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MODELLING IN ECOLOGY 1.1 Models and their application in ecology 1.1.1 Some generalities on models

Models are "purposeful representations of a system, hypothesis or experiment and include any useful form of abstraction to assist thinking" (Starfield et al. 1990). They are used in a substantial panel of scientific contexts (e.g. in cosmology to study astronomical object movements or compositions, in oncology to predict the effect of a therapy, in biochemistry to determine molecular structures, in climatology to forecast weather, in mechanics to design technologies, in epidemiology to anticipate the spread of a disease, in archaeology to rebuild an artifact...), and play a crucial role to analyse complex situations that are difficult to describe (Frigg and Hartmann 2020). Models are built using observations, and can be represented with mathematical equations, computer codes (Kennedy and O'Hagan 2001, [START_REF] Hucka | The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models[END_REF], matrices, networks (Keller et al. 2006[START_REF] Kuperstein | The shortest path is not the one you know: application of biological network resources in precision oncology research[END_REF], schematic diagrams or images [START_REF] Ludvigsen | Photogrammetric models for marine archaeology[END_REF][START_REF] Bryson | Characterization of measurement errors using structure-from-motion and photogrammetry to measure marine habitat structural complexity[END_REF], Fisher et al. 2018). Whenever conceptualizing models, it is essential to be aware that they are mere simplifications of real processes, and by definition are wrong, as they cannot encompass the complexities of the studied system (Knutti 2010). Models do not aim at perfectly representing the overall processes, but should be useful enough to enable a part of their understanding [START_REF] Grimm | Mathematical models and understanding in ecology[END_REF]. G. Box, a British statistician, used to write in his studies that "all models are wrong; some are useful… the practical question is how wrong do they have to be to not be useful". This sentence illustrates the trade-off between model overfit and their explanatory power [START_REF] Box | Robustness in the strategy of scientific model building[END_REF].

The way models are designed depends on the final objectives of the model and respects a balance between generality, realism and precision (Levins 1966, Fig. 0.1). An infinity of models can be therefore generated to target a single question. Trade-off between model properties when designing a model. The balance between generality, precision and realism depends on the questions the modeller addresses. It is also dependent on data availability. This scheme highlights the fact that a broad range of models can be generated to represent a given system.
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Models are efficient to enable rapid explorations of mechanisms [START_REF] Goodman | Risk for psychopathology in the children of depressed mothers: a developmental model for understanding mechanisms of transmission[END_REF]Gotlib 1999, Villari et al. 2016), to test and validate hypotheses [START_REF] Eren | Test, model, and method validation: the role of experimental stone artifact replication in hypothesis-driven archaeology[END_REF], to identify key interactions [START_REF] Lorenzo-Trueba | Toward a model framework for sedimentary delta growth that accounts for biological processes[END_REF], Gaichas et al. 2016), or to provide testable predictions, that may corroborate (or not) with experimental observations and help prioritize new experiments or model improvements [START_REF] Grimm | Mathematical models and understanding in ecology[END_REF], Marini et al. 2010[START_REF] Enderling | Integrating mathematical modeling into the roadmap for personalized adaptive radiation therapy[END_REF].

After designing a model, a crucial step is the evaluation of its relevance, by assessing whether the model is suited to describe the studied process and efficient enough to provide accurate predictions (Tropsha et al. 2003, Ivanescu et al. 2016). Though essential, the evaluation step is sometimes neglected or fails, because of limited available independent observations or inappropriate methods [START_REF] Fielding | A review of methods for the assessment of prediction errors in conservation presence/ absence models[END_REF], Steyerberg et al. 2003[START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF], which highlights the importance of adapting methodologies for this validation step (Robinson et al. 2011, Muscarella et al. 2014).

Robustness analysis can complete model evaluation by assessing "whether a result depends on the essential of the model or on the details of the simplifying assumptions" (Railsback and Grimm 2019). This analysis aims at "breaking" the model, by forcefully changing its parameters, structure and/or representation of processes in order to evaluate the assumptions that mostly drive model stability [START_REF] Grimm | Robustness analysis: Deconstructing computational models for ecological theory and applications[END_REF]. The relevance of such evaluation procedures is crucial and validation results need to be associated with model predictions to enable complete and accurate interpretations (Guisan et al. 2013[START_REF] Yates | Outstanding challenges in the transferability of ecological models[END_REF]).

Ecological modelling in marine environments

A recent review on marine ecology seascape analyses (Kavanaugh 2018) wrote "The technological advancement and proliferation of space-, air-and water-based ocean sensing systems, together with increased sophistication in geospatial tools and mathematical simulation models […] have allowed to collect, integrate, analyse and visualise vast quantities of marine data that have revealed unimaginable structural complexity and interconnectedness across the seafloor, sea surface and throughout the water column." These sentences illustrate the huge amount of data collected during the past decades to understand ecological processes, the development of new technologies to analyse them and the strong desire of disentangling the way elements are interacting between each other in natural systems (Borgman et al. 2007, Aanensen et al. 2009, Hallgren et al. 2016). The use of ecological models to represent in a simpler way these complex ecological systems and to facilitate their understanding by simplifying existing interactions between components is thus fully appropriate [START_REF] Holling | The strategy of building models of complex ecological systems[END_REF][START_REF] Wu | A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications[END_REF][START_REF] Elsawah | A methodology for eliciting, representing, and analysing stakeholder knowledge for decision making on complex socio-ecological systems: From cognitive maps to agent-based models[END_REF].

Ecological models can be used to describe on-going processes but can also be predictive-based [START_REF] Jørgensen | Complex ecology in the 21st century[END_REF]Bendoricchio 2001, Austin 2002). They can be applied to various systems and fields, from the scale of a water pond to an entire ocean or continent (Hecnar and M' Closkey 1996, Hassall et al. 2011, Xavier et al. 2015) or from the scale of a cell to an entire ecosystem (Klanjšček et al. 2013, Blanchard et al. 2017[START_REF] Dahood | Using sea-ice to calibrate a dynamic trophic model for the Western Antarctic Peninsula[END_REF]. They can be used to predict species distribution in space or time under contrasting environmental conditions (Peterson et al. 2011), to assess energetic shifts or individuals survival when facing environmental change or toxicant exposure [START_REF] Ashauer | Modelling survival: exposure pattern, species sensitivity and uncertainty[END_REF], Lenz et al. 2019, Muller et al. 2019), to predict population dynamics in space or time (Martin et al. 2013, Goedegebuure et al. 2018), to evaluate marine individuals dispersal in oceans by simulating particle trajectories in marine currents with lagrangian approaches (Hays et al. 2010, Thomas et al. 2015).

Representing natural systems is however a difficult exercise [START_REF] Wu | A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications[END_REF], as systems are composed of many actors and factors, with variable and complex interactions (Fig. 0.2), influenced by intra-individual complexity, at multiple scales, with contrasted environmental conditions and
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habitats [START_REF] Jørgensen | Complex ecology in the 21st century[END_REF], Levin 1999, Johnston et al. 2007). Figure 0.3 illustrates well this complexity, with the example of zooplankton density in the water column, forced by several nested biotic and abiotic factors and challenged by cross-scale interactions that may interact together, and that may change according to the way the system is studied [START_REF] Seidl | Forest disturbances under climate change[END_REF]. properties on biological processes in the vicinity of a free-drifting iceberg in the northwest Weddell Sea. Global climate forcing induces regional ice melting, causing shifts in water column stratification and water movement at local scales, which may affect the survival, behaviour and dynamics of planktonic communities at regional scales. This illustrates marine systems' complexity and inter-scale interactions. Figure extracted from Smith et al. (2013).

Understanding such complex processes requires a huge amount of time and studies [START_REF] Sagarin | Observation and ecology: broadening the scope of science to understand a complex world[END_REF] and implies to study each biological pattern at different scales [START_REF] Anderson | Biodiversity monitoring, earth observations and the ecology of scale[END_REF]), as each system generally shows variability on a range of spatial, temporal and organizational scales INTRODUCTION (Levin 1992). For ecological models, the choice of grain size and spatial extent to represent a system therefore constitutes a strong assumption as it conditions the accuracy in describing the system (i.e. estimation of species richness, evaluation of environmental variability, detection of rare species; Whittaker et al. 2001, Keil et al. 2015). Because there is no general scale to best represent ecological processes (Wiens 1989, Levin 1992, Blackburn and Gaston 2002), representing ecological systems as a combination of several simple systems at different scales and levels [START_REF] Gonzalez | Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity[END_REF][START_REF] Boyd | Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change, a review[END_REF] or by a hierarchical approach [START_REF] Wu | Hierarchy and scaling: extrapolating information along a scaling ladder[END_REF][START_REF] Wu | A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications[END_REF] can constitute alternatives to improve the overall understanding (Fig. 0.4,Fig. 0.5). Combining these representations by multi-scale analyses also constitutes a powerful method to more accurately represent biodiversity patterns [START_REF] Gonzalez | Estimating local biodiversity change: a critique of papers claiming no net loss of local diversity[END_REF][START_REF] Anderson | Biodiversity monitoring, earth observations and the ecology of scale[END_REF]. 

Ecological niche theory

The niche theory was initiated by ecologists to analyse the complex question of 'which set of environmental factors allow a species to exist in a given geographic region or biotic community and respectively, what effects does this species have on its environment?' (Peterson et al. 2011). The niche concept was defined, used and developed in several founding works, leading to several definitions.

• [START_REF] Grinnell | The niche-relationships of the California Thrasher[END_REF] defines the species niche as the climatic and habitat requirements (environmental factors expressed geographically) that enable the species to survive and reproduce. [START_REF] Grinnell | The origin and distribution of the chest-nut-backed chickadee[END_REF] pioneered the concept that two species should have some contrasting traits related to their fitness to coexist if they want to coexist. Grinnell was also among the first to discuss niche organisation within communities, with saturated/unsaturated communities, containing "empty niches". This concept is still discussed nowadays (Peterson et al. 2011).

• [START_REF] Elton | Animal ecology[END_REF] adopted a contrasting definition that brought new advances in the use of the ecological niche concept. The niche was in his works defined as the functional role of the species in its community, in other words, as its local effect in the "food cycle". Grinnell's and Elton's definitions are contrasting in terms of the considered geographical scales to define the niche concept, but these two definitions are interestingly complementary to more accurately understanding the species geographic distribution.

• It was [START_REF] Hutchinson | Concluding remarks Cold Spring Harbor[END_REF], who made the link between these concepts, by defining the ecological niche as "an hypervolume of environmental variables, every point of which corresponds to a state of the environment which would permit the species to exist indefinitely". [START_REF] Hutchinson | Concluding remarks Cold Spring Harbor[END_REF] also defined the concepts of fundamental and realised niches, the fundamental niche being the set of environmental states which enables the species to exist; and the realised niche a subset of the fundamental niche that corresponds to the ensemble of environmental conditions for which the species survives and reproduces, adding into consideration the influence of biotic interactions (competition, predation, parasitism, symbiosis…). Scale was not considered in the pioneer theoretical works of Hutchinson, it was several years later [START_REF] Hutchinson | An introduction to population ecology[END_REF], that he described niches based on case-studies. [START_REF] Hutchinson | Concluding remarks Cold Spring Harbor[END_REF] did not consider the influence of biogeographic barriers neither. The realised niche is not limited by potential geographical barriers, nor by species dispersal capabilities in Hutchinson's definition.

•Some following studies then revised the definition of the niche concept (Leibold 1995, Chase and[START_REF] Chase | Ecological niches: linking classical and contemporary approaches[END_REF]. From these, new concepts such as the "potential niche" (i.e. the intersection between the fundamental niche space and the available environmental space) or the "occupied niche" (i.e. a subset of the fundamental niche that takes into consideration both biogeographical barriers and biotic interactions) were introduced (Jackson and Overpeck 2000, Soberón and Nakamura 2009) and adopted by the community (Pearman et al. 2008, Barve et al. 2011[START_REF] Lang=en Saupe | Variation in niche and distribution model performance: the need for a priori assessment of key causal factors[END_REF].

Following these concepts, statistical and computing approaches have been developed to go beyond the niche description and generate models that provide an effective way of describing the different types of species niches [START_REF] Guisan | Predictive habitat distribution models in ecology[END_REF], Pulliam 2000, Pearson and Dawson 2003[START_REF] Soberón | Interpretation of models of fundamental ecological niches and species' distributional areas[END_REF][START_REF] Soberón | Grinnellian and Eltonian niches and geographic distributions of species[END_REF][START_REF] Soberón | Niches and distributional areas: concepts, methods, and assumptions[END_REF].

Niche modelling approaches

Niche models link modelling techniques and niche theory with the aim of explaining as accurately as possible the conditions that drive species distribution and help fulfill their best fitness, based on INTRODUCTION statistical approaches, experimental works and/or in situ observations [START_REF] Guisan | Predictive habitat distribution models in ecology[END_REF], Peterson 2006, Kearney and Porter 2009). Methodological issues to design these models have been widely discussed, such as the influence of contrasting spatial or temporal scales, the geographical influence of dispersal, biotic interaction knowledge, biotic interaction changes according to spatial scales, shift of equilibrium between species occurrence and sampling effort, or the nature of occurrence records used to calibrate models (Araújo and Guisan 2006[START_REF] Hortal | Historical bias in biodiversity inventories affects the observed environmental niche of the species[END_REF], Godsoe 2010, Sillero 2011[START_REF] Anderson | A framework for using niche models to estimate impacts of climate change on species distributions[END_REF], Pittman 2017, Fig. 0.6). In parallel, numerous methods have been developed to address these issues [START_REF] Soberón | Interpretation of models of fundamental ecological niches and species' distributional areas[END_REF][START_REF] Soberón | Grinnellian and Eltonian niches and geographic distributions of species[END_REF], Godsoe 2010, Peterson and Soberón 2012[START_REF] Real | Species distributions, quantum theory, and the enhancement of biodiversity measures[END_REF][START_REF] Soberón | REFERENCES squid and fish in the pelagic zone of the Cosmonaut Sea and Prydz Bay region during the BROKE-West campaign[END_REF]. One of the most recently developed representations of ecological niches is the BAM diagram [START_REF] Soberón | Grinnellian and Eltonian niches and geographic distributions of species[END_REF], Peterson et al. 2011, Sillero 2011[START_REF] Lang=en Saupe | Variation in niche and distribution model performance: the need for a priori assessment of key causal factors[END_REF]. This theoretical framework hypothesizes that three main conditions determine the distribution of a species: biotic factors (B), abiotic conditions (A) and regions that are accessible through dispersal (M, movement). FN is the fundamental niche, corresponding to the ensemble of environmental conditions suitable to the species distribution. RN, in the center of the BAM diagram, is the realised niche, that is the real space occupied by the species, restrained by A, B and M. Gi is the invadable area, abiotically suitable but that has not been explored by the species yet. Biotic interactions and dispersal barriers are theoretically a constraint. Gi could play the role of a potential refuge.
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Figure 0.7. Representation of the BAM diagram. B is the portion of the environment restrained by suitable biotic interactions; A is the part of the environment that contains suitable abiotic conditions for the development and survival of the species, which corresponds to the fundamental niche FN; M is the region that is accessible to the species during a considered amount of time, not limited by dispersal nor geographic barriers. The intersection of B, A and M is the realised niche RN. Gi corresponds to an area that contains suitable environmental conditions but which has not been explored by the species yet. This area is the focus of modelling approaches (interpolations). Areas that are assessed by mechanistic, correlative and dispersal models are illustrated in the left bottom corner of the panel. Adapted from Sillero (2011), [START_REF] Lang=en Saupe | Variation in niche and distribution model performance: the need for a priori assessment of key causal factors[END_REF].

The BAM diagram can take different shapes, according to the respective size of the different B,A and M areas. This has been discussed by Peterson et al. (2011) Peterson et al. (2011). Go is the realised niche, defined as RN in Figure 0.7. Panel A shows an intuitive hypothetical and theoretical configuration. Panel B shows a situation in which all of the abiotic suitable area A is accessible, so the invadable distributional area Gi is null. Panel C shows a situation in which A and B are almost coincident, and the entire area is accessible to the species, so neither biotic nor movement considerations reduce the distributional potential of the species, solely the environmental conditions are limiting the distribution. Panel D depicts a situation similar to C, except that substantial restrictions of dispersal exist, such that not all suitable potential distributional areas are inhabited. In all panels, open circles denote absences of the species, solid circles denote presences of the species, light stippling indicates Gi, and darker stippling indicates Go = RN.

Modelling the fundamental niche

Different physiological models and approaches. Physiological models describe the rates at which an individual organism feeds, assimilates or utilises energy for metabolic processes (such as maintenance, growth or reproduction) during its lifetime and depending on the surrounding environmental conditions (van der Meer 2006). Physiological models therefore explore the influence of environmental conditions on species physiological performances. They establish a causal relationship between species distribution and environmental variables, characterise the range of suitable abiotic conditions for the species to reproduce or survive, and consequently constitute a good proxy to characterise species fundamental niche (Kearney andPorter 2004, Sillero et al. 2011).
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One of the most integrative theories of dynamic energy budgets is the DEB theory, developed in the late 1980's (Kooijman 1993[START_REF] Nisbet | From molecules to ecosystems through dynamic energy budget models[END_REF], Kooijman 2010), which inspired at least the development of 26 other popular empirical models (Comments on DEB 3, Kooijman 2010).

The Dynamic Energy Budget (DEB) theory: general principle.

The DEB theory defines individuals as dynamic systems and provides a mathematical framework for the life cycle of an organism, from the start of the embryo development to the death by ageing. It describes the physiological processes with four primary state variables: reserve, structure, maturity and reproduction buffer (the latter for adults only), directly linked to mass and energy flows and influenced by two forcing environmental variables: temperature and food resources availability (Fig. 0.9, Kooijman 2010). DEB theory relies on key concepts such as consistency with biological and ecological principles, as well as first laws of thermodynamics for conservation of mass, energy and time [START_REF] Jusup | Physics of metabolic organization[END_REF]) and assumes that the various energetic processes, such as assimilation and maintenance rates are dependent either on surface area or on body volume (van der Meer 2006). The DEB model considers that consumed products are assimilated at a rate (𝑝Ȧ) into a reserve pool, following a functional response of Holling's type II in the simplest case. This initiated energy is then mobilized at a rate (𝑝Ċ) from the reserves and allocated to maintenance (𝑝Ṁ), structural growth (𝑝Ġ), maturity maintenance ( 𝑝̇J), maturation of immature individuals ( 𝑝̇R) or reproduction of mature individuals ( 𝑝̇R) following a so-called κ-rule that controls energy acquisition and priority with assumptions related to empirical observations (van der Meer 2006, Sousa et al. 2008, Kooijman 2010) (Fig. 0.9). Priority is always given to somatic maintenance, followed by structural growth, maturity maintenance and reproduction. If the energy utilization rate from the reserves is not sufficient to pay for the somatic maintenance costs, the individual is assumed to die. Biomass is modelled by the reserve and structure compartments. The non-structural complexification of the individual is symbolized by a cumulative investment of energy into maturity. The level of energy accumulated in this maturity compartment triggers metabolic switches such as the transition between the different life stages (e.g. ability to feed, to reproduce). The development cycle of each species is divided into three life stages: (1) development starts at the embryo stage, when the organism is not able to feed nor to reproduce and is composed mainly of reserve and a negligible amount of structure; (2) the organism comes at the juvenile stage once the threshold for "birth" is passed as the organism starts feeding, however it is still not able to reproduce; (3) the adult stage is reached at "puberty", when the organism acquires the ability to reproduce. At this time, the maturity compartment stops receiving energy, organism complexification has reached its maximum, and this flow of energy is rather directed to reproduction (Kooijman 2010). Each DEB parameter (Table 0.1) is linked to specific physiological processes (van der Meer 2006) and the combination of these parameters covers the different energetic processes of the organism (feeding, digestion, storage, maintenance, growth, development, reproduction, ageing) [START_REF] Marques | The AmP project: comparing species on the basis of dynamic energy budget parameters[END_REF].
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Table 0.1. The 14 main DEB parameters and their units (Kooijman 2010, [START_REF] Marques | The AmP project: comparing species on the basis of dynamic energy budget parameters[END_REF].

DEB theory: model implementation.

The calibration of a DEB model is fully documented on the DEB portal: (https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/, accessed November 2019), where Matlab codes and tutorials are provided. A new platform, AMPeps also helps complete these codes following a step-by-step tutorial (http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/AmPeps.html). Once the DEB model is created, the codes are checked by the administrators of the DEB community and shared in the Add-my-Pet collection (https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/species_list.html). This collection of DEB models is growing fast, with more than 2765 species modelled in February 2021 (Fig. 0.10). For its creation, the model requires a set of zero-variate (single data) and univariate data (x~y relationship data) that can be extracted from the literature or obtained from experiments purposely designed for implementing the DEB model. These data should be recorded at different life stages of the individual. Food and temperature conditions at which data were recorded should be informed in the model (Table 0.2).

DEB parameter Notation Unit

Specific searching rate where i scans datasets and j points in this dataset. dij and pij are respectively the data and the predictions and 𝑑 ̅ i and 𝑝̅ i their average values in set i. wij are the attributed coefficients (see below), n is the number of data sets, ni denotes the data in a dataset, nj the data in data-points.

Because it is assumed that certain observations have been made with greater confidence and accuracy than others, the procedure associates to each data-point a weight coefficient, on the basis of this prior knowledge. Complementary to that, the model structure is initiated with pseudo-data, being a set of potential parameters that describe a generalised animal, taxonomically close to the study species. Whether available, species-specific observations replace pseudo-data. Otherwise, pseudo-data are kept but associated with lower weight coefficients (i.e. lower confidence of the data) (Lika et al. 2011a). The covariation method has therefore similarities with a Bayesian estimation, but is not embedded in a maximum likelihood context, since the stochastic element is not modelled (Kooijman et al. 2008).

The goodness of fit of each prediction is quantified by the relative error (RE). The mean relative error (MRE) quantifies the overall model performance. RE corresponds to the sum of the absolute differences between observed and predicted values, divided by the predicted values. Contrarily to the loss function, the MRE does not take into consideration the weights of the different data [START_REF] Marques | The AmP project: comparing species on the basis of dynamic energy budget parameters[END_REF]. MRE values can have values from 0 to infinity, with 0 value meaning that predictions match data exactly.
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studying the impact of toxic compounds or damaging agents on these processes, using the principle of Synthetizing Units (Jager and Kooijman 2005, Muller 2011, Muller et al. 2019).

Modelling the realised niche

Principle and relation to niche theory. Species Distribution Modelling (SDM) is also known as ecological niche modelling, habitat suitability modelling or climate envelope modelling (Austin 2002, Pearson 2007, reviewed in Sillero 2011). The acronym SDM is the most frequently used term in ecological modelling when referring to correlative models, that aims at predicting the distribution of a species (Pearson 2007). [START_REF] Soberón | Interpretation of models of fundamental ecological niches and species' distributional areas[END_REF] and [START_REF] Soberón | Niche and area of distribution modeling: a population ecology perspective[END_REF] however distinguish SDM from ecological niche models (ENM), with the latter rather described as correlative models based on ecological niche theory, that provide an approximation of the species niche by forecasting the environmental conditions that are suitable for a species to survive or reproduce, rather than to the species distribution by itself. Considering the lack of consensus terminology (Sillero 2011), the term SDM refers in this manuscript to an ecological niche model that helps representing species realised niche.

SDM is based on a statistical relationship between occurrence records and environmental data [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF][START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF], Peterson et al. 2011). Environmental conditions at the location of available presence-only (or presence-absence) data are extracted to generate a matrix used to build the SDM (Fig. 0.11). The complexity of the relationship between occurrence records and environmental conditions is conditioned by the chosen mathematical representation of the SDM (i.e. the model algorithm: linear or polynomial relationships, classification trees, entropy minimisation) (Fig. 0.11) (Elith andLeathwick 2009, Anderson 2013). Model outputs that represent the probability distribution of the species are projected on a geographic and/or climatic/environmental space to identify areas where the environment fulfills the required environmental conditions [START_REF] Anderson | A framework for using niche models to estimate impacts of climate change on species distributions[END_REF].

Associated to prediction maps, several model outputs can be generated by SDMs: partial dependence plots, that describe how the range of values of each environmental descriptor is associated to model predicted suitability; descriptors contribution to the model or interactions between these descriptors within the model (see examples in [START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF].
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Figure 0.11. General principle underlying the construction of a Species Distribution Model (SDM) that determines the correlation between occurrence records (presence/absence) using a set of environmental descriptors. The chosen algorithm (black arrow) can be chosen to integrate more or less complex relationships between data and environment. SDM output is a map that provides the probability of the species to be distributed in the area (0: non suitable; 1: highly suitable).

A short history of the development of correlative approaches.

Understanding species distribution has long been a major issue in ecology (von Humboldt 1807, de Candolle 1855), and before using modelling approaches, many pioneering works aimed at explaining species distribution patterns as a response to environmental factors with experiments and observations [START_REF] Salisbury | The geographical distribution of plants in relation to climatic factors[END_REF][START_REF] Good | The geography of the flowering plants[END_REF][START_REF] Holdridge | Life zone ecology: Tropical science center[END_REF][START_REF] Mcarthur | Geographical ecology: patterns in the distribution of species[END_REF][START_REF] Box | Macroclimate and plant forms: An introduction to predictive modeling in phytogeography[END_REF]). In the 1990s, predictive habitat distribution models were first introduced as efficient tools to test for biogeographical hypotheses, improve information provided by atlases, set up conservation priorities or assess the impact of environmental changes on species distribution (reviewed in [START_REF] Guisan | Predictive habitat distribution models in ecology[END_REF]. These models were initially based on simple algorithms, describing processes with empirical or static approaches. More complex methods (e.g. individual-based, stochastic forest path models,…) with new algorithms were progressively developed to push forward these theoretical limitations [START_REF] Decoursey | Developing models with more detail: do more algorithms give more truth?[END_REF], Korzukhin et al. 1996[START_REF] Lischke | Vegetation responses to climate change in the Alps: modeling studies[END_REF]. This development increased in parallel with the rise of new powerful statistical techniques (e.g. Bayesian approaches) and the improvement of Geographic Information Systems (GIS) [START_REF] Guisan | Predictive habitat distribution models in ecology[END_REF]. Methodological works have consequently flourished in the literature with topics such as model verification, evaluation, calibration, and sensitivity that took the lead in study titles (Leohle 1983[START_REF] Oreskes | Verification, validation, and confirmation of numerical models in the earth sciences[END_REF], Araújo and Guisan 2006).
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More recently, following the development of computer sciences and calculation performances, 'machine-learning' approaches have been developed (Araújo and[START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF]. They were proved highly powerful to accurately model more complex relationships between occurrences and environmental conditions [START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF][START_REF] Lorena | Comparing machine learning classifiers in potential distribution modelling[END_REF][START_REF] Merow | What do we gain from simplicity versus complexity in species distribution models?[END_REF], and can be enriched by more information such as species dispersal abilities or interspecific interactions (see section 1.2.6 ;Gobeyn et al. 2019).

Applications.

SDM is widely used in various fields of ecology, from conservation, biogeography, and palaeoecology, to global change biology (Pearson 2007). SDM has already been applied for several aims such as predicting the potential of alien species to invade new environments [START_REF] Guisan | Predicting species distribution: offering more than simple habitat models[END_REF], Václavík and Meentemeyer 2012[START_REF] Byrne | From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean[END_REF], exploring speciation mechanisms (Graham et al. 2004, Kozak andWiens 2006), testing evolution hypotheses (Kozak et al. 2008, Culumber and[START_REF] Culumber | Ecological divergence and conservatism: spatiotemporal patterns of niche evolution in a genus of livebearing fishes (Poeciliidae: Xiphophorus)[END_REF] or discovering new species [START_REF] De Siqueira | Something from nothing: using landscape similarity and ecological niche modeling to find rare plant species[END_REF]), delimiting species distribution (Raxworthy et al. 2007, Williams et al. 2009), assessing the impact of land cover change (Pearson et al. 2004) or environmental shifts on species' distribution [START_REF] Araújo | Ensemble forecasting of species distributions[END_REF][START_REF] Meier | Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica[END_REF], Weinert et al. 2016), guiding the reintroduction of endangered species [START_REF] Howard | Improving species distribution models: the value of data on abundance[END_REF]Lindenmayer 1998, Maes et al. 2019) or supporting diverse conservation planning, decisions or strategies such as providing a frame to observe and simulate the consequences of such decisions [START_REF] Addison | Practical solutions for making models indispensable in conser vation decision-making[END_REF], Syfert et al. 2014[START_REF] Ferrari | Integrating distribution models and habitat classification maps into marine protected area planning[END_REF] or guiding field survey to find populations of known species (Bourg et al. 2005, Guisan et al. 2006). Recent and innovative developments include the application of 3-D approaches to marine pelagic case studies (Bertrand et al. 2016, Duffy and Chown 2017, Freer 2018), the integration of high resolution oceanographic data with SDM (Pearman et al. 2020) or the coupling of SDM with extra knowledge or other models (such as mechanistic and/or dispersal models, see section 1.2.6 for further details). Stack-SDMs and Joint-SDMs constitute an important step towards estimating species richness by stacking several SDM predictions of different species and spatially aligning the cells with presence-absence, competition or interaction matrices to describe communities composition in space (Pollock et al. 2014, Distler et al. 2015, Harris 2015, Tikhonov et al. 2019, Zurell et al. 2020).

Modelling dispersal vectors and biogeographic barriers: Lagrangian models

Species distribution patterns do not only depend on abiotic conditions and biotic interactions, they are also determined by the possibility of adult individuals and propagules to access and settle in suitable areas [START_REF] Anderson | A framework for using niche models to estimate impacts of climate change on species distributions[END_REF][START_REF] Caccavo | Along-shelf connectivity and circumpolar gene flow in Antarctic silverfish (Pleuragramma antarctica)[END_REF], González-Wevar et al. 2019). Evaluating the connectivity between these areas has therefore important implications for the study of species distribution and population dynamics. It can be defined as the spatial movement of individuals, gene flow or transfer of information between individuals (Kool et al. 2013). Connectivity is important in marine environments, where oceanographic features such as currents, eddies, marine fronts, up and downwellings, play a crucial role in population structuring [START_REF] Selkoe | Seascape genetics and the spatial ecology of marine populations[END_REF]). These oceanographic features strongly complexify distribution patterns and studying the link between species biogeography, spatial distances, genetic differentiation or population structures becomes irrelevant without any complete analysis of species dispersal fluxes [START_REF] Young | Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species[END_REF].

Physical oceanography includes the study of several processes, widening from small scale water turbulence to global climate changes [START_REF] Chelton | Physical oceanography: a brief overview for statisticians[END_REF]). The study of water movement constitutes a relevant approach to the analysis of larval dispersal, which is difficult to directly observe or measure in the water column, given that larvae are generally small compared to the vast ocean scale and that dispersal can sometimes occur during long periods (Helmuth et al. 1994[START_REF] Matschiner | Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons[END_REF].
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The use of transport models has been widely applied in several contexts, such as the definition of connectivity networks that can be helpful for the definition of marine protected areas (Gaines et al. 2003, Berglund et al. 2012[START_REF] Burgess | Beyond connectivity: how empirical methods can quantify population persistence to improve marine protected-area design[END_REF], Thomas et al. 2014), the conservation of coral reefs (Treml et al. 2008[START_REF] Wood | Modelling dispersal and connectivity of broadcast spawning corals at the global scale[END_REF], the sustainability of fisheries (Gilbert et al. 2010[START_REF] Scales | Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures[END_REF], the spread of invasive species [START_REF] Brandt | Rapid invasion of Crassostrea gigas into the German Wadden Sea dominated by larval supply[END_REF], Brickman 2014) or aquaculture parasites [START_REF] Salama | Developing models for investigating the environmental transmission of disease-causing agents within open-cage salmon aquaculture[END_REF], the identification of barriers to larval dispersal (Lett et al. 2008, Thomas et al. 2014) and more recently the tracking of plastic debris [START_REF] Zambianchi | Lagrangian transport of marine litter in the Mediterranean Sea[END_REF][START_REF] Liubartseva | Tracking plastics in the Mediterranean: 2D REFERENCES Lagrangian model[END_REF]). Among transport models, the Lagrangian approach aims at following a particle from an initial position and along its entire trajectory [START_REF] Bennett | Lagrangian fluid dynamics[END_REF]. Such models are the combination of (1) an oceanographic model, that takes into consideration bathymetry, water current direction and speed, tidal motion, water stratification... in relation with atmospheric forcing (temperatures, winds, atmospheric pressure) (Huthnance 1991, Robinson and[START_REF] Robinson | The physical and dynamical oceanography of the Mediterranean Sea[END_REF] and ( 2) biological properties of the dispersed individual such as size, development rate, buoyancy properties, ability to swim or orientate, or behaviour in the water column (e.g. nycthemeral movement to escape predation) (McManus andWoodson 2012, Van Sebille et al. 2018).

Integrated approaches

Principle and motivations

There is a strong trend for developing new methods to improve the ability of models to describe species distribution. The integration/coupling of several methods has been long recognized as a promising approach to improve model performance and gain in modelling capabilities and analytical power (Vincenot et al. 2011, Gutt et al. 2012). Indeed, integrated models are more efficient as they can represent a complex system using several accurate and precise submodels (Gray and Wotherspoon 2012) which can be totally merged (Vincenot et al. 2017).

Review of the different applications.

Integrated models have been developed in different fields: engineering, environmental science, microbiology, oceanography, demography, epidemiology (Bobashev et al. 2007[START_REF] Emrich | Simulation of influenza epidemics with a hybrid model-combining cellular automata and agent based features[END_REF], Vincenot and Moriya 2011[START_REF] Bradhurst | A hybrid modeling approach to simulating foot-and-mouth disease outbreaks in Australian livestock[END_REF], economics/management, health science (Martin andSchlüter 2015, Drogoul et al. 2016), in order to answer to contrasted objectives.

In ecology, there is also a broad range of applications: (1) merging SDM with models that dynamically describe landscapes has shown better realism and better predictive performance compared to traditional SDMs (Pagel and Schurr 2012, [START_REF] Zurell | Benchmarking novel approaches for modelling species range dynamics[END_REF], as the equilibrium between occurrences and environmental conditions is dynamically updated (Brotons et al. 2012). (2) Close to these, Eulerian-Lagrangian approaches in oceanography can be coupled with biogeochemical models to understand spatial patterns and tracers dynamics in moving fluids [START_REF] Chenillat | Quantifying tracer dynamics in moving fluids: a combined Eulerian-Lagrangian approach[END_REF], or to physiological models to simulate the growth and survival of organisms while they are drifting or migrating [START_REF] Goodwin | Forecasting 3-D fish movement behavior using a Eulerian-Lagrangianagent method (ELAM)[END_REF], Berline et al. 2013[START_REF] Rivière | Submesoscale fronts modify elephant seals foraging behavior[END_REF]). ( 3) Adding a dispersal information to SDMs can also improve species potential habitat predictions, as the environmental information is complemented by dispersal matrices characterising areas that are suitable for colonization (Engler and Guisan 2009[START_REF] Anderson | A framework for using niche models to estimate impacts of climate change on species distributions[END_REF][START_REF] Normand | A greener Greenland? Climatic potential and longterm constraints on future expansions of trees and shrubs[END_REF]). ( 4) Integrating population dynamics information (e.g. carrying capacity of the habitat, mean survival or fecundity rates of each stage class, population connectivity) strongly improves the ability of SDMs to assess species potential distribution (Keith et al. 2008, Anderson et al. 2009[START_REF] Nenzén | demoniche: a R-package for simulating spatially-explicit population dynamics[END_REF]) in spatially or climatically contrasting areas (Parrott et al. 2012, Girard et al. 2015, Strauss et al. 2017). ( 5) SDMs can also be linked to phylogenetic analyses, to analyse species distribution in link with evolutionary connectivity (Morales-Castilla et al. 2017, Pardo-Gandarillas et al. 2018) or (6) to biotic
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interactions, to improve process-based understanding [START_REF] Meier | Biotic and abiotic variables show little redundancy in explaining tree species distributions[END_REF], Dormann et al. 2018) or to better characterise the behaviour of a species within its community in future environmental conditions [START_REF] Schweiger | Climate change can cause spatial mismatch of trophically interacting species[END_REF][START_REF] Wisz | The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling[END_REF][START_REF] Bebber | Biotic interactions and climate in species distribution modelling[END_REF]). ( 7) A last example is the combination of SDMs with physiological information (e.g. using a mechanistic model) that was proved efficient to improve predictions compared to simple correlative SDMs [START_REF] Buckley | Can mechanism inform species' distribution models?[END_REF][START_REF] Elith | The art of modelling range-shifting species[END_REF], Singer et al. 2016, Pertierra et al. 2020). Whereas SDMs explain the statistical correlation between occurrence records and habitat suitability [START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF]) and assess the main ecological drivers of species distribution [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF], Peterson et al. 2011), they are limited to a static description of the species distribution, and cannot accurately perform in non-equilibrium states, which limits their use for future projections [START_REF] Loehle | Model-based assessments of climate change effects on forests: a critical review[END_REF]Leblanc 1996, Schouten et al. 2020). Integrating physiological information enables to explicitly include processes in the analysis, offering the opportunity to describe the process-based causes of the species distribution (Kearney andPorter 2009, Dormann et al. 2012a), even in non-equilibrium states (Kearney et al. 2008, Keith et al. 2008).

Overall, evidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersallimitation (Fordham 2013, Tingley et al. 2014[START_REF] Gotelli | Climate change, genetic markers and species distribution modelling[END_REF]. Combining simple model results with information from experiments or observed functional traits facilitates interpretation and strengthen conclusions [START_REF] Dormann | Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions[END_REF][START_REF] Benito Garzón | ΔTrait SDMs: species distribution models that account for local adaptation and phenotypic plasticity[END_REF].

INTRODUCTION

THE SOUTHERN OCEAN AS AN APPLICATION FRAMEWORK 2.1 The Southern Ocean

Oceanographic features.

