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PHD THESIS RESEARCH

= Chapter 1: Mechanistic models

* [1] Guillaumot C, Saucéde T, Morley S, Augustine S, Danis B, Kooijman S (2020a). Can
DEB models infer metabolic differences between intertidal and subtidal morphotypes of the
Antarctic limpet Nacella concinna (Strebel, 1908)? Ecological Modelling (IF: 2.5). 430:
109088. https://doi.org/10.1016/j.ecolmodel.2020.109088.

* [2] Arnould-Pétré M, Guillaumot C, Danis B, Féral J-P, Saucéde T (2020). Individual-
based model of population dynamics in Abatus cordatus, a sea urchin of the Kerguelen
(Southern Ocean), under changing environmental conditions. Ecological Modelling (IF:
2.5). 440, 109352. https://doi.org/10.1016/j.ecolmodel.2020.109352.

= Chapter 2: Correlative models
* [3] Guillaumot C, Danis B, Saucéde T (2021). Species Distribution Modelling of the

Southern Ocean benthos : methods, main limits and some solutions. Antarctic Science (IF:
1.4), 1-24. doi:10.1017/S0954102021000183.

* [4] Guillaumot C, Artois J, Saucéde T, Demoustier L, Moreau C, Eléaume M, Agliera A,
Danis B (2019). Broad-scale species distribution models applied to data-poor areas.
Progress in Oceanography (IF: 4.1), 175, 198-207.
https://doi.org/10.1016/j.pocean.2019.04.007.

* [5] Guillaumot C, Danis B, Saucéde T (2020b). Selecting environmental descriptors is
critical to modelling the distribution of Antarctic benthic species. Polar Biology (IF: 1.7), 1-
19. https://doi.org/10.1007/s00300-020-02714-2.

* [6] Guillaumot C, Moreau C, Danis B, Saucéde T (2020c). Extrapolation in species
distribution modelling. Application to Southern Ocean marine species. Progress in
Oceanography (IF: 4.1), 188, 102438. https://doi.org/10.1016/j.pocean.2020.102438.

= Chapter 3: Integrated approaches

* [7] Guillaumot C / Lopez-Farran Z (co-firstauthorship), Vargas-Chacoff L, Paschke K,
Duliére V, Danis B, Poulin E, Saucéde T, Gerard K (2021). Current and predicted invasive
capacity of Halicarcinus planatus (Fabricius, 1775) in the Antarctic Peninsula. Global
Change Biology (IF: 8.6), 00:1-18. DOI: 10.1111/gcb.15674.

* [8] Fabri-Ruiz S, Guillaumot C, Aglera A, Danis B, Saucéde T (2021). Using correlative
and mechanistic niche models to assess the sensitivity of the Antarctic echinoid Sterechinus
neumayeri (Meissner, 1900) to climate change. Polar Biology (IF: 1.7).
https://doi.org/10.1007/s00300-021-02886-5.

* [9] Guillaumot C, Buba Y, Belmaker J, Fourcy D, Danis B, Dubois P, Saucéde T
(submitted). Simple or hybrid ? The performance of next generation ecological models to
study the response of Southern Ocean species to changing environmental conditions.
Diversity and Distributions (IF: 3.9).



https://doi.org/10.1016/j.ecolmodel.2020.109088
https://doi.org/10.1016/j.ecolmodel.2020.109352
https://doi.org/10.1016/j.pocean.2019.04.007
https://doi.org/10.1016/j.pocean.2020.102438
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= Chapter 4: Dispersal models : lagrangian approach

¢ [10] Duliere V / Guillaumot C (co-firstauthorship), Lépez-Farran Z, Lacroix G, Saucéde T,
Danis B, Baetens K (submitted). Potential impact of ballast water exchanges on the
introduction of invasive species in Marine Protected Areas of the Western Antarctic
Peninsula. Diversity and Distributions (IF: 3.9).

* [11] Christiansen H, Van de Putte A, Guillaumot C, Barrera-Oro E, Volckaert FAM, Young
EF (final stages, draft version included in the manuscript). Integrated assessment reveals
large scale connectivity of a historically overexploited fish in the Southern Ocean.

= PhD supplementary material

* [12] Aguera A, Ahn I-Y, Guillaumot C, Danis B (2017). A Dynamic Energy Budget (DEB)
model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism. PLOS
One (IF: 2.7).12(8), e0183848. doi: https://doi.org/10.1371/journal.pone.0183848.

* [13] Guillaumot C, Martin A, Sauceéde T, Eléaume M. (2018) Methods for improving
species distribution models in data-poor areas: example of sub-Antarctic benthic species on
the Kerguelen Plateau. Marine Ecology Progress Series (IF: 2.3). 594, 149-164.

doi: 10.3354/meps12538.

* [14] Lépez-Farran Z, Frugone MJ, Gerard K, Vargas-Chacoff L, Poulin E, Guillaumot C,
Duliere V (final stages, draft version). Can the Patagonian crab Halicarcinus planatus
(Fabricius, 1775) reach Antarctic coasts? Study of the dispersal potential of its larvae using a
Lagrangian approach.

OTHER RESEARCH STUDIES, INTERNATIONAL
COLLABORATIONS

* [15] Danis B, Christiansen H, Guillaumot C, Heindler FM, Jossart Q, Moreau C, Pasaotti F,
Robert H, Wallis B, Saucéde T (submitted as a datapaper). The Belgica121 expedition to the
Western Antarctic Peninsula: a high resolution biodiversity census. Biodiversity Data
Journal (IF: 1.3).

* [16] Danis B, Wallis B, Guillaumot C, Moreau C, Pasotti F, Heindler F, Robert H,
Christiansen H, Jossart J, Saucede T and (submitted). Nimble vessel cruises as an
alternative for Southern Ocean biodiversity research: preliminary results from the Belgica121
expedition. Antarctic Science (IF: 1.4).

* [17] Moreau C, Jossart Q, Danis B, Eléaume M, Christiansen H, Guillaumot C, Downey R,
Saucéde T (2020). The overlooked diversity of Southern Ocean sea stars (Asteroidea)
reveals original evolutionary pathways. Progress in Oceanography (IF: 4.1), 102472.
https://doi.org/10.1016/j.pocean.2020.102472.

* [18] Saucéde T, Guillaumot C, Michel L, Fabri-Ruiz S, Bazin A, Cabessut M, Garcia-Berro
A, Mateos A, Mathieu O, De Ridder C, Dubois P, Danis B, David B, Diaz A, Lepoint G,
Motreuil S, Poulin E & Féral J-P (2019). Modelling species response to climate change. Case
study of echinoids on the Kerguelen Plateau. In: Welsford, D., J. Dell and G. Duhamel (Eds).
The Kerguelen Plateau: marine ecosystem and fisheries. Proceedings of the Second
Symposium. Australian Antarctic Division, Kingston, Tasmania, Australia. ISBN: 978-1-
876934-30-9, pp 95-116, doi: 10.5281/zenodo.3249143.
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* [19] Féral J-P, Poulin E, Gonzalez-Wevar CA, Améziane N, Guillaumot C, Develay E,
Saucéde T (2019) Long-term monitoring of coastal benthic habitats in the Kerguelen Islands:
a legacy of decades of marine biology research. In: Welsford, D., J. Dell and G. Duhamel
(Eds). The Kerguelen Plateau: marine ecosystem and fisheries. Proceedings of the
Second Symposium. Australian Antarctic Division, Kingston, Tasmania, Australia.
ISBN: 978-1-876934-30-9, pp 383-402, doi : 10.5281/zenodo0.3249143

* [20] Moreau C, Guillaumot C et al. (2018) Antarctic and sub-Antarctic Asteroidea
database. Zookeys (IF: 1.1), (747), 141. doi: 10.3897/zookeys.747.22751.

PEER-REVIEW ARTICLES REALISED BEFORE THE PHD

* [21] Guillaumot C, Fabri-Ruiz S, Martin A, Eléaume M, Danis B, Féral J-P, Saucéde T.
(2018). Benthic species of the Kerguelen Plateau show contrasting distribution shifts in
response to environmental changes. Ecology and Evolution (IF: 2.4). 8(12), 6210-6225.
http://dx.doi.org/10.1002/ece3.4091.

* [22] Pagano M, Rodier M, Guillaumot C, Thomas Y, Henry K, Andréfouét S (2017).
Ocean-lagoon water and plankton exchanges in a semi-closed pearl farming atoll lagoon
(Ahe, Tuamotu archipelago, French Polynesia). Estuarine, Coastal and Shelf Science (IF:
2.3). 191: 60-73. https://doi.org/10.1016/j.ecss.2017.04.017.

* [23] Guillaumot C, Martin A, Fabri-Ruiz S, Eléaume M, Saucéde T (2016) Echinoids of the
Kerguelen Plateau — occurrence data and environmental setting for past, present, and future
species distribution modelling. Zookeys (IF: 1.1). 630: 1-17.
https://doi.org/10.3897/zookeys.630.9856.

EXPEDITION REPORTS

e Danis B, Christiansen H, Guillaumot C, Heindler F, Houston R, Jossart Q, Lucas K,
Moreau C, Pasotti F, Robert H, Wallis B, Saucéde T (2019). Report of the Belgica121
expedition to the  West  Antarctic Peninsula. 96 pp. Available at
http://belgica120.be/index.php/report/ and http:// doi.org/10.5281/zenod0.4551452.
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DATABASES REALISED DURING THE PHD

*Guillaumot C, Raymond B, Danis B (2018) Marine environmental data layers for Southern
Ocean species distribution modelling. Australian Antarctic Data Centre -
doi:10.26179/5b8f30e30d4f3 ; available at
https://australianantarcticdivision.github.io/blueant/articles/SO_SDM_data.html.

* Asteroidea database| http://ipt.biodiversity.aq/resource?r=asteroidea_southern_ocean,
28/06/2017.

e Particulate Carbon Export Flux, maps. Australian Antarctic Data Center,
Particulate_carbon_export_flux_layers, doi:10.4225/15/58fff5231f00a, 27/04/2017.

DATABASES REALISED BEFORE THE PHD

* Kerguelen environmental datasets | Guillaumot C, Martin A, Fabri-Ruiz S, Eléaume M,
Saucéde T (2016) Environmental parameters (1955-2012) for echinoids distribution
modelling on the Kerguelen Plateau. Australian Antarctic Data  Centre.
doi:10.4225/15/578ED5A08050F 20/07/2016

* Echinoid database of the Kerguelen Islands |
http://ipt.biodiversity.ag/resource.do?r=echinoids_kerguelen_plateau_1872 2015, 07/2016.

R PACKAGE (created before & updated during the PhD)

*Guillaumot C, A Martin, M Eléaume, Danis B, T Saucede (2016) ‘SDMPlay’: Species

Distribution Modelling Playground, CRAN. https://cran.r-project.org/web/packages/SDMPlay
04/08/2016.
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ORAL PRESENTATIONS (during the PhD)

* underlined name: presenter

* [1] Guillaumot C, Saucéde T, Danis B. Les modéles de niche écologique, outils pour
évaluer la sensibilité des espéces marines antarctiques face aux changements
environnementaux: potentiel, limites et méthodes. JCAD, Dijon, France, December 2020
(lightning talk 5 min in French).

* [2] Guillaumot C, Kooijman S, Saucéde T, Danis B. Application des modéles de budget
énergétique (Dynamic Energy Budget, DEB) a des cas d’étude polaires. CNFRA, La
Rochelle, France, September 2020 (15 min talk in French).

* [3] Guillaumot C, Kooijman S, Danis B, Saucéde T. Application of Dynamic Energy Budget
(DEB) models to Antarctic case studies. SCAR Symposium, Hobart, Tasmania, August
2020 (presentation published online, in English).

* [4] Arnould-Pétré M, Guillaumot C, Danis B, Féral J-P, Saucéde T. Individual-based model
of population dynamics in Abatus cordatus, a sea urchin endemic to the Kerguelen Plateau,
under changing environmental conditions. SCAR Symposium, Hobart, Tasmania, August
2020 (presentation published online, in English).

* [5] Lopez-Farrdn Z, Frugone MJ, Vargas-Chacoff L, Guillaumot C, Gerard K, Poulin E,
Duliere V. Assessment of the capacity of Halicarcinus planatus to arrive and settle as a
potential invasor of Antarctic shallow ecosystems. SCAR Symposium, Hobart, Tasmania,
August 2020 (abstract published online, in English).

* [6] Lépez-Farran Z, Frugone MJ, Vargas-Chacoff L, Guillaumot C, Gerard K, Poulin E,
Duliere V Halicarcinus planatus, la primera especie exotica encontrada en la Peninsula
Antartica: Evaluacion de su potencial invasor. Reunién Anual Conjunta 2019, Valdivia,
Chile, November 2019 (15min talk in English).

* [7] Lépez-Farran Z, Guillaumot C, Duliére V, Paschke K, Gerard K, Vargas-Chacoff L,
Poulin E. Halicarcinus planatus, el cangrejo subantartico con potencial para establecerse en
Antartica, evaluacién del escenario actual y futuro. IX Congreso Chileno de
Investigaciones Antarticas, Olmue, Chile, October 2019 (15min talk in English).

* [8] Guillaumot C, Artois J, Saucéde T, Danis B. Broad-scale species distribution models
applied to data-poor areas. ISEM, Salzburg, Austria, October 2019 (15min talk in English).

* [9] Lépez-Farran Z, Frugone MJ, Vargas-Chacoff L, Guillaumot C, Gerard K, Poulin E,
Duliere V. Assessment of the capacity of Halicarcinus planatus as a potential invasor of
Antarctic shallow ecosystems. 10 minutes presentation in English. IMARCO 2019, Aveiro,
Portugal, September 2019 (15min talk in English).

* [10] Guillaumot C, Saucéde T, Danis B. Ecological niche modelling as a tool to assess the
sensitivity of Antarctic marine species to environmental changes: potential, limitations and
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INTRODUCTION

1. MODELLING IN ECOLOGY

1.1 Models and their application in ecoloqy

1.1.1 Some generalities on models

Models are “purposeful representations of a system, hypothesis or experiment and include any
useful form of abstraction to assist thinking” ( ). They are used in a substantial
panel of scientific contexts (e.g. in cosmology to study astronomical object movements or
compositions, in oncology to predict the effect of a therapy, in biochemistry to determine molecular
structures, in climatology to forecast weather, in mechanics to design technologies, in epidemiology
to anticipate the spread of a disease, in archaeology to rebuild an artifact...), and play a crucial role

to analyse complex situations that are difficult to describe ( ).
Models are built using observations, and can be represented with mathematical equations, computer
codes ( ), matrices, networks (

), schematic diagrams or images (

). Whenever conceptualizing models, it is essential to be aware that they are mere
simplifications of real processes, and by definition are wrong, as they cannot encompass the
complexities of the studied system ( ). Models do not aim at perfectly representing the
overall processes, but should be useful enough to enable a part of their understanding (

). G. Box, a British statistician, used to write in his studies that “all models are wrong; some are
useful... the practical question is how wrong do they have to be to not be useful’. This sentence
illustrates the trade-off between model overfit and their explanatory power ( ).

The way models are designed depends on the final objectives of the model and respects a balance

between generality, realism and precision ( , Fig. 0.1). An infinity of models can be
therefore generated to target a single question.

GENERALITY

Model of theory
development

Model that accurately
describes the process

Empirical model

Figure 0.1. Trade-off between model properties when designing a model. The balance between generality,
precision and realism depends on the questions the modeller addresses. It is also dependent on data
availability. This scheme highlights the fact that a broad range of models can be generated to represent a
given system.
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Models are efficient to enable rapid explorations of mechanisms (

), to test and validate hypotheses ( ), to identify key interactions (
), or to provide testable predictions, that may corroborate (or
not) with experimental observations and help prioritize new experiments or model improvements

( ).

After designing a model, a crucial step is the evaluation of its relevance, by assessing whether the
model is suited to describe the studied process and efficient enough to provide accurate predictions
( )- Though essential, the evaluation step is sometimes
neglected or fails, because of limited available independent observations or inappropriate methods
( ), which highlights the importance of
adapting methodologies for this validation step ( ).
Robustness analysis can complete model evaluation by assessing “whether a result depends on the
essential of the model or on the details of the simplifying assumptions” ( ).
This analysis aims at “breaking” the model, by forcefully changing its parameters, structure and/or
representation of processes in order to evaluate the assumptions that mostly drive model stability

( )- The relevance of such evaluation procedures is crucial and validation
results need to be associated with model predictions to enable complete and accurate
interpretations ( ).

1.1.2 Ecological modelling in marine environments

A recent review on marine ecology seascape analyses ( ) wrote “The technological
advancement and proliferation of space-, air- and water-based ocean sensing systems, together
with increased sophistication in geospatial tools and mathematical simulation models [...] have
allowed to collect, integrate, analyse and visualise vast quantities of marine data that have revealed
unimaginable structural complexity and interconnectedness across the seafloor, sea surface and
throughout the water column.” These sentences illustrate the huge amount of data collected during
the past decades to understand ecological processes, the development of new technologies to
analyse them and the strong desire of disentangling the way elements are interacting between each
other in natural systems ( ). The use
of ecological models to represent in a simpler way these complex ecological systems and to
facilitate their understanding by simplifying existing interactions between components is thus fully
appropriate ( ).

Ecological models can be used to describe on-going processes but can also be predictive-based
( )- They can be applied to various systems and
fields, from the scale of a water pond to an entire ocean or continent (
) or from the scale of a cell to an entire ecosystem (
)- They can be used to predict species

distribution in space or time under contrasting environmental conditions ( ), to
assess energetic shifts or individuals survival when facing environmental change or toxicant
exposure ( ), to predict population dynamics in
space or time ( ), to evaluate marine individuals

dispersal in oceans by simulating particle trajectories in marine currents with lagrangian approaches

( ).
Representing natural systems is however a difficult exercise ( ), as systems are

composed of many actors and factors, with variable and complex interactions (Fig. 0.2), influenced
by intra-individual complexity, at multiple scales, with contrasted environmental conditions and
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). Figure 0.3 illustrates well this
complexity, with the example of zooplankton density in the water column, forced by several nested

biotic and abiotic factors and challenged by cross-scale interactions that may interact together, and
that may change according to the way the system is studied ( ).

habitats (

Figure 0.2. Diversity and complexity of marine benthic communities in the
Southern Ocean. Each species interacts with its neighbours and is influenced

by the coupled actions of physical, chemical and biological processes of the
surrounding environment. © J. Stark, MEASO 2018.
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Figure 0.3. Effects of coupled large-scale climate, local physical forcing and environmental chemical
properties on biological processes in the vicinity of a free-drifting iceberg in the northwest Weddell Sea. Global
climate forcing induces regional ice melting, causing shifts in water column stratification and water movement
at local scales, which may affect the survival, behaviour and dynamics of planktonic communities at regional
scales. This illustrates marine systems’ complexity and inter-scale interactions. Figure extracted from

Understanding such complex processes requires a huge amount of time and studies (
) and implies to study each biological pattern at different scales ( ), as
each system generally shows variability on a range of spatial, temporal and organizational scales
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( ). For ecological models, the choice of grain size and spatial extent to represent a
system therefore constitutes a strong assumption as it conditions the accuracy in describing the
system (i.e. estimation of species richness, evaluation of environmental variability, detection of rare
species; ).

Because there is no general scale to best represent ecological processes (

), representing ecological systems as a combination of several simple
systems at different scales and levels ( ) or by a hierarchical
approach ( ) can constitute alternatives to improve the overall
understanding (Fig. 0.4, Fig. 0.5). Combining these representations by multi-scale analyses also
constitutes a powerful method to more accurately represent biodiversity patterns (

).

(b)

Driver 1

(c)

.['.vlver_"
Cxlver 2
Dxiver t
Driver 3

Figure 0.4. Theoretical scheme of an experimental design, that aims at isolating the most relevant key drivers
to optimise the understanding of an ecological process. Main influencing drivers are identified (e.g. Fig. 0.2),
(b) full-factorial designs are created to study interactions and effects and (c) subsets are defined to isolate
processes that best explain the research questions. Extracted from

COMMUNITY Figure 0.5. Analysis of a marine

community, using a modelling

saadden approach, with the individual being the
Tl %‘mm:m central foundation of the model, from
INFLUENCE OF o\ —, U which processes will be downscaled to

ENVIRONMENTAL |pOPULATION P organs or cells or upscaled to
CONDITIONS * ™., A population or community levels

(inspired from

g™ Y )-
T e
INDIVIDUAL
A
]
cells

26



INTRODUCTION

1.2 Ecological modelling and the species niche

1.2.1 Ecological niche theory
The niche theory was initiated by ecologists to analyse the complex question of ‘which set of
environmental factors allow a species to exist in a given geographic region or biotic community and
respectively, what effects does this species have on its environment?’ ( )- The
niche concept was defined, used and developed in several founding works, leading to several
definitions.
° defines the species niche as the climatic and habitat requirements (environmental
factors expressed geographically) that enable the species to survive and reproduce.
pioneered the concept that two species should have some contrasting traits related to their fitness to
coexist if they want to coexist. Grinnell was also among the first to discuss niche organisation within
communities, with saturated/unsaturated communities, containing “empty niches”. This concept is
still discussed nowadays ( ).
° adopted a contrasting definition that brought new advances in the use of the
ecological niche concept. The niche was in his works defined as the functional role of the species in
its community, in other words, as its local effect in the “food cycle”. Grinnell's and Elton’s definitions
are contrasting in terms of the considered geographical scales to define the niche concept, but these
two definitions are interestingly complementary to more accurately understanding the species
geographic distribution.
e |t was Hutchinson, in 1957, who made the link between these concepts, by defining the ecological
niche as “an hypervolume of environmental variables, every point of which corresponds to a state of
the environment which would permit the species to exist indefinitely”. also
defined the concepts of fundamental and realised niches, the fundamental niche being the set of
environmental states which enables the species to exist; and the realised niche a subset of the
fundamental niche that corresponds to the ensemble of environmental conditions for which the
species survives and reproduces, adding into consideration the influence of biotic interactions
(competition, predation, parasitism, symbiosis...). Scale was not considered in the pioneer
theoretical works of Hutchinson, it was several years later ( ), that he described
niches based on case-studies. did not consider the influence of biogeographic
barriers neither. The realised niche is not limited by potential geographical barriers, nor by species
dispersal capabilities in Hutchinson’s definition.
eSome following studies then revised the definition of the niche concept (

)- From these, new concepts such as the “potential niche” (i.e. the intersection between
the fundamental niche space and the available environmental space) or the “occupied niche” (i.e. a
subset of the fundamental niche that takes into consideration both biogeographical barriers and
biotic interactions) were introduced ( )
and adopted by the community ( )-

Following these concepts, statistical and computing approaches have been developed to go beyond
the niche description and generate models that provide an effective way of describing the different
types of species niches (

).
1.2.2 Niche modelling approaches

Niche models link modelling techniques and niche theory with the aim of explaining as accurately as
possible the conditions that drive species distribution and help fulfill their best fithness, based on
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statistical approaches, experimental works and/or in situ observations (
).

Methodological issues to design these models have been widely discussed, such as the influence of
contrasting spatial or temporal scales, the geographical influence of dispersal, biotic interaction
knowledge, biotic interaction changes according to spatial scales, shift of equilibrium between
species occurrence and sampling effort, or the nature of occurrence records used to calibrate
models (

Fig. 0.6). In parallel, numerous methods have been developed to
address these issues (

).

Tree density

0

10

® One observation

Day 3 Day 30

Figure 0.6. Schematic representation of the equilibrium bias, that compromises the definition of occurrence
occupied space according to sampling effort. Figure extracted from

One of the most recently developed representations of ecological niches is the BAM diagram
( ). This theoretical framework
hypothesizes that three main conditions determine the distribution of a species: biotic factors (B),
abiotic conditions (A) and regions that are accessible through dispersal (M, movement). FN is the
fundamental niche, corresponding to the ensemble of environmental conditions suitable to the
species distribution. RN, in the center of the BAM diagram, is the realised niche, that is the real
space occupied by the species, restrained by A, B and M. G; is the invadable area, abiotically
suitable but that has not been explored by the species yet. Biotic interactions and dispersal barriers
are theoretically a constraint. G; could play the role of a potential refuge.
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Realised niche, species occupied space.

Space with potential occupation, but limited by

- biotic interactions B or dispersal abilities M.

G, area that contains suitable environmental
conditions but which has not been explored by
the species yet. Potential refuge.

Non suitable environment for the species.

A=FN
(R
Mechanistic Correlative Dispersal
models models models M

Figure 0.7. Representation of the BAM diagram. B is the portion of the environment restrained by suitable
biotic interactions; A is the part of the environment that contains suitable abiotic conditions for the
development and survival of the species, which corresponds to the fundamental niche FN; M is the region that
is accessible to the species during a considered amount of time, not limited by dispersal nor geographic
barriers. The intersection of B, A and M is the realised niche RN. Gi corresponds to an area that contains
suitable environmental conditions but which has not been explored by the species yet. This area is the focus
of modelling approaches (interpolations). Areas that are assessed by mechanistic, correlative and dispersal
models are illustrated in the left bottom corner of the panel. Adapted from

The BAM diagram can take different shapes, according to the respective size of the different B,A
and M areas. This has been discussed by and (Fig. 0.8).
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Figure 0.8. Examples of different configurations of the BAM diagram, figure from .Go is
the realised niche, defined as RN in Figure 0.7. Panel A shows an intuitive hypothetical and theoretical
configuration. Panel B shows a situation in which all of the abiotic suitable area A is accessible, so the
invadable distributional area Gi is null. Panel C shows a situation in which A and B are almost coincident, and
the entire area is accessible to the species, so neither biotic nor movement considerations reduce the
distributional potential of the species, solely the environmental conditions are limiting the distribution. Panel D
depicts a situation similar to C, except that substantial restrictions of dispersal exist, such that not all suitable
potential distributional areas are inhabited. In all panels, open circles denote absences of the species, solid
circles denote presences of the species, light stippling indicates Gi, and darker stippling indicates Go = RN.

1.2.3 Modelling the fundamental niche

Different physiological models and approaches.

Physiological models describe the rates at which an individual organism feeds, assimilates or
utilises energy for metabolic processes (such as maintenance, growth or reproduction) during its
lifetime and depending on the surrounding environmental conditions ( ).
Physiological models therefore explore the influence of environmental conditions on species
physiological performances. They establish a causal relationship between species distribution and
environmental variables, characterise the range of suitable abiotic conditions for the species to
reproduce or survive, and consequently constitute a good proxy to characterise species fundamental
niche ( )-
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One of the most integrative theories of dynamic energy budgets is the DEB theory, developed in the
late 1980’s ( ), which inspired at least the
development of 26 other popular empirical models (Comments on DEB 3, ).

The Dynamic Energy Budget (DEB) theory: general principle.

The DEB theory defines individuals as dynamic systems and provides a mathematical framework for
the life cycle of an organism, from the start of the embryo development to the death by ageing. It
describes the physiological processes with four primary state variables: reserve, structure, maturity
and reproduction buffer (the latter for adults only), directly linked to mass and energy flows and
influenced by two forcing environmental variables: temperature and food resources availability (Fig.

0.9, ). DEB theory relies on key concepts such as consistency with biological and
ecological principles, as well as first laws of thermodynamics for conservation of mass, energy and
time ( ) and assumes that the various energetic processes, such as assimilation

and maintenance rates are dependent either on surface area or on body volume (

).

The DEB model considers that consumed products are assimilated at a rate (pa) into a reserve pool,
following a functional response of Holling’s type Il in the simplest case. This initiated energy is then
mobilized at a rate (pc) from the reserves and allocated to maintenance (pw), structural growth (pec),
maturity maintenance (pJ), maturation of immature individuals (pr) or reproduction of mature
individuals (pRr) following a so-called k-rule that controls energy acquisition and priority with
assumptions related to empirical observations (

) (Fig. 0.9). Priority is always given to somatic maintenance, followed by structural growth,
maturity maintenance and reproduction. If the energy utilization rate from the reserves is not
sufficient to pay for the somatic maintenance costs, the individual is assumed to die.

Biomass is modelled by the reserve and structure compartments. The non-structural
complexification of the individual is symbolized by a cumulative investment of energy into maturity.
The level of energy accumulated in this maturity compartment triggers metabolic switches such as
the transition between the different life stages (e.g. ability to feed, to reproduce).

The development cycle of each species is divided into three life stages: (1) development starts at
the embryo stage, when the organism is not able to feed nor to reproduce and is composed mainly
of reserve and a negligible amount of structure; (2) the organism comes at the juvenile stage once
the threshold for “birth” is passed as the organism starts feeding, however it is still not able to
reproduce; (3) the adult stage is reached at “puberty”, when the organism acquires the ability to
reproduce. At this time, the maturity compartment stops receiving energy, organism complexification
has reached its maximum, and this flow of energy is rather directed to reproduction (

).
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Figure 0.9. Conceptual scheme of the basic parameters and theoretical compartments of the DEB theory.
Food initiates energy availability in the reserve compartment, energy is then allocated to the different
metabolic processes. Temperature influences metabolism following Arrhenius principle ( )-
Figure modified from

Each DEB parameter (Table 0.1) is linked to specific physiological processes ( )
and the combination of these parameters covers the different energetic processes of the organism
(feeding, digestion, storage, maintenance, growth, development, reproduction, ageing) (

)
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Table 0.1. The 14 main DEB parameters and their units ( ).
DEB parameter Notation Unit

Specific searching rate {Fm} cm2.d”
Assimilation efficiency Kx -
Maximal specific assimilation rate {pAm} | J.cm2.d"
Energy conductance v cm.d’
Fraction of energy allocated to somatic maintenance and growth K -
Reproduction efficiency KR -
Volume specific somatic maintenance cost [pM] J.cm3.d”
Surface specific somatic maintenance cost {pT} J.cm?2.d”’
Maturity maintenance rate coeff kJ d’
Specific cost for structure [Eq] J.cm?
Maturity at birth Ejf J
Maturity at puberty ED J
Gombertz stress coefficient SG -
Weibull ageing acceleration ha d2

DEB theory: model implementation.

The calibration of a DEB model is fully documented on the DEB portal:
(https://www.bio.vu.nl/thb/deb/deblab/add _my pet/, accessed November 2019), where Matlab
codes and tutorials are provided. A new platform, AMPeps also helps complete these codes
following a step-by-step tutorial (http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/AmPeps.html).
Once the DEB model is created, the codes are checked by the administrators of the DEB community
and shared in the Add-my-Pet collection

(https://www.bio.vu.nl/thb/deb/deblab/add my pet/species list.html).

This collection of DEB models is growing fast, with more than 2765 species modelled in February
2021 (Fig. 0.10). For its creation, the model requires a set of zero-variate (single data) and uni-
variate data (x~y relationship data) that can be extracted from the literature or obtained from
experiments purposely designed for implementing the DEB model. These data should be recorded
at different life stages of the individual. Food and temperature conditions at which data were
recorded should be informed in the model (Table 0.2).
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Figure 0.10. Number of DEB models built and published in the Add-my-Pet (AmP) collection: 2765 modelled
species on 8th February 2021. Source:
https://www.bio.vu.nl/thb/deb/deblab/add_my pet/about.html.

Table 0.2. Example of observations used to calibrate the DEB model of the Antarctic sea star Odontaster
validus, from

Table 2. Zero-variate data used for the estimation of the DEB model parameters. All values are given ata temperature of 271.5 K. This is the tempera-
ture at which these values where measured. MRE: mean absolute relative error.

Variable Obs Pred Units MRE Reference

Age at birth a 33 27 d 0.19 [31]

Age at metamorphosis® aj 165 162 d 0.02 [31]

Length at birth’ L 0.04 0.03 cm 0.24 [31]

Length at metamorphosis® L 0.14 0.16 cm 0.17 [31]

Length at puberty® L, 2 2.15 cm 0.08 [26]

Maximum length* L 7 7.10 cm 0.01 Pearse et al. Unp. data
Maximum length at 7, ® L [ 5.63 cm 0.05 [25]

Egg dry weight Wi, 1.1 1.18 ug 0.07 [46]

Weight at puberty® A 2.95 2.84 g 0.04 [26]

Maximum weight* W, 100 105 g 0.05 Pearse et al. Unp. data
Maximum weight at f, w, 50 495 g 0.01 [25]

Gonadosomatic Index®| GSl 0.10 0.08 - 0.16 Pearse et al. Unp. Data
Pyloric Index” Pl 0.30 0.30 . 0.00 Pearse et al. Unp. Data

1 birth is set at the moment the animal starts or is able to feed.

2 moment at which the brachiolaria larvae is ready to settle for metamorphosis

3 start of first gametogenesis

“* maximum size reached by the species when there is no food limitation

® observations of maximum size at McMurdo field station

& maximumn gonad index for an animal of the maximum size, gonad index as gonad weighttotal wet weight\]

7 pyloric index for the food conditions in the laboratory as pyloric caeca weight/(total wet weight—gonad weight)

DEB theory: Parameter estimation.

DEB parameter estimation follows the covariation method ( ), based on
simultaneous minimizations of a weighted sum of squared deviations between observations and
model predictions (i.e. a loss function), using the Nelder-Mead simplex method, updated and
explained in . The loss function that is minimized is:
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where i scans datasets and j points in this dataset. dj and p; are respectively the data and the

predictions and di and pi their average values in set i. w; are the attributed coefficients (see below),
n is the number of data sets, n; denotes the data in a dataset, n; the data in data-points.

Because it is assumed that certain observations have been made with greater confidence and
accuracy than others, the procedure associates to each data-point a weight coefficient, on the basis
of this prior knowledge. Complementary to that, the model structure is initiated with pseudo-data,
being a set of potential parameters that describe a generalised animal, taxonomically close to the
study species. Whether available, species-specific observations replace pseudo-data. Otherwise,
pseudo-data are kept but associated with lower weight coefficients (i.e. lower confidence of the data)
( )- The covariation method has therefore similarities with a Bayesian estimation, but
is not embedded in a maximum likelihood context, since the stochastic element is not modelled

( )-

The goodness of fit of each prediction is quantified by the relative error (RE). The mean relative
error (MRE) quantifies the overall model performance. RE corresponds to the sum of the absolute
differences between observed and predicted values, divided by the predicted values. Contrarily to
the loss function, the MRE does not take into consideration the weights of the different data
( )- MRE values can have values from 0 to infinity, with 0 value meaning that
predictions match data exactly.

DEB theory: model outputs and applications.
In complement of the estimated DEB parameters (Table 0.1), several compound parameters can be
calculated to further describe species physiological traits (some examples are given in Table 3.3 in

or in Table 1 in ). This makes DEB applicable in an important
number of fields, that continue to increase thanks to an intensive work on model compilation,
validation and code sharing ( ).

DEB theory has been widely used in aquaculture, fisheries and biotechnology (i.e. growth rate
estimations, stock assessment) (

), reconstruction of feeding history ( ),

description of species traits under contrasting environmental conditions (
) or climate change conditions (
), understanding of species distribution (
), comparison of species metabolic properties (

), ecotoxicology (

), or for the adaptation of experimental designs

( )-

DEB model equations also provide life-history information for given environmental conditions, which
makes DEB theory appropriate to study population dynamics (growth, reproduction mortality), that
can be upscaled at the community or ecosystem levels by assuming body-size relationships or
matrix population models ( ).
Symmetrically, the DEB model can be downscaled to study sub-organismal processes, such as
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studying the impact of toxic compounds or damaging agents on these processes, using the principle
of Synthetizing Units ( ).

1.2.4 Modelling the realised niche

Principle and relation to niche theory.
Species Distribution Modelling (SDM) is also known as ecological niche modelling, habitat suitability
modelling or climate envelope modelling ( , reviewed in )- The
acronym SDM is the most frequently used term in ecological modelling when referring to correlative
models, that aims at predicting the distribution of a species ( )-

and however distinguish SDM from ecological niche models (ENM), with the
latter rather described as correlative models based on ecological niche theory, that provide an
approximation of the species niche by forecasting the environmental conditions that are suitable for
a species to survive or reproduce, rather than to the species distribution by itself. Considering the
lack of consensus terminology ( ), the term SDM refers in this manuscript to an
ecological niche model that helps representing species realised niche.

SDM is based on a statistical relationship between occurrence records and environmental data (

). Environmental conditions at the location
of available presence-only (or presence-absence) data are extracted to generate a matrix used to
build the SDM (Fig. 0.11). The complexity of the relationship between occurrence records and
environmental conditions is conditioned by the chosen mathematical representation of the SDM (i.e.
the model algorithm: linear or polynomial relationships, classification trees, entropy minimisation)
(Fig. 0.11) ( ). Model outputs that represent the probability
distribution of the species are projected on a geographic and/or climatic/environmental space to
identify areas where the environment fulfills the required environmental conditions ( ).

Associated to prediction maps, several model outputs can be generated by SDMs: partial
dependence plots, that describe how the range of values of each environmental descriptor is
associated to model predicted suitability; descriptors contribution to the model or interactions
between these descriptors within the model (see examples in ).
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Figure 0.11. General principle underlying the construction of a Species Distribution Model (SDM) that
determines the correlation between occurrence records (presence/absence) using a set of environmental
descriptors. The chosen algorithm (black arrow) can be chosen to integrate more or less complex relationships
between data and environment. SDM output is a map that provides the probability of the species to be
distributed in the area (0: non suitable; 1: highly suitable).

A short history of the development of correlative approaches.
Understanding species distribution has long been a major issue in ecology (

), and before using modelling approaches, many pioneering works aimed at
explaining species distribution patterns as a response to environmental factors with experiments and
observations ( )- In the 1990s,
predictive habitat distribution models were first introduced as efficient tools to test for
biogeographical hypotheses, improve information provided by atlases, set up conservation priorities
or assess the impact of environmental changes on species distribution (reviewed in

). These models were initially based on simple algorithms, describing processes
with empirical or static approaches. More complex methods (e.g. individual-based, stochastic forest
path models,...) with new algorithms were progressively developed to push forward these theoretical

limitations ( ). This development
increased in parallel with the rise of new powerful statistical techniques (e.g. Bayesian approaches)
and the improvement of Geographic Information Systems (GIS) ( )-

Methodological works have consequently flourished in the literature with topics such as model
verification, evaluation, calibration, and sensitivity that took the lead in study titles (

)-
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More recently, following the development of computer sciences and calculation performances,
‘machine-learning’ approaches have been developed ( ).
They were proved highly powerful to accurately model more complex relationships between
occurrences and environmental conditions (

), and can be enriched by more information such as species dispersal abilities or inter-

specific interactions (see section 1.2.6 ; ).

Applications.

SDM is widely used in various fields of ecology, from conservation, biogeography, and
palaeoecology, to global change biology ( ). SDM has already been applied for several

aims such as predicting the potential of alien species to invade new environments (
), exploring speciation mechanisms

( ), testing evolution hypotheses (

) or discovering new species ( ), delimiting species
distribution ( ), assessing the impact of land cover change
( ) or environmental shifts on species’ distribution (

), guiding the reintroduction of endangered species (

) or supporting diverse conservation planning, decisions or
strategies such as providing a frame to observe and simulate the consequences of such decisions
( ) or guiding field survey to find populations
of known species ( ). Recent and innovative developments
include the application of 3-D approaches to marine pelagic case studies (

), the integration of high resolution oceanographic data with SDM
( ) or the coupling of SDM with extra knowledge or other models (such as
mechanistic and/or dispersal models, see section 1.2.6 for further details). Stack-SDMs and Joint-
SDMs constitute an important step towards estimating species richness by stacking several SDM
predictions of different species and spatially aligning the cells with presence-absence, competition or
interaction matrices to describe communities composition in space (

)-
1.2.5 Modelling dispersal vectors and biogeographic barriers: Lagrangian models

Species distribution patterns do not only depend on abiotic conditions and biotic interactions, they
are also determined by the possibility of adult individuals and propagules to access and settle in
suitable areas ( ). Evaluating the
connectivity between these areas has therefore important implications for the study of species
distribution and population dynamics. It can be defined as the spatial movement of individuals, gene
flow or transfer of information between individuals ( )- Connectivity is important in
marine environments, where oceanographic features such as currents, eddies, marine fronts, up
and downwellings, play a crucial role in population structuring ( ). These
oceanographic features strongly complexify distribution patterns and studying the link between
species biogeography, spatial distances, genetic differentiation or population structures becomes
irrelevant without any complete analysis of species dispersal fluxes ( )-

Physical oceanography includes the study of several processes, widening from small scale water
turbulence to global climate changes ( ). The study of water movement constitutes a
relevant approach to the analysis of larval dispersal, which is difficult to directly observe or measure
in the water column, given that larvae are generally small compared to the vast ocean scale and that
dispersal can sometimes occur during long periods ( ).
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The use of transport models has been widely applied in several contexts, such as the definition of
connectivity networks that can be helpful for the definition of marine protected areas (
), the conservation of coral reefs

( ), the sustainability of fisheries (
), the spread of invasive species ( ) or aquaculture parasites
( ), the identification of barriers to larval dispersal (

) and more recently the tracking of plastic debris (
)-

Among transport models, the Lagrangian approach aims at following a particle from an initial
position and along its entire trajectory ( ). Such models are the combination of (1) an
oceanographic model, that takes into consideration bathymetry, water current direction and speed,
tidal motion, water stratification... in relation with atmospheric forcing (temperatures, winds,
atmospheric pressure) ( ) and (2) biological
properties of the dispersed individual such as size, development rate, buoyancy properties, ability to
swim or orientate, or behaviour in the water column (e.g. nycthemeral movement to escape
predation) ( ).

1.2.6 Integrated approaches

Principle and motivations

There is a strong trend for developing new methods to improve the ability of models to describe
species distribution. The integration/coupling of several methods has been long recognized as a
promising approach to improve model performance and gain in modelling capabilities and analytical

power ( )- Indeed, integrated models are more efficient as they
can represent a complex system using several accurate and precise submodels (
) which can be totally merged ( ).

Review of the different applications.

Integrated models have been developed in different fields: engineering, environmental science,
microbiology, oceanography, demography, epidemiology ( :

), economics/management, health science (
), in order to answer to contrasted objectives.

In ecology, there is also a broad range of applications: (1) merging SDM with models that
dynamically describe landscapes has shown better realism and better predictive performance
compared to traditional SDMs ( ), as the equilibrium
between occurrences and environmental conditions is dynamically updated ( )- (2)
Close to these, Eulerian-Lagrangian approaches in oceanography can be coupled with
biogeochemical models to understand spatial patterns and tracers dynamics in moving fluids
( ), or to physiological models to simulate the growth and survival of organisms
while they are drifting or migrating ( )- (3)
Adding a dispersal information to SDMs can also improve species potential habitat predictions, as
the environmental information is complemented by dispersal matrices characterising areas that are
suitable for colonization ( ). (4)
Integrating population dynamics information (e.g. carrying capacity of the habitat, mean survival or
fecundity rates of each stage class, population connectivity) strongly improves the ability of SDMs to

assess species potential distribution ( )in
spatially or climatically contrasting areas ( )-
(5) SDMs can also be linked to phylogenetic analyses, to analyse species distribution in link with
evolutionary connectivity ( ) or (6) to biotic

39



INTRODUCTION

interactions, to improve process-based understanding ( )orto
better characterise the behaviour of a species within its community in future environmental
conditions ( ). (7) A last example is

the combination of SDMs with physiological information (e.g. using a mechanistic model) that was
proved efficient to improve predictions compared to simple correlative SDMs (

). Whereas SDMs explain the statistical
correlation between occurrence records and habitat suitability ( ) and
assess the main ecological drivers of species distribution ( ),
they are limited to a static description of the species distribution, and cannot accurately perform in
non-equilibrium states, which limits their use for future projections (

). Integrating physiological information enables to explicitly include processes in
the analysis, offering the opportunity to describe the process-based causes of the species
distribution ( ), even in non-equilibrium states

( )-

Overall, evidence is accumulating that species’ responses to climate changes are best predicted by
modelling the interaction of physiological limits, biotic processes and the effects of dispersal-

limitation ( ). Combining simple
model results with information from experiments or observed functional traits facilitates interpretation
and strengthen conclusions ( ).
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2. THE SOUTHERN OCEAN AS AN APPLICATION FRAMEWORK
2.1 The Southern Ocean

Oceanographic features.

The Southern Ocean (SO) here defined as waters south of 45°S latitude (Ereiizke 2014), covers
8% of the world ocean surface (Barnes and Peck 2008) and plays a crucial role in the global ocean
circulation (Schlosser et al. 1991, Doney and Hecht 2002). Huge water masses are put into
movement due to contrasts between water densities (shifts in temperature and salinity values),
playing a key role in the physico-chemical conditions of the whole world ocean, by connecting
water masses all together (i.e. the ‘thermohaline circulation®) (\Wunsch 2002, Jacobs 2004, Fig.
0.12).

Figure 0.12. Spilhaus projection representing the Southern Ocean compared to all other oceans. The global
thermohaline circulation is represented by red arrows for upper-layer flows (surface water currents) and blue
arrows for lower-layer flows (deep water currents). The overturning of this ‘conveyor belt’ lasts between
1,000 and 2,000 years (Doos et al. 2012). Figure from Meredith (2019).

The SO is strongly structured by a major eastward flowing current, the Antarctic Circumpolar

Current (ACC) that flows at =130.10° m®s on average (Rintoul et al. 2001, Fig. 0.13). The ACC
reaches the highest width in the Atlantic sector (over 1,000 km) and is narrowed in the region of
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the Drake Passage, between South America and the Western Antarctic Peninsula ( ).
The ACC is associated with circumpolar marine fronts, separated by sharp changes in water
densities, among which the Polar Front and the Sub-Antarctic Front are the strongest (

). The Polar Front separates the northern and the southern parts of the
ACC, and therefore represents a significant biogeographical barrier to the dispersal of Antarctic

marine benthic faunas northward ( ). The ACC
simultaneously promotes the eastward dispersal of marine organisms (plankton larvae and
propagules) around Antarctica ( ).

Close to the Antarctic coasts, at about 60-65°S, the Antarctic divergence marks a rupture between
the ACC and a westward coastal current, and corresponds to an area where deep waters, less
salty but richer in nutrients, upwell to the surface ( )- In the embayments of the
Weddell and Ross seas are found cyclonic gyres that also have a strong influence on deep water
properties and a substantial role in atmospheric interactions (

, Fig. 0.13).

PACIFIC
OCEAN

3.06 |

Figure 0.13. Main currents and marine fronts of the Southern Ocean system. The Antarctic Circumpolar
Current flows eastward in the blue area, contained between the Sub-Antarctic Front in the north and the
Antarctic Divergence in the south. Modified from https://geographyeducation.org/2017/01/07/the-worlds-
newest-official-ocean/ (accessed January 2020)

Bathymetry.
Similarly to other oceans, the SO is dominated by deep-sea habitats (> 3,000m depth) but
Antarctica contrasts with other continents by a deeper continental shelf (averaging 400-900 m
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depth) in comparison with other continental shelves (200 m on average) (Uri et al. 1992). The
deepening of the Antarctic continental shelf is mainly explained by glacial isostasy: the continental
shelf subsides due to the pressure exerted by ice loads on top of the Antarctic continent (average
ice thickness of 2,100 m) and the lithosphere gets deformed (Okuno et al. 2012).

2.2 Biodiversity of the Southern Ocean

Biogeographic constraints, past isolation and species endemicity.

The geographic isolation of the Antarctic continental shelf fauna, along with the specific
environmental conditions of the SO have led to a substantial proportion of endemic taxa (Clarke et
al. 2005, Brandt and Gutt 2011), with levels reaching between 50 and 80% of shelf communities
(Griffiths et al. 2009). Endemism is strongly varying according to SO regions and levels are
comparable to other large and isolated regions such as New Zealand (Griffiths et al. 2009).

The SO is also characterised by a substantial species richness (Fig. 0.14), higher than in the Arctic
for example (Gray 2001), due to the broader area that covers the SO (Dayton 1990), and a higher
number of habitats and biogeographic provinces (Rosenzweig 1995). This higher species richness
is also explained by the isolation of the Antarctic continent 20 million years ago (Crame 2000) that
favoured allopatric speciation events (Gonzalez-Wevar et al. 2012, Poulin et al. 2014, Gonzalez-
Wevar et al. 2018a) and by the many physical barriers present in the SO compared to the Arctic
(i.e. currents, depth, ice coverage, fronts, geomorphological features) (Gray 2001, Clarke et al.
2005, Venables et al. 2012). Finally, the combined impacts of long-term gradual cooling and past
glacial-interglacial cycles that occurred during the SO history have also led to diversification in
biogeographic regions (Gonzalez-Wevar et al. 2012, Strugnell et al. 2012, Fabri-Ruiz et al. 2020).
The SO marine communities are also characterised by the absence of some taxa (durophagous
species, barnacles, most cartilaginous fish) (Clarke and Johnston 2003, Clarke et al. 2004) that are
known in the fossil records of the SO, but that went extinct probably due to major cooling events
during the Cenozoic era (Griffiths et al. 2013, Crame 2018).

[

G N b et X g 7 ‘
Figure 0.14. Pictures of seafloor communities at Useful Island (Gerlache Strait, Western Antarctic
Peninsula), 15 m depth, March 2018. Rocky shallows to muddy substrate with gravels, with regular but
shallow iceberg disturbance. Left picture: high macroalgae coverage, purple sea stars Odontaster validus on
the left hand corner of the picture and white worm Parborlasia corrugatus on the bottom right corner. Right
picture: Some Nacella concinna limpets are also present on rocks. © B121 Expedition.
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Influence of environmental conditions on marine communities.

Spatial and temporal variabilities in marine community structure and diversity are mainly explained
by the influence of current speed, ice dynamics, sediment properties, and food availability (i.e.
chlorophyll-a concentration or sediment organic content) (
)- lce dynamics strongly influence marine species abundance (
), as iceberg scouring directly impacts benthic
communities down to 250 m depth (
). Moreover, sea-ice duration and extent along with glacier and ice shelves melting guide
variations in water mixed layer depth, light availability (
), modify wind impact on marine habitats ( ) and lead to
significant inputs of fresh water and sediment supplies (
) that fertilize water in nutrients (

)- These events lead to seasonal primary
production blooms that contrast with low energy systems that dominate the major part of the year
( )- Low temperatures below the 0°C threshold are also very frequent in coastal
habitats ( ) and explain the important physiological and
plasticity adaptations encountered in SO marine communities (see next paragraph), as observed
for marine species of higher latitudes ( ).

Physiological peculiarities of Southern Ocean organisms.
Southern Ocean species are characterised by a metabolism with a low protein production, as low
temperatures induce increased synthesis costs (

). This leads to slower larval development and
growth rates ( ), between 4 to 18 times slower than tropical water
counterparts ( ), which induces longer lifespans and generation times (

)- Another novel adaptation to the cold is the production of

antigel proteins observed in certain fish species ( ). As SO
species are highly adapted to these cold conditions, their ability to acclimate to elevated
temperatures is often poor compared to marine groups elsewhere ( ), with most of
the Antarctic marine species having suitable temperature envelopes between 5 to 12°C above the
minimum sea temperature of -2°C ( ).
Due to low and seasonal food availability, most of the SO species have also adapted their mode of
acquisition and allocation of energy according to food availability ( )-
Some species were also shown to have a substantial trophic plasticity and were proved capable of
modifying the range of consumed prey according to environmental or community shifts (

).

Reproduction.

Southern Ocean species present two reproductive behaviours that mainly differ in terms of nutrition
and dispersal strategy ( ). Broadcast spawners (that disperse eggs in the water
column) produce eggs that are generally 2 to 5 times bigger than those of species of lower latitude
but in less important number (

)- This implies a greater reserve load enabling either an increase survival if metamorphosis
occurs quickly, or the capacity to drift over periods of several months in order to coordinate their
settlement close to the summer period when food is abundant (

). This long range dispersal of
pelagic larvae facilitates the geographic spreading of many species (
) and played a key role in the evolutionary history of SO
benthic invertebrates ( ).
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The second main reproductive strategy that characterises SO species is the brooding behaviour,
where youngs are carried by parents during a long period of time (

)- The unusually high number of SO benthic marine species with non-
pelagic development is explained by adaptation to current environmental conditions (protection of
the offspring) and the result of population selection, as a consequence of repetitions in population
fragmentation over time with isolated units forming new species (

). This results in a lower dispersal capacity of species that promotes geographic isolation of
populations between provinces ( ).

2.3 Climate change in the Southern Ocean

Observed and predicted environmental changes.
As in other parts of the world, the SO is facing environmental changes with important regional

contrasts ( )- While sea ice has
significantly been increasing in the Ross Sea both in concentration, extent (
) and duration ( ), the Western Antarctic Peninsula has shown

important temperature warming during the twentieth century, with particularly pronounced events
during winter, and observed a rise of +3°C in atmospheric temperatures since 1951 (
). Ocean warming has also

been observed, with a rise of water temperature of +0.17°C in depths between 700 m and 1,100 m
between the 1950s and the 1980s ( ). These warmings influence atmospheric variability
( ), and temperatures of water masses connected with the world ocean’s
deep seas (Fig. 0.12; ). It also resulted in increased surface water freshening
close to glacier meltwater sources ( ), led to changes in
duration and extent of ice cover since the 1970’s (

) and changes in glacier retreat ( ) (Fig.
0.15).

In the near future, meta-analyses of several global climate models are predicting continuing
atmospheric and oceanic warmings of several degrees (
). These climate models (CMIP5, Coupled Model Intercomparison
Project), are developed by the Intergovernmental Panel on Climate Change (IPCC) to predict water
temperature of the entire water column south of the Polar Front by the end of the century (
). They describe four RCP scenarios (Representative Concentration Pathways, 5th report
2013), that base the assumptions on different greenhouse gases emissions in the atmosphere in
coming decades, between moderate (RCP 4.5) to business-as-usual (RCP 8.5) scenarios (

).

Consequences of climate change on Southern Ocean marine communities.
Impacts on organisms of these cascading environmental changes have already been recognized

(see for a review) and include studies on fish (
), molluscs ( ),
echinoderms ( ), isopods (
), foraminifera, nematoda, amphipoda ( ) and sponges ( ).

Warming temperatures directly reduce species survival (

), as biological functions such as feeding, rasping, swimming
activities or even respiration ability, that are important for long-term survival are tightly constrained
by the elevation of temperature ( ). Moreover, ocean warming
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reduces oxygen availability for marine organisms, as oxygen concentration is lower in warmer

waters ( ). These changes affect species ability to
produce energy to maintain (in this context of increased metabolic rates) without using anaerobic
processes that induce toxic end products ( ).

In addition, the combined effect of altered sea ice dynamics and increased meltwater runoffs, with
wind patterns and oceanographic conditions sometimes have a unprecedented impacts on
plankton communities, with declining habitat suitability ( ), induced shifts in
dominating species within planktonic communities, likely to modify relative species abundances

( ),

consequently altering community assemblages ( ), functions
( ) and predator-prey interactions up in food-webs ( ). More
consequent impacts of global change are therefore expected in shallow marine communities and
coastal habitats ( ) compared
to deeper ones ( ).
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Figure 0.15. Mean ocean temperatures and overall glacier area changes, from 1945 to 2009 along the
Western Antarctic Peninsula. Mean in situ ocean temperature at 150 m depth (shaded) and glacier change
(points). For each of the 674 glaciers along the west coast, the point shows overall change between its
earliest and latest recorded ice-front position, relative to basin size (% relative change rate a™'). A similar
spatial pattern is found for changes in absolute area loss per glacier. The point symbols are layered in the
same order as in the legend (i.e. blue above red). Ocean circulation and water masses are also shown
schematically: CDW (Circumpolar Deep Water), Shelf Water (SW), BSW (Bransfield Strait Water), and ACC
(Antarctic Circumpolar Current). From .
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2.4 Science in the Southern Ocean

Contrarily to the northern pole, there are no permanent inhabitants nor native human populations in
Antarctica and the surrounding islands, but temporary visitors of research stations ruled by several
countries (Fig. 0.16).

The distribution of research stations strongly conditions our knowledge of marine life that is

contrasting between SO regions ( ). To cover these gaps, recent organisations
have promoted connectivity between international scientific programs, data accessibility and data
cross-checking ( ). These programs, such as the International Polar Year

(IPY 2007-2008), the Census of Antarctic Marine Life (CAML 2005-2010) or the Scientific
Committee on Antarctic Research, Evolution and Biodiversity in Antarctica (SCAR-EBA 2006-
2013) (non-exhaustive list), were often associated with numerous field campaigns that contributed
to considerably filling knowledge gaps, also increasing the sampling of the benthos and data
accessibility ( ). The recent development of underwater imagery in polar
environments also helped to significantly improve data collection ( ). For
several years, many programs have also settled long term high frequency observatories of marine
life to characterise marine biodiversity and monitor potential shifts in community structures through
time, in link with recorded environmental changes (e.g. Potter Cove in King George Island since
1993; MORSea in the Ross Sea since 1994; REVOLTA program in Adélie Land since 2009;
PROTEKER program in the Kerguelen Islands since 2011).

In addition to these programs, online platforms that gather samples and their associated metadata
were developed (RAMS: Registry of Antarctic Marine Species), OBIS (Ocean Biogeographic
Information System), GBIF (Global Biodiversity Information Facility), SCAR-MarBin (Scientific
Committee on Antarctic Research, Marine Biodiversity Information Network), which promoted free
and open access to raw biodiversity data, in order to improve the accuracy of SO biogeographic
and ecological studies ( ).

Despite this progress, the amount and quality of collected data are still limited in comparison to the

extent of the SO ( )- Sampling is concentrated nearby stations and generally
performed in summer, as it is challenging to sample during the austral winter due to ice coverage
( )- Experiments in research stations are possible and performed
since several decades ( ) but the
possibility to settle long term experiments is often constrained by the harsh conditions
(remoteness, cold, wind, ice coverage) ( ).

When studying species distribution, sampled data are restrained to presence-only records, without
the possibility to trust absence records given that they are not kept in the large biodiversity
databases and that the entire sampled are not always characterised on board, depending on the
expertise of the research team participating to the survey (

). Important uncertainties are finally present in these data platforms, as they consist in a
collection of several historical databases, and may contain inconsistencies between
georeferencing systems or taxonomic definitions through time ( ) or unchecked
identification errors while sampling, above all for deep species, more recently studied (

).
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2.5 Tourism in the Southern Ocean

In parallel to science, tourism has been developing rapidly in the Antarctic region (
). It began in the
1970’s with the first aviation journeys for commercial purposes ( ) to reach a number
of visitors of more than 55,400 people in 2018-2019 ( ). The more recent promotion of
cruise ships has provoked an exponential rise during the last few years, with a total number of
visitors between summers 2014-15 and 2018-19 shifting from 36,700 to 55,400 people (
: ) and predicted to importantly increase in the coming years

( )-

The combination of climate changes and tourism development in the SO region increases the risk
that non-native species will access and survive in the area (

), which would constitute one of the most critical global threats to native biodiversity (

). Species can be introduced by the release of ballast waters, the fouling on ship hulls, floating
anthropogenic debris, kelp rafts, or human visits, mainly from the Patagonian Peninsula, where
cruise ship departures are the most frequent (

). With the impressive
number of tourist visits, along with the scientific activity (4,000 scientists working in Antarctica
during the summer and 1,000 in winter; ) the arrival of propagules in
Antarctic communities is growing (

). Consequently, records of terrestrial exotic species in

Antarctica are increasing over recent decades ( ) including the invasive
grass Poa annua ( ), seeds of the toad
rush Juncus bufonius ( ), the invasive mosquito Trichocera maculipennis
( ), and several South-American invertebrates (e.g. insects, worms,
freshwater crustaceans; ). In marine habitats, alien

species have also been reported in shallow areas of the South Shetland Islands (e.g. decapods,
bivalves, macroalgae) and East Antarctica (i.e. bryozoans, hydrozoans, bivalves and tunicates)
( ) but also from
Sub-Antarctic waters and SO deep seas, such as anomuran king crabs (

).

To date, there is no evidence for any exotic marine species having established in Antarctica, due to

ecological and physiological constraints ( ). However, as climate keeps
warming, the potential for successful marine invasions and settlement into Antarctica is expected
to increase substantially ( ).

Consequences of such invasions on native marine communities will have severe impacts on
community assemblages, as observed in other regions of the world (shifts in competition, increase
of predation pressure, colonisation of associated parasites that may infect other species,

)- Although the effects of
invasive species are impossible to measure, the return of durophagous predators that became
extinct million years ago ( ) such
as decapods, chondrichthyans and teleosteans in Antarctic shallow waters is widely feared,
because they will fragilize benthic communities, modifying trophic relationships, and homogenizing
the Antarctic ecosystem ( ).
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2.6 Conservation of the Southern Ocean marine life

The Antarctic Treaty, signed in 1959 by a current number of 54 parties, regulates international
relations in link with Antarctica, with an ensemble of 15 articles that rule politics, war, access and
trade for all countries ( ). The treaty, which will end in 2048, is complemented
by the CCAMLR’s work (Commission for the Conservation of Antarctic Marine Living Resources).
CCAMLR was established by an international convention in 1982 (https://www.ccamlr.org). The
main aim of the commission is to manage marine communities in response to an increasing
commercial interest in Antarctic fisheries (such as krill and fish resources) since the past few
decades ( )- This management does not exclude harvesting but
agrees on the establishment of a set of conservation measures to carry out harvesting of marine
living resources in a sustainable manner by taking account of the effects of fishing on other
components of the ecosystem. The conservation of Antarctic marine life also includes the
establishement and monitoring of marine protected areas (MPASs)
(https://www.ccamlr.org/en/organisation/home-page, accessed November 2019) and the update of
a list of Vulnerable Marine Species and Ecosystems
(https://www.ccamlr.org/en/compliance/vulnerable-marine-ecosystems-vmes;

).

The convention area ruled by the CCAMLR represents around 10% of the total surface of Earth’s
oceans and almost 70% of the SO, with a surface of more than 35 million km? (Fig. 0.17). Among
the CCAMLR managed area, two MPAs have been established so far (Fig. 0.17): the South
Orkney Island (in 2009) and the Ross Sea region (in 2016). In complement, several countries have
declared national MPAs around sub-Antarctic islands outside of CCAMLR jurisdiction: Heard and
McDonald Islands (in 2002, extended in 2014; Australia), Crozet and Kerguelen Islands (in 2006,
extended in 2017; France), South Georgia and South Sandwich Islands (in 2012, United Kingdom)
and Prince Edward Islands (in 2013, South Africa). In total, about 11.98% of the SO is protected
with MPAs, with 4.61% being encompassed by no-take areas ( ) and negotiations
are in process to extend protection to East Antarctica, to the Weddell Sea and the Antarctic
Peninsula regions (Fig. 0.17).

Modelling approaches are broadly used for designing management decisions. Among them, SDMs
are widely applied to define niche occupation of vulnerable species that are a priority to
conservation (e.g. sea birds and mammals), to rank areas by importance of species richness or to

model catch and effort data ( ). The
software MARXAN ( ) is commonly used, as
an efficient and useful conservation planning software for the decision making process through the
identification of the most priority areas to be protected ( ). MARXAN is

fully adapted to solve complex solutions for seascapes or landscapes zoning (
) and its application for SO case studies consequently follows the popularity it has

gained in the other regions of the world ( ).
Constantly updated ( ), MARXAN is flexible to integrate different types of data,
such as SDM outputs ( ), but is highly sensitive to their initial calibration
( ). Food-web models and bioregion statistical clustering

approaches are also developed at local or broad scales (
). Population
dynamics models can also be used to define fisheries stocks ( ).
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Figure 0.17. Proposed and adopted MPAs, management areas, and fisheries in the CCAMLR area. CCAMLR
boundary indicated by thick black line with management area delineations labelled numerically. CCAMLR’s
adopted MPAs and MPA proposals from 2012 to 2018, including the South Orkney Islands Southern Shelf
MPA (yellow), Ross Sea MPA (blue), East Antarctic (violet), Weddell Sea (purple) and the western Antarctic
Peninsula (orange). Total Allowable Catch (TAC) for toothfish (blue) and krill (red) in the CCAMLR
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underutilization. Shaded circles around subantarctic islands reflect delineated exclusive economic zone
boundaries generated prior to the signing of the CCAMLR Convention. Shaded squares indicate toothfish
management areas around South Georgia and South Sandwich Islands. Figure does not include subantarctic
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3. MODELLING THE ECOLOGICAL NICHES OF ANTARCTIC

MARINE LIFE
3.1 State of the art

Everywhere on Earth, the observed impact of environmental changes on terrestrial and marine life
is significant, and predictions of the increase of these changes and associated consequences are
even further pessimistic. Scientific researches focussing on the consequences of these changes
on living populations are consequently growing. Among regions and impacted ecosystems, the SO
has encountered impressive environmental changes over the past fifty years that are also
expected to increase in the future. In this context, and following the opportunity of technological
improvements to access polar environments, research activities in Antarctica have substantially
increased.

Modelling approaches constitute one essential tool nowadays in research to help understand
ecological processes by synthetically representing complex systems. Methods and applications
have been widely published worldwide. Models integrate data, imply experiments to validate
hypotheses and perform predictive simulations. Applying ecological models to the SO has regularly
been done for many years ( ). Physiological models were used, with the
pioneer studies applied to pelagic species: the Antarctic krill Euphausia superba (

), and the salp Salpa thompsoni ( ) in order to
investigate the effect of environmental changes on individual metabolic activity. These works were
rapidly followed by the first application to benthic species, with the work of that
built a DEB model for the Antarctic sea star Odontaster validus, to describe its life cycle and better
understand its adaptations to environmental conditions. More recently, DEB has been also applied
to SO marine mammals ( ) for evaluating population densities and
structure. Regarding correlative approaches, models were mainly used in studies on commercial
species such as pelagic fish or crustaceans (

), top predators (

) or bottom fisheries ( ), phytoplankton ( ), sea
birds ( ) and sea mammals (

), by sometimes gathering occurrence records by GPS trackers fixed on animals’ backs
( )- The development of SDMs for marine invertebrate studies is more recent

( ), with the analyses of the potential distribution of sea urchins (

), sea stars ( ), crinoids (

), cephalopods ( ) or barnacles ( )- Finally, dispersal
models have been used to localize primary production hot spots ( ), study

species or larvae spatial connectivity (
) or study the formation or retention of plankton, krill swarms in the context
of fisheries sustainability or efficiency (
). Often, these models are combined
with phylogeography studies ( ) or with species ecological or physiological
information to fill knowledge gaps ( )-

All these works have faced methological challenges when implementing models, including the poor
quality and availability of environmental descriptors that reduce the capacity to accurately integrate
the variability and complexity of natural systems; the spatial aggregation and limited number of
occurrence records that bias model predictions, influence the performance of model evaluation and
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reduce the quality of the description of the species occupied space; the choice of the boundaries of
the projection area, balanced between research objectives and data availability; or data gaps that
limit the implementation of physiological models or the biological properties of the lagrangian
approaches... Models should be also adapted to the physiological peculiarities of SO marine
species (low adaptation to temperature increase, brooding reproductive behaviour with parental
care or broadcaster species that disperse larvae that can drift in the water column during several
months...). These points are typical of the broad-scale SO region and it is necessary to conduct
some analyses to evaluate their real influence on ecological models, which has never been done
so far.

