Cumulative number of Antarctic species described over time, according to data available in the 
Register of Antarctic Marine species (until March 2010). From De Broyer and Danis (2011). 
 
This long-lasting and irregular effort in biogeographical (occurrence) data collection has had an 
impact on data compilation and has resulted in heterogeneous datasets, as observed in several 
data papers and associated Integrated Publishing Toolkit (IPT) databases such as Guillaumot et 
al. (2016), Fabri-Ruiz et al. (2017a) or Moreau et al. (2018), or in the general platform 
biodiversity.aq web portal. 
The historical compilation of biological data includes (1) taxon misidentifications and taxonomic 
inconsistencies due to the various taxonomic revisions published through time, (2) errors in the 
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georeferencing of occurrence records due to contrasting nomenclatures used to report latitude and 
longitude, (3) the accumulation of errors in metadata through the different generations of curation 
and (4) errors due to the use of different coordinate projection systems. Finally, in cases where 
species distributions may have shifted with time, species environmental preferences may have 
changed or non-contemporaneous environmental or occurrence datasets are used, discrepancies 
between occurrence records and environmental conditions can be present and violate the 
environment-occurrence equilibrium assumption necessary to generate SDMs. All of these side 
effects were reviewed in detail by Newbold (2010). The impacts on species niche definition and 
SDM predictions have been reported in many works (Ensing et al. 2012, Lahoz-Monfort et al. 
2014, Monk 2014, Aguiar et al. 2015, Tessarolo et al. 2017, Guillaumot et al. 2018a - Appendix) 
that all advise us to thoroughly check datasets for quality management prior to running models.  
 
2.2.2. Occurrence datasets: spatial aggregation. 
 
Most species occurrence data were collected in the vicinity of research bases or their surroundings 
or along recurrent maritime routes, leading to clear spatial aggregation patterns in biological 
datasets (Fig. 2.3) (Griffiths et al. 2014, Guillaumot et al. 2019 - Chapter 2). 
 

 
Figure 2.3. Distribution of benthos sampling sites (red dots) in the Southern Ocean (SO, < 45°S). Sampling 
sites are not evenly distributed in the SO, showing important spatial aggregation in the Scotia Arc region and 
Western Antarctic Peninsula with several clusters along the Antarctic shelf, and over the Kerguelen and 
Campbell plateaus. In contrast, deep-sea regions and remote areas of the Antarctic shelf are under-
sampled. From Guillaumot et al. (2019 - Chapter 2), updated from Griffiths et al. (2014). 
 
Spatial aggregation can affect model accuracy, as aggregated presence records do not fully and 
homogeneously represent the entire environment that is occupied by given species. This 
aggregation also violates an initial assumption of SDMs that requires independence between 
records (Araújo and Guisan 2006, Hijman 2012). This may bias model predictions (Luoto et al. 
2005, Segurado et al. 2006, Dormann 2007, Kühn 2007, Crase et al. 2012), leading to statistical 
artefacts and generating inaccurate patterns (Bahn and McGill 2007, Currie 2007). 
Spatial aggregation of data and the effect of this spatial aggregation on model outputs can be 
quantified using the Moran’s I index, which estimates the spatial autocorrelation between the 
presence records used to build the model and predicted presence probabilities (Luoto et al. 2005). 
This spatial autocorrelation implies that close pixels are expected to present more similar predicted 
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probabilities than distant ones due to the short geographical distance between records rather than 
environmental similarities alone. Testing and correcting for this bias should help to reduce its 
impact on model predictions (see section 3.3) (Diniz-Filho et al. 2003, Kühn 2007). 
 
2.2.3. Occurrence datasets: presence-only records. 
 
SDMs based on presence/absence data are recognized as having better predictive performance 
than models using presence-only data (Zaniewski et al. 2002, Brotons et al. 2004, Lobo et al. 
2010, Wisz and Guisan 2009, Smith 2013, Carvalho et al. 2015, Peel et al. 2019). However, 
except for some local-scale studies (e.g. Robinson et al. 2011), in most oceanographic studies 
species absence records are usually not available for SDMs, and working with presence-only 
records is the only alternative (Lobo et al. 2010). SDMs are then built by associating presence-only 
records with a random selection of background records that will be used to characterize the full 
environmental conditions (Franklin 2010b, Barbet-Massin et al. 2012). Background records should 
not be mistaken for pseudo-absence records that are artificial absence data, where the species is 
supposed (but not confirmed) to be absent. Pseudo-absence records do not represent the overall 
conditions of the study area. Presence/pseudo-absence models represent another modelling 
approach, predicting occupied and unoccupied habitats rather than suitable and less suitable 
habitats for presence/background modelling (Sillero and Barbosa 2020). 
 
Presence-only datasets may contain several uncertainties that can bias model predictions. (1) 
Working on rare or cryptic species is generally prone to taxonomic misidentifications that may 
either contract or, alternatively, expand the extent of predicted species distributions (Costa et al. 
2015, Aubry et al. 2017). Such biases due to taxonomic errors were shown to be highly variable 
and to depend on experts identifying specimens, as suggested by Beale and Lennon (2012) who 
worked on a compilation of several collections. (2) Sampling gear may have an impact on species 
detectability, which varies inconsistently across the model domain and is generally not taken into 
account by presence-only methods. Inaccurate species observations may generate false-positive 
results (species predicted as being present when they were not sampled or observed in the field) 
and false-negative results (species predicted as being absent when they were sampled or 
observed in the field) during model initialization (Guillera-Arroita 2016). Species presence records 
should be carefully scrutinized prior to modelling (Lozier et al. 2009), or at least records should be 
categorized into different subsets of data verifiability (Aubry et al. 2017). (3) Georeferencing errors 
are a frequent issue in databases (Murphey et al. 2004, Maldonaldo et al. 2015). This is especially 
the case in large databases compiling independent datasets using species presences recorded 
with varying levels of precision (Graham et al. 2008, Bloom et al. 2018). Several studies have 
simulated virtual random georeferencing errors and have shown that these errors lead to 
significant drops in model performance and inconsistencies in the respective contributions of 
environmental descriptor contributions, influencing model interpretation (Graham et al. 2008, 
Osborne and Leitão 2009, Naimi et al. 2011). These side effects seem to be minimized in local-
scale models, here again advocating for the use of local-scale models whenever possible (Mitchell 
et al. 2017). 
 
2.2.4. Occurrence datasets: dealing with small datasets. 
 
Usually, the number of species presence records available for modelling is relatively limited 
considering the wide geographical extent of the SO (De Broyer et al. 2014). Generating SDMs with 
small datasets may include many pitfalls: (1) it reduces the potential of SDMs to transfer in space 
and time (Hernandez et al. 2006, Raes 2012), (2) it truncates predicted distribution and niche 
definition (Hortal et al. 2007, 2008, Rocchini et al. 2011, Sánchez-Fernández et al. 2011, Titeux et 
al. 2017, El-Gabbas and Dormann 2018), (3) it reduces modelling goodness-of-fit as the model 
may wrongly represent reality (Stockwell and Peterson 2002, McPherson et al. 2004, Pearson et 
al. 2007, Wisz et al. 2008, Liu et al. 2019), (4) it increases instability between model replicates 
(Guillaumot et al. 2018a - Appendix), (5) it gives rise to metholodogical constraints on threshold 
selection (Jiménez-Valverde and Lobo 2007, Bean et al. 2012), (6) it gives rise to methodological 
constraints on the application of evaluation metrics (Pearson et al. 2007), (7) it complicates the 
identification of model optimal complexity (Galante et al. 2018) and (8) it leads to a reduction in 
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model accuracy because presence and background datasets would not differ markedly (Luoto et 
al. 2005).  
Alternatives are being developed to produce more accurate models based on a limited amount of 
presence records. One solution is generating several models performed on restricted areas and 
datasets with more detailed information and then averaging them with a weighted ensemble 
approach. This ‘ensemble of small models’ approach showed improved performance compared to 
single models (Lomba et al. 2010, Breiner et al. 2015, 2018). 
Another alternative is to restrict the prediction area according to where occurrence records are 
found and ensuring upstream that the number of records is sufficient to precisely characterize the 
species environmental preferences: trivial advice that is surprisingly neglected, as recently pointed 
out by Morales et al. (2017) and Araújo et al. (2019). 
 
2.2.5. Occurrence datasets: definition of species-occupied environmental space. 
 
Spatial aggregation, along with heterogeneity, limited size and uncertainties in datasets can 
strongly bias the quantification of the species-occupied environmental space (Hortal et al. 2008, 
Newbold 2010, Tessarolo et al. 2017). However, accurately defining species-occupied space is the 
cornerstone of SDM initialization (Elith et al. 2006, Boulanger et al. 2018). 
Moreover, SDMs suppose that species are in equilibrium with the environmental conditions that 
they inhabit. SDMs do not take into consideration potential vagrants that have dispersed out of 
their usual environmental range or populations that could momentarily survive in unsuitable 
habitats because doing so violates the equilibrium assumption between species distribution and 
environmental conditions (Beale and Lennon 2012). These elements should be cautiously 
considered when preparing datasets prior to generating models by removing any atypical records. 
 
Over the last two decades, field data acquisition has expanded through the use of biologging 
technology with electronic devices attached to seabirds and marine mammals in order to access 
the positions of species all year long (Raymond et al. 2015, Ropert-Coudert et al. 2020). These 
data uncover the hidden behaviours of marine animals and constitute a powerful way of better 
estimating species-occupied space; they can also be used to validate and refine our understanding 
of the environmental conditions prevailing in those species distribution areas (Arthur et al. 2017, 
Nachtsheim et al. 2017, Hindell et al. 2020).  
 
 
3. Adapting model implementation to datasets 
 
3.1. The choice of modelling algorithms. 
 
To run performant SDMs, several assumptions must be tested and computing methods adapted to 
each case study (Austin 2002, de la Hoz et al. 2019). Among them, the choice of the modelling 
algorithm should be of major concern, since no algorithm works best for all species, in all areas, at 
all spatial scales and in all time periods (Jarnevich et al. 2015, Qiao et al. 2015). The selection and 
parameterization of modelling algorithms proved to be major causes of variation between SDM 
predictions (Diniz-Filho et al. 2009, Dormann et al. 2008, Buisson et al. 2010, Watling et al. 2015, 
Boulanger et al. 2018). Each algorithm is particularly suited for dealing with a specific type and 
quality of data (Guisan and Zimmermann 2000, Austin 2002, Elith et al. 2006, Peterson 2011, 
Guisan et al. 2017), which will determine the final model outputs (Aguirre-Gutiérrez et al. 2013, 
Beaumont et al. 2016). 
 
When modelling species distribution, it is necessary to select appropriate algorithms that have 
good transferability performances (i.e. have good abilities to correctly transfer predictions to other 
geographic space and time periods; Randin et al. 2006) and that they limit overfitting (i.e. mitigate 
model complexity) while being flexible in integrating complex environmental relationships. 
Machine-learning algorithms (e.g. maximum entropy MaxEnt, boosted regression trees BRT, 
random forests RF, support vector machines SVMs, Vapnik 1998, Breiman 2001, Elith et al. 2008, 
2011) give access to important aspects of computing performance (Zhou 2012), and are relevant 
approaches for handling complex relationships between species occurrences and the environment 
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(Olden et al. 2008, Elith and Leathwick 2009). The BRT and RF algorithms are particularly suited 
to complex and heterogeneous datasets (Fig. 2.4, Guillaumot et al. 2020b - Chapter 2). They were 
proven to be efficient in generating performant models with limited overfitting (Elith et al. 2006, 
Wisz et al. 2008, Wenger and Olden 2012). They can automatically select the most informative 
features among a large set (Merow et al. 2014, García-Callejas and Araújo 2016, Guillaumot et al. 
2020b - Chapter 2) and perform well at generalizing predictions in the absence of information or, 
conversely, at dealing with redundant information provided by correlated factors (Breiman 1984, 
De’ath and Fabricius 2000, Friedman 2001). 

 
Figure 2.4. Compared Area Under the Curve (AUC) performances of species distribution models generated 
with different algorithms (ANN=Artificial Neural Network, BRT=Boosted Regression Trees, 
CTA=Classification Tree Analysis, FDA=Flexible Discriminant Analysis, GAM=Generalized Additive Model, 
GLM=Generalized Linear Model, MARS=Multivariate Adaptive Regression Splines, MAXENT=Maximum 
Entropy, RF=Random Forest, SRE=Surface Range Envelope) to predict the distribution of the sea urchin 
Sterechinus diadema in the Southern Ocean. Results show a good performance for BRT and RF, adapted to 
small, historically compiled datasets (temporally heterogeneous) and spatially aggregated presence-only 
data. Models were calibrated with presence-only data and 200 background data randomly sampled in the 
study area. Average scores of 100 model replicates. See Guillaumot et al. (2018b) for details. 

 
The different fields of application and the respective performance of existing algorithms have been 
extensively compared in various works based on (1) a single species (Pearson et al. 2006: plants 
in South Africa, Elith and Graham 2009: plant distribution in South Australian landscapes, Marmion 
et al. 2009: European butterflies, Lorena et al. 2011: plants in South America, Beaumont et al. 
2016: mammals in Australia), or (2) an ensemble of worldwide distributed terrestrial (Elith et al. 
2006) or marine species (Ready et al. 2010), for (3) certain regions only (Guisan et al. 2007: trees 
in Switzerland, Tsoar et al. 2007: snails, birds and bats in Israel, Reiss et al. 2011: benthic marine 
species in the North Sea, Bucklin et al. 2015: vertebrates of Florida) or (4) using virtual species 
(Meynard and Quinn 2007, García-Callejas and Araujo 2016, Qiao et al. 2015).  
However, in order to generate such comparisons (Fig. 2.4), it is important to specifically adjust 
each algorithm to the case study. Algorithms all perform differently with regards to overfitting, 
spatial aggregation and transferability, and comparing model performances using different 
parameter settings is challenging (Merow et al. 2014) given that model parameterization has 
strong effects on the quality of model outputs (Anderson and Gonzalez 2011, Rodda et al. 2011, 
Warren and Seifert 2011, Yackulic et al. 2013, Radosavljevic and Anderson 2014, Moreno-Amat et 
al. 2015, Halvorsen et al. 2016, Galante et al. 2018, Lieske et al. 2018).  
 
Initially developped in the 1990s, ensemble modelling has been increasingly used since then 
(Hansen and Salamon 1990, Schapire 1990). Ensemble modelling consists of combining several 
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algorithms (Zhou 2012), input datasets (occurrence or environmental descriptors datasets) or 
parameterizations (Araújo and New 2007, and see Hao et al. 2019 for a review of applications). 
The approach is interesting as it can provide predictions that take into account the variability of 
several models (Araújo and New 2007, Hao et al. 2019).   
Ensemble modelling has been used for various studies with SDMs (Araújo and New 2007, 
Marmion et al. 2009, Thuiller et al. 2009, Buisson et al. 2010, Luedeling et al. 2014, Trolle et al. 
2014, Carvalho et al. 2015, Scales et al. 2016, Jerosch et al. 2019) and has benefitted from the 
development of R packages to implement them (Biomod: Thuiller et al. 2009, BiodiversityR: Kindt 
et al. 2017, biomod2: Thuiller et al. 2018, sdm: Naimi et al. 2019). 
The main benefits of using ensemble models lie in the fact that the different algorithms will perform 
differently for various input cases (regardless of their overall performance). The models thus 
complement each other, avoiding some biases that might have resulted from using a single 
algorithm (Marmion et al. 2009, Knutti 2010, Zhou 2012). However, model interpretation is much 
more difficult when mixing algorithms implemented differently, with contrasting ways of presenting 
outputs (Sillero 2011) and different definitions of thresholds for identifying habitat suitability 
(Perrault-Hébert 2019), requiring the normalization of predictions, which is rarely applied (Zhang 
and Mahadevan 2019). This is the main limitation to the approach and could offset the gains in 
model performance (Crimmins et al. 2013, Zhu and Peterson 2017, Hao et al. 2020). Such gains 
were contested, especially since model evaluation was often performed without using an 
independent evaluation dataset (Hao et al. 2019). Combining predictions of different models 
generated with contrasting assumptions is therefore tricky when interpreting the results (Perrault-
Hébert 2019). Optimizing the parameterization of a single algorithm (which could be correctly 
evaluated) may therefore constitute a more valuable approach (Perrault-Hébert 2019). Comparing 
the performance of different algorithms can be helpful in the first stage of the modelling process in 
order to select the most suitable algorithm and to calibrate the models (Massada et al. 2013). 
 
3.2. The choice of environmental descriptors. 
 
The selection of environmental descriptors is also a crucial step in the modelling process (Franklin 
2010b, Austin and Van Niel 2011, Petitpierre et al. 2017). Ideally, environmental descriptors should 
be selected for their ecological relevance to the studied organisms (Austin and van Niel 2011, 
Dormann et al. 2012b, Bradie and Leung 2017), they must capture environmental discontinuities 
and constraints in the distribution area (Jarnevich et al. 2015), and they should also be detailed 
enough to represent the habitat complexity and variability in order to allow for good SDM accuracy 
and performance (Elith and Leathwick 2009, Barbet-Massin et al. 2012, Bucklin et al. 2015, 
Petitpierre et al. 2017).  
In most studies, the final number of descriptors selected to depict the species environment is 
generally close to 10 (Pierrat et al. 2012, Mormède et al. 2014c, Guillaumot et al. 2018a - 
Appendix, Fabri-Ruiz et al. 2019). Overall, a small number of descriptors will allow for the 
generation of less complex models and facilitate interpretation (Austin and van Niel 2011, 
Braunisch et al. 2013, Bucklin et al. 2015, Petitpierre et al. 2017). In contrast, increasing the 
number of descriptors potentially increases the effect of any collinearity between them (i.e. 
correlation between values of descriptors), which may lead to statistical artefacts in model 
predictions if the algorithms cannot handle information redundancy (Dormann et al. 2012b, Merow 
et al. 2014). Therefore, collinearity is usually tested for beforehand and collinear descriptors are 
adjusted (in practice, one descriptor of a pair is removed) before running the model (Dormann et 
al. 2012b, Merow et al. 2013, Fois et al. 2018). However, Guillaumot et al. (2020b - Chapter 2) 
showed that model complexity, transferability and accuracy do not significantly change between 
models generated with different sets, including from 4 to 58 collinear descriptors when using the 
BRT algorithm. BRTs automatically keep the most relevant descriptors to describe species 
distribution and can deal with redundant information (De’ath and Fabricius 2000, Whittingham et al. 
2006, Elith et al. 2008), which is not the case for all algorithms (Merow et al. 2014).  
 
Selecting environmental descriptors therefore implies that several tests should be performed 
upstream in order to determine the best set to be used depending on research objectives. Fois et 
al. (2018) recommended first calibrating models with a large set of descriptors of various natures 
(proximal vs. distal descriptors) that will be pruned stepwise, after analysing their ability to 
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accurately describe the habitat and after testing for collinearity (El-Gabbas and Dormann 2018). 
Generating, testing and comparing several sets of descriptors is a widespread strategy to target in 
a stepwise manner the set that gives the best predictive accuracy (Snickars et al. 2014, Bucklin et 
al. 2015, Bradie and Leung 2017, Petitpierre et al. 2017). Replacing environmental descriptors by 
principal components of a factorial analysis also proved to be efficient because complex 
environmental gradients of the study area are simplified in fewer, orthogonalized components 
(Kühn 2007, Petitpierre et al. 2017). So far, this latter method has never been applied to SO case 
studies, and it should be tested in order to evaluate the interpretability of model results. 
 
3.3. Correcting spatial sampling biases. 
 
Generating a model based on spatially aggregated presence-only records may bias predictions 
with a higher probability of occurrence predicted in highly sampled areas (Dormann 2007, 
Guillaumot et al. 2018a - Appendix). To compensate for such a bias, a first approach is to sample 
background records according to the spatial bias introduced by the aggregated presence records 
themselves (Phillips et al. 2009). The background dataset is used to define the environmental 
background: its boundaries and variability constitute essential information for building and 
projecting model outputs (Wisz and Guisan 2009, Barbet-Massin et al. 2012). The choice of the 
number of background records to be sampled and the extent of their distribution should be 
considered carefully when calibrating a model because it can strongly influence model predictions 
(Chefaoui and Lobo 2008, Lobo et al. 2010, Barbet-Massin et al. 2012, Jarnevich et al. 2017). This 
number should be with respect to the prevalence score, being the ratio between the species-
occupied space (represented by presence record locations) and the total surface of the study area 
(represented by background locations: McPherson et al. 2004). Some advice is provided in Barbet-
Massin et al. (2012) for selecting the correct number of background records according to 
prevalence scores. 
Targeting background records has been extensively tested, and several procedures have been 
developed to significantly improve the relevance of models (Fig. 2.5). Background records can be 
sampled within predefined areas (i.e. ‘discs’ or ‘buffers’) close to presence records (Hengl et al. 
2009, Phillips et al. 2009, Fourcade et al. 2014, Bertrand et al. 2016), following the presence or 
absence of other species (Phillips et al. 2009, Syfert et al. 2013, Iturbide et al. 2015, Molloy et al. 
2017, Phillips et al. 2017, Ranc et al. 2017), according to probabilities given by a kernel density 
estimator (KDE) of the sampling frequency (Fourcade et al. 2014, Jarnevich et al. 2017, Guillaumot 
et al. 2018a - Appendix, Fabri-Ruiz et al. 2019) or according to additive descriptors of accessibility 
and sampling effort (El-Gabbas and Dormann 2018). Once again, the selected method should be 
adapted to each case study and its efficiency tested prior to model interpretation (Støa et al. 2018).  
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Figure 2.5. Comparison of predicted distribution probabilities (between 0 and 1) of the sea urchin 
Ctenocidaris nutrix on the Kerguelen Plateau: (A) without compensating for sampling bias; (B) with a kernel 
density estimator (KDE) correction: more background data are sampled in highly sampled areas. The spatial 
aggregation of presence-only records near the shoreline of the Kerguelen Islands strongly biases model 
predictions. The KDE correction was proven to be efficient at correcting for such a bias and provides more 
relevant predictions. From Guillaumot et al. (2018a - Appendix). 
 
A second method consists of filtering the available presence data to reduce the influence of the 
clustering of species records (Segurado et al. 2006, Kramer-Schadt et al. 2013, Boria et al. 2014). 
This is an efficient method compared to the background targeted sampling approach detailed 
above, but the remaining number of presence records after filtering should be sufficient to correctly 
determine species-occupied space (Kramer-Schadt et al. 2013). Reliable information should also 
be available to characterize the bias in species occurrence data (Aiello-Lammens et al. 2015, 
Sillero and Barbosa 2020). The filtering protocol requires meeting many prerequisites, but priority 
is given to keeping presence data independent and minimizing records clustering (Alagador D.  
personal communication 2019). 
 
Overall, if several methods are developed to correct for the effect of spatial aggregation on model 
outputs, it is recommended that one should interpret model projections performed for poorly 
sampled areas with great caution (Phillips et al. 2009, Iturbide et al. 2018). 
 
4. Model outputs 
 
4.1. Taxonomic bias and population variability. 
 
SDMs are usually parameterized using all presence records available for a species and all 
environmental conditions prevailing in the species records (Elith and Leathwick 2009). When 
modelling species distribution at a broad spatial scale, it is often assumed that all populations of a 
species have the same relationship to environmental conditions over the entire distribution area 
(Pierrat et al. 2012, Xavier et al. 2015, Guillaumot et al. 2018b, Fabri-Ruiz et al. 2019). However, 
occurrence datasets may include a set of populations with different phenotypic plasticities (Chevin 
et al. 2010), transgenerational adaptations (Dixon et al. 2015) or simply different habitat selection 
in the case of vagile species. Therefore, the modelled species can actually present different 
abilities to respond to environmental changes. In particular, physiological performances of 
populations are likely to vary in marine species with wide distribution ranges and high dispersal 
capabilities over long distances (Thatje 2012). This is particularly relevant with regards to future 
predictions that do not integrate inter-population variability in the potential acclimation of species, 
and this may lead models to alternatively over- or under-estimate the distribution of species-
suitable environments (Cacciapaglia and van Woesik 2017, Thyrring et al. 2017). 
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Phylogeographical studies have also regularly revealed the existence of cryptic species in the SO 
benthos, which show similar morphologies for distinct genotypes and potentially, distinct ecological 
requirements and geographical distributions (Lozier et al. 2009). Such studies often stress the 
need for taxonomic revisions (González-Wevar et al. 2019, Ocaranza-Barrera et al. 2019, Moreau 
et al. 2020). SDMs can be generated based on a spatial subdivision of presence records according 
to the genetic structure of taxa, and in a second step, the different predictions can be merged 
together to the broader scale (Knowles et al. 2007, Marcer et al. 2016, Cacciapaglia and van 
Woesik 2017, Ikeda et al. 2017, Roberts et al. 2017, Pardo-Gandarillas et al. 2018). However, 
defining the genetic structure of benthic species in the SO is a long-term endeavour that requires a 
constantly renewed sampling effort, considering the extent and complexity of the study area 
(Moreau et al. 2017, Fraser et al. 2018, Moore et al. 2018). Waiting for taxonomic revisions and 
enhanced sampling efforts to best depict relationships between genetic units and environmental 
conditions (Vandersteen 2011) and combining SDM with experimental data or mechanistic 
approaches can be alternatives for taking into account the possible physiological contrasts 
between populations (Kearney and Porter 2009, Kearney et al. 2010, Buckley et al. 2010, Fordham 
et al. 2013, Briscoe et al. 2016, Feng and Papes 2017, López-Farrán/Guillaumot et al. in press - 
Chapter 3). 
 
4.2. Definition of region of interest (“projection area”). 
 
The limitations in the current knowledge of species distribution also affect the quality of information 
available for estimating their potential distribution (Thuiller et al. 2003). When the limits of species 
environmental ranges are not fully captured, this uncertainty can significantly impact the accuracy 
of SDM predictions (Hortal et al. 2007, 2008, Rocchini et al. 2011, Sánchez-Fernández et al. 2011, 
Titeux et al. 2017, El-Gabbas and Dormann 2018). It reduces the applicability of models for 
predictive purposes (Thuiller et al. 2004), induces model overfitting (Tsoar et al. 2007, Barve et al. 
2011, Guillaumot et al. 2018b) and can lead to overestimating the extent of suitable areas 
(Anderson and Raza 2010). 
This bias can be partly overcome by reducing the extent of the projection area to the known 
distribution of the available occurrence records (Anderson and Raza 2010), and by increasing 
knowledge regarding species ecology and physiology in order to identify the environmental 
conditions that are unsuitable for their survival or development (Byrne et al. 2016).  
 
4.3. Model extrapolation. 
 
Models are said to extrapolate when a portion of the predicted area includes environmental 
conditions that are outside the range of values for which the model was calibrated. Model 
extrapolation may occur when model predictions are transferred, either in space or time. When 
extrapolated, model predictions are in non-analogue conditions compared to the initial calibration 
conditions because calibration data may not encompass the entire environmental range of each of 
the predictors (Guillaumot et al. 2020c - Chapter 2). The set of projected environmental conditions 
can otherwise still be within the range of conditions, but specific combinations of environmental 
descriptors may be new, also leading to extrapolation (Mesgaran et al. 2014). In such conditions, 
predictions might be ecologically and statistically invalid and model interpretations inaccurate 
(Randin et al. 2006, Williams and Jackson 2007, Williams et al. 2007, Fitzpatrick and Hargrove 
2009, Owens et al. 2013). 
Among the different approaches, Elith et al. (2010) propose estimating and quantifying model 
extrapolation using the Multivariate Environmental Similarity Surface (MESS) index to identify the 
most influential descriptors that lead to extrapolation. Grid-cell pixels for which at least one 
environmental descriptor has a value outside the range of environmental values defined by 
presence-only records (calibration range) are considered to be extrapolations. In these cases, the 
MESS index assigns negative values and the ensemble of pixels containing negative values 
defines the extrapolation area (Elith et al. 2010, Guillaumot et al. 2020c - Chapter 2). Most often, 
for SDMs performed at the scale of the SO, the number of records available to define the 
environmental space occupied by species is limiting and the resolution of environmental 
descriptors relatively low (see section 2). As a consequence, SDM projections sometimes include 
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wide extrapolation areas that may cover > 75% of the predicted regions (Fig. 2.6) (Guillaumot et al. 
2020c - Chapter 2). 
 

 
Figure 2.6. Extrapolation map of the species distribution model generated for the sea star Acodontaster 
hodgsoni, with all presence-only records available. Extrapolation corresponds here to the ensemble of 
environmental conditions that are outside of the boundaries of the calibration range. The extrapolation area 
is displayed in black and covers 78.6% of the entire projection area; coloured pixels (yellow-red colour 
palette) show distribution probabilities (included between 0 and 1). Extracted from Guillaumot et al. (2020c - 
Chapter 2). 
 
 
In addition to quantifying the overall extrapolation area (Fig. 2.6), it is possible to fine-tune the 
analysis and define which environmental descriptors and areas are concerned with extrapolation 
(Owens et al. 2013, Guillaumot et al. 2021 – Thesis material) (Fig. 2.7). Such information could be 
used to resample the environmental descriptors implemented in the model.  
In any case, it has been recommended to provide information on model extrapolation and more 
generally to other concepts of uncertainties (species detection, errors, etc.), along with model 
predictions, because they are essential to accurate interpretation (Beale and Lennon 2012, 
Addison et al. 2013, Guisan et al. 2013). 
 
Limiting model projections to 'realistic' depth ranges or some other environmental limiting factor 
based on a robust knowledge of species ecology (i.e. some expert-driven decision) was proven to 
be efficient at reducing extrapolation (Kearney and Porter 2009, Hare et al. 2012, De Villiers et al. 
2013, Guillaumot et al. 2020b – Chapter 2). Such a strategy is transitional until complementary 
samples and more comprehensive occurrence datasets are made available to better define the 
species-occupied space (Guillaumot et al. 2020b – Chapter 2).  
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Figure 2.7. Extrapolation map of the species distribution model generated for the sea star Acodontaster 
hodgsoni indicating environmental descriptors responsible for extrapolation (black pixels of Fig. 2.6 are here 
coloured according to the descriptor responsible for extrapolation; i.e. for each pixel, the predictor in question 
lies outside the calibration range). In this case study, 14 environmental descriptors are responsible for 
extrapolation, with depth being the main contributor. White pixels correspond to areas where the model does 
not extrapolate (the corresponding model predictions are shown in Fig. 2.6). POC stands for ‘Particulate 
Organic Carbon’ and Chla is the concentration in chlorophyll a on the sea-surface. Generated from 
Guillaumot et al. (2021). 
 
 
5. Model validation and accuracy of model predictions 
 
5.1. Some common metrics for the evaluation of model predictions. 
 
Once models are generated, the accuracy of their predictions must be assessed in order to 
evaluate the validity of the models with regards to scientific issues to address, to compare different 
model outputs and to allow for the formulation of reliable interpretations (Zurell et al. 2020). 
Several metrics were developed in order to evaluate the performance of models (Fielding and Bell 
1997, Allouche et al. 2006). Most of them are based on the calculation of an error matrix (or 
confusion matrix) that displays the proportion of presence and absence records that are correctly 
predicted by the model (Allouche et al. 2006). 
 
In most biological studies focused on the SO benthos, absence records are usually unavailable 
and SDMs are generated based on a set of presence/background records (see section 2.2). As a 
consequence, the statistics that are commonly used for presence/absence datasets may not be 
appropriate for model evaluation (Wiley et al. 2003, Phillips et al. 2006, Braunish et al. 2013), such 
as the Kappa statistic (Allouche et al. 2006). In contrast, the Area Under the Curve, or Area Under 
the Receiver Operating Curve (AUC), is one of the most used and appropriate metrics for 
measuring the performance of model predictions based on presence/background data (Hand 
2009). The AUC is an objective measure that remains stable with low-prevalence datasets (i.e. low 
frequency of occurrences with regards to the projection space) and is not sensitive to threshold 
effects (Manel et al. 2001, Hand 2009, van Proosdij et al. 2016). However, for 
presence/background models, specificity (the fraction of correctly predicted absences) might be 
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overestimated when the number of background records is much higher than the number of 
presence-only records or when background and presences are associated with very different 
environmental values. This incidentally inflates AUC scores (Phillips et al. 2006, Raes and ter 
Steege 2007, Lobo 2008, Jiménez-Valverde 2012) and invalidates the relevance of the AUC 
metrics (van Proosdij et al. 2016).  
Even when properly employed, the AUC cannot be used to compare models when SDMs are 
generated for different species based on different environmental descriptors or projected on 
distinct regions because the values depend on the relative size of suitable areas and prevalence 
scores may contrast (see section 3.3) (Wisz et al. 2008, Anderson and Gonzalez 2011). The AUC 
metrics must be used as a simple measure of the relative ranking of model predictions associated 
with a specific dataset (El-Gabbas and Dormann 2018). Overall, each statistic is characterized by 
specific advantages and potential biases, so that it is recommended that one uses several 
statistics for evaluating model predictions (Allouche et al. 2006). 
The accuracy of model predictions can also be evaluated by testing the classification of 
independent test data, where the available occurrence dataset can be split into independent 
subsets to train or test the model (for a review, see Fielding and Bell 1997).  
 
5.2. Cross-validation procedures. 
 
Cross-validation procedures are aimed at evaluating model predictions using a subset of presence 
or absence records retrieved from the initial dataset used for modelling in order to assess how well 
the test data match with the modelled predictions (Bahn and McGill 2013). When working with 
presence-only datasets, two subsets of presence records are used: one subset is used to train the 
model (the training group) and the second subset is used to test the model (the test group). Test 
data and training data must be spatially independent from each other (Hijmans 2012, Bahn and 
McGill 2013). In most modelling exercises, standard cross-validation procedures are commonly 
used, in which the initial presence dataset is randomly split into a training and test subset. 
Frequently, as previously discussed, presence data are spatially aggregated in SO datasets and 
the necessary condition of independence between training and test data is seldom met, making the 
model accuracy evaluation overly optimistic (Telford and Birks 2009, Hijmans 2012, Radosavljevic 
and Anderson 2014). In contrast to random procedures, spatial cross-validation procedures 
improve the performance of the validation step by spatially segregating the training and test 
subsets, ensuring the spatial independence between data even when they are spatially aggregated 
in the initial datasets (Dhingra et al. 2016, Roberts et al. 2017, Guillaumot et al. 2019 - Chapter 2, 
see also 
 http://cran.rapporter.net/web/packages/blockCV/vignettes/BlockCV_for_SDM.html). 
 
Several spatial cross-validation procedures have been proposed (Fig. 2.8), and the most 
appropriate one can be determined by comparing the different procedures in order to define the 
one that is the most suitable for the study (Muscarella et al. 2014, Radosavljevic and Anderson 
2014, Valavi et al. 2018, Guillaumot et al. 2019 - Chapter 2) depending on the spatial scale of the 
analysis, the number and spatial distribution of the presence data and the selected algorithm (and 
its associated complexity) used for modelling (El-Gabbas and Dormann 2018, Hao et al. 2020).  
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Figure 2.8. Different cross-validation procedures based on the study of the sea star Odontaster validus, 
showing presence-only records and a random set of 1,000 background data selected according to a Kernel 
Density Estimation (KDE) weighting scheme from the dataset of Griffiths et al. (2014) on sampling effort of 
the Southern Ocean benthos. Data are split into training (pink) and test (green) subsets. The blue 
background corresponds to bathymetry and grey areas to emerged lands. (A) Random cross-validation 
procedure, with a random split into 75% training and 25% test data. (B) ‘2-fold CLOCK’ clustering by random 
spatial partition of the dataset into two groups (one training and one test). (C) ‘BLOCK’ splitting, generated 
according to median latitudinal and longitudinal values (Muscarella et al. 2014). After the generation of four 
groups (corresponding to the four colours), one group is randomly defined as the test subset and the other 
three groups as the training subsets. A different system of projection was used to represent this map in order 
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to highlight the latitudinal and longitudinal definition of the transects. (D) ‘3-fold CLOCK’ clustering by random 
spatial partition of the dataset into three groups (two training and one test). (E) ‘4-fold CLOCK’ clustering by 
random spatial partition of the dataset into four groups (three training and one test). Figure extracted from 
Guillaumot et al. (2019 - Chapter 2). 
 
 
6. Conclusions and future prospects 
 
This review summarizes some points and issues to be considered during SDM construction for 
modelling the distribution of SO species (Fig. 2.1). It shows that accurate and efficient SDMs can 
be produced for SO species when considering potential common biases and issues and correcting 
for their side effects. Proposed corrections must be adjusted to each case study: no consensus 
method nor implementation procedure always perform best, each case study requires proper 
analyses in order to generate the most relevant and accurate predictions. This means that, for 
each model, several procedures to implement the model should be tested in order to select the 
most suitable one, ideally giving priority to the availability of independent datasets for evaluating 
the models. We discuss how SDMs perform best when the species-occupied space is accurately 
described, using extensive occurrence datasets with both presence and absence records, and 
when data are checked for positioning and georeferencing errors. A good knowledge of species' 
ecology, life history traits and populational variations within the overall species distribution and 
environmental range help to improve model quality (Fois et al. 2018). The compilation, examination 
and preparation of datasets prior to modelling are essential steps in generating efficient models. 
Estimating and communicating the uncertainties associated with model predictions are also 
important tasks to be highlighted. This process may include a ‘simple’ interpretation of the 
ecological relevance of SDM outputs by experts (Merow et al. 2017) for the mapping of model 
extrapolations, as illustrated here. Model uncertainties are part of model outputs and should not be 
omitted (Guisan et al. 2013, Grimm et al. 2014, Grimm and Berger 2016). 
 
Remaining challenges for constructing relevant SDMs for SO studies include more efforts 
regarding data collection outside of the main sampling hotspots and filling in knowledge gaps in 
SO species taxonomy. Some methodological perspectives, developed in other regions, address 
the integration of physiological information into SDMs. This facilitates the understanding of species 
environmental preferences and helps one to better estimate the ecological niches of species 
(Kearney and Porter 2009, Talluto et al. 2016, Mathewson et al. 2017, Rodríguez et al. 2019, 
Gamliel et al. 2020). Such studies have recently been developed for SO benthic species: in López-
Farrán/Guillaumot et al. (in press - Chapter 3), the combination of physiological experimental 
results and SDM projections allowed for the assessment of the invasive potential of the Patagonian 
crab Halicarcinus planatus (Fabricius, 1775) on Antarctic coasts, as was similarly done in Byrne et 
al. (2016) for the Arctic sea star Asterias amurensis Lutken, 1871. Hybrid modelling approaches 
constitute another exciting approach, where information from both SDMs and physiological models 
are fully integrated, using the physiological information as a prior to inform the SDM (Gamliel et al. 
2020). Recently applied to an endemic sea urchin of the Kerguelen Plateau (Guillaumot et al. 
submitted - Chapter 3), the method allows for more precise prediction of the effects of seasonal 
variations on species habitat suitability.  
Other interesting methodological approaches include the consideration of biotic interaction 
information, dispersal capacity estimates or population dynamics in complement to SDM 
predictions in order to generalize the understanding of the main drivers of species distribution 
(Pellissier et al. 2010, Meier et al. 2011, Pagel and Schurr 2012, Conlisk et al. 2013, Pellissier et 
al. 2013, Leach et al. 2016, Anderson 2017). These, however, necessitate a deep knowledge of 
the species ecology and of the surrounding environment, suggesting that their first applications 
should be expected in local- or regional-scale studies. 
 
A final take-home message is that model outputs should be interpreted carefully and model 
predictions always considered with a critical eye. Models are simple representations of complex 
systems and should be used to complement other approaches in order to support conservation 
strategies or to address fundamental research objectives (Porfirio et al. 2014, Kampichler and 
Sierdsema et al. 2018). 
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               Abstract 
Species distribution models (SDMs) have been increasingly used over the past 
decades to characterise the spatial distribution and the ecological niche of various 
taxa. Validating predicted species distribution is important, especially when producing 
broad-scale models (i.e. at continental or oceanic scale) based on limited and spatially 
aggregated presence-only records.  
In the present study, several model calibration methods are compared and guidelines 
are provided to perform relevant SDMs using a Southern Ocean marine species, the 
starfish Odontaster validus Koehler, 1906, as a case study. The effect of the spatial 
aggregation of presence-only records on modelling performance is evaluated and the 
relevance of a target-background sampling procedure to correct for this effect is 
assessed. The accuracy of model validation is estimated using k-fold random and 
spatial cross-validation procedures. Finally, we evaluate the relevance of the 
Multivariate Environmental Similarity Surface (MESS) index to identify areas in which 
SDMs correctly interpolate and conversely, areas in which models extrapolate outside 
the environmental range of occurrence records.  
Results show that the random cross-validation procedure (i.e. a widely applied method, 
for which training and test records are randomly selected in space) tends to over-
estimate model performance when applied to spatially aggregated datasets. Spatial 
cross-validation procedures can compensate for this over-estimation effect but different 
spatial cross-validation procedures must be tested for their ability to reduce over-fitting 
while providing relevant validation scores. Model predictions show that SDM 
generalisation is limited when working with aggregated datasets at broad spatial scale. 
The MESS index calculated in our case study shows that over half of the predicted 
area is highly uncertain due to extrapolation.  
Our work provides methodological guidelines to generate accurate model assessments 
at broad spatial scale when using limited and aggregated presence-only datasets. We 
highlight the importance of taking into account the presence of spatial aggregation in 
species records and using non-random cross-validation procedures. Evaluating the 
best calibration procedures and correcting for spatial biases should be considered 
ahead the modelling exercise to improve modelling relevance. 

 

     Key-words 
Boosted regression trees (BRTs), presence-only, cross-validation, extrapolation, modelling 
evaluation 
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1. INTRODUCTION  
 
Species Distribution Models (SDMs) have been increasingly used during the past decades. The 
diversity of applications has widened to include a vast panel of topics from studies of invasive 
species distribution range shifts to assessment of species responses to environmental drivers and 
conservation issues from local to global scales (Guisan and Thuiller 2005, Ficetola et al. 2007, 
Guisan et al. 2013, Beaumont et al. 2016, Phillips et al. 2017). In vast and remote areas such as 
the Southern Ocean, modelling species distributions is challenged by (1) the paucity of biotic data 
available (a serious constraint when describing species realised niche), (2) by the heterogeneous 
quality of environmental data describing environmental conditions (e.g. missing data in coastal 
areas, low resolution of environmental layers, limited number of environmental descriptors 
available), and (3) by the sampling bias (spatial and temporal aggregation of data collection) (Barry 
and Elith 2006, Robinson et al. 2011, Hortal et al. 2012a, Tessarolo et al. 2014, Guillaumot et al. 
2018a - Appendix). Sampling effort has mostly been carried out offshore or in the vicinity of 
research stations during the austral summer while remote shallow areas are seldom accessed and 
dense winter sea ice conditions limit oceanographic studies (Gutt et al. 2012). 
 
Several studies have proposed model corrections or alternatives to separately mitigate the induced 
impacts of spatial and temporal biases on modelling performance (Phillips et al. 2009, Newbold 
2010, Barbet-Massin et al. 2012, Hijmans 2012, Tessarolo et al. 2014, Guillera-Arroita et al. 2015, 
Guillaumot et al. 2018a - Appendix, Valavi et al. 2018). However, to our knowledge, no study has 
yet proposed methodological guidelines to address such issues when dealing with data-poor and 
broad spatial areas (i.e. at continental or oceanic scales).  
Several statistical tools such as the Area Under the Curve of the Receiver Operating characteristic 
(AUC), the True Skill Statistic, or the Point Biserial Correlation are commonly used to evaluate the 
relevance of SDM predictions (Fielding and Bell 1997, Allouche et al. 2006). Using these indices 
for models performed with presence-only data has been widely discussed because background-
data are usually considered as absences, leading to confusion in model interpretation and violating 
most test assumptions (i.e. computing AUC and TSS statistics requires the use of true absences) 
(Jiménez-Valverde 2012, Li and Guo 2013). These methods can also be biased when applied to 
limited and broadly distributed data. Machine-learning algorithms are widely used in SDMs to fit 
complex relationships between species occurrences and environmental data (Elith et al. 2006). 
The resulting models may be highly complex and poorly efficient under changing environmental 
conditions as they may fit a response to any variation including the random noise (=model 
overfitting), (Wenger and Olden 2012). Models’ ability to predict in new environmental conditions is 
described as the generalization performance by Friedman et al. (2001).  
Producing reliable SDMs implies finding a good trade-off between model complexity and predictive 
and generalisation performances (Anderson and Gonzalez 2011, Radosavljevic and Anderson 
2014). The relevance of modelling and generalisation performance, and the optimal level of model 
complexity can be tested using independent data. The method has been commonly applied and 
referred to as the cross-validation procedure (Araujo and Guisan 2006, Valavi et al. 2018). The 
cross-validation procedure uses a training subset of occurrence data to fit the model and a 
separate test subset to validate the predictions and the statistical relationships between the studied 
variables (Fielding and Bell 1997). ‘Random cross-validation’ procedures are widely used and 
randomly split the occurrence dataset into training and test subsets. However, the spatial 
aggregation of occurrence data can lead to the violation of the independence assumption between 
training and test data randomly sampled, and in turn to false confidence in modelling validation 
performances (Hijmans 2012). The violation of the independence assumption can also lead to 
generate highly complex and overfitted models (Boria et al. 2014, Merow et al. 2013, 
Radosavljevic and Anderson 2014). Therefore, the cross-validation procedure should be adapted 
to each given dataset and case study, so that, different ‘spatial cross-validation’ procedures have 
been developed and compared in this study. The spatial cross-validation procedures aim at 
spatially splitting the occurrence dataset into a training and a test subset by increasing the 
geographical distance between the two subsets (Veloz 2009, Brenning 2012, Muscarella et al. 
2014, Radosavljevic and Anderson 2014, Brown et al. 2017, Valavi et al. 2018). The spatial cross-
validation reduces spatial correlation between training and test data in situations where spatial 
autocorrelation is significant in the occurrence dataset, a common issue in ecology (Roberts et al. 
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2017). 
Uncertainties in SDMs represent another limitation to model usage that should be quantified and 
the effects must be specifically assessed or taken into account during model interpretation (Barry 
and Elith 2006, Carvalho et al. 2011, Beale and Lennon 2012, Guisan et al. 2013). Model 
extrapolation outside the range of the known species environmental conditions leads to 
misinterpretation of SDM outputs and can be a real issue when using SDM predictions as a 
support tool for conservation decisions. Therefore, areas of optimal predictions and limited 
uncertainties must be identified. This can be achieved using indicators such as the Multivariate 
Environmental Similarity Surface (MESS). Developed for SDMs, the MESS index highlights areas 
where environmental conditions are outside the range of conditions observed in data (Elith et al. 
2010). 
In the present study, model uncertainties and the performance of several spatial cross-validation 
procedures were analysed using the case study of the sea star Odontaster validus Koehler, 1906. 
Distributed over the entire Southern Ocean (< 45°S), O. validus is a common and abundant 
species in shallow-water benthic habitats (McClintock et al. 2008a, Lawrence 2013), characterised 
by an opportunistic feeding behaviour (from suspension-feeding to algivory, deposit-feeding and 
predation). It has been shown to play a significant role in structuring benthic communities and 
regulating populations of other benthic taxa (McClintock et al. 2008a). The species physiology was 
recently modelled using the Dynamic Energy Budget approach (Agüera et al. 2015) which allows 
for the assessment of the metabolic performance of the species under different environmental 
conditions. Here, SDMs were produced to interpolate the known distribution of O. validus over its 
entire geographic range using an available dataset of environmental descriptors. The influence of 
spatial data aggregation on model outputs was analysed and the performance of correction 
procedures evaluated. In a second step, several cross-validation procedures were assessed and 
compared to test for modelling accuracy, optimal level of complexity and predictive performance. A 
final ‘optimum’ model is proposed, which takes into account uncertainty estimates. Results are 
generalised and formalised as guidelines for further SDM works, showing the relevance of the 
approach when working at broad spatial scale with a limited number of spatially aggregated 
presence-only records. 
 
 
2. MATERIAL AND METHODS 
 
2.1.Model selection and calibration procedures 
 
SDMs were generated using the Boosted Regression Trees (BRTs) algorithm. BRTs were selected 
for their ability to fit complex relationships between species records and the related environment, 
while guarding against over-fitting (Elith et al. 2008, Reiss et al. 2011). BRTs are also adapted to 
deal with incomplete datasets (Elith et al. 2008), can perform well with low prevalence datasets 
(Barbet-Massin et al. 2012), are weakly sensitive to species niche width (Qiao et al. 2015) and 
were recognised to transfer well in space and time (Elith et al. 2006, Elith and Graham 2009, 
Heikkinen et al. 2012). BRTs were calibrated using the method proposed by Elith et al. (2008) to 
select the optimal number of trees in the final model (Appendix 2.1). The combination of 
parameters that minimises the optimal number of trees to build the model (reduction of complexity) 
while reaching a minimum predictive deviance to the test data (reduction of error) was selected. 
The following parameters were used to calibrate the models: tree complexity=4, bag fraction=0.75 
and learning rate=0.007 (Fig. S2.1B). The number of background data sampled in the area was set 
at 1000 sampled points after evaluating the optimal number of data points to be sampled (see 
Appendix 2.1 for details). This number constitutes the best trade-off between describing 
environmental conditions and being as close as possible to the number of species presence 
records available (Barbet-Massin et al. 2012). All background sampling was restricted in space to 
areas shallower than 1500m depth, which corresponds to the species deepest record, in order to 
avoid model extrapolation at depths known as unsuitable for the species survival based on 
knowledge of the species ecology (McClintock et al. 2008a, Lawrence 2013). Sampling was 
restricted to a single background data per pixel. Similarly, presence records falling on a same 0.1° 
grid-cell pixel were filtered before model calibration in order to reduce spatial over-weighting 
(Segurado et al. 2006, Boria et al. 2014). 
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2.2. Occurrence dataset 
 
SDMs were generated using presence-only data made available for the sea star O. validus by 
Moreau et al. (2018). Presence-only records of O. validus are strongly aggregated in space (i.e. 
concentrated in “easily” accessible and frequently visited areas characterised by relatively low sea 
ice concentrations), a condition also prevailing in the total dataset available for Southern Ocean 
benthic taxa (updated from Griffiths et al. (2014), Fig. S2.2), making O. validus a representative 
case study for Southern Ocean benthic studies. Models were generated using the environmental 
descriptors published as raster layers by Fabri-Ruiz et al. (2017b). They were collected from 
different sources and modified to fit modelling requirements at the scale of the Southern Ocean 
(from 45°S latitude to Antarctica coasts). Collinearity between environmental descriptors was 
tested using the Variance Inflation Factor (VIF) stepwise procedure of the ‘usdm’ R package 
(Naimi et al. 2014) and Spearman correlations (rs). Surface temperature and roughness, a depth-
derived variable, were respectively correlated to ice cover and depth. They were omitted according 
to the commonly used thresholds of VIF > 5 and rs > 0.85 (Pierrat et al. 2012, Dormann et al. 
2012b, Duque-Lazo et al. 2016). A final set of 16 environmental descriptors at 0.1° resolution was 
compiled to build the models (Table S2.3). 
 
2.3. Evaluation and correction spatial aggregation  
 
The significance of spatial aggregation of occurrence data was tested by measuring spatial 
autocorrelation (Legendre and Fortin 1989) on model residuals using the Moran’s I index 
(Segurado et al. 2006, Dormann 2007, Crase et al. 2012). A positive Moran’s I value (between 0 
and 1) indicates that spatially close residuals will share similar values. A negative (close to −1) or 
null value respectively indicates a maximal dispersion or a random dispersion of residuals in space 
(Cliff and Ord 1981). Detecting significant spatial autocorrelation in presence-only records will 
assess the degree of aggregation of species records in the studied area.  
Two null models were generated and their respective outputs compared to each other in order to 
evaluate the importance of spatial aggregation in the total Southern Ocean benthic dataset (Fig. 
S2.2). Null model #1 was produced to evaluate the overall spatial aggregation of benthic records in 
the Southern Ocean due to sampling effort. It was generated by randomly sampling n=309 
occurrence records (corresponding to the number of non-duplicate presence-only data available 
for O. validus) in the total Southern Ocean benthic dataset (Fig. S2.2). 1000 background records 
were randomly sampled in the entire Southern Ocean. The Moran’s I score was calculated by 
comparing model #1 predictions to the distribution of the total Southern Ocean benthic dataset 
(Fig. S2.2). Null model #2 was built to compute a reference Moran’s I score for a model generated 
with randomly distributed records. 309 presence data and 1000 background data were randomly 
sampled in the entire Southern Ocean. Null model #2 will provide a reference value for spatial 
autocorrelation scores due to the intrinsic structure of environmental data. It will serve as a 
reference model for comparison with Moran’s I scores of model null #1 and to assess the degree of 
spatial aggregation due to sampling effort. To correct for the effect of spatial aggregation on 
modelling performance, a target-background correction method was applied (Phillips et al. 2009). 
The total Southern Ocean benthic dataset (Fig. S2.2) was used to create a Kernel Density 
Estimation layer that provides an estimate of the probability to find a benthic presence data for 
each pixel. The Kernel Density Estimation was calculated with the ‘kde2d’ function of the MASS R 
package (Ripley 2015) on the extent of the Southern Ocean (n and lims parameters defined to fit a 
raster layer of extent (−180, 180, −80, −45) and 0.1° resolution). Null model #1 was corrected by 
randomly sampling 1000 background records according to the weighting scheme of the Kernel 
Density Estimation layer. After evaluating spatial aggregation in the total Southern Ocean benthic 
dataset, spatial autocorrelation was specifically assessed for O. validus. Spatial autocorrelation 
was measured for two models generated without (model A) and with (model B) Kernel Density 
Estimation correction. Comparison between the two models aimed at assessing the efficiency of 
the Kernel Density Estimation correction for O. validus. Model A (without correction) was built 
using all presence-only data available for O. validus and 1000 background records randomly 
sampled in the Southern Ocean. Model B (with correction) was built using all presence-only data 
available for O. validus and 1000 background records that were sampled following the weighting 
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scheme of the Kernel Density Estimation layer. Each model was generated 100 times and the two 
averaged models (average models A and B) were compared to each other. Differences between 
models A and B quantify the importance of spatial aggregation on model outputs. Finally, model 
relevance was assessed using three statistics: the Area Under the Receiver Operating Curve 
(AUC) (Fielding and Bell 1997), the Point Biserial Correlation between predicted and observed 
values (COR, Elith et al. 2006) and the True Skill Statistic (TSS, Allouche et al. 2006). 
 
2.4. Testing different cross-validation procedures  
 
SDMs validation was performed using different cross-validation procedures. Background data were 
first sampled in the entire area following the Kernel Density Estimation scheme and the compilation 
of presence-only and background data was then split into a training and a test subset to build the 
cross-validation procedure. Two splitting procedures were followed; they differ between each other 
in the spatial independence between the training and the test subset. (1) The random cross-
validation procedure, commonly used in SDMs, aims at randomly splitting the dataset into training 
and test subsets (Fielding and Bell 1997, Hijmans 2012) which may lead to close spatial vicinity 
between the two datasets (Hijmans 2012), and, (2) the spatial cross-validation procedure that aims 
at spatially spitting the dataset in order to reduce spatial correlation and may improve 
independence between the two subsets (Hijmans 2012, Muscarella et al. 2014). The random 
procedure was therefore compared to four different spatial cross-validation procedures. (1) In the 
‘BLOCK’ method developed by Muscarella et al. (2014), different subsets of equal occurrence 
numbers are created. For each replicate, this k-fold procedure divides the dataset into four equal 
subsets according to the mean latitude and mean longitude positions of occurrence data (Fig. 
2.9c), then three of these four subsets are randomly selected to train the model (75%) and the last 
one is used to test the model (25%). (2) In the ‘CLOCK’ methods, the dataset was divided 
according to random longitudinal transects, splitting the Antarctic Circle into two parts (2-fold 
‘CLOCK’ method, Fig. 2.9b), (3) three parts (3-fold ‘CLOCK’ method, Fig. 2.9d) or (4) four parts (4-
fold ‘CLOCK” method, Fig. 2.9e). In the 2-fold ‘CLOCK’ method, one subset was considered as the 
training subset, the second one as the test subset; in the 3-fold ‘CLOCK’ method, two subsets 
were defined for training and the third one for testing; in the 4-fold ‘CLOCK’ method, three subsets 
were considered for training and one for testing (Fig. 2.9). Different cross-validation procedures 
were tested using the ‘gbm.step’ procedure available in the dismo R package (Elith et al. 2008, 
Hijmans et al. 2017). Once the dataset is split in different folds, Elith et al. (2008) apply an iterative 
procedure that enable to find the minimum deviance to the test data, and relates it to the optimal 
number of trees (optimal model complexity) to generate the model. If test and training data are 
spatially correlated, the number of trees required to build BRTs will be overestimated. Therefore, 
the use of Elith et al. (2008) procedure will enable to accurately interpret and compare optimal 
complexity and performance scores of models calibrated with either randomly or spatially 
segregated folds (i.e. with contrasting distances between training and test subsets), and thus will 
help explain the influence of occurrence spatial aggregation on model complexity and 
performance. R scripts written to generate the models and the different cross validation procedures 
are provided online at: https://github.com/charleneguillaumot/THESIS/. 
Independence between training and test subsets was evaluated using the Spatial Sorting Bias 
index (SSB) (Hijmans 2012). SSB compares the distance between training-presence and testing-
presence data with the distance between training-presence and training-background. SSB=0 (non 
independence) means that the ‘’distance between training-presence and test-presence sites will 
tend to be smaller than the distance between training-presence and test-background sites’’ 
(Hijmans 2012). SSB=1 indicates that the two distances are comparable (independent enough) 
(Hijmans 2012). SSB was calculated with the dismo R package (Hijmans et al. 2017). 
SDMs evaluation was generated by computing the percentage of test data that fall on grid-cell 
pixels predicted as suitable. Suitable pixels were defined using the Maximum sensitivity plus 
specificity threshold (MaxSSS) that splits models into suitable (> MaxSSS value) and unsuitable 
areas (< MaxSSS value). MaxSSS is accepted as a relevant threshold for presence-only SDMs 
(Liu et al., 2013). The averaged optimal number of trees required to generate BRTs was compared 
between models and used as a proxy of model complexity.  
Statistical differences between models generated with the different cross-validation procedures 
(AUC, TSS, COR, percentage of correctly classified test data, number of trees) were tested using 
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the non-parametric Mann-Whitney Wilcoxon pairwise comparison. 
 
2.5. Assessment of model extrapolation 
 
The Multivariate Environmental Similarity Surface (MESS) index was estimated following the 
procedure described by Elith et al. (2010) using the dismo R package (Hijmans et al. 2017). The 
MESS calculation consists in extracting the environmental conditions where presence-only data 
were recorded and determining for each pixel of the model projection layer if environmental 
conditions are covered by presence-only records. Negative MESS values indicate areas of model 
extrapolation in which the value of at least one environmental descriptor is beyond the 
environmental range covered by available presence-only records. Conversely, positive MESS 
values indicate areas of model projection in which values of environmental descriptors are within 
the environmental range covered by presence-only records. According to the number of 
environmental descriptors that are not included inside the range of presence records values, 
MESS outcome can strongly vary. The MESS evaluation deals with each environmental descriptor 
equally (unweighted analysis) and in this study, a pixel was considered as unsuitable as soon as a 
single descriptor value does not match the environmental range of presence-only records. On a 
projection map, SDM predictions were darkened according to the MESS extrapolation range to 
visualise the uncertain area due to extrapolation. Extrapolation performance of SDMs was 
assessed by comparing the proportion of the environment predicted as suitable by the model with 
the total set of environmental conditions. 
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Figure 2.9. Comparison of the different cross-validation procedures. Dots represent Odontaster validus 
presence-only records and a random set of 1000 background data, sampled according to the Kernel Density 
Estimation weighting scheme. Colors indicate data splitting into training (pink) and test (green) subsets. Blue 
background corresponds to bathymetry and grey areas to emerged lands. For each case, 100 replicates of 
random background-data sampling and transects partitioning are performed, symbolised by the arrows on 
the figure. (A) Random cross-validation procedure, with a random splitting into 75% training and 25% test 
data. (B) ‘2-fold CLOCK’ clustering by random spatial partition of the dataset into two groups (one training, 
one test). (C) ‘BLOCK’ splitting, generated according to the median latitudinal and longitudinal values 
(Muscarella et al., 2014). After generation of four groups (corresponding to the four colors), one group is 
randomly defined as the test subset, the other three groups as the training subset. A different system of 
projection was used to represent this map to highlight the latitudinal and longitudinal definition of the 
transects. (D) ‘3-fold CLOCK’ clustering by random spatial partition of the dataset into three groups (2 
training, 1 test). (E) ‘4-fold CLOCK’ clustering by random spatial partition of the dataset into four groups (3 
training, 1 test).  
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3. RESULTS  
 
3.1. Available data and spatial autocorrelation  
 
Distribution records available for Odontaster validus display a circumpolar and patchy spatial 
pattern (Fig. 2.10a). The niche occupied by O. validus does not cover the entire range of 
environmental conditions prevailing in the projection area (Fig. 2.10b). O. validus is recorded in 
conditions close to zero and sub-zero seafloor temperatures (Fig. 2.10b) and is mainly distributed 
in shallow and coastal areas. Most of O. validus presence records are aggregated in regions 
where scientific benthic surveys are most often led and where sampling effort was privileged due 
to access facilities (e.g. the Ross Sea and the Antarctic Peninsula). Overall, this holds true for 
presence records of all benthic Southern Ocean taxa as well (Fig. S2.2), although, in this case, 
most environmental conditions are covered by the total benthic samples (Fig. 2.10b). 

Figure 2.10. (A) Presence-only records of the sea star Odontaster validus in the Southern Ocean. 
Duplicates (occurrences falling on a same 0.1° resolution pixel) were removed from the display. (B) Values 
of the environmental range covered by the entire benthos sampling dataset presented in Fig. S2.2 (black 
dots), by presence-only records of O. validus (green dots) in comparison with a set of 1000 background dots 
randomly sampled according to the Kernel Density Estimation scheme (grey dots) for two environmental 
descriptors: mean seafloor temperature (°C) and mean seafloor salinity (PSU). A part of the environment 
(grey dots) does not contain benthic occurrence samples (black dots), illustrating that sampling effort is not 
geographically exhaustive.  
 
Spatial autocorrelation was measured for both the total Southern Ocean benthic dataset (null 
models) and or O. validus alone (models A and B) (Table 1). Moran’s I scores were tested 
significant for all models, null model #2 excepted. The absence of spatial autocorrelation (I=0.005 
± 0.004; p=0.19) in null model #2 shows that environmental data are not strongly aggregated in 
space. In contrast, presence-only records of the total Southern Ocean benthic dataset are spatially 
aggregated. The degree of spatial aggregation due to sampling effort is evidenced by the 
comparison between null model #1 and #2, scores of model #1 being 10 times higher than those of 
null model #2 (Moran’s I=0.050 ± 0.011 and 0.005 ± 0.004, respectively). 
Values of Moran’s I computed for models of O. validus (models A and B) are higher than those 
computed for the total Southern Ocean benthic dataset (null model #1 and #1 with Kernel Density 
Estimation). The sampling bias is therefore more pronounced for O. validus than for the majority of 
other benthic species. 
Model correction by the Kernel Density Estimation procedure was shown to reduce spatial 
autocorrelation with Moran’s I values decreasing from 0.050 to 0.034 for null model #1, and from 
0.085 to 0.069 for O. validus models A and B (Table 2.1). However, although lower, Moran’s I 
values remain significant after correction, indicating that the applied corrections do not entirely 
remove the presence of spatial autocorrelation.  
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Table 2.1. Comparison between models of spatial autocorrelation values measured on model residuals 
(average and standard deviation of Moran’s I values computed for 100 model replicates). Moran’s I 
significance is indicated by p-values; for p < 0.05, the absence of spatial autocorrelation (null hypothesis) is 
rejected. Null model #1: 309 presence records were randomly sampled among occurrences of the total 
Southern Ocean benthic dataset (Fig. S2.2) and background data are composed of 1000 points randomly 
sampled in the entire Southern Ocean; model #2: 309 records (to define presence records) and 1000 
background data both randomly sampled in the entire Southern Ocean; model #1 with Kernel Density 
Estimation: similar to model null #1 but with 1000 background data randomly sampled following the Kernel 
Density Estimation weighting scheme; model A: 309 presence records of Odontaster validus and 1000 
background data were randomly sampled in the entire Southern Ocean; model B: similar to model A but with 
the 1000 background data sampled following the Kernel Density Estimation weighting scheme. AUC: Area 
Under the Receiver Operating Curve, TSS: True Skill Statistic, COR: Point Biserial Correlation. 
 

 Null model #1  Null model #2 Null model #1  
with Kernel Density Estimation 

Model A Model B 

Spatial autocorrelation 
(Moran’s I)  

0.050 ± 0.011 
p<0.001 

0.005 ± 0.004 
p=0.19 

0.034 ± 0.011 
p<0.001 

0.085 ± 0.009 
p<0.001 

0.069 ± 0.006 
p<0.001 

AUC 0.976 ± 0.010 0.710 ± 0.014 0.964 ± 0.015 0.997 ± 0.001 0.948 ± 0.003 

TSS 0.674 ± 0.013 0.331 ± 0.020 0.660 ± 0.019 0.698 ± 0.002 0.696 ± 0.003 

COR 0.850 ± 0.028 
p<0.001 

0.336 ± 0.018 
p<0.001 

0.801 ± 0.037 
p<0.001 

0.944 ± 0.011 
p<0.001 

0.923 ± 0.015 
p<0.001 

 
3.2. Comparison of cross-validation procedures  
 
For the BRTs fitted with the random cross-validation procedure, all overall goodness-of-fit metrics 
(AUC, TSS, COR) were good with predictive accuracy Area Under the Curve (AUC) values higher 
than 0.9 (Table 2.2). However, when evaluated through spatial cross-validation procedure, the 
AUC scores decreased in all BRTs. These results show that BRTs tend to overfit the data if the 
independence between training and test data is not ensured. Indeed, the random cross-validation 
procedure presents SSB values close to zero, indicating that training and test subsets may be 
highly correlated (Fig. 2.9a). In contrast, all spatial cross-validation procedures have SSB values 
close to 1, indicating a better spatial independence between training and test data (Table 2.2). 
The generalisation performance (AUC and correctly classified test data) are very high for the 
random cross-validation procedure, with more than 89.4% of test-presence records falling correctly 
in areas predicted as suitable by the model (Table 2.2). The random cross-validation procedure 
generates more complex BRTs compared to the spatial methods (significantly higher number of 
trees for the random cross-validation procedure compared to the spatial cross-validation 
procedures). As the model closely fits the dataset used for its construction, high AUC, TSS and 
COR scores were obtained but these results may be misleading and overestimated. In contrast, 
spatial cross-validation procedures generate less complex models (more general), which could 
account for lower AUC, TSS and COR scores. 
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Table 2.2. Average Spatial Sorting Bias (SSB) and standard deviation values for the 100 model replicates 
(background sampling+test/training clustering). AUC: Area Under the Receiver Operating Curve; Correctly 
classified test data (%): percentage of presence-test and background-test records falling on predicted 
suitable areas (prediction > maximum sensitivity plus specificity (maxSSS) threshold); TSS: True Skill 
Statistic; COR: Point Biserial Correlation; ntrees: averaged optimal number of trees required to generate 
BRTs. Stars are indicated for spatial cross-validation groups significantly different from the random cross-
validation procedure (nonparametric pairwise Mann-Whitney Wilcoxon test, p-value < 0.01). 
 

 Random cross-validation 
Random splitting 

Spatial cross-validation 
 Block method 

Spatial cross-validation 
 2-fold Clock method 

Spatial cross-validation 
 3-fold Clock method 

Spatial cross-validation 
4-fold Clock method 

Mean SSB 0.101 ± 0.04 0.802 ± 0.37 0.832 ± 0.09 0.803 ± 0.23 0.848 ± 0.32 

AUC 0.947 ± 0.013 0.854* ± 0.06  0.811* ± 0.053 0.818* ± 0.078 0.824* ± 0.089 

Correctly classified 
test data (%) 

89.452 ± 1.523 80.946* ± 7.504 80.039* ± 3.489 80.713* ± 5.421 79.471* ± 8.538 

Test data (% of total 
dataset) 

25% [13-38]% [19-81%] [1-68%] [1-66%] 

TSS 0.715 ± 0.041 0.542* ± 0.188 0.465* ± 0.088 0.490* ± 0.136 0.576* ± 0.165 

COR 0.792 ± 0.029 0.632* ± 0.126 0.584* ± 0.089 0.591* ± 0.12 0.483* ± 0.197 

ntrees 1580 ± 251.058 543.5* ± 88.9 375* ± 91.9 424.5* ± 131.1 379* ± 98.5 

 
 
3.3. Proposed model and uncertainty map 
 
We decided to maximise the spatial independence between training and test subsets, minimise 
model complexity and optimise generalization performances in O. validus model. Using these 
criteria, we found that the ‘2-fold CLOCK‘ modelling method was well adapted to O. validus dataset 
(second highest TSS and COR scores; high proportion of test data being correctly classified, with 
the lowest standard deviation score (80.04 ± 3.49%); an important proportion of the total dataset 
used a test subset [19–81%] and the lowest model complexity (ntrees = 375 ± 91.9)). 
The MESS index was calculated in order to define the part of this extrapolated area, that is, the 
part of the geography for which at least one environmental descriptor is outside the environmental 
conditions of the sampled presence records. The MESS index was compiled as a raster layer and 
projected on the probability distribution map by darkening uncertain areas (Fig. 2.11). Uncertain 
areas due to extrapolation represent 64.2% of the entire projected surface, the major part being 
also predicted by the model as unsuitable (Table 2.3). Almost 9.5% of the area was however 
predicted as suitable by the model although considered as an extrapolated area. 
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Figure 2.11. SDM performed with the spatial cross-validation ‘2-fold CLOCK’ method. Average of 100 model 
replicates. Distribution probabilities are darkened according to the Multivariate Environmental Similarity 
Surface (MESS) layer, with dark pixels corresponding to regions where the model extrapolates outside of the 
environmental conditions in which the species was sampled. Dark pixels represent 64.2% of the entire 
projected area. Probabilities of presence are contained between 0 and 1 but the colorbar was scaled until 0.6 
to enhance visual contrast. 
 
 
Table 2.3. Proportion of interpolated and extrapolated pixels according to the averaged SDM predictions. 
Interpolation (or uncertain extrapolation respectively) refers to areas where environmental conditions within 
the pixel are inside (or outside, respectively) of the species ecological range, as defined by the Multivariate 
Environmental Similarity Surface (MESS). Suitable pixels were defined using the MaxSSS threshold that 
splits model predictions into suitable (> maxSSS mean score) or unsuitable areas (< maxSSS mean score). 
 

MESS classification Model prediction 

 Suitable pixels  Unsuitable pixels  

Interpolation 10.24% 25.57% 

Uncertain extrapolation 9.42% 54.77% 

 
 
4. DISCUSSION 
 
4.1. Evaluating SDM performance 
 
Using independent datasets to test SDM performance is a prerequisite for relevant validation 
analyses (Peterson et al. 2011). At broad spatial scale and in data-poor areas, the number of 
available data is limited and data distribution often patchy, which really challenges the success of 
validation procedures. Estimating the performance of SDM predictions and the level of 
extrapolation in such areas is a necessity. 
The cross-validation procedure has been proposed as a reliable approach to evaluate modelling 
performances (Fielding and Bell 1997, Hijmans 2012, Dhingra et al. 2016, Roberts et al. 2017). 
Cross-validation procedures must however be adapted to spatially aggregated data because 
training and test subsets may be sampled in close areas, violating the independence assumption 
(Segurado et al. 2006, Hijmans 2012). Such a potential bias is rarely taken into account. In the 
present work, we compared SDM performance using five different cross-validation procedures for 
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modelling, at broad spatial scale, the distribution of a species for which available data are limited in 
number and are spatially aggregated. Results show strong differences between procedures, which 
highlights the importance of testing and selecting the most appropriate method when evaluating 
model performance. 
 
4.2. Correction for SAC and spatial bias  
 
Strong significant Moran’s I scores were measured on model residuals, revealing the presence of 
spatial autocorrelation in the total Southern Ocean benthic dataset (Fig. S2.2). The difference 
between null models #1 and #2 evidences the influence of sampling aggregation on spatial 
autocorrelation values (Table 2.1) as discussed by Guillaumot et al. (2018a - Appendix). O. validus 
presence-only dataset follows the same pattern, with records aggregated in coastal areas where 
sampling effort has been mostly concentrated (Table 2.1, Fig. 2.10). A target-group background 
sampling was applied and proved to be efficient to reduce spatial autocorrelation (as assessed 
using Moran’s I statistic), although it still remains at a significant level. Spatial autocorrelation 
scores are strongly dependent on the resolution of environmental raster layers. The coarse 
resolution of environmental data used in the present study may be responsible for the over-
estimation of spatial autocorrelation scores. This could account for spatial autocorrelation 
remaining significant even after the Kernel Density Estimation correction. 
 
4.3. Selection of cross-validation procedures  
 
The random cross-validation procedure has been widely used in ecological modelling to evaluate 
model predictions (Fielding and Bell 1997, Merow et al. 2013, Mainali et al. 2015, Torres et al. 
2015, Phillips et al. 2017) but the method has been rarely compared to alternative procedures. The 
present study shows that contrasting model assessments are obtained when using different cross-
validation procedures (Radosavljevic and Anderson 2014, Roberts et al. 2017). Applying a random 
cross-validation to an aggregated dataset at a broad spatial scale can result in training and test 
subsets being sampled in the same area, and leads to an inflation of modelling performances 
(Veloz 2009, Hijmans 2012, Radosavljevic and Anderson 2014, Wenger and Olden 2012). In the 
context of this study, SDMs produced with a broad-scale and spatially aggregated occurrence 
dataset and a random cross-validation procedure are more complex and likely over-fit the training 
dataset. This also may account for the high evaluation scores obtained (AUC, TSS, COR) and may 
also explain the apparent high generalization performance of BRTs fitted with random cross-
validation. The lack of model generality can a posteriori lead to strong caveats and unreliable 
models with poor transferability performance when projected on a new environmental space 
(Wenger and Olden 2012, Crimmins et al. 2013). Methods that select the most parsimonious BRT, 
combine low model complexity and high modelling performance should therefore be preferred. The 
spatial cross-validation procedures tested in this study were shown to produce less complex 
models than the random cross-validation procedure. Increased model generality (i.e. decrease in 
model overfitting) and forced spatial segregation between training and test subsets result in 
decreasing SDM validation scores. These results show that applying a random cross-validation 
procedure for a patchy dataset can lead to over-estimation of SDM predictive performance if 
training and test subsets are not independent. This is in line with several works (Brenning 2005, 
Elith et al. 2010, Anderson 2013, Muscarella et al. 2014) in which a decrease of AUC scores can 
be reported when using a spatial cross-validation procedure instead of a random procedure. 
Machine-learning algorithms have been reported to be the best approaches to generate SDMs but 
the influence of over-fitting on model evaluation are under-estimated (Reiss et al. 2011, Duan et al. 
2014, Beaumont et al. 2016, Thuiller et al. 2016) although its effect has been pointed out in several 
works (Elith et al. 2008, Jiménez-Valverde 2008, Wenger and Olden 2012). Our results show that 
the evaluation of SDM performance can be strongly influenced by the choice of the evaluation 
procedure. In this work, several spatial cross-validation procedures were compared with each 
other but no single and best procedure emerged, a common case in ecological modelling (Qiao et 
al. 2015). The appropriate method to be used is highly dependent on the species and dataset 
under study. For instance, the ‘BLOCK’ method introduced by Muscarella et al. (2014) should not 
be used at broad spatial scale, where too important latitudinal contrasts in environmental 
conditions are present. In this study, such contrasting environmental conditions (due to the 
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presence of an environmental latitudinal gradient between sub-Antarctic and Antarctic regions, with 
occurrence aggregation in the two regions) lead to higher variability in generalisation performance 
during model projection, depending on the data subsets selected to train and test the model 
(Roberts et al. 2017). The ‘BLOCK’ method favors the independence between training and test 
subsets but models are slightly more complex because they are calibrated on contrasting 
environmental conditions (sub-Antarctic vs. Antarctic areas) and over-fit the training dataset that 
could also present a patchy distribution. The ‘BLOCK’ method is therefore more adapted to case 
studies without strong patchy and contrasting environmental conditions. The ‘CLOCK’ procedures 
developed in this study helped reduce the effect of latitudinal patchy occurrences distribution by 
mixing presence records sampled in Antarctic and sub-Antarctic regions to define training and test 
subsets. The ‘CLOCK’ methods generate less complex models and were proved more efficient to 
define spatially independent training and test subsets. However, the number of training and test 
records sampled between model replicates is not constant, which contributes to an important 
variability in validation performance scores. The selection of the different ‘CLOCK’ methods also 
depends on the importance of data aggregation and patchy patterns within environmental 
conditions. For strong data aggregation, the ‘2-fold CLOCK’ approach will help reduce the 
influence of patchy patterns during model calibration and will help generalise the model and 
decrease its complexity. ‘3 or 4-fold CLOCK’ methods present close modelling performances but 
the proportion of occurrence records used to test the model can be very low. Alternative SDM 
evaluation procedures can be found in the literature: for instance, calibrated cross-validation 
procedures aim at removing occurrences from the test subset when considered too close to the 
training subset (and considered as non-informative according to a statistical threshold) (Hijmans 
2012). For limited presence-only datasets, removing a part of the available occurrence data may 
lead to the removal of a proportion of informative records, which does not constitute a reasonable 
option (Bean et al. 2012, van Proosdij et al. 2016). The leave-one-out method can also provide a 
relevant estimate of model goodness-of-fit, even for spatially aggregated datasets (Olden et al. 
2002, Wenger and Olden 2012). The method aims at randomly excluding a single record from the 
total dataset. The model is trained on the remaining data and predicts the model response on the 
single removed point to test for model prediction. The procedure is replicated several times, 
providing a powerful evaluation of model accuracy. However, assessment of generalisation 
performances is not permitted with this approach (Wenger and Olden 2012). In addition to cross-
validation procedures, the relevance of model validation performance is also strongly dependent 
on the quality of environmental descriptors available. The number of no-data pixels as well as grid-
cell resolution can critically affect model evaluation. This is especially true in the present study 
because environmental variables, measured or interpolated, rarely extend to coastal areas, and 
resolution in the Southern Ocean can rarely be better than 10 km2. Good quality datasets are 
needed and such limitations must be taken into account when interpreting model outputs. 
 
4.4. Uncertainty assessment in SDMs predictions 
 
SDM uncertainty assessment has been a widely discussed topic (Barry and Elith 2006, Carvalho et 
al. 2011, Beale and Lennon 2012, Guisan et al. 2013). Uncertainty in model predictions has been 
often assessed as the variation among the predicted distribution probabilities (Buisson et al. 2010) 
but this approach does not provide precise information on the origin of uncertainty (Tessarolo et al. 
2014). The MESS metric is a relevant indicator of SDM extrapolation performance (Elith et al. 
2010, Dhingra et al. 2016). The Mobility Oriented Parity (MOP) introduced by Owens et al. (2013) 
was recently proposed as an alternative to the MESS index. MESS considers extrapolation on a 
pixel as uncertain when at least one environmental value falls outside the environmental range of 
presence records. In contrast, MOP offers more flexibility by defining an extrapolated area when all 
environmental values fall outside the sampled environmental range. Therefore, MESS is more 
conservative than MOP to define species ecological envelope. Here, MESS was used to assess 
the proportion of the projected area for which models extrapolate. Our results show that more than 
half of the area corresponds to environmental conditions for which presence records have not 
been sampled. 9.42% of this extrapolated area is even predicted as a suitable environment. This 
highlights the weakness of SDMs for spatial generalisation and the risk of providing inaccurate 
SDMs for conservation purposes, especially if the communication between modellers and 
environmental managers is neglected (Guisan et al. 2013). Our results show the importance of 
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providing uncertainty maps along with SDM outputs in order to help interpret models with the 
necessary caution. 
 
5. CONCLUSION  
 
This work highlights the importance of assessing the relevance of SDM evaluation procedures. 
When applied to occurrence datasets, spatially autocorrelated and broad-scale presence-only 
datasets, the random cross-validation procedure may over-estimate model validation scores due to 
the violation of independence between training and test subsets. Applying a spatial cross-
validation procedure that spatially segregates training and test data was shown to be effective to 
provide a reliable analysis of model performance. Spatial cross-validation methods also help 
reduce model complexity and therefore improve generalisation performances. The ‘CLOCK’ 
methods developed in this paper were proved to be appropriate to our Southern Ocean case study 
and could be applied to other non-polar case studies. This study proves the importance of testing 
and comparing several spatial cross-validation procedures to identify the procedure most adapted 
to each case study. The MESS index was used to visualise areas where SDMs extrapolate outside 
the range of the environmental conditions where presence records were sampled. Such results 
show the importance of providing information on model uncertainty to correctly interpret SDM 
outputs. 
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APPENDIX 2.1. Model calibration 
 

Models were calibrated using all presence-only records available and a random selection of background 
points sampled within the species environmental range (< 1,500m depth). Different numbers of background 
data were sampled and compared to the total environmental range using convex hulls (Fig. S2.1.A). The 
best background data number to be used to calibrate SDM was the one describing well environmental 
conditions (e.g. mean seafloor salinity, depth, mean seafloor temperature, seafloor temperature amplitude, 
Fig. S2.1.A) while being as close as possible to the number of species presence records (Barbet-Massin et 
al. 2012). 1,000 background data were finally sampled to perform the model. 
 

 
Figure S2.1.A. Values of the environment available (black dots) and of the background sample environment randomly 
sampled on the environment limited at 1,500m depth (coloured dots). 300, 600, 1000 and 1500 background data were 
sampled. Convex hulls were calculated with the chull function of the grDevices R package. They delimit the environment 
described by the background data sample.  
 
BRT models were generated using the cross validation procedure of Elith et al. (2008) and the gbm R 
package (Ridgeway et al. 2006) with codes provided in the publication’s supplementary material. We forced 
a maximum number of 10,000 trees and models were calibrated with the combination of parameters that 
minimizes the predictive deviance while producing the lowest number of trees (Fig. S2.1.B). The parameters 
values finally selected to generate the models are: tree complexity= 4, learning rate= 0.007, and bag 
fraction= 0.75.  
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Figure S2.1.B. Comparison of the predictive deviance of models generated with different combination of parameters. Tc: 
tree complexity, lr: learning rate; bf: bag fraction (see Elith et al. 2008 for details). 
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APPENDIX 2.2. Benthic occurrence records in the Southern Ocean 
 
Benthos occurrence records available for the Southern Ocean (Fig. S2.2) were obtained by completing the 
dataset of benthos sampling sites published in the Biogeographic Atlas of the Southern Ocean (Chapter 2, 
Griffiths et al. 2014) with recent datasets published after 2014 (Table S2.2). 