The Southern Ocean (SO) here defined as waters south of 45°S latitude [START_REF] Breitzke | REFERENCES based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses[END_REF], covers 8% of the world ocean surface (Barnes and Peck 2008) and plays a crucial role in the global ocean circulation (Schlosser et al. 1991, Doney andHecht 2002). Huge water masses are put into movement due to contrasts between water densities (shifts in temperature and salinity values), playing a key role in the physico-chemical conditions of the whole world ocean, by connecting water masses all together (i.e. the 'thermohaline circulation') [START_REF] Wunsch | What is the thermohaline circulation?[END_REF], Jacobs 2004, Fig. 0.12). The overturning of this 'conveyor belt' lasts between 1,000 and 2,000 years [START_REF] Döös | The world ocean thermohaline circulation[END_REF]. Figure from [START_REF] Meredith | The global importance of the Southern Ocean and the key role of its freshwater cycle[END_REF].

The SO is strongly structured by a major eastward flowing current, the Antarctic Circumpolar Current (ACC) that flows at ≈130.10 6 m 3 /s on average (Rintoul et al. 2001, Fig. 0.13). The ACC reaches the highest width in the Atlantic sector (over 1,000 km) and is narrowed in the region of
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the Drake Passage, between South America and the Western Antarctic Peninsula (Knox 2007).

The ACC is associated with circumpolar marine fronts, separated by sharp changes in water densities, among which the Polar Front and the Sub-Antarctic Front are the strongest [START_REF] Orsi | REFERENCES ecological niche modeling: a review and empirical evaluation using Phelsuma day gecko groups from Madagascar[END_REF][START_REF] Rintoul | The Antarctic circumpolar current system[END_REF]. The Polar Front separates the northern and the southern parts of the ACC, and therefore represents a significant biogeographical barrier to the dispersal of Antarctic marine benthic faunas northward [START_REF] Clarke | How isolated is Antarctica?[END_REF][START_REF] Sanches | Multivariate analyses of Antarctic and sub-Antarctic seaweed distribution patterns: An evaluation of the role of the Antarctic Circumpolar Current[END_REF]. The ACC simultaneously promotes the eastward dispersal of marine organisms (plankton larvae and propagules) around Antarctica (Fell 1962[START_REF] Olbers | The dynamical balance, transport and circulation of the Antarctic Circumpolar Current[END_REF]).

Close to the Antarctic coasts, at about 60-65°S, the Antarctic divergence marks a rupture between the ACC and a westward coastal current, and corresponds to an area where deep waters, less salty but richer in nutrients, upwell to the surface [START_REF] Gordon | Antarctic polar front zone. Antarctic Oceanology I[END_REF]). In the embayments of the Weddell and Ross seas are found cyclonic gyres that also have a strong influence on deep water properties and a substantial role in atmospheric interactions [START_REF] Rintoul | The Antarctic circumpolar current system[END_REF], Vernet et al. 2019, Fig. 0.13). 
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depth) in comparison with other continental shelves (200 m on average) (Uri et al. 1992). The deepening of the Antarctic continental shelf is mainly explained by glacial isostasy: the continental shelf subsides due to the pressure exerted by ice loads on top of the Antarctic continent (average ice thickness of 2,100 m) and the lithosphere gets deformed [START_REF] Okuno | Effect of glacial isostasy on the depth of Antarctic continental margin[END_REF]).

Biodiversity of the Southern Ocean

Biogeographic constraints, past isolation and species endemicity.

The geographic isolation of the Antarctic continental shelf fauna, along with the specific environmental conditions of the SO have led to a substantial proportion of endemic taxa (Clarke et al. 2005, Brandt and[START_REF] Brandt | Biodiversity of a unique environment: the Southern Ocean benthos shaped and threatened by climate change[END_REF], with levels reaching between 50 and 80% of shelf communities [START_REF] Griffiths | Towards a generalized biogeography of the Southern Ocean benthos[END_REF]). Endemism is strongly varying according to SO regions and levels are comparable to other large and isolated regions such as New Zealand [START_REF] Griffiths | Towards a generalized biogeography of the Southern Ocean benthos[END_REF]).

The SO is also characterised by a substantial species richness (Fig. 0.14), higher than in the Arctic for example [START_REF] Gray | Antarctic marine benthic biodiversity in a world-wide latitudinal context[END_REF], due to the broader area that covers the SO (Dayton 1990), and a higher number of habitats and biogeographic provinces [START_REF] Rosenzweig | Species diversity in space and time[END_REF]. This higher species richness is also explained by the isolation of the Antarctic continent 20 million years ago [START_REF] Crame | Evolution of taxonomic diversity gradients in the marine realm: evidence from the composition of Recent bivalve faunas[END_REF] that favoured allopatric speciation events [START_REF] González-Wevar | Divergence time estimations and contrasting patterns of genetic diversity between Antarctic and southern South America benthic invertebrates[END_REF], Poulin et al. 2014, González-Wevar et al. 2018a) and by the many physical barriers present in the SO compared to the Arctic (i.e. currents, depth, ice coverage, fronts, geomorphological features) [START_REF] Gray | Antarctic marine benthic biodiversity in a world-wide latitudinal context[END_REF][START_REF] Clarke | How isolated is Antarctica?[END_REF], Venables et al. 2012). Finally, the combined impacts of long-term gradual cooling and past glacial-interglacial cycles that occurred during the SO history have also led to diversification in biogeographic regions [START_REF] González-Wevar | Divergence time estimations and contrasting patterns of genetic diversity between Antarctic and southern South America benthic invertebrates[END_REF], Strugnell et al. 2012[START_REF] Fabri-Ruiz | Benthic ecoregionalization based on echinoid fauna of the Southern Ocean supports current proposals of Antarctic Marine Protected Areas under IPCC scenarios of climate change[END_REF]).

The SO marine communities are also characterised by the absence of some taxa (durophagous species, barnacles, most cartilaginous fish) (Clarke andJohnston 2003, Clarke et al. 2004) that are known in the fossil records of the SO, but that went extinct probably due to major cooling events during the Cenozoic era (Griffiths et al. 2013[START_REF] Crame | Key stages in the evolution of the Antarctic marine fauna[END_REF]. 
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Influence of environmental conditions on marine communities. Spatial and temporal variabilities in marine community structure and diversity are mainly explained by the influence of current speed, ice dynamics, sediment properties, and food availability (i.e. chlorophyll-a concentration or sediment organic content) [START_REF] Grange | Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity[END_REF]Smith 2013, Cummings et al. 2018). Ice dynamics strongly influence marine species abundance [START_REF] Gutt | On the direct impact of ice on marine benthic communities, a review[END_REF], Palma et al. 2007[START_REF] Lagger | Benthic colonization in newly ice-free softbottom areas in an Antarctic fjord[END_REF][START_REF] Braeckman | Glacial melt disturbance shifts community metabolism of an Antarctic seafloor ecosystem from net autotrophy to heterotrophy[END_REF], as iceberg scouring directly impacts benthic communities down to 250 m depth (Barnes and Peck 2008, Barnes and Souster 2011, Barnes et al. 2014). Moreover, sea-ice duration and extent along with glacier and ice shelves melting guide variations in water mixed layer depth, light availability [START_REF] Martinson | Western Antarctic Peninsula physical oceanography and spatiotemporal variability[END_REF], Venables et al. 2013[START_REF] Schofield | Changes in the upper ocean mixed layer and phytoplankton productivity along the West Antarctic Peninsula[END_REF], modify wind impact on marine habitats [START_REF] Saba | Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula[END_REF]) and lead to significant inputs of fresh water and sediment supplies [START_REF] Lien | Iceberg scouring and sea bed morphology on the eastern Weddell Sea shelf, Antarctica[END_REF], Dierssen et al. 2002, Moline et al. 2008, Monien et al. 2017, Barnes et al. 2018) that fertilize water in nutrients [START_REF] Saba | Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula[END_REF][START_REF] Des Roches | The ecological importance of intraspecific variation[END_REF], Moffat and Meredith 2018). These events lead to seasonal primary production blooms that contrast with low energy systems that dominate the major part of the year [START_REF] Mcclintock | Trophic biology of Antarctic shallow-water echinoderms[END_REF]. Low temperatures below the 0°C threshold are also very frequent in coastal habitats (Jacobs et al. 1979[START_REF] Ryan | Acclimation of Antarctic bottom-ice algal communities to lowered salinities during melting[END_REF]) and explain the important physiological and plasticity adaptations encountered in SO marine communities (see next paragraph), as observed for marine species of higher latitudes [START_REF] Clarke | A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates[END_REF], Brey and Clarke 1993, Albers et al. 1996).

Physiological peculiarities of Southern Ocean organisms.

Southern Ocean species are characterised by a metabolism with a low protein production, as low temperatures induce increased synthesis costs [START_REF] Marsh | High macromolecular synthesis with low metabolic cost in Antarctic sea urchin embryos[END_REF][START_REF] Robertson | The effects of temperature on metabolic rate and protein synthesis following a meal in the isopod Glyptonotus antarcticus Eights (1852)[END_REF], Fraser et al. 2004, 2007, Pörtner et al. 2007, Peck 2016). This leads to slower larval development and growth rates (Peck et al. 2007, Peck 2016, 2018), between 4 to 18 times slower than tropical water counterparts [START_REF] Kaiser | Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding[END_REF], which induces longer lifespans and generation times (Johnson et al. 2001[START_REF] Higgs | Growth and reproduction in the Antarctic brooding bivalve Adacnarca nitens (Philobryidae) from the Ross Sea[END_REF], Peck 2018). Another novel adaptation to the cold is the production of antigel proteins observed in certain fish species [START_REF] Scott | Fish antifreeze proteins: recent gene evolution[END_REF][START_REF] Cziko | Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming[END_REF]. As SO species are highly adapted to these cold conditions, their ability to acclimate to elevated temperatures is often poor compared to marine groups elsewhere (Peck et al. 2014), with most of the Antarctic marine species having suitable temperature envelopes between 5 to 12°C above the minimum sea temperature of -2°C (Peck et al. 2004).

Due to low and seasonal food availability, most of the SO species have also adapted their mode of acquisition and allocation of energy according to food availability [START_REF] Lawrence | Energy acquisition and allocation by echinoderms (Echinodermata) in polar seas: adaptations for success. Echinodermata[END_REF]. Some species were also shown to have a substantial trophic plasticity and were proved capable of modifying the range of consumed prey according to environmental or community shifts [START_REF] Calizza | Time-and depth-wise trophic niche shifts in Antarctic benthos[END_REF][START_REF] Michel | Increased sea ice cover alters food web structure in East Antarctica[END_REF].

Reproduction.

Southern Ocean species present two reproductive behaviours that mainly differ in terms of nutrition and dispersal strategy [START_REF] Martin | Éco-régionalisation et conservation des communautés benthiques de la zone économique exclusive française des îles Kerguelen, Ecoregionalisation and conservation of benthic communities in the French exclusive economic zone of Kerguelen[END_REF]. Broadcast spawners (that disperse eggs in the water column) produce eggs that are generally 2 to 5 times bigger than those of species of lower latitude but in less important number (Bosch and Pearse 1990, Arntz et al. 1994, Leis et al. 2013, Peck 2018). This implies a greater reserve load enabling either an increase survival if metamorphosis occurs quickly, or the capacity to drift over periods of several months in order to coordinate their settlement close to the summer period when food is abundant (White 1998, Stanwell-Smith and Clarke 1998, Stanwell-Smith et al. 1999[START_REF] Chiantore | Reproduction and condition of the scallop Adamussium colbecki (Smith, 1902), the sea-urchin Sterechinus neumayeri (Meissner, 1900) and the sea-star Odontaster validus (Koehler, 1911) at Terra Nova Bay (Ross Sea): different strategies related to inter-annual variations in food availability[END_REF]. This long range dispersal of pelagic larvae facilitates the geographic spreading of many species (Shilling and Manahan 1994, Poulin et al. 2002[START_REF] Young | Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species[END_REF] and played a key role in the evolutionary history of SO benthic invertebrates (Thatje 2012).
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The second main reproductive strategy that characterises SO species is the brooding behaviour, where youngs are carried by parents during a long period of time (Pearse et al. 1991, Poulin et al. 2002[START_REF] Martin | Éco-régionalisation et conservation des communautés benthiques de la zone économique exclusive française des îles Kerguelen, Ecoregionalisation and conservation of benthic communities in the French exclusive economic zone of Kerguelen[END_REF]. The unusually high number of SO benthic marine species with nonpelagic development is explained by adaptation to current environmental conditions (protection of the offspring) and the result of population selection, as a consequence of repetitions in population fragmentation over time with isolated units forming new species (Poulin et al. 2002, Pearse et al. 2009). This results in a lower dispersal capacity of species that promotes geographic isolation of populations between provinces (Moreau et al. 2017, Halanych andMahon 2018).

Climate change in the Southern Ocean

Observed and predicted environmental changes.

As in other parts of the world, the SO is facing environmental changes with important regional contrasts [START_REF] Meredith | Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century[END_REF][START_REF] Martinson | Western Antarctic Peninsula physical oceanography and spatiotemporal variability[END_REF][START_REF] Convey | Antarctic climate change and the environment[END_REF]. While sea ice has significantly been increasing in the Ross Sea both in concentration, extent [START_REF] Comiso | Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data[END_REF] and duration (Stammerjohn et al. 2012), the Western Antarctic Peninsula has shown important temperature warming during the twentieth century, with particularly pronounced events during winter, and observed a rise of +3°C in atmospheric temperatures since 1951 (King et al. 2003, Vaughan et al. 2003[START_REF] Meredith | Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century[END_REF], Henley et al. 2019). Ocean warming has also been observed, with a rise of water temperature of +0.17°C in depths between 700 m and 1,100 m between the 1950s and the 1980s (Gille 2002). These warmings influence atmospheric variability [START_REF] Meredith | Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century[END_REF], and temperatures of water masses connected with the world ocean's deep seas (Fig. 0.12; [START_REF] Sallée | Southern ocean warming[END_REF]. It also resulted in increased surface water freshening close to glacier meltwater sources [START_REF] Schloss | Response of phytoplankton dynamics to 19-year (1991-2009) climate trends in Potter Cove (Antarctica)[END_REF], Bers et al. 2013), led to changes in duration and extent of ice cover since the 1970's (Ducklow et al. 2013, Turner et al. 2016[START_REF] Schofield | Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula[END_REF]) and changes in glacier retreat (Padman et al. 2012, Cook et al. 2016) (Fig. 0.15).

In the near future, meta-analyses of several global climate models are predicting continuing atmospheric and oceanic warmings of several degrees (Walsh 2009[START_REF] Bracegirdle | Higher precision estimates of regional polar warming by ensemble regression of climate model projections[END_REF][START_REF] Mayewski | Potential for Southern Hemisphere climate surprises[END_REF]. These climate models (CMIP5, Coupled Model Intercomparison Project), are developed by the Intergovernmental Panel on Climate Change (IPCC) to predict water temperature of the entire water column south of the Polar Front by the end of the century (IPCC, 2014). They describe four RCP scenarios (Representative Concentration Pathways, 5th report 2013), that base the assumptions on different greenhouse gases emissions in the atmosphere in coming decades, between moderate (RCP 4.5) to business-as-usual (RCP 8.5) scenarios (Turner et al. 2014, Liu and[START_REF] Liu | Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice[END_REF].

Consequences of climate change on Southern Ocean marine communities.

Impacts on organisms of these cascading environmental changes have already been recognized (see Convey and Peck 2019 for a review) and include studies on fish (Bilyk andDeVries 2011, Strobel et al. 2012), molluscs [START_REF] Clark | Antarctic marine molluscs do have an HSP70 heat shock response[END_REF], Peck et al. 2007[START_REF] Reed | Long-term acclimation and potential scope for thermal resilience in Southern Ocean bivalves[END_REF], echinoderms (Peck et al. 2009a, Morley et al. 2016), isopods [START_REF] Young | The effects of temperature on walking and righting in temperate and Antarctic crustaceans[END_REF], Janecki et al. 2010), foraminifera, nematoda, amphipoda (Ingels et al. 2012) and sponges (Fillinger et al. 2013).

Warming temperatures directly reduce species survival (Peck et al. 2009b, Morley et al. 2009a, 2010[START_REF] Obermüller | Antarctic intertidal limpet ecophysiology: A winter-summer comparison[END_REF][START_REF] Fabri-Ruiz | Benthic ecoregionalization based on echinoid fauna of the Southern Ocean supports current proposals of Antarctic Marine Protected Areas under IPCC scenarios of climate change[END_REF], as biological functions such as feeding, rasping, swimming activities or even respiration ability, that are important for long-term survival are tightly constrained by the elevation of temperature (Peck et al. 2004, Morley et al. 2009b). Moreover, ocean warming
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reduces oxygen availability for marine organisms, as oxygen concentration is lower in warmer waters (Benson andKrause 1984, Peck andUglow 1990). These changes affect species ability to produce energy to maintain (in this context of increased metabolic rates) without using anaerobic processes that induce toxic end products (Peck 2005, Pörtner et al. 2007).

In addition, the combined effect of altered sea ice dynamics and increased meltwater runoffs, with wind patterns and oceanographic conditions sometimes have a unprecedented impacts on plankton communities, with declining habitat suitability (Whitehouse et al. 2008), induced shifts in dominating species within planktonic communities, likely to modify relative species abundances (Whitehouse et al. 2008, Montes-Hugo et al. 2009[START_REF] Schloss | Response of phytoplankton dynamics to 19-year (1991-2009) climate trends in Potter Cove (Antarctica)[END_REF][START_REF] Schofield | Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula[END_REF], consequently altering community assemblages (Moline et al. 2004[START_REF] Hughes | Breaking the ice: the introduction of biofouling organisms to Antarctica on vessel hulls[END_REF], functions [START_REF] Braeckman | Glacial melt disturbance shifts community metabolism of an Antarctic seafloor ecosystem from net autotrophy to heterotrophy[END_REF]) and predator-prey interactions up in food-webs [START_REF] Michel | Increased sea ice cover alters food web structure in East Antarctica[END_REF]. More consequent impacts of global change are therefore expected in shallow marine communities and coastal habitats (Kidawa and Janecki 2011, [START_REF] Grange | Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity[END_REF]Smith 2013, Obryk et al. 2016) compared to deeper ones [START_REF] Gutt | The REFERENCES species characteristics on performance of different species distribution modeling methods[END_REF]. For each of the 674 glaciers along the west coast, the point shows overall change between its earliest and latest recorded ice-front position, relative to basin size (% relative change rate a -1 ). A similar spatial pattern is found for changes in absolute area loss per glacier. The point symbols are layered in the same order as in the legend (i.e. blue above red). Ocean circulation and water masses are also shown schematically: CDW (Circumpolar Deep Water), Shelf Water (SW), BSW (Bransfield Strait Water), and ACC (Antarctic Circumpolar Current). From [START_REF] Cook | Ocean forcing of glacier retreat in the western Antarctic Peninsula[END_REF].
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Science in the Southern Ocean

Contrarily to the northern pole, there are no permanent inhabitants nor native human populations in Antarctica and the surrounding islands, but temporary visitors of research stations ruled by several countries (Fig. 0.16).

The distribution of research stations strongly conditions our knowledge of marine life that is contrasting between SO regions [START_REF] Clarke | How well do we know the Antarctic marine fauna? A preliminary study of macroecological and biogeographical patterns in Southern Ocean gastropod and bivalve molluscs[END_REF]). To cover these gaps, recent organisations have promoted connectivity between international scientific programs, data accessibility and data cross-checking [START_REF] Schiaparelli | The Census of Antarctic Marine Life: the first available baseline for Antarctic marine biodiversity[END_REF]. These programs, such as the International Polar Year (IPY 2007(IPY -2008)), the Census of Antarctic Marine Life (CAML 2005(CAML -2010) ) or the Scientific Committee on Antarctic Research, Evolution and Biodiversity in Antarctica (SCAR-EBA 2006-2013) (non-exhaustive list), were often associated with numerous field campaigns that contributed to considerably filling knowledge gaps, also increasing the sampling of the benthos and data accessibility (De Broyer et al. 2014). The recent development of underwater imagery in polar environments also helped to significantly improve data collection (Piepenburg et al. 2017). For several years, many programs have also settled long term high frequency observatories of marine life to characterise marine biodiversity and monitor potential shifts in community structures through time, in link with recorded environmental changes (e.g. Potter Cove in King George Island since 1993; MORSea in the Ross Sea since 1994; REVOLTA program in Adélie Land since 2009; PROTEKER program in the Kerguelen Islands since 2011).

In addition to these programs, online platforms that gather samples and their associated metadata were developed (RAMS: Registry of Antarctic Marine Species), OBIS (Ocean Biogeographic Information System), GBIF (Global Biodiversity Information Facility), SCAR-MarBin (Scientific Committee on Antarctic Research, Marine Biodiversity Information Network), which promoted free and open access to raw biodiversity data, in order to improve the accuracy of SO biogeographic and ecological studies (Pierrat 2011, De Broyer et al. 2014[START_REF] Fabri-Ruiz | Modèles de distribution et changements environnementaux: Application aux faunes d'échinides de l'océan Austral et écorégionalisation[END_REF].

Despite this progress, the amount and quality of collected data are still limited in comparison to the extent of the SO (De Broyer et al. 2014). Sampling is concentrated nearby stations and generally performed in summer, as it is challenging to sample during the austral winter due to ice coverage [START_REF] Griffiths | Antarctic Marine Biodiversity -What Do We Know About the Distribution of Life in the Southern Ocean?[END_REF], Henley et al. 2019). Experiments in research stations are possible and performed since several decades (Féral and Magniez 1988, Peck et al. 2014, Suckling et al. 2015) but the possibility to settle long term experiments is often constrained by the harsh conditions (remoteness, cold, wind, ice coverage) [START_REF] Kaiser | Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding[END_REF].

When studying species distribution, sampled data are restrained to presence-only records, without the possibility to trust absence records given that they are not kept in the large biodiversity databases and that the entire sampled are not always characterised on board, depending on the expertise of the research team participating to the survey [START_REF] Pierrat | Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling[END_REF][START_REF] Fabri-Ruiz | Can we generate robust Species Distribution Models at the scale of the Southern Ocean?[END_REF]. Important uncertainties are finally present in these data platforms, as they consist in a collection of several historical databases, and may contain inconsistencies between georeferencing systems or taxonomic definitions through time (Newbold 2010) or unchecked identification errors while sampling, above all for deep species, more recently studied [START_REF] Brandt | First insights into the biodiversity and biogeography of the Southern Ocean deep sea[END_REF]. 
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Tourism in the Southern Ocean

In parallel to science, tourism has been developing rapidly in the Antarctic region (Wace 1990[START_REF] Lamers | Facing the elements: analysing trends in Antarctic tourism[END_REF][START_REF] Bender | Patterns of tourism in the Antarctic Peninsula region: a 20-year analysis[END_REF][START_REF] Mccarthy | Antarctica: The final frontier for marine biological invasions[END_REF], Hughes et al. 2019). It began in the 1970's with the first aviation journeys for commercial purposes (Headland 1994) to reach a number of visitors of more than 55,400 people in 2018-2019(IAATO 2019)). The more recent promotion of cruise ships has provoked an exponential rise during the last few years, with a total number of visitors between summers 2014-15 and 2018-19 shifting from 36,700 to 55,400 people (Hughes andConvey 2010, IAATO 2019) and predicted to importantly increase in the coming years (Kruczek et al. 2018).

The combination of climate changes and tourism development in the SO region increases the risk that non-native species will access and survive in the area (Walther et al. 2009[START_REF] Mccarthy | Antarctica: The final frontier for marine biological invasions[END_REF], which would constitute one of the most critical global threats to native biodiversity [START_REF] Sax | Species invasions: insights into ecology, evolution and biogeography[END_REF]. Species can be introduced by the release of ballast waters, the fouling on ship hulls, floating anthropogenic debris, kelp rafts, or human visits, mainly from the Patagonian Peninsula, where cruise ship departures are the most frequent (Barnes 2002, [START_REF] Lewis | Marine introductions in the Southern Ocean: an unrecognised hazard to biodiversity[END_REF], Tavares and De Melo 2004[START_REF] Lewis | Assisted passage or passive drift: a comparison of alternative transport mechanisms for non-indigenous coastal species into the Southern Ocean[END_REF][START_REF] Lee | Mytilus on the move: transport of an invasive bivalve to the Antarctic[END_REF], Fraser et al. 2018). With the impressive number of tourist visits, along with the scientific activity (4,000 scientists working in Antarctica during the summer and 1,000 in winter; Hughes and Convey 2014) the arrival of propagules in Antarctic communities is growing (Tavares and De Melo 2004[START_REF] Lee | Mytilus on the move: transport of an invasive bivalve to the Antarctic[END_REF], Hellmann et al. 2008, Galera et al. 2018, Avila et al. 2020). Consequently, records of terrestrial exotic species in Antarctica are increasing over recent decades (Smith and Richardson 2011) including the invasive grass Poa annua (Molina-Montenegro et al. 2012[START_REF] Chwedorzewska | Poa annua in the maritime Antarctic: an overview[END_REF], seeds of the toad rush Juncus bufonius [START_REF] Cuba-Díaz | Juncus bufonius, a new non-native vascular plant in King George Island, South Shetland Islands[END_REF], the invasive mosquito Trichocera maculipennis (Potocka and Krzemińska 2018), and several South-American invertebrates (e.g. insects, worms, freshwater crustaceans; Hughes andWorland 2010, Hughes et al. 2015). In marine habitats, alien species have also been reported in shallow areas of the South Shetland Islands (e.g. decapods, bivalves, macroalgae) and East Antarctica (i.e. bryozoans, hydrozoans, bivalves and tunicates) (Fraser et al. 2018[START_REF] Mccarthy | Antarctica: The final frontier for marine biological invasions[END_REF], Avila et al. 2020[START_REF] Cárdenas | First mussel settlement observed in Antarctica reveals the potential for future invasions[END_REF]) but also from Sub-Antarctic waters and SO deep seas, such as anomuran king crabs (Thatje and Fuentes 2003, Thatje et al. 2005a, Aronson et al. 2014, 2015).

To date, there is no evidence for any exotic marine species having established in Antarctica, due to ecological and physiological constraints [START_REF] Convey | Antarctic environmental change and biological responses[END_REF]. However, as climate keeps warming, the potential for successful marine invasions and settlement into Antarctica is expected to increase substantially [START_REF] Richardson | Naturalization and invasion of alien plants: concepts and definitions[END_REF], Hellmann et al. 2008, Galera et al. 2018). Consequences of such invasions on native marine communities will have severe impacts on community assemblages, as observed in other regions of the world (shifts in competition, increase of predation pressure, colonisation of associated parasites that may infect other species, Falk-Petersen et al. 2011, David et al. 2017, Britton et al. 2018, Bevins 2019). Although the effects of invasive species are impossible to measure, the return of durophagous predators that became extinct million years ago [START_REF] Aronson | Global climate change and the origin of modern benthic communities in Antarctica[END_REF][START_REF] Zachos | An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[END_REF], Hansen et al. 2013) such as decapods, chondrichthyans and teleosteans in Antarctic shallow waters is widely feared, because they will fragilize benthic communities, modifying trophic relationships, and homogenizing the Antarctic ecosystem (Aronson et al. 2007(Aronson et al. , 2014)).
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Conservation of the Southern Ocean marine life

The Antarctic Treaty, signed in 1959 by a current number of 54 parties, regulates international relations in link with Antarctica, with an ensemble of 15 articles that rule politics, war, access and trade for all countries (Antarctic Treaty 1959). The treaty, which will end in 2048, is complemented by the CCAMLR's work (Commission for the Conservation of Antarctic Marine Living Resources).

CCAMLR was established by an international convention in 1982 (https://www.ccamlr.org). The main aim of the commission is to manage marine communities in response to an increasing commercial interest in Antarctic fisheries (such as krill and fish resources) since the past few decades [START_REF] Nicol | Recent trends in the fishery for Antarctic krill[END_REF]Foster 2003, Brooks 2013). This management does not exclude harvesting but agrees on the establishment of a set of conservation measures to carry out harvesting of marine living resources in a sustainable manner by taking account of the effects of fishing on other components of the ecosystem. The conservation of Antarctic marine life also includes the establishement and monitoring of marine protected areas (MPAs) (https://www.ccamlr.org/en/organisation/home-page, accessed November 2019) and the update of a list of Vulnerable Marine Species and Ecosystems (https://www.ccamlr.org/en/compliance/vulnerable-marine-ecosystems-vmes; Thompson et al. 2016).

The convention area ruled by the CCAMLR represents around 10% of the total surface of Earth's oceans and almost 70% of the SO, with a surface of more than 35 million km 2 (Fig. 0.17). Among the CCAMLR managed area, two MPAs have been established so far (Fig. 0.17): the South Orkney Island (in 2009) and the Ross Sea region (in 2016). In complement, several countries have declared national MPAs around sub-Antarctic islands outside of CCAMLR jurisdiction: Heard andMcDonald Islands (in 2002, extended in 2014;Australia), Crozet andKerguelen Islands (in 2006, extended in 2017;France), South Georgia and South Sandwich Islands (in 2012, United Kingdom) and Prince Edward Islands (in 2013, South Africa). In total, about 11.98% of the SO is protected with MPAs, with 4.61% being encompassed by no-take areas (Brooks et al. 2020) and negotiations are in process to extend protection to East Antarctica, to the Weddell Sea and the Antarctic Peninsula regions (Fig. 0.17).

Modelling approaches are broadly used for designing management decisions. Among them, SDMs are widely applied to define niche occupation of vulnerable species that are a priority to conservation (e.g. sea birds and mammals), to rank areas by importance of species richness or to model catch and effort data [START_REF] Candy | Modelling catch and effort data using generalised linear models, the Tweedie distribution, random vessel effects and random stratum-by-year effects[END_REF], Ballard et al. 2012, Baird and Mormède 2014). The software MARXAN [START_REF] Ardron | Marxan good practices handbook[END_REF], Ball et al. 2009, Teschke et al. 2017) is commonly used, as an efficient and useful conservation planning software for the decision making process through the identification of the most priority areas to be protected [START_REF] Loos | Exploration of MARXAN for utility in Marine Protected Area zoning[END_REF][START_REF] Ardron | Marxan good practices handbook[END_REF]. MARXAN is fully adapted to solve complex solutions for seascapes or landscapes zoning (Smith et al. 2009, Watts et al. 2009) and its application for SO case studies consequently follows the popularity it has gained in the other regions of the world [START_REF] Zacharias | Review of the Southern Ocean Sanctuary: marine protected areas in the context of the International Whaling Commission Sanctuary Programme[END_REF][START_REF] Groeneveld | How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model[END_REF], 2017). Constantly updated (Watts et al. 2009), MARXAN is flexible to integrate different types of data, such as SDM outputs [START_REF] Marshall | Species distribution modelling to support marine conservation planning: The next steps[END_REF], but is highly sensitive to their initial calibration [START_REF] Loiselle | Avoiding pitfalls of using species distribution models in conservation planning[END_REF], Wilson et al. 2005). Food-web models and bioregion statistical clustering approaches are also developed at local or broad scales (Pinkerton and Bradford-Grieve 2010, Sharp et al. 2010, Koubbi et al. 2011a, 2016[START_REF] Martin | Éco-régionalisation et conservation des communautés benthiques de la zone économique exclusive française des îles Kerguelen, Ecoregionalisation and conservation of benthic communities in the French exclusive economic zone of Kerguelen[END_REF][START_REF] Fabri-Ruiz | Benthic ecoregionalization based on echinoid fauna of the Southern Ocean supports current proposals of Antarctic Marine Protected Areas under IPCC scenarios of climate change[END_REF]. Population dynamics models can also be used to define fisheries stocks (Mormède et al. 2014a(Mormède et al. , 2014b)).
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Figure 0.17. Proposed and adopted MPAs, management areas, and fisheries in the CCAMLR area. CCAMLR boundary indicated by thick black line with management area delineations labelled numerically. CCAMLR's adopted MPAs and MPA proposals from 2012 to 2018, including the South Orkney Islands Southern Shelf MPA (yellow), Ross Sea MPA (blue), East Antarctic (violet), Weddell Sea (purple) and the western Antarctic Peninsula (orange). Total Allowable Catch (TAC) for toothfish (blue) and krill (red) in the CCAMLR management area; circles proportional to respective TAC (tonnes in 2017/18), transparency indicates underutilization. Shaded circles around subantarctic islands reflect delineated exclusive economic zone boundaries generated prior to the signing of the CCAMLR Convention. Shaded squares indicate toothfish management areas around South Georgia and South Sandwich Islands. 
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MODELLING THE ECOLOGICAL NICHES OF ANTARCTIC MARINE LIFE

State of the art

Everywhere on Earth, the observed impact of environmental changes on terrestrial and marine life is significant, and predictions of the increase of these changes and associated consequences are even further pessimistic. Scientific researches focussing on the consequences of these changes on living populations are consequently growing. Among regions and impacted ecosystems, the SO has encountered impressive environmental changes over the past fifty years that are also expected to increase in the future. In this context, and following the opportunity of technological improvements to access polar environments, research activities in Antarctica have substantially increased.

Modelling approaches constitute one essential tool nowadays in research to help understand ecological processes by synthetically representing complex systems. Methods and applications have been widely published worldwide. Models integrate data, imply experiments to validate hypotheses and perform predictive simulations. Applying ecological models to the SO has regularly been done for many years (De Broyer et al. 2014). Physiological models were used, with the pioneer studies applied to pelagic species: the Antarctic krill Euphausia superba (Groeneveld et al. 2015, Jager andRavagnan 2015), and the salp Salpa thompsoni (Henschke et al. 2018) in order to investigate the effect of environmental changes on individual metabolic activity. These works were rapidly followed by the first application to benthic species, with the work of Agüera et al. (2015) that built a DEB model for the Antarctic sea star Odontaster validus, to describe its life cycle and better understand its adaptations to environmental conditions. More recently, DEB has been also applied to SO marine mammals (Goedegebuure et al. 2018) for evaluating population densities and structure. Regarding correlative approaches, models were mainly used in studies on commercial species such as pelagic fish or crustaceans [START_REF] Loots | Habitat modelling of Electrona antarctica (Myctophidae, Pisces) in Kerguelen by generalized additive models and geographic information systems[END_REF][START_REF] Cheung | Modelling present and climate-shifted distribution of marine fishes and invertebrates[END_REF], Pinkerton et al. 2010, Koubbi et al. 2011b, Basher and Costello 2016, Freer et al. 2019), top predators (Thiers et al. 2017) or bottom fisheries (Hibberd 2016), phytoplankton (Pinkernell andBeszteri 2014), sea birds (Krüger et al. 2018) and sea mammals (Southwell et al. 2005, Murase et al. 2013, Bombosch et al. 2014), by sometimes gathering occurrence records by GPS trackers fixed on animals' backs (Nachtsheim et al. 2017). The development of SDMs for marine invertebrate studies is more recent (Gutt et al. 2012), with the analyses of the potential distribution of sea urchins (Gutt et al. 2012[START_REF] Pierrat | Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling[END_REF][START_REF] Fabri-Ruiz | Can we generate robust Species Distribution Models at the scale of the Southern Ocean?[END_REF], sea stars [START_REF] Byrne | From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean[END_REF]), crinoids (Hemery et al. 2011), cephalopods [START_REF] Xavier | Biogeography of Cephalopods in the Southern Ocean using habitat suitability prediction models[END_REF] or barnacles (Gallego et al. 2017). Finally, dispersal models have been used to localize primary production hot spots (Piñones et al. 2011), study species or larvae spatial connectivity [START_REF] Ashford | Does large-scale ocean circulation structure life history connectivity in Antarctic toothfish (Dissostichus mawsoni)?[END_REF], Piñones et al. 2013[START_REF] Mesa | Predicting early life connectivity of Antarctic silverfish, an important forage species along the Antarctic Peninsula[END_REF][START_REF] Ashford | Population structure and life history connectivity of Antarctic silverfish (Pleuragramma antarctica) in the Southern Ocean ecosystem[END_REF] or study the formation or retention of plankton, krill swarms in the context of fisheries sustainability or efficiency [START_REF] Huntley | Physical control of population dynamics in the Southern Ocean[END_REF][START_REF] Fach | Modeling studies of Antarctic krill Euphausia superba survival during transport across the Scotia Sea[END_REF][START_REF] Hofmann | Lagrangian modelling studies of Antarctic krill (Euphausia superba) swarm formation[END_REF], Thorpe et al. 2004[START_REF] Hill | Modelling Southern Ocean ecosystems: krill, the food-web, and the impacts of harvesting[END_REF], Young et al. 2014). Often, these models are combined with phylogeography studies [START_REF] Young | Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species[END_REF] or with species ecological or physiological information to fill knowledge gaps [START_REF] Ashford | Testing early life connectivity using otolith chemistry and particle-tracking simulations[END_REF][START_REF] Mesa | Predicting early life connectivity of Antarctic silverfish, an important forage species along the Antarctic Peninsula[END_REF].

All these works have faced methological challenges when implementing models, including the poor quality and availability of environmental descriptors that reduce the capacity to accurately integrate the variability and complexity of natural systems; the spatial aggregation and limited number of occurrence records that bias model predictions, influence the performance of model evaluation and
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reduce the quality of the description of the species occupied space; the choice of the boundaries of the projection area, balanced between research objectives and data availability; or data gaps that limit the implementation of physiological models or the biological properties of the lagrangian approaches... Models should be also adapted to the physiological peculiarities of SO marine species (low adaptation to temperature increase, brooding reproductive behaviour with parental care or broadcaster species that disperse larvae that can drift in the water column during several months…). These points are typical of the broad-scale SO region and it is necessary to conduct some analyses to evaluate their real influence on ecological models, which has never been done so far.

Research objectives and motivations

In this context, this PhD thesis aims at analysing the potential and limits of ecological models applied to SO case studies. The BAM diagram scheme, presented earlier, is used to structure our study in several steps. Thus, using marine benthic species examples, we evaluate models that represent species fundamental niche (physiological, DEB models), models that study species realised niche (correlative models, SDMs) and models that focus on dispersal capacities (lagrangian approaches).