3.2 Research objectives and motivations

In this context, this PhD thesis aims at analysing the potential and limits of ecological models
applied to SO case studies. The BAM diagram scheme, presented earlier, is used to structure our
study in several steps. Thus, using marine benthic species examples, we evaluate models that
represent species fundamental niche (physiological, DEB models), models that study species
realised niche (correlative models, SDMs) and models that focus on dispersal capacities
(lagrangian approaches).

The first objective is to assess the quality of each of these ecological models, generated with such
datasets, and to analyse their limits. Some correction methods, inspired from methods used in
other regions of the world, are proposed to improve the performance of models (i.e. improve model
evaluation procedures when using aggregated datasets, reduce model extrapolation, reduce the
influence of spatial aggregation on predictions,...) and to provide guidelines for model
implementation (choice of environmental descriptors, choice of SDM algorithm, cross-checking and
preparation of datasets,...).

The second objective is to test the performance of “integrated approaches” compared to “simple”
ones. These integrated approaches combine several types of information or models (e.g.
combination of SDMs with physiological information, with dispersal capacities, with phylogenetic
analyses...). Integrated approaches are widely used in other regions of the world and prove a
better performance to describe species occupied space and environmental preferences compared
to simple approaches. However, they have not been tested for SO case studies yet. This PhD
thesis proposes some analyses related to comparisons and integrations of SDMs and physiological
models (DEB) and SDMs combined with experimental data. All codes to generate these models
are provided for future applications.

The third objective of this study is, after dealing with these corrections and methodological
adaptations, to discuss about the capacities of ecological models applied to SO case studies and
the remaining limits. What can we learn from these models (ecologically-wise)? Can we accurately
represent the different parts of the species ecological niche? What is still uncertain? What should
be improved to generate more relevant models?

This PhD thesis is declined into four chapters that present an ensemble of peer-reviewed articles
submitted or published in international journals.
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CHAPTER 1 MECHANISTIC MODELS

This chapter focusses on the Dynamic Energy Budget (DEB) approach and studies
the capacity of DEB models to accurately describe the physiology and population dynamics
of Southern Ocean marine organisms.

*The first study used the example of the limpet species Nacella concinna (Strebel, 1908).
This species is known to have distinct intertidal and subtidal morphotypes that are
genetically similar but differ in morphology and physiology. This species case study was
used (1) to evaluate the potential of the DEB approach, and assess whether a DEB model
could be built separately for the intertidal and subtidal morphotypes, based on a field
experiment and data from the literature and (2) to analyse whether models were contrasting
enough to reflect the two morphotypes’ respective physiology and morphology.

*The second part of this chapter studied population dynamics modelling. Using an
Individual Based Modelling approach (IBM), DEB models can be upscaled at the population
level to simulate the response of populations to variations in food resources and
temperatures. The DEB-IBM approach was applied to an endemic sea urchin of the
Kerguelen Plateau, Abatus cordatus (Verrill, 1876) and modelled population changes
through time, according to changes in food and temperature conditions, under present and
future scenarios.

*A last study, presented in the appendix section, used DEB modelling for better
understanding the role of low temperature and seasonal food availability conditions on the
life cycle and reproduction strategy of an Antarctic bivalve, Laternula elliptica (King, 1832).
The DEB model was also used to describe the effect of varying environmental conditions on
energy allocation, using an available time-series dataset.

*Guillaumot C, Saucéde T, Morley SA, Augustine S, Danis B and Kooijman S (2020). Can DEB
models infer metabolic differences between intertidal and subtidal morphotypes of the Antarctic
limpet Nacella concinna (Strebel, 1908)? Ecological Modelling. 430. 109088.

*Arnould-Pétré M, Guillaumot C, Danis B, Féral J-P and Saucéde T (2020). Individual-based model
of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus
cordatus, under changing environmental conditions. Ecological Modelling. 440, 109352.

*[Appendix section] Aguera A, Ahn I-Y, Guillaumot C and Danis B (2017). A Dynamic Energy

Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism.
PLOS One. 12(8), e0183848.
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Can DEB models infer metabolic differences between intertidal
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Abstract
Studying the influence of changing environmental conditions on Antarctic marine benthic
invertebrates is strongly constrained by limited access to the region, which poses
difficulties to performing long-term experimental studies. Ecological modelling has been
increasingly used as a potential alternative to assess the impact of such changes on
species distribution or physiological performance.
Among ecological models, the Dynamic Energy Budget (DEB) approach represents each
individual through four energetic compartments (i.e. reserve, structure, maturation and
reproduction) from which energy is allocated in contrasting proportions according to
different life stages and to two forcing environmental factors (food resources and
temperature).
In this study, the example of an abundant coastal limpet, Nacella concinna (Strebel
1908), was studied. The species is known to have intertidal and subtidal morphotypes,
genetically similar but physiologically and morphologically contrasting.
The objectives of this paper are (1) to evaluate the potential of the DEB approach, and
assess whether a DEB model can be separately built for the intertidal and subtidal
morphotypes, based on a field experiment and data from literature and (2) to analyse
whether models are contrasting enough to reflect the known physiological and
morphological differences between the morphotypes.
We found only minor differences in temperature-corrected parameter values between
both populations, meaning that the observed differences can be only explained by
differences in environmental conditions (i.e. DEB considered variables, food resources
and temperature, but also other variables not considered by DEB). Despite the known
morphological difference between the populations, the difference in shape coefficients
was small.
This study shows that even with the amount of data so far available in the literature, DEB
models can already be applied to some Southern Ocean case studies, but, more data
are required to accurately model the physiological and morphological differences
between individuals.

Keywords

Ecological modelling, Southern Ocean, marine benthic species, model relevance, model
accuracy
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1. INTRODUCTION

Antarctic regions have faced strong environmental change since the twentieth century (recently

reviewed in ), with a strong warming in some regions, such as in the Western
Antarctic Peninsula ( ), leading to
important shifts in sea ice regimes and seasonality, including the duration and extent of sea ice
cover ( ). The increase in the rate

of glacier melting has been reported as a cause of important disturbance of the physical (currents,
salinities) and biological environment (phytoplankton blooms, communities) (

). Such changes have a direct impact on marine
communities and particularly in coastal marine areas (both intertidal and subtidal)(

), which are places of complex land-sea interface and ecological processes.
The multiple effects of ice retreat and meltwater on nearshore marine habitats have contributed to
the expansion of intertidal zones and habitat alteration due to seawater freshening and
stratification, shifting near-shore sedimentation, changes in water properties and current dynamics.

However, studying Antarctic marine life is challenging. Not only do the environmental conditions
make the region difficult to access and work in, but substantial financial and technical constraints
make field sampling and experiments difficult to organise (e.g. cold, ice, duration of daylight;

). However, conducting
physiological studies of Antarctic marine organisms has become urgent as we aim to assess their
sensitivity and potential response (resilience, distribution shift or local extinction) to environmental
change, a key issue for the conservation of marine life and special protected areas (

https://www.ccamlr.org/en/organisation/home-page).

An alternative to completing studies in these environments is the use of modelling approaches.
Ecological modelling is used to describe species distribution and assess their climate envelopes

( ), study species tolerances to toxicants and to environmental
change ( ) and model species
energetic performance ( ). Among these ecological models,
the Dynamic Energy Budget (DEB) theory ( ) has become increasingly popular.

DEB parameters have been so far estimated for more than 2,000 animal species and collected in
the ‘Add-my-Pet’ (AmP) collection (http://www.bio.vu.nl/thb/deb/deblab/add my pet/). It constitutes
one of the most powerful approaches to characterise individual metabolic performances (

) and can be calibrated for data-poor animals
( ). DEB models rely on thermodynamic concepts ( ) and study
how energy flows are driven within individuals during their entire life cycle ( ). Each
individual is divided into four energetic compartments: reserve E, structure V, maturation Ex and
reproduction Er from which the energy is allocated in contrasting proportions according to the
different life stages and two forcing environmental factors (i.e. food resources and temperature).
DEB models can be built with data coming from experiments and/or literature, to quantify age,
length, weight of the different life stages and provide information on reproduction, growth and
metabolic rates to calibrate the model ( ).

Application of DEB models to Antarctic species is increasing. They can be easily extracted from
the AmP collection, using the software AmPtool. The Matlab command “select_eco(‘ecozone’,
{'MS’})” presently gives a list of 37 species, where MS stands for “Marine, Southern Ocean”.
Command “select_eco(‘ecozone’, {TS’})” gives another 3 species for the terrestrial Antarctic
environment, among which the mite Alaskozetes antarcticus. Among the most common and well
studied Southern Ocean benthic invertebrates are the sea star Odontaster validus (
), the bivalve Laternula elliptica ( ), the bivalve Adamussium colbecki
) and the sea urchins Sterechinus neumayeri ( )
and Abatus cordatus ( ). DEB models have also been
developed for some pelagic species such as the Antarctic krill Euphausia superba, the salp Salpa
thompsoni ( ) and are under development for
marine mammals such as the elephant seal Mirounga leonina ( ).
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Antarctic species have a range of notable physiological traits when compared to their temperate
counterparts. Among others, they are physiologically adapted to constant cold temperatures (
), shifting day length also imposes a marked seasonal

feeding behaviour ( ), and they
exhibit slow metabolic and growth rates, explaining their longer lifespans and higher longevities
compared to species in other regions ( ).

The limpet Nacella concinna (Strebel, 1908) (Mollusca: Patellogastropoda) is a common and
abundant gastropod of shallow marine benthic communities. Distributed all along the Western
Antarctic Peninsula ( , phylogeny recently reviewed in

), it has widely been studied for decades (

). The limpet is found from intertidal rocky shores down to over 100

meters depth ( )- It has a 2-5 cm long shell (Fig. 1.1), that grows only a
few millimeters a year with a seasonal pattern. It is sexually mature after four to six years and has
a life span of up to 10 years ( ). The limpet mainly
feeds on microphytobenthos and microalgae ( ). It spawns free-
swimming planktonic larvae once a year, when water temperature rises in the austral summer
( ). Larvae drift in the water column and
metamorphose after more than two months ( )-

N. concinna does not have a homing behaviour (
) and intertidal individuals can either migrate to subtidal areas in
winter to escape freezing air temperatures that may drop below -20°C (
) or shelter in rock cracks and crevices in the intertidal area. In the latter case,
they do not become dormant but have a limited access to microphytobenthos, as recently
observed around Adelaide Island ( )-

Figure 1.1. Nacella concinna in apical view (a) and lateral view (b). Scale bar: 1 cm. Source: Q. Jossart,
B121 expedition.

Two morphotypes of N. concinna have been distinguished, an intertidal and a subtidal type, with
the intertidal type having a taller, heavier and thicker shell compared to the subtidal one that is
characterised by a lighter and flatter shell ( ). Initially,

and referred to these two morphotypes as the ‘polaris’ (intertidal) and
‘concinna’ types (below 4m depth). From that point, the potential genetic differentiation between
the two morphotypes has been investigated, some of the studies concluding an absence of genetic

distinction ( ) while contrarily,
reported significant differences based on inter-simple sequence repeat (ISSR) markers.
More recently, this last method was questioned ( ) and several studies using

different markers and populations (
) have concluded an absence of genetic differentiation between the two
morphotypes.

Apart from the absence of genetic differences, intertidal and subtidal populations strongly contrast
in morphology and physiology, which has been explained by the prevalence of habitat
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heterogeneity and strong environmental gradients along rocky shore habitats, a common feature
also observed in other gastropods ( ).
For instance, in N. concinna, the higher shell thickness observed in the shallow morphotype was
hypothesised to play a role in resistance against crushing pack ice (

). Intertidal morphotypes are further resistant to air exposure thanks to higher shells, bigger
inner volumes relative to their shell circumference, a combination that makes them more efficient
than subtidal individuals, able to store more water and oxygen, reducing desiccation risks and
delaying the metabolic switch to anaerobic fermentation ( )- The
subtidal morphotype has also proved to be less resistant to cold than the intertidal population
( ), due to extra production of mucus and stress proteins in intertidal morphotypes
( ) and due to diverse metabolic
processes that contrast between both populations (reviewed in ).

The development of ecological models enables precise models to be built, that highlight subtle
differences in parameters between ecologically similar or closely related species (

). The idea of building individual-
specific models for understanding of physiological processes is not new (

) and grew from the development of computational ecology that resulted in
the possibility of generating “individual-oriented” models (IOM’s) (

). The IOM theory relies on the principle that “no two biological organisms are
exactly alike, even when they have identical genes”. A group of organisms within a population can
have contrasting size or physiological performances according to, for example, food conditions or
competition. Modelling each individual, separately, therefore constitutes a powerful approach to
enhance the understanding of the entire community ( )-

In this study, due to the known morphological and physiological differences between the
morphotypes, we first separately built independent DEB models for the intertidal and subtidal
morphotypes of the limpet N. concinna, based on field experiment and literature data, to assess
the potential differences between the models. Secondly, we analyse whether the two model
outputs suggest contrasting physiologies between the morphotypes, using a method recently
developed in DEB theory, that tries to reduce differences in parameter values that are still
consistent with the data (Lika et al. 2020). Using this method -the augmented loss function- we try
to merge the information of the two species models into a single one. If DEB parameters of the two
species can be merged, it means that the physiological differences between these two species are
not strongly different.

These results finally help assess DEB model accuracy giving the amount of data available to build
the models in the context of Antarctic case studies and help evaluate which type of information is
necessary to gather in order to fill model gaps. Finally, the study evaluates if such models are
valuable for studying Southern Ocean organisms in the context of altered environments.

2. MATERIAL AND METHODS
2.1. DEB Model description

DEB models are based on an ensemble of rules that allocate energy flows to four main
compartments (reserve E, structure V, maturity En, reproduction Er) according to a set of priorities
and the level of complexity (i.e. maturity) gained by the organism through time (Fig. 1.2,

)- Maturity is treated as information, having mass nor energy. Food is first of all ingested and
assimilated (pa) and energetically stored into a reserve compartment (E). A fraction of the energy
that is mobilised from reserve, pc, is divided into two branches according to the ‘kappa-rule’: a part
of the energy contained in the reserve compartment (k. pc) is allocated to somatic maintenance
and structure growth, whereas the second part (1- k). pc contributes to maturity (before the
‘puberty’ threshold) or reproduction (after the ‘puberty’ threshold).

The energy is allocated within and in between these branches by the establishment of some
priorities, where somatic maintenance (pm) has priority over growth and maturity maintenance (p,)
has priority over maturity and reproduction. During its lifetime, the organism allocates energy to
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maturity which symbolizes its complexity and reaches some life stages at some defined thresholds

(E}’,, birth, when the organism is capable to feed; E’, metamorphosis; EP, puberty, when it can
reproduce). After reaching sexual maturity, the energy that was formerly allocated to maturity is
attributed to the reproduction buffer and the available energy is allocated to the development of
gametes.

Different types of DEB models have been developed and coded for parameter estimation, see
frequently updated https://github.com/add-my-pet/DEBtool M page ( )-
Here, the abj model was used for N. concinna. This model considers that growth acceleration
occurs between birth and metamorphosis ( ).

The DEB model is forced by food availability and temperature. Temperature acts on metabolic
rates following the Arrhenius principle (see for details). A
temperature correction factor is applied to each rate that takes into account the lower and higher
optimal boundaries of the individual tolerance range. Food available for ingestion is represented by
the functional response f comprised between [0,1], where 0 is starvation condition and 1 very
abundant food.

Food X
Pa Figure 1.2. Schematic representation of
the standard DEB model, with energy
fluxes (arrows, in J.d') that connect the
four compartments (boxes). Energy enters

the organism as food (X), is assimilated at

Somatic maintenance

a rate of pa into the reserve compartment
(E). The mobilization rate pc, regulates the

d K.Pc (1-K). bc Maturity maintenance
"\\EM T energy leaving the reserve to cover somatic
= <l maintenance p, , structural growth p; ,
2 maturity maintenance p; , maturity pg
Pr (sexually immature individuals) and
Matrity By reproduction pr (mature individuals). k. pc

is the proportion of the mobilized energy
diverted to pm and pe, while the remaining
part (1- k). pc is used for pJ and pr.

Structure V

[ Reproduction buffer E J

|

gonads

The parameters of the DEB model can be estimated from multiple data on the eco-physiology of a
species. The ones studied in this work are presented in Table 1.1.
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Table 1.1. List of the main DEB parameters, definition and units.

Parameters Description Units

Primary DEB parameters

{pam} surface-area-specific maximum assimilation rate J.om2d’

»
K

[pm]
[Eq]

SG

Om

energy conductance (velocity) cm.d’

fraction of mobilised reserve allocated to soma -

specific volume-linked somatic maintenance rate: pm /V J.cm3d"
volume-specic costs of structure; better replaced by [Ev]= ks, where Kg is the fraction of growth J.cm?
energy fixed in structure: [Ev]=[Eg]

maturity at birth J
maturity at metamorphosis J
maturity at puberty J
Weibull ageing acceleration for animals d?

Gompertz stress coefficient -

shape (morph) coefficient: L=Lw -

OM _larvae shape (morph) coefficient of the larvae -

Other parameters

z zoom factor to compare body sizes inter-specifically; z= 1 for Lm =1 cm -

SM Acceleration factor at f =1, it is equal to the ratio of structural length at metamorphosis and birth. -

[Em] [Em]= {pam}/v ; ratio of specific assimilation over energy conductance J.cm®
2.2. Data collection and DEB calibration
DEB models were calibrated using zero-variate data (single data points at defined life stages, such
as length or weight at sexual maturity, number of eggs produced per female) and uni-variate data
(relationships between two variables such as oxygen consumption and temperature, length~weight
relationship, weight or size~time relationships)( ). Data that
were collected from the literature (Table 1.2), paying attention to the different taxonomic names
adopted for the species through time (see

http://www.marinespecies.org/aphia.php?p=taxdetails&id=197296, accessed December 2018); to
the sampling area to enable the two morphotypes to be distinguished (intertidal/subtidal) and to the
environmental conditions under which each dataset was recorded (available food resources and
temperature).

Data from the literature were supplemented by experiments led by S. Morley at Rothera Station
(Adelaide Island, Western Antarctic Peninsula) in January-February 2018 (details in Appendix 1.1).
Individual shells were brought back to Europe and processed with imagery to collect growth ring
data (Appendix 1.2).

Some data are shared between the intertidal and subtidal morphotypes due to a lack of information
on the morphotypes physiology in the literature (Table 1.2). The characteristics of the first
developmental life stage, when the larvae become able to feed (i.e. age, length and weight at birth)
and the pace of development (i.e. age at puberty, maximal observed age) are assumed to be
identical.
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Each data set was characterised by the corresponding temperature and food resources present in
the field. Food resources were represented in the model by a scaled functional response f
constrained between 0 and 1, with 0 meaning no food availability and 1 maximal food abundance. f
parameters were differentiated between the different stations along with temperatures. Food is
very abundant in the field for the limpet and f parameters were therefore kept fixed with values =
0.9. Food availability from the Rothera Station was described by pictures taken in the field and was
estimated at f=1. Signy and Anvers Islands f was set at 0.9 because physiological traits (growth
rate, maximal size) are very close (but slightly lower) than Rothera’s observations, but no precise
information is available for food conditions in the different publications for these stations.

Table 1.2. Zero and uni-variate data used to build the intertidal and subtidal models. AFDW stands for ‘Ash
Free Dry Weight'.

INTERTIDAL GROUP SUBTIDAL GROUP
Zero-variate data, (unit) Value Reference Value Reference
Age at birth ab (days) 10 Same as intertidal
Age at puberty ap (years) 4 Same as intertidal
Maximal observed age am (years) 14 Same as intertidal
Length at birth Lb (cm) 0.0228 Same as intertidal
Length at puberty Lp (cm) 1.54 S. Morley experiment (2018) | 1.59
Maximal observed shell length Li (cm) 5.8* 5.52** S. Morley experiment (2018)
Wet weight of the egg WwO (g) 5.8.1076%** Same as intertidal
AFDW at puberty Wdp (g) 0.0236 0.057 S. Morley experiment (2018)
Uni-variate data, (unit) Reference Reference
Length ~ AFDW , Signy Island , Signy Island
LWd_signy (cm, g)
Length ~ AFDW S. Morley experiment (2018) S. Morley experiment (2018)
LWd (cm, g)
Length ~ Gonado somatic index S. Morley experiment (2018) S. Morley experiment (2018)
LGSI (cm, -)
Length ~ Oxygen consumption S. Morley experiment (2018) S. Morley experiment (2018)
LJO (cm, umol/h)
Temperature ~ Oxygen consumption
TJO (K, uL/n)
Time ~ Length S. Morley experiment (2018)**** S. Morley experiment (2018)****
tL (d, cm)

* Max sized collected individual on the field during Belgica121 expedition (

> indicates an observed value of 5.8 cm and S. Morley measurements indicate a ratio between intertidal/subtidal
lengths of the morphotypes of 1.05. The unknown subtidal Li value was calculated as 5.8/1.05= 5.52 cm.

***  based on egg diameter of 221 ym

*** imagery and growth ring measurements, see Appendix 1.2

2.3. DEB parameter estimation and goodness of fit

Sets of zero and uni-variate data, supplemented by pseudo-data were used to estimate the DEB
primary parameters. Pseudo-data are extra data coming from different taxa that help calibrate the
model estimation similarly to a prior element ( )- This procedure has similarities
with Bayesian estimation, but are not embedded in a maximum likelihood context, since the
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stochastic component is not modelled. Before parameter estimation, each data set can be
subjectively linked by a weight coefficient to quantify the realism of reducing variation in parameter
values. Selected weight coefficients are always selected small enough in order to hardly affect
parameter estimation if the information contained in the real data set is sufficient.

The DEB parameters estimation is done by simultaneously estimating each parameter using these
empirical and pseudo-data by minimizing a loss function, using the Nelder-Mead simplex method,
updated and explained in . The loss function that is minimized is

n oy Wi (dij—pij)2
=1 &j=1 nj d;2+p,2

where i scans datasets and j points in this dataset. djand pj are respectively the data and the

predictions and d; and p; their average values in set i. wj are the attributed coefficients, n is the
number of data sets, n; denotes the data in a dataset, n; the data in data-points.

The value of the loss function is evaluated for each parameter trial. The goodness of fit of each
prediction was quantified by the relative error (RE). The mean relative error (MRE) quantifies the
overall model performance. RE corresponds to the sum of the absolute differences between
observed and predicted values, divided by the predicted values. Contrarily to the loss function, the
MRE does not take into consideration the weights of the different data ( ). MRE
values can have values from 0 to infinity, with O value meaning that predictions match data exactly.

2.4. Merging parameters

The augmented loss function approach developed by is a new extension that
enables to compare small variations in parameter values between (close) species. The second
term (in bold) of the following equation is the new extension of the ‘symmetric bounded (sb) loss
function:

_yn oy Wi (di—pij)?2 N wivar(6y)
Feo = i=1 Z'—1 T2+ 7 2 k=1 2
I=1 n; d,%+p, mean(0y)

where w's are weights, d's data, p's predictions, 8's parameters, j scans data-points with a data-
set of n; points (n; = 1 is allowed), i scans the data-sets and k the parameters.

In this second term, when w=0, the parameter 6« between species are different, but when
increasing wg, the parameter 6« tends to be similar between species. Therefore, the augmented
loss function method uses this mathematical principle to spot potential differences between
parameters of different species. First, the set of DEB parameters are separately estimated for each
species and weight coefficients are set to zero. Then, for each parameter, the weight coefficient
will be step-wise increased, making the loss function shift as a result. If a maximal weight value is
reached without sharp changes in the loss function value along the weight increase, it means that
the parameter value has a minimum variance between species. Contrarily, if the loss function
value presents a sharp increase due to the change in weight coefficient, it means that the studied
parameter should present contrasting values between the related species.

By applying this method to the case study of an intertidal and subtidal morphotype of the limpet N.
concinna, we aim to evaluate whether there are any differences between both morphotypes
caused by differences in parameters, or whether these differences are explained only by
differences in environmental conditions (i.e. food resources and temperature). Initially, the sets of
parameters have been estimated separately for both morphotypes and all weight coefficients are
set to zero. By step-wise increasing the weight coefficient for a particular shared parameter, the
overall loss function may increase and a common merged DEB parameter is reached. If a common
value of the DEB parameter can be found without important increase in MRE or loss function
values, it means that the intertidal and subtidal morphotypes do not significantly differ for this
parameter. A similar procedure is applied for each DEB parameter separately and iteratively. In
order to have a quick idea of replicability in the results, the procedure was replicated five times,
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contrasting in different orders of DEB parameters merging (Appendix 1.3). The order of
permutation of merged parameters of these five replicates was chosen randomly among the 11!
possible solutions. Changes in MRE and loss function values at each weight modification were
reported and the predictions of the intertidal, subtidal and merged models were compared.

3. RESULTS
3.1. Parameters of DEB models

DEB predictions for the separate intertidal and subtidal models are accurate, with MRE values
lower than 0.2 (Table 1.3). Average MRE value of the AmP collection is close to 0.06. Relative
Errors are quite low, with the highest values obtained for length~GSI data (RE= 0.6089 and 0.8702
for intertidal and subtidal models respectively) and time~length relationships, obtained from the
sclerochronology measurements, that are highly variable between each measured shell
(respectively RE= 0.3645 and 0.5924 for intertidal and subtidal models) (Fig. 1.3, Table 1.3,
Appendix 1.2).

In view of the substantial morphological difference between the populations, we expected to see a
clear difference in the shape coefficient du. We found a slightly larger value of dw for the intertidal
morphotype, meaning that for the same shell length, it has slightly more structure, compared to the
subtidal one.

Subtidal morphs have a lower energy conductance v as well as double the value of maximum
surface area specific assimilation rate {pam} with respect to the intertidal morphs. The ratio of
specific assimilation over energy conductance [Em]= {pam}/v, determines the maximum reserve
capacity of a species.

The fraction of mobilised reserve allocated to soma K is also bigger (0.9368 for subtidal vs. 0.9084
for intertidal type), and the intertidal individuals also present a lower value for somatic maintenance
rate [pm] compared to the subtidal ones. This highlights contrasts between the morphotypes in

energy allocated to maturation along the first life stages (E}, E7;) and more available energy for
growth for the intertidal morphotype that has lower values of somatic maintenance. Intertidal
morphotypes seem to accelerate metabolism with a two-fold difference in acceleration factor sm
between intertidal and subtidal types (respectively 7.862 and 4.049). The maturity threshold to
reach puberty, E,’z is also lower for the intertidal morphotype than the subtidal.

The MRE values of the merged models stay below 0.25 and the value of the loss function for the
merged situation is only a little larger than the sum of both populations, reflecting that a substantial
reduction in the total number of parameters by almost a factor 2 hardly affects the goodness of fit
(Table 1.3, Appendix 1.3).

DEB parameters of the merged models are quite close to the values of the intertidal and subtidal
models, with [pwm], dm, EL, Ef), [Ec] and v merged values being almost exactly in between the values

of the intertidal and the subtidal morphotypes. Parameters «, z, E;,, {pam} and ha are closer to the
intertidal predictions.

Univariate predictions are also extremely close between the two models and the merged model
(Fig. 1.3), with only a small difference for the subtidal model for which the GSl~length predictions
are higher than the intertidal and merged predictions, mainly due to errors in predictions and
scatter in the data. This higher potential of energy allocation to reproduction can, however, be
linked to the higher E}j values estimated for the subtidal type (Table 1.3).
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Table 1.3. Summary of goodness of fit, DEB model estimates at a reference temperature of Trr= 20°C. RE:
Observed and predicted values for zero-variate data, relative error (RE) for the uni-variate data. See Fig. 1.3 for
comparisons for uni-variate predictions between models. MRE= Mean Relative Error. For the merged model,
the MRE values respectively correspond to the mean relative error of model prediction for data of both intertidal
and subtidal populations. All DEB parameters indicated were allowed to vary during covariance estimation. The
abj parameters that are not mentioned in that table were kept constant with the standard initial values.

INTERTIDAL SUBTIDAL MERGED
MRE 0.166 0.192 0.196  0.227
Loss function 0.2441 0.2345 0.7936
Parameters
z(-) 0.3055 0.4317 0.2579
{pam} (J/d. cm?) 8.361 19.07 8.859
v (cm/d) 0.0501 0.0426 0.0499
K () 0.9084 0.9368 0.9256
[pm] (J/d. cm3) 19.62 31.68 24.62
[Ec] (J.cm?) 3956 3949 3952
Eb (V) 0.00174 0.00115 0.0014
E, (J) 0.8749 0.0779 0.9206
E? (J) 75.23 121.4 94.66
ha (1/d?) 5.003.10¢ 8.335.10°® 4.24.10°®
se (-) 10 10 10+
dm () 0.4517 0.3866 0.4247
BM_larvae (-) 0.7167 0.7125 0.7215
sm (-) 7.862 4.0491 8.5372

Zero-variate

ab (d)
ap (y)
am (y)
Lb (cm)
Lp (cm)
Li (cm)
Wwo (g)

Wdp (g)

Data // prediction// RE

10 10.62 0.0619
4 3.54 0.1141
14 14 9.4.10°
0.0228 0.02279 2.4.10*
1.54 1.225 0.2045
6.5 5.319 0.1816
5.8.10¢ 5.8.10% 0.0181
0.0236  0.0263 0.1181

Data // prediction// RE

10 10.59 0.0586
4 3.75 0.0607
14 13.99 4.8.10*
0.0228 0.0228 6.05.10*
1.59 1.81 0.1384
5.52 4.515 0.1827
5.8.10¢ 5.7.10% 0.0157
0.057 0.05649 0.0089

prediction// RE

10.61 0.0609

3.66 0.0845

14 1.6.10%
0.0228 1.424.10©
1.49 0.0323
5.184 0.2024
5.72.10 0.0138
0.0396 0.6762
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Uni-variate
RE RE RE

LWd_signy (cm, g) 0.1443 0.1698 0.1274
LWd (cm, g) 0.1469 0.1834 0.216
LGSI (cm, -) 0.6089 0.8702 0.5835
LJO (cm, pmol/h) 0.2567 0.2831 0.2487
TJO (K, pL/h) 0.1034 0.1216 0.0876
tL (d, cm) 0.3645 0.5924 0.4097
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Figure 1.3. Comparison of model predictions (uni-variate data). Blue dots joined by lines: subtidal model
predictions, blue stars: subtidal data (observations); orange dots joined by lines: intertidal model predictions,
orange stars: intertidal data (observations); black triangle joined by lines: merged model predictions.
Prediction points may overlap (D).

Article. Guillaumot et al. (2020a). Can DEB models infer metabolic differences between intertidal and subtidal
morphotypes of the Antarctic limpet Nacella concinna (Strebel, 1908)? Ecological Modelling. 73
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3.2. Merging process

Along the merging procedure, the loss function and MRE values of the model at each step of the
merging procedure are observed, one ‘step’ corresponding to the interative increase of the weight
coefficient of the studied parameter (i.e. merging step, Fig. 1.4). Changes in MRE values are not
that important between the initial step and the final step of the merging procedure (Fig. 1.4,
Appendix 1.4) (respectively from 0.170 to 0.196 and from 0.192 to 0.227 for the MRE intertidal and
MRE subtidal values), meaning that merging parameters is possible. E; and du seem to be the
parameters that are the most influencing the model during the merging procedure for both the
intertidal and subtidal models and [pw] seems to further influence the intertidal model.

[=3
e Merged Merging | Merged Merging
2 | parameter | step# parameter | step #
o N z 2-4 EHb 26
8 _ }
o [pM] 5-12 [Eg] 27-29
2 P 13-15 E, 30-32
g K 16-20 E.P 33-41
T h, 2122 | &, 42-52
= s v 23-25
e | —— INTERTIDAL
P ---- SUBTIDAL

T T T T ¥ T

0 10 20 30 40 50

Merging step #

Figure 1.4. Evolution of Mean Relative Error (MRE) values along the merging of the different parameters.

MRE intertidal in solid blue line, MRE subtidal in dashed purple line. Example of Trial #5 (merging
Of Z, [pM]s 6M_Iarvae, K! ha! ‘,)l EHbl [EG]’ EHJI EHp’ 6M)-

4. DISCUSSION

4.1. DEB models relevance

DEB models are powerful tools enabling predictions of the individuals energetic scope for survival,
growth and reproduction, given the considered environmental conditions (

). These mechanistic approaches have been of interest for several years to the marine
Antarctic community ( ), and have been
increasingly developed during recent years (e.g.

This study is based on the example of the limpet Nacella concinna and uses data from literature
supplemented by experiments conducted in Antarctica in February 2018, to build the DEB models
of the intertidal and subtidal morphotypes of the species. The separately produced models were
accurate, with a reduced error between observations and model predictions, except for some
scatter among data such as Length~GSI relationship. Such accuracy was mainly possible thanks
to the important amount of uni-variate data that were provided by the complementary experiments
conducted in Rothera, which filled knowledge gaps about reproduction, collected more precise
length weight relationships to observe the morphological contrasts between intertidal and subtidal
individuals and collected more precise information on the limpet's metabolic performance through
its development.
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Rates (and ages) depend on temperature. Here we correct for differences in temperature using an
Arrhenius relationship. However, in order to meaningfully compare differences in parameters
between species living in different habitats, it is useful to standardize all parameters to a common
reference temperature: T.= 20°C. This is the standard for presenting and comparing DEB
parameters across the 2,000 different species in AmP. When comparing DEB parameters
estimations of N. concinna to those of their temperate counterpart Patella vulgata (

) at Ter= 20°C, we notice clear differences between the species in term of metabolic
strategies, although the limpets morphology and therefore size and volume are close between the
two species (close length and predicted shape coefficient du). For N. concinna, predicted k is much
higher and close to 1 (0.9256 vs 0.617 for P. vulgata), meaning that almost all the energy available
in the reserve compartment is allocated to somatic maintenance and growth, and only a small
amount is available for reproduction. This is clearly visible with the ultimate rate of reproduction
more than 40 times lower for the Antarctic limpet compared to the temperate one. The capacity to
assimilate resources {pam} was estimated to be 10 times higher for P. vulgata, explaining the 2.5-
fold lower growth rate for N. concinna. The two metabolisms also contrast by the fact that P.
vulgata is predicted to store more reserves than N. concinna in similarly abundant food conditions.
These results are consistent with published experiments, where it was shown that rasping rates
(i.e. feeding potential) were higher for temperate and tropical species than for N. concinna (

) and that development rates of Antarctic marine molluscs are much slower than at
higher temperatures ( ), which could be partially due to the increased costs
of protein production in the cold ( ).
Such examples of comparison of energetic performance between these two species highlight the
performance of DEB models to be efficiently applied for Antarctic case studies and powerful and
accurate enough to enhance physiological contrasts even between closely related species; as
previously discussed in other works (

).
4.2. Comparison between morphotypes

In a second step, we evaluated if known contrasts in physiological traits between the morphotypes
could be highlighted by the modelling approach. By simply comparing the two single models, we
observed minimal energetic contrasts between the intertidal and subtidal morphotypes (small
differences in assimilation rate and ability to store reserves, Table 1.3, Fig. 1.3). By using the
augmented-loss-function method, we tried to merge the models into a single one, parameter by
parameter, to evaluate the contrasts in parameters between the types ( ). Results
show that models were merged without generating significant changes in MRE and loss function
values (Fig. 1.4, Appendix 1.4). Predictions of the uni-variate data are really similar between the
three models (Fig. 1.3), with only minor differences in temperature-corrected parameter values
between both populations, meaning that the observed differences are best explained by
differences in environmental conditions (temperature and food availability).

Despite the known physiological contrasts in the field, the available data did not allow the models
to capture these physiological differences between the morphotypes, using only the available data.
Scatter distribution of the data used to calibrate the model (Fig. 1.3) can hide metabolic
differences, which calls for more experiments to describe the physiology of the different
morphotypes. Using more complete datasets, for which all parameters are independent between
intertidal and subtidal morphotypes, may also help to further constrain the differences. In our case
study, several zero-variate data are shared between the intertidal and subtidal models, among
which age, length and weight at birth, that control the very beginning of the development. The
observed results of a two-fold difference in metabolism acceleration of intertidal morphotypes
compared to subtidal ones (su = 8 and 4 for intertidal and subtidal) is in fact an artefact caused by
common parameters related to birth and puberty stages (age, length, weight). Indeed, specific
assimilation at birth for the subtidal is two times larger than that for the intertidal, which indicates
that subtidal individuals develop faster. However, according to available data provided in the
model, puberty is reached at the same time for both types. Ef, consequently needs to be smaller
for the intertidal type to reach puberty at the same age a, and length L,, explaining the observed
contrasts between the intertidal and subtidal groups.
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Improving the completeness of these models would therefore be necessary to enable further
detailed conclusions.

A common approach in biology is to focus on differences between individuals, populations and
species. Here we adopt a contrasting strategy in which we force models to determine in what
manner the populations are similar in order to quantify in what manner they differ. This work is a
first step to compare the energetics of both populations, and we discovered how (given the data)
they seem more metabolically similar than what their appearance would suggest as first. We also
highlight some artefacts that come from the quality of the data and the scatter therein. New data
(so new knowledge) that fill current knowledge gaps will yield further insight into how the
metabolisms of these populations have diverged to adapt to differences in environment. The
current work is a contribution to understanding the relationship between observations (data) and
metabolism for these two populations.

4.3. Models drawbacks and improvements

Apart from data availability, a drawback of our model construction is the lack of information about
environmental properties that makes comparisons between estimations of the two morphotypes
quite difficult to perform. In the models, we just considered an average temperature for intertidal or
subtidal habitats from where the limpets come from, but do not add any supplementary detail on
environmental contrasts between these habitats nor in the difference of food availability between
the morphotypes. However, contrasting environmental pressures (desiccation, salinity,
hydrodynamism) and habitat characteristics (immersion time, substratum type, and surrounding
physico-chemical factors) contribute to contrasting adaptative strategies among which
morphological adaptation is really important for limpets, but have not been integrated into our DEB
models (because it requires more data we do not have) (

). Desiccation is one of the strongest hypothesis to explain the
morphological differences between the intertidal and subtidal morphotypes (

). The presence of high upstream shifted apex form for the intertidal
morphotypes, more exposed to desiccation, could help to store more water and absorb more
oxygen, as described for Patella ferruginea ( ). Similarly, shell
volumes are bigger for the intertidal type and help reduce water loss (

) but also infer resistance to the effects of ice damage (

). Differences in the energetic responses of the two morphotypes of N. concinna to the
difference in mean intertidal (0.45°C) and subtidal (-0.1°C), or the much greater difference in
maximum (12.3 versus 1.7°C respectively; ), could be a proximate cause of the
morphological differences. Taking into consideration differences between environments is
therefore important but strongly lacking in the analysis presented here.

In our study, field data show a slight difference in shell length of +5% and a small difference also in
the predicted shape coefficient of 0.45 against 0.39 (Table 1.3) for respectively the intertidal and
subtidal individuals. This indicates very small differences in inner volumes between the studied
populations as calculated by the DEB, meaning that the DEB model does not adequately reflect
the difference in morphology between the intertidal and subtidal morphotypes. In the raw data,
shell heights present a 33% difference between intertidal and subtidal individuals (Appendix 1.1)
but shell length was used, rather than shell height, in the model to characterise the growth
structure of the species. Fine tuning the models with extra shape information could have helped to
bring further contrasts between the two models, but also requires much more information on shell
growth.

Moreover, the difference in food availability and quality was hypothetized between the
morphotypes when calibrating the model, despite food abundance and quality knowledge being
responsible for strong contrasts in DEB model outputs (

). During winter time, the intertidal type seems to have
supplementary access to ice-algae and microphytobenthos in rock crevices, whereas the subtidal
type mainly grazes on the diatoms films growing on encrusing red algae (Appendix 1.1,

). But food abundance and quality were assumed for the construction of the models, as
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no data accurate enough were available to characterise the feeding behaviour of the limpets.
Moreover, in the case of intertidal type, no clear hypothesis is available for their behaviour during
winter period, as several authors hypothesize either a migration into the subtidal or a dormance
period hidden into crevices during the period where ice is covering their habitat (

). However, this information would be essential to explain how these
individuals energetically behave during this period.

4.4. Potential of the approach

This study showed that it is feasible to build a DEB model for a marine Antarctic species, with few
available data. Adding extra information from sampling and experiments during a single expedition
in the field considerably increased the accuracy of the model and highlighted some small
differences in energy allocation priorities, maintenance costs and reproductive potential between
the intertidal and subtidal morphotypes. But the method is then limited by model calibration and
data availability since it could not prove that these contrasts are explained by anything else but
environmental conditions.

Such DEB models would already be sufficient to (1) describe the performance of the species
physiological traits in spatially or temporally contrasting environmental conditions (

), (2) to be upscaled to the population level to assess population structure
and density dynamics ( ), or (3) to be
integrated into a dynamic network by adding knowledge about interaction with other species (

). Adding some data from extra experiments would easily enable further
development of these models for ecophysiological or ecotoxicological applications (
), or to improve knowledge
about development stages, behaviour or reproduction (

).

In this study, we wanted to explore whether the amount of data that was available to build these
models were sufficient to see the known physiological and morphological differences between the
two morphotypes, and results show that more data are necessary.

To conclude, we advise the use of DEB approach for ecological modelling for Antarctic case
studies but modellers should be aware of the necessity to calibrate models with accurate data to
fine tune results. Among these data, the description of the species habitat is complex information
to be integrated into a model and most of the time only partial information is available. Working in
narrow scale areas where habitat is known and described and where experiments can be run
might be a good option.

Our study also hightlights the interest of DEB models to reuse data from experiments from
historical published works from Antarctic campaigns and highlights the importance of precisely
documenting the associated metadata (notably the description of the environment and the
conditions in which the limpets are living), data that is not always available.
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APPENDIX 1.1. Experimental design S. Morley February 2018, Rothera Station

Collection of limpets

Intertidal N. concinna were collected from East Beach at low tide and subtidal N. concinna by SCUBA divers
at 30m depth off the wharf at the British Antarctic Survey Research Station, Rothera Point, Adelaide Island
(67°34.25'S, 68°08.00'W). Representative habitats are shown in Figure S1.1.

Figure S$1.1. Left panel, image of the intertidal Nacella concinna habitat at low tide. Right panel, representative image of
the N. concinna habitat at 30m. In the right panel the urchin Sterechinus neumayeri and the limpet N. concinna are
clearly visible on the rock in the foreground.

Measurement of routine metabolic rate

After collection animals were transported in seawater to the Rothera flow through aquarium where they were
maintained without supplementary feeding for 10-20 days to allow the majority of their last meal to be
processed and the peak in specific dynamic action to have passed before routine metabolic rate was
measured.

Routine metabolic rate was measured in closed cell respirometers, following the methodology of

, except that oxygen concentration was measured with a Fibox-3 oxygen meter (Presens GmbH,
Regensberg, Germany; e.g. ). Oxygen sensitive foils were calibrated before each
measurement using 5% w/w sodium dithionite for 0% and fully aerated water for 100%. During trials oxygen
concentration was not allowed to fall below 70% of air saturation, which is above the threshold for oxy-
regulation of N. concinna ( ). Two empty chambers (controls) were run with each trial to
account for background oxygen consumption, which was routinely less than 10% of the animal's
consumption. After each trial the volume of each limpet was measured (through displacement) and this was
subtracted from the volume of the respirometer to measure the volume of water within each respirometer.

To calculate the oxygen consumption of organic tissue per gram, wet weights of whole animals and wet
weights of all tissues, minus the shell, were measured. Tissue was then dried in an oven at 60°C for 24
hours and then reweighed every 24 hours until a constant dry weight, £ 0.010g, was achieved. The dried
tissue was then ashed in a furnace at 475°C for 24 hours and ash free dry mass was measured.
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Supplementary results

Table S1.1A. Size, dry mass, Ash Free Dry Mass and routine metabolic rate of Nacella concinna collected from the
intertidal and 30m depth in January 2018.

Shore Height

Shell Length/mm

Shell height / mm

Tissue Wet Mass/g

Ash Free Dry Mass/g

MO/
umol.02hr' .g AFDM’

Intertidal 23.0 7.9 1.39 0.23 31.92
Intertidal 271 11.4 1.89 0.34 6.09
Intertidal 271 9.7 1.45 0.20 8.05
Intertidal 19.2 6.4 0.59 0.11 16.58
Intertidal 22.8 8 1.08 0.18 7.20
Intertidal 226 7.7 0.88 0.16 6.66
Intertidal 28.8 11.7 2.53 0.35 18.18
Intertidal 21.3 6.1 0.73 0.12 9.57
Intertidal 257 11.3 1.70 0.23 5.65
Intertidal 215 7.4 0.93 0.14 8.62
Intertidal 16.6 5.3 0.39 0.08 9.38
Intertidal 24.8 9.3 1.41 0.18 7.94
Intertidal 221 7.5 1.01 0.16 9.99
Intertidal 30.5 15.3 2.85 0.55 7.45
Intertidal 314 12.3 3.02 0.47 10.65
Intertidal 23.2 7.8 0.97 0.20 5.62
Intertidal 20.2 5.8 0.52 0.08 4.39
Intertidal 38.1 19.7 2.06 0.29 6.34
Intertidal 26.0 10.8 1.81 0.27 9.80
Intertidal 19.9 6.4 0.49 0.08 9.80
Intertidal 30.2 11.6 2.32 0.40 17.98
Intertidal 28.7 10.4 2.56 0.40 7.20
Intertidal 22.0 8.4 0.88 0.12 10.09
Intertidal 20.3 6.6 0.69 0.09 8.19
Intertidal 27.0 10.9 1.79 0.25 5.96
Intertidal 21.2 6.6 0.72 0.10 9.03
Intertidal 16.2 5 0.35 0.06 8.74
Intertidal 254 7.9 1.11 0.19 7.13
Intertidal 256 9.6 1.60 0.32 7.69
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30m 23.3 5.8 0.95 0.16 11.29
30m 26.0 6.8 1.28 0.14 9.81
30m 28.2 7.2 1.22 0.09 9.63
30m 17.5 4.3 0.35 0.05 14.93
30m 20.9 5.8 0.77 0.11 9.60
30m 215 5.8 0.60 0.09 7.47
30m 245 7.3 1.156 0.18 4.22
30m 275 6.8 1.57 0.18 6.56
30m 18.3 4.6 0.33 0.03 14.63
30m 20.3 4.7 0.43 0.07 6.12
30m 23.8 6.5 0.92 0.15 7.21
30m 26.0 7.5 1.34 0.16 11.78
30m 20.8 6.2 0.62 0.08 18.07
30m 23.0 6.7 0.76 0.10 8.03
30m 27.8 6.6 1.59 0.24 6.83
30m 30.4 9.1 1.62 0.18 8.90
30m 225 4.9 0.58 0.07 21.05
30m 255 5.6 1.02 0.16 8.04
30m 211 4.9 0.65 0.07 5.48
30m 225 5.4 0.60 0.11 11.36
30m 31.7 10.9 2.26 0.26 5.53
30m 33.2 6.9 3.25 0.41 9.02
30m 229 6.4 0.76 0.08 7.49
30m 18.1 4.1 0.42 0.05 10.57
30m 17.1 4.6 0.25 0.02 10.25
30m 22.3 6 0.85 0.11 8.67
30m 21.6 5.3 0.60 0.07 8.77
30m 17.4 3.8 0.23 0.04 10.90
30m 19.6 6 0.47 0.07 8.82
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Table S1.1B. Size at first reproduction for both intertidal and subtidal (30m depth) Nacella concinna collected from
Rothera Point, Adelaide Island. Sex was determined where possible; otherwise individuals were classified as immature.
There was only one ripe male in January when measurements were made.

Shore Shell Tissue wet Gonad wet Somatic wet Gonad somatic sex | Note
Height Length/mm mass/g mass/ g mass/ g Index

intertidal 18.8 0.38 0.01 0.38 0.02 | F
intertidal 26.1 1.63 0.20 1.43 012 | M
intertidal 26.2 1.43 0.11 1.31 0.08 | F
intertidal 26.3 1.29 0.11 1.18 0.08 | F
intertidal 25.8 1.49 0.18 1.31 012 | F
intertidal 17.5 0.30 0.01 0.29 0.02 | M
intertidal 30.7 2.57 0.65 1.92 0.25| M | ripe
intertidal 15.4 0.35 0.04 0.31 011 | M
intertidal 30.0 2.04 0.34 1.70 017 | M
intertidal 17.0 0.34 0.03 0.31 0.09 | M
intertidal 27.5 1.45 0.15 1.30 010 | F
intertidal 26.8 1.52 0.17 1.35 0.11| M
intertidal 22.1 0.85 0.06 0.78 0.08 | M
intertidal 25.2 1.30 0.07 1.23 0.06 | M
intertidal 22.8 0.87 0.07 0.80 0.08 | F
intertidal 24.2 1.10 0.11 0.99 010 | F
intertidal 29.5 1.64 0.10 1.54 0.06 | F
intertidal 29.8 2.31 0.23 2.07 010 | F
intertidal 33.5 2.79 0.32 2.48 011 |F
intertidal 19.9 0.55 0.00 0.55 0.01|F
intertidal 17.8 0.38 0.03 0.35 0.09 | M
intertidal 20.1 0.59 0.03 0.57 0.05| F
intertidal 19.5 0.51 0.03 0.48 0.06 | M
intertidal 21.8 0.68 0.02 0.66 0.03 | M
intertidal 17.2 0.34 0.00 0.34 0.00 | | no gonad visible
intertidal 18.3 0.54 0.01 0.53 0.01|F
intertidal 26.3 1.15 0.21 0.94 0.18 | M
intertidal 21.7 0.65 0.00 0.65 0.00 | M
intertidal 18.5 0.49 0.03 0.45 0.07 | M
30m 24 4 1.18 0.00 1.18 0.00 | |
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30m 255 1.28 0.03 1.25 0.02 | M
30m 225 0.86 0.01 0.84 0.01 | M
30m 41.2 4.79 0.54 4.26 011 M
30m 41.8 5.50 0.30 5.19 0.05| M
30m 244 0.96 0.44 0.52 0.46 | M
30m 311 1.92 0.01 1.91 0.01 | F
30m 24.2 0.85 0.00 0.85 0.00 | M
30m 241 0.89 0.01 0.87 0.01 | M
30m 21.9 0.68 0.01 0.68 0.01 | M
30m 17.7 0.31 0.01 0.31 0.02 | M
30m 28.3 1.72 0.06 1.67 0.03 | M
30m 18.7 0.56 0.00 0.56 0.00 | I

30m 201 0.44 0.00 0.44 0.00 | I

30m 18.2 0.33 0.00 0.33 0.00 | I

30m 30.1 2.25 0.05 2.20 0.02 | M
30m 21.7 0.84 0.02 0.82 0.02 | M
30m 225 0.89 0.01 0.89 0.01 | M
30m 256 1.16 0.10 1.06 0.09 | M
30m 231 1.156 0.04 1.11 0.03 | M
30m 241 1.04 0.02 1.02 0.02 | M
30m 20.3 0.61 0.00 0.61 0.00 | I

30m 18.5 0.42 0.00 0.42 0.00 | I

30m 277 1.24 0.06 1.18 0.05| M
30m 30.2 1.91 0.13 1.78 0.07 | M
30m 28.0 1.31 0.03 1.28 0.02 | F
30m 23.8 0.88 0.01 0.87 0.01 | F
30m 32.8 2.06 0.00 2.05 0.00 | M
30m 271 1.63 0.02 1.62 0.01 | F
30m 29.0 2.07 0.02 2.04 0.01 | M
30m 26.8 1.54 0.02 1.52 0.01 | F
30m 34.7 3.54 0.04 3.50 0.01 | F
30m 40.0 4.88 0.49 4.39 0.10 | M
30m 29.5 2.18 0.14 2.04 0.07 | M
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30m 20.8 1.29 0.04 1.25 0.03|F
30m 41.0 5.28 0.56 4.72 011 M
30m 30.3 2.29 0.05 2.24 0.02 | F
30m 257 1.39 0.00 1.39 0.00 | I

30m 39.3 4.72 0.00 4.72 0.00 | I

30m 28.3 1.44 0.08 1.36 0.05| M
30m 26.7 1.52 0.07 1.44 0.05| M
30m 255 1.05 0.01 1.03 0.01 | F
30m 32.9 2.63 0.13 2.50 0.05| M
30m 34.7 2.95 0.12 2.83 0.04 | F
30m 32.7 2.9 0.32 2.59 011 M
30m 29.0 1.44 0.02 1.43 0.01 | F
30m 244 0.91 0.00 0.91 0.00 | I

30m 28.6 0.71 0.11 0.60 015 | F
30m 23.9 0.92 0.02 0.91 0.02 | F
30m 31.2 2.53 0.01 2.53 0.00 | F
30m 26.5 1.38 0.07 1.31 0.05| M
30m 29.0 1.60 0.09 1.52 0.05| M
30m 26.4 1.24 0.03 1.20 0.03 | M
30m 36.7 3.1 0.17 2.94 0.05| M
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APPENDIX 1.2. Sclerochronology protocol

Based on the literature ( , Fig. 81.2A), the distance between the apex of the shell and the
different black rings are measured using a ‘mesuroscope’ at Biogeosciences Laboratory (Université de
Bourgogne Franche-Comté, France). According to , black rings correspond to winter growth,

and lighter bands to summer growth, which can be a proxy to characterise growth dynamics through time
(Fig. S1.2A).
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Fig. 2. Dark and light growth bands on the limpet shell, measured band-lengths indicated 1234567 8 9 10
Band number

Figure S1.2A. Picken (1980)’s protocol to characterise ring growth through time. Dark rings correspond to winter growth
and light rings to summer growth periods.

The ‘mesuroscope’ (Fig. S1.2.B) is a binocular microscope connected to a computer that enables
coordinates to be marked and reported onto an excel sheet; the x,y position (movement of the horizontal
plateau where the shell is fixed) and the z position (measured by the vertical movement of the plate,
corresponding to zooming in or out and therefore to the height of the shell). The shell is observed with the
binocular microscope, a pointer helps at positioning the focus on the screen and a button automatically
saves the x, y, z positions on the excel sheet, making measurements fast, efficient and precise. Precision is
10um. The position of each black ring, on the left side and on the right side of the apex is measured and
summed to assess the total shell growth between two rings (Fig. S1.2.B). Each shell was photographed

before the procedure to estimate the position of each dark ring, which is not that precise and simple for all
cases (Fig. S1.2.B).
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Figure $1.2.B. Details of the ‘mesuroscope’ (a,b) with the binocular loop connected to the computer, which automates
the acquisition of the x,y,z measurements. (c) Schematic representation of the procedure adopted for the measurements
of the rings. First, the apex was positioned, and the distance from the apex to the right and left part of each ring was
measured (x, y) and summed to get the diameter of each dark ring (M#1, M#2, M#3). (d) Example of picture captured by
P. Pernet to prepare ahead the measurement the position of the black rings.

Each of the 60 shells was measured following this protocol and 20 of them were measured twice for replicate

analysis. No significant difference was observed between the replicates.
The length ~ time measurements were added to the intertidal and subtidal DEB models.
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APPENDIX 1.3. Merged models, replicates

Table $1.3. Summary of goodness of fit, DEB parameter estimates at a reference temperature of Trer= 20°C of the
different merging trials. Predicted values for zero-variate data, relative error (RE) for the uni-variate data. MRE= Mean
Relative Error. ‘Trials’ are defined as merging procedures where the parameters are merged in different orders, namely,
Trial #1: Merge ha, EHP, K, EH?, Z, [pw), [Ec), ¥, EH, BM_larvae, Om; Trial #2: merge [Ec), EH, EHP, v, ha, K, OM_iarvae, [pM], DM,
EnP, z; Trial #3: merge dm, ExP, Ex, EWP, ha, K, [pw], ¥, Z, SM_iarvae, [Ec]; Trial #4: merge z, ExP, Sm, [pm], SM_iarvae, K, fa, 1,
EHP, EH, [Eg]; Trial #5: Merge z, [.pM], OM_larvae, K, fa, 7, EHP, [Ec], EH, ExP, dm.

TRIAL #1 TRIAL #2 TRIAL #3 TRIAL #4 TRIAL #5
MRE intertidal | 0.196 0.197 0.196 0.196 0.196
MRE subtidal 0.227 0.228 0.227 0.227 0.227
Loss function 0.7936 0.7937 0.79363 0.79364 0.79363
DEB parameters
z 0.2586 0.259 0.2576 0.2582 0.2579
{pam} 6.8590 6.8688 6.86581 6.85855 6.8617
v 0.0498 0.04984 0.04987 0.04988 0.04989
K 0.9257 0.925 0.9254 0.9261 0.9256
[pw] 24.56 24.54 24.66 24.6 24.62
[Ec] 3953 3952 3952 3952 3952
EY 0.0014 0.0014 0.0014 0.001409 0.0014
EL 0.9179 0.9324 0.9252 0.9145 0.9206
E%, 94.56 95.7 95.01 93.96 94.66
ha 4.248.108 4.328.108 4.234.108 4.242.108 4.24.108
s 104 10 10 10 104
Sm 0.4249 0.4247 0.4247 0.4248 0.4247
OM_tarvae 0.7215 0.7233 0.7215 0.7215 0.7215
sm 8.5311 8.5484 8.54249 8.53997 8.5372

Zero-variate

prediction// RE

prediction// RE

prediction// RE

prediction// RE

prediction// RE

ab (d) 10.62 0.0618 | 10.62 0.6158 | 10.61 0.0611 | 10.61 0.0611 | 10.61 0.0609
ap (y) 3.66 0.0839 | 3.66 0.0855 | 3.66 0.0849 | 3.66 0.0850 | 3.66 0.0845
am (y) 14 3.104 | 13.92 0.0054 | 14 1.34.105 | 14 3.75.10° | 14 1.6.104
Lb (cm) 0.0228  1.7.10° | 0.02274  0.0026 | 0.0228  2.93.105 | 0.0228  2.64.10° | 0.0228 1.42.10%
Lp (cm) 1.49 0.0325 | 1.492 0.0617 | 1.491 0.0624 | 1.49 0.0323 | 1.49 0.0323
Li (cm) 5.192 0.2013 | 5.212 0.0564 | 5.182 0.0618 | 5.19 0.201 5.184 0.2024
Wwo (g) 5.72.10%  0.0137 |5.72.10¢ 0.0133 |5.72.10% 0.0136 |5.72.10¢ 0.0144 |5.72.10%  0.0138
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Wdp (9) 0.03956 0.6762 | 0.03967 0.3038 | 0.0396 0.3057 | 0.03957 0.677 0.03956 0.6762
Uni-variate
RE RE RE RE RE
LWd_signy 0.1271 0.3323 0.3322 0.1273 0.1274
(cm, g)
LWd (cm, g) 0.2156 0.3307 0.3306 0.2158 0.216
LGSI (cm, -) 0.5828 1.061 1.054 0.5812 0.5835
LJO 0.2488 0.3133 0.3138 0.2487 0.2487
(cm, pmol/h)
TJO (K, pL/h) 0.0878 0.0882 0.0874 0.08764 0.08757
tL (d, cm) 0.4096 0.4772 0.475 0.4101 0.4097
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APPENDIX 1.4. Merged models, replicates: changes in MRE
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Figure S1.4. Evolution of Mean Relative Error (MRE) values along the merging of the different parameters. MRE
intertidal in solid blue line, MRE subtidal in dashed purple line. ‘Trials’ are defined as merging procedures where the
parameters are merged in different orders, namely, Trial #1: Merge ha, EWP, K, Exb, Z, ['pM], [Eq], 7, EH|, ®M larvae, Om; Trial
#2: merge [Eq), EH, EH®, ¥, ha, K, OM_larvae, [pM], O, ERP, Z; Trial #3: merge dm, EHP, EH, EWP, ha, K, [pM], ¥, Z, SM_larvae, [Ec];
Trial #4: merge z, ExP, Swm, [pM], OM_lanvae, K, fia, 7, EHP, EH, [Ec]; Trial #5: Merge z, [pm], OM larvee, K, ha, ¥, EHP, [Ec), EH),
EnP, Owm. Trial 5 is presented in the main manuscript (Figure 1.4).
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Abstract

The Kerguelen Islands are part of the French Southern Territories, located at the limit of
the Indian and Southern oceans. They are highly impacted by climate change, and
coastal marine areas are particularly at risk. Assessing the responses of species and
populations to environmental change is challenging in such areas for which ecological
modelling can constitute a helpful approach. In the present work, a DEB-IBM model
(Dynamic Energy Budget — Individual-Based Model) was generated to simulate and
predict population dynamics in an endemic and common benthic species of shallow
marine habitats of the Kerguelen Islands, the sea urchin Abatus cordatus. The model
relies on a dynamic energy budget model (DEB) developed at the individual level.
Upscaled to an individual-based population model (IBM), it then enables to model
population dynamics through time as a result of individual physiological responses to
environmental variations. The model was successfully built for a reference site to
simulate the response of populations to variations in food resources and temperature.
Then, it was implemented to model population dynamics at other sites and for the
different IPCC climate change scenarios RCP 2.6 and 8.5.

Under present-day conditions, models predict a more determinant effect of food
resources on population densities, and on juvenile densities in particular, relative to
temperature. In contrast, simulations predict a sharp decline in population densities
under conditions of IPCC scenarios RCP 2.6 and RCP 8.5 with a determinant effect of
water warming leading to the extinction of most vulnerable populations after a 30-year
simulation time due to high mortality levels associated with peaks of high temperatures.
Such a dynamic model is here applied for the first time to a Southern Ocean benthic and
brooding species and offers interesting prospects for Antarctic and sub-Antarctic
biodiversity research. It could constitute a useful tool to support conservation studies in
these remote regions where access and bio-monitoring represent challenging issues.

Keywords
Ecological modelling, Kerguelen, climate change, model sensitivity, endemic echinoderm, Dynamic
Energy Budget, Individual-based model
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1. INTRODUCTION

The Kerguelen Islands are part of the French Southern Territories (Terres australes francaises -
Taf), located at the limit of the Indian and Southern oceans, in the sub-Antarctic area. The region is
highly impacted by climate change, and coastal marine ecosystems and habitats are particularly at
risk given that species have long adapted to cold and stable conditions (
). Coastal marine species of the Kerguelen Islands are threatened

by temperature and seasonality shifts, which are expected to intensify in a near future (

). Future predictions of the Intergovernmental Panel on Climate Change
(IPCC 5th report) are provided as possible Representative Concentration Pathways (RCP)
scenarios of climate change and can be used to infer the potential response of ecosystems to
future environmental conditions. However, the insufficient spatial and time resolutions of such
models constitute serious limitations for assessing the effects of future environmental changes on
sub-Antarctic species ( )-
The echinoid Abatus cordatus (Verrill, 1876) is endemic to the Kerguelen oceanic plateau and
common in coastal benthic habitats of the Kerguelen Islands. It is reported in the northern
Kerguelen plateau, and around Heard and Kerguelen islands but most records are from shallow,
coastal areas of the Kerguelen Islands where dense populations are commonly observed (

). This makes the species particularly at risk
considering the synergetic effects of the multiple factors (temperature variations, significant shifts
in coastal currents, sedimentation rates and phytoplanktonic blooms) affecting coastal marine
communities at high latitudes ( )- The species’
endemicity can be partly related to low dispersal capabilities, which is a consequence of a
particular life trait: A. cordatus broods its young in incubating pouches located on the aboral side of
the test, and has a direct development with no larval stage and no metamorphosis. The low
dispersal capacity of A. cordatus likely increases its vulnerability to environmental changes
( )-

Benthic fauna of sub-Antarctic regions remains under-studied compared to pelagic species
( ). Ecological niche models can represent relevant tools to
study the consequences of environmental changes on the biology of these benthic organisms and
on their population dynamics. Correlative niche models were used to predict the distribution of
suitable areas for A. cordatus on the Kerguelen plateau ( ). However,
supplementary data and analyses are still needed to depict and understand the species’ response
to environmental changes.

In the present work, a mechanistic modelling approach using a Dynamic Energy Budget —
Individual-Based Model (DEB-IBM) was used to analyse the biological response of A. cordatus to
various environmental conditions. An individual mechanistic model (DEB) was first built using
experimental and literature data ( )- A DEB model aims to represent the
physiological development of an organism, from the embryo to its death based on energetic fluxes
and allows considering the metabolic state of the individual at any given moment of its life cycle. It
relies on biological principles and first laws of thermodynamics to recreate the metabolic
development as a function of two environmental parameters, food resources and temperature
( )-

The DEB model was then upscaled to the population level (IBM), wherein it was implemented as
iterative mathematical calculations of each organism’s individual development in the population.
The IBM relies on the simulation of individuals as autonomous entities forming a complex
population within a dynamic system ( )- The DEB-IBM is used to analyse
population dynamics emerging from the development and the physiological traits of individuals as
a function of environmental forcing variables (i.e. food resources and temperature). The DEB-IBM
can then be used to simulate population dynamics under different environmental scenarios,
enabling a better quantification of the vulnerability of populations to changing environmental
conditions.

Modelling population dynamics using a DEB-IBM model for a sub-Antarctic and brooding
invertebrate brings a feature so far unseen in other published DEB models. The main objectives of
the study were to develop a DEB-IBM model for A. cordatus (1) to simulate population structure
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and dynamics at different sites under both current environmental conditions and future IPCC
climate scenarios RCP 2.6 and RCP 8.5, and (2) to assess the feasibility of such a model for
organisms in a region where low data availability and resolution may limit model building and
validation. The current resolution and accuracy of future climate scenarios in sub-Antarctic areas
do not allow building precise and reliable predictions for the future but they were used here as a
proof of concept to test population responses to various, conceivable conditions. Sensitivity
analyses were performed to test the robustness, potential and relevance of models (

) considering data availability. Simulations performed for various temperature
conditions and food resource availabilities, if validated, may constitute a promising tool to address
conservation issues.