 
Figure S2.2. Map of the benthic Southern Ocean sampling sites updated, from the Atlas of the Southern Ocean 
(<45°S)(Griffiths et al. 2014).  
 
Table S2.2. List of IPT (Integrated Publishing Toolkit) data (collected and published after 2014) added to the map of the 
Southern Ocean benthic sites. 
 

Taxon Author Public release  URL 

Tanaidacea Italian National Antarctic Museum, 
Italy 

2014-08-08 http://ipt.biodiversity.aq/resource?r=mna_database_
tanaidacea  

Intertidal taxa Bristish Antarctic Survey, United 
Kingdom 

2015-11-18 http://ipt.biodiversity.aq/resource?r=bas_intertidal  

Macroalgae Alfred Wegener Institute, Germany 2016-10-17 http://ipt.biodiversity.aq/resource?r=baso_macroalg
ae  

Asteroidea Université Libre de Bruxelles, Belgium 2017-06-30 http://ipt.biodiversity.aq/resource?r=asteroidea_sout
hern_ocean  

Ophiuridae Italian National Antarctic Museum, 
Italy 

2017-08-30 http://ipt.biodiversity.aq/resource?r=mna_antarctic_
ophiuroidea  

Echinoidea Université de Bourgogne Franche 
Comté, France 

2017-09-22 http://ipt.biodiversity.aq/resource?r=echinoids_occu
rrences_southern_ocean  
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APPENDIX 2.3. Datacatalog 
Table S2.3. List of environmental descriptors selected for the species distribution models available for [2005-2012]. Spatial extent of the data: 78°S; 45°S/-180; 180°W. Spatial 
resolution: 0.1° 
 

Environmental descriptor Unit Description Source 
Depth Meters Bathymetric grid around the Kerguelen Plateau This study. Derived from [6] 
Sea surface temperature amplitude* °Celsius degrees Difference between austral summer (mean January-March) and winter 

(mean July-September) sea surface temperature 
This study. Derived from World Ocean Circulation Experiment 2013 [1] sea 
surface temperature layers 

Seafloor mean temperature* °Celsius degrees Mean seafloor temperature This study. Derived from World Ocean Circulation Experiment 2013 [1] sea 
surface temperature layers 

Seafloor temperature amplitude* °Celsius degrees Difference between austral summer (mean January-March) and winter 
(mean July-September) seafloor temperature 

This study. Derived from World Ocean Circulation Experiment 2013 [1] sea 
surface temperature layers 

Sea surface mean salinity* PSS Mean sea surface salinity This study. Derived from World Ocean Circulation Experiment 2013 [1] sea 
surface salinity layers 

Sea surface salinity amplitude* PSS Difference between austral summer (mean January-March) and winter 
(mean July-September) sea surface salinity 

This study. Derived from World Ocean Circulation Experiment 2013 [1] sea 
surface salinity layers 

Seafloor mean salinity* PSS Mean seafloor salinity This study. Derived from World Ocean Circulation Experiment 2013 [1] 
seafloor salinity layers 

Seafloor salinity amplitude* PSS Difference between austral summer (mean January-March) and winter 
(mean July-September) seafloor salinity 

This study. Derived from World Ocean Circulation Experiment 2013 [1] sea 
surface salinity layers 

Mean surface chlorophyll a mg/m3 Surface chlorophyll a concentration. Summer mean over 2002-2009 MODIS AQUA (NASA) 2010 [2] 
Sediments Categorical Sediment features [7], updated by Griffiths 2014 (unpublished) 
Geomorphology Categorical Geomorphologic features ATLAS ETOPO2 2014 [8] 

Slope Unitless Bathymetric slope [6] 

Mean seafloor oxygen concentration mL/L Mean seafloor oxygen concentration over 1955-2012 This study. Derived from World Ocean Circulation Experiment 2013 [1] sea 
surface oxygen concentration layers 

Ice cover - Proportion of time during which ocean is covered by sea ice of 
concentration 85% of higher. Projection 2003-2010 This study. Derived from Australian Antarctic Data Centre [3] 

POC export gC/m2/day Particulate organic carbon 2002-2015 averages This study. Published on Australian Antarctic Data Center [4] 
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Abstract 

Species Distribution Models (SDMs) are increasingly used in ecological and biogeographic studies 
by Antarctic biologists, including for conservation and management purposes. During the modelling 
process, model calibration is a critical step to ensure model reliability and robustness, especially in 
the case of SDMs, for which the number of selected environmental descriptors and their 
collinearity is a recurring issue. Boosted Regression Trees (BRT) was previously considered as 
one of the best modelling approach to correct for this type of bias. In the present study, we test the 
performance of BRT in modelling the distribution of Southern Ocean species using different 
numbers of environmental descriptors, either collinear or not. Models are generated for six sea star 
species with contrasting ecological niches and wide distribution ranges over the entire Southern 
Ocean. For the six studied species, overall modelling performance is not affected by the number of 
environmental descriptors used to generate models, BRT using the most informative descriptors 
and minimizing model overfitting. However, removing collinear descriptors also helps reduce model 
overfitting. Our results confirm that BRTs may perform well and are relevant to deal with complex 
and redundant environmental information for Antarctic biodiversity distribution studies. Selecting a 
limited number of non-collinear descriptors before modelling may generate simpler models and 
facilitate their interpretation. The modelled distributions do not differ noticeably between the 
different species despite contrasting species ecological niches. This unexpected result stresses 
important limitations in using SDMs for broad scale spatial studies, based on limited, spatially 
aggregated data, and low-resolution descriptors.  
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1. INTRODUCTION 
 
The Southern Ocean is one of the regions on Earth that is undergoing climate change at the 
fastest pace (Convey et al. 2009, Turner et al. 2014, Henley et al. 2019). Predicting the response 
of Antarctic species and communities to environmental changes is challenging but it has become a 
pressing need to address conservation issues and support guidance for the management of living 
resources in a dynamic context (Gutt et al. 2012, Ingels et al. 2012, Constable et al. 2014a, De 
Broyer et al. 2014, Convey and Peck 2019). The Commission for the Conservation of Antarctic 
Marine Living Resources (CCAMLR) actively works for the sustainable management of Antarctic 
marine ecosystems and marine life (see https://www.ccamlr.org/en/organisation, access August 
2019). Recent proposals from CCAMLR and existing marine protected areas (MPAs), such as 
those newly designated around the South Orkney Islands or in the Ross Sea (CCAMLR 2009, 
2016), partly rely on species distribution modelling (SDM) (Ballard et al. 2012, Anderson et al. 
2016, Davis et al. 2017, Arthur et al. 2018). 
 
SDM is a correlative approach that depicts the relationship between the distribution of species 
occurrence records and a set of environmental descriptors, to interpolate and predict the potential 
distribution of species over their entire distribution range (Elith et al. 2006, Peterson et al. 2011). 
Over the last decades, SDMs have been increasingly used to address conservation issues (Guisan 
et al. 2013, Ross and Howell 2013, Marshall et al. 2014, Reiss et al. 2014, Arthur et al. 2018), 
predict species suitable areas (Meier et al. 2011, Reiss et al. 2011, Nachtsheim et al. 2017, Phillips 
et al. 2017), including potential distribution shifts (Ficetola et al. 2007, Václavík and Meentemeyer 
2009, Jiménez-Valverde et al. 2011, Tingley et al. 2014), and guide sustainable management 
plans for commercial purposes (Valavanis et al. 2008, Maxwell et al. 2009). They have particularly 
proved useful to improve our understanding of species distribution in poorly sampled and seldom 
accessed areas (Elith et al. 2006, Peterson et al. 2011) and for the conservation of Southern 
Ocean marine life (De Broyer et al. 2014, Basher and Costello 2016, Hogg et al. 2018, Jansen et 
al. 2018, Jerosh et al. 2019). 
 
Calibration is a critical step in SDM procedures, influencing their relevance, robustness and 
accuracy (Barbet-Massin et al. 2012, Guisan et al. 2013, Anderson et al. 2016). The selection of 
environmental descriptors is also important, as it shapes model accuracy and performance (Elith 
and Leathwick 2009, Austin and van Niel 2011, Dormann et al. 2012b, Braunisch et al. 2013, 
Bucklin et al. 2015, Bradie and Leung 2017, Petitpierre et al. 2017). The inappropriate selection of 
descriptors has been shown to cause overfitting in SDMs, especially when the number of 
descriptors is high compared to the number of occurrences available (Anderson and Gonzalez 
2011, Braunisch et al. 2013, Kramer-Schadt et al. 2013, Synes and Osborne 2011, Petitpierre et 
al. 2017), leading to over-complex models, reduced transferability performances and 
underestimation of predicted suitable areas (Beaumont et al. 2005). 
 
Collinearity between descriptors is another major concern when addressing the quality of SDMs 
(Dormann et al. 2012b). Collinearity occurs when at least two descriptors are linearly related in a 
statistical model (Dormann et al. 2012b). In regression models, multicollinearity increases variance 
values between independent descriptors. It can cause incorrect estimations of beta regression 
coefficients and bias interpretation, making it difficult to disentangle the respective contributions of 
independent variables to explaining the dependent variable (Hair et al. 2014). Collinear descriptors 
are traditionally removed from datasets to calibrate SDMs (Dormann et al. 2012b, Pierrat et al. 
2012, Merow et al. 2013, Fabri-Ruiz 2018, Guillaumot et al. 2018b), while a recent study showed 
that collinear descriptors could also improve the model’s fit (Freer et al. 2019). 
 
Machine-learning algorithms can effectively model complex relationships between environmental 
conditions and occurrence records (Olden et al. 2008, Elith and Leathwick 2009). They can 
harness incomplete datasets and missing data, as well as contrasting and extreme values, and 
generate predictive models with high transferability performances and low sensitivity to species 
niche width (Elith et al. 2006, Elith et al. 2008, Elith and Graham 2009, Reiss et al. 2011, Barbet-
Massin et al. 2012, Heikkinen et al. 2012, Qiao et al. 2015). In machine-learning algorithms, the 
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Boosted Regression Trees approach (BRT) has been shown to be particularly efficient when 
dealing with non-informative environmental descriptors or conversely, with redundant information 
provided by correlated factors (Breiman 1984, De’ath and Fabricius 2000, Elith et al. 2008). 
 
In the present work, we test the robustness of SDMs generated with BRT for various numbers of 
environmental descriptors and different collinearity values. Models are generated for six common 
and abundant asteroid (sea star) species that have been extensively sampled and studied; here 
used as representative case studies for the Antarctic benthos: Acodontaster hodgsoni (Bell, 1908), 
Bathybiaster loripes (Sladen, 1889), Glabraster antarctica (Smith, 1876), Labidiaster annulatus 
Sladen, 1889, Odontaster validus Koehler, 1906 and Psilaster charcoti (Koehler, 1906) 
(McClintock et al. 2008a, Mah and Blake 2012, Lawrence 2013, Brandt et al. 2014, Danis et al. 
2014, Moles et al. 2015, Moreau et al. 2018). 
Because the Southern Ocean is scarcely accessed and sampled, spatial analyses of species 
distribution are usually based on aggregated and relatively small presence-only datasets, often 
compiled from historical records (De Broyer et al. 2014, Guillaumot et al. 2016, Fabri-Ruiz et al. 
2017a, Guillaumot et al. 2018a - Appendix, Moreau et al. 2018), which strongly hampers SDM 
performances (Hortal et al. 2008, Loiselle et al. 2008, Phillips et al. 2009, Costa et al. 2010, 
Newbold 2010, Guillera-Arroita et al. 2015, Guillaumot et al. 2018b). The objectives of this study 
are to assess the limits and potential of BRT to generate robust models for Southern Ocean 
benthic species and to provide some recommendations on the selection of environmental 
descriptors.  
 
2. MATERIAL AND METHODS 
 
2.1. Selection of environmental descriptors  
 
A set of 58 environmental descriptors was compiled from different sources (Appendix 2.4). This set 
can be downloaded from the blueant R package  
(https://github.com/AustralianAntarcticDivision/blueant), following the procedure given in the 
“data_for_SDM_vignette” at 
https://australianantarcticdivision.github.io/blueant/articles/SO_SDM_data.html.  
Most descriptors are average abiotic conditions taken from the WOCE database (Appendix 2.4) 
and describe the average abiotic conditions for the [2005-2012] time period (i.e. temperature, 
salinity, chlorophyll-a, particulate organic carbon flux). Some descriptors are available for longer 
time periods only ([1957-2017] and [1955-2012] for sea ice cover and seafloor oxygen 
concentration respectively). More recent or precise datasets are not available at the scale of the 
Southern Ocean. Raster layers were compiled with a 0.1 x 0.1° pixel resolution (11km 
approximately), each 0.1 x 0.1° pixel being used as a single grid-cell pixel,  and cropped to the 
extent of the Southern Ocean (herein defined as waters south of 45°S latitude) for a total of 1.26 
million pixels. Missing values are not interpolated to avoid potential biases. Available descriptors 
are selected according to their ecological relevance to benthic studies and following previous 
recommendations provided for species distribution modelling (Franklin 2010b, Anderson 2013) and 
Antarctic studies (Saucède et al. 2014). The selected descriptors best document the main 
characteristics of the species physical habitat (depth, sea water temperature, geomorphology, 
sediment nature, slope, roughness), geography (distance to the Antarctic continent, to canyons, to 
continental shelves, to the maximal sea ice extent in winter), seasonality (sea ice concentration 
and thickness), food resources (chlorophyll-a concentration and Particulate Organic Carbon [POC] 
exported on the sea bottom) and chemical environment (oxygen concentration and seafloor 
salinity). Minimal, maximal, and range values (min-max difference) of some descriptors are 
computed to complement the dataset (Franklin 2010a, Bradie and Leung 2017, Guillaumot et al. 
2018a - Appendix, 2018b). Extreme weather conditions and climate events were shown to strongly 
impact natural environments, notably species survival and distribution (Easterling et al. 2000, 
Wernberg et al. 2013). Here, supplementary descriptors are specially developed for the intensity 
and frequency of monthly changes in seafloor temperature, salinity, oxygen and chlorophyll-a 
concentrations. For each pixel and one year, these layers document how many times monthly 
average values are respectively higher (‘maximal extreme event’) or lower (‘minimal extreme 
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event’) than the yearly median value (Appendix 2.5, codes available at 
https://github.com/charleneguillaumot/THESIS).  
 
2.2. Biological records 
 
Antarctic sea stars play an important role in the structuring of benthic communities (McClintock et 
al. 2008a, Mah and Blake 2012, Lawrence 2013), they have contrasting ecological niches and life 
history traits (e.g. feeding diets, reproduction and development modes) that condition habitat 
preferences and dispersal abilities (Moreau et al. 2017, Table 2.4). Here, SDMs are generated for 
six sea star species using presence-only records obtained from the “Antarctic and sub-Antarctic 
asteroid database” published by Moreau et al. (2018): Acodontaster hodgsoni (Bell, 1908), 
Bathybiaster loripes (Sladen, 1889), Glabraster antarctica (Smith, 1876), Labidiaster annulatus 
Sladen, 1889, Odontaster validus Koehler, 1906 and Psilaster charcoti (Koehler, 1906). The 
studied species are abundant and have been regularly sampled during benthic expeditions to the 
Southern Ocean, making them some of the best-documented occurrence records on database 
available for Southern Ocean benthic species (Moreau et al. 2018). The working database 
(Moreau et al. 2018) includes presence-only records obtained by trawling and scuba diving during 
numerous expeditions to the Southern Ocean ranging from 1872 to 2016 (Appendix 2.6). 
Occurrence data collected during the last 50 years are the most abundant with an intense 
sampling effort carried out in the framework of the International Polar Year (IPY: 2007-2009) and 
the Census of Antarctic Marine Life (CAML: 2005-2010). All occurrence data are selected to 
ensure that a sufficient number of records are available to run the models (Stockwell and Peterson 
2002, van Proosdij et al. 2016) and exhaustively cover the geographical space occupied by the 
considered species. Presence-only records are spatially aggregated near coastal areas and 
scientific stations (Appendix 2.7 and see De Broyer et al. 2014, Guillaumot et al. 2019 - Chapter 2). 
Presence record duplicates found in the same grid-cell pixel are removed to reduce spatial 
replication as described by Segurado et al. (2006) and Boria et al. (2014). Because the considered 
species have different depth ranges (Moreau et al. 2018), model projection is performed for each 
species independently and bounded by maximal depth value defined by the species deepest 
record (see Table 2.4 for details). 
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Table 2.4. The six studied species and their respective ecological traits. Presence-only records duplicates 
present on a same grid-cell pixel are removed from the count of occurrences. The model maximum depth is 
defined for each species independently according to the density distribution of recorded depth values. 
Images sources: Brueggeman 1998, BIOMAR ULB database (P. Pernet), proteker.net, B121 expedition (Q. 
Jossart). 
 

 Acodontaster 
hodgsoni (Bell 

1908) 

Bathybiaster 
loripes (Sladen 

1889) 

Glabraster 
antarctica (Smith 

1876) 

Labidiaster 
annulatus Sladen 

1889 

Odontaster 
validus Koehler, 

1906 

Psilaster 
charcoti 

(Koehler, 1906) 

 

      

Feeding diet  Predator (mainly 
sponges) 
(Brueggeman 
1998) 

Detritivorous 
(Dearborn 1977) 

Deposit feeder, 
predator, or 
scavenger 
(Brueggeman 
1998) 

Predator (Dearborn 
et al. 1991) 

Opportunistic 
feeder 
(suspensivorous, 
deposit 
feeder,predator, 
scavenger) 
(Brueggeman 
1998) 

Deposit feeder, 
predator 
(Brueggeman 
1998) 

Reproduction and 
development modes  

Broadcaster with 
non-feeding  
planktonic larvae 
(Bosch and 
Pearse 1990) 

Broadcaster with 
non-feeding 
planktonic larvae 
(Bosch and 
Pearse 1990) 

Broadcaster with 
feeding 
planktonic larvae 
(Bosch 1989) 

Broadcaster and 
probably feeding 
planktonic larvae 
(Janosik et al. 
2008) 

Broadcaster with 
feeding planktonic 
larvae (Bosch and 
Pearse 1990) 

Broadcaster 
with non-
feeding 
planktonic 
larvae (Bosch 
and Pearse 
1990) 

Occurrence number  297 585 844 373 309 350 

Model maximum 
depth 

1,500 m 4,000 m  4,000 m  1,500 m 1,500 m 4,000 m  

 
2.3. Model calibration  
 
Boosted regression tree (BRT) is chosen as a robust method to test the influence of descriptor 
selection on model performance. This machine-learning algorithm has been shown to be well 
suited to accommodate presence-only data and incomplete datasets, to fit complex relationships 
between species records and environmental descriptors, to limit model overfitting and to have high 
transferability performances (Elith et al. 2006, Elith et al. 2008, Hastie et al. 2009, Ward et al. 
2009, Reiss et al. 2011, Heikkinen et al. 2012, Mainali et al. 2015, Guillaumot et al. 2019 - Chapter 
2), transferability being defined as the ability of models to predict in new environmental conditions 
(Friedman et al. 2001). 
BRT models are calibrated following the procedure detailed in Guillaumot et al. (2019 - Chapter 2) 
and using the gbm R package (Elith et al. 2008, Ridgeway 2015). BRT parameters are set to 
minimize both the optimal number of trees used to build the model and the minimal predictive 
deviance (learning rate, bag fraction and tree complexity are provided for each species in 
Appendix 2.8). A set of 1,000 background records are randomly sampled in the environmental 
space (maximal depth limit depending on the studied species, Table 2.4). This number is tested 
sufficient enough to represent the whole spectrum of environmental conditions existing in the 
geographic area of interest (Guillaumot et al. 2019 - Chapter 2: supplementary material) while 
being as close as possible to the number of records used to generate the model (Barbet-Massin et 
al. 2012). One hundred background data samples are generated as model replicates. Spatial 
aggregation of occurrence records is a recurrent bias in Antarctic benthic species databases 
(Fabri-Ruiz 2018, Guillaumot et al. 2018a - Appendix, Guillaumot et al. 2019 - Chapter 2). To 
reduce the effect of spatial aggregation on model outputs, background records are sampled 
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following a target-group approach (Philipps et al. 2009). In this approach, background data are 
randomly sampled in the area of interest, following a weighting scheme defined by a Kernel 
Density Estimation (KDE) of sampling effort in the Southern Ocean (Guillaumot et al. 2018a - 
Appendix, supplementary material in Guillaumot et al. 2019 - Chapter 2).  
When using spatially aggregated records, standard cross-validation procedures used to evaluate 
modelling performances can be strongly biased (Hijmans 2012, Roberts et al. 2017, Guillaumot et 
al. 2019 - Chapter 2). The random selection of training and test data leads to the violation of 
independence between training and test subsets, which can induce an over-estimation of correctly 
predicted test data by the model (Hijmans 2012). Using cross-validation procedures that spatially 
segregate training and test data (defined based on presence and background subsets) is a good 
alternative to accurately evaluate the performance of SDMs based on aggregated datasets. In the 
present study, a “6-fold CLOCK” cross-validation approach adapted from Guillaumot et al. (2019 - 
Chapter 2) was applied. This procedure randomly defines six sectors around Antarctica according 
to longitude, three for training data and three for test data.  
 
2.4. Collinearity and the selected number of environmental descriptors 
 
Collinearity between the 58 selected descriptors is analysed following a stepwise approach that 
eliminates layers with a Variance Inflation Factor (VIF) > 10, using the ‘vif.step’ function of the 
usdm R package (Naimi et al. 2014). VIF > 10 is defined as the threshold above which the effect of 
multicollinearity on model predictions is considered significant (Hair et al. 2014) and too strong to 
be automatically corrected by machine-learning algorithms (Dormann et al. 2012b). 
Multicollinearity is measured on projection areas, that is the portion of the environment for which 
SDMs do not extrapolate. Extrapolation areas are defined for each species independently using 
the Multivariate Environmental Similarity Surface index (MESS, Elith et al. 2010). They correspond 
to all grid-cell pixels where descriptor values are not contained within the range of environmental 
conditions on which presence-only data are recorded. Models generated with the 58 environmental 
descriptors are compared to models for which collinear descriptors are removed. 
A stepwise procedure is used to test the effect of the selected number of environmental descriptors 
on model performance. SDMs are first generated for the six species using the total set of 58 
environmental descriptors. Then, the six descriptors that contribute the least to the average model 
are iteratively pruned at each step of a series of SDMs successively generated with 58, 52, 46, 40, 
34, 28, 22, 16, 10, and four environmental descriptors. 
 

2.5. Model evaluation and comparisons  
 
The percentage of presence data correctly predicted (i.e. correctly classified test data) is computed 
to assess the performance of SDMs in terms of transferability. Model performances are also 
assessed using the Area Under the Receiver Operating Curve (AUC, Fielding and Bell 1997), the 
Point Biserial Correlation between predicted and observed values (COR, Elith et al. 2006) and the 
True Skill Statistic (TSS, Allouche et al. 2006). Suitable areas are classified using the Maximum 
Sensitivity plus Specificity threshold (MaxSSS), which is the most adapted index for SDMs using 
presence-only data (Liu et al. 2013). MaxSSS enables to split model projections into suitable 
(>MaxSSS value) and unsuitable areas (<MaxSSS value). The average number of regression 
trees produced by BRT to generate models (gbm R package, Elith et al. 2008) is calculated to 
evaluate model complexity. Scores of SDM series generated with a decreasing number of 
environmental descriptors are compared between each other using the Mann-Kendall non-
parametric trend test to assess the presence of a monotonic trend (Hipel and McLeod 1994). 
Differences between model performances (AUC, TSS, COR, percentage of correctly classified test 
data), model properties (number of trees) and outputs (percentage of predicted suitable area) are 
tested using a Wilcoxon-Mann-Whitney pairwise test. 
 
2.6. Final SDM outputs  
 
Six final SDMs are proposed for the six considered species for the [2005-2012] time period after 
selection of the optimal number of descriptors and after removing collinear descriptors. The 
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contribution of descriptors and their marginal effects (partial dependence plots) are provided and 
compared between each other. Environmental conditions predicted as suitable for species 
distribution are plotted through a principal component analysis (PCA) to display the predicted 
species occupied environmental space. PCA is compared between species having the same 
projection depth threshold, either 1,500 m or 4,000 m depth (Table 2.4).  
 
3. RESULTS  
 
3.1. Contribution of environmental descriptors  
 
All models generated for the six species and with the total set of 58 descriptors perform well with 
an average AUC score value of 0.853 (min. 0.827; max. 0.883) and an average of 67.2% of 
correctly predicted test data (59.5-75.1%). ‘Extreme events’ descriptors specifically computed for 
this study (Appendix 2.5) never contribute more than 1% to SDMs, some extreme chlorophyll-a 
layers excepted (Table 2.5). Overall, parameters that contribute the most to all SDMs are depth, 
currents, ice thickness and seafloor properties (Table 2.5, Fig. 2.12). Few contrasts are obtained in 
contributions between species models except for the contribution of seafloor current speed and 
POC concentrations that respectively vary from 1.95 to 10.84% and 0.49 to 7.05% between SDMs 
(Fig. 2.12). 
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Table 2.5. Average contribution of each environmental descriptor (based on 100 model replicates) generated 
for the six studied species using the total set of 58 descriptors. In dark blue, descriptors always contribute 
more than 1% to all models. In light blue, descriptors contributing more than 1% to some species models 
only (A: Acodontaster hodgsoni, B: Bathybiaster loripes, G: Glabraster antarctica, L: Labidiaster annulatus, 
O: Odontaster validus, P: Psilaster charcoti). In red, descriptors never contributing more than 1% to all 
species models. The description of the different environmental descriptors is provided in Appendix 2.4. 
 

Descriptor Contribution Descriptor Contribution Descriptor Contribution 

depth � ice_thickness_range � seafloor_sali_2005_2012_min � 

geomorphology �A,B,G,L chla_ampli_alltime_2005_2012 � seafloor_sali_2005_2012_sd � 

sediments �A,B,G,O,P chla_max_alltime_2005_2012 �A seafloor_temp_2005_2012_ampli � 

slope � chla_mean_alltime_2005_2012 �A,B,L,P seafloor_temp_2005_2012_max � 

roughness � chla_min_alltime_2005_2012 �A,B,G,L,P seafloor_temp_2005_2012_mean � 

mixed_layer_depth � chla_sd_alltime_2005_2012 �A,B,L,P seafloor_temp_2005_2012_min �B,G,L,P 

seasurface_current_speed � POC_2005_2012_ampli �A,B,G,O,P seafloor_temp_2005_2012_sd � 

seafloor_current_speed � POC_2005_2012_max �A,B,G,O,P extreme_event_max_chl_2005_2012_ampli � 

distance_antarctica � POC_2005_2012_mean �A,B,G,O,P extreme_event_max_chl_2005_2012_max � 

distance_canyon � POC_2005_2012_min � extreme_event_max_chl_2005_2012_mean � 

distance_max_ice_edge � POC_2005_2012_sd �A,B,G,O,P extreme_event_max_chl_2005_2012_min � 

distance_shelf �A,B,G,O,P seafloor_oxy_19552012_ampli � extreme_event_min_chl_2005_2012_ampli � 

ice_cover_max � seafloor_oxy_19552012_max � extreme_event_min_chl_2005_2012_max � 

ice_cover_mean � seafloor_oxy_19552012_mean � extreme_event_min_chl_2005_2012_mean �B,G,O,P 

ice_cover_min � seafloor_oxy_19552012_min � extreme_event_min_chl_2005_2012_min �P 

ice_cover_range � seafloor_oxy_19552012_sd � extreme_event_min_oxy_1955_2012_nb � 

ice_thickness_max �� seafloor_sali_2005_2012_ampli �� extreme_event_max_sali_2005_2012_nb ��

ice_thickness_mean �B,G,L,O,P�seafloor_sali_2005_2012_max �� extreme_event_min_sali_2005_2012_nb ��

ice_thickness_min �� seafloor_sali_2005_2012_mean �� extreme_event_max_temp_2005_2012_nb ��

 �  � extreme_event_min_temp_2005_2012_nb ��

 

192



CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2. 
 

 
 

Article. Guillaumot et al. (2020b). Selecting environmental descriptors is critical to modelling the distribution of Antarctic 
benthic species. Polar Biology 

 
 

 
Figure 2.12. Contribution of environmental descriptors to SDMs projected until (a) 1,500 m and (b) 4,000 m 
depth for the six species. Environmental descriptors contributing less than 1% to all models are not shown. 
Error bars correspond to standard deviation values of the contribution percentages (100 replicates of 
background sampling and spatial cross-validation splitting). 
 
3.2. Number of environmental descriptors 
 
Overall, models generated with different numbers of environmental descriptors do not show 
significant changes in model performance (Mann-Kendall trend tests, Table 2.6). Models 
generated with four environmental descriptors only show a significant decrease in AUC, COR, and 
TSS values, and in the percentage of correctly classified test data for all species but G. antarctica 
(Fig. 2.13, Appendix 2.9). Significant differences in model performance are model-specific, 
whatever the number of descriptors used (Fig. 2.13, Appendix 2.9). Differences in the number of 
trees used to generate models and in the size of suitable areas are never tested significant (Table 
2.6). 
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Figure 2.13 Influence of the number of environmental descriptors on SDM performance. Boxplot of 100 
model replicate scores. Changes in biserial correlation (COR) values for (a) Acodontaster hodgsoni, (b) 
Bathybiaster loripes, (c) Labidiaster annulatus, (d) Glabraster antarctica, (e) Odontaster validus and (f) 
Psilaster charcoti. Average values are indicated in blue. Red asterisks indicate significant changes in median 
values between the series and preceeding value (Wilcoxon rank paired test, p-value < 0.05). The left-side 
and right-side columns correspond to species for which models are respectively projected until 1,500 m and 
4,000 m depth.  
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Table 2.6. Mann-Kendall statistic scores (τ). Models are built with 58, 52, 46, 40, 34, 28, 22, 16, 10 and 4 
environmental descriptors respectively. 100 replicates are generated in each case. The Mann-Kendall trend 
test is realised on the median value of the 100 replicates. All tests are not significant. The direction of the 
monotonic trend is given by the sign of the τ values. AUC: Area Under the Curve, COR: biserial Pearson 
correlation, TSS: True Skill Statistic. The percentage of correctly classified test data is defined by the 
proportion of presence test data correctly predicted by the model. 
 
 Acodontaster 

hodgsoni 
Bathybiaster 
loripes 

Glabraster 
antarctica 

Labidiaster 
annulatus 

Odontaster 
validus 

Psilaster 
charcoti 

AUC -0.111 0.022 -0.644 -0.067 -0.378 -0.289 
COR -0.111 0.156 -0.556 -0.244 -0.289 -0.289 
TSS -0.244 -0.067 -0.600 -0.067 -0.289 -0.422 
Number of trees 0.205 0.675 0.303 -0.322 0.023 -0.210 
% correctly classified test data -0.067 0.511 0.156 0.511 -0.156 0.511 
Average number of suitable pixels 0.167 0.111 0.200 0.333 0.333 0.289 
 
 
3.3. Collinearity 
 
Most SDMs generated with and without collinear descriptors show similar performance statistics 
(AUC, TSS, COR, and percentage of correctly classified test data) and a comparable number of 
trees is used to build models (Table 2.7). However, for A. hodgsoni and G. antarctica, lower AUC, 
TSS and COR values are obtained for models generated without collinear descriptors. The 
percentage of correctly classified test data remains unchanged except in models generated without 
collinear descriptors for A. hodgsoni (-9.9%) and O. validus (-19.5%) in which it significantly 
decreases. For all species but G. antarctica, the proportion of predicted suitable area increases in 
models generated without collinear descriptors (Table 2.7).  
 
 
Table 2.7. Mann-Whitney Wilcoxon pairwise test (W) comparing statistics of models generated without 
collinear descriptors and models run with the total set of 58 environmental descriptors. Associated p-values 
are summarized by asterisks (no star p >0.05, * p < 0.05, ** p < 0.01 and *** p < 0.001). AUC: Area Under 
the Curve, COR: biserial Pearson correlation, TSS: True Skill Statistic. The percentage of correctly classified 
test data is defined by the proportion of presence test data correctly predicted by the model. 
 
 1,500m 4,000m 
 Acodontaster 

hodgsoni 
Labidiaster 
annulatus 

Odontaster 
validus 

Bathybiaster 
loripes 

Glabraster 
antarctica 

Psilaster 
charcoti 

AUC 6041* 4754 5738 5578 5931* 5280 
COR 5842* 4783 5867* 5596 5964* 5247 
TSS 6138** 4792 5748 5596 5840* 5425 
% correctly classified test data 6234** 5546 6247.5** 5590 5145 4512.5 
Number of trees 5359 4352 4811 5031.5 4641.5 4312 
% suitable area 3526*** 6272** 8695*** 9759*** 4796 8571*** 

 
3.4. Comparison between final SDMs 
 
Distance layers (i.e. distance to Antarctic coasts, to shelves, to the nearest canyons, to the 
maximum ice edge in winter, see Appendix 2.4) are used as descriptors in a first phase of the 
analysis to test for the effect of collinearity and the number of descriptors on model performance 
because they are commonly used in SDMs performed for Southern Ocean species (Mormède et 
al. 2014c). However, although relevant when interpolating species distribution patterns (Table 2.5), 
interpreting the contribution of such descriptors is not straightforward when it comes to describe 
species ecological niche. Therefore, these descriptors are excluded from analyses in the final set 
of SDMs. In addition, descriptors that never contribute more than 1% to SDMs (Table 2.5) as well 
as collinear descriptors (depending on species) are removed from the initial set of descriptors. 
Depending on the species under study, a set of 14 to 16 descriptors is used to calibrate final 
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models: 13 of these descriptors are common to the six studied species and for three species, 
additional descriptors on extreme events on chlorophyll-a concentration are used (Appendix 2.10). 
The performance of final models is good for all species, with AUC values ranging from 0.810 ± 
0.09 to 0.872 ± 0.07 (mean and standard deviation values), TSS values from 0.461 ± 0.121 to 
0.546 ± 0.08, COR values from 0.503 ± 0.136 to 0.656 ± 0.121 and correctly classified test data 
from 51.6 ± 23.7% to 80.7 ± 10.1% (Appendix 2.11). 
 
The PCA (Fig. 2.14) shows an important contribution of both the physical environment (slope, 
roughness) and food resources (chlorophyll-a concentrations) to SDMs projected down to 1,500 m 
depth (strong correlation with PC1) and a weaker and independent contribution of mean sea-ice 
cover and seafloor current speed (strong correlation with PC2, Fig. 2.14d). In contrast, food 
resources (chlorophyll-a and POC concentrations), sea ice cover and depth are the main 
contributors to SDMs projected down to 4,000 m depth (high correlation with PC1) with weaker 
contributions of the physical environment (slope and roughness) (correlation with PC2, Fig. 2.14h). 
Major differences are obtained between "shallow" and "deep" models (Fig. 2.12, Fig. 2.14) 
whatever the other species ecological traits (Table 2.4). 
 
Spatial projections of SDMs also show important contrasts in distribution patterns between 
“shallow” (1,500 m) and “deep” (4,000 m) models (Fig. 2.15). Shallow models present low 
probability values along the Antarctic coasts and higher probabilities in the sub-Antarctic Islands, in 
the Kerguelen or South Georgia archipelagos, except for O.validus. The three SDMs projected 
down to 4,000 m depth show common patterns, with high probabilities predicted close to the 
Antarctic coasts where most occurrences are recorded (Appendix 2.7). High probabilities are also 
predicted on the Kerguelen Plateau for B. loripes and G. antarctica, while low probabilities are 
predicted for P. charcoti in the sub-Antarctic Islands (Fig. 2.15). 
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Figure 2.14. PCA of environmental values (grey dots) from descriptors used in final species distribution 
models, and that are common between the six species (Appendix 2.10: depth, geomorphology, sediments, 
slope, roughness, mixed layer depth, seasurface and seafloor current speed, ice cover mean, chlorophyll-a 
min, max and mean concentrations for 2005-2012, POC minimum concentrations for 2005-2012), limited to 
1,500 m (a-c) and 4,000 m depth (e-g) respectively. Colour dots: species suitable area (probabilities > 
average maxSSS scores) for (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Labidiaster annulatus, 
(e) Glabraster antarctica, (f) Odontaster validus, (g) Psilaster charcoti. PCA plot of environmental descriptors 
(d,h) and appended tables with the associated correlations to PC1 and PC2. All correlation values are 
significant (p< 0.05). 
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Figure 2.15. SDMs generated based on the final selection of environmental descriptors for the six studied 
species (Appendix 2.10). Projection areas are limited to 1,500 m depth (left-hand column) or 4,000 m depth 
(right-hand column) for (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Labidiaster annulatus, (d) 
Glabraster antarctica, (e) Odontaster validus, (f) Psilaster charcoti. Blue colours correspond to depth 
gradient. The colour chart indicates species presence probability comprised between 0 and 1. Polar 
stereographic projection. 
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4. DISCUSSION 
 
4.1. Influence of the number of descriptors on modelling performance 
 
SDMs performed at the scale of the Southern Ocean are usually based on a limited mass of 
occurrence data, patchy datasets and using low-resolution environmental descriptors. Recent 
studies have questioned the relevance of using such SDMs considering the spatial and temporal 
heterogeneities of datasets and the importance of sampling biases (Fabri-Ruiz 2018, Guillaumot et 
al. 2018a - Appendix). In the present work, we focus on the selection of environmental descriptors 
as a critical step for model calibration (Bucklin et al. 2015, Petitpierre et al. 2017). Machine-
learning algorithms such as BRT were proved efficient to deal with non-informative descriptors 
(De’ath and Fabricius 2000, Elith et al. 2008) and to correct for the influence of collinearity between 
descriptors (Dormann et al. 2012b). The performance of BRT to model the distribution of Antarctic 
benthic species at large spatial scale is herein evaluated. 
Successive models were generated from four to 58 environmental descriptors. All models have 
similar accuracy (AUC, TSS, COR) and transferability (percentage of correctly classified test data) 
performances. Models generated with four environmental descriptors only (depending on each 
species) show significant differences in performance values and low capacities to describe and 
predict species distribution. SDMs generated for the species G. antarctica depart from this general 
result with no significant differences in modelling performances between models generated with 
four to 58 descriptors. This may be due to the large number of occurrence data available to 
describe the species distribution and conversely, the limited number of environmental descriptors 
contributing to the models (Appendix 2.7, Table 2.4). 
 
Many studies have stressed the risk of model overfitting when using too many descriptors 
(Anderson and Gonzalez 2011, Synes and Osborne 2011, Braunisch et al. 2013, Kramer-Schadt 
et al. 2013, Petitpierre et al. 2017) or the risk of underestimating the extent of suitable areas due to 
reduced transferability performances (Beaumont et al. 2005). In contrast, our results show that 
models generated with a different number of predictors are characterised by similar performance 
levels. This is congruent with results obtained by Bucklin et al. (2015) who highlighted that the 
random addition of descriptors has a minor influence on modelling performances when using 
machine-learning algorithms. The absence of significant changes in the number of trees used to 
build BRT models, using a different number of environmental descriptors show that BRT is not 
sensitive to model overfitting, and only selects the relevant information needed for model 
calibration, a property formulated as the stagewise selection by Elith et al. (2008). Non-informative 
environmental data that might complexify SDMs are automatically pruned when generating BRT 
trees, and the most relevant descriptors only are retained to model species distribution (De’ath and 
Fabricius 2000, Whittingham et al. 2006, Elith et al. 2008). However, selecting a reduced number 
of environmental descriptors allows the production of simpler models for which descriptor 
contributions can be easily interpreted (Bucklin et al. 2015). 
 
4.2. Influence of collinearity on modelling performance  
 
Removing collinear descriptors from datasets has remained an usual approach in species 
distribution modelling (Dormann et al. 2012b, Merow et al. 2013, Fabri-Ruiz 2018, Guillaumot et al. 
2018b). However, this strategy has recently been questioned when SDMs are not used for 
extrapolation (Braunisch et al. 2013, Bucklin et al. 2015, Li et al. 2016, Petitpierre et al. 2017). In 
the present study, results show that modelling performances (AUC, TSS, COR and percentage of 
correctly classified test data) of some SDMs significantly decrease when collinear descriptors are 
removed (i.e. A. hodgsoni, O. validus and G. antarctica). Removing collinear variables that 
significantly contribute to SDMs may induce model instability and reduce modelling performance. 
The observed decrease in AUC scores may be due to the reduction of model overfitting when 
removing collinear descriptors (Dhingra et al. 2016). 
Machine-learning algorithms are efficient modelling tools that take into account the multiple 
interactions among descriptors (Segurado and Araújo 2004, Araújo and Guisan 2006, Dormann et 
al. 2008, Elith et al. 2008, Braunisch et al. 2013) and can correct for collinearity between 

199



CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2. 
 

 
 

Article. Guillaumot et al. (2020b). Selecting environmental descriptors is critical to modelling the distribution of Antarctic 
benthic species. Polar Biology 

 
 

environmental descriptors if not too strong (Dormann et al. 2012b). In the present work, this is 
shown by the fact that performance of SDMs produced for the species B. loripes, L. annulatus and 
P. charcoti remains unaffected when collinear descriptors are removed from the analysis. 
 
However, using collinear descriptors in SDMs can make model outputs difficult to interpret when 
temporal and spatial relationships between descriptors are unknown (Dormann et al. 2012b), 
because collinearity induces complex relationships between environmental drivers and the 
underlying processes (Guisan and Thuiller 2005, Elith and Leathwick 2009, Merow et al. 2013). 
Several methods have been documented to correct for strong collinear effects. The sequential 
regression approach is one of them and aims at replacing correlated variables by a linear or non-
linear model (Leathwick et al. 2006, Dormann et al. 2008). A second method consists in using 
descriptor score values on PCA principal components rather than descriptor raw values 
themselves (Kühn 2007, Dormann et al. 2008). However, in this latter approach, SDMs and 
species ecological preferences are difficult to interpret. 
 

4.3. Selection of environmental descriptors  
 
‘Distance layers’ (Appendix 2.4) have been commonly used as descriptors in previous SDMs 
performed for Southern Ocean studies (Cheung et al. 2008, Murase et al. 2013, Mormède et al. 
2014c, Nachtsheim et al. 2017). In the present work, 'distance layers’ were used in the first set of 
SDMs and they all showed strong contributions to model outputs. 'Distance layers' may be strongly 
correlated to environmental gradients, and especially to latitudinal gradients, or may integrate the 
multiple effects of diverse environmental variations (Bradie and Leung 2017, Ferrari et al. 2018). 
Interpreting the contribution of such descriptors to SDMs can remain problematic and depends on 
research objectives, especially depending on whether ecological significance or statistical 
contributions only are sought. The statistical contribution of a descriptor to the model is the 
independent contribution of the descriptor deduced from what other descriptors already bring 
(Dormann et al. 2012b), it may not necessarily imply a direct ecological significance. 
Consequently, ‘distance layers’ were removed from the initial set of environmental descriptors 
along with collinear descriptors and descriptors that contributed the least to models (28 descriptors 
out of the 58 available, Table 2.5). This reduces the set to 14 or 16 descriptors only depending on 
the species under study (Appendix 2.10).  
 
4.4. Final model outputs 
 
In the present study, SDMs performed for A. hodgsoni, L. annulatus and O. validus showed lower 
performances (lower AUC, TSS, COR and correctly classified test data) compared to SDMs 
performed for B. loripes, G. antarctica and P. charcoti. For these last three species, a higher 
number of records were available and contributed to the high model performances as species 
niches were better described during model calibration (Qiao et al. 2015, van Proosdij et al. 2016, 
Guillaumot et al. 2018a - Appendix). Despite these differences in model performance, descriptor 
contributions and species predicted distributions are mostly similar between models (Fig. 2.12, 
2.14-15). This is an unexpected result as the six studied species were initially selected for their 
contrasting ecological niches and life traits, which should have determined distinct occupied 
environments and biogeographic patterns. This unexpected result stresses the limits of SDMs 
performed at broad spatial scale. The low resolution (in space and time) of environmental 
descriptors, the heterogeneous sampling and the relative low number of occurrence records 
available are cumulative limitations to model accuracy and species ecological requirements were 
not precisely captured by models. In contrast, models are all structured by large-scale and 
common environmental drivers relating to broad-scale latitudinal gradients that prevail between 
Antarctic and sub-Antarctic regions (Clarke and Johnston 2003, Linse et al. 2006, De Broyer et al. 
2014, Moreau et al. 2017). 
 

 

 

200



CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2. 
 

 
 

Article. Guillaumot et al. (2020b). Selecting environmental descriptors is critical to modelling the distribution of Antarctic 
benthic species. Polar Biology 

 
 

5. CONCLUSIONS AND RECOMMENDATIONS  
 
This work aimed at testing the influence of the number of selected environmental descriptors and 
their collinearity on model performance. Models were generated at the scale of the entire Southern 
Ocean using BRT. The BRT algorithm is a machine-learning approach that automatically selects 
descriptors that best characterise species niches (Elith et al. 2008). This matches our results that 
highlight that all models generated with different number of environmental descriptors showed 
similar performances. In contrast, in most SDMs generated without collinear descriptors, model 
overfitting tends to be minimized in comparison with models generated with the whole set of 58 
descriptors. In three species only, no difference in model performance was observed between 
models using either collinear or non-collinear descriptors.      
 
Final models were generated using a subset of 14 to 16 environmental descriptors that best 
explain species distributions. The selected descriptors are not collinear to limit interpretation errors, 
reduce model complexity and favour the ecological relevance of models (Austin and van Niel 2011, 
Braunisch et al. 2013, Bucklin et al. 2015, Petitpierre et al. 2017). However, final SDMs are not 
very contrasted between species despite significant differences in species ecological niches 
(McClintock et al. 2008a, Mah and Blake 2012, Lawrence 2013, Brandt et al. 2014, Danis et al. 
2014, Moles et al. 2015). The performed SDMs are more sensitive to the number of occurrence 
records available and to the extent of the projection area. This final result questions the ecological 
relevance of using modelling approaches at broad spatial scale when based a limited number of 
occurrence data, spatially aggregated and using descriptors with coarse spatial and temporal 
resolutions.  
 
These results match those obtained in previous studies and suggest that the validation of model 
predictions should use independent data, appropriate statistics and expert-based interpretations 
(Guisan et al. 2013, Fois et al. 2018, Fourcade et al. 2018, Leroy et al. 2018). Combining model 
outputs performed at narrow spatial scale and complementary data on biotic interactions (Wisz et 
al. 2013, Leach et al. 2016, Van der Putten et al. 2017), habitat features (Ferrari et al. 2018) and 
physiological traits (Kearney and Porter 2009, Fordham et al. 2013, Wittmann et al. 2016, Feng 
and Papes 2017, Mathewson et al. 2017, Pertierra et al. 2017) constitutes a good alternative. This 
can enhance the relevance of explanatory models and their use for ecological studies and 
conservation purposes. Downscaling SDM studies also has the advantage of improving model 
accuracy relating to particular, local to regional phenotypic or physiological traits of populations, 
which may differ at broader scale (Thatje 2012). Waiting for more data and ensuring the taxonomic 
quality of datasets, we recommend the use of SDMs for narrow-scale studies using scrutinized and 
comprehensive occurrence datasets, as much as possible, while selecting non-collinear and 
ecologically relevant descriptors to minimize model overfitting (El Gabbas and Dormann 2018, Fois 
et al. 2018).  
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APPENDIX 2.4 List of environmental descriptors and sources 
Table S2.4. List of environmental descriptors selected for species distribution models. Downloadable on the ‘blueant’ R package 

(https://github.com/AustralianAntarcticDivision/blueant). The procedure to download the data is explained in the “data_for_SDM_vignette” at 
https://github.com/AustralianAntarcticDivision/blueant/tree/data_Charlene/vignettes. Spatial extent of the data: latitude: 45°S_80°S / longitude: -180°_180°W. Spatial resolution: 0.1° x 0.1° 
(approximately 11km). Complementary information about “extreme events” layers can be found in Appendix 2.5.  

Environmental descriptor Unit Description Source 

Depth meters 
Bathymetry. Downloaded from GEBCO 2014 (0.0083°= 30sec arcmin resolution) and set at 0.1° 

resolution. Completed with the bathymetry layer manually corrected and provided in Fabri-Ruiz et 
al. (2017b) [1] 

This study. Derived from GEBCO [2] 

Geomorphology categorical Derived from the seafloor geomorphic feature dataset of O'Brien et al. (2009) [3]. 27 categories This study. Derived from Australian Antarctic Data Centre [4] 

Sediments categorical Sediment features (14 categories) Griffiths 2014 (unpublished) 

Slope degrees 
Derived from bathymetry with the terrain function of the ‘raster’ R package (Hijmans 2019) [6]. 

Computation according to Horn (1981) [5], i.e. option neighbor=8. The computation was done on 
the GEBCO bathymetry layer (0.0083° resolution) and the resolution was then changed to 0.1°.  

This study. Derived from GEBCO [2] 

Roughness unitless 
Derived from bathymetry with the terrain function of the ‘raster’ R package (Hijmans 2019) [6]. 
Roughness is the difference between the maximum and the minimum value of a cell and its 8 

surrounding cells. The computation was done on the GEBCO bathymetry layer (0.0083° resolution) 
and the resolution was then changed to 0.1°. 

This study. Derived from GEBCO [2] 

Mixed layer depth m Summer mixed layer depth climatology from ARGOS data. Re-gridded at 0.1° resolution from a 2-
degree grid using a nearest neighbor interpolation This study. Derived from Australian Antarctic Data Centre [4] 

Sea surface current speed m.sec-1 Current speed near the surface (2.5m depth); derived from the CAISOM model (Galton-Fenzi et al. 
2012 [7], based on ROMS) This study. Derived from Australian Antarctic Data Centre [4] 

Sea floor current speed m.sec-1 Current speed near the sea floor; derived from the CAISOM model (Galton-Fenzi et al. 2012 [7], 
based on ROMS) This study. Derived from Australian Antarctic Data Centre [4] 

Distance antarctica km Distance to the nearest part of Antarctic continent This study. Derived from Australian Antarctic Data Centre [4] 

Distance canyon km Distance to the axis of the nearest canyon This study. Derived from Australian Antarctic Data Centre [4] 

Distance max ice edge km Mean maximum winter sea ice extent derived from daily estimates of sea ice concentration. 
Distance of each grid point to this extent. This study. Derived from Australian Antarctic Data Centre [4] 

Distance shelf km Distance to the nearest area of sea floor of depth 500m or less This study. Derived from Australian Antarctic Data Centre [4] 

Ice cover max - Ice concentration fraction, maximum on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] 

Ice cover mean - Ice concentration fraction, mean on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] 

Ice cover min - Ice concentration fraction, minimum on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] 

Ice cover range - Ice concentration fraction, difference maximum-minimum on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] 

Ice thickness max m Ice thickness, maximum on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] 
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Ice thickness mean m Ice thickness, mean on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] 

Ice thickness min m Ice thickness, minimum on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] 

Ice thickness range m Ice thickness, difference maximum-minimum on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] 

chla_ampli_alltime_2005_2012 mg.m-3 
Chlorophyll-a concentrations obtained from MODIS satellite images. Amplitude of pixel values 

(difference between maximal and minimal values encountered by each pixel during all months of 
the period 2005-2012) 

MODIS Aqua [9] 

chla_max_alltime_2005_2012 mg.m-3 Chlorophyll-a concentrations obtained from MODIS satellite images. Maximal value encountered 
by each pixel during all months of the period 2005-2012 MODIS Aqua [9] 

chla_mean_alltime_2005_2012 mg.m-3 Chlorophyll-a concentrations obtained from MODIS satellite images. Mean value of each pixel 
during all months of the period 2005-2012 MODIS Aqua [9] 

chla_min_alltime_2005_2012 mg.m-3 Chlorophyll-a concentrations obtained from MODIS satellite images. Minimal value encountered by 
each pixel during all months of the period 2005-2012 MODIS Aqua [9] 

chla_sd_alltime_2005_2012 mg.m-3 Chlorophyll-a concentrations obtained from MODIS satellite images. Standard deviation value of 
each pixel during all months of the period 2005-2012 MODIS Aqua [9] 

POC_2005_2012_ampli gC.m-2.d-1 Particulate organic carbon; model Lutz et al. (2007) [10]. Amplitude value (difference maximal and 
minimal values, see previous layers) of all average seasonal layers of 2005-2012 

This study. Following Lutz et al. (2007) [10], data available on 
Australian Antarctic Data Centre [11] 

POC_2005_2012_max gC.m-2.d-1 Particulate organic carbon; model Lutz et al. (2007) [10]. Maximal value encountered on each pixel 
among all seasonal layers of 2005-2012 

This study. Following Lutz et al. (2007) [10], data available on 
Australian Antarctic Data Centre [11] 

POC_2005_2012_mean gC.m-2.d-1 Particulate organic carbon; model Lutz et al. (2007) [10]. Mean of all seasonal layers of 2005-2012 This study. Following Lutz et al. (2007) [10], data available on 
Australian Antarctic Data Centre [11] 

POC_2005_2012_min gC.m-2.d-1 Particulate organic carbon; model Lutz et al. (2007) [10]. Minimal value encountered on each pixel 
among all seasonal layers of 2005-2012 

This study. Following Lutz et al. (2007) [10], data available on 
Australian Antarctic Data Centre [11] 

POC_2005_2012_sd gC.m-2.d-1 Particulate organic carbon; model Lutz et al. (2007) [10]. Standard deviation all seasonal layers of 
2005-2012 

This study. Following Lutz et al. (2007) [10], data available on 
Australian Antarctic Data Centre [11] 

seafloor_oxy_19552012_ampli mL.L-1 Amplitude (difference max/min) value encountered for each pixel on all month layers of seafloor 
oxygen concentrations over 2005-2012, modified from WOCE 

Derived from World Ocean Circulation Experiment 2013 [12] 
oxygen concentration layers 

seafloor_oxy_19552012_max mL.L-1 Maximum value encountered for each pixel on all month layers of seafloor oxygen concentrations 
over 2005-2012, modified from WOCE 

Derived from World Ocean Circulation Experiment 2013 [12] 
oxygen concentration layers 

seafloor_oxy_19552012_mean mL.L-1 Mean seafloor oxygen concentrations over 2005-2012 (average of all monthly layers), modified 
from WOCE 

Derived from World Ocean Circulation Experiment 2013 [12]  
oxygen concentration layers 

seafloor_oxy_19552012_min mL.L-1 Minimum value encountered for each pixel on all month layers of seafloor oxygen concentration 
over 2005-2012, modified from WOCE 

Derived from World Ocean Circulation Experiment 2013 [12]   
oxygen concentration layers 

seafloor_oxy_19552012_sd mL.L-1 Standard deviation seafloor oxygen concentration over 2005-2012 (of all monthly layers), modified 
from WOCE 

Derived from World Ocean Circulation Experiment 2013 [12]   
oxygen concentration layers 

seafloor_sali_2005_2012_ampli PSS Amplitude (difference max/min) value encountered for each pixel on all month layers of seafloor 
salinity over 2005-2012, modified from WOCE 

Derived from World Ocean Circulation Experiment 2013 [12] 
salinity layers 

seafloor_sali_2005_2012_max PSS Maximum value encountered for each pixel on all month layers of seafloor salinity over 2005-2012, 
modified from WOCE 

Derived from World Ocean Circulation Experiment 2013 [12] 
salinity layers 

seafloor_sali_2005_2012_mean PSS Mean seafloor salinity over 2005-2012 (average of all monthly layers), modified from WOCE Derived from World Ocean Circulation Experiment 2013 [12] 
salinity layers 

seafloor_sali_2005_2012_min PSS Minimum value encountered for each pixel on all month layers of seafloor salinity over 2005-2012, 
modified from WOCE 

Derived from World Ocean Circulation Experiment 2013 [12] 
salinity layers 

seafloor_sali_2005_2012_sd PSS Standard deviation seafloor salinity over 2005-2012 (of all monthly layers), modified from WOCE Derived from World Ocean Circulation Experiment 2013 [12] 
salinity layers 
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2005 and 2012 Derived from chla_min_alltime_2005_2012 layer 

extreme_event_min_chl_2005_2012_mean integer Mean of the number of extreme events (minimal chlorophyll-a concentrations) recorded between 
2005 and 2012 Derived from chla_min_alltime_2005_2012 layer 

extreme_event_min_chl_2005_2012_min integer Minimum number of extreme events (minimal chlorophyll-a concentrations) recorded between 
2005 and 2012 Derived from chla_min_alltime_2005_2012 layer 

extreme_event_min_oxy_1955_2012_nb integer Number of extreme events (minimal seafloor oxygen concentration records) that happened 
between January and December of the year  
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APPENDIX 2.5. Extreme events layers 
 

In this study, raster layers are produced to depict extreme events occuring in a year for each pixel. This is 
done for chlorophyll-a and oxygen concentrations, seafloor temperatures and salinities. The aim is to 
describe the frequency of environmental changes occuring in the area and in a second step, model its 
contribution to explaining species occurrence distribution through the SDM analysis. 
In a annual series, an “extreme event” is defined as a value that is higher than the median value of the 
series. This analysis is pixel-specific.  
 
Using monthly raster layers, the code extracts the series of values (Yi,1, Yi,j,…Yi,12) from each pixel i, for the 
corresponding month (j=1,..,12). A vector of 12 values is obtained and used to calculate the median value of 
the annual series and the associated MAD value (Median Absolute Deviation), an equivalent to the standard 
deviation computed for the median (MAD= median (|Yi,j-median(Yi,j))) 
A maximal extreme event is counted when Yi,j+MADi,j and Yi,j-MADi,j values are higher than the median value 
of the series, and similarly, a minimal extreme event is counted when Yi,j+MADi,j and Yi,j-MADi,j values are 
lower than the median value of the series (Fig. S2.5.A). 
 
 

 
Figure S2.5.A. Theoretical plot showing the determination of extreme events. Crosses: Yi,j  values of the raster layer for a 
pixel i and a month j ; orange continuous line: median value of the series ; purple dotted line: Yi,j+MADi,j ; green dotted 
line: Yi,j-MADi,j. In this example, yellow crosses are maximal extreme events because Yi,j , Yi,j+MADi,j and Yi,j-MADi,j are 
higher than the median value of the series (orange line); pink crosses are minimal extreme events because Yi,j , 
Yi,j+MADi,j and Yi,j-MADi,j  are lower than the median value of the series (orange line); the black crosses are not 
considered as extreme events because Yi,j , Yi,j+MADi,j or Yi,j-MADi,j are cutting the MAD line.  
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Figure S2.5.B. Example an extreme event raster layer. Average number of maximum chlorophyll-a concentrations 
extreme events per pixel compiled between 2005 and 2012.  
 
 
 

APPENDIX 2.6. Cumulative occurrence collection curved through time 
 

 
Figure S2.6.  Cumulative occurrence collective curves through time and per species. 
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APPENDIX 2.7. Available presence-only data of the modelled species 
 

 
Figure S2.7. Presence-only records available for the six studied species (a) Acodontaster hodgsoni (n=297), (b) 
Bathybiaster loripes (n=585), (c) Labidiaster annulatus (n=373), (d) Glabraster antarctica (n=844), (e) Odontaster 
validus (n=309), (f) Psilaster charcoti (n=350). Bathymetry is represented by blue shaded background. The provided 
number of presence data available is given after removal of duplicate records on a same grid-cell pixel.  
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APPENDIX 2.8. Calibration of Boosted Regression Trees and parameter settings 
 
BRT models are generated using the cross-validation procedure developed by Elith et al. (2008) that is, 
using the functions provided in their supplementary material and in the gbm R package (Ridgeway et al. 
2006). We set the maximum number of trees to 10,000 and models are calibrated with the combination of 
parameters that minimizes the predictive deviance while producing the lowest number of trees (Fig. S2.8). 
Models are calibrated with all presence records available, using 1,000 background data randomly sampled in 
the area (restrained in depth for each species specifically) and according to the Kernel Density Estimate 
weighting scheme for the total Southern Ocean benthic samples (Guillaumot et al. 2019 - Chapter 2) and all 
the 58 environmental descriptors available. The following parameters are finally selected for each species: 
Acodontaster hodgsoni (tc=4, lr=0.007, bf=0.75), Bathybiaster loripes (tc=4, lr=0.012, bf=0.7), Glabraster 
antarctica (tc=4, lr=0.013, bf=0.75), Labidiaster annulatus (tc=4, lr=0.012, bf=0.75), Odontaster validus (tc=4, 
lr=0.007, bf=0.7), Psilaster charcoti (tc=4, lr=0.007, bf=0.7).  
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Figure S2.8. Comparison of model predictive deviance according to the number of trees used to build the models, for 
each species and for different parameter settings (tree complexity, tc; learning rate, lr; bag fraction, bf). Parameters for 
which the lowest predictive deviance is reached with the lowest number of trees are selected to generate the model (Elith 
et al. 2008). Species: (A) Acodontaster hodgsoni, (B) Bathybiaster loripes, (C) Glabraster antarctica, (D) Labidiaster 
loripes, (E) Odontaster validus, (F) Psilaster charcoti. 
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APPENDIX 2.9. Control of the number of environmental descriptors over modelling 
performances 

  
Figure S2.9A. Influence of the number of environmental predictors on SDM performance. Boxplot of 100 model 
replicates scores. Change in Area Under the Curve (AUC) values for (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, 
(c) Labidiaster annulatus, (d) Glabraster antarctica, (e) Odontaster validus, (f) Psilaster charcoti. Average values are 
indicated in blue. Red stars indicate significant changes obtained in median values between two successive series 
(Wilcoxon Mann-Whitney rank paired test, p < 0.05). Left-side and right-side columns correspond to species for which 
models are respectively projected down to 1,500 m and 4,000 m depth.  
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Figure S2.9.B Influence of the number of environmental predictors on SDM performance. Boxplot of 100 model 
replicates scores. Change in True Skill Statistics (TSS) values for (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) 
Labidiaster annulatus, (d) Glabraster antarctica, (e) Odontaster validus, (f) Psilaster charcoti. Average values are 
indicated in blue. Red stars indicate significant changes in median values between two successive series (Wilcoxon 
Mann-Whitney rank paired test, p < 0.05). Left-side and right-side columns correspond to species for which models are 
respectively projected down to 1,500 m and 4,000 m depth.  
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Figure S2.9.C. Influence of the number of environmental predictors on SDM performance. Boxplot of 100 model 
replicates scores. Change in the percentage of correctly classified test data (cross-validation procedure) for (a) 
Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Labidiaster annulatus, (d) Glabraster antarctica, (e) Odontaster 
validus, (f) Psilaster charcoti. Average values are indicated in blue. Red stars indicate significant changes in median 
values between two successive series (Wilcoxon Mann-Whitney rank paired test, p < 0.05). Left-side and right-side 
columns correspond to species for which models are respectively projected down to 1,500 m and 4,000 m depth.  
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APPENDIX 2.10. List of environmental descriptors selected to generate final models 
 
Table S2.10. List of  environmental descriptors selescted to generate final models, after removing distance descriptors, 
descriptors that always contribute less than 1% to species SDM (Table 2.5) and collinear descriptors (species-specific).  
 

 Acodontaster 
hodgsoni 

Bathybiaster 
loripes 

Glabraster 
antarctica 

Labidiaster 
annulatus 

Odontaster 
validus 

Psilaster 
charcoti 

1 depth depth depth depth depth depth 
2 geomorphology geomorphology geomorphology geomorphology geomorphology geomorphology 
3 sediments sediments sediments sediments sediments sediments 
4 slope slope slope slope slope slope 
5 roughness roughness roughness roughness roughness roughness 
6 mixed layer depth mixed layer depth mixed layer depth mixed layer depth mixed layer depth mixed layer depth 
7 seasurface current 

speed 
seasurface current 
speed 

seasurface current 
speed 

seasurface current 
speed 

seasurface current 
speed 

seasurface 
current speed 

8 seafloor current 
speed  

seafloor current 
speed  

seafloor current 
speed  

seafloor current 
speed  

seafloor current 
speed  

seafloor current 
speed  

9 ice cover mean ice cover mean ice cover mean ice cover mean ice cover mean ice cover mean 
10 chlorophyll a max 

concentration 
[2005-2012] 

chlorophyll a max 
concentration 
[2005-2012] 

chlorophyll a max 
concentration 
[2005-2012] 

chlorophyll a max 
concentration [2005-
2012] 

chlorophyll a max 
concentration 
[2005-2012] 

chlorophyll a max 
concentration 
[2005-2012] 

11 chlorophyll a mean 
concentration 
[2005-2012] 

chlorophyll a mean 
concentration 
[2005-2012] 

chlorophyll a mean 
concentration 
[2005-2012] 

chlorophyll a mean 
concentration [2005-
2012] 

chlorophyll a mean 
concentration 
[2005-2012] 

chlorophyll a 
mean 
concentration 
[2005-2012] 

12 chlorophyll a min 
concentration 
[2005-2012] 

chlorophyll a min 
concentration 
[2005-2012] 

chlorophyll a min 
concentration 
[2005-2012] 

chlorophyll a min 
concentration [2005-
2012] 

chlorophyll a min 
concentration 
[2005-2012] 

chlorophyll a min 
concentration 
[2005-2012] 

13 POC minimum 
[2005-2012] 

POC minimum 
[2005-2012] 

POC minimum 
[2005-2012] 

POC minimum [2005-
2012] 

POC minimum 
[2005-2012] 

POC minimum 
[2005-2012] 

14 POC amplitude 
[2005-2012] 

POC standard 
deviation [2005-
2012] 

POC standard 
deviation [2005-
2012] 

POC standard 
deviation [2005-2012] 

POC standard 
deviation [2005-
2012] 

POC standard 
deviation [2005-
2012] 

15   Chlorophyll  a 
minimum extreme 
events, minimun 
values 

Chlorophyll  a 
minimum extreme 
events, average 
values 

Chlorophyll  a 
minimum extreme 
events, minimun 
values 

 

16    Chlorophyll  a 
minimum extreme 
events, minimun 
values 
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APPENDIX 2.11. Modelling performance scores of final models 
 
Table S2.11. Statistics (mean and standard deviation) measured for each species of models generated with the final set 
of environmental descriptors (Table S2.10). AUC: Area Under the Curve, COR: biserial Pearson correlation, TSS: True 
Skill Statistics. The percentage of correctly classified test data is defined by the proportion of test data that falls into 
pixels predicted as suitable (probability > maxSSS score).  
 
 Acodontaster 

hodgsoni 
Bathybiaster 

loripes 
Glabraster 
antarctica 

Labidiaster 
annulatus 

Odontaster 
validus 

Psilaster 
charcoti 

AUC 0.810±0.09 0.871±0.07 0.872±0.07 0.837±0.117 0.830±0.09 0.868±0.05 
TSS 0.461±0.121 0.546±0.08 0.545±0.09 0.492±0.146 0.489±0.120 0.543±0.06 
COR 0.503±0.136 0.632±0.137 0.656±0.121 0.566±0.240 0.561±0.168 0.545±0.100 
Correctly classified 
test data (%) 

55.4±11.3 76.0±10.8 80.7±10.1 59.0±17.5 51.6±23.7 78.3±9.3 
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APPENDIX 2.12. Marginal effect of environmental descriptors 
 

Partial dependence plots indicate the effect of an environmental descriptor on the model response after 
accounting for the average effects of all other descriptors in the model (“marginal effect”, Elith et al. 2008). 
Results show weak contrasts between species and environmental descriptors.  
Species preferences for slope, roughness, mixed layer depth, sea surface current speed are a consequence 
of the environmental preponderance of such conditions in the Southern Ocean environments. However, for 
other descriptors such as depth, seafloor current speed, average ice coverage, chlorophyll-a and POC 
concentrations species predicted preferences differ from what dominates in the environment (Fig. S2.12). 
This may be biased by sampling effort as it is exemplified by species distribution probabilities predicted in 
shallow areas (Fig. S2.12a) or areas with intermediate average ice cover values (Fig. S2.12g) or areas with 
intermediate. POC minimal concentrations preferences are contrasting between species. A. hodgsoni, L. 
annulatus and O. validus have preferences for high POC concentrations in comparison with P. charcoti and 
G. antarctica that prefer areas with low concentrations (Fig. S2.12k). 
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Figure S2.12. Partial dependence plots. Scaled density distributions of the marginal effect of environmental descriptors 
used to generate final models (Table S2.10) common to all species. Environmental values recorded in the entire 
Southern Ocean (<45°S, maximal m depth) are indicated in grey.  
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               Abstract 
Species distribution modelling (SDM) has been increasingly applied to Southern Ocean case 
studies over the past decades, to map the distribution of species and highlight environmental 
settings driving species distribution. Predictive models have been commonly used for 
conservation purposes and supporting the delineation of marine protected areas, but model 
predictions are rarely associated with extrapolation uncertainty maps.  
In this study, we used the Multivariate Environmental Similarity Surface (MESS) index to 
quantify model uncertainty associated to extrapolation. Considering the reference dataset of 
environmental conditions for which species presence-only records are modelled, extrapolation 
corresponds to the part of the projection area for which one environmental value at least falls 
outside of the reference dataset.  
Six abundant and common sea star species of marine benthic communities of the Southern 
Ocean were used as case studies. Results show that up to 78% of the projection area is 
extrapolation, i.e. beyond conditions used for model calibration. Restricting the projection space 
by the known species ecological requirements (e.g. maximal depth, upper temperature 
tolerance) and increasing the size of presence datasets were proved efficient to reduce the 
proportion of extrapolation areas. We estimate that multiplying sampling effort by 2 or 3-fold 
should help reduce the proportion of extrapolation areas down to 10% in the six studied 
species.  
Considering the unexpectedly high levels of extrapolation uncertainty measured in SDM 
predictions, we strongly recommend that studies report information related to the level of 
extrapolation. Waiting for improved datasets, adapting modelling methods and providing such 
uncertainy information in distribution modelling studies are a necessity to accurately interpret 
model outputs and their reliability.  
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Multivariate Environmental Similarity Surface (MESS), marine species, Antarctic, modelling 
relevance, conservation issues 
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1. INTRODUCTION  
 
Among the broad array of analytical tools developed for marine ecology studies over the last two 
decades, Species Distribution Modelling (SDM) has been increasingly used (Peterson 2001, Elith 
et al. 2006, Austin 2007, Gobeyn et al. 2019) and applied to Southern Ocean pelagic (Pinkerton et 
al. 2010, Freer et al. 2019), benthic organisms (Loots et al. 2007, Pierrat et al. 2012, Basher and 
Costello 2016, Xavier et al. 2015, Gallego et al. 2017, Guillaumot et al. 2018a - Appendix, 2018b, 
Fabri-Ruiz et al. 2019, Jerosch et al. 2019) and even marine mammals (Nachtsheim et al. 2017). 
SDM represents a complementary approach to individual-based modelling and eco-physiological 
experiments,  quickly and synthetically identifying environmental correlates of species distribution 
(Brotons et al. 2012, Feng and Papes 2017, Feng et al. 2020). SDM is also used to define species 
distribution spatial range (Nori et al. 2011, Walsh and Hudiburg 2018) and can be used as decision 
criteria for conservation purposes (Guisan et al. 2013, Marshall et al. 2014). For instance, it is 
currently used in proposals developed by national committees of the CCAMLR (Commission for 
the Conservation of Antarctic Marine Living Resources) to support the definition and delineation of 
marine protected areas (Ballard et al. 2012, Arthur et al. 2018).  
 
Applying SDM to Southern Ocean case studies is particularly challenging due to major constraints 
and biases that may reduce modelling performance. As for many oceanographic studies, access to 
environmental data with high temporal and spatial resolutions is difficult (Davies et al. 2008, 
Robinson et al. 2011). Antarctic coastal areas, in particular, are rarely accessed and documented 
due to logistical constraints, access being for example impossible during the austral winter due to 
sea ice cover (De Broyer et al. 2014). The availability of species absence records is also a limiting 
factor to modelling performances and model calibrations (Brotons et al. 2004, Wisz and Guisan 
2009). Models are usually based on a limited number of presence-only records and limited number 
of sampling sites, which are both spatially aggregated in the vicinity of scientific stations, where 
access is frequent and datasets from different seasons, have been compiled over decades and 
even beyond (De Broyer et al. 2014, Guillaumot et al. 2018a - Appendix, Fabri-Ruiz et al. 2019, 
Guillaumot et al. 2019 - Chapter 2). 
 
When generating a SDM, the model is fit to data with a given range of value for each 
environmental descriptor (i.e. the calibration range). When transferring model predictions, a portion 
of the environment may cover additionnal conditions that are outside this calibration range: these 
are non-analog conditions and the model extrapolates (Randin et al. 2006, Williams and Jackson 
2007, Williams et al. 2007, Fitzpatrick and Hargrove 2009, Owens et al. 2013, Yates et al. 2018). 
Considering the limited number of species presence-only records occupied by each marine benthic 
species, and the poor quality and precision of environmental descriptors available for modelling 
Southern Ocean species distributions (Guillaumot et al. 2018a - Appendix, Fabri-Ruiz et al. 2019), 
a large proportion of cells might be expected to be extrapolations beyond the calibration range of 
the model. 
 
The Multivariate Environmental Similarity Surface (MESS) approach analyses spatial extrapolation 
by extracting environmental values covered by presence-only records and estimates areas where 
environmental conditions are outside the range of conditions contained in the calibration area (Elith 
et al. 2010). The method considers that extrapolation occurs when at least one environmental 
descriptor value is outside the range of the environment envelop for model calibration (more details 
given in Appendix 2.16).  
The MESS approach was initially used to determine the environmental barriers to the invasion of 
the cane toad in Australia, when facing new environments and under future conditions (Elith et al. 
2010). Implemented in MaxEnt (Elith et al. 2011), MESS was subsequently used by several 
authors for defining the climatic limits to the colonisation of new environments by non-native 
species, such as the American bullfrog in Argentina (Nori et al. 2011), for studying contrasts 
between native and potential ecological niches like in the study of the spotted knapweed 
(Centaurea stoebe) (Broennimann et al. 2014), or for defining the limits to model transferability and 
predicting the distribution of trees under future environmental conditions (Walsh and Hudiburg 
2018). 
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More recently, the MESS approach was used to define model uncertainties related to extrapolation 
(Escobar et al. 2015, Li et al. 2015, Cardador et al. 2016, Luizza et al. 2016, Iannella et al. 2017, 
Milanesi et al. 2017, Silva et al. 2019) and extrapolation areas where environmental conditions are 
non-analog to conditions of model calibration (Fitzpatrick and Hargrove 2009, Anderson 2013). 
Associating uncertainty information to model predictions has been acknowledged as a necessity 
for reliable interpretations of model predictions (Grimm and Berger 2016, Yates et al. 2018). It is 
also a requirement for specifying the level of risk associated with predictions and evaluating 
whether uncertainty can be mitigated to improve model outcomes (Guisan et al. 2013). 
 
This study addresses the importance of extrapolation and associated uncertainties in SDMs 
generated at broad spatial scale for Southern Ocean species: an analysis that is seldom performed 
although important to characterise model reliability. Using the case study of six abundant and 
common sea star species in marine benthic communities, objectives of this work are to evaluate 
the importance of extrapolation proportions in wide projection areas, and to provide some 
methodological clues to mitigate the effects of extrapolation and improve model accuracy.  
 
 
2. MATERIAL AND METHODS 
 
2.1.Studied species and environmental descriptors 
 
The distribution of six sea star species (Asteroidea : Echinodermata) was studied (Table 2.8). The 
six species, Acodontaster hodgsoni (Bell, 1908), Bathybiaster loripes (Sladen, 1889), Glabraster 
antarctica (Smith, 1876), Labidiaster annulatus Sladen, 1889, Odontaster validus Koehler, 1906 
and Psilaster charcoti (Koehler, 1906) are abundant and common in benthic communities in the 
Southern Ocean. The biology, ecology and distribution of these species have been extensively 
studied and are relatively well documented (McClintock et al. 2008a, Mah and Blake 2012, 
Lawrence 2013). Presence-only records were compiled from a recently updated database, 
thoroughly scrutinised with the World Register of Marine Species (WoRMS Editorial Board 2016), 
to delete potential discrepancies, update taxonomy and correct for georeferencing errors (Moreau 
et al. 2018). 
Models were generated for the different species using 298-851 presence-only records, and 
projected at different depth ranges (Table 2.8). The distributions of these presence-only records 
are contrasting between species (Appendix 2.13), with A. hodgsoni, B. loripes and G. antarctica 
having an Antarctic and sub-Antarctic distribution, with an important number of data available for B. 
loripes and G. antarctica but less data for A. hodgsoni (respectively 591, 851 and 298 presence-
only records). Labidiaster annulatus has a distribution mainly gathered in the sub-Antarctic region 
with few data available (375 presence-only records). Odontaster validus and P. charcoti are mainly 
present on the coasts of the Antarctic shelf.  
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Table 2.8. Sea star species investigated in the present study. The number of presence-only records 
available was summed up after removal of duplicates from each grid cell pixel. Image sources: Brueggeman 
1998, BIOMAR ULB database (P. Pernet), proteker.net, B121 expedition (Q. Jossart).  
 

 Acodontaster 
hodgsoni 

(Bell, 1908) 

Bathybiaster 
loripes 

(Sladen, 1889) 

Glabraster 
antarctica 

(Smith, 1876) 

Labidiaster 
annulatus 

Sladen, 1889 

Odontaster 
validus 

Koehler, 1906 

Psilaster charcoti 
(Koehler, 1906) 

 

      

Presence-only 
records number  

298 591 851 375 337 353 

Model maximum 
depth 

1500 m 4000 m 4000 m 1500 m 1500 m 4000 m 

 
 
Environmental descriptors were selected from the dataset provided at 
https://data.aad.gov.au/metadata/records/environmental_layers. These are oceanography raster 
layers that mostly describe the physical and geochemical environment south of 45°S with a 0.1° 
grid-cell resolution (approximately 11km wide in latitude). Among the 58 environmental descriptors 
provided, only those that fulfilled the analysis performed by Guillaumot et al. (2020b - Chapter 2) 
were selected: ‘distance’ layers and ‘extreme’ layers were not selected because the interpretation 
of their respective contributions to niche models is complex or weak and collinear descriptors were 
also discarded for a Variance Inflation Factor (VIF) > 10 (Naimi et al. 2014). A set of 14-16 
species-specific layers that characterise temperature, salinity, food availability and habitat 
characteristics were therefore used for model calibration (Table S2.14). 
 
2.2. Model calibration 
 
Species Distribution Models (SDMs) were generated using the Boosted Regression Trees (BRT), a 
machine-learning approach that was already calibrated for Southern Ocean case studies 
(Guillaumot et al. 2018b, Guillaumot et al. 2019 - Chapter 2) and was proved efficient to provide 
accurate models with good transferability performance, that is good ability to project model in 
space and time (Elith et al. 2008, Reiss et al. 2011, Heikkinen et al. 2012, Guillaumot et al. 2019 - 
Chapter 2). In order to minimalize the effect of presence-only records aggregation on model 
predictions, background data were randomly sampled in the environment following the probabilities 
defined by a Kernel Density Estimation (KDE) (see Phillips et al. 2009 for general principles, 
Guillaumot et al. 2018a, 2018b and Fabri-Ruiz et al. 2019 for applications). The number of 
background records was selected equal to the number of presence-only records (Barbet-Massin et 
al. 2012). The KDE was established based on the aggregation of benthos sampling effort provided 
in the Biogeographic Atlas of the Southern Ocean (De Broyer et al. 2014, map available in 
supplementary material of Guillaumot et al. 2019 - Chapter 2). One hundred SDMs were generated 
and averaged for each species, with background data randomly sampled following the KDE for 
each replicate.  
SDMs were calibrated and reliability tested using a spatial cross-validation procedure. For each 
species, several procedures were compared following Guillaumot et al. (2019 - Chapter 2). The 
studied area was randomly subdivided into 2 to 6 areas of similar surfaces (longitude-split spatial 
folds), with presence and background data selected from one to three areas for model training and 
from the remaining areas for model testing. The “6-fold CLOCK” cross-validation approach was 
selected for B. loripes, G. antarctica, L. annulatus and O. validus and the “2-fold CLOCK” 
procedure was selected for A. hodgsoni and P. charcoti, according to the best percentage of test 
data correctly classified (Appendix 2.15).  
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The Maximum sensitivity plus specificity threshold (MaxSSS), considered the most appropriate 
threshold for presence-only SDM (Liu et al. 2013) was used to binarize models into suitable 
(>MaxSSS value) and unsuitable areas (<MaxSSS value). This threshold was used to measure the 
proportion of test data correctly classified. Modelling performances were also assessed using the 
three following metrics: Area Under the Receiver Operating Curve (AUC, Fielding and Bell 1997), 
the Point Biserial Correlation between predicted and observed values (COR, Elith et al. 2006) and 
the True Skill Statistics (TSS, Allouche et al. 2006). 
 
Two analyses were performed: in Analysis #0 (‘no-depth limited’), SDMs were projected on the 
entire Southern Ocean surface (south of 45°S) and in Analysis #1 (‘depth limited’), SDM 
projections and background samplings were restricted to areas limited by a maximum depth 
threshold defined for each species based on the available species presence-only records (Table 
2.8). 
 
2.3. MESS calculation  
 
The MESS was measured using the dismo R package (Hijmans et al. 2017) and following the 
guidelines provided in Elith et al. (2010). Pixels for which at least one environmental descriptor has 
a value that is outside the range of environmental values defined by presence-only records 
(calibration range) were considered to be extrapolation (i.e when MESS gets negative values, 
Appendix 2.16). The proportion of extrapolation areas (i.e. the proportion of cells defined as 
extrapolations over the total projection area) was calculated and compared between species. On 
SDM projection maps, extrapolated pixels were displayed in black. 
Environmental parameters responsible for extrapolation were estimated by modifying the code 
provided in Elith et al. (2010). Detailed R scripts are available at  
https://github.com/charleneguillaumot/THESIS. Methodological details are provided in Appendix 
2.16. 
 
2.4. Influence of the number and distribution of presence-only records on extrapolation 

The proportion of extrapolation areas may vary with presence-only sampling effort. In order to 
study the influence of the number and distribution of these presence-only records on the proportion 
of extrapolation areas, two analyses were performed. First, several SDMs were generated with 
different numbers of presence-only records, following the chronological addition of new presence-
only records through time, from 1980 to 2016. Second, SDMs generated with 10-100% (10% 
increments, so 10 subsets) of the entire presence-only dataset were compared. In this analysis, in 
contrast to the previous one, presence-only records are randomly sampled among the datasets 
available.  
In these two analyses, SDMs were projected on the environmental space limited by the maximum 
depth defined for each species (Table 2.8), 100 model replicates were generated and averaged in 
each case and spatial autocorrelation (SAC) was estimated to assess the influence of presence-
only records aggregation on modelling performances. The significance of SAC was tested using 
the Moran’s I index computed on model residuals (Luoto et al. 2005, Crase et al. 2012). 
 