The first objective is to assess the quality of each of these ecological models, generated with such datasets, and to analyse their limits. Some correction methods, inspired from methods used in other regions of the world, are proposed to improve the performance of models (i.e. improve model evaluation procedures when using aggregated datasets, reduce model extrapolation, reduce the influence of spatial aggregation on predictions,...) and to provide guidelines for model implementation (choice of environmental descriptors, choice of SDM algorithm, cross-checking and preparation of datasets,...).

The second objective is to test the performance of "integrated approaches" compared to "simple" ones. These integrated approaches combine several types of information or models (e.g. combination of SDMs with physiological information, with dispersal capacities, with phylogenetic analyses…). Integrated approaches are widely used in other regions of the world and prove a better performance to describe species occupied space and environmental preferences compared to simple approaches. However, they have not been tested for SO case studies yet. This PhD thesis proposes some analyses related to comparisons and integrations of SDMs and physiological models (DEB) and SDMs combined with experimental data. All codes to generate these models are provided for future applications.

The third objective of this study is, after dealing with these corrections and methodological adaptations, to discuss about the capacities of ecological models applied to SO case studies and the remaining limits. What can we learn from these models (ecologically-wise)? Can we accurately represent the different parts of the species ecological niche? What is still uncertain? What should be improved to generate more relevant models? This PhD thesis is declined into four chapters that present an ensemble of peer-reviewed articles submitted or published in international journals.

CHAPTER 1 MECHANISTIC MODELS

This chapter focusses on the Dynamic Energy Budget (DEB) approach and studies the capacity of DEB models to accurately describe the physiology and population dynamics of Southern Ocean marine organisms.

The first study used the example of the limpet species Nacella concinna (Strebel, 1908). This species is known to have distinct intertidal and subtidal morphotypes that are genetically similar but differ in morphology and physiology. This species case study was used (1) to evaluate the potential of the DEB approach, and assess whether a DEB model could be built separately for the intertidal and subtidal morphotypes, based on a field experiment and data from the literature and ( 2) to analyse whether models were contrasting enough to reflect the two morphotypes' respective physiology and morphology.

The second part of this chapter studied population dynamics modelling. Using an Individual Based Modelling approach (IBM), DEB models can be upscaled at the population level to simulate the response of populations to variations in food resources and temperatures. The DEB-IBM approach was applied to an endemic sea urchin of the Kerguelen Plateau, Abatus cordatus (Verrill, 1876) and modelled population changes through time, according to changes in food and temperature conditions, under present and future scenarios.

A last study, presented in the appendix section, used DEB modelling for better understanding the role of low temperature and seasonal food availability conditions on the life cycle and reproduction strategy of an Antarctic bivalve, Laternula elliptica (King, 1832). The DEB model was also used to describe the effect of varying environmental conditions on energy allocation, using an available time-series dataset.

Guillaumot C, Saucède T, Morley SA, Augustine S, Danis B and Kooijman S (2020). Can DEB models infer metabolic differences between intertidal and subtidal morphotypes of the Antarctic limpet Nacella concinna (Strebel, 1908)? Ecological Modelling. 430. 109088.

Arnould-Pétré M, Guillaumot C, Danis B, Féral J-P and Saucède T (2020). Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling. 440, 109352.

[Appendix section] Agüera A, Ahn I-Y, Guillaumot C and Danis B (2017). A Dynamic Energy Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism. PLOS One. 12(8), e0183848.
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INTRODUCTION

Antarctic regions have faced strong environmental change since the twentieth century (recently reviewed in Henley et al. 2019), with a strong warming in some regions, such as in the Western Antarctic Peninsula (King et al. 2003, Vaughan et al. 2003[START_REF] Meredith | Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century[END_REF], leading to important shifts in sea ice regimes and seasonality, including the duration and extent of sea ice cover (Stammerjohn et al. 2012, Turner et al. 2016[START_REF] Schofield | Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula[END_REF]. The increase in the rate of glacier melting has been reported as a cause of important disturbance of the physical (currents, salinities) and biological environment (phytoplankton blooms, communities) [START_REF] Meredith | Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century[END_REF][START_REF] Schloss | Response of phytoplankton dynamics to 19-year (1991-2009) climate trends in Potter Cove (Antarctica)[END_REF], Bers et al. 2013). Such changes have a direct impact on marine communities and particularly in coastal marine areas (both intertidal and subtidal) (Barnes and Peck 2008, Smale and Barnes 2008, Barnes and Souster 2011, Waller et al. 2017, Stenni et al. 2017, Gutt et al. 2018), which are places of complex land-sea interface and ecological processes.

The multiple effects of ice retreat and meltwater on nearshore marine habitats have contributed to the expansion of intertidal zones and habitat alteration due to seawater freshening and stratification, shifting near-shore sedimentation, changes in water properties and current dynamics.

However, studying Antarctic marine life is challenging. Not only do the environmental conditions make the region difficult to access and work in, but substantial financial and technical constraints make field sampling and experiments difficult to organise (e.g. cold, ice, duration of daylight; [START_REF] Kaiser | Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding[END_REF][START_REF] Kennicutt | Six priorities for Antarctic science[END_REF], 2015[START_REF] Xavier | Future challenges in Southern Ocean ecology research[END_REF], Gutt et al. 2018). However, conducting physiological studies of Antarctic marine organisms has become urgent as we aim to assess their sensitivity and potential response (resilience, distribution shift or local extinction) to environmental change, a key issue for the conservation of marine life and special protected areas [START_REF] Kennicutt | Six priorities for Antarctic science[END_REF](Kennicutt et al. , 2015(Kennicutt et al. , 2019 https://www.ccamlr.org/en/organisation/home-page).

An alternative to completing studies in these environments is the use of modelling approaches. Ecological modelling is used to describe species distribution and assess their climate envelopes [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF], Peterson et al. 2011), study species tolerances to toxicants and to environmental change [START_REF] Martin | Limitations of extrapolating toxic effects on reproduction to the population level[END_REF], Petter et al. 2014, Baas and Kooijman 2015) and model species energetic performance [START_REF] Serpa | Modelling the growth of white seabream (Diplodus sargus) and gilthead seabream (Sparus aurata) in semi-intensive earth production ponds using the Dynamic Energy Budget approach[END_REF], Thomas et al. 2016). Among these ecological models, the Dynamic Energy Budget (DEB) theory (Kooijman, 2010) has become increasingly popular. DEB parameters have been so far estimated for more than 2,000 animal species and collected in the 'Add-my-Pet' (AmP) collection (http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/). It constitutes one of the most powerful approaches to characterise individual metabolic performances [START_REF] Nisbet | Integrating dynamic energy budget (DEB) theory with traditional bioenergetic models[END_REF], Kearney et al. 2015, Jusup et al. 2017) and can be calibrated for data-poor animals (Mariño et al. 2019). DEB models rely on thermodynamic concepts [START_REF] Jusup | Physics of metabolic organization[END_REF] and study how energy flows are driven within individuals during their entire life cycle (Kooijman 2010 Application of DEB models to Antarctic species is increasing. They can be easily extracted from the AmP collection, using the software AmPtool. The Matlab command "select_eco('ecozone', {'MS'})" presently gives a list of 37 species, where MS stands for "Marine, Southern Ocean".

Command "select_eco('ecozone', {'TS'})" gives another 3 species for the terrestrial Antarctic environment, among which the mite Alaskozetes antarcticus. Among the most common and well studied Southern Ocean benthic invertebrates are the sea star Odontaster validus (Agüera et al. 2015), the bivalve Laternula elliptica [START_REF] Agüera | Trait distributions of key marine species from the Western Antarctic Peninsula[END_REF], the bivalve Adamussium colbecki (Guillaumot 2019a) MECHANISTIC MODELS CHAPTER 1.
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Antarctic species have a range of notable physiological traits when compared to their temperate counterparts. Among others, they are physiologically adapted to constant cold temperatures (Peck et al. 2009b, Morley et al. 2009b, 2014), shifting day length also imposes a marked seasonal feeding behaviour [START_REF] Mcclintock | Trophic biology of Antarctic shallow-water echinoderms[END_REF][START_REF] Clarke | Seasonal and interannual variability in temperature, chlorophyll REFERENCES and macronutrients in northern Marguerite Bay, Antarctica[END_REF], Halanych and Mahon 2018), and they exhibit slow metabolic and growth rates, explaining their longer lifespans and higher longevities compared to species in other regions (Peck andBrey 1996, Peck 2002).

The limpet Nacella concinna (Strebel, 1908) (Mollusca: Patellogastropoda) is a common and abundant gastropod of shallow marine benthic communities. Distributed all along the Western Antarctic Peninsula [START_REF] González-Wevar | Phylogeography and demographic inference in Nacella (Patinigera) concinna (Strebel, 1908) in the western Antarctic Peninsula[END_REF], phylogeny recently reviewed in González-Wevar et al. 2018b), it has widely been studied for decades (Shabica 1971, 1976, Walker 1972, Hargens and Shabica 1973[START_REF] Houlihan | Oxygen consumption of some Antarctic and British gastropods: an evaluation of cold adaptation[END_REF], Peck 1989[START_REF] Clarke | Faecal production and an estimate of food intake in the wild of the Antarctic limpet Nacella concinna (Strebel)[END_REF][START_REF] Cadée | Shell damage and shell repair in the Antarctic limpet Nacella concinna from King George Island[END_REF][START_REF] Ansaldo | Does starvation influence the antioxidant status of the digestive gland of Nacella concinna in experimental conditions?[END_REF], Fraser et al. 2007, Markowska and Kidawa 2007[START_REF] Obermüller | Antarctic intertidal limpet ecophysiology: A winter-summer comparison[END_REF], 2014, Suda et al. 2015, Souster et al. 2018). The limpet is found from intertidal rocky shores down to over 100 meters depth (Powell 1951, Walker 1972). It has a 2-5 cm long shell (Fig. 1.1), that grows only a few millimeters a year with a seasonal pattern. It is sexually mature after four to six years and has a life span of up to 10 years (Shabica 1976, Picken 1980, Brêthes et al. 1994). The limpet mainly feeds on microphytobenthos and microalgae (Shabica 1976, Brêthes et al. 1994). It spawns freeswimming planktonic larvae once a year, when water temperature rises in the austral summer (Shabica 1971, Picken 1980, Picken and Allan 1983) [START_REF] Mcarthur | Geographical ecology: patterns in the distribution of species[END_REF][START_REF] Branch | The ecology of limpets: physical factors, energy flow, and ecological interactions[END_REF], Brêthes et al. 1994) or shelter in rock cracks and crevices in the intertidal area. In the latter case, they do not become dormant but have a limited access to microphytobenthos, as recently observed around Adelaide Island [START_REF] Obermüller | Antarctic intertidal limpet ecophysiology: A winter-summer comparison[END_REF]. Two morphotypes of N. concinna have been distinguished, an intertidal and a subtidal type, with the intertidal type having a taller, heavier and thicker shell compared to the subtidal one that is characterised by a lighter and flatter shell (Beaumont andWei 1991, Hoffman et al. 2010). Initially, Strebel (1908) andPowell (1951) referred to these two morphotypes as the 'polaris' (intertidal) and 'concinna' types (below 4m depth). From that point, the potential genetic differentiation between the two morphotypes has been investigated, some of the studies concluding an absence of genetic distinction (Wei 1988[START_REF] Beaumont | Morphological and genetic variation in the Antarctic limpet Nacella concinna (Strebel, 1908)[END_REF][START_REF] Nolan | Size, shape and shell morphology in the Antarctic limpet Nacella concinna at Signy Island, South Orkney Islands[END_REF]) while contrarily, de Aranzamendi et al. ( 2008) reported significant differences based on inter-simple sequence repeat (ISSR) markers. More recently, this last method was questioned [START_REF] Hoffman | No evidence for genetic differentiation between Antarctic limpet Nacella concinna morphotypes[END_REF]) and several studies using different markers and populations [START_REF] Chwedorzewska | Low genetic differentiation between two morphotypes of the gastropod Nacella concinna from Admiralty Bay, Antarctica[END_REF][START_REF] Hoffman | No evidence for genetic differentiation between Antarctic limpet Nacella concinna morphotypes[END_REF], Gonzalez-Wevar et al. 2011) have concluded an absence of genetic differentiation between the two morphotypes.

Apart from the absence of genetic differences, intertidal and subtidal populations strongly contrast in morphology and physiology, which has been explained by the prevalence of habitat MECHANISTIC MODELS CHAPTER 1.
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heterogeneity and strong environmental gradients along rocky shore habitats, a common feature also observed in other gastropods (Johannesson 2003[START_REF] Butlin | Sympatric, parapatric or allopatric: the most important way to classify speciation?[END_REF][START_REF] Hoffman | No evidence for genetic differentiation between Antarctic limpet Nacella concinna morphotypes[END_REF]. For instance, in N. concinna, the higher shell thickness observed in the shallow morphotype was hypothesised to play a role in resistance against crushing pack ice ( Shabica 1971, Morley et al. 2010). Intertidal morphotypes are further resistant to air exposure thanks to higher shells, bigger inner volumes relative to their shell circumference, a combination that makes them more efficient than subtidal individuals, able to store more water and oxygen, reducing desiccation risks and delaying the metabolic switch to anaerobic fermentation (Nolan 1991, Weihe andAbele 2008). The subtidal morphotype has also proved to be less resistant to cold than the intertidal population (Waller et al. 2006), due to extra production of mucus and stress proteins in intertidal morphotypes [START_REF] Clark | Antarctic marine molluscs do have an HSP70 heat shock response[END_REF][START_REF] Clark | HSP70 heat shock proteins and environmental stress in Antarctic marine organisms: a mini-review[END_REF][START_REF] Obermüller | Antarctic intertidal limpet ecophysiology: A winter-summer comparison[END_REF]) and due to diverse metabolic processes that contrast between both populations (reviewed in Suda et al. 2015).

The development of ecological models enables precise models to be built, that highlight subtle differences in parameters between ecologically similar or closely related species (Freitas et al. 2010[START_REF] Holsman | A comparison of fisheries biological reference points estimated from temperature-specific multi-species and singlespecies climate-enhanced stock assessment models[END_REF][START_REF] Marn | Comparative physiological energetics of Mediterranean and North Atlantic loggerhead turtles[END_REF][START_REF] Lika | The use of augmented loss functions for estimating Dynamic Energy Budget parameters[END_REF]. The idea of building individualspecific models for understanding of physiological processes is not new (Bevelhimer et al. 1985, DeAngelis et al. 1994) and grew from the development of computational ecology that resulted in the possibility of generating "individual-oriented" models (IOM's) [START_REF] Hogeweg | Individual-oriented modelling in ecology[END_REF]Hesper 1990, DeAngelis et al. 1994). The IOM theory relies on the principle that "no two biological organisms are exactly alike, even when they have identical genes". A group of organisms within a population can have contrasting size or physiological performances according to, for example, food conditions or competition. Modelling each individual, separately, therefore constitutes a powerful approach to enhance the understanding of the entire community (DeAngelis et al. 1994).

In this study, due to the known morphological and physiological differences between the morphotypes, we first separately built independent DEB models for the intertidal and subtidal morphotypes of the limpet N. concinna, based on field experiment and literature data, to assess the potential differences between the models. Secondly, we analyse whether the two model outputs suggest contrasting physiologies between the morphotypes, using a method recently developed in DEB theory, that tries to reduce differences in parameter values that are still consistent with the data [START_REF] Lika | The use of augmented loss functions for estimating Dynamic Energy Budget parameters[END_REF]. Using this method -the augmented loss function-we try to merge the information of the two species models into a single one. If DEB parameters of the two species can be merged, it means that the physiological differences between these two species are not strongly different.

These results finally help assess DEB model accuracy giving the amount of data available to build the models in the context of Antarctic case studies and help evaluate which type of information is necessary to gather in order to fill model gaps. Finally, the study evaluates if such models are valuable for studying Southern Ocean organisms in the context of altered environments.

MATERIAL AND METHODS

DEB Model description

DEB models are based on an ensemble of rules that allocate energy flows to four main compartments (reserve E, structure V, maturity EH, reproduction ER) according to a set of priorities and the level of complexity (i.e. maturity) gained by the organism through time (Fig. 1.2, Kooijman 2010). Maturity is treated as information, having mass nor energy. Food is first of all ingested and assimilated (𝑝Ȧ) and energetically stored into a reserve compartment (E). A fraction of the energy that is mobilised from reserve, 𝑝Ċ, is divided into two branches according to the 'kappa-rule': a part of the energy contained in the reserve compartment (κ. 𝑝Ċ) is allocated to somatic maintenance and structure growth, whereas the second part (1-κ). 𝑝̇C contributes to maturity (before the 'puberty' threshold) or reproduction (after the 'puberty' threshold).

The energy is allocated within and in between these branches by the establishment of some priorities, where somatic maintenance (𝑝Ṁ) has priority over growth and maturity maintenance (𝑝J) has priority over maturity and reproduction. During its lifetime, the organism allocates energy to MECHANISTIC MODELS CHAPTER 1.
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maturity which symbolizes its complexity and reaches some life stages at some defined thresholds (𝐸 𝐻 𝑏 , birth, when the organism is capable to feed; 𝐸 𝐻 𝑗 , metamorphosis; 𝐸 𝐻 𝑝 , puberty, when it can reproduce). After reaching sexual maturity, the energy that was formerly allocated to maturity is attributed to the reproduction buffer and the available energy is allocated to the development of gametes. Different types of DEB models have been developed and coded for parameter estimation, see frequently updated https://github.com/add-my-pet/DEBtool_M page [START_REF] Marques | The AmP project: comparing species on the basis of dynamic energy budget parameters[END_REF][START_REF] Marques | Fitting Multiple Models to Multiple Data Sets[END_REF].

Here, the abj model was used for N. concinna. This model considers that growth acceleration occurs between birth and metamorphosis (Kooijman 2010, Mariño et al. 2019).

The DEB model is forced by food availability and temperature. Temperature acts on metabolic rates following the Arrhenius principle (see Kooijman 2010, Jusup et al. 2017 for details). A temperature correction factor is applied to each rate that takes into account the lower and higher optimal boundaries of the individual tolerance range. Food available for ingestion is represented by the functional response f comprised between [0,1], where 0 is starvation condition and 1 very abundant food. The parameters of the DEB model can be estimated from multiple data on the eco-physiology of a species. The ones studied in this work are presented in Table 1.1.
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Data collection and DEB calibration

DEB models were calibrated using zero-variate data (single data points at defined life stages, such as length or weight at sexual maturity, number of eggs produced per female) and uni-variate data (relationships between two variables such as oxygen consumption and temperature, length~weight relationship, weight or size~time relationships)(van der Meer 2006, Guillaumot 2019b). Data that were collected from the literature (Table 1.2), paying attention to the different taxonomic names adopted for the species through time (see http://www.marinespecies.org/aphia.php?p=taxdetails&id=197296, accessed December 2018); to the sampling area to enable the two morphotypes to be distinguished (intertidal/subtidal) and to the environmental conditions under which each dataset was recorded (available food resources and temperature). Data from the literature were supplemented by experiments led by S. Morley at Rothera Station (Adelaïde Island, Western Antarctic Peninsula) in January-February 2018 (details in Appendix 1.1). Individual shells were brought back to Europe and processed with imagery to collect growth ring data (Appendix 1.2). Some data are shared between the intertidal and subtidal morphotypes due to a lack of information on the morphotypes physiology in the literature (Table 1.2). The characteristics of the first developmental life stage, when the larvae become able to feed (i.e. age, length and weight at birth) and the pace of development (i.e. age at puberty, maximal observed age) are assumed to be identical.
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Each data set was characterised by the corresponding temperature and food resources present in the field. Food resources were represented in the model by a scaled functional response f constrained between 0 and 1, with 0 meaning no food availability and 1 maximal food abundance. f parameters were differentiated between the different stations along with temperatures. Food is very abundant in the field for the limpet and f parameters were therefore kept fixed with values ≥ 0.9. Food availability from the Rothera Station was described by pictures taken in the field and was estimated at f=1. Signy and Anvers Islands f was set at 0.9 because physiological traits (growth rate, maximal size) are very close (but slightly lower) than Rothera's observations, but no precise information is available for food conditions in the different publications for these stations. 

DEB parameter estimation and goodness of fit

Sets of zero and uni-variate data, supplemented by pseudo-data were used to estimate the DEB primary parameters. Pseudo-data are extra data coming from different taxa that help calibrate the model estimation similarly to a prior element (Lika et al. 2011a). This procedure has similarities with Bayesian estimation, but are not embedded in a maximum likelihood context, since the MECHANISTIC MODELS CHAPTER 1.
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stochastic component is not modelled. Before parameter estimation, each data set can be subjectively linked by a weight coefficient to quantify the realism of reducing variation in parameter values. Selected weight coefficients are always selected small enough in order to hardly affect parameter estimation if the information contained in the real data set is sufficient.

The DEB parameters estimation is done by simultaneously estimating each parameter using these empirical and pseudo-data by minimizing a loss function, using the Nelder-Mead simplex method, updated and explained in [START_REF] Marques | The AmP project: comparing species on the basis of dynamic energy budget parameters[END_REF][START_REF] Marques | Fitting Multiple Models to Multiple Data Sets[END_REF]. The loss function that is minimized is

∑ 𝑛 𝑖=1 ∑ 𝑛 𝑖 𝑗=1 𝑤 𝑖𝑗 𝑛 𝑗 (𝑑 𝑖𝑗 -𝑝 𝑖𝑗 )2 𝑑 𝑖 ̅̅̅ 2 + 𝑝 𝑖 ̅ 2
where i scans datasets and j points in this dataset. dij and pij are respectively the data and the predictions and 𝑑i and 𝑝i their average values in set i. wij are the attributed coefficients, 𝑛 is the number of data sets, ni denotes the data in a dataset, nj the data in data-points.

The value of the loss function is evaluated for each parameter trial. The goodness of fit of each prediction was quantified by the relative error (RE). The mean relative error (MRE) quantifies the overall model performance. RE corresponds to the sum of the absolute differences between observed and predicted values, divided by the predicted values. Contrarily to the loss function, the MRE does not take into consideration the weights of the different data [START_REF] Marques | The AmP project: comparing species on the basis of dynamic energy budget parameters[END_REF]. MRE values can have values from 0 to infinity, with 0 value meaning that predictions match data exactly.

Merging parameters

The augmented loss function approach developed by [START_REF] Lika | The use of augmented loss functions for estimating Dynamic Energy Budget parameters[END_REF] where w's are weights, d's data, p's predictions, 𝜃's parameters, j scans data-points with a dataset of ni points (ni = 1 is allowed), i scans the data-sets and k the parameters.

In this second term, when wk=0, the parameter 𝜃 k between species are different, but when increasing wk, the parameter 𝜃k tends to be similar between species. Therefore, the augmented loss function method uses this mathematical principle to spot potential differences between parameters of different species. First, the set of DEB parameters are separately estimated for each species and weight coefficients are set to zero. Then, for each parameter, the weight coefficient will be step-wise increased, making the loss function shift as a result. If a maximal weight value is reached without sharp changes in the loss function value along the weight increase, it means that the parameter value has a minimum variance between species. Contrarily, if the loss function value presents a sharp increase due to the change in weight coefficient, it means that the studied parameter should present contrasting values between the related species.

By applying this method to the case study of an intertidal and subtidal morphotype of the limpet N. concinna, we aim to evaluate whether there are any differences between both morphotypes caused by differences in parameters, or whether these differences are explained only by differences in environmental conditions (i.e. food resources and temperature). Initially, the sets of parameters have been estimated separately for both morphotypes and all weight coefficients are set to zero. By step-wise increasing the weight coefficient for a particular shared parameter, the overall loss function may increase and a common merged DEB parameter is reached. If a common value of the DEB parameter can be found without important increase in MRE or loss function values, it means that the intertidal and subtidal morphotypes do not significantly differ for this parameter. A similar procedure is applied for each DEB parameter separately and iteratively. In order to have a quick idea of replicability in the results, the procedure was replicated five times, CHAPTER 1.
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contrasting in different orders of DEB parameters merging (Appendix 1.3). The order of permutation of merged parameters of these five replicates was chosen randomly among the 11! possible solutions. Changes in MRE and loss function values at each weight modification were reported and the predictions of the intertidal, subtidal and merged models were compared.

RESULTS

Parameters of DEB models

DEB predictions for the separate intertidal and subtidal models are accurate, with MRE values lower than 0. In view of the substantial morphological difference between the populations, we expected to see a clear difference in the shape coefficient δM. We found a slightly larger value of δM for the intertidal morphotype, meaning that for the same shell length, it has slightly more structure, compared to the subtidal one.

Subtidal morphs have a lower energy conductance 𝑣̇ as well as double the value of maximum surface area specific assimilation rate {𝑝 ̇Am} with respect to the intertidal morphs. The ratio of specific assimilation over energy conductance [Em]= {𝑝 ̇Am}/𝑣̇, determines the maximum reserve capacity of a species.

The fraction of mobilised reserve allocated to soma κ is also bigger (0.9368 for subtidal vs. 0.9084 for intertidal type), and the intertidal individuals also present a lower value for somatic maintenance rate [𝑝 ̇M] compared to the subtidal ones. This highlights contrasts between the morphotypes in energy allocated to maturation along the first life stages (𝐸 𝐻 𝑏 , 𝐸 𝐻 𝑗 ) and more available energy for growth for the intertidal morphotype that has lower values of somatic maintenance. Intertidal morphotypes seem to accelerate metabolism with a two-fold difference in acceleration factor sM between intertidal and subtidal types (respectively 7.862 and 4.049). The maturity threshold to reach puberty, 𝐸 𝐻 𝑝 is also lower for the intertidal morphotype than the subtidal.

The MRE values of the merged models stay below 0.25 and the value of the loss function for the merged situation is only a little larger than the sum of both populations, reflecting that a substantial reduction in the total number of parameters by almost a factor 2 hardly affects the goodness of fit (Table 1 Univariate predictions are also extremely close between the two models and the merged model (Fig. 1.3), with only a small difference for the subtidal model for which the GSI~length predictions are higher than the intertidal and merged predictions, mainly due to errors in predictions and scatter in the data. This higher potential of energy allocation to reproduction can, however, be linked to the higher 𝐸 𝐻 𝑝 values estimated for the subtidal type (Table 1. 3).

MECHANISTIC MODELS CHAPTER 1.

Article. Guillaumot et al. (2020a). Can DEB models infer metabolic differences between intertidal and subtidal morphotypes of the Antarctic limpet Nacella concinna (Strebel, 1908)? Ecological Modelling. MECHANISTIC MODELS CHAPTER 1.

Article. Guillaumot et al. (2020a). Can DEB models infer metabolic differences between intertidal and subtidal morphotypes of the Antarctic limpet Nacella concinna (Strebel, 1908)? Ecological Modelling.

Merging process

Along the merging procedure, the loss function and MRE values of the model at each step of the merging procedure are observed, one 'step' corresponding to the interative increase of the weight coefficient of the studied parameter (i.e. merging step, Fig. 1.4). Changes in MRE values are not that important between the initial step and the final step of the merging procedure (Fig. 1.4, Appendix 1.4) (respectively from 0.170 to 0.196 and from 0.192 to 0.227 for the MRE intertidal and MRE subtidal values), meaning that merging parameters is possible. 𝐸 𝐻 𝑝 and δM seem to be the parameters that are the most influencing the model during the merging procedure for both the intertidal and subtidal models and [𝑝 ̇M] seems to further influence the intertidal model. 

DISCUSSION

DEB models relevance

DEB models are powerful tools enabling predictions of the individuals energetic scope for survival, growth and reproduction, given the considered environmental conditions (Kooijman 2010, Jusup et al. 2017). These mechanistic approaches have been of interest for several years to the marine Antarctic community (Gutt et al. 2012, Constable et al. 2014a, Gutt et al. 2018), and have been increasingly developed during recent years (e.g. Agüera et al. 2015, 2017, Goedegebuure et al. 2018, Henschke et al. 2018). This study is based on the example of the limpet Nacella concinna and uses data from literature supplemented by experiments conducted in Antarctica in February 2018, to build the DEB models of the intertidal and subtidal morphotypes of the species. The separately produced models were accurate, with a reduced error between observations and model predictions, except for some scatter among data such as Length~GSI relationship. Such accuracy was mainly possible thanks to the important amount of uni-variate data that were provided by the complementary experiments conducted in Rothera, which filled knowledge gaps about reproduction, collected more precise length weight relationships to observe the morphological contrasts between intertidal and subtidal individuals and collected more precise information on the limpet's metabolic performance through its development.
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Rates (and ages) depend on temperature. Here we correct for differences in temperature using an Arrhenius relationship. However, in order to meaningfully compare differences in parameters between species living in different habitats, it is useful to standardize all parameters to a common reference temperature: Tref= 20°C. This is the standard for presenting and comparing DEB parameters across the 2,000 different species in AmP. When comparing DEB parameters estimations of N. concinna to those of their temperate counterpart Patella vulgata [START_REF] Marn | Environmental effects on growth, reproduction, and life-history traits of loggerhead turtles[END_REF] at Tref= 20°C, we notice clear differences between the species in term of metabolic strategies, although the limpets morphology and therefore size and volume are close between the two species (close length and predicted shape coefficient δM). For N. concinna, predicted κ is much higher and close to 1 (0.9256 vs 0.617 for P. vulgata), meaning that almost all the energy available in the reserve compartment is allocated to somatic maintenance and growth, and only a small amount is available for reproduction. This is clearly visible with the ultimate rate of reproduction more than 40 times lower for the Antarctic limpet compared to the temperate one. The capacity to assimilate resources {𝑝 ̇Am} was estimated to be 10 times higher for P. vulgata, explaining the 2.5fold lower growth rate for N. concinna. The two metabolisms also contrast by the fact that P. vulgata is predicted to store more reserves than N. concinna in similarly abundant food conditions. These results are consistent with published experiments, where it was shown that rasping rates (i.e. feeding potential) were higher for temperate and tropical species than for N. concinna (Morley et al. 2014) and that development rates of Antarctic marine molluscs are much slower than at higher temperatures (Peck et al. 2007(Peck et al. , 2016)), which could be partially due to the increased costs of protein production in the cold [START_REF] Marsh | High macromolecular synthesis with low metabolic cost in Antarctic sea urchin embryos[END_REF][START_REF] Robertson | The effects of temperature on metabolic rate and protein synthesis following a meal in the isopod Glyptonotus antarcticus Eights (1852)[END_REF], Pörtner et al. 2007). Such examples of comparison of energetic performance between these two species highlight the performance of DEB models to be efficiently applied for Antarctic case studies and powerful and accurate enough to enhance physiological contrasts even between closely related species; as previously discussed in other works (van der Veer et al. 2006, Gatti et al. 2017[START_REF] Marques | The AmP project: comparing species on the basis of dynamic energy budget parameters[END_REF][START_REF] Marn | Comparative physiological energetics of Mediterranean and North Atlantic loggerhead turtles[END_REF]).

Comparison between morphotypes

In a second step, we evaluated if known contrasts in physiological traits between the morphotypes could be highlighted by the modelling approach. By simply comparing the two single models, we observed minimal energetic contrasts between the intertidal and subtidal morphotypes (small differences in assimilation rate and ability to store reserves, Table 1. 3,Fig. 1.3). By using the augmented-loss-function method, we tried to merge the models into a single one, parameter by parameter, to evaluate the contrasts in parameters between the types [START_REF] Lika | The use of augmented loss functions for estimating Dynamic Energy Budget parameters[END_REF]. Results show that models were merged without generating significant changes in MRE and loss function values (Fig. 1.4,Appendix 1.4). Predictions of the uni-variate data are really similar between the three models (Fig. 1.3), with only minor differences in temperature-corrected parameter values between both populations, meaning that the observed differences are best explained by differences in environmental conditions (temperature and food availability). Despite the known physiological contrasts in the field, the available data did not allow the models to capture these physiological differences between the morphotypes, using only the available data. Scatter distribution of the data used to calibrate the model (Fig. 1.3) can hide metabolic differences, which calls for more experiments to describe the physiology of the different morphotypes. Using more complete datasets, for which all parameters are independent between intertidal and subtidal morphotypes, may also help to further constrain the differences. In our case study, several zero-variate data are shared between the intertidal and subtidal models, among which age, length and weight at birth, that control the very beginning of the development. The observed results of a two-fold difference in metabolism acceleration of intertidal morphotypes compared to subtidal ones (sM ≈ 8 and 4 for intertidal and subtidal) is in fact an artefact caused by common parameters related to birth and puberty stages (age, length, weight). Indeed, specific assimilation at birth for the subtidal is two times larger than that for the intertidal, which indicates that subtidal individuals develop faster. However, according to available data provided in the model, puberty is reached at the same time for both types. 𝐸 𝐻 𝑝 consequently needs to be smaller for the intertidal type to reach puberty at the same age ap and length Lp, explaining the observed contrasts between the intertidal and subtidal groups.
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Improving the completeness of these models would therefore be necessary to enable further detailed conclusions. A common approach in biology is to focus on differences between individuals, populations and species. Here we adopt a contrasting strategy in which we force models to determine in what manner the populations are similar in order to quantify in what manner they differ. This work is a first step to compare the energetics of both populations, and we discovered how (given the data) they seem more metabolically similar than what their appearance would suggest as first. We also highlight some artefacts that come from the quality of the data and the scatter therein. New data (so new knowledge) that fill current knowledge gaps will yield further insight into how the metabolisms of these populations have diverged to adapt to differences in environment. The current work is a contribution to understanding the relationship between observations (data) and metabolism for these two populations.

Models drawbacks and improvements

Apart from data availability, a drawback of our model construction is the lack of information about environmental properties that makes comparisons between estimations of the two morphotypes quite difficult to perform. In the models, we just considered an average temperature for intertidal or subtidal habitats from where the limpets come from, but do not add any supplementary detail on environmental contrasts between these habitats nor in the difference of food availability between the morphotypes. However, contrasting environmental pressures (desiccation, salinity, hydrodynamism) and habitat characteristics (immersion time, substratum type, and surrounding physico-chemical factors) contribute to contrasting adaptative strategies among which morphological adaptation is really important for limpets, but have not been integrated into our DEB models (because it requires more data we do not have) (Vermeij 1973[START_REF] Branch | The ecology of limpets: physical factors, energy flow, and ecological interactions[END_REF][START_REF] Denny | Hydrodynamics, shell shape, behavior and survivorship in the owl limpet Lottia gigantea[END_REF][START_REF] Sa Pinto | Patterns of colonization, evolution and gene flow in species of the genus Patella in the Macaronesian Islands[END_REF], Bouzaza and Mezali 2013[START_REF] Grandfils | Contribución al conocimiento de Patella ferruginea (Gmelin, 1789)[END_REF][START_REF] Gray | Growth and reproduction in the high-shore South African limpet Helcion pectunculus (Mollusca: Patellogastropoda)[END_REF][START_REF] Espinosa | Effect of human pressure on population size structures of the endangered ferruginean limpet: toward future management measures[END_REF]). Desiccation is one of the strongest hypothesis to explain the morphological differences between the intertidal and subtidal morphotypes [START_REF] Mauro | Morphological and molecular tools in identifying the Mediterranean limpets Patella caerulea, Patella aspera and Patella rustica[END_REF], Bouzaza & Mezali 2018). The presence of high upstream shifted apex form for the intertidal morphotypes, more exposed to desiccation, could help to store more water and absorb more oxygen, as described for Patella ferruginea [START_REF] Branch | Limpets: evolution and adaptation[END_REF], Paracuellos et al. 2003). Similarly, shell volumes are bigger for the intertidal type and help reduce water loss (Vermeij 1973[START_REF] Wolcott | Physiological ecology and intertidal zonation in limpets (Acmaea): a critical look at" limiting factors[END_REF][START_REF] Branch | Ecology of Patella species from the Cape Peninsula, South Africa. IV. Desiccation[END_REF][START_REF] Branch | The ecology of limpets: physical factors, energy flow, and ecological interactions[END_REF]) but also infer resistance to the effects of ice damage (Morley et al. 2010). Differences in the energetic responses of the two morphotypes of N. concinna to the difference in mean intertidal (0.45°C) and subtidal (-0.1°C), or the much greater difference in maximum (12.3 versus 1.7°C respectively;Morley et al. 2012), could be a proximate cause of the morphological differences. Taking into consideration differences between environments is therefore important but strongly lacking in the analysis presented here.

In our study, field data show a slight difference in shell length of +5% and a small difference also in the predicted shape coefficient of 0.45 against 0.39 (Table 1.3) for respectively the intertidal and subtidal individuals. This indicates very small differences in inner volumes between the studied populations as calculated by the DEB, meaning that the DEB model does not adequately reflect the difference in morphology between the intertidal and subtidal morphotypes. In the raw data, shell heights present a 33% difference between intertidal and subtidal individuals (Appendix 1.1) but shell length was used, rather than shell height, in the model to characterise the growth structure of the species. Fine tuning the models with extra shape information could have helped to bring further contrasts between the two models, but also requires much more information on shell growth.

Moreover, the difference in food availability and quality was hypothetized between the morphotypes when calibrating the model, despite food abundance and quality knowledge being responsible for strong contrasts in DEB model outputs (Kooijman 2010, Thomas et al. 2011[START_REF] Saraiva | Validation of a Dynamic Energy Budget (DEB) model for the blue mussel Mytilus edulis[END_REF][START_REF] Sarà | Predicting biological invasions in marine habitats through eco-physiological mechanistic models: a case study with the bivalve Brachidontes pharaonis[END_REF]. During winter time, the intertidal type seems to have supplementary access to ice-algae and microphytobenthos in rock crevices, whereas the subtidal type mainly grazes on the diatoms films growing on encrusing red algae (Appendix 1. 1, Obermüller et al. 2011). But food abundance and quality were assumed for the construction of the models, as MECHANISTIC MODELS CHAPTER 1.
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no data accurate enough were available to characterise the feeding behaviour of the limpets. Moreover, in the case of intertidal type, no clear hypothesis is available for their behaviour during winter period, as several authors hypothesize either a migration into the subtidal or a dormance period hidden into crevices during the period where ice is covering their habitat (Brêthes et al. 1994[START_REF] Obermüller | Antarctic intertidal limpet ecophysiology: A winter-summer comparison[END_REF]). However, this information would be essential to explain how these individuals energetically behave during this period.