2. MATERIAL AND METHODS
2.1. Study area

The DEB-IBM population model was generated in the geographic and environmental context of the
Kerguelen Islands (Fig. 1.5) using data of the study site of Anse du Halage, a fieldwork station that
has regularly been investigated through several biological studies since the 1980s (

)-

The Kerguelen Islands show jagged coastlines and numerous islets and fjords that provide a large
variety of habitats to the marine benthic fauna. The nature of the seafloor varies from rocky to
sandy and muddy shores. The predominance of the giant kelp Macrocystis pyrifera is a main
feature of the Kerguelen as this engineer and key species plays a decisive role in the protection
and structuring of benthic shallow habitats in many places of the archipelago (

)-
Located in the Morbihan Bay, a 700 km? semi-enclosed shallow embayment (50m depth on
average) of the Kerguelen Islands, Anse du Halage is situated at the bottom of a small and shallow
(2m depth) cove dominated by fine to medium sands ( ) (Fig. 1.5). The
tidal range is comprised between 0.4 and 2.1m, so that the area can exceptionally be uncovered at
the lowest tides ( ). Sea surface temperature varies
between 1 and 2°C in winter (September) to 7 to 8°C in summer (March), with sporadic peaks of
+11°C in some places, for certain years ( ). Salinity varies
between 31.89 and 33.57 ( )-
Temperature data used in the model were collected in the framework of the Proteker program
(French Polar Institute n°1044) ( ) and accessed online (IPEV programme n°1044,
http://www.proteker.net/-Thermorecorders-.html?lang=en accessed on 08/05/2019). They were
recorded from 2012 to 2018 at three sites used in the model (Fig. 1.5): lle Longue (for the model at
Anse du Halage), lle Haute, an island in the North-Western corner of the Morbihan Bay, and Port
Couvreux, a coastal site outside the Morbihan Bay, in the Gulf of the Baleiniers on the Northern
coast of the archipelago (Fig. S1.5).
The organic matter deposited on the seabed varies with seasonal phytoplankton blooms and
remineralization by bacteriae ( ). The sediment organic content and
phytoplanktonic blooms are particularly important at Anse du Halage, with average values of 4.5%
of organic carbon content. The sediment organic carbon (OC) content was monthly measured as a
percentage of sediment dry weight by

Environmental data time-series are available at a monthly timestep. The model was scaled on a

single square metre patch, supposing no connectivity between neighbour locations, as no data on
horizontal nor vertical water movements and matter fluxes were available.
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Figure 1.5. Location of the studied sites in the Kerguelen Islands, calibration site (Anse du Halage, red star)
and projection sites (lle Haute and Port Couvreux, red triangles).

2.2. Study species

Abatus cordatus (Fig. 1.6) is a shallow deposit-feeder and sediment swallower, living at 5°C
average, full or half buried into soft sediments ( ). It is distributed all
around the Kerguelen Islands, but population densities are highly variable depending on depth,
substrate nature and exposure to the open sea. Distributed from the intertidal area to the deep
shelf over 500m depth, populations highest densities are found in very shallow (0-2m depth) and
sheltered areas with soft bottoms of fine to medium sand ( ). In shallow areas, observed
density vary from less than 5 individuals/m? (in the Fjord des Portes Noires, )
to 10 ind./m? (at Port-aux-Francais, ), 130 ind./m? (lle Haute,

), 168 ind./m? (Port Couvreux, ) and up to 280 ind./m? (Anse du Halage,

). Juveniles are commonly found sheltered in between holdfasts of the

giant kelp Macrocystis pyrifera bordering with sandy shallow areas.
The species is relatively resistant to low salinities locally induced by freshwater run-off from the
main island ( ). It is tolerant to temperature variations, particularly marked
in shallow areas, but temperature tolerance does not exceed +12°C (personal observations). The
maximum size ever observed is 4.9 cm in length ( ). Lifespan is assumed to be
around six years old ( ), although it cannot be excluded that some individuals may
grow older. Identified predators are gastropods, crustaceans and seagulls ( ,

) from which the specimens are hidden when burrowing into the sediment (

).
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Figure 1.6. Spemmens of Abatus cordatus (a) Aboral view of a specimen half burled in sand, (b) Aboral
view of a female showing the brood pouches with juveniles inside. © Féral J.P.

Sexual reproduction in A. cordatus occurs every year, with all mature females producing eggs
( ) and incubating their young in their four brood pouches located on the aboral side
of the test (Fig. 1.6). After brooding, juveniles exit the pouches and start their autonomous
development on the seabed, in the vicinity of their mother ( ).
Reproduction time can greatly differ between sites: generally extending from March to May (as in
Anse du Halage and lle Haute), reproduction can also occur from June to August (lle Suhm), from
December to February (Port Matha) or from August to November (Port Couvreux) ( )-
Females usually spawn once a year ( ). Brooding and burrowing behaviours imply a
relative sedentary lifestyle and can explain a part of the species endemicity, with dense
populations scattered all around the archipelago and only a few older individuals that may be found
isolated from core populations ( ).

2.3. DEB modelling

Principles
DEB theory defines individuals as dynamic systems and provides a mathematical framework for
modelling organisms’ life cycle. It describes physiological processes using four primary state
variables -reserve, structure, reproduction buffer and maturity- directly linked to mass and energy
flows and influenced by two forcing variables, temperature and food availability (Fig. 1.7,

). Based on feeding, growth and reproduction processes, DEB models
predict the metabolic and development states of organisms through time (

). Metabolic processes are linked to shape and size of the organism, represented
by the structural volume and the structural area. Structural volume is related to maintenance
processes, while structural area is closely linked to food ingestion and assimilation processes and
controls the amount of energy arriving into the reserve compartment E (Fig. 1.7,

).

The energy contained in the reserve compartment is allocated to organism maintenance (‘somatic’
and ‘maturity’ maintenances, priority processes that condition the organism’s survival), to growth
(increase of structural volume V), and to the increase of complexity (EH) or reproduction buffer
(ER) (Fig. 1.7) according to the kappa-rule ( )- The complexity is represented as the
maturity level. The amount of energy accumulated into this compartment triggers metabolic
switches such as the transition (i.e. ability to feed, to reproduce) between life stages, defined in
DEB theory (namely embryo, juvenile and adult life stages) ( )-
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Figure 1.7. Schematic representation of the DEB-IBM (Dynamic Energy Budget — Individual-Based Model).
Individuals (A) undergo development through the DEB model and reproduce (purple arrow). Altogether and
with a slight inter-individual variability in DEB parameters (*), they form the population of the IBM (B) which
undergoes population-specific processes (temperature and background mortalities) at the scale of a simple
square metre patch at the reference site (C). The IBM population is embedded within this specific
environment, whose environmental conditions (temperature and food resources) affect individual and
population dynamics. Additionally, the population influences the resources availability following a density-
dependence regulation.

Application of DEB model to A. cordatus

Parameter_estimation. An individual mechanistic DEB model was developed for A. cordatus
(Guillaumot 2019c). Estimated DEB parameters are reported in Table 1.4. The DEB model
considers a larval growth accelerated compared to the adult stage (Schatt 1985), so-called ‘abj’
type model. The model was constructed using data from the literature (Table 1.5). The goodness

Article. Arnould-Pétré et al. (2020). Individual-based model of population dynamics in a sea urchin of the Kerguelen Platggu
(Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling.
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of fit of the DEB model to the data was evaluated by calculating the Mean Relative Error (MRE) of
each dataset, which is the sum of the absolute differences between observed and expected
values, divided by the expected values. MRE values are contained in the interval [0, infinity). The
MRE is considered to be a reference method to assess DEB modelling performance (

), for which the closer to 0, the better model predictions match the data.

Table 1.4. Parameters estimated for the DEB model developed for Abatus cordatus. Values are given for the
reference temperature of 20°C. The MRE of the model is 0.121.

Parameter Symbol Value Unit

Basic DEB parameters

Volume of specific somatic maintenance’ [pM] 13.84 J.d'.cm?
Somatic maintenance rate coefficient! kM 5.103 d-
Fraction of energy allocated to somatic maintenance and growth’ K 0.78 -
Volume-specific cost of structure! [EC] 2395 J.cm-3
Energy of maturity at birth’ [ER] 0.5693 J.cm3
Energy of maturity at metamorphosis’ [E}] 8.325 J.cm3
Energy of maturity at puberty’ [ER] 1638 J.cm?3
Arrhenius temperature3 TA 9000 K

DEB compound parameters

Energy conductance’ v 0.02722 cm.d!
Maturity maintenance rate coefficient® kJ 0.002 d
Shape coefficient? 0 0.6718 -
Maximum structural length ! Lm 2.93 cm
Acceleration factor’ sM 2.397 -

Reproduction parameters

Yield of structure on reserve’ yVE 0.865 | #mol.mol’
Contribution of reserve to weight' w 0.647 -

Ageing parameters

Weibull ageing acceleration’ ha 5.02.106 d2
Gompertz stress coefficient? sG 0.0001 -
" Estimated using the covariation method ( )

2 Calculated from data for initial value and then estimated with the covariation method
3 Fixed, guessed value
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Table 1.5. Zero and uni-variate data used for the estimation of the DEB model parameters. All values are
given at a measured temperature of 5°C. MRE: Mean Relative Error. Plots related to uni-variate data can be

found in Appendix 1.6.

Variable Symbol Obs. Prediction | Unit MRE Reference
Zero-variate data

Age at metamorphosis’ aj 142 143 d 0.0072

Age at puberty? ap 1098 1018 d 0.0731

Life span am 2190 2190 d 5.108

Length at metamorphosis Lj 0.276 0.324 cm 0.1738

Length at puberty Lp 1.9 1.824 cm 0.0399

Maximal observed length (at 6 years old) L6 4.2 3.65 cm 0.1321

Ultimate maximal length Li 8 9.507 cm 0.1883 guessed
Wet weight of the egg Wwo 1.78.10°3 1.59.103 g 0.1081

Wet weight at metamorphosis Wwj 1.03.102 1.70.102 g 0.6482

Wet weight at puberty Wwp 29 3.03 g 0.0448

Wet weight at 6 years old Ww6 25 24.18 g 0.0328

Gonado-somatic index3 GSI 0.07 0.078 - 0.1194

Variable Symbol | Obs. /Prediction Unit MRE Reference
Uni-variate data

Time since birth vs. length tL d//cm 0.2259

Egg diameter vs. egg wet weight [ LW_egg | See Appendix 1.6 cm/lg 0.1262

Length vs. Wet weight adult Lw cm/lg 0.3248

Length vs. O2 consumption LJO cm /[ uL/h 0.2872

" moment at which the juveniles leave the brooding pouch of the mother
2 moment at which the sea urchin is able to reproduce
3 maximum gonad index for an animal of the maximum size, gonad index as gonad weight/total wet weight.

Maturation and development. Embryos of A. cordatus have a direct development in brood pouches

of females ( ). They start feeding inside pouches after 142 days of
incubation (i.e. 5 months) and leave the pouches as fully developed sea urchins after 8.5 months
( ). According to DEB theory, individuals are considered embryos until they can feed
( ). Before the fifth month, feeding inside the maternal pouches is not clearly

attested, but feeding through epidermal uptake of Dissolved Organic Matter (DOM) is considered
as the possible mechanism ( ). At each growth step, energy is supplied to the
reserve by the ingested food (Fig. 1.7, pA) and then leaves the reserve compartment to be directed
to growth, maturation or reproduction processes through the mobilisation flux (Fig. 1.7, pC). This is
performed following the kappa-rule: a k fraction is directed towards the structure (growth
compartment and somatic maintenance, Fig. 1.7, and the remaining (1-k) fraction towards
complexity (maturation, reproduction compartments and maturity maintenance, Fig. 1.7).

During the juvenile stage, the individual does not supply energy into reproduction, but accumulates
energy in its maturity compartment EH until reaching the ‘puberty’ threshold that, according to DEB
theory, defines the moment when the organism is mature enough to reproduce ( )-
After reaching this threshold, at around 2.5 to 3 years old ( ), the
organism can allocate energy into the reproduction buffer ER for gamete production (Fig. 1.7). The
structural volume increases continuously along the individual’s life, from birth to death, supplied in
energy left from what has not been allocated to priority maintenance costs pM and pJ.

Starvation _mortality. observed that the gonadal index continues to decrease
slightly for around two months after reproduction. He hypothesized that it was related to the
season: as the reproduction period finishes at the start of winter, food resources decrease and
energy investment into reproductive organs is momentary diverted towards the maintenance of
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somatic elements. This was demonstrated in the other sea urchin species Strongylocentrotus
purpuratus ( ) and Arbacia lixula ( ) confronted with
starvation.

In the model, when scaled reserve e (reserve relative to reserve capacity, no dimension) falls
below the scaled structural length | (length relative to maximum length, no dimension), it is
assumed that the individual is confronted to starvation: the kappa-rule is then altered as energy is
entirely redirected to the somatic maintenance and all other fluxes (growth, reproduction or
maturation) are set to 0. When e < 0, the organism does not have enough energy to allocate the
amount necessary for survival (somatic maintenance costs) and dies. See section
“7.Submodels/Starvation” in Appendix 1.12 for further details and implemented equations.

Ageing mortality. Death probability by senescence was calculated in the model using the ageing
sub-model, a simulation of damages induced by lethal compounds such as free radical or other
reactive oxygen species (ROS), following the DEB theory for ageing ( )-

The density of damage inducing compounds in the body increases as the reserve compartment is
fuelled with energy that is allocated through the entire organism. It influences the hazard mortality
rate h, which is a function of the damage accumulated in the body and simulates the vulnerability
of the individual to damages, such as the risk of dying from iliness increases with age. In the
model, the hazard mortality rate h is supplemented by a stochastic parameter (

to control the ageing mortality rate. See section “7.Submodels/Ageing” in Appendix 1.12 for further
details and implemented equations.

2.4 Individual-based modelling for the population

Principles
The individual DEB model is used to simulate each individual as an entity of the individual-based
population model (IBM). An IBM represents the individual components (individuals of A. cordatus)
of an environmental system (Anse du Halage) and their behaviours, enabling to feature each
individual as an autonomous entity and looking at results at the scale of the whole population
)- In our
model, each individual does not have any direct interaction nor adaptive behaviour towards their
environment nor the other members of the population. They follow a continuous development
governed by metabolic fluxes (DEB model) that are influenced by environmental conditions
(temperature and food resources) along their entire life. Each individual is a component of the
modelled population, which is itself affected by population death rate and density-dependent

processes.
The IBM was built with the software Netlogo version 6.0.4 ( ), using the DEB-IBM
model developed by for the species Daphnia magna. The NetLogo code is

available at http://modelingcommons.org/browse/one_model/6201. It contains the script to run the
model, the input files of monthly food resources and temperatures for the three stations and a
detailed description of the model following the ODD (« Overview, Design concepts, Details »)
protocol from and the associated list of variables present in the code. This
detailed ODD was also included in Appendix 1.12.

Application of IBM model to A.cordatus

Model structure. The model includes two types of entities: the individuals and the environment.
Individuals are divided into 4 types of sub-agents, depending on their life stage and sex: embryos,
juveniles, adult males and adult females. The values of four primary state variables are attributed
to each individual (scaled reserve UE, volumetric structural length L, scaled maturity UH and
scaled reproduction buffer UR). The level of energy contained in the scaled maturity UH thresholds
the life stages. These four variables are ‘scaled’, meaning here that the energy dimension has
been removed by dividing with the surface-area-specific maximum assimilation rate {pam} (in J.L2.t
"), based on DEB theory ( ).

Simulations were run with a monthly timestep for calculation, in regard to the slow growth of the
species and the available data (an analysis of the effect of the timestep on the individual model
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was conducted, Appendix 1.7). At each timestep, food and temperature conditions are first input
into the model, state variable values of each individual are calculated in order to assess whether
new maturity thresholds are reached or whether energy is sufficient for survival, growth or
reproduction. The population state is reassessed at the end of each month. Spatially, population
structure and density are simulated on a patch of one square metre at each site and individuals do
not leave the patch during their entire life.

Initialisation. The initial population density value was set to 120 ind./m? and this figure was split into
classes of equal densities of 20 individuals of different age-classes, between 0 and 5 years old, in
order to stabilize the initialisation between the different replicates. An initial run is realised to
capture the values of the four state variables that characterise the individual of each age class (at
October 2012 temperatures and f=1), in order to initiate the model (Appendix 1.12).

The first decade of the simulation period was always considered as the initialisation phase and
was removed from the analysis, the model showing important outliers (in individual metabolism
and population structure) during these first ten years.

Inter-individuals variability. Each individual is characterised by similar energetic performances
estimated by the DEB estimation (Table 1.4). Five DEB parameters were divided by a scatter-
multiplier parameter that was generated in order to create inter-individual variability. These five
DEB parameters were selected because they are associated to the four state variables that
characterise the individuals and are not null at the time the individual is initiated into the model
(following ): (1) maturity level at birth (U, d.cm?), that is the amount of energy
accumulated in the maturity compartment needed to reach the juvenile stage; (2) maturity level at
puberty (UF, d.cm?), the amount of energy accumulated into the maturity compartment to reach the
adult stage; (3) energy investment ratio (g, no dimension), the cost of the added volume relative to
the maximum potentially available energy for growth and maintenance; (4) the initial energy
reserve at birth (UE, d.cm?); and (5) the initial structural length (L, cm).

The scatter-multiplier is the exponential of a random number from a normal distribution of mean 0
and standard deviation cv (0.1 by default, can be set by the user in the interface of the model). The
value is therefore small enough to not affect tremendously the initial variable and generate trade-
off between parameters. It is applied as soon as the individual is created in the system.

Reproduction. Sex-ratios (ratio males/females) in the studied populations are slightly contrasting
between localities, from 0.94 (lle Haute) to 0.99 (Anse du Halage) and 1.04 (Port Couvreux)
( ). The average ratio of 0.99 was chosen in the model. By approximation, it was
considered that only females undergo physiological changes during the reproduction process,
males being only used as a component of the total population.

To this date, few monitoring studies have been performed on A. cordatus reproduction.

is the only one who studied the Gonado Somatic Index (GSl), that is the proportion of ash-
free gonads dry weight over the ash-free body dry weight, therefore directly linked to the
accumulation of energy into the reproduction buffer. According to , reproduction
can occur if the GSI reaches at least 0.07%. This condition was used in our model to control the
ability of the female to reproduce when time comes.

The GSI parameter was only attributed to females and was estimated for each month, with this
equation ( , section 4.10, eq. 4.89):

k]*UE

24,63 /7
Lm< = sy

time_of_accumulation * Ky *g

GSI =
3+ (fF+uxgryvg)

* (T—wm)*f3—

where the time of accumulation is the number of days spent since the end of the reproduction
period, kv is the somatic maintenance rate coefficient (in d'), g the energy investment ratio (no
dimension), f the scaled functional response (no dimension), k the fraction of energy directed
towards structure, yve the parameter for the yield of structure on reserve (mol/mol), that is the
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number of moles of structure that can be produced with one mole of reserve, (1-k) the fraction of
energy directed towards complexity, k; the maturity maintenance rate coefficient (in d-'), Uf, the
scaled energy in the complexity compartment at puberty (d.cm?), su the acceleration factor (no
dimension) and L, the maximum structural length (cm).

The reproduction period is constant from March to May for the individuals at Anse du Halage, and
they only spawn once a year ( ). After each
monthly step, the model checks the GSI value for each female. If the GSI reaches the 0.07%
threshold at the onset of the period (March), reproduction is triggered for this considered female.
According to the literature, when reproducing, females invest around 52% of their reproductive
organs’ energy into reproduction ( ). This energy is released during the three months
when spawning occurs. That is, the GSI of the female will decrease by 52% of its initial value over
the 3 months period (so a decrease of one third of 52% per month, with GSI = (GSlstart - 0.52 *
GSilstart) / 3, where GSilstart is the level of gonadal index at the onset of reproduction). In parallel,
the usual dUR (change in energy density in the reproduction buffer outside of the reproduction
period, no unit) is set to 0 for the three months, while UR (energy density in the reproduction
buffer) is forced to decrease in a similar fashion to the GSI: 3UR = (UR_start - 0.52 * UR_start) / 3,
with UR_start being the reproduction buffer at the start of the period.

Reproduction induces the introduction of 27 embryos in average in the system ( ),
added proportionally along the three months (9 per month).

Background mortality. No specific adult mortality rates are mentioned in the literature, as no cause
have been defined precisely. Background population mortality annual rates were estimated based
on size frequency distribution provided by , and using the formula from

N(t) = No * eM* with N(t) the population size at time t, No the initial population size, M the
mortality rate and t the time (in months). Two yearly mortality rates were defined: one for juveniles
(41%) and one for adults (24%).

A percentage of embryos mortality in the pouches was calculated based on data from

, determining an egg survival of 65%.This mortality is associated to the fact that when the
first juveniles start leaving the maternal pouches at the beginning of January, they push aside the
protecting spikes of the pouch, and eggs remaining in the brood are no longer protected and die

( )-

Mortality induced by temperatures. As no precise information is available to accurately describe A.
cordatus temperature tolerance, three different types of sensitivity were designed to cover different
hypotheses (Fig. S1.8.B). Based on experimental results obtained in the Kerguelen Islands
(personal observation), mortality gradient due to temperature was applied to the population for
temperatures comprised between 8 and 12°C. Over 12°C, all individuals are considered to die in
the model, as none survived in the experiment. (1) A 'vulnerable' type was defined with population
death rates of 25%, 35% and 45% when the sea urchins are exposed to temperatures respectively
reaching 8, 9.5 and 11°C during two consecutive months. (2) The 'resistant' type was defined with
a mortality rate 15% lower than the vulnerable one for the same temperature thresholds (e.g. 10%
instead of 25% population mortality at +8°C), for similar exposure duration (i.e. two months). (3)
The ‘intermediate’ type is similar to the ‘resistant’ type but individuals are considered to die after
one month of exposure to each temperature instead of two (Fig. S1.8.B).

Density-dependent regulation. Population density autoregulates through competition for food
resources. This procedure relies on the monitoring of population density in relation to the carrying
capacity and allows stabilizing the model. The model calculates the current population density and
quantifies the competition effect on food availability depending on how far from the carrying
capacity (K) the population density (P) is, and updates food availability in accordance.

It is considered that at each timestep, a certain amount of food is available in the environment (fen)
but according to population size, competition for food (FC, quantified food competition) is present
and influences effective food availability (ferr), with fes= fenv + FC, following

. ferr and feny are contained between 0 and 1. FC is calculated with the following equations:
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If P < 1.9 *K, then FC = (1-fon). (1 - =)

If P2 1.9 * K, then FC = (1-fony). (1 - %)

FC is positive if P < K, and fer tends to its maximal value 1 with a decreasing population size, as
FC becomes very low and tends towards 1-feny. When P > K, FC turns negative and make fes
decrease, with the minimal value reached at P= 2K.

Two equations are used because if P = 2K, the first formula gives an error due to a division by 0,
and if P > 2K, then the formula gives the untrue result of less competition with a bigger population
(hence the use of 1.9 as a pivot value). Competition is only effective if food availability is less than
the maximum (hence the use of 1 - fen,’ in the equation).

2.5. Summary of model parameterization and sensitivity analysis

The model was constructed following the ecological and physiological observations available in the
literature for A. cordatus. These observations are summarised in the following table (Table 1.6).
Once these elements were added, the ageing submodel and the carrying capacity parameters, for
which no in situ observations are defined, were calibrated until obtaining a model stable in time,
over several centuries.

The sensitivity of the model to different parameters was tested. This sensitivity analysis also
served as a first form of validation in the absence of wider means of validation. Initial population
number, inter-individuals variation coefficient, juvenile and adult background mortalities, number of
eggs produced per female during a reproduction event, and egg survival rate were each applied
variations of -30%, -20%, -10%, +10%, +20% and +30% (Table 1.6). The influence of changes in
these parameter values was assessed on the average population density (ind/m?), the average
juvenile/adult ratio, the average physical length, the average reserve energy and the average
structural length variation over the period of 200 years. For each analysis, models were replicated
100 times. A model was considered to ‘crash’ when the population is not stable and collapses
entirely before the end of the simulation period. The proportion of crashes relates to the number of
crashes counted for 100 simulations (i.e., for 15 crashes and 100 simulations, the proportion is
15/(100+15)~13%). Due to computing time limitations, the analysis was stopped when reaching a
proportion higher than 66% of crashes (indicated by a black cross in Appendix 1.9).

The model sensitivity to the GSI threshold assumption was tested with the upper and lower values
of the GSI calculated at the onset of reproduction in The minimum value did not
impact the model at all, but the higher threshold value prevented most of the females from
reproducing (results not presented).
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Table 1.6. List of parameters integrated in the individual and population models. Descriptions and values. The source reference that justifies the choice of the
parameterization is provided in the ‘reference’ column. The last column synthetises which parameters where modified to performed a sensitivity analysis, whose
results are presented in Appendix 1.9.

Parameters | Model parameterization Reference Sensitivity analysis
Individuals
Time of development until birth 8 months 254 days ( ) MRE DEB model
Time of development until puberty Thresholded by UP value 2.5to 3 years old ( ) MRE DEB model
Starvation e<l Not tested

Ageing Probability depending on Damage probability: following and | Not tested, calibrated parameter
accumulated cell damages, rules for ageing
constrained by stochasticity Stochasticity: calibrated at the end of model construction
until reaching model stability
Population

Initial population density

120 ind./m?

Rounded from literature (

)

-30 to +30% variation tested

Initial population structure

5 age-classes of 20 individuals

Follow average population structure observed by

Not tested

Variation coefficient (cv) from the inter- | 0.1 Follow IBM parameterization of study | -30 to +30% variation tested

individual variability

Ratio females/males 50/50 Sex-ratio: 0.99 ( ) Not tested

Initial GSI 0.03% Not tested

GSi threshold for reproduction 0.07% Tested with the upper (0.116) and lower (0.028) values
of the GSI calculated at the onset of reproduction in

Reproduction period 3 months once a year Not tested

Energy investment into reproduction 52% of the reproductive energy at Not tested

the onset of the period

Number of eggs 27 eggs per adult female -30 to +30% variation tested

Eggs survival to juvenile stage (birth) 65% -30 to +30% variation tested

Yearly background mortality rates 41% of juveniles Equation provided in , implemented | -30 to +30% variation tested

24% of adults

with population data from

Mortality induced by temperature tolerance

Three sensitivity scenarios

Designed from experimental results

Not tested

Carrying capacity

200 ind./m?

Calibrated at the end of model construction until reaching
model stability, no information available in the literature

Not tested, calibrated parameter
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2.6. Forcing environmental variables

Temperature

In the frame of DEB theory, temperature influences metabolic rates following the Arrhenius
function which defines the range of temperatures that affect enzyme performance, considering that
metabolic rates are controlled by enzymes that are set inactive beyond an optimal temperature
tolerance ( ). The Arrhenius response is characterised by
five parameters that describe the species tolerance range: the Arrhenius temperature TA, the
temperature at the upper and lower limits of the species tolerance range Ty and T, respectively,
and the Arrhenius temperature beyond upper and lower limits of the tolerance range Tan and TaL
respectively.

In our study, the available information is not sufficient to define the complete relationship between
temperature and metabolic performances, and the temperature correction factor (TC) is only
calculated using one of the five Arrhenius parameter Ta (in K), following the equation n(T) = r *
exp(Ta/Trwer - TA/T) with r a given metabolic rate, T the reference temperature (293K = 20°C), T the
environmental temperature (in Kelvin) and exp(Ta/Twr - Ta/T) being the temperature correction
factor TC. The correction is applied to the metabolic rates V, ky, ks, ha (Table 1.4).

Temperatures recorded since 1993 at Port aux Francgais, another site in the Gulf of Morbihan,
show a clear 6-year cycle of increasing and decreasing temperatures (Appendix 1.5). The [2012-
2018] temperature dataset selected as input forcing variable in the model therefore constitutes an
interesting proxy of temperature conditions at Anse du Halage which includes a complete overview
of the environmental variability at the station. However, it is important to take this choice into
consideration during the interpretation of results, as it needs to be differentiated from a cycle that
would be inherent to the biology of the species.

Food resources

In DEB theory, energy is supplied to the reserve of the organism through the ingestion process
which is proportional to food availability, represented in the model by a functional response f (from
0 to 1). Food assimilation (pa, Fig. 1.7) is proportional to the surface of the structure of each
individual and contributes to the filling of the reserve compartment E (Fig. 1.7). The functional
response f was calibrated using the values of organic carbon (OC) content in sediment as a
percentage of dry weight of sediment at the station Anse du Halage at the end of each month,
available in . The maximum value of 1 for f corresponds here to the
maximum value of organic carbon content that was found (6.94%) and a f minimum of 0
corresponds to 0% OC.

2.7 Model projection

Present-day conditions at Anse du Halage

To assess the influence of varying environmental conditions on model outputs, after being
constructed for the site Anse du Halage, the model was implemented in two other sites, lle Haute
and Port Couvreux, where A. cordatus is reported in high densities ( ) (Fig. 1.4). The
implementation to these two other stations was done with contrasting temperatures (from the
Proteker program, as previously explained in 2.1). Food conditions at these two sites are not
available and were estimated at the end of the summer to be 50% to 30% of the organic carbon
values measured at Anse du Halage according to the comparative study of

These rates were applied to year-long conditions (Fig. S1.5). Models were launched for a period of
200 years.

Future conditions

Two future scenarios predicting environmental conditions for 2100 were used, based on the IPCC
scenario RCP 2.6 and 8.5 (respectively optimistic and pessimistic scenarios, ),
accessed at https://www.esrl.noaa.gov/psd/ipcc/ocn/ (in August 2019). Coarse IPCC predictions
(1°x1° resolution) of chlorophyll a concentration were used to roughly evaluate potential changes
of food availability on the east coast of the Kerguelen Island in future conditions. Scenario RCP 2.6
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shows an average decrease of 10% of current food resources availability, while scenario RCP 8.5
shows an average decrease of 20% (Fig. S1.8.C). As for temperature, we defined RCP 2.6 with a
linear increase of +1.1°C and +1.7°C for RCP 8.5. Models were launched for a period of 30 years.

3. RESULTS
3.1. The individual-based model

Variations in energy allocated to the reserve and the maturation buffer are the main controls of
individual development. Monthly variations (QUE and dUR, dX here stands for% ) were simulated

over one year under present-day environmental conditions (Fig. 1.8).

Energy in the reserve (Fig. 1.8) shows variations between -2.5 and 8 on average (no unit), with
extreme range values reaching -5.8 and 13.7. This shows a relative constant energy density inside
the reserve throughout the year with, however, a noticeable increase from October to December
and a sharp decrease from December to January (Fig. 1.8). According to DEB theory (

), the more energy is stored inside the reserve (through food assimilation), the more it can be
distributed to other compartments, and the more energy can be assimilated into the reserve anew.
Availability of food resources for A. cordatus is the highest in December (f = 1) (Fig S1.5), it is
assimilated and stored as energy into the reserve compartment. Based on the energy available in
the reserve at the end of December, energy is supplied in January to other compartments (such as
the reproduction buffer, Fig. 1.8 and growth, Fig. S1.10), while the individual ingests the food
available to replenish its reserve anew. As food availability decreases in January (f = 0.748), the
reserve loses energy (Fig. 1.8) because the individual cannot assimilate as much energy as the
amount transferred to other compartments.

The energy density entering the reproduction buffer (Fig. 1.8) of mature females varies between 0
and 4.9 on average in the course of the year, with a maximum of 10.7. The rate of energy input
increases at an average pace of +1.1% per month from October to the onset of the reproduction
period in March, when it decreases and remains null until the end of the spawning period in June.
Then, energy starts accumulating again until the next reproduction period. During the three months
of the spawning period, from March to May, no energy is allocated from the reserve to the
reproduction buffer and the energy stored in this buffer is progressively delivered to gametes. Only
females that are mature in March undergo reproduction and deliver the energy contained in the
reproductive buffer to the gametes. Females that become mature during the reproduction period
undergo a normal increase of the energy in the reproduction buffer, which explains the small
increasing trend observed during the March-May period (Fig. 1.8).
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Figure 1.8. Simulation of the variation of energy allocated to the reserve (a) and the reproduction buffer (b)
compartments over one year. Males were not considered in the model when simulating reproduction
processes, and thus results presented here only take females into consideration. Average results for all
mature females, in 100 model simulations are presented by the green line. The grey area corresponds to the
variation range (variation induced by differences between individuals: age, size, energy allocation) between
all females among the 120 individuals that initiate the model. The variation in energy allocated is the change

in a scaled variable X: dX here stands for i—f (for an explanation of the term “scaled” here, see section 2.4).

3.2. The population model

Modelled population dynamics at the calibration site

Based on the individual model, population dynamics were simulated over a time period of 30
years, showing a constant population density comprised between 120 and 220 individuals per
square metre. Overall, the population structure remains constant through time but with well-marked
yearly variations, mainly in juvenile density (Fig. 1.9). Juveniles indeed represent around 83% of
the total population density and show important yearly variations due to (1) important seasonal
reproductive outputs causing a surge in population density, (2) strong mortality rates causing
gradual decreases in the population, (3) the transfer of the large juvenile cohort to the adult
population after around 3 years, and (4) the influence of inter-individual competition for food
limiting population densities and even causing its decrease. In contrast, the adult population is
much more stable relative to the juvenile one, with lower density values (around 40 individuals per
square metre). Both juvenile and adult population fluctuations follow a general 6-year pattern
displayed over the 30 years of simulations (rectangle, Fig. 1.9). This pattern is linked to
temperature cycles over the same time span and includes two sharp decline in population density
over a 6-year cycle (‘T’ symbol, Fig. 1.9), which corresponds to high temperatures rising above
+8°C during two consecutive months and causing mortality rates of 10% of the entire population.
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Figure 1.9. Modelled population structure and density under present-day environmental conditions: monthly
values of juvenile density (purple) and adult density (orange) over 30 years (for 100 simulations). Bold lines:
mean density value. Shaded areas: variation range for the 100 simulations. ‘T’ symbol: sharp decrease in
population density due to temperature-induced mortality. Dashed-line rectangle: 6-year cycle in population
dynamics (this 6-year pattern is due to the input temperature data and not to a biological cycle inherent to
the population).

Sensitivity analysis

Different parameter settings for the model initiation may result in very diverging outputs (Appendix
1.9). It also influences model stability, and population collapse in particular. Overall, the initial
number of individuals and the level of the inter-individual variation coefficient are parameters that
have little influence on model stability and low proportion of population crashes may result. In
addition, model outputs do not differ significantly between simulations. Increase in juvenile and
adult mortality levels will also have little influence on model outputs but decreasing mortality levels
will induce a population burst followed by a strong competition for food and a consequent
population collapse.

Among all parameters set at the model initialisation, egg number and egg survival are the most
important determining model stability, as they directly control juvenile density. High juvenile
densities (induced by a low background juvenile mortality and a high number of eggs and egg
survival) always result in fast population collapses as a result of high competition for food between
individuals. As population density increases, the amount of food available for each individual
decreases and individuals start starving to death. In contrast, a reduction in the number of
juveniles causes a reduction in the average population density due to a strong mortality rate of
juveniles. It does not imply model instability and the proportion of modelled population crashes is
always lower than 15%. The reduction of population density also strongly influences the average
amount of energy available for each individual: the more energy is available, the more individuals
can grow in structural length.

Projections of the population dynamics model to other sites

The dynamic population model built at Anse du Halage was implemented (Appendix 1.11) for the
two sites of lle Haute (inside the Morbihan Bay) and Port Couvreux (outside the Morbihan Bay).
Both models were simulated twice with initial estimates of 50% and 30% of food availability (f)
compared to Anse du Halage (fu). Temperature inputs were based on local temperature variations
recorded at the two sites. Model outputs predict lower population densities at both sites compared
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to Anse du Halage and interestingly, similar ratios between juveniles and adults (Table 1.7). These
results are consistent with density values found in the literature, which gives between 100 and 136
individuals/m? at lle Haute and 50 to 168 ind./m? at Port Couvreux ( ).
The different observed density values reported in publications for Port Couvreux may be due to
contrasting conditions that locally prevail among the three small embayments of that locality
( ). This has recently been confirmed by our personal observations in the field (

)- Model outputs suggest a strong influence of food availability on population densities
controlled by inter-individual competition for food. Accordingly, simulations predict a drop in density
values at Port Couvreux when food resources decrease at 30% of fy, while density values are
relatively stable at lle Haute in comparison (Table 1.7). This mainly affects juvenile densities and
results in a lower population ratio (Table 1.7).

Temperatures recorded at the two sites inside the Morbihan Bay (Anse du Halage and lle Haute)
are close to each other and slightly higher than outside the Bay at Port Couvreux (Fig. S1.5).
Contrasting results were therefore expected between Port Couvreux and the two other sites. On
the contrary, temperatures may not be contrasting enough between sites to affect population
structure and density. Confidence intervals overlap between all sites for values of both population
density and juveniles-adults ratio (Table 1.7).

Table 1.7. Modelled population densities (a) and juveniles over adults ratio (b) at the calibration (Anse du
Halage) and projection (lle Haute and Port Couvreux) sites. Average and standard deviation values are
given for 100 model replicates and 200 years of simulation. fu: time series of f value at Anse du Halage

( )-

(a) Anse du Halage lle Haute Port Couvreux
fu, T°Halage 182.6 £ 49 - -

50% of fu, T°site - 137.6 £40 137.4 £ 41
30% of fu, T°site - 123.2+ 38 91.8+44
(b) Anse du Halage lle Haute Port Couvreux
fu, T°Halage 6.53 + 3.12 - -

50% of fu, T°site - 6.311£4.40 6.32 £ 4.31
30% of fu, T°site - 6.04 + 4.31 3.87 £ 2.61

Population dynamics under future predictions of climate change

Population structure and density were simulated and implemented for scenarios of temperature
and food resources changes based on IPCC scenarios RCP 2.6 and 8.5, and for populations of
'resistant’, 'intermediate’ and ‘'vulnerable' organisms (Fig. 1.10). Population dynamics are all
predicted to be affected by both scenarios (Fig. 1.10) with overall population densities predicted to
be four to seven times lower than current population predictions. Population structures are also
predicted to be affected by a lower contribution of juveniles to overall population densities. The
respective effects of temperature and resource availability were simulated independently. Under
temperature change only (Fig. 1.10), model predictions are close to model outputs in which both
variables are combined, with a strong decrease in average population density compared to
present-day conditions. The effect of changes in resources availability only is less marked, with
population densities showing a close pattern to present-day models (Fig. 1.10).

Models therefore predict a stronger effect of temperature changes on populations, with population
densities of ‘vulnerable' organisms predicted as very low (less than one tenth of present-day
densities on average). Populations of 'vulnerable’ organisms are even predicted to go extinct in
only 30 years of simulation (Fig. 1.10). Populations of organisms with 'intermediate’ sensitivity are
more resilient and withstand over 30 years of simulation in some cases, but they collapse at the
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end of the period under IPCC scenario RCP 8.5. Overall densities are very low (around 20 or less
individuals per square metre on average).
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Figure 1.10. Model predictions under IPCC scenarios RCP 2.6 and RCP 8.5 (for 100 simulations). Purple:
adult population, orange: juvenile population. Coloured bold lines show mean values for 100 simulations.
Shaded areas are simulation variation ranges. (a) Population model under present-day conditions, (b) model
under IPCC scenario RCP 8.5 of T° change only (+1.7°C compared to present) and for resistant organisms;
(c) model under IPCC scenario RCP 8.5 of f change only (-20% compared to present) and for resistant
organisms; (d) model under IPCC scenario RCP 2.6 of T° and f changes (-10% of f and +1.1°C compared to
present) and for ‘resistant’ organisms; (e) model under IPCC scenario RCP 2.6 of T° and f changes and for
‘intermediate’ organisms; (f) model under IPCC scenario RCP 2.6 of T° and f changes and for ‘vulnerable'
organisms; (g) model under IPCC scenario RCP 8.5 of T° and f changes and for ‘resistant’ organisms; (h)
model under IPCC scenario RCP 8.5 of T° and f changes and for ‘intermediate' organisms; (i) model under
IPCC scenario RCP 8.5 of T° and f changes and for ‘vulnerable' organisms.
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3.3. Population mortality under present-day and future predictions

Under present-day conditions (Fig. 1.11), background mortality and ageing are the main causes
that affect population mortality each year (respectively between 65-90% and 5.8-9%). High
temperatures and starvation have sporadic effects on mortality. High mortality due to high
temperatures only happened in [2016-2017] and [2017-2018] and starvation contributes at the
highest to 10% of overall mortality, depending on the year.

Over the course of a year (Fig. 1.10a), background mortality and ageing affect the population every
month, while high temperatures (over 8°C) cause the death of half of the population in March and
April. Starvation is responsible for the death of a weak proportion of the population in November
and December only (austral summer), in link with the competition for food resources of the
increasing population during this productive and warm period.

Under both future scenarios (Fig. 1.10e,f), mortality levels are low compared to present-day model
(Fig. 1.10b), which is mostly due to small predicted population densities. Background and ageing
mortalities are therefore very low. Starvation is not a cause of mortality anymore, while high
temperatures cause mortality of individuals before they may starve to death. When comparing
between model predictions under scenario RCP 8.5 for changes in food availability only (Fig.
1.10c), temperature change only (Fig. 1.10d), and the combined variables (Fig. 1.10f), temperature
clearly appears as the main cause of mortality, at the same level as background mortality.
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Figure 1.11. Mortality simulations (in individuals/mz) per month (a) and year (b-f) under present-day (a-b)
and future (c-f) predictions of the two IPCC scenarios (for 100 model simulations). (a) Model under present-
day conditions for 12 months (year #7 [2016-2017] was chosen as an example); (b) Model under present-
day conditions for 50 years of simulations; (c¢) Simulated mortality under scenario RCP 8.5 for resistant
organisms and predicted changes in food availability only (f=-20% compared to present); (d) Simulated
mortality under scenario RCP 8.5 for resistant organisms and predicted changes in temperature only (+1.7°C
compared to present); (e) Simulated mortality under scenario RCP 2.6 for resistant organisms and predicted
changes in both food availability and temperature (food reduction of -10%, T° increase of +1.1°C); (f)
Simulated mortality under scenario RCP 8.5 for resistant organisms and predicted changes in food
availability and temperature (food reduction of -20%, T° increase of +1.7°C).
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4. DISCUSSION
4.1. Potential and limitations of the DEB-IBM approach

In the present work, a DEB-IBM model was built for A. cordatus based on our current knowledge of
this vulnerable, endemic species of the Kerguelen plateau. On-site monitoring and experiments on
species tolerance to changing environmental conditions remains challenging issues in the
Kerguelen Islands, and in the Southern Ocean in general. Difficulties are due to the sensitivity of
specimens ( ) and their inherent ecological
characteristics. Models can constitute a powerful tool for Antarctic research as they can provide
additional support to experimental knowledge and infer the impact of broad-scale climate change
on populations. The potential of the present mechanistic modelling approach resides in its capacity
to model the physiology of organisms as a response to environmental factors. Using DEB models
for the representation of individual components within the IBM enables to upscale a dynamic
model to an entire population ( ) as a function of two changing abiotic
factors: temperature and food resources. Applying such a model to a sub-Antarctic, benthic, and
brooding species is challenging, and had never been performed so far. The present work shows
the feasibility and relevance of the DEB-IBM approach to study Southern Ocean species like A.
cordatus.

Relevant results were obtained both at the individual and populations levels. First, simulations
showed the characteristic annual evolution of energy dynamics in the organism (Fig. 1.8, Appendix
1.10) and second, population structure and density dynamics were modelled over an extended
period of time decoupling juvenile and adult populations (Table 1.7, Fig. 1.10, Fig. 1.11).
Projections to other sites also show the potential application of the model to other areas for which
environmental data are available. Future models give an insight and add some clues to assess the
potential impact of climate change and predict the biotic response of populations. Models however
still need some improvements including complementary data on species ecophysiology. The model
was also shown to be sensitive to mortality rates and some parameters (egg number and egg
survival) settings while some population characteristics (initial population densities and inter-
individual variability) have little effects (Appendix 1.9).

4.2. Limitations to the DEB-individual model

The dynamic population model built in this work uses outputs from the DEB model developed for
A. cordatus ( ), which allows to represent as faithfully as possible the
physiological dynamics of individuals during their entire life cycle. The goodness of fit of the DEB
model shows that estimated parameters accurately described observed data. However, collecting
additional data at the different stages of the organism's life cycle and under different conditions of
temperature and food availability would contribute to improving further model accuracy and
parameter predictions. In particular, data on environmental settings and species ecophysiology are
still needed to improve the accuracy and relevance of the following parameters.

The Arrhenius function and the optimal temperature range

In DEB theory, the Arrhenius function determines the optimal temperature range of the organism's
metabolism as a response to enzymatic tolerance ( )- In
the present work, calculation of the Arrhenius function relies on fragmented datasets. The
ascending part of the Arrhenius curve that is, the temperature range in which faster metabolic rates
are determined by higher temperatures was estimated, but values are still missing for the
descending slope (i.e. the temperature range beyond the optimal temperatures in which the
metabolic rates slow down with higher temperatures) ( ). The present model
assumes that higher temperatures favour more suitable conditions with no limit (Appendix 1.10),
which has to be corrected arbitrarily using our personal field and experimental observations on the
echinoid ecology (Appendix 1.8). Further experiments should help improve the calculation of the
Arrhenius function. They would consist in measurements of respiratory rates as a function of
temperature variations (e.g. ) and will enable more accurate simulations of A.
cordatus' ecophysiology and the direct effect of temperature on the organism’s metabolism, a
prerequisite to better model population mortality.
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Age, size and growth estimates

Most parameters used in the DEB model were taken from the literature and experimental studies,
except for some of them that were assumed based on physiological traits of counterparts. In
particular, organisms' maximum age, growth rate and size are not sufficiently known due to
difficulties in setting up long-term experiments in the Kerguelen Islands. The relationship between
echinoid growth, size and shape cannot be assessed based on growth lines measurement
because there is no linear relationship between echinoid size and age ( ) and because
resorption may occur during periods of starvation ( ). The
most reliable method would consist in monitoring organisms’ growth through time using tagging
methods ( ). However, such an approach is time-consuming and challenging as even
small measurement errors may have a significant effect on results ( ) and no
experimental data are available so far.

Former studies ( ) showed that after 4 to 5 years, specimens of A. cordatus only
slowly increase in size and echinoids’ test tend to become distorted, a common feature in large
spatangoid echinoids in which test plates tend to overlap while body size does not increase
anymore ( ). However, this slow growth rate in aged specimens could also result
from other causes affecting optimal food intake for instance. At the calibration site of Anse du
Halage, a study of echinoid cohorts suggests that few individuals grow older than six years old
( )- Overall, the absence or nearly absence of growth in old invertebrate
organisms makes age estimates delicate to assess. In the present model, based on the
combination of the ageing sub-model and other mortality processes, most individuals are
calibrated to die within the assumed maximum age (before 6 years old), although some individuals
may reach over ten years old due to the chosen stochasticity introduced in the sub-model.

Juveniles inside brood pouches were assumed to grow at a constant and same rate as adults but it
has sometimes been assumed that the brooded young may already feed and develop at a faster

rate ( ). At this stage, offsprings are particularly fragile and need
protection in the brood pouches to survive, which prevents any monitoring of growth rates and
feeding behaviours ( ).

4.3. Ecological relevance of the IBM population model

Upscaling the DEB-individual model to the population level in the IBM enables to simulate
population structure and dynamics as a response to temperature and food resource availability. In
particular, the IBM enables to predict the targetted effect of environmental changes on the
population at the different life stages of individuals. Additional environmental data would help
enhance IBM reliability and improve our knowledge of populations and environmental conditions in
remote areas.

Field works are also subject to uncertainties due to the species burrowing habit which renders the
assessment of population structure difficult, the brittleness of specimens also limiting counting
replicates ( ). Important variations in population densities were
noted across studies ( , personal
observations) for a same site, which may suggest either important variations in population density
and structure through time, which was however refuted by , or important
biases in sampling due to the aggregative behaviour of individuals and the patchiness of
distribution patterns (

The sensitivity analysis (Appendix 1.9) showed that the model is not very much dependent on
assumptions made on initial population densities because the model density-dependent regulation
operates through intra-specific competition for food resources only. There is no agonistic behaviour
among conspecific individuals as it was reported in other echinoid species (e.g. Echinometra sp.

) and there is no evidence of competition for space in A. cordatus based on field
observation. Intra-specific competition in shallow-water echinoids is a common phenomenon under
food-limited conditions ( )- stated that in
Echinometra mathaei, when predation pressure and intra-specific competition are low, populations
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increase without limitation and regulation operates through a decrease in food availability for
individuals. The same could hold true for A. cordatus as well.

Intra-specific competition for oxygen could also have a regulatory effect ( )
since A. cordatus shows a high oxygen consumption rate (

). In muddy substrates, specimens are usually observed unburied, positioned onto the
sediment (instead of underneath), which was often interpreted as a result of difficulties to breath
inside fine sediments.

The sensitivity analysis also showed that the number of eggs produced by females is a controlling
parameter of model stability as well. There is a high variability in the number of eggs produced
among females (from 9 to 106 eggs per female, personal communication from P. Magniez). Taking
into account such a variability would introduce an enhanced stochasticity in the population
dynamics model if implemented and linked to each female’s reproductive buffer UR and GSI
values ( , €.g. for zebrafish in )-

Finally, the model was also shown to be sensitive to background mortality (Appendix 1.9).
Although monitoring mortality rates in the field is challenging, such data would greatly enhance the
reliability of the IBM.

In general, the sensitivity tests showed that the model works with the current quality and quantity of
data available for this species in this habitat. However, on the matter of the temporal resolution,
our model needs to be expanded and further consolidated, and we consider this element as a
limitation to our work in its current state.

Modelled food resources
The organic content of sediments is one of the main food resources for detritus feeders and
sediment ingestors like A. cordatus ( ) and Antarctic echinoids (

). In the present model, the organic carbon content of sediments was used as a proxy
for food availability for A. cordatus. Intra-specific competition for food has a stronger effect on
resources availability than seasonal variations in resource availability. This is in line with ecological
evidences that populations of A. cordatus survive periods of low food resources that prevail during
the austral winter. High seasonality in food resources is a common feature of polar ecosystems
and species have long adapted their diet accordingly (

)- This has been shown in Antarctic benthic invertebrates such as shallow-water brachiopods
( ), cnidarians ( ), and echinoids (

). For instance, the Antarctic sea urchin Sterechinus neumayeri is believed to be capable
of mobilizing energy from gut tissues, gonads and the body wall during the austral winter
( ), a strategy that may have been evolved in A. cordatus as well (

). Shrinking and resorption, which are sometimes hypothesized as a survival mechanism in
other echinoids facing long periods of starvation, are phenomena which are still understudied
( ) and have not been verified in A. cordatus. In the present
model, starvation results in the redirection of the energy flow exclusively towards maintenance of
structure, at the expense of other compartments. Although observed a decrease in
gonadal material after the reproduction period, it is very small in females (- 0.3%) and slightly
bigger in males (-1.6%), and the exact cause has not been studied. It is not known whether this
decrease in gonadal material can be directly attributed to a reabsorption for survival purposes or
some other mechanism. The use of previously stored energy in the different compartments to
sustain the maintenance of structure is assumed to be non-existent in our model. Such starvation
processes could be tested in future implementation, provided sufficient data is obtained through
experimental setups observing the phenomenon.

The two scenarios of future food availability were based on coarse IPCC and NOAA projection
models for the region. These simulations and associated outputs are here considered as
conceivable scenarios of the influence of food and temperature changes on population dynamics.
They are used as a proof of concept and are by no means considered as definite and reliable
scenarios of population dynamics in the future. Future accurate predictions should imply the
integration of complex mechanisms influencing the production, transport and deposition of organic
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matter in the ocean, the possibility of species to adapt to changing environmental conditions, and
more experimental data are needed to integrate the detailed influence of temperature on
physiological processes. First observations suggest a low response towards the applied changes
in food availability, in comparison with the influence of temperature. However, it cannot be
concluded that the species would not be affected by future conditions in food resources in the
area.

Temperature resilience

Important differences were obtained between population structures and densities depending on
future scenarios and model projections made for contrasting food resources and temperature.
Most importantly, the 'resistant’ population model of A. cordatus at Anse du Halage is predicted to
sustain the expected changes in temperature and food resources under both future scenarios
although population density is also predicted to be strongly reduced. In contrast, the 'vulnerable'
population model predicts population extinction after a few decades of simulation. This implies that
a precise evaluation of the species resilience to temperatures is needed for more robust and
decisive models. Moreover, Antarctic echinoids were shown to present varied responses to ocean
warming depending on species and life stages, with higher vulnerability to warm temperatures in
juveniles than in adults ( ). Such a contrast suggests that more data could help
fine-tune the present model.

4.4. Relevance of the DEB-IBM approach for Southern Ocean studies

DEB-IBM models are being developed for various applications and research fields. They are
considered a powerful tool for environmental risk assessment, such as the effect of toxicity (e.g.

) and the impact of environmental
changes on population dynamics (e.g.

)- They can also be used to predict the behaviour of
microbial systems ( ) or bring to light underlying mechanisms of life history
strategies (e.g. ). The DEB model brings ontogenetic and phenotypic variations to
the population model while the IBM brings stochasticity, population dynamics (e.g. competition for
food), as well as learning and interaction mechanisms ( ) to
complement the model. The potential of the DEB-IBM approach resides in the combination of both
models to predict population dynamics as a response to changing environmental conditions (i.e. at
the individual level in the DEB model and at population level in the IBM).

In the present work, the DEB-IBM was used to improve our understanding of the dynamics of A.
cordatus’ populations. Applications could be further developed to address conservation issues
such as the designation of priority areas and the definition of management plan strategies. Vast
areas of the French Southern Territories have recently been placed under enhanced protection of
a national nature reserve based on experts' knowledge and ecoregionalisation approaches (

)- Most areas however could not have benefited from thorough

benthic field studies, and ecological models can represent interesting tools to assess the relevance
of defined protection areas for target species and ecosystems. Such models can be useful when
drafting management plan strategies for determining favored ship traffic routes or areas where
human activities can be implemented in coastal areas of the national nature reserve of the French
Southern Territories. Dynamic population models allow testing different ecological scenarios in a
quite straightforward way to illustrate research designs and proposals. They can provide some
clues to investigate the potential effect of environmental changes on key species for which
conservation efforts should be directed in a short to long-term strategy (
Dynamic models can also prove useful for adaptable conservation strategies like the designation of
dynamic protected areas as a consequence of changing environments and ecosystems. Finally,
dynamic models could be further implemented into studies of ecosystem functioning and the
impact of environmental changes on the alteration of sub-Antarctic ecosystems.
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APPENDIX 1.7. Influence of timestep changes

The sensitivity of the model to the chosen timestep was tested by comparing model outputs of the initial
monthly calibrated model with a daily implementation (simple repetition of the monthly value for each day of
the corresponding month).

In order to assess whether models can similarly predict individual performances when calibrated with
different timesteps, models generated with a monthly and a daily timestep were compared. In these models,
all processes outside of the individual development and the production of new offspring into the model were
deleted (no competition, no mortality of any cause). Only individual development processes were kept,
including starvation and reproduction, which directly influence individual energy fluxes without any stochastic
effect. This facilitates model comparison. The population was assumed to be composed of female individuals
only that reproduce following the procedure explained in the main manuscript. The model was initialized with
120 female entities, and individual metabolic performances (dUR, dUE, dL) over five years were compared
between the two models.
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Figure S1.7. Comparisons of individual metabolic performances between models calibrated with a monthly
(black line) or daily (grey line) timestep: (A) variation in scaled reserve (dUE), (B) in the reproduction buffer
(dUR) or (C) variation in structural length (dL) over time. Models are generated without any process
structuring populations except for reproduction events (i.e. recruitment of new juveniles). Average values of
all individuals of the population are represented.

These results strongly highlight that models calibrated with different timesteps present very close patterns,
and suggest that changing model timestep does not influence the shape and order of magnitude of individual
metabolic performances predictions.

In our model, time is continuous for individual processes (individual development is modelled using ordinary
differential equations), but not for all population processes which were taken from literature and experimental
sources. These population processes are based on a monthly scale and used as a baseline to model
population dynamics over time. Running the model at a smaller timestep implies altering all population
processes to fit a narrower time increment, which is also not always relevant ecology-wise when studying
population dynamics, since A. cordatus is a slow growing individual that lives in stable environmental
conditions. Environmental changes do not occur often enough to significantly influence individual metabolism
on a day-to-day basis and to consider mortality due to temperature changes at a daily step.

119



MECHANISTIC MODELS CHAPTER 1.

Similarly, information used for population background mortality rates were only available in the literature on a
yearly range ( ), and applying mortality for each day-step
seems inappropriate for our study. Recruitment of newborn juveniles is also a yearly event, rendered
possible when the reproduction buffer contains enough energy at a certain period of the year to enable
females to release gametes. Reproduction development (GSlI, reproduction buffer) is a continuous process
in the model but specific reproduction events (releasing gametes, brooding and releasing offspring) are more
fitting to monthly rather than daily triggers. In consideration of the ecological basis of these population
processes and the very low sensitivity of the individual model to changes in timestep, it was therefore
decided in this study to implement the model on a monthly timestep, although Fig. S1.7 proves that
methodologically speaking, a different timestep could be applied to the core of our model.
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APPENDIX 1.8. Future environmental scenarios and population resistance scenarios
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Figure S1.8.A. Temperatures for the different future projections based on the 2012-2018 dataset. Black:
reference temperatures at Anse du Halage under present-day conditions. Green: Projection for scenario
RCP 2.6 (+1.1°C warming). Orange: Projection for scenario RCP 8.5 (+1.7°C warming).

Article. Arnould-Pétré et al. (2020). Individual-based model of population dynamics in a sea urchin of the Kerguelen Platpqu

(Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling.
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Figure $1.8.B. Decision tree explaining the three types of sea urchin sensitivity available in the model for the
population temperature mortality rates. A ftriple population resistance scenario was used: ‘resistant’,
‘intermediate, ‘vulnerable’. For each threshold of the gradient of population mortality due to temperature, the
‘resistant’ population endures a mortality rate 15% lower than the ‘sensitive population’ (i.e. at 8°C for two
months, the ‘resistant’ population suffers a 10% mortality rate, the ‘sensitive’ population suffers a 25%
mortality rate). For the ‘short resistance’ population, rates are the same as for the ‘resistant’ population, but
mortality takes effect only after one month of temperatures reaching over the threshold (rather than two
months in the other cases).
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present-day conditions). Orange: Projection for scenario RCP 8.5 (decline of 20% of food availability
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APPENDIX 1.9. Sensitivity analysis
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Figure S1.9. Model sensitivity to (a) the initial population number, (b) inter-species variation coefficient, (c, d)

juvenile and adult background mortalities, (€) egg number produced per female during a reproduction event,
and (f) the egg survival rate. Variations of -30%, -20%, -10%, +10%, +20% and +30% were tested for these
parameters (#A to #F). For each analysis, the model was run until 100 simulations of 210 years of simulation
were obtained. The model is considered as a ‘crash’ when the population is not stable and collapses before
the end of the simulation period. The proportion of crashes relates to the number of crashes counted for 100
simulations (i.e., for 15 crashes and 100 simulations, the proportion is 15/(100+15)). Due to computing time
limitations, the analysis was stopped when reaching a proportion higher than 66% of crashes (indicated by a
black cross).
The percentage of changes obtained between the initial and the #A to #F scenarios values was calculated
for average population density (ind/mz), average juvenile/adult ratio, average physical length (cm), average
reserve energy dUE and average structural length variation (dL) over the period of 200 years (210 years
minus the first 10 years needed for model calibration). Decreasing values are indicated in red, increasing
values in green.
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APPENDIX 1.10. Individual growth under different scenarios
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Figure S1.10. Simulation of the monthly variation of structural length (dL, stands for %, dimension L.t'1) over
one year. Average results for all individuals (all sex and age), in fifty simulations, are presented by the green
line. The grey area corresponds to the variation range (variation induced by differences between individuals:
age, size, energy allocation) between all individuals, with the same number of individuals at model initiation
(population then varies over time). (a) Model under present-day conditions; (b) model under IPCC scenario
RCP 2.6 of T° and f changes (-10% of f and +1.1°C compared to present); (c) model under IPCC scenario
RCP 8.5 of T° and f changes (-20% of f and +1.7°C compared to present); (d) model under IPCC scenario
RCP 8.5 of T° change only (+1.7°C compared to present); () model under IPCC scenario RCP 8.5 of f
change only (-20% compared to present).

These results give an illustration of what is discussed in section 4.2.1: In the DEB model of this work, we do
not have the data to infer the descending slope of the Arrhenius curve, that is the temperature range beyond
the optimal temperatures in which the metabolic rates slow down with higher temperatures. Thus, in its
current implementation, the model gives better results at the individual level when confronted to higher
temperatures, which is not in accordance with field and experimental observations. This is corrected at the
population level with the use of the rate of mortality induced by temperature.
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APPENDIX 1.11. Projection of the population model
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Figure S1.11. Modelled population structure and density under current environmental conditions calibrated
at Anse du Halage and projected for two sites: lle Haute (a, b) and Port Couvreux (c, d). Monthly density of
juveniles (purple) and adults (orange) over 30 years (100 simulations). Bold lines: mean density value.
Shaded areas: variation range. (a) Projection at lle Haute based on local temperature records and 50% f
values (Fig. S1.5.B, yellow), (b) Projection at lle Haute based on local temperature records and 30% f values
(Fig. S1.5.B, blue), (c) Projection at Port Couvreux based on local temperature records and 50% f values
(Fig. S1.5.B, yellow), (d) Projection at Port Couvreux based on local temperature records and 30% f values
(Fig. S1.5.B, blue).

The pattern observed at Port Couvreux with =30% of f values estimated at Anse du Halage (Fig. S$1.7) is
due to local conditions of low food availability and temperatures (2013 and 2014 temperature data for Port
Couvreux, Fig. S1.5.A, blue) impeding the conception of new individuals when females are few and do not
reach GSI values high enough to reproduce. Some years, background mortality is not compensated by new
cohorts and the population continuously decreases. The cyclic pattern is controlled by temperature data
input in the model (six years period transposed for the entire simulation time).

Article. Arnould-Pétré et al. (2020). Individual-based model of population dynamics in a sea urchin of the Kerguelen Plofggu
(Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling.
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APPENDIX S$1.12. ODD of the DEB-IBM model

The ODD is available in the “Info” section of the NetLogo code, found at
http://modelingcommons.org/browse/one_model/6201.

MODEL PRESENTATION

The present DEB-IBM (Dynamic Energy Budget - Individual-Based Model) was built to simulate and predict
population dynamics in an endemic common benthic species of the Kerguelen Plateau (sub-Antarctic
region), the sea urchin Abatus cordatus. It upscales the individual mechanistic DEB model to the population
level, enabling to model the population dynamics through time as a product of individual physiological
responses, and to predict the species response to a changing environment through comparisons between
sites and between predicted future scenarios. The main objective of this work was to develop the model
using the available data for this species living in a remote environment that is impacted by climate change
and where logistical challenges strongly hinder the scientific research.

How to run this model ?

A few simple steps are necessary to run this model under its basic implementation:

1/ Download the model and the environmental files from the “Files” tab in the NetLogo modeling commons
(http://modelingcommons.org/browse/one_model/6201#model tabs browse files).

For the basic implementation, the two files needed are ‘“temp_time _monthavg Halage.txt” for temperatures
and “inputRSces_M_f Delille.txt” for resources. Make sure the model (.nlogo) and the data (.txt) files are
stored in the same folder on your computer.

2/ Once you have opened the model (.nlogo), the interface is generally the first thing that is visible.
Navigation between the interface, the information page, and the code of the model is done through the three
tabs at the top of the software (‘Interface’, ‘Info’, ‘Code’).

Make sure that the following elements are selected in the interface:

Sites: ‘Anse du Halage’
projection: ‘present’

future: ‘mixed temp & food’
sensitivity: ‘resistant’
competition: 'On’
run_time: 210°

cv: ‘0.1

add-my-pet?: ‘Off

Also ensure that none of the green boxes (‘input paramaters’) is empty. If any of them is empty, switch the
add-my-pet? button ‘On’ and fill the relevant boxes with the basic DEB parameters for A. cordatus as taken
from the Add-my-Pet database

(https://www.bio.vu.nl/thb/deb/deblab/add my pet/entries web/Abatus cordatus/Abatus cordatus res.html):

[Bwm], E}}, Ef,, [Ec] and Lm, which correspond to these boxes respectively: p_M, E_H”b, E_H"p, E_G, zoom.

Except in the aforementioned case, do not modify any of the parameters in the green boxes placed under
the line « Input parameters » on the interface.

3/ Click on the purple setup button. This initializes the model, and should barely take a second on an
average computer. A sure way of knowing the model has finished setup, is that color shapes appear in the
small black square that is on the bottom-right of the purple buttons.

4/ Once setup is finished, click on the purple go button. This will run the model for the simulated duration
input in the run_time box (number of years). Clicking on the go button again before the end of the simulation
will pause the model, clicking on it after the end of the simulation will continue the simulation without a
temporal limit. The go once button will only run the model for a single loop, that is a simulation of one month.
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5/ The model can be run for future projections with different combinations of food and/or temperature
scenarios. For this, select in the interface the desired RCP scenario under projection and the wanted
combination under future. Three types of sensitivity to high temperature are also available under sensitivity
(see « Check temperature » submodel in the ODD below for a short explanation of the difference between

the three types).

For now, the model only fully works if the site Anse du Halage is selected. Sites Port Couvreux and Ile
Haute can also be selected, however the site-specific data is only available for temperature and not for
resources. Thus, if one of those two sites is selected, the file for the resources data will be that of Anse du
Halage. This is merely to test the model for different temperature data using real time-series records
rather than future projections.

NB: Here again, make sure that the relevant temperature files (“/emp_time_monthavg Couvreux.txt” or
"temp_time _monthavg Haute.txt », also available in the “’Files’’ tab in the NetLogo modeling commons)

are stored in the same folder as the model.

Other things to keep in mind in this implementation:

e The temporal resolution is a monthly interval.

o Temperature and functional response f are in the form of time-series. (To test with constant and DEB
standard values, uncomment the corresponding lines at the beginning of the go procedure in the
code).

e This species lives in waters of 5°C in average, however the upper limit of the Arrhenius relationship
is not available to model Abatus cordatus physiological response to higher temperatures. Because of
this, the mortality due to temperature was manually forced in the model using survival data obtained
during an experiment led in Kerguelen in November 2018.

MODEL DESCRIPTION

Here is a schematic representation of the DEB-IBM model and a short summary
description (the letters in brackets refer to the figure):
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(C) Forcing environmental variables
Temperature

Food resources

(B) IBM

1 (A) DEB model

faeceg

Structural volume (V)

Inter |nd|v|dual

. . variability

% Ageing mortality
Starvation mortality Q Temperature mortality
Background mortality

Individuals (A) undergo development through the DEB model and reproduce (purple arrow). Altogether and
with a slight inter-individual variability in DEB parameters (*), they form the population of the IBM (B) which
undergoes population-specific processes (temperature and background mortalities) at the scale of a simple
square metre patch at the reference site (C). The IBM population is embedded within this specific
environment, whose environmental conditions (temperature and food resources) affect individual and
population dynamics. Additionally, the population influences the resources availability following a density-
dependence regulation.