The relationship between the number of presence-only records used in SDM and the relative 
proportion of extrapolation areas was characterised using linear regressions. This allowed, for 
each model, estimation of the minimum number of presence-only records required to obtain a 
‘reasonable’ proportion of extrapolation area arbitrarily set to a 10% threshold. 
 
3. RESULTS  
 
3.1. Extrapolation and the extent of projection areas   
 
All generated SDMs are accurate and performant, with high AUC (AUC>0.91), TSS (TSS>0.559) 
and COR (COR>0.68) values, low standard deviations and good percentages of correctly 
classified presence-only test data (77-90 %) (Table 2.9). Descriptors that contribute the most to 
SDMs are depth (22-34%), minimum POC (6-21%), POC standard deviation (8-20%), mean ice 
cover depth (7-17%) and mixed layer depth (3-10%). Contrasts between species are in the 
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respective percentage of contribution of these descriptors. Descriptors that drive the most species 
distribution are similar between species (Appendix 2.17). 
 
Models projected on the entire Southern Ocean (Analysis #0, ‘no-depth limited’) extrapolate on an 
area covering between 15-78% of the entire projection area, and 19-45% of the area initially 
predicted as suitable to the species distribution (Table 2.9, Fig. 2.16). Extrapolation areas cover 
more than 50% of the projection area for A. hodgsoni (78.6%), P. charcoti (67.8%), L. annulatus 
(64.8%) and O. validus (51.9%) and more than 30% of suitable areas (Table 2.9). For these four 
species, depth is responsible for 25-68% of extrapolation (Appendix 2.17). Geomorphology, mean 
ice cover and POC standard deviation are layers also contributing to 2-7% for extrapolation 
(Appendix 2.17). These descriptors that highly contribute to MESS also contribute to the model, 
and there are no descriptors for which the contribution to MESS is important whereas the 
contribution to the model is not substantial (Appendix 2.17). 
 
In models projected on areas restrained in depth (Analysis #1, ‘depth limited’), the percentage of 
extrapolation area sharply decreases from 59 to 18% according to the species (Table 2.9). 
However, model performances also decrease, with AUC values going down to 0.885, TSS values 
to 0.419 and COR values to 0.475. The percentage of correctly classified test data is much lower 
and more variable for the shallowest species A. hogdsoni (from 90 ± 6.26% to 45.5 ± 8.1%), L. 
annulatus (77.7 ± 15.2 % to 57.98 ± 20%) and O. validus (from 85.4 ± 9.6% to 57.68 ± 21%). For 
all species, predicted suitable areas increase two-fold.  
Overall, descriptor contributions to the model remain unchanged between the two analyses, except 
for depth contribution that decreases to around 10% on average for all the species. In contrast, in 
Analysis #1, depth contribution to the MESS is very low (0.64-5.8%), except for P. charcoti 
(16.3%). Mean ice cover is the layer that contributes the most to extrapolation, extrapolation areas 
mainly corresponding to Weddell and Amundsen seas.   
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Table 2.9. Modelling performances for each species. Average and standard deviation values of the 100 
model replicates. Pres. NB: number of presences-only records available for modelling (duplicates excluded);  
AUC: Area Under the Curve; TSS: True Skill Statistics; COR: Biserial Correlation. 
 

Analysis #0, no-depth limited 

Species Pres
. NB 

AUC 
 

TSS COR Correctly classified 
test data  (%) 

Suitable area 
(% total area) 

Extrapolation 
area  
(% total area) 

Extrap. area  
(% suitable 
area) 

Acodontaster hodgsoni 298 0.925 ± 0.02 0.579 ± 0.04 0.735 ± 0.06 90 ± 6.26 8.86 78.6 35.3 ± 4.1 

Bathybiaster loripes 591 0.910 ± 0.02 0.559 ± 0.07 0.68 ± 0.09 80.6 ± 10.9 8.55 29.1 21.9 ± 4.4 

Glabraster antarctica 851 0.929 ± 0.01 0.58 ± 0.05 0.719 ± 0.07 85.45 ± 6.34 7.95 15.73 19.9 ± 3.9 

Labidiaster annulatus  375 0.95 ± 0.03 0.598 ± 0.07 0.730 ± 0.14 77.7 ± 15.2 3.33 64.83 42.1 ± 10.5 

Odontaster validus  337 0.953 ± 0.01 0.605 ± 0.05 0.746 ± 0.09 85.4 ± 9.6 6.89 51.9 45.2 ± 5.65 

Psilaster charcoti 353 0.911 ± 0.02 0.58 ± 0.03 0.723 ± 0.04 87.7 ± 4.8 8.90 67.9 32.5 ± 4.71 

 
Analysis #1, depth limited 

Species Pres
. NB 

AUC 
 

TSS COR Correctly classified 
test data  (%) 

Suitable area 
(% total area) 

Extrapolation 
area  
(% total area) 

Extrap. area  
(% suitable 

area) 

Acodontaster hodgsoni 298 0.823 ± 0.05 0.419 ± 0.1 0.475 ± 0.14 45.5 ± 18.1 17.49 40.6 27.5 ± 8.5 

Bathybiaster loripes 591 0.887 ± 0.03 0.513 ± 0.08 0.607 ± 0.12 78.4 ± 11 15.75 18.2 20.8 ± 4.8 

Glabraster antarctica 851 0.915 ± 0.01 0.537 ± 0.08 0.654 ± 0.1 81.8 ± 7.7 14.08 23.9 18.64 ± 3.5 

Labidiaster annulatus  375 0.918 ± 0.03 0.482 ± 0.16 0.563 ± 0.25 57.98 ± 20 8.88 59.5 38.7 ± 14.6 

Odontaster validus  337 0.908 ± 0.03 0.504 ± 0.13 0.586 ± 0.17 57.68 ± 21 11.64 51.5 38.3 ± 6.97 

Psilaster charcoti 353 0.885 ± 0.02 0.546 ± 0.04 0.665 ± 0.06 83 ± 6.6 15.40 35.78 33.2 ± 5.1 
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Figure 2.16. Maps of extrapolation areas covering SDM predictions, generated with all presence-only 
records available for the studied species. Left panel: projection area not limited in depth (Analysis #0), right 
panel: projection area limited to -1,500 m and -4,000 m depth (Analysis #1), according to the species (A. 
hodgsoni, L. annulatus, O. validus until 1,500 m; B. loripes, G. antarctica, P. charcoti until 4,000 m; Table 
2.8). (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Glabraster antarctica, (d) Labidiaster annulatus, 
(e) Odontaster validus, (f) Psilaster charcoti. Extrapolation areas displayed in black; pixels colored by the 
yellow-red color palette provide SDM distribution probabilities (comprised between 0 and 1); bathymetric 
chart in shades of blue.  
 
3.2. Extrapolation and the number of presence-only records  
 
Model performance and size of extrapolation area were compared between models run with 
different numbers of presence-only records, following the chronological addition of new samples 
(from 1980 to 2016). From 1980 to 2016, the number of presence-only records collected during 
oceanographic campaigns has increased from 1.9 to 3.3 times according to the species (1.9 times 
for O. validus, 3.3 times for A. hodgsoni) (Fig. 2.17A). Spatial autocorrelation between presence-
only records varies between species, with the highest Moran’s I scores obtained for L. annulatus, 
O. validus and A. hodgsoni. The highest Moran’s I values were mainly calculated for the oldest 
presence-only subsets (1980), strenghtening the fact that the addition of new presence-only 
records with additional campaigns reduces spatial autocorrelation (Table S2.18). 
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Model performance increases (higher AUC scores) with the addition of new presence-only records, 
for all species except for models of A. hodgsoni and B. loripes for which AUC values are stable 
(Table S2.18). Similarly, the percentage of correctly classified test data presents important 
standard deviation values and improves with the addition of new presence-only records, except for 
O. validus (10% decrease) (Fig. 2.17B).  
 
For all species, the addition of new data reduces the percentage of extrapolation over the total 
projection area (-30.7% for A. hodgsoni, -12.7% for B. loripes, -20.5% for G. antarctica, -17.6% for 
L. annulatus, -10.2% for O. validus and -11% for P. charcoti, i.e. differences between the two 
extrapolation % values) and over the species suitable area as well (Fig. 2.17C, Table S2.18). 
 

 
Figure 2.17. Evolution of model performances with the increase of data (chronological addition of presence-
only records, by 5-year periods, from 1980 to 2016). (A) Number of presence-only records available to 
generate the model; (B) Mean correctly classified test data (%) (standard deviation values available in Table 
S2.18); (C) Proportion of grid-cell pixels of the projection area that are extrapolations (%). The maximal 
number of presence-only records present in Table 2.9 may not be reached here because some collection 
dates remain unknown.  
 
The decrease of extrapolation with the addition of presence-only records was tested by running, for 
each species a series of models with different subsets of presence-only records randomly sampled 
from the total dataset. One hundred model replicates were progressively run with 10 to 100% of 
the total dataset and proportions of extrapolation areas were computed accordingly (Fig. 2.18, 
Table S2.19). Results confirm that the addition of presence-only records strongly reduces 
proportions of extrapolation areas. Proportions of extrapolation areas also vary between species 
models as a function of depth. Low proportions of extrapolation areas are obtained in models run 
for deep species and large datasets (e.g. 8.2% for 591 records in B. loripes and 23.9% for 851 
records in G. antarctica). In contrast, models run for shallower species show higher proportions of 
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extrapolation areas (40.6% for 298 records in A. hodgsoni, 51.5% for 375 records in L. annulatus 
and 35.8% for 337 records in O. validus). For these last species, spatial autocorrelation values are 
also higher compared to other species (Table S2.19).  
 

 
Figure 2.18. Boxplot diagrams representing the decrease of proportions of extrapolation areas (in % of the 
total projection area) with addition of presence-only records used to generate model replicates (in % of data 
available, see Table 2.8 and Table S2.19), for: (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) 
Glabraster antarctica, (d) Labidiaster annulatus, (e) Odontaster validus, (f) Psilaster charcoti. For each box, 
mean values (blue dots) and outliers (black dots) are shown for the 100 model replicates. Some boxes are 
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missing for low percentages of presence-only records (10-30%, corresponding to close or less than 100 
presence-only records) that do not allow models to be generated. 
 
A linear regression model was fit to the relationship between the number of presence-only records 
and proportions of extrapolation areas. For all species, regression coefficients are all negative and 
tested significant showing that proportions of extrapolation areas decrease with the addition of new 
records (Table 2.10). The intersection point between regression models and the (arbitrary) 10% 
extrapolation threshold was used to provide an estimate of the minimum number of records 
required for each species model to have an "adequate" proportion of extrapolation areas of 10%. 
This minimum number of presence-only records is reached for none of the studied species, and 
according to species, the number of presence-only records available should be increased at least 
by 1.6 to 3.3 times (Table 2.10). 
 
Table 2.10. Equations of simple linear regressions between the number of presence-only records X and the 
average proportion of extrapolation areas Y (Table 2.9, significance levels: * p<0.1, ** p<0.05). The estimate 
of the number of presence-only records necessary to have a minimum "adequate" arbitrary proportion of 
extrapolation areas of 10% is given in the last column. 
 

Species Equation R2 Estimated Pres.NB. (with multiplier of 
actual Pres.NB. available) 

Acodontaster hodgsoni Y=-0.1358X + 73.616** 0.60 468 (x 1.6) 

Bathybiaster loripes Y=-0.0249X + 28.974* 0.42 762 (x 1.3) 

Glabraster antarctica  Y=-0.0304X + 44.991** 0.61 1151 (x 1.4) 

Labidiaster annulatus Y=-0.0913X + 88.078** 0.85 855 (x 2.3) 

Odontaster validus Y=-0.0561X + 71.112** 0.93 1089 (x 3.2) 

Psilaster charcoti Y=-0.0301X + 44.613* 0.37 1150 (x 3.3) 

 
 
4. DISCUSSION 
 
4.1. Modelling performances and extrapolation 
 
SDMs were generated for Southern Ocean sea star species, with contrasting distributions and 
different numbers of presence-only records available (Table 2.8, Appendix 2.13). Overall, species 
presence-only records are spatially concentrated in the most accessible and visited areas of the 
Southern Ocean. Most of the sea star samples were collected close to the coasts of the Western 
Antarctic Peninsula, the Ross Sea and sub-Antarctic Islands such as the Kerguelen Islands. 
Consequently, high spatial autocorrelation values were computed, for L. annulatus and O. validus 
in particular (Table S2.18). 
 
Overall, models all show good performances (Table 2.9), the spatial cross-validation procedure 
ensuring a relevant evaluation of modelling performances when using spatially aggregated data 
(Muscarella et al. 2014, Dhingra et al. 2016, Guillaumot et al. 2019 - Chapter 2). However, models 
show high proportions of extrapolation areas, with extrapolation covering up to 78% of the 
projection area in A. hodgsoni model (Table 2.9). This means that even if models are evaluated as 
accurate, model extrapolation area can concern up to three quarters of the projection area! 
Assessing the proportion of the projection area for which models extrapolate is therefore 
necessary as a complementary statistic to adapt modelling methods and improve model 
predictions. Masking projections by extrapolation uncertainties is also important to perform 
accurate interpretations. 
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Extrapolation uncertainty maps have already been associated to SDM projections once in the 
context of the Southern Ocean, by Torres et al. (2015) in their study of the grey petrel Procellaria 
cinerea, performed at the scale of the Southern Ocean. More recently, the MESS approach has 
been introduced in the methodological paper of Guillaumot et al. (2019 - Chapter 2), showing an 
extrapolation area covering 64% of the projection area for the distribution model of the sea star O. 
validus, the most studied benthic invertebrate of the Southern Ocean. However, uncertainties 
associated to extrapolation were not provided in most model projections performed for Southern 
Ocean species studies. For instance, modelled distributions performed for the sea urchins 
Sterechinus neumayeri and Sterechinus diadema (Pierrat et al. 2012) were generated using a 
relative low number of presence-only records (241 and 332, respectively). Based on results of the 
present study, extrapolation could be expected to cover up to 60% of modelled distribution areas 
for these last two species. Further Southern Ocean species distribution models were generated 
with sometimes less than 100 presence-only records (see Guillaumot et al. 2018b and Fabri-Ruiz 
et al. 2019 for instance), suggesting that extrapolation could cover up to 70% of projection areas 
as visible in models of A. hodgsoni and P. charcoti performed in our study with few records (Fig. 
2.17, Table S2.18-19). 
 
In addition to model uncertainties associated to extrapolation, other biases can alter the 
performance of SDMs generated at broad spatial scales including the spatial and temporal 
aggregation of data (Hortal et al. 2008, Tessarolo et al. 2014, 2017), the selection and quality of 
environmental descriptors (Davies et al. 2008, Synes and Osborne 2011), the choice of modelling 
algorithms and the definition of model settings (Hartley et al. 2006, Marmion et al. 2009). Providing 
such uncertainty information, highlighted with some model statistics is very much encouraged 
here, as they are essential to model interpretation (Beale and Lennon 2012, Guisan et al. 2013, 
Yates et al. 2018). 
 
4.2. How can we reduce model extrapolation? Enriching SDMs with knowledge of species ecology  
 
One objective of this work was to provide some methods to mitigate the effect of extrapolation on 
model uncertainties. Our results show clear contrasts between models generated for “deep” and 
“shallow” species, with lower proportions of extrapolation areas computed for deep species models 
(29.1 and 15.73% respectively for B. loripes and G. antarctica). The model generated for P. 
charcoti  departs from this general scheme, with extrapolation reaching 67.9% of the projection 
area. This is due to the strong spatial aggregation of records and the small presence-only record 
dataset available in deeper habitats. Depth is indeed responsible for 58.1% of the extrapolation for 
P. charcoti (Appendix 2.17). Indeed, the erroneous characterisation of species occupied space, 
due to an incomplete sampling, has been identified as a significant source of bias in SDM 
predictions (Hortal et al. 2007, 2008, Rocchini et al. 2011, Sánchez-Fernández et al. 2011, Titeux 
et al. 2017, El-Gabbas and Dormann 2018). 
 
Limiting model projection areas to biogeographically, or ecologically “realistic” depth ranges can 
help reduce extrapolation as exemplified in the present study, for models of A. hodgsoni and P. 
charcoti, for which extrapolation was reduced from 78.6 to 40.6% and 67.9 to 35.8% respectively 
(Table 2.9). Restraining model projection areas based on species ecological or physiological 
tolerance thresholds is a common approach in ecological modelling using experimental data or 
field observations (Kearney and Porter 2009, Hare et al. 2012, De Villiers et al. 2013). Knowledge 
of species ecology and physiology can also be useful to delineate transferability areas (Feng and 
Papes 2017) and improve distribution models, as recently shown for Southern Ocean species 
(Guillaumot et al. 2018a, Guillaumot et al. 2019 - Chapter 2). Feng et al. (2020) developed a new 
modelling algorithm, called Plateau, which uses experimental data to define upper temperature 
conditions in distribution models. For temperature and salinity, physiological experiments and field 
observations can be used in models to determine species tolerance thresholds. This requires 
knowledge about the species ecology and physiology and the input from specialists, all conditions 
that remain difficult to meet, regarding deep-sea species of the Southern Ocean (Gage 2004, Gutt 
et al. 2010, De Broyer and Danis 2011). Moreover, several studies suggested that some Southern 
Ocean species might have found refuges in deep sea habitats in the past, during glacial maxima, 
which makes species depth range difficult to precise when deep and shallow populations have not 
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been differentiated into distinct taxonomic units yet (Rogers 2007, Arango et al. 2011, Havermans 
et al. 2011, Near et al. 2012).  
 
4.3. How can we reduce model extrapolation? Improving sampling effort  
 
Increased sampling effort over enlarged areas allows the production of larger datasets from which 
many records can be used to generate reliable models with reduced extrapolation areas. In this 
study, proportions of extrapolation areas proportionally decreased when increased numbers of 
presence-only records were used to generate models. The occurrence datasets were significantly 
augmented between 1980 and 2016, with a number of presence-only records multiplied by 1.9 -3.3 
times according to the studied species, which allowed reduction of model extrapolation from 10.2 
to 30.7% according to the species (Fig. 2.17, Table S2.18). However, results suggest that about 
twice the number of presence-only records actually available would be necessary to reduce 
extrapolation down to a “satisfactory” threshold of 10% of the projection area (Table 2.10). 
 
Generating reliable and stable models using a sufficient number of presence-only records is 
essential. In this study, some models could not be run when the number of presence-only records 
was too low (approaching 150 presence-only records or less) compared to the broad extent of the 
projection area and the spatial aggregation of these data (Table S2.19). Considering that the 
spatial cross-validation procedure splits the initial dataset into training and test data, and that at 
each step, 75% of these training data are randomly sampled by BRT to iterately create a model 
tree (and generate stochasticity in the procedure), the final number of presence-only records 
available to describe the presence data - environment relationship becomes too low (around 
37.5% of the initial number of presence-only records).  
The lowest number of presence-only records required to build a reliable model is species-
dependent as not all presence-only records are equally informative, due to species-specific 
relationships between records and the environment. When models are generated using BRT, 
records that bring no new environmental information to the model are dropped because they are 
not informative enough to improve the construction of BRT trees. Pruning non-informative data 
also reduces the total number of presence-only records available to generate a model (Elith et al. 
2008). This is strongly related to prevalence that is, the ratio between the number of presence-only 
records and the size of the projection area (Jiménez-Valverde et al. 2009, Santika 2011, Barbet-
Massin et al. 2012). In order to accurately describe a vast projection area and be able to create a 
model, it is necessary to gather a substantial amount of information about the geographic 
environmental conditions and about species known distribution. If a limited number of records is 
available and these data are aggregated in space (i.e. weakly informative), the first trees produced 
by BRT will contain most of the model deviance, but as no new information is provided, the model 
will quickly overfit because redundant information is provided by close presence-only records. 
Eventually, this will make the model collapse. 
Increasing the number of presence-only records is proved an efficient alternative to generate more 
relevant models (Stockwell and Peterson 2002, Feeley and Silman 2011, van Proosdij et al. 2016), 
but the spatial distribution of these records is of importance as well (Yates et al. 2018). A uniform 
distribution of records over the entire projection area reduces spatial autocorrelation and optimizes 
the sampling and representativeness of environmental conditions under which species can thrive. 
In this study, the spatial aggregation of species records was particularly high for two species, O. 
validus and L. annulatus. It was estimated that the number of supplementary presence-only 
records necessary to reach a proportion of extrapolation areas of 10% should be twice as high as it 
is for other species (Table 2.10). Additional data are necessary to improve the establishment of the 
relationship between species distribution and the environment because species records are less 
informative when aggregated than when they are evenly distributed. 
 
The Southern Ocean covers contrasting environmental conditions, biogeographic regions and 
ecoregions (Pierrat 2011, Fabri-Ruiz et al. 2020). Ideally, both species presence and absence 
should be recorded in each ecoregion for an accurate description of the occupied space (Torres et 
al. 2015). Because such a sampling effort is usually not achievable, nor realistic, alternatives would 
consist of (1) a relevant adjustment of projection areas, with for instance the combination of 
several SDM projections using different grid sizes according to what is available. Generating SDM 

230



CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2. 
 

Article. Guillaumot et al. (2020c). Extrapolation in species distribution modelling. Application to Southern Ocean marine species. 
Progress in Oceanography. 

 
 

projections for large areas and combining results with projections zoomed in on areas where more 
environmental detail is available would provide more relevant and realistic modelled species 
distributions (Seo et al. 2009, Anderson and Raza 2010). (2) In order to compensate for the lack of 
presence-record availability, the ‘ensembles of small models’ approach is another alternative. This 
method fits a set of bivariate models (i.e. generated with two environmental descriptors only), 
within a hierarchic multi-scale framework (i.e. zooming in and out in space from local to regional 
predictions), and finally averages this ensemble of models with a weighted ensemble approach, 
which subsequently provides more accurate and robust model predictions (Lomba et al. 2010, 
Breiner et al. 2015, Habibzadeh and Ludwig 2019). 
 
4.4. Some limitations to the MESS approach 
 
The MESS approach can reveal parts of projection areas where models extrapolate. Extrapolation 
however can be over-estimated. Indeed, extrapolation is considered as soon as the value of a 
single environmental descriptor falls outside the range of the known species environmental 
requirements. But, some extreme values would not limit but can promote species presence: this is 
the case for descriptors relating to food resource availability (e.g. chlorophyll a, POC 
concentrations...), for which a high pixel value exceeding the range of values recorded based on 
species presences will be still considered as extrapolation, although more food usually means 
suitable conditions for species distribution.  
Some fine-tuning of the MESS approach would imply to identify, for each pixel, which descriptor is 
responsible for extrapolation and filter the conditions for which the model should really extrapolate. 
Such an approach was developed by Owens et al. (2013), who used the MOP method (Mobility 
Oriented Parity). Based on multivariate analyses, they determined if pixels contain a combination 
of environmental conditions that should induce extrapolation. In contrast to the MESS approach, 
the MOP method can directly differentiate proportions of extrapolation areas according to the 
combination of descriptors responsible for extrapolation. Another complex alternative is the ExDet 
tool, developed by Mesgaran et al. (2014), which also accounts for multivariate extrapolation 
possibilities, i.e. extrapolation linked to novel combinations between covariates. 
In this study, the MESS approach was favored as a more strict and conservative method to 
highlight the importance of extrapolation, the effect of data quantity and quality, and the relevance 
of the proposed corrections. The MESS is also simpler to apply and well suited to exploratory 
studies.  
 
5. CONCLUSION  
 
This study shows that when modelling species distribution on broad-scale areas, such as the 
Southern Ocean, important proportions of predicted distribution probabilities (suitable or not) are 
model extrapolations. This extrapolation uncertainty relies on the completeness of species 
sampling, and the definition of its occupied space to calibrate the model. Extrapolation occurs in 
areas where habitat suitability is unknown as no information on species presence or absence is 
provided.  
 
Reducing extrapolation is possible by combining SDM with ecological and physiological knowledge 
of species requirements (e.g. depth range, temperature tolerance thresholds). Increased sampling 
effort over enlarged areas also allows the production of more reliable models with reduced 
extrapolation areas and our study shows that doubling the number of presence-only records 
available to generate the model would help reduce the extrapolation area down to 10% of the 
projected area.  
While more data samples remain unavailable, some methods are increasingly developed to 
improve model performances, by adjusting the extent of the projection area or by generating and 
aggregating several ensembles of small models. 
 
Finally, present results call for a widespread use of extrapolation maps and uncertainties 
associated to model predictions in model outputs, along with information about the quantity of 
presence-only records available, the quality and resolution of environmental descriptors and the 
state of our knowledge of species ecology. These are all essential information needed to support 
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model interpretations, as also stated in recent publications that review best practices in ecological 
modelling (Araújo et al. 2019, Zurell et al. 2020). 
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APPENDIX 2.13. Distribution of presence-only records 

 

 
Figure S2.13. Distribution of presence-only records of the six sea star species studied in this work. (A) 
Acodontaster hodgsoni, (B) Bathybiaster loripes, (C) Glabraster antarctica, (D) Labidiaster annulatus, (E) 
Odontaster validus, (F) Psilaster charcoti. Presence-only record duplicates that fell on a same grid-cell pixel were 
removed from the analysis. 
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APPENDIX 2.14. List of environmental descriptors selected to generate the models 
 

Table S2.14 List of species-specific environmental descriptors selected to generate final models after removal 
from the initial dataset of spatial distance descriptors, descriptors that always contribute less than 1% to SDMs 
(Guillaumot et al. 2020b - Chapter 2) and collinear descriptors. Extracted from the list of 58 layers available at  
https://data.aad.gov.au/metadata/records/environmental_layers (Guillaumot et al. 2020c).  

 

 Acodontaster 
hodgsoni 

Bathybiaster 
loripes 

Glabraster 
antarctica 

Labidiaster 
annulatus 

Odontaster 
validus 

Psilaster 
charcoti 

depth depth depth depth depth depth 

geomorphology geomorphology geomorphology geomorphology geomorphology geomorphology 

sediments sediments sediments sediments sediments sediments 

slope slope slope slope slope slope 

roughness roughness roughness roughness roughness roughness 

mixed layer depth mixed layer 
depth 

mixed layer 
depth 

mixed layer 
depth 

mixed layer 
depth 

mixed layer 
depth 

seasurface current 
speed 

seasurface 
current speed 

seasurface 
current speed 

seasurface 
current speed 

seasurface 
current speed 

seasurface 
current speed 

seafloor current 
speed 

seafloor current 
speed 

seafloor current 
speed 

seafloor current 
speed 

seafloor current 
speed 

seafloor current 
speed 

ice cover mean ice cover mean ice cover mean ice cover mean ice cover mean ice cover mean 

chlorophyll a max 
concentration 
[2005-2012] 

chlorophyll a 
max 

concentration 
[2005-2012] 

chlorophyll a 
max 

concentration 
[2005-2012] 

chlorophyll a 
max 

concentration 
[2005-2012] 

chlorophyll a 
max 

concentration 
[2005-2012] 

chlorophyll a 
max 

concentration 
[2005-2012] 

chlorophyll a 
mean concentration 

[2005-2012] 

chlorophyll a 
mean 

concentration 
[2005-2012] 

chlorophyll a 
mean 

concentration 
[2005-2012] 

chlorophyll a 
mean 

concentration 
[2005-2012] 

chlorophyll a 
mean 

concentration 
[2005-2012] 

chlorophyll a 
mean 

concentration 
[2005-2012] 

chlorophyll a min 
concentration 
[2005-2012] 

chlorophyll a 
min 

concentration 
[2005-2012] 

chlorophyll a min 
concentration 
[2005-2012] 

chlorophyll a min 
concentration 
[2005-2012] 

chlorophyll a min 
concentration 
[2005-2012] 

chlorophyll a 
min 

concentration 
[2005-2012] 

POC amplitude 
[2005-2012] 

POC minimum 
[2005-2012] 

POC minimum 
[2005-2012] 

POC minimum 
[2005-2012] 

POC minimum 
[2005-2012] 

POC minimum 
[2005-2012] 

POC minimum 
[2005-2012] 

POC standard 
deviation 

[2005-2012] 

POC standard 
deviation [2005-

2012] 

POC standard 
deviation [2005-

2012] 

POC standard 
deviation [2005-

2012] 

POC standard 
deviation 

[2005-2012] 

  

Chlorophyll  a 
minimum 

extreme events, 
minimum values 

Chlorophyll  a 
minimum 

extreme events, 
average values 

Chlorophyll  a 
minimum 

extreme events, 
minimum values 

 

   

Chlorophyll  a 
minimum 

extreme events, 
minimum values 
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APPENDIX 2.15. Spatial cross-validation procedure 

 
The cross-validation procedure consists in using a subset of the total dataset to train the model, 
and the remaining part is used to test model predictions. In doing so, training and test data are 
independent whenever generating the model, which improves the reliability of model evaluation 
(Hijmans 2012).  
The selection of training and test subsets is often done randomly, and most of the time, 70% of 
presence records are randomly chosen to train the model and 30% to test it (Fabri-Ruiz et al. 
2019). However, when presence-only records are aggregated in space, splitting data at random 
would bias model evaluation and will inflate model performances. Splitting training and test data 
following a defined spatial pattern was shown to improve the relevance of model evaluation, in a 
context of aggregated data (Muscarella et al. 2014, Dhingra et al. 2016, Roberts et al. 2017, 
Guillaumot et al. 2019 - Chapter 2). Several methods were assessed and compared in Guillaumot 
et al. (2019 - Chapter 2). Here, we tested and selected the ‘2-fold CLOCK’ method for models 
performed for A. hodgsoni and P. charcoti (Fig. S2.15a) and the ‘6-fold CLOCK’ method (Fig. 
S2.15b) for other SDMs, based on the best AUC scores and percentage of correctly classified test 
data.  

 
Figure S2.15. (a) ‘2-fold CLOCK’ method and (b) ‘6-fold CLOCK’ method. For each model replicate, the 
geographic space is split into 2 and 6 areas respectively, and test (green) and training (pink) presence and 
background data are selected in the defined areas. The model is built based on training data and model 
predictions are evaluated using presence test data. One hundred model replicates are generated and the 
average prediction calculated. 
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APPENDIX 2.16. Multivariate Environmental Similarity Surface principle 
 
 

 
Figure S2.16. Illustrated principle of the Multivariate Environmental Similarity Surface approach. 
 
 
In the ‘dismo’ R package (Hijmans et al. 2017), the mess function calculates the value of the 
MESS for each pixel of the rasterstack used for model projection (P). This rasterstack contains the 
environmental conditions into which the model is projected.  
In the first step explained by Elith et al. (2010), the environmental conditions experienced by the 
presence data are extracted, and the minimal and maximal values define the boundaries of each 
descriptor (Vi).  
1. Let mini be the minimum value of descriptor Vi over the reference point set, and similarly for 
maxi. 
Then, the environmental conditions of the projection layer P are extracted and compared to these 
minimal and maximal boundaries. 
2. Let pi be the value of descriptor Vi at pixel Pj. 
3. Let fi be the percent of reference points whose value of descriptor Vi is smaller than pi. 
4. Then the similarity of Pj with respect to descriptor Vi is: 
(pi - mini) / (maxi - mini) * 100 if fi = 0 
2 * fi if 0 < fi ≤ 50 
2 * (100 - fi) if 50 ≤ fi < 100 
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(maxi - pi) / (maxi - mini) * 100 if fi = 100 
5. Finally, the multivariate similarity of Pj is the minimum of its similarity with respect to each 
descriptor.  
This calculation is then applied to each pixel Pj...n 
 
The final value of the MESS represents how similar pixel values of each descriptor (V1, V2, ...) are 
to the reference set of values defined by presence records. It allows negative values, and 
whenever the MESS is negative, it corresponds to the situation when at least one descriptor has a 
value that is outside the range of environments over the reference. 
In this study, the MESS was estimated and all pixels for which the MESS value was negative were 
considered as extrapolation and colored in black. 
 
The MESS calculation was also adapted for Elith et al. (2010) to be able to estimate for each pixel 
which descriptor is concerned with the extrapolation. The MESS was separately calculated for 
each layer of the rasterstack P. Whenever the MESS score calculated for pixel Pj was negative, it 
was considered that the model extrapolates at that specific pixel due to the specific layer studied. 
Results were compiled and the contribution of each descriptor to the extrapolation was assessed 
(Appendix 2.17). 
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APPENDIX 2.17. Descriptor contributions to the models and descriptors responsible 
for extrapolation 

 

 
Figure S2.17.A. Influence of the different environmental descriptors on models (mean and standard 
deviation values calculated on the the 100 model replicates), for Analysis #0 (black bars) and Analysis #1 
(grey bars). Analysis #0: models were projected on the entire Southern Ocean area. Analysis #1: the 
projection area was limited in depth according to each species distribution range (A. hodgsoni, L. annulatus, 
O. validus until 1,500 m; B. loripes, G. antarctica, P. charcoti until 4,000 m).   
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Figure S2.17.B. Influence of the different environmental descriptors on extrapolation (mean values 
calculated on the the 100 model replicates), for Analysis #0 (dark blue bars) and Analysis #1 (light blue 
bars). Analysis #0: models were projected on the entire Southern Ocean area. Analysis #1: the projection 
area was limited in depth according to each species distribution range (A. hodgsoni, L. annulatus, O. validus 
until 1,500 m; B. loripes, G. antarctica, P. charcoti until 4,000 m).   
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APPENDIX 2.18.  Influence of the chronological addition of presence-only records 
on extrapolation area 

 
Table S2.18. Evolution of model performances with the increase of data (chronological addition of presence-
only records, by 5-year periods, from 1980 to 2016). Pres. NB: number of presence-only records used to 
generate the model; AUC: Area Under the Curve; Moran I index: spatial autocorrelation scores measured on 
model residuals (mean and standard deviation values are given). The maximal number of presence-only 
records present in Table 2.9 may not be reached here because some collection dates remain unknown.  
 

Species  Year Pres. 
NB 

AUC Correctly classified 
test data (%) 

Moran I Extrapolation 
(% total area) 

Extrapolation (% 
suitable area) 

Acodontaster 
hodgsoni 

1980 85 0.843 ± 0.06 42.2 ± 21.6 0.24 ± 0.06  73.59 57.9 ± 9.6 

1985 147 0.836 ± 0.05 45.5 ± 17.5 0.14 ± 0.04 52.2 42.5 ± 7.5 

1990 170 0.822 ± 0.07 43.7 ± 22.9 0.13 ± 0.03 44.5 39.4 ± 9.6 

1995 171 0.835 ± 0.05  48.1 ± 18.7 0.13 ± 0.03 44.5 38.6 ± 8.7 

2000 180 0.827 ± 0.06 44.3 ± 19.9 0.12 ± 0.03 43.5 35 ± 8.1 

2005 197 0.836 ± 0.05 48.9 ± 20.7 0.11 ± 0.04 43.5 35.2 ± 8.6 

2010 252 0.829 ± 0.06 45.3 ± 16.9 0.10 ± 0.03 43 31.4 ± 8.1 

2016 280 0.821 ± 0.06 47.9 ± 15.3 0.10 ± 0.02 42.9 29.3 ± 7.3 

 Year Pres. 
NB 

AUC Correctly classified 
test data (%) 

Moran I Extrapolation 
(% total area) 

Extrapolation (% 
suitable area) 

Bathybiaster 
loripes 

1980 193 0.860 ± 0.05 61.6 ± 16.2 0.13 ± 0.09 30.9 29.2 ± 11.1 

1985 252 0.855 ± 0.05 66.6 ± 14.5 0.12 ± 0.07 21.6 27.7 ± 6.6 

1990 269 0.849 ± 0.04 70 ± 13.1 0.10 ± 0.06 21.6 27.7 ± 6.7 

1995 286 0.854 ± 0.03 69.7 ± 13.6 0.10 ± 0.06 18.6 26.3 ± 6.4 

2000 299 0.850 ± 0.03 71.8 ± 13.3 0.10 ± 0.05 18.5 25.2 ± 5.8 

2005 349 0.869 ± 0.04 74 ± 12.6 0.10 ± 0.04 18.2 25.4 ± 5.2 

2010 480 0.878 ± 0.03 77.8 ±  11.3 0.09 ± 0.03 18.2 22 ± 4.3 

2016 521 0.879 ± 0.03 80.7 ± 9.1 0.10 ± 0.03 18.2 22.2 ± 4.3 

 Year Pres. 
NB 

AUC Correctly classified 
test data (%) 

Moran I Extrapolation 
(% total area) 

Extrapolation  
(% suitable area) 

Glabraster 
antarctica 

1980 296 0.895 ± 0.03 69.2 ± 14.6 0.14 ± 0.06 44.4 30.4 ± 8.5 

1985 374 0.894 ± 0.04 76.1 ± 10.7 0.10 ± 0.04 30.3 24.8 ± 4.6 

1990 421 0.900 ± 0.03 78.3 ± 11.1 0.11 ± 0.04 30.1 25.8 ± 6.1 

1995 439 0.894 ± 0.03 79.7 ± 10.5 0.10 ± 0.03 30 23.9 ± 5.2 

2000 472 0.900 ± 0.02 80 ± 10.7 0.10 ± 0.03 30 23.9 ± 4.8 

2005 535 0.907 ± 0.02 81.4 ± 7.3 0.11 ± 0.03 24.1 22.7 ± 4.6 

2010 719 0.910 ± 0.02 84 ± 7.4 0.10 ± 0.03 23.9 18.9 ± 4 

2016 804 0.914 ± 0.02 83.1 ± 6.4 0.10 ± 0.03 23.9 19.2 ± 3.8 

241



CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2. 
 

Article. Guillaumot et al. (2020c). Extrapolation in species distribution modelling. Application to Southern Ocean marine species. 
Progress in Oceanography. 

 
 

 Year Pres. 
NB 

AUC Correctly classified 
test data (%) 

Moran I Extrapolation 
(% total area) 

Extrapolation (% 
suitable area) 

Labidiaster 
annulatus 

1980 162 0.900 ± 0.04 61.6 ± 26.9 0.17 ± 0.08 77.1 56.2 ± 11.9 

1985 175 0.902 ± 0.04 64.4 ± 21.8 0.17 ± 0.07 72.2 52.4 ± 12.5 

1990 183 0.905 ± 0.03 66.2  ± 24.1 0.16 ± 0.07 70.5 47.7 ± 10.3 

1995 192 0.897 ± 0.03 63.6 ± 20.8 0.16 ± 0.07 70.5 48.6 ± 14 

2000 194 0.903 ± 0.03 71.2 ± 20 0.16 ± 0.07 70.5 45.4  ± 11.7 

2005 218 0.903 ± 0.04 63.4 ± 16.1 0.18 ± 0.09 63.3 47.5 ± 11.5 

2010 304 0.913 ± 0.05 60.7 ± 18 0.18 ± 0.09 60.5 44.8 ± 14 

2016 330 0.921 ± 0.03 62.4 ± 15.8 0.17 ± 0.08 59.5 41.5 ± 12.1 

 Year Pres. 
NB 

AUC Correctly classified 
test data (%) 

Moran I Extrapolation 
(% total area) 

Extrapolation (% 
suitable area) 

Odontaster 
validus 

1980 163 0.860 ± 0.06 60.1 ± 16.6 0.17 ± 0.10 62.8 52.4 ± 7.5 

1985 191 0.883 ± 0.06 66.2 ± 16 0.15 ± 0.08 61.6 49.9 ± 6.9 

1990 198 0.875 ± 0.07 61.8 ± 17.7 0.16 ± 0.07 58.9 44.7 ± 8.2 

1995 200 0.873 ± 0.07 66.8 ±  16.1 0.16 ± 0.08 58.9 44.2 ± 7.3 

2000 222 0.856 ± 0.08 63.3 ± 15.4 0.13 ± 0.05 58.1 45.7 ± 9.4 

2005 283 0.922 ± 0.03 50.7 ± 23.5 0.13 ± 0.05 55.5 42.5 ± 6 

2010 306 0.920 ± 0.02 51.1 ± 24.9 0.12 ± 0.05 54.8 38.9 ± 6.9 

2016 321 0.914 ± 0.02 53.1 ± 24.1 0.13 ± 0.05 52.6 37.6 ± 7.5 

 Year Pres. 
NB 

AUC Correctly classified 
test data (%) 

Moran I Extrapolation 
(% total area) 

Extrapolation (% 
suitable area) 

Psilaster 
charcoti 

1980 134 0.847 ± 0.05 50.4 ± 24.2 0.11 ± 0.07 46.7 39.4 ± 7.2 

1985 182 0.848 ± 0.05 76.4 ± 10.6 0.10 ± 0.06 36.9 37.8 ± 3.9 

1990 200 0.844 ± 0.05 81.4 ± 10.7 0.10 ± 0.06 36.3 39.5 ± 3.9 

1995 203 0.851 ± 0.04 79.7 ± 11.8 0.12 ± 0.07 36.3 38.1 ± 4.3 

2000 220 0.861 ± 0.04 81.6 ± 7.1 0.10 ± 0.05 36.3 37.4 ± 4.5 

2005 257 0.867 ± 0.03 79.5 ± 8.1 0.10 ± 0.05 36.3 36.4 ± 4.1 

2010 321 0.878 ± 0.03 83.5 ± 7.1 0.10 ± 0.04 35.8 33.8 ± 4.2 

2016 353 0.891 ± 0.02 82 ± 7.1 0.10 ± 0.04 35.7 32.9 ± 4.2 
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APPENDIX 2.19.  Influence of the addition of presence-only records on extrapolation 
area 

 
Table S2.19. Evolution of model performances with a random increase of data number (10 to 100% of the 
available presence datasets, randomly sampled). Measured average and standard deviation values. Pres. 
NB: corresponding number of presence-only records used to generate the model; AUC: Area Under the 
Curve; Moran I index: spatial autocorrelation scores measured on model residuals. The cells with no figure 
information correspond to models that could not be generated due to a too low number of presence records.  
 

Species  % Pres. 
NB 

AUC Correctly classified 
test data (%) 

Moran I Extrapolation  
(% total area) 

Extrapolation  
(% suitable area) 

Acodontaster 
hodgsoni 

10  30  -  -  -  -  - 

20  60  -  -  -  -  - 

30  89  -  -  -  -  - 

40  119    0.808 ± 0.05 45.8 ± 19.4 0.10 ± 0.04 56.3 ± 5.1 43.1 ± 7.9 

50  149    0.821 ± 0.04 46.2 ± 16.2 0.10 ± 0.03 52 ± 4.4 40.4 ± 9.5 

60  179    0.812 ± 0.05 46.5 ± 16.9 0.10 ± 0.03 48 ± 3.4 36 ± 9 

70  209    0.818 ± 0.05 45.1  ± 16 0.10 ± 0.02 45.5 ± 2.9 32.3 ± 7.7 

80  238    0.821 ± 0.05 45.8 ± 18.1 0.09 ± 0.02 43.8  ± 1.9 30.7  ± 8.3 

90  268    0.832 ± 0.05 45 ± 17.8 0.10 ± 0.02 42 ± 1.5 28.1 ± 6.4 

100  298    0.823 ± 0.05 45.5 ± 18.1 0.09 ± 0.02 40.6 27.5 ± 8.5 

 % Pres. 
NB 

AUC Correctly classified 
test data (%) 

Moran I Extrapolation  
(% total area) 

Extrapolation  
(% suitable area) 

Bathybiaster 
loripes 

10 59  -  -  -  -  - 

20  118     -  -  -  -  - 

30  177     -  -  -  -  - 

40  236    0.863 ± 0.06 73.8 ± 12.5 0.10 ± 0.04 37.2 ± 9 31.5 ± 7.3 

50  296    0.869 ± 0.04 75.5 ± 12 0.10 ± 0.04 31.4 ± 7.7 28.4 ± 7.2 

60  355    0.876 ± 0.03 75.6 ± 12.8 0.09 ± 0.04 27.4 ± 6.4 25.4 ± 5.7 

70  414    0.881 ± 0.03 75.7 ±  12.6 0.09 ±  0.03 23.7 ± 3.8 25 ± 5.6 

80  473    0.888 ± 0.02 76.8 ± 11.7 0.10 ± 0.04 21.7 ± 3.4 24.3 ± 5.6 

90  532    0.882 ± 0.03 76.5 ± 12.6 0.09 ± 0.02 19.5 ± 1.9 22.4 ± 5.5 

100  591    0.887 ± 0.03 78.4 ± 11 0.09 ± 0.02 18.2 20.8 ± 4.8 

 % Pres. 
NB 

AUC Correctly classified 
test data (%) 

Moran I Extrapolation  
(% total area) 

Extrapolation  
(% suitable area) 

Glabraster 
antarctica 

10  85  -  -  -  -  - 

20  175    0.872 ± 0.04 82.7 ± 10.3 0.12 ± 0.05 50.9 ± 11.2 40.2 ± 7.7 

30  255    0.883 ± 0.03 82.8 ± 9.3 0.11 ± 0.04 42.6 ± 9.2 34.5 ± 5.8 
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40  340    0.889 ± 0.03 84.5 ± 8.3 0.11 ± 0.04 38.4 ± 7.9  29.9 ± 6.4 

50  426   0.896 ± 0.03 83.7 ± 7.8 0.11 ± 0.04 33 ± 5.9 27.6 ± 5.7 

60  511    0.899 ± 0.02 81.2 ± 8.7 0.11 ± 0.04 30.1 ± 5.3  25 ± 5.5 

70  596    0.903 ± 0.02 81.2 ± 7.9 0.10 ± 0.03 28.9 ± 5.1 22.9 ± 5.1 

80  681    0.908 ± 0.02 80.7 ± 8.5 0.11 ± 0.03 27.1 ± 3.3 21.3 ± 4.5 

90  766    0.913 ± 0.02 80.2 ± 8.2 0.10 ±  0.02 25.4 ± 2.7 19.6  ± 4.3 

100  851    0.915 ± 0.01 81.8 ± 7.7 0.10 ± 0.03 23.9 18.64 ± 3.5 

 % Pres. 
NB 

AUC Correctly classified 
test data (%) 

Moran I Extrapolation  
(% total area) 

Extrapolation  
(% suitable area) 

Labidiaster 
annulatus 

10  38  -  -  -  -  - 

20  75  -  -  -  -  - 

30  113     -  -  -  -  - 

40  150    0.850 ± 0.12 59.1 ± 23.2 0.17 ± 0.08 69.8 ± 3.8 46.7 ± 15.4 

50  188    0.897 ± 0.06 58.1 ± 20 0.17 ± 0.09 67.4 ± 3.5 48.1 ± 14.5 

60  225    0.898 ± 0.05 55.4  ± 19.4 0.15 ± 0.07 64.9 ± 3.1 45.5 ± 14.8 

70  263    0.903 ± 0.05 59.7 ± 18.7 0.18 ± 0.1 63 ± 2.5  44.2 ± 15.6 

80  300   0.918 ± 0.03 58.4 ± 20 0.16 ± 0.08 61.2 ± 1.6 39.7 ± 13.1 

90  338    0.923 ± 0.03 57.7 ± 18.7 0.15 ± 0.06 60.4 ±  1.3 38.9 ±  14.1 

100  375    0.918 ± 0.03 57.98 ± 20 0.15 ± 0.06 59.5 38.7 ± 14.6 

 % Pres. 
NB 

AUC Correctly classified 
test data (%) 

Moran I Extrapolation  
(% total area) 

Extrapolation  
(% suitable area) 

Odontaster 
validus 

10  33  -  -  -  -  - 

20  67  -  -  -  -  - 

30  101     -  -  -  -  - 

40  135    0.873 ± 0.05 55.6 ± 25.4 0.13 ± 0.08 63.9 ± 4.1 54.3 ± 9.5 

50  169    0.878 ± 0.05 58.3 ± 21.1 0.13 ± 0.06 60.5 ± 3.5 49.9 ± 8.5 

60  202    0.896 ± 0.03 52 ± 23.3 0.14 ± 0.06 58.3 ± 3 45.3 ± 9.2 

70  236    0.899 ± 0.04 54.4 ± 23.2 0.13 ± 0.06 56 ± 2.5 44.9 ± 8.1 

80  270    0.900 ± 0.03 55.9 ± 22.8 0.13 ± 0.04 54.7 ± 2.2 38.9 ± 6.7 

90  303    0.911 ± 0.03 52.8 ± 23 0.12 ± 0.05 52.7 ± 1.4 38.1 ± 7.7 

100  337   0.908 ± 0.03 57.68 ± 21 0.12 ± 0.04 51.5 38.3 ± 6.97 

 % Pres. 
NB 

AUC Correctly classified 
test data (%) 

Moran I Extrapolation  
(% total area) 

Extrapolation  
(% suitable area) 

Psilaster 
charcoti 

10  35  -  -  -  -  - 

20  71 0.837 ± 0.06 82.9 ± 14.7 0.09 ± 0.06 70.8 ± 12.1 55.7 ± 7.9 
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30  106    0.844 ± 0.05 84.5 ± 9.7 0.10 ± 0.06 58 ± 11.4 49 ± 5.8 

40  141    0.861 ± 0.04 84.3 ± 9.5 0.11 ± 0.06 53.3 ± 10.3 45.9 ± 5.7 

50  176    0.863 ± 0.04 82.4 ± 9.8 0.11 ± 0.06 48 ± 9.7 41.9 ± 5.3 

60  212    0.870 ± 0.03 83.6 ±  8.8 0.11 ±  0.06 44.1 ± 8.1 39.7 ± 4.8 

70  247    0.875 ± 0.03 82 ± 8.6 0.10 ± 0.04 41.3 ± 6.3 38 ± 4.8 

80  282    0.876 ± 0.03 83.2  ± 7.6 0.10 ± 0.05 40.1 ± 6.3 36.7 ± 5.1 

90  316    0.885 ± 0.02 82.2 ± 8.1 0.10 ± 0.04 37 ± 1.65 34.4 ± 5.1 

100  353    0.885 ± 0.02 83 ± 6.6 0.09 ± 0.04 35.78 33.2 ± 5.1 
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CHAPTER 3 INTEGRATED APPROACHES	

Chapter 3 focusses on integrated approaches. Coupling SDM predictions with experimental 
results, in situ observations or results from other modelling approaches that detail species 
physiological tolerance, migratory potential or biotic interactions was shown to improve the 
relevance of species niche estimation. Such methods have however been rarely applied to 
Southern Ocean marine case studies. In this chapter, we studied the integration of SDM with 
physiological information. 
DEB models characterise the species fundamental niche, by explicitly highlighting the 
influence of abiotic factors on species physiology. On the other hand, SDMs estimate the 
species realised niche. SDMs are indeed implemented using presence records, hence 
providing an implicit assessment of the influence of abiotic conditions but also dispersal 
barriers and biotic interactions on species distribution.  
 
This chapter illustrates three case examples.  
 
�The first study assessed the potential of the Patagonian crab Halicarcinus planatus 
(Fabricius, 1775) to survive in the Western Antarctic Peninsula using two approaches: 
experimental data that characterise the physiological boundaries of larvae and adult to 
temperature and salinities and SDMs that simulate species occupied space in present and 
future environmental conditions.  
 
�In the second analysis, the case study of the sea urchin Sterechinus neumayeri (Meissner, 
1900), distributed all around the Antarctic continent, was used to compare DEB model spatial 
projections and SDM predictions. Comparisons were performed for contrasting environmental 
conditions and future simulations. 
 
�The third analysis used data from a long-term observing network located in the Kerguelen 
Islands, to implement for the first time in the Southern Ocean the integration of DEB and SDM 
models to predict the distribution of an endemic sub-Antarctic sea urchin, Abatus cordatus 
(Verrill, 1876) as a response to environmental drivers. We compared the performance of 
simple SDM and integrated approaches to predict A. cordatus distribution under seasonal 
variations. Two integrated approaches were studied and performed by either (1) including the 
spatial projection of the DEB model as an input layer inside the SDM or (2) using a Bayesian 
inference procedure to use DEB model outputs as priors of the Bayesian SDM. 
 
 
 
	
�Guillaumot C/ López-Farrán Z (co-firstauthorship), Vargas-Chacoff L, Paschke K, Dulière V, Danis 
B, Poulin E, Saucède T and Gerard K (2021). Current and predicted invasive capacity of Halicarcinus 
planatus (Fabricius, 1775) in the Antarctic Peninsula. Global Change Biology. 00:1–18. 
  
�Fabri-Ruiz S, Guillaumot C, Agüera A, Danis B and Saucède T (2021). Using correlative and 
mechanistic niche models to assess the sensitivity of the Antarctic echinoid Sterechinus neumayeri 
(Meissner, 1900) to climate change. Polar Biology.  
 
�Guillaumot C, Buba Y, Belmaker J, Fourcy D, Danis B, Dubois P and Saucède T (submitted). 
Simple or hybrid ? Next generation ecological models to study the response of Southern Ocean 
marine species to changing environmental conditions. Diversity and Distributions.  
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               Abstract 
The potential for biological colonisation of Antarctic shores is an increasingly 
important topic in the context of anthropogenic warming. Successful Antarctic 
invasions to date have been recorded exclusively from terrestrial habitats. While 
non-native marine species such as crabs, mussels and tunicates have already been 
reported from Antarctic coasts, none have as yet established there. Among the 
potential marine invaders of Antarctic shallow waters is Halicarcinus planatus 
(Fabricius, 1775), a crab with a circum sub-Antarctic distribution and substantial 
larval dispersal capacity. An ovigerous female of this species was found in shallow 
waters of Deception Island, South Shetland Islands, in 2010. A combination of 
physiological experiments and ecological modelling was used to assess the 
potential niche of H. planatus and estimate its future southward boundaries under 
climate change scenarios. We show that H. planatus has a minimum thermal limit of 
1°C, and that its current distribution (assessed by sampling and niche modelling) is 
physiologically restricted to the sub-Antarctic region. While this species is presently 
unable to survive in Antarctica, future warming under both ‘strong mitigation’ and ‘no 
mitigation’ greenhouse gas emission scenarios will favour its niche expansion to the 
Western Antarctic Peninsula (WAP) by 2100. Future human activity also has 
potential to increase the probability of anthropogenic translocation of this species 
into Antarctic ecosystems. 
 

 

     Key-words 
Niche modelling, Southern Ocean, climate change, thermotolerance, survival, 
establishment, reptant crab, non-native species. 

 
 

 
 
 
 

250



INTEGRATED APPROACHES CHAPTER 3. 
 

Article. López-Farrán/Guillaumot et al. (2021). Is the southern crab Halicarcinus planatus (Fabricius, 1775) the next invader of 
Antarctica? Global Change Biology. 

 

ACKNOWLEDGEMENTS 
The research was supported by projects FONDECYT Regular 1161358 to KG and EP, INACh DG 14-17 and Chilean 
national doctoral scholarship CONICYT 21151192 to ZLF, Fondap-IDEAL 15150003 to ZLF and LV, PIA CONICYT 
ACT172065 to EP and KG, and FONDECYT 1160877 to LV. This work was supported by a “Fonds pour la formation à la 
Recherche dans l’Industrie et l’Agriculture” (FRIA) and “Bourse Fondation de la Mer” grants to C. Guillaumot. This work 
is contribution to the French Polar Institute and LTSER Zone Atelier Antarctique et sub-Antarctique (ZATA) program 
PROTEKER (n°1044). 
This is contribution no. 48 to the vERSO project (www.versoproject.be), funded by the Belgian Science Policy Office 
(BELSPO, contract n°BR/132/A1/vERSO). Research was also financed by the “Refugia and Ecosystem Tolerance in the 
Southern Ocean” project (RECTO; BR/154/A1/RECTO) funded by the Belgian Science Policy Office (BELSPO), this 
study being contribution number 25. 
We are thankful to Renato Borras, Daniel Ramirez, Yethro Henriquez and Eva Iglesias to help collecting individuals of 
Halicarcinus planatus for the physiological experiment (SCUBA diving work). Thanks to Alejandro Ortiz (IDEAL), 
Constanza Ceroni, Aurora Prado, Hermes Galo Andrade (IDEAL), Hans Bartsch (IDEAL), Camille Détrée (IDEAL) and 
Paola Muñoz for helping install and maintain experiments. Thanks to Hermes Galo Andrade, Jorge Navarro (IDEAL), 
research line Adaptation of the marine species (IDEAL), Angelica Saldivia (IDEAL) and Luis Villegas (IDEAL) for the 
technical support for this project. This article contributes to the SCAR Biology Programme AntEco (State of the Antarctic 
Ecosystem) for travel funding. 
 
 
AUTHORS’ CONTRIBUTIONS 
-Zambra López-Farrán, first author of this paper, participated directly in experimental design, sampling, assembly of the 
experiments, maintenance of experiments, obtaining data, results analyses, writing of the manuscript. 
-Charlène Guillaumot, co-first author of this manuscript participated in results analyses, writing, revision and correction of 
the manuscript. 
-Karin Gerard participated directly in sampling, assembly of the experiments, writing, revision and correction of the 
manuscript. 
-Luis Vargas-Chacoff participated directly in experimental design, assembly of the experiments, results analyses, 
revision and correction of manuscript. 
-Kurt Paschke participated directly in experimental design, assembly of the experiments, results analyses, revision and 
correction of manuscript. 
-Valerie Dulière participated in the analysis of the results, revision and correction of the manuscript. 
Bruno Danis participated in the analysis of the results, revision and correction of the manuscript 
-Thomas Saucède contributed to occurrence dataset, participated to the analysis of results, and to manuscript revision 
and correction. 
-Elie Poulin participated directly in the project and experimental design, sampling, analysis of the results, revision and 
correction of the manuscript. 
-Jonathan Waters participated to the analysis of results, and to manuscript revision and correction. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

251



INTEGRATED APPROACHES CHAPTER 3. 
 

Article. López-Farrán/Guillaumot et al. (2021). Is the southern crab Halicarcinus planatus (Fabricius, 1775) the next invader of 
Antarctica? Global Change Biology. 

 

1. INTRODUCTION  
 
Biological invasions are an important component of global change, and one of the most critical 
global threats to native biodiversity (Sax et al. 2005). According to (Richardson et al. 2000), a non-
native species becomes an invasive species when a set of individuals is able to traverse natural 
barriers (whether geographical, environmental, or ecological) and subsequently establish in new 
habitats. While numerous anthropogenic activities can promote invasions, climate change may 
represent a particularly potent threat to natural ecosystems (Malcolm et al. 2006). Both the rate 
and dimension of biological invasions are likely to be influenced by global warming (Walther et al. 
2009). Understanding the mechanisms and routes of such range shifts may help facilitate the 
design of strategies for controlling or preventing invasion (Estoup and Guillemaud 2010). 
 
Notwithstanding the wide expanse of Southern Ocean waters isolating the southern tip of South 
America from other land masses, several non-native species have been reported in the Antarctic 
over recent decades (Smith and Richardson 2011). These examples include the invasive grass 
Poa annua (Molina-Montenegro et al. 2012, Chwedorzewska et al. 2015), seeds of the toad rush 
Juncus bufonius (Cuba-Díaz et al. 2013), the invasive mosquito Trichocera maculipennis (Potocka 
and Krzemińska 2018), and several South-American invertebrates (e.g. insects, worms, freshwater 
crustaceans; Hughes and Worland 2010, Hughes et al. 2015). Non-native species have also been 
reported in marine habitats and in the shallow subtidal zone, in particular in the south Shetland 
Islands (i.e. decapods and bivalves) and East Antarctica (i.e. bryozoans, hydrozoans, and 
tunicates) (McCarthy et al. 2019, Avila et al. 2020, Cárdenas et al. 2020). However, there is as yet 
no evidence for any non-native marine species having established in Antarctica.  
 
Reaching Antarctic coasts requires dispersal across vast and deep biogeographical barriers that 
have isolated the continent for millions of years, including traversal of the westward flowing 
Antarctic Circumpolar Current (ACC) that apparently impedes latitudinal dispersal (Clarke et al. 
2005, Rintoul 2009). The extreme cold temperatures of Antarctic waters (< +2°C) also imply a 
strong ecophysiological constraint to the survival and development of exotic marine species that 
have not adapted to near-zero and subzero temperatures (Marsh et al. 2001, Fraser et al. 2007, 
Peck 2016) that can reach down to -1.85°C in winter. Consequently, Antarctic marine communities 
have been considered among the most isolated and endemic on Earth and invasion by non-native 
species as unlikely (Clarke et al. 2005, Griffiths et al. 2009). 
 
Human activities such as fisheries, tourism and scientific operations rely on direct maritime traffic 
between Antarctica and lower latitude coasts, including potential transport of alien organisms 
through ship hull fouling and larval propagules via ballast water (Lewis et al. 2003, 2005). With 
more than 50,000 tourists visiting the same west Antarctic spots each southern summer (McCarthy 
et al. 2019), and 4,000 scientists working in Antarctica during the summer and 1,000 in winter 
(Hughes and Convey 2014), tourism and science represent the main vectors of sub-Antarctic 
propagule pressure over Antarctic communities (Tavares and De Melo 2004, Meredith and King 
2005, Lee and Chown 2007, Hellmann et al. 2008, Diez and Lovrich 2010, Galera et al. 2018, Avila 
et al. 2020). Consequently, the records of non-native species in Antarctica are increasing in 
number, with potential for establishment now primarily constrained by ecological and physiological 
limitations. As the climate continues to warm, the potential for successful marine invasions into 
Antarctica is projected to increase substantially (Richardson et al. 2000, Hellmann et al. 2008, 
Galera et al. 2018). 
 
The Western Antarctic Peninsula (WAP) is the Antarctic region where the strongest climate 
warming has been recorded in the continent over the last 50 years (Convey et al. 2009, Turner et 
al. 2014, Gutt et al. 2015). Sea-water and air temperatures have increased by +1ºC and +7°C 
respectively in the past half-century (Meredith and King 2005, Schram et al. 2015), with particularly 
pronounced increases in winter air temperatures (King et al. 2003, Vaughan et al. 2003) and 
corresponding reductions in sea-ice cover (Stammerjohn et al. 2012, Ducklow et al. 2013, Turner 
et al. 2016, Schofield et al. 2017). Global climate change may cause typically sub-zero Antarctic 
waters to warm up to (and beyond) zero, potentially providing suitable conditions to the survival of 
non-native species along Antarctic coasts (Hellmann et al. 2008, Galera et al. 2018). 
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In February 2010, an ovigerous female of Halicarcinus planatus (Fabricius, 1775) (Brachyura, 
Hymenosomatidae) was found alive in shallow subtidal water of Deception Island (WAP; Aronson 
et al. 2014). Previous to this record, Stebbing (1914) reported this species in Macdougal Bay, 
South Orkney Islands; however, the reliability of this occurrence has been questioned, considering 
its circum-sub-Antarctic distribution (Thatje and Arntz 2004, Diez and Lovrich 2010, Aronson et al. 
2015). Halicarcinus planatus is the only hymenosomatid crab that inhabits shallow waters (Garth 
1958, Varisco et al. 2016) of southern South America and the sub-Antarctic Falkland/Malvinas, 
Marion, Crozet, Kerguelen and Macquarie Islands (Boschi et al. 1969, Melrose 1975, Richer De 
Forges 1977, Griffiths et al. 2013, Aronson et al. 2014). This small crab (carapace width up to 15 
mm and 20 mm for female and male, respectively, in Punta Arenas; Fig. 3.1) is an opportunistic 
feeder (Boschi et al. 1969) commonly found sheltered under rocks in the intertidal and subtidal 
zones, in between holdfasts of the giant kelp Macrocystis pyrifera or sheltered in hydrozoans and 
mussel colonies (Richer De Forges 1977, Chuang and Ng 1994, Vinuesa and Ferrari 2008). 
 

 
Figure 3.1. Male (a) and female (b) specimens of Halicarcinus planatus (Fabricius, 1775) collected in the 
Magellan Strait. Scale: 1 cm. Photograph credit to C. Ceroni and K. Gérard. 
 
The potential of marine taxa to establish in Antarctic waters is likely heavily constrained by 
ecological and physiological adaptations. H. planatus has a strong dispersal potential mediated by 
an extended planktonic larval stage (Richer De Forges 1977, Diez and Lovrich 2010, Ferrari et al. 
2011), lasting between 45 and 60 days (at temperatures of 11-13°C and 8°C respectively, in the 
laboratory) prior to benthic settlement (Boschi et al. 1969, Diez and Lovrich 2010). This species 
has the physiological capacity to withstand low temperatures. Most decapod taxa exposed to cold 
waters experience increased magnesium ion concentration in the hemolymph ([Mg2+]HL), reducing 
metabolic rates and aerobic activity, potentially leading to death (Frederich et al. 2001, Thatje et al. 
2005a, Aronson et al. 2007, Diez and Lovrich 2010). However, H. planatus has the capacity to 
overcome these issues by reducing [Mg2+]HL (Frederich et al. 2001), providing capacity for survival 
in cold waters like the Kerguelen Islands, where winter seawater temperatures range between +1.1 
and +3.0°C (Féral et al. 2019). A broad analysis by Diez and Lovrich (2010) considering its broad 
sub-Antarctic distribution, high dispersal potential, and ability to live at low temperatures, 
concluded that H. planatus is the most likely future decapod invader of Antarctic shallow waters.  
 
Following the recent discovery of a living specimen of H. planatus in Deception Island, we evaluate 
in this study the capacity of the species to settle and spread in the WAP and adjacent islands by 
combining experimental designs and a niche modelling approach. Correlative niche modelling 
approaches have long proved useful to project the distribution range of species for conservation 
purposes under stable environmental conditions (Richardson and Whittaker 2010). However, in the 
context of climate change, ecophysiological data are required to assess the capacity of organisms 
to survive under changing environmental conditions. In this study, we assessed experimentally the 
physiological capacity of H. planatus to tolerate extreme cold conditions in laboratory, and we 
evaluated the probability of the species to expand its distribution range southward using a Species 
Distribution Model (SDM). The modelled distribution of H. planatus was first projected under 
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current climatic conditions in order to evaluate its distribution range in sub-Antarctic and Antarctic 
regions. Then the species distribution was modelled under the ‘strong mitigation’ and ‘no 
mitigation’ scenarios (RCP 2.6 and RCP 8.5 respectively) for 2050 and 2100 to determine the 
probability that H. planatus will colonize Antarctic shallow-water habitats in the future. RCP 
scenarios assess the evolution of the atmospheric radiative forcing towards 2300, and correspond 
to the level of the projected radiative forcing in 2100, expressed in W/m2 (RCP 2.6 corresponds to 
2.6 W/m2 in 2100; https://sos.noaa.gov/datas ets/catal og/datasets/air?order ing=name). 
 
 
2. MATERIAL AND METHODS 
 
2.1. Experimental design  
 
Ethical Protocol. 
All experiments were performed in compliance with bioethics guidelines established by the 
Comisión Nacional de Ciencia y Tecnología de Chile (CONICYT) and the CICUA from Universidad 
de Chile (Comité Institucional de Cuidado y Uso de Animales). 
 
Thermotolerance experiments. 
One hundred and twenty adult specimens of H. planatus were collected alive in the subtidal zone 
by SCUBA diving at Rinconada Bulnes (RB) (53°35'49.91"S, 70°56'5.19"W, south to Punta 
Arenas, Chile) on April 9, 2018. Individuals were transported to the IDEAL-CENTER laboratory 
(Punta Arenas) and distributed in six containers for the experiment. In each container (Appendix 
3.1), 15 females and five males were isolated individually in a 1-dm3 glass jar of seawater 
containing a 2-cm-long PVC tube (2.5 cm diameter). This unequal sample size between gender 
reflected to the disproportional sex ratio in nature (Vinuesa and Ferrari 2008, Diez et al. 2011), at 
the time of collection, 30% of the crabs were males and 70% were females. A plastic container of 
seawater was used for water replacement. Each jar and container were aerated and temperature 
was controlled by a cooler exchanger (Alpha RA12 and RA8, Lauda- Koenigshofen®, Germany). 
Individuals were acclimated for 15 days with temperature, salinity and photoperiod adjusted to the 
sampling location (9°C, 30 PSU, 11hrs light/13hrs dark, on April 9, 2018). Individuals were fed 
every four days with thawed and chopped mussels and polychaetes. The next day, 30% of 
seawater was removed from each jar, sucking the bottom to eliminate faeces and food debris. 
Recipients were then refilled with clean seawater at the exact same temperature and salinity from 
the plastic seawater container. The latter was then refilled with new seawater, which had the time 
to reach the specific temperature before the next refill. After acclimation, temperature was reduced 
by 0.5°C every day, until it reached a threshold value set at 5°C (control; minimal seawater 
temperature in Punta Arenas), 2°C, 1°C, 0°C, -1°C or -1.8°C, depending on the experiment, which 
was conducted for 90 days following (Vargas-Chacoff et al. 2009). The different temperature 
threshold values used in the experiment correspond to subtidal temperatures recorded in Fildes 
Bay (62°12'11.95''S 58°56'37.00''W; King George Island, South Shetland Islands, WAP), which 
ranged between -1.9ºC and 2.1ºC; summer average 1.2ºC (-0.2ºC to 2.1ºC) and winter average -
1.6ºC (-1.9ºC to -1.1ºC) in 2017 (data from IDEAL-CENTER, published by Cárdenas et al. 2020). 
The 90 days simulate the duration of winter. Survival was checked each morning, and dead 
specimens were removed and preserved in 96% ethanol. 
 
Salinity and larval experiments. 
To assess survival at different salinities, adult individuals of H. planatus were collected at the same 
location (RB) on July 5, 2018, transported to the laboratory and separated in containers. Eighteen 
females and four males were isolated in a recipient of 10-dm3 filled in with seawater. After a 15-day 
acclimation period at the same temperature, salinity and photoperiod as the sampling location 
(5°C, 30 PSU, 8:16 L:D), individuals were submitted to different salinities of 30 PSU (control 1), 23 
PSU, 18 PSU, 11 PSU and 5 PSU for 39 days at 5ºC. In parallel, some individuals submitted to 
natural 18-PSU seawater collected in Skyring Sound (52°33'48.07"S, 71°34'15.54"W) were used 
as a second control. The previously detailed protocol for feeding and cleaning was followed. 
Survival was checked every morning and dead specimens were removed and preserved in 96% 
ethanol. 
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During the salinity experiment, at 30 PSU, some individuals released larvae which were 
subsequently collected and placed in a 1-dm3 glass jar (200 larvae in each) filled with seawater at 
5ºC, 2ºC and 1ºC for 12 days. Crab larvae were fed daily with newly hatched nauplii. Their survival 
was checked on days 1, 3, 6, 8, 10 and 12 and on the cleaning day which consists in the complete 
seawater replacement. Dead individuals were removed and preserved in 96% ethanol. 
 
2.2. Species Distribution Modelling  
 
Species Distribution Models (SDM) are used to project the distribution of organisms based on the 
statistical analysis of spatial relationships between environmental conditions and species records 
(Elith et al. 2006, Peterson 2003, Peterson et al. 2011). SDMs have been widely used in the past 
decades for various applications among including assessing species potential distribution (Reiss et 
al. 2011, Nachtsheim et al. 2017, Guillaumot et al. 2018b) and evaluating potential changes in 
predicted suitable areas under environmental shifts (Berry et al. 2002, Pearson and Dawson 2003, 
Thomas et al. 2004, Engler et al. 2009, Meier et al. 2011). 
 
2.3. Occurrence dataset  
 
The study had a limited geographical extent where occurrence records have been reported 
(Longitude: 70.5°E to 75.5°W, Latitude: 36°S to 70.5°S). Presence and absence data were 
collected during different sampling expeditions carried out between 2015 and 2019 (PROTEKER 1, 
4, 5 and 6, INACH ECA 53, 54 and 55), obtained from collaborators, and retrieved from IOBIS and 
GBIF databases, and from the scientific literature (Appendix 3.2). The georeferencing of each 
occurrence was verified and for this study repeated geographical points were removed; the 
identification of collected specimens was checked following current taxonomy (Boschi 1964). 
Occurrences located north of 34°S in Chile were not considered, since these points were outside 
the distribution range of the species and could not be corroborated. 
 
A DarwinCore-compliant dataset was built using presence and absence data of H. planatus 
occurring on sub-Antarctic islands and South America between 1948 and 2019. Four types of 
records were included: individualized by specimen, by groups, records obtained from bibliographic 
reviews and absence records. The dataset was published in GBIF (López-Farrán et al. 2020). 
 
Distribution models were built using 314 presence records of both adults and larvae, and 57 
absence records (Fig. 3.2, Appendix 3.2). 
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Figure 3.2. Presence (red dots) and absence (yellow dots) records of Halicarcinus planatus in the Southern 
Ocean used in the present study. 

 
2.4. Environmental datasets  
 
The distribution of H. planatus was modelled using 16 environmental parameters as descriptors of 
the crab habitat (Table 3.1). Depth and its derivatives (slope and roughness) were taken from 
GEBCO (Table 3.1). Other descriptors were compiled from the Bio-ORACLE marine layers dataset 
and obtained from pre-processed global ocean re-analyses, combining satellite and in situ 
observations at regular two- and three-dimensional spatial grids (Assis et al. 2018). Minimal, 
maximal and mean values were used as descriptors and combined as suggested in the literature 
(Franklin 2010a, Bucklin et al. 2015). Environmental layers provide average monthly values for the 
present decade [2000-2014] at a spatial resolution of 5 arc-minutes (about 8 x 8 km) and describe 
monthly averages for the period 2000-2014.  
 
Species distribution was also modelled according to two greenhouse gas emission scenarios, RCP 
2.6 and RCP 8.5 scenarios for future decades 2040-2050 and 2090-2100 (IPCC 2014). Maps of 
projected changes in ocean conditions were downloaded from Bio-ORACLE (https://www.bio-
oracle.org/index.php; Table 1). The RCP 2.6 scenario (Appendix 3.3) predicts an increase of mean 
seafloor temperatures of up to +0.7°C along the Argentinian coasts by 2100, +1.3°C in the Weddell 
Sea region, and +1.3°C on the northern Kerguelen Plateau. The RCP 8.5 scenario (Appendix 3.3) 
for decade 2040-2050 predicts that seafloor waters will warm up by +1 °C along the southern 
South American coasts and in the Weddell Sea, and for decade 2090-2100 predicts an increase of 
seafloor mean temperatures of up to +4 °C along the Argentinian coasts, +0.5 to +1 °C in the 
WAP, up to +3 °C on the northern Kerguelen Plateau and a predicted decrease of -0.5 to -1 °C in 
insular regions such as South Georgia and the South Orkney Islands. Salinity is predicted to 
decrease in the sub-Antarctic and Antarctic regions from -0.1 to -0.2 PSU unit for 2050 and 2100 
scenarios respectively, with close tendencies between RCP 2.6 and RCP 8.5. Sea-ice thickness is 
predicted to reduce in some areas from a few centimetres to 0.6 m in RCP 2.6 scenario and up to 
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1.2 m for RCP 8.5 scenario, resulting in an expansion of ice-free areas in the Weddell Sea region 
(Fig. S3.3.A). 
 
Primary production and oceanographic current speed for decades 2040-2050 and 2090-2100 were 
considered unchanged and similar to present-day conditions as there were no predictions available 
for these parameters. 
 
Table 3.1. Environmental descriptors used for modelling and sources. Spatial resolution set at 5 arc minutes 
(around 8 km). 

Descriptors Present  Future  Source  

Depth  - - GEBCO1 

Roughness - - Modified from Depth layer, 
‘raster’ R package function terrain 

Slope  - - Modified from Depth layer, 
‘raster’ R package function terrain 

Seafloor mean temperature 2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle2 

Seafloor min temperature  2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle2 

Seafloor max temperature 2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle2 

Seafloor mean salinity 2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle2 

Seafloor min salinity 2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle2 

Seafloor max salinity 2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle2 

Seafloor mean primary productivity  2000-2014 Same as present conditions  BioOracle2 

Seafloor min primary productivity  2000-2014 Same as present conditions  BioOracle2 

Seafloor max primary productivity  2000-2014 Same as present conditions  BioOracle2 

Ice mean thickness  2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle2 

Ice min thickness  2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle2 

Ice max thickness  2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle2 

Seafloor mean current  2000-2014 Same as present conditions  BioOracle2 

1. https://download.gebco.net/, accessed February 2020 
2. https://www.bio-oracle.org/index.php, accessed February 2020 
 
In order to spot and remove extrapolation errors, the Multivariate Similarity Environmental Estimate 
(MESS, Elith et al. 2010) was computed based on the presence records (Guillaumot et al. 2019, 
2020c - Chapter 2). The MESS provides an estimate of the range of environmental conditions 
under which species occurrences were found and used to calibrate the model. It is then used to 
select areas where model projections will be calculated, dismissing areas where environmental 
conditions are not met, and where the model extrapolates. This was helpful to prevent from 
projecting the model far from the conditions in which the species can be found (noteworthy for 
depth). 
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2.5. Model calibration  
 
Species distribution models were generated using the Boosted Regression Trees (BRT) algorithm 
with the following settings, learning rate 0.005, bag fraction 0.9 and tree complexity 4. These 
settings minimize the model predictive deviance according to the tests generated following Elith et 
al. (2008) (Appendix 3.4). The R package ‘gbm’ was used to run the model (Ridgeway 2006, Elith 
et al. 2008). Models were calibrated using presence and absence data. Modelling performance 
was assessed using a spatial random cross-validation procedure adapted from Guillaumot et al. 
(2019 - Chapter 2) for model calibration using absence records (instead of background records). 
Also considering the limited number of occurrence records available and their patchy distribution at 
broad spatial scale, the occurrence dataset was randomly split into five spatial parts, with 80% 
(four parts) of the dataset used as a training subset and, 20% (one part) used as a test subset 
(Elith et al. 2008). The procedure was repeated 20 times to generate a set of 100 model replicates. 
The proportions of presence and absence data falling into areas predicted as suitable and 
unsuitable for the species distribution was evaluated to assess modelling performance. Modelling 
performance was also assessed using the Area Under the Curve (AUC, Fielding and Bell 1997), 
the True Skill Statistics (TSS, Allouche et al. 2006) and the Biserial Correlation metrics (COR, Elith 
et al. 2006). 
 
2.6. Model outputs  
 
Model predictions were projected on the entire study area (Longitude: -76°E to 178°W, Latitude: -
35°S to -68°S) with a focus on areas where the species is mainly reported presently and where it 
may be expected in the future, in southern South America, the Scotia Arc and the WAP, the WAP 
alone, and the Kerguelen Plateau. 
 
 

3. RESULTS  
 
3.1. Survival rate in the temperature experiment 
 
One individual died the next day after reaching the target temperature in the -1.8°C temperature 
experiment. Survival rate at -1.8°C reached 0% on day 11. Survival reached 0% on day 15 at -1.0 
ºC. Survival rate at 0 ºC was 52% on day 27 and 0% on day 59. Survival rates were 60% at 1°C, 
75% at 2°C and 95% at 5°C on day 90 (Fig. 3.3). 
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Figure 3.3. Survival rates of adults of Halicarcinus planatus at different temperatures over 90 days. 
 
3.2. Survival rate of adults and larvae in the salinity experiment 
 
Survival rate in the salinity experiment at 5 PSU was 0% on day 2. Survival rate at 11 PSU was 0% 
on day 14. Survival rate was 50% on day 36 and 36% on day 39 at 18 PSU. Interestingly, survival 
rate was over 50% (67%) for the experiment at 18 PSU performed with seawater from Skyring 
Sound. Survival rates were 95% on day 39 at 25 PSU and 30 PSU (Fig. 3.4). 
 
Females collected on July 5 were ovigerous and released larvae at the end of August at 5 ºC, 30 
PSU and 25 PSU. The survival rate of larvae at 1 ºC was 62.5% on day 12. Survival rates at 2 ºC 
and 5 ºC were 85% and 92.5%, respectively, on day 12 (Fig. 3.5). 
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Figure 3.4. Survival rates of adults of Halicarcinus planatus at different salinities over 39 days. 
 

 
 

Figure 3.5. Survival rates of larvae of Halicarcinus planatus for 12 days at different temperatures. 
 
3.3. SDM predictions under current environmental conditions [2000-2014] 
 
SDMs showed high AUC scores of 0.947 ± 0.059, TSS of 0.795 ± 0.123 and COR of 0.873 ± 
0.070. Correctly classified test data also reach high scores (89.9 ± 0.3 % for presence test records 
and 92.9 ± 2.2 % for absence test records). The proportion of areas where the model extrapolates 
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is very high (86.3%, Fig. 3.7) highlighting again the relevance of using the MESS method as 
recommended by Guillaumot et al. (2019, 2020c - Chapter 2).  
Mean sea-ice thickness (40.1 ± 3.2%) and seafloor temperatures are the two main drivers of the 
species distribution (mean, maximal, and minimal seafloor temperatures with 37.8 ± 3.7, 7.6 ± 1.9 
and 6.9 ± 2.4% contribution to the model, respectively; Table 3.2), with suitable areas 
corresponding to low sea-ice coverage (<0.1%) and minimum temperatures over +2°C (Fig. 3.6). 
These environmental values match perfectly with the latitudinal partition in the distribution of H. 
planatus, with warmer temperatures (> +2°C) and lower ice coverage (< 0.1%) at the lower 
latitudes associated with most presence records and few absences, and in contrast, colder 
temperatures (< +2°C) and thicker sea ice coverage (> 0.1%) associated with absence records. 
Interestingly, primary production is not a good predictor of the species distribution (<1%). 
As occurrence records are mainly distributed in coastal shallow-water areas, depth does not 
contribute much to the model as no contrast in bathymetry values are present in the dataset. Slope 
and roughness have probably more contrasting values in deep-sea habitats and consequently do 
not significantly contribute to the model (< 0.2%).  
 
Table 3.2. Average contribution values and standard deviation (SD) of the 16 environmental descriptors to 
model predictions. 

Descriptor Mean ± SD (%) Descriptor Mean ± SD (%) 

Mean Ice thickness  40.1 ± 3.2 Mean seafloor primary production 0.8 ± 0.1 

Mean Seafloor temperature  37.8 ± 3.7 Max seafloor primary production 0.5 ± 0.02 

Max Seafloor temperature  7.6 ± 1.9 Depth 0.5 ± 0.05 

Min Seafloor temperature  6.9 ± 2.4 Slope 0.2 ± 0.06 

Min Seafloor salinity  1.4 ± 0.2 Roughness 0.1 ± 0.03 

Mean Seafloor salinity  1.4 ± 0.1 Max Seafloor salinity  0.1 ± 0.03 

Mean Seafloor current speed  1.3 ± 0.2 Max seafloor primary production 0.001 ± 0.001 

Max Ice thickness  1.1 ± 0.1 Min Ice thickness 0 
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Figure 3.6. Partial dependence plots for the four environmental descriptors that contribute the most to the 
model. Scaled density distribution of the marginal effect of the descriptors to the model, data points (grey) 
fitted with a generalized additive model (GAM, blue line).  
 