Potential of the approach

This study showed that it is feasible to build a DEB model for a marine Antarctic species, with few available data. Adding extra information from sampling and experiments during a single expedition in the field considerably increased the accuracy of the model and highlighted some small differences in energy allocation priorities, maintenance costs and reproductive potential between the intertidal and subtidal morphotypes. But the method is then limited by model calibration and data availability since it could not prove that these contrasts are explained by anything else but environmental conditions.

Such DEB models would already be sufficient to (1) describe the performance of the species physiological traits in spatially or temporally contrasting environmental conditions (Kearney et al. 2012, Teal et al. 2012), ( 2) to be upscaled to the population level to assess population structure and density dynamics (Klanjšček et al. 2006, Arnould-Pétré et al. 2020 -Chapter 1), or ( 3) to be integrated into a dynamic network by adding knowledge about interaction with other species [START_REF] Ren | An ecosystem model for estimating potential shellfish culture production in sheltered coastal waters[END_REF][START_REF] Ren | An ecosystem model for optimising production in integrated multitrophic aquaculture systems[END_REF]. Adding some data from extra experiments would easily enable further development of these models for ecophysiological or ecotoxicological applications (Muller and Nisbet 1997, Pouvreau et al. 2006, Peeters et al. 2010[START_REF] Sarà | Combining heat-transfer and energy budget models to predict thermal stress in Mediterranean intertidal mussels[END_REF], or to improve knowledge about development stages, behaviour or reproduction (Pecquerie et al. 2009[START_REF] Rico-Villa | A Dynamic Energy Budget (DEB) growth model for Pacific oyster larvae, Crassostrea gigas[END_REF], Kooijman et al. 2011).

In this study, we wanted to explore whether the amount of data that was available to build these models were sufficient to see the known physiological and morphological differences between the two morphotypes, and results show that more data are necessary.

To conclude, we advise the use of DEB approach for ecological modelling for Antarctic case studies but modellers should be aware of the necessity to calibrate models with accurate data to fine tune results. Among these data, the description of the species habitat is complex information to be integrated into a model and most of the time only partial information is available. Working in narrow scale areas where habitat is known and described and where experiments can be run might be a good option.

Our study also hightlights the interest of DEB models to reuse data from experiments from historical published works from Antarctic campaigns and highlights the importance of precisely documenting the associated metadata (notably the description of the environment and the conditions in which the limpets are living), data that is not always available.
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Measurement of routine metabolic rate

After collection animals were transported in seawater to the Rothera flow through aquarium where they were maintained without supplementary feeding for 10-20 days to allow the majority of their last meal to be processed and the peak in specific dynamic action to have passed before routine metabolic rate was measured.

Routine metabolic rate was measured in closed cell respirometers, following the methodology of Peck (1989), except that oxygen concentration was measured with a Fibox-3 oxygen meter (Presens GmbH, Regensberg, Germany; e.g. Morley et al. 2009a). Oxygen sensitive foils were calibrated before each measurement using 5% w/w sodium dithionite for 0% and fully aerated water for 100%. During trials oxygen concentration was not allowed to fall below 70% of air saturation, which is above the threshold for oxyregulation of N. concinna (Morley et al. 2009a). Two empty chambers (controls) were run with each trial to account for background oxygen consumption, which was routinely less than 10% of the animal's consumption. After each trial the volume of each limpet was measured (through displacement) and this was subtracted from the volume of the respirometer to measure the volume of water within each respirometer.

To calculate the oxygen consumption of organic tissue per gram, wet weights of whole animals and wet weights of all tissues, minus the shell, were measured. Tissue was then dried in an oven at 60°C for 24 hours and then reweighed every 24 hours until a constant dry weight, ± 0.010g, was achieved. The dried tissue was then ashed in a furnace at 475°C for 24 hours and ash free dry mass was measured.
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Supplementary results

APPENDIX 1.2. Sclerochronology protocol

Based on the literature (Picken 1980, Fig. S1.2A), the distance between the apex of the shell and the different black rings are measured using a 'mesuroscope' at Biogeosciences Laboratory (Université de Bourgogne Franche-Comté, France). According to Picken (1980), black rings correspond to winter growth, and lighter bands to summer growth, which can be a proxy to characterise growth dynamics through time (Fig. S1.2A). The 'mesuroscope' (Fig. S1.2.B) is a binocular microscope connected to a computer that enables coordinates to be marked and reported onto an excel sheet; the x,y position (movement of the horizontal plateau where the shell is fixed) and the z position (measured by the vertical movement of the plate, corresponding to zooming in or out and therefore to the height of the shell). The shell is observed with the binocular microscope, a pointer helps at positioning the focus on the screen and a button automatically saves the x, y, z positions on the excel sheet, making measurements fast, efficient and precise. Precision is 10µm. The position of each black ring, on the left side and on the right side of the apex is measured and summed to assess the total shell growth between two rings (Fig. S1.2.B). Each shell was photographed before the procedure to estimate the position of each dark ring, which is not that precise and simple for all cases (Fig. S1.2.B).
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APPENDIX 1.3. Merged models, replicates Article. Arnould- [START_REF] Pétré | Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions[END_REF]. Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling.

INTRODUCTION

The Kerguelen Islands are part of the French Southern Territories (Terres australes françaises -Taf), located at the limit of the Indian and Southern oceans, in the sub-Antarctic area. 1881[START_REF] De Ridder | Antarctic and Subantarctic echinoids from "Marion Dufresne" expeditions MD03, MD04, MD08 and from the "Polarstern" expedition Epos III. Bulletin du Muséum[END_REF][START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF], Poulin 1996, David et al. 2005[START_REF] Hibberd | Field Identification Guide to Heard Island and McDonald Islands Benthic Invertebrates, a guide for scientific observers on board fishing vessels in that area, The Department of Environment, Water, Heritage, and the Arts[END_REF], Guillaumot et al. 2016, Guillaumot et al. 2018a,b). This makes the species particularly at risk considering the synergetic effects of the multiple factors (temperature variations, significant shifts in coastal currents, sedimentation rates and phytoplanktonic blooms) affecting coastal marine communities at high latitudes (Waller et al. 2017, Stenni et al. 2017, Gutt et al. 2018). The species' endemicity can be partly related to low dispersal capabilities, which is a consequence of a particular life trait: A. cordatus broods its young in incubating pouches located on the aboral side of the test, and has a direct development with no larval stage and no metamorphosis. The low dispersal capacity of A. cordatus likely increases its vulnerability to environmental changes [START_REF] Ledoux | Fine-scale spatial genetic structure in the brooding sea urchin Abatus cordatus suggests vulnerability of the Southern Ocean marine invertebrates facing global change[END_REF]. Benthic fauna of sub-Antarctic regions remains under-studied compared to pelagic species [START_REF] Améziane | Biodiversity of the Benthos off Kerguelen Islands: Overview and Perspectives[END_REF][START_REF] Xavier | Future challenges in Southern Ocean ecology research[END_REF]. Ecological niche models can represent relevant tools to study the consequences of environmental changes on the biology of these benthic organisms and on their population dynamics. Correlative niche models were used to predict the distribution of suitable areas for A. cordatus on the Kerguelen plateau (Guillaumot et al. 2018a,b). However, supplementary data and analyses are still needed to depict and understand the species' response to environmental changes.

In the present work, a mechanistic modelling approach using a Dynamic Energy Budget -Individual-Based Model (DEB-IBM) was used to analyse the biological response of A. cordatus to various environmental conditions. An individual mechanistic model (DEB) was first built using experimental and literature data [START_REF] Guillaumot | AmP Nacella concinna[END_REF]. A DEB model aims to represent the physiological development of an organism, from the embryo to its death based on energetic fluxes and allows considering the metabolic state of the individual at any given moment of its life cycle. It relies on biological principles and first laws of thermodynamics to recreate the metabolic development as a function of two environmental parameters, food resources and temperature (Kooijman 2010).

The DEB model was then upscaled to the population level (IBM), wherein it was implemented as iterative mathematical calculations of each organism's individual development in the population.

The IBM relies on the simulation of individuals as autonomous entities forming a complex population within a dynamic system (Railsback and Grimm 2019). The DEB-IBM is used to analyse population dynamics emerging from the development and the physiological traits of individuals as a function of environmental forcing variables (i.e. food resources and temperature). The DEB-IBM can then be used to simulate population dynamics under different environmental scenarios, enabling a better quantification of the vulnerability of populations to changing environmental conditions. Modelling population dynamics using a DEB-IBM model for a sub-Antarctic and brooding invertebrate brings a feature so far unseen in other published DEB models. The main objectives of the study were to develop a DEB-IBM model for A. cordatus (1) to simulate population structure MECHANISTIC MODELS CHAPTER 1.
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and dynamics at different sites under both current environmental conditions and future IPCC climate scenarios RCP 2.6 and RCP 8.5,and (2) to assess the feasibility of such a model for organisms in a region where low data availability and resolution may limit model building and validation. The current resolution and accuracy of future climate scenarios in sub-Antarctic areas do not allow building precise and reliable predictions for the future but they were used here as a proof of concept to test population responses to various, conceivable conditions. Sensitivity analyses were performed to test the robustness, potential and relevance of models [START_REF] Grimm | Robustness analysis: Deconstructing computational models for ecological theory and applications[END_REF]) considering data availability. Simulations performed for various temperature conditions and food resource availabilities, if validated, may constitute a promising tool to address conservation issues.

MATERIAL AND METHODS

Study area

The DEB-IBM population model was generated in the geographic and environmental context of the Kerguelen Islands (Fig. 1.5) using data of the study site of Anse du Halage, a fieldwork station that has regularly been investigated through several biological studies since the 1980s (Magniez 1980[START_REF] Schatt | The brooding cycle of Abatus cordatus (Echinodermata: Spatangoida) at Kerguelen Islands[END_REF][START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF], Poulin 1995, Poulin and Féral 1998[START_REF] Ledoux | Fine-scale spatial genetic structure in the brooding sea urchin Abatus cordatus suggests vulnerability of the Southern Ocean marine invertebrates facing global change[END_REF].

The Kerguelen Islands show jagged coastlines and numerous islets and fjords that provide a large variety of habitats to the marine benthic fauna. The nature of the seafloor varies from rocky to sandy and muddy shores. The predominance of the giant kelp Macrocystis pyrifera is a main feature of the Kerguelen as this engineer and key species plays a decisive role in the protection and structuring of benthic shallow habitats in many places of the archipelago [START_REF] Lang | Contribution à l'étude sédimentologique du golfe du Morbihan: Iles Kerguelen-Terres australes et antarctiques françaises[END_REF], 1971[START_REF] Arnaud | Contribution a la bionomie benthique antarctique et subantarctique[END_REF], Féral et al. 2019). Located in the Morbihan Bay, a 700 km 2 semi-enclosed shallow embayment (50m depth on average) of the Kerguelen Islands, Anse du Halage is situated at the bottom of a small and shallow (2m depth) cove dominated by fine to medium sands (Magniez 1979, Poulin 1996) (Fig. 1.5). The tidal range is comprised between 0.4 and 2.1m, so that the area can exceptionally be uncovered at the lowest tides [START_REF] Schatt | Développement et croissance embryonnaire de l'oursin incubant Abatus cordatus (Echinoidea: Spatangoida)[END_REF]Féral 1991, Mespoulhé 1992). Sea surface temperature varies between 1 and 2°C in winter (September) to 7 to 8°C in summer (March), with sporadic peaks of +11°C in some places, for certain years [START_REF] Schatt | Développement et croissance embryonnaire de l'oursin incubant Abatus cordatus (Echinoidea: Spatangoida)[END_REF]Féral 1991, Féral et al. 2019). Salinity varies between 31.89 and 33.57 [START_REF] Arnaud | Contribution a la bionomie benthique antarctique et subantarctique[END_REF].

Temperature data used in the model were collected in the framework of the Proteker program (French Polar Institute n°1044) [START_REF] Féral | Long-term monitoring of coastal benthic habitats in the Kerguelen Islands: a legacy of decades of marine biology research[END_REF]) and accessed online (IPEV programme n°1044, http://www.proteker.net/-Thermorecorders-.html?lang=en accessed on 08/05/2019). They were recorded from 2012 to 2018 at three sites used in the model (Fig. The organic matter deposited on the seabed varies with seasonal phytoplankton blooms and remineralization by bacteriae [START_REF] Delille | La matière organique dans les dépots de l'archipel des Kerguelen. Distribution spatiale et saisonnière[END_REF]). The sediment organic content and phytoplanktonic blooms are particularly important at Anse du Halage, with average values of 4.5% of organic carbon content. The sediment organic carbon (OC) content was monthly measured as a percentage of sediment dry weight by [START_REF] Delille | Bacterial responses to natural organic inputs in a marine sub-Antarctic area[END_REF].

Environmental data time-series are available at a monthly timestep. The model was scaled on a single square metre patch, supposing no connectivity between neighbour locations, as no data on horizontal nor vertical water movements and matter fluxes were available.
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Study species

Abatus cordatus (Fig. 1.6) is a shallow deposit-feeder and sediment swallower, living at 5°C average, full or half buried into soft sediments [START_REF] De Ridder | Food and feeding mechanisms: Echinoidea[END_REF]. It is distributed all around the Kerguelen Islands, but population densities are highly variable depending on depth, Magniez 1980, Poulin 1996). Juveniles are commonly found sheltered in between holdfasts of the giant kelp Macrocystis pyrifera bordering with sandy shallow areas.

The species is relatively resistant to low salinities locally induced by freshwater run-off from the main island [START_REF] Guille | Consommation d'oxygène de l'oursin Abatus cordatus (Verrill) et activité oxydative de son biotope aux îles Kerguelen[END_REF]. It is tolerant to temperature variations, particularly marked in shallow areas, but temperature tolerance does not exceed +12°C (personal observations). The maximum size ever observed is 4.9 cm in length [START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF]. Lifespan is assumed to be around six years old [START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF], although it cannot be excluded that some individuals may grow older. Identified predators are gastropods, crustaceans and seagulls (Poulin and Féral 1995, Poulin 1996) from which the specimens are hidden when burrowing into the sediment (Magniez 1979, Poulin andFéral 1995).
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DEB modelling

Principles DEB theory defines individuals as dynamic systems and provides a mathematical framework for modelling organisms' life cycle. It describes physiological processes using four primary state variables -reserve, structure, reproduction buffer and maturity-directly linked to mass and energy flows and influenced by two forcing variables, temperature and food availability (Fig. 1.7, Kooijman 2010, Jusup et al. 2017). Based on feeding, growth and reproduction processes, DEB models predict the metabolic and development states of organisms through time (Sousa et al. 2008, Kooijman 2010). Metabolic processes are linked to shape and size of the organism, represented by the structural volume and the structural area. Structural volume is related to maintenance processes, while structural area is closely linked to food ingestion and assimilation processes and controls the amount of energy arriving into the reserve compartment E (Fig. 1.7, van der Meer 2006).

The energy contained in the reserve compartment is allocated to organism maintenance ('somatic' and 'maturity' maintenances, priority processes that condition the organism's survival), to growth (increase of structural volume V), and to the increase of complexity (EH) or reproduction buffer (ER) (Fig. 1.7) according to the kappa-rule (Kooijman 2010). The complexity is represented as the maturity level. The amount of energy accumulated into this compartment triggers metabolic switches such as the transition (i.e. ability to feed, to reproduce) between life stages, defined in DEB theory (namely embryo, juvenile and adult life stages) (Kooijman 2010).
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Application of DEB model to A. cordatus

Parameter estimation. An individual mechanistic DEB model was developed for A. cordatus [START_REF] Guillaumot | AmP Nacella concinna[END_REF]. Estimated DEB parameters are reported in Table 1.4. The DEB model considers a larval growth accelerated compared to the adult stage [START_REF] Schatt | Développement et croissance embryonnaire de l'oursin incubant Abatus cordatus (Echinoidea: Spatangoida)[END_REF], so-called 'abj' type model. The model was constructed using data from the literature (Table 1.5). The goodness MECHANISTIC MODELS CHAPTER 1.
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of fit of the DEB model to the data was evaluated by calculating the Mean Relative Error (MRE) of each dataset, which is the sum of the absolute differences between observed and expected values, divided by the expected values. MRE values are contained in the interval [0, infinity). The MRE is considered to be a reference method to assess DEB modelling performance (Lika et al. 2011b), for which the closer to 0, the better model predictions match the data. [START_REF] Schatt | Completely direct development of Abatus cordatus, a brooding schizasterid (Echinodermata: Echinoidea) from Kerguelen, with description of perigastrulation, a hypothetical new mode of gastrulation[END_REF] Mespoulhé (1992) Féral andMagniez (1988) Féral andMagniez (1988) 1 moment at which the juveniles leave the brooding pouch of the mother 2 moment at which the sea urchin is able to reproduce 3 maximum gonad index for an animal of the maximum size, gonad index as gonad weight/total wet weight.

Maturation and development. Embryos of A. cordatus have a direct development in brood pouches of females (Magniez 1983[START_REF] Schatt | Développement et croissance embryonnaire de l'oursin incubant Abatus cordatus (Echinoidea: Spatangoida)[END_REF]. They start feeding inside pouches after 142 days of incubation (i.e. 5 months) and leave the pouches as fully developed sea urchins after 8.5 months [START_REF] Schatt | Développement et croissance embryonnaire de l'oursin incubant Abatus cordatus (Echinoidea: Spatangoida)[END_REF]. According to DEB theory, individuals are considered embryos until they can feed (Kooijman 2010). Before the fifth month, feeding inside the maternal pouches is not clearly attested, but feeding through epidermal uptake of Dissolved Organic Matter (DOM) is considered as the possible mechanism [START_REF] Schatt | Completely direct development of Abatus cordatus, a brooding schizasterid (Echinodermata: Echinoidea) from Kerguelen, with description of perigastrulation, a hypothetical new mode of gastrulation[END_REF]. At each growth step, energy is supplied to the reserve by the ingested food (Fig. 1.7, ṗA) and then leaves the reserve compartment to be directed to growth, maturation or reproduction processes through the mobilisation flux (Fig. 1.7, ṗC). This is performed following the kappa-rule: a κ fraction is directed towards the structure (growth compartment and somatic maintenance, Fig. 1.7, and the remaining (1-κ) fraction towards complexity (maturation, reproduction compartments and maturity maintenance, Fig. 1.7).

During the juvenile stage, the individual does not supply energy into reproduction, but accumulates energy in its maturity compartment EH until reaching the 'puberty' threshold that, according to DEB theory, defines the moment when the organism is mature enough to reproduce (Kooijman 2010). After reaching this threshold, at around 2.5 to 3 years old [START_REF] Schatt | Développement et croissance embryonnaire de l'oursin incubant Abatus cordatus (Echinoidea: Spatangoida)[END_REF][START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF], the organism can allocate energy into the reproduction buffer ER for gamete production (Fig. 1.7). The structural volume increases continuously along the individual's life, from birth to death, supplied in energy left from what has not been allocated to priority maintenance costs ṗM and ṗJ.

Starvation mortality. Magniez (1983) observed that the gonadal index continues to decrease slightly for around two months after reproduction. He hypothesized that it was related to the season: as the reproduction period finishes at the start of winter, food resources decrease and energy investment into reproductive organs is momentary diverted towards the maintenance of MECHANISTIC MODELS CHAPTER 1.
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somatic elements. This was demonstrated in the other sea urchin species Strongylocentrotus purpuratus [START_REF] Lawrence | Role of the gut as a nutrient-storage organ in the purple sea urchin (Strongylocentrotus purpuratus)[END_REF] and Arbacia lixula (Fenaux et al. 1975) confronted with starvation.

In the model, when scaled reserve e (reserve relative to reserve capacity, no dimension) falls below the scaled structural length l (length relative to maximum length, no dimension), it is assumed that the individual is confronted to starvation: the kappa-rule is then altered as energy is entirely redirected to the somatic maintenance and all other fluxes (growth, reproduction or maturation) are set to 0. When e < 0, the organism does not have enough energy to allocate the amount necessary for survival (somatic maintenance costs) and dies. See section "7.Submodels/Starvation" in Appendix 1.12 for further details and implemented equations.

Ageing mortality. Death probability by senescence was calculated in the model using the ageing sub-model, a simulation of damages induced by lethal compounds such as free radical or other reactive oxygen species (ROS), following the DEB theory for ageing (Kooijman 2010).

The density of damage inducing compounds in the body increases as the reserve compartment is fuelled with energy that is allocated through the entire organism. It influences the hazard mortality rate ḣ, which is a function of the damage accumulated in the body and simulates the vulnerability of the individual to damages, such as the risk of dying from illness increases with age. In the model, the hazard mortality rate ḣ is supplemented by a stochastic parameter [START_REF] Martin | DEB-IBM User Manual: Dynamic Energy Budget theory meets individual-based modelling: a generic and accessible implementation[END_REF] to control the ageing mortality rate. See section "7.Submodels/Ageing" in Appendix 1.12 for further details and implemented equations. The IBM was built with the software Netlogo version 6.0.4 (Wilensky 1999), using the DEB-IBM model developed by [START_REF] Martin | DEB-IBM User Manual: Dynamic Energy Budget theory meets individual-based modelling: a generic and accessible implementation[END_REF] for the species Daphnia magna. The NetLogo code is available at http://modelingcommons.org/browse/one_model/6201. It contains the script to run the model, the input files of monthly food resources and temperatures for the three stations and a detailed description of the model following the ODD (« Overview, Design concepts, Details ») protocol from [START_REF] Grimm | The ODD protocol: A review and first update[END_REF] and the associated list of variables present in the code. This detailed ODD was also included in Appendix 1.12. 5) the initial structural length (L, cm).

Individual-based modelling for the population

Principles

Application of IBM model to

The scatter-multiplier is the exponential of a random number from a normal distribution of mean 0 and standard deviation cv (0.1 by default, can be set by the user in the interface of the model). The value is therefore small enough to not affect tremendously the initial variable and generate tradeoff between parameters. It is applied as soon as the individual is created in the system.

Reproduction. Sex-ratios (ratio males/females) in the studied populations are slightly contrasting between localities, from 0.94 (Ile Haute) to 0.99 (Anse du Halage) and 1.04 (Port Couvreux) (Poulin 1996). The average ratio of 0.99 was chosen in the model. By approximation, it was considered that only females undergo physiological changes during the reproduction process, males being only used as a component of the total population.

To this date, few monitoring studies have been performed on A. cordatus reproduction. Magniez (1983) is the only one who studied the Gonado Somatic Index (GSI), that is the proportion of ashfree gonads dry weight over the ash-free body dry weight, therefore directly linked to the accumulation of energy into the reproduction buffer. According to Magniez (1983), reproduction can occur if the GSI reaches at least 0.07%. This condition was used in our model to control the ability of the female to reproduce when time comes.

The GSI parameter was only attributed to females and was estimated for each month, with this equation (Kooijman 2010, section 4.10, eq. 4.89):

GSI = time_of_accumulation * k ̇M * g f 3 * (f+ϰ * g * y VE ) * ((1 -ϰ) * f 3 - k ̇J * U H p Lm 2 * s M 3 ),
where the time of accumulation is the number of days spent since the end of the reproduction period, k ̇M is the somatic maintenance rate coefficient (in d -1 ), g the energy investment ratio (no dimension), f the scaled functional response (no dimension), κ the fraction of energy directed towards structure, yVE the parameter for the yield of structure on reserve (mol/mol), that is the MECHANISTIC MODELS CHAPTER 1.
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number of moles of structure that can be produced with one mole of reserve, (1-κ) the fraction of energy directed towards complexity, k ̇J the maturity maintenance rate coefficient (in d -1 ), U H p the scaled energy in the complexity compartment at puberty (d.cm 2 ), sM the acceleration factor (no dimension) and Lm the maximum structural length (cm).

The reproduction period is constant from March to May for the individuals at Anse du Halage, and they only spawn once a year (Magniez 1983[START_REF] Schatt | Completely direct development of Abatus cordatus, a brooding schizasterid (Echinodermata: Echinoidea) from Kerguelen, with description of perigastrulation, a hypothetical new mode of gastrulation[END_REF], Poulin 1996). After each monthly step, the model checks the GSI value for each female. If the GSI reaches the 0.07% threshold at the onset of the period (March), reproduction is triggered for this considered female.

According to the literature, when reproducing, females invest around 52% of their reproductive organs' energy into reproduction (Magniez 1983). This energy is released during the three months when spawning occurs. That is, the GSI of the female will decrease by 52% of its initial value over the 3 months period (so a decrease of one third of 52% per month, with ∂GSI = (GSIstart -0.52 * GSIstart) / 3, where GSIstart is the level of gonadal index at the onset of reproduction). In parallel, the usual ∂UR (change in energy density in the reproduction buffer outside of the reproduction period, no unit) is set to 0 for the three months, while UR (energy density in the reproduction buffer) is forced to decrease in a similar fashion to the GSI: ∂ 2 UR = (UR_start -0.52 * UR_start) / 3, with UR_start being the reproduction buffer at the start of the period.

Reproduction induces the introduction of 27 embryos in average in the system (Magniez 1983), added proportionally along the three months (9 per month).

Background mortality. No specific adult mortality rates are mentioned in the literature, as no cause have been defined precisely. Background population mortality annual rates were estimated based on size frequency distribution provided by [START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF], and using the formula from Ebert (2013) N(t) = N0 * e -M*t with N(t) the population size at time t, N0 the initial population size, M the mortality rate and t the time (in months). Two yearly mortality rates were defined: one for juveniles (41%) and one for adults (24%).

A percentage of embryos mortality in the pouches was calculated based on data from Poulin (1996), determining an egg survival of 65%.This mortality is associated to the fact that when the first juveniles start leaving the maternal pouches at the beginning of January, they push aside the protecting spikes of the pouch, and eggs remaining in the brood are no longer protected and die (Magniez 1980 (2018). feff and fenv are contained between 0 and 1. FC is calculated with the following equations:
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If P < 1.9 * K, then FC = (1-fenv). (1 -P 2.K-P

)

If P ≥ 1.9 * K, then FC = (1-fenv). (1 -

P K/10
) FC is positive if P < K, and feff tends to its maximal value 1 with a decreasing population size, as FC becomes very low and tends towards 1-fenv. When P > K, FC turns negative and make feff decrease, with the minimal value reached at P= 2K.

Two equations are used because if P = 2K, the first formula gives an error due to a division by 0, and if P > 2K, then the formula gives the untrue result of less competition with a bigger population (hence the use of 1.9 as a pivot value). Competition is only effective if food availability is less than the maximum (hence the use of '1 -fenv' in the equation).

Summary of model parameterization and sensitivity analysis

The model was constructed following the ecological and physiological observations available in the literature for A. cordatus. These observations are summarised in the following table (Table 1. 6). Once these elements were added, the ageing submodel and the carrying capacity parameters, for which no in situ observations are defined, were calibrated until obtaining a model stable in time, over several centuries. The sensitivity of the model to different parameters was tested. This sensitivity analysis also served as a first form of validation in the absence of wider means of validation. Initial population number, inter-individuals variation coefficient, juvenile and adult background mortalities, number of eggs produced per female during a reproduction event, and egg survival rate were each applied variations of -30%, -20%, -10%, +10%, +20% and +30% (Table 1.6). The influence of changes in these parameter values was assessed on the average population density (ind/m 2 ), the average juvenile/adult ratio, the average physical length, the average reserve energy and the average structural length variation over the period of 200 years. For each analysis, models were replicated 100 times. A model was considered to 'crash' when the population is not stable and collapses entirely before the end of the simulation period. The proportion of crashes relates to the number of crashes counted for 100 simulations (i.e., for 15 crashes and 100 simulations, the proportion is 15/(100+15)~13%). Due to computing time limitations, the analysis was stopped when reaching a proportion higher than 66% of crashes (indicated by a black cross in Appendix 1.9).

The model sensitivity to the GSI threshold assumption was tested with the upper and lower values of the GSI calculated at the onset of reproduction in Magniez (1983). The minimum value did not impact the model at all, but the higher threshold value prevented most of the females from reproducing (results not presented).
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Forcing environmental variables

Temperature

In the frame of DEB theory, temperature influences metabolic rates following the Arrhenius function which defines the range of temperatures that affect enzyme performance, considering that metabolic rates are controlled by enzymes that are set inactive beyond an optimal temperature tolerance (Kooijman 2010, Thomas and Bacher 2018). The Arrhenius response is characterised by five parameters that describe the species tolerance range: the Arrhenius temperature TA, the temperature at the upper and lower limits of the species tolerance range TH and TL respectively, and the Arrhenius temperature beyond upper and lower limits of the tolerance range TAH and TAL respectively.

In our study, the available information is not sufficient to define the complete relationship between temperature and metabolic performances, and the temperature correction factor (TC) is only calculated using one of the five Arrhenius parameter TA (in K), following the equation r(T) = r * exp(TA/Tref -TA/T) with r a given metabolic rate, Tref the reference temperature (293K ≈ 20°C), T the environmental temperature (in Kelvin) and exp(TA/Tref -TA/T) being the temperature correction factor TC. The correction is applied to the metabolic rates v̇, k ̇M, k ̇J, ḧa (Table 1.4).

Temperatures recorded since 1993 at Port aux Français, another site in the Gulf of Morbihan, show a clear 6-year cycle of increasing and decreasing temperatures (Appendix 1.5). The [2012][2013][2014][2015][2016][2017][2018] temperature dataset selected as input forcing variable in the model therefore constitutes an interesting proxy of temperature conditions at Anse du Halage which includes a complete overview of the environmental variability at the station. However, it is important to take this choice into consideration during the interpretation of results, as it needs to be differentiated from a cycle that would be inherent to the biology of the species.

Food resources

In DEB theory, energy is supplied to the reserve of the organism through the ingestion process which is proportional to food availability, represented in the model by a functional response f (from 0 to 1). Food assimilation (ṗA, Fig. 1.7) is proportional to the surface of the structure of each individual and contributes to the filling of the reserve compartment E (Fig. 1.7). The functional response f was calibrated using the values of organic carbon (OC) content in sediment as a percentage of dry weight of sediment at the station Anse du Halage at the end of each month, available in [START_REF] Delille | Bacterial responses to natural organic inputs in a marine sub-Antarctic area[END_REF]. The maximum value of 1 for f corresponds here to the maximum value of organic carbon content that was found (6.94%) and a f minimum of 0 corresponds to 0% OC.

Model projection

Present-day conditions at Anse du Halage

To assess the influence of varying environmental conditions on model outputs, after being constructed for the site Anse du Halage, the model was implemented in two other sites, Ile Haute and Port Couvreux, where A. cordatus is reported in high densities (Poulin 1996) (Fig. 1.4). The implementation to these two other stations was done with contrasting temperatures (from the Proteker program, as previously explained in 2.1). Food conditions at these two sites are not available and were estimated at the end of the summer to be 50% to 30% of the organic carbon values measured at Anse du Halage according to the comparative study of [START_REF] Delille | La matière organique dans les dépots de l'archipel des Kerguelen. Distribution spatiale et saisonnière[END_REF]. These rates were applied to year-long conditions (Fig. S1.5). Models were launched for a period of 200 years. shows an average decrease of 10% of current food resources availability, while scenario RCP 8.5 shows an average decrease of 20% (Fig. S1.8.C). As for temperature, we defined RCP 2.6 with a linear increase of +1.1°C and +1.7°C for RCP 8.5. Models were launched for a period of 30 years.

Future conditions

RESULTS

The individual-based model

Variations in energy allocated to the reserve and the maturation buffer are the main controls of individual development. Monthly variations (∂UE and ∂UR, ∂X here stands for dX dt ) were simulated over one year under present-day environmental conditions (Fig. 1.8). Energy in the reserve (Fig. 1.8) shows variations between -2.5 and 8 on average (no unit), with extreme range values reaching -5.8 and 13.7. This shows a relative constant energy density inside the reserve throughout the year with, however, a noticeable increase from October to December and a sharp decrease from December to January (Fig. 1.8). According to DEB theory (Kooijman 2010), the more energy is stored inside the reserve (through food assimilation), the more it can be distributed to other compartments, and the more energy can be assimilated into the reserve anew. Availability of food resources for A. cordatus is the highest in December (f = 1) (Fig S1 .5), it is assimilated and stored as energy into the reserve compartment. Based on the energy available in the reserve at the end of December, energy is supplied in January to other compartments (such as the reproduction buffer, Fig. 1.8 and growth,Fig. S1.10), while the individual ingests the food available to replenish its reserve anew. As food availability decreases in January (f = 0.748), the reserve loses energy (Fig. 1.8) because the individual cannot assimilate as much energy as the amount transferred to other compartments.

The energy density entering the reproduction buffer (Fig. 1.8) of mature females varies between 0 and 4.9 on average in the course of the year, with a maximum of 10.7. The rate of energy input increases at an average pace of +1.1% per month from October to the onset of the reproduction period in March, when it decreases and remains null until the end of the spawning period in June. Then, energy starts accumulating again until the next reproduction period. During the three months of the spawning period, from March to May, no energy is allocated from the reserve to the reproduction buffer and the energy stored in this buffer is progressively delivered to gametes. Only females that are mature in March undergo reproduction and deliver the energy contained in the reproductive buffer to the gametes. Females that become mature during the reproduction period undergo a normal increase of the energy in the reproduction buffer, which explains the small increasing trend observed during the March-May period (Fig. 1.8).
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The population model

Modelled population dynamics at the calibration site

Based on the individual model, population dynamics were simulated over a time period of 30 years, showing a constant population density comprised between 120 and 220 individuals per square metre. Overall, the population structure remains constant through time but with well-marked yearly variations, mainly in juvenile density (Fig. 1.9). Juveniles indeed represent around 83% of the total population density and show important yearly variations due to (1) important seasonal reproductive outputs causing a surge in population density, (2) strong mortality rates causing gradual decreases in the population, (3) the transfer of the large juvenile cohort to the adult population after around 3 years, and (4) the influence of inter-individual competition for food limiting population densities and even causing its decrease. In contrast, the adult population is much more stable relative to the juvenile one, with lower density values (around 40 individuals per square metre). Both juvenile and adult population fluctuations follow a general 6-year pattern displayed over the 30 years of simulations (rectangle, Fig. 1.9). This pattern is linked to temperature cycles over the same time span and includes two sharp decline in population density over a 6-year cycle ('T' symbol, Fig. 1.9), which corresponds to high temperatures rising above +8°C during two consecutive months and causing mortality rates of 10% of the entire population.
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Sensitivity analysis

Different parameter settings for the model initiation may result in very diverging outputs (Appendix 1.9). It also influences model stability, and population collapse in particular. Overall, the initial number of individuals and the level of the inter-individual variation coefficient are parameters that have little influence on model stability and low proportion of population crashes may result. In addition, model outputs do not differ significantly between simulations. Increase in juvenile and adult mortality levels will also have little influence on model outputs but decreasing mortality levels will induce a population burst followed by a strong competition for food and a consequent population collapse. to Anse du Halage and interestingly, similar ratios between juveniles and adults (Table 1. 7). These results are consistent with density values found in the literature, which gives between 100 and 136 individuals/m 2 at Ile Haute and 50 to 168 ind./m 2 at Port Couvreux [START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF], Poulin 1996).

The different observed density values reported in publications for Port Couvreux may be due to contrasting conditions that locally prevail among the three small embayments of that locality (Poulin 1996). This has recently been confirmed by our personal observations in the field [START_REF] Saucède | Proteker 8 cruise report[END_REF]. Model outputs suggest a strong influence of food availability on population densities controlled by inter-individual competition for food. Accordingly, simulations predict a drop in density values at Port Couvreux when food resources decrease at 30% of fH, while density values are relatively stable at Ile Haute in comparison (Table 1.7). This mainly affects juvenile densities and results in a lower population ratio (Table 1. 7).

Temperatures recorded at the two sites inside the Morbihan Bay (Anse du Halage and Ile Haute) are close to each other and slightly higher than outside the Bay at Port Couvreux (Fig. S1.5).

Contrasting results were therefore expected between Port Couvreux and the two other sites. On the contrary, temperatures may not be contrasting enough between sites to affect population structure and density. Confidence intervals overlap between all sites for values of both population density and juveniles-adults ratio (Table 1.7). 

Population dynamics under future predictions of climate change

Population structure and density were simulated and implemented for scenarios of temperature and food resources changes based on IPCC scenarios RCP 2.6 and 8.5,and for populations of 'resistant','intermediate' and 'vulnerable' organisms (Fig. 1.10). Population dynamics are all predicted to be affected by both scenarios (Fig. 1.10) with overall population densities predicted to be four to seven times lower than current population predictions. Population structures are also predicted to be affected by a lower contribution of juveniles to overall population densities. The respective effects of temperature and resource availability were simulated independently. Under temperature change only (Fig. 1.10), model predictions are close to model outputs in which both variables are combined, with a strong decrease in average population density compared to present-day conditions. The effect of changes in resources availability only is less marked, with population densities showing a close pattern to present-day models (Fig. 1.10).