Article. Arnould-Pétré et al. (2020). Individual-based model of population dynamics in a sea urchin of the Kerguelen Plafggu
(Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling.
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Below is the description of the model following the ODD (Overview, Design concepts and Details)
protocol from Grimm et al. (2010), where information on the following characteristics can be found:

1. Purpose
Short presentation of the objective of the model

2. Entities, state variables & scales
Parameters with their DEB notation, code notation, dimension and signification
Types of entities in the model, their state variables
Temporal resolution and temporal extent of the model, spatial resolution

3. Process overview & scheduling
Pseudo-code of a simulation (what the model does in one ‘go once’ simulation)
Order in which agents execute commands, when variables get updated
How time is represented in the model, presentation of calendars and timers

4. Design concepts

*Basic principles Underlying DEB theory and principles

*Emergence Emergent and imposed results

*Adaptation Adaptative traits of individuals

eInteraction Individuals interactive behaviours

*Stochasticity Randomization in processes

*Collectives How individuals are grouped under types of entities, specific characteristics
*Observations Outputs of the model for results or tests

5. Initialisation
Elements to select and parameters to input for initialisation
Initial state of the model at setup
Origin of initial parameters, Initialisation of individuals
What differs from one initialisation to another

6. Input data
Data taken from external files, How the files are compiled and read
Specific data for the standard basic model (Anse du Halage)

7. Submodels

Detailed description of each submodel, with equations and processes:
*Update calendar
*Update environmental variables

*Competition and f

*Convert parameters with TC (temperature correction factor)
*Change in reserve
*Change in maturity or reproduction buffer
*Change in structural length
«Starvation
*Ageing
*Update individuals
*Update reproduction and birth timers
*Reproduction
«Calculate GSI
*Background mortality
*Check temperature

* Population monitoring

* Update time

1. Purpose

The model was developed from the individual mechanistic Dynamic Energy Budget (DEB) model
to study the response of the populations of the sea urchin Abatus cordatus, endemic to the
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Kerguelen Plateau (sub-Antarctic region), to changes in environmental conditions (temperature
and resources), through comparisons between sites and between predicted future scenarios.

2. Entities, state variables and scales

DEB notation | Notation in the code Dimension and description
e e scaled (-) scaled reserve density per unit of structure, e = [E)/[Em]
EP E_H"b (e) maturity at birth
ED E_H"p (e) maturity at puberty
[Eg] E G (e-L3) volume-specific costs of structure
g g (-) energy investment ratio
h h rate (t") specific death probability rate
oh dh_rate (-) change of hazard rate in time
ha h a (t2) Weibull ageing acceleration
K kap (-) fraction of mobilised reserve allocated to soma
KR kap_ R (-) reproduction efficiency
fem k_M_rate (t") somatic maintenance rate coefficient
ks k_J_rate (t") maturity maintenance rate coefficient
L L (L) structural length
aL dL (-) change of structural length in time
Lw Lphy (L), physical length (L/dw), with dm being the shape coefficient (-)
Lb Lb (L) structural length at birth
Lm zoom (L) maximum volumetric length
[pwm] p_M (e-L3-t") specific volume-linked somatic maintenance rate
g q_acceleration (t2) ageing acceleration
aq dqg_acceleration (-) change of ageing acceleration in time
Sa S A (L?) assimilation flux (scaled)
Sc S C (L?) mobilisation flux (scaled)
SG sG (-) Gompertz stress coefficient
SMm s M (-) acceleration factor
Ue UE (t-L?) scaled reserves, Ue = E / {pam}
dUe du_| (-) change of scaled reserves in time
U’ U_H"b (t-L?) scaled maturity at birth
ub U _H" (t-L2) scaled maturity at puberty
Un UH (t-L?) scaled maturity
dUn dUu_H (-) change of scaled maturity in time
Ur UR (t-L?) scaled energy in reproduction buffer
dUr dU_R (-) change of energy in reproduction buffer
v v_rate (L-t") energy conductance
YVE y VE (mol/mol) yield of structure on reserve
Other Notation in the code Dimension and description
variables
f f (-) scaled functional response
K car-cap (#) carrying capacity
density pop_density (#/m-2) current population density
competition food compet quantification of the scale of competition
TC TC (-) temperature correction factor
GSl GSl (-) gonado-somatic index
eggs eggs (#) number of eggs per female
Ri Ri (#) reproductive output (number of juveniles born per female)
Scatter scatter-multiplier (-) parameter used to put a random variation in individual
multiplier parameters

The model

includes two

types of

entities: individuals and the environment.

Individuals are divided into 4 types of sub-agents, depending on life-stage and sex: embryos, juveniles, adult
males and adult females. Life-stages are considered using DEB definitions.
Individuals are characterised by four primary state variables, based on DEB theory (Kooijman 2010): scaled
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reserve (Ug), structural length (L), scaled maturity (Un) and scaled reproduction buffer (Ur). Additional state
variables for individuals are age (in months and in years), ageing acceleration (§) and death probability rate
(h). State variables in DEB are originally dependent on energy (unit of Joules), but in order to simplify the
calculations of differential equations so that they do not require measurements of energy, each state variable
was discarded of their energy unit by dividing with the maximum surface-area specific assimilation rate {pam}
(dimension e.L2.t") following Martin et al. (2010) and Kooijman (2010). Females have supplementary
attributes linked to reproduction processes for which the state variable is the gonado-somatic index (GSI)
that is the ratio of gonad weight over the weigth of the entire body. Finally, each individual has a variable

called scatter-multiplier, used to implement a slight variation in three standard DEB parameters (U}’,, Ug, g)

and initial energy reserve at birth (U_E_Oyo). This scatter-multiplier is the exponential of a number taken
randomly on a normal distribution of mean 0 and standard deviation cv (set by the user in interface).

The environment in the model is characterised by two state variables, monthly average temperature (T, unit:
°C) and monthly resources availability represented by the proportion of food an individual can intake on a
scale of 0 to 1 (f, no dimension). Values for these variables are input into the model from external files, as
time-series of monthly values. Temperature data was collected from existing thermo-recorders on the
corresponding sites (implemented by the PROTEKER program, http://www.proteker.net/?lang=en), while
resources data comes from the publication by Delille and Bouvy (1989) for the site Anse du Halage.

Models provide results at a monthly resolution, over a temporal extent that can be modified by the user in the
interface (example set at 210 years). The first ten years are assumed to be the initialisation phase and
should be removed for the analysis of results. Changes are applied to individuals on a monthly basis and
thus each update corresponds to the state of the system at the end of the displayed month. In this
implementation, the model runs on one single patch of environment representing one square meter, and thus
density of population is equal to the number of individuals present in the model. Movements of individuals
are not taken into account, and each individual born on the patch grows and dies on that same patch. There
is no information about water movements in the area, and the species is known to mostly feed on sediment
matter. This model is non-spatial, and connectivity between the patches (e.g. for food or individual
movements) is assumed to have little enough significance to be absent from this model.

. Process overview and scheduling

At each timestep, the model runs the following commands in that order:
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Reset the death counts
Update calendar

(For each patch:
Update environmental variables
If competition ON [
Calculate competition ]
Calculate f£)

(For each individual:
Remove if marked as deceased
Convert relevant parameters with temperature correction factor
Calculate change in reserve
If not mature [
Calculate change in maturity]
If mature [
Calculate change in reproduction buffer ]
Calculate change in structural length
If scaled reserve < scaled length [
Starve]
Calculate ageing)

Update individuals

(For each individual:
Update reproduction timers)

(For each females:
Update birth timer
If first month of reproduction period [
If reproduction ON [
Mark GSI down
Prepare eggs]]
Calculate GSI
If GSI >= 0.07 [
Turn ON reproduction
If month before reproduction period [
Mark U_R down
Launch reproduction (with birth time)]]
If GSI < 0.07 |
Turn OFF reproduction]
If reproduction ON [
If within reproduction period [
reproduce]
If within birth-giving period [
release offsprings]])

Background mortality
Check temperature
Monitoring of population
Update time

Individuals execute the same command one by one in a fixed order before going to the next
command, but all have access to the same state of the environment since it updates once at the
beginning of the timestep only.

In this model, time is represented continuously using ordinary differential equations (ODE) for the
individual state variables, and all other variables are calculated in a discreet manner (every month,
with one month rounded to 30.5 days).

Below is an illustration of the different calendars and timers used in the model, beginning at the point
where the simulation starts (Gregorian calendar for reference):
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repro_time 7 8 9 10 11 0 1 2 3 4 5 6 7 8
GSI_time 5 6 7 8 9 10 11 12 1 2 3 4 5 6
birth_time 1 0 0 0 0 8 7 6 5 4 3 2 1 0
month_time 10 |11 12 1 2 3 4 5 6 7 8 9 10 | 11
Gregorian Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov
calendar

‘repro_time’ follows the reproduction year, runs on a twelve steps loop,

‘GSI_time’ follows the GSI cycle year, runs on a twelve steps loop,

‘birth_time’ is a countdown tracker for the time between the start of reproduction and the following
release of offspring in a year. It is triggered by the launching of reproduction and counts backward,
staying at 0 if not triggered. ‘month_time’ follows the Gregorian calendar

4. Design concepts

BASIC PRINCIPLES

The IBM was built using the DEB-IBM model developed by B. Martin for Daphnia magna, along with its DEB-
IBM user manual and model description (Martin et al. 2010). The underlying theory for the individual
development in the model follows the Dynamic Energy Budget theory (Kooijman 2010). The population is
studied following the IBM principles (Railsback and Grimm 2019), as a dynamic system composed of
autonomous individuals affected by the environmental conditions throughout their life-cycle. Each individual
undergoes a continuous development from birth till death, following the DEB principles with a slight variation
between individuals at their initialisation, and represents a component of the IBM population, which is itself
affected as a whole by variables such as population death rates and density-dependent processes. The
emerging state of the population is then observed, and compared between different scenarios of
environmental variations.

EMERGENCE

The model illustrates the evolution of the population structure following the response of the individuals to the
environmental conditions input. Metabolic responses, life-stages, ability to reproduce, starvation and ageing
processes of the individuals, emerging from the mechanistic representation of their development, affect the
population structure and average characteristics. A background mortality rate and a mortality caused by
above normal temperatures are forced into the model, and the same reproductive output is imposed to all
females that are able to reproduce.

ADAPTATION

Agents do not have an adaptive behavior. Individual traits vary among individuals in a population, but each
individual carry the same traits along their entire lifespan and do not change nor learn from the events they
experience or from each other. Consequently, the design concepts “objectives”, “learning”, “prediction”, and
“sensing” do not apply.

INTERACTION
Individuals do not have any direct interaction. They only affect each other indirectly, as the size of the
population influences the resources availability and thus the capacity of each individual to access food.

STOCHASTICITY

In the model, stochasticity is used in the ageing submodel: there is a 50% chance that the ageing process is
activated and observed for the individual. This stochastic element can be modified in the code by changing
the numbers x and y in the ‘update individual’ procedure. Stochasticity is also implemented in four of the
initial variables for each individual (scaled maturity at birth, scaled maturity at puberty, energy investment
ratio, energy reserve at birth), using the scatter-multiplier, the exponential of a number taken randomly on a
normal distribution of mean 0 and standard deviation cv (set by the user in the interface of the model, at 0.1
for the standard model). (taken from Martin et al. 2010, Kooijman 2010).

COLLECTIVES
The individuals are grouped under a particular type of entity depending on their life-stage and sex, and
update their life stage along time: beginning at the “juveniles” type (from around 0 to 2 years old), they are
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then belonging to the “males” or “females” type after reaching puberty (around 3 years old). The age at which
a juvenile reaches puberty is an emergent property of its development. The sex is arbitrarily and randomly
imposed on the individual that becomes an adult so that the sex-ratio (males/females) of the population is
around 0.99. Depending on which group they belong to, some variables are different: juveniles do not modify
their reproduction buffers, males and female do not modify their maturity compartment, females possess
some proper variables such as GS| (Gonado-somatic index), eggs (number of eggs produced) and Ri
(reproductive output). These collectives do not emerge from individual behaviour, but instead are
implemented by the modeller in order to distinguish the life stages and sex of the individuals.

OBSERVATIONS

The main output of the model are plots of population structure with densities of population at the different life-
stages, plots of the cumulative counts of individual deaths (and proportions of associated causes), plots of
mean values in state variables Ugr, Ue and L and change in these state variables (6Ur, dUe and dL) for the
different individual types. These plots allow observing the response of the population to contrasting
environmental conditions and individual metabolic responses in the population in relation to these
environmental conditions. Additionally, plots of the mean age at death of individuals dying due to the ageing
submodel were used to calibrate the ageing submodel itself.

5. Initialisation

For the standard model, the following elements must be selected in the interface:
e Sites: ‘Anse du Halage’

projection: ‘present’

future: ‘mixed temp & food’

sensitivity: ‘resistant’

competition: ’On’

run_time: 210°

cv: ‘0.1

The initial DEB parameters can be calculated by the model if the ‘add-my-pet?’ switch is set to ON in the

interface and the basic DEB parameters [pw], EII_’,, Ef,, [Ec] and Lm for the species as taken from the Add-my-
Pet database are input into the relevant boxes (respectively: p_M, E_H"b, E_H"p, E_G, zoom).

The standard model is run for 210 years in total for the site Anse du Halage under present-day conditions,
with a population sensitivity set to ‘resistant’ and competition affecting resources availability. At setup, the
values for the temperature and f at the site are taken from the time-series data found in the input files and
compiled into lists usable by the model. The model is initialised with environmental conditions of October
(month_time 10). If the model is set for future projections, the values are modified according to the chosen
scenario (i.e. either one of RCP 2.6 and RCP 8.5 with food only, temperature only or food and temperature
combined).

The carrying capacity is set at 200 ind./m? and the proportion of females at 0.5.

Initial parameters are based on A. cordatus DEB model parameters, developed in . Two
simulation procedures are run for the initialisation of individuals: (1) a simulation of embryonic development
to determine the initial reserve at birth, and (2) a simulation of the development of one individual from 0 till 5
years old at constant f and temperature values.

The first simulation uses a bisection method to determine the initial reserve at birth. The loop simulates the
embryonic development from conception till birth, while testing for different scaled reserve e at conception.
When the scaled reserve reaches the aimed value after a few loops of development, there are two possible
situations: either the development is before or after the birth stage, and thus the loop is reset with new
values of initial scaled reserve e set accordingly and the simulation relaunched, or the development is at
birth stage and the value of scaled reserve e that was obtained is saved.

The second simulation starts off where the first one finishes, using the resulting reserve density at birth. It
runs a loop for the development of the individual from birth till five years old, with standard parameters and a
constant functional response f = 1. The simulation keeps track of the age of the individual, and for each year
the values for the state variables are set aside and the simulation continues until the following year. These
values are stored in variables and will be used to initialise models.

When running a model, an initial population of 120 individuals is created and contains a similar proportion of
the individuals belonging to six age classes from 0 to 5 years old. Each of these individuals receives the set
of parameters corresponding to its age class (variables stored in the ‘second simulation’ mentioned in the
above paragraph), with stochasticity applied on some of these parameters (see section ‘Stochasticity’).
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6. Input data

Each individual sets its calendars with GSI_time at 5 and repro_time at 7, and females are given initial
values of 0.03 for their GSI and set their birth_time timer at 0.

The model reads environmental variables from input .txt files containing monthly time-series of food
resources (from Delile and Bouvy 1989) and temperatures (PROTEKER program IPEV n°1044).
The text files contain an ordered list of values (see below for Anse du Halage data). The temperature file
contains 72 values of monthly average temperatures corresponding to temperature records from October
2012 to September 2018. The food resources file contains 12 values, taken from the measurements of
organic carbon content in sediments published in Delille and Bouvy (1989) and scaled by the maximal value
to create a proxy of f, contained between 0 and 1.

Data for resources and temperatures at Anse du Halage:

Resour ces: Tenperd ures:

nonth f vd ue time neantenperaue
01 0.748 0 3.576178523
02 0.775 1 4.272769444
03 0. 756 2 5.693903226
04 0.712 3 6. 680989247
05 0. 559 4 7.540075893
06 0.477 5 7.95569852
07 0.432
08 0.432 68 4. 157559722
09 0.477 69 3. 148745968
10 0. 648 70 2 482346774
11 0. 909 71 2 836618056
12 1. 000

7. Submodels

Update calendar
The model timestep is a month.

Update environmental variables
The model takes the temperature and f values of the corresponding month from the input files.

Competition and f
The model calculates the current population density and quantifies the competition effect on food availability

(FC, food competition) depending on how far from the carrying capacity (K) the population density (P) is:
IfP<1.9*K, then FC = (1- fenv).(1 - 2;_13)

If P 21.9*K, then FC = (1- feny).(1 - ﬁ)

Two equations are used because if P = 2K, the first formula gives an error due to a division by 0, and if P >
2K, then the formula gives the untrue result of less competition with a bigger population (hence the use of
1.9 as a pivot value).

Competition is only effective if food availability is less than the maximum (hence the use of (7 — f)’ in the
equation).

Then the model updates the f value in accordance with the quantified food competition:

fef = fenv + FC, where fenv is the food available in the environment as input into the model from the external
files, and ferf the effective food availability.
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Proportionally to how much fis lessened compared to the maximum, the size of the current population has
an influence on how important the competition is: If the population is below the carrying capacity (K), then
food is more available for the present individuals, but if the population is over the carrying capacity, the
availability of food is lessened.

Therefore,

if P> K, FC <0 <=>f decreases
if P =K, FC = 0 <=> f constant
if P <K, FC > 0 <=> f increases

Meaning that the competition is actually calculated depending on how far from the carrying capacity is the
population density, and how far from maximum f is the food availability (fenv). The less food available and the
bigger the population, the higher the competition.

The regulatory effect of this competition lies in the starvation of individuals at lower food availability, which
leads to a reduction of the population size with higher competition (combination of low food availability and
big population size). fis always contained between 0 and 1.

If the competition is turned off, fis the direct value taken from the input list.

Convert parameters with TC

A temperature correction factor (TC) is calculated using the Arrhenius temperature (Ta) and applied to
conductance v, somatic maintenance rate kum, maturity maintenance rate ks and Weibull ageing acceleration
ha, which are all affected in the same way by the correction factor.

A given metabolic rate X at temperature T is thus modified with:

X(T) = X * exp(Ta/Tret - TA/T) with exp(Ta/Tret - TaA/T) being the correction factor TC, T the reference
temperature (293.15K), Ta = 9000K, and T the actual temperature (in Kelvin) of the organism’s life
environment.

Change in reserve

The reserve is supplied from ingested food, that is represented in the model by the functional response f
(from 0 to 1). Scaled assimilation rate Sa is found with pa /{pam}, where pa is the assimilation flux (in energy
per time) and {pam} the maximal assimilation flux per surface area of structure (in energy per time per
surface). Since pa = {pam} * f * L2, with L the structural length, then Sa =f* L2,

A flux of mobilized energy goes outside of the reserve compartment: the scaled mobilisation flux Sc is the
scaled equivalent of pc / {pam} therefore equal to:

L2*(g*e/(g+e)*(1+L*km/v)=Sc, where g is the energy investment ratio (the cost of the added
volume for this timestep relative to the maximum potentially available energy for growth and maintenance), e
is the scaled reserve density (reserve density relative to maximum reserve density) and L the structural
length, and with kv the rate of mobilisation of the k fraction of Sc for somatic maintenance, proportional to
structural length, and v the energy conductance. The reserve dynamics calculated at each time step
correspond to dUe = Sa - Sc.

Change in maturity or reproduction buffer

Before puberty (ability to reproduce), changes in maturity level are calculated as the flux of energy going into
the maturity compartment, that is the fraction 1-k of the mobilisation flux after paying for the maintenance
costs of the maturity compartment Un:

Pr = (1-K) * pc - pu.

The maturity level of the compartment Ux changes each month through the scaled formula for oUr:

Sr = (1-K) * Sc - ky * Un = dUn, when the reproduction buffer Ur does not receive, dUr is set to 0.

Juveniles keep growing until they reach puberty, when the maturity level Un is equivalent to Uf. At this point,
they are able to reproduce, thus the energy flux Sr is redirected entirely to the reproduction buffer Ur and the
maturity compartment does not increase anymore: U is constant and equal to UF.

Therefore, after puberty, and except for females undergoing reproduction:

SrR=(1-K) * Sc - km * Ub = dUr

Change in structural length

The structural length L is updated thanks to remaining energy of the fraction k of the mobilisation flux Sc
after that somatic maintenance has been paid. The structural length change is equal to
aL=(1/3)*((v/g*L2)*Sc-km*L).

Starvation

When scaled reserve value is below the scaled structural length / value (length relative to maximum length),
that is when e < |, it is assumed that the individual is confronted to starving conditions. The kappa rule is
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altered and as energy is entirely redirected to somatic maintenance and all other fluxes (growth, reproduction
or maturation) are set to 0. The model follows these conditions:

Mobilisation flux Sc = ([pm] / L3) / {pam}.

Since [pv] = [Ec] * km and [Ec] =g * K * {pam} /¥

we can rewrite Sc = (L3 * km * g * K * {pam} / ©) / {Pam} = (L3 * km * g * kap) / v

then recalculate 0Ue = Sa— Sc .

When e < 0, the organism doesn’t have enough energy to pay somatic maintenance and dies.

The starvation strategy used in the population model was chosen among the ones presented in Kooijman
(2010) based on Magniez (1983) research on A. cordatus reproduction and development.

Ageing

Two ordinary differential equations are calculated: changes in ageing acceleration § (also called the scaled
density of damage inducing compounds) and changes in hazard mortality rate h:

0§ =(G*(L/LmPB*sc+ha)*e*(W/L-7)-7*§

oh=¢g-7*h withr=(3/L)*dL

These equations are used for the simulation of the accumulation of damage inducing compounds and their
effect, following the DEB theory for ageing (Kooijman 2010). Damage inducing compounds density is
proportional to reserve mobilisation Sc and influences the hazard mortality rate h, which is a function of the
damage accumulated in the body. Damage inducing compounds are diluted via growth 7, and additionally
ageing is calculated with two other parameters, the Weibull ageing acceleration ha and the Gompertz stress
coefficient sc. In other words, the hazard mortality rate is the simulation of the vulnerability of the individual
towards damage, such as the risk of dying from an illness increasing as the individual ages. Additionally, in
our model, the ageing submodel relies on a stochastic element, where the individual has a 50% chance of
looking into its death probability rate h.

Update individuals

The calculated changes are applied to each state variables of the individual:

The temporal resolution is a monthly interval: each ODE is calculated then the resulting @ is applied * 30.5.
For a state variable X, X = X + X * 30.5.

If the individual has reached a maturity level corresponding to a threshold, it updates its life stage (i.e. its
breed in NetLogo language) accordingly. The individual also updates its age.

Update reproduction and birth timers

The reproduction calendar (repro_time) and the GSI calendar (GSI_time) advance by one month each
timestep, and fall back to the start in a twelve months cycle. The starting date of the two calendars is not the
same (March for repro_time and June for GSI_time, see table previously).

The birth timer (birth_time) is only owned by females and is not always running. It is set off if the female has
launched reproduction, and it counts down instead of up (e.g. if it was at 7 the month before, the timer will be
set to 6 this month). As long as the female has not launched reproduction, the birth timer will stay set at 0.
Once the reproduction period starts, the birth timer is what allows to verify if the individual is undergoing
reproduction and to adapt its state variables accordingly: at birth_time 8, 7 and 6, females are reproducing
(i.e. conceiving offspring by decreasing the energy in their reproduction buffer, see below); at birth_time 3, 2
and 1, females release offspring (i.e. a humber of new juveniles proportional to the number of females
having reproduced is initiated into the model, see below).

Reproduction

Only females are considered in the reproduction processes. The value of the Gonado-somatic index (GSI =
100 * ((ash-free gonads dry weight) / (ash-free body dry weight)) is increasing monthly until the reproduction
period, when the amount of energy accumulated will be checked by the model to allow, or not, the female to
participate to reproduction. Whenever the level of GSI reaches at least 0.07%, the female can reproduce, if
not, she will continue updating the energy into the reproduction buffer until the next reproduction period.

When females are reproducing, conception of offsprings causes a decrease in energy in their reproduction
buffer: their usual dURr is set to 0 for the three months, while Ur is forced to decrease: for each month of the
reproduction period the female decreases its buffer by a third of 52% of the energy stored: d2Ur = (UR start -
0.52 * Ur_start) / 3,

with URr start the reproduction buffer at the start of the period (Magniez 1983). The GSI follows a similar
pattern (see submodel ‘Calculate GSI’).
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When females release offsprings, five months after conception, 65% of the eggs are assumed to have
survived until birth. The reproductive output (Ri) is therefore equal to Ri=0.65*eggs number
For each of the three months of offspring release, the number of juveniles (Ri/ 3) are initiated into the model.

Calculate GSI
The GSI is estimated for each month according to the time of accumulation of energy into the reproduction
buffer from the end of the reproduction, following the equation:

. 1P
kyxUy

GSI = time_of_accumulation * ky*g
Lm2xs3,

B3x(f+uxgryye)

(CERORS S

where the time of accumulation is the number of days since the end of the reproduction period, km the
somatic maintenance rate coefficient and k, the maturity maintenance rate coefficient, g the energy
investment ratio, f the scaled functional response, yve is the parameter for the yield of structure on reserve,
that is the number of moles of structure that can be produced with one mole of reserve, sm the acceleration
factor, U}, the scaled energy in the complexity compartment at puberty, K the fraction of energy directed
towards structure and (1- k) the fraction of energy directed towards complexity and Lm the maximum
volumetric length (see “Entities, State variables and scales” for the dimensions and in-code notations).

The GSI of a reproducing female will decrease by 52% of its initial value over the 3 months period of
reproduction (i.e. a decrease of one third of 52% per month):

0dGSI = (GSlstart - 0.52 * GSlstart) / 3, where GSlstart is the level of gonadal index at the onset of reproduction.

Background mortality

The background mortality rate is applied to the overall population: 3.42% of juveniles and 2% of adults
(males and females) die each month (calculated from size frequency distribution provided by Mespoulhe
1992). Depending on the cause of death, the individuals set on a certain flag (deceased bg or
deceased_old) and a ‘deceased’ flag and are removed from the system.

Check temperature

Depending on the temperature for the current and prior month and on the type of sensitivity to temperatures
chosen for the model, a mortality rate is applied to the population for temperatures from 8 to 12°C.
For a “vulnerable” setting, temperatures exceeding thresholds of 8, 9.5, 11 and 12°C for two consecutive
months cause a mortality rate of 25%, 35%, 45% and 100% respectively. For an “intermediate” setting,
temperatures exceeding thresholds of 8, 9.5, 11 and 12°C for only one month cause a mortality rate of 10%,
20%, 30% and 100% respectively.

For a “resistant” setting, temperatures exceeding thresholds of 8, 9.5, 11 and 12°C for two consecutive
months cause a mortality rate of 10%, 20%, 30% and 100% respectively.

Population monitoring

At the end of each timestep, population density is calculated and data collected for monitoring and plotting
mean values of state variables. Plots are built on the lists compiled out of all individual state variable values.
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CHAPTER 2 CORRELATIVE MODELS

Chapter 2 is a synthesis on the potential, limits and methodological issues of Species
Distribution Models (SDMs) applied to Southern Ocean benthic case studies. SDMs have been
used for a long time in ecology to assess species realised niche. However, methods that have been
developed for SDMs in other regions of the world need to be adapted to Southern Ocean dataset
peculiarities.

*The first study reviewed these Southern Ocean dataset peculiarities, highlighted the main
methodological limits to SDMs applied to Southern Ocean case studies and provided some new
methods (from the studies below) to generate more accurate models.

*In the second study, the focus was on model evaluation. Cross-validation procedures aim at
splitting occurrence datasets into training and test subsets. However, Southern Ocean occurrence
datasets are often spatially aggregated, which violates the independency criterion between training
and test subsets and biases model evaluation accuracy. In this study, we compared several cross-
validation procedures (random vs. spatial partition of training-test subsets) for the case study of the
sea star Odontaster validus Koehler 1906.

*In the third study, six sea star species with a circumpolar distribution were used as case studies to
generate SDMs with contrasting numbers of environmental descriptors. The influence of the number
of these environmental predictors and of the collinearity between them was assessed.

*The fourth study focussed on extrapolation uncertainty in SDM predictions. Considering the
reference dataset of environmental conditions for which species presence records are modelled,
extrapolation corresponds to the part of the projection area for which one environmental value at
least falls outside of the reference dataset. Due to the broad extent of the Southern Ocean and data
gaps in occurrence datasets, extrapolation represents an important part of model predictions. Using
the case study of six sea stars species, extrapolation was highlighted and methods were provided
to improve model predictions.

*The last study of this chapter, presented in the appendix section, analysed the influence of spatial
and temporal aggregation of occurrence datasets on modelling performances. The case study of
four sea urchin species of the Kerguelen Plateau was analysed. Methods to correct for the effect of
spatial sampling bias were applied and their efficiency was proved to generate more accurate
predictions.

*Guillaumot C, Danis B, and Saucéde T (2021). Species Distribution Modelling of the Southern
Ocean benthos : methods, main limits and some solutions. Antarctic Science, 1-24.

*Guillaumot C, Artois J, Saucéde T, Demoustier L, Moreau C, Eléaume M, Aglera A and Danis B
(2019). Broad-scale species distribution models applied to data-poor areas. Progress in
Oceanography, 175, 198-207.

*Guillaumot C, Danis B and Saucéde T (2020). Selecting environmental descriptors is critical to
modelling the distribution of Antarctic benthic species. Polar Biology, 1-19.

*Guillaumot C, Moreau C, Danis B and Saucéde T (2020). Extrapolation in species distribution
modelling. Application to Southern Ocean marine species. Progress in Oceanography. 188, 102438.

*[Appendix section] Guillaumot C, Martin A, Saucéde T and Eléaume M (2018) Methods for
improving species distribution models in data-poor areas: example of sub-Antarctic benthic species
on the Kerguelen Plateau. Marine Ecology Progress Series. 594, 149-164.
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Abstract
Species Distribution Modelling (SDM) studies the relationship between species occurrence
records and their environmental setting, providing a valuable approach to predicting
species distribution in the Southern Ocean (SO), a challenging region to investigate due to
its remoteness and extreme weather and sea conditions. The specificity of SO studies,
including restricted field access and sampling, the paucity of observations and difficulties
in conducting biological experiments, limit the performance of SDMs.
In this review, we discuss some issues that may influence model performance when
preparing datasets and calibrating models, namely the selection and quality of
environmental descriptors, the spatial and temporal biases that may affect the quality of
occurrence data, the choice of modelling algorithms and the spatial scale and limits of the
projection area.
We stress the importance of evaluating and communicating model uncertainties, and the
most common evaluation metrics are reviewed and discussed accordingly. Based on a
selection of case studies on SO benthic invertebrates, we highlight important cautions to
take and pitfalls to avoid when modelling the distribution of SO species, and we provide
some guidelines along with potential methods and original solutions that can be used for
improving model performance.
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1. INTRODUCTION

Due to its remoteness and extreme weather and sea conditions, the Southern Ocean (SO) is a
challenging region in which to carry out biological studies ( ). It
is also one of Earth’s regions where we observe the most rapid and dramatic environmental
changes in marine ecosystems, motivating the study of these marine communities (

). Ecological modelling approaches are now well
established and can be used to predict spatial patterns of organisms’, populations’ and species’
distributions and assess their environmental drivers ( ). Based on field
observations and experimental datasets, ecological modelling encompasses valuable
approaches to helping to analyse biological data and interpolating our knowledge of species
distributions in relation to environmental descriptors (

Species distribution models (SDMs) are ecological models that study the statlstlcal relationship
between species occurrence records and environmental factors, determining the set of
environmental conditions that is suitable to a species distribution (

)- They represent the species realised niche (

), being the ensemble of abiotic conditions in which the species survives and
reproduces, adding into consideration the influence of biotic interactions (competition, predation,
parasitism, symbiosis, etc.) ( ). SDMs have been widely used in various fields of
ecology, such as conservation biology, biogeography, palaeoecology and global change biology
( ). In recent years, a growing number of ecological studies have used SDMs to
analyse the distribution of marine pelagic and benthic species in the SO (e.g. marine
invertebrates, fish, seabirds and marine mammals) and to determine species environmental
preferences ( ), to
compare ecological niche predictions in response to changing environments (

) or to identify
diversity hotspots for conservation purposes (

).

However, the quality of ocean-wide models is often limited by the heterogeneity, amount and
spatial distribution of data, along with limited temporal and spatial resolutions. For all of these
reasons, both modelling methods and model construction should be tested for accuracy and
robustness prior to interpretation, and these indicators should be transparently communicated to
ensure that model outputs are relevant given the specificities of the datasets used for modelling.
In the present paper, we review the most common methodological issues encountered in
species distribution modelling applied to the SO, following the flowchart in Fig. 2.1. Challenges
regarding occurrence and environmental dataset peculiarities are described. The choice of SDM
algorithm, and procedures to implement and evaluate models are addressed. Based on benthic
invertebrate case studies, we stress important precautions to take and pitfalls to avoid during
common steps of SDM implementation. Finally, we aim to provide some guidelines with a set of
potential methods and original solutions that can be used for improving model performance.
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Step 1 Set research objectives
Objectives Select taxa to study
Occurrence ; Evaluate quality and update
dataset Constnict database H Georeferencing '
Presences ; Precision
Absences I Taxonomy
Pseudo-absences H Spatial aggregation
1 Upgrade records
Step 3 Define sbatiél and time scales
Environmental - , According to species and environmental data
dataset Select descriptors 1 availability and best definition of species occupied
Ecological relevance ; Space
Temporal resolution
Projection area & scale Download and manipulate environmental data
Collinearity .
‘ Transformations...
-> Prepare input files & GIS layers
Step 4 Select model algorithm
Model algorithm According to research objectives
dataset properties
(number and type of occurrence records,
quality and type of environmental descriptors)
SIop o Integrate necessary | Evaluation using |
Model corrections '

| metrics

implementation
AUC, TSS, COR...

Incorporate data Cross-validation procedure
into the model Spatial aggregation

(occurrence and ‘

environmental data) | | Test several model
parameterization

Check algorithm settings

Evaluation using
| independent datasets |

Step 6 Model outputs Model replicates

Model outputs . ;
Partial dependence plots ‘ Model average and variance
Env. descriptor contribution
Projection Maps

Step 7 . Produce outputs Measure model accuracy
Model evaluation
Model fit (test data)
Precision
Metrics: AUC, specificity, sensitivity,...
Calculate extrapolation Sed sl i Bl
Associate extrapolation map o e e S
to model outputs i INTERPRETATION !

Figure 2.1. Flow chart of the species distribution model construction process. Steps 1 to 4 concern data
collection and treatment. Steps 5 to 7 integrate procedures for model implementation and evaluation.
Dashed rectangles allow for a possible step backwards when assessing model uncertainties or evaluating
model performance. GIS: Georeferencing Information System. AUC = area under the receiver operating
curve. TSS: True Skill Statistics. COR: Pearson correlation.
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2. Quality of datasets
2.1.1. Environmental datasets: field data.

Preparing environmental datasets is the first encountered challenge when generating models (

)- The SO, here defined as waters south of 45°S latitude, covers
an extensive area of > 20 million km? ( )- Having access to environmental data with
good temporal and spatial resolutions at such a broad scale is challenging, an issue common to all
broad-scale oceanographic studies ( ). ‘Broad scale’ is defined here as the
entire SO, ‘regional scale’ as smaller areas of a few hundred square kilometres and ‘local scale’ as
a few square kilometres to square metres ( ).

Oceanographic data acquisition in the field is strongly conditioned by weather and sea conditions
along with the seasonality of polar regions (polar night and dense sea-ice coverage in winter) that
prompt recurring gaps in the acquisition of environmental data in the SO. Data are also much more
frequently sampled close to research stations and along main sailing routes (

)- This is particularly striking in regions such as the southwestern Weddell Sea, along
the shores of the western Antarctic Peninsula and in the Bellingshausen and Amundsen seas

( ).

2.1.2. Environmental datasets: satellite-derived data.

Satellite-derived data form a significant source of information for SO oceanographic studies.
Providing valuable environmental indicators at broad spatial scale, they can give details about
continuous and long-term measurements of water masses including sea-ice coverage, extent and
duration, sea-surface temperatures and salinities, biogeochemical parameters, sea level, primary
production and typical meteorological parameters (

The accuracy of satellite data however should be considered with care, given detection limits,
interpolations that reduce the influence of atmospheric particulate scatter and the use of
interpolation and gap-filling methods that smooth raw data at broad spatial and temporal scales
( )-

Whenever possible, it is recommended to validate environmental data derived from satellite
products at regional and local scales by comparing pixels on a satellite image with 'real' field

observation data ( ). Simple correlation analyses or more
complex ground-truth processes are available to compare satellite and in situ data and to secure
the interpretation of satellite-derived products ( ). This,

however, constitutes a huge task, even if such in situ data are available, and is not performed
generally before implementing SDMs.

2.1.3. Environmental datasets: access to datasets.

Environmental data generated at the scale of the entire SO can be accessed for free through
different web portals such as the NASA's OceanColor Web (https://oceancolor.gsfc.nasa.gov/),
where satellite-derived data, averaging different temporal measurements down to 4 km resolution
are available at the scale of the entire SO dating from 2000. These images are post-processed to
characterize sea-surface temperature or ocean colour as proxies of surface productivity.

The National Oceanic and Atmospheric Administration's (NOAA) data centre (WOCE2013,
https://www.nodc.noaa.gov/OC5/woal3/woal3data.html) also makes available post-processed
data of ocean temperature, salinity, oxygen concentration and nutrients at different grid formats,
down to 0.25° resolution, averaging over six decades (from 1955 to 2012). Bio-ORACLE
(https://www.bio-oracle.org/) compiles a large panel of marine data layers at 1° spatial resolution
for different depth layers and time periods, for the present (2005-2012) and the future (2040-2050;
2090-2100) ( ). Finally, GEBCO (https://www.gebco.net/) is the reference platform
for very-high-resolution bathymetry data (~500 m resolution) of the world’s oceans.

Several works also make available compilation of these SO datasets dedicated to ecological
modelling in the SO; they represent a valuable source of information for starting with data
preparation and modelling ( ).
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An increasing amount of environmental data collected during SO oceanographic campaigns have
been made accessible for regional-scale studies. Several web portals aggregate all of these field
measurements and provide them open access (e.g. https://www.marine-
geo.org/collections/#!/collection/lUSAP#summary; https://www.pangaea.de/).

2.1.4. Environmental datasets: spatial and temporal resolutions.

Most environmental data are accessible through broad-scale maps from the aforementioned data
portals and are available with a finest spatial resolution of ~ 4 km, if not coarser (

). This low resolution
strongly hampers the precise assessment of relationships between species occurrences and
environmental descriptors ( ) and consequently the accuracy of
model predictions ( ), because the relevance of environmental descriptors
represents a trade-off between their resolution and their spatial and temporal coverage (

)- It is recommended that the
resolution of environmental descriptors used in SDM should be in line with the scale of ecological
processes at play and for which species ecophysiological responses show the highest variations, if
models are expected to capture most species-environment relationships (

)-

The published environmental datasets are often averaged over relatively long periods of time (from
years to decades for WOCE2013 or Bio-ORACLE). The analysis of inter-annual variations can
complement the interpretation of model predictions: the absence of such information does not
preclude running models but this should be kept in mind when it comes to interpreting model

outputs ( ). Important environmental variations within a reference
time period may not satisfy the equilibrium criterion between species distribution and
environmental conditions, which is a strong prerequisite of SDM ( ) and may affect
the relevance and accuracy of model predictions ( ). In this

respect, an alternative for improving modelling performance would be using seasonal averages or
extreme values as environmental descriptors rather than pluri-annual to annual averages (

).
2.1.5. Environmental datasets: cartographic projections.

Considering the poles in numerical analyses has long been a source of difficulty in spatial
modelling as the convergence of meridians distorts shapes, surfaces, angles or distances towards
high latitudes when using standard cylindrical representations such as the Mercator projection
( ). Working with conical or
azimuthal projections (e.g. polar stereographic system) helps maintain the consistency of angles
and shapes and therefore better meets the requirements of SO studies, although areas and
distances are progressively distorted when moving away from the pole ( ).
Mapping environmental descriptors and projecting model predictions can be carried out with either
square or hexagonal pixels. Each option does not alter image quality and hexagonal shapes may
even offer some advantages ( ). However,
some contrasts may be present between images using square or hexagonal pixels, as each pixel
measures the average environmental conditions in the considered surface (

Subdividing the study area into sub-regions and using different pixel shapes can be a good
solution for improving the relevance of representations ( )-
Evaluating the accuracy of environmental values captured both in square and hexagonal pixels
using baseline in situ field measurements can also be suggested. This is yet to be tested for
ecological modelling studies for the SO.

2.1.6. Environmental datasets: future forecasts.

Since 1992, future climate models have been constantly updated through the efforts of the
Coupled Model Intercomparison Projects (CMIP) featured by the Intergovernmental Panel on
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Climate Change (IPCC) Assessment Reports (ARs) with the aim of providing a plausible
representation of future climate linked to potential anthropogenic impacts (

)- Recent updates (CMIPS and CMIP6) of climate models are driven by different possible
future greenhouse gas emission scenarios (Representative Concentration Pathways RCP2.6,
RCP4.5, RCP6.0 and RCP8.5, from the least to the most pessimistic scenario for CMIP5 and
Shared Socioeconomic Pathways, SSP1 to SSP5 for CMIP6) and are built upon the average of an
ensemble of simulations ( ). Future climate models for the SO are available
through two main online platforms, Bio-ORACLE (https://www.bio-oracle.org/, )
and the NOAA's portal (https://psl.noaa.gov/ipcc/ocn/).

The relevance of using future predictions based on global assessment scenarios for marine
studies has been widely questioned ( ),
including their use in SDMs, given that, climate models mainly rely on untestable assumptions
(
), future layers are not always available for oceanographic studies (
), discrepancies between present observations and

future predictions can be problematic ( ), and models are based on a
representation of the climate system that has a complex cascading effect on ecological processes
( ). examined how well IPCC-class models reproduced

sea-ice conditions. By subsetting CMIP5 models that best describe spatial extent and temporal ice
cover, they improved the precision of the projected future sea-ice distribution, which was better
suited to ecological analyses. Extending this method to other key oceanographic parameters
should contribute to improving the accuracy of future climate models for the SO and their
relevance to ecological studies.

2.2.1. Occurrence datasets: historical compilation.

Biological sampling in the SO began with the first expeditions of the HMS Challenger (1873-1876).
Sampling effort has considerably increased over the second part of the twentieth century and
during these last decades in particular, following technological advances that have enabled the
access to remote regions and sample processing (Fig. 2.2).
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Figure 2.2. Cumulative number of Antarctic species described over time, according to data available in the
Register of Antarctic Marine species (until March 2010). From De

This long-lasting and irregular effort in biogeographical (occurrence) data collection has had an
impact on data compilation and has resulted in heterogeneous datasets, as observed in several
data papers and associated Integrated Publishing Toolkit (IPT) databases such as

or , or in the general platform
biodiversity.aq web portal.
The historical compilation of biological data includes (1) taxon misidentifications and taxonomic
inconsistencies due to the various taxonomic revisions published through time, (2) errors in the
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georeferencing of occurrence records due to contrasting nomenclatures used to report latitude and
longitude, (3) the accumulation of errors in metadata through the different generations of curation
and (4) errors due to the use of different coordinate projection systems. Finally, in cases where
species distributions may have shifted with time, species environmental preferences may have
changed or non-contemporaneous environmental or occurrence datasets are used, discrepancies
between occurrence records and environmental conditions can be present and violate the
environment-occurrence equilibrium assumption necessary to generate SDMs. All of these side
effects were reviewed in detail by . The impacts on species niche definition and
SDM predictions have been reported in many works (

)

that all advise us to thoroughly check datasets for quality management prior to running models.
2.2.2. Occurrence datasets: spatial aggregation.
Most species occurrence data were collected in the vicinity of research bases or their surroundings

or along recurrent maritime routes, leading to clear spatial aggregation patterns in biological
datasets (Fig. 2.3) ( .
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Figure 2.3. Distribution of benthos sampling sites (red dots) in the Southern Ocean (SO, < 45°S). Sampling
sites are not evenly distributed in the SO, showing important spatial aggregation in the Scotia Arc region and
Western Antarctic Peninsula with several clusters along the Antarctic shelf, and over the Kerguelen and
Campbell plateaus. In contrast, deep-sea regions and remote areas of the Antarctic shelf are under-
sampled. From , updated from

Spatial aggregation can affect model accuracy, as aggregated presence records do not fully and
homogeneously represent the entire environment that is occupied by given species. This
aggregation also violates an initial assumption of SDMs that requires independence between
records ( ). This may bias model predictions (

), leading to statistical
artefacts and generating inaccurate patterns (
Spatial aggregation of data and the effect of this spatial aggregation on model outputs can be
quantified using the Moran’s | index, which estimates the spatial autocorrelation between the
presence records used to build the model and predicted presence probabilities ( ).
This spatial autocorrelation implies that close pixels are expected to present more similar predicted
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probabilities than distant ones due to the short geographical distance between records rather than
environmental similarities alone. Testing and correcting for this bias should help to reduce its
impact on model predictions (see section 3.3) ( ).

2.2.3. Occurrence datasets: presence-only records.

SDMs based on presence/absence data are recognized as having better predictive performance
than models using presence-only data (

). However,
except for some local-scale studies (e.g. ), in most oceanographic studies
species absence records are usually not available for SDMs, and working with presence-only
records is the only alternative ( ). SDMs are then built by associating presence-only
records with a random selection of background records that will be used to characterize the full
environmental conditions ( ). Background records should

not be mistaken for pseudo-absence records that are artificial absence data, where the species is
supposed (but not confirmed) to be absent. Pseudo-absence records do not represent the overall
conditions of the study area. Presence/pseudo-absence models represent another modelling
approach, predicting occupied and unoccupied habitats rather than suitable and less suitable
habitats for presence/background modelling ( )-

Presence-only datasets may contain several uncertainties that can bias model predictions. (1)
Working on rare or cryptic species is generally prone to taxonomic misidentifications that may
either contract or, alternatively, expand the extent of predicted species distributions (

). Such biases due to taxonomic errors were shown to be highly variable
and to depend on experts identifying specimens, as suggested by who
worked on a compilation of several collections. (2) Sampling gear may have an impact on species
detectability, which varies inconsistently across the model domain and is generally not taken into
account by presence-only methods. Inaccurate species observations may generate false-positive
results (species predicted as being present when they were not sampled or observed in the field)
and false-negative results (species predicted as being absent when they were sampled or

observed in the field) during model initialization ( ). Species presence records
should be carefully scrutinized prior to modelling ( ), or at least records should be
categorized into different subsets of data verifiability ( ). (3) Georeferencing errors
are a frequent issue in databases ( ). This is especially
the case in large databases compiling independent datasets using species presences recorded
with varying levels of precision ( ). Several studies have

simulated virtual random georeferencing errors and have shown that these errors lead to
significant drops in model performance and inconsistencies in the respective contributions of
environmental descriptor contributions, influencing model interpretation (

)- These side effects seem to be minimized in local-
scale models, here again advocating for the use of local-scale models whenever possible (

).
2.2.4. Occurrence datasets: dealing with small datasets.

Usually, the number of species presence records available for modelling is relatively limited
considering the wide geographical extent of the SO ( )- Generating SDMs with
small datasets may include many pitfalls: (1) it reduces the potential of SDMs to transfer in space
and time ( ), (2) it truncates predicted distribution and niche
definition (
), (3) it reduces modelling goodness-of-fit as the model
may wrongly represent reality (
), (4) it increases instability between model replicates

( ), (B) it gives rise to metholodogical constraints on threshold
selection ( ), (6) it gives rise to methodological
constraints on the application of evaluation metrics ( ), (7) it complicates the
identification of model optimal complexity ( ) and (8) it leads to a reduction in
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model accuracy because presence and background datasets would not differ markedly (

)-
Alternatives are being developed to produce more accurate models based on a limited amount of
presence records. One solution is generating several models performed on restricted areas and
datasets with more detailed information and then averaging them with a weighted ensemble
approach. This ‘ensemble of small models’ approach showed improved performance compared to
single models ( ).
Another alternative is to restrict the prediction area according to where occurrence records are
found and ensuring upstream that the number of records is sufficient to precisely characterize the
species environmental preferences: trivial advice that is surprisingly neglected, as recently pointed
out by and

2.2.5. Occurrence datasets: definition of species-occupied environmental space.

Spatial aggregation, along with heterogeneity, limited size and uncertainties in datasets can
strongly bias the quantification of the species-occupied environmental space (

). However, accurately defining species-occupied space is the
cornerstone of SDM initialization (
Moreover, SDMs suppose that species are in equilibrium with the enwronmental conditions that
they inhabit. SDMs do not take into consideration potential vagrants that have dispersed out of
their usual environmental range or populations that could momentarily survive in unsuitable
habitats because doing so violates the equilibrium assumption between species distribution and
environmental conditions ( ). These elements should be cautiously
considered when preparing datasets prior to generating models by removing any atypical records.

Over the last two decades, field data acquisition has expanded through the use of biologging
technology with electronic devices attached to seabirds and marine mammals in order to access
the positions of species all year long ( ). These
data uncover the hidden behaviours of marine animals and constitute a powerful way of better
estimating species-occupied space; they can also be used to validate and refine our understanding
of the environmental conditions prevailing in those species distribution areas (

).

3. Adapting model implementation to datasets
3.1. The choice of modelling algorithms.

To run performant SDMs, several assumptions must be tested and computing methods adapted to

each case study ( ). Among them, the choice of the modelling
algorithm should be of major concern, since no algorithm works best for all species, in all areas, at
all spatial scales and in all time periods ( ). The selection and

parameterization of modelling algorithms proved to be major causes of variation between SDM
predictions (
). Each algorithm is particularly suited for dealing with a specific type and
quality of data (
), which will determine the final model outputs (

)-

When modelling species distribution, it is necessary to select appropriate algorithms that have
good transferability performances (i.e. have good abilities to correctly transfer predictions to other
geographic space and time periods; ) and that they limit overfitting (i.e. mitigate
model complexity) while being flexible in integrating complex environmental relationships.
Machine-learning algorithms (e.g. maximum entropy MaxEnt, boosted regression trees BRT,
random forests RF, support vector machines SVMs,

) give access to important aspects of computing performance ( ), and are relevant
approaches for handling complex relationships between species occurrences and the environment
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( ). The BRT and RF algorithms are particularly suited
to complex and heterogeneous datasets (Fig. 2.4, ). They were
proven to be efficient in generating performant models with limited overfitting (
)- They can automatically select the most informative
features among a large set (
) and perform well at generalizing predictions in the absence of information or,
conversely, at dealing with redundant information provided by correlated factors (

).
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Figure 2.4. Compared Area Under the Curve (AUC) performances of species distribution models generated
with  different algorithms  (ANN=Artificial Neural Network, BRT=Boosted Regression Trees,
CTA=Classification Tree Analysis, FDA=Flexible Discriminant Analysis, GAM=Generalized Additive Model,
GLM=Generalized Linear Model, MARS=Multivariate Adaptive Regression Splines, MAXENT=Maximum
Entropy, RF=Random Forest, SRE=Surface Range Envelope) to predict the distribution of the sea urchin
Sterechinus diadema in the Southern Ocean. Results show a good performance for BRT and RF, adapted to
small, historically compiled datasets (temporally heterogeneous) and spatially aggregated presence-only
data. Models were calibrated with presence-only data and 200 background data randomly sampled in the
study area. Average scores of 100 model replicates. See for details.

The different fields of application and the respective performance of existing algorithms have been

extensively compared in various works based on (1) a single species ( . plants
in South Africa, : plant distribution in South Australian landscapes,
. European butterflies, . plants in South America,
: mammals in Australia), or (2) an ensemble of worldwide distributed terrestrial (
) or marine species ( ), for (3) certain regions only ( : trees
in Switzerland, . snails, birds and bats in Israel, : benthic marine
species in the North Sea, . vertebrates of Florida) or (4) using virtual species

( )-

However, in order to generate such comparisons (Fig. 2.4), it is important to specifically adjust
each algorithm to the case study. Algorithms all perform differently with regards to overfitting,
spatial aggregation and transferability, and comparing model performances using different
parameter settings is challenging ( ) given that model parameterization has
strong effects on the quality of model outputs (

).

Initially developped in the 1990s, ensemble modelling has been increasingly used since then
( )- Ensemble modelling consists of combining several
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algorithms ( ), input datasets (occurrence or environmental descriptors datasets) or
parameterizations ( , and see for a review of applications).
The approach is interesting as it can provide predictions that take into account the variability of
several models (

Ensemble modelling has been used for various studles with SDMs (

) and has benefitted from the
development of R packages to implement them (Biomod: , BiodiversityR:
, biomod2: , sdm: ).
The main beneflts of using ensemble models lie in the fact that the different algorithms will perform
differently for various input cases (regardless of their overall performance). The models thus
complement each other, avoiding some biases that might have resulted from using a single

algorithm ( ). However, model interpretation is much
more difficult when mixing algorithms implemented differently, with contrasting ways of presenting
outputs ( ) and different definitions of thresholds for identifying habitat suitability
( ), requiring the normalization of predictions, which is rarely applied (

). This is the main limitation to the approach and could offset the gains in
model performance ( ). Such gains
were contested, especially since model evaluation was often performed without using an
independent evaluation dataset ( ). Combining predictions of different models

generated with contrasting assumptions is therefore tricky when interpreting the results (
). Optimizing the parameterization of a single algorithm (which could be correctly

evaluated) may therefore constitute a more valuable approach ( ). Comparing
the performance of different algorithms can be helpful in the first stage of the modelling process in
order to select the most suitable algorithm and to calibrate the models ( ).

3.2. The choice of environmental descriptors.

The selection of environmental descriptors is also a crucial step in the modelling process (
). Ideally, environmental descriptors should
be selected for their ecological relevance to the studied organisms (

), they must capture environmental discontinuities
and constraints in the distribution area ( ), and they should also be detailed
enough to represent the habitat complexity and variability in order to allow for good SDM accuracy
and performance (

In most studies, the final number of descriptors selected to depict the species environment is
generally close to 10 (
). Overall, a small number of descriptors will allow for the
generation of less complex models and facilitate interpretation (
)- In contrast, increasing the
number of descriptors potentially increases the effect of any collinearity between them (i.e.
correlation between values of descriptors), which may lead to statistical artefacts in model
predictions if the algorithms cannot handle information redundancy (
). Therefore, collinearity is usually tested for beforehand and collinear descriptors are
adjusted (in practice, one descriptor of a pair is removed) before running the model (
). However,
showed that model complexity, transferability and accuracy do not significantly change between
models generated with different sets, including from 4 to 58 collinear descriptors when using the
BRT algorithm. BRTs automatically keep the most relevant descriptors to describe species
distribution and can deal with redundant information (
), which is not the case for all algorithms ( ).

Selecting environmental descriptors therefore implies that several tests should be performed

upstream in order to determine the best set to be used depending on research objectives.
recommended first calibrating models with a large set of descriptors of various natures

(proximal vs. distal descriptors) that will be pruned stepwise, after analysing their ability to
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accurately describe the habitat and after testing for collinearity ( ).
Generating, testing and comparing several sets of descriptors is a widespread strategy to target in
a stepwise manner the set that gives the best predictive accuracy (

)- Replacing environmental descriptors by
principal components of a factorial analysis also proved to be efficient because complex
environmental gradients of the study area are simplified in fewer, orthogonalized components
( ). So far, this latter method has never been applied to SO case
studies, and it should be tested in order to evaluate the interpretability of model results.

3.3. Correcting spatial sampling biases.

Generating a model based on spatially aggregated presence-only records may bias predictions
with a higher probability of occurrence predicted in highly sampled areas (

). To compensate for such a bias, a first approach is to sample
background records according to the spatial bias introduced by the aggregated presence records

themselves ( ). The background dataset is used to define the environmental
background: its boundaries and variability constitute essential information for building and
projecting model outputs ( ). The choice of the

number of background records to be sampled and the extent of their distribution should be
considered carefully when calibrating a model because it can strongly influence model predictions
( ). This
number should be with respect to the prevalence score, being the ratio between the species-
occupied space (represented by presence record locations) and the total surface of the study area
(represented by background locations: ). Some advice is provided in
for selecting the correct number of background records according to
prevalence scores.
Targeting background records has been extensively tested, and several procedures have been
developed to significantly improve the relevance of models (Fig. 2.5). Background records can be
sampled within predefined areas (i.e. ‘discs’ or ‘buffers’) close to presence records (
), following the presence or
absence of other species (
), according to probabilities given by a kernel density
estimator (KDE) of the sampling frequency (
) or according to additive descriptors of accessibility
and sampling effort ( ). Once again, the selected method should be
adapted to each case study and its efficiency tested prior to model interpretation ( ).
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Figure 2.5. Comparison of predicted distribution probabilities (between 0 and 1) of the sea urchin
Ctenocidaris nutrix on the Kerguelen Plateau: (A) without compensating for sampling bias; (B) with a kernel
density estimator (KDE) correction: more background data are sampled in highly sampled areas. The spatial
aggregation of presence-only records near the shoreline of the Kerguelen Islands strongly biases model
predictions. The KDE correction was proven to be efficient at correcting for such a bias and provides more
relevant predictions. From

A second method consists of filtering the available presence data to reduce the influence of the
clustering of species records ( ).
This is an efficient method compared to the background targeted sampling approach detailed
above, but the remaining number of presence records after filtering should be sufficient to correctly
determine species-occupied space ( ). Reliable information should also
be available to characterize the bias in species occurrence data (

). The filtering protocol requires meeting many prerequisites, but priority
is given to keeping presence data independent and minimizing records clustering (

).

Overall, if several methods are developed to correct for the effect of spatial aggregation on model
outputs, it is recommended that one should interpret model projections performed for poorly
sampled areas with great caution (

4. Model outputs
4.1. Taxonomic bias and population variability.

SDMs are usually parameterized using all presence records available for a species and all
environmental conditions prevailing in the species records ( )- When
modelling species distribution at a broad spatial scale, it is often assumed that all populations of a
species have the same relationship to environmental conditions over the entire distribution area

( ). However,
occurrence datasets may include a set of populations with different phenotypic plasticities (
), transgenerational adaptations ( ) or simply different habitat selection

in the case of vagile species. Therefore, the modelled species can actually present different
abilities to respond to environmental changes. In particular, physiological performances of
populations are likely to vary in marine species with wide distribution ranges and high dispersal
capabilities over long distances ( ). This is particularly relevant with regards to future
predictions that do not integrate inter-population variability in the potential acclimation of species,
and this may lead models to alternatively over- or under-estimate the distribution of species-
suitable environments ( ).
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Phylogeographical studies have also regularly revealed the existence of cryptic species in the SO
benthos, which show similar morphologies for distinct genotypes and potentially, distinct ecological
requirements and geographical distributions ( ). Such studies often stress the
need for taxonomic revisions (

). SDMs can be generated based on a spatial subdivision of presence records according
to the genetic structure of taxa, and in a second step, the different predictions can be merged
together to the broader scale (

). However,
defining the genetic structure of benthic species in the SO is a long-term endeavour that requires a
constantly renewed sampling effort, considering the extent and complexity of the study area

( )- Waiting for taxonomic revisions and
enhanced sampling efforts to best depict relationships between genetic units and environmental
conditions ( ) and combining SDM with experimental data or mechanistic

approaches can be alternatives for taking into account the possible physiological contrasts
between populations (

).
4.2. Definition of region of interest (“projection area’).

The limitations in the current knowledge of species distribution also affect the quality of information
available for estimating their potential distribution ( ). When the limits of species
environmental ranges are not fully captured, this uncertainty can significantly impact the accuracy
of SDM predictions (
). It reduces the applicability of models for

predictive purposes ( ), induces model overfitting (

) and can lead to overestimating the extent of suitable areas
( ).

This bias can be partly overcome by reducing the extent of the projection area to the known

distribution of the available occurrence records ( ), and by increasing
knowledge regarding species ecology and physiology in order to identify the environmental
conditions that are unsuitable for their survival or development ( )-

4.3. Model extrapolation.

Models are said to extrapolate when a portion of the predicted area includes environmental
conditions that are outside the range of values for which the model was calibrated. Model
extrapolation may occur when model predictions are transferred, either in space or time. When
extrapolated, model predictions are in non-analogue conditions compared to the initial calibration
conditions because calibration data may not encompass the entire environmental range of each of

the predictors ( ). The set of projected environmental conditions
can otherwise still be within the range of conditions, but specific combinations of environmental
descriptors may be new, also leading to extrapolation ( )- In such conditions,

predictions might be ecologically and statistically invalid and model interpretations inaccurate

(

Among the different approaches, propose estimating and quantifying model
extrapolation using the Multivariate Environmental Similarity Surface (MESS) index to identify the
most influential descriptors that lead to extrapolation. Grid-cell pixels for which at least one
environmental descriptor has a value outside the range of environmental values defined by
presence-only records (calibration range) are considered to be extrapolations. In these cases, the
MESS index assigns negative values and the ensemble of pixels containing negative values
defines the extrapolation area ( ). Most often,
for SDMs performed at the scale of the SO, the number of records available to define the
environmental space occupied by species is limiting and the resolution of environmental
descriptors relatively low (see section 2). As a consequence, SDM projections sometimes include
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wide extrapolation areas that may cover > 75% of the predicted regions (Fig. 2.6) (

).

ﬁlll!

0

Figure 2.6. Extrapolation map of the species distribution model generated for the sea star Acodontaster
hodgsoni, with all presence-only records available. Extrapolation corresponds here to the ensemble of
environmental conditions that are outside of the boundaries of the calibration range. The extrapolation area
is displayed in black and covers 78.6% of the entire projection area; coloured pixels (yellow-red colour
palette) show distribution probabilities (included between 0 and 1). Extracted from

In addition to quantifying the overall extrapolation area (Fig. 2.6), it is possible to fine-tune the
analysis and define which environmental descriptors and areas are concerned with extrapolation
( ) (Fig. 2.7). Such information could be
used to resample the environmental descriptors implemented in the model.

In any case, it has been recommended to provide information on model extrapolation and more
generally to other concepts of uncertainties (species detection, errors, etc.), along with model
predictions, because they are essential to accurate interpretation (

).

Limiting model projections to 'realistic' depth ranges or some other environmental limiting factor
based on a robust knowledge of species ecology (i.e. some expert-driven decision) was proven to
be efficient at reducing extrapolation (

)- Such a strategy is transitional until complementary
samples and more comprehensive occurrence datasets are made available to better define the
species-occupied space ( ).
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Figure 2.7. Extrapolation map of the species distribution model generated for the sea star Acodontaster
hodgsoni indicating environmental descriptors responsible for extrapolation (black pixels of Fig. 2.6 are here
coloured according to the descriptor responsible for extrapolation; i.e. for each pixel, the predictor in question
lies outside the calibration range). In this case study, 14 environmental descriptors are responsible for
extrapolation, with depth being the main contributor. White pixels correspond to areas where the model does
not extrapolate (the corresponding model predictions are shown in Fig. 2.6). POC stands for ‘Particulate
Organic Carbon’ and Chla is the concentration in chlorophyll a on the sea-surface. Generated from

5. Model validation and accuracy of model predictions
5.1. Some common metrics for the evaluation of model predictions.

Once models are generated, the accuracy of their predictions must be assessed in order to
evaluate the validity of the models with regards to scientific issues to address, to compare different
model outputs and to allow for the formulation of reliable interpretations ( )-
Several metrics were developed in order to evaluate the performance of models (

)- Most of them are based on the calculation of an error matrix (or
confusion matrix) that displays the proportion of presence and absence records that are correctly
predicted by the model (

In most biological studies focused on the SO benthos, absence records are usually unavailable
and SDMs are generated based on a set of presence/background records (see section 2.2). As a
consequence, the statistics that are commonly used for presence/absence datasets may not be
appropriate for model evaluation ( ), such
as the Kappa statistic ( )- In contrast, the Area Under the Curve, or Area Under
the Receiver Operating Curve (AUC), is one of the most used and appropriate metrics for
measuring the performance of model predictions based on presence/background data (

)- The AUC is an objective measure that remains stable with low-prevalence datasets (i.e. low
frequency of occurrences with regards to the projection space) and is not sensitive to threshold
effects  ( ). However, for
presence/background models, specificity (the fraction of correctly predicted absences) might be
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overestimated when the number of background records is much higher than the number of
presence-only records or when background and presences are associated with very different
environmental values. This incidentally inflates AUC scores (

) and invalidates the relevance of the AUC
metrics ( ).
Even when properly employed, the AUC cannot be used to compare models when SDMs are
generated for different species based on different environmental descriptors or projected on
distinct regions because the values depend on the relative size of suitable areas and prevalence

scores may contrast (see section 3.3) ( ). The AUC
metrics must be used as a simple measure of the relative ranking of model predictions associated
with a specific dataset ( ). Overall, each statistic is characterized by

specific advantages and potential biases, so that it is recommended that one uses several
statistics for evaluating model predictions (

The accuracy of model predictions can also be evaluated by testing the classification of
independent test data, where the available occurrence dataset can be split into independent
subsets to train or test the model (for a review, see ).

5.2. Cross-validation procedures.

Cross-validation procedures are aimed at evaluating model predictions using a subset of presence
or absence records retrieved from the initial dataset used for modelling in order to assess how well
the test data match with the modelled predictions ( ). When working with
presence-only datasets, two subsets of presence records are used: one subset is used to train the
model (the training group) and the second subset is used to test the model (the test group). Test
data and training data must be spatially independent from each other (

). In most modelling exercises, standard cross-validation procedures are commonly
used, in which the initial presence dataset is randomly split into a training and test subset.
Frequently, as previously discussed, presence data are spatially aggregated in SO datasets and
the necessary condition of independence between training and test data is seldom met, making the
model accuracy evaluation overly optimistic (

)- In contrast to random procedures, spatial cross-validation procedures
improve the performance of the validation step by spatially segregating the training and test
subsets, ensuring the spatial independence between data even when they are spatially aggregated
in the initial datasets ( ,
see also
http://cran.rapporter.net/web/packages/blockCV/vignettes/BlockCV for SDM.html).