The extrapolation mask importantly reduces the projected area to shallow habitats (Fig. 3.7). 
Distribution probabilities predicted by the model were the highest in southern South America, New 
Zealand and Australia and most sub-Antarctic Islands (Kerguelen, Heard, Marion, Bouvet and 
South Sandwich Islands; Fig. 3.7A). Interestingly, the model predicts an intermediate probability of 
distribution in South Georgia, for which a single absence was reported (Fig. 3.2), and a high 
probability on Heard Island, where no occurrence data have been reported yet. The WAP is 
predicted as unsuitable to the survival of H. planatus, as in the case of Deception Island (Fig. 
3.7C). 
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Figure 3.7. SDM predictions of presence probability (contained between 0 and 1) for Halicarcinus planatus, 
projected under current environmental conditions [2000-2014] for the entire Southern Ocean (A), and with a 
focus on southern South America, the Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the WAP 
alone (C), and the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which 
predictions are not reliable and were removed from projection (according to the Multivariate Environmental 
Similarity Surface index, MESS). 
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3.4. SDM predictions under future environmental conditions 
 
SDM future predictions under RCP 2.6 in decades 2040-2050 and 2090-2100 predict low and 
intermediate probability of H. planatus to settle in South Georgia, Elephant Island and the WAP 
respectively (Fig. 3.8, 3.9). The RCP 8.5 scenario shows an increase in probability for H. planatus 
to survive in the WAP (Fig. 3.10, 3.11). Models predict higher presence probabilities compared to 
present-day predictions in South Georgia and the South Shetland Islands for both decades 2040-
2050 and 2090-2100, with the highest values predicted in the northern tip of the South Shetland 
Islands. The South Orkneys are not predicted as suitable by 2040-2050, but some patches of 
suitable areas appear by 2090-2100. 
 

 
Figure 3.8. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected 
under environmental conditions IPCC RCP 2.6 climate scenario for 2050 for the entire Southern Ocean (A), 
with focus on southern South America, the Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the 
WAP alone (C), and the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which 
predictions are not reliable and were removed from projection (according to the Multivariate Environmental 
Similarity Surface index, MESS). 
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Figure 3.9. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected 
under environmental conditions IPCC RCP 2.6 climate scenario for 2100 for the entire Southern Ocean (A), 
with focus on southern South America, the Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the 
WAP alone (C), and the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which 
predictions are not reliable and were removed from projection (according to the Multivariate Environmental 
Similarity Surface index, MESS). 
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Figure 3.10. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected 
under environmental conditions IPCC RCP 8.5 climate scenario for 2050 for the entire Southern Ocean (A), 
with focus on southern South America, the Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the 
WAP alone (C), and the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which 
predictions are not reliable and were removed from projection (according to the Multivariate Environmental 
Similarity Surface index, MESS). 
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Figure 3.11. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected 
under environmental conditions IPCC RCP 8.5 climate scenario for 2100 for the entire Southern Ocean (A), 
with focus on southern South America, the Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the 
WAP alone (C), and the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which 
predictions are not reliable and were removed from projection (according to the Multivariate Environmental 
Similarity Surface index, MESS). 
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4. DISCUSSION 
 
This study combines physiological and ecological modelling approaches to highlight the increased 
risk of marine incursions into Antarctic coastal ecosystem over the coming century. Specifically, we 
reveal that the widespread sub-Antarctic decapod H. planatus has significant potential to establish 
in Antarctic waters under realistic climate change scenarios in the coming decades. More broadly, 
this prospect of future marine introductions into Antarctic ecosystems potentially has crucial 
implications for the conservation of endemic Antarctic coastal assemblages. Indeed, over recent 
decades an increasing number of non-native marine taxa has been reported from Antarctic 
ecosystems, including: Rochinia gracilipes in the South Shetland Islands (Griffiths et al. 2013); 
Bugula neritina (Bryozoa) off Dronning Maud Land (East Antarctica) in the 1960s (McCarthy et al. 
2019); Hyas araneus (Decapoda) from Elephant Island in the 1980s (McCarthy et al. 2019); 
Ectopleura crocea (Hydrozoa) off Dronning Maud Land and off Queen Mary Land (East 
Antarctica); and Ciona intestinalis (Ascidiacea) off Dronning Maud Land (East Antarctica) in the 
1990s (McCarthy et al. 2019). Newer records since 2000 include Emerita sp. and Pinnotheres sp. 
(larval stage) in King George Islands in the 2000s (Thatje and Fuentes 2003); H. planatus from 
Deception Island (Aronson et al. 2014); Membranipora membranacea (Bryozoa) and Macrocystis 
pyrifera (Brown algae) from Deception Island (Avila et al. 2020); Durvillaea antarctica (Brown 
Algae) from King George Island (Fraser et al. 2018) and Livingston Island (Avila et al. 2020); and 
Mytilus cf. platensis (Bivalvia) in King George Island (Cárdenas et al. 2020) in the 2010s. 
 
There are potentially several different modes of dispersal for species to reach Antarctica. Fraser et 
al. (2018) and Avila et al. (2020) identified dispersal by rafting on buoyant kelps as a possible 
mechanism for the arrival of non-native species to Antarctica. The former study also included a 
Lagrangian analysis to show that particles released from South Georgia and the Kerguelen Islands 
were able to drift across the Polar Front and reach Antarctic coasts following strong storm events. 
According to this model, storm conditions may enable buoyant kelps to reach the WAP. Such 
conditions may not be rare, as remains of the kelp D. antarctica were observed onshore in the 
WAP in 2019 and 2020 (López-Farrán personal observation). Direct observations (from southern 
New Zealand) of Halicarcinus adult individuals associated with D. antarctica holdfasts, and also in 
detached, drifting D. antarctica at sea (Waters unpublished data) imply rafting as a direct 
mechanism for adults of this decapod taxon into Antarctic waters. Anthropogenic activities may 
also be potential dispersal vectors for this decapod (Avila et al. 2020, Cárdenas et al. 2020 ; e.g. 
via ship hulls, ballast waters, outdoor and personal equipment of tourists or oceanographic 
equipment of scientists). 
 
No established non-native marine species have as yet been observed in Antarctica, suggesting 
that physiological barriers may be key in preventing such invasions (Richardson et al. 2000). In this 
study, we combined two independent approaches to define the environmental and geographical 
boundaries of H. planatus distribution under present and future environmental conditions. SDM 
provides an estimate of a species’ ‘realised niche’ (Hutchinson 1957, Soberón and Peterson 2005, 
Soberón 2010). The thermal limit of H. planatus established in this study, corresponds to the 
coldest conditions of its sub-Antarctic distribution, located in the Kerguelen Islands, where subtidal 
temperature ranges between +1.1 and +3.0 °C during the Austral winter (Richer De Forges 1977, 
Lucas 1980, Féral et al. 2019). This species can therefore potentially endure summer conditions in 
WAP (1ºC and above) in a wide range of salinity (between 18 PSU and 30-33 PSU), but would not 
survive during the cold winter months. Our experimental results may indicate that Antarctic 
seawater temperatures may impede larval development even during the summer, suggesting that 
this species is not able to complete its development in Antarctica under present conditions. In 
parallel, the survival rates among larvae were 65%, 85% and 92% at 1, 2 and 5°C, respectively, 
thus coinciding with adult rates, and confirming the sensibility to low temperature mentioned by 
Pörtner and Farrel (2008), confirming that at that stage larvae and adults can survive during 
Antarctic summer only. 
Halicarcinus planatus has previously been highlighted as a potential invader of Antarctica (Diez 
and Lovrich 2010), because of its potential to live in cold waters, through regulation of [Mg2+]HL. 
However, the present results demonstrated that this physiological characteristic is not sufficient to 
survive the sub-zero temperatures that typify current Antarctic winters (Fig. 3.3). The finding that 
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brachyuran crabs cannot currently establish in Antarctica may also help to explain their extinction 
from shallow Antarctic habitats from the mid-Miocene, ~14 million years ago, when ACC 
intensification led to cooling and the establishment of a perennial sea-ice cover in the region 
(Thatje et al. 2005b, Zachos et al. 2008, Hansen et al. 2013, Crampton et al. 2016). Numerous 
marine lineages including brachyurans, lobsters and sharks disappeared from Antarctic waters, 
along with most teleosteans except for cold-adapted nototheniids and liparids (Aronson and Blake 
2001, Clarke et al. 2004, Aronson et al. 2007). The simultaneous extinction of these diverse taxa 
was presumably driven by their lack of physiological tolerance to cold conditions (Frederich et al. 
2001, Clarke et al. 2004, Aronson et al. 2007). Together, these data may highlight the crucial role 
of thermal barriers in preserving the integrity of Antarctic coastal ecosystem. 
 
Under future warming scenarios with increased seawater temperatures and shortened sea-ice 
seasons, physiological barriers to Antarctic incursions are projected to weaken. For example, near 
Palmer Station the ice season decreased by 92 days from 1979/80 to 2012/13 (Meredith and King 
2005, Ducklow et al. 2013). According to IPCC RCP scenarios the WAP will continue to warm 
(Appendix 3.3), facilitating the establishment of alien species already arriving. Halicarcinus 
planatus is not able to establish in the WAP under present conditions because it is not a suitable 
environment (Table 3.2, Fig. 3.6, 3.7), however this may change in the future. In the South 
Shetland Islands, the worst scenario RCP 8.5 predicts a decrease in ice thickness, the expansion 
of ice-free areas (Appendix 3.3) and a 1 to 2°C increase of seafloor temperature in 2100, leading 
to suitable conditions for H. planatus establishment. SDM predictions indicate the highest suitability 
for H. planatus presence in South Georgia and some places of the WAP (Fig. 3.11B,C). The most 
optimistic climate change scenario RCP 2.6 predicts in 2100 a rise of seafloor water temperature 
of 0.4 ºC in the South Shetland Islands, resulting in intermediate SDM predictions in the WAP and 
South Georgia (Fig. 3.9B,C). Thus, according to these future scenarios, it is just a matter of time 
before the WAP would reach suitable environmental conditions for H. planatus. 
 
Survival is not the only requirement for the establishment of a species in a new area. A successful 
invasion also implies developing, reproducing and then dispersing to new places (Richardson 
2000), and active behaviour to escape, feed and mate (Frederich et al. 2001). According to SDM 
predictions and the thermotolerance experiment, a successful invasion would be possible in an 
environment at +2ºC. Deception Island is the most active volcanic island of the South Shetland 
Islands, where many subtidal hydrothermal points and geothermal activity offer various 
temperatures that could favour the establishment of non-native species (Agusto et al. 2004), 
converting Port Foster into a key location for alien species colonization (Aronson et al. 2014, Avila 
et al. 2020). During three scuba diving campaigns between 2017 and 2019, we searched for H. 
planatus in several places in the WAP, including where it was collected in 2010 - shallow waters off 
Baily Head outside the caldera of Deception Island (Aronson et al. 2014)  - and other active sites 
(within the caldera of Deception Island, in Penguin Island (South Shetland Islands), and Paulet 
Island in the Weddell Sea), or inactive sites like King George Island (South Shetland Islands), 
Doumer Island, Roberts Island, Coppermine Peninsula, Chile Bay in Greenwich Island, among 
other places, and none were found. This absence agrees with our results, but contradicts the 
presence of the ovigerous female in Deception Island (Aronson et al. 2014), which would need at 
least two years to reach pubertal molt, the time required in the Kerguelen Islands (Richer De 
Forges 1977). This female certainly would not have grown up in situ; this place being on the outer 
coast under full Antarctic conditions (without geothermal activity or hydrothermal influence typical 
of the interior of Deception Island). Our results suggest its arrival at the mature stage or maybe the 
ovigerous stage, implying that its development was completed elsewhere. An arrival through 
rafting is also unlikely. Early stages of H. planatus have been observed in floating kelps 
(Macrocystis pyrifera) in the Internal Sea of Chiloé (Hinojosa et al. 2010), and kelps have been 
reported in Deception Island (Avila et al. 2020). However, the journey from the sub-Antarctic area 
to the WAP implies two years across the SO riding kelps, which is highly improbable. This female 
was more probably brought through the Drake by ship during the southern 2009-2010 summer; the 
extraction of an adult crab together with kelps frond and holdfast wrapped around an anchor is 
quite likely (K. Gérard pers. observation). 
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The establishment of non-native marine species in Antarctica is an issue that is becoming more 
pressing. The composition of the community may change dramatically according to which species 
establishes. Antarctica is characterised by the absence of durophagous predators (bony and 
cartilaginous fishes and brachyurans) and short food webs. Therefore, according to Aronson et al. 
(2007), the arrival of a reptant crab may affect Antarctic ecology and the biodiversity of the shallow 
Antarctic. With the arrival of the invasive red king crab Paralithodes camtschaticus in the Barents 
Sea, reductions of diversity and benthic biomass were observed as a result of the predation 
pressure (Falk-Petersen et al. 2011), as well as shifts in interspecific competition (David et al. 
2017, Britton et al. 2018) and infection of native species by parasites associated with invaders 
(Bevins 2019). Although the effects of invasive species are impossible to predict, the return of 
durophagous predators such as decapods, chondrichthyans and teleosteans in Antarctic shallow 
waters has been feared, because they may cause shifts in benthic communities, modifying trophic 
relationships and homogenizing the Antarctic ecosystem (Aronson et al. 2007, 2015). However, H. 
planatus, with its small size, opportunistic feeding behaviour and soft exoskeleton, is definitely not 
a top predator (Boschi et al. 1969). It feeds on phytoplankton remains accumulated at the bottom, 
such as carrion, detritus, mucopolysaccharides from algae and small soft individuals, even of its 
own species (López-Farrán, personal lab. observation). They are prey for fishes (as Harpagifer 
bispinis, Patagonotothen tessellata and Austrolycus depressiceps; Diez et al. 2011), birds, crabs 
and sea stars, among others, and look for refuge among rocks and kelp holdfasts to survive 
(Richer De Forges 1977, Chuang and Ng 1994, Vinuesa and Ferrari 2008). Halicarcinus planatus 
is part of the sub-Antarctic ecosystem, playing a fairly important role in food webs (Richer De 
Forges 1977, Diez et al. 2011). However, as it is not considered as a keystone or a bioengineer 
species, its establishement would not affect the Antarctic ecological community significantly. 
Although the effects of introduced non-native species are impossible to project, H. planatus may 
just incorporate into the already well-represented detritivorous guild of the WAP shallow benthic 
ecosystems. Under warmer conditions (2°C), the increase of seawater temperature would affect 
the WAP ecosystem more intensively than the arrival of a small soft-shelled detritivorous 
brachyuran such as H. planatus (Turner et al. 2014, Ashton et al. 2017, Clark et al. 2019). An 
example of a bioengineer species that would change the intertidal and shallow subtidal in the WAP 
is Mytilus cf. platensis, a non-native species recorded in 2019 (Cárdenas et al. 2020). Mussels 
have the capacity to provide dense three-dimensional matrices (Alvarado and Castilla 1996) that 
persist for long periods, constituting a micro-habitat which reduces desiccation during low tides, 
offering a stress-free space for small fish, invertebrate and alga species (Prado and Castilla 2006).  
 
Antarctic water temperature continues to rise and stirs up the debate on the potential 
establishment of incoming species through transport on ship hulls, in ballast waters or on floating 
kelps (Aronson et al. 2014, Avila et al. 2020). Maritime traffic and tourism have increased the 
footprint and intensity of human activity within Antarctica (Kruczek et al. 2018, Hughes et al. 2019), 
raising the pressure of propagules in marine Antarctica, and probably this will continue to increase 
in next years (Kruczek et al. 2018). However, the involuntary introduction of non-native species to 
the Antarctic region and the movement of species and/or individuals within Antarctica from one 
zone to any other are among the highest priority issues considered for the Committee for 
Environmental Protection (CEP) and the Scientific Committee for Antarctic Research (SCAR). 
Therefore, a strong effort has been invested to improve the ballast water management of ships in 
Antarctica and to develop a strategy for biofouling (MEPC 2011). 
 
Regardless of whether H. planatus individuals are able to reach the WAP by themselves or not, the 
SDM projected under conditions of IPCC RCP 2.6 or 8.5 climate scenarios indicate that individuals 
could survive and settle, either sooner (Fig. 3.8, 3.10) or later (Fig. 3.9, 3.11) in the future 
depending on the warming rapidity. H. planatus is highly abundant around Punta Arenas and 
Ushuaia, two frequently used harbours for the ships with WAP destination (Cárdenas et al. 2020). 
Therefore, if the vectors of H. planatus, ship or rafting, persist (Hinojosa et al. 2010, Aronson et al. 
2014, Avila et al. 2020), some stages (larval, juvenile or adult) may reach the WAP, survive and 
settle. 
 
SDMs are tuned to generate a simple spatial representation of the occurrence of a species based 
on environmental variables (Guisan and Zimmermann 2000 Mateo et al. 2011). Our results rely on 
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models that simplify of complex facts (Mateo et al. 2011), and make assumptions on future 
conditions. Beside temperture, ice thickness and salinity, there are many other variables that may 
vary over time and influence species distribution, such as primary production and ocean currents. 
Although niche models do not include eco-evolutionary parameters such as adaptation, gene flow 
or dispersal capacity, they are widely used to provide an insight into present and future species 
distribution (Thuiller et al. 2004, Titeux et al. 2017). Combining such results with information on 
biological interactions, physiology, anthropic influence on individual introductions or a complete 
evaluation of the dispersal capacities of H. planatus using a spatial and dynamic approach would 
fill knowledge gaps about their real invasive capacities in future environmental conditions. 
 
In conclusion, our results suggest that H. planatus cannot presently establish in WAP waters, but 
this situation has a very strong probability to change under projected climate change in the 21st 
century. While the full consequences of Antarctic warming are yet to be realised, some changes in 
the distribution and composition of communities have already been observed (Turner et al. 2014, 
Ashton et al. 2017, Clark et al. 2019). The key for future studies will be to track species distribution 
and demographic shifts directly as warming continues, to help understand and mitigate marine 
biological impacts on Antarctic coastal ecosystem. 
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APPENDIX 3.1. Survival experiments 
 

 
 

Figure S3.1. Schematic representation of the 6 containers (and their content) for the thermo-tolerance 
experiment on adult specimens. Big containers (light blue) were filled with seawater until 10 cm depth. A cold 
exchanger (top-left metallic curled object) sets the temperature of the whole container. Three water pumps 
(top-left, top-right and bottom-left black symbols) spread the cold water across the whole container. Each of 
the 20 glass jars contained one H. planatus specimen, a refuge (2 cm-long PVC tube) and an aerator. A 
smaller container (dark blue) of 10L with an aerator was used as clean water supply at the corresponding 
temperature.  
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APPENDIX 3.2. Occurrence distribution and sampling effort 

 
 
Figure S3.2. Increase of occurrence records through sampling and human observations through time 
(years). 
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APPENDIX 3.3. IPCC climate scenarios 
 

 
 
Figure S3.3.A. Focus on the Western Antarctic Peninsula and southern South America. Differences in 
seafloor salinities in PSU (a-b), seafloor temperatures in °C (c-d) and ice thickness in metre (e-f); between 
predicted future scenarios RCP 2.6 (mean values) for 2050 and 2100 and present environmental conditions 
(mean maximal values recorded between 2000 and 2014). 

274



INTEGRATED APPROACHES CHAPTER 3. 
 

Article. López-Farrán/Guillaumot et al. (2021). Is the southern crab Halicarcinus planatus (Fabricius, 1775) the next invader of 
Antarctica? Global Change Biology. 

 

 
 
Figure S3.3.B. Focus on the Kerguelen Plateau (Kerguelen and Heard islands). Differences in seafloor 
salinities in PSU (a-b), seafloor temperatures in °C (c-d) and ice thickness in metre (e-f); between predicted 
future scenarios RCP 2.6 (mean values) for 2050 and 2100 and actual environmental conditions (mean 
maximal values recorded between 2000 and 2014).   
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Figure S3.3.C. Focus on the Western Antarctic Peninsula and Southern America. Differences in seafloor 
salinities in PSU (a-b), seafloor temperatures in °C (c-d) and ice thickness in metre (e-f); between predicted 
future scenarios RCP 8.5 (mean values) for 2050 and 2100 and actual environmental conditions (mean 
maximal values recorded between 2000 and 2014). 
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Figure S3.4.D. Focus on the Kerguelen Plateau (Kerguelen and Heard islands). Differences in seafloor 
salinities in PSU (a-b), seafloor temperatures in °C (c-d) and ice thickness in metre (e-f); between predicted 
future scenarios RCP 8.5 (mean values) for 2050 and 2100 and actual environmental conditions (mean 
maximal values recorded between 2000 and 2014).   
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APPENDIX 3.4. BRT calibration 
 

BRTs were generated using the cross-validation procedure of Elith et al. (2008) and the gbm R 
package (Ridgeway et al. 2006) with codes provided in their supplementary material. A maximum 
number of 10,000 trees was set and models were calibrated with the combination of parameters 
that minimises the predictive deviance to the test data while producing the lowest number of trees 
(Fig. S3.4). Parameters finally selected to generate the models are: tree complexity tc = 4, learning 
rate lr = 0.005, and bag fraction bf = 0.9. 
 

 
 
Figure S3.4. Comparison between model predictive deviance using different combinations of parameters. 
The one that reaches the minimal predictive deviance while requiring the lower number of trees to build the 
model is favoured (light blue curve). Tc: tree complexity, lr: learning rate; bf: bag fraction (see Elith et al. 
2008 for details). 
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Abstract 
The Southern Ocean is undergoing rapid environmental changes that are likely to have a 
profound impact on marine life, as organisms are adapted to sub-zero temperatures and 
display specific adaptations to polar conditions. However, species ecological and 
physiological responses to environmental changes remain poorly understood at large 
spatial scale owing to sparse observation data. In this context, correlative ecological niche 
modelling (ENMc) can prove useful. This approach is based on the correlation between 
species occurrences and environmental parameters to predict the potential species 
occupied space. However, this approach suffers from a series of limitations amongst 
which extrapolation and poor transferability performances in space and time. Mechanistic 
ecological niche modelling (ENMm) is a process-based approach that describes species 
functional traits in a dynamic environmental context and can therefore represent a 
complementary tool to understand processes that shape species distribution in a changing 
environment. In this study, we used both ENMc and ENMm projections to model the 
distribution of the Antarctic echinoid Sterechinus neumayeri. Both models were projected 
according to present [2005-2012] and future IPCC scenarios RCP 4.5 and 8.5 for [2050-
2099]. 
ENMc and ENMm projections are congruent and predict suitable current conditions for the 
species on the Antarctic shelf, in the Ross Sea and Prydz Bay areas. Unsuitable 
conditions are predicted in the northern Kerguelen Plateau and South Campbell Plateau 
due to observed lower food availability and higher seawater temperatures compared to 
other areas. In contrast, the two models diverge under future RCP 4.5 and 8.5 scenarios. 
According to ENMm projections, the species would not be able to grow nor reach sexual 
maturity over the entire ocean, whereas the Antarctic shelf is still projected as suitable by 
the ENMc. This study highlights the complementarity and relevance of ENM approaches 
to model large-scale distribution patterns and assess species sensitivity and potential 
response to future environmental conditions.  
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1. INTRODUCTION 
 

Polar regions -and the Southern Ocean in particular- are increasingly affected by climate changes 
(Stammerjohn et al. 2008, 2012, Schofield et al. 2010, Turner et al. 2014). Temperature records 
over the previous decades unambiguously show an overall warming of water masses within the 
Antarctic Circumpolar Current area, from the surface down to 2,000 m depth, at a more rapid pace 
than average shifts measured in the global ocean (Gille 2002, Böning et al. 2008, Giglio and 
Johnson 2017). Contrasts however exist between regions of the Southern Ocean. For instance, a 
1°C rise in sea water temperature has been recorded down to 25 meters in the water column at 
Potter Cove (King George Island, Antarctic Peninsula) over 19 years, with a decrease in sea ice 
extent (Meredith and King 2005). At the same time, sea ice has significantly been increasing in the 
Ross Sea both in concentration, extent (Comiso and Nishio 2008) and duration (Stammerjohn et 
al. 2012). 
 
In the last report (IPCC 2015) of the Intergovernmental Panel on Climate Change (IPCC), CMIP5 
(Coupled Model Intercomparison Project) climate models predict a global warming of the entire 
water column south of the Polar Front by the end of the century under either moderate (RCP 4.5) 
or business-as-usual Representative Concentration Pathway scenarios (RCP 8.5) (Turner et al. 
2009, 2014, Liu and Curry 2010). Associated to this overall warming, changes in the extent and 
duration of the Antarctic seasonal sea ice and water freshening close to glacier melting sources 
are also expected (Meredith and King 2005, Bracegirdle et al. 2008, Stammerjohn et al. 2012). The 
Antarctic sea ice plays a crucial role in ecosystem functioning and regulates the timing of primary 
production (Petrou et al. 2016). Changes in sea ice regimes will impact the dynamics of 
phytoplankton blooms. Primary production constitutes an essential food intake for the benthos 
(Smith et al. 2006, Lohrer et al. 2013, Petrou et al. 2016, Schofield et al. 2017). Therefore, 
changes in phytoplankton dynamics could have a profound effect on the structure and functioning 
of benthic ecosystems.  
The tectonic, climate and glacial history of the Southern Ocean (waters below 60°S in latitude) 
have conditioned the evolution of the Antarctic marine biota through various adaptive radiations, 
speciation, dispersal and extinction events. Associated to the isolation of the Antarctic continent, 
this led to the evolution of an original benthic fauna unparalleled in other parts of the world's ocean 
(Arntz et al. 1997, Clarke et al. 2005, Linse et al. 2006, Barnes and Griffiths 2007, Griffiths et al. 
2009, Pearse et al. 2009, Rogers et al. 2012, David and Saucède 2015). High Antarctic marine 
benthic invertebrates have adapted to sub-zero temperatures and their feeding strategies have 
been conditioned by the seasonality in food availability due to the variation of sea ice dynamics 
(Knox 2006). Antarctic species commonly exhibit low metabolic and growth rates associated with a 
high longevity compared to temperate and tropical species (Pearse and Giese 1966, Brey 1991, 
Nolan and Clarke 1993, Peck and Bullough 1993, Brey et al. 1995, Peck et al. 2016). Most of the 
marine species present on the Antarctic shelf are consequently stenothermic (Peck 2002, 2006) 
and very sensitive to seawater warming and temperature variations (Peck et al. 2009b). 
Temperature changes can affect their physiological performance, phenology and distribution (Peck 
et al. 2009b, Morley et al. 2009a, 2010, 2011). 
Along Antarctic coasts, marine benthic communities are at the southernmost boundary of the 
temperature latitudinal gradient of the marine biome (Peck et al. 2006). Consequently, in a context 
of warming temperatures, species are spatially limited and cannot easily migrate or find refuges to 
survive (Peck and Conway 2000).  
 
Monitoring and predicting the response of Antarctic species to environmental change is 
challenging as gaps still persist in our knowledge of Antarctic marine species distribution (Kaiser et 
al. 2013, Kennicutt et al. 2014, 2019, Gutt et al. 2018), despite the significant efforts led during the 
International Polar Year and the Census of Antarctic Marine Life (Schiaparelli et al. 2013, Fabri-
Ruiz et al. 2019). Data collection and experimental setups are strongly conditioned by financial and 
technological limitations in such a remote and hard-working region (extreme climate conditions, 
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difficult to access) (Gutt et al. 2012). Ecological Niche Modelling (ENM) can represent an 
alternative to overcome this issue.  
 
Correlative Ecological Niche Models (ENMc) can be used to predict species distribution based on 
the statistical relationship between species occurrence records and abiotic conditions (Guisan and 
Thuiller 2005, Pearson 2007, Elith and Leathwick 2009). ENMc provide a spatial representation of 
the species realised niche under the assumption of equilibrium between species distribution and 
the abiotic environment (Guisan and Zimmermann 2000, Pearson and Dawson 2003). In contrast, 
mechanistic Ecological Niche Models (ENMm) use eco-physiological data and life history traits to 
describe organisms' physiology. They can predict species capabilities to survive, grow and 
reproduce under changing environmental conditions and describe a part of the species 
fundamental niche (Brown et al. 2004, Kearney et al. 2008, 2009, Sousa et al. 2008, Cabral and 
Kreft 2012).  
 
ENMc have been widely developed for the study of Antarctic marine organisms such as pelagic 
plankton and fish (Pinkerton et al. 2010, Duhamel et al. 2014), deep-water shrimps (Basher and 
Costello 2016), cirripeds (Gallego et al. 2017), molluscs (Xavier et al. 2015), echinoids (Pierrat et 
al. 2012, Fabri-Ruiz et al. 2019, 2020), or sea stars (Guillaumot et al. 2019b). In contrast, ENMm 
(such as the projection of Dynamic Energy Budget models, DEB, Kooijman 2010) have never been 
developed for Antarctic species case studies so far, due to the more important amount of data 
required to implement the DEB model (eco-physiological data on the different species life stages; 
van der Meer 2006, Kearney and Porter 2009), and the novelty of the DEB projection method 
(Thomas and Bacher 2018). 
Once created, DEB models are published in the Add-my-Pet collection  
(https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/about.html), that already provides a list of 37 
Antarctic marine and terrestrial species. Among them, the most commonly found in communities 
and well-studied Southern Ocean benthic invertebrates are the sea star Odontaster validus 
(Agüera et al. 2015), the bivalve Laternula elliptica (Agüera et al. 2017 - Appendix), the echinoid 
Abatus cordatus (Guillaumot 2019c, Arnould-Pétré et al. 2020 - Chapter 1), the gastropod Nacella 
concinna (Guillaumot 2020b, Guillaumot et al. 2020a - Chapter 1) and the bivalve Adamussium 
colbecki (Guillaumot 2019a). DEB models have also been developed for pelagic species such as 
the Antarctic krill Euphausia superba, the salp Salpa thompsoni (Jager and Ravagnan 2015, 
Henschke et al. 2018) and also for marine mammals such as the elephant seal Mirounga leonina 
(Goedegebuure et al. 2018). 
 
Providing relevant projections of the impact of climate change on biodiversity is crucial to 
conservation biology (McMahon et al. 2004, Gotelli et al. 2009, Gutt et al. 2012, Evans et al. 2015, 
Pertierra et al. 2019). Usually, ENMc and ENMm are independently used to study the relationship 
of a species with its environment (Dormann et al. 2012a). Combining both approaches has only 
recently emerged in link with computing advances (Kearney et al. 2010, Buckley et al. 2011, 
Dormann et al. 2012a, Meineri et al. 2015, Briscoe et al. 2016, Enriquez-Urzelai et al. 2019, 
Pertierra et al. 2019). This combination was proved efficient to improve predictions compared to 
simple models, as ENMm can address the deficits of ENMc by explicitly including processes, 
offering the opportunity to describe, within and without the predicted suitable boundaries of the 
ENMc predictions, the process-based causes of the species distribution (Kearney and Porter 2009, 
Dormann et al. 2012a). It can also provide more insight into drivers that shape species current 
distribution and potential distribution shifts under changing environmental conditions (Kearney and 
Porter 2009, Buckley et al. 2011, Ceia-Hasse et al. 2014, Meineri et al. 2015).  
 
The echinoid Sterechinus neumayeri (Meissner, 1900) is abundant, common and endemic to the 
Antarctic continental shelf. It has widely been studied in various fields such as reproductive 
biology, embryology, toxicology, ecology and physiology (Bosch et al. 1987 - McMurdo; Stanwell-
Smith and Peck 1998 - Signy Island; Marsh et al. 1999, 2001 - McMurdo; Tyler et al. 2000 - 
Rothera; Brockington and Peck 2001 - Rothera; Pace and Manahan 2007 - McMurdo; Moya et al. 
2012 - Bellingshausen Sea; Yu et al. 2013 - McMurdo; Lister et al. 2015 - McMurdo; Alexander et 
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al. 2017 - Peterson Channel). Widely distributed all around Antarctica (Fig. 3.12), its distribution 
ranges from the subtidal zone to 800-m depth with most records found in shallow waters of the 
continental shelf above 400-m depth (David et al. 2005). Recent molecular studies showed that the 
species combines a unique genetic entity all around the Antarctic continent (Díaz et al. 2011, 
2018). It plays an important ecological role in structuring benthic communities. The "grazing" 
pressure exerted by S. neumayeri is believed to control the local distribution of bryozoans and 
spirorbid annelids and could therefore have a negative feedback on the recruitment of some 
sessile species (McClintock 1994, Bowden 2005, Figuerola et al. 2013). Adult specimens are 
omnivorous and mainly feed on bryozoans, foraminifera, polychaetes, diatoms and macro-algae 
(McClintock 1994, Amsler et al. 1999, Jacob et al. 2003, Michel et al. 2016). As in many other 
Antarctic species, the development rate of S. neumayeri is low (Bosch et al. 1987), longevity can 
exceed 40 years (Brey 1991, Brey et al. 1995) and the feeding period is seasonal (Brockington and 
Peck 2001). S.neumayeri is a broadcast spawner, planktonic larvae can drift in the water column 
for more than 8 months before metamorphosis takes place on the seabed (Pearse and Giese 
1966) (see details in Appendix 3.5 and 3.6). The test of adult specimens can reach a final size of 
seven centimeters in diameter (Brey et al. 1995). 

 
Figure 3.12. Sterechinus neumayeri occurrence data extracted from Fabri-Ruiz et al. (2017a). Illustration of 
Sterechinus neumayeri © J-G. Fabri. 
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In the present work, we used both ENMc and ENMm approaches to project the distribution 
response of S. neumayeri to present-day conditions and to future IPCC scenarios of climate 
change RCP 4.5 and RCP 8.5. ENMc were generated to predict species distribution in these 
environmental conditions using the Random Forest algorithm (Breiman 2001). The DEB model 
created for S. neumayeri was spatially projected (i.e. ENMm model) in these three environmental 
scenarios. The results of both ENMc and ENMm models were compared to get more insight into 
the physiological processes and mechanisms that constrain the species distribution, and assess 
model performances and ecological significance under present-day conditions and future 
scenarios of climate change. 
 
2. MATERIAL AND METHODS 
 
2.1. Correlative ecological niche models (ENMc) 
 
Occurrence data and environmental predictors. 
An ENMc was generated using georeferenced presence-only data of S. neumayeri extracted from 
an extensive Southern Ocean echinoid distribution database (Fabri-Ruiz et al. 2017a) that includes 
field samples collected between 1901 and 2015 (Fig. 3.12). Considering the broad spatial scale of 
the analysis and the congruence between historical and present-day presence records (David et 
al. 2005, Fabri-Ruiz et al. 2019), it is here assumed that the species distribution did not 
significantly change over the last century at the scale of the entire Southern Ocean.   
Environmental predictors used in the study were extracted from Fabri-Ruiz et al. (2017b) 
(Appendix 3.7). Predictors were selected based on their ecological relevance for explaining the 
distribution of S. neumayeri (Pierrat et al. 2012, Saucède et al. 2014, Fabri-Ruiz et al. 2019). 
Collinearity between descriptors was tested to limit possible biases in predictor contributions and 
model predictive performances and the presence of spatial autocorrelation (Dormann et al. 2012b). 
For this purpose, we performed a Spearman pairwise correlation test between descriptors that 
were iteratively removed for correlation values of rS > 0.8 (Dormann et al. 2012b). Over 26 possible 
descriptors, 13 were used to run the models. The physical habitat was described using the 
following descriptors: depth, geomorphology, slope, sea surface temperature range, seafloor 
temperature range, mean seafloor temperature and sea ice cover. Summer chlorophyll-a 
concentration was used as a proxy of food resources and habitat chemistry was described based 
on seafloor salinity, seafloor salinity range, sea surface salinity range, sea surface salinity and 
seafloor oxygen (Appendix 3.7). Predictor ‘range’ is here defined as the difference between winter 
and summer mean values.  
 
Future projections were based on IPCC scenarios RCP 4.5 and RCP 8.5 (IPCC 2015, Appendix 
3.8) extracted from the NOAA database (https://www.esrl.noaa.gov/psd/ipcc/ocn/ [accessed on 
2019-12-19]). Future projections were not available for seafloor oxygen conditions under IPCC 
scenarios. The descriptor was therefore considered unchanged (present conditions) in future 
models. 
 
ENMc calibration. 
The distribution of S. neumayeri was modelled using Random Forests algorithm (RF) (Breiman 
2001) computed with the biomod2 R package (Thuiller et al. 2009). In a former study, RF was 
proved relevant to model the distribution of S. neumayeri, models showing high and stable 
predictive performances, and appropriately captured the species environmental envelope (Fabri-
Ruiz et al. 2019). Here, the ENMc was parameterized with 500 classification trees, a tree number 
that minimizes the difference in predictive performance between models. This number was 
selected by testing different values of tree number (50, 100, 500 and 1000). Five node size 
(minimum size of the final node of any tree) and mtry =13 (the number of candidate variables to 
include at each split) was tuned using the ‘tuneRF’ function from the caret package (Kuhn 2012).  
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The occurrence dataset was randomly split into a 70% subset used to train the model and a 30% 
subset to test model predictions. As only presence data were available, pseudo-absences were 
randomly generated following Barbet-Massin et al. (2012) with a number of pseudo-absences 
equal to the number of presences. Fifty pseudo-absence replicates were generated and for each, 
ten evaluation runs were computed. 
 
Spatial sampling bias is generally pervasive in species occurrence data, which were typically not 
evenly sampled across the ocean (De Broyer and Koubbi 2014). This may generate strong spatial 
autocorrelation in model residuals, that is, the fact that close observations in geography will be 
more similar than random (Legendre 1993). The presence of spatial autocorrelation breaks the 
assumption of «independent errors» when significant (Dormann et al. 2007) and leads to unreliable 
model evaluation (Phillips et al. 2009, Kramer-Schadt et al. 2013, Warren et al. 2014).  
To limit this bias, pseudo-absence data were sampled following the same sampling pattern as all 
Antarctic echinoid records available in the Southern Ocean. A Kernel Density Estimation map 
established from all Antarctic echinoid records using Spatial Analyst in ArcGIS v10.2 was used to 
target the pseudo-absence sampling accordingly (Phillips et al. 2009, Guillaumot et al. 2018a - 
Appendix). In total, 50 pseudo-absence replicates were generated and spatial autocorrelation was 
quantified for each pseudo-absence replicate using the Moran I index computed with the ape R 
package (Paradis et al. 2008). Moran I measures the average correlation value of a variable 
between values taken at close localities. It is an easy correlation index to interpret, that varies 
between -1 (negative spatial autocorrelation: values at close localities are opposite compared to 
the mean value) and +1 (positive spatial autocorrelation: values at close localities are similar), with 
0 for an absence of spatial autocorrelation. The significant values of spatial autocorrelation statistic 
are indicated by a p-value. Over the 50 replicates of pseudo-absences, we selected thirty 
replicates showing p > 0.5 (with p, the p-value of the significance of Moran's I), other pseudo-
absences replicates have depicted a p-value less than 0.5. 
 
The wide extent of the study area implies that a wide range of environmental conditions may be 
used to fit the models and leads to overestimate and extrapolate the species modelled niche 
(Giovanelli et al. 2010, Barve et al. 2011, Anderson 2013, Guillaumot et al. 2020c - Chapter 2). To 
limit extrapolation, the modelling area was limited to the maximum species registered depth (800 
m, David et al. 2005) for model calibration and projection. 
 
Model predictive performances were assessed with the TSS metric (True Skill Statistics) (Allouche 
et al. 2006) that is the sum of the sensitivity (proportion of correctly predicted presences) and the 
specificity (proportion of correctly predicted absences) minus one (sensitivity + specificity -1). The 
contribution of environmental predictors to the models was provided as “contribution permutation” 
available under the biomod2 R package (Thuiller et al. 2009). For each predictor, contribution 
permutation was calculated as the Pearson correlation coefficient between model predictions by 
randomly permuting the predictors. For this purpose, we performed ten permutation runs. The 
higher the value, the more the predictor contributes to the model. Response plots were provided to 
show the relationship between habitat suitability for S. neumayeri and environmental predictors. 

 
ENMc projections. 
ENMc projections were generated using three sets of environmental predictors: for the present 
time [2005-2012], for scenario RCP 4.5 [2050-2099] and scenario RCP 8.5 [2050-2099]. Presence 
probability maps of S. neumayeri were produced with values close to zero indicating low presence 
probabilities, and values close to one indicating high presence probabilities.  
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2.2. Mechanistic ecological niche model ENMm (spatial projection of Dynamic Energy Budget 
models) 
 
Model description. 
DEB models provide a mechanistic and quantitative description of the energy fluxes in an 
organism that assimilates and uses energy for its maintenance, growth and reproduction 
throughout its entire life cycle (Kooijman 2010). DEB theory aims at describing how species energy 
fluxes change according to environmental conditions (i.e food and temperature) and can help 
estimate the species fundamental niche (Kearney and Porter 2004). DEB models rely on 
physiological and experimental data/traits (Kearney and Porter 2004, van der Meer 2006). This 
approach models a part of the species fundamental niche. 
 
In DEB models, energy flows between four state variables: reserve (E), structure (V), maturation 
(EH) and reproductive buffer (ER) (Fig. 3.13).  
 

 
Figure 3.13. Conceptual representation of the standard Dynamic Energy Budget model. Arrows show 
energy flows (J.d-1) involved in the dynamics of the four state variables (represented by boxes: reserve (E), 
structure (V), maturation (EH) and reproductive buffer (Er). 𝑝̇𝐴 is the assimilation rate into the reserve, 𝑝̇𝐶 is 
the energy rate leaving the reserve which is divided in two branches: 𝜅. 𝑝̇𝐶  allocated to the somatic 
maintenance ( 𝑝̇𝑀 ) and growth ( 𝑝̇𝐺 ) and the fraction (1 − 𝜅). 𝑝̇𝐶  allocated to maturity maintenance ( 𝑝̇𝐽 ), 
maturation and reproduction (𝑝̇𝑅). 
 

Energy enters into the body by food (X) ingestion at a rate 𝑝̇𝑋.  

 𝑝̇𝑋 = {𝑝̇𝑋𝑚}. 𝑓. 𝐿2  [Eq. 1], with: 

y 𝑓 = 𝑋
𝑋+𝑋𝐾

 corresponding to the food functional response [Eq.2].  
X is the amount of available resources (mg.m-3) and Xk the  half-saturation parameter (mg.m-3) 
 

y�{𝑝̇𝑋𝑚}  =  max. surface area-specific ingestion rate (J.cm-2.d-1) 

y� 𝐿 = individual’s length (in cm) 
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DEB models use a version of a Hollings' type II functional response. The functional response f 
changes when the resource (X) is different. The f value varies between 0 and 1 (van der Meer 
2006).  

Chlorophyll-a concentration was considered as a proxy of food resources for S. neumayeri 
(McClintock 1994, Jacob et al. 2003, Michel et al. 2016). In Cape Evans (McMurdo), Pearse and 
Gierse (1966), based on gut content, has emphasized that food of S. neumayeri could be mainly 
constituted of diatoms which is also highlighted by Brockington et al. (2001).  
 
Sea surface chlorophyll-a concentration data (X in Eq.2) and gut content (f in Eq. 2) were obtained 
from a long-term experiment conducted at Rothera Station (Western Antarctic Peninsula) in 1997-
1998 (Brockington and Peck 2001). A non-linear least squares regression was performed to adjust 
the functional response (Eq. 2) using chlorophyll-a concentration and gut content (Appendix 3.9 for 
more details). The estimation gives a value of 2.95 mg.m-3 for the half-saturation coefficient (Xk).  

After food ingestion, the energy is assimilated and stored into the reserve compartment at a given 
rate expressed in Joules per time (𝑝̇𝐴). The energy leaving the reserve (𝑝̇𝐶) is subdivided according 
to the "kappa-rule" (κ-rule) in between somatic maintenance ( 𝑝̇𝑀 ), growth ( 𝑝̇𝐺 ), maturity 
maintenance (𝑝̇𝐽), maturation, and reproduction (𝑝̇𝑅, proportion 1-κ) (van der Meer 2006, Kooijman 
2010). Maturity does not contribute to body mass. The amount of energy contained in the maturity 
compartment thresholds the different life stages of the species during its life cycle (birth: ability to 
feed, puberty: ability to reproduce) (Jusup et al. 2017, Appendix 3.6). Once puberty is reached, the 
species is considered to be a fully developed adult, and the energy initially allocated to maturation 
begins to be used for reproduction.  

There is no competition between the two branches of the κ-rule, which means that an organism 
can continue to grow and reproduce at the same time. However, energy is still primarily allocated 
to maintenance to prioritize body functions that are essential to the organism survival (i.e. 
maintenance of cell concentration gradients, protein turnover, enzyme functioning, mucus 
production, osmoregulation) and the maintenance of maturity (maintenance of the structure 
complexity). 
Reserve compounds do not need maintenance as energy is continuously used. Growth 
corresponds to the increase of the body structure and maturation is the energy dissipated or 
expended by the body in the increase of maturity.  
 
Estimation of DEB model parameters. 
The DEB model was parameterized using literature data from field and experimental works mainly 
led at McMurdo and Rothera stations, Antarctica (Table 3.3, Appendix 3.10, 3.11).  
Zero-variate data correspond to single measurements at a given time (characterised by specific 
food and temperature conditions) and uni-variate data are relationships between two variables 
(e.g. mass, oxygen consumption etc. against duration, temperature, etc.). From these data, DEB 
parameters were estimated using the covariation method (Lika et al. 2011a, 2011b, Marques et al. 
2018) that aims at looking for the combination of parameters (Table 3.3) that minimizes the 
difference between observations and predictions (i.e. minimizing the loss function). The evaluation 
of the parameter estimation is assessed by calculating the Mean Relative Error (MRE) which can 
vary between 0 and ∞, with MRE=0 meaning a perfect match between observations and 
predictions. For each univariate and zero-variate data the relative error was computed as the ratio 
of the absolute error value to the variate value. 
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Table 3.3. DEB parameter values estimated by the covariation method (Lika et al. 2011a, 2011b, Marques et 
al. 2018)  

DEB parameter Unit Value 

𝑧, zoom factor – 1.364 

𝛿𝑀.𝑒𝑚𝑏, shape coefficient embryos – 0.487 

𝛿𝑀.𝑙𝑟𝑣, shape coefficient larvae – 0.505 

𝛿𝑀, shape coefficient – 0.612 

{𝐹𝑚̇}, max. specific searching rate L.d–1.cm–2 6.5 

𝜅𝑋, digestion efficiency of food to reserve – 0.83 

𝑣̇, energy conductance cm.d–1 0.033 

𝜅, allocation fraction to soma – 0.722 

𝜅𝑅  , reproduction efficiency – 0.95 

[𝑝𝑀]̇ , vol-specific somatic maintenance J.cm–3.d–1 24.42 

𝑘𝐽̇, maturity maintenance rate coefficient d–1 2.5. 10-3 

[𝐸𝐺], specific cost for structure J.cm–3 2350 

𝐸𝐻
𝑏, energy maturity at birth J 4.5. 10-3 

𝐸𝐻
𝑗 , energy maturity at metamorphosis J 0.3 

𝐸𝐻
𝑝, energy maturity at puberty J 2266 

ℎ𝑎̈, Weibull aging acceleration d–2 2. 10-8 

𝑆𝐺 , Gompertz stress coefficient – 1. 10-4 

 

 

The description of methods on temperature sensitivity using Arrhenius temperature and changes in 
body shape using post-metamorphic shape coefficient is provided in Appendix 3.12. All analyses 
were conducted under Matlab 2016 using the DEBtools repository (https://github.com/add-my-
pet/DEBtool_M/). 
 
Rothera data were used to perform sensitivity analysis of DEB model estimation (Appendix 3.13). 
For this purpose, marginal confidence intervals of the estimated parameters were computed to 
provide the uncertainty related to the parameter estimations using the covariation method 
(Stavrakidis-Zachou et al. 2019). The profile method (Marques et al. 2019) was used to build the 
profile of the loss function of each parameter and estimate the level of the loss function that 
corresponds to the uncertainty. A total of 1,000 Monte-Carlo datasets was generated by adding a 
constant centered log-normal scatter to the predictions of each zero and uni-variate data. The 
threshold value of the loss function Fc that is used to assess the uncertainty level was obtained 
from P (X < Fc) = 0.9, with 0.9 being the confidence level initially chosen in the procedure. The 
marginal confidence interval of each parameter is the interval of values for which the loss function 
is below the threshold value Fc. 
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Spatial projection of the DEB model. 
For each pixel of the study area, food (i.e. summer chlorophyll-a concentration converted into f [0-
1] according to the procedure explained above) and temperature were both used as input into the 
DEB model that consequently calculated how energy is used and allocated to the different 
metabolic processes, given these environmental conditions. Projections of the DEB model were 
performed according to present-day conditions [2005-2012] and future RCP 4.5 and RCP 8.5 
scenarios [2050-2099] (environmental layers are displayed on Appendix 3.14). Different 
simulations were carried out for temperature or food changes only. 
 
A first projection provides the maximum size reached by individuals, which gives some information 
about the species ability to survive and to invest energy into growth. It also provides a quantitative 
estimate of the stress experienced by S. neumayeri at large spatial scale, the smaller individuals, 
the less suitable the environment. According to DEB theory, the somatic maintenance has priority 
over reproduction and growth to ensure survival. In order to identify regions where individuals are 
able to survive from an energetic point of view, the somatic maintenance flow 𝑝̇𝑀 was calculated 
according to the given food and temperature conditions and compared to the values of the total 
energy available from the reserve 𝑝̇𝐶 . When somatic maintenance values are higher than the 
energy available in the reserve compartment (𝑝̇𝑀 > 𝑝̇𝐶), it suggests that individuals do not have 
enough energy to maintain their soma and should die (Fig. 3.13). 𝑝̇𝑀 values were also compared to 
the flow 𝜅. 𝑝𝐶̇ , that corresponds to the proportion of the mobilized energy from the reserve that is 
invested into growth and the somatic maintenance. The organism survives if 𝑝̇𝑀 < 𝜅. 𝑝𝐶̇ . On the 
other hand, if 𝑝̇𝑀 < 𝑝̇𝐶 but 𝑝̇𝑀 > 𝜅. 𝑝𝐶̇, the organism will have difficulties to maintain its soma and a 
part of the energy allocated to maturation, reproduction and growth will be redirected to somatic 
maintenance. 

A second projection provides suitable areas for reproduction that is, areas in which environmental 
conditions allow the species to invest energy into growth and reproduction. In DEB theory, the 
organism can reproduce when enough energy has been invested into maturity (𝐸𝐻 > 𝐸𝐻

𝑝), passing 
from the juvenile to the adult life stage (‘puberty’ threshold). To assess whether individuals can 
invest energy into reproduction, we first calculated the size (𝐿𝑝) at which individuals reach puberty 
(Eq. 3) for each pixel of the projection map. The DEB parameter shape coefficient 𝛿𝑀 estimated by 
the model is used to translate physical measurements taken from experimental data to the 
structural length used by the model (Appendix 3.12).  
 

𝐿𝑝 = 𝐿𝑚.𝑙𝑝

𝛿𝑀
  [Eq. 3] 

y�𝐿𝑚: Maximum structural size (cm) 

y�𝑙𝑝: Standardized size at sexual maturity (= puberty) (unitless) 
 

y    𝛿𝑀: Shape coefficient of post-metamorphic individuals (unitless) 
 

Considering the body length at puberty (𝐿𝑝), we then identified if somatic maintenance could be 
ensured at puberty (𝑝̇𝑐 >  𝑝̇𝑀 and 𝜅. 𝑝𝐶̇ >  𝑝̇𝑀). The total cost of maintenance (𝑝̇𝑀 + 𝑝̇𝐽) was also 
compared to the outflow from the reserve 𝑝̇𝐶 , with 𝑝̇𝐶 >  𝑝̇𝑀  + 𝑝̇𝐽  meaning that individuals can 
invest energy into reproduction. All DEB models were computed from R functions available at 
https://github.com/Echinophoria/DEB/. 
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3. RESULTS 
 
3.1. Species distribution models under present-day conditions  
 
Correlative ecological niche model (ENMc). 
For the ENMc generated under present-day environmental conditions, the average predictive 
accuracy of model replicates is good (TSS = 0.64 ± 0.078), which indicates a relatively good match 
between presences and predictions. High species presence probabilities (p > 0.8) are predicted 
south of the Polar Front: over the Antarctic shelf, along the Western Antarctic Peninsula and the 
Scotia Arc region (Fig. 3.14a). The highest values are in the northern tip of the Western Antarctic 
Peninsula, in East Antarctica and in the Ross Sea. Medium values (p ~ 0.5) are mainly located in 
the Amundsen and Bellingshausen seas, the Weddell Sea and in South Georgia. Regions located 
north of 55°S latitude such as the Kerguelen, Magellanic, and Campbell plateaus are mostly 
predicted as unsuitable areas (p < 0.2). Environmental predictors that most contribute to the model 
are seafloor temperature, geomorphology, slope, sea ice cover, and depth, in decreasing order of 
importance (Fig. 3b). Chlorophyll-a concentration was used as an indirect proxy of food supply but 
it does not contribute much to the model (ranked seventh most contributing predictor). Parameters 
such as seafloor oxygen concentration, seafloor temperature range, seafloor salinity, seafloor 
salinity range and sea surface salinity do not contribute much to the model. 
 
Curves of the species response to main environmental predictors allow visualizing conditions that 
are the most suitable for species distribution (Fig. 3.14c). These are shallow areas (< 400 m depth) 
represented in geomorphology as banks, coastal terranes, seamounts and volcanoes (Appendix 
3.16) with positive slope values (> 0.05°), cold water sea floor temperatures (< 1°C), and weak sea 
ice coverage (< 60%) (Fig. 3.14c, Appendix 3.15). The response curve to chlorophyll-a 
concentration values shows little variation, the highest probability values corresponding to low 
chlorophyll-a concentrations (< 2mg/m3, Fig. 3.14c). 
 

291



INTEGRATED APPROACHES CHAPTER 3. 
 

 
Article. Fabri-Ruiz et al. (2021). Using correlative and mechanistic niche models to assess the sensitivity of the Antarctic echinoid 

Sterechinus neumayeri (Meissner, 1900) to climate change. Polar Biology. 

 
Figure 3.14 (a) Spatial projection of the ENMc under present-day conditions in the Southern Ocean with (b) 
the respective contributions of environmental descriptors to the model and (c) the species response 
(distribution probability) to the main contributing predictors (mean seafloor temperature, slope, sea ice 
coverage and depth) and for chlorophyll-a concentration (as a proxy of food supply). No response curve can 
be displayed for geomorphology, which is a categorical variable (see Appendix 3.16). 
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Projection of the Dynamic Energy Budget model (ENMm). 
Experimental data available for the different life stages of S. neumayeri allow a robust prediction 
of DEB parameters (Appendix 3.10, 3.11) with a total goodness of fit resulting in relative low error 
values (MRE = 0.095). For comparison, the values fall within the range of median values usually 
obtained for DEB models (median MRE < 0.1; Marques et al. 2018).  
Most zero-variate and uni-variate data are accurately described by the estimated model 
parameters with low error values. For uni-variate data, the highest relative error values are 
obtained for the C:N mass of fertilized egg (RE = 0.29) and the uni-variate data Ash Free Dry 
Mass (AFDM, g) vs. O2 consumption in μmol/h in summer (RE= 0.27) (Appendix 3.10, 3.11). The 
pre-metamorphic larval size is slightly underestimated in the model but the error is low (RE= 
0.093) (Appendix 3.10). The prediction of the adult size-age relationship also shows a low error 
value (RE= 0.13) (Appendix 3.10) as for the weight-size data (RE= 0.05) (Appendix 3.10). Models 
of winter and summer oxygen consumption ~ weight data have similar patterns (Appendix 3.10) 
with a shift in oxygen consumption values for individuals of 0.2 g (AFDM), which corresponds to a 
transition stage between the embryo and the pre-metamorphic larvae. 
Model validation gives low marginal confidence intervals for each parameter (Appendix 3.13), 
which means that the DEB model is stable. 
 
The predicted suitable areas were projected for the different size classes (Fig. 3.15a). Overall, the 
Antarctic shelf is suitable to the largest individuals (> 5 cm), while the Magellanic Plateau is 
predicted as suitable for individuals < 4 cm. Suitable areas for individuals of the maximum size 
class are restricted to regions of East Antarctica (Prydz Bay, the Amundsen-Bellingshausen and 
the Ross seas) and in the Western Antarctic Peninsula. Areas predicted as unsuitable to the 
species survival are the South Campbell and northern Kerguelen plateaus. Small individuals (< 2 
cm) are predicted to survive at all latitudes south of 45° south, from the Magellanic Plateau to the 
Antarctic shoreline but individuals of 1 to 2 cm are restricted to the Kerguelen Plateau, the Western 
Antarctic Peninsula and some regions in East Antarctica.  
 
Reproduction is possible when individuals grow over 3 cm in diameter, that are individuals able to 
invest energy into reproduction (Fig. 3.15b). Suitable areas for the species to reproduce are mainly 
located on the Magellanic Plateau and East Antarctica, in Prydz Bay and the Amundsen-
Bellingshausen and the Ross seas. The Kerguelen and Campbell plateaus are predicted as 
unsuitable to the species reproduction as hypothetical individuals present in these areas would 
never reach sexual maturity. 
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Figure 3.15. Projections of the mechanistic ecological niche model (ENMm, DEB). (a,c,e) classes of 
maximum size reached by individuals and (b,d,f) suitable areas for reproduction under present-day (a,b), 
RCP 4.5 (c,d) and RCP 8.5 (e,f) scenarios. Future projections were modelled for both food and temperature 
changes.  
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3.2. Projections under IPCC scenarios of climate change  
 
Correlative ecological niche model (ENMc). 
Projections of ENMc of S. neumayeri according to IPCC scenarios RCP 4.5 and RCP 8.5 (Fig. 
3.16) display few changes compared to present-day maps (Fig. 3.14a), and both scenarios give 
very similar results. Areas predicted as suitable under future conditions are mainly predicted in the 
Ross Sea and in East Antarctica. In contrast, the species presence probabilities are low in the 
Bellingshausen and Amundsen seas compared to present-day projections. All areas located north 
of the Polar Front are predicted as unsuitable with very low presence probabilities (p < 0.2). 
 

 
Figure 3.16. Projections of the correlative model under (a) RCP 4.5 (left panel) and (b) RCP 8.5 (right panel) 
scenarios [2050-2099]. 
 

Projection of the mechanistic Ecological Niche Model (ENMm). 
Three projections were performed for each IPCC scenario according to (1) both food availability 
and temperature changes (Fig. 3.15c,d,e,f), (2) temperature only (Fig. 3.17a,b, Fig. 3.18a,b) and 
(3) food availability only (Fig. 3.17c,d, Fig. 3.18c,d). "Food and temperature" and “food only” 
projections give similar model outputs under both IPCC scenarios for maximum size and 
reproduction areas (Fig. 3.15c,d,e,f, Fig. 3.17c,d, Fig. 3.18c,d). The main differences with present-
day models are located on the Antarctic shelf and Magellanic Plateau, which are mostly predicted 
as unsuitable to the species. In contrast “temperature only” projections (Fig. 3.17a,b, Fig. 3.18a,b) 
show no noticeable change with present-day models, and model outputs are identical under both 
IPCC scenarios of climate change.  
 
Projections of "food and temperature" (Fig. 3.15c,e) and “food only” (Fig. 3.18c,d) models predict 
that individuals may reach very small sizes over the entire species distribution range, with a 
maximum size predicted to reach 1 cm only in the Weddell and Ross seas, in East Antarctica and 
on the Kerguelen and Campbell plateaus. Size is also predicted to be small (< 2 cm) along the 
Antarctic Peninsula and on the Magellanic Plateau. As a consequence, reproduction is predicted 
as impossible over the entire species distribution range under future IPCC scenarios, the model 
predicting that no energy would be available for maturity, maintenance and reproduction (Fig. 
3.15d,f, Fig. 3.17c,d). 
 
The "temperature only" model (Fig. 3.18a,b) predicts unsuitable areas for growth over the 
Kerguelen Plateau and some areas in East Antarctica (Prydz Bay excepted). In contrast, large 
individuals (> 4 cm) are predicted in the Bellingshausen-Amundsen seas, the Ross Sea and on the 
Magellanic Plateau. Suitable areas for the species reproduction match with areas where 
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individuals can reach up to 2 cm in size that is, in the Bellingshausen-Amundsen seas, the Ross 
Sea and Prydz Bay areas (Fig. 3.17a,b).  
 

 

 
 
Figure 3.17. Projections of the DEB ENMm under future conditions: predicted suitable areas to the species 
reproduction under IPCC scenarios RCP 4.5 (left panel) and RCP 8.5 (right panel). Predictions were 
modelled for temperature change only (top panels) and food availability change only (bottom panels), 
respectively.
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Figure 3.18. Projections of the DEB ENMm under future conditions: maximum size reached by individuals 
under IPCC scenarios RCP 4.5 (left panel) and RCP 8.5 (right panel). Predictions were modelled 
temperature change only (top panels) and food availability change only (bottom panels), respectively. 

 

4. DISCUSSION 
 
4.1. Model projections and their ecological significance  
 
Present-day projections. 
The ENMc predicts suitable conditions to S. neumayeri in Antarctic cold waters south of the Polar 
Front for the present time period (temperature < +2°C, Fig. 3.13, Appendix 3.15). This is in line 
with our knowledge of the species biogeography, which is endemic to the Antarctic continental 
shelf (Pierrat et al. 2012, Fabri-Ruiz et al. 2019, 2020). Temperature is usually a major driver of 
species distribution as already shown in former studies on Antarctic echinoid species (Saucède et 
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al. 2014, 2017, Guillaumot et al. 2018b, Fabri-Ruiz et al. 2019). Along with geomorphology, slope 
and depth, these variables are related to main habitat characteristics (Appendix 3.16) and are 
considered to have a dominant role in the structure and composition of benthic communities 
(O’Brien et al. 2009, Kaiser et al. 2013, Post et al. 2014).  
In addition to the importance of the environment, the endemicity of Antarctic benthic fauna is also 
believed to be favored by the presence of the Antarctic Circumpolar Current acting as a 
biogeographic barrier to dispersal towards the north (Arntz et al. 1997, Linse et al. 2006, Barnes 
and Griffiths 2007, Griffiths et al. 2009). For instance, 68% of Antarctic echinoids species 
(Saucède et al. 2014), 74% of gastropods (Schiaparelli and Linse 2014) and 57% of bivalves 
(Linse 2014) were reported to be endemic to the Antarctic continental shelf. 
 
Stable DEB models were produced (Appendix 3.13) and projections also show that under present 
conditions, Antarctic regions such as the western part of the Ross Sea, Prydz Bay area, the East 
Antarctic Peninsula, and the Bellingshausen-Amundsen seas are predicted to be suitable for the 
species growth and reproduction (Fig. 3.15). This is line with observed data in these regions where 
S. neumayeri is adapted to low temperatures with display of low aerobic scopes (Peck and 
Conway 2000, Peck 2002, Pörtner and Knust 2007). Previous works focused on the development 
rate of embryos and data were provided on the range of suitable temperatures for planktonic 
larvae to grow. Stanwell-Smith and Peck (1998) showed an increase in development rates 
between -2°C and +2°C, with low and stable rates between +0.2°C and +1.7°C. Development rates 
do not increase for temperatures above +2°C. Bosch et al. (1987) and Pauline et al. (2013) 
reported the onset of larval development between -0.8°C and +0.5°C, and between -1.8°C and -
0.9°C respectively. Kapsenberg and Hofmann (2014) reported a larval upset at -0.7°C. Finally, 
food supply is also reported as sufficient for individuals to survive and allocate energy to 
reproduction (Appendix 3.14). 
In contrast, the Kerguelen Plateau, the Western Antarctic Peninsula, East Antarctica (except Prydz 
Bay) and eastern part of the Ross Sea were modelled as suitable areas but for small individuals 
only (< 2cm). In these regions, the energy available and stored into the reserve compartment (𝑝̇𝑐) 
is only sufficient to ensure somatic maintenance (𝑝̇𝑀) but cannot cover energy costs related to 
growth and/or reproduction (𝑝̇𝑀 > 𝜅. 𝑝̇𝑐) as the somatic maintenance has priority over processes in 
the model. In these regions, the maintenance of species populations would exclusively depend on 
larval supply from other areas. This could be possible via the Antarctic Circumpolar Current that is 
a major vector of larval dispersal in the Southern Ocean (Pearse et al. 2009, Moon et al. 2017, 
González-Wevar et al. 2018a) but this hypothesis remains to be tested and supported by field 
data. 
 
Projections under future scenarios of climate change. 
Future projections of ENMc showed few changes in the species potential distribution over the 
Antarctic shelf. This can be explained by the important contribution of physical descriptors, 
geomorphology, slope and depth to the model, three variables that were considered unchanged in 
a near future in the model, being here considered that predictions of sea level rise should have 
little effect on model outputs at large, ocean-wide scale (De Conto and Pollard 2016). Local shifts 
in the species distribution probabilities are however predicted, compared to the present-day model. 
They are mainly localized in the Bellingshausen-Amundsen seas and are triggered by future 
predictions of temperature rise and reduction in sea ice coverage (Appendix 3.14). A reduction in 
sea ice coverage will have serious impacts on the seasonal production of food supply and will also 
result in a reduction of the protection of shallow benthic organisms from UV-B induced damages 
(Lister et al. 2010). Changes in ice regime are also expected to have multiple impacts in the region 
due to ice shelf melting and collapses. This will result in the freshening of Antarctic waters and 
associated changes in water biogeochemistry, and to an increase in the intensity of iceberg 
scouring on seabeds in shallow water, coastal areas (Meredith and King 2005, Bracegirdle et al. 
2008, Stammerjohn et al. 2012). This phenomenon was shown to have serious effects on the 
structure of benthic communities, (Gutt 2001, Gutt and Starmans 2001, Gutt and Piepenburg 
2003), resulting in a decrease in habitat heterogeneity and local (alpha) diversity (Brown et al. 
2004, Barnes and Souster 2011). 
In projections of the ENMm performed for future conditions, the combined effect of “temperature 
and food change” on individual physiology is predicted to induce important shifts in energy 
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availability (Fig. 3.15c,d,e,f). The allocation of energy into reproduction is predicted to become 
impossible anymore and growth rates are predicted to strongly decrease in the entire Southern 
Ocean. These results suggest a high sensitivity of S. neumayeri to environmental changes under 
RCP 4.5 and 8.5 scenarios. Overall, this also stresses the important impact of food availability for 
benthic species. The seasonal phytoplankton bloom is known to constitute an important source of 
food for many species (Brockington and Peck 2001, Ahn et al. 2003, Jacob et al. 2003, Michel et 
al. 2016, Agüera et al. 2017), and predicted shifts and decrease in this resource might have 
important consequences for marine communities.  
In the ENMm, the future “only temperature change” projection (Fig. 3.17a,b, 3.18a,b) is identical to 
the present-day projection. Medium size (~ 4cm) to large (> 5 cm) individuals as well as suitable 
areas for reproduction are predicted north of the Polar Front for both periods. We could expect a 
synergetic and cumulative effect on growth and reproduction under “temperature and food change” 
(Fig. 3.15) than under “only food change” (Fig. 3.17c,d, Fig. 3.18c,d) or “only temperature change” 
(Fig. 3.17a,b, Fig. 3.18a,b). On the contrary, our results suggest similarities between “only food 
change” and “temperature and food change” projections. Metabolic rates of Antarctic species 
increase with temperature, as does the oxygen consumption. If temperature rises and oxygen 
supply are insufficient to meet the organism metabolic needs, the organism switches to an 
anaerobic metabolism (Peck and Conway 2000, Peck 2002, Pörtner and Knust 2007). The ability 
of individuals to survive depends on their ability to maintain an anaerobic metabolism over time. As 
a result, rising temperatures should lead to changes in the survival and resilience of Antarctic 
marine invertebrates. 
 
S. neumayeri occurs in shallow waters compared to other Sterechinus species (David et al. 2005, 
Díaz et al. 2011). The hypothesis of a possible in-depth migration to colder water areas may be 
considered. In the future, warmer temperatures could occur in deeper areas corresponding to 
optimal temperature window of the species and decrease in sea-ice cover could also lead to higher 
exposure to UV-B in shallow waters. However, studies suggest that it may compete in these 
environments with Sterechinus diadema, its sister species living in deeper habitats (Jacob et al. 
2003, Díaz et al. 2011). Moreover, pressure increase with depth reduces the thermal optimal 
window for the development of eggs and embryos, generating a new physiological stress and 
reducing the species fitness and survival (Tyler et al. 2000). It can therefore be assumed that 
current environmental changes are expected to lead to a potential reduction in the distribution of S. 
neumayeri. 
 
4.2. Model comparison and complementarity  
 
Model comparison. 
Overall, ENMc and ENMm run for present-day conditions provide congruent projections (Fig. 3.14, 
3.15a,b). For the Antarctic shelf, in regions such as the Ross Sea and the Prydz Bay area in 
particular, the ENMm predicts the prevalence of large (> 4cm) and sexually mature individuals and 
the ENMc shows high presence probabilities. These regions are characterised by cold 
temperatures and high food availability (f > 0.5), which are favorable conditions for the species 
development and survival. In contrast, in the northern Kerguelen Plateau and the Campbell 
Plateau, low presence probabilities are modelled by the ENMc due to warm water temperatures (> 
4°C) (Fig. 3.14, Appendix 3.14), and small (< 1 cm) and sexually immature individuals are 
predicted by the ENMm due to low food availability limiting growth and reproduction (Appendix 
3.14). Model projections however do not match for certain areas. For instance, small and sexually 
immature individuals are predicted along the Antarctic Peninsula in the ENMm, whereas the ENMc 
predicts high presence probabilities. In the sub-Antarctic, the ENMm predicts suitable conditions 
for the species growth (> 3cm) and reproduction on the Magellanic Plateau, whereas this area is 
predicted unsuitable in the ENMc. S. neumayeri is known to be endemic to the Antarctic Peninsula 
and East Antarctic shelf (David et al. 2005, Saucède et al. 2014), which suggests that the ENMm 
projection may not predict the species current distribution properly. This can be explained by the 
lack of eco-physiological data documenting the species response to variations in food resources 
and temperature (Bosch et al. 1987, Stanwell-Smith and Peck 1998, Marsh et al. 1999, 2001, Tyler 
et al. 2000, Brockington and Peck 2001, Alexander et al. 2017). On the other hand, temporal 
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scales of physiological experiments are over a limited time frame and different from the temporal 
scale of the used environmental layers, which characterise overall climate conditions.  
 
In ENMm, the Arrhenius temperature is the parameter that determines the metabolic rate as a 
function of temperature variation (Appendix 3.12). In the present model, the Arrhenius temperature 
was estimated based on three measurement points only (Bosch et al. 1987), which may induce a 
lack of precision in the simulation of the species metabolic rate. In addition, lower and upper lethal 
temperatures could not be entered in the model due to the absence of relevant physiological data 
(Appendix 3.10) and the species optimal temperature range could not be determined precisely. As 
a consequence, the modelled physiological performance of the species tends to increase 
constantly with temperature and partly outreaches the biological optimum.  
 
Only data on chlorophyll-a concentration and on the gut content were available to model the 
functional response of S. neumayeri to food resources (McClintock 1994, Jacob et al. 2003, Michel 
et al. 2016). Therefore, in the model, sea surface chlorophyll-a concentration in summer was used 
as a proxy of food resources for S. neumayeri (Appendix 3.9), which is an opportunistic, 
omnivorous feeder. The species does not feed directly on chlorophyll-a but is indirectly dependent 
on this food supply as it feeds on various sources of particulate organic matter deposited on the 
sea floor as well as some suspension feeders (Smith et al. 2006, Lohrer et al. 2013, Petrou et al. 
2016, Schofield et al. 2017). In addition, winter conditions are known as periods of low chlorophyll-
a concentrations in Antarctic surface waters (Thomalla et al. 2011, Deppeler and Davidson 2017), 
which could not be used as input in the model projection due to the lack of satellite data for this 
season. In a DEB model developed for the Antarctic bivalve Laternula elliptica (King and Broderip 
1832), Agüera et al. (2017) - Appendix showed that reserve is seasonal and that low food 
availability generated a 25% loss in the species body mass, also delaying gonadal development. In 
S. neumayeri, post-metamorphic individuals do not feed in winter (Brockington and Peck 2001) but 
no quantitative data on energy allocation are available for this season. Additional works would be 
useful to refine the present DEB model. Complementary data based on new eco-physiological 
experiments describing the effect of different levels of food supplies, abundant, limited, or 
starvation, on the metabolic rate should contribute to improving model accuracy (Sarà et al. 2013, 
Augustine et al. 2014, Hamda et al. 2019).  
 
Complementarity between modelling approaches. 
The two modelling approaches mainly differ in their scientific objectives. To run the ENMc, 13 
abiotic parameters were used to describe part of the species realised niche, the effect of biotic 
interactions and biogeographic constraints also indirectly acting on model outputs through the 
position of observed occurrences and the spatial correlation between abiotic descriptors, biotic 
factors and biogeographic barriers. Projections therefore partly fit to the species realised 
distribution because they partly take into account the multi-dimensions of the species realised 
niche. Parameters of the physical habitat such as geomorphology were shown to have an 
important role in the structuring and composition of Antarctic benthic communities (O’Brien et al. 
2009, Kaiser et al. 2013, Post et al. 2014); such parameters were not considered to run the 
ENMm. In contrast, the ENMm integrates the effect of temperature and food resources on the 
species physiology, focusing on two dimensions of the species fundamental niche, whatever its 
distribution and realised niche. The ENMm provides biological insights for understanding the 
physiological processes that underpin the observed species distribution. 

Major differences between models show up when it comes to run future projections under IPCC 
RCP scenarios. ENMm models predict unsuitable conditions for the species growth and 
reproduction over the entire ocean. In contrast, ENMc models predict the species persistence on 
the Antarctic shelf, the Bellingshausen and Amundsen seas excepted. The ENMc uncertainties 
increase when species’ responses to environmental conditions are extrapolated out of the range of 
values for which the model was trained (Guillaumot et al. 2020c - Chapter 2). This holds 
particularly true for future conditions that do not prevail in present-day environments yet 
(Fitzpatrick and Hargrove 2009, Elith et al. 2010, Jiménez-Valverde et al. 2011, Dormann et al. 
2012a) so that the ENMc may fail to predict as unsuitable environmental conditions that would 
exceed the species physiological tolerance (Anderson 2013). Moreover, without presence-absence 
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or abundance data, habitat suitability is partly biased because all presences are treated equally. 
With presence-absence and if possible, abundance data, more discrimination of suitable habitat is 
gained, which is beneficial when ENMc are used to project species distribution across space and 
time. Adding absence data is known to provide greater ability to delineate species range 
boundaries and produce more accurate models (Howard et al. 2014, Yates et al. 2018). 

Such discrepancies between the two modelling approaches in a context of climate change were 
already highlighted in previous studies. For instance, Buckley et al. (2011) showed that ENMm 
predicted much greater migrations with climate change than ENMc in a study on Lepidotera. 
Further, Kearney et al. (2008) predicted that toad species survival in southern Australia would no 
longer be possible due to global warming according to ENMm, while the ENMc still predicted the 
region as suitable. 
In the present study, while suggesting unrealistic projections on the Magellanic Plateau under 
present-day conditions, future projections of the ENMm are more in line with a majority of works 
suggesting that climate change would induce unsuitable conditions to the survival of Antarctic 
benthic marine ectotherms (Peck et al. 2014, Hawkins et al. 2018). All these results highlight the 
necessary complementarity of ENMc and ENMm approaches for providing independent and 
relevant projections, relying either on biogeographic (ENMc) or physiological (ENMm) data (Morin 
and Thuiller 2009, Kearney et al. 2009). Comparing and combining projections from different 
modelling approaches provide more insight on both species present-day distributions and 
sensitivity to future projections (Guisan and Zimmermann 2000, Elith and Graham 2009, Elith et al. 
2010). 
 
4.3. Future prospects 
 
The present work underlines ENMc as a useful and powerful approach to predict current species 
distribution. ENMc are relatively simple to implement and do not require a deep knowledge of 
population dynamics nor of ecological processes linking organisms to their abiotic environment. 
They can be applied to a large number of taxa (Guisan and Zimmermann 2000, Elith and Graham 
2009, Elith et al. 2010) and are often used upstream to address conservation issues (Evans et al. 
2015). However, ENMc do not imply any inference on causal relationships between species 
distribution and environmental descriptors, and such relationships may also imply indirect 
responses to collinear variables that are not entered in the model (Guisan and Thuiller 2005).  
 
In a context of environmental changes, extrapolation represents a serious limitation to ENMc that 
have limited capacities to transfer model outputs both in space and time (Yates et al. 2018, 
Guillaumot et al. 2020c - Chapter 2). In the present study, such a limitation is highlighted by the 
mismatch between ENMm and ENMc future projections of S. neumayeri. ENMm appear to be 
more informative than the ENMc when it comes to describe species distribution under changing 
environmental conditions. However, few Antarctic species have been the focus of detailed eco-
physiological studies and few mechanistic models were developed, considering the important 
amount of physiological data required. Mechanistic models are therefore generally used when 
species physiology has been relatively well studied (Kearney et al. 2008, Buckley et al. 2011, 
Evans et al. 2015, Thomas and Bacher 2018) and our knowledge of marine species physiology is 
usually biased toward 'model' species that most interest the public and researchers (Clark and May 
2002, Sousa-Silva et al. 2014, Feng and Papeş 2017). Many authors have stressed the 
importance and benefits of considering mechanistic approaches for conservation purposes and the 
implementation of management plans (Cooke and O’Connor 2010, Cooke et al. 2012, 2014, Evans 
et al. 2015). If the integration of biological data into open-access databases has significantly 
increased with multiple initiatives such as TRY, Globtherm, FSRD, Anage, GenBank, add-my-pet 
(De Magalhaes and Costa 2009, Kattge et al. 2011, Karányi et al. 2013, Bennett et al. 2018, 
Marques et al. 2018), there is still no data portal devoted to describing species physiological traits. 
Mining such data through experiments and the literature to perform mechanistic models remains a 
complex, time-consuming task, limiting the integration of ENMm into conservation strategies 
(Evans et al. 2015). In contrast, ENMc are mainly based on occurrence or abundance data that are 
made available through international databases allowing open-access data sharing (Pearse et al. 
2018, Wüest et al. 2020). Common databases would be particularly valuable to address ecological 
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issues linking patterns to processes across spatial and temporal scales, and improving our 
knowledge of ecosystem functioning in a context of climate change (Sutter et al. 2015). 
 
4.4. Conclusion 
 
The present study highlights the complementarity of correlative and mechanistic ENM to predict 
species present distributions and sensitivity to changing environmental conditions. Overall, 
congruent projections were obtained with the two modelling approaches for present-day 
conditions. In contrast, different models were generated under future scenarios. Both models 
agree on the fact that S. neumayeri is circum-polar in distribution with suitable areas restricted to 
the Antarctic continental shelf area (< 400m), with low temperatures (< 2°C), limited sea ice 
concentrations (< 50%) and high food availability (f > 0.7). The ENMm approach provided an 
additional understanding of physiological processes determining the species distribution with 
regards to growth and sexual maturity as a function of temperature and food availability. 
 
The combination of ecological modelling, ENMm and ENMc, with satellite remote sensing and 
climate models provides a valuable approach to study large-scale responses of marine species to 
climate change (Guisan and Thuiller 2005, Pearson 2007, Kearney and Porter 2009, Elith and 
Leathwick 2009, Buckley et al. 2011, Thomas and Bacher 2018, Rodríguez et al. 2019). Multiple 
challenges however remain to be overcome. Eco-physiological data are still needed to produce 
reliable mechanistic DEB models, including data on Arrhenius temperatures. In addition, ENMm do 
not take into account extrinsic factors that shape species distribution such as biogeographic 
barriers, physical habitats and biotic interactions (predation/competition/facilitation). Combining 
correlative and mechanistic models in an integrative approach therefore constitutes a promising 
perspective, which has already been developed for certain terrestrial and marine organisms (Elith 
et al. 2010, Dormann et al. 2012a, Roos et al. 2015, Mathewson et al. 2017, Rodríguez et al. 
2019), and could prove particularly relevant to predict the sensitivity of Antarctic organisms to a 
fast changing environment.  
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APPENDIX 3.5. Life cycle of Sterechinus neumayeri 

 
 
 

 
 

Figure S3.5. Life cycle of Sterechinus neumayeri. Red crossed boxes: inactive functions at different life 
stages; green ticked boxes: active functions at different life stages. From Fabri-Ruiz (2018). 
 
Life cycle of Sterechinus neumayeri starts with sexual mature individuals. The vitellogenic cycle 
lasts from 18 to 24 months, with oocytes starting to develop during the first winter and achieving 
development during the second winter (Brockington et al. 2007). The gametes are then expelled in 
the water column, where fertilization occurs, and the onset of the embryonic stage takes place 
between mid-November and December (Pearse and Giese 1966, Bosch et al. 1987). Pre-
metamorphic larvae appear between late December and early March when they are able to feed 
(i.e. DEB ‘birth’ stage), taking advantage of the summer phytoplankton bloom (Chiantore et al. 
2002). The larval recruitment on the sea bed corresponds to the metamorphosis stage and mainly 
occurs between the end of February and March of the following year (Bosch et al. 1987).  
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APPENDIX 3.6.  

 
 

 
 
Figure S3.6. Reproduction and feeding functions represented over a theoritical life cycle according to DEB 
theory and correspondence with the life cycle of Sterechinus neumayeri. Red crossed boxes: inactive 
functions at different life stages ; green ticked boxes: active functions at different life stages. 
 
In a standard DEB model (Kooijman 2010), the organism is isomorphic, i.e. it maintains the same 
shape throughout its entire life cycle. This life cycle is characterised by three stages that are 
distinguished by their energy flow: the embryo, juvenile and adult (Fig. S3.6). The embryo does not 
assimilate food and relies on reserves. The juvenile stage happens after birth (i.e. according to 
DEB theory, it corresponds to the moment when the organism is able to feed). The transition 
between the embryo and juvenile stages occurs when the individual has reached a particular 
threshold of energy invested into its development.  
At this point, the individual is complex enough to start feeding and uses the energy gained from 
food to continue its development, growth and maintenance but it does not provide energy into 
reproduction. The other stage of the organism development is the transition from the juvenile to the 
adult stage called puberty. After this stage, when the organism becomes an adult, it stops 
allocating energy into its development and redirects the energy towards reproduction and the 
production of gametes.  
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APPENDIX 3.7.  
 

Table S3.7. Environmental descriptors used to build ENMc models for the current period. Predictor ‘range’ is here defined as the difference between winter and 
summer mean values.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

 

 

Environmental data Years Units Sources 

Depth  meter http://topex.ucsd.edu/WWW_html/mar_topo.html 

Geomorphologic features   categorial ATLAS ETOPO2 2014 (Douglass et al. 2014)  

Sea surface salinity 2005-2012 PSS https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 

Sea ice concentration  unitless (Mormède et al. 2014c) 

Sea surface salinity 2005-2012 PSS https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 

Sea surface temperature range 2005-2012 °Celsius degrees https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 

Seafloor oxygen concentration 1955-2012 mL/L https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 

Seafloor salinity 2005-2012 PSS https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 

Seafloor salinity range 2005-2012 PSS https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 

Seafloor temperature 2005-2012 °Celsius degrees https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 

Seafloor temperature range 2005-2012 °Celsius degrees https://www.nodc.noaa.gov/OC5/woa13/woa13data.html 

Slope  unitless  (Mormède et al. 2014c) 

Summer chlorophyll concentration 2002-2009 mg/m3 (Mormède et al. 2014c) 
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APPENDIX 3.8.  
 