Models therefore predict a stronger effect of temperature changes on populations, with population densities of 'vulnerable' organisms predicted as very low (less than one tenth of present-day densities on average). Populations of 'vulnerable' organisms are even predicted to go extinct in only 30 years of simulation (Fig. 1.10). Populations of organisms with 'intermediate' sensitivity are more resilient and withstand over 30 years of simulation in some cases, but they collapse at the CHAPTER 1.
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end of the period under IPCC scenario RCP 8.5. Overall densities are very low (around 20 or less individuals per square metre on average). MECHANISTIC MODELS CHAPTER 1.
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Population mortality under present-day and future predictions

Under present-day conditions (Fig. 1.11), background mortality and ageing are the main causes that affect population mortality each year (respectively between 65-90% and 5.8-9%). High temperatures and starvation have sporadic effects on mortality. High mortality due to high temperatures only happened in [2016-2017] and [2017-2018] and starvation contributes at the highest to 10% of overall mortality, depending on the year. Over the course of a year (Fig. 1.10a), background mortality and ageing affect the population every month, while high temperatures (over 8°C) cause the death of half of the population in March and April. Starvation is responsible for the death of a weak proportion of the population in November and December only (austral summer), in link with the competition for food resources of the increasing population during this productive and warm period. Under both future scenarios (Fig. 1.10e,f), mortality levels are low compared to present-day model (Fig. 1.10b), which is mostly due to small predicted population densities. Background and ageing mortalities are therefore very low. Starvation is not a cause of mortality anymore, while high temperatures cause mortality of individuals before they may starve to death. When comparing between model predictions under scenario RCP 8.5 for changes in food availability only (Fig. 1.10c), temperature change only (Fig. 1.10d), and the combined variables (Fig. 1.10f), temperature clearly appears as the main cause of mortality, at the same level as background mortality.
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DISCUSSION

Potential and limitations of the DEB-IBM approach

In the present work, a DEB-IBM model was built for A. cordatus based on our current knowledge of this vulnerable, endemic species of the Kerguelen plateau. On-site monitoring and experiments on species tolerance to changing environmental conditions remains challenging issues in the Kerguelen Islands, and in the Southern Ocean in general. Difficulties are due to the sensitivity of specimens (Magniez 1983[START_REF] Schatt | Développement et croissance embryonnaire de l'oursin incubant Abatus cordatus (Echinoidea: Spatangoida)[END_REF][START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF] and their inherent ecological characteristics. Models can constitute a powerful tool for Antarctic research as they can provide additional support to experimental knowledge and infer the impact of broad-scale climate change on populations. The potential of the present mechanistic modelling approach resides in its capacity to model the physiology of organisms as a response to environmental factors. Using DEB models for the representation of individual components within the IBM enables to upscale a dynamic model to an entire population (Railsback and Grimm 2019) as a function of two changing abiotic factors: temperature and food resources. Applying such a model to a sub-Antarctic, benthic, and brooding species is challenging, and had never been performed so far. The present work shows the feasibility and relevance of the DEB-IBM approach to study Southern Ocean species like A. cordatus.

Relevant results were obtained both at the individual and populations levels. First, simulations showed the characteristic annual evolution of energy dynamics in the organism (Fig. 1.8, Appendix 1.10) and second, population structure and density dynamics were modelled over an extended period of time decoupling juvenile and adult populations (Table 1. 7,Fig. 1.10,Fig. 1.11).

Projections to other sites also show the potential application of the model to other areas for which environmental data are available. Future models give an insight and add some clues to assess the potential impact of climate change and predict the biotic response of populations. Models however still need some improvements including complementary data on species ecophysiology. The model was also shown to be sensitive to mortality rates and some parameters (egg number and egg survival) settings while some population characteristics (initial population densities and interindividual variability) have little effects (Appendix 1.9).

Limitations to the DEB-individual model

The dynamic population model built in this work uses outputs from the DEB model developed for A. cordatus [START_REF] Guillaumot | AmP Nacella concinna[END_REF], which allows to represent as faithfully as possible the physiological dynamics of individuals during their entire life cycle. The goodness of fit of the DEB model shows that estimated parameters accurately described observed data. However, collecting additional data at the different stages of the organism's life cycle and under different conditions of temperature and food availability would contribute to improving further model accuracy and parameter predictions. In particular, data on environmental settings and species ecophysiology are still needed to improve the accuracy and relevance of the following parameters.

The Arrhenius function and the optimal temperature range

In DEB theory, the Arrhenius function determines the optimal temperature range of the organism's metabolism as a response to enzymatic tolerance (Kooijman 2010, Thomas and Bacher 2018). In the present work, calculation of the Arrhenius function relies on fragmented datasets. The ascending part of the Arrhenius curve that is, the temperature range in which faster metabolic rates are determined by higher temperatures was estimated, but values are still missing for the descending slope (i.e. the temperature range beyond the optimal temperatures in which the metabolic rates slow down with higher temperatures) (Kooijman 2010). The present model assumes that higher temperatures favour more suitable conditions with no limit (Appendix 1.10), which has to be corrected arbitrarily using our personal field and experimental observations on the echinoid ecology (Appendix 1.8 

Age, size and growth estimates

Most parameters used in the DEB model were taken from the literature and experimental studies, except for some of them that were assumed based on physiological traits of counterparts. In particular, organisms' maximum age, growth rate and size are not sufficiently known due to difficulties in setting up long-term experiments in the Kerguelen Islands. The relationship between echinoid growth, size and shape cannot be assessed based on growth lines measurement because there is no linear relationship between echinoid size and age [START_REF] Ebert | Growth and mortality of post-larval echinoids[END_REF]) and because resorption may occur during periods of starvation (Brockington et al. 2001, Ingels et al. 2012). The most reliable method would consist in monitoring organisms' growth through time using tagging methods [START_REF] Ebert | Growth and survival of postsettlement sea urchins[END_REF]. However, such an approach is time-consuming and challenging as even small measurement errors may have a significant effect on results [START_REF] Ebert | Growth and survival of postsettlement sea urchins[END_REF] and no experimental data are available so far.

Former studies [START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF] showed that after 4 to 5 years, specimens of A. cordatus only slowly increase in size and echinoids' test tend to become distorted, a common feature in large spatangoid echinoids in which test plates tend to overlap while body size does not increase anymore [START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF]). However, this slow growth rate in aged specimens could also result from other causes affecting optimal food intake for instance. At the calibration site of Anse du Halage, a study of echinoid cohorts suggests that few individuals grow older than six years old (Poulin and Féral 1994). Overall, the absence or nearly absence of growth in old invertebrate organisms makes age estimates delicate to assess. In the present model, based on the combination of the ageing sub-model and other mortality processes, most individuals are calibrated to die within the assumed maximum age (before 6 years old), although some individuals may reach over ten years old due to the chosen stochasticity introduced in the sub-model.

Juveniles inside brood pouches were assumed to grow at a constant and same rate as adults but it has sometimes been assumed that the brooded young may already feed and develop at a faster rate [START_REF] Schatt | Développement et croissance embryonnaire de l'oursin incubant Abatus cordatus (Echinoidea: Spatangoida)[END_REF][START_REF] Schatt | Completely direct development of Abatus cordatus, a brooding schizasterid (Echinodermata: Echinoidea) from Kerguelen, with description of perigastrulation, a hypothetical new mode of gastrulation[END_REF]. At this stage, offsprings are particularly fragile and need protection in the brood pouches to survive, which prevents any monitoring of growth rates and feeding behaviours (Magniez 1983[START_REF] Schatt | Développement et croissance embryonnaire de l'oursin incubant Abatus cordatus (Echinoidea: Spatangoida)[END_REF][START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF]).

Ecological relevance of the IBM population model

Upscaling the DEB-individual model to the population level in the IBM enables to simulate population structure and dynamics as a response to temperature and food resource availability. In particular, the IBM enables to predict the targetted effect of environmental changes on the population at the different life stages of individuals. Additional environmental data would help enhance IBM reliability and improve our knowledge of populations and environmental conditions in remote areas.

Field works are also subject to uncertainties due to the species burrowing habit which renders the assessment of population structure difficult, the brittleness of specimens also limiting counting replicates (Magniez 1980[START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF]). Important variations in population densities were noted across studies [START_REF] Guille | Consommation d'oxygène de l'oursin Abatus cordatus (Verrill) et activité oxydative de son biotope aux îles Kerguelen[END_REF][START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF], Poulin 1996, personal observations) for a same site, which may suggest either important variations in population density and structure through time, which was however refuted by Poulin and Féral (1994), or important biases in sampling due to the aggregative behaviour of individuals and the patchiness of distribution patterns (Poulin 1996).

The sensitivity analysis (Appendix 1.9) showed that the model is not very much dependent on assumptions made on initial population densities because the model density-dependent regulation operates through intra-specific competition for food resources only. There is no agonistic behaviour among conspecific individuals as it was reported in other echinoid species (e.g. Echinometra sp. Shulman 1990) and there is no evidence of competition for space in A. cordatus based on field observation. Intra-specific competition in shallow-water echinoids is a common phenomenon under food-limited conditions (Stevenson et al. 2015). [START_REF] Mcclanahan | Population regulation of the rock-boring sea urchin Echinometra mathaei (de Blainville)[END_REF] stated that in Echinometra mathaei, when predation pressure and intra-specific competition are low, populations MECHANISTIC MODELS CHAPTER 1.
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increase without limitation and regulation operates through a decrease in food availability for individuals. The same could hold true for A. cordatus as well.

Intra-specific competition for oxygen could also have a regulatory effect (Ferguson et al. 2013) since A. cordatus shows a high oxygen consumption rate [START_REF] Guille | Consommation d'oxygène de l'oursin Abatus cordatus (Verrill) et activité oxydative de son biotope aux îles Kerguelen[END_REF]Lasserre 1979, Magniez andFéral 1988). In muddy substrates, specimens are usually observed unburied, positioned onto the sediment (instead of underneath), which was often interpreted as a result of difficulties to breath inside fine sediments.

The sensitivity analysis also showed that the number of eggs produced by females is a controlling parameter of model stability as well. There is a high variability in the number of eggs produced among females (from 9 to 106 eggs per female, personal communication from P. Magniez). Taking into account such a variability would introduce an enhanced stochasticity in the population dynamics model if implemented and linked to each female's reproductive buffer UR and GSI values (Martin et al. 2010, e.g. for zebrafish in [START_REF] Beaudouin | An individual-based model of zebrafish population dynamics accounting for energy dynamics[END_REF].

Finally, the model was also shown to be sensitive to background mortality (Appendix 1.9). Although monitoring mortality rates in the field is challenging, such data would greatly enhance the reliability of the IBM.

In general, the sensitivity tests showed that the model works with the current quality and quantity of data available for this species in this habitat. However, on the matter of the temporal resolution, our model needs to be expanded and further consolidated, and we consider this element as a limitation to our work in its current state.

Modelled food resources

The organic content of sediments is one of the main food resources for detritus feeders and sediment ingestors like A. cordatus [START_REF] Snelgrove | Animalsediment relationships revisited: cause versus effect[END_REF] and Antarctic echinoids [START_REF] Michel | Trophic plasticity of Antarctic echinoids under contrasted environmental conditions[END_REF]. In the present model, the organic carbon content of sediments was used as a proxy for food availability for A. cordatus. Intra-specific competition for food has a stronger effect on resources availability than seasonal variations in resource availability. This is in line with ecological evidences that populations of A. cordatus survive periods of low food resources that prevail during the austral winter. High seasonality in food resources is a common feature of polar ecosystems and species have long adapted their diet accordingly (De Ridder andLawrence 1982, Michel et al. 2016). This has been shown in Antarctic benthic invertebrates such as shallow-water brachiopods (Peck et al 2005), cnidarians [START_REF] Orejas | Feeding strategies and diet composition of four Antarctic cnidarian species[END_REF]), and echinoids (Brockington et al. 2001, Ingels et al. 2012). For instance, the Antarctic sea urchin Sterechinus neumayeri is believed to be capable of mobilizing energy from gut tissues, gonads and the body wall during the austral winter (Brockington et al. 2001), a strategy that may have been evolved in A. cordatus as well (Magniez 1983). Shrinking and resorption, which are sometimes hypothesized as a survival mechanism in other echinoids facing long periods of starvation, are phenomena which are still understudied (David andNéraudeau 1989, Ebert 2013) and have not been verified in A. cordatus. In the present model, starvation results in the redirection of the energy flow exclusively towards maintenance of structure, at the expense of other compartments. Although Magniez (1983) observed a decrease in gonadal material after the reproduction period, it is very small in females (-0.3%) and slightly bigger in males (-1.6%), and the exact cause has not been studied. It is not known whether this decrease in gonadal material can be directly attributed to a reabsorption for survival purposes or some other mechanism. The use of previously stored energy in the different compartments to sustain the maintenance of structure is assumed to be non-existent in our model. Such starvation processes could be tested in future implementation, provided sufficient data is obtained through experimental setups observing the phenomenon.

The two scenarios of future food availability were based on coarse IPCC and NOAA projection models for the region. These simulations and associated outputs are here considered as conceivable scenarios of the influence of food and temperature changes on population dynamics. They are used as a proof of concept and are by no means considered as definite and reliable scenarios of population dynamics in the future. Future accurate predictions should imply the integration of complex mechanisms influencing the production, transport and deposition of organic CHAPTER 1.
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matter in the ocean, the possibility of species to adapt to changing environmental conditions, and more experimental data are needed to integrate the detailed influence of temperature on physiological processes. First observations suggest a low response towards the applied changes in food availability, in comparison with the influence of temperature. However, it cannot be concluded that the species would not be affected by future conditions in food resources in the area.

Temperature resilience

Important differences were obtained between population structures and densities depending on future scenarios and model projections made for contrasting food resources and temperature. Most importantly, the 'resistant' population model of A. cordatus at Anse du Halage is predicted to sustain the expected changes in temperature and food resources under both future scenarios although population density is also predicted to be strongly reduced. In contrast, the 'vulnerable' population model predicts population extinction after a few decades of simulation. This implies that a precise evaluation of the species resilience to temperatures is needed for more robust and decisive models. Moreover, Antarctic echinoids were shown to present varied responses to ocean warming depending on species and life stages, with higher vulnerability to warm temperatures in juveniles than in adults (Ingels et al. 2012). Such a contrast suggests that more data could help fine-tune the present model.

Relevance of the DEB-IBM approach for Southern Ocean studies

DEB-IBM models are being developed for various applications and research fields. They are considered a powerful tool for environmental risk assessment, such as the effect of toxicity (e.g. [START_REF] Beaudouin | An individual-based model of zebrafish population dynamics accounting for energy dynamics[END_REF], David et al 2019, Vlaeminck et al. 2019) and the impact of environmental changes on population dynamics (e.g. [START_REF] Saraiva | Bivalves: from individual to population modelling[END_REF], Malishev et al. 2018, Thomas and Bacher 2018, Goedegebuure et al. 2018). They can also be used to predict the behaviour of microbial systems (Jayathilake et al. 2017) or bring to light underlying mechanisms of life history strategies (e.g. Gatti et al. 2017). The DEB model brings ontogenetic and phenotypic variations to the population model while the IBM brings stochasticity, population dynamics (e.g. competition for food), as well as learning and interaction mechanisms (DeAngelis et al. 1991[START_REF] Martin | Dynamic Energy Budget theory meets individual-based modelling: a generic and accessible implementation[END_REF]) to complement the model. The potential of the DEB-IBM approach resides in the combination of both models to predict population dynamics as a response to changing environmental conditions (i.e. at the individual level in the DEB model and at population level in the IBM).

In the present work, the DEB-IBM was used to improve our understanding of the dynamics of A. cordatus' populations. Applications could be further developed to address conservation issues such as the designation of priority areas and the definition of management plan strategies. Vast areas of the French Southern Territories have recently been placed under enhanced protection of a national nature reserve based on experts' knowledge and ecoregionalisation approaches (Koubbi et al. 2010[START_REF] Fabri-Ruiz | Benthic ecoregionalization based on echinoid fauna of the Southern Ocean supports current proposals of Antarctic Marine Protected Areas under IPCC scenarios of climate change[END_REF]. Most areas however could not have benefited from thorough benthic field studies, and ecological models can represent interesting tools to assess the relevance of defined protection areas for target species and ecosystems. Such models can be useful when drafting management plan strategies for determining favored ship traffic routes or areas where human activities can be implemented in coastal areas of the national nature reserve of the French Southern Territories. Dynamic population models allow testing different ecological scenarios in a quite straightforward way to illustrate research designs and proposals. They can provide some clues to investigate the potential effect of environmental changes on key species for which conservation efforts should be directed in a short to long-term strategy (Fulton et al. 2015). Dynamic models can also prove useful for adaptable conservation strategies like the designation of dynamic protected areas as a consequence of changing environments and ecosystems. Finally, dynamic models could be further implemented into studies of ecosystem functioning and the impact of environmental changes on the alteration of sub-Antarctic ecosystems. Blue lines correspond to model predictions, with Relative Error provided in Table 1.5. (A) Relationship between oxygen consumption ( l/h) and length (cm) (Féral and Magniez 1988), (B) growth rate [START_REF] Schatt | Développement et croissance embryonnaire de l'oursin incubant Abatus cordatus (Echinoidea: Spatangoida)[END_REF][START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF]), (C) Length (cm)-Weight (g) relationship of adults (Féral and Magniez 1988), (D) Length (cm)-Weight (g) relationship of eggs [START_REF] Schatt | Développement et croissance embryonnaire de l'oursin incubant Abatus cordatus (Echinoidea: Spatangoida)[END_REF].
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APPENDIX 1.7. Influence of timestep changes

The sensitivity of the model to the chosen timestep was tested by comparing model outputs of the initial monthly calibrated model with a daily implementation (simple repetition of the monthly value for each day of the corresponding month).

In order to assess whether models can similarly predict individual performances when calibrated with different timesteps, models generated with a monthly and a daily timestep were compared. In these models, all processes outside of the individual development and the production of new offspring into the model were deleted (no competition, no mortality of any cause). Only individual development processes were kept, including starvation and reproduction, which directly influence individual energy fluxes without any stochastic effect. This facilitates model comparison. The population was assumed to be composed of female individuals only that reproduce following the procedure explained in the main manuscript. The model was initialized with 120 female entities, and individual metabolic performances (dUR, dUE, dL) over five years were compared between the two models. These results strongly highlight that models calibrated with different timesteps present very close patterns, and suggest that changing model timestep does not influence the shape and order of magnitude of individual metabolic performances predictions.

In our model, time is continuous for individual processes (individual development is modelled using ordinary differential equations), but not for all population processes which were taken from literature and experimental sources. These population processes are based on a monthly scale and used as a baseline to model population dynamics over time. Running the model at a smaller timestep implies altering all population processes to fit a narrower time increment, which is also not always relevant ecology-wise when studying population dynamics, since A. cordatus is a slow growing individual that lives in stable environmental conditions. Environmental changes do not occur often enough to significantly influence individual metabolism on a day-to-day basis and to consider mortality due to temperature changes at a daily step.
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Similarly, information used for population background mortality rates were only available in the literature on a yearly range [START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF], Poulin 1996[START_REF] Ebert | Growth and survival of postsettlement sea urchins[END_REF], and applying mortality for each day-step seems inappropriate for our study. Recruitment of newborn juveniles is also a yearly event, rendered possible when the reproduction buffer contains enough energy at a certain period of the year to enable females to release gametes. Reproduction development (GSI, reproduction buffer) is a continuous process in the model but specific reproduction events (releasing gametes, brooding and releasing offspring) are more fitting to monthly rather than daily triggers. In consideration of the ecological basis of these population processes and the very low sensitivity of the individual model to changes in timestep, it was therefore decided in this study to implement the model on a monthly timestep, although Fig. S1.7 proves that methodologically speaking, a different timestep could be applied to the core of our model.
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Article. Arnould- [START_REF] Pétré | Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions[END_REF]. Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling. For each threshold of the gradient of population mortality due to temperature, the 'resistant' population endures a mortality rate 15% lower than the 'sensitive population' (i.e. at 8°C for two months, the 'resistant' population suffers a 10% mortality rate, the 'sensitive' population suffers a 25% mortality rate). For the 'short resistance' population, rates are the same as for the 'resistant' population, but mortality takes effect only after one month of temperatures reaching over the threshold (rather than two months in the other cases). (1989). Green: Projection for scenario RCP 2.6 (linear decline of 10% of food availability compared to present-day conditions). Orange: Projection for scenario RCP 8.5 (decline of 20% of food availability compared to present-day conditions). Changes in average reserve energy dUE (J) Changes in average structural length varia*on (dL, cm/y) juvenile and adult background mortalities, (e) egg number produced per female during a reproduction event, and (f) the egg survival rate. Variations of -30%, -20%, -10%, +10%, +20% and +30% were tested for these parameters (#A to #F). For each analysis, the model was run until 100 simulations of 210 years of simulation were obtained. The model is considered as a 'crash' when the population is not stable and collapses before the end of the simulation period. The proportion of crashes relates to the number of crashes counted for 100 simulations (i.e., for 15 crashes and 100 simulations, the proportion is 15/(100+15)). Due to computing time limitations, the analysis was stopped when reaching a proportion higher than 66% of crashes (indicated by a black cross).
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#F #A #B #C #E #F #A #B #C #D #E #F #A #B #D #E #F #A #B #C #D #E #F ini*
The percentage of changes obtained between the initial and the #A to #F scenarios values was calculated for average population density (ind/m 2 ), average juvenile/adult ratio, average physical length (cm), average reserve energy dUE and average structural length variation (dL) over the period of 200 years (210 years minus the first 10 years needed for model calibration). Decreasing values are indicated in red, increasing values in green.

Article. Arnould- [START_REF] Pétré | Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions[END_REF]. Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling. In the DEB model of this work, we do not have the data to infer the descending slope of the Arrhenius curve, that is the temperature range beyond the optimal temperatures in which the metabolic rates slow down with higher temperatures. Thus, in its current implementation, the model gives better results at the individual level when confronted to higher temperatures, which is not in accordance with field and experimental observations. This is corrected at the population level with the use of the rate of mortality induced by temperature.
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APPENDIX S1.12. ODD of the DEB-IBM model

The ODD is available in the "Info" section of the NetLogo code, found at http://modelingcommons.org/browse/one_model/6201.

MODEL PRESENTATION

The present DEB-IBM (Dynamic Energy Budget -Individual-Based Model) was built to simulate and predict population dynamics in an endemic common benthic species of the Kerguelen Plateau (sub-Antarctic region), the sea urchin Abatus cordatus. It upscales the individual mechanistic DEB model to the population level, enabling to model the population dynamics through time as a product of individual physiological responses, and to predict the species response to a changing environment through comparisons between sites and between predicted future scenarios. The main objective of this work was to develop the model using the available data for this species living in a remote environment that is impacted by climate change and where logistical challenges strongly hinder the scientific research.

A few simple steps are necessary to run this model under its basic implementation:

1/ Download the model and the environmental files from the ''Files'' tab in the NetLogo modeling commons (http://modelingcommons.org/browse/one_model/6201#model_tabs_browse_files).

For the basic implementation, the two files needed are "temp_time_monthavg_Halage.txt" for temperatures and "inputRSces_M_f_Delille.txt" for resources. Make sure the model (.nlogo) and the data (.txt) files are stored in the same folder on your computer.

2/

Once you have opened the model (.nlogo), the interface is generally the first thing that is visible. Navigation between the interface, the information page, and the code of the model is done through the three tabs at the top of the software ('Interface', 'Info', 'Code'). Make sure that the following elements are selected in the interface: Except in the aforementioned case, do not modify any of the parameters in the green boxes placed under the line « Input parameters » on the interface.

Sites: 'Anse du
3/ Click on the purple setup button. This initializes the model, and should barely take a second on an average computer. A sure way of knowing the model has finished setup, is that color shapes appear in the small black square that is on the bottom-right of the purple buttons.

4/ Once setup is finished, click on the purple go button. This will run the model for the simulated duration input in the run_time box (number of years). Clicking on the go button again before the end of the simulation will pause the model, clicking on it after the end of the simulation will continue the simulation without a temporal limit. The go once button will only run the model for a single loop, that is a simulation of one month.

How to run this model ?
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5/

The model can be run for future projections with different combinations of food and/or temperature scenarios. For this, select in the interface the desired RCP scenario under projection and the wanted combination under future. Three types of sensitivity to high temperature are also available under sensitivity (see « Check temperature » submodel in the ODD below for a short explanation of the difference between the three types).

The temporal resolution is a monthly interval.

Temperature and functional response f are in the form of time-series. (To test with constant and DEB standard values, uncomment the corresponding lines at the beginning of the go procedure in the code). This species lives in waters of 5°C in average, however the upper limit of the Arrhenius relationship is not available to model Abatus cordatus physiological response to higher temperatures. Because of this, the mortality due to temperature was manually forced in the model using survival data obtained during an experiment led in Kerguelen in November 2018.

MODEL DESCRIPTION

Here is a schematic representation of the DEB-IBM model and a short summary description (the letters in brackets refer to the figure):

For now, the model only fully works if the site Anse du Halage is selected. Sites Port Couvreux and Ile Haute can also be selected, however the site-specific data is only available for temperature and not for resources. Thus, if one of those two sites is selected, the file for the resources data will be that of Anse du Halage. This is merely to test the model for different temperature data using real time-series records rather than future projections.

NB: Here again, make sure that the relevant temperature files ("temp_time_monthavg_Couvreux.txt" or "temp_time_monthavg_Haute.txt », also available in the ''Files'' tab in the NetLogo modeling commons) are stored in the same folder as the model.

Other things to keep in mind in this implementation:

Article. Arnould- [START_REF] Pétré | Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions[END_REF]. Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling. Article. Arnould- [START_REF] Pétré | Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions[END_REF]. Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling.

Kerguelen Plateau (sub-Antarctic region), to changes in environmental conditions (temperature and resources), through comparisons between sites and between predicted future scenarios. Article. Arnould- [START_REF] Pétré | Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions[END_REF]. Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling.

DEB notation Notation in the code

reserve (UE), structural length (L), scaled maturity (UH) and scaled reproduction buffer (UR). Additional state variables for individuals are age (in months and in years), ageing acceleration (𝑞̈) and death probability rate (ḣ). State variables in DEB are originally dependent on energy (unit of Joules), but in order to simplify the calculations of differential equations so that they do not require measurements of energy, each state variable was discarded of their energy unit by dividing with the maximum surface-area specific assimilation rate {ṗAm} (dimension e.L -2 .t -1 ) following [START_REF] Martin | DEB-IBM User Manual: Dynamic Energy Budget theory meets individual-based modelling: a generic and accessible implementation[END_REF] and Kooijman (2010). Females have supplementary attributes linked to reproduction processes for which the state variable is the gonado-somatic index (GSI) that is the ratio of gonad weight over the weigth of the entire body. Finally, each individual has a variable called scatter-multiplier, used to implement a slight variation in three standard DEB parameters (𝑈 𝐻 𝑏 , 𝑈 𝐻 𝑝 , g) and initial energy reserve at birth (U_E_0yo). This scatter-multiplier is the exponential of a number taken randomly on a normal distribution of mean 0 and standard deviation cv (set by the user in interface).

The environment in the model is characterised by two state variables, monthly average temperature (T, unit: °C) and monthly resources availability represented by the proportion of food an individual can intake on a scale of 0 to 1 (f, no dimension). Values for these variables are input into the model from external files, as time-series of monthly values. Temperature data was collected from existing thermo-recorders on the corresponding sites (implemented by the PROTEKER program, http://www.proteker.net/?lang=en), while resources data comes from the publication by [START_REF] Delille | Bacterial responses to natural organic inputs in a marine sub-Antarctic area[END_REF] for the site Anse du Halage.

Models provide results at a monthly resolution, over a temporal extent that can be modified by the user in the interface (example set at 210 years). The first ten years are assumed to be the initialisation phase and should be removed for the analysis of results. Changes are applied to individuals on a monthly basis and thus each update corresponds to the state of the system at the end of the displayed month. In this implementation, the model runs on one single patch of environment representing one square meter, and thus density of population is equal to the number of individuals present in the model. Movements of individuals are not taken into account, and each individual born on the patch grows and dies on that same patch. There is no information about water movements in the area, and the species is known to mostly feed on sediment matter. This model is non-spatial, and connectivity between the patches (e.g. for food or individual movements) is assumed to have little enough significance to be absent from this model.

At each timestep, the model runs the following commands in that order:

Process overview and scheduling

Individuals execute the same command one by one in a fixed order before going to the next command, but all have access to the same state of the environment since it updates once at the beginning of the timestep only.

In this model, time is represented continuously using ordinary differential equations (ODE) for the individual state variables, and all other variables are calculated in a discreet manner (every month, with one month rounded to 30.5 days).

Below is an illustration of the different calendars and timers used in the model, beginning at the point where the simulation starts (Gregorian calendar for reference): 'repro_time' follows the reproduction year, runs on a twelve steps loop, 'GSI_time' follows the GSI cycle year, runs on a twelve steps loop, 'birth_time' is a countdown tracker for the time between the start of reproduction and the following release of offspring in a year. It is triggered by the launching of reproduction and counts backward, staying at 0 if not triggered. 'month_time' follows the Gregorian calendar

BASIC PRINCIPLES

The IBM was built using the DEB-IBM model developed by B. Martin for Daphnia magna, along with its DEB-IBM user manual and model description [START_REF] Martin | DEB-IBM User Manual: Dynamic Energy Budget theory meets individual-based modelling: a generic and accessible implementation[END_REF]. The underlying theory for the individual development in the model follows the Dynamic Energy Budget theory (Kooijman 2010). The population is studied following the IBM principles (Railsback and Grimm 2019), as a dynamic system composed of autonomous individuals affected by the environmental conditions throughout their life-cycle. Each individual undergoes a continuous development from birth till death, following the DEB principles with a slight variation between individuals at their initialisation, and represents a component of the IBM population, which is itself affected as a whole by variables such as population death rates and density-dependent processes. The emerging state of the population is then observed, and compared between different scenarios of environmental variations.

EMERGENCE

The model illustrates the evolution of the population structure following the response of the individuals to the environmental conditions input. Metabolic responses, life-stages, ability to reproduce, starvation and ageing processes of the individuals, emerging from the mechanistic representation of their development, affect the population structure and average characteristics. A background mortality rate and a mortality caused by above normal temperatures are forced into the model, and the same reproductive output is imposed to all females that are able to reproduce.

ADAPTATION

Agents do not have an adaptive behavior. Individual traits vary among individuals in a population, but each individual carry the same traits along their entire lifespan and do not change nor learn from the events they experience or from each other. Consequently, the design concepts "objectives", "learning", "prediction", and "sensing" do not apply.

INTERACTION

Individuals do not have any direct interaction. They only affect each other indirectly, as the size of the population influences the resources availability and thus the capacity of each individual to access food.

STOCHASTICITY

In the model, stochasticity is used in the ageing submodel: there is a 50% chance that the ageing process is activated and observed for the individual. This stochastic element can be modified in the code by changing the numbers x and y in the 'update individual' procedure. Stochasticity is also implemented in four of the initial variables for each individual (scaled maturity at birth, scaled maturity at puberty, energy investment ratio, energy reserve at birth), using the scatter-multiplier, the exponential of a number taken randomly on a normal distribution of mean 0 and standard deviation cv (set by the user in the interface of the model, at 0.1 for the standard model). (taken from [START_REF] Martin | DEB-IBM User Manual: Dynamic Energy Budget theory meets individual-based modelling: a generic and accessible implementation[END_REF], Kooijman 2010).

COLLECTIVES

The individuals are grouped under a particular type of entity depending on their life-stage and sex, and update their life stage along time: beginning at the "juveniles" type (from around 0 to 2 years old), they are Article. Arnould- [START_REF] Pétré | Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions[END_REF]. Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling.

then belonging to the "males" or "females" type after reaching puberty (around 3 years old). The age at which a juvenile reaches puberty is an emergent property of its development. The sex is arbitrarily and randomly imposed on the individual that becomes an adult so that the sex-ratio (males/females) of the population is around 0.99. Depending on which group they belong to, some variables are different: juveniles do not modify their reproduction buffers, males and female do not modify their maturity compartment, females possess some proper variables such as GSI (Gonado-somatic index), eggs (number of eggs produced) and Ri (reproductive output). These collectives do not emerge from individual behaviour, but instead are implemented by the modeller in order to distinguish the life stages and sex of the individuals.

OBSERVATIONS

The main output of the model are plots of population structure with densities of population at the different lifestages, plots of the cumulative counts of individual deaths (and proportions of associated causes), plots of mean values in state variables UR, UE and L and change in these state variables (∂UR, ∂UE and ∂L) for the different individual types. These plots allow observing the response of the population to contrasting environmental conditions and individual metabolic responses in the population in relation to these environmental conditions. Additionally, plots of the mean age at death of individuals dying due to the ageing submodel were used to calibrate the ageing submodel itself.

For the standard model, the following elements must be selected in the interface: The first simulation uses a bisection method to determine the initial reserve at birth. The loop simulates the embryonic development from conception till birth, while testing for different scaled reserve e at conception. When the scaled reserve reaches the aimed value after a few loops of development, there are two possible situations: either the development is before or after the birth stage, and thus the loop is reset with new values of initial scaled reserve e set accordingly and the simulation relaunched, or the development is at birth stage and the value of scaled reserve e that was obtained is saved.

The second simulation starts off where the first one finishes, using the resulting reserve density at birth. It runs a loop for the development of the individual from birth till five years old, with standard parameters and a constant functional response f = 1. The simulation keeps track of the age of the individual, and for each year the values for the state variables are set aside and the simulation continues until the following year. These values are stored in variables and will be used to initialise models.

When running a model, an initial population of 120 individuals is created and contains a similar proportion of the individuals belonging to six age classes from 0 to 5 years old. Each of these individuals receives the set of parameters corresponding to its age class (variables stored in the 'second simulation' mentioned in the above paragraph), with stochasticity applied on some of these parameters (see section 'Stochasticity').

Initialisation
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Each individual sets its calendars with GSI_time at 5 and repro_time at 7, and females are given initial values of 0.03 for their GSI and set their birth_time timer at 0.

The model reads environmental variables from input .txt files containing monthly time-series of food resources (from Delille and Bouvy 1989) and temperatures (PROTEKER program IPEV n°1044).

The text files contain an ordered list of values (see below for Anse du Halage data). The temperature file contains 72 values of monthly average temperatures corresponding to temperature records from October 2012 to September 2018. The food resources file contains 12 values, taken from the measurements of organic carbon content in sediments published in [START_REF] Delille | Bacterial responses to natural organic inputs in a marine sub-Antarctic area[END_REF] and scaled by the maximal value to create a proxy of f, contained between 0 and 1.

Data for resources and temperatures at Anse du Halage:

Update calendar

The model timestep is a month.

Update environmental variables

The model takes the temperature and f values of the corresponding month from the input files.

Competition and f

The model calculates the current population density and quantifies the competition effect on food availability (FC, food competition) depending on how far from the carrying capacity (K) the population density (P) is:

If P < 1.9 * K, then FC = (1-fenv).(1 - P 2.K-P ) If P ≥ 1.9 * K, then FC = (1-fenv).(1 - P K/10
) Two equations are used because if P = 2K, the first formula gives an error due to a division by 0, and if P > 2K, then the formula gives the untrue result of less competition with a bigger population (hence the use of 1.9 as a pivot value).

Competition is only effective if food availability is less than the maximum (hence the use of '(1 -f)' in the equation).

Then the model updates the f value in accordance with the quantified food competition: feff = fenv + FC, where fenv is the food available in the environment as input into the model from the external files, and feff the effective food availability. 

Input data

Submodels
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Proportionally to how much f is lessened compared to the maximum, the size of the current population has an influence on how important the competition is: If the population is below the carrying capacity (K), then food is more available for the present individuals, but if the population is over the carrying capacity, the availability of food is lessened.

Therefore, if P > K, FC < 0 <=> f decreases if P = K, FC = 0 <=> f constant if P < K, FC > 0 <=> f increases
Meaning that the competition is actually calculated depending on how far from the carrying capacity is the population density, and how far from maximum f is the food availability (fenv). The less food available and the bigger the population, the higher the competition.

The regulatory effect of this competition lies in the starvation of individuals at lower food availability, which leads to a reduction of the population size with higher competition (combination of low food availability and big population size). f is always contained between 0 and 1.

If the competition is turned off, f is the direct value taken from the input list.

Convert parameters with TC

A temperature correction factor (TC) is calculated using the Arrhenius temperature (TA) and applied to conductance 𝑣, somatic maintenance rate 𝑘 ̇M, maturity maintenance rate 𝑘 ̇J and Weibull ageing acceleration ḧa, which are all affected in the same way by the correction factor. A given metabolic rate X at temperature T is thus modified with: X(T) = X * exp(TA/Tref -TA/T) with exp(TA/Tref -TA/T) being the correction factor TC, Tref the reference temperature (293.15K), TA = 9000K, and T the actual temperature (in Kelvin) of the organism's life environment.

Change in reserve

The reserve is supplied from ingested food, that is represented in the model by the functional response f (from 0 to 1). Scaled assimilation rate SA is found with 𝑝Ȧ /{ṗAm}, where 𝑝Ȧ is the assimilation flux (in energy per time) and {ṗAm} the maximal assimilation flux per surface area of structure (in energy per time per surface). Since 𝑝Ȧ = {ṗAm} * f * L 2 , with L the structural length, then SA = f * L 2 . A flux of mobilized energy goes outside of the reserve compartment: the scaled mobilisation flux SC is the scaled equivalent of 𝑝Ċ / {ṗAm} therefore equal to: L 2 * (g * e / (g + e)) * (1 + L * 𝑘 ̇M / 𝑣) = SC, where g is the energy investment ratio (the cost of the added volume for this timestep relative to the maximum potentially available energy for growth and maintenance), e is the scaled reserve density (reserve density relative to maximum reserve density) and L the structural length, and with 𝑘 ̇M the rate of mobilisation of the κ fraction of SC for somatic maintenance, proportional to structural length, and 𝑣̇ the energy conductance. The reserve dynamics calculated at each time step correspond to ∂UE = SA -SC.

Change in maturity or reproduction buffer

Before puberty (ability to reproduce), changes in maturity level are calculated as the flux of energy going into the maturity compartment, that is the fraction 1-κ of the mobilisation flux after paying for the maintenance costs of the maturity compartment UH:

ṗR = (1-κ) * ṗC -ṗJ.
The maturity level of the compartment UH changes each month through the scaled formula for ∂UH: SR = (1-κ) * SC -𝑘 ̇J * UH = ∂UH, when the reproduction buffer UR does not receive, ∂UR is set to 0. Juveniles keep growing until they reach puberty, when the maturity level UH is equivalent to 𝑈 𝐻 𝑝 . At this point, they are able to reproduce, thus the energy flux SR is redirected entirely to the reproduction buffer UR and the maturity compartment does not increase anymore: UH is constant and equal to 𝑈 𝐻 𝑝 . Therefore, after puberty, and except for females undergoing reproduction:

SR = (1-κ) * SC -𝑘 ̇M * 𝑈 𝐻 𝑝 = ∂UR

Change in structural length

The structural length L is updated thanks to remaining energy of the fraction κ of the mobilisation flux SC after that somatic maintenance has been paid. The structural length change is equal to ∂L = (1 / 3) * ((𝑣 ̇/ g * L 2 ) * SC -𝑘 ̇M * L).