Several spatial cross-validation procedures have been proposed (Fig. 2.8), and the most
appropriate one can be determined by comparing the different procedures in order to define the
one that is the most suitable for the study (

) depending on the spatial scale of the
analysis, the number and spatial distribution of the presence data and the selected algorithm (and
its associated complexity) used for modelling ( ).
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Group 1 Group 2 Group 3 Group 4

180°

Figure 2.8. Different cross-validation procedures based on the study of the sea star Odontaster validus,
showing presence-only records and a random set of 1,000 background data selected according to a Kernel
Density Estimation (KDE) weighting scheme from the dataset of on sampling effort of
the Southern Ocean benthos. Data are split into training (pink) and test (green) subsets. The blue
background corresponds to bathymetry and grey areas to emerged lands. (A) Random cross-validation
procedure, with a random split into 75% training and 25% test data. (B) ‘2-fold CLOCK’ clustering by random
spatial partition of the dataset into two groups (one training and one test). (C) ‘BLOCK’ splitting, generated
according to median latitudinal and longitudinal values ( )- After the generation of four
groups (corresponding to the four colours), one group is randomly defined as the test subset and the other
three groups as the training subsets. A different system of projection was used to represent this map in order
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to highlight the latitudinal and longitudinal definition of the transects. (D) ‘3-fold CLOCK’ clustering by random
spatial partition of the dataset into three groups (two training and one test). (E) ‘4-fold CLOCK’ clustering by
random spatial partition of the dataset into four groups (three training and one test). Figure extracted from

6. Conclusions and future prospects

This review summarizes some points and issues to be considered during SDM construction for
modelling the distribution of SO species (Fig. 2.1). It shows that accurate and efficient SDMs can
be produced for SO species when considering potential common biases and issues and correcting
for their side effects. Proposed corrections must be adjusted to each case study: no consensus
method nor implementation procedure always perform best, each case study requires proper
analyses in order to generate the most relevant and accurate predictions. This means that, for
each model, several procedures to implement the model should be tested in order to select the
most suitable one, ideally giving priority to the availability of independent datasets for evaluating
the models. We discuss how SDMs perform best when the species-occupied space is accurately
described, using extensive occurrence datasets with both presence and absence records, and
when data are checked for positioning and georeferencing errors. A good knowledge of species’
ecology, life history traits and populational variations within the overall species distribution and
environmental range help to improve model quality ( ). The compilation, examination
and preparation of datasets prior to modelling are essential steps in generating efficient models.
Estimating and communicating the uncertainties associated with model predictions are also
important tasks to be highlighted. This process may include a ‘simple’ interpretation of the

ecological relevance of SDM outputs by experts ( ) for the mapping of model
extrapolations, as illustrated here. Model uncertainties are part of model outputs and should not be
omitted ( )-

Remaining challenges for constructing relevant SDMs for SO studies include more efforts
regarding data collection outside of the main sampling hotspots and filling in knowledge gaps in
SO species taxonomy. Some methodological perspectives, developed in other regions, address
the integration of physiological information into SDMs. This facilitates the understanding of species
environmental preferences and helps one to better estimate the ecological niches of species
(
). Such studies have recently been developed for SO benthic species: in
the combination of physiological experimental
results and SDM projections allowed for the assessment of the invasive potential of the Patagonian
crab Halicarcinus planatus (Fabricius, 1775) on Antarctic coasts, as was similarly done in
for the Arctic sea star Asterias amurensis Lutken, 1871. Hybrid modelling approaches
constitute another exciting approach, where information from both SDMs and physiological models
are fully integrated, using the physiological information as a prior to inform the SDM (
). Recently applied to an endemic sea urchin of the Kerguelen Plateau (
), the method allows for more precise prediction of the effects of seasonal
variations on species habitat suitability.
Other interesting methodological approaches include the consideration of biotic interaction
information, dispersal capacity estimates or population dynamics in complement to SDM
predictions in order to generalize the understanding of the main drivers of species distribution

(

). These, however, necessitate a deep knowledge of
the species ecology and of the surrounding environment, suggesting that their first applications
should be expected in local- or regional-scale studies.

A final take-home message is that model outputs should be interpreted carefully and model
predictions always considered with a critical eye. Models are simple representations of complex
systems and should be used to complement other approaches in order to support conservation
strategies or to address fundamental research objectives (

).

163



CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2.

Article. Guillaumot et al. (2021). Species Distribution Modelling of the Southern Ocean benthos: a review on methods, cautions
and solutions. Antarctic Science. 164



CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2.

Species distribution models in a data-poor and broad scale
context

Guillaumot Charléne™3, Artois Jean?, Saucéde Thomas3, Demoustier Laura', Moreau
Camille'3, Eléaume Marc*, Agliera Antonio'-®, Danis Bruno'’

" Université Libre de Bruxelles, Marine Biology Lab. Avenue F.D. Roosevelt, 50. CP 160/15 1050 Bruxelles, Belgique
2 Université Libre de Bruxelles, Spatial Epidemiology Lab. (SpELL). Avenue F.D. Roosevelt, 50. CP 160/15 1050
Bruxelles, Belgique
3 UMR 6282 Biogéosciences, Univ. Bourgogne Franche-Comté, CNRS, 6 bd Gabriel F-21000 Dijon, France
4 Muséum national d’Histoire naturelle, Dpt Systématique et Evolution, UMR ISYEB 7205, 57 rue Cuvier, F-75231 Paris,
France
5 Danish Shellfish Center, DTU-aqua, @roddevej 80, 7900 Nykgbing Mors, Denmark.

Progress in Oceanography, 175 (2019), Accepted April 20", 2019

Abstract
Species distribution models (SDMs) have been increasingly used over the past
decades to characterise the spatial distribution and the ecological niche of various
taxa. Validating predicted species distribution is important, especially when producing
broad-scale models (i.e. at continental or oceanic scale) based on limited and spatially
aggregated presence-only records.
In the present study, several model calibration methods are compared and guidelines
are provided to perform relevant SDMs using a Southern Ocean marine species, the
starfish Odontaster validus Koehler, 1906, as a case study. The effect of the spatial
aggregation of presence-only records on modelling performance is evaluated and the
relevance of a target-background sampling procedure to correct for this effect is
assessed. The accuracy of model validation is estimated using k-fold random and
spatial cross-validation procedures. Finally, we evaluate the relevance of the
Multivariate Environmental Similarity Surface (MESS) index to identify areas in which
SDMs correctly interpolate and conversely, areas in which models extrapolate outside
the environmental range of occurrence records.
Results show that the random cross-validation procedure (i.e. a widely applied method,
for which training and test records are randomly selected in space) tends to over-
estimate model performance when applied to spatially aggregated datasets. Spatial
cross-validation procedures can compensate for this over-estimation effect but different
spatial cross-validation procedures must be tested for their ability to reduce over-fitting
while providing relevant validation scores. Model predictions show that SDM
generalisation is limited when working with aggregated datasets at broad spatial scale.
The MESS index calculated in our case study shows that over half of the predicted
area is highly uncertain due to extrapolation.
Our work provides methodological guidelines to generate accurate model assessments
at broad spatial scale when using limited and aggregated presence-only datasets. We
highlight the importance of taking into account the presence of spatial aggregation in
species records and using non-random cross-validation procedures. Evaluating the
best calibration procedures and correcting for spatial biases should be considered
ahead the modelling exercise to improve modelling relevance.

Key-words
Boosted regression trees (BRTs), presence-only, cross-validation, extrapolation, modelling
evaluation
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1. INTRODUCTION

Species Distribution Models (SDMs) have been increasingly used during the past decades. The
diversity of applications has widened to include a vast panel of topics from studies of invasive
species distribution range shifts to assessment of species responses to environmental drivers and
conservation issues from local to global scales (

)- In vast and remote areas such as
the Southern Ocean, modelling species distributions is challenged by (1) the paucity of biotic data
available (a serious constraint when describing species realised niche), (2) by the heterogeneous
quality of environmental data describing environmental conditions (e.g. missing data in coastal
areas, low resolution of environmental layers, limited number of environmental descriptors
available), and (3) by the sampling bias (spatial and temporal aggregation of data collection) (

). Sampling effort has mostly been carried out offshore or in the vicinity of
research stations during the austral summer while remote shallow areas are seldom accessed and
dense winter sea ice conditions limit oceanographic studies ( )-

Several studies have proposed model corrections or alternatives to separately mitigate the induced
impacts of spatial and temporal biases on modelling performance (

). However, to our knowledge, no study has
yet proposed methodological guidelines to address such issues when dealing with data-poor and
broad spatial areas (i.e. at continental or oceanic scales).

Several statistical tools such as the Area Under the Curve of the Receiver Operating characteristic
(AUC), the True Skill Statistic, or the Point Biserial Correlation are commonly used to evaluate the
relevance of SDM predictions ( ). Using these indices
for models performed with presence-only data has been widely discussed because background-
data are usually considered as absences, leading to confusion in model interpretation and violating
most test assumptions (i.e. computing AUC and TSS statistics requires the use of true absences)
( ). These methods can also be biased when applied to
limited and broadly distributed data. Machine-learning algorithms are widely used in SDMs to fit
complex relationships between species occurrences and environmental data ( ).
The resulting models may be highly complex and poorly efficient under changing environmental
conditions as they may fit a response to any variation including the random noise (=model
overfitting), ( )- Models’ ability to predict in new environmental conditions is
described as the generalization performance by

Producing reliable SDMs implies finding a good trade-off between model complexity and predictive
and generalisation performances (

)- The relevance of modelling and generalisation performance, and the optimal level of model
complexity can be tested using independent data. The method has been commonly applied and
referred to as the cross-validation procedure ( ). The
cross-validation procedure uses a training subset of occurrence data to fit the model and a
separate test subset to validate the predictions and the statistical relationships between the studied
variables ( )- ‘Random cross-validation’ procedures are widely used and
randomly split the occurrence dataset into training and test subsets. However, the spatial
aggregation of occurrence data can lead to the violation of the independence assumption between
training and test data randomly sampled, and in turn to false confidence in modelling validation
performances ( ). The violation of the independence assumption can also lead to
generate highly complex and overfitted models (

). Therefore, the cross-validation procedure should be adapted
to each given dataset and case study, so that, different ‘spatial cross-validation’ procedures have
been developed and compared in this study. The spatial cross-validation procedures aim at
spatially splitting the occurrence dataset into a training and a test subset by increasing the
geographical distance between the two subsets (

). The spatial cross-
validation reduces spatial correlation between training and test data in situations where spatial
autocorrelation is significant in the occurrence dataset, a common issue in ecology (
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Uncertainties in SDMs represent another limitation to model usage that should be quantified and
the effects must be specifically assessed or taken into account during model interpretation (

). Model
extrapolation outside the range of the known species environmental conditions leads to
misinterpretation of SDM outputs and can be a real issue when using SDM predictions as a
support tool for conservation decisions. Therefore, areas of optimal predictions and limited
uncertainties must be identified. This can be achieved using indicators such as the Multivariate
Environmental Similarity Surface (MESS). Developed for SDMs, the MESS index highlights areas
where environmental conditions are outside the range of conditions observed in data (

)-

In the present study, model uncertainties and the performance of several spatial cross-validation
procedures were analysed using the case study of the sea star Odontaster validus Koehler, 1906.
Distributed over the entire Southern Ocean (< 45°S), O. validus is a common and abundant
species in shallow-water benthic habitats ( ), characterised
by an opportunistic feeding behaviour (from suspension-feeding to algivory, deposit-feeding and
predation). It has been shown to play a significant role in structuring benthic communities and
regulating populations of other benthic taxa ( ). The species physiology was
recently modelled using the Dynamic Energy Budget approach ( ) which allows
for the assessment of the metabolic performance of the species under different environmental
conditions. Here, SDMs were produced to interpolate the known distribution of O. validus over its
entire geographic range using an available dataset of environmental descriptors. The influence of
spatial data aggregation on model outputs was analysed and the performance of correction
procedures evaluated. In a second step, several cross-validation procedures were assessed and
compared to test for modelling accuracy, optimal level of complexity and predictive performance. A
final ‘optimum’ model is proposed, which takes into account uncertainty estimates. Results are
generalised and formalised as guidelines for further SDM works, showing the relevance of the
approach when working at broad spatial scale with a limited number of spatially aggregated
presence-only records.

2. MATERIAL AND METHODS
2.1.Model selection and calibration procedures

SDMs were generated using the Boosted Regression Trees (BRTs) algorithm. BRTs were selected
for their ability to fit complex relationships between species records and the related environment,

while guarding against over-fitting ( ). BRTs are also adapted to
deal with incomplete datasets ( ), can perform well with low prevalence datasets
( ), are weakly sensitive to species niche width ( ) and

were recognised to transfer well in space and time (

). BRTs were calibrated using the method proposed by Elith et al. (2008) to
select the optimal number of trees in the final model (Appendix 2.1). The combination of
parameters that minimises the optimal number of trees to build the model (reduction of complexity)
while reaching a minimum predictive deviance to the test data (reduction of error) was selected.
The following parameters were used to calibrate the models: tree complexity=4, bag fraction=0.75
and learning rate=0.007 (Fig. S2.1B). The number of background data sampled in the area was set
at 1000 sampled points after evaluating the optimal number of data points to be sampled (see
Appendix 2.1 for details). This number constitutes the best trade-off between describing
environmental conditions and being as close as possible to the number of species presence
records available ( ). All background sampling was restricted in space to
areas shallower than 1500m depth, which corresponds to the species deepest record, in order to
avoid model extrapolation at depths known as unsuitable for the species survival based on
knowledge of the species ecology ( ). Sampling was
restricted to a single background data per pixel. Similarly, presence records falling on a same 0.1°
grid-cell pixel were filtered before model calibration in order to reduce spatial over-weighting

( ).
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2.2. Occurrence dataset

SDMs were generated using presence-only data made available for the sea star O. validus by

. Presence-only records of O. validus are strongly aggregated in space (i.e.
concentrated in “easily” accessible and frequently visited areas characterised by relatively low sea
ice concentrations), a condition also prevailing in the total dataset available for Southern Ocean

benthic taxa (updated from , Fig. S2.2), making O. validus a representative
case study for Southern Ocean benthic studies. Models were generated using the environmental
descriptors published as raster layers by . They were collected from

different sources and modified to fit modelling requirements at the scale of the Southern Ocean
(from 45°S latitude to Antarctica coasts). Collinearity between environmental descriptors was
tested using the Variance Inflation Factor (VIF) stepwise procedure of the ‘usdm’ R package
( ) and Spearman correlations (rs). Surface temperature and roughness, a depth-
derived variable, were respectively correlated to ice cover and depth. They were omitted according
to the commonly used thresholds of VIF > 5 and rs > 0.85 (

)- A final set of 16 environmental descriptors at 0.1° resolution was
compiled to build the models (Table S2.3).

2.3. Evaluation and correction spatial aggregation

The significance of spatial aggregation of occurrence data was tested by measuring spatial
autocorrelation ( ) on model residuals using the Moran’s | index
). A positive Moran’s | value (between 0
and 1) indicates that spatially close residuals will share similar values. A negative (close to -1) or
null value respectively indicates a maximal dispersion or a random dispersion of residuals in space
( ). Detecting significant spatial autocorrelation in presence-only records will
assess the degree of aggregation of species records in the studied area.
Two null models were generated and their respective outputs compared to each other in order to
evaluate the importance of spatial aggregation in the total Southern Ocean benthic dataset (Fig.
S2.2). Null model #1 was produced to evaluate the overall spatial aggregation of benthic records in
the Southern Ocean due to sampling effort. It was generated by randomly sampling n=309
occurrence records (corresponding to the number of non-duplicate presence-only data available
for O. validus) in the total Southern Ocean benthic dataset (Fig. S2.2). 1000 background records
were randomly sampled in the entire Southern Ocean. The Moran’s | score was calculated by
comparing model #1 predictions to the distribution of the total Southern Ocean benthic dataset
(Fig. S2.2). Null model #2 was built to compute a reference Moran’s | score for a model generated
with randomly distributed records. 309 presence data and 1000 background data were randomly
sampled in the entire Southern Ocean. Null model #2 will provide a reference value for spatial
autocorrelation scores due to the intrinsic structure of environmental data. It will serve as a
reference model for comparison with Moran’s | scores of model null #1 and to assess the degree of
spatial aggregation due to sampling effort. To correct for the effect of spatial aggregation on
modelling performance, a target-background correction method was applied (
The total Southern Ocean benthic dataset (Fig. S2.2) was used to create a Kernel Den3|ty
Estimation layer that provides an estimate of the probability to find a benthic presence data for
each pixel. The Kernel Density Estimation was calculated with the ‘kde2d’ function of the MASS R
package ( ) on the extent of the Southern Ocean (n and lims parameters defined to fit a
raster layer of extent (=180, 180, —80, -45) and 0.1° resolution). Null model #1 was corrected by
randomly sampling 1000 background records according to the weighting scheme of the Kernel
Density Estimation layer. After evaluating spatial aggregation in the total Southern Ocean benthic
dataset, spatial autocorrelation was specifically assessed for O. validus. Spatial autocorrelation
was measured for two models generated without (model A) and with (model B) Kernel Density
Estimation correction. Comparison between the two models aimed at assessing the efficiency of
the Kernel Density Estimation correction for O. validus. Model A (without correction) was built
using all presence-only data available for O. validus and 1000 background records randomly
sampled in the Southern Ocean. Model B (with correction) was built using all presence-only data
available for O. validus and 1000 background records that were sampled following the weighting

169



CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2.

scheme of the Kernel Density Estimation layer. Each model was generated 100 times and the two
averaged models (average models A and B) were compared to each other. Differences between
models A and B quantify the importance of spatial aggregation on model outputs. Finally, model
relevance was assessed using three statistics: the Area Under the Receiver Operating Curve
(AUC) ( ), the Point Biserial Correlation between predicted and observed
values (COR, ) and the True Skill Statistic (TSS, )-

2.4. Testing different cross-validation procedures

SDMs validation was performed using different cross-validation procedures. Background data were
first sampled in the entire area following the Kernel Density Estimation scheme and the compilation
of presence-only and background data was then split into a training and a test subset to build the
cross-validation procedure. Two splitting procedures were followed; they differ between each other
in the spatial independence between the training and the test subset. (1) The random cross-
validation procedure, commonly used in SDMs, aims at randomly splitting the dataset into training

and test subsets ( ) which may lead to close spatial vicinity
between the two datasets ( ), and, (2) the spatial cross-validation procedure that aims
at spatially spitting the dataset in order to reduce spatial correlation and may improve
independence between the two subsets ( ). The random
procedure was therefore compared to four different spatial cross-validation procedures. (1) In the
‘BLOCK’ method developed by , different subsets of equal occurrence

numbers are created. For each replicate, this k-fold procedure divides the dataset into four equal
subsets according to the mean latitude and mean longitude positions of occurrence data (Fig.
2.9c¢), then three of these four subsets are randomly selected to train the model (75%) and the last
one is used to test the model (25%). (2) In the ‘CLOCK’ methods, the dataset was divided
according to random longitudinal transects, splitting the Antarctic Circle into two parts (2-fold
‘CLOCK’ method, Fig. 2.9b), (3) three parts (3-fold ‘CLOCK’ method, Fig. 2.9d) or (4) four parts (4-
fold ‘CLOCK” method, Fig. 2.9¢e). In the 2-fold ‘CLOCK’ method, one subset was considered as the
training subset, the second one as the test subset; in the 3-fold ‘CLOCK’ method, two subsets
were defined for training and the third one for testing; in the 4-fold ‘CLOCK’ method, three subsets
were considered for training and one for testing (Fig. 2.9). Different cross-validation procedures
were tested using the ‘gbm.step’ procedure available in the dismo R package (

). Once the dataset is split in different folds, apply an iterative
procedure that enable to find the minimum deviance to the test data, and relates it to the optimal
number of trees (optimal model complexity) to generate the model. If test and training data are
spatially correlated, the number of trees required to build BRTs will be overestimated. Therefore,
the use of procedure will enable to accurately interpret and compare optimal
complexity and performance scores of models calibrated with either randomly or spatially
segregated folds (i.e. with contrasting distances between training and test subsets), and thus will
help explain the influence of occurrence spatial aggregation on model complexity and
performance. R scripts written to generate the models and the different cross validation procedures
are provided online at: https://github.com/charlenequillaumot/THESIS/.

Independence between training and test subsets was evaluated using the Spatial Sorting Bias
index (SSB) ( ). SSB compares the distance between training-presence and testing-
presence data with the distance between training-presence and training-background. SSB=0 (non
independence) means that the “distance between training-presence and test-presence sites will
tend to be smaller than the distance between training-presence and test-background sites”
( ). SSB=1 indicates that the two distances are comparable (independent enough)
( )- SSB was calculated with the dismo R package (

SDMs evaluation was generated by computing the percentage of test data that faII on grid-cell
pixels predicted as suitable. Suitable pixels were defined using the Maximum sensitivity plus
specificity threshold (MaxSSS) that splits models into suitable (> MaxSSS value) and unsuitable
areas (< MaxSSS value). MaxSSS is accepted as a relevant threshold for presence-only SDMs
(Liu et al., 2013). The averaged optimal number of trees required to generate BRTs was compared
between models and used as a proxy of model complexity.

Statistical differences between models generated with the different cross-validation procedures
(AUC, TSS, COR, percentage of correctly classified test data, number of trees) were tested using
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the non-parametric Mann-Whitney Wilcoxon pairwise comparison.
2.5. Assessment of model extrapolation

The Multivariate Environmental Similarity Surface (MESS) index was estimated following the
procedure described by using the dismo R package ( )- The
MESS calculation consists in extracting the environmental conditions where presence-only data
were recorded and determining for each pixel of the model projection layer if environmental
conditions are covered by presence-only records. Negative MESS values indicate areas of model
extrapolation in which the value of at least one environmental descriptor is beyond the
environmental range covered by available presence-only records. Conversely, positive MESS
values indicate areas of model projection in which values of environmental descriptors are within
the environmental range covered by presence-only records. According to the number of
environmental descriptors that are not included inside the range of presence records values,
MESS outcome can strongly vary. The MESS evaluation deals with each environmental descriptor
equally (unweighted analysis) and in this study, a pixel was considered as unsuitable as soon as a
single descriptor value does not match the environmental range of presence-only records. On a
projection map, SDM predictions were darkened according to the MESS extrapolation range to
visualise the uncertain area due to extrapolation. Extrapolation performance of SDMs was
assessed by comparing the proportion of the environment predicted as suitable by the model with
the total set of environmental conditions.
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Group 1 Group 2 Group 3 Group 4

Figure 2.9. Comparison of the different cross-validation procedures. Dots represent Odontaster validus
presence-only records and a random set of 1000 background data, sampled according to the Kernel Density
Estimation weighting scheme. Colors indicate data splitting into training (pink) and test (green) subsets. Blue
background corresponds to bathymetry and grey areas to emerged lands. For each case, 100 replicates of
random background-data sampling and transects partitioning are performed, symbolised by the arrows on
the figure. (A) Random cross-validation procedure, with a random splitting into 75% training and 25% test
data. (B) ‘2-fold CLOCK’ clustering by random spatial partition of the dataset into two groups (one training,
one test). (C) ‘BLOCK’ splitting, generated according to the median latitudinal and longitudinal values
(Muscarella et al., 2014). After generation of four groups (corresponding to the four colors), one group is
randomly defined as the test subset, the other three groups as the training subset. A different system of
projection was used to represent this map to highlight the latitudinal and longitudinal definition of the
transects. (D) ‘3-fold CLOCK’ clustering by random spatial partition of the dataset into three groups (2
training, 1 test). (E) ‘4-fold CLOCK’ clustering by random spatial partition of the dataset into four groups (3
training, 1 test).
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3. RESULTS

3.1. Available data and spatial autocorrelation

Distribution records available for Odontaster validus display a circumpolar and patchy spatial
pattern (Fig. 2.10a). The niche occupied by O. validus does not cover the entire range of
environmental conditions prevailing in the projection area (Fig. 2.10b). O. validus is recorded in
conditions close to zero and sub-zero seafloor temperatures (Fig. 2.10b) and is mainly distributed
in shallow and coastal areas. Most of O. validus presence records are aggregated in regions
where scientific benthic surveys are most often led and where sampling effort was privileged due
to access facilities (e.g. the Ross Sea and the Antarctic Peninsula). Overall, this holds true for
presence records of all benthic Southern Ocean taxa as well (Fig. S2.2), although, in this case,
most environmental conditions are covered by the total benthic samples (Fig. 2.10b).

... (B)

Seafloor mean salinity

Seafloor mean temperature

Figure 2.10. (A) Presence-only records of the sea star Odontaster validus in the Southern Ocean.
Duplicates (occurrences falling on a same 0.1° resolution pixel) were removed from the display. (B) Values
of the environmental range covered by the entire benthos sampling dataset presented in Fig. S2.2 (black
dots), by presence-only records of O. validus (green dots) in comparison with a set of 1000 background dots
randomly sampled according to the Kernel Density Estimation scheme (grey dots) for two environmental
descriptors: mean seafloor temperature (°C) and mean seafloor salinity (PSU). A part of the environment
(grey dots) does not contain benthic occurrence samples (black dots), illustrating that sampling effort is not
geographically exhaustive.

Spatial autocorrelation was measured for both the total Southern Ocean benthic dataset (null
models) and or O. validus alone (models A and B) (Table 1). Moran’s | scores were tested
significant for all models, null model #2 excepted. The absence of spatial autocorrelation (1=0.005
+ 0.004; p=0.19) in null model #2 shows that environmental data are not strongly aggregated in
space. In contrast, presence-only records of the total Southern Ocean benthic dataset are spatially
aggregated. The degree of spatial aggregation due to sampling effort is evidenced by the
comparison between null model #1 and #2, scores of model #1 being 10 times higher than those of
null model #2 (Moran’s 1=0.050 + 0.011 and 0.005 + 0.004, respectively).

Values of Moran’s | computed for models of O. validus (models A and B) are higher than those
computed for the total Southern Ocean benthic dataset (null model #1 and #1 with Kernel Density
Estimation). The sampling bias is therefore more pronounced for O. validus than for the majority of
other benthic species.

Model correction by the Kernel Density Estimation procedure was shown to reduce spatial
autocorrelation with Moran’s | values decreasing from 0.050 to 0.034 for null model #1, and from
0.085 to 0.069 for O. validus models A and B (Table 2.1). However, although lower, Moran’s |
values remain significant after correction, indicating that the applied corrections do not entirely
remove the presence of spatial autocorrelation.
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Table 2.1. Comparison between models of spatial autocorrelation values measured on model residuals
(average and standard deviation of Moran’s | values computed for 100 model replicates). Moran’s |
significance is indicated by p-values; for p < 0.05, the absence of spatial autocorrelation (null hypothesis) is
rejected. Null model #1: 309 presence records were randomly sampled among occurrences of the total
Southern Ocean benthic dataset (Fig. $S2.2) and background data are composed of 1000 points randomly
sampled in the entire Southern Ocean; model #2: 309 records (to define presence records) and 1000
background data both randomly sampled in the entire Southern Ocean; model #1 with Kernel Density
Estimation: similar to model null #1 but with 1000 background data randomly sampled following the Kernel
Density Estimation weighting scheme; model A: 309 presence records of Odontaster validus and 1000
background data were randomly sampled in the entire Southern Ocean; model B: similar to model A but with
the 1000 background data sampled following the Kernel Density Estimation weighting scheme. AUC: Area
Under the Receiver Operating Curve, TSS: True Skill Statistic, COR: Point Biserial Correlation.

Null model #1  Null model #2  Null model #1 Model A Model B
with Kernel Density Estimation

Spatial autocorrelation 0.050 + 0.011 0.005 * 0.004 0.034 +0.011 0.085+0.009 0.069 £ 0.006
(Moran’s |) p<0.001 p=0.19 p<0.001 p<0.001 p<0.001
AUC 0.976 £ 0.010 0.710+£0.014  0.964 £ 0.015 0.997 + 0.001 0.948 +0.003
TSS 0.674 £0.013 0.331+£0.020 0.660 £ 0.019 0.698 £+ 0.002  0.696 +0.003
COR 0.850 + 0.028 0.336 +0.018  0.801 £ 0.037 0.944 + 0.011 0.923 £0.015

p<0.001 p<0.001 p<0.001 p<0.001 p<0.001

3.2. Comparison of cross-validation procedures

For the BRTs fitted with the random cross-validation procedure, all overall goodness-of-fit metrics
(AUC, TSS, COR) were good with predictive accuracy Area Under the Curve (AUC) values higher
than 0.9 (Table 2.2). However, when evaluated through spatial cross-validation procedure, the
AUC scores decreased in all BRTs. These results show that BRTs tend to overfit the data if the
independence between training and test data is not ensured. Indeed, the random cross-validation
procedure presents SSB values close to zero, indicating that training and test subsets may be
highly correlated (Fig. 2.9a). In contrast, all spatial cross-validation procedures have SSB values
close to 1, indicating a better spatial independence between training and test data (Table 2.2).

The generalisation performance (AUC and correctly classified test data) are very high for the
random cross-validation procedure, with more than 89.4% of test-presence records falling correctly
in areas predicted as suitable by the model (Table 2.2). The random cross-validation procedure
generates more complex BRTs compared to the spatial methods (significantly higher number of
trees for the random cross-validation procedure compared to the spatial cross-validation
procedures). As the model closely fits the dataset used for its construction, high AUC, TSS and
COR scores were obtained but these results may be misleading and overestimated. In contrast,
spatial cross-validation procedures generate less complex models (more general), which could
account for lower AUC, TSS and COR scores.
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Table 2.2. Average Spatial Sorting Bias (SSB) and standard deviation values for the 100 model replicates
(background sampling+test/training clustering). AUC: Area Under the Receiver Operating Curve; Correctly
classified test data (%): percentage of presence-test and background-test records falling on predicted
suitable areas (prediction > maximum sensitivity plus specificity (maxSSS) threshold); TSS: True Skill
Statistic; COR: Point Biserial Correlation; ntrees: averaged optimal number of trees required to generate
BRTs. Stars are indicated for spatial cross-validation groups significantly different from the random cross-
validation procedure (nonparametric pairwise Mann-Whitney Wilcoxon test, p-value < 0.01).

Random cross-validation Spatial cross-validation Spatial cross-validation Spatial cross-validation Spatial cross-validation

Random splitting Block method 2-fold Clock method 3-fold Clock method 4-fold Clock method
Mean SSB 0.101 £ 0.04 0.802 + 0.37 0.832 +0.09 0.803 +0.23 0.848 +0.32
AUC 0.947 £ 0.013 0.854* £ 0.06 0.811* £ 0.053 0.818* £ 0.078 0.824* £ 0.089
Correctly classified 89.452 + 1.523 80.946* + 7.504 80.039* + 3.489 80.713* + 5.421 79.471* + 8.538
test data (%)
Test data (% of total 25% [13-38]% [19-81%] [1-68%] [1-66%]
dataset)
TSS 0.715 £ 0.041 0.542* £ 0.188 0.465* £ 0.088 0.490" £ 0.136 0.576* £ 0.165
COR 0.792 £ 0.029 0.632* £ 0.126 0.584* £ 0.089 0.591* £ 0.12 0.483* £ 0.197
ntrees 1580 + 251.058 543.5* £ 88.9 375*£91.9 424.5* +131.1 379* £ 98.5

3.3. Proposed model and uncertainty map

We decided to maximise the spatial independence between training and test subsets, minimise
model complexity and optimise generalization performances in O. validus model. Using these
criteria, we found that the ‘2-fold CLOCK* modelling method was well adapted to O. validus dataset
(second highest TSS and COR scores; high proportion of test data being correctly classified, with
the lowest standard deviation score (80.04 £ 3.49%); an important proportion of the total dataset
used a test subset [19-81%)] and the lowest model complexity (ntrees = 375 + 91.9)).

The MESS index was calculated in order to define the part of this extrapolated area, that is, the
part of the geography for which at least one environmental descriptor is outside the environmental
conditions of the sampled presence records. The MESS index was compiled as a raster layer and
projected on the probability distribution map by darkening uncertain areas (Fig. 2.11). Uncertain
areas due to extrapolation represent 64.2% of the entire projected surface, the major part being
also predicted by the model as unsuitable (Table 2.3). Aimost 9.5% of the area was however
predicted as suitable by the model although considered as an extrapolated area.
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Figure 2.11. SDM performed with the spatial cross-validation ‘2-fold CLOCK’ method. Average of 100 model
replicates. Distribution probabilities are darkened according to the Multivariate Environmental Similarity
Surface (MESS) layer, with dark pixels corresponding to regions where the model extrapolates outside of the
environmental conditions in which the species was sampled. Dark pixels represent 64.2% of the entire
projected area. Probabilities of presence are contained between 0 and 1 but the colorbar was scaled until 0.6
to enhance visual contrast.

Table 2.3. Proportion of interpolated and extrapolated pixels according to the averaged SDM predictions.
Interpolation (or uncertain extrapolation respectively) refers to areas where environmental conditions within
the pixel are inside (or outside, respectively) of the species ecological range, as defined by the Multivariate
Environmental Similarity Surface (MESS). Suitable pixels were defined using the MaxSSS threshold that
splits model predictions into suitable (> maxSSS mean score) or unsuitable areas (< maxSSS mean score).

MESS classification Model prediction

Suitable pixels  Unsuitable pixels
Interpolation 10.24% 25.57%

Uncertain extrapolation  9.42% 54.77%

4. DISCUSSION
4.1. Evaluating SDM performance

Using independent datasets to test SDM performance is a prerequisite for relevant validation
analyses ( ). At broad spatial scale and in data-poor areas, the number of
available data is limited and data distribution often patchy, which really challenges the success of
validation procedures. Estimating the performance of SDM predictions and the level of
extrapolation in such areas is a necessity.

The cross-validation procedure has been proposed as a reliable approach to evaluate modelling
performances ( ).
Cross-validation procedures must however be adapted to spatially aggregated data because
training and test subsets may be sampled in close areas, violating the independence assumption
( ). Such a potential bias is rarely taken into account. In the
present work, we compared SDM performance using five different cross-validation procedures for
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modelling, at broad spatial scale, the distribution of a species for which available data are limited in
number and are spatially aggregated. Results show strong differences between procedures, which
highlights the importance of testing and selecting the most appropriate method when evaluating
model performance.

4.2. Correction for SAC and spatial bias

Strong significant Moran’s | scores were measured on model residuals, revealing the presence of
spatial autocorrelation in the total Southern Ocean benthic dataset (Fig. S2.2). The difference
between null models #1 and #2 evidences the influence of sampling aggregation on spatial
autocorrelation values (Table 2.1) as discussed by . O. validus
presence-only dataset follows the same pattern, with records aggregated in coastal areas where
sampling effort has been mostly concentrated (Table 2.1, Fig. 2.10). A target-group background
sampling was applied and proved to be efficient to reduce spatial autocorrelation (as assessed
using Moran’s | statistic), although it still remains at a significant level. Spatial autocorrelation
scores are strongly dependent on the resolution of environmental raster layers. The coarse
resolution of environmental data used in the present study may be responsible for the over-
estimation of spatial autocorrelation scores. This could account for spatial autocorrelation
remaining significant even after the Kernel Density Estimation correction.

4.3. Selection of cross-validation procedures

The random cross-validation procedure has been widely used in ecological modelling to evaluate
model predictions (

) but the method has been rarely compared to alternative procedures. The
present study shows that contrasting model assessments are obtained when using different cross-
validation procedures ( ). Applying a random
cross-validation to an aggregated dataset at a broad spatial scale can result in training and test
subsets being sampled in the same area, and leads to an inflation of modelling performances

)- In the
context of this study, SDMs produced with a broad-scale and spatially aggregated occurrence
dataset and a random cross-validation procedure are more complex and likely over-fit the training
dataset. This also may account for the high evaluation scores obtained (AUC, TSS, COR) and may
also explain the apparent high generalization performance of BRTs fitted with random cross-
validation. The lack of model generality can a posteriori lead to strong caveats and unreliable
models with poor transferability performance when projected on a new environmental space
( ). Methods that select the most parsimonious BRT,
combine low model complexity and high modelling performance should therefore be preferred. The
spatial cross-validation procedures tested in this study were shown to produce less complex
models than the random cross-validation procedure. Increased model generality (i.e. decrease in
model overfitting) and forced spatial segregation between training and test subsets result in
decreasing SDM validation scores. These results show that applying a random cross-validation
procedure for a patchy dataset can lead to over-estimation of SDM predictive performance if
training and test subsets are not independent. This is in line with several works (

) in which a decrease of AUC scores can
be reported when using a spatial cross-validation procedure instead of a random procedure.
Machine-learning algorithms have been reported to be the best approaches to generate SDMs but
the influence of over-fitting on model evaluation are under-estimated (

) although its effect has been pointed out in several
works ( )- Our results show that
the evaluation of SDM performance can be strongly influenced by the choice of the evaluation
procedure. In this work, several spatial cross-validation procedures were compared with each
other but no single and best procedure emerged, a common case in ecological modelling (

)- The appropriate method to be used is highly dependent on the species and dataset
under study. For instance, the ‘BLOCK’ method introduced by should not
be used at broad spatial scale, where too important latitudinal contrasts in environmental
conditions are present. In this study, such contrasting environmental conditions (due to the
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presence of an environmental latitudinal gradient between sub-Antarctic and Antarctic regions, with
occurrence aggregation in the two regions) lead to higher variability in generalisation performance
during model projection, depending on the data subsets selected to train and test the model
( ). The ‘BLOCK’ method favors the independence between training and test
subsets but models are slightly more complex because they are calibrated on contrasting
environmental conditions (sub-Antarctic vs. Antarctic areas) and over-fit the training dataset that
could also present a patchy distribution. The ‘BLOCK’ method is therefore more adapted to case
studies without strong patchy and contrasting environmental conditions. The ‘CLOCK’ procedures
developed in this study helped reduce the effect of latitudinal patchy occurrences distribution by
mixing presence records sampled in Antarctic and sub-Antarctic regions to define training and test
subsets. The ‘CLOCK’ methods generate less complex models and were proved more efficient to
define spatially independent training and test subsets. However, the number of training and test
records sampled between model replicates is not constant, which contributes to an important
variability in validation performance scores. The selection of the different ‘CLOCK’ methods also
depends on the importance of data aggregation and patchy patterns within environmental
conditions. For strong data aggregation, the “2-fold CLOCK’ approach will help reduce the
influence of patchy patterns during model calibration and will help generalise the model and
decrease its complexity. ‘3 or 4-fold CLOCK’ methods present close modelling performances but
the proportion of occurrence records used to test the model can be very low. Alternative SDM
evaluation procedures can be found in the literature: for instance, calibrated cross-validation
procedures aim at removing occurrences from the test subset when considered too close to the
training subset (and considered as non-informative according to a statistical threshold) (

). For limited presence-only datasets, removing a part of the available occurrence data may
lead to the removal of a proportion of informative records, which does not constitute a reasonable
option ( ). The leave-one-out method can also provide a
relevant estimate of model goodness-of-fit, even for spatially aggregated datasets (

). The method aims at randomly excluding a single record from the
total dataset. The model is trained on the remaining data and predicts the model response on the
single removed point to test for model prediction. The procedure is replicated several times,
providing a powerful evaluation of model accuracy. However, assessment of generalisation
performances is not permitted with this approach ( ). In addition to cross-
validation procedures, the relevance of model validation performance is also strongly dependent
on the quality of environmental descriptors available. The number of no-data pixels as well as grid-
cell resolution can critically affect model evaluation. This is especially true in the present study
because environmental variables, measured or interpolated, rarely extend to coastal areas, and
resolution in the Southern Ocean can rarely be better than 10 km?. Good quality datasets are
needed and such limitations must be taken into account when interpreting model outputs.

4.4. Uncertainty assessment in SDMs predictions

SDM uncertainty assessment has been a widely discussed topic (

)- Uncertainty in model predictions has been
often assessed as the variation among the predicted distribution probabilities ( )
but this approach does not provide precise information on the origin of uncertainty (

). The MESS metric is a relevant indicator of SDM extrapolation performance (
)- The Mobility Oriented Parity (MOP) introduced by
was recently proposed as an alternative to the MESS index. MESS considers extrapolation on a
pixel as uncertain when at least one environmental value falls outside the environmental range of
presence records. In contrast, MOP offers more flexibility by defining an extrapolated area when all
environmental values fall outside the sampled environmental range. Therefore, MESS is more
conservative than MOP to define species ecological envelope. Here, MESS was used to assess
the proportion of the projected area for which models extrapolate. Our results show that more than
half of the area corresponds to environmental conditions for which presence records have not
been sampled. 9.42% of this extrapolated area is even predicted as a suitable environment. This
highlights the weakness of SDMs for spatial generalisation and the risk of providing inaccurate
SDMs for conservation purposes, especially if the communication between modellers and
environmental managers is neglected ( )- Our results show the importance of
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providing uncertainty maps along with SDM outputs in order to help interpret models with the
necessary caution.

5. CONCLUSION

This work highlights the importance of assessing the relevance of SDM evaluation procedures.
When applied to occurrence datasets, spatially autocorrelated and broad-scale presence-only
datasets, the random cross-validation procedure may over-estimate model validation scores due to
the violation of independence between training and test subsets. Applying a spatial cross-
validation procedure that spatially segregates training and test data was shown to be effective to
provide a reliable analysis of model performance. Spatial cross-validation methods also help
reduce model complexity and therefore improve generalisation performances. The ‘CLOCK’
methods developed in this paper were proved to be appropriate to our Southern Ocean case study
and could be applied to other non-polar case studies. This study proves the importance of testing
and comparing several spatial cross-validation procedures to identify the procedure most adapted
to each case study. The MESS index was used to visualise areas where SDMs extrapolate outside
the range of the environmental conditions where presence records were sampled. Such results
show the importance of providing information on model uncertainty to correctly interpret SDM
outputs.
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APPENDIX 2.1. Model calibration

Models were calibrated using all presence-only records available and a random selection of background
points sampled within the species environmental range (< 1,500m depth). Different numbers of background
data were sampled and compared to the total environmental range using convex hulls (Fig. S2.1.A). The
best background data number to be used to calibrate SDM was the one describing well environmental
conditions (e.g. mean seafloor salinity, depth, mean seafloor temperature, seafloor temperature amplitude,
Fig. S2.1.A) while being as close as possible to the number of species presence records (

). 1,000 background data were finally sampled to perform the model.
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Figure S2.1.A. Values of the environment available (black dots) and of the background sample environment randomly
sampled on the environment limited at 1,500m depth (coloured dots). 300, 600, 1000 and 1500 background data were
sampled. Convex hulls were calculated with the chull function of the grDevices R package. They delimit the environment
described by the background data sample.

BRT models were generated using the cross validation procedure of and the gbm R
package ( ) with codes provided in the publication’s supplementary material. We forced
a maximum number of 10,000 trees and models were calibrated with the combination of parameters that
minimizes the predictive deviance while producing the lowest number of trees (Fig. S2.1.B). The parameters
values finally selected to generate the models are: tree complexity= 4, learning rate= 0.007, and bag
fraction=0.75.
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Figure S$2.1.B. Comparison of the predictive deviance of models generated with different combination of parameters. Tc:
tree complexity, Ir: learning rate; bf: bag fraction (see for details).
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APPENDIX 2.2. Benthic occurrence records in the Southern Ocean

Benthos occurrence records available for the Southern Ocean (Fig. S2.2) were obtained by completing the
dataset of benthos sampling sites published in the Biogeographic Atlas of the Southern Ocean (Chapter 2,
) with recent datasets published after 2014 (Table S2.2).

90°E

Figure S2.2. Map of the benthic Southern Ocean sampling sites updated, from the Atlas of the Southern Ocean

(<45°S)(

).

Table S2.2. List of IPT (Integrated Publishing Toolkit) data (collected and published after 2014) added to the map of the
Southern Ocean benthic sites.

Taxon Author Public release URL

Tanaidacea Italian National Antarctic Museum, 2014-08-08 http://ipt.biodiversity.ag/resource?r=mna_database
Italy tanaidacea

Intertidal taxa Bristish Antarctic Survey, United 2015-11-18 http://ipt.biodiversity.ag/resource?r=bas_intertidal
Kingdom

Macroalgae Alfred Wegener Institute, Germany 2016-10-17 http://ipt.biodiversity.ag/resource?r=baso _macroalg

ae
Asteroidea Université Libre de Bruxelles, Belgium 2017-06-30 http://ipt.biodiversity.ag/resource?r=asteroidea_sout
hern_ocean

Ophiuridae Italian National Antarctic Museum, 2017-08-30 http://ipt.biodiversity.ag/resource?r=mna_antarctic
Italy ophiuroidea

Echinoidea Université de Bourgogne Franche 2017-09-22 http://ipt.biodiversity.ag/resource?r=echinoids_occu

Comté, France

rrences_southern_ocean
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APPENDIX 2.3. Datacatalog

Table S2.3. List of environmental descriptors selected for the species distribution models available for [2005-2012]. Spatial extent of the data: 78°S; 45°S/-180; 180°W. Spatial

resolution: 0.1°

Environmental descriptor

Unit

Description

Source

Depth

Meters

Bathymetric grid around the Kerguelen Plateau

This study. Derived from [6]

Sea surface temperature amplitude*

°Celsius degrees

Difference between austral summer (mean January-March) and winter
(mean July-September) sea surface temperature

This study. Derived from World Ocean Circulation Experiment 2013 [1] sea
surface temperature layers

Seafloor mean temperature*

°Celsius degrees

Mean seafloor temperature

This study. Derived from World Ocean Circulation Experiment 2013 [1] sea
surface temperature layers

Seafloor temperature amplitude*

°Celsius degrees

Difference between austral summer (mean January-March) and winter
(mean July-September) seafloor temperature

This study. Derived from World Ocean Circulation Experiment 2013 [1] sea
surface temperature layers

This study. Derived from World Ocean Circulation Experiment 2013 [1] sea

Sea surface mean salinity* PSS Mean sea surface salinity -
surface salinity layers
. . . Difference between austral summer (mean January-March) and winter | This study. Derived from World Ocean Circulation Experiment 2013 [1] sea
Sea surface salinity amplitude PSS L -
(mean July-September) sea surface salinity surface salinity layers
Seafloor mean salinity* PSS Mean seafloor salinity This study.. .Derlved from World Ocean Circulation Experiment 2013 [1]
seafloor salinity layers
. . . Difference between austral summer (mean January-March) and winter | This study. Derived from World Ocean Circulation Experiment 2013 [1] sea
Seafloor salinity amplitude PSS - -
(mean July-September) seafloor salinity surface salinity layers
Mean surface chlorophyll a mg/m* Surface chlorophyll a concentration. Summer mean over 2002-2009 MODIS AQUA (NASA) 2010 [2]
Sediments Categorical Sediment features [7], updated by Griffiths 2014 (unpublished)
Geomorphology Categorical Geomorphologic features ATLAS ETOPO2 2014 [8]
Slope Unitless Bathymetric slope [6]
Mean seafloor oxygen concentration mL/L Mean seafloor oxygen concentration over 1955-2012 This study. Derived from .World Ocean Circulation Experiment 2013 [1] sea
surface oxygen concentration layers
Proportion of time during which ocean is covered by sea ice of . . . .
Ice cover - concentration 85% of higher. Projection 2003-2010 This study. Derived from Australian Antarctic Data Centre [3]
POC export gC/m’/day Particulate organic carbon 2002-2015 averages This study. Published on Australian Antarctic Data Center [4]
References

[11 WOCE 2013, link: https://www.nodc.noaa.gov/OC5/woa13/woa13data.html accessed 2016

[2] MODIS Aqua, link: https://oceancolor.gsfc.nasa.gov/cgi accessed 2016

[3]1 AADC, link: http://webdav.data.aad.gov.au/data/environmental/derived/antarctic/ accessed 2017
[4]1 AADC POC export data, link: https://data.aad.gov.au/metadata/records/Particulate_carbon_export_flux_layers, created 2017
[5] NOAA, link: https://www.esrl.noaa.gov/psd/ipcc/ocn/ accessed 2017
[6] Smith WH and Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science. 277: 1956—1962.

[7]1 McCoy, F.W. 1991. Southern Ocean sediments: circum-Antarctic to 30°S. Marine Geological and Geophysical Atlas of the circum-Antarctic to 30°S. (ed. by D.E. Hayes) — Antarctic

Research Series.

[8] Douglass LL, Turner J, Grantham HS, Kaiser S, Constable A and others (2014) A hierarchical classification of benthic biodiversity and assessment of protected areas in the
Southern Ocean. PloS one. 9: e100551.
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the distribution of Antarctic benthic species

Guillaumot Charléne' 2, Danis Bruno', Saucéde Thomas?

" Université Libre de Bruxelles, Marine Biology Lab. Avenue F.D. Roosevelt, 50. CP 160/15 1050 Bruxelles, Belgium
2 UMR 6282 Biogéosciences, Univ. Bourgogne Franche-Comté, CNRS, 6 bd Gabriel F-21000 Dijon, France

Polar Biology, 43 (2020). Accepted June 251 2020

Abstract

Species Distribution Models (SDMs) are increasingly used in ecological and biogeographic studies
by Antarctic biologists, including for conservation and management purposes. During the modelling
process, model calibration is a critical step to ensure model reliability and robustness, especially in
the case of SDMs, for which the number of selected environmental descriptors and their
collinearity is a recurring issue. Boosted Regression Trees (BRT) was previously considered as
one of the best modelling approach to correct for this type of bias. In the present study, we test the
performance of BRT in modelling the distribution of Southern Ocean species using different
numbers of environmental descriptors, either collinear or not. Models are generated for six sea star
species with contrasting ecological niches and wide distribution ranges over the entire Southern
Ocean. For the six studied species, overall modelling performance is not affected by the number of
environmental descriptors used to generate models, BRT using the most informative descriptors
and minimizing model overfitting. However, removing collinear descriptors also helps reduce model
overfitting. Our results confirm that BRTs may perform well and are relevant to deal with complex
and redundant environmental information for Antarctic biodiversity distribution studies. Selecting a
limited number of non-collinear descriptors before modelling may generate simpler models and
facilitate their interpretation. The modelled distributions do not differ noticeably between the
different species despite contrasting species ecological niches. This unexpected result stresses
important limitations in using SDMs for broad scale spatial studies, based on limited, spatially
aggregated data, and low-resolution descriptors.

Keywords: Species Distribution Models (SDMs), Boosted regression trees (BRT), Southern
Ocean, Collinearity, Asteroidea, Conservation, Environmental descriptors
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1. INTRODUCTION

The Southern Ocean is one of the regions on Earth that is undergoing climate change at the
fastest pace ( ). Predicting the response
of Antarctic species and communities to environmental changes is challenging but it has become a
pressing need to address conservation issues and support guidance for the management of living
resources in a dynamic context (

). The Commission for the Conservation of Antarctic
Marine Living Resources (CCAMLR) actively works for the sustainable management of Antarctic
marine ecosystems and marine life (see https://www.ccamir.org/en/organisation, access August
2019). Recent proposals from CCAMLR and existing marine protected areas (MPAs), such as
those newly designated around the South Orkney Islands or in the Ross Sea (

), partly rely on species distribution modelling (SDM) (

)

SDM is a correlative approach that depicts the relationship between the distribution of species
occurrence records and a set of environmental descriptors, to interpolate and predict the potential
distribution of species over their entire distribution range ( ).
Over the last decades, SDMs have been increasingly used to address conservation issues (

),

predict species suitable areas (
), including potential distribution shifts (
), and guide sustainable management

plans for commercial purposes ( ). They have particularly
proved useful to improve our understanding of species distribution in poorly sampled and seldom
accessed areas ( ) and for the conservation of Southern

Ocean marine life (

)-

Calibration is a critical step in SDM procedures, influencing their relevance, robustness and
accuracy ( )- The selection of
environmental descriptors is also important, as it shapes model accuracy and performance (

). The inappropriate selection of
descriptors has been shown to cause overfitting in SDMs, especially when the number of
descriptors is high compared to the number of occurrences available (

), leading to over-complex models, reduced transferability performances and
underestimation of predicted suitable areas ( )-

Collinearity between descriptors is another major concern when addressing the quality of SDMs
( ). Collinearity occurs when at least two descriptors are linearly related in a
statistical model ( ). In regression models, multicollinearity increases variance
values between independent descriptors. It can cause incorrect estimations of beta regression
coefficients and bias interpretation, making it difficult to disentangle the respective contributions of
independent variables to explaining the dependent variable ( ). Collinear descriptors
are traditionally removed from datasets to calibrate SDMs (

), while a recent study showed
that collinear descriptors could also improve the model’s fit ( )-

Machine-learning algorithms can effectively model complex relationships between environmental
conditions and occurrence records ( )- They can
harness incomplete datasets and missing data, as well as contrasting and extreme values, and
generate predictive models with high transferability performances and low sensitivity to species
niche width (

). In machine-learning algorithms, the
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Boosted Regression Trees approach (BRT) has been shown to be particularly efficient when
dealing with non-informative environmental descriptors or conversely, with redundant information
provided by correlated factors ( ).

In the present work, we test the robustness of SDMs generated with BRT for various numbers of
environmental descriptors and different collinearity values. Models are generated for six common
and abundant asteroid (sea star) species that have been extensively sampled and studied; here
used as representative case studies for the Antarctic benthos: Acodontaster hodgsoni (Bell, 1908),
Bathybiaster loripes (Sladen, 1889), Glabraster antarctica (Smith, 1876), Labidiaster annulatus
Sladen, 1889, Odontaster validus Koehler, 1906 and Psilaster charcoti (Koehler, 1906)
(
)-

Because the Southern Ocean is scarcely accessed and sampled, spatial analyses of species
distribution are usually based on aggregated and relatively small presence-only datasets, often
compiled from historical records (

), which strongly hampers SDM
performances (

)- The objectives of this study
are to assess the limits and potential of BRT to generate robust models for Southern Ocean
benthic species and to provide some recommendations on the selection of environmental
descriptors.

2. MATERIAL AND METHODS

2.1. Selection of environmental descriptors

A set of 58 environmental descriptors was compiled from different sources (Appendix 2.4). This set
can be downloaded from the blueant R package
(https://github.com/AustralianAntarcticDivision/blueant), following the procedure given in the
“data_for_SDM_vignette” at
https://australianantarcticdivision.github.io/blueant/articles/SO_SDM_data.html.
Most descriptors are average abiotic conditions taken from the WOCE database (Appendix 2.4)
and describe the average abiotic conditions for the [2005-2012] time period (i.e. temperature,
salinity, chlorophyll-a, particulate organic carbon flux). Some descriptors are available for longer
time periods only ([1957-2017] and [1955-2012] for sea ice cover and seafloor oxygen
concentration respectively). More recent or precise datasets are not available at the scale of the
Southern Ocean. Raster layers were compiled with a 0.1 x 0.1° pixel resolution (11km
approximately), each 0.1 x 0.1° pixel being used as a single grid-cell pixel, and cropped to the
extent of the Southern Ocean (herein defined as waters south of 45°S latitude) for a total of 1.26
million pixels. Missing values are not interpolated to avoid potential biases. Available descriptors
are selected according to their ecological relevance to benthic studies and following previous
recommendations provided for species distribution modelling ( ) and
Antarctic studies ( ). The selected descriptors best document the main
characteristics of the species physical habitat (depth, sea water temperature, geomorphology,
sediment nature, slope, roughness), geography (distance to the Antarctic continent, to canyons, to
continental shelves, to the maximal sea ice extent in winter), seasonality (sea ice concentration
and thickness), food resources (chlorophyll-a concentration and Particulate Organic Carbon [POC]
exported on the sea bottom) and chemical environment (oxygen concentration and seafloor
salinity). Minimal, maximal, and range values (min-max difference) of some descriptors are
computed to complement the dataset (

)- Extreme weather conditions and climate events were shown to strongly
impact natural environments, notably species survival and distribution (

). Here, supplementary descriptors are specially developed for the intensity
and frequency of monthly changes in seafloor temperature, salinity, oxygen and chlorophyll-a
concentrations. For each pixel and one year, these layers document how many times monthly
average values are respectively higher (‘maximal extreme event’) or lower (‘minimal extreme
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event) than the vyearly median value (Appendix 2.5, codes available at
https://github.com/charlenequillaumot/THESIS).

2.2. Biological records

Antarctic sea stars play an important role in the structuring of benthic communities (
), they have contrasting ecological niches and life
history traits (e.g. feeding diets, reproduction and development modes) that condition habitat

preferences and dispersal abilities ( , Table 2.4). Here, SDMs are generated for
six sea star species using presence-only records obtained from the “Antarctic and sub-Antarctic
asteroid database” published by : Acodontaster hodgsoni (Bell, 1908),

Bathybiaster loripes (Sladen, 1889), Glabraster antarctica (Smith, 1876), Labidiaster annulatus
Sladen, 1889, Odontaster validus Koehler, 1906 and Pesilaster charcoti (Koehler, 1906). The
studied species are abundant and have been regularly sampled during benthic expeditions to the
Southern Ocean, making them some of the best-documented occurrence records on database
available for Southern Ocean benthic species ( ). The working database
( ) includes presence-only records obtained by trawling and scuba diving during
numerous expeditions to the Southern Ocean ranging from 1872 to 2016 (Appendix 2.6).
Occurrence data collected during the last 50 years are the most abundant with an intense
sampling effort carried out in the framework of the International Polar Year (IPY: 2007-2009) and
the Census of Antarctic Marine Life (CAML: 2005-2010). All occurrence data are selected to
ensure that a sufficient number of records are available to run the models (

) and exhaustively cover the geographical space occupied by the
considered species. Presence-only records are spatially aggregated near coastal areas and

scientific stations (Appendix 2.7 and see )-
Presence record duplicates found in the same grid-cell pixel are removed to reduce spatial
replication as described by and . Because the considered
species have different depth ranges ( ), model projection is performed for each

species independently and bounded by maximal depth value defined by the species deepest
record (see Table 2.4 for details).
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Table 2.4. The six studied species and their respective ecological traits. Presence-only records duplicates
present on a same grid-cell pixel are removed from the count of occurrences. The model maximum depth is
defined for each species independently according to the density distribution of recorded depth values.
Images sources: , BIOMAR ULB database (P. Pernet), proteker.net, B121 expedition (Q.

Jossart).
Acodontaster Bathybiaster Glabraster Labidiaster Odontaster Psilaster
hodgsoni (Bell loripes (Sladen antarctica (Smith annulatus Sladen validus Koehler, charcoti
1908) 1889) 1876) 1889 1906 (Koehler, 1906)
Feeding diet Predator (mainly Detritivorous Deposit feeder, Predator Opportunistic Deposit feeder,
sponges) predator, or feeder predator
scavenger (suspensivorous,
deposit
feeder,predator,
scavenger)
Reproduction and Broadcaster with Broadcaster with Broadcaster with | Broadcaster and Broadcaster with Broadcaster
development modes | non-feeding non-feeding feeding probably feeding feeding planktonic | with non-
planktonic larvae planktonic larvae planktonic larvae | planktonic larvae larvae feeding
planktonic
larvae
Occurrence number | 297 585 844 373 309 350
Model maximum 1,500 m 4,000 m 4,000 m 1,500 m 1,500 m 4,000 m
depth

2.3. Model calibration

Boosted regression tree (BRT) is chosen as a robust method to test the influence of descriptor
selection on model performance. This machine-learning algorithm has been shown to be well
suited to accommodate presence-only data and incomplete datasets, to fit complex relationships
between species records and environmental descriptors, to limit model overfitting and to have high
transferability performances (

), transferability being defined as the ability of models to predict in new environmental conditions

BRT models are calibrated following the procedure detailed in
and using the gbm R package ( )- BRT parameters are set to
minimize both the optimal number of trees used to build the model and the minimal predictive
deviance (learning rate, bag fraction and tree complexity are provided for each species in
Appendix 2.8). A set of 1,000 background records are randomly sampled in the environmental
space (maximal depth limit depending on the studied species, Table 2.4). This number is tested
sufficient enough to represent the whole spectrum of environmental conditions existing in the
geographic area of interest ( supplementary material) while
being as close as possible to the number of records used to generate the model (
). One hundred background data samples are generated as model replicates. Spatial
aggregation of occurrence records is a recurrent bias in Antarctic benthic species databases
). To
reduce the effect of spatial aggregation on model outputs, background records are sampled
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following a target-group approach ( ). In this approach, background data are
randomly sampled in the area of interest, following a weighting scheme defined by a Kernel
Density Estimation (KDE) of sampling effort in the Southern Ocean (

, supplementary material in
When using spatially aggregated records, standard cross-validation procedures used to evaluate
modelling performances can be strongly biased (

)- The random selection of training and test data leads to the violation of
independence between training and test subsets, which can induce an over-estimation of correctly
predicted test data by the model ( ). Using cross-validation procedures that spatially
segregate training and test data (defined based on presence and background subsets) is a good
alternative to accurately evaluate the performance of SDMs based on aggregated datasets. In the
present study, a “6-fold CLOCK” cross-validation approach adapted from

was applied. This procedure randomly defines six sectors around Antarctica according
to longitude, three for training data and three for test data.

2.4. Collinearity and the selected number of environmental descriptors

Collinearity between the 58 selected descriptors is analysed following a stepwise approach that
eliminates layers with a Variance Inflation Factor (VIF) > 10, using the ‘vif.step’ function of the

usdm R package ( ). VIF > 10 is defined as the threshold above which the effect of
multicollinearity on model predictions is considered significant ( ) and too strong to
be automatically corrected by machine-learning algorithms ( ).

Multicollinearity is measured on projection areas, that is the portion of the environment for which
SDMs do not extrapolate. Extrapolation areas are defined for each species independently using
the Multivariate Environmental Similarity Surface index (MESS, ). They correspond
to all grid-cell pixels where descriptor values are not contained within the range of environmental
conditions on which presence-only data are recorded. Models generated with the 58 environmental
descriptors are compared to models for which collinear descriptors are removed.

A stepwise procedure is used to test the effect of the selected number of environmental descriptors
on model performance. SDMs are first generated for the six species using the total set of 58
environmental descriptors. Then, the six descriptors that contribute the least to the average model
are iteratively pruned at each step of a series of SDMs successively generated with 58, 52, 46, 40,
34, 28, 22, 16, 10, and four environmental descriptors.

2.5. Model evaluation and comparisons

The percentage of presence data correctly predicted (i.e. correctly classified test data) is computed
to assess the performance of SDMs in terms of transferability. Model performances are also
assessed using the Area Under the Receiver Operating Curve (AUC, ), the
Point Biserial Correlation between predicted and observed values (COR, ) and the
True Skill Statistic (TSS, ). Suitable areas are classified using the Maximum
Sensitivity plus Specificity threshold (MaxSSS), which is the most adapted index for SDMs using
presence-only data ( ). MaxSSS enables to split model projections into suitable
(>MaxSSS value) and unsuitable areas (<MaxSSS value). The average number of regression
trees produced by BRT to generate models (gbm R package, ) is calculated to
evaluate model complexity. Scores of SDM series generated with a decreasing number of
environmental descriptors are compared between each other using the Mann-Kendall non-
parametric trend test to assess the presence of a monotonic trend (

Differences between model performances (AUC, TSS, COR, percentage of correctly classified test
data), model properties (number of trees) and outputs (percentage of predicted suitable area) are
tested using a Wilcoxon-Mann-Whitney pairwise test.

2.6. Final SDM outputs

Six final SDMs are proposed for the six considered species for the [2005-2012] time period after
selection of the optimal number of descriptors and after removing collinear descriptors. The
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contribution of descriptors and their marginal effects (partial dependence plots) are provided and
compared between each other. Environmental conditions predicted as suitable for species
distribution are plotted through a principal component analysis (PCA) to display the predicted
species occupied environmental space. PCA is compared between species having the same
projection depth threshold, either 1,500 m or 4,000 m depth (Table 2.4).

3. RESULTS

3.1. Contribution of environmental descriptors

All models generated for the six species and with the total set of 58 descriptors perform well with
an average AUC score value of 0.853 (min. 0.827; max. 0.883) and an average of 67.2% of
correctly predicted test data (59.5-75.1%). ‘Extreme events’ descriptors specifically computed for
this study (Appendix 2.5) never contribute more than 1% to SDMs, some extreme chlorophyll-a
layers excepted (Table 2.5). Overall, parameters that contribute the most to all SDMs are depth,
currents, ice thickness and seafloor properties (Table 2.5, Fig. 2.12). Few contrasts are obtained in
contributions between species models except for the contribution of seafloor current speed and
POC concentrations that respectively vary from 1.95 to 10.84% and 0.49 to 7.05% between SDMs
(Fig. 2.12).
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Table 2.5. Average contribution of each environmental descriptor (based on 100 model replicates) generated
for the six studied species using the total set of 58 descriptors. In dark blue, descriptors always contribute
more than 1% to all models. In light blue, descriptors contributing more than 1% to some species models
only (A: Acodontaster hodgsoni, B: Bathybiaster loripes, G: Glabraster antarctica, L. Labidiaster annulatus,
O: Odontaster validus, P: Psilaster charcoti). In red, descriptors never contributing more than 1% to all

species models. The description of the different environmental descriptors is provided in Appendix 2.4.

Descriptor Contribution | Descriptor Contribution | Descriptor Contribution
depth [ ] ice_thickness_range ] seafloor_sali_2005_2012_min [ ]
geomorphology ‘ AB,G,L chla_ampli_alltime_2005_2012 ] seafloor_sali_2005_2012_sd [ ]
sediments ‘ AB,G,0,P chla_max_alltime_2005_2012 A seafloor_temp_2005_2012_ampli ]
slope ’ [ ] chla_mean_alltime_2005_2012 ABLP seafloor_temp_2005_2012_max [ ]
roughness ’ [ ] chla_min_alltime_2005_2012 AB,GLP seafloor_temp_2005_2012_mean ]
mixed_layer_depth ‘ [ ] chla_sd_alltime_2005_2012 ABLP seafloor_temp_2005_2012_min B,G,LP
seasurface_current_speed ’ [ ] POC_2005_2012_ampli AB,G,0P seafloor_temp_2005_2012_sd [ ]
seafloor_current_speed ‘ [ ] POC_2005_2012_max AB,G,0P extreme_event_max_chl_2005_2012_ampli [ ]
distance_antarctica ‘ ] POC_2005_2012_mean AB,G,0,P | extreme_event_max_chl_2005_2012_max [ ]
distance_canyon ’ [ ] POC_2005_2012_min ] extreme_event_max_chl_2005_2012_mean ]
distance_max_ice_edge ‘ [ ] POC_2005_2012_sd AB,G,0,p | extreme_event_m ax_chl_2005_2012_min [ ]
distance_shelf ’ AB.GOP seafloor_oxy_19552012_ampli [ ] extreme_event_min_chl_2005_2012_ampli [ ]
ice_cover_max ’ [ ] seafloor_oxy 19552012_max ] extreme_event_min_chl_2005_2012_max [ ]
ice_cover_mean ‘ ] seafloor_oxy 19552012_mean [ ] extreme_event_min_chl_2005_2012_mean B,G,0,P
ice_cover_min ’ [ ] seafloor_oxy 19552012_min ] extreme_event_min_chl_2005_2012_min =)
ice_cover_range ‘ [ ] seafloor_oxy 19552012_sd ] extreme_event_min_oxy_1955_2012_nb [ ]
ice_thickness_max ‘ ] seafloor_sali_2005_2012_ampli [ ] extreme_event_max_sali_2005_2012_nb [ ]
ice_thickness_mean ’ B,G,L,OP seafloor_sali_2005_2012_max ] extreme_event_min_sali_2005_2012_nb [ ]
ice_thickness_min ‘ [ ] seafloor_sali_2005_2012_mean [ ] extreme_event_max_temp_2005_2012_nb [ ]
extreme_event_min_temp_2005_2012_nb [ ]
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Figure 2.12. Contribution of environmental descriptors to SDMs projected until (a) 1,500 m and (b) 4,000 m
depth for the six species. Environmental descriptors contributing less than 1% to all models are not shown.
Error bars correspond to standard deviation values of the contribution percentages (100 replicates of
background sampling and spatial cross-validation splitting).