Table S3.8. Environmental descriptors used to build the ENMc models for future IPCC scenarios (RCP 4.5 and RCP 8.5). Predictor ‘range’ is here defined as the 
difference between winter and summer mean values.  
 

Environmental data Years RCP Units Sources 

Sea ice concentration 2050-2099 RCP 4.5 / RCP 8.5  https://www.esrl.noaa.gov/psd/ipcc/ocn 

Sea surface salinity  2050-2099 RCP 4.5 / RCP 8.5 PSS https://www.esrl.noaa.gov/psd/ipcc/ocn 

Sea surface salinity range 2050-2099 RCP 4.5 / RCP 8.5 PSS https://www.esrl.noaa.gov/psd/ipcc/ocn 

Sea surface temperature range 2050-2099 RCP 4.5 / RCP 8.5 Celsius degrees https://www.esrl.noaa.gov/psd/ipcc/ocn 

Seafloor salinity 2050-2099 RCP 4.5 / RCP 8.5 PSS https://www.esrl.noaa.gov/psd/ipcc/ocn 

Seafloor salinity range 2050-2099 RCP 4.5 / RCP 8.5 PSS https://www.esrl.noaa.gov/psd/ipcc/ocn 

Seafloor temperature range 2050-2099 RCP 4.5 / RCP 8.5 Celsius degrees https://www.esrl.noaa.gov/psd/ipcc/ocn 

Summer chlorophyll concentration 2050-2099 RCP 4.5 / RCP 8.5 mg/m3 https://www.esrl.noaa.gov/psd/ipcc/ocn 
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APPENDIX 3.9.  

 

 
 

Figure S3.9. Observed values (circles) and projection (line), based on a type II feeding functional response 
f = X

X+XK
. The estimated value for the half-saturation parameter Xk is the food density at which feeding rate is 

half of its maximum value, here Xk 2.95 mg.m-3. 
 
 
Data for sea surface chlorophyll-a concentration and gut content were extracted from Brockington 
and Peck (2001). Chlorophyll-a concentration and gut content data do not have the same time 
interval. These data were not calibrated to the same time interval. Data were splined according to 
time to get regular time intervals. Then, we used a moving average, which estimates the trend-
cycle at time t by averaging values within k periods of t. This method removes transient fluctuations 
and keeps an overall trend. The same computation has been done for temperature data according 
to time. These analyses were performed using the castr package (https://github.com/jiho/castr). 
Data for the gut content were corrected by temperature and scaled to values comprised between 0 
and 1. A non-linear least squares regression model was then applied to adjust the functional 
response.  
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 APPENDIX 3.10.  

 
 

Figure S3.10. DEB model fit (blue curves) and experimental values (red dots) for univariate data: (a) size of 
larvae as a function of time since fertilization (Marsh et al. 1999), (b) test diameter according to age since 
metamorphosis (Brey et al. 1995), c) adult wet weight according to test diameter (S. Morley, com. pers), (d) 
summer oxygen consumption according to weight (AFDM: Ash Free Dry Mass) for post-metamorphic 
individuals (Souster et al. 2018), (e) winter oxygen consumption according to weight (AFDM) for post-
metamorphic individuals (Souster et al. 2018).  
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APPENDIX 3.11.  
 

Table S3.11. Experimental and predicted DEB modeled values for zero- and univariate data. 
 

Zero-Variate data Observation Prediction  Relative Error Source 

Age at birth at -1.35°C (day) 

Age at birth at at 0°C (day) 

Time since birth at metamorphosis (day) 

Life span (day) 

Length from aboral apex to tips of postoral arms of echinoplutei (cm) 

Length of the pluteus before metamorphosis (cm) 

Diameter of test at puberty (cm) 

Ultimate diameter of test (cm) 

C :N mass of fertilised egg (g) 

C :N mass of pluteus larva (g) 

Wet weight adult including gonads (g) 

Gonadal somatic index (g) 

21 

17 

103 

1.46.10-4 

0.035 

0.12 

2.04 

7.02 

4.49.10-7 

5.21.10-7 

129 

0.1 

20.53 

17.66 

92.64 

1.46.10-4 

0.035 

0.13 

2.06 

7.17 

5.78.10-7 

4.05.10-7 

130.6 

0.096 

0.023 

0.039 

0.10 

8.64.10-9 

7.59.10-9 

0.11 

9. 10-3 

0.02 

0.29 

0.22 

0.012 

0.042 

Bosch et al. 1987  

Bosch et al. 1987 

Bosch et al. 1987 

Bosch et al. 1987 

Bosch et al. 1987 

Bosch et al. 1987 

Guessed * 

Brey et al. 1995 

Marsh et al. 1999 

Marsh et al. 1999 

Pearse and Giese 1966 

Pearse and Giese 1966 

Univariate data   

Time since fertilization (day) vs. length of echinoplutei (mm) 

Age since metamorphosis day) vs. test diameter (mm) 

Test diameter (mm) vs. wet weight (g) 

Ash Free Dry Mass (g) vs. O2 consumption in μmol/h in winter 

Ash Free Dry Mass (g) vs. O2 consumption in μmol/h in summer 

See Figure S3.10 

 

0.093 

0.13 

0.053 

0.21 

0.27 

Marsh et al. 1999 

Pearse and Giese 1966 

British Antarctic Survey unpublished data  

Souster et al. 2018 

Souster et al. 2018 

 

* based on same relative length compared to Echinus affinis (https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/entries_web/Gracilechinus_affinis/Gracilechinus_affinis_res.html)
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APPENDIX 3.12. Temperature sensitivity and post-metamorphic shape coefficient 
 

1) Temperature sensitivity 
 

a. The Arrhenius temperature 
The Arrhenius temperature (TA) provides information on metabolic rate variations as a function of 
temperature and can be calculated from observed, experimental values at different temperatures. In this 
study, TA was estimated using embryonic development time data at different temperatures (Bosch et al. 
1987). Values were standardized for a value of 1 at a reference temperature of 273 K (0°C). The Arrhenius 
temperature was then obtained by fitting the Arrhenius function (Eq. A) to the scaled values using a linear 
least squares regression (Agüera et al. 2015, 2017) with the R package minpack.lm (Elzhov et al. 2013). 
 

𝑘̇(𝑇) = 𝑘̇(𝑇1). 𝑒{𝑇𝐴
𝑇1

−𝑇𝐴
𝑇 }     (A) 

𝑘̇(𝑇) : Rate at temperature T(K) 

𝑘̇(𝑇1) : Rate at reference temperature (T1) 

𝑇𝐴 : Arrhenius temperature (K) 

𝑇1: Reference temperature (K) 

 
b. Thermo-tolerance window 

When data are sufficiently detailed, the DEB model can also include the description of the influence of body 
temperature on physiological rates over the temperature range in which enzymes are assumed to be active 
and delimited by the parameters TL  and TH  (Eq. B). Above and below the thermo-tolerance window 
enzymes become inactive, leading to a decline in physiological rates, which can be traced by the parameters 
TAL  and TAH , respectively. These five parameters fully define an organism thermal performance curve, in 
accordance to the formula: 
 

        (B) 

where 𝑘(𝑇)̇   is the value of the physiological rate at a given body temperature T  and  is the known value 
of the metabolic rate at a reference temperature T1.  
 

 
2)  Post-metamorphic shape coefficient 

 

From birth to metamorphosis, S. neumayeri larvae grow exponentially, conducting to an increase of the 
assimilation flux 𝑝̇𝐴 (energy flow from assimilated food into the reserve) and mobilization 𝑝̇𝐶 (outflow from the 
reserve) (Kooijman 2010). In addition, during recruitment (planktonic larval stage to benthic juvenile) (Fig. 
S3.5, Fig. S3.6), individuals undergo metamorphosis that is, a change in body shape. These changes during 
the life cycle are included in the DEB model, using the shape parameter 𝛿𝑀.  
 

The relation between size (L) and the volume of the structure (V) is provided by the following relation: 
𝑉 = 𝛿𝑀. 𝐿3 (C) 

The shape coefficient δM is used to convert size into the structural volume (V, i.e the cube of volumetric 
length). DEB theory partitions the body mass into the abstract quantities of structural volume V and the 
reserve E. The structure is the ‘permanent’ biomass such as proteins and membranes proportional to 
structural volume. The structural volume is the key feature that allows body size to be included in the 
complete budget of the organism. Several shape factors were used, δM.larv for the pre-metamorphic larva and 
δM for the post-metamorphic larva and the adult. An acceleration factor sM allows taking into account 
changes in the parameters related to the exponential growth period between birth and metamorphosis. 
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APPENDIX 3.13. 
 

Table S3.13. Parameter estimate of the DEB model and marginal confidence intervals obtained with the 
profile method. Threshold value Fc: 0.088. 
 

Parameter Estimate Marginal confidence interval 
𝑣̇ 0.03301 [0.0183 ; 0.0454] 
N 0.7221 [0.596; 0.805] 

[𝑝̇M] 24.42 [18.69; 42.09] 
EH

b 0.004515 [0.0023; 0.0078] 
EH

j 0.3 [0.086 ; 0.665] 
EH

p 2266 [526.55; 8386.15] 
z 1.364 [1.11; 1.76] 
GM 0.612 [0.486; 0.687] 
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APPENDIX 3.14. 

 

 
 
Figure S3.14. Current and future environmental layers (food and temperature) used to project DEB model 
outputs. 
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APPENDIX 3.15. 
 

 

 
 
Figure S3.15. Response curve of all predictors used in the correlative niche model approach. The response 
curves show the relationship between the distribution probability for a species and each environmental 
variable.  
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APPENDIX 3.16. 
 

 

 

Figure S3.16. Presence probabilities for each geomorphological category in the ENMc. 

Geomorphological 
features 

Corresponding 
numeros code 

Bank 1 
Canyon 2 
Coastal (Rugged) Terrane 3 
Cross Shelf Valley 4 
Island Arc       5 
Lower Slope 6 
Margin Ridges          7 
Marginal Plateau 8 
Ocean Trough              9 
Plateau 10 
Plateau Slope   11 
Ridge 12 
Rugose Ocean Floor 13 
Seamount Ridges 14 
Seamount    15 
Shelf Deeps-Depressions 16 
Structural Slope Region 17 
Trench 18 
Trough Mouth Fans 19 
Upper Slope    20 
Volcano 21 
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Abstract 
Ecological modelling is widely used in the various fields of ecology but models usually 
require large datasets, a serious limitation to the approach for application to organisms of 
remote and little studied regions such as polar seas. Correlative and mechanistic modelling 
approaches are usually used independently in distinct studies. Using both approaches in 
integrative, hybrid models however can help better estimate the species realised niche, as 
mechanistic and correlative models complement each other very well, giving more insights 
into species potential response to fast changing environmental conditions. In this study, we 
implemented for the first time an hybrid, correlative and mechanistic model to predict the 
response of a marine invertebrate endemic to the Southern Ocean, the sea urchin Abatus 
cordatus (Verrill, 1876). We compared the respective performance of simple and hybrid 
models by analyzing the effect of seasonality on species distribution, a key feature of 
ecosystem functioning at high latitudes. Higher performances were obtained for the 
‘integrated Bayesian’ approach compared to simple mechanistic and correlative models. 
The hybrid model more precisely predicts the effect of seasonality on habitat suitability. 
Such results are promising and show that hybrid approaches can be applied to case 
studies for which limited datasets are available. 

 
Keywords  
Kerguelen Islands, sea urchin species, Species Distribution Modelling, integrated approaches, 
Bayesian inference 
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1. INTRODUCTION 
For the last two decades, an ever-growing number of ecological studies have used modelling 
approaches to highlight the main ecological drivers of species distribution and evaluate the 
response of species to changing environmental conditions and anthropogenic stressors (Elith et al. 
2006, Elith and Leathwick 2009, Franklin 2010b). The overall tendency is to use these models 
across groups of organisms and regions (Gutt et al. 2012) to inform stakeholders and conservation 
policies (Thuiller et al. 2013, Mouquet et al. 2015, Singer et al. 2016). 
Current developments are focused on the integration of distinct modelling methods (i.e. hybrid 
modelling) that has long been considered as a way to improve the understanding of ecosystem 
functioning (Gutt et al. 2012, Dormann et al. 2018, Guillaumot et al. 2018b, Benito Garzón et al. 
2019). For instance, combining correlative methods, which rely on spatial relationship between 
species occurrence records and the environment (e.g. Species Distribution Models, SDMs), with 
ecophysiological approaches (e.g. mechanistic models) was shown to improve the modelling 
performance compared to single correlative methods (Elith et al. 2010, Singer et al. 2016, Pertierra 
et al. 2019, Schouten et al. 2020). Correlative models statistically assess the main drivers of 
species distribution (Elith et al. 2006, Peterson 2011), and are used to estimate the realised 
ecological niche (Elith and Leathwick 2009, Soberón 2010). As a consequence, SDMs perform 
well when species distribution and the environment are in equilibrium, in static systems, a 
prerequisite that is not verified in highly dynamic ecosystems subject to environmental changes or 
in studies addressing environmental rapid changes (Loehle and Leblanc 1996, Schouten et al. 
2020, Fabri-Ruiz et al. in press - Chapter  3). 
Mechanistic models can evaluate the effect of environmental conditions on the physiological 
performance of individuals or populations (Kearney and Porter 2009). Such models typically 
require a greater level of biological knowledge, but, in contrast to static, correlative approaches, 
they explicitly include dynamic processes, offering the opportunity to describe process-based 
causes of species distribution change (Kearney and Porter 2009, Dormann et al. 2012a), even in 
non-equilibrium systems (Kearney et al. 2008, Keith et al. 2008). They include a set of 
mathematical functions relating to species’ functional traits (morphology, behaviour, physiology) or 
associated life history (development, growth, reproduction) and then evaluate the effect of 
environmental drivers on species physiological traits (Dormann et al. 2012a, Kearney and Porter 
2009), which leads to estimating the species’ fundamental niche (Kearney and Porter 2009).  
 
Several methods have been developed to integrate correlative and mechanistic models. For 
instance, mechanistic models can be spatially-projected and used as a input predictor in SDMs 
(Elith et al. 2010, Buckley et al. 2011, Mathewson et al. 2017, Rodríguez et al. 2019). Other close 
approaches consist in defining absence records from the mechanistic model and use the set of 
presence-absence records to implement SDMs (Elith et al. 2010, Feng and Papes 2017) or to fine-
tune thresholds for lethal conditions from the mechanistic approach and associate uncertainty 
estimates to SDM predictions accordingly (Woodin et al. 2013). Bayesian inference methods have 
also been widely used (Ellison 2004, Brewer et al. 2016, Talluto et al. 2016, Feng et al. 2020, 
Gamliel et al. 2020), following the development and better accessibility of high-performance 
computers and programs (Van Dongen 2006). They were proved interesting to optimize the 
estimation of species habitat suitability (Zurell et al. 2016), to better assess the effect of 
seasonality in predictions and highlight critical tipping points in changing ecosystems (Oberle et al. 
2013, Zhao et al. 2019) providing accurate uncertainty estimates (Zhao et al. 2019). Bayesian 
methods combine the information of a prior belief (i.e. the prior distribution, for instance our 
knowledge of species physiology) with new information (i.e. the distribution probabilities) to 
produce a posterior estimation (Van Dongen 2006). These two steps therefore update the 
probability of the hypothetical distribution as more evidence or information on species physiology is 
available (Van Dongen 2006).  
 
Many regions of the Southern Ocean, either in Antarctic or sub-Antarctic zones (Convey et al. 
2009, Féral et al. 2019), are currently exposed to fast environmental changes (Cook et al. 2016, 
Turner et al. 2016, Convey and Peck 2019), including increasing seawater temperatures and 
shifting seasonality (Bers et al. 2013, Schofield et al. 2017, Henley et al. 2019), glacier melting, 
changing wind speed (Meredith and King 2005, Cook et al. 2016), which in turn have an impact on 
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food chains, organic matter production and processes of the bentho-pelagic coupling (see Convey 
and Peck 2019, Henley et al. 2019 as reviews). Climate changes together with the ever-increasing 
maritime traffic (i.e. fisheries, tourism and science) boost the introduction of non-native species in 
Southern Ocean coastal areas, a major threat to polar ecosystems usually characterised by high 
levels of endemic species (McCarthy et al. 2019, Hughes et al. 2020). These combined issues 
strongly urge the need to fill the gaps in our knowledge of ecological processes and ecosystem 
dynamics (Kennicutt et al. 2015).   
Due to remoteness and harsh weather conditions, above all in winter, access to the field and data 
collection in the Southern Ocean are strongly limited (De Broyer et al. 2014), resulting in missing 
data, spatial and temporal aggregations of observations and difficulties to conduct biological 
experiments (see Guillaumot et al. in press - Chapter 2 as a review). However, research on marine 
life of the Southern Ocean has recently benefited from a significant coordinated and international 
effort with the emergence of oceanographic campaigns and international scientific programs such 
as the International Polar Year (IPY 2007-2008), the Census of Antarctic Marine Life (CAML 2005-
2010) or the Scientific Committee on Antarctic Research, Evolution and Biodiversity in Antarctica 
(SCAR-EBA 2006-2013) (non-exhaustive list) (Schiaparelli et al. 2013, De Broyer et al. 2014). 
Several studies have used correlative approaches to characterise the relationship between 
environmental conditions and the distribution of Southern Ocean species (Pinkerton et al. 2010, 
Bombosch et al. 2014, Freer 2018, Fabri-Ruiz et al. 2019) or used physiological models to 
evaluate the influence of environmental conditions on organisms’ physiological performances 
(Agüera et al. 2015, Jager and Ravagnan 2015, Agüera et al. 2017) and population dynamics 
(Groeneveld et al. 2015, Goedegebuure et al. 2018, Arnould-Pétré et al. 2020 - Chapter 1). 
However, surprisingly, no study has used integrated modelling approaches despite their 
considerable potential for analyzing dynamic, complex and ill-known systems. 
 
In this study, we used data from on-going research on a sea urchin species, Abatus cordatus 
(Verrill 1876), in the Golfe du Morbihan, the most visited area of the otherwise highly remote 
archipelago of the Kerguelen Islands (French sub-Antarctic islands). We tested the performance of 
integrated modelling approaches to deal with limited datasets for a study on a Southern Ocean 
marine species and compare model outputs with other ‘simple’ correlative (SDM) and mechanistic 
(Dynamic Energy Budgets) approaches. In addition, we integrate the effect of seasonality, a 
fundamental feature of ecosystem functioning in high latitudes and a key to understand the 
functioning of marine life in the Southern Ocean. Dealing with seasonality was here chosen to test 
the performance of different modelling procedures in a dynamic context. 
 
2. MATERIAL AND METHODS 
 
2.1. Study species 
 
The heart urchin Abatus cordatus (Verrill, 1876) is a shallow deposit-feeder and sediment 
swallower restrained to soft sediment habitats (De Ridder and Lawrence 1982, Poulin 1996) (Fig. 
3.19A,B). Endemic to the Kerguelen Plateau, the species is distributed from shallow subtidal (< 2 
m depth) to deep shelf areas exceeding 500 m depth (Poulin 1996). In coastal zones, populations 
of A. cordatus can locally reach densities of up to 280 individuals per square meter (Magniez 1980, 
Poulin 1996). High population densities along with the species endemicity were interpreted as a 
consequence of the species reproduction strategy and direct development that includes no 
dispersal larval stage (Mespoulhé 1992, Poulin and Féral 1995). Females brood their young on the 
aboral side of the test, inside four brood chambers formed by the sunken paired ambulacra, until 
juveniles exit the pouch and reach the sea bottom at proximity of their mothers (Fig. 3.19B, 
Magniez 1983). Depth, temperature and primary production were identified as major environmental 
drivers of the distribution of A. cordatus (Poulin 1996). In shallow-water areas, the species was 
shown to be tolerant to environmental stressors induced by high variations in salinity, as a result of 
fresh-water runoffs (Guille and Lasserre 1979), and sudden temperature shifts including heat 
waves in the austral summer (Motreuil et al. 2018).  
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2.2. Study area, environmental predictors and seasonality 
 
The study area focusses on the Golfe du Morbihan, a 700 km2 silled basin 50 m deep on average, 
located in the east of the Kerguelen Islands (sub-Antarctic) (Fig. 3.19C, Fig.3.20A). Since the 
1960s, the area has been recurrently studied by marine ecologists who conducted research 
programs in biological oceanography including studies of micro- and macrobenthic communities 
(Delille et al. 1996, Poulin 1996). 
In addition to depth, sea surface temperature and primary production were used as environmental 
predictors of the distribution of A. cordatus. Seasonality was assessed by focusing on 
environmental contrasts between the austral summer and the austral winter, here assessed by 
differences in monthly values between February (summer) and August (winter), the warmest and 
coldest months (http://www.proteker.net/) associated to the highest and the lowest values of 
primary production, respectively (Delille et al. 1996).  
 
Bathymetry.  
The bathymetric chart was obtained from Beaman and O’Brien (2011), available at 
http://www.deepreef.org/publications/reports/99-kergdem.html (Fig. 3.20A), with a resolution of 
0.001*0.001 arc-degree grid-cell pixels (equivalent to about 100 m). It was updated from Sexton 
(2005) using new single beam echosounder data from commercial fishing and research voyages, 
and some new multibeam swath bathymetry data. Satellite-derived datasets were used to provide 
island topography and to fill in no data areas (see Beaman and O'Brien 2011). 
 
Chlorophyll-a concentration.  
As a deposit-feeder, A. cordatus feeds upon organic grain coatings and particles present in 
sediments (Pascal et al. in press). Sea water chlorophyll-a concentration was used as a proxy of 
food availability, because data on the exact organic content of sediments is not available at the 
scale of the entire bay (Arnould-Pétré et al. 2020 - Chapter 1). Values were retrieved using 
imagery from Operational Land Imager (OLI) and Thermal InfraRed Sensor (TIRS) of Landsat 8 
obtained from USGS (United States Geological Survey, 2019, https://earthexplorer.usgs.gov/, 
accessed on May 2020). Chlorophyll-a concentration was derived from OLI data using the Case-2 
Regional Coast Colour processor (C2RCC) (Brockmann et al. 2016) for the SentiNel Application 
Platform (SNAP 2020). Main processing steps are described in Appendix 3.17. Due to the near-
permanent cloud cover, only images taken on 2017/02/09 and 2017/08/20 could be retained to 
depict the contrasting conditions prevailing in the austral summer and winter, respectively; 
assuming that these two days are each representative of overall seasonal conditions. 
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Figure 3.19. (A) Specimen of Abatus cordatus half buried into the sand with aboral side emerging from the 
sediment surface, (B) Aboral view of a female brooding its young in the incubating pouches. Adults can 
reach a maximum diameter of 4.9 cm (Mespoulhé 1992) © Féral J-P. (C) Location of the Golfe du Morbihan 
in the east of the Kerguelen Islands. Monitoring sites of program PROTEKER 
(http://www.proteker.net/?lang=en) are indicated in green. Mean daily temperature records measured at 
these sites were used to cross-validate sea surface temperature values derived from satellite data. 
 
Sea water temperature.  
We used satellite-derived sea surface temperature (SST) data from the level 4 Multi-Scale Ultra-
High-Resolution Global Foundation Sea Surface Temperature Analysis (MUR, 2015). The MUR 
SST v4.1 data are based upon night time skin and subskin SST observations from several 
instruments and are interpolated on a global 0.01 degree grid. Data are produced by the Group for 
High-Resolution Sea Surface Temperature (GHRSST) and were downloaded from The Physical 
Oceanography Distributed Active Archive Center (PO.DAAC, https://worldview.earthdata.nasa.gov, 
accessed May 2020). 
SST data were downloaded for 2017/02/09 and 2017/08/20, the two dates retained for chlorophyll-
a concentration data. The accuracy of satellite-derived SST data was verified by the close 
similarity obtained with local in situ measurements performed at five distant stations of the bay 
(program PROTEKER, Appendix 3.17). The spatial resolution of satellite-derived chlorophyll-a and 
SST data was resampled at 0.001° by a neighbor joining approach to fit with the resolution of the 
bathymetric chart. 
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Figure 3.20. (A) Bathymetry (in meters, red dots show presence records of A. cordatus). (B) Sea surface 
temperature in February, on 2017/02/09 and (C) in August, on 2017/08/20. (D) Food availability (scaled 
between 0 and 1, see section 3) in February, on 2017/02/09 and (E) in August, on 2017/08/20, in the Golfe 
du Morbihan. Water is colder in August (temperatures range between 2.7 and 3.3°C) and food availability 
much lower than in February, with the richest environments located nearshore.  
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2.3. Dynamic Energy Budget (DEB) model 
 
The DEB theory defines individuals as dynamic systems and provides a mathematical framework 
for the life cycle of an organism, from the start of the embryo development to the death. It 
describes the physiological processes with four primary state variables: reserve, structure, maturity 
and reproduction buffer (the latter for adults only), directly linked to mass and energy flows and 
influenced by two forcing environmental variables: temperature and food resources availability (Fig. 
3.21, Kooijman 2010). DEB theory relies on key concepts such as first laws of thermodynamics for 
conservation of mass, energy and time (Jusup et al. 2017) and assumes that the various energetic 
processes, such as assimilation and maintenance rates are dependent either on surface area or 
on body volume (van der Meer 2006).  
 

 

Figure 3.21. Conceptual scheme of the basic parameters and theoretical compartments of the DEB theory. 
Figure modified from Monaco et al. (2013). Each DEB parameter has a defined link with physiological 
processes (van der Meer 2006) and the combination of these parameters covers the different energetic 
processes of the organism (feeding, digestion, storage, maintenance, growth, development, reproduction, 
ageing) (Marques et al. 2018).  

The model was built using zero-variate (single data) and uni-variate (x~y relationship data) 
datasets extracted from the literature or obtained from experiments set-up purposely for the DEB 
model. These data were recorded at different life stages of the individual, with food and 
temperature conditions recorded and informed in the model (list of data available in Guillaumot  
2019c, Arnould-Pétré et al. 2020 - Chapter 1). 
The model was validated by estimating the goodness of fit using the mean relative error (MRE) 
which quantifies the overall model performance. MRE values can have values from 0 to infinity, 
with 0 value meaning that predictions match observation data exactly (Marques et al. 2018). The 
MRE of A. cordatus DEB model is 0.121 (Arnould-Pétré et al. 2020 - Chapter 1). 
 
 
DEB model forcing by food.  
Food resource is included in the DEB model by the scaled functional response f parameter, with 
values between 0 and 1. As previously stated, chlorophyll-a concentration was used to 
characterise food availability in the area. However, the linkage between chlorophyll-a concentration 
and food availability for A. cordatus is indirect. Chlorophyll-a concentration constitutes a proxy of 
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primary production and food resources for the zooplankton. Then, the organic matter produced in 
the upper water layers will sink in the water column and reaches the seafloor to be consumed by 
the benthos following a process that can take several days (Turner 2002). Sediments also contain 
organic matter remineralized by bacteria (Nixon 1981, Becquevort et al. 2001, Jacquet et al. 2008), 
which constitutes a background food storage for the sea urchin (Pascal et al. in press).   
In order to estimate f, the minimal food availability necessary in sediments for the survival of A. 
cordatus individuals, growth rates were simulated for different f values (Appendix 3.18). Results 
showed that below f = 0.45, the sea urchin will never reach the reproduction size (1.9 cm) within its 
expected average life span (8-9 year-old) (Guillaumot 2019c). We therefore hypothesized that f = 
0.45 is a minimum threshold value for populations of A. cordatus to occur and reproduce 
(Appendix 3.18). According to Delille and Bouvy (1989), Port-aux-Français is the station in the bay 
area where a minimum level of food is available in August (austral winter) that is, 1.35 mg.m-3 
according to satellite-derived data. It was therefore assumed that f = 0.45 is a minimum in areas 
where chlorophyll-a concentrations reach at least 1.35 mg.m-3. It was also assumed that f < 0.45 in 
areas where chlorophyll-a concentrations are lower than 1.35 mg.m-3. Highest population densities 
of A. cordatus and food quantity were recorded at Anse du Halage station in the summer (Delille 
and Bouvy 1989, Poulin 1996), which corresponded to chlorophyll-a concentrations of 10.9 mg.m-3 

on 2017/02/09. This value was used to define the maximum value of f = 1 and to scale f values 
comprised between f = 0.45 (1.35 mg.m-3 ) and f = 1 (10.9 mg.m-3). Final f maps showed important 
spatial and seasonal contrasts in food availability in the bay area (Fig.3.20D,E). 
 
DEB model forcing by temperature.  
The DEB model generated by Guillaumot (2019c) for A. cordatus was complemented with 
experimental data obtained in the Kerguelen Islands (Motreuil et al. 2018), which provided 
individual respiration rates of sea urchins at 5, 6, 7 and 9°C. Along with data from the literature, 
these results were used to define the maximum temperature range for survival A. cordatus, 
comprised between -1°C and + 12°C, with an optimal metabolic performance observed at +6°C 
and a performance decrease above +8°C. These results were used to determine five Arrhenius 
parameters in the calculation of a temperature correction factor, integrated into the model to take 
into consideration the influence of temperature on metabolic rates.  
Considering Tau, a given metabolic rate, the following equation was applied: 
Tau(T=Ti)= Tau(T) * TC, where Ti is the environmental temperature and TC the temperature 
correction factor, with: 
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with Tref the reference temperature (4°C), TL and TH the lower and higher boundaries of the optimal 
tolerance range and TAL and TAH the Arrhenius temperatures beyond the lower and higher 
temperatures, respectively (Thomas and Bacher 2018). 
 
 
Spatial projection of the DEB model.  
Outputs of the DEB model were projected over the entire bay area by estimating the species 
physiological performance for each pixel of the map, using pixel-specific values of food availability 
and temperature (Thomas and Bacher 2018, Fabri-Ruiz et al. in press - Chapter 3). Reproduction 
and survival capacities were estimated by comparing somatic maintenance 𝑝𝑀̇ and maturation 
maintenance 𝑝𝐽̇ costs over the total energy available from the reserve compartment 𝑝𝐶̇ (Fig. 3.21). 
According to DEB theory, the somatic maintenance 𝑝𝑀̇ has priority over growth and reproduction 
to ensure survival. Maturity maintenance 𝑝𝐽̇ has priority over reproduction (Kooijman 2010). These 
conditions imply that if the energy available in the reserve compartment 𝑝𝐶̇ is not sufficient to pay 
for the required maintenance costs (𝑝𝐶̇  < 𝑝𝑀̇  + 𝑝𝐽̇ ), the organism cannot reproduce, and will 
progressively starve and die.  
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2.4. ‘Simple’ Species Distribution Modelling (SDM)  
 
A set of 26 presence-only records of A. cordatus sampled from 1898 to 2015 in the Golfe du 
Morbihan was compiled from Guillaumot et al. (2016), checked for georeferencing errors and 
complemented with data from Poulin and Féral (1995) (Fig. 3.20A). Data are homogeneously 
distributed in the area with a Moran’s I score of -0.01 (p-value= 0.15). Consequently, background 
records were randomly sampled in the area without any targeted sampling approach as the effect 
of spatial autocorrelation was not significant (Phillips et al. 2009, Guillaumot et al. 2018a - 
Appendix). In order to sample environmental conditions prevailing in the study area as precisely as 
possible, while being close to the number of presence-only records available, 200 background 
records were sampled across the entire projection area (Barbet-Massin et al. 2012). 
Generalized linear models (GLMs) (here referred as ‘simple SDM’) were used to relate species 
occurrences with the three environmental predictors previously described (depth, food availability, 
sea surface temperature and their square forms, Fig. 3.20). In this approach, presence and 
background data are treated as Bernoulli trials, where p is the probability of finding A. cordatus. A 
non-informative normal distribution (μ=0, sigma= 10,000) was used as a prior for the regression 
coefficients. The model was run using a burn-in period of 4,000 samples, followed by 4,000 
additional MCMC samples to estimate the posterior distribution of regression coefficients. The 
procedure was replicated for 50 background records sampling, and average species distribution 
probabilities were predicted on a map. Posterior parameters were saved and used afterwards to 
initiate the ‘integrated Bayesian’ approach (section 2.6). 
 
Model extrapolation areas were defined using the Multivariate Environmental Similarity Surface 
index (MESS, Elith et al. 2010). Extrapolation areas correspond to all grid-cell pixels where 
descriptor values are not contained within the range of environmental conditions for which 
presence-only data are recorded. Extrapolation is defined for negative values of MESS, and the 
environmental predictor responsible for extrapolation was evaluated (for further details see Elith et 
al. 2010, and Guillaumot et al. 2020c - Chapter 2). 
 
2.5. Integrated ‘SDM-DEB’ model  
 
Integrating correlative and mechanistic models was first tested by using the spatial projection of 
the DEB model (section 2.3) as an environmental predictor in the SDM (Elith et al. 2010, Buckley 
et al. 2011, Mathewson et al. 2017, Rodríguez  et al. 2019). The procedure is similar to the ‘simple’ 
SDM model approach (section 2.4), except that the DEB layer (i.e. ‘𝑝𝐶̇ > (𝑝𝑀̇+𝑝𝐽̇)?’, Fig. 3.22) was 
added to the initial set of environmental predictors (depth, temperature, food availability). Similarly, 
the procedure was replicated for 50 background records sampling, and average distribution 
probabilities were predicted on a map. 
 
2.6. ‘Integrated Bayesian’ model  
 
The method developed by Talluto et al. (2016), and applied by Gamliel et al. (2020) was used to 
develop an ‘integrated Bayesian model’ (physiology-SDM model). For this purpose, the ‘simple 
SDM’ (section 2.4) was combined with some physiological information obtained by a physiological 
submodel (detailed below). This combination was performed with a Bayesian approach by using 
the posterior distributions of the physiological submodel as priors for the  SDM to create ‘integrated 
Bayesian model’ coefficients (see also the detailed method in Talluto et al. (2016) supplementary 
material). 
 
Using DEB equations and parameters (Eq. 1), average growth rates were calculated for individuals 
measuring from 2.5 to 4.5 cm, according to food availability (for all values available in the 
projection area, Fig. 3.20) and a random selection of temperatures within the range of values of the 
considered season. This constitutes the ‘physiological submodel’ that therefore takes into account 
both food availability and temperature. Twenty-five replicates of individual sizes and temperature 
selection were performed. The growth rate was calculated with the following DEB equation 
(Kooijman 2010):  𝑝𝐺̇= (kap * 𝑝𝐶̇ - 𝑝𝑀̇) / 𝑘𝑀 ̇ / TC                 (Eq.1) 
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with kap being the fraction of energy directed towards complexity (-), 𝑝𝐶̇  the mobilisation flux 
(energy.time-1), 𝑝𝑀̇  the somatic maintenance rate (energy.time-1), 𝑘𝑀̇  the somatic maintenance 
rate coefficient (time-1) and TC the temperature correction factor (-).  
 
A Bayesian beta regression, with food availability as a predictor and growth performance 
probability as a response, was applied to estimate how physiology changes with food conditions. A 
total of 4,000 MCMC samples were used for burn-in and the posterior distribution was estimated 
using 4,000 additional samples. The physiological submodel coefficients were initiated with 
Gaussian priors, with the mean taken from the maximum likelihood estimation to improve 
convergence and a vague prior set on the variance (set at 1,000).  
 
Posterior priors of this physiological submodel were then used as priors to represent food 
availability f and its square form f2 in the ‘integrated Bayesian model’. As for the other priors 
(intercept, depth, temperature and temperature2), they were attributed the posterior priors of the 
‘simple SDM’, with their variance arbitrarily fixed at 100, as we considered them as vague priors 
(Gamliel et al. 2020). The detail of prior values is given in the result section (Table 3.4).  
Similarly, 50 model replicates (i.e. background samplings) were generated, averaged and plotted 
for comparisons.  
 
2.7. Model performance  
 
Model predictions for all approaches were evaluated by measuring the Area Under the Curve 
(AUC) (Fielding and Bell 1997, Allouche et al. 2006, Elith et al. 2006) using the R package ROCR 
(Sing et al. 2005). In complement, the percentage of correctly classified presence data was 
measured by extracting prediction values over the position of each presence data and compared to 
the MaxSSS threshold (Maximum Sensitivity plus Specificity threshold), highlighted to be the best 
threshold to characterise predicted suitable (>MaxSSS value) and unsuitable areas (<MaxSSS 
value) for presence-only models (Liu et al. 2013). Standard deviations of model replicates were 
used as uncertainty maps (Buisson et al. 2010, Swanson et al. 2013). 
  
Partial dependence plots were used to represent the relationship between model predictions and 
environmental values and compared between models. They are built by plotting model prediction 
values of each grid-cell pixel (y axis) against the value of the environment at the same pixel (x axis; 
each partial dependence plot is specific of a single environmental layer). 
 
R codes developed for this study are available at https://github.com/charleneguillaumot/THESIS. 
 
3. RESULTS 
 
3.1. Spatial projection of the DEB model  
 
Spatial projections of DEB model outputs show important contrasts between the two seasons (Fig. 
3.22). In February, when temperatures are higher than 6°C and food availability homogeneously 
higher than 0.5 over the entire bay area (Fig. 3.20), high species survival and reproduction are 
predicted almost everywhere (Fig. 3.22A), except in some areas where food availability is very low 
(Fig. 3.20). Nearly four times more energy is predicted to be contained in the reserve compartment 
of A. cordatus in February compared to August (Appendix 3.19), an energy available for 
individuals’ maintenance and development.  
In contrast, in August, the DEB model predicts maintenance costs of up to three times higher than 
in February while the energetic load available is lower (Appendix 3.19), leading to reduced 
reproduction and survival abilities in the majority of the study area. Individual survival is modelled 
to be higher closer to the shoreline due to higher food availability (Fig. 3.22B). 
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Figure 3.22. Spatial projections of the DEB model in February (A) and August (B). Reproduction and survival 
capacity is given by 𝑝𝐶̇ - (𝑝𝑀̇+𝑝𝐽̇) (energy.time-1), with ‘Reproduction and survival possible’ for values >0 
(color bar) ; ‘Not possible’ for values <0 (black).  
 
3.2. Simple Species Distribution Models (SDMs)  
 
Overall distribution probabilities predicted by ‘simple SDMs’ are low (<0.5, Fig. 3.23A,B) for the 
entire area and both seasons, and standard deviations are comparatively high (homogeneously 
close to 0.45 for February and more contrasted in space but coastal areas reaching 0.45 too for 
August, Fig. 3.23C,D), stressing an important variability between model replicates. 
Average predictions are more contrasting in August than in February (Fig. 3.23A,B). For August, 
the model predicts the highest distribution probabilities (around 0.5) near the shoreline, in shallow-
water areas, and the lowest probabilities (around 0.2) in the center of the bay and in a 
northwestern fjord characterised by deep waters (Fig. 3.23B). In February, distribution probabilities 
are homogeneous in all the area and close to 0.4 (Fig. 3.23A).  
Areas where model extrapolation occurs correspond from 36 (in February) to 37.8% (in August) of 
the total surface of the projection area and is mainly to be related to depth and to temperature in 
large patches for February (black and grey patches, Fig. 3.23E,F). 
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Figure 3.23. Spatial projections of the ‘simple SDM’ for February (A,C,E) and August (B,D,F), average of 50 
model replicates. Average distribution probabilities (A,B), standard deviations (C,D) and average distribution 
probabilities with extrapolation areas associated to for each environmental descriptor (depth, temperature or 
food availability) (E,F). 
 
3.3. ‘Integrated SDM-DEB’ model 
 
Model predictions are highly contrasting between February and August according to the ‘integrated 
SDM-DEB’ model (Fig. 3.24A,B). In February, distribution probabilities are close to 0.55 over the 
entire area, except for some patches located in the center of the bay and in coastal zones with 
predictions of up to 0.85. In contrast, low prediction scores are evenly predicted over the entire 
area for August (0.33 maximum, Fig. 3.24B). Standard deviations are higher in August than in 
February in coastal areas (0.4 vs. 0.3 for August and February, respectively) and reach the same 
range of values (around 0.3) in the deep central area of the Golfe du Morbihan (Fig. 3.24C,D). 
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Figure 3.24. Spatial projections of the ‘integrated SDM-DEB’ models for February (A,C) and August (B,D), 
averaged of 50 model replicates. Average distribution (A,B) and associated standard deviations (C,D). The 
available energy after paying off the somatic and maturity maintenances is integrated in the model as a 
predictor that assesses for each pixel the value of 𝑝𝐶̇ - (𝑝𝑀̇ - 𝑝𝐽̇), with 𝑝𝐶̇ the amount of energy contained in 
the reserve compartment, 𝑝𝑀̇ the amount of energy required for somatic maintenance and 𝑝𝐽̇ the amount of 
energy required for maturity maintenance. 
 
3.4. ‘Integrated Bayesian’ model 
 
‘Integrated Bayesian’ models were implemented using the following set of parameters as priors 
(Table 3.4). The coefficient values of f and f2 are high compared to the other parameters (average 
and tau scores), increasing the influence of food availability in final model outputs (Table 3.4). In 
August, the coefficient value of the f parameter is eight times higher than in February (8.43 
compared to -0.89) but f2 is twice lower (11.38 compared to 27.78) (Table 3.4). 
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Table 3.4. Matrices of priors used to calibrate ‘integrated Bayesian’ models for February and August, with 
the equation y=b0 + b1*depth + b2*f + b3*temperature + b4*temperature2 + b5*f2. Tau is the inverse of the 
variance (1/Standard deviation2), arbitrarily set at 0.01 (i.e. variance = 100) when the parameter is 
considered to be a vague prior. 
 

Parameter  Source Mean St. deviation Tau 

b0 intercept simple SDM -18.37 (Feb.) 
0.32  (Aug.) 

11.00 (Feb.) 
3.98 (Aug.) 

0.01 (Feb.) 
0.01 (Aug.) 

b1 depth simple SDM 0.18 (Feb.) 
0.16 (Aug.) 

0.01 (Feb.) 
0.01 (Aug.) 

0.01 (Feb.) 
0.01 (Aug.) 

b2 f Physiological submodel -0.89 (Feb.) 
8.43 (Aug.) 

0.09 (Feb.) 
0.06 (Aug.) 

125.16 (Feb.) 
260.22 (Aug.) 

b3 temperature simple SDM 1.03 (Feb.) 
-0.19 (Aug.) 

2.99 (Feb.) 
2.60 (Aug.) 

0.01 (Feb.) 
0.01 (Aug.) 

b4 temperature2 simple SDM 0.19 (Feb.) 
-0.09 (Aug.) 

0.22 (Feb.) 
0.47 (Aug.) 

0.01 (Feb.) 
0.01 (Aug.) 

b5 f2 Physiological submodel 27.78 (Feb.) 
11.38 (Aug.) 

0.15 (Feb.) 
0.20 (Aug.) 

41.64 (Feb.) 
25.88 (Aug.) 

 
In ‘integrated Bayesian’ models, distribution probabilities vary within a large range, between 0.1 
and 1, a sharp difference with low probability values (< 0.5) obtained with the ‘simple SDM’ 
approach (Fig. 3.23, Fig. 3.25A,B). The ‘integrated Bayesian’ approach also predicts differences 
between the two seasons, but not as important as the ‘integrated SDM-DEB’ model results (Fig. 
3.24). Overall, the study area is predicted as less suitable to A. cordatus in August than in 
February, when food availability and temperatures are higher (Fig. 3.20B,E). More precisely, in 
August, suitable areas are mainly restricted to shallow waters and nearshore zones, especially in 
the west. In February, habitat suitability is more extended but remains mainly located close to the 
coasts (Fig. 3.25A). Standard deviation scores (Fig. 3.25C,D) are within the range of values 
obtained for the two other models (0.2-0.4) and values are similar between the two seasons, 
although high values (around 0.45) cover a broader area in August. Compared to February, some 
patchy areas nearby coasts present low values in August (Fig. 3.25D). 
 
In February, most of the areas for which standard deviation are the highest for the ‘integrated 
Bayesian’ model (Fig. 3.25C) correspond to the extrapolation areas of the ‘simple SDM’ maps (Fig. 
3.23C). This is less clear for the August scenario (Fig. 3.25D, Fig. 3.23F).  
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       Figure 3.25. Spatial projections of the ‘integrated Bayesian’ models for February (A,C) and August (B,D), 

averaged of 50 model replicates. Average distributions (A,B) and associated standard deviations (C,D). 
 
3.5. Contribution of predictors and model performance 
 
‘Model performance (Table 3.5) is good for all approaches except for the ‘spatial DEB’ approach, 
for which the percentage of correctly predicted presence data is very low in August (38.5%). 
Among the three other approaches, model performance is very similar between the two seasons in 
the ‘integrated Bayesian’ approach. AUC scores are significantly the highest (t test with p-values < 
0.001), with values reaching a minimal score of 0.76 in August with the lowest variability. The 
percentage of correctly classified presence data are good (> 81.7 %) for February, significantly 
higher than in the two other approaches (compare to 77.8 and 67.3%), but a bit lower for August 
(88.8% compared to 94.8 and 94.4% for the ‘simple SDM’ and integrated ‘SDM-DEB’ approaches, 
respectively). 
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Table 3.5. Comparison of model performances (percentage of presence data correctly classified and Area 
Under the Curve, AUC, metric) for the two seasons. Average and standard deviation of 50 model replicates.  
 

 Spatial DEB Simple SDM Integrated SDM-
DEB 

Integrated 
Bayesian 

% presence data correctly 
classified  

96.15% (Feb.) 
38.5% (Aug.) 

77.8 ± 12.8 (Feb.) 
94.8 ± 1.9 (Aug.) 

67.3 ± 18.1 (Feb.) 
94.4 ± 6.1 (Aug.) 

81.7 ± 12.1 (Feb.) 
88.8 ± 7.1 (Aug.) 

AUC  0.71 ± 0.03 (Feb.) 
0.72 ± 0.03 (Aug.) 

0.60 ± 0.12 (Feb.) 
0.75 ± 0.04 (Aug.) 

0.80 ± 0.02 (Feb.) 
0.76 ± 0.02 (Aug.) 

 
Partial dependence plots (Fig. 3.26) were generated to evaluate the influence of each 
environmental predictor (depth, food availability, and temperature) on model predictions. Overall, 
comparison between models show that integrated modelling approaches (‘integrated SDM-DEB 
and ‘integrated Bayesian) provide more contrasting response curves for all three predictors 
compared to the ‘simple SDM’ approach, both for February and August (Fig. 3.26). 
The ‘integrated Bayesian’ model results (Fig. 3.26) suggest a more substantial influence of 
environmental values on predicted probabilities, with higher temperatures, higher food availability 
and lower depths associated with higher predicted habitat suitability. This highlights a more 
important sensitivity of the seasonal effect on model predictions. These results are more in line 
with the ecology of A. cordatus and are confirmed by the higher performance metrics observed for 
the ‘integrated Bayesian’ approach, noteworthy in February (Table 3.5). 
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Figure 3.26. Partial dependence plots, representing model predictions (y axis, probabilities between 0 and 1) 
aligned with the environmental values (x axis). Grey solid line: simple SDM, yellow solid line: integrated 
SDM-DEB model; blue solid line: integrated Bayesian model. Average prediction values of 50 model 
replicates.  
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4. DISCUSSION 
 
4.1. Potential and main limitations to the different modelling approaches  
 
Correlative approaches (‘simple SDMs’) are aimed at describing the correlation between species 
occurrence records and environmental conditions. SDM outputs can provide knowledge on the 
main environmental factors that drive species distribution (Elith et al. 2006, Peterson 2011). 
Because presence records are used as input data, SDMs also indirectly integrate the influence of 
other factors such as the effect of biotic interactions (either competition, exclusion or facilitation 
between species) and the biogeographic context (barriers or dispersal vectors) on species 
distribution, thereby simply and explicitly assessing the species realised niche (Soberón 2010). 
However, the relevance of niche estimation often constitutes the main limitation to ‘simple SDMs’, 
because their predictive performance strongly relies on sampling completeness (Loehle and 
Leblanc 1996, Vaughan and Ormerod 2003, Araújo et al. 2005, Randin et al. 2006, Broennimann 
et al. 2007, Holt 2009). The heterogeneity of presence sampling induce statistical artefacts that 
can bias model predictions (Bahn and McGill 2007, Currie 2007), a substantial limitation that has 
already been stressed in former works on the Southern Ocean (Guillaumot et al. 2018a - 
Appendix, Guillaumot et al. 2020b - Chapter 2, Guillaumot et al. in press - Chapter 2). 
Compared to SDMs, mechanistic models require more data (and require a good knowledge of 
species ecology or physiology) for parameter estimation and model implementation (Kearney and 
Porter 2009). However, if the model can be built, the approach is powerful to evaluate the survival 
capacity of individuals in given environmental conditions (Arnould-Pétré et al. 2020 - Chapter 1, 
Fabri-Ruiz et al. in press - Chapter 3) and can estimate the species fundamental niche (Kearney 
and Porter 2009).  
Combining the merits of both correlative and mechanistic approaches to fine-tune the estimation of 
the species realised niche can provide important benefits (Dormann et al. 2012a), as prior 
information on the influence of the environment on species metabolism, given by physiological 
models, can be used to improve correlative models (Feng et al. 2020). This combined approach is 
also valuable to assess the effect of fast changing environmental conditions (e.g. seasonality or 
future predictions), which generate non-equilibrium states (Kearney et al. 2008, Keith et al. 2008) 
that cannot be accurately modelled by static, correlative approaches (Loehle and Leblanc 1996, 
Schouten et al. 2020, Fabri-Ruiz et al. in press - Chapter 3).  
 
In the present study, the comparison of ‘simple SDM’, the most commonly used approach in 
ecological studies of Southern Ocean species, with ‘integrated’ approaches, was performed. All 
approaches have good performance statistics (Table 3.5), except for the ‘spatial DEB’ model. 
Spatial projections of the ‘spatial DEB’ approach are strongly driven by food availability (strong 
similarities between Fig. 3.20D,E and Fig. 3.22), and provide a biased representation of species 
distribution for August (Table 3.5), as “low food” areas are simply and systematically predicted as 
unsuitable to the species survival, with no consideration for the influence of the other 
environmental drivers. However, the model is interesting because it stresses the link between 
energetic costs and one major environmental driver (Appendix 3.19), a good complement to 
physiological submodels, and interesting to assess the environmental conditions that drive  
species distribution. 
 
‘The simple SDM’ is characterised by good validation scores (AUC > 0.71 and percentage of 
correctly classified presence data > 77.8%) (Table 3.5) but distribution probabilities are contrasting 
for August compared to February (Fig. 3.23), when food concentration is high and evenly 
distributed in the all bay area (Fig. 3.20D). As a consequence, the contribution of this variable to 
model predictions is low (Fig. 3.26), an unrealistic prediction that contrasts with results obtained 
with the integrated approaches (‘integrated SDM-DEB’ and ‘integrated Bayesian’) (Fig. 3.26). 
 
Using a physiological submodel to inform a SDM has been applied in recent works by directly 
adding a physiological layer to the SDM (Elith et al. 2010, Buckley et al. 2011, Mathewson et al. 
2017, Rodríguez et al. 2019) or by generating absence data from the modelled physiological 
information (Elith et al. 2010, Feng and Papes 2017). Model outputs are easy to interpret but the 
approach requires the combination of several models, as in any hybrid approach, and implies a 
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risk inherent in the addition of biased estimations of each individual models (Feng and Papes 
2017). In the present work, predictions of the ‘integrated SDM-DEB’ model are similar to results 
obtained with the ‘spatial DEB’ projections. This was expected, especially for the August model 
with corresponding low-food concentration conditions (Fig. 3.20), consequent low survival 
capacities (Fig. 3.22) leading to predicted low species distribution probabilities for the entire area 
(Fig. 3.24). The DEB layer contributes to the model as do environmental predictors (Elith et al. 
2010) resulting in some inconsistencies, as shown by the lower model performances obtained for 
February (percentage of correctly classified presence data= 67.3% and AUC= 0.60) (Table 3.5), 
whereas predictions are the highest in areas where survival and reproduction are impossible (i.e. 
where reserve 𝑝𝐶̇ is lower than the energy required for overall maintenance (𝑝𝑀̇ - 𝑝𝐽̇)) (Fig. 3.24A). 
This statistical artefact is due to the spatial correlation between the occurrence of a high number of 
presence records in areas where 𝑝𝐶̇  - (𝑝𝑀̇+𝑝𝐽̇) values are low (i.e. energy available into the 
reserves 𝑝𝐶̇ is barely sufficient to pay for maintenance costs). This is shown in Figure 3.26, where 
the highest distribution probabilities are associated to low food values. The integration of the 
‘spatial DEB’ layer into the ‘integrated SDM-DEB’ model led to over-estimating the influence of 
food availability on the prediction of species occurrences. 
Another noticeable drawback of the ‘integrated SDM-DEB’ method is that important variations are 
obtained between model outputs depending on the DEB layer that is added into the SDM 
(Mathewson et al. 2017) (Fig. 3.24, Appendix 3.20A). The choice of the DEB layer to be used also 
influences model extrapolation (Appendix 3.20B) (Rodríguez et al. 2019), which must be taken into 
consideration when interpreting model results (Elith et al. 2010, Buckley et al. 2011), and increases 
the complexity of model calibration. Therefore, real benefits of adding modelled physiological 
information to SDMs are case dependent and the improvement of modelling performances are not 
certain (Buckley et al. 2011, Rodríguez et al. 2019). However, the method can prove helpful for 
future predictions and analyses of non-equilibrium states, which constitute the main limitation to 
the SDM approach (Elith et al. 2010, Buckley et al. 2011, Martínez et al. 2015, Mathewson et al. 
2017). When there is few data available and the causal relationship between organism physiology 
and environment drivers difficult to model in a robust way, using the ‘integrated SDM-DEB’ 
approach can be problematic and model outputs must be interpreted with caution. 
 
Bayesian methods are increasingly used in marine sciences (Colloca et al. 2009, Muñoz et al. 
2013, Pennino et al. 2014, Roos et al. 2015, Gamliel et al. 2020). They were proved to have 
several advantages compared to other methods, including (1) a more accurate and realistic 
estimation of uncertainty as observations and model parameters are both used as random 
variables in model predictions (Robert 2007) and (2) the possibility to integrate information from 
different sources, scales or nature (Peters et al. 2004, Hobbs and Ogle 2011, Hartig et al. 2012).  
In the present work, the highest AUC scores and correctly classified presence data were obtained 
with the ‘integrated Bayesian’ approach. Models performed well in representing uncertain areas, 
compared to other approaches (Fig. 3.23,3.24), as the areas predicted with the highest standard 
deviation scores by the ‘integrated Bayesian’ approach (Fig. 3.25) strongly overlap with the 
extrapolation areas estimated for the ‘simple SDMs’ (Fig. 3.23). The influence of environmental 
variations on model predictions are more marked (Fig. 3.26), with a better fit of the species 
response to environmental variations, and prediction performances show less contrast in 
evaluation scores between February and August (Table 3.5). This suggests that the ‘integrative 
Bayesian’ approach is the best among the three tested approaches, at estimating the realised 
niche of A. cordatus.  
 
4.2. Seasonality and predicted distribution of Abatus cordatus  
 
In all model predictions, distribution probabilities are the highest in coastal areas, where 
populations of A. cordatus were known to be the most abundant (Poulin and Féral 1995, Poulin 
1996). Interestingly, with some rare exceptions, sediment granulometry and hydrodynamics were 
shown to be important drivers of population densities in A. cordatus (Poulin and Féral 1995). 
These two key factors were not included in our models but suitable areas to the species perfectly 
match with conditions of high food availability and high temperature that prevail in coastal areas.  
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Important contrasts, however, were obtained in model predictions between February and August, 
suggesting that seasonal variations significantly affect the metabolism of A. cordatus as organisms 
face different conditions in terms of food availability and temperature. According to the 
physiological model (‘spatial DEB’, Fig. 3.22, Appendix 3.19), maintenance costs are higher in 
winter (August) than in summer (February) due to lower temperatures that increase the demand of 
energy to maintain the metabolism (Kooijman 2010). Besides, there is less energy available in the 
reserve compartment to compensate for the increased maintenance costs as food availability is 
low in winter too (Appendix 3.19).  
These results are strongly dependant on the assumption that metabolism performance (and 
therefore requested energy) follows Arrhenius laws as determined with summer acclimated 
individuals (Motreuil et al. 2018). For some Antarctic sea urchins, such as Sterechinus neumayeri  
(Meissner, 1900) it was reported a sharp metabolic switch during winter conditions. During this 
hypothesised non-feeding period, metabolic rates are decreasing with lower recorded oxygen 
consumption and slow or absent somatic growth (Brockington et al. 2001, Brockington and Peck 
2001, Brockington et al. 2007). Such seasonal metabolic changes has never been observed nor 
studied for A. cordatus, but, if existing, it could bias the estimation of the Arrhenius curve 
implemented in the model and change some of the metabolic estimations.  
 
Model outputs are in line with our knowledge of the reproduction cycle of A. cordatus and its 
timing. In most places of the Golfe du Morbihan, individuals invest energy in the growth of gonads 
in March, when food is the most abundant (Magniez 1983). Once fertilized, the eggs are brooded 
in the female incubating chambers for almost nine months (a period of low-food availability and low 
temperature) before the young are released and settle on the seabed (Schatt and Féral 1996) or 
live sheltered between holdfasts of the giant kelp Macrocystis pyrifera (Poulin 1996). The 
reproduction cycle of A. cordatus is constant across years for a given place (Magniez 1983). 
However, it was observed that the reproduction period can shift from a few months between sites 
(Schatt and Féral 1991, Mespoulhé 1992, Poulin 1996), which was explained by spatial and 
temporal variations in food availability and sediment enrichment in nutrients (Schatt and Féral 
1991). 
 
Modelling with such details the influence of environmental variations on the species metabolic 
performance and distribution bring valuable insights to interpret model predictions and assess the 
species realised niche. Integrating the effect of seasonal variations in niche modelling, herein 
assessed as differences between February and August, has long been suggested in SDMs (Elith 
and Leathwick 2009, Franklin 2010a) but it is seldom achieved due to limited data availability 
(Guillaumot et al. 2018b). Conversely, ignoring the effect of seasonality in ecological niche 
estimation has been recently shown to reduce prediction performance (Smeraldo et al. 2018). 
Seasonality is a fundamental feature of environmental systems. It is particularly critical to life in 
temperate and high latitudes, and one key phenomenon to consider for studying both species 
distribution (Morelle and Lejeune 2015, Zuckerberg et al. 2016) and metabolism (Bahlburg et al. 
2021). 
 
4.3. Study improvements  
 
To generate accurate models, this study focused on a well-documented echinoid species, A. 
cordatus, which had long been studied in the favorable context of a long-term observing system of 
coastal marine life, in the Golfe du Morbihan, the most visited area of the highly remote 
archipelago of the Kerguelen Islands. However, some limitations were highlighted by our results. 
(1) The first limitation is the absence of a precise evaluation of food availability for A. cordatus in 
the total area of the Golfe du Morbihan. Estimates of chlorophyll-a concentration were used as a 
proxy of food abundance and availability but this constitutes a strong assumption that can impact 
model outputs. Chlorophyll-a concentration in sea surface waters is a partial surrogate to the 
measurement of food availability for a benthic species like A. cordatus as the abundance of 
nutrients on the sea bottom depends on the processes of organic matter consumption, degradation 
and transfer from the water column to the sea bottom (Laurenceau-Cornec et al. 2015). Food 
Availability Models could be developed (Jansen et al. 2018) to estimate the proportion of organic 
matter that reach the seafloor based on the knowledge of water currents. It could be also 
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interesting to have some information about benthic detritic organic matter that the sea urchins 
could consume (Pascal et al. in press). These data were however not available for the study area 
but such models offer promising perspectives. (2) Detailed information on the link between 
temperatures and physiological performances are still missing, as we only have and use here the 
results of a survival experiment performed at different temperatures in 2018 (Motreuil et al. 2018). 
DEB modelling has the potential to include five Arrhenius parameters to precisely characterise the 
link between temperature and metabolism (Kooijman 2010, Thomas and Bacher 2018), but 
available experimental data on A. cordatus do not permit measuring them with precision. More 
data are still needed for our case study to reach this precision and improve the performance of the 
DEB model. (3) Finally, there is a lack of presence data to correctly calibrate the model and to 
validate it. Generating ecological models with small datasets was indeed shown to reduce 
modelling performances (Stockwell and Peterson 2002, Liu et al. 2019) as it truncates predicted 
distribution and niche definition (Hortal et al. 2008, El-Gabbas and Dormann 2018), and may lead 
to a reduction in model accuracy because presence and background datasets would not differ 
markedly (Luoto et al. 2005) and constrains the evaluation process (Pearson et al. 2007) (reviewed 
in Guillaumot et al. in press - Chapter 2). Therefore, common validation approaches such as the 
cross-validation method (that uses a part of the dataset to train the model and another part to test 
it independently, Hijmans 2012, Guillaumot et al. 2019 - Chapter 2) could not have been used for 
our study, which limited the power of our model evaluation. 
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4.4. Conclusions  
 
Our results suggest good performances of ‘integrated Bayesian’ approaches to estimate species 
realised niche, compared to single correlative approaches or ‘integrated SDM-DEB’ approaches 
that might be biased by the subjective choice of the DEB layer used as an input into the SDM. 
More data are still necessary to better evaluate the model, to more accurately establish the 
relationship between the environmental conditions and the species physiology and to better 
represent the whole environment, but this study showed the possibility to apply the method for a 
data-poor case study, which opens perspectives for future applications to a broad panel of natural 
examples. 
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APPENDIX 3.17. Satellite-derived measurements 

 

 
Figure S3.17 Overview of images captured by the Landsat 8 satellite for the selected dates (a) 2017/02/09 
and (b) 2017/08/20. Some clouds are present in August over the Golfe du Morbihan that should be 
considered for interpretation. Source: https://worldview.earthdata.nasa.gov, accessed May 2020.  
 
Table S3.17.A. Details of SNAP parameterization for chlorophyll-a measurement, processing parameters. 

Processing parameters  Value 

Salinity 35 PSU 

Temperature  4°C 

Ozone 330 DU 

Air Pressure at sea level 1000hPa 

Elevation 0 m 

TSM factor bpart 1.72 

TSM factor bwit 3.1 

CHL exponent 1.04 

CHL factor 21 

Threshold rtosa OOS 0.05 

Threshold AC reflectances OOS 0.1 

Threshold for cloud flag on transmittance down 
@865 

0.955 (default) 

Atmospheric aux data path - 

Alternative NN Path - 

Set of neuronal nets C2RCC-Nets 
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Table S3.17.B. Comparison between daily in situ temperatures (°C) recorded by the PROTEKER program at 
defined stations within the Golfe du Morbihan (Fig. 3.19) and satellite-derived sea surface temperatures from 
the MUR dataset. Temperatures at Port-aux-Français are measured at a 2-minutes frequency by a tide 
gauge installed on the dock, at shallow depth. It is highly influenced by warm air temperatures.  
 

Station (Latitude ; Longitude) February 9th, 2017 August 20th, 2017 

 In situ T° (°C) MUR (°C) In situ T° (°C) MUR (°C) 

Ile Haute (-49.3875 ; 69.9415) 6.87 7.31 3.03 2.71 

Ile Longue (-49.5387 ; 69.8838) 7.77 6.98 3.13 3.07 

Port aux Français (-49.352 ; 70.221) 9.37 7.31 3.21 2.95 

Ile Suhm (-49.493 ; 70.1613) 7.34 7.24 3.04 2.87 

Ilot Channer (-49.3826 ; 70.1857) 8.36 7.33 3.1 2.91 
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APPENDIX 3.18. Model forcing by food availability 
 

 
 
Figure S3.18. Simulated growth rates by the DEB model for different levels of food availability (f values). 
Results show that below f = 0.45, the sea urchin never reaches the size at which it should reproduce (1.9 
cm, dotted horizontal line) within its average life expectancy (9 year-old). We therefore hypothesized that a 
background value f = 0.45 should be at least available in the sediment for population survival.  
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APPENDIX 3.19. Spatial DEB 
 

 
Figure S3.19. Results of the spatial projection of the DEB model for February (A,C) and August (B,D). 
Evaluation of the available energy in the reserve compartment 𝑝𝐶̇  (A,B). Energy required for somatic 
maintenance 𝑝𝑀̇ (C,D). 
 
For February, the model predicts around four times more energy contained in the reserve 
compartment compared to August (Fig. S3.19A,B). Probably due to decreased temperatures in 
August, the energy required for somatic maintenance is up to three-fold higher for August 
compared to February (Fig S3.19D,C). 
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APPENDIX 3.20. Integrated SDM-DEB models 
 

 
Figure S3.20.A. Distribution probabilities predicted for integrated SDM-DEB models. Average predictions of 
50 model replicates for February (A,C) and August (B,D). (A,B) DEB layer being the amount of energy 
contained in the reserve compartment 𝑝𝐶̇; (C,D) DEB layer being the amount of energy required for somatic 
maintenance 𝑝𝑀̇. 
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Figure S3.20.B Extrapolation areas (MESS) associated with the descriptor responsible for the extrapolation 
(depth, temperature, food availability or DEB layer), for the ‘integrated SDM-DEB’ approach. Application with 
three different DEB layers: ‘𝑝𝐶̇  - (𝑝𝑀̇+𝑝𝐽̇)’, 𝑝𝐶̇ or 𝑝𝑀̇. 
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CHAPTER 4 DISPERSAL MODELS:  
LAGRANGIAN APPROACH	

Chapter 4 finally focusses on another driver of the species ecological niche and BAM 
diagram: dispersal capacities. Among modelling approaches that exist to model the 
movement of propagules in water masses are lagrangian models. This approach was 
exemplified in this chapter. 
 
�The first study (presented in the appendix section) used a lagrangian model to evaluate the 
capacity of the Patagonian crab Halicarcinus planatus (Fabricius, 1775) to reach Antarctic 
coasts. The model was developed at the scale of the Southern Ocean. Propagules were 
launched from South America southern tip and from some sub-Antarctic Islands, were the 
crab was observed. The model simulated particle drift in 3D and according to several climatic 
scenarios (negative or positive Southern Annular Mode index). Results highlighted an 
eastward drift and the impossibility of propagules to reach Antarctic coasts in any scenario: 
they are blocked by the Antarctic Circumpolar Current.  
 
�The second study focussed on the Western Antarctic Peninsula region. From the previous 
study, it was hypothesized that the female individual of Halicarcinus planatus found in 
Deception Island in 2010, should have been brought by ballast waters released closeby 
Antarctic coasts. The lagrangian model was used to simulate the passive drift of virtual 
propagules departing from ballast waters released at contrasting distances from the nearest 
coasts: 200 (international guidelines), 50 or 11 nautical miles. Results showed that releasing 
ballast waters at 200 nautical miles considerably reduces the arrival of propagules in 
proposed marine protected areas. Simulations suggested that the crab could have reached 
Deception Island only if the international guidelines have been violated, with ballast water 
exchanged at 50 nautical miles or less from the coasts. 
 
�The last study used a lagrangian approach, combined with SDM simulations and genetic 
analyses to assess the spatial connectivity of the overexploited marbled rockcod Notothenia 
rossii Richardson, 1844. The study was conducted at the scale of the Southern Ocean. 
Results highlighted a lack of genetic differentiation between Southern Ocean populations, 
influenced by an important connectivity between sub-Antarctic Islands, induced by the 
stepping-stone transport and promoted by the strong water flow of the Antarctic Circumpolar 
Current. 

 
  
�[Appendix section] López-Farrán Z, Frugone MJ, Gerard K, Vargas-Chacoff L, Poulin E, Guillaumot 
C and Dulière V (in preparation). Can the Patagonian crab Halicarcinus planatus reach the Antarctic 
Peninsula ? Study of the dispersal potential of its larvae using a lagrangian approach.  
 
�Dulière V / Guillaumot C (co-first authorship), López-Farrán Z, Lacroix G, Saucède T, Danis B and 
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Abstract 
Location. The Western Antarctic Peninsula (WAP) is challenged by climate change and 
increasing maritime traffic that together facilitate the introduction of marine non-native 
species from warmer regions neighboring the Southern Ocean (SO). Ballast water 
release has been frequently reported as an introduction vector.  
Aim. This study uses a Lagrangian approach to model the passive drift of virtual 
propagules departing from ballast waters hypothetic release zones, at contrasting 
distances from the WAP coasts. 
Methods. Virtual propagules were released over the 2008-2016 period and at three 
distances from the nearest coasts: 200 (international guidelines), 50 or 11 nautical miles 
(NM). 
Results. Results show that releasing at 200 NM considerably reduces the arrival of 
propagules in proposed marine protected areas (MPAs) of the western WAP. On the 
eastern part, propagules can reach north-eastern MPAs within a few days due to strong 
currents for all tested scenarios. Seasonal and yearly variations indicate that exceptional 
climate events could influence the trajectory of particles in the region. Ballast water 
should be released at least 200 NM offshore on the western side of the WAP and 
avoided on the eastern side to limit particle arrival in proposed MPAs. Focussing on 
Deception Island, our results suggested that ballast water could be at the origin of the 
observation in 2010 of the Patagonian crab (Halicarcinus planatus) in case of water 
release at 50 NM or less from the coast.  
Main conclusions. This study suggests that existing guidelines are not sufficient to limit 
the risk of non-native species introduction. Managing ballast water release of ships 
visiting the SO and joining such recommendations to future MPA proposals to reduce the 
risk of non-native species introduction is highly recommended, especially in the context 
of a more touristic and warmer SO.  

                
   Keywords 

ballast water, Southern Ocean, Antarctic tourism, invasive species, Marine Protected 
Areas, dispersal modelling, maritime traffic 
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1. INTRODUCTION  
 

Antarctic marine life is characterised by high levels of endemism (Griffiths 2010) as a result of the 
long climatic, geodynamic and oceanographic histories of the Southern Ocean (SO) (Crame 1999, 
Pfuhl and McCave 2005, Aronson et al. 2007, Clarke and Crame 2010). The SO, here, is defined 
as water masses bounded by the Antarctic continent to the south and the Polar Front (PF) to the 
north (Rintoul 2009); with the PF being the most significant of a series of circumpolar marine fronts 
associated with the eastward-flowing jets of the Antarctic Circumpolar Current (ACC) (Orsi et al. 
1995). Both the PF and the ACC form physical barriers preventing Antarctic surface water 
exchanges between the SO and northern ocean expanses (Aronson et al. 2007, Griffiths 2010, 
Sanches et al. 2016), hence blocking the dispersal of most marine organisms (Peck et al. 2014, 
Convey and Peck 2019). As a result from the prevalence of such important marine fronts, 
combined with strong currents and the remoteness from other land masses, a unique SO marine 
diversity has been shaped (Lawver et al. 1992, Crame 1999, Clarke et al. 2005, Barnes and Clarke 
2011). 

Polar regions are currently challenged by the multiple effects of climate change at a fast pace 
(Ansorge et al. 2014, Henley et al. 2019). Antarctic coastal marine ecosystems are notoriously 
sensitive because many shallow-water species have limited resilience abilities and limited 
southward migration capacities, towards more suitable areas (Stenni et al. 2017, Cárdenas et al. 
2018, Gutt et al. 2018). Direct and indirect impacts of climate change are expected to alter the 
structure and functions of these marine ecosystems leading to species distribution shifts, local 
extinctions, and favorable condi-tions for colonization by introduced non-native species (Hughes 
and Convey 2010, Bender et al. 2016). Anthropogenic impacts induced by fisheries, tourism and 
research activities have been shown to facilitate the transport and introduction of alien organisms 
through ship hull fouling and ballast water exchanges (Lewis et al. 2005, Lee and Chown 2009c, 
Hugues and Ashton 2017). 

The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) was 
created in 1982 to regulate trade and exploitation of Antarctic marine living resources, and set up 
marine protected areas (MPAs) (https://www.ccamlr.org/en/organisation/home-page, accessed 
October 2020). The Scientific Committee and Commission of CCAMLR yearly review and rule on 
new MPA projects proposed by national experts. To date, two Antarctic MPAs have been initiated 
and include waters off the South Orkney Islands (in 2009) and within the Ross Sea region (in 
2016). Antarctic mineral and core resources are not exploited yet (Westermeyer et al. 2020) but 
commercial fishing and tourism are on the rise, in particular along the west coast of the WAP (Lee 
and Chown 2009a, Bender et al. 2016, McCarthy et al. 2019). During the last five austral summers 
(2014 to 2019), the yearly number of tourists visiting Antarctica has increased from 36,700 to 
55,400 (IAATO 2019).  

As a consequence of increasing human pressure, the Antarctic region has progressively become 
less isolated and more affected by human footprint (Chu et al. 2019, Joblin et al. 2020). Among 
others, the rising maritime traffic has resulted in an increasing risk of introducing non-native 
species to the SO (Hughes and Convey 2010, Bender et al. 2016), as already reported for 
terrestrial (e.g. the bluegrass Poa annua, the  brachypterous chironomid Eretmoptera murphyi or 
the enchytraeid worm Christensenidrilus blocki, Hughes and Convey 2010, Chown et al. 2012, 
Chwedorzewska et al. 2015) and marine environments (e.g. the seaweed Ulva intestinalis, the 
crab Hyas araneus, the mussel Mytilus platensis or the tunicate Ciona intestinalis, see Hughes et 
al. 2019 and McCarthy et al. 2019 for a review). Introduction of non-native species have almost 
exclusively been reported in the vicinity of research stations and visitor landing sites (Lee and 
Chown 2009b, Volonterio et al. 2013, Hughes et al. 2015).  

Ship hull fouling and ballast water release are major vectors of alien species dispersal and 
introduction to Antarctic coastal waters (Lavoie 1999, Barnes 2002, Lewis et al. 2003, Lewis et al. 
2005, Chan et al. 2015, Hughes et al. 2019). Ballast water tanks are filled at ships’ home ports in 
South America to safely navigate across the Drake passage to Antarctica. Fishing vessels 
progressively discharge most of their ballast waters as it is replaced by their catch. Cruise ships 
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typically discharge ballast waters to travel faster and regularly take up new water to replace the 
volume left by fuel consumption (Hughes et al. 2019).  

The text of the Antarctic Treaty Consultative Meeting (ATCM, 2006) provides practical guidelines 
for ballast water release in the SO to mitigate the risk of introducing non-native species in coastal 
areas. Point 5 of the text says “For vessels needing to discharge ballast water within the Antarctic 
Treaty area, ballast water should [...] (be released) at least 200 nautical miles from the nearest 
land [...] if this is not possible for operational reasons then such exchanges should be undertaken 
in waters at least 50 nautical miles from the nearest land”. Complementary, the International 
Maritime Organization (IMO) adopted the International Convention for the Control and 
Management of Ships' Ballast Water and Sediments (BWM) in September 2017 
(http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/International-Convention-for-
the-Control-and-Management-of-Ships'-Ballast-Water-and-Sediments-(BWM).aspx-, accessed 
October 2020). This convention, ratified by 83 countries so far, establishes standards and 
procedures for the management and control of ship ballast water and sediments to avoid the 
unintentional dispersal of alien species. The main document also states that ballast water 
exchange should be done at least 200 nautical miles from the nearest land and in water at least 
200m deep, but “in cases where the ship is unable to conduct ballast water exchange [in these 
conditions], this should be as far from the nearest land as possible, and in all cases at least 50 
nautical miles from the nearest land”.   

In the present study, a Lagrangian model was developed to simulate the drift of virtual particles as 
they are transported along the water masses. The model calculates particle trajectories (identified 
here as potential propagules) according to different point locations where ballast water is 
discharged. This was exemplified by the Patagonian crab, Halicarcinus planatus (Fabricius, 1775), 
reported in Deception Island (Western Antarctic Peninsula) in 2010. The potential impact of ballast 
water release on the introduction of alien species in Antarctic coastal waters was analyzed through 
pluriannual and multi-seasonal time scales. A map of recommended areas for ballast water release 
is proposed as a tool to support good practices for ballast water discharge and for conservation 
purposes 
 
 
2. MATERIAL AND METHODS 
 
2.1. Study area  
 
The study area is enclosed by the strong eastward flowing ACC (Appendix 4.1) and includes the 
Scotia Arc region, the Antarctic Peninsula, and the Weddell Sea, as they concentrate most of the 
maritime traffic between Antarctica and southern South America and therefore, the highest risk of 
alien species introduction (Lynch et al. 2010, McCarthy et al. 2019).  

2.2. Lagrangian model principle and hydrodynamic settings 
 
In this study, we used a Lagrangian particle model, which combines oceanographic information 
(e.g. bathymetry, current direction and speed) forced by atmospheric factors (temperatures, winds, 
atmospheric pressure) (Huthnance 1991, Robinson and Golnaraghi 1994) with biological features 
(e.g. organisms' size, development rate, buoyancy, Van Sebille et al. 2018). The model used in this 
study is based on the model described in Dulière et al. (2013) and made available as a module of 
the free and open-source aquatic modelling system COHERENS v2 (Luyten 2011). This system 
has already been used to study, among others, oil spill dispersal (Legrand and Dulière 2014), 
jellyfish drift (Dulière et al. 2014) and the movement of harbor porpoises (Haelters et al. 2015). 
Particles are transported under advective and diffusive processes. The classical fourth-order 
Runge-Kutta method is used to estimate horizontal transport. The diffusive velocities are obtained 
from random walk theory with constant horizontal and vertical diffusion coefficients of 10 and 
0.0001m².s-1, respectively. The same diffusion coefficient values are used as in Young et al. (2014) 
and are equivalent to values observed in the SO (empirical values or commonly accepted by 
modelers; Sheen et al. 2013, Watson et al. 2013). A bouncing condition is used for particles 
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reaching the sea surface or seabed, and particles that leave the model domain through the ocean 
open boundary are assumed to have left the region. Stranding is not allowed, so when a particle 
reaches a dry cell, its position is set to its previous position at sea. The Lagrangian module is used 
off-line with a computation time step of 5 minutes. To ensure the general purpose of this study, the 
model has been set up with no specific organismal behaviour (i.e. swimming or tidal or diurnal 
vertical migration) and particles are assumed to move along with water masses (i.e. no buoyancy 
effect). 

The hydrodynamic conditions used to force the Lagrangian model are based on the 2008-2016 
PHY_001_024 datasets produced by the high-resolution global analysis and forecasting system, 
provided by Mercator Ocean (Law Shune et al. 2019). These products contain daily mean fields of 
sea surface elevation and horizontal ocean currents. In addition, they also contain sea ice 
information (i.e. concentration, thickness and velocity), sea water potential temperature, sea water 
salinity and ocean mixed layer thickness. These datasets have been generated with NEMO 3.1 
and LIM2 EVP models forced with 3-hourly atmospheric forcing from ECMWF (European Centre 
for Medium-Range Weather Forecasts, https://www.ecmwf.int/). Daily averaged model products 
are made available after interpolation from the native model grid to a global standard Arakawa C 
grid of 1/12° horizontal resolution and 50 fixed vertical levels (from 0 to 5,000 m). The quality of the 
Global high-resolution products has been assessed in Lellouche et al. (2019). 3D vertical ocean 
currents are estimated from the divergence in the horizontal velocity from the PHY_001_024 
forcing fields, assuming null surface and bottom vertical velocity.   

The model grid was built from a sub-sample of the global grid of the hydrodynamic forcing field 
from latitude 45°S down to the South Pole. The horizontal resolution of 1/12° (~8km) was kept and 
the 50 vertical levels have been adapted to 50 sigma levels for the COHERENS system. The 
Lagrangian particle model has been previously validated in Dulière et al. (2013), Legrand and 
Dulière (2014) and a quality analysis of the hydrodynamic forcing is provided in Lellouche et al. 
(2019).  

 2.3. Particle release scenarios 

Three scenarios were defined for simulating drift trajectories of organisms potentially released 
during ballast water discharge along the Antarctic coasts, according to ATCM (2006). The first 
scenario considers that ballast waters are released 190 to 210 Nautical Miles (NM) away from the 
nearest coasts (‘200 NM scenario’), which complies with the ATCM ratified guidelines (Fig. 4.1A). 
The two other scenarios represent cases of technical issues preventing from carrying out ballast 
water release at 200 NM: the second scenario simulates release from 40 to 60 NM from the 
nearest coasts (‘50 NM scenario’, Fig. 4.1B) and the third scenario hypothesizes a major 
transgression of the guidelines, with release from 2 to 20 NM from the closest coasts (‘11 NM 
scenario’, Fig. 4.1C). Six release zones (Fig. 4.1) were defined: Western Antarctic Peninsula 
(Rz.1), Eastern Antarctic Peninsula (Rz.2), East Weddell Sea (Rz.3), South Orkney Islands (Rz.4), 
South Georgia Islands (Rz.5) and South Sandwich Islands (Rz.6).  
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Figure 4.1. Locations of the six particle release zones for the 200 NM (A), 50 NM (B) and 11 NM (C) scenarios.  
 

For each release location, particles were released daily over a 9-year period (from 2008 to 2016) 
to account for seasonal and interannual variabilities. For technical reasons, particles have been 
released every six grid-cell pixel in latitude (every 1/2°) and every four grid-cell pixel in longitude 
(every 1/3°), with respect to 200 m depth. The number of release locations ranges from 8 (for Rz.5 
in scenario 11 NM) to 224 (for Rz.1 in scenario 11 NM) release points among the release zones 
and scenarios. All together, it is more than 4.5 million particle trajectories that have been studied in 
the model. A 6-month duration of the drift was chosen to match the duration of larval development 
periods of many SO organisms, which can drift in the water column for sometimes up to six months 
before starting metamorphosis and settling down on the seabed (White 1998, Stanwell-Smith and 
Clarke 1998, Stanwell-Smith et al. 1999). Particles initiate their drift at 10 m depth.  

2.4. Particles’ trajectory and age: statistical comparisons 
 
Model simulations have produced large datasets with model estimations of the daily age and 
positions (latitude, longitude and depth) of virtual particles. Model results have been post-
processed for different years and seasons (January-February-March; April-May-June; July-August-
September; October-November-December) and for each ballast water release scenario, to 
generate maps of dispersal patterns. Results for averaged years and seasons are first provided to 
describe the overall dispersal patterns of particles drift. Then, interannual and seasonal variabilities 
are described. Due to the different number of released particles among release areas and 
scenarios, a scaling correction has been applied for statistical analyses (giving a ‘weighted number 
of particles’).  