Starvation

When scaled reserve value is below the scaled structural length l value (length relative to maximum length), that is when e < l, it is assumed that the individual is confronted to starving conditions. The kappa rule is MECHANISTIC MODELS CHAPTER 1.

Article. Arnould- [START_REF] Pétré | Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions[END_REF]. Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling. These equations are used for the simulation of the accumulation of damage inducing compounds and their effect, following the DEB theory for ageing (Kooijman 2010). Damage inducing compounds density is proportional to reserve mobilisation SC and influences the hazard mortality rate ḣ, which is a function of the damage accumulated in the body. Damage inducing compounds are diluted via growth 𝑟, and additionally ageing is calculated with two other parameters, the Weibull ageing acceleration ḧa and the Gompertz stress coefficient sG. In other words, the hazard mortality rate is the simulation of the vulnerability of the individual towards damage, such as the risk of dying from an illness increasing as the individual ages. Additionally, in our model, the ageing submodel relies on a stochastic element, where the individual has a 50% chance of looking into its death probability rate ḣ.

Update individuals

The calculated changes are applied to each state variables of the individual:

The temporal resolution is a monthly interval: each ODE is calculated then the resulting ∂ is applied * 30.5.

For a state variable X, X = X + ∂X * 30.5.

If the individual has reached a maturity level corresponding to a threshold, it updates its life stage (i.e. its breed in NetLogo language) accordingly. The individual also updates its age.

Update reproduction and birth timers

The reproduction calendar (repro_time) and the GSI calendar (GSI_time) advance by one month each timestep, and fall back to the start in a twelve months cycle. The starting date of the two calendars is not the same (March for repro_time and June for GSI_time, see table previously).

The birth timer (birth_time) is only owned by females and is not always running. It is set off if the female has launched reproduction, and it counts down instead of up (e.g. if it was at 7 the month before, the timer will be set to 6 this month). As long as the female has not launched reproduction, the birth timer will stay set at 0. Once the reproduction period starts, the birth timer is what allows to verify if the individual is undergoing reproduction and to adapt its state variables accordingly: at birth_time 8, 7 and 6, females are reproducing (i.e. conceiving offspring by decreasing the energy in their reproduction buffer, see below); at birth_time 3, 2 and 1, females release offspring (i.e. a number of new juveniles proportional to the number of females having reproduced is initiated into the model, see below).

Reproduction

Only females are considered in the reproduction processes. The value of the Gonado-somatic index (GSI = 100 * ((ash-free gonads dry weight) / (ash-free body dry weight)) is increasing monthly until the reproduction period, when the amount of energy accumulated will be checked by the model to allow, or not, the female to participate to reproduction. Whenever the level of GSI reaches at least 0.07%, the female can reproduce, if not, she will continue updating the energy into the reproduction buffer until the next reproduction period.

When females are reproducing, conception of offsprings causes a decrease in energy in their reproduction buffer: their usual ∂UR is set to 0 for the three months, while UR is forced to decrease: for each month of the reproduction period the female decreases its buffer by a third of 52% of the energy stored: ∂2UR = (UR_start -0.52 * UR_start) / 3, with UR_start the reproduction buffer at the start of the period (Magniez 1983). The GSI follows a similar pattern (see submodel 'Calculate GSI').

MECHANISTIC MODELS CHAPTER 1.
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When females release offsprings, five months after conception, 65% of the eggs are assumed to have survived until birth. The reproductive output (Ri) is therefore equal to Ri=0.65*eggs number For each of the three months of offspring release, the number of juveniles (Ri / 3) are initiated into the model.

Calculate GSI

The GSI is estimated for each month according to the time of accumulation of energy into the reproduction buffer from the end of the reproduction, following the equation:

GSI = time_of_accumulation * k ̇M * g f 3 * (f+ϰ * g * y VE ) * ((1 -ϰ) * f 3 - k ̇J * U H p Lm 2 * s 𝑀 3 ),
where the time of accumulation is the number of days since the end of the reproduction period, 𝑘 ̇M the somatic maintenance rate coefficient and 𝑘 ̇J the maturity maintenance rate coefficient, g the energy investment ratio, f the scaled functional response, yVE is the parameter for the yield of structure on reserve, that is the number of moles of structure that can be produced with one mole of reserve, sM the acceleration factor, 𝑈 𝐻 𝑝 the scaled energy in the complexity compartment at puberty, κ the fraction of energy directed towards structure and (1-κ) the fraction of energy directed towards complexity and Lm the maximum volumetric length (see "Entities, State variables and scales" for the dimensions and in-code notations).

The GSI of a reproducing female will decrease by 52% of its initial value over the 3 months period of reproduction (i.e. a decrease of one third of 52% per month): ∂GSI = (GSIstart -0.52 * GSIstart) / 3, where GSIstart is the level of gonadal index at the onset of reproduction.

Background mortality

The background mortality rate is applied to the overall population: 3.42% of juveniles and 2% of adults (males and females) die each month (calculated from size frequency distribution provided by [START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF]. Depending on the cause of death, the individuals set on a certain flag (deceased_bg or deceased_old) and a 'deceased' flag and are removed from the system.

Check temperature

Depending on the temperature for the current and prior month and on the type of sensitivity to temperatures chosen for the model, a mortality rate is applied to the population for temperatures from 8 to 12°C.

For a "vulnerable" setting, temperatures exceeding thresholds of 8, 9.5, 11 and 12°C for two consecutive months cause a mortality rate of 25%, 35%, 45% and 100% respectively. For an "intermediate" setting, temperatures exceeding thresholds of 8, 9.5, 11 and 12°C for only one month cause a mortality rate of 10%, 20%, 30% and 100% respectively. For a "resistant" setting, temperatures exceeding thresholds of 8, 9.5, 11 and 12°C for two consecutive months cause a mortality rate of 10%, 20%, 30% and 100% respectively.

Population monitoring

At the end of each timestep, population density is calculated and data collected for monitoring and plotting mean values of state variables. Plots are built on the lists compiled out of all individual state variable values.

CHAPTER 2 CORRELATIVE MODELS

Chapter 2 is a synthesis on the potential, limits and methodological issues of Species Distribution Models (SDMs) applied to Southern Ocean benthic case studies. SDMs have been used for a long time in ecology to assess species realised niche. However, methods that have been developed for SDMs in other regions of the world need to be adapted to Southern Ocean dataset peculiarities.

The first study reviewed these Southern Ocean dataset peculiarities, highlighted the main methodological limits to SDMs applied to Southern Ocean case studies and provided some new methods (from the studies below) to generate more accurate models.

In the second study, the focus was on model evaluation. Cross-validation procedures aim at splitting occurrence datasets into training and test subsets. However, Southern Ocean occurrence datasets are often spatially aggregated, which violates the independency criterion between training and test subsets and biases model evaluation accuracy. In this study, we compared several crossvalidation procedures (random vs. spatial partition of training-test subsets) for the case study of the sea star Odontaster validus Koehler 1906.

In the third study, six sea star species with a circumpolar distribution were used as case studies to generate SDMs with contrasting numbers of environmental descriptors. The influence of the number of these environmental predictors and of the collinearity between them was assessed.

The fourth study focussed on extrapolation uncertainty in SDM predictions. Considering the reference dataset of environmental conditions for which species presence records are modelled, extrapolation corresponds to the part of the projection area for which one environmental value at least falls outside of the reference dataset. Due to the broad extent of the Southern Ocean and data gaps in occurrence datasets, extrapolation represents an important part of model predictions. Using the case study of six sea stars species, extrapolation was highlighted and methods were provided to improve model predictions.

The last study of this chapter, presented in the appendix section, analysed the influence of spatial and temporal aggregation of occurrence datasets on modelling performances. The case study of four sea urchin species of the Kerguelen Plateau was analysed. Methods to correct for the effect of spatial sampling bias were applied and their efficiency was proved to generate more accurate predictions.
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INTRODUCTION

Due to its remoteness and extreme weather and sea conditions, the Southern Ocean (SO) is a challenging region in which to carry out biological studies [START_REF] Kaiser | Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding[END_REF], Gutt et al. 2018). It is also one of Earth's regions where we observe the most rapid and dramatic environmental changes in marine ecosystems, motivating the study of these marine communities (Turner et al. 2014[START_REF] Hughes | Breaking the ice: the introduction of biofouling organisms to Antarctica on vessel hulls[END_REF][START_REF] Clark | Lack of long-term acclimation in Antarctic encrusting species suggests vulnerability to warming[END_REF]. Ecological modelling approaches are now well established and can be used to predict spatial patterns of organisms', populations' and species' distributions and assess their environmental drivers (Peterson et al. 2011). Based on field observations and experimental datasets, ecological modelling encompasses valuable approaches to helping to analyse biological data and interpolating our knowledge of species distributions in relation to environmental descriptors [START_REF] Kennicutt | Six priorities for Antarctic science[END_REF]. Species distribution models (SDMs) are ecological models that study the statistical relationship between species occurrence records and environmental factors, determining the set of environmental conditions that is suitable to a species distribution [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF][START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF], Peterson et al. 2011). They represent the species realised niche (Pearson 2007, Sillero 2011), being the ensemble of abiotic conditions in which the species survives and reproduces, adding into consideration the influence of biotic interactions (competition, predation, parasitism, symbiosis, etc.) [START_REF] Hutchinson | Concluding remarks Cold Spring Harbor[END_REF]. SDMs have been widely used in various fields of ecology, such as conservation biology, biogeography, palaeoecology and global change biology (Pearson 2007). In recent years, a growing number of ecological studies have used SDMs to analyse the distribution of marine pelagic and benthic species in the SO (e.g. marine invertebrates, fish, seabirds and marine mammals) and to determine species environmental preferences [START_REF] Loots | Habitat modelling of Electrona antarctica (Myctophidae, Pisces) in Kerguelen by generalized additive models and geographic information systems[END_REF][START_REF] Pierrat | Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling[END_REF], Xavier et al. 2015, Nachtsheim et al. 2017), to compare ecological niche predictions in response to changing environments (Basher and Costello 2016, Gallego et al. 2017[START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF], Jerosch et al. 2019) or to identify diversity hotspots for conservation purposes (Pinkerton et al. 2010[START_REF] Hibberd | Describing and predicting the spatial distribution of benthic biodiversity in the sub-Antarctic and Antarctic[END_REF], Thiers et al. 2017).

However, the quality of ocean-wide models is often limited by the heterogeneity, amount and spatial distribution of data, along with limited temporal and spatial resolutions. For all of these reasons, both modelling methods and model construction should be tested for accuracy and robustness prior to interpretation, and these indicators should be transparently communicated to ensure that model outputs are relevant given the specificities of the datasets used for modelling. In the present paper, we review the most common methodological issues encountered in species distribution modelling applied to the SO, following the flowchart in Fig. 2.1. Challenges regarding occurrence and environmental dataset peculiarities are described. The choice of SDM algorithm, and procedures to implement and evaluate models are addressed. Based on benthic invertebrate case studies, we stress important precautions to take and pitfalls to avoid during common steps of SDM implementation. Finally, we aim to provide some guidelines with a set of potential methods and original solutions that can be used for improving model performance.
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Quality of datasets

Environmental datasets: field data.

Preparing environmental datasets is the first encountered challenge when generating models (Gutt et al. 2012, De Broyer et al. 2014). The SO, here defined as waters south of 45°S latitude, covers an extensive area of > 20 million km² [START_REF] Breitzke | REFERENCES based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses[END_REF]. Having access to environmental data with good temporal and spatial resolutions at such a broad scale is challenging, an issue common to all broad-scale oceanographic studies [START_REF] Robinson | A systematic review of marine-based Species Distribution Models (SDMs) with recommendations for best practice[END_REF]. 'Broad scale' is defined here as the entire SO, 'regional scale' as smaller areas of a few hundred square kilometres and 'local scale' as a few square kilometres to square metres (Gage 2004). Oceanographic data acquisition in the field is strongly conditioned by weather and sea conditions along with the seasonality of polar regions (polar night and dense sea-ice coverage in winter) that prompt recurring gaps in the acquisition of environmental data in the SO. Data are also much more frequently sampled close to research stations and along main sailing routes (Guillaumot et al. 2019 -Chapter 2). This is particularly striking in regions such as the southwestern Weddell Sea, along the shores of the western Antarctic Peninsula and in the Bellingshausen and Amundsen seas [START_REF] Clarke | How well do we know the Antarctic marine fauna? A preliminary study of macroecological and biogeographical patterns in Southern Ocean gastropod and bivalve molluscs[END_REF], Griffiths et al. 2014).

Environmental datasets: satellite-derived data.

Satellite-derived data form a significant source of information for SO oceanographic studies.

Providing valuable environmental indicators at broad spatial scale, they can give details about continuous and long-term measurements of water masses including sea-ice coverage, extent and duration, sea-surface temperatures and salinities, biogeochemical parameters, sea level, primary production and typical meteorological parameters [START_REF] El Mahrad | Contribution of remote sensing technologies to a holistic coastal and marine environmental management framework: A review[END_REF].

The accuracy of satellite data however should be considered with care, given detection limits, interpolations that reduce the influence of atmospheric particulate scatter and the use of interpolation and gap-filling methods that smooth raw data at broad spatial and temporal scales (Pope et al. 2017, Stock et al. 2020). Whenever possible, it is recommended to validate environmental data derived from satellite products at regional and local scales by comparing pixels on a satellite image with 'real' field observation data (Henson et al. 2015, Trull et al. 2018). Simple correlation analyses or more complex ground-truth processes are available to compare satellite and in situ data and to secure the interpretation of satellite-derived products (White-Newsome et al. 2013, Allan 2014). This, however, constitutes a huge task, even if such in situ data are available, and is not performed generally before implementing SDMs.

Environmental datasets: access to datasets.

Environmental data generated at the scale of the entire SO can be accessed for free through different web portals such as the NASA's OceanColor Web (https://oceancolor.gsfc.nasa.gov/), where satellite-derived data, averaging different temporal measurements down to 4 km resolution are available at the scale of the entire SO dating from 2000. These images are post-processed to characterize sea-surface temperature or ocean colour as proxies of surface productivity.

The National Oceanic and Atmospheric Administration's (NOAA) data centre (WOCE2013, https://www.nodc.noaa.gov/OC5/woa13/woa13data.html) also makes available post-processed data of ocean temperature, salinity, oxygen concentration and nutrients at different grid formats, down to 0.25° resolution, averaging over six decades (from 1955 to 2012). Bio-ORACLE (https://www.bio-oracle.org/) compiles a large panel of marine data layers at 1° spatial resolution for different depth layers and time periods, for the present (2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012) and the future (2040-2050; 2090-2100) [START_REF] Assis | Bio-ORACLE v2. 0: Extending marine data layers for bioclimatic modelling[END_REF]. Finally, GEBCO (https://www.gebco.net/) is the reference platform for very-high-resolution bathymetry data (~500 m resolution) of the world's oceans.

Several works also make available compilation of these SO datasets dedicated to ecological modelling in the SO; they represent a valuable source of information for starting with data preparation and modelling [START_REF] Raymond | Polar Environmental Data Layers, Ver. 3, Australian Antarctic Data Centre[END_REF], Fabri-Ruiz et al. 2017b, Guillaumot et al. 2018c).
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An increasing amount of environmental data collected during SO oceanographic campaigns have been made accessible for regional-scale studies. Several web portals aggregate all of these field measurements and provide them open access (e.g. https://www.marinegeo.org/collections/#!/collection/USAP#summary; https://www.pangaea.de/).

Environmental datasets: spatial and temporal resolutions.

Most environmental data are accessible through broad-scale maps from the aforementioned data portals and are available with a finest spatial resolution of ~ 4 km, if not coarser [START_REF] Raymond | Polar Environmental Data Layers, Ver. 3, Australian Antarctic Data Centre[END_REF], De Broyer et al. 2014, Fabri-Ruiz et al. 2017b, Guillaumot et al. 2018c). This low resolution strongly hampers the precise assessment of relationships between species occurrences and environmental descriptors (Pittman 2017, Staveley et al. 2017) and consequently the accuracy of model predictions [START_REF] Connor | Effects of grain size and niche breadth on species distribution modeling[END_REF], because the relevance of environmental descriptors represents a trade-off between their resolution and their spatial and temporal coverage [START_REF] Guisan | Sensitivity of predictive species distribution models to change in grain size[END_REF][START_REF] Seo | Scale effects in species distribution models: implications for conservation planning under climate change[END_REF][START_REF] Lauzeral | Spatial range shape drives the grain size effects in species distribution models[END_REF], Vale et al. 2014). It is recommended that the resolution of environmental descriptors used in SDM should be in line with the scale of ecological processes at play and for which species ecophysiological responses show the highest variations, if models are expected to capture most species-environment relationships (Austin and van Niel 2011).

The published environmental datasets are often averaged over relatively long periods of time (from years to decades for WOCE2013 or Bio-ORACLE). The analysis of inter-annual variations can complement the interpretation of model predictions: the absence of such information does not preclude running models but this should be kept in mind when it comes to interpreting model outputs (Guillaumot et al. 2018a -Appendix). Important environmental variations within a reference time period may not satisfy the equilibrium criterion between species distribution and environmental conditions, which is a strong prerequisite of SDM [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF]) and may affect the relevance and accuracy of model predictions (Guillaumot et al. 2018a -Appendix). In this respect, an alternative for improving modelling performance would be using seasonal averages or extreme values as environmental descriptors rather than pluri-annual to annual averages (Franklin 2010a, Bradie and Leung 2017).

Environmental datasets: cartographic projections.

Considering the poles in numerical analyses has long been a source of difficulty in spatial modelling as the convergence of meridians distorts shapes, surfaces, angles or distances towards high latitudes when using standard cylindrical representations such as the Mercator projection [START_REF] Deleersnijder | An orthogonal curvilinear coordinate system for a world ocean model[END_REF][START_REF] Eby | Grid transformation for incorporating the Arctic in a global ocean model[END_REF], Murray 1996). Working with conical or azimuthal projections (e.g. polar stereographic system) helps maintain the consistency of angles and shapes and therefore better meets the requirements of SO studies, although areas and distances are progressively distorted when moving away from the pole (Mulcahy and Clarke 2001). Mapping environmental descriptors and projecting model predictions can be carried out with either square or hexagonal pixels. Each option does not alter image quality and hexagonal shapes may even offer some advantages [START_REF] Kamgar-Parsi | Quantization error in spatial sampling: comparison between square and hexagonal pixels[END_REF]Sander 1989, Tirunelveli et al. 2002). However, some contrasts may be present between images using square or hexagonal pixels, as each pixel measures the average environmental conditions in the considered surface (Vanden Berghe et al. 2013). Subdividing the study area into sub-regions and using different pixel shapes can be a good solution for improving the relevance of representations (Vanden Berghe et al. 2013[START_REF] Cryer | Progress on predicting the distribution of Vulnerable Marine Ecosystems and options for designing spatial management areas for bottom fisheries within the SPRFMO Convention Area[END_REF]. Evaluating the accuracy of environmental values captured both in square and hexagonal pixels using baseline in situ field measurements can also be suggested. This is yet to be tested for ecological modelling studies for the SO.

Environmental datasets: future forecasts.

Since 1992, future climate models have been constantly updated through the efforts of the Coupled Model Intercomparison Projects (CMIP) featured by the Intergovernmental Panel on Article. [START_REF] Guillaumot | SDMPlay. Species Distribution Modelling Playground[END_REF]. Species Distribution Modelling of the Southern Ocean benthos: a review on methods, cautions and solutions. Antarctic Science.

Climate Change (IPCC) Assessment Reports (ARs) with the aim of providing a plausible representation of future climate linked to potential anthropogenic impacts (IPCC 2000[START_REF] Mearns | Climate scenario development[END_REF]. Recent updates (CMIP5 and CMIP6) of climate models are driven by different possible future greenhouse gas emission scenarios (Representative Concentration Pathways RCP2.6, RCP4.5, RCP6.0 and RCP8.5, from the least to the most pessimistic scenario for CMIP5 and Shared Socioeconomic Pathways, SSP1 to SSP5 for CMIP6) and are built upon the average of an ensemble of simulations (Hayhoe et al. 2017). Future climate models for the SO are available through two main online platforms, Bio-ORACLE (https://www.bio-oracle.org/, [START_REF] Assis | Bio-ORACLE v2. 0: Extending marine data layers for bioclimatic modelling[END_REF] and the NOAA's portal (https://psl.noaa.gov/ipcc/ocn/).

The relevance of using future predictions based on global assessment scenarios for marine studies has been widely questioned (Flato et al. 2014, Frölicher et al. 2016[START_REF] De La Hoz | OCLE: A European open access database on climate change effects on littoral and oceanic ecosystems[END_REF], including their use in SDMs, given that, climate models mainly rely on untestable assumptions [START_REF] Beaumont | Why is the choice of future climate scenarios for species distribution modelling important?[END_REF][START_REF] Gotelli | Climate change, genetic markers and species distribution modelling[END_REF][START_REF] Cavanagh | A synergistic approach for evaluating climate model output for ecological applications[END_REF], Freer et al. 2018), future layers are not always available for oceanographic studies (Fabri-Ruiz 2018, Guillaumot et al. 2018a-Appendix, 2018b), discrepancies between present observations and future predictions can be problematic (Jiménez-Valverde et al. 2020), and models are based on a representation of the climate system that has a complex cascading effect on ecological processes [START_REF] Cavanagh | A synergistic approach for evaluating climate model output for ecological applications[END_REF]. [START_REF] Cavanagh | A synergistic approach for evaluating climate model output for ecological applications[END_REF] examined how well IPCC-class models reproduced sea-ice conditions. By subsetting CMIP5 models that best describe spatial extent and temporal ice cover, they improved the precision of the projected future sea-ice distribution, which was better suited to ecological analyses. Extending this method to other key oceanographic parameters should contribute to improving the accuracy of future climate models for the SO and their relevance to ecological studies.

Occurrence datasets: historical compilation.

Biological sampling in the SO began with the first expeditions of the HMS Challenger (1873-1876).

Sampling effort has considerably increased over the second part of the twentieth century and during these last decades in particular, following technological advances that have enabled the access to remote regions and sample processing (Fig. 2.2). georeferencing of occurrence records due to contrasting nomenclatures used to report latitude and longitude, (3) the accumulation of errors in metadata through the different generations of curation and ( 4) errors due to the use of different coordinate projection systems. Finally, in cases where species distributions may have shifted with time, species environmental preferences may have changed or non-contemporaneous environmental or occurrence datasets are used, discrepancies between occurrence records and environmental conditions can be present and violate the environment-occurrence equilibrium assumption necessary to generate SDMs. All of these side effects were reviewed in detail by Newbold (2010). The impacts on species niche definition and SDM predictions have been reported in many works [START_REF] Ensing | Taxonomic identification errors generate misleading ecological niche model predictions of an invasive hawkweed[END_REF][START_REF] Lahoz-Monfort | Imperfect detection impacts the performance of species distribution models[END_REF], Monk 2014[START_REF] Aguiar | Effect of chronological addition of records to species distribution maps: the case of Tonatia saurophila maresi (Chiroptera, Phyllostomidae) in South America[END_REF], Tessarolo et al. 2017, Guillaumot et al. 2018a -Appendix) that all advise us to thoroughly check datasets for quality management prior to running models.

Occurrence datasets: spatial aggregation.

Most species occurrence data were collected in the vicinity of research bases or their surroundings or along recurrent maritime routes, leading to clear spatial aggregation patterns in biological datasets (Fig. Spatial aggregation can affect model accuracy, as aggregated presence records do not fully and homogeneously represent the entire environment that is occupied by given species. This aggregation also violates an initial assumption of SDMs that requires independence between records (Araújo andGuisan 2006, Hijman 2012). This may bias model predictions (Luoto et al. 2005, Segurado et al. 2006, Dormann 2007, Kühn 2007, Crase et al. 2012), leading to statistical artefacts and generating inaccurate patterns [START_REF] Roberts | Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure[END_REF]McGill 2007, Currie 2007). Spatial aggregation of data and the effect of this spatial aggregation on model outputs can be quantified using the Moran's I index, which estimates the spatial autocorrelation between the presence records used to build the model and predicted presence probabilities (Luoto et al. 2005). This spatial autocorrelation implies that close pixels are expected to present more similar predicted
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probabilities than distant ones due to the short geographical distance between records rather than environmental similarities alone. Testing and correcting for this bias should help to reduce its impact on model predictions (see section 3.3) (Diniz-Filho et al. 2003, Kühn 2007).

Occurrence datasets: presence-only records.

SDMs based on presence/absence data are recognized as having better predictive performance than models using presence-only data [START_REF] Zaniewski | Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns[END_REF][START_REF] Brotons | Presence-absence versus presence-only modelling methods for predicting bird habitat suitability[END_REF][START_REF] Lobo | The uncertain nature of absences and their importance in species distribution modelling[END_REF], Wisz and Guisan 2009, Smith 2013, Carvalho et al. 2015, Peel et al. 2019). However, except for some local-scale studies (e.g. Robinson et al. 2011), in most oceanographic studies species absence records are usually not available for SDMs, and working with presence-only records is the only alternative [START_REF] Lobo | The uncertain nature of absences and their importance in species distribution modelling[END_REF]. SDMs are then built by associating presence-only records with a random selection of background records that will be used to characterize the full environmental conditions (Franklin 2010b, Barbet-Massin et al. 2012). Background records should not be mistaken for pseudo-absence records that are artificial absence data, where the species is supposed (but not confirmed) to be absent. Pseudo-absence records do not represent the overall conditions of the study area. Presence/pseudo-absence models represent another modelling approach, predicting occupied and unoccupied habitats rather than suitable and less suitable habitats for presence/background modelling (Sillero and Barbosa 2020).

Presence-only datasets may contain several uncertainties that can bias model predictions. ( 1) Working on rare or cryptic species is generally prone to taxonomic misidentifications that may either contract or, alternatively, expand the extent of predicted species distributions [START_REF] Costa | Impacts of species misidentification on species distribution modeling with presence-only data[END_REF], Aubry et al. 2017). Such biases due to taxonomic errors were shown to be highly variable and to depend on experts identifying specimens, as suggested by Beale and Lennon ( 2012) who worked on a compilation of several collections. ( 2) Sampling gear may have an impact on species detectability, which varies inconsistently across the model domain and is generally not taken into account by presence-only methods. Inaccurate species observations may generate false-positive results (species predicted as being present when they were not sampled or observed in the field) and false-negative results (species predicted as being absent when they were sampled or observed in the field) during model initialization (Guillera-Arroita 2016). Species presence records should be carefully scrutinized prior to modelling [START_REF] Lozier | Predicting the distribution of Sasquatch in western North America: anything goes with ecological niche modelling[END_REF]), or at least records should be categorized into different subsets of data verifiability (Aubry et al. 2017). ( 3) Georeferencing errors are a frequent issue in databases (Murphey et al. 2004, Maldonaldo et al. 2015). This is especially the case in large databases compiling independent datasets using species presences recorded with varying levels of precision [START_REF] Graham | The influence of spatial errors in species occurrence data used in distribution models[END_REF], Bloom et al. 2018). Several studies have simulated virtual random georeferencing errors and have shown that these errors lead to significant drops in model performance and inconsistencies in the respective contributions of environmental descriptor contributions, influencing model interpretation [START_REF] Graham | The influence of spatial errors in species occurrence data used in distribution models[END_REF], Osborne and Leitão 2009, Naimi et al. 2011). These side effects seem to be minimized in localscale models, here again advocating for the use of local-scale models whenever possible (Mitchell et al. 2017).

Occurrence datasets: dealing with small datasets.

Usually, the number of species presence records available for modelling is relatively limited considering the wide geographical extent of the SO (De Broyer et al. 2014). Generating SDMs with small datasets may include many pitfalls: (1) it reduces the potential of SDMs to transfer in space and time [START_REF] Hernandez | The effect of sample size and species characteristics on performance of different species distribution modeling methods[END_REF], Raes 2012), ( 2) it truncates predicted distribution and niche definition (Hortal et al. 2007[START_REF] Lobo | More complex distribution models or more representative data?[END_REF], Rocchini et al. 2011[START_REF] Sánchez-Fernández | Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles[END_REF], Titeux et al. 2017[START_REF] El-Gabbas | Wrong, but useful: regional species distribution models may not be improved by range-wide data under biased sampling[END_REF], ( 3) it reduces modelling goodness-of-fit as the model may wrongly represent reality (Stockwell and Peterson 2002, McPherson et al. 2004, Pearson et al. 2007, Wisz et al. 2008[START_REF] Liu | The effect of sample size on the accuracy of species distribution models: considering both presences and pseudoabsences or background sites[END_REF], (4) it increases instability between model replicates (Guillaumot et al. 2018a -Appendix), ( 5) it gives rise to metholodogical constraints on threshold selection (Jiménez-Valverde and Lobo 2007, Bean et al. 2012), (6) it gives rise to methodological constraints on the application of evaluation metrics (Pearson et al. 2007), (7) it complicates the identification of model optimal complexity (Galante et al. 2018) and ( 8) it leads to a reduction in model accuracy because presence and background datasets would not differ markedly (Luoto et al. 2005).

Alternatives are being developed to produce more accurate models based on a limited amount of presence records. One solution is generating several models performed on restricted areas and datasets with more detailed information and then averaging them with a weighted ensemble approach. This 'ensemble of small models' approach showed improved performance compared to single models [START_REF] Lomba | Overcoming the rare species modelling paradox: a novel hierarchical framework applied to an Iberian endemic plant[END_REF][START_REF] Breiner | Overcoming limitations of modelling rare species by using ensembles of small models[END_REF], 2018).

Another alternative is to restrict the prediction area according to where occurrence records are found and ensuring upstream that the number of records is sufficient to precisely characterize the species environmental preferences: trivial advice that is surprisingly neglected, as recently pointed out by Morales et al. ( 2017) and [START_REF] Araújo | Standards for distribution models in biodiversity assessments[END_REF].

Occurrence datasets: definition of species-occupied environmental space.

Spatial aggregation, along with heterogeneity, limited size and uncertainties in datasets can strongly bias the quantification of the species-occupied environmental space (Hortal et al. 2008, Newbold 2010, Tessarolo et al. 2017). However, accurately defining species-occupied space is the cornerstone of SDM initialization [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF], Boulanger et al. 2018). Moreover, SDMs suppose that species are in equilibrium with the environmental conditions that they inhabit. SDMs do not take into consideration potential vagrants that have dispersed out of their usual environmental range or populations that could momentarily survive in unsuitable habitats because doing so violates the equilibrium assumption between species distribution and environmental conditions (Beale and Lennon 2012). These elements should be cautiously considered when preparing datasets prior to generating models by removing any atypical records.

Over the last two decades, field data acquisition has expanded through the use of biologging technology with electronic devices attached to seabirds and marine mammals in order to access the positions of species all year long [START_REF] Raymond | Important marine habitat off east Antarctica revealed by two decades of multispecies predator tracking[END_REF], Ropert-Coudert et al. 2020). These data uncover the hidden behaviours of marine animals and constitute a powerful way of better estimating species-occupied space; they can also be used to validate and refine our understanding of the environmental conditions prevailing in those species distribution areas [START_REF] Arthur | Winter habitat predictions of a key Southern Ocean predator, the Antarctic fur seal (Arctocephalus gazella)[END_REF], Nachtsheim et al. 2017, Hindell et al. 2020).

Adapting model implementation to datasets

The choice of modelling algorithms.

To run performant SDMs, several assumptions must be tested and computing methods adapted to each case study (Austin 2002[START_REF] De La Hoz | Temporal transferability of marine distribution models: The role of algorithm selection[END_REF]). Among them, the choice of the modelling algorithm should be of major concern, since no algorithm works best for all species, in all areas, at all spatial scales and in all time periods (Jarnevich et al. 2015, Qiao et al. 2015). The selection and parameterization of modelling algorithms proved to be major causes of variation between SDM predictions (Diniz-Filho et al. 2009[START_REF] Dormann | Components of uncertainty in species distribution analysis: a case study of the great grey shrike[END_REF][START_REF] Buisson | Uncertainty in ensemble forecasting of species distribution[END_REF][START_REF] Bucklin | Comparing species distribution models constructed with different subsets of environmental predictors[END_REF], Boulanger et al. 2018). Each algorithm is particularly suited for dealing with a specific type and quality of data [START_REF] Guisan | Predictive habitat distribution models in ecology[END_REF], Austin 2002, Elith et al. 2006, Peterson 2011[START_REF] Guisan | Habitat suitability and distribution models: with applications in R[END_REF]), which will determine the final model outputs (Aguirre-Gutiérrez et al. 2013[START_REF] Beaumont | Which species distribution models are more (or less) likely to project broad-scale, climateinduced shifts in species ranges?[END_REF].

When modelling species distribution, it is necessary to select appropriate algorithms that have good transferability performances (i.e. have good abilities to correctly transfer predictions to other geographic space and time periods; [START_REF] Randin | Are niche-based species distribution models transferable in space?[END_REF]) and that they limit overfitting (i.e. mitigate model complexity) while being flexible in integrating complex environmental relationships. Machine-learning algorithms (e.g. maximum entropy MaxEnt, boosted regression trees BRT, random forests RF, support vector machines SVMs, Vapnik 1998, Breiman 2001, Elith et al. 2008, 2011) give access to important aspects of computing performance [START_REF] Zhou | Ensemble methods: foundations and algorithms[END_REF], and are relevant approaches for handling complex relationships between species occurrences and the environment (Olden et al. 2008, Elith and[START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF]. The BRT and RF algorithms are particularly suited to complex and heterogeneous datasets (Fig. 2.4, Guillaumot et al. 2020b -Chapter 2). They were proven to be efficient in generating performant models with limited overfitting [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF], Wisz et al. 2008, Wenger and Olden 2012). They can automatically select the most informative features among a large set [START_REF] Merow | What do we gain from simplicity versus complexity in species distribution models?[END_REF], García-Callejas and Araújo 2016, Guillaumot et al. 2020b -Chapter 2) and perform well at generalizing predictions in the absence of information or, conversely, at dealing with redundant information provided by correlated factors [START_REF] Breiman | Classification and regression Trees[END_REF][START_REF] De'ath | Classification and regression trees: a powerful yet simple technique for ecological data analysis[END_REF], Friedman 2001). The main benefits of using ensemble models lie in the fact that the different algorithms will perform differently for various input cases (regardless of their overall performance). The models thus complement each other, avoiding some biases that might have resulted from using a single algorithm (Marmion et al. 2009, Knutti 2010[START_REF] Zhou | Ensemble methods: foundations and algorithms[END_REF]). However, model interpretation is much more difficult when mixing algorithms implemented differently, with contrasting ways of presenting outputs (Sillero 2011) and different definitions of thresholds for identifying habitat suitability (Perrault-Hébert 2019), requiring the normalization of predictions, which is rarely applied [START_REF] Zhang | Ensemble machine learning models for aviation incident risk prediction[END_REF]. This is the main limitation to the approach and could offset the gains in model performance [START_REF] Crimmins | Evaluating ensemble forecasts of plant species distributions under climate change[END_REF][START_REF] Zhu | Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth[END_REF], Hao et al. 2020). Such gains were contested, especially since model evaluation was often performed without using an independent evaluation dataset (Hao et al. 2019). Combining predictions of different models generated with contrasting assumptions is therefore tricky when interpreting the results (Perrault-Hébert 2019). Optimizing the parameterization of a single algorithm (which could be correctly evaluated) may therefore constitute a more valuable approach (Perrault-Hébert 2019). Comparing the performance of different algorithms can be helpful in the first stage of the modelling process in order to select the most suitable algorithm and to calibrate the models [START_REF] Massada | Wildfire ignition-distribution modelling: a comparative study in the Huron-Manistee National Forest, Michigan, USA[END_REF].

The choice of environmental descriptors.

The selection of environmental descriptors is also a crucial step in the modelling process (Franklin 2010b, Austin and Van Niel 2011, Petitpierre et al. 2017). Ideally, environmental descriptors should be selected for their ecological relevance to the studied organisms (Austin and van Niel 2011, Dormann et al. 2012b, Bradie and Leung 2017), they must capture environmental discontinuities and constraints in the distribution area (Jarnevich et al. 2015), and they should also be detailed enough to represent the habitat complexity and variability in order to allow for good SDM accuracy and performance [START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF], Barbet-Massin et al. 2012[START_REF] Bucklin | Comparing species distribution models constructed with different subsets of environmental predictors[END_REF], Petitpierre et al. 2017).

In most studies, the final number of descriptors selected to depict the species environment is generally close to 10 (Pierrat et al. 2012, Mormède et al. 2014c, Guillaumot et al. 2018a-Appendix, Fabri-Ruiz et al. 2019). Overall, a small number of descriptors will allow for the generation of less complex models and facilitate interpretation (Austin and van Niel 2011, [START_REF] Braunisch | Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change[END_REF][START_REF] Bucklin | Comparing species distribution models constructed with different subsets of environmental predictors[END_REF], Petitpierre et al. 2017). In contrast, increasing the number of descriptors potentially increases the effect of any collinearity between them (i.e. correlation between values of descriptors), which may lead to statistical artefacts in model predictions if the algorithms cannot handle information redundancy (Dormann et al. 2012b[START_REF] Merow | What do we gain from simplicity versus complexity in species distribution models?[END_REF]. Therefore, collinearity is usually tested for beforehand and collinear descriptors are adjusted (in practice, one descriptor of a pair is removed) before running the model (Dormann et al. 2012b[START_REF] Merow | A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter[END_REF], Fois et al. 2018). However, Guillaumot et al. (2020b -Chapter 2) showed that model complexity, transferability and accuracy do not significantly change between models generated with different sets, including from 4 to 58 collinear descriptors when using the BRT algorithm. BRTs automatically keep the most relevant descriptors to describe species distribution and can deal with redundant information [START_REF] De'ath | Classification and regression trees: a powerful yet simple technique for ecological data analysis[END_REF], Whittingham et al. 2006, Elith et al. 2008), which is not the case for all algorithms [START_REF] Merow | What do we gain from simplicity versus complexity in species distribution models?[END_REF].