3.2. Number of environmental descriptors

Overall, models generated with different numbers of environmental descriptors do not show
significant changes in model performance (Mann-Kendall trend tests, Table 2.6). Models
generated with four environmental descriptors only show a significant decrease in AUC, COR, and
TSS values, and in the percentage of correctly classified test data for all species but G. antarctica
(Fig. 2.13, Appendix 2.9). Significant differences in model performance are model-specific,
whatever the number of descriptors used (Fig. 2.13, Appendix 2.9). Differences in the number of
trees used to generate models and in the size of suitable areas are never tested significant (Table
2.6).
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Figure 2.13 Influence of the number of environmental descriptors on SDM performance. Boxplot of 100
model replicate scores. Changes in biserial correlation (COR) values for (a) Acodontaster hodgsoni, (b)
Bathybiaster loripes, (c) Labidiaster annulatus, (d) Glabraster antarctica, (e) Odontaster validus and (f)
Psilaster charcoti. Average values are indicated in blue. Red asterisks indicate significant changes in median
values between the series and preceeding value (Wilcoxon rank paired test, p-value < 0.05). The left-side
and right-side columns correspond to species for which models are respectively projected until 1,500 m and
4,000 m depth.
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Table 2.6. Mann-Kendall statistic scores (1). Models are built with 58, 52, 46, 40, 34, 28, 22, 16, 10 and 4
environmental descriptors respectively. 100 replicates are generated in each case. The Mann-Kendall trend
test is realised on the median value of the 100 replicates. All tests are not significant. The direction of the
monotonic trend is given by the sign of the 1 values. AUC: Area Under the Curve, COR: biserial Pearson
correlation, TSS: True Skill Statistic. The percentage of correctly classified test data is defined by the

proportion of presence test data correctly predicted by the model.

Acodontaster | Bathybiaster | Glabraster | Labidiaster | Odontaster | Psilaster

hodgsoni loripes antarctica annulatus validus charcoti
AUC -0.111 0.022 -0.644 -0.067 -0.378 -0.289
COR -0.111 0.156 -0.556 -0.244 -0.289 -0.289
TSS -0.244 -0.067 -0.600 -0.067 -0.289 -0.422
Number of trees 0.205 0.675 0.303 -0.322 0.023 -0.210
% correctly classified test data -0.067 0.511 0.156 0.511 -0.156 0.511
Average number of suitable pixels | 0.167 0.111 0.200 0.333 0.333 0.289

3.3. Collinearity

Most SDMs generated with and without collinear descriptors show similar performance statistics
(AUC, TSS, COR, and percentage of correctly classified test data) and a comparable number of
trees is used to build models (Table 2.7). However, for A. hodgsoni and G. antarctica, lower AUC,
TSS and COR values are obtained for models generated without collinear descriptors. The
percentage of correctly classified test data remains unchanged except in models generated without
collinear descriptors for A. hodgsoni (-9.9%) and O. validus (-19.5%) in which it significantly
decreases. For all species but G. antarctica, the proportion of predicted suitable area increases in
models generated without collinear descriptors (Table 2.7).

Table 2.7. Mann-Whitney Wilcoxon pairwise test (W) comparing statistics of models generated without
collinear descriptors and models run with the total set of 58 environmental descriptors. Associated p-values
are summarized by asterisks (no star p >0.05, * p < 0.05, ** p < 0.01 and *** p < 0.001). AUC: Area Under
the Curve, COR: biserial Pearson correlation, TSS: True Skill Statistic. The percentage of correctly classified
test data is defined by the proportion of presence test data correctly predicted by the model.

1,500m 4,000m
Acodontaster  Labidiaster | Odontaster | Bathybiaster | Glabraster | Psilaster
hodgsoni annulatus validus loripes antarctica | charcoti
AUC 6041* 4754 5738 5578 5931* 5280
COR 5842* 4783 5867* 5596 5964* 5247
TSS 6138** 4792 5748 5596 5840* 5425
% correctly classified test data | 6234** 5546 6247.5* 5590 5145 4512.5
Number of trees 5359 4352 4811 5031.5 4641.5 4312
% suitable area 3526*** 6272** 8695*** 9759*** 4796 8571

3.4. Compatrison between final SDMs

Distance layers (i.e. distance to Antarctic coasts, to shelves, to the nearest canyons, to the
maximum ice edge in winter, see Appendix 2.4) are used as descriptors in a first phase of the
analysis to test for the effect of collinearity and the number of descriptors on model performance
because they are commonly used in SDMs performed for Southern Ocean species (

). However, although relevant when interpolating species distribution patterns (Table 2.5),
interpreting the contribution of such descriptors is not straightforward when it comes to describe
species ecological niche. Therefore, these descriptors are excluded from analyses in the final set
of SDMs. In addition, descriptors that never contribute more than 1% to SDMs (Table 2.5) as well
as collinear descriptors (depending on species) are removed from the initial set of descriptors.
Depending on the species under study, a set of 14 to 16 descriptors is used to calibrate final
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models: 13 of these descriptors are common to the six studied species and for three species,
additional descriptors on extreme events on chlorophyll-a concentration are used (Appendix 2.10).
The performance of final models is good for all species, with AUC values ranging from 0.810 +
0.09 to 0.872 + 0.07 (mean and standard deviation values), TSS values from 0.461 £ 0.121 to
0.546 £ 0.08, COR values from 0.503 £ 0.136 to 0.656 £ 0.121 and correctly classified test data
from 51.6 £ 23.7% to 80.7 £ 10.1% (Appendix 2.11).

The PCA (Fig. 2.14) shows an important contribution of both the physical environment (slope,
roughness) and food resources (chlorophyll-a concentrations) to SDMs projected down to 1,500 m
depth (strong correlation with PC1) and a weaker and independent contribution of mean sea-ice
cover and seafloor current speed (strong correlation with PC2, Fig. 2.14d). In contrast, food
resources (chlorophyll-a and POC concentrations), sea ice cover and depth are the main
contributors to SDMs projected down to 4,000 m depth (high correlation with PC1) with weaker
contributions of the physical environment (slope and roughness) (correlation with PC2, Fig. 2.14h).
Major differences are obtained between "shallow" and "deep" models (Fig. 2.12, Fig. 2.14)
whatever the other species ecological traits (Table 2.4).

Spatial projections of SDMs also show important contrasts in distribution patterns between
“shallow” (1,500 m) and “deep” (4,000 m) models (Fig. 2.15). Shallow models present low
probability values along the Antarctic coasts and higher probabilities in the sub-Antarctic Islands, in
the Kerguelen or South Georgia archipelagos, except for O.validus. The three SDMs projected
down to 4,000 m depth show common patterns, with high probabilities predicted close to the
Antarctic coasts where most occurrences are recorded (Appendix 2.7). High probabilities are also
predicted on the Kerguelen Plateau for B. loripes and G. antarctica, while low probabilities are
predicted for P. charcoti in the sub-Antarctic Islands (Fig. 2.15).
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Figure 2.14. PCA of environmental values (grey dots) from descriptors used in final species distribution
models, and that are common between the six species (Appendix 2.10: depth, geomorphology, sediments,
slope, roughness, mixed layer depth, seasurface and seafloor current speed, ice cover mean, chlorophyll-a
min, max and mean concentrations for 2005-2012, POC minimum concentrations for 2005-2012), limited to
1,500 m (a-c) and 4,000 m depth (e-g) respectively. Colour dots: species suitable area (probabilities >
average maxSSS scores) for (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Labidiaster annulatus,
(e) Glabraster antarctica, (f) Odontaster validus, (g) Psilaster charcoti. PCA plot of environmental descriptors
(d,h) and appended tables with the associated correlations to PC1 and PC2. All correlation values are
significant (p< 0.05).
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Figure 2.15. SDMs generated based on the final selection of environmental descriptors for the six studied
species (Appendix 2.10). Projection areas are limited to 1,500 m depth (left-hand column) or 4,000 m depth
(right-hand column) for (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Labidiaster annulatus, (d)
Glabraster antarctica, (e) Odontaster validus, (f) Psilaster charcoti. Blue colours correspond to depth
gradient. The colour chart indicates species presence probability comprised between 0 and 1. Polar
stereographic projection.

Article. Guillaumot et al. (2020b). Selecting environmental descriptors is critical to modelling the distribution of Antarctic
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4. DISCUSSION

4.1. Influence of the number of descriptors on modelling performance

SDMs performed at the scale of the Southern Ocean are usually based on a limited mass of
occurrence data, patchy datasets and using low-resolution environmental descriptors. Recent
studies have questioned the relevance of using such SDMs considering the spatial and temporal
heterogeneities of datasets and the importance of sampling biases (

)- In the present work, we focus on the selection of environmental descriptors

as a critical step for model calibration ( ). Machine-
learning algorithms such as BRT were proved efficient to deal with non-informative descriptors
( ) and to correct for the influence of collinearity between
descriptors ( ). The performance of BRT to model the distribution of Antarctic
benthic species at large spatial scale is herein evaluated.
Successive models were generated from four to 58 environmental descriptors. All models have
similar accuracy (AUC, TSS, COR) and transferability (percentage of correctly classified test data)
performances. Models generated with four environmental descriptors only (depending on each
species) show significant differences in performance values and low capacities to describe and
predict species distribution. SDMs generated for the species G. antarctica depart from this general
result with no significant differences in modelling performances between models generated with
four to 58 descriptors. This may be due to the large number of occurrence data available to
describe the species distribution and conversely, the limited number of environmental descriptors
contributing to the models (Appendix 2.7, Table 2.4).

Many studies have stressed the risk of model overfitting when using too many descriptors

(

) or the risk of underestimating the extent of suitable areas due to

reduced transferability performances ( ). In contrast, our results show that
models generated with a different number of predictors are characterised by similar performance
levels. This is congruent with results obtained by who highlighted that the

random addition of descriptors has a minor influence on modelling performances when using
machine-learning algorithms. The absence of significant changes in the number of trees used to
build BRT models, using a different number of environmental descriptors show that BRT is not
sensitive to model overfitting, and only selects the relevant information needed for model
calibration, a property formulated as the stagewise selection by . Non-informative
environmental data that might complexify SDMs are automatically pruned when generating BRT
trees, and the most relevant descriptors only are retained to model species distribution (

). However, selecting a reduced number
of environmental descriptors allows the production of simpler models for which descriptor
contributions can be easily interpreted ( )-

4.2. Influence of collinearity on modelling performance

Removing collinear descriptors from datasets has remained an usual approach in species
distribution modelling (

). However, this strategy has recently been questioned when SDMs are not used for
extrapolation ( ). In
the present study, results show that modelling performances (AUC, TSS, COR and percentage of
correctly classified test data) of some SDMs significantly decrease when collinear descriptors are
removed (i.e. A. hodgsoni, O. validus and G. antarctica). Removing collinear variables that
significantly contribute to SDMs may induce model instability and reduce modelling performance.
The observed decrease in AUC scores may be due to the reduction of model overfitting when
removing collinear descriptors (

Machine-learning algorithms are efficient modelllng tools that take into account the multiple
interactions among descriptors (
) and can correct for collinearity between
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environmental descriptors if not too strong ( )- In the present work, this is
shown by the fact that performance of SDMs produced for the species B. loripes, L. annulatus and
P. charcoti remains unaffected when collinear descriptors are removed from the analysis.

However, using collinear descriptors in SDMs can make model outputs difficult to interpret when

temporal and spatial relationships between descriptors are unknown ( ),
because collinearity induces complex relationships between environmental drivers and the
underlying processes ( ).

Several methods have been documented to correct for strong collinear effects. The sequential
regression approach is one of them and aims at replacing correlated variables by a linear or non-

linear model ( ). A second method consists in using
descriptor score values on PCA principal components rather than descriptor raw values
themselves ( ). However, in this latter approach, SDMs and

species ecological preferences are difficult to interpret.

4.3. Selection of environmental descriptors

‘Distance layers’ (Appendix 2.4) have been commonly used as descriptors in previous SDMs
performed for Southern Ocean studies (

). In the present work, 'distance layers’ were used in the first set of
SDMs and they all showed strong contributions to model outputs. 'Distance layers' may be strongly
correlated to environmental gradients, and especially to latitudinal gradients, or may integrate the
multiple effects of diverse environmental variations ( ).
Interpreting the contribution of such descriptors to SDMs can remain problematic and depends on
research objectives, especially depending on whether ecological significance or statistical
contributions only are sought. The statistical contribution of a descriptor to the model is the
independent contribution of the descriptor deduced from what other descriptors already bring
( ), it may not necessarily imply a direct ecological significance.
Consequently, ‘distance layers’ were removed from the initial set of environmental descriptors
along with collinear descriptors and descriptors that contributed the least to models (28 descriptors
out of the 58 available, Table 2.5). This reduces the set to 14 or 16 descriptors only depending on
the species under study (Appendix 2.10).

4.4. Final model outputs

In the present study, SDMs performed for A. hodgsoni, L. annulatus and O. validus showed lower
performances (lower AUC, TSS, COR and correctly classified test data) compared to SDMs
performed for B. loripes, G. antarctica and P. charcoti. For these last three species, a higher
number of records were available and contributed to the high model performances as species
niches were better described during model calibration (

). Despite these differences in model performance, descriptor
contributions and species predicted distributions are mostly similar between models (Fig. 2.12,
2.14-15). This is an unexpected result as the six studied species were initially selected for their
contrasting ecological niches and life traits, which should have determined distinct occupied
environments and biogeographic patterns. This unexpected result stresses the limits of SDMs
performed at broad spatial scale. The low resolution (in space and time) of environmental
descriptors, the heterogeneous sampling and the relative low number of occurrence records
available are cumulative limitations to model accuracy and species ecological requirements were
not precisely captured by models. In contrast, models are all structured by large-scale and
common environmental drivers relating to broad-scale latitudinal gradients that prevail between
Antarctic and sub-Antarctic regions (

).
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5. CONCLUSIONS AND RECOMMENDATIONS

This work aimed at testing the influence of the number of selected environmental descriptors and
their collinearity on model performance. Models were generated at the scale of the entire Southern
Ocean using BRT. The BRT algorithm is a machine-learning approach that automatically selects
descriptors that best characterise species niches ( ). This matches our results that
highlight that all models generated with different number of environmental descriptors showed
similar performances. In contrast, in most SDMs generated without collinear descriptors, model
overfitting tends to be minimized in comparison with models generated with the whole set of 58
descriptors. In three species only, no difference in model performance was observed between
models using either collinear or non-collinear descriptors.

Final models were generated using a subset of 14 to 16 environmental descriptors that best
explain species distributions. The selected descriptors are not collinear to limit interpretation errors,
reduce model complexity and favour the ecological relevance of models (

). However, final SDMs are not
very contrasted between species despite significant differences in species ecological niches

(

). The performed SDMs are more sensitive to the number of occurrence
records available and to the extent of the projection area. This final result questions the ecological
relevance of using modelling approaches at broad spatial scale when based a limited number of
occurrence data, spatially aggregated and using descriptors with coarse spatial and temporal
resolutions.

These results match those obtained in previous studies and suggest that the validation of model
predictions should use independent data, appropriate statistics and expert-based interpretations
( )- Combining model
outputs performed at narrow spatial scale and complementary data on biotic interactions (

), habitat features ( ) and
physiological traits (

) constitutes a good alternative. This
can enhance the relevance of explanatory models and their use for ecological studies and
conservation purposes. Downscaling SDM studies also has the advantage of improving model
accuracy relating to particular, local to regional phenotypic or physiological traits of populations,
which may differ at broader scale ( ). Waiting for more data and ensuring the taxonomic
quality of datasets, we recommend the use of SDMs for narrow-scale studies using scrutinized and
comprehensive occurrence datasets, as much as possible, while selecting non-collinear and
ecologically relevant descriptors to minimize model overfitting (

)
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APPENDIX 2.4 List of environmental descriptors and sources
Table S2.4. List of  environmental descriptors  selected for  species distribution models. Downloadable  on the ‘blueant’ R package
(https://github.com/AustralianAntarcticDivision/blueant). The procedure to download the data is explained in the “data_for_SDM_vignette” at
https://github.com/AustralianAntarcticDivision/blueant/tree/data_Charlene/vignettes. Spatial extent of the data: latitude: 45°S_80°S / longitude: -180°_180°W. Spatial resolution: 0.1° x 0.1°

(approximately 11km). Complementary information about “extreme events” layers can be found in Appendix 2.5.

Environmental descriptor Unit Description Source
Bathymetry. Downloaded from GEBCO 2014 (0.0083°= 30sec arcmin resolution) and set at 0.1°
Depth meters resolution. Completed with the bathymetry layer manually corrected and provided in Fabri-Ruiz et This study. Derived from GEBCO [2]
al. (2017b) [1]
Geomorphology categorical Derived from the seafloor geomorphic feature dataset of O'Brien et al. (2009) [3]. 27 categories This study. Derived from Australian Antarctic Data Centre [4]
Sediments categorical Sediment features (14 categories) Griffiths 2014 (unpublished)
Derived from bathymetry with the terrain function of the ‘raster’ R package (Hijmans 2019) [6].
Slope degrees Computation according to Horn (1981) [5], i.e. option neighbor=8. The computation was done on This study. Derived from GEBCO [2]
the GEBCO bathymetry layer (0.0083° resolution) and the resolution was then changed to 0.1°.
Derived from bathymetry with the terrain function of the ‘raster’ R package (Hijmans 2019) [6].
. Roughness is the difference between the maximum and the minimum value of a cell and its 8 : .
Roughness unitiess surrounding cells. The computation was done on the GEBCO bathymetry layer (0.0083° resolution) This study. Derived from GEBCO [2]
and the resolution was then changed to 0.1°.
Mixed layer depth m Summer mixed layer depth chmat_ology from ARGOS d_ata. Re_,-gndded _at 0.1% resolution from a 2- This study. Derived from Australian Antarctic Data Centre [4]
degree grid using a nearest neighbor interpolation
-1 Current speed near the surface (2.5m depth); derived from the CAISOM model (Galton-Fenzi et al. . . . .
Sea surface current speed m.sec 2012 [7], based on ROMS) This study. Derived from Australian Antarctic Data Centre [4]
Sea floor current speed m.sec™ Current speed near the sea floor; derived from the CAISOM model (Galton-Fenzi et al. 2012 [7], This study. Derived from Australian Antarctic Data Centre [4]
based on ROMS)
Distance antarctica km Distance to the nearest part of Antarctic continent This study. Derived from Australian Antarctic Data Centre [4]
Distance canyon km Distance to the axis of the nearest canyon This study. Derived from Australian Antarctic Data Centre [4]
Distance max ice edge km Mean maximum winter sea ice extent derlveq from daily slzstlmates of sea ice concentration. This study. Derived from Australian Antarctic Data Centre [4]
Distance of each grid point to this extent.

Distance shelf km Distance to the nearest area of sea floor of depth 500m or less This study. Derived from Australian Antarctic Data Centre [4]
Ice cover max - Ice concentration fraction, maximum on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8]
Ice cover mean - Ice concentration fraction, mean on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8]
Ice cover min - Ice concentration fraction, minimum on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8]
Ice cover range - Ice concentration fraction, difference maximum-minimum on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8]
Ice thickness max m Ice thickness, maximum on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8]
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BioOracle accessed 24/04/2018, see Assis et al. (2018) [8]

Ice thickness mean m Ice thickness, mean on 1957-2017 time period
Ice thickness min m Ice thickness, minimum on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8]
Ice thickness range m Ice thickness, difference maximum-minimum on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8]
Chlorophyll-a concentrations obtained from MODIS satellite images. Amplitude of pixel values
chla_ampli_alltime_2005_2012 mg.m3 (difference between maximal and minimal values encountered by each pixel during all months of MODIS Aqua [9]
the period 2005-2012)
. . Chlorophyll-a concentrations obtained from MODIS satellite images. Maximal value encountered
3
chla_max_alltime_2005_2012 mg.m by each pixel during all months of the period 2005-2012 MODIS Aqua [9]
. : Chlorophyll-a concentrations obtained from MODIS satellite images. Mean value of each pixel
3
chla_mean_alltime_2005_2012 mg.m during all months of the period 2005-2012 MODIS Aqua [9]
. . r Chlorophyll-a concentrations obtained from MODIS satellite images. Minimal value encountered by
3
chla_min_alltime_2005_2012 mg.m each pixel during all months of the period 2005-2012 MODIS Aqua [9]
. r Chlorophyll-a concentrations obtained from MODIS satellite images. Standard deviation value of
3
chla_sd_alltime_2005_2012 mg.m each pixel during all months of the period 2005-2012 MODIS Aqua [9]
POC 2005 2012 ampli C.m2.d Particulate organic carbon; model Lutz et al. (2007) [10]. Amplitude value (difference maximal and This study. Following Lutz et al. (2007) [10], data available on
— - —amp gt-m=. minimal values, see previous layers) of all average seasonal layers of 2005-2012 Australian Antarctic Data Centre [11]
2 41 Particulate organic carbon; model Lutz et al. (2007) [10]. Maximal value encountered on each pixel This study. Following Lutz et al. (2007) [10], data available on
POC_2005_2012_max gC.m*d among all seasonal layers of 2005-2012 Australian Antarctic Data Centre [11]
POC_2005_2012_mean gC.m2d" Particulate organic carbon; model Lutz et al. (2007) [10]. Mean of all seasonal layers of 2005-2012 This study. FoIIowm_g Lutz et a_I. (2007) [10], data available on
Australian Antarctic Data Centre [11]
. 2 41 Particulate organic carbon; model Lutz et al. (2007) [10]. Minimal value encountered on each pixel This study. Following Lutz et al. (2007) [10], data available on
POC_2005_2012_min gC.m*d among all seasonal layers of 2005-2012 Australian Antarctic Data Centre [11]
2 41 Particulate organic carbon; model Lutz et al. (2007) [10]. Standard deviation all seasonal layers of This study. Following Lutz et al. (2007) [10], data available on
POC_2005_2012_sd gCm=d 2005-2012 Australian Antarctic Data Centre [11]
. A Amplitude (difference max/min) value encountered for each pixel on all month layers of seafloor Derived from World Ocean Circulation Experiment 2013 [12]
seafloor_oxy_19552012_ampli mL.L oxygen concentrations over 2005-2012, modified from WOCE oxygen concentration layers
seafloor oxy 19552012 max mLL-" Maximum value encountered for each pixel on all month layers of seafloor oxygen concentrations Derived from World Ocean Circulation Experiment 2013 [12]
—OoXy_ - ’ over 2005-2012, modified from WOCE oxygen concentration layers
seafloor oxy 19552012 mean mLL- Mean seafloor oxygen concentrations over 2005-2012 (average of all monthly layers), modified Derived from World Ocean Circulation Experiment 2013 [12]
—OoXy_ - ’ from WOCE oxygen concentration layers
. A Minimum value encountered for each pixel on all month layers of seafloor oxygen concentration Derived from World Ocean Circulation Experiment 2013 [12]
seafloor_oxy_19552012_min mL.L over 2005-2012, modified from WOCE oxygen concentration layers
seafloor oxy 19552012 sd mLL- Standard deviation seafloor oxygen concentration over 2005-2012 (of all monthly layers), modified Derived from World Ocean Circulation Experiment 2013 [12]
—OoXy_ - ’ from WOCE oxygen concentration layers
. . Amplitude (difference max/min) value encountered for each pixel on all month layers of seafloor Derived from World Ocean Circulation Experiment 2013 [12]
seafloor_sali_2005_2012_ampli PSS salinity over 2005-2012, modified from WOCE salinity layers
seafloor sali 2005 2012 max PSS Maximum value encountered for each pixel on all month layers of seafloor salinity over 2005-2012, Derived from World Ocean Circulation Experiment 2013 [12]
- = - modified from WOCE salinity layers
seafloor_sali_2005_2012_mean PSS Mean seafloor salinity over 2005-2012 (average of all monthly layers), modified from WOCE Derived from World Ocizﬂn(i:t;/r?:!/aetlrgn Experiment 2013 [12]
seafloor sali 2005 2012 min PSS Minimum value encountered for each pixel on all month layers of seafloor salinity over 2005-2012, Derived from World Ocean Circulation Experiment 2013 [12]
- = - modified from WOCE salinity layers
seafloor_sali_2005_2012_sd PSS Standard deviation seafloor salinity over 2005-2012 (of all monthly layers), modified from WOCE Derived from World Ocean Circulation Experiment 2013 [12]

salinity layers
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Amplitude (difference max/min) value encountered for each pixel on all month layers of seafloor

Derived from World Ocean Circulation Experiment 2013 [12]

seafloor_temp_2005_2012_ampli C temperature over 2005-2012, modified from WOCE temperature layers
o Maximum value encountered for each pixel on all monthly layers of seafloor temperature over Derived from World Ocean Circulation Experiment 2013 [12]
seafloor_temp_2005_2012_max C 2005-2012, modified from WOCE temperature layers
seafloor_temp_2005_2012_mean °C Mean seafloor temperature over 2005-2012 (average of all monthly layers), modified from WOCE Derived from World ?;Sggrgﬁ:l?:;:rfxmaerlment 2013 [12]
. o Minimum value encountered for each pixel on all monthly layers of seafloor temperature over Derived from World Ocean Circulation Experiment 2013 [12]
seafloor_temp_2005_2012_min ¢ 2005-2012, modified from WOCE temperature layers
seafloor_temp_2005_2012_sd °c Standard deviation seafloor temperature over 2005-2012 (of all monthly layers), modified from Derived from World Ocean Circulation Experiment 2013 [12]
WOCE temperature layers
extreme_event_max_chl_2005_2012_ampli integer Amplitude value (MaX|mum-M|n|mum) of the number of extreme events (maximal chlorophyll-a Derived from chla_max_alltime_2005_2012 layer
concentrations) recorded between 2005 and 2012
extreme_event_max_chl_2005_2012_max integer Maximum number of extreme events (mggggaallﬁglg(rﬁghyll-a concentrations) recorded between Derived from chla_max_alltime_2005_2012 layer
extreme_event_max_chl_2005_2012_mean integer Mean of the number of extreme events (rgg)élgn:rllgrggqozphyll-a concentrations) recorded between Derived from chla_max_alltime_2005_2012 layer
extreme_event_max_chl_2005_2012_min integer Minimum number of extreme events (m;)((;(r)’nsa;ﬁzlggzpzhyll-a concentrations) recorded between Derived from chla_max_alltime_2005_2012 layer
extreme_event_min_chl_2005_2012_ampli integer Amplitude value (MaX|mum-M|n|mum) of the number of extreme events (minimal chlorophyll-a Derived from chla_min_alltime_2005_2012 layer
concentrations) recorded between 2005 and 2012
extreme_event_min_chl_2005_2012_max integer Maximum number of extreme events (mzlrg(g;agﬁzlglap; yll-a concentrations) recorded between Derived from chla_min_alltime_2005_2012 layer
extreme_event_min_chl_2005_2012_mean integer Mean of the number of extreme events (r;(l)rggn:lncéhé%r;) 2p hyll-a concentrations) recorded between Derived from chla_min_alltime_2005_2012 layer
extreme_event_min_chl_2005_2012_min integer Minimum number of extreme events (mlzrgg? Ia(r:]rélozrgfgyll-a concentrations) recorded between Derived from chla_min_alltime_2005_2012 layer
extreme_event_min_oxy_1955_2012_nb integer Number of extreme events (minimal seafloor oxygen concentration records) that happened Derived from seafloor_oxy_19552012_min layer
between January and December of the year
nb_extreme_event_max_sali_2005_2012 integer Number of extreme events (maximal seafloor salinity records) that happened between January and Derived from seafloor_sali_2005_2012_max layer
December of the year
nb_extreme_event_min_sali_2005_2012 integer Number of extreme events (minimal seafloor salinity records) that happened between January and Derived from seafloor_sali_2005_2012_min layer
December of the year - = - ~
extreme_event_max_temp_2005_2012_nb integer Number of extreme events (maximal seafloor temperature records) that happened between Derived from seafloor_temp_2005_2012_max layer
January and December of the year
extreme_event_min_temp_2005_2012_nb integer Number of extreme events (minimal seafloor temperature records) that happened between Derived from seafloor_temp_2005 2012_min layer

January and December of the year
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APPENDIX 2.5. Extreme events layers

In this study, raster layers are produced to depict extreme events occuring in a year for each pixel. This is
done for chlorophyll-a and oxygen concentrations, seafloor temperatures and salinities. The aim is to
describe the frequency of environmental changes occuring in the area and in a second step, model its
contribution to explaining species occurrence distribution through the SDM analysis.

In a annual series, an “extreme event’ is defined as a value that is higher than the median value of the
series. This analysis is pixel-specific.

Using monthly raster layers, the code extracts the series of values (Yi1, Yij...Yi12) from each pixel i, for the
corresponding month (j=1,..,12). A vector of 12 values is obtained and used to calculate the median value of
the annual series and the associated MAD value (Median Absolute Deviation), an equivalent to the standard
deviation computed for the median (MAD= median (|Yi;-median(Yi;)))

A maximal extreme event is counted when Yij+MAD;; and Yij-MAD:;; values are higher than the median value
of the series, and similarly, a minimal extreme event is counted when Y;j+MAD;; and Y;;-MAD;; values are
lower than the median value of the series (Fig. S2.5.A).

Environmental value
A

> Month

] F M A M J J A S O N D

Figure S2.5.A. Theoretical plot showing the determination of extreme events. Crosses: Yi; values of the raster layer for a
pixel i and a month j ; orange continuous line: median value of the series ; purple dotted line: Yij+MAD:;;; green dotted
line: Yij-MADi;. In this example, yellow crosses are maximal extreme events because Yi;, Yij+MAD;;and Yij-MAD;;are
higher than the median value of the series (orange line); pink crosses are minimal extreme events because Yij ,
Yij+MAD;i; and Yi-MAD;i; are lower than the median value of the series (orange line); the black crosses are not
considered as extreme events because Yi;, Yij+MAD;;or Yi-MAD;; are cutting the MAD line.
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180°

Figure $2.5.B. Example an extreme event raster layer. Average number of maximum chlorophyll-a concentrations
extreme events per pixel compiled between 2005 and 2012.

APPENDIX 2.6. Cumulative occurrence collection curved through time
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Figure $2.6. Cumulative occurrence collective curves through time and per species.
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APPENDIX 2.7. Available presence-only data of the modelled species

Figure S2.7. Presence-only records available for the six studied species (a) Acodontaster hodgsoni (n=297), (b)
Bathybiaster loripes (n=585), (c) Labidiaster annulatus (n=373), (d) Glabraster antarctica (n=844), (e) Odontaster
validus (n=309), (f) Psilaster charcoti (n=350). Bathymetry is represented by blue shaded background. The provided
number of presence data available is given after removal of duplicate records on a same grid-cell pixel.

Article. Guillaumot et al. (2020b). Selecting environmental descriptors is critical to modelling the distribution of Antarctic
benthic species. Polar Biology 208
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APPENDIX 2.8. Calibration of Boosted Regression Trees and parameter settings

BRT models are generated using the cross-validation procedure developed by that is,
using the functions provided in their supplementary material and in the gbm R package (

)- We set the maximum number of trees to 10,000 and models are calibrated with the combination of
parameters that minimizes the predictive deviance while producing the lowest number of trees (Fig. S2.8).
Models are calibrated with all presence records available, using 1,000 background data randomly sampled in
the area (restrained in depth for each species specifically) and according to the Kernel Density Estimate
weighting scheme for the total Southern Ocean benthic samples ( ) and all
the 58 environmental descriptors available. The following parameters are finally selected for each species:
Acodontaster hodgsoni (tc=4, Ir=0.007, bf=0.75), Bathybiaster loripes (tc=4, Ir=0.012, bf=0.7), Glabraster
antarctica (tc=4, Ir=0.013, bf=0.75), Labidiaster annulatus (tc=4, Ir=0.012, bf=0.75), Odontaster validus (tc=4,
Ir=0.007, bf=0.7), Psilaster charcoti (tc=4, Ir=0.007, bf=0.7).
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Figure S2.8. Comparison of model predictive deviance according to the number of trees used to build the models, for
each species and for different parameter settings (tree complexity, tc; learning rate, Ir; bag fraction, bf). Parameters for
which the lowest predictive deviance is reached with the lowest number of trees are selected to generate the model (Elith
et al. 2008). Species: (A) Acodontaster hodgsoni, (B) Bathybiaster loripes, (C) Glabraster antarctica, (D) Labidiaster
loripes, (E) Odontaster validus, (F) Psilaster charcoti.
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APPENDIX 2.9. Control of the number of environmental descriptors over modelling

performances
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Figure S2.9A. Influence of the number of environmental predictors on SDM performance. Boxplot of 100 model
replicates scores. Change in Area Under the Curve (AUC) values for (a) Acodontaster hodgsoni, (b) Bathybiaster loripes,
(c) Labidiaster annulatus, (d) Glabraster antarctica, (e) Odontaster validus, (f) Psilaster charcoti. Average values are
indicated in blue. Red stars indicate significant changes obtained in median values between two successive series
(Wilcoxon Mann-Whitney rank paired test, p < 0.05). Left-side and right-side columns correspond to species for which
models are respectively projected down to 1,500 m and 4,000 m depth.
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Figure S2.9.B Influence of the number of environmental predictors on SDM performance. Boxplot of 100 model
replicates scores. Change in True Skill Statistics (TSS) values for (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c)
Labidiaster annulatus, (d) Glabraster antarctica, (e) Odontaster validus, (f) Psilaster charcoti. Average values are
indicated in blue. Red stars indicate significant changes in median values between two successive series (Wilcoxon
Mann-Whitney rank paired test, p < 0.05). Left-side and right-side columns correspond to species for which models are
respectively projected down to 1,500 m and 4,000 m depth.
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Figure $2.9.C. Influence of the number of environmental predictors on SDM performance. Boxplot of 100 model
replicates scores. Change in the percentage of correctly classified test data (cross-validation procedure) for (a)
Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Labidiaster annulatus, (d) Glabraster antarctica, (e) Odontaster
validus, (f) Psilaster charcoti. Average values are indicated in blue. Red stars indicate significant changes in median
values between two successive series (Wilcoxon Mann-Whitney rank paired test, p < 0.05). Left-side and right-side
columns correspond to species for which models are respectively projected down to 1,500 m and 4,000 m depth.
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APPENDIX 2.10. List of environmental descriptors selected to generate final models

Table S$2.10. List of environmental descriptors selescted to generate final models, after removing distance descriptors,
descriptors that always contribute less than 1% to species SDM (Table 2.5) and collinear descriptors (species-specific).

Acodontaster Bathybiaster Glabraster Labidiaster Odontaster Psilaster
hodgsoni loripes antarctica annulatus validus charcoti

1 | depth depth depth depth depth depth

2 | geomorphology geomorphology geomorphology geomorphology geomorphology geomorphology

3 | sediments sediments sediments sediments sediments sediments

4 | slope slope slope slope slope slope

5 | roughness roughness roughness roughness roughness roughness

6 | mixed layer depth mixed layer depth mixed layer depth mixed layer depth mixed layer depth mixed layer depth

7 | seasurface current | seasurface current seasurface current seasurface current seasurface current seasurface
speed speed speed speed speed current speed

8 | seafloor current seafloor current seafloor current seafloor current seafloor current seafloor current
speed speed speed speed speed speed

9 | ice cover mean ice cover mean ice cover mean ice cover mean ice cover mean ice cover mean

10 | chlorophyll a max chlorophyll a max chlorophyll a max chlorophyll a max chlorophyll a max chlorophyll a max
concentration concentration concentration concentration [2005- concentration concentration
[2005-2012] [2005-2012] [2005-2012] 2012] [2005-2012] [2005-2012]

11 | chlorophylla mean | chlorophyll a mean chlorophyll a mean chlorophyll a mean chlorophyll a mean chlorophyll a
concentration concentration concentration concentration [2005- concentration mean
[2005-2012] [2005-2012] [2005-2012] 2012] [2005-2012] concentration

[2005-2012]

12 | chlorophyll a min chlorophyll a min chlorophyll a min chlorophyll a min chlorophyll a min chlorophyll a min
concentration concentration concentration concentration [2005- concentration concentration
[2005-2012] [2005-2012] [2005-2012] 2012] [2005-2012] [2005-2012]

13 | POC minimum POC minimum POC minimum POC minimum [2005- | POC minimum POC minimum
[2005-2012] [2005-2012] [2005-2012] 2012] [2005-2012] [2005-2012]

14 | POC amplitude POC standard POC standard POC standard POC standard POC standard
[2005-2012] deviation [2005- deviation [2005- deviation [2005-2012] | deviation [2005- deviation [2005-

2012] 2012] 2012] 2012]
15 Chlorophyll a Chlorophyll a Chlorophyll a
minimum extreme minimum extreme minimum extreme
events, minimun events, average events, minimun
values values values

16 Chlorophyll a

minimum extreme
events, minimun
values
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APPENDIX 2.11. Modelling performance scores of final models

Table S2.11. Statistics (mean and standard deviation) measured for each species of models generated with the final set
of environmental descriptors (Table S2.10). AUC: Area Under the Curve, COR: biserial Pearson correlation, TSS: True
Skill Statistics. The percentage of correctly classified test data is defined by the proportion of test data that falls into

pixels predicted as suitable (probability > maxSSS score).

Acodontaster Bathybiaster Glabraster Labidiaster Odontaster Psilaster

hodgsoni loripes antarctica annulatus validus charcoti
AUC 0.810+0.09 0.871+0.07 0.872+0.07 0.837+0.117 | 0.830+0.09 0.868+0.05
TSS 0.461+0.121 0.546+0.08 0.545+0.09 0.492+0.146 | 0.489+0.120 | 0.543+0.06
COR 0.503+0.136 0.632+0.137 0.656+0.121 0.566+0.240 | 0.561+0.168 | 0.545+0.100

Correctly  classified 55.4£11.3 76.0£10.8 80.7£10.1 59.0£17.5 51.6123.7 78.319.3

test data (%)
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APPENDIX 2.12. Marginal effect of environmental descriptors

Partial dependence plots indicate the effect of an environmental descriptor on the model response after
accounting for the average effects of all other descriptors in the model (“marginal effect”, ).
Results show weak contrasts between species and environmental descriptors.

Species preferences for slope, roughness, mixed layer depth, sea surface current speed are a consequence
of the environmental preponderance of such conditions in the Southern Ocean environments. However, for
other descriptors such as depth, seafloor current speed, average ice coverage, chlorophyll-a and POC
concentrations species predicted preferences differ from what dominates in the environment (Fig. S2.12).
This may be biased by sampling effort as it is exemplified by species distribution probabilities predicted in
shallow areas (Fig. S2.12a) or areas with intermediate average ice cover values (Fig. S2.12g) or areas with
intermediate. POC minimal concentrations preferences are contrasting between species. A. hodgsoni, L.
annulatus and O. validus have preferences for high POC concentrations in comparison with P. charcoti and
G. antarctica that prefer areas with low concentrations (Fig. S2.12k).
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Figure S$2.12. Partial dependence plots. Scaled density distributions of the marginal effect of environmental descriptors

used to generate final models (Table S2.10) common to all species. Environmental values recorded in the entire
Southern Ocean (<45°S, maximal m depth) are indicated in grey.
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Abstract
Species distribution modelling (SDM) has been increasingly applied to Southern Ocean case
studies over the past decades, to map the distribution of species and highlight environmental
settings driving species distribution. Predictive models have been commonly used for
conservation purposes and supporting the delineation of marine protected areas, but model
predictions are rarely associated with extrapolation uncertainty maps.
In this study, we used the Multivariate Environmental Similarity Surface (MESS) index to
quantify model uncertainty associated to extrapolation. Considering the reference dataset of
environmental conditions for which species presence-only records are modelled, extrapolation
corresponds to the part of the projection area for which one environmental value at least falls
outside of the reference dataset.
Six abundant and common sea star species of marine benthic communities of the Southern
Ocean were used as case studies. Results show that up to 78% of the projection area is
extrapolation, i.e. beyond conditions used for model calibration. Restricting the projection space
by the known species ecological requirements (e.g. maximal depth, upper temperature
tolerance) and increasing the size of presence datasets were proved efficient to reduce the
proportion of extrapolation areas. We estimate that multiplying sampling effort by 2 or 3-fold
should help reduce the proportion of extrapolation areas down to 10% in the six studied
species.
Considering the unexpectedly high levels of extrapolation uncertainty measured in SDM
predictions, we strongly recommend that studies report information related to the level of
extrapolation. Waiting for improved datasets, adapting modelling methods and providing such
uncertainy information in distribution modelling studies are a necessity to accurately interpret
model outputs and their reliability.

Key-words
Multivariate Environmental Similarity Surface (MESS), marine species, Antarctic, modelling
relevance, conservation issues
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1. INTRODUCTION

Among the broad array of analytical tools developed for marine ecology studies over the last two
decades, Species Distribution Modelling (SDM) has been increasingly used (
) and applied to Southern Ocean pelagic (
), benthic organisms (

) and even marine mammals (
SDM represents a complementary approach to individual-based modelling and eco- phyS|oIog|caI
experiments, quickly and synthetically identifying environmental correlates of species distribution

( ). SDM is also used to define species
distribution spatial range ( ) and can be used as decision
criteria for conservation purposes ( ). For instance, it is

currently used in proposals developed by national committees of the CCAMLR (Commission for
the Conservation of Antarctic Marine Living Resources) to support the definition and delineation of
marine protected areas ( ).

Applying SDM to Southern Ocean case studies is particularly challenging due to major constraints
and biases that may reduce modelling performance. As for many oceanographic studies, access to
environmental data with high temporal and spatial resolutions is difficult (

). Antarctic coastal areas, in particular, are rarely accessed and documented
due to logistical constraints, access being for example impossible during the austral winter due to
sea ice cover ( ). The availability of species absence records is also a limiting
factor to modelling performances and model calibrations (

)- Models are usually based on a limited number of presence-only records and limited number
of sampling sites, which are both spatially aggregated in the vicinity of scientific stations, where
access is frequent and datasets from different seasons, have been compiled over decades and
even beyond (

).

When generating a SDM, the model is fit to data with a given range of value for each
environmental descriptor (i.e. the calibration range). When transferring model predictions, a portion
of the environment may cover additionnal conditions that are outside this calibration range: these
are non-analog conditions and the model extrapolates (

Considering the limited number of species presence-only records occupied by each marine benthic
species, and the poor quality and precision of environmental descriptors available for modelling
Southern Ocean species distributions ( ),
a large proportion of cells might be expected to be extrapolations beyond the calibration range of
the model.

The Multivariate Environmental Similarity Surface (MESS) approach analyses spatial extrapolation
by extracting environmental values covered by presence-only records and estimates areas where
environmental conditions are outside the range of conditions contained in the calibration area (

)- The method considers that extrapolation occurs when at least one environmental
descriptor value is outside the range of the environment envelop for model calibration (more details
given in Appendix 2.16).

The MESS approach was initially used to determine the environmental barriers to the invasion of
the cane toad in Australia, when facing new environments and under future conditions (

). Implemented in MaxEnt ( ), MESS was subsequently used by several
authors for defining the climatic limits to the colonisation of new environments by non-native
species, such as the American bullfrog in Argentina ( ), for studying contrasts
between native and potential ecological niches like in the study of the spotted knapweed
(Centaurea stoebe) ( ), or for defining the limits to model transferability and
predicting the distribution of trees under future environmental conditions (

).
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More recently, the MESS approach was used to define model uncertainties related to extrapolation

(

) and extrapolation areas where environmental conditions are

non-analog to conditions of model calibration ( )-
Associating uncertainty information to model predictions has been acknowledged as a necessity
for reliable interpretations of model predictions ( ). Itis
also a requirement for specifying the level of risk associated with predictions and evaluating
whether uncertainty can be mitigated to improve model outcomes ( )-

This study addresses the importance of extrapolation and associated uncertainties in SDMs
generated at broad spatial scale for Southern Ocean species: an analysis that is seldom performed
although important to characterise model reliability. Using the case study of six abundant and
common sea star species in marine benthic communities, objectives of this work are to evaluate
the importance of extrapolation proportions in wide projection areas, and to provide some
methodological clues to mitigate the effects of extrapolation and improve model accuracy.

2. MATERIAL AND METHODS
2.1.Studied species and environmental descriptors

The distribution of six sea star species (Asteroidea : Echinodermata) was studied (Table 2.8). The
six species, Acodontaster hodgsoni (Bell, 1908), Bathybiaster loripes (Sladen, 1889), Glabraster
antarctica (Smith, 1876), Labidiaster annulatus Sladen, 1889, Odontaster validus Koehler, 1906
and Psilaster charcoti (Koehler, 1906) are abundant and common in benthic communities in the
Southern Ocean. The biology, ecology and distribution of these species have been extensively
studied and are relatively well documented (

). Presence-only records were compiled from a recently updated database,
thoroughly scrutinised with the World Register of Marine Species ( ),
to delete potential discrepancies, update taxonomy and correct for georeferencing errors (

Models were generated for the different species using 298-851 presence-only records, and
projected at different depth ranges (Table 2.8). The distributions of these presence-only records
are contrasting between species (Appendix 2.13), with A. hodgsoni, B. loripes and G. antarctica
having an Antarctic and sub-Antarctic distribution, with an important number of data available for B.
loripes and G. antarctica but less data for A. hodgsoni (respectively 591, 851 and 298 presence-
only records). Labidiaster annulatus has a distribution mainly gathered in the sub-Antarctic region
with few data available (375 presence-only records). Odontaster validus and P. charcoti are mainly
present on the coasts of the Antarctic shelf.
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Table 2.8. Sea star species investigated in the present study. The number of presence-only records
available was summed up after removal of duplicates from each grid cell pixel. Image sources:
, BIOMAR ULB database (P. Pernet), proteker.net, B121 expedition (Q. Jossart).

Acodontaster Bathybiaster Glabraster Labidiaster Odontaster Psilaster charcoti
hodgsoni loripes antarctica annulatus validus (Koehler, 1906)
(Bell, 1908) (Sladen, 1889) (Smith, 1876) Sladen, 1889 Koehler, 1906

Presence-only 298 591 851 375 337 353
records number
Model maximum 1500 m 4000 m 4000 m 1500 m 1500 m 4000 m
depth
Environmental descriptors were selected from the dataset provided at

https://data.aad.gov.au/metadata/records/environmental layers. These are oceanography raster
layers that mostly describe the physical and geochemical environment south of 45°S with a 0.1°
grid-cell resolution (approximately 11km wide in latitude). Among the 58 environmental descriptors
provided, only those that fulfilled the analysis performed by

were selected: ‘distance’ layers and ‘extreme’ layers were not selected because the interpretation
of their respective contributions to niche models is complex or weak and collinear descriptors were
also discarded for a Variance Inflation Factor (VIF) > 10 ( ). A set of 14-16
species-specific layers that characterise temperature, salinity, food availability and habitat
characteristics were therefore used for model calibration (Table S2.14).

2.2. Model calibration

Species Distribution Models (SDMs) were generated using the Boosted Regression Trees (BRT), a
machine-learning approach that was already calibrated for Southern Ocean case studies
( ) and was proved efficient to provide
accurate models with good transferability performance, that is good ability to project model in
space and time (

). In order to minimalize the effect of presence-only records aggregation on model
predictions, background data were randomly sampled in the environment following the probabilities
defined by a Kernel Density Estimation (KDE) (see for general principles,

and for applications). The number of
background records was selected equal to the number of presence-only records (

)- The KDE was established based on the aggregation of benthos sampling effort provided

in the Biogeographic Atlas of the Southern Ocean ( , map available in
supplementary material of ). One hundred SDMs were generated
and averaged for each species, with background data randomly sampled following the KDE for
each replicate.
SDMs were calibrated and reliability tested using a spatial cross-validation procedure. For each
species, several procedures were compared following . The
studied area was randomly subdivided into 2 to 6 areas of similar surfaces (longitude-split spatial
folds), with presence and background data selected from one to three areas for model training and
from the remaining areas for model testing. The “6-fold CLOCK” cross-validation approach was
selected for B. loripes, G. antarctica, L. annulatus and O. validus and the “2-fold CLOCK”
procedure was selected for A. hodgsoni and P. charcoti, according to the best percentage of test
data correctly classified (Appendix 2.15).
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The Maximum sensitivity plus specificity threshold (MaxSSS), considered the most appropriate
threshold for presence-only SDM ( ) was used to binarize models into suitable
(>MaxSSS value) and unsuitable areas (<MaxSSS value). This threshold was used to measure the
proportion of test data correctly classified. Modelling performances were also assessed using the

three following metrics: Area Under the Receiver Operating Curve (AUC, ),
the Point Biserial Correlation between predicted and observed values (COR, ) and
the True Skill Statistics (TSS, )-

Two analyses were performed: in Analysis #0 (‘no-depth limited’), SDMs were projected on the
entire Southern Ocean surface (south of 45°S) and in Analysis #1 (‘depth limited’), SDM
projections and background samplings were restricted to areas limited by a maximum depth
threshold defined for each species based on the available species presence-only records (Table
2.8).

2.3. MESS calculation

The MESS was measured using the dismo R package ( ) and following the
guidelines provided in . Pixels for which at least one environmental descriptor has
a value that is outside the range of environmental values defined by presence-only records
(calibration range) were considered to be extrapolation (i.e when MESS gets negative values,
Appendix 2.16). The proportion of extrapolation areas (i.e. the proportion of cells defined as
extrapolations over the total projection area) was calculated and compared between species. On
SDM projection maps, extrapolated pixels were displayed in black.

Environmental parameters responsible for extrapolation were estimated by modifying the code
provided in . Detailed R scripts are available at
https://github.com/charleneguillaumot/THESIS. Methodological details are provided in Appendix
2.16.

2.4. Influence of the number and distribution of presence-only records on extrapolation

The proportion of extrapolation areas may vary with presence-only sampling effort. In order to
study the influence of the number and distribution of these presence-only records on the proportion
of extrapolation areas, two analyses were performed. First, several SDMs were generated with
different numbers of presence-only records, following the chronological addition of new presence-
only records through time, from 1980 to 2016. Second, SDMs generated with 10-100% (10%
increments, so 10 subsets) of the entire presence-only dataset were compared. In this analysis, in
contrast to the previous one, presence-only records are randomly sampled among the datasets
available.

In these two analyses, SDMs were projected on the environmental space limited by the maximum
depth defined for each species (Table 2.8), 100 model replicates were generated and averaged in
each case and spatial autocorrelation (SAC) was estimated to assess the influence of presence-
only records aggregation on modelling performances. The significance of SAC was tested using
the Moran’s | index computed on model residuals ( )-

The relationship between the number of presence-only records used in SDM and the relative
proportion of extrapolation areas was characterised using linear regressions. This allowed, for
each model, estimation of the minimum number of presence-only records required to obtain a
‘reasonable’ proportion of extrapolation area arbitrarily set to a 10% threshold.

3. RESULTS

3.1. Extrapolation and the extent of projection areas

All generated SDMs are accurate and performant, with high AUC (AUC>0.91), TSS (TSS>0.559)
and COR (COR>0.68) values, low standard deviations and good percentages of correctly
classified presence-only test data (77-90 %) (Table 2.9). Descriptors that contribute the most to
SDMs are depth (22-34%), minimum POC (6-21%), POC standard deviation (8-20%), mean ice
cover depth (7-17%) and mixed layer depth (3-10%). Contrasts between species are in the
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respective percentage of contribution of these descriptors. Descriptors that drive the most species
distribution are similar between species (Appendix 2.17).

Models projected on the entire Southern Ocean (Analysis #0, ‘no-depth limited’) extrapolate on an
area covering between 15-78% of the entire projection area, and 19-45% of the area initially
predicted as suitable to the species distribution (Table 2.9, Fig. 2.16). Extrapolation areas cover
more than 50% of the projection area for A. hodgsoni (78.6%), P. charcoti (67.8%), L. annulatus
(64.8%) and O. validus (51.9%) and more than 30% of suitable areas (Table 2.9). For these four
species, depth is responsible for 25-68% of extrapolation (Appendix 2.17). Geomorphology, mean
ice cover and POC standard deviation are layers also contributing to 2-7% for extrapolation
(Appendix 2.17). These descriptors that highly contribute to MESS also contribute to the model,
and there are no descriptors for which the contribution to MESS is important whereas the
contribution to the model is not substantial (Appendix 2.17).

In models projected on areas restrained in depth (Analysis #1, ‘depth limited’), the percentage of
extrapolation area sharply decreases from 59 to 18% according to the species (Table 2.9).
However, model performances also decrease, with AUC values going down to 0.885, TSS values
to 0.419 and COR values to 0.475. The percentage of correctly classified test data is much lower
and more variable for the shallowest species A. hogdsoni (from 90 + 6.26% to 45.5 + 8.1%), L.
annulatus (77.7 £ 15.2 % to 57.98 + 20%) and O. validus (from 85.4 + 9.6% to 57.68 £ 21%). For
all species, predicted suitable areas increase two-fold.

Overall, descriptor contributions to the model remain unchanged between the two analyses, except
for depth contribution that decreases to around 10% on average for all the species. In contrast, in
Analysis #1, depth contribution to the MESS is very low (0.64-5.8%), except for P. charcoti
(16.3%). Mean ice cover is the layer that contributes the most to extrapolation, extrapolation areas
mainly corresponding to Weddell and Amundsen seas.
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Table 2.9. Modelling performances for each species. Average and standard deviation values of the 100
model replicates. Pres. NB: number of presences-only records available for modelling (duplicates excluded);
AUC: Area Under the Curve; TSS: True Skill Statistics; COR: Biserial Correlation.

Analysis #0, no-depth limited

Species Pres | AUC TSS COR Correctly classified | Suitable area Extrapolation Extrap. area
.NB test data (%) (% total area) area (% suitable
(% total area) area)
Acodontaster hodgsoni | 298 0.925+0.02 | 0.579+0.04 | 0.735+0.06 | 90 +6.26 8.86 78.6 35.3+4.1
Bathybiaster loripes 591 0.910+0.02 | 0.559 +0.07 | 0.68 +0.09 80.6 £ 10.9 8.55 29.1 219+44
Glabraster antarctica 851 0.929+0.01 | 0.58 £0.05 0.719+0.07 | 85.45+6.34 7.95 15.73 19.9+3.9
Labidiaster annulatus 375 | 0.95+0.03 0.598 +0.07 | 0.730+0.14 | 77.7+15.2 3.33 64.83 42.1+£10.5
Odontaster validus 337 | 0.953+0.01 | 0.605+0.05 | 0.746 +0.09 | 85.4+9.6 6.89 51.9 45.2+5.65
Psilaster charcoti 353 | 0.911+0.02 | 0.58 +0.03 0.723+0.04 | 87.7+4.8 8.90 67.9 32.5+4.71
Analysis #1, depth limited
Species Pres | AUC TSS COR Correctly classified | Suitable area Extrapolation Extrap. area
.NB test data (%) (% total area) area (% suitable
(% total area) area)
Acodontaster hodgsoni | 298 0.823+0.05 | 0.419+£01 0.475+0.14 | 455+ 18.1 17.49 40.6 27.5+85
Bathybiaster loripes 591 0.887 +0.03 | 0.513+0.08 | 0.607 £0.12 | 78.4 + 11 15.75 18.2 20.8+4.8
Glabraster antarctica 851 0.915+0.01 | 0.537 £0.08 | 0.654 + 0.1 81.8+7.7 14.08 23.9 18.64 £ 3.5
Labidiaster annulatus 375 | 0.918+0.03 | 0.482+0.16 | 0.563 +0.25 | 57.98 + 20 8.88 59.5 38.7+14.6
Odontaster validus 337 | 0.908 £+0.03 | 0.504 +0.13 | 0.586 + 0.17 | 57.68 + 21 11.64 51.5 38.3+6.97
Psilaster charcoti 353 | 0.885+0.02 | 0.546 +0.04 | 0.665+0.06 | 83+6.6 15.40 35.78 33.2+5.1
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ANALYSIS #0 ANALYSIS #1

ENEEEE

Figure 2.16. Maps of extrapolation areas covering SDM predictions, generated with all presence-only
records available for the studied species. Left panel: projection area not limited in depth (Analysis #0), right
panel: projection area limited to -1,500 m and -4,000 m depth (Analysis #1), according to the species (A.
hodgsoni, L. annulatus, O. validus until 1,500 m; B. loripes, G. antarctica, P. charcoti until 4,000 m; Table
2.8). (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Glabraster antarctica, (d) Labidiaster annulatus,
(e) Odontaster validus, (f) Psilaster charcoti. Extrapolation areas displayed in black; pixels colored by the
yellow-red color palette provide SDM distribution probabilities (comprised between 0 and 1); bathymetric
chart in shades of blue.

3.2. Extrapolation and the number of presence-only records

Model performance and size of extrapolation area were compared between models run with
different numbers of presence-only records, following the chronological addition of new samples
(from 1980 to 2016). From 1980 to 2016, the number of presence-only records collected during
oceanographic campaigns has increased from 1.9 to 3.3 times according to the species (1.9 times
for O. validus, 3.3 times for A. hodgsoni) (Fig. 2.17A). Spatial autocorrelation between presence-
only records varies between species, with the highest Moran’s | scores obtained for L. annulatus,
O. validus and A. hodgsoni. The highest Moran’s | values were mainly calculated for the oldest
presence-only subsets (1980), strenghtening the fact that the addition of new presence-only
records with additional campaigns reduces spatial autocorrelation (Table S2.18).
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Model performance increases (higher AUC scores) with the addition of new presence-only records,
for all species except for models of A. hodgsoni and B. loripes for which AUC values are stable
(Table S2.18). Similarly, the percentage of correctly classified test data presents important
standard deviation values and improves with the addition of new presence-only records, except for
O. validus (10% decrease) (Fig. 2.17B).

For all species, the addition of new data reduces the percentage of extrapolation over the total
projection area (-30.7% for A. hodgsoni, -12.7% for B. loripes, -20.5% for G. antarctica, -17.6% for
L. annulatus, -10.2% for O. validus and -11% for P. charcoti, i.e. differences between the two
extrapolation % values) and over the species suitable area as well (Fig. 2.17C, Table S2.18).
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Figure 2.17. Evolution of model performances with the increase of data (chronological addition of presence-
only records, by 5-year periods, from 1980 to 2016). (A) Number of presence-only records available to
generate the model; (B) Mean correctly classified test data (%) (standard deviation values available in Table
S2.18); (C) Proportion of grid-cell pixels of the projection area that are extrapolations (%). The maximal
number of presence-only records present in Table 2.9 may not be reached here because some collection
dates remain unknown.

The decrease of extrapolation with the addition of presence-only records was tested by running, for
each species a series of models with different subsets of presence-only records randomly sampled
from the total dataset. One hundred model replicates were progressively run with 10 to 100% of
the total dataset and proportions of extrapolation areas were computed accordingly (Fig. 2.18,
Table S2.19). Results confirm that the addition of presence-only records strongly reduces
proportions of extrapolation areas. Proportions of extrapolation areas also vary between species
models as a function of depth. Low proportions of extrapolation areas are obtained in models run
for deep species and large datasets (e.g. 8.2% for 591 records in B. loripes and 23.9% for 851
records in G. antarctica). In contrast, models run for shallower species show higher proportions of
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extrapolation areas (40.6% for 298 records in A. hodgsoni, 51.5% for 375 records in L. annulatus
and 35.8% for 337 records in O. validus). For these last species, spatial autocorrelation values are
also higher compared to other species (Table S2.19).
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Figure 2.18. Boxplot diagrams representing the decrease of proportions of extrapolation areas (in % of the
total projection area) with addition of presence-only records used to generate model replicates (in % of data
available, see Table 2.8 and Table S2.19), for: (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c)
Glabraster antarctica, (d) Labidiaster annulatus, (e) Odontaster validus, (f) Psilaster charcoti. For each box,
mean values (blue dots) and outliers (black dots) are shown for the 100 model replicates. Some boxes are
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missing for low percentages of presence-only records (10-30%, corresponding to close or less than 100
presence-only records) that do not allow models to be generated.

A linear regression model was fit to the relationship between the number of presence-only records
and proportions of extrapolation areas. For all species, regression coefficients are all negative and
tested significant showing that proportions of extrapolation areas decrease with the addition of new
records (Table 2.10). The intersection point between regression models and the (arbitrary) 10%
extrapolation threshold was used to provide an estimate of the minimum number of records
required for each species model to have an "adequate" proportion of extrapolation areas of 10%.
This minimum number of presence-only records is reached for none of the studied species, and
according to species, the number of presence-only records available should be increased at least
by 1.6 to 3.3 times (Table 2.10).

Table 2.10. Equations of simple linear regressions between the number of presence-only records X and the
average proportion of extrapolation areas Y (Table 2.9, significance levels: * p<0.1, ** p<0.05). The estimate
of the number of presence-only records necessary to have a minimum "adequate" arbitrary proportion of
extrapolation areas of 10% is given in the last column.

Species Equation R? Estimated Pres.NB. (with multiplier of
actual Pres.NB. available)
Acodontaster hodgsoni Y=-0.1358X + 73.616™* 0.60 468 (x 1.6)
Bathybiaster loripes =-0.0249X + 28.974* 0.42 762 (x 1.3)
Glabraster antarctica Y=-0.0304X + 44.991** 0.61 1151 (x 1.4)
Labidiaster annulatus Y=-0.0913X + 88.078** 0.85 855 (x 2.3)
Odontaster validus Y=-0.0561X + 71.112** 0.93 1089 (x 3.2)
Psilaster charcoti Y=-0.0301X + 44.613* 0.37 1150 (x 3.3)
4. DISCUSSION

4.1. Modelling performances and extrapolation

SDMs were generated for Southern Ocean sea star species, with contrasting distributions and
different numbers of presence-only records available (Table 2.8, Appendix 2.13). Overall, species
presence-only records are spatially concentrated in the most accessible and visited areas of the
Southern Ocean. Most of the sea star samples were collected close to the coasts of the Western
Antarctic Peninsula, the Ross Sea and sub-Antarctic Islands such as the Kerguelen Islands.
Consequently, high spatial autocorrelation values were computed, for L. annulatus and O. validus
in particular (Table S2.18).

Overall, models all show good performances (Table 2.9), the spatial cross-validation procedure
ensuring a relevant evaluation of modelling performances when using spatially aggregated data

). However, models
show high proportions of extrapolation areas, with extrapolation covering up to 78% of the
projection area in A. hodgsoni model (Table 2.9). This means that even if models are evaluated as
accurate, model extrapolation area can concern up to three quarters of the projection area!
Assessing the proportion of the projection area for which models extrapolate is therefore
necessary as a complementary statistic to adapt modelling methods and improve model
predictions. Masking projections by extrapolation uncertainties is also important to perform
accurate interpretations.
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Extrapolation uncertainty maps have already been associated to SDM projections once in the

context of the Southern Ocean, by in their study of the grey petrel Procellaria
cinerea, performed at the scale of the Southern Ocean. More recently, the MESS approach has
been introduced in the methodological paper of , showing an

extrapolation area covering 64% of the projection area for the distribution model of the sea star O.
validus, the most studied benthic invertebrate of the Southern Ocean. However, uncertainties
associated to extrapolation were not provided in most model projections performed for Southern
Ocean species studies. For instance, modelled distributions performed for the sea urchins
Sterechinus neumayeri and Sterechinus diadema ( ) were generated using a
relative low number of presence-only records (241 and 332, respectively). Based on results of the
present study, extrapolation could be expected to cover up to 60% of modelled distribution areas
for these last two species. Further Southern Ocean species distribution models were generated
with sometimes less than 100 presence-only records (see and

for instance), suggesting that extrapolation could cover up to 70% of projection areas
as visible in models of A. hodgsoni and P. charcoti performed in our study with few records (Fig.
2.17, Table S2.18-19).

In addition to model uncertainties associated to extrapolation, other biases can alter the
performance of SDMs generated at broad spatial scales including the spatial and temporal

aggregation of data ( ), the selection and quality of
environmental descriptors ( ), the choice of modelling
algorithms and the definition of model settings ( ). Providing

such uncertainty information, highlighted with some model statistics is very much encouraged
here, as they are essential to model interpretation (

).
4.2. How can we reduce model extrapolation? Enriching SDMs with knowledge of species ecology

One objective of this work was to provide some methods to mitigate the effect of extrapolation on
model uncertainties. Our results show clear contrasts between models generated for “deep” and
“shallow” species, with lower proportions of extrapolation areas computed for deep species models
(29.1 and 15.73% respectively for B. loripes and G. antarctica). The model generated for P.
charcoti departs from this general scheme, with extrapolation reaching 67.9% of the projection
area. This is due to the strong spatial aggregation of records and the small presence-only record
dataset available in deeper habitats. Depth is indeed responsible for 58.1% of the extrapolation for
P. charcoti (Appendix 2.17). Indeed, the erroneous characterisation of species occupied space,
due to an incomplete sampling, has been identified as a significant source of bias in SDM
predictions (
).

Limiting model projection areas to biogeographically, or ecologically “realistic’ depth ranges can
help reduce extrapolation as exemplified in the present study, for models of A. hodgsoni and P.
charcoti, for which extrapolation was reduced from 78.6 to 40.6% and 67.9 to 35.8% respectively
(Table 2.9). Restraining model projection areas based on species ecological or physiological
tolerance thresholds is a common approach in ecological modelling using experimental data or
field observations ( ). Knowledge
of species ecology and physiology can also be useful to delineate transferability areas (
) and improve distribution models, as recently shown for Southern Ocean species
. developed a new
modelling algorithm, called Plateau, which uses experimental data to define upper temperature
conditions in distribution models. For temperature and salinity, physiological experiments and field
observations can be used in models to determine species tolerance thresholds. This requires
knowledge about the species ecology and physiology and the input from specialists, all conditions
that remain difficult to meet, regarding deep-sea species of the Southern Ocean (
). Moreover, several studies suggested that some Southern
Ocean species might have found refuges in deep sea habitats in the past, during glacial maxima,
which makes species depth range difficult to precise when deep and shallow populations have not
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been differentiated into distinct taxonomic units yet (

).
4.3. How can we reduce model extrapolation? Improving sampling effort

Increased sampling effort over enlarged areas allows the production of larger datasets from which
many records can be used to generate reliable models with reduced extrapolation areas. In this
study, proportions of extrapolation areas proportionally decreased when increased numbers of
presence-only records were used to generate models. The occurrence datasets were significantly
augmented between 1980 and 2016, with a number of presence-only records multiplied by 1.9 -3.3
times according to the studied species, which allowed reduction of model extrapolation from 10.2
to 30.7% according to the species (Fig. 2.17, Table S2.18). However, results suggest that about
twice the number of presence-only records actually available would be necessary to reduce
extrapolation down to a “satisfactory” threshold of 10% of the projection area (Table 2.10).