2.5. Proposed Marine Protected Areas 
 
The likely consequences of ballast water release on the potential introduction of alien organisms in 
MPAs of the WAP, was assessed by analyzing particle entry into proposed MPAs. Proposed MPAs 
for this region are the interest of the Chilean and Argentinian delegations at CCAMLR. The SC-
CAMLR-38/BG/03 report (CCAMLR report SC-CAMLR-38/BG/03 2019), proposes seven regulated 
areas, selected according to multiple arguments, including the spatial distribution of the benthos to 
top predators, oceanographic processes, climate change and fishing activities (Fig. 4.2). CCAMLR 
will rule on this proposal at the next international meeting. Among these proposed regulated areas, 
CCAMLR distinguishes (1) General Protection Zones (GPZ) that aim at protecting habitats, 
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bioregions and species in an attempt to mitigate or eliminate specifically identified ecosystem 
threats from fishing; and support existing and future scientific research and monitoring and (2) Krill 
Fishery Zones (KFZ) that include fishing areas in addition to protecting benthic habitats (CCAMLR 
report SC-CAMLR-38/BG/03 2019). (3) The established MPA of the South Orkney Islands (May 
2010) belongs to this conservation proposal and already prohibits any fishing activity, any 
transshipment activities and any discharge or dumping. All activities occurring in the area should 
be declared according to the CCAMLR delegation (CCAMLR report 91-03 2009, Trathan and 
Grant 2020). 

 
Figure 4.2. Map of proposed marine protected areas. Modified from SC-CAMLR-38/BG/03 report. NWAP 
and SWAP stand for Northern and Southern Western Antarctic Peninsula, respectively. SOI and SOI MPA 
stand for South Orkney Islands and South Orkney Islands Marine Protected Area, respectively. 
 
2.6. Focus on Deception Island 
 
In February 2010, a living and mature female of the brachyuran crab Halicarcinus planatus 
(Fabricius, 1775) was reported in shallow, subtidal waters of Deception Island (WAP) (Aronson et 
al. 2014) (Fig.  4.3). Halicarcinus planatus is usually distributed in shallow water areas of southern 
South America and along coastal areas of some sub-Antarctic Islands (Falkland, Marion, Crozet, 
Kerguelen and Macquary islands) (Boschi et al. 1969, Richer de Forges 1977, Aronson et al. 2014, 
Varisco et al. 2016). This little crab (shell diameter from 15 to 20 mm, Fig. 4.3) is an opportunistic 
feeder (Boschi et al. 1969) that is commonly found sheltered below intertidal and subtidal rocks 
(Richer de Forges 1977, Vinuesa and Ferrari 2008).  
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Figure 4.3. Location of Deception Island in the Western Antarctic Peninsula and representative male 
individual of the crab Halicarcinus planatus, scale= 1cm © Karin Gérard. 
 

Halicarcinus planatus has a high dispersal potential, with the release of planktonic larvae in the 
water column that can drift for 45 to 60 days at temperatures of 11-13°C and 8°C respectively, 
before settling on the seabed and triggering metamorphosis (Boschi et al. 1969, Richer de Forges 
1977, Diez and Lovrich 2010). Recent studies suggest that larvae of H. planatus are not capable of 
drifting across the SO when transported by the eastward flow of the ACC (López-Farrán et al. in 
prep. - Appendix). If introduced into shallow waters of the WAP (e.g. by ballast waters), climate 
warming is predicted to favour the species’ survival (López-Farrán/Guillaumot et al. in press - 
Chapter 3). The hypothesis of a potential introduction of H. planatus in Deception Island through 
ballast water release was tested by subsetting the model results to a maximum drift period of 2 
months, following the known maximal drifting time of the crab larvae (Boschi et al. 1969, Diez and 
Lovrich 2010). The hypothesis has been tested for all three release scenarios.  
 
 
3. RESULTS  
 
3.1. Dispersal patterns according to the different release scenarios 

General dispersal patterns were different among the three release scenarios (Fig. 4.4). The 200 
NM scenario leads to the widest dispersal pattern that expands further eastward across the PF to 
the sub-Antarctic area. The 50 and 11 NM scenarios comparatively lead to narrower and less 
extended dispersal patterns (Fig. 4.4). Geographical and oceanographic features (such as the 
Weddell Sea gyre, the PF, the ACC, the Scotia Ridge) clearly delineate the shape of the dispersal 
of particles in the corresponding areas.  

Release scenarios also show differences in the weighted number of particles (Fig. 4.4B), with 15-
fold more particles reaching the coastlines for the 11 NM scenario compared to the other 
scenarios, mainly closeby the coasts of the WAP.  
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Figure 4.4. Model estimated dispersal patterns for the three release scenarios: 200 NM, 50 NM and 11 NM. 
Left panels (A): dispersal patterns per release zones (presented in Fig. 4.1); right panels (B) dispersal 
patterns for all release zones combined. These dispersal patterns are averaged trajectories for the nine-year 
simulation period, all seasons included. The weighted number of particles is the scaled number of particles, 
relative to the number of release locations which differs between scenarios. Blue background: bathymetry 
chart.  

3.2. Recurrent arrivals in MPAs during austral summer periods 

Gridded weighted numbers of particles have been summed up in each proposed MPA. Results 
show for the austral summer period contrast between scenarios (Fig. 4.5). These sums (size of 
circles) are smaller in the 200 NM scenario compared to the 11 NM and 50 NM scenarios for all 
proposed MPAs but the SOI-MPA. These sums decrease by ~99% for GPZ-SWAP, ~30% for KFZ-
SWAP, 100% for Anvers, >96% for Livingston and 100% for Joinville, for the 200 NM scenario in 
comparison to the two other scenarios. Particles that reach MPAs in scenario 200 NM mostly 
originate from the western or eastern coasts of the WAP (Rz.1 and Rz.2).  

In the 11 NM and 50 NM scenarios, the proposed MPAs (SOI-MPA, KFZ-SOI and GPZ-SOI) in the 
north-east are mainly affected by particles released close to South Orkney (Rz.4). Contrastingly, 
when particles are released 200 NM away from the coasts of Rz.4, the number of particles 
reaching these three proposed MPAs is predicted to strongly decrease (-98.9 and -98.5% for 50 
and 11 NM scenarios, respectively). When released from 200 NM offshore, particles coming from 
the Eastern Antarctic Peninsula zone (Rz.2) drift north-eastward and reach the SOI-MPA in large 
numbers. The eastward flow of the ACC prevents particles released from South Georgia and 
Sandwich Islands areas (Rz.5 and Rz.6) to reach the proposed MPAs although they might impact 
other areas located further east. Releasing particles from the Weddell Sea area (Rz.3) also never 
impacts the proposed MPAs. 
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Figure 4.5. Sums of the weighted numbers of particles reaching the proposed marine protected areas 
(MPAs) during the January-February-March season (austral summer, being the season with the largest 
number of ships entering the Southern Ocean) over the 9-year period (2008-2016) and for each release 
scenario (200 NM, 50 NM and 11 NM). Release zone positions are shown in Fig. 4.1. Details about 
proposed marine protected areas are given in Fig. 4.2.  
 
3.3. Particle age upon arrival in MPAs 
 
The average age of particles reaching the proposed MPAs varies from 93 to 165 days, 74 to 131 
days, and 59 to 136 days for the 200, 50 and 11 NM scenarios, respectively (Fig. 4.6). For the 11 
NM scenario, the first particles generally reach the proposed MPAs in less than 10 days (except for 
SOI-MPA) and for the 50 NM scenario, in less than 20 days (except for Anvers and SOI-MPA). For 
the 200 NM scenario, it generally takes longer (over 25 days, except for GPZ-SWAP and SOI-
MPA) for the particles to reach the MPAs. Particles reaching GPZ-SWAP, KFZ-NWAP, KFZ-SOI, 
GPZ-SOI and SOI-MPA are older when released at a distance of 11 NM from the coast than when 
released at a distance of 50 NM.  
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Figure 4.6. Age of particles (in days) reaching the proposed marine protected areas under the 200 NM 
scenario (black), 50 NM scenario (grey) and 11 NM scenario (white) for the January-February-March 
season. Values are averaged over the 9 years (2008-2016), blue solid horizontal lines indicate the average 
year minimal value recorded within the period (2008-2016). 
 
3.4. Intra- and inter-annual variabilities 

Comparison of dispersal patterns among the nine simulated years show inter-annual variations in 
the extent of dispersal areas: such variation is mainly noticeable in the sub-Antarctic region and in 
the East Weddell Sea. Interannual variation is more obvious in the 11 NM scenario relative to the 
total extent of the dispersal pattern (Fig. 4.7; right panel). Interestingly, the dispersal area is 
broader in years 2008 and 2009, more extended to the east in 2014 and 2015 and conversely, 
more contracted in 2011 and 2012 (results not shown). Inter-seasonal variation is comparatively 
less marked than inter-annual variation (Appendix 4.2), and main shifts in particle distributions are 
concentrated to the north-east and south of particle overall distribution, following the same pattern 
of inter-annual variation (Fig. 4.7, Appendix 4.2). 
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Figure 4.7. Model estimated dispersal patterns assuming the release scenarios: 200, 50 and 11 NM, for 
particles released from all release zones at the same time. Colors represent the frequency of occurrence 
among the nine years (2008-2016) with a maximal score of 9 for pixels that receive particles every year. Blue 
background: bathymetry chart.  
 

Inter-seasonal and inter-annual variations in the origin of particles (release zones) that reach the 
proposed MPAs highlighted a comparable influence of years and seasons on dispersal contrasts 
(Fig. 4.8). The origin of particles reaching the MPAs located along the WAP (GPZ-SWAP, KFZ-
NWAP, Livingston, Anvers, Joinville), especially the one located in the south (GPZ-SWAP) is less 
variable. In these MPAs, particles mainly originate from the WAP and the Eastern Antarctic 
Peninsula zones (Rz.1, Rz.2). 

The variability in the origin of particles reaching the GPZ-SOI, KFZ-SOI and SOI-MPA areas, 
located further north-eastward, is much higher and strongly varies according to the release 
scenario, season and year, with particles originating either from the WAP, the Eastern Antarctic 
Peninsula or the South Orkney zones (Rz.1, Rz.2 and Rz.4, respectively). 

For the 200 NM scenario, some particles (less than 100 particles, i.e. less than 2%) from the South 
Georgia zone (Rz.5) appear for the first time in the statistics but logically does not present 
important proportions given the eastward flowing ACC (Fig. 4.8).  
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Figure 4.8. Intra- (vertical sub-panels) and interannual (horizontal sub-panels) variations in the origin 
(release zone) of particles reaching the proposed marine protected areas according to the 200, 50 or 11 NM 
scenarios. Red: Western Antarctic Peninsula (Rz.1), yellow: Eastern Antarctic Peninsula (Rz.2), dark blue: 
South Orkney Islands (Rz.4) and turquoise : South Georgia (Rz.5) (very small proportions for KFZ-SOI for 
200 NM scenario). 
  
3.5. Invasion risks 

Previous results were summarized in a synthesis map (Fig. 4.9) that indicates the release zones 
and the simulated risk of particle introduction into proposed MPAs. We defined a ‘high risk’, when 
models simulate the arrival of particles every year and every season in all neighboring MPAs. The 
‘no risk’ release zones correspond to zones where released particles never reach any proposed 
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MPAs. A ‘moderate risk’ category was added for zones where particles may not reach neighboring 
MPAs during some years and some seasons (according to climatic events) and/or in significantly 
lower densities. 

Results clearly show that releasing ballast waters on the western and eastern sides of the WAP 
and nearby Scotia Islands generally leads to a high to moderate risk to introduce particles into 
proposed MPAs, even if released at 200 NM from the nearest coast. In the case of ballast water 
released in the East Weddell Sea and around South Georgia and Sandwich Islands (Rz.3, Rz.5 
and Rz.6, respectively) particles never reach proposed MPAs. 

  

 
Figure 4.9. Ballast water release zones and their associated simulated risk (green: ‘no risk’; orange: 
‘moderate risk’; red: ‘high risk’) for particles to reach proposed marine protected areas (MPAs). The black 
solid line represents the Polar Front yearly mean position. The risk was estimated for proposed MPAs of the 
considered region only. Other areas that might also be at risk were not included in this study. 
 
 
3.6. A focus on Deception Island 
 
When ballast waters are released from distances exceeding 200 NM from the nearest coasts, the 
Lagrangian model predicts that no particle reaches the coasts of the WAP, nor the Gerlache Strait 
where Deception Island is located (Fig. 4.10A). In contrast, particles reach Deception Island and 
the Gerlache Strait within 2 months drift under the 50 NM and 11 NM scenarios (Fig. 4.10B-C). 
The weighted number of particles reaching the South Shetland Islands, entering fjords and drifting 
along the coasts is up to 15 times larger in the 11 NM scenario than in the 50 NM one; a very 
constant result across years (Appendix 4.3) and seasons (results not shown). Results are less 
uniform in the 50 NM scenario, where inter-annual variations cause particles to reach the Gerlache 
Strait and Deception Island either completely (2009, 2010, 2011, 2012) or partly (2008, 2013, 
2014, 2015, 2016).  
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Figure 4.10. Model estimated dispersal patterns, averaged for the nine-year period (2008-2016), for the 
January-February-March season (southern summer). Particle drift was simulated during two months. The 
weighted number of particles was obtained by scaling the number of particles by the number of release 
locations (which differ among scenarios). Results are presented for the three different release scenarios: 200 
NM (A), 50 NM (B) and 11 NM (C). Particles are released in all areas at the same time. Blue background: 
bathymetry chart. 
 
 
4. DISCUSSION 

 

Particle dispersal 

Lagrangian models have been widely used over the last decades for defining and delineating 
MPAs in many different regions and oceans (Gaines et al. 2003, Berglund et al. 2012, Burgess et 
al. 2014, Thomas et al. 2014), and study the spread dynamics of invasive species (Brandt et al. 
2008, Brickman 2014). In the SO, Lagrangian models have already been used to simulate 
dispersal abilities and the distribution of fish species or top predators, to understand the main key 
drivers of population connectivity and assess the position of the main foraging areas, in the aim of 
determining an effective management of natural resources (Young et al. 2012, 2014, 2015, Della 
Penna et al. 2017). 

In the present work, daily variations of the environment were simulated over a 9-year period and 
model outputs were analyzed to test the significance of dispersal patterns with regards to inter-
seasonal and inter-annual variations. In simulating a large number of particles, Lagrangian models 
integrate natural variability of hydrodynamic systems (Van Sebille et al. 2018). However, the model 
should rely on assumptions (parameterization of the general environment, of the properties of the 
simulated particle), which may not be trivial considering the broad spatial scale of the analysis, the 
overall system complexity, and the unknown propagule pressure state (i.e., occurrence and density 
of non-native species in ship ballast waters). Furthermore, some propagule traits such as 
buoyancy, physiology, survival rate and tidal behaviour were hypothesized; the actual traits of 
invasive species could potentially have a substantial impact on model outputs (Stanwell-Smith et 
al. 1999, North et al. 2008, Young et al. 2012, Miller et al. 2013, Barbut et al. 2019). 

Model simulations show that in six months, particles can drift along the coasts of the WAP up to 
South Georgia, driven by the power of the ACC and highlighting the importance of connectivity 
between Antarctic coasts and the Scotia Sea region (Appendix 4.1, Rintoul 2009, Caccavo et al. 
2018, Moffat and Meredith 2018). Other oceanographical features such as the Weddell Sea gyre 
and major marine fronts off the Scotia Sea (PF)(Della Penna et al. 2017), along with 
geomorphological features such as the South Orkney Ridge or the South Georgia shelf also clearly 
influence dispersal patterns (Fig. 4.4, Young et al. 2012, 2015, Vernet et al. 2019), and play a 
crucial role in the connectivity among sub-Antarctic islands (Young et al. 2012).  
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Comparisons of the three different scenarios indicate that release distance from the nearest coasts 
has significant impacts on particle trajectories, on the frequency and weighted number of particles 
reaching the Antarctic coasts (Fig. 4.4-5-7). Overall, particles are less likely to reach Antarctic 
coastal areas when ballast waters are released at least 200 NM away from the nearest coasts (Fig. 
4.4-5). 

Inter-seasonal and inter-annual variability were also shown to have significant effects on modelled 
dispersal patterns (Appendix 4.2, Fig. 4.7-8). This was expected here, given that SO 
hydrodynamics are highly controlled by the variability of atmospheric and climate regimes at both 
high and low frequencies (Henley et al. 2019). Some of our results indicate that in years 2008, 
2009, 2014 and 2015 particles were spread furthest while dispersal was the lowest in 2011 and 
2012. These results are linked to specific climate events and in particular, to regimes of westerly 
winds and to the intensity of the Southern Annular Mode (Limpasuvan and Hartmann 1999), which 
has been shown to be strongly and linearly teleconnected to the phase of El Niño Southern 
Oscillation, explaining roughly 25% of the SAM interannual variance  during the austral summer 
season (Carvalho et al. 2005, L’Heureux and Thompson 2006, Ciasto and Thompson 2008). Years 
2009, 2014 and 2015 were characterised by a negative Southern Oscillation Index with strong El 
Niño episodes (warmer temperatures and stronger westerly winds); in contrast, years 2010-2011 
were characterised by strong positive Southern Ocean Indexes and with La Niña episodes (weaker 
westerly winds, dryer and colder atmosphere) (Nicolas et al. 2017).  

Results’ overview in the general context 

The WAP is among the regions on Earth that experience climate warming at the fastest pace, 
where rising temperatures also directly or indirectly drive other environmental shifts (i.e. glacier 
melting, phytoplankton community shifts, changes in sea ice duration and extent) (Convey et al. 
2009, Bers 2013, Schram et al. 2015, Schofield et al. 2017, Convey and Peck 2019). This makes 
the WAP one of the most sensitive regions to potential invasions by introduced species in 
Antarctica (Meredith and King 2005, Hellman et al. 2008, McGeoch et al. 2015, Hughes et al. 
2019) because increased temperatures and related environmental shifts may favour the 
acclimation of alien species introduced from warmer climates over cold-adapted native taxa 
(Hellmann et al. 2008, Galera et al. 2018).  

For a few decades, maritime traffic has also steadily increased in the SO and in the WAP in 
particular, due to its relative proximity to harbors of southern South America (McCarthy et al. 
2019). This increasing traffic has been cited as the main cause for alien species introduction in 
coastal waters of the WAP (Tavares and De Melo 2004, Lee and Chown 2007, Diez and Lovrich 
2010). Many observations of non-native species have been reported in the last years including 
decapods, algae, bivalves (Thatje and Fuentes 2003, Fraser et al. 2018, McCarthy et al. 2019, 
Avila et al. 2020, Cárdenas et al. 2020), as well as the Patagonian crab H. planatus, which was 
found in Deception Island in summer 2010 (Aronson et al. 2014). 

Our study is strongly embedded within this context, by evaluating the impact of ship circulation on 
marine environments, and in MPAs in particular. Results highlight the importance of the distance of 
ballast water release from coasts to control the frequency and density of particles reaching 
Antarctic coasts. Focusing more specifically on Deception Island, our simulations indicate that no 
particle reach the Gerlache Strait when ballast waters are released at 200 NM from the coasts, 
suggesting that the non-native crab H. planatus could not have been introduced to Deception 
Island due to ballast water release if the ATCM guidelines had been respected. If the introduction 
to Deception Island indeed occurred through ballast water of cruise ships sailing southwards from 
ports of southern South America, which we consider to be a likely scenario, the crab must have 
been released at a distance equal or less than 50 NM from the Antarctic coasts (Fig. 4.10, 
Appendix 4.3). These results could be generalized to other species, with the ensuing 
consequences of species introductions (Walsh et al. 2016, David et al. 2017, Britton et al. 2018). 

Our results also highlight that the variability in climate regimes has a strong effect on dispersal 
patterns meaning that in certain years, particles may drift further and reach areas that are on 
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average not considered to be potentially impacted by ballast water release and the risk of alien 
species introduction, as already discussed by Fraser et al. (2018) and Waters et al. (2018) for kelp 
rafting. Other authors stressed the significance of transient events in long-distance dispersal 
(Leese et al. 2010, Saucède et al. 2014). Such events may become more frequent in future 
decades, owing to ongoing climate change, since climate projections for the Southern Hemisphere 
for the 21st century predict a further southward shift and intensification of storm tracks (Perlwitz 
2011) and therefore hypothesize an increasing threat for potential species introductions (Hugues et 
al. 2020). 

Future management of MPAs 

The ATCM (2006) guidelines recommend that ballast water should be discharged north of the PF 
before entering Antarctic waters and “preferably north of either the Antarctic Polar Frontal Zone or 
60°S, whichever is the furthest north”. In practice, the position of the Polar Front is usually noticed 
after passing it and exchanging ballast waters in these regions is not realistic considering the 
weather and sea conditions (Wallis B., person. comm.). Consequently, the 200 NM guidelines, 
provided both by IMO and ATCM (2006) texts, should be as widely as possibly applied by ships 
that sail across the PF. Our results however suggest that releasing ballast waters at 200 NM 
around the WAP (Rz.1) may still lead to particles reaching the Antarctic coasts including, the 
eastern and northernmost proposed MPAs of the region (notably KFZ-NWAP, GPZ-SWAP and 
Livingston, Fig. 4.5, Fig. 4.8). The particle numbers reaching the Antarctic coasts are considerably 
reduced when released at 200 NM from the nearest coasts than when released at 50 NM or 11 
NM. Although the origin of particles arriving in MPAs varies among years and seasons, the model 
indicates that ballast water release should best be conducted further away than 200 NM or 
wherever possibly, avoided altogether on the western side of the Antarctic Peninsula (Fig. 4.9). 

When ballast waters are released on the eastern side of the WAP (Rz.2 and Rz.4), particles are 
predicted to drift north-eastward in the sub-Antarctic region, reaching the KFZ-SOI, GPZ-SOI or 
SOI-MPA areas within a few days at the earliest, and within 3 months on average (Fig. 4.5-7-8). 
Regardless of the release scenario, our simulations indicate that it is not possible to prevent 
particles from reaching the aforementioned MPAs when ballast water is discharged on the eastern 
side of the WAP (Rz.2; Fig. 4.5 and Fig. 4.8). Avoiding this region for ballast water release is 
therefore recommended (Fig. 4.9). Discharging ballast water in the East Weddell Sea and around 
South Georgia and Sandwich Islands (Rz.3, Rz.5 and Rz.6, respectively) results in the absence of 
particles reaching the MPAs. East Weddell Sea (Rz.3) is however not suitable for ballast water 
release due to practical reasons, because this region is ice-covered all year long (Vernet et al. 
2019). Results also show that particles released in the South Georgia and Sandwich Islands region 
will not reach the proposed MPAs of the WAP, but the impact on islands located further east was 
not investigated in the present work. 

Given the dense and increasing maritime traffic along the Antarctic Peninsula and Scotia Sea 
regions, the present model could be improved with more detailed data on ship routes, ballast water 
discharge events (McCarthy et al. 2019, Hugues et al. 2020) and propagule pressure (Lee and 
Chown 2009a). Such adapted models could then be used to generate maps delineating 
recommended zones for ballast water release with a higher precision. Our results strongly stress 
the necessity to further strengthen existing conservation measures for visitors and ships 
approaching Antarctic coasts and complementing studies that highlighted the urgency of protecting 
Antarctica from species introduction (Lennox et al. 2015, McGeoch et al. 2015, Hugues et al. 
2020). Such conservation measures should be joined to MPAs proposals. 

Awaiting the definition and acceptance of recommended ballast water release zones, countries 
that ratified the International Convention for the Control and Management of Ships' Ballast Water 
and Sediments (BWM), could meanwhile already make ballast water treatments compulsory. 
Infrastructures for ballast water treatment are technologically improving (Aravossis and 
Pavlopoulou 2013, Chaplin 2019), although this approach brings additional practical and financial 
issues being the responsibility of ship owners (Aravossis and Pavlopoulou 2013). 
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5. CONCLUSIONS 
This study provides insights on how ballast water release can contribute to the arrival of potentially 
invasive species in current and proposed MPAs of the WAP, being one of the most vulnerable 
Antarctic regions to biological invasions.  

The existing ballast water release guidelines produced by the IMO and Antarctic Treaty (Antarctic 
Treaty 1959, ATCM 2006) are not sufficient to prevent the introduction of non-native species in 
these MPAs, although respecting ballast water discharges at 200 NM away from the nearest 
coasts lowers the risk of introduction. This is especially true for ballast water being discharged in 
the areas of the western and eastern WAP. Because of the expected future increase in maritime 
traffic and the correlated risk of alien species introduction and invasions potentially increasing due 
to global warming, we here advocate for delineating ballast water discharge zones, so that 
propagules released within ballast waters would not reach the most fragile Antarctic ecosystems. 
These discharge zones could be further fine-tuned with more data about maritime traffic and 
accounting for climatic variability.  

We also recommend increasing the ratified distance of ballast water release over 200 NM in the 
WAP and avoiding discharges in the Eastern Antarctic Peninsula, two recommendations that could 
be included in future MPA proposals. This study shows that ballast water release at 50 NM or 
closer to the coasts pose a dangerous threat, as these results in drifting propagules reaching 
Antarctic coasts. This is in particular exemplified by the case study of the introduction of the 
Patagonian crab H. planatus in Deception Island. Our results indicate that, if the crab was indeed 
brought after ballast water discharge, the ballast water would have likely been discharged at 50 
NM or closer to the Antarctic coast. 
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APPENDIX 4.1. Main currents along the Western Antarctic Peninsula region 

 

Figure S4.1. (A) Main currents in the Southern Ocean region and focus on the Western Antarctic Peninsula. 
Modified from Caccavo et al. (2018) and Moffat and Meredith (2018). 
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Figure S4.1. (B) Position of the Polar Front (black dotted line), from Orsi and Harris (2019). 
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APPENDIX 4.2. Seasonal variability 

 
Figure S4.2. Dispersal patterns according to the different scenarios of ballast water release (A : 200 NM, B : 
50 NM, C : 11 NM) for contrasting seasons. Release in all areas at the same time. Average values of the 9-
year simulations (2008-2016). Blue background: bathymetric chart. 
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APPENDIX 4.3. Inter-annual variability of dispersal patterns (focus on the Gerlache 
Strait region) 

 
Figure S4.3.  Dispersal patterns and weighted number of particles according to the different scenarios of 
ballast water release (200 NM, 50 NM and 11 NM) for the January-February-March period (summer) and for 
different years (2012 to 2016). Release in all areas at the same time. Blue background: bathymetric chart.  
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                 Abstract 

Natural populations are often heterogeneously distributed in space, potentially leading to 
spatial genetic structure and patterns of local adaptation. Ecological traits, the environment, 
and evolutionary forces determine the connectivity between population patches. In the 
Southern Ocean, demersal fish disperse widely between the continental shelf, and oceanic 
island plateaus and seamounts. The marbled rockcod Notothenia rossii Richardson, 1844 
was historically overharvested and only recently shows signs of recovery. We applied an 
integrated multidisciplinary approach to determine connectivity of this ecologically important 
species over contemporary and evolutionary time scales. Thousands of population genomic 
markers reveal high levels of gene flow and a lack of genetic differentiation over vast 
distances. Individual-based modelling, however, suggests that large-scale connectivity can 
only be achieved via stepping-stone transport. In conjunction with species distribution 
modelling, these results highlight how genetic data alone may overestimate the extent of 
connectivity. Limited ecological connectivity, that is reduced exchange of larvae or juveniles 
within one season, and reduced effective population size may have contributed to the long 
recovery time of the marbled rockcod. Current conservation plans, that aim to create a 
network of marine protected areas in the Southern Ocean, can benefit from multi-method 
assessments as presented here, especially in view of global change. 

       
       Keywords 

Connectivity, fish, genotyping by sequencing, local adaptation, marine protected area, 
Notothenioidei, seascape genomics, Southern Ocean, species distribution modelling. 
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1. INTRODUCTION  
 
Connectivity and spatial genetic structure in marine organisms is determined through the interplay 
of ecological traits, such as dispersal mode, duration and behavior, and the physical setting, that is 
environmental conditions including hydrodynamics, and evolutionary forces, such as selection and 
genetic drift (Hidalgo et al. 2017, Hoey and Pinsky 2018, Xuereb et al. 2018). This multitude of 
factors can lead to complex patterns and makes the relative importance of each factor difficult to 
discriminate (Moon et al. 2017, Miller et al. 2018, Milligan et al. 2018). However, spatial population 
structure and its temporal dynamics are crucial information for sound biodiversity management and 
protection (Funk et al. 2012, Momigliano et al. 2019). Management of marine organisms aims to 
protect the biodiversity of species, populations and ecosystems under competing influences of 
various anthropogenic disturbances (Everson 2017, Ropert-Coudert et al. 2019). 

Taxonomic ranks at the species level are readily available, at least for macro-organisms, but recent 
research has shown that it is imperative to also consider intraspecific variation (Mee et al. 2015, 
Carvalho et al. 2017, Des Roches et al. 2018, Paz-Vinas et al. 2018). In order to assess 
intraspecific variation in the ocean, putative subpopulations are characterised with respect to their 
ecology and evolution. These two aspects are intertwined, leading to eco-evolutionary dynamics 
that determine the long-term fate of a species. Similarly, a species may persist in the form of a 
metapopulation comprised of subpopulations that are linked through ecological and evolutionary 
connectivity (Cowen and Sponaugle 2009, Pinsky et al. 2017). Ecological connectivity is the 
contemporary exchange of individuals between fragmented habitats. Evolutionary connectivity 
additionally considers the long-term degree of connection between a given number of separate 
(sub)populations through genetic exchange and drift (Waples and Gaggiotti 2006). All these 
aspects gain relevance in an exploitation context. Fisheries in particular can have drastic and 
immediate effects on reproductive output and thus ecological connectivity. In addition, fisheries can 
reduce genetic diversity and may have evolutionary consequences by imposing artificial selection 
on a species (Pinsky and Palumbi 2014, Heino et al. 2015). Recognizing and mitigating these 
consequences is a global challenge for fisheries and ocean management, especially in areas 
beyond national jurisdiction (Ortuño Crespo et al. 2019). 

The Southern Ocean provides an example of ecosystem- and consensus-based fisheries 
management in an area that is not governed by a single nation (Kock et al. 2007, Constable 2011, 
Everson 2017). As such the Commission for the Conservation of Antarctic Marine Living 
Resources (CCAMLR), can be considered progressive (Constable et al. 2000, Nilsson et al. 2016, 
Hofman 2019), albeit constantly facing challenges (Ainley and Pauly 2013, Brooks 2013, Abrams 
et al. 2016). Before CCAMLR came into force in 1982, a number of fish populations were severely 
overfished. Most strikingly, the endemic marbled rockcod Notothenia rossii Richardson, 1844 
(Nototheniidae, Perciformes) was an early target species with a cumulative reported catch of 
501,262 t in the first two fishing seasons (1969/70 and 70/71) around South Georgia (Kock 1992) 
and near 150,000 t around Kerguelen in 1971 (Duhamel 1982). Thereafter, large trawlers were still 
active throughout the Southern Ocean, but with considerably lower catches, until the fishery was 
closed by CCAMLR in 1986/87 (Kock 1992). Since the inception of CCAMLR, conservation 
measures have been adopted progressively in order to assist the recovery of several notothenioid 
species by banning directed fisheries and establishing stringent by-catch limits in many Antarctic 
zones (CCAMLR 2019a). Recovery of the N. rossii stocks took more than 35 years with the 
species only in the past decade showing clear signs of increasing abundance (Barrera-Oro and 
Marschoff 2007, Marschoff et al. 2012, Barrera-Oro et al. 2017, Duhamel et al. 2019). 

At present, new initiatives are underway to enhance biodiversity protection in the Southern Ocean 
through a network of Marine Protected Areas (MPAs). The South Orkney Islands Southern Shelf 
(SOISS) and large parts of the Ross Sea are designated MPAs since 2009 and 2016, respectively 
(Fig. 4.11). The waters around South Georgia and the South Sandwich Islands are also widely 
protected against overexploitation (Trathan et al. 2014). Additional MPAs were proposed in the 
Atlantic, Indian and Pacific sectors of the Southern Ocean to create a MPA network (CCAMLR 
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2019b). Much research has been devoted to provide the scientific information needed for the 
establishment of an appropriate MPA network (Teschke et al. 2015, 2019, Constable et al. 2016, 
Hill et al. 2017, Brasier et al. 2019, Parker et al. 2019). In addition, several large-scale research 
initiatives have increased our knowledge of biodiversity and bioregions in the Southern Ocean over 
the past decades (Schiaparelli et al. 2013, De Broyer et al. 2014). Nevertheless, Antarctica and the 
Southern Ocean remain a data-poor environment in the global context. Data availability is biased, 
due to high sampling effort around research bases (Griffiths 2010) and difficult accessibility of the 
remote and often ice-covered Southern Ocean (Convey and Peck 2019). A combined 
methodological approach, including genetic analyses, environmental measurements and modelling 
techniques, could help eliminate knowledge gaps concerning population structure and connectivity 
of key species in the Southern Ocean ecosystems (Gutt et al. 2018). 

The genomic revolution has enabled the relatively fast and economic characterisation of thousands 
of genetic markers in non-model organisms (Elshire et al. 2011, Andrews et al. 2016). High 
resolution genetic data promises to yield new insights into speciation, differentiation and adaptation 
patterns and is thus a valuable tool to fully use the potential of precious Antarctic samples 
(Christiansen 2020). Species distribution modelling (SDM), sometimes referred to as ecological 
niche modelling, is a powerful technique to correlate environmental and occurrence data and 
subsequently predict the occurrence probability of a given species in other habitats or under 
changing environmental conditions (Elith and Leathwick 2009). Such techniques can be useful in 
data-limited situations, albeit care must be taken to ensure appropriate parameterization 
(Guillaumot et al. 2018a - Appendix, 2019 - Chapter 2). Lastly, individual-based modelling (IBM) 
can be used to simulate dispersal and thus obtain a spatially explicit prediction of connectivity 
between habitats (Cowen and Sponaugle 2009). Combining genomic data and modelled 
connectivity estimates is most useful in the marine realm, where direct observations of migration 
and dispersal are often virtually impossible (Pinsky et al. 2017, Xuereb et al. 2018). We use the 
methods mentioned above complimentarily to advance our understanding of large-scale 
connectivity in N. rossii, a fish that is both valuable as a living resource and vulnerable to 
overfishing. 

The marbled rockcod grows to more than 50 cm in length, can form dense shoals in sub-Antarctic 
and Antarctic fjords and shelf waters, and occurs widely in the Southern Ocean (DeWitt et al. 1990, 
Duhamel et al. 2014). Its life cycle has been well described for the population at South Georgia by 
Olsen (1954) and Burchett (1983) and for the population at Kerguelen Islands by Duhamel (1982). 
Spawning takes place between April and June on the bottom of continental shelf areas at about 
200-360 m depth, where ripe adults migrate during fall. Hatching occurs between September and 
October in the water column, where larval and young pelagic blue-phase fingerling stages remain 
before they migrate inshore approximately in January-February (DeWitt et al. 1990, Kock and 
Kellermann 1991, Kock and Jones 2000, North 2001). The fingerlings then change morphologically 
to the brown-phase fingerling stage and become demersal, settling in the algae beds. At about 5-7 
years of age and 41-45 cm of length, N. rossii reaches sexual maturity and migrates to the offshore 
shelf feeding area joining the adult population. These offshore-inshore phases in the life cycle of 
the marbled rockcod are assumed to be similar in the geographical areas of its range (Kock 1992). 
The ecological habits of N. rossii as a benthic-benthopelagic species constitute an important 
trophic link between lower trophic levels (macroalgae, benthic invertebrates, small fish) and 
Antarctic top predators, such as seals and birds (Barrera-Oro 2002, McInnes et al. 2017, Bertolin 
and Casaux 2018). 

Previous studies have reasoned that this extended pelagic period contributes to the widespread 
distribution and low or absent genetic structure of N. rossii (DeWitt et al. 1990, Young et al. 2015). 
The Antarctic Circumpolar Current (ACC), the world’s largest ocean current system, is a prime 
candidate to facilitate eastward advection and thus connectivity (Orsi et al. 1995, Matschiner et al. 
2009). The ACC is comprised of a series of approximately zonal fronts, where there are rapid 
changes in water mass properties and associated geostrophic currents. These current jets are not 
fixed in time and space, rather they show a high degree of meso-scale variability, with frequent 
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splitting and merging. However, long-term trends in frontal positions show very little variability 
(Chapman 2017), in part due to the strong steering of the ACC by the seafloor topography. Broadly 
speaking, the ACC has a pervasive eastward flow. However, within the Scotia Sea this flow 
assumes a more northward component as the current system recovers from its most southerly 
excursion in Drake Passage. Population genetic investigations of N. rossii have focused on this 
area, using microsatellite loci and connectivity models (Young et al. 2015). However, the 
connection between N. rossii in the Scotia Sea and the Kerguelen Plateau, initially described as 
two subspecies (DeWitt et al. 1990), has not been investigated with modern genomic methods or 
numerical modelling. 

Here, we hypothesize that despite the fragmented distribution only subtle genetic structure and 
adaptive divergence are present in N. rossii due to the long pelagic phase. Species distribution 
modelling is used to determine which localities are likely important habitats for N. rossii, while 
genome-wide polymorphisms are used to test for genetic population structure. Individual-based 
modelling is employed to quantify dispersal between sites. Combining population genomics with 
distribution and dispersal modelling enables us to infer gene flow and environmental specialization 
in a spatially explicit framework. Finally, we evaluate large-scale distribution and spatial 
connectivity patterns in the Southern Ocean in light of current fisheries management and 
conservation actions. 

 
2. MATERIAL AND METHODS 
 
2.1. Species occurrence and sampling  
 
Publicly available occurrence data for marbled rockcod N. rossii were mined from the Ocean 
Biogeographic Information System (OBIS) and the Global Biodiversity Information Facility (GBIF) 
(both accessed September 2019) using R softwage with the packages ‘robis’ v2.1.8 (Provoost and 
Bosch 2019), ‘rgbif’ v1.3.0 (Chamberlain et al. 2019) and ‘SOmap’ for plotting (Maschette et al. 
2019). Duplicate entries (identical coordinates) were removed. A total of six occurrences that 
appear likely to be misidentified (based on these occurrences being drastically outside the 
generally accepted species distribution) were removed, in an attempt to provide exclusively highly 
reliable input data for species distribution modelling. For genetic analyses, adult fish were caught 
during many expeditions throughout the Southern Ocean (Fig. 4.11, Table 4.1). Fin, muscle, or 
liver biopsies were taken and stored in 90% ethanol or frozen until further processing. The samples 
from South Georgia, the South Orkney Islands, Elephant Island, and King George Island/Isla 25 de 
Mayo (collected in 2006) were previously analyzed using microsatellites (Young et al. 2015). In 
addition, samples from trammel nets were taken in 2016 on King George Island/Isla 25 de Mayo 
(Barrera-Oro et al. 2019) and from research trawling in 2016 on Skiff Bank (Leclaire Rise) and on 
the Northeast part of the Kerguelen Islands shelf. The occurrence data from these samples were 
added to the OBIS/GBIF occurrence data set for species distribution modelling if not already 
included. All available metadata per sampled individual can be found on data.biodiversity.aq.
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Table 4.1. Sampling details (location, location code, latitude (Lat) and longitude (Lon), sample size (N) and year) and genetic diversity of Notothenia rossii 
from the Southern Ocean. Geographical coordinates are listed in decimal degrees; note that values are approximate for most locality samples; all available 
metadata per individual can be found on data.biodiversity.aq. Expected (HE) and observed heterozygosity (HO) were calculated for filtered genotypes from de 
novo and reference-based bioinformatics. 
 

Location Code Lat Lon N Year HO de novo HO reference HEde novo HE reference 
South Shetlands, Deception Island SSD-06 -62.95 -60.65 34 2006 0.246 ± 0.004 0.212 ± 0.007 0.253 ± 0.005 0.219 ± 0.006 
South Shetlands, King George Island SSK-06 -62.23 -58.68 35 2006 0.230 ± 0.004 0.217 ± 0.006 0.235 ± 0.004 0.227 ± 0.006 
South Shetlands, King George Island SSK-15-16 -62.23 -58.68 40 2015/16 0.244 ± 0.004 0.213 ± 0.006 0.249 ± 0.004 0.223 ± 0.006 
Elephant Island EI-02 -61.24 -55.62 33 2002 0.255 ± 0.004 0.215 ± 0.006 0.261 ± 0.004 0.226 ± 0.006 
Elephant Island EI-06-07 -61.24 -55.62 31 2006/7 0.253 ± 0.005 0.211 ± 0.006 0.260 ± 0.005 0.219 ± 0.006 
South Orkney Islands SO-06 -60.70 -45.57 22 2006 0.251 ± 0.005 0.224 ± 0.008 0.258 ± 0.005 0.236 ± 0.008 
South Georgia SG-02-03 -55.24; -53.70 -35.6; -37.51 35 2002/3 0.247 ± 0.004 0.216 ± 0.006 0.252 ± 0.004 0.224 ± 0.006 
South Georgia SG-05 -53.70 -37.51 45 2005 0.244 ± 0.004 0.210 ± 0.005 0.250 ± 0.004 0.220 ± 0.005 
Kerguelen Islands Shelf KI-15 -47.41; -48.67 69.7; 70.98 39 2016 0.238 ± 0.004 0.204 ± 0.007 0.243 ± 0.004 0.213 ± 0.007 
Skiff Bank, Kerguelen Islands SB-15 -49.8; -50.01 64.8; 65.64 40 2016 0.236 ± 0.004 0.217 ± 0.006 0.242 ± 0.004 0.228 ± 0.006 
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Fig. 4.11. Species occurrence of Notothenia rossii in the Southern Ocean (red dots) and localities used for 
individual-based hydrodynamic connectivity modelling (black crosses). Ocean fronts after Orsi et al. (1995) 
indicated from north to south: sub-Antarctic Front, Polar Front, Southern Boundary of the Antarctic 
Circumpolar Current. Current marine protected areas (MPAs), i.e. the South Orkney Islands Southern Shelf 
and Ross Sea MPAs, are shown as black rectangles and exclusive economic zones (EEZs) as black circles. 
Background shading (white-blue) reflects ocean depth. Modelling sites from west to east: Dallman Bay (DB), 
South Shetland Islands (SSh), Joinville Island (JI), Elephant Island (EI), South Orkney Islands (SO), South 
Georgia (SG), South Sandwich Islands (SSa), Bouvet Island (BI), Edward and Marion Islands (EM), Ob and 
Lena Banks (OL), Crozet Island (CI), Skiff Bank (SB), Kerguelen Islands (KI), Heard and McDonald Islands 
(HM). Samples for genetics were available from SSh, EI, SO, SG, SB, and KI (see Table 4.1). 
 

2.2. Species distribution modelling 
 
The assembled occurrence data (Fig. 4.11) and a subset of environmental variables describing the 
habitat of benthic Antarctic organisms at 0.1° resolution (Guillaumot et al. 2018b) were used for 
predictive species distribution modelling (SDM) with boosted regression trees (BRT, Elith et al. 
2008). Twelve environmental variables were included after selecting the most informative variables 
based on biological knowledge, and the Variation Inflation Factor (VIF) stepwise procedure was 
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used to prune highly correlated descriptors (Naimi et al. 2014). Retained variables were: depth, 
geomorphology, sediments, slope, seafloor current speed, maximum ice cover, maximum ice 
thickness, mixed layer depth, minimum and maximum particulate organic carbon (POC), and 
minimum seafloor salinity and temperature. POC, temperature and salinity are an average of 
interpolated values of the time period 2005-2012. Models were run using only unique occurrences 
per 0.1° grid-cell and environmental layers were masked to areas shallower than 1000 m depth, 
which encompasses the observed depth range of adult N. rossii (the upper 550 m of the water 
column, DeWitt et al. 1990). The models were spatially limited to -100 and 100° longitude and -45 
and -70° latitude. This longitudinal selection excludes most of the Pacific, and parts of the Indian 
Southern Ocean sectors. Notothenia rossii is documented to occur around Macquarie Island (Fig. 
4.11). However, no samples from this comparatively isolated site (only known occurrence in the 
Pacific sector) were available. Hence, modelling focused on the area from the western Antarctic 
Peninsula to the Kerguelen Plateau. The latitudinal selection covers all assembled occurrences 
and therefore the area in which the species can likely biologically occur. Optimal BRT parameters, 
which in combination reduce modelling error while avoiding overfitting to the occurrence data set, 
were calibrated following Elith et al. (2008). The selected combination used for the final SDMs 
were: tree complexity 4, bag fraction 0.8 and learning rate 0.02. The number of background data 
used to characterise the environmental conditions was set at 500 and a four-fold ‘CLOCK’ method 
was applied to spatially segregate the proportion of occurrence records used to train the model 
(75%) and test the model (25%) (Guillaumot et al. 2019 - Chapter 2). In addition, a kernel density 
estimation layer (Phillips et al. 2009) and a multivariate environmental similarity surface index (Elith 
et al. 2010) were estimated and applied as described in detail in Guillaumot et al. (2019 - Chapter 
2). These corrections were applied to correct for the influence of autocorrelation within occurrence 
records and model extrapolation, respectively. A final total of 240 replicate SDMs were run and the 
mean probabilities of occurrence were used for plotting. Model performance was assessed by 
measuring the Area Under the receiver operating Curve (AUC, Fielding and Bell 1997), and 
assessing the number of presence test data correctly classified as suitable areas by the model 
predictions. Analyses were conducted in R using the packages ‘ncdf4’ v1.16.1 (Pierce 2019), 
‘raster’ v3.0-2 (Hijmans et al. 2019), ‘usdm’ v1.1-18 (Naimi and Araújo 2016), ‘dismo’ v1.1-4 
(Hijmans et al. 2017), ‘MASS’ v7.3-51.4 (Venables and Ripley 2002), and ‘gbm’ v2.15 (Greenwell 
et al. 2019). Input data and R scripts are available at https://doi.org/10.5281/zenodo.3552609. 
 
2.3. Reduced representation sequencing 
 
Large numbers of single nucleotide polymorphism (SNP) loci were sourced with reduced 
representation sequencing, a methodology that reproducibly samples the full genome (Andrews et 
al. 2016). Genomic DNA was extracted using a standard salting out protocol to avoid shearing 
during column purification. DNA concentration was determined using the Quant-iT PicoGreen 
dsDNA kit (Thermo Fisher Scientific Inc.) and an Infinite M200 microplate reader (Tecan Group 
Ltd.) according to the manufacturer’s instructions. Extractions were then standardized, checked for 
signs of degradation on agarose gels and quantified and standardized again to approximately 10 
ng µL-1. Four reduced representation sequencing libraries containing 96 individuals each were 
constructed (Table 4.1). Thirty of these were within- and between-library controls (i.e. DNA 
replicates from identical individuals). A modified GBS library preparation protocol based on Elshire 
et al. (2011) but with size selection was used, as described in full detail in Christiansen (2020). The 
restriction enzyme ApeKI and a size selection window of 240-340 bp, using a Pippin Prep (Sage 
Science), were applied to achieve high marker density. The libraries were paired-end sequenced 
on four lanes of a HiSeq 2500 with v4 chemistry (Illumina Inc.) at the KU Leuven Center for Human 
Genetics (GenomicsCore). 
 
2.4. Variant calling and filtering 
 
Sequencing data was checked for general quality using FastQC v0.11.5 (Andrews 2010). The 
Stacks pipeline v2.4 (Rochette et al. 2019) was used to genotype samples both de novo and using 
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the reference genome of Notothenia coriiceps (Shin et al. 2014). First, each library was 
demultiplexed and quality filtered using process_radtags (options: -c -q -r). Library 2 and 4 were 
demultiplexed with quality control disabled (without -q), because low Phred scores at the cutsite 
otherwise lead to discarding of all reverse reads. For the de novo approach the sequences were 
trimmed to 119 bp, to fulfill Stacks’ requirement of uniform read length. In addition, forward, reverse 
and remainder reads were concatenated after demultiplexing to treat both reads as individual loci, 
because GBS reads cannot be oriented preventing Stacks from building paired-end contigs 
(Rochette et al. 2019). A parameter test series using a subset of 24 individuals (four from each 
locality) was conducted as described in Rochette and Catchen (2017). The retained parameters 
were m=3, M=4, n=4 (see Appendix 4.4) and subsequently applied to the entire data set. A catalog 
was built using 10 individuals per locality (cstacks module); all individuals were matched against 
the catalog (sstacks) and data was transposed (tsv2bam). For the reference approach, forward 
and reverse reads were aligned to the N. coriiceps genome after demultiplexing using BWA 
v0.7.17 and SAMtools v1.9 and default parameters (Li and Durbin 2009, Li et al. 2009). In both 
cases (reference-based and de novo) genotyping of SNPs was conducted using gstacks with 
default parameters, that is under a Bayesian low coverage framework from Maruki and Lynch 
(2017). 

Stringent quality control and filtering is necessary before downstream processing of GBS data, 
because high-throughput sequencing data has comparably high error rates (Shafer et al. 2017, 
O’Leary et al. 2018). In a first filtering step, genotypes of the reference-based and de novo data set 
were pruned using the populations module of Stacks, requiring loci to be present in at least 80 % of 
the individuals of each population, to have a minor allele frequency > 0.05 and heterozygosity < 0.7 
(Rochette and Catchen 2017). Subsequently, genepop files were imported and filtered extensively 
in R software using the ‘radiator’ package v1.1.1 (Gosselin 2019). This filtering approach was 
conducted without and with technical replicates to assess the genotyping error rate before and 
after filtering. In brief, data was filtered on missing values, heterozygosity, minor allele count, 
coverage, SNP position, linkage disequilibrium (LD) and departures from Hardy-Weinberg 
proportions (Appendix 4.5). 
 

2.5. Population genomics 
 
Analyses of the filtered genomic data sets were conducted mostly in R, with code and input data 
available under https://doi.org/10.5281/zenodo.3552609. Overall and pairwise differentiation 
measures (FST, GST, D), expected and observed heterozygosity and hierarchical analyses of 
molecular variance (AMOVA) were calculated using ‘adegenet’ v2.1.1 (Jombart 2008, Jombart and 
Ahmed 2011), ‘hierfstat’ v0.04-30 (Goudet and Jombart 2015), ‘mmod’ v1.3.3 (Winter 2012), and 
‘pegas’ v0.11-12 R packages (Paradis 2010). Additional data filtering was conducted using ‘poppr’ 
v2.8.3 (Kamvar et al. 2014) (see Appendix 4.5). Principal component analysis (PCA), non-metric 
multidimensional scaling and discriminant analyses of principal components (DAPC) were 
conducted using ‘adegenet’, ‘vegan’ v2.5-6 (Oksanen et al. 2018), ‘MASS’ v7.3-51.4 (Venables 
and Ripley 2002), and ‘factoextra’ v1.0.5 (Kassambara and Mundt 2017) and ‘ggsci’ v2.9 (Xiao 
2017) aiding plotting. Following cross-validation to avoid overfitting, 30 (de novo data) and 50 
(reference data) principal components were used for the DAPC. Migration was estimated and 
visualized using the divMigrate function (Sundqvist et al. 2016) from the ‘diveRsity’ package 
v1.9.90 (Keenan et al. 2013) and the ‘qgraph’ package v1.6.3 (Epskamp et al. 2012). 
In addition, the Bayesian clustering software Structure v2.3.4 (Pritchard et al. 2000) was called 
from within R using ‘ParallelStructure’ v1.0 (Besnier and Glover 2013) and a function from Clark 
(2017) to prepare input files. Structure was run on both data sets with K ranging from one to ten, 
with five replicates of each run and always using 10,000 repetitions as burn-in and 100,000 
subsequent iterations. The likely number of genetic clusters was inferred using ΔK (Evanno et al. 
2005) and Structure Harvester (Earl 2012). The contemporary effective population size (Ne) of 
each sampling location and year was estimated using the LD method (Waples and Do 2008) under 
a random mating model using a MAF cutoff of 0.05 with bias correction (Waples 2006) and 
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updates for dealing with missing data (Peel et al. 2013), as implemented in ‘NeEstimator’ v2.1 (Do 
et al. 2014). Finally, a simple genome scan for signs of selection was conducted using R packages 
‘pcadapt’ v4.1.0 (Luu et al. 2016) and ‘qvalue’ v2.16.0 (Storey et al. 2019). Loci with q < 0.05 were 
retained as candidate loci and the contigs that contained these SNPs were matched against the 
nucleotide (nt) collection of the NCBI database using BLASTN 2.10.0+ (Altschul et al. 1997). Only 
top hits with an E-value ≤ 1 x 10-6 and at least 70 % similarity were retained (Benestan et al. 2017) 
and then further investigated using BLASTX 2.9.0+ and the UniProtKB vertebrate database for 
their putative function (Apweiler et al. 2004). 
 

2.6. Individual-based connectivity modelling 
 
Five-day mean flow fields for the Southern Ocean region from a state-of-the-art oceanographic 
modelling framework, Nucleus for European Modelling of the Ocean (NEMO), underpinned the 
numerical modelling simulations. Simulated flows for the period 1996–2001 were provided by the 
National Oceanography Centre, Southampton (UK), from a global application of NEMO with an 
eddy-permitting nominal horizontal resolution of 1/4°, and a partial step z-coordinate with 64 levels 
in the vertical. Full details of the ocean model are available at http://www.nemo-ocean.eu/About-
NEMO. NEMO has been widely used over a range of spatial scales and resolutions and has been 
shown to provide a good representation of the dominant oceanography of the southern Atlantic 
Ocean region (Renner et al. 2009, 2012). 
Mean flows from the circulation model were used to advect Lagrangian particles representing the 
early life stages of N. rossii. The Lagrangian model has been applied previously to the simulation 
of the dispersal of the eggs and larvae of N. rossii around South Georgia (Young et al. 2012) and 
in the Scotia Sea region (Young et al. 2015, 2018). In summary, particles were advected at each 
model time step (5 min) according to the imposed three-dimensional velocity field, using a second-
order Runge-Kutta method. Additional horizontal and vertical diffusions were included using a 
random-walk approach (Dyke 2001), to account for unresolved turbulent motion in the ocean 
model flow fields. Particles representing the early life stages of N. rossii were released at known 
spawning populations (Fig. 4.11) (DeWitt et al. 1990, Barrera-Oro and Casaux 1992, Duhamel et 
al. 1995, Kock and Belchier 2004). Appropriate spawning areas at each location were identified by 
a comparison of local model depth with the known spawning depth range, 200-360 m (Kock and 
Belchier 2004). Modelled particles were released randomly within appropriate grid cells, with one 
thousand particles released per day at each site for the duration of the observed spawning periods. 
Dispersal of eggs was simulated for four months (Atlantic Ocean) or three months (Indian Ocean), 
with subsequent larval dispersal simulated for three months. There are no data to suggest that N. 
rossii larvae perform diel vertical migration and like all notothenioids the species does not possess 
a swimbladder; thus model eggs and larvae were allowed to move randomly within observed depth 
ranges: upper 100 m for eggs and upper 50 m for larvae (A. W. North, personal communication). 

The potential for successful dispersal between isolated populations was assessed by comparing 
the position of each model larva with recruitment boxes encompassing each known population 
location (Fig. 4.11) over a 4-week period centered on the end of the planktonic phase. If a larva 
was within a recruitment box at any point during the 4-week period, it was considered to potentially 
recruit successfully to a nursery ground at this site. The percentage of larvae from each spawning 
site successfully reaching each recruitment box was calculated, and the results were combined 
into a single connectivity matrix describing the proportion of individuals arriving in a destination 
population (rows) from a given source population (columns). Such matrices describe potential 
connectivity; they do not include mortality or inter-annual variability in biological processes such as 
spawning and development rates. The effect of inter-annual variability in the underlying flow fields 
on predicted dispersal and connectivity was assessed by repeating the simulations for a five-year 
period (1996-2000). The results were combined to give a single mean connectivity matrix, and a 
matrix showing the number of years in which non-zero connectivity occurred (i.e. persistence). 
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3. RESULTS  
 
3.1. Species distribution probability 
 
Species distribution modelling results showed high modelling relevance with an AUC score of 
0.975 and > 90 % of test data correctly classified (Table 4.2). Generally, model predictions are 
confined to areas of the Southern Ocean that are depth-wise potentially relevant for N. rossii ; large 
deep-sea areas are not included in the model here. The largest contribution to the modelling 
results was from mixed layer depth (51.6 ± 7.4%), with moderate contribution from maximum ice 
thickness (15.4 ± 3.7%), geomorphology (6.9 ± 4.1%), and depth (5.3 ± 2.5%), and little 
contribution from the remaining variables (< 5 % each). Areas with high occurrence probability 
overlap well with documented occurrence records. South Georgia and the Kerguelen Plateau are 
the largest areas of high occurrence in the part of the Southern Ocean that was evaluated (Fig. 
4.12). In addition, suitable habitat for N. rossii is predicted in areas that are not documented in the 
occurrence data set: around Patagonia (low probability), around Bouvet Island and some 
seamounts north of that (high to medium probability), and west and east of Prydz Bay off the 
Antarctic continent (medium to low probability). Interestingly, the occurrence probability at the Ob 
and Lena banks is comparatively high. In contrast, predicted occurrence is low around the Edward 
and Marion Islands and Crozet Island. 

 
Table 4.2. Model statistics describing the outcome of species distribution modelling to predict occurrence 
probability of Notothenia rossii in the Atlantic and Indian sectors of the Southern Ocean (mean ± standard 
deviation). AUC: Area Under the Receiver Operating Curve; COR: Point Biserial Correlation; TSS: True Skill 
Statistic; maxSSS: maximum sensitivity plus specificity threshold; Correctly classified test data (%): 
percentage of presence-test and background-test records falling on predicted suitable areas (prediction > 
maxSSS). 

Model statistic Mean and standard deviation 
AUC 0.975 ± 0.016 
COR 0.831 ± 0.069 
TSS 0.768 ± 0.117 
maxSSS 0.469 ± 0.230 
Correctly classified test data (%) 92.3 ± 3.0 % 
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Figure 4.12. Predicted species occurrence probability for Notothenia rossii in the Atlantic and Indian sector 
of the Southern Ocean (prediction only between -100 and 100° longitude) based on mean prediction values 
from 240 model replicates using boosted regression trees (a). Insets show predictions around Bouvet Island 
(b) and the Ob and Lena Banks (c). Ocean fronts after Orsi et al. (1995) indicated from north to south: sub-
Antarctic Front, Polar Front, southern Boundary of the Antarctic Circumpolar Current. Background shading 
(white-blue) reflects ocean depth. Only predictions in areas where the model does not extrapolate are 
shown. 
 
3.2. Sequencing data 
 
No sequencing problems were indicated by FastQC reports. On average each individual received 
4.86 ± 2.29 million (M) reads. Four low coverage (< 1 M reads), as well as four high coverage (> 13 
M reads) individuals were excluded before bioinformatics. After genotyping using Stacks, global 
coverage (as the average number of reads per locus per individuals) was at 10.64 ± 11.84. This 
coverage is at the minimum required for calling heterozygotes reliably (Rochette and Catchen 
2017). Therefore, extensive downstream filtering of SNP data sets was conducted with relatively 
high thresholds (Appendix 4.5). After pre-filtering using the population module of Stacks, 73,554 
and 85,980 SNPs were present in the reference-based and de novo based data sets, respectively. 
Global genotyping error rates of these data sets (calculated from technical replicates) were 
between 1.48 % and 5.30 % in the reference-based data and 0.61 % and 8.80 % in the de novo 
data. Such genotyping error rates are not ideal, but also not uncommon, and likely related to the 
comparably low coverage (Mastretta-Yanes et al. 2014, Fountain et al. 2016). We circumvented 
negative impacts as far as possible by applying very extensive downstream filtering in R (Appendix 
4.5). In brief, individual genotypes with high amounts of missing data, abnormal heterozygosity 
patterns or signs of duplicate genomes were filtered. Loci were filtered based on missing data, 
minor allele count, minor allele frequency, coverage, linkage, SNP position, and departure form 
Hardy-Weinberg proportions. Even after these filtering steps, a bias related to sequencing library 
remained detectable in the data, as evidenced by PCA and AMOVA. Loci that contributed to this 
bias were also excluded. All these steps are described in detail in Appendix 4.5. Eventually, 272 
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individuals and 3,503 SNPs in the reference data set and 261 individuals and 7,501 SNPs in the de 
novo data set remained and were used for all subsequent analyses. 
 

3.3. Genomic variability 
 
While the number of SNPs is more than twice as high in the final filtered de novo data set 
compared to the reference-based data set, patterns of genetic diversity are largely congruent 
between the data sets. Observed heterozygosity was minimally lower than expected 
heterozygosity in both data sets (Table 4.1, Fig. 4.3a) and on average heterozygosity was slightly 
higher in the de novo data compared to the reference data (Table 4.1). Pairwise population 
estimates of differentiation were generally low with FST values (Weir and Cockerham 1984) 
reaching 0.0027 and 0.0018 in the de novo and reference-based data sets, respectively (Table 4.3 
and 4.4). Few pairwise comparisons were significantly different from zero as indicated from 
confidence intervals (14 in the de novo data, six in the reference data). Similar results were 
obtained using alternative differentiation metrics (Appendix 4.6). The sample from the South 
Orkney Islands seems slightly differentiated with five (de novo) or three (reference) significant 
pairwise estimates of FST. This pattern is also discernible in the NMDS plots based on Hedrick’s 
GST (Fig. 4.13c). Individual-based clustering approaches including PCA, DAPC (functions 
find.clusters and snapclust.choose.k) failed to identify meaningful genetic clusters (Fig. 4.13b and 
54.14a). Results from STRUCTURE indicated the number of clusters based on maximum ΔK as 
six (de novo data) or five (reference data), but the log likelihood for K did not increase significantly 
suggesting an absence of genetic structure. Using DAPC with sampling location as priors offsets 
the population centroids of the South Orkneys, South Georgia and Skiff Bank slightly from the 
remaining locations (Fig. 4.14a). Genomic data suggests that the effective population size (Ne) of 
N. rossii is relatively large at most localities, with values ranging from 1,449 to 42,299, but often 
with upper limits of the 95 % confidence intervals as infinite (Table 4.5). The migration analysis 
revealed very high levels and no asymmetric pattern of gene flow, corresponding to the observed 
absence of distinct genetic structure (Fig. 4.14b). Genome scans for signs of selection identified 12 
(de novo) and 37 (reference) candidate loci for further investigation (Fig 4.14c). Matching the 
flanking regions of these loci against the nucleotide database showed that some of them are highly 
similar to genomic DNA from other perciform fishes, such as Chionodraco hamatus, Gymnodraco 
acuticeps, Notothenia coriiceps, Cottoperca gobio, and Dissostichus mawsoni (Appendix 4.7). The 
DNA sequence of D. mawsoni is part of an antifreeze glycoprotein locus (Nicodemus-Johnson et 
al. 2011). Several contigs matched to predicted mRNA sequences of N. coriiceps, e.g. with 
putative functions in metal ion binding (Appendix 4.7). The PCA, DAPC, migration and outlier plots 
are only shown for the de novo data set (Fig. 4.13 and 4.14); the reference-based data yielded 
similar results (Appendix 4.8). 
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Table 4.3. Pairwise genetic differentiation of Notothenia rossii per sampling locality (see Table 4.1 for codes) based on 7,501 SNP genotypes derived from mapping 
against a de novo assembly. FST following Weir and Cockerham (1984) (also referred to as GST) below the diagonal (negative values set to zero) and confidence 
intervals after 1000 bootstraps above the diagonal. FST values where confidence intervals do not span zero are marked in bold. 

 SSD-06 SSK-06 SSK-15-16 EI-06-07 EI-02 SO-06 SG-02-03 SG-05 SB-15 KI-15 

SSD-06  
-0.0002 – 
0.0003 

-0.0001 – 
0.0003 

-0.0002 – 
0.0002 

-0.0003 – 
0.0001 

0.0001 – 
0.0006 

0.0001 – 
0.0005 

-0.0001 – 
0.0003 

0.0000 – 
0.0004 

-0.0004 – 
0.0001 

SSK-06 0.0000  
0.0000 – 
0.0004 

-0.0002 – 
0.0002 

-0.0002 – 
0.0002 

0.0001 – 
0.0006 

0.0001 – 
0.0005 

-0.0003 – 
0.0000 

-0.0001 – 
0.0002 

-0.0002 – 
0.0003 

SSK-15-16 0.0005 0.0004  
-0.0005 – -
0.0001 

-0.0001 – 
0.0002 

-0.0002 – 
0.0003 

-0.0003 – 
0.0001 

-0.0002 – 
0.0001 

-0.0001 – 
0.0003 

-0.0002 – 
0.0001 

EI-06-07 0.0003 0.0007 0.0000  
-0.0003 – 
0.0001 

0.0000 – 
0.0004 

-0.0001 – 
0.0003 

-0.0002 – 
0.0002 

-0.0003 – 
0.0001 

-0.0002 – 
0.0002 

EI-02 0.0000 0.0000 0.0000 0.0000  
-0.0002 – 
0.0002 

0.0000 – 
0.0004 

-0.0002 – 
0.0001 

-0.0003 – 
0.0001 

0.0000 – 
0.0004 

SO-06 0.0018 0.0011 0.0002 0.0012 0.0003  
0.0001 –
0.0005 

-0.0004 – 
0.0000 

0.0002– 
0.0006 

-0.0001 – 
0.0004 

SG-02-03 0.0005 0.0006 0.0000 0.0000 0.0000 0.0006  
-0.0001 – 
0.0002 

0.0000 – 
0.0004 

0.0000 – 
0.0004 

SG-05 0.0005 0.0000 0.0002 0.0007 0.0001 0.0000 0.0000  
-0.0003 – 
0.0000 

0.0000 – 
0.0003 

SB-15 0.0006 0.0002 0.0004 0.0003 0.0000 0.0007 0.0008 0.0000  
-0.0003 – 
0.0001 

KI-15 0.0000 0.0003 0.0000 0.0002 0.0003 0.0004 0.0005 0.0001 0.0000  
 
 
 
 
 
 
 
 

385



DISPERSAL MODELS : LAGRANGIAN APPROACH CHAPTER 4. 
 
 

 
 

Article. Christiansen et al. (in prep.). Integrated assessment of large-scale connectivity in a historically overexploited fish population in the Southern Ocean. 

Table 4.4. Pairwise genetic differentiation of Notothenia rossii per sampling locality (see Table 4.1 for codes) based on 3,503 SNP genotypes derived from mapping 
against the reference genome of N. coriiceps (Shin et al. 2014). FST following Weir and Cockerham (1984) (also referred to as GST) below the diagonal (negative 
values set to zero) and confidence intervals after 1000 bootstraps above the diagonal. FST values where confidence intervals do not span zero are marked in bold. 

 SSD-06 SSK-06 SSK-15-16 EI-06-07 EI-02 SO-06 SG-02-03 SG-05 SB-15 KI-15 

SSD-06  
-0.0002 – 
0.0003 

-0.0005 – 
0.0001 

-0.0007 – 
0.0000 

-0.0004 – 
0.0001 

-0.0003 – 
0.0004 

-0.0002 – 
0.0004 

-0.0003 – 
0.0002 

-0.0004 – 
0.0002 

-0.0007 – -
0.0001 

SSK-06 0.0006  
0.0001 – 
0.0007 

-0.0002 – 
0.0003 

-0.0001 – 
0.0004 

0.0000 – 
0.0006 

0.0002 – 
0.0008 

-0.0001 – 
0.0004 

-0.0004 – 
0.0001 

-0.0001 – 
0.0005 

SSK-15-16 0.0000 0.0017  
0.0000 – 
0.0006 

-0.0002 – 
0.0002 

-0.0005 – 
0.0001 

-0.0005 – 
0.0000 

-0.0002 – 
0.0002 

-0.0001 – 
0.0004 

-0.0001 – 
0.0005 

EI-06-07 0.0001 0.0013 0.0011  
-0.0003 – 
0.0003 

0.0001 – 
0.0007 

-0.0003 – 
0.0003 

-0.0001 – 
0.0005 

-0.0003– 
0.0002 

-0.0005 – 
0.0004 

EI-02 0.0000 0.0007 0.0002 0.0002  
-0.0002 – 
0.0003 

-0.0004 – 
0.0001 

-0.0003– 
0.0001 

-0.0003– 
0.0002 

-0.0001 – 
0.0004 

SO-06 0.0008 0.0027 0.0000 0.0015 0.0012  
-0.0002 – 
0.0005 

-0.0001 – 
0.0005 

0.0001– 
0.0007 

-0.0003 – 
0.0003 

SG-02-03 0.0005 0.0010 0.0000 0.0005 0.0000 0.0009  
-0.0002 – 
0.0003 

-0.0002 – 
0.0003 

-0.0002 – 
0.0004 

SG-05 0.0000 0.0003 0.0002 0.0004 0.0000 0.0007 0.0000  
-0.0001 – 
0.0004 

-0.0002 – 
0.0003 

SB-15 0.0000 0.0001 0.0010 0.0000 0.0003 0.0016 0.0003 0.0002  
-0.0001 – 
0.0004 

KI-15 0.0000 0.0005 0.0004 0.0000 0.0007 0.0005 0.0004 0.0001 0.0000  
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Figure 4.13. Genomic diversity of Notothenia rossii in the Southern Ocean based on 7,501 SNP loci. 
Expected (darker shading, left) and observed (light shading, right) heterozygosity is shown as box and violin 
plots for each genetically screened population (a). Principal component analysis (PCA) reveals little 
individual-based differentiation (b), while non-metric multidimensional scaling based on GST distances shows 
subtle differences between population samples (c). Sample codes as in Table 4.1; samples from different 
years but same locality are not shown separately on the PCA. 
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Figure 4.14. Genomic differentiation of Notothenia rossii in the Southern Ocean based on 7,501 SNP loci. 
Geographic clustering as attempted through discriminant analysis of principal components is shown along 
the first two principal components (a). Relative migration as estimated from Nei’s GST reveals overall high 
and no asymmetric gene flow (b). Genome scans for loci putatively under influence of selection detected 12 
outliers at q > 0.05 (c). Sample codes as in Table 4.1; samples from different years but same locality are 
combined. 
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Table 4.5. Effective population size (Ne) of Notothenia rossii from various locations in the Southern Ocean. 
Estimates were calculated using the linkage disequilibrium method for filtered genotypes from de novo and 
reference-based bioinformatics; with 95 % confidence intervals (CI) calculated based on the jackknife 
method of Waples and Do (2008). 

Sample Ne de novo CI de novo Ne reference CI reference 
SSD 2,089 197 – Infinite 2,677 319 – Infinite 
SSK 6,207 1,312 - Infinite 6,846 1,302 - Infinite 
EI 4,777 1,036 - Infinite Infinite 1,422 - Infinite 
SO 6,629 182 - Infinite 42,299 228 - Infinite 
SG 4,837 1,327 - Infinite 21,601 1,864 – Infinite 
SB 2,327 385 - Infinite 1,957 390 – Infinite 
KI 1,665 256 - Infinite 1,449 206 - Infinite 
 

3.4. Modelled connectivity 
 
The predicted mean connectivity matrix suggests wide dispersal of N. rossii within the Scotia Sea, 
with high and persistent levels of connectivity between populations around the Antarctic Peninsula 
(AP) and South Georgia, and lower but persistent connectivity with the South Orkney and South 
Sandwich Islands (Fig 4.15). There is low but persistent connectivity from the South Sandwich 
Islands to Bouvet Island, and from Bouvet to populations in the Indian Ocean, in particular Edward 
and Marion Islands and Crozet Island. Although persistent connectivity pathways are predicted in 
the Indian Ocean, for example from Ob and Lena Banks to Crozet Island, Skiff Bank and 
Kerguelen Islands, the magnitude of connectivity is generally weaker than in the Scotia Sea, with 
the exception of the Kerguelen Plateau region. The patterns of connectivity suggest highly 
asymmetric dispersal, with a greater occurrence of non-zero values below the diagonal of the 
connectivity matrix, indicating unidirectional transport to the northeast across the Scotia Sea, and 
eastward towards and within the Indian Ocean in accordance with the dominant flows of the 
Antarctic Circumpolar Current. Bidirectional transport is predicted between proximate sites with 
complex local oceanography, in particular around the Antarctic Peninsula and the Kerguelen 
Plateau region. The pattern of connectivity suggests that gene flow includes an element of 
stepping-stone transport. Notothenia rossii is widely dispersed within the Scotia Sea, but there is 
no direct connectivity between sites in the Scotia Sea and those in the Indian Ocean. Gene flow 
over this larger geographic scale is achieved through stepping-stone transport via Bouvet Island. 

 

Figure 4.15. Simulated dispersal connectivity of Notothenia rossii throughout most of the Southern Ocean: 
(a) mean connectivity as a percentage of particles from source populations (columns) successfully reaching 
destination populations (rows), on a transformed log scale [log((10x)+1)], (b) frequency of non-zero 
connectivity. 
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4. DISCUSSION 
 

4.1 Distribution, genomic diversity and connectivity of Notothenia rossii 

Contrary to our working hypothesis, even thousands of genomic markers screened across many 
individuals from locations > 5,000 km apart reveal no evidence of genetic differentiation. The 
historically overexploited Antarctic fish N. rossii therefore exhibits no contemporary spatial genetic 
population structure, although connectivity modelling suggests that exchange between the Scotia 
Sea and the Kerguelen Plateau regions occurs via stepping-stone transport. This apparent 
discrepancy may be due to the different temporal scales resolved by the observational and 
modelling analyses, i.e. ecological vs. evolutionary time. As we will further detail, our results show 
1) the detailed distribution of the species in the Atlantic and Indian Ocean sectors of the Southern 
Ocean, 2) the contemporary genome-wide levels of diversity and 3) the direction and magnitude of 
dispersal connectivity. 

As a shelf dwelling fish that prefers shallower waters to feed and reproduce, the occurrence of N. 
rossii is relatively localized in the Southern Ocean. Juveniles develop in algae beds (Duhamel et al. 
1982, Barrera-Oro and Winter 2008), which are only found close to the coast (Wiencke et al. 
2014). The cold temperatures of the high-Antarctic are, however, likely detrimental for the species 
as its blood equilibrium freezing point is comparatively high for a notothenioid (Bilyk and DeVries 
2010, Miya et al. 2013). Therefore, the habitat requirements alone induce a fragmented distribution 
in this species. Species distribution modelling predictions confirm this and highlight many well-
documented population hotspots as highly probable habitats (Fig. 4.12). The South Shetland 
Islands, South Georgia and the Kerguelen Plateau are localities where N. rossii is most often 
caught (DeWitt et al. 1990, Duhamel et al. 2014). However, other areas, some of which are less 
well-studied, may also be relevant habitats for N. rossii. For example, SDM data show high 
occurrence probability at Bouvet Island, even though the shelf around this island is narrow and the 
species was never caught there (DeWitt et al. 1990, Jones et al. 2008a, Padilla et al. 2015). 
However, incidental data (chinstrap penguin stomach content) indicate that N. rossii is present at 
Bouvet Island (Niemandt et al. 2015). This would corroborate our SDM prediction, although the 
record is based on a single otolith, which could also be misidentified. Ultimately, only more 
extensive sampling, particularly of the near shore fish fauna, will be able to resolve the matter. It 
also remains to be investigated whether other new occurrence localities predicted by the SDM, that 
is around Prydz Bay and Patagonia, are realistic. At least the latter seems very unlikely as the 
ecological niche in Patagonian waters is filled by different species such as Paranotothenia 
magellanica or Patagonothen spp. (Cousseau et al. 2019). Notothenia rossii has not been 
recorded off Prydz Bay so far either despite regular surveys (Hoddell et al. 2000, Van de Putte et 
al. 2010). 

The genetic diversity of N. rossii in terms of heterozygosity is similar to that observed in other 
fishes with SNPs (Fig. 4.13a, Berg et al. 2016, Pérez-Portela et al. 2018, Christiansen 2020). In 
addition, there are no signs of spatial variation in heterozygosity, despite spatially heterogeneous 
fishing pressure (Duhamel 1982, Kock 1992). These results are in contrast to the expectation that 
overharvesting reduces genetic diversity (Pinsky and Palumbi 2014). However, objective 
comparisons between studies are challenging due to the wide variety of settings employed to 
generate a “final” SNP data set (Shafer et al. 2017). Fifty years post-exploitation the genetic 
diversity of N. rossii does not seem dramatically reduced across thousands of markers. As there is 
no baseline for pre-exploitation diversity levels, it remains elusive at this point whether these levels 
of heterozygosity are representative of the unperturbed state. In fact, even if overall average 
diversity is high, rare alleles, potentially important for rapid adaptation, may be lost (Pinsky and 
Palumbi 2014). The genetic data furthermore demonstrate a striking lack of spatial structure with 
very low FST values and no genetic clusters discernable (Table 4.3 & 4.4, Fig. 4.13b). 
Consequently, this implies regular gene flow, at least via stepping stones between all established 
population patches of N. rossii (Fig. 4.14b). This is an important implication to consider in the 
context of the results of the connectivity modelling exercise. Finally, several candidate loci show 
indications of putative recent selective pressure, despite the lack of overall population structure. 
This is not unexpected, given that selection and adaptation can occur in the presence of high gene 
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flow (Tigano and Friesen 2016, Hoey and Pinsky 2018). Nevertheless, we emphasize that these 
candidate loci might be false positives or even related to genotyping error. High coverage studies 
or whole genome sequencing approaches are needed for a more detailed understanding of local or 
global adaptation in N. rossii (Booker et al. 2019). 

Dispersal of the early life stages of N. rossii is generally high, but the large-scale unidirectional 
connectivity predicted by the modelling suggests that inter-ocean connectivity is achieved through 
stepping-stone transport (Fig. 4.15). The South Sandwich Islands and Bouvet Island in particular 
are predicted to be key links between the abundant N. rossii aggregations at the Antarctic 
Peninsula and Scotia Sea, and the Kerguelen Plateau. The relatively large effective population 
sizes indicated by the genomic data may secure successful large-scale connectivity over 
evolutionary time scales. Thus, for example, if the exchange of individuals between the Scotia Sea 
and the Kerguelen Plateau were to fail in some years, successful recruitment in other years may 
suffice to maintain gene flow. 
 
4.2 A unifying framework to explain contemporary patterns 
 
Here, we suggest that our results can be collectively explained through a scenario that 
incorporates the life history, physical setting and exploitation history of N. rossii. Three main 
aspects help to unify the patterns observed through SDM, genomics and dispersal modelling. First, 
important stepping stones such as the South Sandwich Islands and potentially Bouvet Island may 
also act as temporal refuges for juvenile fish. Even if small, the local benthic ecosystem at Bouvet 
Island provides suitable conditions including some macroalgae and a variety of invertebrate prey 
items for N. rossii fingerlings (Arntz et al. 2006, Jacob et al. 2006). The model simulations stopped 
after seven months, at which point observational data suggest larvae develop into brown -phase 
fingerlings and recruit to kelp beds (North 2001). However, the recruitment behavior of early 
juveniles is not well known. For example, blue-phase fingerlings may be able to continue a pelagic 
life style for an extended period until a suitable recruitment site is reached. Such behavior would 
increase the dispersal range of the early life stages, and potentially reduce the dependence on 
small, isolated stepping stones for inter-ocean connectivity. In addition, it is unknown so far, but not 
inconceivable that, for example, juveniles that reached a stepping stone may later proceed to 
migrate further toward habitats in the Kerguelen Plateau where they continue to grow, mature and 
eventually reproduce. In fact, Shcherbich (1975) for South Georgia and Barrera-Oro et al. (2014) 
for the South Shetland Islands indicated that some juveniles spend at least a full year as blue-
phase fingerlings in the water column before settling to a benthic life style. The adults also 
undertake at least short distance migrations, such as from coastal kelp belts to the outer 
archipelago (on the Kerguelen Plateau) or to their spawning ground (Duhamel 1982, DeWitt et al. 
1990). Tagging studies have been used so far to validate age determination (Moreira et al. 2013), 
but could be used in the future to verify whether juveniles or adults of N. rossii are capable of more 
extensive migrations. Such behavior is documented in Antarctic toothfish, that undertake long-
distance migrations at least occasionally (Hanchet et al. 2010). As the genomic data suggests 
circumpolar transport, it is possible that other, potentially small stepping-stone population patches 
exist. An important area for circumpolar connectivity could be the documented occurrence off 
Macquarie Island in the Pacific sector of the Southern Ocean. The lack of samples and data 
precluded us from investigating this further. Model simulations, however, suggested the potential 
for transport from the Kerguelen Plateau to Macquarie Island with an extended dispersal period of 
a year, although successful dispersal from Macquarie Island to the Antarctic Peninsula was not 
predicted within this time frame. Therefore, to achieve circumpolar connectivity, the modelling 
setup would suggest a longer pelagic phase or the existence of undocumented population patches, 
or both. 

The slow recovery of N. rossii following severe overfishing may be the result of historically 
diminished effective population size in conjunction with the stepping-stone nature of large-scale 
connectivity. Large stocks around South Georgia and Kerguelen were heavily exploited in the 
1970s, likely leading to considerably reduced effective population size at these localities. Possibly, 
the South Georgia stock would have been resupplied through dispersal from the western Antarctic 
Peninsula in the years following its overexploitation. However, the spawning stock at the Antarctic 
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Peninsula was also largely removed through fishing in 1979/80 (Kock 1992). In turn, the Kerguelen 
stock was not supplied sufficiently, because the influx of larvae or fingerlings from South Georgia 
via stepping stones was interrupted. Thus, the already low levels of long-distance ecological 
connectivity that we estimated here may be an explanation for the long recovery time. This could 
mean that the original, unexploited population went through a genetic bottleneck leading to large 
genetic homogeneity of the extant population. In addition, other species, for example the 
opportunistically feeding grey notothen Lepidonotothen squamifrons at South Georgia (Gregory et 
al. 2014), may have filled vacant ecological niches in the meantime and further hampered the re-
establishment of highly abundant N. rossii stocks. Kock and Belchier (2004) rightfully pointed out 
that the biomass estimation is particularly difficult in N. rossii due to its patchy distribution as 
adults. Yet, the most recent surveys were able to document large catches of N. rossii once again, 
at least in the Kerguelen Plateau (Duhamel et al. 2019). This trend is corroborated in the South 
Shetland Islands (Barrera-Oro et al. 2017), suggesting that the species is indeed slowly recovering. 

Lastly, a comparison with other Southern Ocean fish indicates that relatively high connectivity may 
be the most common scenario among sub-Antarctic fish. Matschiner et al. (2009) summarized 
population genetic studies of notothenioids over a period of 15 years and noted that significant 
differentiation over small scales (< 100 km) was only exceptionally documented in three out of 27 
cases. More recently, several studies have uncovered previously unknown genetic differentiation, 
for example in Trematomus spp. (Van de Putte et al. 2012), Champsocephalus gunnari and 
Chaenocephalus aceratus (Damerau et al. 2014, Young et al. 2015), Pleuragramma antarctica 
(Agostini et al. 2015, Caccavo et al. 2019), and Notothenia coriiceps (Christiansen 2020). 
However, except for C. gunnari and C. aceratus these results relate to long-distance differentiation 
in high-Antarctic species. On the one hand, habitats for non-deep-sea species near the Antarctic 
continent may be physically closer to each other than offshore habitats of the sub-Antarctic, where 
vast deep sea basins cause habitat fragmentation. On the other hand, ice cover, iceberg scouring 
and the advance and retreat of ice during glacial cycles may have driven high-Antarctic species 
into local refugia, leading to genetic dissimilarities that are still traceable in the genome (Allcock 
and Strugnell 2012). In the sub-Antarctic the habitat is less affected by ice, but discontinuous for 
benthic species through the sheer geographical setting, while it is comparatively barrier-free for 
pelagic species. In order to persist in this habitat and maintain vast distribution ranges, species 
may have adapted their dispersal capabilities to achieve persistent (even if low) long-distance 
connectivity as in the case of N. rossii, but also kelp, toothfish and crustaceans, for example (see 
Moon et al. 2017 and references therein). 
 