Selecting environmental descriptors therefore implies that several tests should be performed upstream in order to determine the best set to be used depending on research objectives. Fois et al. ( 2018) recommended first calibrating models with a large set of descriptors of various natures (proximal vs. distal descriptors) that will be pruned stepwise, after analysing their ability to
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accurately describe the habitat and after testing for collinearity (El-Gabbas and Dormann 2018). Generating, testing and comparing several sets of descriptors is a widespread strategy to target in a stepwise manner the set that gives the best predictive accuracy [START_REF] Snickars | Species-environment relationships and potential for distribution modelling in coastal waters[END_REF][START_REF] Bucklin | Comparing species distribution models constructed with different subsets of environmental predictors[END_REF], Bradie and Leung 2017, Petitpierre et al. 2017). Replacing environmental descriptors by principal components of a factorial analysis also proved to be efficient because complex environmental gradients of the study area are simplified in fewer, orthogonalized components (Kühn 2007, Petitpierre et al. 2017). So far, this latter method has never been applied to SO case studies, and it should be tested in order to evaluate the interpretability of model results.

Correcting spatial sampling biases.

Generating a model based on spatially aggregated presence-only records may bias predictions with a higher probability of occurrence predicted in highly sampled areas (Dormann 2007, Guillaumot et al. 2018a -Appendix). To compensate for such a bias, a first approach is to sample background records according to the spatial bias introduced by the aggregated presence records themselves [START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF]. The background dataset is used to define the environmental background: its boundaries and variability constitute essential information for building and projecting model outputs [START_REF] Wisz | The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling[END_REF]Guisan 2009, Barbet-Massin et al. 2012). The choice of the number of background records to be sampled and the extent of their distribution should be considered carefully when calibrating a model because it can strongly influence model predictions [START_REF] Chefaoui | Assessing the effects of pseudo-absences on predictive distribution REFERENCES model performance[END_REF][START_REF] Lobo | The uncertain nature of absences and their importance in species distribution modelling[END_REF], Barbet-Massin et al. 2012, Jarnevich et al. 2017). This number should be with respect to the prevalence score, being the ratio between the speciesoccupied space (represented by presence record locations) and the total surface of the study area (represented by background locations: McPherson et al. 2004). Some advice is provided in Barbet-Massin et al. (2012) for selecting the correct number of background records according to prevalence scores.

Targeting background records has been extensively tested, and several procedures have been developed to significantly improve the relevance of models (Fig. A second method consists of filtering the available presence data to reduce the influence of the clustering of species records (Segurado et al. 2006, Kramer-Schadt et al. 2013[START_REF] Galante | EN M eval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models[END_REF]. This is an efficient method compared to the background targeted sampling approach detailed above, but the remaining number of presence records after filtering should be sufficient to correctly determine species-occupied space (Kramer-Schadt et al. 2013). Reliable information should also be available to characterize the bias in species occurrence data (Aiello-Lammens et al. 2015, Sillero and Barbosa 2020). The filtering protocol requires meeting many prerequisites, but priority is given to keeping presence data independent and minimizing records clustering (Alagador D. personal communication 2019).

Overall, if several methods are developed to correct for the effect of spatial aggregation on model outputs, it is recommended that one should interpret model projections performed for poorly sampled areas with great caution [START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF], Iturbide et al. 2018).

Model outputs

Taxonomic bias and population variability.

SDMs are usually parameterized using all presence records available for a species and all environmental conditions prevailing in the species records [START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF]. When modelling species distribution at a broad spatial scale, it is often assumed that all populations of a species have the same relationship to environmental conditions over the entire distribution area [START_REF] Pierrat | Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling[END_REF], Xavier et al. 2015[START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF][START_REF] Fabri-Ruiz | Can we generate robust Species Distribution Models at the scale of the Southern Ocean?[END_REF]. However, occurrence datasets may include a set of populations with different phenotypic plasticities [START_REF] Chevin | Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory[END_REF]), transgenerational adaptations (Dixon et al. 2015) or simply different habitat selection in the case of vagile species. Therefore, the modelled species can actually present different abilities to respond to environmental changes. In particular, physiological performances of populations are likely to vary in marine species with wide distribution ranges and high dispersal capabilities over long distances (Thatje 2012). This is particularly relevant with regards to future predictions that do not integrate inter-population variability in the potential acclimation of species, and this may lead models to alternatively over-or under-estimate the distribution of speciessuitable environments [START_REF] Cacciapaglia | Marine species distribution modelling and the effects of genetic isolation under climate change[END_REF]van Woesik 2017, Thyrring et al. 2017).
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Phylogeographical studies have also regularly revealed the existence of cryptic species in the SO benthos, which show similar morphologies for distinct genotypes and potentially, distinct ecological requirements and geographical distributions [START_REF] Lozier | Predicting the distribution of Sasquatch in western North America: anything goes with ecological niche modelling[END_REF] 

Definition of region of interest ("projection area").

The limitations in the current knowledge of species distribution also affect the quality of information available for estimating their potential distribution (Thuiller et al. 2003). When the limits of species environmental ranges are not fully captured, this uncertainty can significantly impact the accuracy of SDM predictions (Hortal et al. 2007[START_REF] Lobo | More complex distribution models or more representative data?[END_REF], Rocchini et al. 2011[START_REF] Sánchez-Fernández | Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles[END_REF], Titeux et al. 2017[START_REF] El-Gabbas | Wrong, but useful: regional species distribution models may not be improved by range-wide data under biased sampling[END_REF]. It reduces the applicability of models for predictive purposes [START_REF] Brotons | Presence-absence versus presence-only modelling methods for predicting bird habitat suitability[END_REF]), induces model overfitting (Tsoar et al. 2007, Barve et al. 2011[START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF]) and can lead to overestimating the extent of suitable areas [START_REF] Anderson | The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela[END_REF]. This bias can be partly overcome by reducing the extent of the projection area to the known distribution of the available occurrence records [START_REF] Anderson | The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela[END_REF], and by increasing knowledge regarding species ecology and physiology in order to identify the environmental conditions that are unsuitable for their survival or development [START_REF] Byrne | From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean[END_REF]).

Model extrapolation.

Models are said to extrapolate when a portion of the predicted area includes environmental conditions that are outside the range of values for which the model was calibrated. Model extrapolation may occur when model predictions are transferred, either in space or time. When extrapolated, model predictions are in non-analogue conditions compared to the initial calibration conditions because calibration data may not encompass the entire environmental range of each of the predictors (Guillaumot et al. 2020c -Chapter 2). The set of projected environmental conditions can otherwise still be within the range of conditions, but specific combinations of environmental descriptors may be new, also leading to extrapolation [START_REF] Mesgaran | Here be dragons: a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models[END_REF]). In such conditions, predictions might be ecologically and statistically invalid and model interpretations inaccurate [START_REF] Randin | Are niche-based species distribution models transferable in space?[END_REF], Williams and Jackson 2007, Williams et al. 2007, Fitzpatrick and Hargrove 2009, Owens et al. 2013). Among the different approaches, [START_REF] Elith | The art of modelling range-shifting species[END_REF] propose estimating and quantifying model extrapolation using the Multivariate Environmental Similarity Surface (MESS) index to identify the most influential descriptors that lead to extrapolation. Grid-cell pixels for which at least one environmental descriptor has a value outside the range of environmental values defined by presence-only records (calibration range) are considered to be extrapolations. In these cases, the MESS index assigns negative values and the ensemble of pixels containing negative values defines the extrapolation area [START_REF] Elith | The art of modelling range-shifting species[END_REF], Guillaumot et al. 2020c -Chapter 2). Most often, for SDMs performed at the scale of the SO, the number of records available to define the environmental space occupied by species is limiting and the resolution of environmental descriptors relatively low (see section 2). As a consequence, SDM projections sometimes include
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wide extrapolation areas that may cover > 75% of the predicted regions (Fig. In addition to quantifying the overall extrapolation area (Fig. Article. [START_REF] Guillaumot | SDMPlay. Species Distribution Modelling Playground[END_REF]. Species Distribution Modelling of the Southern Ocean benthos: a review on methods, cautions and solutions. Antarctic Science. 

Model validation and accuracy of model predictions

Some common metrics for the evaluation of model predictions.

Once models are generated, the accuracy of their predictions must be assessed in order to evaluate the validity of the models with regards to scientific issues to address, to compare different model outputs and to allow for the formulation of reliable interpretations [START_REF] Zurell | Testing species assemblage predictions from stacked and joint species distribution models[END_REF]). Several metrics were developed in order to evaluate the performance of models [START_REF] Fielding | A review of methods for the assessment of prediction errors in conservation presence/ absence models[END_REF]Bell 1997, Allouche et al. 2006). Most of them are based on the calculation of an error matrix (or confusion matrix) that displays the proportion of presence and absence records that are correctly predicted by the model (Allouche et al. 2006).

In most biological studies focused on the SO benthos, absence records are usually unavailable and SDMs are generated based on a set of presence/background records (see section 2.2). As a consequence, the statistics that are commonly used for presence/absence datasets may not be appropriate for model evaluation (Wiley et al. 2003[START_REF] Phillips | M aximum entropy modeling of species geographic distributions[END_REF], Braunish et al. 2013), such as the Kappa statistic (Allouche et al. 2006). In contrast, the Area Under the Curve, or Area Under the Receiver Operating Curve (AUC), is one of the most used and appropriate metrics for measuring the performance of model predictions based on presence/background data [START_REF] Hand | M easuring classifier performance: a coherent alternative to the area under the ROC curve[END_REF]. The AUC is an objective measure that remains stable with low-prevalence datasets (i.e. low frequency of occurrences with regards to the projection space) and is not sensitive to threshold effects (Manel et al. 2001[START_REF] Hand | M easuring classifier performance: a coherent alternative to the area under the ROC curve[END_REF], van Proosdij et al. 2016). However, for presence/background models, specificity (the fraction of correctly predicted absences) might be 

Conclusions and future prospects

This review summarizes some points and issues to be considered during SDM construction for modelling the distribution of SO species (Fig. 2.1). It shows that accurate and efficient SDMs can be produced for SO species when considering potential common biases and issues and correcting for their side effects. Proposed corrections must be adjusted to each case study: no consensus method nor implementation procedure always perform best, each case study requires proper analyses in order to generate the most relevant and accurate predictions. This means that, for each model, several procedures to implement the model should be tested in order to select the most suitable one, ideally giving priority to the availability of independent datasets for evaluating the models. We discuss how SDMs perform best when the species-occupied space is accurately described, using extensive occurrence datasets with both presence and absence records, and when data are checked for positioning and georeferencing errors. A good knowledge of species' ecology, life history traits and populational variations within the overall species distribution and environmental range help to improve model quality (Fois et al. 2018). The compilation, examination and preparation of datasets prior to modelling are essential steps in generating efficient models.

Estimating and communicating the uncertainties associated with model predictions are also important tasks to be highlighted. This process may include a 'simple' interpretation of the ecological relevance of SDM outputs by experts [START_REF] Merow | Integrating occurrence data and expert maps for improved species range predictions[END_REF] for the mapping of model extrapolations, as illustrated here. Model uncertainties are part of model outputs and should not be omitted (Guisan et al. 2013, Grimm et al. 2014[START_REF] Grimm | Robustness analysis: Deconstructing computational models for ecological theory and applications[END_REF].

Remaining challenges for constructing relevant SDMs for SO studies include more efforts regarding data collection outside of the main sampling hotspots and filling in knowledge gaps in SO species taxonomy. Some methodological perspectives, developed in other regions, address the integration of physiological information into SDMs. This facilitates the understanding of species environmental preferences and helps one to better estimate the ecological niches of species (Kearney and Porter 2009, Talluto et al. 2016[START_REF] Mathewson | Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates[END_REF][START_REF] Rodríguez | Integration of physiological knowledge into hybrid species distribution modelling to improve forecast of distributional shifts of tropical corals[END_REF], Gamliel et al. 2020). Such studies have recently been developed for SO benthic species: in López-Farrán/ , the combination of physiological experimental results and SDM projections allowed for the assessment of the invasive potential of the Patagonian crab Halicarcinus planatus (Fabricius, 1775) on Antarctic coasts, as was similarly done in [START_REF] Byrne | From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean[END_REF] for the Arctic sea star Asterias amurensis Lutken, 1871. Hybrid modelling approaches constitute another exciting approach, where information from both SDMs and physiological models are fully integrated, using the physiological information as a prior to inform the SDM (Gamliel et al. 2020). Recently applied to an endemic sea urchin of the Kerguelen Plateau , the method allows for more precise prediction of the effects of seasonal variations on species habitat suitability. Other interesting methodological approaches include the consideration of biotic interaction information, dispersal capacity estimates or population dynamics in complement to SDM predictions in order to generalize the understanding of the main drivers of species distribution [START_REF] Lomba | Overcoming the rare species modelling paradox: a novel hierarchical framework applied to an Iberian endemic plant[END_REF][START_REF] Meier | Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica[END_REF], Pagel and Schurr 2012[START_REF] Conlisk | Uncertainty in assessing the impacts of global change with coupled dynamic species distribution and population models[END_REF][START_REF] Wisz | The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling[END_REF][START_REF] Leach | Modelling the influence of biotic factors on species distribution patterns[END_REF][START_REF] Anderson | When and how should biotic interactions be considered in models of species niches and distributions[END_REF]). These, however, necessitate a deep knowledge of the species ecology and of the surrounding environment, suggesting that their first applications should be expected in local-or regional-scale studies.

A final take-home message is that model outputs should be interpreted carefully and model predictions always considered with a critical eye. Models are simple representations of complex systems and should be used to complement other approaches in order to support conservation strategies or to address fundamental research objectives (Porfirio et al. 2014, Kampichler and[START_REF] Kampichler | On the usefulness of prediction intervals for local species distribution model forecasts[END_REF].

CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS
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Species distribution models in a data-poor and broad scale context

Guillaumot Charlène 

Abstract

Species distribution models (SDMs) have been increasingly used over the past decades to characterise the spatial distribution and the ecological niche of various taxa. Validating predicted species distribution is important, especially when producing broad-scale models (i.e. at continental or oceanic scale) based on limited and spatially aggregated presence-only records.

In the present study, several model calibration methods are compared and guidelines are provided to perform relevant SDMs using a Southern Ocean marine species, the starfish Odontaster validus Koehler, 1906, as a case study. The effect of the spatial aggregation of presence-only records on modelling performance is evaluated and the relevance of a target-background sampling procedure to correct for this effect is assessed. The accuracy of model validation is estimated using k-fold random and spatial cross-validation procedures. Finally, we evaluate the relevance of the Multivariate Environmental Similarity Surface (MESS) index to identify areas in which SDMs correctly interpolate and conversely, areas in which models extrapolate outside the environmental range of occurrence records.

Results show that the random cross-validation procedure (i.e. a widely applied method, for which training and test records are randomly selected in space) tends to overestimate model performance when applied to spatially aggregated datasets. Spatial cross-validation procedures can compensate for this over-estimation effect but different spatial cross-validation procedures must be tested for their ability to reduce over-fitting while providing relevant validation scores. Model predictions show that SDM generalisation is limited when working with aggregated datasets at broad spatial scale.

The MESS index calculated in our case study shows that over half of the predicted area is highly uncertain due to extrapolation.

Our work provides methodological guidelines to generate accurate model assessments at broad spatial scale when using limited and aggregated presence-only datasets. We highlight the importance of taking into account the presence of spatial aggregation in species records and using non-random cross-validation procedures. Evaluating the best calibration procedures and correcting for spatial biases should be considered ahead the modelling exercise to improve modelling relevance.

Key-words

Boosted regression trees (BRTs), presence-only, cross-validation, extrapolation, modelling evaluation

INTRODUCTION

Species Distribution Models (SDMs) have been increasingly used during the past decades. The diversity of applications has widened to include a vast panel of topics from studies of invasive species distribution range shifts to assessment of species responses to environmental drivers and conservation issues from local to global scales [START_REF] Guisan | Predicting species distribution: offering more than simple habitat models[END_REF], Ficetola et al. 2007, Guisan et al. 2013[START_REF] Beaumont | Which species distribution models are more (or less) likely to project broad-scale, climateinduced shifts in species ranges?[END_REF], Phillips et al. 2017). In vast and remote areas such as the Southern Ocean, modelling species distributions is challenged by ( 1) the paucity of biotic data available (a serious constraint when describing species realised niche), ( 2 Guo 2013). These methods can also be biased when applied to limited and broadly distributed data. Machine-learning algorithms are widely used in SDMs to fit complex relationships between species occurrences and environmental data [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF]).

The resulting models may be highly complex and poorly efficient under changing environmental conditions as they may fit a response to any variation including the random noise (=model overfitting), (Wenger and Olden 2012). Models' ability to predict in new environmental conditions is described as the generalization performance by Friedman et al. (2001).

Producing reliable SDMs implies finding a good trade-off between model complexity and predictive and generalisation performances (Anderson andGonzalez 2011, Radosavljevic and[START_REF] Galante | EN M eval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models[END_REF]. The relevance of modelling and generalisation performance, and the optimal level of model complexity can be tested using independent data. The method has been commonly applied and referred to as the cross-validation procedure (Araujo and Guisan 2006, Valavi et al. 2018). The cross-validation procedure uses a training subset of occurrence data to fit the model and a separate test subset to validate the predictions and the statistical relationships between the studied variables [START_REF] Fielding | A review of methods for the assessment of prediction errors in conservation presence/ absence models[END_REF]. 'Random cross-validation' procedures are widely used and randomly split the occurrence dataset into training and test subsets. However, the spatial aggregation of occurrence data can lead to the violation of the independence assumption between training and test data randomly sampled, and in turn to false confidence in modelling validation performances [START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF]. The violation of the independence assumption can also lead to generate highly complex and overfitted models [START_REF] Galante | EN M eval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models[END_REF][START_REF] Merow | A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter[END_REF], Radosavljevic and Anderson 2014). Therefore, the cross-validation procedure should be adapted to each given dataset and case study, so that, different 'spatial cross-validation' procedures have been developed and compared in this study. 
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2017).

Uncertainties in SDMs represent another limitation to model usage that should be quantified and the effects must be specifically assessed or taken into account during model interpretation (Barry and Elith 2006, Carvalho et al. 2011, Beale and Lennon 2012, Guisan et al. 2013). Model extrapolation outside the range of the known species environmental conditions leads to misinterpretation of SDM outputs and can be a real issue when using SDM predictions as a support tool for conservation decisions. Therefore, areas of optimal predictions and limited uncertainties must be identified. This can be achieved using indicators such as the Multivariate Environmental Similarity Surface (MESS). Developed for SDMs, the MESS index highlights areas where environmental conditions are outside the range of conditions observed in data [START_REF] Elith | The art of modelling range-shifting species[END_REF]).

In the present study, model uncertainties and the performance of several spatial cross-validation procedures were analysed using the case study of the sea star Odontaster validus Koehler, 1906. Distributed over the entire Southern Ocean (< 45°S), O. validus is a common and abundant species in shallow-water benthic habitats (McClintock et al. 2008a[START_REF] Lawrence | Starfish: Biology and ecology of the Asteroidae[END_REF]), characterised by an opportunistic feeding behaviour (from suspension-feeding to algivory, deposit-feeding and predation). It has been shown to play a significant role in structuring benthic communities and regulating populations of other benthic taxa (McClintock et al. 2008a). The species physiology was recently modelled using the Dynamic Energy Budget approach (Agüera et al. 2015) which allows for the assessment of the metabolic performance of the species under different environmental conditions. Here, SDMs were produced to interpolate the known distribution of O. validus over its entire geographic range using an available dataset of environmental descriptors. The influence of spatial data aggregation on model outputs was analysed and the performance of correction procedures evaluated. In a second step, several cross-validation procedures were assessed and compared to test for modelling accuracy, optimal level of complexity and predictive performance. A final 'optimum' model is proposed, which takes into account uncertainty estimates. Results are generalised and formalised as guidelines for further SDM works, showing the relevance of the approach when working at broad spatial scale with a limited number of spatially aggregated presence-only records.

MATERIAL AND METHODS

2.1.Model selection and calibration procedures

SDMs were generated using the Boosted Regression Trees (BRTs) algorithm. BRTs were selected for their ability to fit complex relationships between species records and the related environment, while guarding against over-fitting (Elith et al. 2008, Reiss et al. 2011). BRTs are also adapted to deal with incomplete datasets (Elith et al. 2008), can perform well with low prevalence datasets (Barbet-Massin et al. 2012), are weakly sensitive to species niche width [START_REF] Qiao | No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation[END_REF] and were recognised to transfer well in space and time [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF], Elith and Graham 2009[START_REF] Schweiger | Increasing range mismatching of interacting species under global change is related to their ecological characteristics[END_REF]. BRTs were calibrated using the method proposed by Elith et al. (2008) to select the optimal number of trees in the final model (Appendix 2.1). The combination of parameters that minimises the optimal number of trees to build the model (reduction of complexity) while reaching a minimum predictive deviance to the test data (reduction of error) was selected.

The following parameters were used to calibrate the models: tree complexity=4, bag fraction=0.75 and learning rate=0.007 (Fig. S2.1B). The number of background data sampled in the area was set at 1000 sampled points after evaluating the optimal number of data points to be sampled (see Appendix 2.1 for details). This number constitutes the best trade-off between describing environmental conditions and being as close as possible to the number of species presence records available (Barbet-Massin et al. 2012). All background sampling was restricted in space to areas shallower than 1500m depth, which corresponds to the species deepest record, in order to avoid model extrapolation at depths known as unsuitable for the species survival based on knowledge of the species ecology (McClintock et al. 2008a[START_REF] Lawrence | Starfish: Biology and ecology of the Asteroidae[END_REF]. Sampling was restricted to a single background data per pixel. Similarly, presence records falling on a same 0.1° grid-cell pixel were filtered before model calibration in order to reduce spatial over-weighting (Segurado et al. 2006[START_REF] Galante | EN M eval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models[END_REF].
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Occurrence dataset

Evaluation and correction spatial aggregation

The significance of spatial aggregation of occurrence data was tested by measuring spatial autocorrelation [START_REF] Legendre | Spatial pattern and ecological analysis[END_REF]) on model residuals using the Moran's I index (Segurado et al. 2006, Dormann 2007, Crase et al. 2012). A positive Moran's I value (between 0 and 1) indicates that spatially close residuals will share similar values. A negative (close to -1) or null value respectively indicates a maximal dispersion or a random dispersion of residuals in space [START_REF] Cliff | Spatial Processes Models and Applications[END_REF]. Detecting significant spatial autocorrelation in presence-only records will assess the degree of aggregation of species records in the studied area. Two null models were generated and their respective outputs compared to each other in order to evaluate the importance of spatial aggregation in the total Southern Ocean benthic dataset (Fig. 

Testing different cross-validation procedures

SDMs validation was performed using different cross-validation procedures. Background data were first sampled in the entire area following the Kernel Density Estimation scheme and the compilation of presence-only and background data was then split into a training and a test subset to build the cross-validation procedure. Two splitting procedures were followed; they differ between each other in the spatial independence between the training and the test subset. ( 1) The random crossvalidation procedure, commonly used in SDMs, aims at randomly splitting the dataset into training and test subsets [START_REF] Fielding | A review of methods for the assessment of prediction errors in conservation presence/ absence models[END_REF]Bell 1997, Hijmans 2012) which may lead to close spatial vicinity between the two datasets (Hijmans 2012), and, ( 2) the spatial cross-validation procedure that aims at spatially spitting the dataset in order to reduce spatial correlation and may improve independence between the two subsets [START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF], Muscarella et al. 2014). The random procedure was therefore compared to four different spatial cross-validation procedures. (1) In the 'BLOCK' method developed by Muscarella et al. ( 2014), different subsets of equal occurrence numbers are created. For each replicate, this k-fold procedure divides the dataset into four equal subsets according to the mean latitude and mean longitude positions of occurrence data (Fig. 2.9c), then three of these four subsets are randomly selected to train the model (75%) and the last one is used to test the model (25%). ( 2) In the 'CLOCK' methods, the dataset was divided according to random longitudinal transects, splitting the Antarctic Circle into two parts (2-fold 'CLOCK' method, Fig. 2.9b), ( 3) three parts (3-fold 'CLOCK' method, Fig. 2.9d) or ( 4) four parts (4fold 'CLOCK" method, Fig. 2.9e). In the 2-fold 'CLOCK' method, one subset was considered as the training subset, the second one as the test subset; in the 3-fold 'CLOCK' method, two subsets were defined for training and the third one for testing; in the 4-fold 'CLOCK' method, three subsets were considered for training and one for testing (Fig. 2.9). Different cross-validation procedures were tested using the 'gbm.step' procedure available in the dismo R package (Elith et al. 2008, Hijmans et al. 2017). Once the dataset is split in different folds, Elith et al. (2008) apply an iterative procedure that enable to find the minimum deviance to the test data, and relates it to the optimal number of trees (optimal model complexity) to generate the model. If test and training data are spatially correlated, the number of trees required to build BRTs will be overestimated. Therefore, the use of Elith et al. (2008) procedure will enable to accurately interpret and compare optimal complexity and performance scores of models calibrated with either randomly or spatially segregated folds (i.e. with contrasting distances between training and test subsets), and thus will help explain the influence of occurrence spatial aggregation on model complexity and performance. R scripts written to generate the models and the different cross validation procedures are provided online at: https://github.com/charleneguillaumot/THESIS/. Independence between training and test subsets was evaluated using the Spatial Sorting Bias index (SSB) [START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF]. SSB compares the distance between training-presence and testingpresence data with the distance between training-presence and training-background. SSB=0 (non independence) means that the ''distance between training-presence and test-presence sites will tend to be smaller than the distance between training-presence and test-background sites'' [START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF]. SSB=1 indicates that the two distances are comparable (independent enough) [START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF]. SSB was calculated with the dismo R package (Hijmans et al. 2017). SDMs evaluation was generated by computing the percentage of test data that fall on grid-cell pixels predicted as suitable. Suitable pixels were defined using the Maximum sensitivity plus specificity threshold (MaxSSS) that splits models into suitable (> MaxSSS value) and unsuitable areas (< MaxSSS value). MaxSSS is accepted as a relevant threshold for presence-only SDMs [START_REF] Liu | Selecting thresholds for the prediction of species occurrence with presence-only data[END_REF]. The averaged optimal number of trees required to generate BRTs was compared between models and used as a proxy of model complexity.

Statistical differences between models generated with the different cross-validation procedures (AUC, TSS, COR, percentage of correctly classified test data, number of trees) were tested using CHAPTER 2.
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the non-parametric Mann-Whitney Wilcoxon pairwise comparison.

Assessment of model extrapolation

The Multivariate Environmental Similarity Surface (MESS) index was estimated following the procedure described by [START_REF] Elith | The art of modelling range-shifting species[END_REF] using the dismo R package (Hijmans et al. 2017) CHAPTER 2.
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RESULTS

Available data and spatial autocorrelation

Distribution records available for Odontaster validus display a circumpolar and patchy spatial pattern (Fig. Spatial autocorrelation was measured for both the total Southern Ocean benthic dataset (null models) and or O. validus alone (models A and B) (Table 1 CHAPTER 2.
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Comparison of cross-validation procedures

For the BRTs fitted with the random cross-validation procedure, all overall goodness-of-fit metrics (AUC, TSS, COR) were good with predictive accuracy Area Under the Curve (AUC) values higher than 0.9 (Table 2.2). However, when evaluated through spatial cross-validation procedure, the AUC scores decreased in all BRTs. These results show that BRTs tend to overfit the data if the independence between training and test data is not ensured. Indeed, the random cross-validation procedure presents SSB values close to zero, indicating that training and test subsets may be highly correlated (Fig. 2.9a). In contrast, all spatial cross-validation procedures have SSB values close to 1, indicating a better spatial independence between training and test data (Table 2.2). The generalisation performance (AUC and correctly classified test data) are very high for the random cross-validation procedure, with more than 89.4% of test-presence records falling correctly in areas predicted as suitable by the model (Table 2.2). The random cross-validation procedure generates more complex BRTs compared to the spatial methods (significantly higher number of trees for the random cross-validation procedure compared to the spatial cross-validation procedures). As the model closely fits the dataset used for its construction, high AUC, TSS and COR scores were obtained but these results may be misleading and overestimated. In contrast, spatial cross-validation procedures generate less complex models (more general), which could account for lower AUC, TSS and COR scores.
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The MESS index was calculated in order to define the part of this extrapolated area, that is, the part of the geography for which at least one environmental descriptor is outside the environmental conditions of the sampled presence records. The MESS index was compiled as a raster layer and projected on the probability distribution map by darkening uncertain areas (Fig. 2.11). Uncertain areas due to extrapolation represent 64.2% of the entire projected surface, the major part being also predicted by the model as unsuitable (Table 2.3). Almost 9.5% of the area was however predicted as suitable by the model although considered as an extrapolated area.
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Article. Guillaumot et al. (2019). Species distribution models in a data-poor and broad scale context. Progress in Oceanography. Interpolation (or uncertain extrapolation respectively) refers to areas where environmental conditions within the pixel are inside (or outside, respectively) of the species ecological range, as defined by the Multivariate Environmental Similarity Surface (MESS). Suitable pixels were defined using the MaxSSS threshold that splits model predictions into suitable (> maxSSS mean score) or unsuitable areas (< maxSSS mean score).

MESS classification Model prediction

Suitable pixels Unsuitable pixels Interpolation 10.24% 25.57%

Uncertain extrapolation 9.42% 54.77%

DISCUSSION

Evaluating SDM performance

Using independent datasets to test SDM performance is a prerequisite for relevant validation analyses (Peterson et al. 2011). At broad spatial scale and in data-poor areas, the number of available data is limited and data distribution often patchy, which really challenges the success of validation procedures. Estimating the performance of SDM predictions and the level of extrapolation in such areas is a necessity. The cross-validation procedure has been proposed as a reliable approach to evaluate modelling performances [START_REF] Fielding | A review of methods for the assessment of prediction errors in conservation presence/ absence models[END_REF][START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF][START_REF] Dhingra | Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3. 4.4 viruses with spatial cross-validation[END_REF][START_REF] Roberts | Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure[END_REF]). Cross-validation procedures must however be adapted to spatially aggregated data because training and test subsets may be sampled in close areas, violating the independence assumption (Segurado et al. 2006[START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF]. Such a potential bias is rarely taken into account. In the present work, we compared SDM performance using five different cross-validation procedures for Article. Guillaumot et al. (2019). Species distribution models in a data-poor and broad scale context. Progress in Oceanography.

modelling, at broad spatial scale, the distribution of a species for which available data are limited in number and are spatially aggregated. Results show strong differences between procedures, which highlights the importance of testing and selecting the most appropriate method when evaluating model performance.

Correction for SAC and spatial bias

Strong significant Moran's I scores were measured on model residuals, revealing the presence of spatial autocorrelation in the total Southern Ocean benthic dataset (Fig. S2. 2). The difference between null models #1 and #2 evidences the influence of sampling aggregation on spatial autocorrelation values (Table 2.1) as discussed by Guillaumot et al. (2018a -Appendix). O. validus presence-only dataset follows the same pattern, with records aggregated in coastal areas where sampling effort has been mostly concentrated (Table 2.1, Fig. 2.10). A target-group background sampling was applied and proved to be efficient to reduce spatial autocorrelation (as assessed using Moran's I statistic), although it still remains at a significant level. Spatial autocorrelation scores are strongly dependent on the resolution of environmental raster layers. The coarse resolution of environmental data used in the present study may be responsible for the overestimation of spatial autocorrelation scores. This could account for spatial autocorrelation remaining significant even after the Kernel Density Estimation correction.

Selection of cross-validation procedures

The random cross-validation procedure has been widely used in ecological modelling to evaluate model predictions [START_REF] Fielding | A review of methods for the assessment of prediction errors in conservation presence/ absence models[END_REF][START_REF] Merow | A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter[END_REF], Mainali et al. 2015 ) in which a decrease of AUC scores can be reported when using a spatial cross-validation procedure instead of a random procedure. Machine-learning algorithms have been reported to be the best approaches to generate SDMs but the influence of over-fitting on model evaluation are under-estimated (Reiss et al. 2011, Duan et al. 2014[START_REF] Beaumont | Which species distribution models are more (or less) likely to project broad-scale, climateinduced shifts in species ranges?[END_REF][START_REF] Zurell | Benchmarking novel approaches for modelling species range dynamics[END_REF] although its effect has been pointed out in several works (Elith et al. 2008[START_REF] Hortal | Historical bias in biodiversity inventories affects the observed environmental niche of the species[END_REF], Wenger and Olden 2012). Our results show that the evaluation of SDM performance can be strongly influenced by the choice of the evaluation procedure. In this work, several spatial cross-validation procedures were compared with each other but no single and best procedure emerged, a common case in ecological modelling (Qiao et al. 2015). The appropriate method to be used is highly dependent on the species and dataset under study. For instance, the 'BLOCK' method introduced by Muscarella et al. ( 2014) should not be used at broad spatial scale, where too important latitudinal contrasts in environmental conditions are present. In this study, such contrasting environmental conditions (due to the CHAPTER 2.
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presence of an environmental latitudinal gradient between sub-Antarctic and Antarctic regions, with occurrence aggregation in the two regions) lead to higher variability in generalisation performance during model projection, depending on the data subsets selected to train and test the model [START_REF] Roberts | Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure[END_REF]. The 'BLOCK' method favors the independence between training and test subsets but models are slightly more complex because they are calibrated on contrasting environmental conditions (sub-Antarctic vs. Antarctic areas) and over-fit the training dataset that could also present a patchy distribution. The 'BLOCK' method is therefore more adapted to case studies without strong patchy and contrasting environmental conditions. The 'CLOCK' procedures developed in this study helped reduce the effect of latitudinal patchy occurrences distribution by mixing presence records sampled in Antarctic and sub-Antarctic regions to define training and test subsets. The 'CLOCK' methods generate less complex models and were proved more efficient to define spatially independent training and test subsets. However, the number of training and test records sampled between model replicates is not constant, which contributes to an important variability in validation performance scores. The selection of the different 'CLOCK' methods also depends on the importance of data aggregation and patchy patterns within environmental conditions. For strong data aggregation, the '2-fold CLOCK' approach will help reduce the influence of patchy patterns during model calibration and will help generalise the model and decrease its complexity. '3 or 4-fold CLOCK' methods present close modelling performances but the proportion of occurrence records used to test the model can be very low. Alternative SDM evaluation procedures can be found in the literature: for instance, calibrated cross-validation procedures aim at removing occurrences from the test subset when considered too close to the training subset (and considered as non-informative according to a statistical threshold) [START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF]. For limited presence-only datasets, removing a part of the available occurrence data may lead to the removal of a proportion of informative records, which does not constitute a reasonable option (Bean et al. 2012, van Proosdij et al. 2016). The leave-one-out method can also provide a relevant estimate of model goodness-of-fit, even for spatially aggregated datasets (Olden et al. 2002, Wenger andOlden 2012). The method aims at randomly excluding a single record from the total dataset. The model is trained on the remaining data and predicts the model response on the single removed point to test for model prediction. The procedure is replicated several times, providing a powerful evaluation of model accuracy. However, assessment of generalisation performances is not permitted with this approach (Wenger and Olden 2012). In addition to crossvalidation procedures, the relevance of model validation performance is also strongly dependent on the quality of environmental descriptors available. The number of no-data pixels as well as gridcell resolution can critically affect model evaluation. This is especially true in the present study because environmental variables, measured or interpolated, rarely extend to coastal areas, and resolution in the Southern Ocean can rarely be better than 10 km 2 . Good quality datasets are needed and such limitations must be taken into account when interpreting model outputs. was recently proposed as an alternative to the MESS index. MESS considers extrapolation on a pixel as uncertain when at least one environmental value falls outside the environmental range of presence records. In contrast, MOP offers more flexibility by defining an extrapolated area when all environmental values fall outside the sampled environmental range. Therefore, MESS is more conservative than MOP to define species ecological envelope. Here, MESS was used to assess the proportion of the projected area for which models extrapolate. Our results show that more than half of the area corresponds to environmental conditions for which presence records have not been sampled. 9.42% of this extrapolated area is even predicted as a suitable environment. This highlights the weakness of SDMs for spatial generalisation and the risk of providing inaccurate SDMs for conservation purposes, especially if the communication between modellers and environmental managers is neglected (Guisan et al. 2013). Our results show the importance of CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2.
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providing uncertainty maps along with SDM outputs in order to help interpret models with the necessary caution.

CONCLUSION

This work highlights the importance of assessing the relevance of SDM evaluation procedures.

When applied to occurrence datasets, spatially autocorrelated and broad-scale presence-only datasets, the random cross-validation procedure may over-estimate model validation scores due to the violation of independence between training and test subsets. Applying a spatial crossvalidation procedure that spatially segregates training and test data was shown to be effective to provide a reliable analysis of model performance. Spatial cross-validation methods also help reduce model complexity and therefore improve generalisation performances. The 'CLOCK' methods developed in this paper were proved to be appropriate to our Southern Ocean case study and could be applied to other non-polar case studies. This study proves the importance of testing and comparing several spatial cross-validation procedures to identify the procedure most adapted to each case study. The MESS index was used to visualise areas where SDMs extrapolate outside the range of the environmental conditions where presence records were sampled. Such results show the importance of providing information on model uncertainty to correctly interpret SDM outputs.

CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2.