Generating reliable and stable models using a sufficient number of presence-only records is
essential. In this study, some models could not be run when the number of presence-only records
was too low (approaching 150 presence-only records or less) compared to the broad extent of the
projection area and the spatial aggregation of these data (Table S2.19). Considering that the
spatial cross-validation procedure splits the initial dataset into training and test data, and that at
each step, 75% of these training data are randomly sampled by BRT to iterately create a model
tree (and generate stochasticity in the procedure), the final number of presence-only records
available to describe the presence data - environment relationship becomes too low (around
37.5% of the initial number of presence-only records).
The lowest number of presence-only records required to build a reliable model is species-
dependent as not all presence-only records are equally informative, due to species-specific
relationships between records and the environment. When models are generated using BRT,
records that bring no new environmental information to the model are dropped because they are
not informative enough to improve the construction of BRT trees. Pruning non-informative data
also reduces the total number of presence-only records available to generate a model (

). This is strongly related to prevalence that is, the ratio between the number of presence-only
records and the size of the projection area (

). In order to accurately describe a vast projection area and be able to create a

model, it is necessary to gather a substantial amount of information about the geographic
environmental conditions and about species known distribution. If a limited number of records is
available and these data are aggregated in space (i.e. weakly informative), the first trees produced
by BRT will contain most of the model deviance, but as no new information is provided, the model
will quickly overfit because redundant information is provided by close presence-only records.
Eventually, this will make the model collapse.
Increasing the number of presence-only records is proved an efficient alternative to generate more
relevant models ( ),
but the spatial distribution of these records is of importance as well ( )- A uniform
distribution of records over the entire projection area reduces spatial autocorrelation and optimizes
the sampling and representativeness of environmental conditions under which species can thrive.
In this study, the spatial aggregation of species records was particularly high for two species, O.
validus and L. annulatus. It was estimated that the number of supplementary presence-only
records necessary to reach a proportion of extrapolation areas of 10% should be twice as high as it
is for other species (Table 2.10). Additional data are necessary to improve the establishment of the
relationship between species distribution and the environment because species records are less
informative when aggregated than when they are evenly distributed.

The Southern Ocean covers contrasting environmental conditions, biogeographic regions and
ecoregions ( )- Ideally, both species presence and absence
should be recorded in each ecoregion for an accurate description of the occupied space (

). Because such a sampling effort is usually not achievable, nor realistic, alternatives would
consist of (1) a relevant adjustment of projection areas, with for instance the combination of
several SDM projections using different grid sizes according to what is available. Generating SDM
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projections for large areas and combining results with projections zoomed in on areas where more
environmental detail is available would provide more relevant and realistic modelled species
distributions ( ). (2) In order to compensate for the lack of
presence-record availability, the ‘ensembles of small models’ approach is another alternative. This
method fits a set of bivariate models (i.e. generated with two environmental descriptors only),
within a hierarchic multi-scale framework (i.e. zooming in and out in space from local to regional
predictions), and finally averages this ensemble of models with a weighted ensemble approach,
which subsequently provides more accurate and robust model predictions (

).
4.4. Some limitations to the MESS approach

The MESS approach can reveal parts of projection areas where models extrapolate. Extrapolation
however can be over-estimated. Indeed, extrapolation is considered as soon as the value of a
single environmental descriptor falls outside the range of the known species environmental
requirements. But, some extreme values would not limit but can promote species presence: this is
the case for descriptors relating to food resource availability (e.g. chlorophyll a, POC
concentrations...), for which a high pixel value exceeding the range of values recorded based on
species presences will be still considered as extrapolation, although more food usually means
suitable conditions for species distribution.

Some fine-tuning of the MESS approach would imply to identify, for each pixel, which descriptor is
responsible for extrapolation and filter the conditions for which the model should really extrapolate.
Such an approach was developed by , who used the MOP method (Mobility
Oriented Parity). Based on multivariate analyses, they determined if pixels contain a combination
of environmental conditions that should induce extrapolation. In contrast to the MESS approach,
the MOP method can directly differentiate proportions of extrapolation areas according to the
combination of descriptors responsible for extrapolation. Another complex alternative is the ExDet
tool, developed by , which also accounts for multivariate extrapolation
possibilities, i.e. extrapolation linked to novel combinations between covariates.

In this study, the MESS approach was favored as a more strict and conservative method to
highlight the importance of extrapolation, the effect of data quantity and quality, and the relevance
of the proposed corrections. The MESS is also simpler to apply and well suited to exploratory
studies.

5. CONCLUSION

This study shows that when modelling species distribution on broad-scale areas, such as the
Southern Ocean, important proportions of predicted distribution probabilities (suitable or not) are
model extrapolations. This extrapolation uncertainty relies on the completeness of species
sampling, and the definition of its occupied space to calibrate the model. Extrapolation occurs in
areas where habitat suitability is unknown as no information on species presence or absence is
provided.

Reducing extrapolation is possible by combining SDM with ecological and physiological knowledge
of species requirements (e.g. depth range, temperature tolerance thresholds). Increased sampling
effort over enlarged areas also allows the production of more reliable models with reduced
extrapolation areas and our study shows that doubling the number of presence-only records
available to generate the model would help reduce the extrapolation area down to 10% of the
projected area.

While more data samples remain unavailable, some methods are increasingly developed to
improve model performances, by adjusting the extent of the projection area or by generating and
aggregating several ensembles of small models.

Finally, present results call for a widespread use of extrapolation maps and uncertainties
associated to model predictions in model outputs, along with information about the quantity of
presence-only records available, the quality and resolution of environmental descriptors and the
state of our knowledge of species ecology. These are all essential information needed to support
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model interpretations, as also stated in recent publications that review best practices in ecological
modelling (Aravjo et al. 2019, Zurell et al. 2020).

Article. Guillaumot et al. (2020c). Extrapolation in species distribution modelling. Application to Southern Ocean marine species.
Progress in Oceanography. 232



233



CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2.

APPENDIX 2.13. Distribution of presence-only records

Figure S2.13. Distribution of presence-only records of the six sea star species studied in this work. (A)
Acodontaster hodgsoni, (B) Bathybiaster loripes, (C) Glabraster antarctica, (D) Labidiaster annulatus, (E)
Odontaster validus, (F) Psilaster charcoti. Presence-only record duplicates that fell on a same grid-cell pixel were
removed from the analysis.

Article. Guillaumot et al. (2020c). Extrapolation in species distribution modelling. Application to Southern Ocean marine species.
Progress in Oceanography. 234
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APPENDIX 2.14. List of environmental descriptors selected to generate the models

Table S$2.14 List of species-specific environmental descriptors selected to generate final models after removal
from the initial dataset of spatial distance descriptors, descriptors that always contribute less than 1% to SDMs

( ) and collinear descriptors. Extracted from the list of 58 layers available at
https://data.aad.gov.au/metadata/records/environmental_layers ( ).
Acodontaster Bathybiaster Glabraster Labidiaster Odontaster Psilaster
hodgsoni loripes antarctica annulatus validus charcoti
depth depth depth depth depth depth

geomorphology

geomorphology

geomorphology

geomorphology

geomorphology

geomorphology

speed

current speed

current speed

current speed

sediments sediments sediments sediments sediments sediments
slope slope slope slope slope slope

roughness roughness roughness roughness roughness roughness

. mixed layer mixed layer mixed layer mixed layer mixed layer
mixed layer depth depth depth depth depth depth

seasurface current seasurface seasurface seasurface seasurface seasurface

current speed

current speed

seafloor current
speed

seafloor current
speed

seafloor current
speed

seafloor current
speed

seafloor current
speed

seafloor current
speed

ice cover mean

ice cover mean

ice cover mean

ice cover mean

ice cover mean

ice cover mean

chlorophyll a max chlorophyll a chlorophyll a chlorophyll a chlorophyll a chlorophyll a
- max max max max max
concentration . . . . .
[2005-2012] concentration concentration concentration concentration concentration
[2005-2012] [2005-2012] [2005-2012] [2005-2012] [2005-2012]
chlorophyll a chlorophyll a chlorophyll a chlorophyll a chlorophyll a chlorophyll a
. mean mean mean mean mean
mean concentration . . . . .
[2005-2012] concentration concentration concentration concentration concentration
[2005-2012] [2005-2012] [2005-2012] [2005-2012] [2005-2012]
. chlorophyll a . . . chlorophyll a
chlorophyll a min min chlorophyll a min | chlorophyll a min | chlorophyll a min min
concentration concentration concentration concentration concentration concentration
[2005-2012] [2005-2012] [2005-2012] [2005-2012] [2005-2012] [2005-2012]

POC amplitude

POC minimum

POC minimum

POC minimum

POC minimum

POC minimum

extreme events,
minimum values

extreme events,
average values

[2005-2012] [2005-2012] [2005-2012] [2005-2012] [2005-2012] [2005-2012]
POC minimum POC standard POC standard POC standard POC standard POC standard
[2005-2012] deviation deviation [2005- | deviation [2005- | deviation [2005- deviation
[2005-2012] 2012] 2012] 2012] [2005-2012]
Chlorophyll a Chlorophyll a Chlorophyll a
minimum minimum minimum

extreme events,
minimum values

Chlorophyll a
minimum
extreme events,
minimum values
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APPENDIX 2.15. Spatial cross-validation procedure

The cross-validation procedure consists in using a subset of the total dataset to train the model,
and the remaining part is used to test model predictions. In doing so, training and test data are
independent whenever generating the model, which improves the reliability of model evaluation
( )-

The selection of training and test subsets is often done randomly, and most of the time, 70% of
presence records are randomly chosen to train the model and 30% to test it (

). However, when presence-only records are aggregated in space, splitting data at random
would bias model evaluation and will inflate model performances. Splitting training and test data
following a defined spatial pattern was shown to improve the relevance of model evaluation, in a
context of aggregated data (

). Several methods were assessed and compared in
. Here, we tested and selected the ‘2-fold CLOCK’ method for models
performed for A. hodgsoni and P. charcoti (Fig. S2.15a) and the ‘6-fold CLOCK' method (Fig.
S2.15b) for other SDMs, based on the best AUC scores and percentage of correctly classified test
data.

180°

Figure S2.15. (a) ‘2-fold CLOCK’ method and (b) ‘6-fold CLOCK’ method. For each model replicate, the
geographic space is split into 2 and 6 areas respectively, and test (green) and training (pink) presence and
background data are selected in the defined areas. The model is built based on training data and model
predictions are evaluated using presence test data. One hundred model replicates are generated and the
average prediction calculated.
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APPENDIX 2.16. Multivariate Environmental Similarity Surface principle

Calibration on presence data

::> Interval [min, max]

:> Interval [min, max]
[:> Interval [min, max]

Presence-only

PROJECTION LAYER

MESS is calculated for each pixel

-> assess whether the environmental
conditions are outside the boundaries
defined above

Black pixels: model extrapolation

Figure S2.16. lllustrated principle of the Multivariate Environmental Similarity Surface approach.

In the ‘dismo’ R package ( ), the mess function calculates the value of the
MESS for each pixel of the rasterstack used for model projection (P). This rasterstack contains the
environmental conditions into which the model is projected.

In the first step explained by , the environmental conditions experienced by the
presence data are extracted, and the minimal and maximal values define the boundaries of each
descriptor (V).

1. Let min; be the minimum value of descriptor Vi over the reference point set, and similarly for
max;.

Then, the environmental conditions of the projection layer P are extracted and compared to these
minimal and maximal boundaries.

2. Let pi be the value of descriptor Vi at pixel P;.

3. Let fi be the percent of reference points whose value of descriptor Vi is smaller than p.

4. Then the similarity of P; with respect to descriptor Vi is:

(pi - min;) / (max; - min;) * 100 if =0

2*fiif 0<fi<50

2*(100 - f;) if 50 < fi < 100
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(maxi - pi) / (max; - min;) * 100 if fi = 100

5. Finally, the multivariate similarity of P; is the minimum of its similarity with respect to each
descriptor.

This calculation is then applied to each pixel P;.

The final value of the MESS represents how similar pixel values of each descriptor (V1, V2, ...) are
to the reference set of values defined by presence records. It allows negative values, and
whenever the MESS is negative, it corresponds to the situation when at least one descriptor has a
value that is outside the range of environments over the reference.

In this study, the MESS was estimated and all pixels for which the MESS value was negative were
considered as extrapolation and colored in black.

The MESS calculation was also adapted for to be able to estimate for each pixel
which descriptor is concerned with the extrapolation. The MESS was separately calculated for
each layer of the rasterstack P. Whenever the MESS score calculated for pixel P;jwas negative, it
was considered that the model extrapolates at that specific pixel due to the specific layer studied.
Results were compiled and the contribution of each descriptor to the extrapolation was assessed
(Appendix 2.17).
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APPENDIX 2.17. Descriptor contributions to the models and descriptors responsible
for extrapolation
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1. Depth 9. Ice cover mean
2. Geomorphology 10. Chlorophyll a max concentration [2005-2012]
3. Sediments 11. Chlorophyll a mean concentration [2005-2012]
4. Slope 12. Chlorophyll a min concentration [2005-2012]
5. Roughness 13. POC minimum [2005-2012]
6. Mixed layer depth 14. POC amplitude [2005-2012]
7. Sea surface current speed 15. POC standard deviation [2005-2012]
8. Seafloor current speed 17. Chlorophyll a min extreme events, minimum values
17. Chlorophyll a min extreme events, mean values

Figure S2.17.A. Influence of the different environmental descriptors on models (mean and standard
deviation values calculated on the the 100 model replicates), for Analysis #0 (black bars) and Analysis #1
(grey bars). Analysis #0: models were projected on the entire Southern Ocean area. Analysis #1: the
projection area was limited in depth according to each species distribution range (A. hodgsoni, L. annulatus,
O. validus until 1,500 m; B. loripes, G. antarctica, P. charcoti until 4,000 m).
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Figure S$2.17.B. Influence of the different environmental descriptors on extrapolation (mean values
calculated on the the 100 model replicates), for Analysis #0 (dark blue bars) and Analysis #1 (light blue
bars). Analysis #0: models were projected on the entire Southern Ocean area. Analysis #1: the projection
area was limited in depth according to each species distribution range (A. hodgsoni, L. annulatus, O. validus
until 1,500 m; B. loripes, G. antarctica, P. charcoti until 4,000 m).
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APPENDIX 2.18. Influence of the chronological addition of presence-only records
on extrapolation area

Table $2.18. Evolution of model performances with the increase of data (chronological addition of presence-
only records, by 5-year periods, from 1980 to 2016). Pres. NB: number of presence-only records used to
generate the model; AUC: Area Under the Curve; Moran | index: spatial autocorrelation scores measured on
model residuals (mean and standard deviation values are given). The maximal number of presence-only
records present in Table 2.9 may not be reached here because some collection dates remain unknown.

Species Year Pres. AUC Correctly classified Moran | Extrapolation | Extrapolation (%
NB test data (%) (% total area) suitable area)
Acodontaster 1980 85 0.843 + 0.06 422 +21.6 0.24 + 0.06 73.59 579+96
hodgsoni
1985 147 0.836 £ 0.05 455+ 17.5 0.14 £ 0.04 52.2 42575
1990 170 0.822 £ 0.07 43.7+22.9 0.13+0.03 445 39.4+96
1995 171 0.835+0.05 48.1 £ 18.7 0.13+0.03 445 38.6+8.7
2000 180 0.827 £ 0.06 443 +19.9 0.12£0.03 43.5 35+8.1
2005 197 0.836 £ 0.05 48.9 +20.7 0.11 £ 0.04 43.5 352186
2010 252 0.829 £ 0.06 453+ 16.9 0.10 £ 0.03 43 31481
2016 280 0.821 £0.06 479+ 153 0.10 £ 0.02 42.9 293+7.3
Year Pres. AUC Correctly classified Moran | Extrapolation | Extrapolation (%
NB test data (%) (% total area) suitable area)
Bathybiaster 1980 193 0.860 + 0.05 61.6 +16.2 0.13+0.09 30.9 29.2+11.1
loripes
1985 252 0.855 £ 0.05 66.6 + 14.5 0.12+0.07 21.6 27.7+6.6
1990 269 0.849 £ 0.04 70 £13.1 0.10 £ 0.06 21.6 27.7+6.7
1995 286 0.854 £ 0.03 69.7 £ 13.6 0.10 £ 0.06 18.6 26.3+6.4
2000 299 0.850 £ 0.03 71.8+13.3 0.10 £ 0.05 18.5 252+538
2005 349 0.869 £+ 0.04 74 +12.6 0.10 £ 0.04 18.2 254+52
2010 480 0.878 £ 0.03 77.8+ 11.3 0.09 £ 0.03 18.2 22143
2016 521 0.879 £ 0.03 80.7 £ 9.1 0.10 £ 0.03 18.2 222+43
Year Pres. AUC Correctly classified Moran | Extrapolation Extrapolation
NB test data (%) (% total area) | (% suitable area)
Glabraster 1980 296 0.895+0.03 69.2+14.6 0.14 £ 0.06 44 4 30485
antarctica
1985 374 0.894 £ 0.04 76.1+£10.7 0.10 £ 0.04 30.3 24.8+4.6
1990 421 0.900 £ 0.03 78.3+11.1 0.11 £ 0.04 30.1 25.8+6.1
1995 439 0.894 £ 0.03 79.7 £10.5 0.10 £ 0.03 30 23.9+52
2000 472 0.900 £ 0.02 80 +10.7 0.10 £ 0.03 30 23.9+4.8
2005 535 0.907 £0.02 814173 0.11+£0.03 241 22.7+4.6
2010 719 0.910 £0.02 84174 0.10 £ 0.03 23.9 189+4
2016 804 0.914 £0.02 83.1+6.4 0.10 £0.03 23.9 19.2+3.8
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Year Pres. AUC Correctly classified Moran | Extrapolation | Extrapolation (%
NB test data (%) (% total area) suitable area)
Labidiaster 1980 162 | 0.900 £ 0.04 61.6 £26.9 0.17 £0.08 771 56.2 +11.9
annulatus
1985 175 | 0.902 £ 0.04 64.4+21.8 0.17 £0.07 72.2 524 +£12.5
1990 183 | 0.905+0.03 66.2 +24.1 0.16 £ 0.07 70.5 47.7+£10.3
1995 192 | 0.897 £0.03 63.6 £20.8 0.16 £ 0.07 70.5 48.6 £ 14
2000 194 | 0.903 £0.03 71.2+20 0.16 £ 0.07 70.5 454 +11.7
2005 218 | 0.903 £0.04 63.4 £ 16.1 0.18 £ 0.09 63.3 475+11.5
2010 304 | 0.913+0.05 60.7 £ 18 0.18 £ 0.09 60.5 448 £ 14
2016 330 | 0.921+0.03 62.4+15.8 0.17 £0.08 59.5 41.5+12.1
Year Pres. AUC Correctly classified Moran | Extrapolation | Extrapolation (%
NB test data (%) (% total area) suitable area)
Odontaster 1980 163 | 0.860 £ 0.06 60.1 + 16.6 0.17 £0.10 62.8 52.4+7.5
validus
1985 191 0.883 £ 0.06 66.2 + 16 0.15+0.08 61.6 49.9+6.9
1990 198 | 0.875+0.07 61.8+17.7 0.16 £ 0.07 58.9 447 £8.2
1995 200 | 0.873+0.07 66.8+ 16.1 0.16 £ 0.08 58.9 442 +7.3
2000 222 | 0.856 +0.08 63.3+15.4 0.13 £0.05 58.1 45.7+94
2005 283 | 0.922 +0.03 50.7 £23.5 0.13£0.05 55.5 425+6
2010 306 | 0.920 +0.02 51.1+24.9 0.12 £0.05 54.8 38916.9
2016 321 0.914 £ 0.02 53.1+24.1 0.13£0.05 52.6 376+75
Year Pres. AUC Correctly classified Moran | Extrapolation | Extrapolation (%
NB test data (%) (% total area) suitable area)
Psilaster 1980 134 | 0.847 £0.05 50.4 +24.2 0.11 £0.07 46.7 394+72
charcoti
1985 182 | 0.848 £0.05 76.4 £10.6 0.10 £ 0.06 36.9 37.8+3.9
1990 200 | 0.844 +£0.05 81.4+10.7 0.10 £ 0.06 36.3 39.5+3.9
1995 203 | 0.851+0.04 79.7+11.8 0.12 £ 0.07 36.3 38.1+4.3
2000 220 | 0.861+0.04 816171 0.10 £ 0.05 36.3 374145
2005 257 | 0.867 £0.03 79.5+8.1 0.10 £ 0.05 36.3 36.4+4.1
2010 321 0.878 £ 0.03 83.5+7.1 0.10 £ 0.04 35.8 33.8+4.2
2016 353 | 0.891+0.02 82+7.1 0.10 £ 0.04 35.7 329142
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APPENDIX 2.19. Influence of the addition of presence-only records on extrapolation

area

Table S$2.19. Evolution of model performances with a random increase of data number (10 to 100% of the
available presence datasets, randomly sampled). Measured average and standard deviation values. Pres.
NB: corresponding number of presence-only records used to generate the model; AUC: Area Under the
Curve; Moran | index: spatial autocorrelation scores measured on model residuals. The cells with no figure
information correspond to models that could not be generated due to a too low number of presence records.

Species % | Pres. AUC Correctly classified Moran | Extrapolation Extrapolation
NB test data (%) (% total area) | (% suitable area)
Acodontaster | 10 30 - - - - -
hodgsoni 20 60 ] ] ] ] ]
30 89 - - - - -
40 119 0.808 £ 0.05 458+ 19.4 0.10 £ 0.04 56.3 £5.1 43179
50 149 0.821 £ 0.04 46.2 £ 16.2 0.10 £ 0.03 52+4.4 40495
60 179 | 0.812+0.05 46.5+ 16.9 0.10 £ 0.03 48+3.4 36+9
70 209 0.818 £0.05 451 +16 0.10 £ 0.02 455+29 32377
80 238 0.821 £0.05 45.8 £ 18.1 0.09 £ 0.02 438 £1.9 30.7 £8.3
90 268 0.832 +0.05 45+ 17.8 0.10 £ 0.02 42+1.5 28.1+6.4
100 298 0.823 +0.05 455+ 18.1 0.09 £ 0.02 40.6 275185
% Pres. AUC Correctly classified Moran | Extrapolation Extrapolation
NB test data (%) (% total area) | (% suitable area)
Bathybiaster | 10 59 - - - - -
loripes 20 18 - ] ] - -
30 177 - - - - -
40 236 0.863 + 0.06 73.8+12.5 0.10 £ 0.04 3729 31.5+73
50 296 0.869 + 0.04 75.5+12 0.10 £ 0.04 31477 284 +7.2
60 355 0.876 £ 0.03 75.6+12.8 0.09 + 0.04 274 +6.4 254 +5.7
70 414 | 0.881+0.03 75.7+ 12.6 0.09 + 0.03 23.7+3.8 25+5.6
80 473 0.888 +0.02 76.8£11.7 0.10 £ 0.04 21.7+34 243 +5.6
90 532 | 0.882+0.03 76.5+12.6 0.09 £ 0.02 19.5+1.9 224 +55
100 591 | 0.887 +0.03 78.4 + 11 0.09 £ 0.02 18.2 20.8+4.8
% Pres. AUC Correctly classified Moran | Extrapolation Extrapolation
NB test data (%) (% total area) | (% suitable area)
Glabraster 10 85 - - - - -
antarctica 20 175 0.872 +0.04 82.7+10.3 0.12 +0.05 50.9+11.2 40277
30 255 0.883 +0.03 82.8+9.3 0.11+0.04 426 +9.2 345+58
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40 340 0.889 +0.03 84.5+8.3 0.11 £ 0.04 38479 29964
50 426 0.896 + 0.03 83.7+7.38 0.11+£0.04 33+59 27657
60 511 0.899 + 0.02 81.2+8.7 0.11+£0.04 30.1+53 25+55
70 596 0.903 + 0.02 81.2+79 0.10 £ 0.03 289+ 5.1 229+ 51
80 681 0.908 +0.02 80.7 £ 8.5 0.11+£0.03 27.1+3.3 213145
90 766 0.913 £0.02 80.2+£8.2 0.10 £ 0.02 25427 19.6 +4.3
100 851 0.915 +0.01 81877 0.10 £ 0.03 23.9 18.64 £3.5
% Pres. AUC Correctly classified Moran | Extrapolation Extrapolation
NB test data (%) (% total area) | (% suitable area)
Labidiaster 10 38 - - - - -
annulatus 20 75 ] ] ] ] ]
30 113 - - - - -
40 150 0.850 £ 0.12 59.1+23.2 0.17 £ 0.08 69.8+3.8 46.7 £ 15.4
50 188 0.897 + 0.06 58.1£20 0.17 £ 0.09 67.4+£3.5 481+ 145
60 225 0.898 + 0.05 55.4 £19.4 0.15+0.07 64.9 £ 3.1 455+ 14.8
70 263 0.903 £ 0.05 59.7 £ 18.7 0.18 £ 0.1 63125 442 +15.6
80 300 0.918 £0.03 58.4 £ 20 0.16 £ 0.08 61.2+1.6 39.7 £ 131
90 338 0.923 +0.03 57.7£18.7 0.15+0.06 604+ 1.3 389+ 141
100 375 [ 0.918+0.03 57.98 + 20 0.15 + 0.06 59.5 38.7+14.6
% Pres. AUC Correctly classified Moran | Extrapolation Extrapolation
NB test data (%) (% total area) | (% suitable area)
Odontaster | 10 33 - - - - .
validus 20 7 ] ] ] ] ]
30 | 101 - - - - -
40 135 | 0.873£0.05 55.6 + 25.4 0.13 £ 0.08 63.9+4.1 54.3+95
50 169 | 0.878+0.05 58.3 + 21.1 0.13 £ 0.06 60.5+ 3.5 499+85
60 202 | 0.896 +0.03 52 +23.3 0.14 £ 0.06 58.3+3 453+9.2
70 236 0.899 + 0.04 54.4 £23.2 0.13+£0.06 56 + 2.5 449 + 8.1
80 270 | 0.900 +0.03 55.9+22.8 0.13+0.04 547 +22 38.9+6.7
90 303 0.911 £0.03 52.8 £23 0.12£0.05 527+1.4 38177
100 337 | 0.908 +0.03 57.68 + 21 0.12 £ 0.04 51.5 38.3+6.97
% Pres. AUC Correctly classified Moran | Extrapolation Extrapolation
NB test data (%) (% total area) | (% suitable area)
Psilaster 10 35 - - . i} )
charcoti 20 71 0.837 £ 0.06 8291147 0.09 + 0.06 70.8 £12.1 55779
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30 106 | 0.844 +0.05 84.5+97 0.10 + 0.06 58+ 114 49+5.8

40 141 0.861 £0.04 84.3+9.5 0.11 +0.06 53.3+10.3 45.9+57
50 176 | 0.863 +0.04 82.4+90.38 0.11 +0.06 48 +9.7 41.9+53
60 212 | 0.870+0.03 83.6+ 8.8 0.11+ 0.06 44.1 + 8.1 39.7+4.38
70 247 | 0.875+0.03 82+8.6 0.10 £ 0.04 41.3+6.3 38+4.8

80 282 | 0.876 £0.03 83.2 £7.6 0.10 £ 0.05 40.1+£6.3 36.7 £ 5.1
90 316 | 0.885+0.02 82.2+8.1 0.10 £ 0.04 37 £1.65 344 +51
100 353 | 0.885+0.02 83 +£6.6 0.09 £ 0.04 35.78 33.2+51
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CHAPTER 3 INTEGRATED APPROACHES

Chapter 3 focusses on integrated approaches. Coupling SDM predictions with experimental
results, in situ observations or results from other modelling approaches that detail species
physiological tolerance, migratory potential or biotic interactions was shown to improve the
relevance of species niche estimation. Such methods have however been rarely applied to
Southern Ocean marine case studies. In this chapter, we studied the integration of SDM with
physiological information.

DEB models characterise the species fundamental niche, by explicitly highlighting the
influence of abiotic factors on species physiology. On the other hand, SDMs estimate the
species realised niche. SDMs are indeed implemented using presence records, hence
providing an implicit assessment of the influence of abiotic conditions but also dispersal
barriers and biotic interactions on species distribution.

This chapter illustrates three case examples.

*The first study assessed the potential of the Patagonian crab Halicarcinus planatus
(Fabricius, 1775) to survive in the Western Antarctic Peninsula using two approaches:
experimental data that characterise the physiological boundaries of larvae and adult to
temperature and salinities and SDMs that simulate species occupied space in present and
future environmental conditions.

*In the second analysis, the case study of the sea urchin Sterechinus neumayeri (Meissner,
1900), distributed all around the Antarctic continent, was used to compare DEB model spatial
projections and SDM predictions. Comparisons were performed for contrasting environmental
conditions and future simulations.

*The third analysis used data from a long-term observing network located in the Kerguelen
Islands, to implement for the first time in the Southern Ocean the integration of DEB and SDM
models to predict the distribution of an endemic sub-Antarctic sea urchin, Abatus cordatus
(Verrill, 1876) as a response to environmental drivers. We compared the performance of
simple SDM and integrated approaches to predict A. cordatus distribution under seasonal
variations. Two integrated approaches were studied and performed by either (1) including the
spatial projection of the DEB model as an input layer inside the SDM or (2) using a Bayesian
inference procedure to use DEB model outputs as priors of the Bayesian SDM.

*Guillaumot C/ Lépez-Farran Z (co-firstauthorship), Vargas-Chacoff L, Paschke K, Duliére V, Danis
B, Poulin E, Saucéde T and Gerard K (2021). Current and predicted invasive capacity of Halicarcinus
planatus (Fabricius, 1775) in the Antarctic Peninsula. Global Change Biology. 00:1-18.

*Fabri-Ruiz S, Guillaumot C, Aglera A, Danis B and Saucéde T (2021). Using correlative and
mechanistic niche models to assess the sensitivity of the Antarctic echinoid Sterechinus neumayeri
(Meissner, 1900) to climate change. Polar Biology.

*Guillaumot C, Buba Y, Belmaker J, Fourcy D, Danis B, Dubois P and Saucéde T (submitted).
Simple or hybrid ? Next generation ecological models to study the response of Southern Ocean
marine species to changing environmental conditions. Diversity and Distributions.
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Is the southern crab Halicarcinus planatus (Fabricius, 1775)
the next invader of Antarctica?
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Global Change Biology, accepted April 17t 2021.

Abstract

The potential for biological colonisation of Antarctic shores is an increasingly
important topic in the context of anthropogenic warming. Successful Antarctic
invasions to date have been recorded exclusively from terrestrial habitats. While
non-native marine species such as crabs, mussels and tunicates have already been
reported from Antarctic coasts, none have as yet established there. Among the
potential marine invaders of Antarctic shallow waters is Halicarcinus planatus
(Fabricius, 1775), a crab with a circum sub-Antarctic distribution and substantial
larval dispersal capacity. An ovigerous female of this species was found in shallow
waters of Deception Island, South Shetland Islands, in 2010. A combination of
physiological experiments and ecological modelling was used to assess the
potential niche of H. planatus and estimate its future southward boundaries under
climate change scenarios. We show that H. planatus has a minimum thermal limit of
1°C, and that its current distribution (assessed by sampling and niche modelling) is
physiologically restricted to the sub-Antarctic region. While this species is presently
unable to survive in Antarctica, future warming under both ‘strong mitigation’ and ‘no
mitigation’ greenhouse gas emission scenarios will favour its niche expansion to the
Western Antarctic Peninsula (WAP) by 2100. Future human activity also has
potential to increase the probability of anthropogenic translocation of this species
into Antarctic ecosystems.

Key-words
Niche modelling, Southern Ocean, climate change, thermotolerance, survival,
establishment, reptant crab, non-native species.
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1. INTRODUCTION

Biological invasions are an important component of global change, and one of the most critical
global threats to native biodiversity ( ). According to ( ), a non-
native species becomes an invasive species when a set of individuals is able to traverse natural
barriers (whether geographical, environmental, or ecological) and subsequently establish in new
habitats. While numerous anthropogenic activities can promote invasions, climate change may
represent a particularly potent threat to natural ecosystems ( ). Both the rate
and dimension of biological invasions are likely to be influenced by global warming (

). Understanding the mechanisms and routes of such range shifts may help facilitate the
design of strategies for controlling or preventing invasion ( ).

Notwithstanding the wide expanse of Southern Ocean waters isolating the southern tip of South
America from other land masses, several non-native species have been reported in the Antarctic

over recent decades ( ). These examples include the invasive grass
Poa annua ( ), seeds of the toad rush
Juncus bufonius ( ), the invasive mosquito Trichocera maculipennis (

), and several South-American invertebrates (e.g. insects, worms, freshwater
crustaceans; ). Non-native species have also been

reported in marine habitats and in the shallow subtidal zone, in particular in the south Shetland
Islands (i.e. decapods and bivalves) and East Antarctica (i.e. bryozoans, hydrozoans, and
tunicates) ( ). However, there is as yet
no evidence for any non-native marine species having established in Antarctica.

Reaching Antarctic coasts requires dispersal across vast and deep biogeographical barriers that
have isolated the continent for millions of years, including traversal of the westward flowing
Antarctic Circumpolar Current (ACC) that apparently impedes latitudinal dispersal (

). The extreme cold temperatures of Antarctic waters (< +2°C) also imply a
strong ecophysiological constraint to the survival and development of exotic marine species that
have not adapted to near-zero and subzero temperatures (

) that can reach down to -1.85°C in winter. Consequently, Antarctic marine communities
have been considered among the most isolated and endemic on Earth and invasion by non-native
species as unlikely ( ).

Human activities such as fisheries, tourism and scientific operations rely on direct maritime traffic
between Antarctica and lower latitude coasts, including potential transport of alien organisms
through ship hull fouling and larval propagules via ballast water ( ). With
more than 50,000 tourists visiting the same west Antarctic spots each southern summer (

), and 4,000 scientists working in Antarctica during the summer and 1,000 in winter
( ), tourism and science represent the main vectors of sub-Antarctic
propagule pressure over Antarctic communities (

). Consequently, the records of non-native species in Antarctica are increasing in
number, with potential for establishment now primarily constrained by ecological and physiological
limitations. As the climate continues to warm, the potential for successful marine invasions into
Antarctica is projected to increase substantially (

).

The Western Antarctic Peninsula (WAP) is the Antarctic region where the strongest climate
warming has been recorded in the continent over the last 50 years (

). Sea-water and air temperatures have increased by +1°C and +7°C
respectively in the past half-century ( ), with particularly
pronounced increases in winter air temperatures ( ) and
corresponding reductions in sea-ice cover (

). Global climate change may cause typically sub-zero Antarctic
waters to warm up to (and beyond) zero, potentially providing suitable conditions to the survival of
non-native species along Antarctic coasts ( ).
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In February 2010, an ovigerous female of Halicarcinus planatus (Fabricius, 1775) (Brachyura,
Hymenosomatidae) was found alive in shallow subtidal water of Deception Island (WAP;
). Previous to this record, reported this species in Macdougal Bay,
South Orkney Islands; however, the reliability of this occurrence has been questioned, considering
its circum-sub-Antarctic distribution (
)- Halicarcinus planatus is the only hymenosomatid crab that inhabits shallow waters (
) of southern South America and the sub-Antarctic Falkland/Malvinas,
Marion, Crozet, Kerguelen and Macquarie Islands (
). This small crab (carapace width up to 15
mm and 20 mm for female and male, respectively, in Punta Arenas; Fig. 3.1) is an opportunistic
feeder ( ) commonly found sheltered under rocks in the intertidal and subtidal
zones, in between holdfasts of the giant kelp Macrocystis pyrifera or sheltered in hydrozoans and
mussel colonies (

Figure 3.1. Male (a) and female (b) specimens of Halicarcinus planatus (Fabricius, 1775) collected in the
Magellan Strait. Scale: 1 cm. Photograph credit to C. Ceroni and K. Gérard.

The potential of marine taxa to establish in Antarctic waters is likely heavily constrained by
ecological and physiological adaptations. H. planatus has a strong dispersal potential mediated by
an extended planktonic larval stage (

), lasting between 45 and 60 days (at temperatures of 11-13°C and 8°C respectively, in the
laboratory) prior to benthic settlement ( ). This species
has the physiological capacity to withstand low temperatures. Most decapod taxa exposed to cold
waters experience increased magnesium ion concentration in the hemolymph ([Mg?*]u.), reducing
metabolic rates and aerobic activity, potentially leading to death (

). However, H. planatus has the capacity to

overcome these issues by reducing [Mg?u. ( ), providing capacity for survival
in cold waters like the Kerguelen Islands, where winter seawater temperatures range between +1.1
and +3.0°C ( )- A broad analysis by considering its broad

sub-Antarctic distribution, high dispersal potential, and ability to live at low temperatures,
concluded that H. planatus is the most likely future decapod invader of Antarctic shallow waters.

Following the recent discovery of a living specimen of H. planatus in Deception Island, we evaluate
in this study the capacity of the species to settle and spread in the WAP and adjacent islands by
combining experimental designs and a niche modelling approach. Correlative niche modelling
approaches have long proved useful to project the distribution range of species for conservation
purposes under stable environmental conditions ( ). However, in the
context of climate change, ecophysiological data are required to assess the capacity of organisms
to survive under changing environmental conditions. In this study, we assessed experimentally the
physiological capacity of H. planatus to tolerate extreme cold conditions in laboratory, and we
evaluated the probability of the species to expand its distribution range southward using a Species
Distribution Model (SDM). The modelled distribution of H. planatus was first projected under

253



INTEGRATED APPROACHES CHAPTER 3.

current climatic conditions in order to evaluate its distribution range in sub-Antarctic and Antarctic
regions. Then the species distribution was modelled under the ‘strong mitigation’ and ‘no
mitigation’ scenarios (RCP 2.6 and RCP 8.5 respectively) for 2050 and 2100 to determine the
probability that H. planatus will colonize Antarctic shallow-water habitats in the future. RCP
scenarios assess the evolution of the atmospheric radiative forcing towards 2300, and correspond
to the level of the projected radiative forcing in 2100, expressed in W/m2 (RCP 2.6 corresponds to
2.6 W/m? in 2100; https://sos.noaa.gov/datas ets/catal og/datasets/air?order ing=name).

2. MATERIAL AND METHODS

2.1. Experimental design

Ethical Protocol.

All experiments were performed in compliance with bioethics guidelines established by the
Comisién Nacional de Ciencia y Tecnologia de Chile (CONICYT) and the CICUA from Universidad
de Chile (Comité Institucional de Cuidado y Uso de Animales).

Thermotolerance experiments.

One hundred and twenty adult specimens of H. planatus were collected alive in the subtidal zone
by SCUBA diving at Rinconada Bulnes (RB) (53°35'49.91"S, 70°56'5.19"W, south to Punta
Arenas, Chile) on April 9, 2018. Individuals were transported to the IDEAL-CENTER laboratory
(Punta Arenas) and distributed in six containers for the experiment. In each container (Appendix
3.1), 15 females and five males were isolated individually in a 1-dm® glass jar of seawater
containing a 2-cm-long PVC tube (2.5 cm diameter). This unequal sample size between gender
reflected to the disproportional sex ratio in nature ( ), at
the time of collection, 30% of the crabs were males and 70% were females. A plastic container of
seawater was used for water replacement. Each jar and container were aerated and temperature
was controlled by a cooler exchanger (Alpha RA12 and RA8, Lauda- Koenigshofen®, Germany).
Individuals were acclimated for 15 days with temperature, salinity and photoperiod adjusted to the
sampling location (9°C, 30 PSU, 11hrs light/13hrs dark, on April 9, 2018). Individuals were fed
every four days with thawed and chopped mussels and polychaetes. The next day, 30% of
seawater was removed from each jar, sucking the bottom to eliminate faeces and food debris.
Recipients were then refilled with clean seawater at the exact same temperature and salinity from
the plastic seawater container. The latter was then refilled with new seawater, which had the time
to reach the specific temperature before the next refill. After acclimation, temperature was reduced
by 0.5°C every day, until it reached a threshold value set at 5°C (control; minimal seawater
temperature in Punta Arenas), 2°C, 1°C, 0°C, -1°C or -1.8°C, depending on the experiment, which
was conducted for 90 days following ( )- The different temperature
threshold values used in the experiment correspond to subtidal temperatures recorded in Fildes
Bay (62°12'11.95"S 58°56'37.00"W; King George Island, South Shetland Islands, WAP), which
ranged between -1.9°C and 2.1°C; summer average 1.2°C (-0.2°C to 2.1°C) and winter average -
1.6°C (-1.9°C to -1.1°C) in 2017 (data from IDEAL-CENTER, published by ).
The 90 days simulate the duration of winter. Survival was checked each morning, and dead
specimens were removed and preserved in 96% ethanol.

Salinity and larval experiments.

To assess survival at different salinities, adult individuals of H. planatus were collected at the same
location (RB) on July 5, 2018, transported to the laboratory and separated in containers. Eighteen
females and four males were isolated in a recipient of 10-dm? filled in with seawater. After a 15-day
acclimation period at the same temperature, salinity and photoperiod as the sampling location
(5°C, 30 PSU, 8:16 L:D), individuals were submitted to different salinities of 30 PSU (control 1), 23
PSU, 18 PSU, 11 PSU and 5 PSU for 39 days at 5°C. In parallel, some individuals submitted to
natural 18-PSU seawater collected in Skyring Sound (52°33'48.07"S, 71°34'15.54"W) were used
as a second control. The previously detailed protocol for feeding and cleaning was followed.
Survival was checked every morning and dead specimens were removed and preserved in 96%
ethanol.
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During the salinity experiment, at 30 PSU, some individuals released larvae which were
subsequently collected and placed in a 1-dm? glass jar (200 larvae in each) filled with seawater at
5°C, 2°C and 1°C for 12 days. Crab larvae were fed daily with newly hatched nauplii. Their survival
was checked on days 1, 3, 6, 8, 10 and 12 and on the cleaning day which consists in the complete
seawater replacement. Dead individuals were removed and preserved in 96% ethanol.

2.2. Species Distribution Modelling

Species Distribution Models (SDM) are used to project the distribution of organisms based on the
statistical analysis of spatial relationships between environmental conditions and species records
( )- SDMs have been widely used in the past
decades for various applications among including assessing species potential distribution (

) and evaluating potential changes in
predicted suitable areas under environmental shifts (

2.3. Occurrence dataset

The study had a limited geographical extent where occurrence records have been reported
(Longitude: 70.5°E to 75.5°W, Latitude: 36°S to 70.5°S). Presence and absence data were
collected during different sampling expeditions carried out between 2015 and 2019 (PROTEKER 1,
4,5 and 6, INACH ECA 53, 54 and 55), obtained from collaborators, and retrieved from I0OBIS and
GBIF databases, and from the scientific literature (Appendix 3.2). The georeferencing of each
occurrence was verified and for this study repeated geographical points were removed; the
identification of collected specimens was checked following current taxonomy ( ).
Occurrences located north of 34°S in Chile were not considered, since these points were outside
the distribution range of the species and could not be corroborated.

A DarwinCore-compliant dataset was built using presence and absence data of H. planatus
occurring on sub-Antarctic islands and South America between 1948 and 2019. Four types of
records were included: individualized by specimen, by groups, records obtained from bibliographic
reviews and absence records. The dataset was published in GBIF ( ).

Distribution models were built using 314 presence records of both adults and larvae, and 57
absence records (Fig. 3.2, Appendix 3.2).
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Figure 3.2. Presence (red dots) and absence (yellow dots) records of Halicarcinus planatus in the Southern
Ocean used in the present study.

2.4. Environmental datasets

The distribution of H. planatus was modelled using 16 environmental parameters as descriptors of
the crab habitat (Table 3.1). Depth and its derivatives (slope and roughness) were taken from
GEBCO (Table 3.1). Other descriptors were compiled from the Bio-ORACLE marine layers dataset
and obtained from pre-processed global ocean re-analyses, combining satellite and in situ
observations at regular two- and three-dimensional spatial grids ( )- Minimal,
maximal and mean values were used as descriptors and combined as suggested in the literature

). Environmental layers provide average monthly values for the
present decade [2000-2014] at a spatial resolution of 5 arc-minutes (about 8 x 8 km) and describe
monthly averages for the period 2000-2014.

Species distribution was also modelled according to two greenhouse gas emission scenarios, RCP
2.6 and RCP 8.5 scenarios for future decades 2040-2050 and 2090-2100 ( ). Maps of
projected changes in ocean conditions were downloaded from Bio-ORACLE (https:/www.bio-
oracle.org/index.php; Table 1). The RCP 2.6 scenario (Appendix 3.3) predicts an increase of mean
seafloor temperatures of up to +0.7°C along the Argentinian coasts by 2100, +1.3°C in the Weddell
Sea region, and +1.3°C on the northern Kerguelen Plateau. The RCP 8.5 scenario (Appendix 3.3)
for decade 2040-2050 predicts that seafloor waters will warm up by +1 °C along the southern
South American coasts and in the Weddell Sea, and for decade 2090-2100 predicts an increase of
seafloor mean temperatures of up to +4 °C along the Argentinian coasts, +0.5 to +1 °C in the
WAP, up to +3 °C on the northern Kerguelen Plateau and a predicted decrease of -0.5 to -1 °C in
insular regions such as South Georgia and the South Orkney lIslands. Salinity is predicted to
decrease in the sub-Antarctic and Antarctic regions from -0.1 to -0.2 PSU unit for 2050 and 2100
scenarios respectively, with close tendencies between RCP 2.6 and RCP 8.5. Sea-ice thickness is
predicted to reduce in some areas from a few centimetres to 0.6 m in RCP 2.6 scenario and up to
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1.2 m for RCP 8.5 scenario, resulting in an expansion of ice-free areas in the Weddell Sea region
(Fig. S3.3.A).

Primary production and oceanographic current speed for decades 2040-2050 and 2090-2100 were
considered unchanged and similar to present-day conditions as there were no predictions available
for these parameters.

Table 3.1. Environmental descriptors used for modelling and sources. Spatial resolution set at 5 arc minutes

(around 8 km).

Descriptors Present Future Source

Depth - - GEBCO!'

Roughness - - Modified from Depth layer,
‘raster’ R package function terrain

Slope - - Modified from Depth layer,
‘raster’ R package function terrain

Seafloor mean temperature 2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle?

Seafloor min temperature 2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle?

Seafloor max temperature 2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle?

Seafloor mean salinity 2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle?

Seafloor min salinity 2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle?

Seafloor max salinity 2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle?

Seafloor mean primary productivity 2000-2014 Same as present conditions BioOracle?

Seafloor min primary productivity 2000-2014 Same as present conditions BioOracle?

Seafloor max primary productivity 2000-2014 Same as present conditions BioOracle?

Ice mean thickness 2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle?

Ice min thickness 2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle?

Ice max thickness 2000-2014 RCP 2.6 and 8.5 for 2050 and 2100 BioOracle?

Seafloor mean current 2000-2014 Same as present conditions BioOracle?

1. https://download.gebco.net/, accessed February 2020
2. https://www.bio-oracle.org/index.php, accessed February 2020

In order to spot and remove extrapolation errors, the Multivariate Similarity Environmental Estimate
(MESS, ) was computed based on the presence records (

). The MESS provides an estimate of the range of environmental conditions
under which species occurrences were found and used to calibrate the model. It is then used to
select areas where model projections will be calculated, dismissing areas where environmental
conditions are not met, and where the model extrapolates. This was helpful to prevent from
projecting the model far from the conditions in which the species can be found (noteworthy for
depth).
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2.5. Model calibration

Species distribution models were generated using the Boosted Regression Trees (BRT) algorithm
with the following settings, learning rate 0.005, bag fraction 0.9 and tree complexity 4. These
settings minimize the model predictive deviance according to the tests generated following

(Appendix 3.4). The R package ‘gbm’ was used to run the model (

). Models were calibrated using presence and absence data. Modelling performance
was assessed using a spatial random cross-validation procedure adapted from

for model calibration using absence records (instead of background records).

Also considering the limited number of occurrence records available and their patchy distribution at
broad spatial scale, the occurrence dataset was randomly split into five spatial parts, with 80%
(four parts) of the dataset used as a training subset and, 20% (one part) used as a test subset
( ). The procedure was repeated 20 times to generate a set of 100 model replicates.
The proportions of presence and absence data falling into areas predicted as suitable and
unsuitable for the species distribution was evaluated to assess modelling performance. Modelling
performance was also assessed using the Area Under the Curve (AUC, ),
the True Skill Statistics (TSS, ) and the Biserial Correlation metrics (COR,

).
2.6. Model outputs

Model predictions were projected on the entire study area (Longitude: -76°E to 178°W, Latitude: -
35°S to -68°S) with a focus on areas where the species is mainly reported presently and where it
may be expected in the future, in southern South America, the Scotia Arc and the WAP, the WAP
alone, and the Kerguelen Plateau.

3. RESULTS

3.1. Survival rate in the temperature experiment

One individual died the next day after reaching the target temperature in the -1.8°C temperature
experiment. Survival rate at -1.8°C reached 0% on day 11. Survival reached 0% on day 15 at -1.0
°C. Survival rate at 0 °C was 52% on day 27 and 0% on day 59. Survival rates were 60% at 1°C,
75% at 2°C and 95% at 5°C on day 90 (Fig. 3.3).

258



INTEGRATED APPROACHES CHAPTER 3.

1004

75
Treatment
_ -1.8°C
§ -1°C
2 504 0°C
c
a 1°c
- 2°C
g 5°C
254
04
0 25 50 75

Experimental days

Figure 3.3. Survival rates of adults of Halicarcinus planatus at different temperatures over 90 days.
3.2. Survival rate of adults and larvae in the salinity experiment

Survival rate in the salinity experiment at 5 PSU was 0% on day 2. Survival rate at 11 PSU was 0%
on day 14. Survival rate was 50% on day 36 and 36% on day 39 at 18 PSU. Interestingly, survival
rate was over 50% (67%) for the experiment at 18 PSU performed with seawater from Skyring
Sound. Survival rates were 95% on day 39 at 25 PSU and 30 PSU (Fig. 3.4).

Females collected on July 5 were ovigerous and released larvae at the end of August at 5 °C, 30

PSU and 25 PSU. The survival rate of larvae at 1 °C was 62.5% on day 12. Survival rates at 2 °C
and 5 °C were 85% and 92.5%, respectively, on day 12 (Fig. 3.5).
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Figure 3.4. Survival rates of adults of Halicarcinus planatus at different salinities over 39 days.
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Figure 3.5. Survival rates of larvae of Halicarcinus planatus for 12 days at different temperatures.
3.3. SDM predictions under current environmental conditions [2000-2014]

SDMs showed high AUC scores of 0.947 + 0.059, TSS of 0.795 + 0.123 and COR of 0.873 %
0.070. Correctly classified test data also reach high scores (89.9 + 0.3 % for presence test records
and 92.9 + 2.2 % for absence test records). The proportion of areas where the model extrapolates
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is very high (86.3%, Fig. 3.7) highlighting again the relevance of using the MESS method as
recommended by .

Mean sea-ice thickness (40.1 £ 3.2%) and seafloor temperatures are the two main drivers of the
species distribution (mean, maximal, and minimal seafloor temperatures with 37.8 + 3.7, 7.6 £ 1.9
and 6.9 * 24% contribution to the model, respectively; Table 3.2), with suitable areas
corresponding to low sea-ice coverage (<0.1%) and minimum temperatures over +2°C (Fig. 3.6).
These environmental values match perfectly with the latitudinal partition in the distribution of H.
planatus, with warmer temperatures (> +2°C) and lower ice coverage (< 0.1%) at the lower
latitudes associated with most presence records and few absences, and in contrast, colder
temperatures (< +2°C) and thicker sea ice coverage (> 0.1%) associated with absence records.
Interestingly, primary production is not a good predictor of the species distribution (<1%).

As occurrence records are mainly distributed in coastal shallow-water areas, depth does not
contribute much to the model as no contrast in bathymetry values are present in the dataset. Slope
and roughness have probably more contrasting values in deep-sea habitats and consequently do
not significantly contribute to the model (< 0.2%).

Table 3.2. Average contribution values and standard deviation (SD) of the 16 environmental descriptors to
model predictions.

Descriptor Mean * SD (%) | Descriptor Mean * SD (%)
Mean Ice thickness 40.1+£3.2 Mean seafloor primary production 0.8+£0.1
Mean Seafloor temperature 37.8+3.7 Max seafloor primary production 0.5+0.02
Max Seafloor temperature 76+1.9 Depth 0.5+ 0.05
Min Seafloor temperature 6.9+24 Slope 0.2+ 0.06
Min Seafloor salinity 1.4+£0.2 Roughness 0.1+£0.03
Mean Seafloor salinity 1.4 +£0.1 Max Seafloor salinity 0.1+£0.03
Mean Seafloor current speed 1.3+£0.2 Max seafloor primary production 0.001 £ 0.001
Max Ice thickness 1.1+£01 Min Ice thickness 0
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Figure 3.6. Partial dependence plots for the four environmental descriptors that contribute the most to the

model. Scaled density distribution of the marginal effect of the descriptors to the model, data points (grey)
fitted with a generalized additive model (GAM, blue line).

The extrapolation mask importantly reduces the projected area to shallow habitats (Fig. 3.7).
Distribution probabilities predicted by the model were the highest in southern South America, New
Zealand and Australia and most sub-Antarctic Islands (Kerguelen, Heard, Marion, Bouvet and
South Sandwich Islands; Fig. 3.7A). Interestingly, the model predicts an intermediate probability of
distribution in South Georgia, for which a single absence was reported (Fig. 3.2), and a high
probability on Heard Island, where no occurrence data have been reported yet. The WAP is
predicted as unsuitable to the survival of H. planatus, as in the case of Deception Island (Fig.
3.7C).
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Southern South America, Scotia Arc and Predicted distribution of Halicarcinus planatus
Western Antarctic Peninsula Present averaged conditions [2000-2014]

Habitat suitability score
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Figure 3.7. SDM predictions of presence probability (contained between 0 and 1) for Halicarcinus planatus,
projected under current environmental conditions [2000-2014] for the entire Southern Ocean (A), and with a
focus on southern South America, the Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the WAP
alone (C), and the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which
predictions are not reliable and were removed from projection (according to the Multivariate Environmental
Similarity Surface index, MESS).
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3.4. SDM predictions under future environmental conditions

SDM future predictions under RCP 2.6 in decades 2040-2050 and 2090-2100 predict low and
intermediate probability of H. planatus to settle in South Georgia, Elephant Island and the WAP
respectively (Fig. 3.8, 3.9). The RCP 8.5 scenario shows an increase in probability for H. planatus
to survive in the WAP (Fig. 3.10, 3.11). Models predict higher presence probabilities compared to
present-day predictions in South Georgia and the South Shetland Islands for both decades 2040-
2050 and 2090-2100, with the highest values predicted in the northern tip of the South Shetland
Islands. The South Orkneys are not predicted as suitable by 2040-2050, but some patches of
suitable areas appear by 2090-2100.

Southern South America, Scotia Arc and Predicted distribution of Halicarcinus planatus
Western Antarctic Peninsula Future prediction RCP 2.6 scenario for 2050

Habitat suitability score
0 EEEEN !
[l Extrapolation area

180°

Kerguelen Plateau

Western Antarctic Peninsula

Figure 3.8. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected
under environmental conditions IPCC RCP 2.6 climate scenario for 2050 for the entire Southern Ocean (A),
with focus on southern South America, the Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the
WAP alone (C), and the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which
predictions are not reliable and were removed from projection (according to the Multivariate Environmental
Similarity Surface index, MESS).
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Southern South America, Scotia Arc and Predicted distribution of Halicarcinus planatus
Western Antarctic Peninsula Future prediction RCP 2.6 scenario for 2100

Habitat suitability score
0 [ [ [ [ [ [
[l Extrapolation area

Kerguelen Plateau

Waestern Antarctic Peninsula

Figure 3.9. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected
under environmental conditions IPCC RCP 2.6 climate scenario for 2100 for the entire Southern Ocean (A),
with focus on southern South America, the Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the
WAP alone (C), and the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which
predictions are not reliable and were removed from projection (according to the Multivariate Environmental
Similarity Surface index, MESS).
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Southern South America, Scotia Arc and Predicted distribution of Halicarcinus planatus
Western Antarctic Peninsula Future prediction RCP 8.5 scenario for 2050
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Figure 3.10. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected
under environmental conditions IPCC RCP 8.5 climate scenario for 2050 for the entire Southern Ocean (A),
with focus on southern South America, the Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the
WAP alone (C), and the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which
predictions are not reliable and were removed from projection (according to the Multivariate Environmental
Similarity Surface index, MESS).
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Southern South America, Scotia Arc and Predicted distribution of Halicarcinus planatus
Western Antarctic Peninsula Future prediction RCP 8.5 scenario for 2100
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Figure 3.11. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected
under environmental conditions IPCC RCP 8.5 climate scenario for 2100 for the entire Southern Ocean (A),
with focus on southern South America, the Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the
WAP alone (C), and the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which
predictions are not reliable and were removed from projection (according to the Multivariate Environmental
Similarity Surface index, MESS).
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4. DISCUSSION

This study combines physiological and ecological modelling approaches to highlight the increased
risk of marine incursions into Antarctic coastal ecosystem over the coming century. Specifically, we
reveal that the widespread sub-Antarctic decapod H. planatus has significant potential to establish
in Antarctic waters under realistic climate change scenarios in the coming decades. More broadly,
this prospect of future marine introductions into Antarctic ecosystems potentially has crucial
implications for the conservation of endemic Antarctic coastal assemblages. Indeed, over recent
decades an increasing number of non-native marine taxa has been reported from Antarctic

ecosystems, including: Rochinia gracilipes in the South Shetland Islands ( );
Bugula neritina (Bryozoa) off Dronning Maud Land (East Antarctica) in the 1960s (
); Hyas araneus (Decapoda) from Elephant Island in the 1980s ( );

Ectopleura crocea (Hydrozoa) off Dronning Maud Land and off Queen Mary Land (East
Antarctica); and Ciona intestinalis (Ascidiacea) off Dronning Maud Land (East Antarctica) in the
1990s ( ). Newer records since 2000 include Emerita sp. and Pinnotheres sp.
(larval stage) in King George Islands in the 2000s ( ); H. planatus from
Deception Island ( ); Membranipora membranacea (Bryozoa) and Macrocystis
pyrifera (Brown algae) from Deception Island ( ); Durvillaea antarctica (Brown
Algae) from King George Island ( ) and Livingston Island ( ); and
Mytilus cf. platensis (Bivalvia) in King George Island ( ) in the 2010s.

There are potentially several different modes of dispersal for species to reach Antarctica.

and identified dispersal by rafting on buoyant kelps as a possible
mechanism for the arrival of non-native species to Antarctica. The former study also included a
Lagrangian analysis to show that particles released from South Georgia and the Kerguelen Islands
were able to drift across the Polar Front and reach Antarctic coasts following strong storm events.
According to this model, storm conditions may enable buoyant kelps to reach the WAP. Such
conditions may not be rare, as remains of the kelp D. antarctica were observed onshore in the
WAP in 2019 and 2020 (Lépez-Farran personal observation). Direct observations (from southern
New Zealand) of Halicarcinus adult individuals associated with D. antarctica holdfasts, and also in
detached, drifting D. antarctica at sea (Waters unpublished data) imply rafting as a direct
mechanism for adults of this decapod taxon into Antarctic waters. Anthropogenic activities may
also be potential dispersal vectors for this decapod ( ; e.g.
via ship hulls, ballast waters, outdoor and personal equipment of tourists or oceanographic
equipment of scientists).

No established non-native marine species have as yet been observed in Antarctica, suggesting
that physiological barriers may be key in preventing such invasions ( ). In this
study, we combined two independent approaches to define the environmental and geographical
boundaries of H. planatus distribution under present and future environmental conditions. SDM
provides an estimate of a species’ ‘realised niche’ (

)- The thermal limit of H. planatus established in this study, corresponds to the
coldest conditions of its sub-Antarctic distribution, located in the Kerguelen Islands, where subtidal
temperature ranges between +1.1 and +3.0 °C during the Austral winter (

)- This species can therefore potentially endure summer conditions in
WAP (1°C and above) in a wide range of salinity (between 18 PSU and 30-33 PSU), but would not
survive during the cold winter months. Our experimental results may indicate that Antarctic
seawater temperatures may impede larval development even during the summer, suggesting that
this species is not able to complete its development in Antarctica under present conditions. In
parallel, the survival rates among larvae were 65%, 85% and 92% at 1, 2 and 5°C, respectively,
thus coinciding with adult rates, and confirming the sensibility to low temperature mentioned by
, confirming that at that stage larvae and adults can survive during
Antarctic summer only.

Halicarcinus planatus has previously been highlighted as a potential invader of Antarctica (
), because of its potential to live in cold waters, through regulation of [Mg?*]uL.
However, the present results demonstrated that this physiological characteristic is not sufficient to
survive the sub-zero temperatures that typify current Antarctic winters (Fig. 3.3). The finding that
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brachyuran crabs cannot currently establish in Antarctica may also help to explain their extinction
from shallow Antarctic habitats from the mid-Miocene, ~14 million years ago, when ACC
intensification led to cooling and the establishment of a perennial sea-ice cover in the region
( )- Numerous
marine lineages including brachyurans, lobsters and sharks disappeared from Antarctic waters,
along with most teleosteans except for cold-adapted nototheniids and liparids (

)- The simultaneous extinction of these diverse taxa
was presumably driven by their lack of physiological tolerance to cold conditions (

). Together, these data may highlight the crucial role
of thermal barriers in preserving the integrity of Antarctic coastal ecosystem.

Under future warming scenarios with increased seawater temperatures and shortened sea-ice
seasons, physiological barriers to Antarctic incursions are projected to weaken. For example, near
Palmer Station the ice season decreased by 92 days from 1979/80 to 2012/13 (

)- According to IPCC RCP scenarios the WAP will continue to warm
(Appendix 3.3), facilitating the establishment of alien species already arriving. Halicarcinus
planatus is not able to establish in the WAP under present conditions because it is not a suitable
environment (Table 3.2, Fig. 3.6, 3.7), however this may change in the future. In the South
Shetland Islands, the worst scenario RCP 8.5 predicts a decrease in ice thickness, the expansion
of ice-free areas (Appendix 3.3) and a 1 to 2°C increase of seafloor temperature in 2100, leading
to suitable conditions for H. planatus establishment. SDM predictions indicate the highest suitability
for H. planatus presence in South Georgia and some places of the WAP (Fig. 3.11B,C). The most
optimistic climate change scenario RCP 2.6 predicts in 2100 a rise of seafloor water temperature
of 0.4 °C in the South Shetland Islands, resulting in intermediate SDM predictions in the WAP and
South Georgia (Fig. 3.9B,C). Thus, according to these future scenarios, it is just a matter of time
before the WAP would reach suitable environmental conditions for H. planatus.

Survival is not the only requirement for the establishment of a species in a new area. A successful
invasion also implies developing, reproducing and then dispersing to new places (

), and active behaviour to escape, feed and mate ( ). According to SDM
predictions and the thermotolerance experiment, a successful invasion would be possible in an
environment at +2°C. Deception Island is the most active volcanic island of the South Shetland
Islands, where many subtidal hydrothermal points and geothermal activity offer various
temperatures that could favour the establishment of non-native species ( ),
converting Port Foster into a key location for alien species colonization (

). During three scuba diving campaigns between 2017 and 2019, we searched for H.
planatus in several places in the WAP, including where it was collected in 2010 - shallow waters off
Baily Head outside the caldera of Deception Island ( ) - and other active sites
(within the caldera of Deception Island, in Penguin Island (South Shetland Islands), and Paulet
Island in the Weddell Sea), or inactive sites like King George Island (South Shetland Islands),
Doumer Island, Roberts Island, Coppermine Peninsula, Chile Bay in Greenwich Island, among
other places, and none were found. This absence agrees with our results, but contradicts the
presence of the ovigerous female in Deception Island ( ), which would need at
least two years to reach pubertal molt, the time required in the Kerguelen Islands (

). This female certainly would not have grown up in situ; this place being on the outer
coast under full Antarctic conditions (without geothermal activity or hydrothermal influence typical
of the interior of Deception Island). Our results suggest its arrival at the mature stage or maybe the
ovigerous stage, implying that its development was completed elsewhere. An arrival through
rafting is also unlikely. Early stages of H. planatus have been observed in floating kelps
(Macrocystis pyrifera) in the Internal Sea of Chiloé ( ), and kelps have been
reported in Deception Island ( ). However, the journey from the sub-Antarctic area
to the WAP implies two years across the SO riding kelps, which is highly improbable. This female
was more probably brought through the Drake by ship during the southern 2009-2010 summer; the
extraction of an adult crab together with kelps frond and holdfast wrapped around an anchor is
quite likely (K. Gérard pers. observation).
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The establishment of non-native marine species in Antarctica is an issue that is becoming more
pressing. The composition of the community may change dramatically according to which species
establishes. Antarctica is characterised by the absence of durophagous predators (bony and
cartilaginous fishes and brachyurans) and short food webs. Therefore, according to

, the arrival of a reptant crab may affect Antarctic ecology and the biodiversity of the shallow
Antarctic. With the arrival of the invasive red king crab Paralithodes camtschaticus in the Barents
Sea, reductions of diversity and benthic biomass were observed as a result of the predation

pressure ( ), as well as shifts in interspecific competition (
) and infection of native species by parasites associated with invaders
( )- Although the effects of invasive species are impossible to predict, the return of

durophagous predators such as decapods, chondrichthyans and teleosteans in Antarctic shallow
waters has been feared, because they may cause shifts in benthic communities, modifying trophic
relationships and homogenizing the Antarctic ecosystem ( ). However, H.
planatus, with its small size, opportunistic feeding behaviour and soft exoskeleton, is definitely not
a top predator ( ). It feeds on phytoplankton remains accumulated at the bottom,
such as carrion, detritus, mucopolysaccharides from algae and small soft individuals, even of its
own species (Lopez-Farran, personal lab. observation). They are prey for fishes (as Harpagifer

bispinis, Patagonotothen tessellata and Austrolycus depressiceps; ), birds, crabs
and sea stars, among others, and look for refuge among rocks and kelp holdfasts to survive
( ). Halicarcinus planatus

is part of the sub-Antarctic ecosystem, playing a fairly important role in food webs (

). However, as it is not considered as a keystone or a bioengineer
species, its establishement would not affect the Antarctic ecological community significantly.
Although the effects of introduced non-native species are impossible to project, H. planatus may
just incorporate into the already well-represented detritivorous guild of the WAP shallow benthic
ecosystems. Under warmer conditions (2°C), the increase of seawater temperature would affect
the WAP ecosystem more intensively than the arrival of a small soft-shelled detritivorous

brachyuran such as H. planatus ( ). An
example of a bioengineer species that would change the intertidal and shallow subtidal in the WAP
is Mytilus cf. platensis, a non-native species recorded in 2019 ( ). Mussels
have the capacity to provide dense three-dimensional matrices ( ) that
persist for long periods, constituting a micro-habitat which reduces desiccation during low tides,
offering a stress-free space for small fish, invertebrate and alga species ( ).