4.3 Implications for MPA design and fisheries management 
 
The fisheries data shows clearly that N. rossii experienced a dramatic overexploitation in the 1970s 
(Kock 1992, CCAMLR 2019a). The recovery is more difficult to assess due to fewer systematic 
stock assessment methods (trawling, acoustics) compared to less remote oceans. Nevertheless, 
several recent ecological and fisheries surveys indicate an ongoing recovery (Marschoff et al. 
2012, Barrera-Oro et al. 2017, Duhamel et al. 2019). If a slow recovery process was indeed the 
result of long generation time, slow growth, reduced effective population size and stepping stone 
connectivity, as we suggest here, then future management plans should remain very 
precautionary, which is in accordance with CCAMLR. Importantly, a precautionary approach 
should not only regard each management area separately, but considers the interconnectivity 
between these areas. Successful ecological connectivity in at least some years may be an 
important prerequisite for a stable circum-Antarctic population. In turn, this suggests that it is 
important to protect areas that act as key stepping stone habitats. The waters around Bouvet 
Island have been fished in the past (Arntz et al. 2006), but are currently a designated marine 
reserve to 12 nautical miles from the coast. Controversially though, some krill fisheries permits are 
granted in this area as well. Our results demonstrate that the Bouvet Island marine ecosystem may 
be a unique stepping stone of large ecological importance. Endemism levels at Bouvet are very 
low, further supporting the premise that many species are in fact transported here by advection 
(Arntz et al. 2006, Gutt et al. 2006, Moreau et al. 2017). Therefore, not only N. rossii but also other 
invertebrate and vertebrate species, particularly those present in both the Scotia Sea and 
Kerguelen Plateau regions, may rely on this comparatively tiny ecological hotspot, which should 
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receive adequate protection. Long-distance connectivity has clear benefits for the effectiveness of 
MPA networks, although it has previously rarely been quantified (Manel et al. 2019). 
A second important conservation implication concerns the Antarctic Peninsula. A recent MPA 
proposal that was presented to CCAMLR concerns this area and was put forward by Argentina and 
Chile during 2018, but so far not adopted (CCAMLR 2019b). The modelled oceanographic 
connectivity strongly suggests that N. rossii populations at the Antarctic Peninsula are sources for 
the fish assemblages off South Georgia and, to a lesser extent, the South Sandwich and South 
Orkney Islands. They are therefore important for re-establishing and maintaining a large population 
throughout the Scotia Sea. In addition, if the population of N. rossii is to be managed throughout its 
range in a precautionary approach in the future, conservation and monitoring of the northwest 
region of the Antarctic Peninsula marine ecosystem, including Bransfield Strait, will be important. 
This region experiences drastic climate change effects, including increases in temperature and 
reduction of ice cover, with consequences for the entire ecosystem (McClintock et al. 2008b, 
Ducklow et al. 2013). It can therefore be a natural laboratory to detect the effects of global 
warming, for example, on the high-Antarctic and sub-Antarctic Notothenia species (N. coriiceps 
and N. rossii) that occur here in sympatry. Adaptive genetic variance in these species may bear the 
potential to mitigate climate change effects as shown theoretically in terrestrial species (Razgour et 
al. 2019). Continued multidisciplinary investigations as presented here could help achieve 
adequate monitoring and prevent unsustainable loss of biodiversity. 
 
4.4 Methodological considerations and future research perspectives 
 
Applying species distribution models at large scales and in data-poor environments is challenging. 
Particular problems include spatially aggregated data, presence-only data, and extensive gaps in 
environmental data, which can be partly circumvented with appropriate calibration and validation 
methods (Guillaumot et al. 2018a - Appendix, Guillaumot et al. 2019 - Chapter 2). In conjunction 
with other methods, SDM data can be used successfully to fill specific knowledge gaps, such as 
the case of Bouvet Island, presented here. Sometimes, interpolating from data collected elsewhere 
is a valuable alternative to costly or near impossible direct observation (Gutt et al. 2012). In 
addition to collecting more data, a future improvement of SDM approaches would be the 
separation of the model by life stages. For Notothenia rossii in particular it could be highly 
informative to generate a robust SDM for larval stages, provided that sufficient ecological 
information can be gathered. 
The genomic data created here have limitations especially with regard to sequencing coverage, 
which causes further downstream issues such as potential genotyping error and low quality 
genotypes that necessitated very extensive filtering (Mastretta-Yanes et al. 2014). The available 
data were thus dramatically reduced, but the overall pattern of little genetic structure and 
comparatively normal diversity levels is likely accurate. In contrast, determining with certainty 
which loci or genes are important for local adaptation would require further efforts. The reason for 
our low coverage is likely an underestimation of the true genome size of N. rossii or of the number 
of fragments that the restriction enzyme ApeKI produces. More extensive a priori testing could help 
alleviate such issues (Christiansen 2020) as well as a high quality reference genome (Fountain et 
al. 2016, Shafer et al. 2017). 

The oceanographic model used in this study has a relatively coarse resolution, due to the large 
spatial scale at which it is applied and resultant computation demands. The development of high-
resolution oceanographic models that better resolve fine-scale circulation features has the potential 
to reveal further details on the connectivity of N. rossii, for example regarding the extent of local 
retention. In addition, the skill of the IBM is highly dependent on the accuracy of its biological 
parameterization. We have used the best available biological knowledge gathered over decades of 
research, but some uncertainty remains. In particular, there is uncertainty over the total permissible 
length of the pelagic phase, and the active behavior of larvae, fingerlings, and juveniles. Further 
knowledge of the behavior of fingerlings and juveniles, for example, would allow the incorporation 
of these additional life stages into the IBM. Observational evidence for feeding behavior, active 
swimming and diel vertical migration, would allow further refinement of the IBM, improving its 
predictive skill. In addition, both SDM and IBM models could be refined by further integrating 
spatially variable biological traits, when additional such information becomes available. Even in the 
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absence of genetic differentiation, some spatial differences in life history parameters between N. 
rossii assemblages have been reported over large distances, but recent ecological comparisons 
are scarce (DeWitt et al. 1990, but see also Calì et al. 2017). Considering intraspecific diversity is 
difficult but the necessary next step for most accurate biological models (in SDM, IBM and 
population genomics) with clear conservation benefits (Mee et al. 2015, Marcer et al. 2016, Des 
Roches et al. 2018, Paz-Vinas et al. 2018). 
 
5. CONCLUSIONS 
 
Multidisciplinary approaches to assess connectivity are extremely useful in data-limited situations 
as is the case in the vast and remote Southern Ocean. The integration of data from three different 
sources allowed us to identify areas important for conservation and provide a hypothesis that 
explains the slow recovery of Notothenia rossii stocks. These results are relevant for the ongoing 
effort to establish a network of MPAs and implement ecosystem based management for the region. 
Further challenges lay ahead, with climate change potentially altering the suitable habitat and 
connectivity, which demands continued research and monitoring, and flexible, adaptive 
management. 
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APPENDIX 4.4.  

Results from parameter optimization with Stacks v2.4 (Rochette et al. 2019) for de novo 
assembly and genotyping of four genotyping-by-sequencing (GBS) libraries of Notothenia 

rossii. 

A parameter test series using a subset of 24 individuals (4 from each population) was conducted as 
described in Rochette and Catchen (2017). The Stacks parameter m was kept constant in two test series (m 
= 2 and m = 3), while parameters M and n were varied together from 1 to 9. Subsequently, only loci present 
in 80 % of the samples were retained and for each M=n parameter the number of loci and polymorphic loci 
was plotted, as well as the proportion of these loci containing 0 to 10 or >10 SNPs. Optimal values were 
inferred from these results as m=3 and M=n=4. 
 

 
Figure S4.4.A. Number of loci and polymorphic loci shared by 80 % of samples from the Notothenia rossii 
GBS libraries across nine values for parameter M and n and two values for parameter m (2 and 3; blue vs. 
red) in Stacks v.2.4. 
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Figure S4.4.B. Number of SNPs per locus shared by 80 % of samples from the Notothenia rossii GBS 
libraries across nine parameters of M and n under constant m = 2 in Stacks v.2.4. 
 

 

 
Figure S4.4.C. Number of SNPs per locus shared by 80 % of samples from the Notothenia rossii GBS 
libraries across nine parameters of M and n under constant m = 3 in Stacks v.2.4. 
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APPENDIX 4.5.  
Filtering conducted on raw SNP data sets produced from bioinformatics of four GBS 

libraries of Notothenia rossii from the Southern Ocean. 
 
Genotypes of the reference-based and de novo data sets were first pruned using the population 
module of Stacks v2.4 (Rochette et al. 2019), requiring loci to be present in at least 80 % of the 
individuals of each population, to have a minor allele frequency > 0.05 and heterozygosity < 0.7 
(Rochette and Catchen 2017). Subsequently, genepop files were imported and filtered extensively 
in R software using the ‘radiator’ package v1.1.1 (Gosselin 2019).  
At the start of the radiator filtering pipeline, the data sets contained genotypes from 349 individuals 
at 85,980 (de novo) and 73,554 (reference-based) SNPs. First, loci that were not shared across all 
populations were removed, i.e. 65,269 and 54,850 SNPs. Subsequently, individual genotypes were 
filtered based on an outlier statistic of missing data and of heterozygosity. These steps removed 
data from 62 (de novo) and 45 (reference) individuals. Then, markers were filtered based on minor 
allele count (mac), requiring a minimum mac of 10, and on coverage, removing all loci with 
coverage below 10 or above 100. SNPs were also removed when showing signs of unnormal 
positioning with the RAD fragment and on short linkage disequilibrium. For the latter, only one SNP 
per fragment was retained, the one with highest mac. Finally, duplicate genomes were detected 
and removed and loci significantly (p < 0.01) departing from Hardy-Weinberg proportions were 
removing. After these steps, 277 individuals and 12,400 loci remained in the de novo data set and 
294 individuals and 4,505 loci in the reference data set. As a last filtering steps, these data were 
filtered on minor allele frequency (maf, threshold: 0.05), leaving 9,806 and 4,079 SNPs.  
Because a bias related to sequencing library was still detectable using principal component 
analysis in the above data sets, further loci, contributing to this bias, were removed. The final data 
sets then contain 261 individual genotypes at 7,501 SNPs in the de novo data and 272 individual 
genotypes at 3,503 SNPs in the reference-based data.
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APPENDIX 4.6. 
Pairwise genetic differentiation of Notothenia rossii in the Southern Ocean using alternative differentiation metrics. 

 
Table S4.6.A. Pairwise genetic differentiation of Notothenia rossii per sampling locality (see Table 4.1 for codes) based on 7,501 SNP genotypes derived from 
mapping against a de novo assembly. Jost’s D (2008) below the diagonal and Hedrick’s GST (2005) above the diagonal, as calculated with R package ‘mmod’ 
(Winter 2012). 
 SSD-06  SSK-06  SSK-15-16  EI-06-07  EI-02  SO-06  SG-02-03  SG-05  SB-15  KI-15  
SSD-06   0.0008  0.0015  0.0010  0.0002  0.0030  0.0013  0.0013  0.0015  0.0000  

SSK-06  0.0002   0.0015  0.0017  0.0006  0.0024  0.0015  0.0003  0.0010  0.0013  

SSK-15-16  0.0004  0.0004   0.0002  0.0004  0.0013  0.0000  0.0009  0.0012  0.0008  

EI-06-07  0.0003  0.0004  0.0001   0.0004  0.0023  0.0004  0.0015  0.0010  0.0009  

EI-02  0.0000  0.0001  0.0001  0.0001   0.0013  0.0006  0.0006  0.0006  0.0012  

SO-06  0.0008  0.0006  0.0003  0.0006  0.0003   0.0016  0.0005  0.0018  0.0014  

SG-02-03  0.0003  0.0004  0.0000  0.0001  0.0001  0.0004   0.0006  0.0018  0.0014  

SG-05  0.0003  0.0001  0.0002  0.0004  0.0002  0.0001  0.0002   0.0005  0.0007  

SB-15  0.0004  0.0003  0.0003  0.0003  0.0001  0.0004  0.0004  0.0001   0.0006  

KI-15  0.0000  0.0003  0.0002  0.0002  0.0003  0.0003  0.0004  0.0002  0.0002   
 

 
Table 4.6.B. Pairwise genetic differentiation of Notothenia rossii per sampling locality (see Table 4.1 for codes) based on 3,503 SNP genotypes derived from 
mapping against the reference genome of N. coriiceps (Shin et al. 2014). Jost’s D (2008) below the diagonal and Hedrick’s GST (2005) above the diagonal, as 
calculated with R package ‘mmod’ (Winter 2012). 
 SSD-06  SSK-06  SSK-15-16  EI-06-07  EI-02  SO-06  SG-02-03  SG-05  SB-15  KI-15  
SSD-06   0.0020  0.0017  0.0015  0.0006  0.0029  0.0017  0.0012  0.0008  0.0000  

SSK-06  0.0004   0.0036  0.0025  0.0019  0.0048  0.0021  0.0013  0.0010  0.0016  

SSK-15-16  0.0004  0.0008   0.0031  0.0016  0.0018  0.0010  0.0015  0.0026  0.0022  

EI-06-07  0.0003  0.0006  0.0007   0.0012  0.0035  0.0015  0.0014  0.0009  0.0009  

EI-02  0.0001  0.0004  0.0004  0.0003   0.0031  0.0006  0.0003  0.0012  0.0019  

SO-06  0.0006  0.0011  0.0004  0.0008  0.0007   0.0025  0.0024  0.0033  0.0022  

SG-02-03  0.0004  0.0005  0.0002  0.0003  0.0001  0.0005   0.0005  0.0012  0.0015  

SG-05  0.0003  0.0003  0.0003  0.0003  0.0001  0.0005  0.0001   0.0011  0.0012  

SB-15  0.0002  0.0002  0.0006  0.0002  0.0003  0.0007  0.0003  0.0003   0.0009  

KI-15  0.0000  0.0004  0.0005  0.0002  0.0004  0.0005  0.0003  0.0003  0.0002   
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APPENDIX 4.7  
Annotation of loci identified through genome scans for selection in GBS data of Notothenia rossii. Candidate outlier SNPs were 

matched against the NCBI database. 
 
Table S4.7.A. BLAST results from 12 candidate SNPs from the de novo data set. 
 
Nr  Name  Top Hit  Accession Number  Percent 

Identity  
E value  

1  >CLocus_130488  Cottoperca gobio genome assembly, chromosome: 19  LR131926.1  82.353  4.72E-23  
2  >CLocus_138804  Cottoperca gobio genome assembly, chromosome: 12  LR131919.1  81.818  4.73E-04  
3  >CLocus_221130  Cottoperca gobio genome assembly, chromosome: 12  LR597562.1  89.474  4.42E-17  
4  >CLocus_223132  PREDICTED: Notothenia coriiceps ubiquitin specific peptidase 38 (usp38), mRNA  XM_010793758.1  100  3.88E-24  
5  >CLocus_237675  Sparus aurata genome assembly, chromosome: 6  LR537126.1  91.892  2.00E-03  
6  >CLocus_240253  Gossypioides kirkii chromosome KI_01  CP032244.1  90.909  2.40E-01  
7  >CLocus_251284  Myripristis murdjan genome assembly, chromosome: 22  LR597571.1  88.889  2.29E-33  
8  >CLocus_263048  Centromochlus existimatus isolate S1A2_08 ATPase subunit 8 (ATPase 8) gene, 

complete cds; and ATPase subunit 6 (ATPase 6) gene, partial cds; mitochondrial  
JX910183.1  88.889  8.50E-01  

9  >CLocus_38304  Apteryx australis mantelli genome assembly AptMant0, scaffold scaffold1406  LK066414.1  88.095  7.00E-02  
10  >CLocus_60053  Cottoperca gobio genome assembly, chromosome: 3  LR131933.1  82.353  9.74E-13  
11  >CLocus_6959  Lateolabrax maculatus linkage group 21 sequence  CP032596.1  84.507  4.14E-11  
12  >CLocus_96107  Cottoperca gobio genome assembly, chromosome: 12  LR131919.1  87.288  1.19E-30  
 

 
Table S4.7.B. BLAST results from 37 candidate SNPs from the reference data set. 
 
Nr  Name  Top Hit  Accession Number  Percent Identity  E value  
1  >CLocus_207926 

[AZAD01004947.1, 742, +]  
Chionodraco hamatus Cu/Zn superoxide dismutase (SOD1) mRNA, partial cds  AY736281.1  90.244  1.38E-18  

2  >CLocus_417728 
[AZAD01011137.1, 181, +]  

Gymnodraco acuticeps zona pellucida protein ZPC5 isoform 1 (ZPC5) mRNA, 
complete cds  

KU522427.1  89.655  1.68E-55  

3  >CLocus_664045 
[AZAD01019142.1, 1235, -]  

Cottoperca gobio genome assembly, chromosome: 10  LR131917.1  83.092  3.03E-52  

4  >CLocus_1150506 
[AZAD01034986.1, 5571, -]  

PREDICTED: Notothenia coriiceps transcription initiation factor IIB-like 
(LOC104957872), partial mRNA  

XM_010785544.1  87.903  2.49E-34  

5  >CLocus_1462038 
[AZAD01044248.1, 240, +]  

Dissostichus mawsoni haplotype 1 AFGP/TLP gene locus, partial sequence  HQ447059.1  95.96  3.45E-83  

6  >CLocus_1491991 
[AZAD01045372.1, 5082, +]  

PREDICTED: Notothenia coriiceps transcription initiation factor IIB-like 
(LOC104957872), partial mRNA  

XM_010785544.1  85.484  5.49E-30  

7  >CLocus_2032174 
[AZAD01062243.1, 5021, +]  

PREDICTED: Notothenia coriiceps transcription initiation factor IIB-like 
(LOC104957872), partial mRNA  

XM_010785544.1  85.484  5.49E-30  
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8  >CLocus_2457922 
[AZAD01071921.1, 3456, +]  

Cottoperca gobio genome assembly, chromosome: 10  LR131917.1  73.973  6.69E-10  

9  >CLocus_51011  
[KL662357.1, 5270500, -]  

Cottoperca gobio genome assembly, chromosome: 21  LR131929.1  76.136  6.26E-23  

10  >CLocus_139511  
[KL662384.1, 326949, -]  

Cottoperca gobio genome assembly, chromosome: 10  LR131917.1  74.658  1.29E-12  

11  >CLocus_198071  
[KL662552.1, 248239, +]  

Cottoperca gobio genome assembly, chromosome: 1  LR131916.1  83.333  3.46E-26  

12  >CLocus_210679  
[KL662597.1, 16029, -]  

PREDICTED: Notothenia coriiceps uncharacterized LOC104965236 
(LOC104965236), mRNA  

XM_010794195.1  87.5  3.95E-19  

13  >CLocus_210838  
[KL662599.1, 5111, +]  

Cottoperca gobio genome assembly, chromosome: 14  LR131921.1  83.571  2.33E-28  

14  >CLocus_261220  
[KL662789.1, 79206, +]  

Dissostichus mawsoni haplotype 2 AFGP/TLP gene locus, partial sequence  HQ447060.1  92.405  1.38E-56  

15  >CLocus_292518  
[KL662880.1, 318427, +]  

Sparus aurata genome assembly, chromosome: 17  LR537137.1  76.829  7.63E-22  

16  >CLocus_313316  
[KL662933.1, 117387, -]  

Cottoperca gobio genome assembly, chromosome: 9  LR131939.1  76.531  6.69E-29  

17  >CLocus_512277  
[KL663578.1, 176442, +]  

Cottoperca gobio genome assembly, chromosome: 6  LR131936.1  85.87  5.48E-49  

18  >CLocus_550684  
[KL663710.1, 313820, +]  

PREDICTED: Notothenia coriiceps symplekin-like (LOC104960710), mRNA  XM_010788863.1  82.707  8.14E-28  

19  >CLocus_612378  
[KL663896.1, 102980, +]  

Cottoperca gobio genome assembly, chromosome: 10  LR131917.1  77.397  5.86E-17  

20  >CLocus_676688  
[KL664078.1, 28095, -]  

Lateolabrax maculatus chromosome Lm22  CP027283.1  76.301  6.69E-29  

21  >CLocus_984478  
[KL665099.1, 640019, +]  

Thalassophryne amazonica genome assembly, chromosome: 13  LR722978.1  80  8.00E-03  

22  >CLocus_1083361  
[KL665382.1, 29521, +]  

Cicer arietinum chromosome Ca2  CP039332.1  85.714  3.20E-01  

23  >CLocus_1090835  
[KL665412.1, 447335, +]  

Cottoperca gobio genome assembly, chromosome: 1  LR131916.1  84.277  9.28E-40  

24  >CLocus_1092384  
[KL665412.1, 1044395, +]  

PREDICTED: Aplysia californica calmodulin-like protein 3 (LOC106012422), 
mRNA  

XM_013085361.1  82.222  4.00E+00  

25  >CLocus_1179376  
[KL665586.1, 242786, -]  

Gouania willdenowi genome assembly, chromosome: 8  LR131991.1  75  1.21E-06  

26  >CLocus_1224872  
[KL665708.1, 68516, -]  

Lateolabrax maculatus linkage group 21 sequence  CP032596.1  72.358  9.93E-08  

27  >CLocus_1425216  
[KL666295.1, 8396428, +]  

Cottoperca gobio genome assembly, chromosome: 4  LR131934.1  89.103  5.48E-49  

28  >CLocus_1534498  
[KL666587.1, 97216, +]  

Sparus aurata genome assembly, chromosome: 9  LR537129.1  89.899  6.67E-67  

29  >CLocus_1551285  
[KL666590.1, 947841, +]  

Chionodraco hamatus transposon helitron polyprotein (HeliNoto) gene, 
complete cds  

GU014476.2  77.236  7.14E-16  

400



 

 

DISPERSAL MODELS : LAGRANGIAN APPROACH CHAPTER 4. 
 

Article. Christiansen et al. (in prep.). Integrated assessment of large-scale connectivity in a historically overexploited fish population in the Southern Ocean. 

30  >CLocus_1552830  
[KL666590.1, 1381214, -]  

PREDICTED: Notothenia coriiceps symplekin-like (LOC104960710), mRNA  XM_010788863.1  86.667  2.49E-34  

31  >CLocus_1630310  
[KL666849.1, 6404, +]  

Cottoperca gobio genome assembly, chromosome: 5  LR131935.1  87.879  1.57E-11  

32  >CLocus_1954638  
[KL667808.1, 350977, -]  

PREDICTED: Notothenia coriiceps ectonucleotide 
pyrophosphatase/phosphodiesterase family member 2-like (LOC104962317), 
mRNA  

XM_010790748.1  99.167  3.69E-51  

33  >CLocus_2033344  
[KL668045.1, 3250, +]  

PREDICTED: Notothenia coriiceps uncharacterized LOC104955179 
(LOC104955179), ncRNA  

XR_799431.1  90.625  2.84E-27  

34  >CLocus_2067957  
[KL668140.1, 732310, +]  

Cottoperca gobio genome assembly, chromosome: 6  LR131936.1  75  5.14E-05  

35  >CLocus_2206060  
[KL668296.1, 21625648, +]  

PREDICTED: Arabidopsis lyrata subsp. lyrata protein SUPPRESSOR OF 
NIM1 1 (LOC9320118), mRNA  

XM_021032701.1  89.474  9.30E-02  

36  >CLocus_2245286 [ 
KL668297.1, 4382515, +]  

Dicentrarchus labrax chromosome sequence corresponding to linkage group 1, 
top part, complete sequence  

FQ310506.3  78.616  1.47E-24  

37  >CLocus_2284480  
[KL668297.1, 14524502, -]  

Cottoperca gobio genome assembly, chromosome: 10  LR131917.1  76.712  2.49E-15  
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APPENDIX 4.8 
Results of the population genomic analysis of Notothenia rossii in the Southern 

Ocean using the reference genome aligned SNP data set.   
 

 
Figure S4.8A. Genomic diversity of Notothenia rossii in the Southern Ocean based on 3,503 SNP loci from 
reference-based variant calling. Expected (darker shading, left) and observed (light shading, right) 
heterozygosity is shown as box and violin plots for each genetically screened population (a). Principal 
component analysis (PCA) reveals little individual-based differentiation (b), while non-metric 
multidimensional scaling based on GST distances shows subtle differences between population samples (c). 
Sample codes as in Table 4.1; samples from different years but same locality are not shown separately on 
the PCA. 
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Figure S4.8.B. Genomic differentiation of Notothenia rossii in the Southern Ocean based on 3,503 SNP loci 
from reference-based variant calling. Geographic clustering as attempted through discriminant analysis of 
principal components is shown along the first two principal components (a). Relative migration as estimated 
from Nei’s GST reveals overall high and no asymmetric gene flow (b). Genome scans for loci putatively 
under influence of selection detected 37 outliers at q > 0.05 (c). Sample codes as in Table 4.1; samples from 
different years but same locality are combined. 
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 GENERAL DISCUSSION 
 
 

 

1. Modelling the Southern Ocean marine life: challenges and model 
performance 
 
As partly reviewed in Guillaumot et al. (in press - Chapter 2), ecological modelling applied to 
Southern Ocean (SO) organisms faces many challenges given limitations and peculiarities of 
available datasets. In my PhD thesis, I aimed at highlighting the different biases that alter 
modelling performance and I developed several methods to correct for such issues. After all these 
steps, are settled corrections sufficient to generate accurate models ? And which are the remaining 
limits? 
 
The quality of biological data: limitations and spatial aggregation. 
My PhD results show that the limited number of occurrence records available for modelling is a 
recurrent issue in SO studies. The number of available occurrence data is not a problem (Stockwell 
and Peterson 2002, van Proosdij et al. 2016) as far as it respects the assumption that the sampled 
data cover the species full ecological range (Sánchez-Fernández et al. 2011, Raes 2012). 
However, this is not always the case in broad-scale SO SDMs (Guillaumot et al. 2020b - Chapter 
2). The species prevalence, being the ratio between the species occupied space (represented by 
presence record locations) and the total surface of the study area (McPherson et al. 2004), can 
also influence model predictions. The model performance increases with decreasing prevalence 
(Barbet-Massin et al. 2012, Tessarolo et al. 2014, van Proosdij et al. 2016), meaning that for a 
similar projection area, a model based on more occurrence records would theoretically perform 
better. This explains the low performance obtained in SDMs generated at the scale of the SO. In 
Guillaumot et al. (2020b - Chapter 2), the modelled distribution of six sea star species barely 
showed any contrast between species ecological niches, although the six species are known to 
have contrasting feeding diets, reproductive strategies and trophic positions. In Guillaumot et al. 
(2018b), evaluation scores of SDMs predicting the distribution of species with wide ecological 
niches, were much weaker than those obtained for species with narrow niches. 
Increasing the number of occurrence data available for modelling was shown to improve model 
predictions (Guillaumot et al. 2018a - Appendix, Fabri-Ruiz et al. 2019), with a small increase in a 
very small dataset resulting in a large benefit in model performance (van Proosdij et al. 2016). 
Using historical data to improve datasets does not impact model relevance as far as the species 
niche, or distribution, has not changed too much during the time period of reference, and as far as 
datasets are thoroughly checked for georeferencing errors and taxonomic inconsistencies 
(Newbold 2010, Guillaumot et al. 2018a - Appendix, Guillaumot et al. in press - Chapter 2). Adding 
absence records (even patchily distributed) to datasets, when available, is also a good option to 
improve the accuracy of presence-only model predictions (Peel et al. 2019) but the method was 
developed at the regional scale and never tested at a broader scale. 
A limited number of data also limits the efficiency of model evaluation. For SDMs, a limited number 
of occurrence records was shown to imply a reduction in the number of training data available to 
generate the model (i.e. reducing modelling performance, Guillaumot et al. 2020b - Chapter 2) or 
to induce considerable limits when testing the model (Guillaumot et al. submitted - Chapter 3). In 
Guillaumot et al. (submitted - Chapter 3), solely 26 presence-only records were available to 
characterise the abiotic environment occupied by the sea urchin species Abatus cordatus in a bay 
of the Kerguelen Islands. This was sufficient to run the model, but methodologically difficult to 
subset a part of this dataset as independent test data. The model was therefore tested alternatively 
with presence records and evaluation metrics (Area Under the Curve) but more relevant evaluation 
strategies, using independent datasets are required to improve the quality of studies. 
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Regarding other modelling approaches, such as DEB and IBM models, it was also difficult to 
access supplementary information to evaluate models based on independent observations, as it is 
usually done (Marn et al. 2017, Haberle et al. 2020). Alternative approaches were used such as in 
Fabri-Ruiz et al. (in press - Chapter 3), where the profile method developed by Marques et al. 
(2019) and used by Stavrakidis-Zachou et al. (2019) helped calculate the marginal confidence 
intervals of the estimated DEB parameters and hence provided the uncertainty related to 
parameter estimation. In the population model developed in Arnould-Pétré et al. (2020) - Chapter 
1, no time series on population densities nor structure were available to test model performance. A 
sensitivity analysis was applied, aiming at evaluating model stability regarding changes in 
parameter values (± 30% of the initial value). Such a method is referred to as the “robustness 
analysis”. It evaluates model performance by a systematic deconstruction of the model, by 
forcefully changing model parameters, structure, and representation of processes (Grimm and 
Berger 2016, Railsback and Grimm 2019). Awaiting for more data for DEB model evaluation, 
another alternative, commonly used in our case studies was to compare DEB estimation mean 
relative errors (MRE, comparison between input observations and model predictions) with the 
average score of the DEB collection (MRE < 0.1, Marques et al. 2018). So far, DEB models built 
for benthic SO marine species showed good performances (Abatus cordatus: MRE= 0.121; 
Adamussium colbecki MRE: 0.08; Nacella concinna MRE: 0.203; Laternula elliptica MRE: 0.1; 
Odontaster validus MRE: 0.123; Sterechinus neumayeri MRE: 0.136; 
 http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/species_list.html, Agüera et al. 2015, 2017). 
 
Regarding the influence of the spatial aggregation of occurrence records on model predictions, I 
showed that the targeted background data approach (Dormann 2007, Phillips et al. 2009, Syfert et 
al. 2013) can be applied and is efficient to correct modelling biases (Guillaumot et al. 2018a - 
Appendix). Data aggregation was also shown to have some negative effect on the performance of 
model evaluation (Guillaumot et al. 2019 - Chapter 2). I showed that it was possible to correct such 
a bias using spatial cross-validation procedures that spatially separate training and test data 
(Guillaumot et al. 2019 - Chapter 2), as previously stated in other works (Hijman 2012, Muscarella 
et al. 2014, Roberts et al. 2017). I strongly recommend to apply this method in future studies to 
improve modelling performance (application codes are available in Guillaumot et al. 2021 – Thesis 
material). 
 
The poor quality of abiotic environment datasets. 
The access to abiotic data with good temporal and spatial resolutions at the scale of the entire SO 
was challenging, a common issue in broad-scale oceanographic studies (Robinson et al. 2017). 
This implied to work with average values in time and large grid-cell pixels that do not accurately 
take into account environmental variability and complexity (Galante et al. 2018, Guillaumot et al. 
2018a - Appendix), and biases the reliability of the occurrence-environment relationship, a strong 
prerequisite in correlative approaches (Morales et al. 2017, Araújo et al. 2019). 
Given averaged values available in abiotic datasets, the large panel of ecoregions identified in the 
SO (Fabri-Ruiz et al. 2020) and the spatial aggregation of occurrence datasets, SDMs were shown 
to extrapolate, as training occurrence data may not encompass the entire range of environmental 
values existing in the study area (Guillaumot et al. 2020c - Chapter 2) or the whole possibilities of 
combinations between all environmental descriptors (Mesgaran et al. 2014). My results highlighted 
that areas where models extrapolate can cover high proportions (up to 75%) of the projection area 
(Guillaumot et al. 2020c - Chapter 2). It is therefore necessary to identify extrapolation areas and 
provide them along with prediction maps to facilitate model interpretation (Guillaumot et al. 2020c - 
Chapter 2). Extrapolation areas can be reduced by restraining model projection areas based on 
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species ecological or physiological tolerance thresholds, using experimental data or field 
observations (Guillaumot et al. 2020c - Chapter 2), which suggests that a good prior knowledge of 
the studied species is necessary before modelling. 
 
Taxonomic uncertainties. 
Dispersal through the Antarctic Circumpolar Current (ACC) and the ability of planktotrophic larvae 
to drift during several months in the water column both result in complex phylogeographic patterns, 
questioning the established taxonomy of many marine species in the SO (Hunter and Halanych 
2010, Gonzalez-Wevar et al. 2011, Moreau et al. 2017, 2020). When generating a model at the 
scale of the SO, the uncertain taxonomic status of the studied species also questions the 
uniqueness of ecological niches such as species physiological performances and responses to 
environmental forcing factors. This may lead models to alternatively over- or under-estimate the 
predicted distribution of species suitable environments (Cacciapaglia and van Woesik 2017, 
Thyrring et al. 2017). To address this issue, I did my best to choose study species with little 
taxonomic uncertainties, based on the literature or discussions with experts (Guillaumot et al. 
2020a - Chapter 1, Guillaumot et al. submitted - Chapter 3, Fabri-Ruiz et al. in press - Chapter 3). 
However, on-going taxonomic works inevitably question some results of my PhD. For example, 
recent findings on the sea star Bathybiaster loripes Sladen 1889, showed that it is a species 
complex structured according to depth (Moreau et al. 2020), although I formerly modelled its 
distribution as a single species (Guillaumot et al. 2020b - Chapter 2). 
Even if not applied to SO species yet, it is possible to model the distribution of a species complex 
and consider local, potential adaptations within the SDM. Breiner et al. (2018) performed small 
ensemble SDMs to build distribution models based on spatial aggregates defined on genetic 
differentiation measures (Fst). The small, individual SDMs, are projected on sub-areas and the 
ensemble of results is then averaged to generate the total prediction of the entire species potential 
distribution (see also Breiner et al. 2015). Other approaches, when implementing the model, 
subsample the environment (Cacciapaglia and van Woesik 2017) or presence records (Gotelli and 
Stanton-Geddes 2015, Ikeda et al. 2017) according to the distribution of genetic entities. In other 
works, alternatives consist in introducing into the SDM a predictor that describes the species 
genotype (Banta et al. 2012). 
 
Adapting models to the physiology and ecology of SO species. 
Particular environmental conditions of the SO (e.g. extreme cold temperatures, seasonal food and 
light availability, ice dynamics and impact on shallow benthic communities; Vernet et al. 2008, 
Barnes et al. 2014, Cummings et al. 2018) necessitate some adaptations of physiological models 
formely developed for other conditions and organisms (Arnould-Pétré et al. 2020, Guillaumot et al. 
2020a - Chapter 1). When creating a species model, the standard DEB approach calls pseudo-
data, that are extra data coming from close taxa that help calibrate the model estimation similarly 
to a prior element (Lika et al. 2011a). Parameter estimation is thus performed at a reference 
temperature of +20°C (Kooijman 2010). This implies that results must be transformed to correctly 
interpret estimated parameters for polar species and some caution is necessary when comparing 
model outputs with those obtained for their counterparts from other regions of the world 
(Guillaumot et al. 2020a - Chapter 1).  
SO species also present behavioural, morphological and physiological peculiarities that 
necessitate the development of new modules in existing physiological models (e.g. adaptation to 
the cold, Cziko et al. 2014; slower larval development and growth rates, Peck et al. 2007, Peck 
2016; low protein production, Pörtner et al. 2007; direct development and brooding of the young, 
Moreau et al. 2017). In Arnould-Pétré et al. (2020) - Chapter 1, energy fluxes that determine the 
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development of the sea urchin species Abatus cordatus (Verrill, 1876) were constrained in the 
model due to the fact that juveniles remain isolated in brood pouches for eight months before they 
become autonomous to feed upon the sea bottom (Magniez 1983). Still in this study, the DEB 
model was complemented with estimated Arrhenius parameters to threshold metabolic 
performances within the species temperature tolerance (Kooijman 2010, Thomas and Bacher 
2018), as it was already done for the SO species Odontaster validus (Agüera et al. 2015) and 
Laternula elliptica (Agüera et al. 2017). To do so, results of an experimental analysis that assesses 
species metabolic rates according to temperature variation are necessary, and up to five Arrhenius 
parameters, characterising the upper and down slopes of the Arrhenius curve can be implemented 
into the DEB model (Agüera et al. 2015, Lavaud et al. 2020). The method is powerful, but 
unfortunately, this kind of experimental data are not always available for SO marine species (Fabri-
Ruiz et al. in press - Chapter 3) or datasets not complete enough to draw the ascending and 
descending parts of the Arrhenius curve (Arnould-Pétré et al. 2021 - Chapter 1, Guillaumot et al. 
submitted - Chapter 3), which limits the potential of DEB predictions, above all for temperature 
change simulations (Fabri-Ruiz et al. in press - Chapter 3).  
 
The influence of data gaps on DEB physiological models. 
The performance of DEB models is highly dependent on the completeness of available datasets. 
Lower significant predictive abilities are shown for models implemented with data gaps, both at the 
individual and population levels (Accolla et al. 2020). This impacts in turn the capacity of models to 
address the initial research objectives. For example, in this PhD, we applied the augmented-loss 
function method (Guillaumot et al. 2020a - Chapter 1) recently developed by Lika et al. (2020). In 
Lika et al. (2020), they obtained impressive detailed contrasts between their four catfish species 
(contrasts in predicted weights and sizes, in energy allocation or reproduction performance). 
However, in our case study, we only found minor differences in model predictions between 
populations of the Antarctic limpet (intertidal vs. subtidal morphotypes of Nacella concinna), 
although their respective morphology and physiology were proved to differ in field experiments and 
observations (Butlin et al. 2008, Hoffman et al. 2010). These results show that it was possible to 
build a DEB model for these two limpet morphotypes by extensively recycling data from the 
literature. However some data (above all) on larval and juvenile stages were missing and would 
have been necessary in the model to catch physiological and morphological differences that do 
exist between populations. 
 
The biology of many SO marine benthic species is still poorly known to generate precise DEB 
models as it is difficult to study their life cycle in situ or ex situ. In the field, winter conditions make 
access to research stations and local investigations difficult, which complicates the settlement of 
experiments or observations. The lack of knowledge of species larval stage remains the main 
limitation (i.e. size and weight of eggs and larvae, feeding ability and ecology, precise knowledge 
of drifting duration in the water column, behaviour in the water column, metamorphosis event, 
Guillaumot et al. 2020a - Chapter 1, Christiansen et al. - Chapter 4). This is a common issue in the 
marine realm (Thorrold et al. 2002, Jones et al. 2008b), that is particularly important in the SO 
given the strong impact of marine currents (Sanches et al. 2016), the substantial duration of larval 
stages and drift (Stanwell-Smith et al. 1999), harsh weather conditions that constrain offshore 
sampling and difficulties encountered to bring and raise larvae in aquaria. 
 
Integrating in SO benthic species DEB models an exhaustive overview of environmental conditions 
that influence species physiology is another limitation. Standard DEB models rely on two main 
forcing parameters: food availability and temperature (Kooijman 2010), but it is sometimes very 
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difficult to describe food availability for benthic species (Guillaumot et al. submitted - Chapter 3, 
Fabri-Ruiz et al. in press - Chapter 3). Generally, sea surface chlorophyll-a concentrations are 
used as a proxy of food availability (Arnould-Pétré et al. 2020 - Chapter 1, Guillaumot et al. 
submitted - Chapter 3), with few time series available to make the link between chlorophyll-a 
concentrations and organisms’ nutrition (Agüera et al. 2015, 2017, Fabri-Ruiz et al. in press - 
Chapter 3). Even when the diet of some benthic species has been accurately studied and 
described (Dearborn et al. 1991, Calizza et al. 2018, Pascal et al. 2021), most of the time 
environmental data are not available at a precise spatial or temporal scale to describe in details 
food availability.  
Hydrodynamics, sediment properties, sea ice coverage and dynamics, pH variation or light 
availability are also poorly documented in coastal areas. These factors strongly influence species 
distribution, survival and fitness (Grange and Smith 2013, Cummings et al. 2018) but cannot be 
included into models due to the lack of data (Arnould-Pétré et al. 2020, Guillaumot et al. 2020a - 
Chapter 1). This also explains why we did not manage to predict the morphological and 
physiological contrasts between the two morphotypes of Nacella concinna in Guillaumot et al. 
(2020a - Chapter 1). Morphological contrasts are linked to the stronger impact of waves in the 
intertidal zone compared to the subtidal and the more frequent time spent by individuals out of 
water (Beaumont and Wei 1991, Hoffman et al. 2010). However, only food and temperature could 
be used as environmental drivers in the model (Guillaumot et al. 2020a - Chapter 1). Including 
other environmental data in physiological models is therefore necessary to provide more precise 
and relevant outputs for SO species. 
 
 
2. Using models to extrapolate: future simulations and invasive species 
 
Climate change scenarios. 
As in other regions on Earth, the SO is exposed to strong environmental changes (Henley et al. 
2019) that have a cascading effect on marine species (Convey and Peck 2019). Modelling climate 
changes and their impact on species distribution is however challenging, as it is embedded in an 
extrapolation context, given that some future climatic conditions may not have modern analogs 
(Miller et al. 2004, Fitzpatrick and Hargrove 2009). SDM projections based on future conditions 
should be therefore considered with care. Furthermore, one of the main assumptions made by 
SDMs is that occurrence records and environmental conditions are at the equilibrium (Newbold 
2010, Elith and Leathwick 2009, Václavík and Meentemeyer 2012). When not at the equilibrium 
(i.e. non-analog climate conditions), the species predicted distribution can be misinterpreted, as the 
model projects results for a new environment and does not integrate species interactions, 
population growth rates nor changes in dispersal abilities (Williams and Jackson 2007, Fitzpatrick 
and Hargrove 2009, Zurell et al. 2009, Woodin et al. 2013, Tingley et al. 2014).  
The lack of future predictions for some environmental descriptors constitutes another issue. Water 
pH, primary productivity, current speed, are often not available which necessitates to assume that 
conditions are similar to present-day conditions (Guillaumot et al. 2018b, Fabri-Ruiz et al. in press - 
Chapter 3), which strongly limits the potential of simulations (Guillaumot et al. 2018b, Guillaumot et 
al. in press - Chapter 2, López-Farrán/Guillaumot et al. in press - Chapter 3). The poor spatial 
resolution of future environmental descriptors (1° ≅ 100 km on https://www.bio-oracle.org/) also 
considerably alters the precision and relevance of model future predictions for marine benthic 
species (Guillaumot et al. 2018b). Validating future predictions is not possible, which also 
constitutes a serious issue to address (Guillaumot et al. 2018b). In Fabri-Ruiz et al. (in press - 
Chapter 3), the distribution of the sea urchin Sterechinus neumayeri was modelled with both SDM 
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and a spatial projection of the DEB model. Contrasting results were obtained in predicted suitable 
areas between the two methods but I could not select the true prediction, as no validation could be 
performed. Similarly, in Arnould-Pétré et al. (2020) - Chapter 1, the population model of the sea 
urchin Abatus cordatus predicted population dynamics under future conditions could not be 
compared with time series of population densities. These future simulations are interesting to draw 
some preliminary hypotheses on the influence of some environmental changes on species 
distribution but results should really be considered with care as some important ecological 
information are not integrated into models. 
 
As for physiological models, the lack of experimental data to correctly link temperature to 
physiological performance is a strong constraint to generate accurate future simulations (Arnould-
Pétré et al. 2020 - Chapter 1, Fabri-Ruiz et al. in press - Chapter 3). However, when available, this 
can prove powerful to improve models, as it was done in Muller and Nisbet (2014) for simulating 
growth and calcification rates in the phytoplankton species Emiliania huxleyi under ocean 
acidification and changing ocean carbonate system or in Lavaud et al. (2021) that evaluated the 
influence of warmer and fresher waters on oyster growth, reproduction and mortality. 
Regional or local-scale studies, with abundant experimental information that accurately describe 
species physiological performances in link with environmental conditions would provide more 
relevant projections for future simulations. In many cases, future scenarios are simulated with an 
ensemble of scenarios (range of potential temperature shifts, changes in one or several conditions, 
Mangano et al. 2019, Arnould-Pétré et al. 2020 - Chapter 1), in order to understand the relative 
influence of environmental shifts rather than providing a single approximated prediction.  
Combining SDM predictions with experimental analyses was also shown to improve the relevance 
of future model predictions (López-Farrán/Guillaumot et al. in press - Chapter 3). This 
supplementary physiological information is indeed an interesting complement to evaluate the 
reliability of model predictions (Buckley et al. 2011, Greiser et al. 2020, López-Farrán/Guillaumot et 
al. in press - Chapter 3). The knowledge of species physiological tolerance for defined 
environmental conditions was also shown helpful to restrain the projection area and consequently 
limit extrapolation uncertainty (Feng et al. 2020, Guillaumot et al. 2020c - Chapter 2). 
As a perspective, the Stack-SDM approach (S-SDM, Mateo et al. 2012), which has not been 
applied to SO species yet, integrates the information brought by several species-level models 
using a knowledge of species interactions (competition or predation) (Guisan and Rahbek 2011, 
Hortal et al. 2012b). The performance of SDMs generated for future scenarios is clearly improved 
when biotic interactions are integrated. This was exemplified in Davis et al. (2021), where the 
predicted distribution of a sea urchin facilitated the identification of potential kelp refugia in future 
environmental conditions. However this necessitates to study the influence of environmental 
conditions on each species and the consequence of future changes on species interactions 
(Freitas et al. 2007, Freitas 2011), which again necessitates more field observations. 
 
Invasive species modelling. 
Along with climate change, the SO experiences a consequent development of tourism, associated 
with an increasing number of cruise ships and visitors reaching Antarctic coasts (McCarthy et al. 
2019). The risk of non-native species introduction and their survival therefore constitutes one 
critical threat to SO marine communities in the future (Hughes et al. 2020). SDMs tend to be used 
to address the issues of species introduction, but as for climate change scenarios, models predict 
in an extrapolation context (Robinson et al. 2010), with difficulties for SDMs to infer species 
potential distribution under novel environment settings compared to the species native range 
(Venette et al. 2010, Kumar et al. 2015). Such simulations also ignore ecological processes (e.g. 
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dispersal and biotic interactions) and thus provide an incomplete picture of invasion risks 
(Srivastava et al. 2019). Building a SDM for mapping species invasion risk has been done once in 
the SO for the case study of the Arctic sea star Asterias amurensis (Byrne et al. 2016), but it is a 
meticulous exercise that requires many tests, a thorough knowledge of the species ecology and 
environmental tolerance, and ideally to complete SDM predictions with information related to the 
species physiology, dispersal abilities or biotic interactions (Araújo and Guisan 2006, Srivastava et 
al. 2019). Some of these central points are not considered in Byrne et al. (2016).  
In this PhD, the potential of the Patagonian crab Halicarcinus planatus to invade SO coastal areas 
was studied by associating SDM with physiological information from experiments on adult and 
larvae tolerance to contrasting salinity and temperature values (López-Farrán/Guillaumot et al. in 
press - Chapter 3) and completed with a study on the species dispersal potential using a 
Lagrangian approach (López-Farrán et al. in prep. - Appendix). These complementary analyses 
provided a complete overview of the species invasion risk.  
This approach could be extended to the use of physiological models (such as DEB models) to 
complete our physiological knowledge of non-native species. DEB models could be used to 
investigate the bioclimatic envelope of non-native species (including adult and larval life stages) in 
order to evaluate their survival capacity under present or future conditions. This was already 
applied in Monaco and McQuaid (2018) to assess the ability of two South African bivalve species 
to survive across a steep intertidal environmental gradient. In Monaco et al. (2019), they also 
studied the acclimation abilities of the South African mussel in the Mediterranean Sea and Lavaud 
et al. (2021) predicted the growth and reproductive potential of the eastern oyster Crassostrea 
virginica in future scenarios. 
 
DEB models could also be used to characterise biotic interactions between species of a community 
in which non-native species could potentially settle. The respective species physiology could be 
compared (Marn et al. 2019), and the influence of environmental conditions on each species life 
traits studied (Cardoso 2007, Marn et al. 2017). These models can be used to compare the 
species' fundamental niches and to provide an evaluation of the non-native species capacity to 
survive in the community (Fig.D). Occurrence records are positioned in space according to the 
environmental conditions recorded at different sites (x axis: food availability, y axis: temperature) 
and metabolic performances are calculated for each area, according to these environmental 
conditions. This helps indicate areas where species are well adapted to local conditions and in 
contrast, the limits of the species fundamental niche beyond which metabolism is less performant 
(Fig.D).  
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Figure D. Simple representation of species adaptation to local environmental conditions using a DEB model 
approach. X axis represents food conditions at each occurrence location, y axis temperature values. 
Environmental conditions are averaged values for summers 2002-2005. Star symbol corresponds to the sea 
star species Odontaster validus and filled circles to the sea urchin species Sterechinus neumayeri. The color 
bar indicates species metabolic performances, represented by growth rates (cm/year). The figure highlights 
areas where local environmental conditions are very favourable to the species development and in contrasts, 
the limits of their niche, where metabolim is less performant. Figure presented during the 2019 DEB 
Symposium.  
 
Finally, associating DEB and spatial dynamic models such as Lagrangian models into an 
integrative approach enables to analyse the movement of species in complement to metabolic 
changes that are iteratively updated during the particle journey and following spatio-temporal 
variations of the environment (Bahlburg et al. 2021). This approach was already used in many 
marine studies to describe larval development along drifting periods under present (Ayata et al. 
2010) or future environmental conditions (Lett et al. 2010, Lacroix et al. 2018, van de Wolfshaar et 
al. 2021), to evaluate species-specific responses to environmental changes (Falcini et al. 2020) or 
population connectivity between habitats (La Mesa et al. 2015, Thomas et al. 2020). The method 
could be applied to SO case studies by combining hydrodynamic models, available so far for the 
entire SO or smaller regions, with DEB models implemented for larvae or propagules. It constitutes 
a powerful analysis when studying the potential of an alien species to reach and survive along 
Antarctic coasts. 
 
 
3. What did models tell us about the ecology of SO species ? How 
useful are the generated models ? 
 
Models are a simple representation of a complex reality. After the many corrections introduced to 
take into account all methodological biases presented above, what did we finally learn about the 
ecology of SO species? In other words, how useful were the generated models even if they are all 
fundamentally wrong in the words of Box (1979)? 
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The generated SDMs were helpful to interpolate the distribution of species from hundreds of 
observations, including the distribution of the sea urchin Abatus cordatus, an endemic species of 
the Kerguelen Plateau (that belongs to the French marine protected reserve) (Guillaumot et al. 
2018a,b, Guillaumot et al. submitted - Chapter 3) and the sea urchin Ctenocidaris nutrix 
(Guillaumot et al. 2018b), considered as a VME species (Vulnerable Marine Ecosystem) by 
CCAMLR  
(https://www.ccamlr.org/en/compliance/vulnerable-marine-ecosystems-vmes). Models showed 
good predictive performance. These models could be interesting for conservation and nature 
management, such as SDMs generated by Hibberd (2016) that used Random Forests to predict 
the distribution of several benthic species off Heard and McDonald Islands in the Australian 
Exclusive Economic Zone. Hill et al. (2017) mapped and quantified the distribution of demersal fish 
assemblages to gain ecological and management insights, using a multi-species model-based 
approach (Regions of Common Profile). The CCAMLR Scientific Committee composed Marine 
Protected Area proposals (CCAMLR report SC-CAMLR-38/BG/03 2019) by integrating outputs of 
distribution models, dynamic trophic models (Dahood et al. 2019) and population connectivity 
models (Piñones et al. 2013) of krill to identify sea mammals foraging areas and define fishery 
zones in the Western Antarctic Peninsula region. 
 
My studies were also helpful to investigate the quality of occurrence datasets (i.e. number, spatial 
and temporal coverage). In Guillaumot et al. (2018a - Appendix), among four sea urchin studied 
species of the Kerguelen Plateau area, only one presented a dataset that fulfilled all 
methodological requirements to produce a reliable distribution model. In Guillaumot et al. (2020b - 
Chapter 2), I showed that occurrence datasets of six sea stars species were not complete enough 
to highlight contrasts between species modelled niches at the scale of the SO. Such results are 
however useful to identify knowledge gaps and guide future sampling plans (Guisan et al. 2006). 
 
When enough data are available, model predictions were proved interesting to delineate species 
occupied environmental subspaces and thus helped describe environmental conditions 
preferentially occupied by the species along with the main abiotic descriptors driving the 
distribution (Guillaumot et al. 2018b, López-Farrán/Guillaumot et al. in press - Chapter 3, 
Guillaumot et al. submitted - Chapter 3). This was proved particularly relevant and powerful when 
distribution models are combined with experimental data (López-Farrán/Guillaumot et al. in press - 
Chapter 3). Such results can be used to interpret the potential response of species to changes in 
some environmental factors (Guillaumot et al. 2018b, López-Farrán/Guillaumot et al. in press - 
Chapter 3) and guide conservation strategies accordingly (Guillaumot et al. 2018b).  
Similarly, DEB physiological models were interesting to disentangle the respective importance of 
food availability and temperature on species metabolic performances (Fabri-Ruiz et al. in press - 
Chapter 3), to describe the species life cycle (Agüera et al. 2015) or to determine species feeding 
histories according to observed gonadal cycles (Agüera et al. 2017 -Appendix). They also helped 
highlight the negative effect of increasing temperatures on metabolic costs (Abatus cordatus, 
Guillaumot et al. submitted - Chapter 3; Sterechinus neumayeri, Fabri-Ruiz et al. in press - Chapter 
3) and population mortality (Abatus cordatus, Arnould-Pétré et al. 2020 - Chapter 1).  
Applying some new modules of DEB modelling could help increase models ability to describe the 
relationship between environmental conditions and the organism’s metabolism. The standard DEB 
model only considers food resources and temperatures as environmental drivers of metabolism 
performances (Kooijman 2010) but complementary model-based modules have already been 
developed to include the effect of tide cycles influence (Monaco and McQuaid 2018), pH/CO2 
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concentrations (Troost et al. 2010, Wijsman and Smaal 2011, Klok et al. 2014a), salinity (Lavaud et 
al. 2017), O2 concentration (Lavaud et al. 2019) or exposure to suspended sediment particle loads 
(La Peyre et al. 2020). Applying this modelling approach to SO case studies is feasible, as long as 
enough observations are available. 
 
I showed that food availability always has a low influence on species physiological performances 
compared to temperature (Arnould-Pétré et al. 2020 - Chapter 1, Fabri-Ruiz et al. in press - 
Chapter 3). This may be consistent with our knowledge of physiological peculiarities of SO 
organisms, namely metabolisms adapted to low temperatures (Peck 2016, Peck et al. 2018), with 
poor abilities to acclimate to warmer temperatures (Peck et al. 2014) and a noticeable adaptation 
to low and seasonal food inputs (Lawrence and McClintock 1994). However, this may also be 
partly explained by an erroneous representation of food availability and a misleading evaluation of 
the relationship between food availability and energetic performances as it is implemented in the 
DEB model (Arnould-Pétré et al. 2020 - Chapter 1). First, the scaled functional response f, 
comprised between 0 and 1, is commonly used in DEB models to represent food availability 
(Kooijman 2010) but it is too general to accurately characterise food availability for a benthic 
species. Further, sea surface chlorophyll-a concentration was often used as a relative poor proxy 
of food availability, as previously stated. Considering the approach of Jansen et al. (2018), that 
assessed the redistribution of surface productivity at the seafloor using a pelagic-benthic coupling 
approach, could be an interesting perspective. In that study, a regional ocean model with remotely 
sensed sea-surface chlorophyll-a maps was combined with data on diatom abundances obtained 
from sediment grabs and with a particle tracking approach to infer the potential density of food 
available on the seabed. Detailed information on the species surrounding habitat is necessary to 
apply this method, but it could substantially improve the representation of food availability for 
application of physiological models to benthic species. 
Another modelling perspective consists in considering several food resources to represent energy 
supply to organisms in DEB models (Galasso et al. 2020, Reid et al. 2020). This existing modelling 
framework is based on empirical results on growth performance according to food quality (Galasso 
et al. 2020). Following these works, prospective studies will link DEB theory with stable isotope 
dynamics (“Dynamic Isotope Budget”, DIB, talk given by Lefebvre et al. at DEB Symposium 2019). 
The method that describes stable isotope fluxes within organisms already exists (Pecquerie et al. 
2010) and Lefebvre et al. (DEB Symposium 2019) objectives are to put the analysis in the 
framework of trophic network studies and relate organism diet with energetics. Trophic network 
analyses have been developed for the SO region (Ducklow et al. 2006, 2007, 2013, Western 
Antarctic Peninsula; Murphy et al. 2007, Scotia sea pelagos; Hill et al. 2012, South Georgia 
pelagos; Pinkerton et al. 2013, 2014, Ross Sea pelagos; Ballerini et al. 2014, Western Antarctic 
Peninsula; Ortiz et al. 2016, Marina et al.  2018 and Zenteno et al. 2019, King George Island) and 
could constitute a good basis to apply this method. 
 
Finally, dispersal models were proved helpful to highlight the role of the ACC as a barrier to the 
dispersal of propagules arriving from neighbour continents (López-Farrán et al. in prep. - Appendix) 
and also connect the SO regions between each other (Dulière/Guillaumot et al. submitted - 
Chapter 4, Christiansen et al. in prep.- Chapter 4). Such information on species dispersal abilities 
are really interesting to further understand species realised niche (Christiansen et al. in prep. - 
Chapter 4) and test dispersal scenarios (López-Farrán et al. in prep. - Appendix). Combined 
together, the three studies of this PhD performed on the Patagonian crab Halicarcinus planatus 
(López-Farrán et al. in prep. - Appendix, López-Farrán/Guillaumot et al. in press - Chapter 3, 
Dulière/Guillaumot et al. submitted - Chapter 4) suggested that the crab found in Deception Island 
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in 2010 could not have naturally crossed the Drake Passage to reach the Western Antarctic 
Peninsula coasts, as the ACC targeted its drift eastward along the 60°S latitude line (López-Farrán 
et al. in prep. - Appendix). A natural arrival could be by rafting over buoyant kelps (Fraser et al. 
2018), but it constitutes a questionable alternative, which is possible during a stormy weather 
event, and suggests the survival of the adult crab during its long way, attached on macroalgae 
holdfasts (López-Farrán/Guillaumot et al. in press - Chapter 3). The hypothesis of an accidental 
anthropogenic introduction was therefore suggested, either by transport on ship hulls or release of 
ballast waters. Results from Dulière/Guillaumot et al. (submitted - Chapter 4) highlighted a higher 
probability of its arrival in Deception Island, whether ballast waters were exchanged at 50 nautical 
miles from the coasts or closer. The respect of the Antarctic Treaty guidelines, promoting ballast 
water release at least at 200 nautical miles away from the coasts, prevented the crab propagules 
from reaching the western coasts of the Western Antarctic Peninsula (Dulière/Guillaumot et al. 
submitted - Chapter 4). Once introduced, physiological experiments showed that it is difficult for the 
crab to survive in present Antarctic winter conditions (López-Farrán/Guillaumot et al. in press - 
Chapter 3), but suggested a potential settlement of this non-native species under future conditions, 
when warmer temperatures will allow its physiological acclimation (López-Farrán/Guillaumot et al. 
in press - Chapter 3).  
 
4. Personal feedbacks on DEB and SDM applications. 
 

Mechanistic models: DEB theory.  
Applying DEB models to SO species was not so easy and took several months from initiation to 
model finalisation. A lot of concepts have to be understood (van der Meer 2006, Kooijman 2010) to 
generate a model and to be able to interpret the link between DEB parameters and species’ 
physiological traits (van der Meer 2006). Hopefully, an increasing number of available tutorials (see 
the DEBwiki page https://en.wikipedia.org/wiki/Dynamic_energy_budget_theory) and Matlab codes 
help implement DEB models (https://www.bio.vu.nl/thb/deb/) including a newly developed module 
that automatically fills Matlab codes (AmPeps,  
http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/AmPeps.html). Moreover, every two years, DEB 
schools are organised and include training courses on DEB model applications 
(https://deb2021.sciencesconf.org/). They are completed with a 3-weeks MOOC to learn DEB 
theory principles. These events have been organised for several years and considerably help 
increase the number of DEB applications 
(https://www.zotero.org/groups/500643/deb_library/library). 
Alternatives to the DEB theory exist, as well as internal alternatives of the standard DEB model 
that rely on different assumptions regarding energy allocation priorities or new parameters to 
describe individual metabolism (comments on DEB3 Kooijman 2010, Lika and Kooijman 2011). 
The DEBkiss model (‘kiss’ for ‘keep it simple stupid’) proposes a simple version of the standard 
DEB (no reserve compartment) and is widely used for routine applications such as for toxicity 
analyses (Jager et al. 2013, Jager 2016). However, according to Lika and Kooijman (2011), this 
model also presents weaknesses compared to the standard DEB procedure and cannot be used 
as an alternative but as a first step before more complex implementations are carried out. Several 
other conceptual models of individual metabolism also exist, including the WBE West, Brown and 
Enquist theory (Brown et al. 2004) according to which energy supply is determined by branching 
networks that change with body size (West et al. 2002, Kearney and White 2012), or the Scope for 
Growth approaches that specifically focus on a precise metabolic process (Filgueira et al. 2011) 
and can integrate empirical information (Table 11.1 in Kooijman 2010). Among all these 
approaches, the DEB theory is the most applied.  

416



 GENERAL DISCUSSION 
 
 

 

 
Implementing DEB models requires detailed information on species physiology, morphology or 
energetics, according to environmental conditions and for different life stages (Jusup et al. 2017, 
Guillaumot et al. 2020a - Chapter 1). When available in the literature, these data can be sufficient 
enough to parameterize a DEB model for a SO species (Guillaumot 2019a). Unfortunately, this is 
rarely the case, these data are missing for most species depending on model objectives and on the 
expected details (Guillaumot et al. 2020a - Chapter 1). Upscaling the DEB approach at the 
population level (DEB-IBM) was proved time and data consuming (Arnould-Pétré et al. 2020 - 
Chapter 1). It required a thorough knowledge of the species ecology, physiology, and of the 
surrounding environment to model processes that drive population dynamics (i.e. mortality, 
interspecific relationships, reproduction) (Beaudouin et al. 2015, Groeneveld et al. 2015, Arnould-
Pétré et al. 2020 - Chapter 1, Groeneveld et al. 2020). However, once applied, DEB models are 
extremely interesting and provide a large panel of outputs that can be applied to all species 
development states (e.g. larval development, growth rate, energy allocation description, 
reproduction performance, survival potential in given food and temperature conditions) and 
consequently allow a thorough understanding of species physiology and its link to the environment 
(Aguëra et al. 2015, Marn et al. 2017, Arnould Pétré et al. 2020 - Chapter 1, Haberle et al. 2020, 
Guillaumot et al. submitted - Chapter 3). The use of DEB models for SO marine species is 
therefore totally adapted. I also showed it is really interesting to combine DEB estimation of the 
species fundamental niche along with other modelling approaches that focus on other parts of the 
ecological niche, such as correlative approaches (i.e. the realised niche) and dispersal models. 
 
DEB modelling is a powerful approach that could open to other applications for SO studies such as 
ecotoxicology analyses. The amount of works studying the influence of pollutants on SO marine 
species has been increasing for a few years (Ansari et al. 2004, Poulsen et al. 2012, Majer et al. 
2014, Furtado et al. 2019), including microplastics (Jovanović 2017, Cappello et al. 2021). DEB 
theory was proved efficient in ecotoxicology, at the individual or population scale (Martin et al. 
2013), to describe the sublethal effects of toxicants (Muller et al. 2010, Sherborne and Galic 2020), 
to model the uptake, elimination and (metabolic) transformation of the toxic compounds (Kooijman 
et al. 2009, Pousse et al. 2019) or using the principle of Synthesizing Units to represent the impact 
of inhibitors and damaging agents on enzyme kinetics (Muller et al. 2019). Only some experiments 
and specific information regarding the pollution and its effect on metabolic processes would be 
necessary before such modelling analyses can be used for SO studies. Some works have already 
been led in the Arctic to assess the impact of petroleum substances on copepods (Klok et al. 
2012a), fish (Klok et al. 2014b) or food chains (Klok et al. 2012b). 
To put it in a nutshell, the development of DEB modelling can be really an interesting perspective 
for future SO modelling works. 
 
Correlative models: SDMs 
I found SDMs easy to implement and general principles easy to understand. Some tutorials are 
available to quickly learn how to generate these models (Naimi and Araújo 2016, Hijmans and Elith 
2017, Oliver 2018, Barbosa 2020). To build a SDM, the compilation of occurrence data is generally 
the most time-consuming part as it often requires to implement databases (Guillaumot et al. 2016, 
Fabri-Ruiz et al. 2017a, Moreau et al. 2018), to check for data georeferencing and taxonomic 
accuracy, or to delete duplicates generated during the automatisation of online and free-access 
catalogs (Moreau et al. 2018). Similarly, to compile the set of environmental descriptors, it is often 
necessary to get familiarized with Geographic Information Systems (GIS) and homogeneize and 
stack the ensemble of raster layers that will be necessary to generate the SDM. The choice of 
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environmental descriptors also requires some ecological knowledge of the studied species, and 
consequently to go through the literature (Guillaumot et al. 2018a - Appendix). Some statistical 
analyses should also be performed to study potential correlations between these descriptors, in 
order to limit model complexity (Guillaumot et al. 2020b - Chapter 2) and resulting biases in model 
predictions (Harisena et al. 2021). Several syntheses were published on the subject, describing the 
different steps of dataset preparation (Elith et al. 2006, Peterson et al. 2011, Dormann et al. 
2012b), including my recent review focussed on SO case studies (Guillaumot et al. in press - 
Chapter 2). 
However, despite the fact that SDM principles are easy to understand, the choice of the algorithm 
may generate additional complexity to analyse the link between occurrence records and the 
environment (Olden et al. 2008, Elith and Leathwick 2009). A good trade-off must be found 
between generalist algorithms that are insufficient to describe the relationship between the 
environment and species occurrences, and complex ones that overfit based on training data and 
cannot efficiently transfer in space or time (Syfert et al. 2013, Merow et al. 2014). For SO studies, 
BRT (Boosted Regression Trees, Elith et al. 2008) and Random Forests (RF, Breiman 2001) were 
compared to other algorithms and were proved performant to deal with missing environmental data 
and presence-only records. They can also easily integrate supplementary modules to correct for 
spatial aggregation for example (Guillaumot et al. 2018a - Appendix, Fabri-Ruiz et al. 2019). 
However these two machine learning algorithms are greedy in calculation time and generally 
require the use of a public cluster to be launched. They also may overfit to datasets, leading to 
limited transferability performances (Heikkinen et al. 2012, Wenger and Olden 2012, Crimmins et 
al. 2013). Interpretation should therefore be always done with caution.  
 
My PhD results suggest that modellers should consider with caution SDMs when occurrence 
datasets are not complete enough to correctly cover the species full ecological range. This is 
notably the case for SDMs performed at the scale of the SO, but it could also be the case at a 
regional scale (see section 1). Results should also be treated with care when models extrapolate 
under future climate scenarios or to study the potential of alien species to invade new areas (see 
section 2). Apart from these particular applications, SDMs can prove really useful to interpolate 
species distribution and thus are interesting to fill knowledge gaps on SO species biogeography 
and ecology. I developed many corrections in a synthesis paper (Guillaumot et al. in press - 
Chapter 2) and the SDMPlay R package (Guillaumot et al. 2021 – Thesis material) can help users 
implement models for SO studies. I also recommend modellers, whenever possible, to provide 
maps that represent model uncertainties along with model predictions (Rocchini et al. 2011, 
Guillaumot et al. 2020c - Chapter 2) in order to give realistic estimates of confidence intervals 
around model predictions (Beale and Lennon 2012) and ensure accurate interpretations (Beale 
and Lennon 2012, Addison et al. 2013, Guisan et al. 2013). 
 
Finally, complementing SDMs with additional physiological information was proved powerful to 
improve the description of the species realised niche (Guillaumot et al. submitted, López-
Farrán/Guillaumot et al. in press - Chapter 3). This could also be done with the addition of 
information on biotic interactions (Araújo and Luoto 2007, Heikkinen et al. 2007, Anderson 2013, 
Dormann et al. 2018), one key feature in the BAM diagram model (Soberón 2007, Peterson et al. 
2011, Sillero 2011, Saupe et al. 2012). Integration of biotic data can be done by restricting the 
predicted distribution of a given species by the occurrence of another one (Schweiger et al. 2012), 
or by using occurrence (or abundance) data of other species as predictors within the abiotic 
descriptor dataset (Leathwick and Austin 2001, Leathwick 2002, Meier et al. 2010, Pellissier et al. 
2010, Bebber and Gurr 2019). This could constitute a strong complement in understanding species 
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distribution and community structure (Hellmann et al. 2012, Wisz et al. 2013, Alexandridis et al. 
2017). However, this targets much more complex modelling approaches. Ecological networks vary 
along environmental gradients (Pellissier et al. 2017) and some species present strong feeding 
plasticity (Michel et al. 2016, 2019) which implies that a lot of observations must be performed at 
local scale to accurately characterise species interactions within communities. 
 
 
5. Concluding remarks 
 
Ecological modelling has considerably been used during the past two decades to study SO marine 
species. Modelling is a way to synthetise different information gathered by several scientific teams 
and during several campaigns. Model maps are handy to interpret, and thus help bridge between 
scientists and politicians during decision-making processes. Models are interesting to quickly 
identify knowledge gaps and set research priorities. They are attractive, as they can integrate 
different types of data and information and can help recycle left-behind historical data. They are 
helpful to simplify complex processes, therefore offering the possibility of making preliminary 
assumptions before further researches are conducted. Finally, within a few months of reading and 
training, anyone can now generate a model to predict species distribution or model an organism’s 
metabolism. Modelling is not only accessible to people having a mathematical background. The 
impressive collection of articles, R packages or tutorials that guide people to create a model, using 
open source available scripts. All these points can explain the growing popularity of the approach, 
as experienced in the community of Antarctic biologists. 
 
However, several issues should be stressed, as final conclusions to this PhD work. 
 
 (i) It is essential to anticipate the possibility of evaluating model’s predictive performance before 
creating it (Grimm and Berger 2016, Railsback and Grimm 2019). Model evaluation is indeed not 
always considered with enough importance in SO modelling applications. The evaluation method is 
often not adapted to the dataset (Guillaumot et al. 2019 - Chapter 2) or the model not evaluated at 
all (Griffiths et al. 2017).  
 
(ii) What is the point of generating future climate change simulations without accurate input data? 
IPCC scenarios are global average scenarios, most of them are not adapted to study species 
ecology (Cavanagh et al. 2017) and methodological difficulties prevent from incorporating climate 
scenario uncertainties into model predictions (Freer et al. 2018). Climate scenarios represent the 
environment with a coarse spatial resolution (100 km) and most environmental conditions are not 
available. Therefore, doubtful assumptions are usually made for future environmental conditions 
with no possibility to evaluate final model predictions. Therefore, I would suggest to consider 
ecological simulations based on future climate scenarios with a very critical eye. 
 
(iii) Results of my PhD suggest that we are not ready to generate distribution models at the scale of 
the entire SO, as the quality of environmental and occurrence datasets is not sufficient to precisely 
distinguish contrasts between species (Guillaumot et al. 2020b - Chapter 2). I would recommend to 
run models at the regional scale and when data are abundant enough to describe environmental 
conditions, and when the relationship between species and their environment (i.e. abiotic 
conditions, biotic interactions and dispersal abilities) has been the subject of former studies that 
provide a detailed overview of species ecological preferences and interactions. Providing 
uncertainty maps along with model results is also strongly encouraged. 
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The SO is not as poorly known as often stated (Griffiths 2010). A lot of oceanographic campaigns 
were undertaken and many datasets are available to modellers. The development of underwater 
imagery also considerably helps collecting new data. It is just a matter of time before the 
completeness and quality of datasets can be improved and more accurate models generated. 
Open-access databases, at the regional scale, could be really helpful for improving modelling 
studies. Such ideas are progressively being developed (J. Stark MEASO congress, April 2018; 
special issue  
https://www.mdpi.com/journal/diversity/special_issues/Ross_Sea_Marine). This would allow an 
efficient international collaborative sampling and would be also really interesting to support 
conservation decisions. To conclude, results of my PhD thesis will be, I hope, useful for future 
modelling works applied to SO species and for conservation purposes. I hope the provided 
guidelines will be helpful to adjust model predictions, improve their accuracy, relevance and 
facilitate the interpretation of model outputs. 
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Pyšek, P., Kühn, I., ... & Settele, J. (2009). Alien 
species in a warmer world: risks and opportunities. 
Trends in Ecology & Evolution, 24(12), 686-693. 

 
Waples, R.S. (2006). A bias correction for estimates 

of effective population size based on linkage 
disequilibrium at unlinked gene loci. Conservation 
Genetics, 7(2), 167. 

 
Waples, R.S. & Gaggiotti, O. (2006). What is a 

population? An empirical evaluation of some genetic 
methods for identifying the number of gene pools 
and their degree of connectivity. Molecular Ecology, 
15(6), 1419-1439. 

 
Waples, R.S. & Do, C.  (2008). LDNE: a program for 

estimating effective population size from data on 
linkage disequilibrium. Molecular Ecology 
Resources, 8(4), 753-756. 

487



 REFERENCES 
 

 

 
Ward, G., Hastie, T., Barry, S., Elith, J., & Leathwick, 

J.R. (2009). Presence‐only data and the EM 
algorithm. Biometrics, 65(2), 554-563. 

 
Warren, D.L. & Seifert, S.N. (2011). Ecological niche 

modeling in Maxent: the importance of model 
complexity and the performance of model selection 
criteria. Ecological Applications, 21(2), 335-342. 

 
Warren, D.L., Wright, A.N., Seifert, S.N. & Shaffer, 

H.B. (2014). Incorporating model complexity and 
spatial sampling bias into ecological niche models of 
climate change risks faced by 90 California 
vertebrate species of concern. Diversity and 
Distributions, 20(3), 334-343. 

 
Waters, J.M., King, T.M., Fraser, C.I. & Craw, D. 

(2018). Crossing the front: contrasting storm-forced 
dispersal dynamics revealed by biological, 
geological and genetic analysis of beach-cast kelp. 
Journal of the Royal Society Interface, 15(140), 
20180046. 

 
Watling, J.I., Brandt, L.A., Bucklin, D.N., Fujisaki, I., 

Mazzotti, F.J., Romañach, S.S. & Speroterra, C. 
(2015). Performance metrics and variance 
partitioning reveal sources of uncertainty in species 
distribution models. Ecological Modelling, 309, 48-
59. 

 
Watson, A.J., Ledwell, J.R., Messias, M.J., King, 

B.A., Mackay, N., Meredith, M.P., ... & Garabato, 
A.C. N. (2013). Rapid cross-density ocean mixing at 
mid-depths in the Drake Passage measured by 
tracer release. Nature, 501(7467), 408-411. 

 
Watts, M.E., Ball, I.R., Stewart, R.S., Klein, C.J., 

Wilson, K., Steinback, C., ... & Possingham, H. P. 
(2009). Marxan with Zones: Software for optimal 
conservation based land-and sea-use zoning. 
Environmental Modelling & Software, 24(12), 1513-
1521. 

 
Wei, J.H. (1988). Morphological and genetic variation 

in natural populations of Antarctic limpet Nacella 
concinna (Doctoral dissertation, University of Wales 
(UCNW, Bangor: Ocean Sciences)). 

 
Weihe, E. & Abele, D. (2008). Differences in the 

physiological response of inter-and subtidal 
Antarctic limpets Nacella concinna to aerial 
exposure. Aquatic Biology, 4(2), 155-166. 

 
Weinert, M., Mathis, M., Kröncke, I., Neumann, H., 

Pohlmann, T. & Reiss, H. (2016). Modelling climate 
change effects on benthos: Distributional shifts in 
the North Sea from 2001 to 2099. Estuarine, Coastal 
and Shelf Science, 175, 157-168. 

 
Weir, B.S. & Cockerham, C.C. (1984). Estimating F-

statistics for the analysis of population structure. 
Evolution, 1358-1370. 

 
Wenger, S.J. & Olden, J.D. (2012). Assessing 

transferability of ecological models: an 
underappreciated aspect of statistical validation. 
Methods in Ecology and Evolution, 3(2), 260-267. 

 
Wernberg, T., Smale, D.A., Tuya, F., Thomsen, M.S., 

Langlois, T.J., De Bettignies, T., ... & Rousseaux, 
C.S. (2013). An extreme climatic event alters marine 
ecosystem structure in a global biodiversity hotspot. 
Nature Climate Change, 3(1), 78. 

 
West, G.B., Woodruff, W.H. & Brown, J.H. (2002). 

Allometric scaling of metabolic rate from molecules 
and mitochondria to cells and mammals. 
Proceedings of the National Academy of Sciences, 
99(suppl 1), 2473-2478. 

 
Westermeyer, W.E. (2020). The politics of mineral 

resource development in Antarctica: alternative 
regimes for the future. Routledge. 

 
White, M.G. (1998). Development, dispersal and 

recruitment: a paradox for survival among Antarctic 
fish. In Fishes of Antarctica (pp. 53-62). Springer, 
Milano. 

 
Whitehouse, M.J., Meredith, M.P., Rothery, P., 

Atkinson, A., Ward, P. & Korb, R.E. (2008). Rapid 
warming of the ocean around South Georgia, 
Southern Ocean, during the 20th century: forcings, 
characteristics and implications for lower trophic 
levels. Deep Sea Research Part I: Oceanographic 
Research Papers, 55(10), 1218-1228. 

 
White-Newsome, J.L., Brines, S.J., Brown, D.G., 

Dvonch, J.T., Gronlund, C.J., Zhang, K., ... & O’Neill, 
M.S. (2013). Validating satellite-derived land surface 
temperature with in situ measurements: A public 
health perspective. Environmental Health 
Perspectives, 121(8), 925-931. 

 
Whittaker, R.J., Willis, K.J. & Field, R. (2001). Scale 

and species richness: towards a general, 
hierarchical theory of species diversity. Journal of 
Biogeography, 28(4), 453-470. 

 
Whittingham, M.J., Stephens, P.A., Bradbury, R.B., 

& Freckleton, R.P. (2006). Why do we still use 
stepwise modelling in ecology and behaviour?. 
Journal of Animal Ecology, 75(5), 1182-1189. 

 
Wiencke, C., Amsler, C.D. & Clayton, M.N. (2014) 

Chapter 5.1 Macroalgae. In: Biogeographic Atlas of 
the Southern Ocean (eds De Broyer C, Koubbi P, 
Griffiths H, et al.), pp. 66–73. Scientific Committee 
on Antarctic Research, Cambridge. 

 
Wiens, J.A. (1989). Spatial scaling in ecology. 

Functional Ecology, 3(4), 385-397. 
 

488



 REFERENCES 
 

 

Wijsman, J.W. & Smaal, A.C. (2011). Growth of 
cockles (Cerastoderma edule) in the Oosterschelde 
described by a Dynamic Energy Budget model. 
Journal of Sea Research, 66(4), 372-380. 

 
Wilensky, U. (1999). NetLogo. Center for Connected 

Learning and Computer-Based Modeling, 
Northwestern University, Evanston, IL. 
http://ccl.northwestern.edu/netlogo/ 

 
Wiley, E.O., McNyset, K.M., Peterson, A.T., Robins, 

C.R. & Stewart, A.M. (2003). Niche modeling 
perspective on geographic range predictions in the 
marine environment using a machine-learning 
algorithm. 

 
Williams, J.W. & Jackson, S.T. (2007). Novel 

climates, no-analog communities, and ecological 
surprises. Frontiers in Ecology and the Environment, 
5(9), 475-482. 

 
Williams, J.W., Jackson, S.T. & Kutzbach, J.E. 

(2007). Projected distributions of novel and 
disappearing climates by 2100 AD. Proceedings of 
the National Academy of Sciences, 104(14), 5738-
5742. 

 
Williams, J.N., Seo, C., Thorne, J., Nelson, J.K., 

Erwin, S., O’Brien, J.M. & Schwartz, M.W. (2009). 
Using species distribution models to predict new 
occurrences for rare plants. Diversity and 
Distributions, 15(4), 565-576. 

 
Wilson, K.A., Westphal, M.I., Possingham, H.P., & 

Elith, J. (2005). Sensitivity of conservation planning 
to different approaches to using predicted species 
distribution data. Biological Conservation, 122(1), 
99-112. 

 
Winter, D.J. (2012). MMOD: a R library for the 

calculation of population differentiation statistics. 
Molecular Ecology Resources, 12(6), 1158-1160. 

 
Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., 

Graham, C.H., Guisan, A. & NCEAS Predicting 
Species Distributions Working Group. (2008). 
Effects of sample size on the performance of 
species distribution models. Diversity and 
Distributions, 14(5), 763-773. 

 
Wisz, M.S. & Guisan, A. (2009). Do pseudo-absence 

selection strategies influence species distribution 
models and their predictions? An information-
theoretic approach based on simulated data. BMC 
Ecology, 9(1), 8. 

 
Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., 

Lenoir, J., Damgaard, C.F., ... & Heikkinen, R.K. 
(2013). The role of biotic interactions in shaping 
distributions and realised assemblages of species: 
implications for species distribution modelling. 
Biological Reviews, 88(1), 15-30. 

 

Wittmann, M.E., Barnes, M.A., Jerde, C.L., Jones, 
L.A., & Lodge, D.M. (2016). Confronting species 
distribution model predictions with species functional 
traits. Ecology and Evolution, 6(4), 873-879. 

 
WOCE (2013). 
https://www.nodc.noaa.gov/OC5/woa13/woa13data.htm

l 
 
Wolcott, T.G. (1973). Physiological ecology and 

intertidal zonation in limpets (Acmaea): a critical look 
at" limiting factors". The Biological Bulletin, 145(2), 
389-422. 

 
Wood, S., Paris, C.B., Ridgwell, A. & Hendy, E.J. 

(2013). Modelling dispersal and connectivity of 
broadcast spawning corals at the global scale. 
Global Ecology and Biogeography, 23(1), 1-11. 

 
Woodin, S.A., Hilbish, T.J., Helmuth, B., Jones, S.J. 

& Wethey, D.S. (2013). Climate change, species 
distribution models, and physiological performance 
metrics: predicting when biogeographic models are 
likely to fail. Ecology and Evolution, 3(10), 3334-
3346. 