Antarctic water temperature continues to rise and stirs up the debate on the potential
establishment of incoming species through transport on ship hulls, in ballast waters or on floating
kelps ( ). Maritime traffic and tourism have increased the
footprint and intensity of human activity within Antarctica ( ),
raising the pressure of propagules in marine Antarctica, and probably this will continue to increase
in next years ( ). However, the involuntary introduction of non-native species to
the Antarctic region and the movement of species and/or individuals within Antarctica from one
zone to any other are among the highest priority issues considered for the Committee for
Environmental Protection (CEP) and the Scientific Committee for Antarctic Research (SCAR).
Therefore, a strong effort has been invested to improve the ballast water management of ships in
Antarctica and to develop a strategy for biofouling ( )-

Regardless of whether H. planatus individuals are able to reach the WAP by themselves or not, the
SDM projected under conditions of IPCC RCP 2.6 or 8.5 climate scenarios indicate that individuals
could survive and settle, either sooner (Fig. 3.8, 3.10) or later (Fig. 3.9, 3.11) in the future
depending on the warming rapidity. H. planatus is highly abundant around Punta Arenas and
Ushuaia, two frequently used harbours for the ships with WAP destination ( ).
Therefore, if the vectors of H. planatus, ship or rafting, persist (

), some stages (larval, juvenile or adult) may reach the WAP, survive and
settle.

SDMs are tuned to generate a simple spatial representation of the occurrence of a species based
on environmental variables ( ). Our results rely on

270



INTEGRATED APPROACHES CHAPTER 3.

models that simplify of complex facts ( ), and make assumptions on future
conditions. Beside temperture, ice thickness and salinity, there are many other variables that may
vary over time and influence species distribution, such as primary production and ocean currents.
Although niche models do not include eco-evolutionary parameters such as adaptation, gene flow
or dispersal capacity, they are widely used to provide an insight into present and future species
distribution ( ). Combining such results with information on
biological interactions, physiology, anthropic influence on individual introductions or a complete
evaluation of the dispersal capacities of H. planatus using a spatial and dynamic approach would
fill knowledge gaps about their real invasive capacities in future environmental conditions.

In conclusion, our results suggest that H. planatus cannot presently establish in WAP waters, but
this situation has a very strong probability to change under projected climate change in the 21st
century. While the full consequences of Antarctic warming are yet to be realised, some changes in
the distribution and composition of communities have already been observed (

)- The key for future studies will be to track species distribution
and demographic shifts directly as warming continues, to help understand and mitigate marine
biological impacts on Antarctic coastal ecosystem.
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APPENDIX 3.1. Survival experiments

Figure S3.1. Schematic representation of the 6 containers (and their content) for the thermo-tolerance
experiment on adult specimens. Big containers (light blue) were filled with seawater until 10 cm depth. A cold
exchanger (top-left metallic curled object) sets the temperature of the whole container. Three water pumps
(top-left, top-right and bottom-left black symbols) spread the cold water across the whole container. Each of
the 20 glass jars contained one H. planatus specimen, a refuge (2 cm-long PVC tube) and an aerator. A
smaller container (dark blue) of 10L with an aerator was used as clean water supply at the corresponding
temperature.

Article. Lopez-Farrdn/Guillaumot et al. (2021). Is the southern crab Halicarcinus planatus (Fabricius, 1775) the next inv@d@r of
Antarctica? Global Change Biology.
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APPENDIX 3.2. Occurrence distribution and sampling effort
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Figure S3.2. Increase of occurrence records through sampling and human observations through time
(years).

Article. Lopez-Farrdn/Guillaumot et al. (2021). Is the southern crab Halicarcinus planatus (Fabricius, 1775) the next inv@dé- of
Antarctica? Global Change Biology.
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APPENDIX 3.3. IPCC climate scenarios
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Figure S3.3.A. Focus on the Western Antarctic Peninsula and southern South America. Differences in
seafloor salinities in PSU (a-b), seafloor temperatures in °C (c-d) and ice thickness in metre (e-f); between
predicted future scenarios RCP 2.6 (mean values) for 2050 and 2100 and present environmental conditions
(mean maximal values recorded between 2000 and 2014).
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Figure S3.3.B. Focus on the Kerguelen Plateau (Kerguelen and Heard islands). Differences in seafloor
salinities in PSU (a-b), seafloor temperatures in °C (c-d) and ice thickness in metre (e-f); between predicted
future scenarios RCP 2.6 (mean values) for 2050 and 2100 and actual environmental conditions (mean
maximal values recorded between 2000 and 2014).

Article. Lopez-Farrdn/Guillaumot et al. (2021). Is the southern crab Halicarcinus planatus (Fabricius, 1775) the next inv@dér of

Antarctica? Global Change Biology.
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Figure S$3.3.C. Focus on the Western Antarctic Peninsula and Southern America. Differences in seafloor
salinities in PSU (a-b), seafloor temperatures in °C (c-d) and ice thickness in metre (e-f); between predicted
future scenarios RCP 8.5 (mean values) for 2050 and 2100 and actual environmental conditions (mean
maximal values recorded between 2000 and 2014).

Article. Lopez-Farrdn/Guillaumot et al. (2021). Is the southern crab Halicarcinus planatus (Fabricius, 1775) the next inv@d8r of
Antarctica? Global Change Biology.

0.4
0.2
0.0
-0.2
-04
-0.6
-0.8
-1.0

0.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4




INTEGRATED APPROACHES CHAPTER 3.

0.05

0.00

-0.05
-0.10
-0.15
-0.20
-0.25

3.0
25
20
15
1.0
0.5
0.0

0.000

-0.002
-0.004
-0.006
-0.008
-0.010
-0.012
-0.014

Figure S3.4.D. Focus on the Kerguelen Plateau (Kerguelen and Heard islands). Differences in seafloor
salinities in PSU (a-b), seafloor temperatures in °C (c-d) and ice thickness in metre (e-f); between predicted
future scenarios RCP 8.5 (mean values) for 2050 and 2100 and actual environmental conditions (mean
maximal values recorded between 2000 and 2014).

Article. Lopez-Farrdn/Guillaumot et al. (2021). Is the southern crab Halicarcinus planatus (Fabricius, 1775) the next inv@ddr of
Antarctica? Global Change Biology.
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APPENDIX 3.4. BRT calibration

BRTs were generated using the cross-validation procedure of and the gbm R
package ( ) with codes provided in their supplementary material. A maximum
number of 10,000 trees was set and models were calibrated with the combination of parameters
that minimises the predictive deviance to the test data while producing the lowest number of trees
(Fig. S3.4). Parameters finally selected to generate the models are: tree complexity tc = 4, learning
rate Ir = 0.005, and bag fraction bf = 0.9.
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Figure S3.4. Comparison between model predictive deviance using different combinations of parameters.
The one that reaches the minimal predictive deviance while requiring the lower number of trees to build the
model is favoured (light blue curve). Tc: tree complexity, Ir: learning rate; bf: bag fraction (see

for details).
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sensitivity of the Antarctic echinoid Sterechinus neumayeri
(Meissner, 1900) to climate change

Fabri-Ruiz Salomé "2, Guillaumot Charléne?', Agiiera Antonio3, Danis Bruno?, Saucéde
Thomas'

1 UMR 6282 Biogéosciences, Univ. Bourgogne Franche-Comté, CNRS, EPHE, 6 bd Gabriel F-21000 Dijon, France
2 Laboratoire de Biologie Marine, Université Libre de Bruxelles, Avenue F.D.Roosevelt, 50. CP 160/15. 1050 Bruxelles,
Belgium
3 Institute of Marine Research, Austevoll Station, Sauganeset 16, 5392 Austevoll, Norway

Polar Biology, accepted May 215t 2021.

Abstract

The Southern Ocean is undergoing rapid environmental changes that are likely to have a
profound impact on marine life, as organisms are adapted to sub-zero temperatures and
display specific adaptations to polar conditions. However, species ecological and
physiological responses to environmental changes remain poorly understood at large
spatial scale owing to sparse observation data. In this context, correlative ecological niche
modelling (ENMc) can prove useful. This approach is based on the correlation between
species occurrences and environmental parameters to predict the potential species
occupied space. However, this approach suffers from a series of limitations amongst
which extrapolation and poor transferability performances in space and time. Mechanistic
ecological niche modelling (ENMm) is a process-based approach that describes species
functional traits in a dynamic environmental context and can therefore represent a
complementary tool to understand processes that shape species distribution in a changing
environment. In this study, we used both ENMc and ENMm projections to model the
distribution of the Antarctic echinoid Sterechinus neumayeri. Both models were projected
according to present [2005-2012] and future IPCC scenarios RCP 4.5 and 8.5 for [2050-
2099].

ENMc and ENMm projections are congruent and predict suitable current conditions for the
species on the Antarctic shelf, in the Ross Sea and Prydz Bay areas. Unsuitable
conditions are predicted in the northern Kerguelen Plateau and South Campbell Plateau
due to observed lower food availability and higher seawater temperatures compared to
other areas. In contrast, the two models diverge under future RCP 4.5 and 8.5 scenarios.
According to ENMm projections, the species would not be able to grow nor reach sexual
maturity over the entire ocean, whereas the Antarctic shelf is still projected as suitable by
the ENMc. This study highlights the complementarity and relevance of ENM approaches
to model large-scale distribution patterns and assess species sensitivity and potential
response to future environmental conditions.
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1. INTRODUCTION

Polar regions -and the Southern Ocean in particular- are increasingly affected by climate changes
( ). Temperature records
over the previous decades unambiguously show an overall warming of water masses within the
Antarctic Circumpolar Current area, from the surface down to 2,000 m depth, at a more rapid pace
than average shifts measured in the global ocean (

). Contrasts however exist between regions of the Southern Ocean. For instance, a
1°C rise in sea water temperature has been recorded down to 25 meters in the water column at
Potter Cove (King George Island, Antarctic Peninsula) over 19 years, with a decrease in sea ice

extent ( ). At the same time, sea ice has significantly been increasing in the
Ross Sea both in concentration, extent ( ) and duration (

).
In the last report ( ) of the Intergovernmental Panel on Climate Change (IPCC), CMIP5

(Coupled Model Intercomparison Project) climate models predict a global warming of the entire
water column south of the Polar Front by the end of the century under either moderate (RCP 4.5)
or business-as-usual Representative Concentration Pathway scenarios (RCP 8.5) (

). Associated to this overall warming, changes in the extent and
duration of the Antarctic seasonal sea ice and water freshening close to glacier melting sources
are also expected ( ). The
Antarctic sea ice plays a crucial role in ecosystem functioning and regulates the timing of primary
production ( ). Changes in sea ice regimes will impact the dynamics of
phytoplankton blooms. Primary production constitutes an essential food intake for the benthos
( ). Therefore,
changes in phytoplankton dynamics could have a profound effect on the structure and functioning
of benthic ecosystems.

The tectonic, climate and glacial history of the Southern Ocean (waters below 60°S in latitude)
have conditioned the evolution of the Antarctic marine biota through various adaptive radiations,
speciation, dispersal and extinction events. Associated to the isolation of the Antarctic continent,
this led to the evolution of an original benthic fauna unparalleled in other parts of the world's ocean

(

)- High Antarctic marine
benthic invertebrates have adapted to sub-zero temperatures and their feeding strategies have
been conditioned by the seasonality in food availability due to the variation of sea ice dynamics
( )- Antarctic species commonly exhibit low metabolic and growth rates associated with a
high longevity compared to temperate and tropical species (

). Most of the
marine species present on the Antarctic shelf are consequently stenothermic ( )
and very sensitive to seawater warming and temperature variations ( ).
Temperature changes can affect their physiological performance, phenology and distribution (

Along Antarctic coasts, marine benthic communities are at the southernmost boundary of the
temperature latitudinal gradient of the marine biome ( )- Consequently, in a context
of warming temperatures, species are spatially limited and cannot easily migrate or find refuges to
survive (

Monitoring and predicting the response of Antarctic species to environmental change is
challenging as gaps still persist in our knowledge of Antarctic marine species distribution (
), despite the significant efforts led during the
International Polar Year and the Census of Antarctic Marine Life (
). Data collection and experimental setups are strongly conditioned by financial and
technological limitations in such a remote and hard-working region (extreme climate conditions,
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difficult to access) ( ). Ecological Niche Modelling (ENM) can represent an
alternative to overcome this issue.

Correlative Ecological Niche Models (ENMc) can be used to predict species distribution based on
the statistical relationship between species occurrence records and abiotic conditions (

). ENMc provide a spatial representation of
the species realised niche under the assumption of equilibrium between species distribution and
the abiotic environment ( ). In contrast,
mechanistic Ecological Niche Models (ENMm) use eco-physiological data and life history traits to
describe organisms' physiology. They can predict species capabilities to survive, grow and
reproduce under changing environmental conditions and describe a part of the species
fundamental niche (

).

ENMc have been widely developed for the study of Antarctic marine organisms such as pelagic

plankton and fish ( ), deep-water shrimps (
), cirripeds ( ), molluscs ( ), echinoids (
), or sea stars ( ). In contrast, ENMm
(such as the projection of Dynamic Energy Budget models, DEB, ) have never been

developed for Antarctic species case studies so far, due to the more important amount of data
required to implement the DEB model (eco-physiological data on the different species life stages;

), and the novelty of the DEB projection method
(

Once created, DEB models are published in the Add-my-Pet collection

(https://www.bio.vu.nl/thb/deb/deblab/add my pet/about.html), that already provides a list of 37
Antarctic marine and terrestrial species. Among them, the most commonly found in communities
and well-studied Southern Ocean benthic invertebrates are the sea star Odontaster validus

( ), the bivalve Laternula elliptica ( ), the echinoid
Abatus cordatus ( ), the gastropod Nacella
concinna ( ) and the bivalve Adamussium
colbecki ( ). DEB models have also been developed for pelagic species such as

the Antarctic krill Euphausia superba, the salp Salpa thompsoni (
) and also for marine mammals such as the elephant seal Mirounga leonina

( )-

Providing relevant projections of the impact of climate change on biodiversity is crucial to
conservation biology (

). Usually, ENMc and ENMm are independently used to study the relationship
of a species with its environment ( ). Combining both approaches has only
recently emerged in link with computing advances (

). This combination was proved efficient to improve predictions compared to
simple models, as ENMm can address the deficits of ENMc by explicitly including processes,
offering the opportunity to describe, within and without the predicted suitable boundaries of the
ENMc predictions, the process-based causes of the species distribution (

). It can also provide more insight into drivers that shape species current
distribution and potential distribution shifts under changing environmental conditions (

)-

The echinoid Sterechinus neumayeri (Meissner, 1900) is abundant, common and endemic to the
Antarctic continental shelf. It has widely been studied in various fields such as reproductive

biology, embryology, toxicology, ecology and physiology ( - McMurdo;
- Signy Island; - McMurdo; -
Rothera; - Rothera; - McMurdo;
- Bellingshausen Sea; - McMurdo; - McMurdo;
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al. 2017 - Peterson Channel). Widely distributed all around Antarctica (Fig. 3.12), its distribution
ranges from the subtidal zone to 800-m depth with most records found in shallow waters of the
continental shelf above 400-m depth (David et al. 2005). Recent molecular studies showed that the
species combines a unique genetic entity all around the Antarctic continent (Diaz et al. 2011,
2018). It plays an important ecological role in structuring benthic communities. The "grazing"
pressure exerted by S. neumayeri is believed to control the local distribution of bryozoans and
spirorbid annelids and could therefore have a negative feedback on the recruitment of some
sessile species (VicClintock 1994, Bowden 2005, Figuerola et al. 2013). Adult specimens are
omnivorous and mainly feed on bryozoans, foraminifera, polychaetes, diatoms and macro-algae
(McClintock 1994, Amsler et al. 1999, Jacob et al. 2003, Michel et al. 2016). As in many other
Antarctic species, the development rate of S. neumayeri is low (Bosch et al. 1987), longevity can
exceed 40 years (Brey 1991, Brey et al. 1995) and the feeding period is seasonal (EBrockington and
Peck 2001). S.neumayeri is a broadcast spawner, planktonic larvae can drift in the water column
for more than 8 months before metamorphosis takes place on the seabed (Pearse and Giese
1966) (see details in Appendix 3.5 and 3.6). The test of adult specimens can reach a final size of
seven centimeters in diameter (Brey et al. 1995).

East Antarctica

Figure 3.12. Sterechinus neumayeri occurrence data extracted from Fabri-Ruiz et al. (2017a). Illustration of
Sterechinus neumayeri © J-G. Fabri.
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In the present work, we used both ENMc and ENMm approaches to project the distribution
response of S. neumayeri to present-day conditions and to future IPCC scenarios of climate
change RCP 4.5 and RCP 8.5. ENMc were generated to predict species distribution in these
environmental conditions using the Random Forest algorithm ( ). The DEB model
created for S. neumayeri was spatially projected (i.e. ENMm model) in these three environmental
scenarios. The results of both ENMc and ENMm models were compared to get more insight into
the physiological processes and mechanisms that constrain the species distribution, and assess
model performances and ecological significance under present-day conditions and future
scenarios of climate change.

2. MATERIAL AND METHODS

2.1. Correlative ecological niche models (ENMc)

Occurrence data and environmental predictors.
An ENMc was generated using georeferenced presence-only data of S. neumayeri extracted from
an extensive Southern Ocean echinoid distribution database ( ) that includes
field samples collected between 1901 and 2015 (Fig. 3.12). Considering the broad spatial scale of
the analysis and the congruence between historical and present-day presence records (

), it is here assumed that the species distribution did not
significantly change over the last century at the scale of the entire Southern Ocean.
Environmental predictors used in the study were extracted from
(Appendix 3.7). Predictors were selected based on their ecological relevance for explaining the
distribution of S. neumayeri ( ).
Collinearity between descriptors was tested to limit possible biases in predictor contributions and
model predictive performances and the presence of spatial autocorrelation (
For this purpose, we performed a Spearman pairwise correlation test between descriptors that
were iteratively removed for correlation values of rs > 0.8 ( ). Over 26 possible
descriptors, 13 were used to run the models. The physical habitat was described using the
following descriptors: depth, geomorphology, slope, sea surface temperature range, seafloor
temperature range, mean seafloor temperature and sea ice cover. Summer chlorophyll-a
concentration was used as a proxy of food resources and habitat chemistry was described based
on seafloor salinity, seafloor salinity range, sea surface salinity range, sea surface salinity and
seafloor oxygen (Appendix 3.7). Predictor ‘range’ is here defined as the difference between winter
and summer mean values.

Future projections were based on IPCC scenarios RCP 4.5 and RCP 8.5 ( , Appendix
3.8) extracted from the NOAA database (https://www.esrl.noaa.gov/psd/ipcc/ocn/ [accessed on
2019-12-19]). Future projections were not available for seafloor oxygen conditions under IPCC
scenarios. The descriptor was therefore considered unchanged (present conditions) in future
models.

ENMc calibration.
The distribution of S. neumayeri was modelled using Random Forests algorithm (RF) (

) computed with the biomod2 R package ( )- In a former study, RF was
proved relevant to model the distribution of S. neumayeri, models showing high and stable
predictive performances, and appropriately captured the species environmental envelope (

). Here, the ENMc was parameterized with 500 classification trees, a tree number
that minimizes the difference in predictive performance between models. This number was
selected by testing different values of tree number (50, 100, 500 and 1000). Five node size
(minimum size of the final node of any tree) and mtry =13 (the number of candidate variables to
include at each split) was tuned using the ‘tuneRF’ function from the caret package ( ).
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The occurrence dataset was randomly split into a 70% subset used to train the model and a 30%
subset to test model predictions. As only presence data were available, pseudo-absences were
randomly generated following with a number of pseudo-absences
equal to the number of presences. Fifty pseudo-absence replicates were generated and for each,
ten evaluation runs were computed.

Spatial sampling bias is generally pervasive in species occurrence data, which were typically not
evenly sampled across the ocean ( ). This may generate strong spatial
autocorrelation in model residuals, that is, the fact that close observations in geography will be
more similar than random ( ). The presence of spatial autocorrelation breaks the
assumption of «independent errors» when significant ( ) and leads to unreliable
model evaluation ( :

To limit this bias, pseudo-absence data were sampled following the same sampling pattern as all
Antarctic echinoid records available in the Southern Ocean. A Kernel Density Estimation map
established from all Antarctic echinoid records using Spatial Analyst in ArcGIS v10.2 was used to
target the pseudo-absence sampling accordingly (

). In total, 50 pseudo-absence replicates were generated and spatial autocorrelation was
quantified for each pseudo-absence replicate using the Moran | index computed with the ape R
package ( ). Moran | measures the average correlation value of a variable
between values taken at close localities. It is an easy correlation index to interpret, that varies
between -1 (negative spatial autocorrelation: values at close localities are opposite compared to
the mean value) and +1 (positive spatial autocorrelation: values at close localities are similar), with
0 for an absence of spatial autocorrelation. The significant values of spatial autocorrelation statistic
are indicated by a p-value. Over the 50 replicates of pseudo-absences, we selected thirty
replicates showing p > 0.5 (with p, the p-value of the significance of Moran's |), other pseudo-
absences replicates have depicted a p-value less than 0.5.

The wide extent of the study area implies that a wide range of environmental conditions may be
used to fit the models and leads to overestimate and extrapolate the species modelled niche
( )- To
limit extrapolation, the modelling area was limited to the maximum species registered depth (800
m, ) for model calibration and projection.

Model predictive performances were assessed with the TSS metric (True Skill Statistics) (

) that is the sum of the sensitivity (proportion of correctly predicted presences) and the
specificity (proportion of correctly predicted absences) minus one (sensitivity + specificity -1). The
contribution of environmental predictors to the models was provided as “contribution permutation”
available under the biomod2 R package ( ). For each predictor, contribution
permutation was calculated as the Pearson correlation coefficient between model predictions by
randomly permuting the predictors. For this purpose, we performed ten permutation runs. The
higher the value, the more the predictor contributes to the model. Response plots were provided to
show the relationship between habitat suitability for S. neumayeri and environmental predictors.

ENMc projections.

ENMc projections were generated using three sets of environmental predictors: for the present
time [2005-2012], for scenario RCP 4.5 [2050-2099] and scenario RCP 8.5 [2050-2099]. Presence
probability maps of S. neumayeri were produced with values close to zero indicating low presence
probabilities, and values close to one indicating high presence probabilities.
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2.2. Mechanistic ecological niche model ENMm (spatial projection of Dynamic Energy Budget
models)

Model description.

DEB models provide a mechanistic and quantitative description of the energy fluxes in an
organism that assimilates and uses energy for its maintenance, growth and reproduction
throughout its entire life cycle ( ). DEB theory aims at describing how species energy
fluxes change according to environmental conditions (i.e food and temperature) and can help
estimate the species fundamental niche ( ). DEB models rely on
physiological and experimental data/traits ( )- This
approach models a part of the species fundamental niche.

In DEB models, energy flows between four state variables: reserve (E), structure (V), maturation
(En) and reproductive buffer (Er) (Fig. 3.13).

Somatic maintenance |

Temperature

Maturity
maintenance

Faeces

Reproduction
Buffer

Figure 3.13. Conceptual representation of the standard Dynamic Energy Budget model. Arrows show
energy flows (J.d"") involved in the dynamics of the four state variables (represented by boxes: reserve (E),
structure (V), maturation (En) and reproductive buffer (E:). p, is the assimilation rate into the reserve, p. is
the energy rate leaving the reserve which is divided in two branches: k.p. allocated to the somatic
maintenance (p,) and growth (p;) and the fraction (1 — k).p. allocated to maturity maintenance (p;),
maturation and reproduction (pg).

Energy enters into the body by food (X) ingestion at a rate py.
Px = {Pxm}-f-L? [EQ. 1], with:
° f — X

X+Xg
X is the amount of available resources (mg.m) and X« the half-saturation parameter (mg.m)

corresponding to the food functional response [Eq.2].

* {pxm} = max. surface area-specific ingestion rate (J.cm2.d™)

* L =individual’s length (in cm)
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DEB models use a version of a Hollings' type Il functional response. The functional response f
changes when the resource (X) is different. The f value varies between 0 and 1 (

).
Chlorophyll-a concentration was considered as a proxy of food resources for S. neumayeri
( ). In Cape Evans (McMurdo),
, based on gut content, has emphasized that food of S. neumayeri could be mainly
constituted of diatoms which is also highlighted by

Sea surface chlorophyll-a concentration data (X in Eq.2) and gut content (fin Eq. 2) were obtained
from a long-term experiment conducted at Rothera Station (Western Antarctic Peninsula) in 1997-
1998 ( ). A non-linear least squares regression was performed to adjust
the functional response (Eq. 2) using chlorophyll-a concentration and gut content (Appendix 3.9 for
more details). The estimation gives a value of 2.95 mg.m=for the half-saturation coefficient (Xk).

After food ingestion, the energy is assimilated and stored into the reserve compartment at a given
rate expressed in Joules per time (p,). The energy leaving the reserve (p.) is subdivided according
to the "kappa-rule" (k-rule) in between somatic maintenance (p, ), growth (p;), maturity
maintenance (p;), maturation, and reproduction (pg, proportion 1-k) (

). Maturity does not contribute to body mass. The amount of energy contained in the maturity
compartment thresholds the different life stages of the species during its life cycle (birth: ability to
feed, puberty: ability to reproduce) ( , Appendix 3.6). Once puberty is reached, the
species is considered to be a fully developed adult, and the energy initially allocated to maturation
begins to be used for reproduction.

There is no competition between the two branches of the k-rule, which means that an organism
can continue to grow and reproduce at the same time. However, energy is still primarily allocated
to maintenance to prioritize body functions that are essential to the organism survival (i.e.
maintenance of cell concentration gradients, protein turnover, enzyme functioning, mucus
production, osmoregulation) and the maintenance of maturity (maintenance of the structure
complexity).

Reserve compounds do not need maintenance as energy is continuously used. Growth
corresponds to the increase of the body structure and maturation is the energy dissipated or
expended by the body in the increase of maturity.

Estimation of DEB model parameters.

The DEB model was parameterized using literature data from field and experimental works mainly
led at McMurdo and Rothera stations, Antarctica (Table 3.3, Appendix 3.10, 3.11).

Zero-variate data correspond to single measurements at a given time (characterised by specific
food and temperature conditions) and uni-variate data are relationships between two variables
(e.g. mass, oxygen consumption etc. against duration, temperature, etc.). From these data, DEB
parameters were estimated using the covariation method (

) that aims at looking for the combination of parameters (Table 3.3) that minimizes the
difference between observations and predictions (i.e. minimizing the loss function). The evaluation
of the parameter estimation is assessed by calculating the Mean Relative Error (MRE) which can
vary between 0 and «, with MRE=0 meaning a perfect match between observations and
predictions. For each univariate and zero-variate data the relative error was computed as the ratio
of the absolute error value to the variate value.
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Table 3.3. DEB parameter values estimated by the covariation method (

)

DEB parameter Unit Value
z, zoom factor - 1.364
Su.emp» Shape coefficient embryos - 0.487
Su.v» Shape coefficient larvae - 0.505
dy, shape coefficient - 0.612
{E,}, max. specific searching rate L.d-".cm 6.5
Ky, digestion efficiency of food to reserve - 0.83
v, energy conductance cm.d-’ 0.033
K, allocation fraction to soma - 0.722
Kg , reproduction efficiency - 0.95
[py], vol-specific somatic maintenance J.cm=3.d-" 24.42
k;, maturity maintenance rate coefficient d-’ 25.10°
[E;], specific cost for structure J.cm-3 2350
EP, energy maturity at birth J 4.5.10%
E}, energy maturity at metamorphosis J 0.3
Ef, energy maturity at puberty J 2266
h,, Weibull aging acceleration d-2 2.108
S¢, Gompertz stress coefficient - 1.10%

The description of methods on temperature sensitivity using Arrhenius temperature and changes in
body shape using post-metamorphic shape coefficient is provided in Appendix 3.12. All analyses
were conducted under Matlab 2016 using the DEBtools repository (https://github.com/add-my-
pet/DEBtool M/).

Rothera data were used to perform sensitivity analysis of DEB model estimation (Appendix 3.13).
For this purpose, marginal confidence intervals of the estimated parameters were computed to
provide the uncertainty related to the parameter estimations using the covariation method
( )- The profile method ( ) was used to build the
profile of the loss function of each parameter and estimate the level of the loss function that
corresponds to the uncertainty. A total of 1,000 Monte-Carlo datasets was generated by adding a
constant centered log-normal scatter to the predictions of each zero and uni-variate data. The
threshold value of the loss function Fc that is used to assess the uncertainty level was obtained
from P (X < Fc) = 0.9, with 0.9 being the confidence level initially chosen in the procedure. The
marginal confidence interval of each parameter is the interval of values for which the loss function
is below the threshold value Fc.
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Spatial projection of the DEB model.

For each pixel of the study area, food (i.e. summer chlorophyll-a concentration converted into f [0-
1] according to the procedure explained above) and temperature were both used as input into the
DEB model that consequently calculated how energy is used and allocated to the different
metabolic processes, given these environmental conditions. Projections of the DEB model were
performed according to present-day conditions [2005-2012] and future RCP 4.5 and RCP 8.5
scenarios [2050-2099] (environmental layers are displayed on Appendix 3.14). Different
simulations were carried out for temperature or food changes only.

A first projection provides the maximum size reached by individuals, which gives some information
about the species ability to survive and to invest energy into growth. It also provides a quantitative
estimate of the stress experienced by S. neumayeri at large spatial scale, the smaller individuals,
the less suitable the environment. According to DEB theory, the somatic maintenance has priority
over reproduction and growth to ensure survival. In order to identify regions where individuals are
able to survive from an energetic point of view, the somatic maintenance flow p,, was calculated
according to the given food and temperature conditions and compared to the values of the total
energy available from the reserve p.. When somatic maintenance values are higher than the
energy available in the reserve compartment (py, > p¢), it suggests that individuals do not have
enough energy to maintain their soma and should die (Fig. 3.13). p,, values were also compared to
the flow k.., that corresponds to the proportion of the mobilized energy from the reserve that is
invested into growth and the somatic maintenance. The organism survives if py; < k.p.. On the
other hand, if py, < pc but py > k. pc, the organism will have difficulties to maintain its soma and a
part of the energy allocated to maturation, reproduction and growth will be redirected to somatic
maintenance.

A second projection provides suitable areas for reproduction that is, areas in which environmental
conditions allow the species to invest energy into growth and reproduction. In DEB theory, the
organism can reproduce when enough energy has been invested into maturity (Ey > EL), passing
from the juvenile to the adult life stage (‘puberty’ threshold). To assess whether individuals can
invest energy into reproduction, we first calculated the size (L,) at which individuals reach puberty
(Eq. 3) for each pixel of the projection map. The DEB parameter shape coefficient §,, estimated by
the model is used to translate physical measurements taken from experimental data to the
structural length used by the model (Appendix 3.12).

Ly
L, = 5, [E9-3]

e L,,: Maximum structural size (cm)

* [,: Standardized size at sexual maturity (= puberty) (unitless)

* §y: Shape coefficient of post-metamorphic individuals (unitless)

Considering the body length at puberty (L,), we then identified if somatic maintenance could be
ensured at puberty (p. > py and k.pc > py). The total cost of maintenance (py, + p;) was also
compared to the outflow from the reserve p., with p; > py + P, meaning that individuals can

invest energy into reproduction. All DEB models were computed from R functions available at
https://github.com/Echinophoria/DEB/.
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3. RESULTS

3.1. Species distribution models under present-day conditions

Correlative ecological niche model (ENMc).

For the ENMc generated under present-day environmental conditions, the average predictive
accuracy of model replicates is good (TSS = 0.64 + 0.078), which indicates a relatively good match
between presences and predictions. High species presence probabilities (p > 0.8) are predicted
south of the Polar Front: over the Antarctic shelf, along the Western Antarctic Peninsula and the
Scotia Arc region (Fig. 3.14a). The highest values are in the northern tip of the Western Antarctic
Peninsula, in East Antarctica and in the Ross Sea. Medium values (p ~ 0.5) are mainly located in
the Amundsen and Bellingshausen seas, the Weddell Sea and in South Georgia. Regions located
north of 55°S latitude such as the Kerguelen, Magellanic, and Campbell plateaus are mostly
predicted as unsuitable areas (p < 0.2). Environmental predictors that most contribute to the model
are seafloor temperature, geomorphology, slope, sea ice cover, and depth, in decreasing order of
importance (Fig. 3b). Chlorophyll-a concentration was used as an indirect proxy of food supply but
it does not contribute much to the model (ranked seventh most contributing predictor). Parameters
such as seafloor oxygen concentration, seafloor temperature range, seafloor salinity, seafloor
salinity range and sea surface salinity do not contribute much to the model.

Curves of the species response to main environmental predictors allow visualizing conditions that
are the most suitable for species distribution (Fig. 3.14c). These are shallow areas (< 400 m depth)
represented in geomorphology as banks, coastal terranes, seamounts and volcanoes (Appendix
3.16) with positive slope values (> 0.05°), cold water sea floor temperatures (< 1°C), and weak sea
ice coverage (< 60%) (Fig. 3.14c, Appendix 3.15). The response curve to chlorophyll-a
concentration values shows little variation, the highest probability values corresponding to low
chlorophyll-a concentrations (< 2mg/m?3, Fig. 3.14c).
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Figure 3.14 (a) Spatial projection of the ENMc under present-day conditions in the Southern Ocean with (b)
the respective contributions of environmental descriptors to the model and (c) the species response
(distribution probability) to the main contributing predictors (mean seafloor temperature, slope, sea ice
coverage and depth) and for chlorophyll-a concentration (as a proxy of food supply). No response curve can
be displayed for geomorphology, which is a categorical variable (see Appendix 3.16).

Article. Fabri-Ruiz et al. (2021). Using correlative and mechanistic niche models to assess the sensitivity of the Antarctic echinoid

Sterechinus neumayeri (Meissner, 1900) to climate change. Polar Biology.
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Projection of the Dynamic Energy Budget model (ENMm).

Experimental data available for the different life stages of S. neumayeri allow a robust prediction
of DEB parameters (Appendix 3.10, 3.11) with a total goodness of fit resulting in relative low error
values (MRE = 0.095). For comparison, the values fall within the range of median values usually
obtained for DEB models (median MRE < 0.1;

Most zero-variate and uni-variate data are accurately descrlbed by the estimated model
parameters with low error values. For uni-variate data, the highest relative error values are
obtained for the C:N mass of fertilized egg (RE = 0.29) and the uni-variate data Ash Free Dry
Mass (AFDM, g) vs. O consumption in pmol/h in summer (RE= 0.27) (Appendix 3.10, 3.11). The
pre-metamorphic larval size is slightly underestimated in the model but the error is low (RE=
0.093) (Appendix 3.10). The prediction of the adult size-age relationship also shows a low error
value (RE= 0.13) (Appendix 3.10) as for the weight-size data (RE= 0.05) (Appendix 3.10). Models
of winter and summer oxygen consumption ~ weight data have similar patterns (Appendix 3.10)
with a shift in oxygen consumption values for individuals of 0.2 g (AFDM), which corresponds to a
transition stage between the embryo and the pre-metamorphic larvae.

Model validation gives low marginal confidence intervals for each parameter (Appendix 3.13),
which means that the DEB model is stable.

The predicted suitable areas were projected for the different size classes (Fig. 3.15a). Overall, the
Antarctic shelf is suitable to the largest individuals (> 5 cm), while the Magellanic Plateau is
predicted as suitable for individuals < 4 cm. Suitable areas for individuals of the maximum size
class are restricted to regions of East Antarctica (Prydz Bay, the Amundsen-Bellingshausen and
the Ross seas) and in the Western Antarctic Peninsula. Areas predicted as unsuitable to the
species survival are the South Campbell and northern Kerguelen plateaus. Small individuals (< 2
cm) are predicted to survive at all latitudes south of 45° south, from the Magellanic Plateau to the
Antarctic shoreline but individuals of 1 to 2 cm are restricted to the Kerguelen Plateau, the Western
Antarctic Peninsula and some regions in East Antarctica.

Reproduction is possible when individuals grow over 3 cm in diameter, that are individuals able to
invest energy into reproduction (Fig. 3.15b). Suitable areas for the species to reproduce are mainly
located on the Magellanic Plateau and East Antarctica, in Prydz Bay and the Amundsen-
Bellingshausen and the Ross seas. The Kerguelen and Campbell plateaus are predicted as
unsuitable to the species reproduction as hypothetical individuals present in these areas would
never reach sexual maturity.
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Figure 3.15. Projections of the mechanistic ecological niche model (ENMm, DEB). (a,c,e) classes of
maximum size reached by individuals and (b,d,f) suitable areas for reproduction under present-day (a,b),
RCP 4.5 (c,d) and RCP 8.5 (e,f) scenarios. Future projections were modelled for both food and temperature
changes.
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3.2. Projections under IPCC scenatrios of climate change

Correlative ecological niche model (ENMc).

Projections of ENMc of S. neumayeri according to IPCC scenarios RCP 4.5 and RCP 8.5 (Fig.
3.16) display few changes compared to present-day maps (Fig. 3.14a), and both scenarios give
very similar results. Areas predicted as suitable under future conditions are mainly predicted in the
Ross Sea and in East Antarctica. In contrast, the species presence probabilities are low in the
Bellingshausen and Amundsen seas compared to present-day projections. All areas located north
of the Polar Front are predicted as unsuitable with very low presence probabilities (p < 0.2).

RCP4.5 RCP 8.5

20°W 20°E 20°W 20°E

K ; 2 » - : g 2
60°W 60°E 60°W 60°E

Probability of presence

100°W 100°E 100°W 100°E

140°W , 140°E 140°W " 140°E
4. 4.

180° 180°

Figure 3.16. Projections of the correlative model under (a) RCP 4.5 (left panel) and (b) RCP 8.5 (right panel)
scenarios [2050-2099].

Projection of the mechanistic Ecological Niche Model (ENMm).

Three projections were performed for each IPCC scenario according to (1) both food availability
and temperature changes (Fig. 3.15c,d,e,f), (2) temperature only (Fig. 3.17a,b, Fig. 3.18a,b) and
(3) food availability only (Fig. 3.17c,d, Fig. 3.18c,d). "Food and temperature" and “food only”
projections give similar model outputs under both IPCC scenarios for maximum size and
reproduction areas (Fig. 3.15c,d,e.f, Fig. 3.17c,d, Fig. 3.18c,d). The main differences with present-
day models are located on the Antarctic shelf and Magellanic Plateau, which are mostly predicted
as unsuitable to the species. In contrast “temperature only” projections (Fig. 3.17a,b, Fig. 3.18a,b)
show no noticeable change with present-day models, and model outputs are identical under both
IPCC scenarios of climate change.

Projections of "food and temperature" (Fig. 3.15c,e) and “food only” (Fig. 3.18c,d) models predict
that individuals may reach very small sizes over the entire species distribution range, with a
maximum size predicted to reach 1 cm only in the Weddell and Ross seas, in East Antarctica and
on the Kerguelen and Campbell plateaus. Size is also predicted to be small (< 2 cm) along the
Antarctic Peninsula and on the Magellanic Plateau. As a consequence, reproduction is predicted
as impossible over the entire species distribution range under future IPCC scenarios, the model
predicting that no energy would be available for maturity, maintenance and reproduction (Fig.
3.15d.f, Fig. 3.17¢,d).

The "temperature only" model (Fig. 3.18a,b) predicts unsuitable areas for growth over the
Kerguelen Plateau and some areas in East Antarctica (Prydz Bay excepted). In contrast, large
individuals (> 4 cm) are predicted in the Bellingshausen-Amundsen seas, the Ross Sea and on the
Magellanic Plateau. Suitable areas for the species reproduction match with areas where
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individuals can reach up to 2 cm in size that is, in the Bellingshausen-Amundsen seas, the Ross

Sea and Prydz Bay areas (Fig. 3.17a,b).
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Figure 3.17. Projections of the DEB ENMm under future conditions: predicted suitable areas to the species
reproduction under IPCC scenarios RCP 4.5 (left panel) and RCP 8.5 (right panel). Predictions were
modelled for temperature change only (top panels) and food availability change only (bottom panels),

respectively.

296



RCP4.5

Only T change

100°W

140°W

20°W

20°

E

100°E

140°E

b)

100°W 100°E

140°W 140°E

100°W

Only f change

140°W

180°

60°E

100°E

140°E

d) 20°W 20°E

60°E

100°W 100°E

140°E

140°W

EEEEEOOO

1 cm 180°

2 cm
3 cm
4 cm
5 cm
6 cm
7 cm
Unsuitable area

Figure 3.18. Projections of the DEB ENMm under future conditions: maximum size reached by individuals
under IPCC scenarios RCP 4.5 (left panel) and RCP 8.5 (right panel). Predictions were modelled
temperature change only (top panels) and food availability change only (bottom panels), respectively.

4. DISCUSSION

4.1. Model projections and their ecological significance

Present-day projections.
The ENMc predicts suitable conditions to S. neumayeri in Antarctic cold waters south of the Polar

Front for the present time period (temperature < +2°C, Fig. 3.13, Appendix 3.15). This is in line
with our knowledge of the species biogeography, which is endemic to the Antarctic continental

shelf (

). Temperature is usually a major driver of

species distribution as already shown in former studies on Antarctic echinoid species (
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). Along with geomorphology, slope
and depth, these variables are related to main habitat characteristics (Appendix 3.16) and are
considered to have a dominant role in the structure and composition of benthic communities

In addition to the importance of the environment, the endemicity of Antarctic benthic fauna is also
believed to be favored by the presence of the Antarctic Circumpolar Current acting as a
biogeographic barrier to dispersal towards the north (

). For instance, 68% of Antarctic echinoids species
( ), 74% of gastropods ( ) and 57% of bivalves
( ) were reported to be endemic to the Antarctic continental shelf.

Stable DEB models were produced (Appendix 3.13) and projections also show that under present
conditions, Antarctic regions such as the western part of the Ross Sea, Prydz Bay area, the East
Antarctic Peninsula, and the Bellingshausen-Amundsen seas are predicted to be suitable for the
species growth and reproduction (Fig. 3.15). This is line with observed data in these regions where
S. neumayeri is adapted to low temperatures with display of low aerobic scopes (

). Previous works focused on the development
rate of embryos and data were provided on the range of suitable temperatures for planktonic
larvae to grow. showed an increase in development rates
between -2°C and +2°C, with low and stable rates between +0.2°C and +1.7°C. Development rates
do not increase for temperatures above +2°C. and
reported the onset of larval development between -0.8°C and +0.5°C, and between -1.8°C and -
0.9°C respectively. reported a larval upset at -0.7°C. Finally,
food supply is also reported as sufficient for individuals to survive and allocate energy to
reproduction (Appendix 3.14).

In contrast, the Kerguelen Plateau, the Western Antarctic Peninsula, East Antarctica (except Prydz
Bay) and eastern part of the Ross Sea were modelled as suitable areas but for small individuals
only (< 2cm). In these regions, the energy available and stored into the reserve compartment (p.)
is only sufficient to ensure somatic maintenance (p,,) but cannot cover energy costs related to
growth and/or reproduction (py > k.p.) as the somatic maintenance has priority over processes in
the model. In these regions, the maintenance of species populations would exclusively depend on
larval supply from other areas. This could be possible via the Antarctic Circumpolar Current that is
a major vector of larval dispersal in the Southern Ocean (

) but this hypothesis remains to be tested and supported by field
data.

Projections under future scenarios of climate change.
Future projections of ENMc showed few changes in the species potential distribution over the
Antarctic shelf. This can be explained by the important contribution of physical descriptors,
geomorphology, slope and depth to the model, three variables that were considered unchanged in
a near future in the model, being here considered that predictions of sea level rise should have
little effect on model outputs at large, ocean-wide scale ( ). Local shifts
in the species distribution probabilities are however predicted, compared to the present-day model.
They are mainly localized in the Bellingshausen-Amundsen seas and are triggered by future
predictions of temperature rise and reduction in sea ice coverage (Appendix 3.14). A reduction in
sea ice coverage will have serious impacts on the seasonal production of food supply and will also
result in a reduction of the protection of shallow benthic organisms from UV-B induced damages
( )- Changes in ice regime are also expected to have multiple impacts in the region
due to ice shelf melting and collapses. This will result in the freshening of Antarctic waters and
associated changes in water biogeochemistry, and to an increase in the intensity of iceberg
scouring on seabeds in shallow water, coastal areas (

)- This phenomenon was shown to have serious effects on the
structure of benthic communities, (

), resulting in a decrease in habitat heterogeneity and local (alpha) diversity (

In projections of the ENMm perl;ormed for future conditions, the combined effect of “temperature
and food change” on individual physiology is predicted to induce important shifts in energy
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availability (Fig. 3.15c,d,e,f). The allocation of energy into reproduction is predicted to become
impossible anymore and growth rates are predicted to strongly decrease in the entire Southern
Ocean. These results suggest a high sensitivity of S. neumayeri to environmental changes under
RCP 4.5 and 8.5 scenarios. Overall, this also stresses the important impact of food availability for
benthic species. The seasonal phytoplankton bloom is known to constitute an important source of
food for many species (

), and predicted shifts and decrease in this resource might have
important consequences for marine communities.
In the ENMm, the future “only temperature change” projection (Fig. 3.17a,b, 3.18a,b) is identical to
the present-day projection. Medium size (~ 4cm) to large (> 5 cm) individuals as well as suitable
areas for reproduction are predicted north of the Polar Front for both periods. We could expect a
synergetic and cumulative effect on growth and reproduction under “temperature and food change”
(Fig. 3.15) than under “only food change” (Fig. 3.17c,d, Fig. 3.18c,d) or “only temperature change”
(Fig. 3.17a,b, Fig. 3.18a,b). On the contrary, our results suggest similarities between “only food
change” and “temperature and food change” projections. Metabolic rates of Antarctic species
increase with temperature, as does the oxygen consumption. If temperature rises and oxygen
supply are insufficient to meet the organism metabolic needs, the organism switches to an
anaerobic metabolism ( ). The ability
of individuals to survive depends on their ability to maintain an anaerobic metabolism over time. As
a result, rising temperatures should lead to changes in the survival and resilience of Antarctic
marine invertebrates.

S. neumayeri occurs in shallow waters compared to other Sterechinus species (

). The hypothesis of a possible in-depth migration to colder water areas may be
considered. In the future, warmer temperatures could occur in deeper areas corresponding to
optimal temperature window of the species and decrease in sea-ice cover could also lead to higher
exposure to UV-B in shallow waters. However, studies suggest that it may compete in these
environments with Sterechinus diadema, its sister species living in deeper habitats (

). Moreover, pressure increase with depth reduces the thermal optimal
window for the development of eggs and embryos, generating a new physiological stress and
reducing the species fitness and survival ( ). It can therefore be assumed that
current environmental changes are expected to lead to a potential reduction in the distribution of S.
neumayeri.

4.2. Model comparison and complementarity

Model comparison.
Overall, ENMc and ENMm run for present-day conditions provide congruent projections (Fig. 3.14,
3.15a,b). For the Antarctic shelf, in regions such as the Ross Sea and the Prydz Bay area in
particular, the ENMm predicts the prevalence of large (> 4cm) and sexually mature individuals and
the ENMc shows high presence probabilities. These regions are characterised by cold
temperatures and high food availability (f > 0.5), which are favorable conditions for the species
development and survival. In contrast, in the northern Kerguelen Plateau and the Campbell
Plateau, low presence probabilities are modelled by the ENMc due to warm water temperatures (>
4°C) (Fig. 3.14, Appendix 3.14), and small (< 1 cm) and sexually immature individuals are
predicted by the ENMm due to low food availability limiting growth and reproduction (Appendix
3.14). Model projections however do not match for certain areas. For instance, small and sexually
immature individuals are predicted along the Antarctic Peninsula in the ENMm, whereas the ENMc
predicts high presence probabilities. In the sub-Antarctic, the ENMm predicts suitable conditions
for the species growth (> 3cm) and reproduction on the Magellanic Plateau, whereas this area is
predicted unsuitable in the ENMc. S. neumayeri is known to be endemic to the Antarctic Peninsula
and East Antarctic shelf ( ), which suggests that the ENMm
projection may not predict the species current distribution properly. This can be explained by the
lack of eco-physiological data documenting the species response to variations in food resources
and temperature (

)- On the other hand, temporal
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scales of physiological experiments are over a limited time frame and different from the temporal
scale of the used environmental layers, which characterise overall climate conditions.

In ENMm, the Arrhenius temperature is the parameter that determines the metabolic rate as a
function of temperature variation (Appendix 3.12). In the present model, the Arrhenius temperature
was estimated based on three measurement points only ( ), which may induce a
lack of precision in the simulation of the species metabolic rate. In addition, lower and upper lethal
temperatures could not be entered in the model due to the absence of relevant physiological data
(Appendix 3.10) and the species optimal temperature range could not be determined precisely. As
a consequence, the modelled physiological performance of the species tends to increase
constantly with temperature and partly outreaches the biological optimum.

Only data on chlorophyll-a concentration and on the gut content were available to model the
functional response of S. neumayeri to food resources (

). Therefore, in the model, sea surface chlorophyll-a concentration in summer was used
as a proxy of food resources for S. neumayeri (Appendix 3.9), which is an opportunistic,
omnivorous feeder. The species does not feed directly on chlorophyll-a but is indirectly dependent
on this food supply as it feeds on various sources of particulate organic matter deposited on the
sea floor as well as some suspension feeders (

). In addition, winter conditions are known as periods of low chlorophyll-
a concentrations in Antarctic surface waters ( ),
which could not be used as input in the model projection due to the lack of satellite data for this
season. In a DEB model developed for the Antarctic bivalve Laternula elliptica (King and Broderip
1832), showed that reserve is seasonal and that low food
availability generated a 25% loss in the species body mass, also delaying gonadal development. In
S. neumayeri, post-metamorphic individuals do not feed in winter ( ) but
no quantitative data on energy allocation are available for this season. Additional works would be
useful to refine the present DEB model. Complementary data based on new eco-physiological
experiments describing the effect of different levels of food supplies, abundant, limited, or
starvation, on the metabolic rate should contribute to improving model accuracy (

).

Complementarity between modelling approaches.
The two modelling approaches mainly differ in their scientific objectives. To run the ENMc, 13
abiotic parameters were used to describe part of the species realised niche, the effect of biotic
interactions and biogeographic constraints also indirectly acting on model outputs through the
position of observed occurrences and the spatial correlation between abiotic descriptors, biotic
factors and biogeographic barriers. Projections therefore partly fit to the species realised
distribution because they partly take into account the multi-dimensions of the species realised
niche. Parameters of the physical habitat such as geomorphology were shown to have an
important role in the structuring and composition of Antarctic benthic communities (

); such parameters were not considered to run the
ENMm. In contrast, the ENMm integrates the effect of temperature and food resources on the
species physiology, focusing on two dimensions of the species fundamental niche, whatever its
distribution and realised niche. The ENMm provides biological insights for understanding the
physiological processes that underpin the observed species distribution.

Major differences between models show up when it comes to run future projections under IPCC
RCP scenarios. ENMm models predict unsuitable conditions for the species growth and
reproduction over the entire ocean. In contrast, ENMc models predict the species persistence on
the Antarctic shelf, the Bellingshausen and Amundsen seas excepted. The ENMc uncertainties
increase when species’ responses to environmental conditions are extrapolated out of the range of
values for which the model was trained ( )- This holds
particularly true for future conditions that do not prevail in present-day environments yet

(
) so that the ENMc may fail to predict as unsuitable environmental conditions that would
exceed the species physiological tolerance ( ). Moreover, without presence-absence
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or abundance data, habitat suitability is partly biased because all presences are treated equally.
With presence-absence and if possible, abundance data, more discrimination of suitable habitat is
gained, which is beneficial when ENMc are used to project species distribution across space and
time. Adding absence data is known to provide greater ability to delineate species range
boundaries and produce more accurate models ( ).

Such discrepancies between the two modelling approaches in a context of climate change were
already highlighted in previous studies. For instance, showed that ENMm
predicted much greater migrations with climate change than ENMc in a study on Lepidotera.
Further, predicted that toad species survival in southern Australia would no
longer be possible due to global warming according to ENMm, while the ENMc still predicted the
region as suitable.
In the present study, while suggesting unrealistic projections on the Magellanic Plateau under
present-day conditions, future projections of the ENMm are more in line with a majority of works
suggesting that climate change would induce unsuitable conditions to the survival of Antarctic
benthic marine ectotherms ( )- All these results highlight the
necessary complementarity of ENMc and ENMm approaches for providing independent and
relevant projections, relying either on biogeographic (ENMc) or physiological (ENMm) data (

). Comparing and combining projections from different
modelling approaches provide more insight on both species present-day distributions and
sensitivity to future projections (

).
4.3. Future prospects

The present work underlines ENMc as a useful and powerful approach to predict current species
distribution. ENMc are relatively simple to implement and do not require a deep knowledge of
population dynamics nor of ecological processes linking organisms to their abiotic environment.
They can be applied to a large number of taxa (
) and are often used upstream to address conservation issues (

). However, ENMc do not imply any inference on causal relationships between species
distribution and environmental descriptors, and such relationships may also imply indirect
responses to collinear variables that are not entered in the model ( )-

In a context of environmental changes, extrapolation represents a serious limitation to ENMc that
have limited capacities to transfer model outputs both in space and time (

)- In the present study, such a limitation is highlighted by the
mismatch between ENMm and ENMc future projections of S. neumayeri. ENMm appear to be
more informative than the ENMc when it comes to describe species distribution under changing
environmental conditions. However, few Antarctic species have been the focus of detailed eco-
physiological studies and few mechanistic models were developed, considering the important
amount of physiological data required. Mechanistic models are therefore generally used when
species physiology has been relatively well studied (

) and our knowledge of marine species physiology is
usually biased toward 'model' species that most interest the public and researchers (

). Many authors have stressed the
importance and benefits of considering mechanistic approaches for conservation purposes and the
implementation of management plans (

). If the integration of biological data into open-access databases has significantly
increased with multiple initiatives such as TRY, Globtherm, FSRD, Anage, GenBank, add-my-pet

(
), there is still no data portal devoted to describing species physiological traits.
Mining such data through experiments and the literature to perform mechanistic models remains a
complex, time-consuming task, limiting the integration of ENMm into conservation strategies
). In contrast, ENMc are mainly based on occurrence or abundance data that are
made available through international databases allowing open-access data sharing (
). Common databases would be particularly valuable to address ecological
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issues linking patterns to processes across spatial and temporal scales, and improving our
knowledge of ecosystem functioning in a context of climate change ( ).

4.4. Conclusion

The present study highlights the complementarity of correlative and mechanistic ENM to predict
species present distributions and sensitivity to changing environmental conditions. Overall,
congruent projections were obtained with the two modelling approaches for present-day
conditions. In contrast, different models were generated under future scenarios. Both models
agree on the fact that S. neumayeri is circum-polar in distribution with suitable areas restricted to
the Antarctic continental shelf area (< 400m), with low temperatures (< 2°C), limited sea ice
concentrations (< 50%) and high food availability (f > 0.7). The ENMm approach provided an
additional understanding of physiological processes determining the species distribution with
regards to growth and sexual maturity as a function of temperature and food availability.

The combination of ecological modelling, ENMm and ENMc, with satellite remote sensing and
climate models provides a valuable approach to study large-scale responses of marine species to
climate change (

). Multiple
challenges however remain to be overcome. Eco-physiological data are still needed to produce
reliable mechanistic DEB models, including data on Arrhenius temperatures. In addition, ENMm do
not take into account extrinsic factors that shape species distribution such as biogeographic
barriers, physical habitats and biotic interactions (predation/competition/facilitation). Combining
correlative and mechanistic models in an integrative approach therefore constitutes a promising
perspective, which has already been developed for certain terrestrial and marine organisms (

), and could prove particularly relevant to predict the sensitivity of Antarctic organisms to a
fast changing environment.
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APPENDIX 3.5. Life cycle of Sterechinus neumayeri
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Figure S3.5. Life cycle of Sterechinus neumayeri. Red crossed boxes: inactive functions at different life
stages; green ticked boxes: active functions at different life stages. From

Life cycle of Sterechinus neumayeri starts with sexual mature individuals. The vitellogenic cycle
lasts from 18 to 24 months, with oocytes starting to develop during the first winter and achieving

development during the second winter ( ). The gametes are then expelled in
the water column, where fertilization occurs, and the onset of the embryonic stage takes place
between mid-November and December ( ). Pre-

metamorphic larvae appear between late December and early March when they are able to feed
(i.e. DEB ‘birth’ stage), taking advantage of the summer phytoplankton bloom (

)- The larval recruitment on the sea bed corresponds to the metamorphosis stage and mainly
occurs between the end of February and March of the following year ( )-

304



INTEGRATED APPROACHES CHAPTER 3.

APPENDIX 3.6.

Stages of life cycle as described in the Dynamic Energy Budget Theory
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Stages of life cycle for a sea urchin with an indirect development (planktonic larvae)

Figure S3.6. Reproduction and feeding functions represented over a theoritical life cycle according to DEB
theory and correspondence with the life cycle of Sterechinus neumayeri. Red crossed boxes: inactive
functions at different life stages ; green ticked boxes: active functions at different life stages.

In a standard DEB model ( ), the organism is isomorphic, i.e. it maintains the same
shape throughout its entire life cycle. This life cycle is characterised by three stages that are
distinguished by their energy flow: the embryo, juvenile and adult (Fig. S3.6). The embryo does not
assimilate food and relies on reserves. The juvenile stage happens after birth (i.e. according to
DEB theory, it corresponds to the moment when the organism is able to feed). The transition
between the embryo and juvenile stages occurs when the individual has reached a particular
threshold of energy invested into its development.

At this point, the individual is complex enough to start feeding and uses the energy gained from
food to continue its development, growth and maintenance but it does not provide energy into
reproduction. The other stage of the organism development is the transition from the juvenile to the
adult stage called puberty. After this stage, when the organism becomes an adult, it stops
allocating energy into its development and redirects the energy towards reproduction and the
production of gametes.
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Environmental data Years Units Sources
Depth meter http://topex.ucsd.edu/WWW _html/mar_topo.html
Geomorphologic features categorial ATLAS ETOPO2 2014 ( )
Sea surface salinity 2005-2012 PSS https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
Sea ice concentration unitless ( )
Sea surface salinity 2005-2012 PSS https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
Sea surface temperature range 2005-2012 °Celsius degrees https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
Seafloor oxygen concentration 1955-2012 mL/L https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
Seafloor salinity 2005-2012 PSS https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
Seafloor salinity range 2005-2012 PSS https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
Seafloor temperature 2005-2012 °Celsius degrees https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
Seafloor temperature range 2005-2012 °Celsius degrees https://www.nodc.noaa.gov/OC5/woa13/woa13data.html
Slope unitless ( )
Summer chlorophyll concentration 2002-2009 mg/m3 ( )

Table S3.7. Environmental descriptors used to build ENMc models for the current period. Predictor ‘range’ is here defined as the difference between winter and
summer mean values.
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Table S3.8. Environmental descriptors used to build the ENMc models for future IPCC scenarios (RCP 4.5 and RCP 8.5). Predictor ‘range’ is here defined as the
difference between winter and summer mean values.

Environmental data Years RCP Units Sources
‘Seaice concentration ~ 2050-2099 RCP4.5/RCP85  httpsi//www.esrl.noaa.gov/psdfipcclocn
Sea surface salinity 2050-2099 RCP 4.5/RCP 8.5 PSS https://www.esrl.noaa.gov/psd/ipcc/ocn
Sea surface salinity range 2050-2099 RCP 4.5/RCP 8.5 PSS https://www.esrl.noaa.gov/psd/ipcc/ocn
Sea surface temperature range 2050-2099 RCP 4.5/RCP 8.5 Celsius degrees https://www.esrl.noaa.gov/psd/ipcc/ocn
Seafloor salinity 2050-2099 RCP 4.5/RCP 8.5 PSS https://www.esrl.noaa.gov/psd/ipcc/ocn
Seafloor salinity range 2050-2099 RCP 4.5/RCP 8.5 PSS https://www.esrl.noaa.gov/psd/ipcc/ocn
Seafloor temperature range 2050-2099 RCP 4.5/RCP 8.5 Celsius degrees https://www.esrl.noaa.gov/psd/ipcc/ocn
Summer chlorophyll concentration 2050-2099 RCP 4.5/RCP 8.5 mg/m3 https://www.esrl.noaa.gov/psd/ipcc/ocn
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Figure S3.9. Observed values (circles) and projection (line), based on a type Il feeding functional response
X_ The estimated value for the half-saturation parameter Xkis the food density at which feeding rate is

f= X+Xk
half of its maximum value, here Xk 2.95 mg.m=.

Data for sea surface chlorophyll-a concentration and gut content were extracted from
. Chlorophyll-a concentration and gut content data do not have the same time

interval. These data were not calibrated to the same time interval. Data were splined according to
time to get regular time intervals. Then, we used a moving average, which estimates the trend-
cycle at time t by averaging values within k periods of . This method removes transient fluctuations
and keeps an overall trend. The same computation has been done for temperature data according
to time. These analyses were performed using the castr package (https:/github.coml/jiho/castr).
Data for the gut content were corrected by temperature and scaled to values comprised between 0
and 1. A non-linear least squares regression model was then applied to adjust the functional

response.
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Figure S3.10. DEB model fit (blue curves) and experimental values (red dots) for univariate data: (a) size of
larvae as a function of time since fertilization ( ), (b) test diameter according to age since
metamorphosis ( ), ¢) adult wet weight according to test diameter (S. Morley, com. pers), (d)
summer oxygen consumption according to weight (AFDM: Ash Free Dry Mass) for post-metamorphic
individuals ( ), (e) winter oxygen consumption according to weight (AFDM) for post-
metamorphic individuals ( .
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Table $3.11. Experimental and predicted DEB modeled values for zero- and univariate data.

Zero-Variate data Observation Prediction Relative Error Source
Age at birth at -1.35°C (day) 21 20.53 0.023

Age at birth at at 0°C (day) 17 17.66 0.039

Time since birth at metamorphosis (day) 103 92.64 0.10

Life span (day) 1.46.10* 1.46.10* 8.64.10°

Length from aboral apex to tips of postoral arms of echinoplutei (cm) 0.035 0.035 7.59.10°

Length of the pluteus before metamorphosis (cm) 0.12 0.13 0.11

Diameter of test at puberty (cm) 2.04 2.06 9.103 Guessed *
Ultimate diameter of test (cm) 7.02 7.17 0.02

C :N mass of fertilised egg (g) 4.49.107 5.78.107 0.29

C :N mass of pluteus larva (g) 5.21.107 4.05.107 0.22

Wet weight adult including gonads (g) 129 130.6 0.012

Gonadal somatic index (g) 0.1 0.096 0.042

Univariate data ‘

Time since fertilization (day) vs. length of echinoplutei (mm) 0.093

Age SII:\CE metamorphosis day) ys. test diameter (mm) See Figure $3.10 0.13 al : .

Test diameter (mm) vs. wet weight (g) 0.053 British Antarctic Survey unpublished data
Ash Free Dry Mass (g) vs. O2 consumption in umol/h in winter 0.21

Ash Free Dry Mass (g) vs. O2 consumption in umol/h in summer 0.27

* based on same relative length compared to Echinus affinis (https://www.bio.vu.nl/thb/deb/deblab/add my pet/entries web/Gracilechinus affinis/Gracilechinus affinis res.html)
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APPENDIX 3.12. Temperature sensitivity and post-metamorphic shape coefficient

1) Temperature sensitivity

a. The Arrhenius temperature
The Arrhenius temperature (Ta) provides information on metabolic rate variations as a function of
temperature and can be calculated from observed, experimental values at different temperatures. In this
study, Ta was estimated using embryonic development time data at different temperatures (
). Values were standardized for a value of 1 at a reference temperature of 273 K (0°C). The Arrhenius
temperature was then obtained by fitting the Arrhenius function (Eq. A) to the scaled values using a linear
least squares regression ( ) with the R package minpack.Im ( ).

. . {T_A_T_A}
k(T) =k(Ty).ets T2 (A)
k(T) : Rate at temperature T(K)

k(T,) : Rate at reference temperature (T1)

T, : Arrhenius temperature (K)

T;: Reference temperature (K)

b. Thermo-tolerance window
When data are sufficiently detailed, the DEB model can also include the description of the influence of body
temperature on physiological rates over the temperature range in which enzymes are assumed to be active

and delimited by the parameters TL and TH (Eq. B). Above and below the thermo-tolerance window
enzymes become inactive, leading to a decline in physiological rates, which can be traced by the parameters
TAL and TAH, respectively. These five parameters fully define an organism thermal performance curve, in
accordance to the formula:

-1

: : T, T T T T T
T, T T T, T, T

where k(T) is the value of the physiological rate at a given body temperature T and /él is the known value

of the metabolic rate at a reference temperature T1

2) Post-metamorphic shape coefficient

From birth to metamorphosis, S. neumayeri larvae grow exponentially, conducting to an increase of the
assimilation flux p, (energy flow from assimilated food into the reserve) and mobilization p. (outflow from the
reserve) ( )- In addition, during recruitment (planktonic larval stage to benthic juvenile) (Fig.
S3.5, Fig. $3.6), individuals undergo metamorphosis that is, a change in body shape. These changes during
the life cycle are included in the DEB model, using the shape parameter 6§,,.

The relation between size (L) and the volume of the structure (V) is provided by the following relation:

V =268y.L3 ©

The shape coefficient dm is used to convert size into the structural volume (V, i.e the cube of volumetric
length). DEB theory partitions the body mass into the abstract quantities of structural volume V and the
reserve E. The structure is the ‘permanent’ biomass such as proteins and membranes proportional to
structural volume. The structural volume is the key feature that allows body size to be included in the
complete budget of the organism. Several shape factors were used, dm.iar for the pre-metamorphic larva and
Oom for the post-metamorphic larva and the adult. An acceleration factor sm allows taking into account
changes in the parameters related to the exponential growth period between birth and metamorphosis.
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Table S3.13. Parameter estimate of the DEB model and marginal confidence intervals obtained with the
profile method. Threshold value Fc: 0.088.

Parameter | Estimate Marginal confidence interval

v 0.03301 [0.0183 ; 0.0454]
K 0.7221 [0.596; 0.805]

[pw] 24.42 [18.69; 42.09]

Ex° 0.004515 [0.0023; 0.0078]

Ey 0.3 [0.086 ; 0.665]

ExP 2266 [526.55; 8386.15]

z 1.364 [1.11; 1.76]

Sm 0.612 [0.486; 0.687]
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Figure S3.14. Current and future environmental layers (food and temperature) used to project DEB model
outputs.

Article. Fabri-Ruiz et al. (2021). Using correlative and mechanistic niche models to assess the sensitivity of the Antarctic echinoid
Sterechinus neumayeri (Meissner, 1900) to climate change. Polar Biology. 313
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Figure S$3.15. Response curve of all predictors used in the correlative niche model approach. The response
curves show the relationship between the distribution probability for a species and each environmental
variable.
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Figure S3.16. Presence probabilities for each geomorphological category in the ENMc.
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