 
WoRMS Editorial Board (2016) World Register of 

Marine Species. http://www.marinespecies.org  
 
Wu, J. (1999). Hierarchy and scaling: extrapolating 

information along a scaling ladder. Canadian 
Journal of Remote Sensing, 25(4), 367-380. 

 
Wu, J. & David, J.L. (2002). A spatially explicit 

hierarchical approach to modeling complex 
ecological systems: theory and applications. 
Ecological Modelling, 153(1-2), 7-26. 

 
Wüest, R.O., Zimmermann, N.E., Zurell, D., 

Alexander, J.M., Fritz, S.A., Hof, C., ... & Karger, 
D.N. (2020). Macroecology in the age of Big Data–
Where to go from here? Journal of Biogeography, 
47(1), 1-12. 

 
Wunsch, C. (2002). What is the thermohaline 

circulation? Science, 298(5596), 1179-1181. 
 

X 
 
Xavier, J.C., Raymond, B., Jones, D.C. & Griffiths, H. 

(2015). Biogeography of Cephalopods in the 
Southern Ocean using habitat suitability prediction 
models. Ecosystems, 19, 220–247.  

 
Xavier, J.C., Brandt, A., Ropert-Coudert, Y., Badhe, 

R., Gutt, J., Havermans, C. ... & Kennicutt, M.C. 
(2016). Future challenges in Southern Ocean 
ecology research. Frontiers in Marine Science, 3, 
94.  
 

Xiao, N. (2017). ggsci: scientific journal and sci-fi 
themed color palettes for “ggplot2”. R package 

489

http://ccl.northwestern.edu/netlogo/
http://www.marinespecies.org/


 REFERENCES 
 

 

version 2.8. https://CRAN.R-
project.org/package=ggsci 

 
Xuereb, A., Benestan, L., Normandeau, É., Daigle, 

R.M., Curtis, J.M., Bernatchez, L. & Fortin, M.J. 
(2018). Asymmetric oceanographic processes 
mediate connectivity and population genetic 
structure, as revealed by RAD seq, in a highly 
dispersive marine invertebrate (Parastichopus 
californicus). Molecular Ecology, 27(10), 2347-2364. 

 

Y 
 

Yackulic, C.B., Chandler, R., Zipkin, E.F., Royle, J.A., 
Nichols, J.D., Campbell Grant, E.H. & Veran, S. 
(2013). Presence-only modelling using MAXENT: 
when can we trust the inferences? Methods in 
Ecology and Evolution, 4(3), 236-243. 

 
Yates, K.L., Bouchet, P.J., Caley, M.J., Mengersen, 

K., Randin, C.F., Parnell, S., ... & Dormann, C.F. 
(2018). Outstanding challenges in the transferability 
of ecological models. Trends in Ecology & Evolution, 
33(10), 790-802. 

 
Young, J.S., Peck, L. S., & Matheson, T. (2006). The 

effects of temperature on walking and righting in 
temperate and Antarctic crustaceans. Polar Biology, 
29(11), 978-987. 

 
Young, E.F., Rock, J., Meredith, M.P., Belchier, M., 

Murphy, E.J. & Carvalho, G.R. (2012). Physical and 
behavioural influences on larval fish retention: 
contrasting patterns in two Antarctic fishes. Marine 
Ecology Progress Series, 465, 201-215. 

 
Young, E.F.,Thorpe, S.E., Banglawala, N. & Murphy 

E.J. (2014), Variability in transport pathways on and 
around the South Georgia shelf, Southern Ocean: 
Implications for recruitment and retention, Journal of 
Geophysical Research Oceans, 119, 241–252,  

 
Young, E.F., Belchier, M., Hauser, L., Horsburgh, 

G.J., Meredith, M.P., Murphy, E.J., ... & Carvalho, 
G.R. (2015). Oceanography and life history predict 
contrasting genetic population structure in two 
Antarctic fish species. Evolutionary Applications, 
8(5), 486-509. 

 
Young, E.F., Tysklind, N., Meredith, M.P., de Bruyn, 

M., Belchier, M., Murphy, E.J. & Carvalho, G.R. 
(2018). Stepping stones to isolation: Impacts of a 
changing climate on the connectivity of fragmented 
fish populations. Evolutionary Applications, 11(6), 
978-994. 
 

 
Z 

 

Zachos, J.C., Dickens, G.R. & Zeebe, R.E. (2008). 
An early Cenozoic perspective on greenhouse 
warming and carbon-cycle dynamics. Nature, 
451(7176), 279-283. 

 
Zacharias, M.A., Gerber, L.R. & Hyrenbach, K.D. 

(2006). Review of the Southern Ocean Sanctuary: 
marine protected areas in the context of the 
International Whaling Commission Sanctuary 
Programme. Journal of Cetacean Research and 
Management, 8(1), 1-12. 

 
Zambianchi, E., Trani, M. & Falco, P. (2017). 

Lagrangian transport of marine litter in the 
Mediterranean Sea. Frontiers in Environmental 
Science, 5, 5. 

 
Zaniewski, A.E., Lehmann, A. & Overton, J.M. 

(2002). Predicting species spatial distributions using 
presence-only data: a case study of native New 
Zealand ferns. Ecological Modelling, 157(2-3), 261-
280. 

 
Zenteno, L., Cárdenas, L., Valdivia, N., Gómez, I., 

Höfer, J., Garrido, I. & Pardo, L.M. (2019). 
Unraveling the multiple bottom-up supplies of an 
Antarctic nearshore benthic community. Progress in 
Oceanography, 174, 55-63. 

 
Zhang, X. & Mahadevan, S. (2019). Ensemble 

machine learning models for aviation incident risk 
prediction. Decision Support Systems, 116, 48-63. 

 
Zhao, K., Wulder, M.A., Hu, T., Bright, R., Wu, Q., 

Qin, H., ... & Brown, M. (2019). Detecting change-
point, trend, and seasonality in satellite time series 
data to track abrupt changes and nonlinear 
dynamics: A Bayesian ensemble algorithm. Remote 
Sensing of Environment, 232, 111181. 

 
Zhou, Z.H. (2012). Ensemble methods: foundations 

and algorithms. Chapman and Hall/CRC. 
 
Zhu, G.P. & Peterson, A.T. (2017). Do consensus 

models outperform individual models? 
Transferability evaluations of diverse modeling 
approaches for an invasive moth. Biological 
Invasions, 19(9), 2519-2532. 

 
Zuckerberg, B., Fink, D., La Sorte, F.A., Hochachka, 

W.M. & Kelling, S. (2016). Novel seasonal land 
cover associations for eastern North American forest 
birds identified through dynamic species distribution 
modelling. Diversity and Distributions, 22(6), 717-
730. 

 
Zurell, D., Jeltsch, F., Dormann, C.F. & Schröder, B. 

(2009). Static species distribution models in 
dynamically changing systems: how good can 
predictions really be? Ecography, 32(5), 733-744. 

 
Zurell, D., Thuiller, W., Pagel, J., Cabral, J.S., 

Münkemüller, T., Gravel, D., ... & Zimmermann, N.E. 

490

https://cran.r-project.org/package=ggsci
https://cran.r-project.org/package=ggsci


 REFERENCES 
 

 

(2016). Benchmarking novel approaches for 
modelling species range dynamics. Global Change 
Biology, 22(8), 2651-2664. 

 
Zurell, D., Zimmermann, N.E., Gross, H., 

Baltensweiler, A., Sattler, T., & Wüest, R.O. (2020). 
Testing species assemblage predictions from 
stacked and joint species distribution models. 
Journal of Biogeography, 47(1), 101-113. 

 
 

491



 

 

492



 

 

493



 LIST OF FIGURES 
 

 

 INTRODUCTION 
Figure 0.1. Trade-off between model properties when designing a model.  
Figure 0.2. Simple illustration of diversity and complexity of marine benthic communities in the Southern 

Ocean. 
 

Figure 0.3. Illustration of the complexity of marine ecosystems, effects of coupled large-scale climate, 
local physical forcing and environmental chemical properties on biological processes. 

 

Figure 0.4. Theoretical scheme of an experimental design, that aims at isolating the most relevant key 
drivers to optimise the understanding of an ecological process. 

 

Figure 0.5. Analysis of a marine community, using a modelling approach. Schematic representation.  
Figure 0.6. Schematic representation of the equilibrium bias, that compromises the definition of 

occurrence occupied space according to sampling effort. 
 

Figure 0.7. Representation of the BAM diagram.  

Figure 0.8. Examples of different configurations of the BAM diagram.  

Figure 0.9. Conceptual scheme of the basic parameters and theoretical compartments of the DEB theory.  
Figure 0.10. Number of DEB models built and published in the Add-my-Pet (AmP) collection.  

Figure 0.11. General principle underlying the construction of a Species Distribution Model (SDM).  

Figure 0.12. Spilhaus projection representing the Southern Ocean compared to all other oceans.  
Figure 0.13. Main currents and marine fronts of the Southern Ocean system.  
Figure 0.14. Pictures of seafloor communities at Useful Island (Gerlache Strait, Western Antarctic 

Peninsula), 15 m depth, March 2018. © B121 Expedition. 
 

Figure 0.15. Mean ocean temperatures and overall glacier area changes, from 1945 to 2009 along the 
Western Antarctic Peninsula. From Cook et al. (2016). 

 

Figure 0.16. Political map of Antarctica.  
Figure 0.17. Proposed and adopted MPAs, management areas, and fisheries in the CCAMLR area.  

CHAPTER 1 Guillaumot et al. (2020a) – Nacella concinna DEB model –  
Figure 1.1. Nacella concinna in apical view and lateral view.  

Figure 1.2. Schematic representation of the standard DEB model, with energy fluxes (in J.d-1) that connect 
the four compartments. 

 

Figure 1.3. Comparison of model predictions (uni-variate data) and observations for Nacella concinna 
DEB model. 

 

Figure 1.4. Evolution of Mean Relative Error (MRE) values along the merging of the different parameters, 
for Nacella concinna DEB model. 

 

Figure S1.1. Upper panel, image of the intertidal Nacella concinna habitat at low water. Lower panel, 
representative image of the N. concinna habitat at 30m. 

 

Figure S1.2.A. Picken (1980)’s protocol to characterise ring growth through time. Dark rings correspond to 
winter growth and light rings to summer growth periods. 

 

Figure S1.2.B. Details of the ‘mesuroscope’ with the binocular loop connected to the computer, which 
automates the acquisition of the x,y,z measurements. Schematic representation of the 
procedure adopted for the measurements of the rings of Nacella concinna. 

 

Figure S1.4. Evolution of Mean Relative Error (MRE) values along the merging of the different parameters 
for Nacella concinna DEB model, for the five replicates. Trial 5 is presented in the main 
manuscript (Figure 1.4). 

 

 Arnould-Pétré et al. (2020) – Abatus cordatus DEB-IBM model – 
Figure 1.5. Location of the studied sites in the Kerguelen Islands, calibration site (Anse du Halage) and 

projection sites (Ile Haute and Port Couvreux). 
 

Figure 1.6. Specimens of Abatus cordatus. Aboral view of a specimen half buried in sand, and aboral view 
of a female showing the brood pouches with juveniles inside. © Féral J.P. 

 

Figure 1.7. Schematic representation of the DEB-IBM (Dynamic Energy Budget – Individual-Based 
Model). 
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Figure 1.8. Simulation of the variation of energy allocated to the reserve and the reproduction buffer 
compartments over one year. 

 

Figure 1.9. Modelled population structure and density under present-day environmental conditions: 
monthly values of juvenile and adult densities over 30 years (for 100 simulations). 

 

Figure 1.10. Model predictions under IPCC scenarios RCP 2.6 and RCP 8.5 (for 100 simulations).  

Figure 1.11. Mortality simulations (in individuals/m2) per month and year under present-day and future 
predictions of the two IPCC scenarios (for 100 model simulations). 

 

Figure S1.5.A. Onsite temperature records (monthly mean values) at the three sites used in the model: Ile 
Longue, Ile Haute, Port Couvreux (Kerguelen Islands). 

 

Figure S1.5.B. f values (food resources) used as input in the model, for Ile Longue, Ile Haute, Port Couvreux 
(Kerguelen Islands). 

 

Figure S1.6. Uni-variate observations (red dots) used to calibrate the DEB model of Abatus cordatus and 
DEB model predictions. 

 

Figure S1.7. Comparisons of individual metabolic performances between models calibrated with a monthly 
or daily timestep. 

 

Figure S1.8.A. Temperatures for the different future projections based on the 2012-2018 dataset: present, 
future RCP 2.6 (+1.1°C warming), future RCP 8.5 (+1.7°C warming).  

 

Figure S1.8.B. Decision tree explaining the three types of sensitivity (implemented for Abatus cordatus) 
available in the model for the population temperature mortality rates. 

 

Figure S1.8.C. f values (food resources availability) estimated over one year for the different future 
projections: present, future RCP 2.6 (-10% availability), future RCP 8.5 (-20% availability). 

 

Figure S1.9. DEB-IBM model sensitivity to the initial population number, inter-species variation coefficient, 
juvenile and adult background mortalities, egg number produced per female during a 
reproduction event, and the egg survival rate. Variations of -30%, -20%, -10%, +10%, +20% 
and +30% of initial parameter values and evaluation of their influence on model predictions. 

 

Figure S1.10. Simulation of the monthly variation of structural length (∂L) over one year for present and 
future scenarios.  

 

Figure S1.11. Modelled population structure and density under current environmental conditions calibrated at 
Anse du Halage and projected for two sites: Ile Haute and Port Couvreux. 

 

CHAPTER 2 Guillaumot et al. (2021) – Review SDM – 

Figure 2.1. Flow chart of the SDM construction process. Steps 1 to 4 concern data collection, and 
treatment. Steps 5 to 7 integrate procedures for model implementation and evaluation. 

 

Figure 2.2. Cumulative number of Antarctic species described over time, according to data available in the 
Register of Antarctic Marine species (until March 2010). From De Broyer and Danis (2011). 

 

Figure 2.3. Distribution of benthos sampling sites in the Southern Ocean (< 45°S).  

Figure 2.4. Compared Area Under the Curve (AUC) performances of SDMs generated with different 
algorithms. 

 

Figure 2.5. Comparison of predicted distribution probabilities (between 0 and 1) of the sea urchin 
Ctenocidaris nutrix on the Kerguelen Plateau: without compensating for sampling bias or with 
a kernel density estimator (KDE) correction. 

 

Figure 2.6. Extrapolation map of the SDM generated for the sea star Acodontaster hodgsoni, with all 
presence-only records available. 

 

Figure 2.7. Extrapolation map of the SDM generated for the sea star Acodontaster hodgsoni indicating 
environmental descriptors responsible for extrapolation. 

 

Figure 2.8. Different cross-validation procedures based on the study of the sea star Odontaster validus. 
 
 

 

 Guillaumot et al. (2019) – SDM cross-validation procedures –  
Figure 2.9. Comparison of the different cross-validation procedures.  

Figure 2.10. Presence-only records of the sea star Odontaster validus in the Southern Ocean and values of 
the environmental range covered by the entire benthos sampling dataset 
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Figure 2.11. SDM predictions with a spatial cross-validation ‘2-fold CLOCK’ method.  
Figure S2.1.A. Values of the environment available and of the background sample environment randomly 

sampled on the environment limited at 1,500m depth. 
 

Figure S2.1.B. Comparison of the predictive deviance of models generated with different combination of 
parameters. Tc: tree complexity, lr: learning rate; bf: bag fraction. 

 

Figure S2.2. Map of the benthic Southern Ocean sampling sites updated, from the Atlas of the Southern 
Ocean (< 45°S)(Griffiths et al. 2014). 

 

 Guillaumot et al. (2020b) – SDM Choice of descriptors –   

Figure 2.12. Contribution of environmental descriptors to SDMs projected until 1,500 m or 4,000 m depth 
for the six species. 

 

Figure 2.13. Influence of the number of environmental descriptors on SDM performance. Boxplot of 100 
model replicate scores. Changes in biserial correlation (COR) values for the six species. 

 

Figure 2.14. PCA of environmental values from descriptors used in final species distribution models, and 
that are common between the six species. 

 

Figure 2.15. SDMs generated based on the final selection of environmental descriptors for the six studied 
species. 

 

Figure S2.5.A. Theoretical plot showing the determination of extreme events.  

Figure S2.5.B. Example an extreme event raster layer: average number of maximum chlorophyll-a 
concentrations. 

 

Figure S2.6. Cumulative occurrence collective curves through time and per species.  
Figure S2.7. Presence-only records available for the six studied species: Acodontaster hodgsoni (n=297), 

Bathybiaster loripes (n=585), Labidiaster annulatus (n=373), Glabraster antarctica (n=844), 
Odontaster validus (n=309), Psilaster charcoti (n=350). 

 

Figure S2.8. Comparison of model predictive deviance according to the number of trees used to build the 
models, for each species and for different parameter settings (tree complexity, tc; learning 
rate, lr; bag fraction, bf). 

 

Figure S2.9.A. Influence of the number of environmental predictors on SDM performance. Boxplot of 100 
model replicates scores. Change in Area Under the Curve (AUC) values for the six species. 

 

Figure S2.9.B. Influence of the number of environmental predictors on SDM performance. Boxplot of 100 
model replicates scores. Change in True Skill Statistics (TSS) values for the six species. 

 

Figure S2.9.C. Influence of the number of environmental predictors on SDM performance. Boxplot of 100 
model replicates scores. Change in the percentage of correctly classified test data (cross-
validation procedure)for the six species. 

 

Figure S2.12. Partial dependence plots. Scaled density distributions of the marginal effect of environmental 
descriptors used to generate final models and common to all species. 

 

 Guillaumot et al. (2020c) – SDM and extrapolation – 
 

Figure 2.16. Maps of extrapolation areas covering SDM predictions, generated with all presence-only 
records available for the studied species. 

 

Figure 2.17. Evolution of model performances with the increase of data (chronological addition of presence-
only records, by 5-year periods, from 1980 to 2016). 

 

Figure 2.18. Boxplot diagrams representing the decrease of proportions of extrapolation areas (in % of the 
total projection area) with addition of presence-only records used to generate model replicates. 

 

Figure S2.13. Distribution of presence-only records of the six sea star species studied in this work.  

Figure S2.15. ‘2-fold CLOCK’ method and ‘6-fold CLOCK’ method. For each model replicate, the geographic 
space is split into 2 and 6 areas respectively, and test and training presence and background 
data are selected in the defined areas. 

 

Figure S2.16. Illustrated principle of the Multivariate Environmental Similarity Surface approach.  
Figure S2.17.A Influence of the different environmental descriptors on models, for Analysis #0 and Analysis 

#1. Analysis #0: models were projected on the entire Southern Ocean area. Analysis #1: the 
projection area was limited in depth according to each species distribution range. 
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Figure S2.17.B Influence of the different environmental descriptors on extrapolation, for Analysis #0 and 
Analysis #1. Analysis #0: models were projected on the entire Southern Ocean area. Analysis 
#1: the projection area was limited in depth according to each species distribution range. 

 

CHAPTER 3 López-Farrán/Guillaumot et al. (2021) – SDM Halicarcinus planatus – 
Figure 3.1. Male and female specimens of Halicarcinus planatus (Fabricius, 1775) collected in the 

Magellan Strait. 
 

Figure 3.2. Presence and absence records of Halicarcinus planatus in the Southern Ocean used in the 
present study. 

 

Figure 3.3. Survival rates of adults of Halicarcinus planatus at different temperatures over 90 days.  
Figure 3.4. Survival rates of adults of Halicarcinus planatus at different salinities over 39 days.  
Figure 3.5. Survival rates of larvae of Halicarcinus planatus for 12 days at different temperatures.  
Figure 3.6. Partial dependence plots for the four environmental descriptors that contribute the most to the 

model. 
 

Figure 3.7. SDM predictions of presence probability (contained between 0 and 1) for Halicarcinus 
planatus, projected under current environmental conditions [2000-2014]. 

 

Figure 3.8. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, 
projected under environmental conditions IPCC RCP 2.6 climate scenario for 2050. 

 

Figure 3.9. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, 
projected under environmental conditions IPCC RCP 2.6 climate scenario for 2100. 

 

Figure 3.10. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, 
projected under environmental conditions IPCC RCP 8.5 climate scenario for 2050. 

 

Figure 3.11. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, 
projected under environmental conditions IPCC RCP 8.5 climate scenario for 2100. 

 

Figure S3.1. Schematic representation of the 6 containers (and their content) for the thermo-tolerance 
experiment on adult specimens. 

 

Figure S3.2. Chronology of occurrence through sampling and human observation.  
Figure S3.3.A. IPCC climate scenarios. Focus on the Western Antarctic Peninsula and southern South 

America. RCP 2.6 (mean values) 2050 or 2100. 
 

Figure S3.3.B. IPCC climate scenarios. Focus on Kerguelen Plateau and Heard Islands. RCP 2.6 (mean 
values) 2050 or 2100.  

 

Figure S3.3.C. IPCC climate scenarios. Focus on Western Antarctic Peninsula and South America. RCP 8.5 
(mean values) 2050 or 2100. 

 

Figure S3.3.D. IPCC climate scenarios. Focus on Kerguelen Plateau and Heard islands. RCP 8.5 (mean 
values) 2050 or 2100. 

 

Figure S3.4. Comparison between model predictive deviance using different combinations of parameters. 
Tc: tree complexity, lr: learning rate; bf: bag fraction. 

 

 Fabri-Ruiz et al. (2021) – SDM/DEB Sterechinus neumayeri – 
Figure 3.12. Sterechinus neumayeri occurrence data extracted from Fabri-Ruiz et al. (2017a).  
Figure 3.13. Conceptual representation of the standard Dynamic Energy Budget model.  
Figure 3.14. Spatial projection of the ENMc under present-day conditions in the Southern Ocean with the 

respective contributions of environmental descriptors to the model and the species response 
(distribution probability) to the main contributing predictors. 

 

Figure 3.15. Projections of the mechanistic ecological niche model (ENMm, DEB). Present and future 
environmental conditions. 

 

Figure 3.16. Projections of the correlative model under RCP 4.5 and RCP 8.5 scenarios [2050-2099].  

Figure 3.17. Projections of the DEB ENMm under future conditions: maximum size reached by individuals 
under IPCC scenarios RCP 4.5 and RCP 8.5. 

 

Figure 3.18. Projections of the DEB ENMm under future conditions: predicted suitable areas to the species 
reproduction under IPCC scenarios RCP 4.5 and RCP 8.5. 

 

Figure S3.5. Life cycle of Sterechinus neumayeri.  
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Figure S3.6. Reproduction and feeding functions represented over a theoritical life cycle according to DEB 
theory and correspondence with the life cycle of Sterechinus neumayeri. 

 

Figure S3.9. Observed values and projection, based on a type II feeding functional response f = X
X+XK

. The 
estimated value for the half-saturation parameter Xk is the food density at which feeding rate is 
half of its maximum value. 

 

Figure S3.10. DEB model fit and experimental values for univariate data.  
Figure S3.14. Current and future environmental layers (food and temperature) used to project DEB model 

outputs. 
 

Figure S3.15. Response curve of all predictors used in the correlative niche model approach.  
Figure S3.16. Presence probabilities for each geomorphological category in the ENMc.  

 Guillaumot et al. (submitted) – Integrated SDM/DEB Abatus cordatus –  

Figure 3.19. Picture of Abatus cordatus & Location of the Golfe du Morbihan in the east of the Kerguelen 
Islands. 

 

Figure 3.20. Environmental layers used to implement the models: bathymetry, temperature, food 
availability. For the two seasons. 

 

Figure 3.21. Conceptual scheme of the basic parameters and theoretical compartments of the DEB theory.  
Figure 3.22. Spatial projections of the DEB model in February and August.  
Figure 3.23. Spatial projections of the ‘simple SDM’ for February and August.  
Figure 3.24. Spatial projections of the ‘integrated SDM-DEB’ models for February and August.  
Figure 3.25. Spatial projections of the ‘integrated Bayesian’ models for February and August.  
Figure 3.26. Partial dependence plots, representing model predictions (y axis, probabilities between 0 and 

1) aligned with the environmental values (x axis). 
 

Figure S3.17. Overview of the images captured by Landsat 8 satellite for the selected dates 2017/02/09 and  
2017/08/20. 

 

Figure S3.18. Simulated growth rates by the DEB model for different levels of food availability (f values).  
Figure S3.19. Results of the spatial projection of the DEB model for February and August: evaluation of the 

available energy in the reserve compartment 𝑝𝐶̇ and of the energy required for somatic 
maintenance 𝑝𝑀̇. 

 

Figure S3.20.A Distribution probabilities predicted for integrated SDM-DEB models.  
Figure S3.20.B Extrapolation areas (MESS) associated with the descriptor responsible for the extrapolation, 

for the ‘integrated SDM-DEB’ approach. 
 

CHAPTER 4 Dulière/Guillaumot et al. (submitted) – Dispersal modelling ballast waters –   

Figure 4.1.  Locations of the six particle release zones for the 200 NM, 50 NM and 11 NM scenarios (NM= 
nautical miles). 

 

Figure 4.2.  Map of proposed marine protected areas in the Western Antarctic Peninsula region. Modified 
from SC-CAMLR-38/BG/03 report. 

 

Figure 4.3.  Location of Deception Island in the Western Antarctic Peninsula and representative male 
individual of the crab Halicarcinus planatus. 

 

Figure 4.4.  Model estimated dispersal patterns for the three release scenarios: 200 NM, 50 NM and 11 
NM. 

 

Figure 4.5.  Sums of the weighted numbers of particles reaching the proposed marine protected areas 
(MPAs) during the January-February-March season (austral summer, being the season with 
the largest number of ships entering the Southern Ocean) over the 9-year period (2008-2016) 
and for each release scenario (200 NM, 50 NM and 11 NM). 

 

Figure 4.6.  Age of particles (in days) reaching the proposed marine protected areas under the 200 NM 
scenario, 50 NM scenario and 11 NM scenario for the January-February-March season. 

 

Figure 4.7.  Model estimated dispersal patterns assuming the release scenarios: 200, 50 and 11 NM, for 
particles released from all release zones at the same time. Colors represent the frequency of 
occurrence among the nine years (2008-2016) with a maximal score of 9 for pixels that receive 
particles every year. 
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Figure 4.8.  Intra-  and interannual variations in the origin (release zone) of particles reaching the proposed 
marine protected areas according to the 200, 50 or 11 NM scenarios. 

 

Figure 4.9.  Ballast water release zones and their associated simulated risk (green: ‘no risk’; orange: 
‘moderate risk’; red: ‘high risk’) for particles to reach proposed marine protected areas. 

 

Figure 4.10.  Model estimated dispersal patterns, averaged for the nine-year period (2008-2016), for the 
January-February-March season (southern summer). Particle drift was simulated during two 
months. Zoom on Deception Island for the analysis of Halicarcinus planatus invasive risk. 

 

Figure S4.1. Main currents in the Southern Ocean region with a focus on the Western Antarctic Peninsula, 
and position of the Polar Front. 

 

Figure S4.2. Dispersal patterns according to the different scenarios of ballast water release (200 NM, 50 
NM, 11 NM) and contrasting seasons. 

 

Figure S4.3. Dispersal patterns and weighted number of particles according to the different scenarios of 
ballast water releas: 200 NM,  50 NM or 11 NM for January-February-March period (summer). 

 

 Christiansen et al. (in prep.) – Dispersal modelling Notothenia rossii –  

Figure 4.11. Species occurrence of Notothenia rossii in the Southern Ocean and localities used for 
individual-based hydrodynamic connectivity modelling. 

 

Figure 4.12. Predicted species occurrence probability for Notothenia rossii in the Atlantic and Indian sector 
of the Southern Ocean. 

 

Figure 4.13. Genomic diversity of Notothenia rossii in the Southern Ocean based on 7,501 SNP loci.  
Figure 4.14. Genomic differentiation of Notothenia rossii in the Southern Ocean based on 7,501 SNP loci.  
Figure 4.15. Simulated dispersal connectivity of Notothenia rossii throughout most of the Southern Ocean.  

Figure S4.4.A Number of loci and polymorphic loci shared by 80 % of samples from the Notothenia rossii 
GBS libraries across nine values for parameter M and n and two values for parameter m (2 or 
3). 

 

Figure S4.4.B Number of SNPs per locus shared by 80 % of samples from the Notothenia rossii GBS 
libraries across nine parameters of M and n under constant m = 2. 

 

Figure S4.4.C Number of SNPs per locus shared by 80 % of samples from the Notothenia rossii GBS 
libraries across nine parameters of M and n under constant m = 3. 

 

Figure S4.8.A Genomic diversity of Notothenia rossii in the Southern Ocean based on 3,503 SNP loci from 
reference-based variant calling. 

 

Figure S4.8.B Genomic differentiation of Notothenia rossii in the Southern Ocean based on 3,503 SNP loci 
from reference-based variant calling 

 

 DISCUSSION  

Figure D. Simple representation of species adaptation to local environmental conditions using a DEB 
model approach. X axis represents food conditions at each occurrence location, y axis 
temperature values. 
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INTRODUCTION 
Table 0.1. The 14 main DEB parameters and their units.  
Table 0.2. Example of observations used to calibrate the DEB model of the Antarctic sea star 
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CHAPTER 1 Guillaumot et al. (2020a) – Nacella concinna DEB model – 
Table 1.1. List of the main DEB parameters, definition and units.  
Table 1.2. Zero and uni-variate data used to build the intertidal and subtidal models of Nacella 

concinna. 
 

Table 1.3. Summary of goodness of fit, DEB model estimates of Nacella concinna at a reference 
temperature of Tref= 20°C. 

 

Table S1.1A. Size, dry mass, Ash Free Dry Mass and routine metabolic rate of Nacella concinna 
collected from the intertidal and 30m depth in January 2018. 

 

Table S1.1B. Size at first reproduction for both intertidal and subtidal (30m depth) Nacella concinna 
collected from Rothera Point, Adelaide Island. 

 

Table S1.3. Summary of goodness of fit, DEB parameter estimates at a reference temperature of Tref= 
20°C of the different merging trials for Nacella concinna DEB models. 

 

 Arnould-Pétré et al. (2020) – Abatus cordatus DEB-IBM model – 

Table 1.4. Parameters estimated for the DEB model developed for Abatus cordatus.  
Table 1.5. Zero and uni-variate data used for the estimation of the DEB model parameters.  

Table 1.6. List of parameters integrated in the individual and population models. Descriptions and 
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residuals (average and standard deviation of Moran’s I values computed for 100 model 
replicates). 

 

Table 2.2. Average Spatial Sorting Bias (SSB) and standard deviation values for the 100 model 
replicates. 

 

Table 2.3. Proportion of interpolated and extrapolated pixels according to the averaged SDM 
predictions. 

 

Table S2.2. List of IPT data (collected and published after 2014) added to the map of the Southern 
Ocean benthic sites. 

 

Table S2.3. List of environmental descriptors selected for the species distribution models available for 
[2005-2012]. 

 

 Guillaumot et al. (2020b) – SDM Choice of descriptors –  

Table 2.4. The six studied species and their respective ecological traits.  
Table 2.5. Average contribution of each environmental descriptor (based on 100 model replicates) 

generated for the six studied species using the total set of 58 descriptors. 
 

Table 2.6. Mann-Kendall statistic scores (τ) comparing statistics of models generated with 58, 52, 46, 
40, 34, 28, 22, 16, 10 and 4 environmental descriptors respectively. 

 

Table 2.7. Mann-Whitney Wilcoxon pairwise test (W) comparing statistics of models generated 
without collinear descriptors and models run with the total set of 58 environmental 
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Table S2.4. List of environmental descriptors selected for species distribution models.  
Table S2.10. List of  environmental descriptors selescted to generate final models, after removing 

distance descriptors, descriptors that always contribute less than 1% to species SDM and 
collinear descriptors (species-specific). 
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Table S2.11. Statistics (mean and standard deviation) measured for each species of models generated 
with the final set of environmental descriptors. AUC: Area Under the Curve, COR: biserial 
Pearson correlation, TSS: True Skill Statistics. 

 

 Guillaumot et al. (2020c) – SDM and extrapolation –  

Table 2.8. Sea star species investigated in the present study.  

Table 2.9. Modelling performances for each species.  
Table 2.10. Equations of simple linear regressions between the number of presence-only records X 

and the average proportion of extrapolation areas Y. The estimate of the number of 
presence-only records necessary to have a minimum "adequate" arbitrary proportion of 
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Table S2.14. List of species-specific environmental descriptors selected to generate final models after 
removal from the initial dataset of spatial distance descriptors, descriptors that always 
contribute less than 1% to SDMs and collinear descriptors. 

 

Table S2.18. Evolution of model performances with the increase of data (chronological addition of 
presence-only records, by 5-year periods, from 1980 to 2016). 

 

Table S2.19. Evolution of model performances with a random increase of data number (10 to 100% of 
the available presence datasets, randomly sampled). 

 

CHAPTER 3 López-Farrán/Guillaumot et al. (2021) – SDM Halicarcinus planatus –  
Table 3.1. Environmental descriptors used for modelling and sources.  

Table 3.2. Average contribution values and standard deviation (SD) of the 16 environmental 
descriptors to model predictions. 

 

 Fabri-Ruiz et al. (2021) – SDM/DEB Sterechinus neumayeri – 
Table 3.3. DEB parameter values estimated by the covariation method.  

Table S3.7. Environmental descriptors used to build ENMc models for the current period.  

Table S3.8. Environmental descriptors used to build the ENMc models for future IPCC scenarios (RCP 
4.5 and RCP 8.5). 

 

Table S3.11. Experimental and predicted DEB modeled values for zero- and univariate data.  
Table S3.13. Parameter estimate of the DEB model and marginal confidence intervals obtained with the 

profile method. 
 

 Guillaumot et al. (submitted) – Integrated SDM/DEB Abatus cordatus – 
 

Table 3.4. Matrices of priors used to calibrate ‘integrated Bayesian’ models for February and August, 
with the equation y=b0 + b1*depth + b2*f + b3*temperature + b4*temperature2 + b5*f2. 

 

Table 3.5. Comparison of model performances (percentage of presence data correctly classified and 
Area Under the Curve, AUC, metric) for the two seasons. 

 

Table S3.17.A Details of SNAP parameterization for chlorophyll-a measurement, processing parameters.  

Table S3.17.B Comparison between daily in situ temperatures (°C) recorded by the PROTEKER program 
at defined stations within the Golfe du Morbihan with satellite-derived sea surface 
temperatures from the MUR dataset. 

 

CHAPTER 4 Christiansen et al. (in prep.) – Dispersal modelling Notothenia rossii –   

Table 4.1. Sampling details (location, location code, latitude (Lat) and longitude (Lon), sample size 
(N) and year) and genetic diversity of Notothenia rossii from the Southern Ocean. 

 

Table 4.2. Model statistics describing the outcome of species distribution modelling to predict 
occurrence probability of Notothenia rossii in the Atlantic and Indian sectors of the 
Southern Ocean. 

 

Table 4.3. Pairwise genetic differentiation of Notothenia rossii per sampling locality based on 7,501 
SNP genotypes derived from mapping against a de novo assembly. 

 

Table 4.4. Pairwise genetic differentiation of Notothenia rossii per sampling locality based on 3,503 
SNP genotypes derived from mapping against the reference genome of N. coriiceps. 
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Table 4.5. Effective population size (Ne) of Notothenia rossii from various locations in the Southern 
Ocean. Estimates were calculated using the linkage disequilibrium method for filtered 
genotypes from de novo and reference-based bioinformatics. 

 

Table S4.6.A Pairwise genetic differentiation of Notothenia rossii per sampling locality based on 7,501 
SNP genotypes derived from mapping against a de novo assembly. 

 

Table S4.6.B Pairwise genetic differentiation of Notothenia rossii per sampling locality based on 3,503 
SNP genotypes derived from mapping against the reference genome of N. coriiceps. 

 

Table S4.7.A BLAST results from 12 candidate SNPs from the de novo data set.  
Table S4.7.B BLAST results from 37 candidate SNPs from the reference data set.  
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THESIS MATERIAL	

In the matter of replicating results of this PhD, scripts used to generate the models relating 
to the different studies were annotated and shared:  
 
For Chapter 1 (DEB modelling), the Matlab codes for Nacella concinna DEB model 
(Guillaumot et al. 2020a) are available on the Add-my-Pet platform (https://www.bio.vu.nl/
thb/deb/deblab/add_my_pet/entries_web/Nacella_concinna/Nacella_concinna_res.html). 
For the NetLogo codes of the DEB-IBM of Abatus cordatus (Arnould-Pétré et al. 2020), a 
specific page was created on the Netlogo platform  
(http://modelingcommons.org/browse/one_model/6201). Input data and some guidelines 
are provided to help you implement the model. 
 
For Chapter 2 (SDM modelling), R codes corresponding to the four studies are available 
on my Github page (https://github.com/charleneguillaumot/THESIS). In addition, these 
codes were compiled into the SDMPlay R package (https://CRAN.R-project.org/
package=SDMPlay) as simplified functions. Have a specific look at the package vignettes: 
they were created purposely to apply these different functions and help beginners to 
generate their first SDM for Southern Ocean case studies. 
 
For Chapter 3 (Integrated approaches), R codes to generate SDM models for 
Halicarcinus planatus case study (López-Farrán / Guillaumot et al. in press) come from the 
SDMPlay codes. For Fabri-Ruiz et al. (2021) analysis, you need to directly contact Salomé 
Fabri-Ruiz (salome.fabriruiz@gmail.com). Finally for the last study (Guillaumot et al. 
submitted), codes related to the simple GLM models, integrated DEB-SDM and integrated 
Bayesian approaches are available on my GitHub page (https://github.com/
charleneguil laumot/THESIS). Don’t hesitate to contact me for any issue 
(charleneguillaumot21@gmail.com). 
 
Finally, Chapter 4 (dispersal models) mainly relies on Valérie Dulière’s codes 
(vduliere@naturalsciences.be). 
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Figure 1: Some environmental descriptors on the Kerguelen Plateau area
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Figure 2: Bathymet ry layer at the Southern Ocean extent
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Figure 3: Presence data of Ctenocidaris nutrix and sampled background records on the Kerguelen Plateau
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Figure 4: Rest raining the area to 1,500m depth

## depth 1.2
## seasurface_temperature_mean_2005_2012 5.6
## seasurface_temperature_amplitude_2005_2012 5.6
## seafloor_temperature_mean_2005_2012 32.0
## seafloor_temperature_amplitude_2005_2012 32.0
## seasurface_salinity_mean_2005_2012 5.6

A last calibrat ion step that you can perform before modelling is delineat ing the modelled area (Fig.4).
The delim.area funct ion can be used to rest rict in geography and/ or depth the environmental descriptor
layers. This step can play an important role to enhance modelling performances by limit ing the extent of
ext rapolat ion.

# restrict to 1500m depth
predictors2005_2012_1500m <- SDMPlay:::delim.area(predictors2005_2012, longmin=62, longmax=80,

latmin=-55, latmax=-45, interval=c(0,-1500))
# plot the new layer (Fig.4)
plot(subset(predictors2005_2012_1500m,1), col=bluepalette,legend.width=0.5, legend.shrink=0.4,

legend.args=list(text=’Depth (m)’, side=3, font=2, cex=0.8))
points(worldmap, type="l")

You can focus your background sampling on this rest rained environment (Fig.5). Run again theSDMtab code
with these changes. The funct ion will omit the N/ A pixels when select ing the random background data.

SDMtable_ctenocidaris_1500 <- SDMtab(xydata=ctenocidaris.nutrix.occ,
predictors=predictors2005_2012_1500m,
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Figure 5: Rest raining the area and the background sampling to 1,500m depth

unique.data=FALSE,
same=TRUE)

# Observe the changes (Fig.5)
background.occ_1500 <- subset(SDMtable_ctenocidaris_1500,SDMtable_ctenocidaris_1500$id== 0)[,c(2,3)]
plot(subset(predictors2005_2012_1500m,1), col=bluepalette, cex=0.8, legend.width=0.5,

legend.shrink=0.4,
legend.args=list(text=’Depth (m)’, side=3, font=2, cex=0.8))

points(worldmap, type="l")
points(ctenocidaris.nutrix.occ, pch= 20, col="black")
points(background.occ_1500, pch= 20, col="red")
legend("bottomleft", pch=20, col=c("black", "red"), legend=c("presence-only data",

"background data"), cex=0.6)

Perform species distribut ion models

Once you have built your SDMtab dataframe, you can easily perform models using the compute.brt or
compute.maxent funct ions.
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Figure 6: Project ion for [2005-2012], Ctenocidaris nut rix predicted dist ribut ion, BRT
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Figure 1: Model predict ions for Ctenocidaris nutrix, for [2005-2012], on the Kerguelen Plateau area, with
BRT

# Plot the map of your results (Fig. 1)
palettecolor <- colorRampPalette(c("deepskyblue", "darkseagreen","lightgreen","green",

"yellow","gold","orange", "red","firebrick"))(100)

plot(Cteno_model_2005_2012$raster.prediction,col=palettecolor, main="Projection for [2005-2012]",
cex.axis= 0.7,
legend.width=0.5, legend.shrink=0.25,
legend.args=list(text=’Distribution probability’, side=3, font=2, cex=0.8))

points(worldmap, type="l")

Contribut ion of the different environmental descriptors

The ‘$response’ part of the produced model variable also provides several informat ion that you can use to
study your model, among which the cont ribut ion of each environmental descriptor to the model (Fig. 2).

contributions <- Cteno_model_2005_2012$response$contributions
b <- barplot(contributions[,2], ylab="Contribution (%)")
text(b-0.1, par("usr")[3] - 0.025, srt = 45, adj = 1, labels=contributions[,1],cex=0.5,xpd=T)
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Figure5: Predicted dist ribut ion probabilit ies for Ctenocidarisnutrix, for [2005-2012], using BRT, represented
by suitable (red) or unsuitable (blue) areas.
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Figure 6: Plot created subsets of t raining and test data on top of the bathymetry layer
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# you can then plot your predictions and the test data subset on top of that (Fig.7)

palettecolor <- colorRampPalette(c("deepskyblue", "darkseagreen","lightgreen","green",
"yellow","gold","orange", "red","firebrick"))(100)

plot(Cteno_model_2005_2012$raster.prediction,col=palettecolor, main="Projection for [2005-2012]",
cex.axis= 0.7,
legend.width=0.5, legend.shrink=0.25,
legend.args=list(text=’Distribution probability’, side=3, font=2, cex=0.8))

points(worldmap, type="l")
points(test_data, pch=20, col="black")
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Figure 7: Similar model predict ions as for Figure 1, except that only your subset of presence data is used to
generate the model and test data (black dots) are presented on top of predict ions

# Measure the proportion of test data that correctly fall into "suitable areas"
# (suitability defined by the MaxSSS threshold)

values_test_pres <- extract(Cteno_model_2005_2012$raster.prediction,test_data)
maxSSS <- Cteno_model_2005_2012$eval.stats$maxSSS
100*length(which(values_test_pres>maxSSS))/(length(values_test_pres)

-length(which(is.na(values_test_pres))))

## [1] 66.66667
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# Compare maps (Fig. 1)
palettecolor <- colorRampPalette(c("deepskyblue", "darkseagreen","lightgreen","green",

"yellow","gold","orange", "red","firebrick"))(100)

par(mfrow=c(1,2))
plot(Model_all_data$raster.prediction,col=palettecolor, zlim=c(0,1),

main="Projection for all data",
cex.axis= 0.7,
legend.width=0.5, legend.shrink=0.5,
legend.args=list(text=’Distribution probability’, side=3, font=2))

points(worldmap, type="l")

plot(Model_data_60percent$raster.prediction,col=palettecolor, zlim=c(0,1),
main="Projection for 60% of data",
cex.axis= 0.7, legend=FALSE)

points(worldmap, type="l")
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Figure 1: Comparison of model predict ions for Ctenocidaris nut rix (2005-2012 environmental condit ions),
using all presence data available (left ) or a subset (60% of data, right ).

We can see that model predict ions are different when using a different number of presence records to generate
the model (Fig. 1). These shifts are expected to be even more pronounced if the presence-only records would
not be as aggregated in a same area as they are in this example.

Now, let ’s generate a second analysis where georeferencing errors are int roduced in the dataset (15% of the
total presence records are modified, i.e. 19 presence records). Model outputs are compared (Fig. 2). The
differents steps are similar to the previous analysis (and skipped from screen).
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Figure 2: Comparison of model predict ions for Ctenocidaris nut rix (2005-2012 environmental condit ions),
using the original dataset (left ) or a dataset with 15% georeferencing errors (right )
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Figure 3: Comparison of model predict ions for Ctenocidaris nut rix (2005-2012 environmental condit ions),
using 125 or 500 background records to calibrate the model. Contrasts between model predict ions are clearly
important .
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#extent (latitude/longitude) of the projection area

extent(KDE_layer) <- extent(predictors2005_2012)
KDE_layer <- mask(KDE_layer, subset(predictors2005_2012,1)) # mask the KDE layer by

# NA values (continental areas)
# Plot the KDE layer (Fig.4)
plot(KDE_layer)
points(all_data, pch=20)
points(worldmap, type="l")
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Figure 4: KDE layer

# Create your matrice and generate your model
library(SDMPlay)
library(raster)
library(dismo)

SDMtable_KDE<- SDMPlay:::SDMtab(xydata=all_data, predictors=predictors2005_2012,
unique.data=FALSE,same=TRUE, KDE=KDE_layer)

background_detail_KDE <- subset(SDMtable_KDE, SDMtable_KDE$id==0)[,c(2,3)]
background_detail <- subset(SDMtable_all_data,SDMtable_all_data$id==0)[,c(2,3)]

Model_KDE <- SDMPlay:::compute.brt(x=SDMtable_KDE,
proj.predictors=predictors2005_2012,
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tc = 2, lr = 0.001, bf = 0.75, n.trees = 500)

# Compare background records samples (Fig. 5)
bluepalette<-colorRampPalette(c("blue4","blue","dodgerblue", "deepskyblue","lightskyblue"))(800)

par(mfrow=c(1,2))
plot(subset(predictors2005_2012,1), col=bluepalette, main="Background sampling without KDE",

cex.axis= 0.7)
points(worldmap, type="l")
points(background_detail, pch=20)

plot(subset(predictors2005_2012,1), col=bluepalette, main="Background sampling with KDE",
cex.axis= 0.7)

points(worldmap, type="l")
points(background_detail_KDE, pch=20)
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Figure 5: Comparison of background data samplings without (left ) or with (right ) KDE sampling.

# Compare SDM maps (Fig. 6)
par(mfrow=c(1,2))
plot(Model_all_data$raster.prediction,col=palettecolor, zlim=c(0,1), main="Model without KDE",

cex.axis= 0.7,
legend.width=0.5, legend.shrink=0.25,
legend.args=list(text=’Distribution probability’, side=3, font=2))

points(worldmap, type="l")
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plot(Model_KDE$raster.prediction,col=palettecolor, zlim=c(0,1), main="Model with KDE ",
cex.axis= 0.7, legend=FALSE)

points(worldmap, type="l")
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Figure 6: Comparison of model predict ions, with background data sampled without (left ) or with (right ) a
KDE scheme

I nfluence of the spat ial resolut ion of environmental descriptors on model outputs

When generat ing a SDM, one of the first step is to collect and select the list of environmental descriptors
that will be used for the modelling analysis (see Tutorial # 1). The choice of the grid-cell pixel resolut ion
has its importance for predict ion accuracy, relevance and interpretat ion. Let ’s compare two model outputs
if calibrated with environmental descriptors at 0.1° resolut ion or 10 t imes coarser.

# Create environmental predictors with a spatial resolution 10 times coarser (Fig. 7)
predictors2005_2012_10X <- raster::aggregate(predictors2005_2012, 10, na.rm=T)
plot(subset(predictors2005_2012_10X, c(1:3)))

# Create the SDMtab matrix
SDMtable_10X<- SDMPlay:::SDMtab(xydata=all_data,

predictors=predictors2005_2012_10X,
unique.data=FALSE,same=TRUE)

SDMtable_10X[is.nan(as.matrix(SDMtable_10X))]<- NA

# Launch the model
Model_10X <- SDMPlay:::compute.brt(x=SDMtable_10X,

proj.predictors=predictors2005_2012_10X,
tc = 2, lr = 0.001, bf = 0.75, n.trees = 500)
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# Compare SDM maps (Fig. 8)
par(mfrow=c(1,2))
plot(Model_all_data$raster.prediction, col=palettecolor, zlim=c(0,1),

main="Model at 0.1° resolution", cex.axis= 0.7,
legend.width=0.5, legend.shrink=0.25,
legend.args=list(text=’Distribution probability’, side=3, font=2))
points(worldmap, type="l")

plot(Model_10X$raster.prediction, col=palettecolor, zlim=c(0,1),
main="Model at 1° resolution", cex.axis= 0.7, legend=FALSE)

points(worldmap, type="l")
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Figure 8: Compare predict ions of Ctenocidaris nut rix with environmental descriptors at 0.1° resolut ion (left )
and 1° resolut ion (right )

I nfluence of the choice of BRT parameters on model outputs

In Elith et al.(2008), a tutorial is provided to explain the importance of each BRT parameter in model
construct ion (bag fract ion bg, learning rate lr, t ree complexity tc). A simple analysis can be run during
model calibrat ion in order to select the best combinat ion of BRT parameters to generate the most accurate
model.

library(dismo)
library(gbm)
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## 10 -36.45 -54.25
## 11 -37.45 -54.25
## 13 -45.55 -60.55
## 17 -57.95 -63.35

# Plot training and test data for the random cross-validation example
basemap <- SOmap(bathy_legend= T, graticules= T, fronts= T, border_width= 0.8)
plot(basemap)
SOplot(SDMtable_training[,2],SDMtable_training[,3], col="orange", pch=20)
SOplot(location_presence_test[,1],location_presence_test[,2], col="darkblue", pch=20)
SOleg(col=c("orange","darkblue"),position = "topright",

tlabs = c("training","test"), type = "discrete")
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#Run your model
Model_output <- SDMPlay:::compute.brt(x=SDMtable_training,

proj.predictors=predictors_stack_SO,
tc = 2, lr = 0.001, bf = 0.75, n.trees = 500)

# Plot the result
Model_output_map <- Model_output$raster.prediction
crs(Model_output_map)<-"+proj=longlat + ellps=WGS84"

yy <- SOproj(Model_output_map)
plot(basemap)
plot(yy, col=my.palette.oranges, add=T)
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Finally, you can evaluate your predict ions with your test data. Binarize your predict ions with the maxSSS
threshold (see Tutorial # 2/ Model outputs) and evaluate if your test data correct ly fall into suitable areas.

maxSSS <- Model_output$eval.stats$maxSSS

# extract predictions at test data location
extracted_values <- raster::extract(Model_output_map,location_presence_test)
head(extracted_values)

## [1] NA NA 0.9197329 0.9239488 NA NA

# compare values with the maxSSS value and evaluate the percentage of
# correctly classified presence test data
100* length (which(na.omit(extracted_values) >= maxSSS)) / length(na.omit(extracted_values))

## [1] 100

Generate a model with a spatial cross-validat ion

This t ime, you will make the t raining/ test part it ion with a spat ial condit ion. You can split your environment
into 2, 3, 4, 5. . . areas that will contain either t raining or test data. See Guillaumot et al. (2019) for further
details.
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Example of part it ion into 2 areas

# Tag presence and background datasets with a new variable
idP <- which(SDMtable$id == 1) # id of presence data

partition_function <- SDMPlay:::clock2(SDMtable[idP, c("longitude", "latitude")],
SDMtable [-idP, c("longitude", "latitude")])

# Generate a variable that will contain the spatial splitting information (factor format)
MyFold <- rep(NA, nrow(SDMtable)) # training/test data will be labelled 1 or 2

MyFold[idP] <- partition_function$occ.grp # splitting within the presence data
MyFold[-idP] <- partition_function$bg.coords.grp # splitting within the background data

# Plot training and test data
basemap <- SOmap(bathy_legend= T, graticules= T, fronts= T, border_width= 0.8)
plot(basemap)
SOplot(SDMtable[,c(2,3)], col=c("orange","darkblue")[as.factor(MyFold)], pch=20)
SOleg(col=c("orange","darkblue"), position = "topright",

tlabs = c("training","test"), type = "discrete")
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Not ice that if you run the code several t ime, the part it ion changes: it depends on random select ions. You
can therefore run the code several t ime in a loop to make several split t ing replicates (see one example below).

#Run your model with the splitting, fill the 2 new arguments (n.folds and fold.vector)
# that indicate to the function that you are using a spatial cross-validation procedure
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Model_output <- SDMPlay:::compute.brt(x=SDMtable,
proj.predictors=predictors_stack_SO,
tc = 2, lr = 0.001, bf = 0.75, n.trees = 500,
n.folds = 2,
fold.vector = MyFold)

# Plot the result
Model_output_map <- Model_output$raster.prediction
crs(Model_output_map)<-"+proj=longlat + ellps=WGS84"

yy <- SOproj(Model_output_map)
plot(basemap)
plot(yy, col=my.palette.oranges, add=T)
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# Calculate evaluation scores
maxSSS <- Model_output$eval.stats$maxSSS

# extract predictions at test data location
location_presence_test <- SDMtable[as.factor(MyFold)==1,c(2,3)]
extracted_values <- raster::extract(Model_output_map,location_presence_test)
#extracted_values

# compare the values with the maxSSS value and evaluate the percentage
# of correctly classified presence test data
100* length (which(na.omit(extracted_values) >= maxSSS)) / length(na.omit(extracted_values))

7

558



 

 

## [1] 14

You can choose and play with 3, 4 or 6 areas !

Several funct ions to do so are provided in this package (clock3, clock4, clock6). Make some trials. Your
results will be more robust with several replicates each t ime. Don’t forget to also apply all the advices given
in the previous tutorials (these were not applied here because of computering mat ters).

idP <- which(SDMtable$id == 1)
partition_function <- SDMPlay:::clock6(SDMtable[idP, c("longitude", "latitude")],

SDMtable [-idP, c("longitude", "latitude")])

MyFold <- rep(NA, nrow(SDMtable))
MyFold[idP] <- partition_function$occ.grp
MyFold[-idP] <- partition_function$bg.coords.grp

basemap <- SOmap( bathy_legend = T, graticules = T, fronts = T, border_width = 0.8)
plot(basemap)
SOplot(SDMtable[,c(2,3)],

col=c("orange","darkblue","darkblue","darkblue","darkblue","darkblue")[as.factor(MyFold)],
pch=20)

SOleg(col=c("orange","darkblue"), position = "topright",
tlabs = c("training","test"), type = "discrete")
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The model will consider at each t ime that among the 6 areas, one will be used for t raining and the other
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idP <- which(SDMtable_ctenocidaris$id == 1)
partition_function <- ENMeval::get.block(SDMtable_ctenocidaris[idP, c("longitude", "latitude")],

SDMtable_ctenocidaris [-idP, c("longitude", "latitude")])

MyFold <- rep(NA, nrow(SDMtable_ctenocidaris))
MyFold[idP] <- partition_function$occ.grp
MyFold[-idP] <- partition_function$bg.grp

plot(subset(predictors2005_2012,1), col=my.palette.blue)
points(SDMtable_ctenocidaris[,c("longitude", "latitude")],

col=c("orange","darkblue","blue","green")[as.factor(MyFold)],
pch=20)

points(worldmap, type="l")
legend("topright", legend=c("group1","group2","group3","group4"),

col=c("orange","darkblue","blue","green"),
pch=20, bg = "white")
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You can then overlap this layer to SDM predict ions when interpret ing your results or preparing your maps
for your publicat ions! See examples in Guillaumot et al. (2020).

# Calculate the proportion of the area where extrapolation occurs
MESS<- reclassify(MESS_layer,cbind(1,NA))

# compare the number of pixels = 0 to the number of total pixels of the area
length(which(!is.na(values(MESS))))*100 / length(which(!is.na(values(subset(predictors2005_2012,1)))))

## [1] 82.89967

A ssess which environmental descriptors are responsible for extrapolat ion at each pixel

# create an empty raster to initiate a Rasterstack
stack_amelio_MESS <- subset(predictors2005_2012,1); values(stack_amelio_MESS) <- NA

# Loop to calculate the value of dissimilarity of each environmental descriptor
# For each pixel, it will be determined if extrapolation occurs for each environmental descriptor

for (k in 1:nlayers(predictors2005_2012)){
presvals <- raster::extract(subset(predictors2005_2012, k),

ctenocidaris.nutrix.occ)
x_amelio <- dismo::mess(subset(predictors2005_2012, k),presvals)
stack_amelio_MESS <- stack(stack_amelio_MESS,x_amelio)

}
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# Delete the first layer of the stack that was empty (initialization)
stack_amelio_MESS <- dropLayer(stack_amelio_MESS,1)
names(stack_amelio_MESS) <- names(predictors2005_2012)

# Search for the environmental layer that is responsible for the lower MESS score
# (i.e. responsible for the extrapolation)

MESS_amelio <- which.min(stack_amelio_MESS)
MESS_amelio <- mask(MESS_amelio, MESS) # keep only areas where extrapolation occurs

# Plot the result

plot (MESS_amelio, col=c("lightblue","purple", "green"), legend=F)
points(worldmap, type="l")
legend("bottom", legend=names(predictors2005_2012),

col=c("lightblue","purple", "green"),
pch=20, bg = "white", cex=0.5)
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# Calculate the contribution of each environmental descriptor in extrapolation
table_mess_amelio <- matrix(data=NA, nrow = 1, ncol= nlayers(predictors2005_2012))
colnames(table_mess_amelio) <-c("depth","mean_temp","amplitude_temp")

for (k2 in 1:nlayers(predictors2005_2012)){
table_mess_amelio[1,k2] <- length(which(values(MESS_amelio)==k2))*100/
length(which(!is.na(values(subset(predictors2005_2012,1)))))

}

table_mess_amelio
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for environmental managers. M odeling results can
help interpolate species distributions, identify the
potential drivers of a species’ distribution and predict
the potential effects of environmental changes on
habitat suitability. However, modeling species distri-
butions over vast and remote marine areas like the
Southern Ocean using poor and heterogeneous data
sets remains challenging, and improvement of bio-
logical and environmental data sets is still required.

In the present study, we showed that reliable SDM s
can be produced in such areas as long as the amount
and quality of data allow testing and correcting for
the effects of biases. Using historical data requires
proper environmental descriptors for modeling the
effect of environmental changes on species distribu-
tions. Using time-averaged predictors over long time
periods can generate unr ealistic models.

M odel selection is also crucial at this stage and the
statistical performance of models is not the only crite-
ria to be considered. M odeling procedures must be
chosen with regards to the scientific issues that are
being addressed. Two procedures (BRT and RF) per-
formed best in our case study, but one of them (BRT)
proved to be more relevant because it dealt better
with transferability and data patchiness.

M odeling species distributions in data-poor areas
poses the practical problem of the minimum number
of presence-only data points required to run reliable
models, although this is not the only or most critical is-
sue. The number of occurrence records must be high
enough for testing model robustness and reliability. In
regions with limited access, sampling effort may be
heterogeneous, which influences model performance.
We showed that sampling bias can be corrected, but
the efficiency of the correction depends on species
niche width, with narrow-niche species models being
more troublesome to correct. In our study, A. cordatus
is a species limited to shallow coastal areas, which im-
plies a strong correlation be tween species occurrence
and sampling patterns. Restricting the model to a
more reduced area could allow for correction of
spatial bias and improve modeling performance.

There is also a crucial need for improving the qual-
ity of data sets (Kennicutt et al. 2014) and running
more accurate models to better tackle conservation
issues (Rodríguez et al. 2007, Guisan et al. 2013). For
the time being, producing uncertainty maps can be
an alternative (Rocchini et al. 2011, Tessarolo et al.
2014) and can provide additional information to envi-
ronmental managers and stakeholders (Addison et
al. 2013, Guisan et al. 2013).

M odel reliability and performance also depend on the
interaction between data set completeness and a spe-

cies’ intrinsic ecological properties. Hence, we showed
that the type and width of ecological niches are im-
portant to consider, with the distribution of narrow-
niche species being easier to model and less sensitive
to incomplete data sets (Guo et al. 2015, Ranc et al.
2017). However, narrow niches usually imply that spe-
cies are distributed over small areas, for which distribu -
tion models will be highly sensitive to extrapolations.

Our protocol showed that reliable SDM s can be
produced when enough data are available and data
set bias can be tested and corrected. In the present
study, only one SDM  (C. nutrix) could be corrected
for spatial and temporal heterogeneities to generate
reliable distribution predictions. However, our re -
sults stress the need to consider methodological
issues when modeling species distributions based on
poor and spatially biased data sets, and should con-
tribute to bringing new insights and enhancing mod-
eling per formance in future studies.
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Supplement 1: Evaluation and choice of the model  
 
In the present work, we ran ensemble models as a decision tool to select algorithms that are 
the most appropriate to the type of data to be analysed (Scales et al. 2016). The performance 
of 10 different algorithms was compared using the default parametrization settings proposed 
in the ‘biomod2’ R package (see Thuiller et al. (2016) for calibration details and Marmion et 
al. (2009) for modeling documentation). The compared algorithms include Artificial Neural 
Network (ANN), Boosted Regression Trees (BRT), Classification Tree Analysis (CTA), 
Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized 
Linear Models (GLM), Multivariate Adaptive Regression Splines (MARS), Maximum 
Entropy (MaxEnt), Random Forest (RF), and Surface Range Envelope (SRE).  
Two analyses were realised to compare the respective performance of the models. First, for 
each algorithm, AUC values of 100 model replicates were computed. Models were performed 
using all occurrence data available for the species Ctenocidaris nutrix and Sterechinus 
diadema only (Fig S1A, S1C) because there were not enough data to perform the analysis for 
Abatus cordatus and Brisaster antarcticus.  
In a second step, standard deviation of the 100 replicates were compared between models as 
the number of data was progressively increased between runs to represent the improvement of 
sampling effort through time (Fig S1B, S1D).  
Presence-only records associated to non-informative environmental data (NA/, no data 
values) were removed as required to perform the biomod2 analysis. Occurrence duplicates 
located on one single 0.1° grid cell were removed to reduce spatial weighting. 200 pseudo-
absences were selected to perform the analysis. 
 
Results show that Boosted Regression Trees (BRT) and Random Forest (RF) are the 
algorithms that perform best to model the distribution of C. nutrix and S. diadema (Fig. S1), 
with relatively stable (SD < 0.025) and high AUC values varying between [0.976,1] and 
[0.994,1] respectively of the analysis that studies data addition. Unexpectedly, algorithms 
previously shown to be well suited to presence-only data and small datasets (e.g. SRE or 
MaxEnt, see Araújo and Peterson 2012, Yackulic et al. 2013) did not perform well in our case 
study. Low performances of SRE have already been reported (Elith et al. 2006). The low 
number of pseudo-absences used to calibrate the model could explain the low performance of 
MaxEnt (Barbet-Massin et al. 2012, Phillips and Dudik 2008). 
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Figure S1: Compared performances of the different models for the species Ctenocidaris 
nutrix (A-B) and Sterechinus diadema (C-D). (A, C) Mean AUC values of model replicates 
for each algorithm. (B, D) Variation of mean AUC values and Standard Deviation (SD) of 
model replicates with data addition (n=22, n=51 or n=54 occurrences for C. nutrix and n=21, 
n= 23 and n=23 for S. diadema). For each analysis, 200 background data were randomly 
sampled in the studied area. Environmental descriptors correspond to [1955-2012]. 
 
The respective performance of BRT and RF (Fig. S1) was tested for spatial transferability 
following a non-random three-fold cross-validation procedure (Fig. S2, Wenger and Olden 
2012). Model transferability is defined as the “extrapolative accuracy” of a model that is, the 
model ability to extrapolate in space and time (Randin et al. 2006, Wenger and Olden 2012). 
Three models were computed simultaneously using three different subsets of occurrences for 
C. nutrix (Fig. S2) alternatively used as training and test data (50 replicates). The three 
averaged models were compared with each others using the Schoener’s D similarity index. D 
mean and standard deviation values were computed for all comparisons. All analyses were 
performed using time-averaged environmental parameters for the total period under study 
[1955-2012]. We considered that the most similar the distribution maps are the better the 
transferability performance is (Fig. S2).  
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Figure S2: (A) Map showing the distribution of presence-only data in the three subsets 
defined for the cross-validation procedure. (B) Non-random three-fold cross-validation 
procedure performed to test for the transferability performance of models. Zones 1, 2 and 3 
refere to (A). 
 
Comparison between maps shows higher similarity values between the different models run 
with BRT (Schoener’s ! =0.867± 0.034) than with RF (! =0.761± 0.036), which highlights 
that BRT performs best for spatial transferability. Because transferability performance is a 
central criterion of model selection in our study (Araújo and Guisan 2006, Wenger and Olden 
2012), BRT was selected for the further analyses. This result is in line with previous studies 
that highlight the high performance of BRT for prediction (Elith and Graham 2009, Guo et al. 
2015) and transferability (Heikkinen et al. 2012, Wenger and Olden 2012, Crimmins et al. 
2013) while RF has been shown to generate geographically restricted models with high 
accuracy (Guo et al. 2015, Qiao et al. 2015, Beaumont et al. 2016). 
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 5 

Supplement 2: Spatial autocorrelation (SAC)   
 
Table S2: Moran I SAC index computed from mean residuals of the 100 model replicates 
and the associated significance for each species before and after spatial bias correction. 
 

 Before 
correction 

After 
correction 

 Iobs p-value Iobs p-value 
Abatus cordatus 0.16 1.19e-9 0.06 5.85e-4 
Brisaster antarcticus 0.05 0.04 0.04 0.08 
Ctenocidaris nutrix 0.07 7.37e-8 0.01 0.17 
Sterechinus diadema 0.06 3.90e-3 0.02 0.13 

 
 

 
Figure S3: Maps%showing%species%distribution%models%computed%before%and%after%
correcting%for%spatial%bias%by%background%sampling.% 
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Supplement 3: Testing the influence of chronological addition of occurrences  
 
We thank the 19 scientific cruises for the collection of the data used to realise this work 
(Table 1, Guillaumot et al. 2016). We thank the master, the crew and the scientific team of 
the FV “Austral” that collected, sorted, and made available for studies the benthic samples of 
the POKER II (2010) cruise.  We are grateful to the leader of the cruise, Pr. Guy Duhamel 
(MNHN) and Echinodermata curators Nadia Améziane and Marc Eléaume for giving us the 
opportunity to study POKER II sea urchins. Work at sea was supported by the Terres 
Australes et Antarctiques Françaises (TAAF),  the Syndicat des Armateurs Réunionnais de 
Palangriers Congélateurs (SARPC), the Direction des Pêches Maritimes et de l’Aquaculture, 
Ministère de l’Agriculture et de l’Alimentation (DPMA), the Réserve Naturelle of TAAF, 
and the Muséum national d’Histoire naturelle, Paris. 

 
 
Figure S4: First row: distribution models of Abatus cordatus with increasing number of 
occurrences. Averaged maps of 100 model replicates. Second row: (A) Difference in 
probability distribution between n=76 and n=54, (B) between n=95 and n=76. 
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Figure S5: First row: distribution models of Sterechinus diadema with increasing number of 
occurrences. Averaged maps of 100 model replicates. Second row: (A) Difference in 
probability distribution between n=66 and n=54, (B) between n=98 and n=66. 
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Table S3: Effect of chronological addition of new data on model performance. Comparison 
between distribution maps. Upper diagonal: Schoener‘s D correlation between averaged 
maps. Lower diagonal: significance p-value of the associated Schoener‘s D correlation. 
 

Abatus 
cordatus 

←1975] 
n=54 

- ←2010] 
n=76 

←2015] 
n=95 

←1975] n=54 - - 0.972±0.025 0.980±0.021 

- - - - - 

←2010] n=76 0.002 - - 0.981±0.023 

←2015] n=95 0 - 0 - 

Ctenocidaris 
nutrix 

←1975] 
n=46 

←1993] 
n=54 

←2010] 
n=106 

←2015] 
n=114 

←1975] n=46 - 0.964±0.026 0.969±0.020 0.967±0.020 

←1993] n=54 0.017 - 0.960±0.020 0.961±0.020 

←2010] n=106 0.005 0.037 - 0.988±0.013 

←2015] n=114 0.010 0.028 0 - 

Sterechinus 
diadema 

←1975] 
n=54 

- ←2010] 
n=66 

←2015] 
n=98 

←1975] n=54 - - 0.930±0.030 0.928±0.037 

- - - - - 

←2010] n=66 0.369 - - 0.937±0.042 

←2015] n=98 0.411 - 0.262 - 
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1. FOREWORDS AND OBJECTIVES 
 
In February 2010, an ovigerous female of Halicarcinus planatus (Fabricius, 1775) (Brachyura, 
Hymenosomatidae) was found alive in shallow subtidal waters of Deception Island (WAP; Aronson 
et al. 2014). This small crab (carapace width up to 15 mm and 20 mm for female and male, 
respectively, in Punta Arenas; Fig. 1) is an opportunistic feeder (Boschi et al. 1969), commonly 
found sheltered under rocks in the intertidal and subtidal zones, in between holdfasts of the giant 
kelp Macrocystis pyrifera or sheltered in hydrozoans and mussel colonies (Richer De Forges 1977, 
Chuang and Ng 1994, Vinuesa and Ferrari 2008). 
 

 
Figure 1. Male (a) and female (b) specimens of Halicarcinus planatus (Fabricius, 1775) collected in the 
Magellan Strait. Scale: 1 cm. Photos credit to C. Ceroni and K.Gerard. 
  

The crab is commonly found in the Southern tip of South America, including Tierra del Fuego, 
Cape Horn and Diego Ramirez Islands and in some sub-Antarctic Islands (Prince Edward and 
Marion Islands, Crozet and Kerguelen Islands, Falkland Islands, Macquarie Island, Auckland 
Islands in New-Zealand and Campbell Island archipelago) up to 36°S latitude (Fig. 2) (Boschi et al. 
1969, Melrose 1975, Richer De Forges 1977, Griffiths et al. 2013, Aronson et al. 2014). 
Halicarcinus planatus mainly inhabits shallow environments, although it has also been reported 
from lower intertidal down to 270 m (Garth 1958, Vinuesa 2005, Griffiths et al. 2013, Varisco et al. 
2016). 
 
Halicarcinus planatus has a strong dispersal potential mediated by an extended planktonic larval 
stage (Richer De Forges 1977, Diez and Lovrich 2010, Ferrari et al. 2011), lasting between 45 and 
60 days (at temperatures of 11-13°C and 8°C in laboratory respectively) prior to benthic settlement 
(Boschi et al. 1969, Diez and Lovrich 2010). The species can either spawn between April and May 
(e.g. in the Beagle Channel), or in the end of the austral winter between August and December 
(e.g. in the Kerguelen Islands) (Diez and Lovrich, 2010, Diez et al. 2012, Vinuesa and Ferrari 
2008). 
According to Richer de Forges (1977) the larval hatching occurs between October and November 
and the larvae can be found in the epipelagic plankton in austral summer, i.e. from November to 
March. 
 
Halicarcinus planatus has the physiological capacity to withstand low temperatures. Indeed, while 
most decapod taxa exposed to cold waters experience increased magnesium ion concentration in 
the hemolymph ([Mg2+]HL), reducing metabolic rates and aerobic activity, potentially leading to 
death (Frederich et al. 2001, Thatje et al. 2005, Aronson et al. 2007, Diez and Lovrich 2010), H. 
planatus has the capacity to overcome these issues by reducing [Mg2+]HL (Frederich et al. 2001) 
providing capacity for survival in cold waters like the Kerguelen Islands, where winter seawater 
temperatures range between +1.1 and +3.0°C (Féral et al. 2019). 
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Figure 2. Presence (red dots) and absence (yellow dots) records of Halicarcinus planatus in the Southern 
Ocean, collected during different sampling expeditions carried out between 2015 and 2019 (PROTEKER 1, 
4, 5 and 6, INACH ECA 53, 54 and 55), obtained from collaborators, and retrieved from IOBIS and GBIF 
databases, and from the scientific literature (López-Farrán et al. 2020). 
 
 
OBJECTIVES  
Following the recent discovery of a living specimen of H. planatus in Deception Island, the aim of 
this study is to use a dispersal model (Lagrangian approach) to evaluate whether crab propagules 
can reach Antarctic coasts from their actual presence locations. Simulations would help assess 
whether the natural transport via currents would be responsible of its presence in Deception Island. 
 
 
2. MATERIAL AND METHODS 
 
 Lagrangian model settings 
 
The Lagrangian particle model used in this study is based on the model described in Dulière et al. 
(2013) and made available as a module of the free and open-source aquatic modelling system 
COHERENS v2 (Luyten 2011). 
Particles are transported under advective and diffusive processes. The classical fourth-order 
Runge-Kutta method is used to estimate horizontal transport. The diffusive velocities are obtained 
from random walk theory with constant horizontal and vertical diffusion coefficients of 10 and 
0.0001m².s-1, respectively. The same diffusion coefficient values are used as in Young et al. (2014) 
and are equivalent to values observed in the Southern Ocean (empirical values or commonly 
accepted by modellers; Sheen et al. 2013, Watson et al. 2013). A bouncing condition is used for 
particles reaching the sea surface or seabed, and particles that leave the model domain through 
the ocean open boundary are assumed to have left the region. Stranding is not allowed, so when a 
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particle reaches a dry cell, its position is set to its previous position at sea. The Lagrangian module 
is used off-line with a computation time step of 5 minutes. 
The hydrodynamic conditions used to force the Lagrangian model are based on the 2008-2016 
PHY_001_024 datasets produced by the high-resolution global analysis and forecasting system, 
provided by Mercator Ocean (Law Shune et al. 2019). These products contain daily mean fields of 
sea surface elevation and horizontal ocean currents. In addition, they also contain sea ice 
information (i.e. concentration, thickness and velocity), sea water potential temperature, sea water 
salinity and ocean mixed layer thickness. These datasets have been generated with NEMO 3.1 
and LIM2 EVP models forced with 3-hourly atmospheric forcing from ECMWF (European Centre 
for Medium-Range Weather Forecasts, https://www.ecmwf.int/). Daily averaged model products 
are made available after interpolation from the native model grid to a global standard Arakawa C 
grid of 1/12° horizontal resolution and 50 fixed vertical levels (from 0 to 5,000 m). The quality of the 
Global high-resolution products has been assessed in Lellouche et al. (2019). 3D vertical ocean 
currents are estimated from the divergence in the horizontal velocity from the PHY_001_024 
forcing fields, assuming null surface and bottom vertical velocity.   
The model grid was built from a sub-sample of the global grid of the hydrodynamic forcing field 
from latitude 36°S down to the South Pole. The horizontal resolution of 1/12° (~8km) was kept and 
the 50 vertical levels have been adapted to 50 sigma levels for the COHERENS system. 
 
Biological assumptions used in the Lagrangian model  
 
Particles were assumed to drift during three months, corresponding to the maximal duration of the 
larval stage. They were launched from presence locations points (Fig. 2). Particles were limited to 
200 m depth during their journey. The propagules were assumed to passively drift (without 
swimming capacity). No nycthemeral behaviour was considered. Particles were released from 
August to November and the drift was studied until the end of February. 
 
Studied years. 
 
The model was launched over different years, in order to assess possible contrasts in propagule 
dispersal trajectories under the influence of contrasting climatic regimes. Noteworthy, the intensity 
of the Southern Annular Mode (SAM, Limpasuvan and Hartmann 1999), has been shown to be 
strongly and linearly teleconnected to the phase of El Niño Southern Oscillation (Carvalho et al. 
2005, L’Heureux and Thompson 2006, Ciasto and Thompson 2008). A negative SAM with strong 
El Niño episodes is characterised by warmer temperatures and stronger westerly winds. In 
contrast, years with strong positive SAM and with La Niña episodes present weaker westerly winds 
and a dryer and colder atmosphere (Nicolas et al. 2017). The model was therefore considered for 
2009-2010 (‘normal’ SAM= -0.54), 2015-2016 (positive SAM: +1.77) and 2016-2017 (negative 
SAM: -1.02). SAM values are available at http://www.nerc-
bas.ac.uk/public/icd/gjma/newsam.1957.2007.seas.txt  and in (Doddridge and Marshall 2017). 
 
 
3. RESULTS  
 
Results suggest that the crab larvae, within their 3-month drift in the water column, cannot reach 
Antarctic coasts independently of the different climatic regimes (Fig. 3). The Antarctic Circumpolar 
Current (ACC) constitutes a physical barrier that prevents propagules from crossing the Southern 
Ocean (Fig. 4). 
The simulations also highlights the influence of the ACC to disperse the particles eastward (Fig. 5) 

and explain the genetic connectivity in between the different populations of Halicarcinus planatus 

(Fig. 2). 
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Figure 3. Maps with particle densities predicted for the different climatic scenarios. Average densities from 
August to February. Particles of 3-month age, located between 0 to 200 m depth. 
 
 

 
Figure 4. Illustration of the link between model results and the position of the Antarctic Circumpolar Current 
(ACC). The ACC constitutes a strong physical barrier that prevents propagules from reaching Antarctic 
coasts and disperse them eastward. 
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Figure 5. Snapshots of particle densities on the 15th of each month (from August to February 2009-2010) for 
particles younger than 3 months old and at depth between 0 and 200 m. 
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Title: Modelling the response of Antarctic marine species to environmental changes. Methods, 
applications and limitations. 
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Abstract: Among tools that are used to fill knowledge gaps on natural systems, ecological modelling has been widely applied 
during the last two decades. Ecological models are simple representations of a complex reality. They allow to highlight 
environmental drivers of species ecological niche and better understand species responses to environmental changes. 
However, applying models to Southern Ocean benthic organisms raises several methodological challenges. Species 
presence datasets are often aggregated in time and space nearby research stations or along main sailing routes. Data are 
often limited in number to correctly describe species occupied space and physiology. Finally, environmental datasets are not 
precise enough to accurately represent the complexity of marine habitats. Can we thus generate performant and accurate 
models at the scale of the Southern Ocean ? What are the limits of such approaches ? How could we improve 
methods to build more relevant models ? In this PhD thesis, three different model categories have been studied and their 
performance evaluated. (1) Mechanistic physiological models (Dynamic Energy Budget models, DEB) simulate how the 
abiotic environment influences individual metabolism and represent the species fundamental niche. (2) Species distribution 
models (SDMs) predict species distribution probability by studying the relationship between species presences and the 
environment. They represent the species realised niche. (3) Dispersal lagrangian models predict the drift of propagules in 
water masses. Results show that physiological models can be developed for marine Southern Ocean species to simulate the 
metabolic variations in link with the environment and predict population dynamics. However, more data are necessary to 
highlight detailed physiological contrasts between populations and to accurately evaluate models. Results obtained for SDMs 
suggest that models generated at the scale of the Southern Ocean and future simulations are not relevant, given the lack of 
data available to characterise species occupied space, the lack of precision and accuracy of future climate scenarios and the 
impossibility to evaluate models. Moreover, model extrapolate on a large proportion of the projected area. Adding information 
on species physiological limits (observations, results from experiments, physiological model outputs) was shown to reduce 
extrapolation and to improve the capacity of models to estimate the species realised niche. Spatial aggregation of occurrence 
data, which influenced model predictions and evaluation was also succefully corrected. Finally, dispersal models showed an 
interesting potential to highlight the role of geographic barriers or conversely of spatial connectivity and also the link between 
species distribution, physiology and phylogeny history. This PhD thesis provides several methodological advice, annoted 
codes and tutorials to help implement future modelling works applied to Southern Ocean marine species. 
 
Titre : Modéliser la réponse des espèces antarctiques aux changements environnementaux. Méthodes, 
applications et limites. 
 

Mots-clés : modélisation écologique ; modèles de distribution d’espèces ; modèles physiologiques ; modèles de dispersion 
lagrangiens ; océan Austral ; espèces marines benthiques. 
 

Résumé : Parmi les outils qui permettent de mieux comprendre les systèmes naturels, la modélisation écologique a connu 
un essor particulièrement important depuis une vingtaine d’années. Les modèles écologiques, représentation simplifiée 
d’une réalité complexe, permettent de mettre en avant les facteurs environnementaux qui déterminent la niche écologique 
des espèces et de mieux comprendre leur réponse aux changements de l’environnement. Dans le cas des faunes marines 
antarctiques, la modélisation écologique fait face à plusieurs défis méthodologiques. Les jeux de données de présence des 
espèces sont très souvent agrégés dans le temps et dans l’espace, à proximité des stations de recherche. Ces données sont 
souvent trop peu nombreuses pour caractériser l’espace environnemental occupé par les espèces ainsi que leur physiologie. 
Enfin, les jeux de données environnementales manquent encore de précision pour finement représenter la complexité des 
habitats marins. Dans ces conditions, est-il possible de générer des modèles performants et justes à l’échelle de 
l’océan Austral ? Quelles sont les approches possibles et leurs limites ? Comment améliorer les méthodes afin de 
générer de meilleurs modèles ? Au cours de ce travail de thèse, trois types de modèles ont été étudiés et leurs 
performances évaluées. (1) Les modèles physiologiques de type DEB (Dynamic Energy Budget) simulent la manière dont 
l’environnement abiotique influe sur le métabolisme des individus et proposent une représentation de la niche fondamentale 
des espèces. (2) Les modèles de distribution d’espèces (SDMs pour Species Distribution Models) prédisent la probabilité de 
distribution des espèces en étudiant la relation spatiale entre données de présence et environnement. Ils proposent une 
représentation de la niche réalisée des espèces. Enfin (3), les modèles de dispersion de type lagrangien prédisent le 
mouvement de propagules dans les masses d’eau. Les résultats montrent que les modèles physiologiques réussissent à 
simuler les variations métaboliques des espèces antarctiques en fonction de l’environnement et à prédire les dynamiques de 
populations. Cependant, davantage de données sont nécessaires pour pouvoir caractériser finement les différences 
physiologiques entre populations et évaluer correctement les modèles. Les résultats obtenus pour les SDMs montrent que 
les modèles générés à l’échelle de l’océan Austral et leurs prédictions futures ne sont pas fiables du fait du manque de 
données disponibles pour caractériser l’espace occupé par les espèces, du manque de précision des scénarios climatiques 
futurs et de l’impossibilité d’évaluer les modèles. De plus, les modèles extrapolent sur une très grande proportion de l’espace 
projeté. L’apport d’information complémentaire sur les limites physiologiques des espèces (observations, résultats 
d’expériences, sorties de modèles physiologiques) permet de réduire l’extrapolation et d’augmenter la capacité des modèles 
à décrire la niche réalisée des espèces. L’agrégation spatiale des données, qui influençait les prédictions et l’évaluation des 
modèles a également pu être corrigée. Enfin, les modèles de dispersion ont montré un potentiel intéressant pour révéler le 
rôle des barrières géographiques ou à l’inverse, la connectivité spatiale, mais également le lien existant entre distribution, 
physiologie et histoire phylogénétique des espèces. Ce travail de thèse propose de nombreux conseils et fournit des codes 
annotés parfois sous forme de tutoriels, afin de constituer une aide utile aux futurs travaux de modélisation sur les espèces 
marines antarctiques. 
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