Article. Guillaumot et al. (2019). Species distribution models in a data-poor and broad scale context. Progress in Oceanography BRT models were generated using the cross validation procedure of Elith et al. (2008) and the gbm R package [START_REF] Ridgeway | Generalized boosted regression models. Documentation on the R Package 'gbm[END_REF]) with codes provided in the publication's supplementary material. We forced a maximum number of 10,000 trees and models were calibrated with the combination of parameters that minimizes the predictive deviance while producing the lowest number of trees (Fig. S2.1.B). The parameters values finally selected to generate the models are: tree complexity= 4, learning rate= 0.007, and bag fraction= 0.75.
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INTRODUCTION

The Southern Ocean is one of the regions on Earth that is undergoing climate change at the fastest pace [START_REF] Convey | Antarctic climate change and the environment[END_REF], Turner et al. 2014, Henley et al. 2019). Predicting the response of Antarctic species and communities to environmental changes is challenging but it has become a pressing need to address conservation issues and support guidance for the management of living resources in a dynamic context (Gutt et al. 2012 SDM is a correlative approach that depicts the relationship between the distribution of species occurrence records and a set of environmental descriptors, to interpolate and predict the potential distribution of species over their entire distribution range [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF], Peterson et al. 2011).

Over the last decades, SDMs have been increasingly used to address conservation issues (Guisan et al. 2013[START_REF] Ross | Use of predictive habitat modelling to assess the distribution and extent of the current protection of 'listed'deep-sea habitats[END_REF][START_REF] Marshall | Species distribution modelling to support marine conservation planning: The next steps[END_REF][START_REF] Reiss | Benthos distribution modelling and its relevance for marine ecosystem management[END_REF][START_REF] Arthur | Managing for change: Using vertebrate at sea habitat use to direct management efforts[END_REF], predict species suitable areas [START_REF] Meier | Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica[END_REF], Reiss et al. 2011, Nachtsheim et al. 2017, Phillips et al. 2017), including potential distribution shifts (Ficetola et al. 2007, Václavík and Meentemeyer 2009, Jiménez-Valverde et al. 2011, Tingley et al. 2014), and guide sustainable management plans for commercial purposes (Valavanis et al. 2008[START_REF] Maxwell | Modelling the spatial distribution of plaice (Pleuronectes platessa), sole (Solea solea) and thornback ray (Raja clavata) in UK waters for marine management and planning[END_REF]. They have particularly proved useful to improve our understanding of species distribution in poorly sampled and seldom accessed areas [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF], Peterson et al. 2011) and for the conservation of Southern Ocean marine life (De Broyer et al. 2014, Basher and Costello 2016[START_REF] Hogg | On the ecological relevance of landscape mapping and its application in the spatial planning of REFERENCES very large marine protected areas[END_REF], Jansen et al. 2018, Jerosh et al. 2019).

Calibration is a critical step in SDM procedures, influencing their relevance, robustness and accuracy (Barbet-Massin et al. 2012, Guisan et al. 2013[START_REF] Anderson | Habitat suitability models for predicting the occurrence of vulnerable marine ecosystems in the seas around New Zealand[END_REF]. The selection of environmental descriptors is also important, as it shapes model accuracy and performance [START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF], Austin and van Niel 2011, Dormann et al. 2012b[START_REF] Braunisch | Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change[END_REF][START_REF] Bucklin | Comparing species distribution models constructed with different subsets of environmental predictors[END_REF], Bradie and Leung 2017, Petitpierre et al. 2017). The inappropriate selection of descriptors has been shown to cause overfitting in SDMs, especially when the number of descriptors is high compared to the number of occurrences available [START_REF] Anderson | Speciesspecific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent[END_REF][START_REF] Braunisch | Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change[END_REF], Kramer-Schadt et al. 2013, Synes and Osborne 2011, Petitpierre et al. 2017), leading to over-complex models, reduced transferability performances and underestimation of predicted suitable areas [START_REF] Beaumont | Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species' current and future distributions[END_REF].

Collinearity between descriptors is another major concern when addressing the quality of SDMs (Dormann et al. 2012b). Collinearity occurs when at least two descriptors are linearly related in a statistical model (Dormann et al. 2012b). In regression models, multicollinearity increases variance values between independent descriptors. It can cause incorrect estimations of beta regression coefficients and bias interpretation, making it difficult to disentangle the respective contributions of independent variables to explaining the dependent variable (Hair et al. 2014). Collinear descriptors are traditionally removed from datasets to calibrate SDMs (Dormann et al. 2012b[START_REF] Pierrat | Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling[END_REF][START_REF] Merow | A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter[END_REF][START_REF] Fabri-Ruiz | Modèles de distribution et changements environnementaux: Application aux faunes d'échinides de l'océan Austral et écorégionalisation[END_REF][START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF], while a recent study showed that collinear descriptors could also improve the model's fit (Freer et al. 2019).

Machine-learning algorithms can effectively model complex relationships between environmental conditions and occurrence records (Olden et al. 2008, Elith and[START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF]. They can harness incomplete datasets and missing data, as well as contrasting and extreme values, and generate predictive models with high transferability performances and low sensitivity to species niche width [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF], Elith et al. 2008, Elith and Graham 2009, Reiss et al. 2011, Barbet-Massin et al. 2012[START_REF] Schweiger | Increasing range mismatching of interacting species under global change is related to their ecological characteristics[END_REF], Qiao et al. 2015). In machine-learning algorithms, the CHAPTER 2.
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In the present work, we test the robustness of SDMs generated with BRT for various numbers of environmental descriptors and different collinearity values. Models are generated for six common and abundant asteroid (sea star) species that have been extensively sampled and studied; here used as representative case studies for the Antarctic benthos: Acodontaster hodgsoni (Bell, 1908), Bathybiaster loripes (Sladen, 1889), Glabraster antarctica (Smith, 1876) 

MATERIAL AND METHODS

Selection of environmental descriptors

A set of 58 environmental descriptors was compiled from different sources (Appendix 2.4). This set can be downloaded from the blueant R package (https://github.com/AustralianAntarcticDivision/blueant), following the procedure given in the "data_for_SDM_vignette" at https://australianantarcticdivision.github.io/blueant/articles/SO_SDM_data.html. Most descriptors are average abiotic conditions taken from the WOCE database (Appendix 2.4) and describe the average abiotic conditions for the [2005][2006][2007][2008][2009][2010][2011][2012] time period (i.e. temperature, salinity, chlorophyll-a, particulate organic carbon flux). Some descriptors are available for longer time periods only ([1957-2017] and for sea ice cover and seafloor oxygen concentration respectively). More recent or precise datasets are not available at the scale of the Southern Ocean. Raster layers were compiled with a 0.1 x 0.1° pixel resolution (11km approximately), each 0.1 x 0.1° pixel being used as a single grid-cell pixel, and cropped to the extent of the Southern Ocean (herein defined as waters south of 45°S latitude) for a total of 1.26 million pixels. Missing values are not interpolated to avoid potential biases. Available descriptors are selected according to their ecological relevance to benthic studies and following previous recommendations provided for species distribution modelling (Franklin 2010b, Anderson 2013) and Antarctic studies [START_REF] Saucède | Biogeographic Atlas of the Southern Ocean[END_REF]). The selected descriptors best document the main characteristics of the species physical habitat (depth, sea water temperature, geomorphology, sediment nature, slope, roughness), geography (distance to the Antarctic continent, to canyons, to continental shelves, to the maximal sea ice extent in winter), seasonality (sea ice concentration and thickness), food resources (chlorophyll-a concentration and Particulate Organic Carbon [POC] exported on the sea bottom) and chemical environment (oxygen concentration and seafloor salinity). Minimal, maximal, and range values (min-max difference) of some descriptors are computed to complement the dataset (Franklin 2010a, Bradie and Leung 2017, Guillaumot et al. 2018a-Appendix, 2018b). Extreme weather conditions and climate events were shown to strongly impact natural environments, notably species survival and distribution [START_REF] Easterling | Climate extremes: observations, modeling, and impacts[END_REF], Wernberg et al. 2013). Here, supplementary descriptors are specially developed for the intensity and frequency of monthly changes in seafloor temperature, salinity, oxygen and chlorophyll-a concentrations. For each pixel and one year, these layers document how many times monthly average values are respectively higher ('maximal extreme event') or lower ('minimal extreme CHAPTER 2.
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Biological records

Antarctic sea stars play an important role in the structuring of benthic communities (McClintock et al. 2008a, Mah and Blake 2012[START_REF] Lawrence | Starfish: Biology and ecology of the Asteroidae[END_REF], they have contrasting ecological niches and life history traits (e.g. feeding diets, reproduction and development modes) that condition habitat preferences and dispersal abilities (Moreau et al. 2017, Table 2.4). Here, SDMs are generated for six sea star species using presence-only records obtained from the "Antarctic and sub-Antarctic asteroid database" published by [START_REF] Guillaumot | Modelled distributions of benthic species of the Southern Ocean in a fast-changing environment[END_REF]: Acodontaster hodgsoni (Bell, 1908), Bathybiaster loripes (Sladen, 1889), Glabraster antarctica (Smith, 1876), Labidiaster annulatus Sladen, 1889, Odontaster validus Koehler, 1906 andPsilaster charcoti (Koehler, 1906). The studied species are abundant and have been regularly sampled during benthic expeditions to the Southern Ocean, making them some of the best-documented occurrence records on database available for Southern Ocean benthic species [START_REF] Guillaumot | Modelled distributions of benthic species of the Southern Ocean in a fast-changing environment[END_REF]. The working database [START_REF] Guillaumot | Modelled distributions of benthic species of the Southern Ocean in a fast-changing environment[END_REF]) includes presence-only records obtained by trawling and scuba diving during numerous expeditions to the Southern Ocean ranging from 1872 to 2016 (Appendix 2.6). Occurrence data collected during the last 50 years are the most abundant with an intense sampling effort carried out in the framework of the International Polar Year (IPY: 2007(IPY: -2009) and the Census of Antarctic Marine Life (CAML: 2005(CAML: -2010)). All occurrence data are selected to ensure that a sufficient number of records are available to run the models (Stockwell andPeterson 2002, van Proosdij et al. 2016) and exhaustively cover the geographical space occupied by the considered species. Presence-only records are spatially aggregated near coastal areas and scientific stations (Appendix 2.7 and see De Broyer et al. 2014, Guillaumot et al. 2019 -Chapter 2). Presence record duplicates found in the same grid-cell pixel are removed to reduce spatial replication as described by Segurado et al. (2006) and [START_REF] Galante | EN M eval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models[END_REF]. Because the considered species have different depth ranges [START_REF] Guillaumot | Modelled distributions of benthic species of the Southern Ocean in a fast-changing environment[END_REF], model projection is performed for each species independently and bounded by maximal depth value defined by the species deepest record (see Table 2.4 for details).
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Model calibration

Boosted regression tree (BRT) is chosen as a robust method to test the influence of descriptor selection on model performance. This machine-learning algorithm has been shown to be well suited to accommodate presence-only data and incomplete datasets, to fit complex relationships between species records and environmental descriptors, to limit model overfitting and to have high transferability performances [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF], Elith et al. 2008, Hastie et al. 2009, Ward et al. 2009, Reiss et al. 2011[START_REF] Schweiger | Increasing range mismatching of interacting species under global change is related to their ecological characteristics[END_REF], Mainali et al. 2015, Guillaumot et al. 2019 -Chapter 2), transferability being defined as the ability of models to predict in new environmental conditions (Friedman et al. 2001).

BRT models are calibrated following the procedure detailed in Guillaumot et al. (2019 -Chapter 2) and using the gbm R package (Elith et al. 2008[START_REF] Ridgeway | gbm: generalized boosted regression models[END_REF]. BRT parameters are set to minimize both the optimal number of trees used to build the model and the minimal predictive deviance (learning rate, bag fraction and tree complexity are provided for each species in Appendix 2.8). A set of 1,000 background records are randomly sampled in the environmental space (maximal depth limit depending on the studied species, Table 2.4). This number is tested sufficient enough to represent the whole spectrum of environmental conditions existing in the geographic area of interest (Guillaumot et 

Collinearity and the selected number of environmental descriptors

Collinearity between the 58 selected descriptors is analysed following a stepwise approach that eliminates layers with a Variance Inflation Factor (VIF) > 10, using the 'vif.step' function of the usdm R package [START_REF] Naimi | Where is positional uncertainty a problem for species distribution modelling?[END_REF]. VIF > 10 is defined as the threshold above which the effect of multicollinearity on model predictions is considered significant (Hair et al. 2014) and too strong to be automatically corrected by machine-learning algorithms (Dormann et al. 2012b).

Multicollinearity is measured on projection areas, that is the portion of the environment for which SDMs do not extrapolate. Extrapolation areas are defined for each species independently using the Multivariate Environmental Similarity Surface index (MESS, [START_REF] Elith | The art of modelling range-shifting species[END_REF]. They correspond to all grid-cell pixels where descriptor values are not contained within the range of environmental conditions on which presence-only data are recorded. Models generated with the 58 environmental descriptors are compared to models for which collinear descriptors are removed.

A stepwise procedure is used to test the effect of the selected number of environmental descriptors on model performance. SDMs are first generated for the six species using the total set of 58 environmental descriptors. Then, the six descriptors that contribute the least to the average model are iteratively pruned at each step of a series of SDMs successively generated with 58,52,46,40,34,28,22,[START_REF] Guillaumot | SDMPlay: a pedagogic package for a first approach in species distribution modelling[END_REF]10, and four environmental descriptors.

Model evaluation and comparisons

The percentage of presence data correctly predicted (i.e. correctly classified test data) is computed to assess the performance of SDMs in terms of transferability. Model performances are also assessed using the Area Under the Receiver Operating Curve (AUC, [START_REF] Fielding | A review of methods for the assessment of prediction errors in conservation presence/ absence models[END_REF], the Point Biserial Correlation between predicted and observed values (COR, [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF]) and the True Skill Statistic (TSS, Allouche et al. 2006). Suitable areas are classified using the Maximum Sensitivity plus Specificity threshold (MaxSSS), which is the most adapted index for SDMs using presence-only data [START_REF] Liu | Selecting thresholds for the prediction of species occurrence with presence-only data[END_REF]. MaxSSS enables to split model projections into suitable (>MaxSSS value) and unsuitable areas (<MaxSSS value). The average number of regression trees produced by BRT to generate models (gbm R package, Elith et al. 2008) is calculated to evaluate model complexity. Scores of SDM series generated with a decreasing number of environmental descriptors are compared between each other using the Mann-Kendall nonparametric trend test to assess the presence of a monotonic trend [START_REF] Hipel | Time series modelling of water resources and environmental systems[END_REF]. Differences between model performances (AUC, TSS, COR, percentage of correctly classified test data), model properties (number of trees) and outputs (percentage of predicted suitable area) are tested using a Wilcoxon-Mann-Whitney pairwise test.

Final SDM outputs

Six final SDMs are proposed for the six considered species for the [2005][2006][2007][2008][2009][2010][2011][2012] time period after selection of the optimal number of descriptors and after removing collinear descriptors. The CHAPTER 2.

Article. [START_REF] Guillaumot | Selecting environmental descriptors is critical to modelling the distribution of Antarctic benthic species[END_REF]. Selecting environmental descriptors is critical to modelling the distribution of Antarctic benthic species. Polar Biology contribution of descriptors and their marginal effects (partial dependence plots) are provided and compared between each other. Environmental conditions predicted as suitable for species distribution are plotted through a principal component analysis (PCA) to display the predicted species occupied environmental space. PCA is compared between species having the same projection depth threshold, either 1,500 m or 4,000 m depth (Table 2.4).

RESULTS

Contribution of environmental descriptors

All models generated for the six species and with the total set of 58 descriptors perform well with an average AUC score value of 0.853 (min. 0.827; max. 0.883) and an average of 67.2% of correctly predicted test data (59.5-75.1%). 'Extreme events' descriptors specifically computed for this study (Appendix 2.5) never contribute more than 1% to SDMs, some extreme chlorophyll-a layers excepted (Table 2.5). Overall, parameters that contribute the most to all SDMs are depth, currents, ice thickness and seafloor properties (Table 2.5, Fig. 2.12). Few contrasts are obtained in contributions between species models except for the contribution of seafloor current speed and POC concentrations that respectively vary from 1.95 to 10.84% and 0.49 to 7.05% between SDMs (Fig. 2.12).
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Number of environmental descriptors

Overall, models generated with different numbers of environmental descriptors do not show significant changes in model performance (Mann-Kendall trend tests, Table 2.6). Models generated with four environmental descriptors only show a significant decrease in AUC, COR, and TSS values, and in the percentage of correctly classified test data for all species but G. antarctica (Fig. 2.13, Appendix 2.9). Significant differences in model performance are model-specific, whatever the number of descriptors used (Fig. 2.13, Appendix 2.9). Differences in the number of trees used to generate models and in the size of suitable areas are never tested significant (Table 2.6).
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Article. [START_REF] Guillaumot | Selecting environmental descriptors is critical to modelling the distribution of Antarctic benthic species[END_REF]. Selecting environmental descriptors is critical to modelling the distribution of Antarctic benthic species. Polar Biology The PCA (Fig. 2.14) shows an important contribution of both the physical environment (slope, roughness) and food resources (chlorophyll-a concentrations) to SDMs projected down to 1,500 m depth (strong correlation with PC1) and a weaker and independent contribution of mean sea-ice cover and seafloor current speed (strong correlation with PC2, Fig. 2.14d). In contrast, food resources (chlorophyll-a and POC concentrations), sea ice cover and depth are the main contributors to SDMs projected down to 4,000 m depth (high correlation with PC1) with weaker contributions of the physical environment (slope and roughness) (correlation with PC2, Fig. 2.14h).

Major differences are obtained between "shallow" and "deep" models (Fig. 2.12, Fig. 2.14) whatever the other species ecological traits (Table 2.4).

Spatial projections of SDMs also show important contrasts in distribution patterns between "shallow" (1,500 m) and "deep" (4,000 m) models (Fig. 2.15). Shallow models present low probability values along the Antarctic coasts and higher probabilities in the sub-Antarctic Islands, in the Kerguelen or South Georgia archipelagos, except for O.validus. The three SDMs projected down to 4,000 m depth show common patterns, with high probabilities predicted close to the Antarctic coasts where most occurrences are recorded (Appendix 2.7). High probabilities are also predicted on the Kerguelen Plateau for B. loripes and G. antarctica, while low probabilities are predicted for P. charcoti in the sub-Antarctic Islands (Fig. 2.15).
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DISCUSSION

Influence of the number of descriptors on modelling performance

SDMs performed at the scale of the Southern Ocean are usually based on a limited mass of occurrence data, patchy datasets and using low-resolution environmental descriptors. Recent studies have questioned the relevance of using such SDMs considering the spatial and temporal heterogeneities of datasets and the importance of sampling biases (Fabri-Ruiz 2018, Guillaumot et al. 2018a -Appendix). In the present work, we focus on the selection of environmental descriptors as a critical step for model calibration [START_REF] Bucklin | Comparing species distribution models constructed with different subsets of environmental predictors[END_REF], Petitpierre et al. 2017). Machinelearning algorithms such as BRT were proved efficient to deal with non-informative descriptors [START_REF] De'ath | Classification and regression trees: a powerful yet simple technique for ecological data analysis[END_REF]Fabricius 2000, Elith et al. 2008) and to correct for the influence of collinearity between descriptors (Dormann et al. 2012b). The performance of BRT to model the distribution of Antarctic benthic species at large spatial scale is herein evaluated. Successive models were generated from four to 58 environmental descriptors. All models have similar accuracy (AUC, TSS, COR) and transferability (percentage of correctly classified test data) performances. Models generated with four environmental descriptors only (depending on each species) show significant differences in performance values and low capacities to describe and predict species distribution. SDMs generated for the species G. antarctica depart from this general result with no significant differences in modelling performances between models generated with four to 58 descriptors. This may be due to the large number of occurrence data available to describe the species distribution and conversely, the limited number of environmental descriptors contributing to the models (Appendix 2.7, Table 2.4).

Many studies have stressed the risk of model overfitting when using too many descriptors [START_REF] Anderson | Speciesspecific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent[END_REF], Synes and Osborne 2011[START_REF] Braunisch | Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change[END_REF], Kramer-Schadt et al. 2013, Petitpierre et al. 2017) or the risk of underestimating the extent of suitable areas due to reduced transferability performances [START_REF] Beaumont | Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species' current and future distributions[END_REF]. In contrast, our results show that models generated with a different number of predictors are characterised by similar performance levels. This is congruent with results obtained by [START_REF] Bucklin | Comparing species distribution models constructed with different subsets of environmental predictors[END_REF] who highlighted that the random addition of descriptors has a minor influence on modelling performances when using machine-learning algorithms. The absence of significant changes in the number of trees used to build BRT models, using a different number of environmental descriptors show that BRT is not sensitive to model overfitting, and only selects the relevant information needed for model calibration, a property formulated as the stagewise selection by Elith et al. (2008). Non-informative environmental data that might complexify SDMs are automatically pruned when generating BRT trees, and the most relevant descriptors only are retained to model species distribution [START_REF] De'ath | Classification and regression trees: a powerful yet simple technique for ecological data analysis[END_REF], Whittingham et al. 2006, Elith et al. 2008). However, selecting a reduced number of environmental descriptors allows the production of simpler models for which descriptor contributions can be easily interpreted [START_REF] Bucklin | Comparing species distribution models constructed with different subsets of environmental predictors[END_REF].

Influence of collinearity on modelling performance

Removing collinear descriptors from datasets has remained an usual approach in species distribution modelling (Dormann et al. 2012b[START_REF] Merow | A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter[END_REF][START_REF] Fabri-Ruiz | Modèles de distribution et changements environnementaux: Application aux faunes d'échinides de l'océan Austral et écorégionalisation[END_REF][START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF]). However, this strategy has recently been questioned when SDMs are not used for extrapolation [START_REF] Braunisch | Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change[END_REF][START_REF] Bucklin | Comparing species distribution models constructed with different subsets of environmental predictors[END_REF], Li et al. 2016, Petitpierre et al. 2017). In the present study, results show that modelling performances (AUC, TSS, COR and percentage of correctly classified test data) of some SDMs significantly decrease when collinear descriptors are removed (i.e. A. hodgsoni, O. validus and G. antarctica). Removing collinear variables that significantly contribute to SDMs may induce model instability and reduce modelling performance. The observed decrease in AUC scores may be due to the reduction of model overfitting when removing collinear descriptors [START_REF] Dhingra | Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3. 4.4 viruses with spatial cross-validation[END_REF]).

Machine-learning algorithms are efficient modelling tools that take into account the multiple interactions among descriptors (Segurado and Araújo 2004, Araújo and Guisan 2006[START_REF] Dormann | Components of uncertainty in species distribution analysis: a case study of the great grey shrike[END_REF], Elith et al. 2008[START_REF] Braunisch | Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change[END_REF]) and can correct for collinearity between CHAPTER 2.
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However, using collinear descriptors in SDMs can make model outputs difficult to interpret when temporal and spatial relationships between descriptors are unknown (Dormann et al. 2012b), because collinearity induces complex relationships between environmental drivers and the underlying processes [START_REF] Guisan | Predicting species distribution: offering more than simple habitat models[END_REF][START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF][START_REF] Merow | A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter[END_REF]).

Several methods have been documented to correct for strong collinear effects. The sequential regression approach is one of them and aims at replacing correlated variables by a linear or nonlinear model [START_REF] Leathwick | Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions[END_REF][START_REF] Dormann | Components of uncertainty in species distribution analysis: a case study of the great grey shrike[END_REF]. A second method consists in using descriptor score values on PCA principal components rather than descriptor raw values themselves (Kühn 2007[START_REF] Dormann | Components of uncertainty in species distribution analysis: a case study of the great grey shrike[END_REF]. However, in this latter approach, SDMs and species ecological preferences are difficult to interpret.

Selection of environmental descriptors

'Distance layers' (Appendix 2.4) have been commonly used as descriptors in previous SDMs performed for Southern Ocean studies [START_REF] Cheung | Modelling present and climate-shifted distribution of marine fishes and invertebrates[END_REF], Murase et al. 2013, Mormède et al. 2014c, Nachtsheim et al. 2017). In the present work, 'distance layers' were used in the first set of SDMs and they all showed strong contributions to model outputs. 'Distance layers' may be strongly correlated to environmental gradients, and especially to latitudinal gradients, or may integrate the multiple effects of diverse environmental variations (Bradie andLeung 2017, Ferrari et al. 2018).

Interpreting the contribution of such descriptors to SDMs can remain problematic and depends on research objectives, especially depending on whether ecological significance or statistical contributions only are sought. The statistical contribution of a descriptor to the model is the independent contribution of the descriptor deduced from what other descriptors already bring (Dormann et al. 2012b), it may not necessarily imply a direct ecological significance. Consequently, 'distance layers' were removed from the initial set of environmental descriptors along with collinear descriptors and descriptors that contributed the least to models (28 descriptors out of the 58 available, Table 2.5). This reduces the set to 14 or 16 descriptors only depending on the species under study (Appendix 2.10).

Final model outputs

In the present study, SDMs performed for A. hodgsoni, L. annulatus and O. validus showed lower performances (lower AUC, TSS, COR and correctly classified test data) compared to SDMs performed for B. loripes, G. antarctica and P. charcoti. For these last three species, a higher number of records were available and contributed to the high model performances as species niches were better described during model calibration [START_REF] Qiao | No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation[END_REF], van Proosdij et al. 2016, Guillaumot et al. 2018a -Appendix). Despite these differences in model performance, descriptor contributions and species predicted distributions are mostly similar between models (Fig. 2.12, 2. [START_REF] Guillaumot | Modelling species distribution shifts with environmental changes in data-poor areas. An example from the Kerguelen Plateau[END_REF][START_REF] Guillaumot | Modelling species distribution: influences of temporal, spatial, and sampling heterogeneities in data-poor areas. An example from the Kerguelen Plateau[END_REF]. This is an unexpected result as the six studied species were initially selected for their contrasting ecological niches and life traits, which should have determined distinct occupied environments and biogeographic patterns. This unexpected result stresses the limits of SDMs performed at broad spatial scale. The low resolution (in space and time) of environmental descriptors, the heterogeneous sampling and the relative low number of occurrence records available are cumulative limitations to model accuracy and species ecological requirements were not precisely captured by models. In contrast, models are all structured by large-scale and common environmental drivers relating to broad-scale latitudinal gradients that prevail between Antarctic and sub-Antarctic regions [START_REF] Clarke | Antarctic marine benthic diversity[END_REF], Linse et al. 2006, De Broyer et al. 2014[START_REF] Martin | Éco-régionalisation et conservation des communautés benthiques de la zone économique exclusive française des îles Kerguelen, Ecoregionalisation and conservation of benthic communities in the French exclusive economic zone of Kerguelen[END_REF].
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CONCLUSIONS AND RECOMMENDATIONS

This work aimed at testing the influence of the number of selected environmental descriptors and their collinearity on model performance. Models were generated at the scale of the entire Southern Ocean using BRT. The BRT algorithm is a machine-learning approach that automatically selects descriptors that best characterise species niches (Elith et al. 2008). This matches our results that highlight that all models generated with different number of environmental descriptors showed similar performances. In contrast, in most SDMs generated without collinear descriptors, model overfitting tends to be minimized in comparison with models generated with the whole set of 58 descriptors. In three species only, no difference in model performance was observed between models using either collinear or non-collinear descriptors.

Final models were generated using a subset of 14 to 16 environmental descriptors that best explain species distributions. 

Slope degrees

Derived from bathymetry with the terrain function of the 'raster' R package (Hijmans 2019) [6]. Computation according to [START_REF] Horn | Hill shading and the reflectance map[END_REF] [5], i.e. option neighbor=8. The computation was done on the GEBCO bathymetry layer (0.0083° resolution) and the resolution was then changed to 0.1°. This study. Derived from GEBCO [2] Roughness unitless Derived from bathymetry with the terrain function of the 'raster' R package (Hijmans 2019) [6].

Roughness is the difference between the maximum and the minimum value of a cell and its 8 surrounding cells. The computation was done on the GEBCO bathymetry layer (0.0083° resolution) and the resolution was then changed to 0.1°.

This study. Derived from GEBCO [2] Mixed layer depth m Summer mixed layer depth climatology from ARGOS data. Re-gridded at 0.1° resolution from a 2degree grid using a nearest neighbor interpolation This study. Derived from Australian Antarctic Data Centre [4] Sea surface current speed m.sec -1 Current speed near the surface (2.5m depth); derived from the CAISOM model (Galton-Fenzi et al. 2012 [7], based on ROMS) This study. Derived from Australian Antarctic Data Centre [4] Sea floor current speed m.sec -1 Current speed near the sea floor; derived from the CAISOM model (Galton-Fenzi et al. 2012 [7], based on ROMS) This study. Derived from Australian Antarctic Data Centre [4] Distance In this study, raster layers are produced to depict extreme events occuring in a year for each pixel. This is done for chlorophyll-a and oxygen concentrations, seafloor temperatures and salinities. The aim is to describe the frequency of environmental changes occuring in the area and in a second step, model its contribution to explaining species occurrence distribution through the SDM analysis.

In a annual series, an "extreme event" is defined as a value that is higher than the median value of the series. This analysis is pixel-specific.

Using monthly raster layers, the code extracts the series of values (Yi,1, Yi,j,…Yi,12) from each pixel i, for the corresponding month (j=1,..,12). A vector of 12 values is obtained and used to calculate the median value of the annual series and the associated MAD value (Median Absolute Deviation), an equivalent to the standard deviation computed for the median (MAD= median (|Yi,j-median(Yi,j)))

A maximal extreme event is counted when Yi,j+MADi,j and Yi,j-MADi,j values are higher than the median value of the series, and similarly, a minimal extreme event is counted when Yi,j+MADi,j and Yi,j-MADi,j values are lower than the median value of the series (Fig. S2.5.A).

Figure S2.5.A.

Theoretical plot showing the determination of extreme events. Crosses: Yi,j values of the raster layer for a pixel i and a month j ; orange continuous line: median value of the series ; purple dotted line: Yi,j+MADi,j ; green dotted line: Yi,j-MADi,j. In this example, yellow crosses are maximal extreme events because Yi,j , Yi,j+MADi,j and Yi,j-MADi,j are higher than the median value of the series (orange line); pink crosses are minimal extreme events because Yi,j , Yi,j+MADi,j and Yi,j-MADi,j are lower than the median value of the series (orange line); the black crosses are not considered as extreme events because Yi,j , Yi,j+MADi,j or Yi,j-MADi,j are cutting the MAD line.
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INTRODUCTION

Among the broad array of analytical tools developed for marine ecology studies over the last two decades, Species Distribution Modelling (SDM) has been increasingly used (Peterson 2001, Elith et al. 2006, Austin 2007, Gobeyn et al. 2019) and applied to Southern Ocean pelagic (Pinkerton et al. 2010, Freer et al. 2019), benthic organisms [START_REF] Loots | Habitat modelling of Electrona antarctica (Myctophidae, Pisces) in Kerguelen by generalized additive models and geographic information systems[END_REF][START_REF] Pierrat | Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling[END_REF], Basher and Costello 2016, Xavier et al. 2015, Gallego et al. 2017, Guillaumot et al. 2018a-Appendix, 2018b[START_REF] Fabri-Ruiz | Can we generate robust Species Distribution Models at the scale of the Southern Ocean?[END_REF], Jerosch et al. 2019) and even marine mammals (Nachtsheim et al. 2017). SDM represents a complementary approach to individual-based modelling and eco-physiological experiments, quickly and synthetically identifying environmental correlates of species distribution (Brotons et al. 2012, Feng and Papes 2017, Feng et al. 2020). SDM is also used to define species distribution spatial range (Nori et al. 2011, Walsh andHudiburg 2018) and can be used as decision criteria for conservation purposes (Guisan et al. 2013[START_REF] Marshall | Species distribution modelling to support marine conservation planning: The next steps[END_REF]. For instance, it is currently used in proposals developed by national committees of the CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources) to support the definition and delineation of marine protected areas (Ballard et al. 2012[START_REF] Arthur | Managing for change: Using vertebrate at sea habitat use to direct management efforts[END_REF].

Applying SDM to Southern Ocean case studies is particularly challenging due to major constraints and biases that may reduce modelling performance. As for many oceanographic studies, access to environmental data with high temporal and spatial resolutions is difficult (Davies et al. 2008, Robinson et al. 2011). Antarctic coastal areas, in particular, are rarely accessed and documented due to logistical constraints, access being for example impossible during the austral winter due to sea ice cover (De Broyer et al. 2014). The availability of species absence records is also a limiting factor to modelling performances and model calibrations (Brotons et al. 2004, Wisz andGuisan 2009). Models are usually based on a limited number of presence-only records and limited number of sampling sites, which are both spatially aggregated in the vicinity of scientific stations, where access is frequent and datasets from different seasons, have been compiled over decades and even beyond (De Broyer et al. 2014, Guillaumot et al. 2018a-Appendix, Fabri-Ruiz et al. 2019, Guillaumot et al. 2019 -Chapter 2).

When generating a SDM, the model is fit to data with a given range of value for each environmental descriptor (i.e. the calibration range). When transferring model predictions, a portion of the environment may cover additionnal conditions that are outside this calibration range: these are non-analog conditions and the model extrapolates [START_REF] Randin | Are niche-based species distribution models transferable in space?[END_REF], Williams and Jackson 2007, Williams et al. 2007, Fitzpatrick and Hargrove 2009, Owens et al. 2013[START_REF] Yates | Outstanding challenges in the transferability of ecological models[END_REF].

Considering the limited number of species presence-only records occupied by each marine benthic species, and the poor quality and precision of environmental descriptors available for modelling Southern Ocean species distributions (Guillaumot et al. 2018a-Appendix, Fabri-Ruiz et al. 2019), a large proportion of cells might be expected to be extrapolations beyond the calibration range of the model.

The Multivariate Environmental Similarity Surface (MESS) approach analyses spatial extrapolation by extracting environmental values covered by presence-only records and estimates areas where environmental conditions are outside the range of conditions contained in the calibration area [START_REF] Elith | The art of modelling range-shifting species[END_REF]. The method considers that extrapolation occurs when at least one environmental descriptor value is outside the range of the environment envelop for model calibration (more details given in Appendix 2.16).

The MESS approach was initially used to determine the environmental barriers to the invasion of the cane toad in Australia, when facing new environments and under future conditions [START_REF] Elith | The art of modelling range-shifting species[END_REF]. Implemented in MaxEnt [START_REF] Elith | A statistical explanation of MaxEnt for ecologists[END_REF], MESS was subsequently used by several authors for defining the climatic limits to the colonisation of new environments by non-native species, such as the American bullfrog in Argentina [START_REF] Nori | American bullfrog invasion in Argentina: where should we take urgent measures?[END_REF], for studying contrasts between native and potential ecological niches like in the study of the spotted knapweed (Centaurea stoebe) (Broennimann et al. 2014), or for defining the limits to model transferability and predicting the distribution of trees under future environmental conditions (Walsh and Hudiburg 2018).
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More recently, the MESS approach was used to define model uncertainties related to extrapolation [START_REF] Escobar | A global map of suitability for coastal Vibrio cholerae under current and future climate conditions[END_REF], Li et al. 2015[START_REF] Cardador | Combining trade data and niche modelling improves predictions of the origin and distribution of non-native European populations of a globally invasive species[END_REF][START_REF] Luizza | Integrating local pastoral knowledge, participatory mapping, and species distribution modeling for risk assessment of invasive rubber vine (Cryptostegia grandiflora) in Ethiopia's Afar region[END_REF], Iannella et al. 2017[START_REF] Milanesi | Towards continental bird distribution models: environmental variables for the second European breeding bird atlas and identification of priorities for further surveys[END_REF], Silva et al. 2019) and extrapolation areas where environmental conditions are non-analog to conditions of model calibration (Fitzpatrick andHargrove 2009, Anderson 2013).

Associating uncertainty information to model predictions has been acknowledged as a necessity for reliable interpretations of model predictions [START_REF] Grimm | Mathematical models and understanding in ecology[END_REF]Berger 2016, Yates et al. 2018). It is also a requirement for specifying the level of risk associated with predictions and evaluating whether uncertainty can be mitigated to improve model outcomes (Guisan et al. 2013).

This study addresses the importance of extrapolation and associated uncertainties in SDMs generated at broad spatial scale for Southern Ocean species: an analysis that is seldom performed although important to characterise model reliability. Using the case study of six abundant and common sea star species in marine benthic communities, objectives of this work are to evaluate the importance of extrapolation proportions in wide projection areas, and to provide some methodological clues to mitigate the effects of extrapolation and improve model accuracy.

MATERIAL AND METHODS

2.1.Studied species and environmental descriptors

The distribution of six sea star species (Asteroidea : Echinodermata) was studied (Table 2 Environmental descriptors were selected from the dataset provided at https://data.aad.gov.au/metadata/records/environmental_layers. These are oceanography raster layers that mostly describe the physical and geochemical environment south of 45°S with a 0.1° grid-cell resolution (approximately 11km wide in latitude). Among the 58 environmental descriptors provided, only those that fulfilled the analysis performed by Guillaumot et al. (2020b -Chapter 2) were selected: 'distance' layers and 'extreme' layers were not selected because the interpretation of their respective contributions to niche models is complex or weak and collinear descriptors were also discarded for a Variance Inflation Factor (VIF) > 10 [START_REF] Naimi | Where is positional uncertainty a problem for species distribution modelling?[END_REF]. A set of 14-16 species-specific layers that characterise temperature, salinity, food availability and habitat characteristics were therefore used for model calibration (Table S2.14).

Model calibration

Species Distribution Models (SDMs) were generated using the Boosted Regression Trees (BRT), a machine-learning approach that was already calibrated for Southern Ocean case studies [START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF], Guillaumot et al. 2019 -Chapter 2) and was proved efficient to provide accurate models with good transferability performance, that is good ability to project model in space and time (Elith et al. 2008, Reiss et al. 2011[START_REF] Schweiger | Increasing range mismatching of interacting species under global change is related to their ecological characteristics[END_REF], Guillaumot et al. 2019 -Chapter 2). In order to minimalize the effect of presence-only records aggregation on model predictions, background data were randomly sampled in the environment following the probabilities defined by a Kernel Density Estimation (KDE) (see [START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF] for general principles, Guillaumot et al. 2018a, 2018b[START_REF] Fabri-Ruiz | Can we generate robust Species Distribution Models at the scale of the Southern Ocean?[END_REF] for applications). The number of background records was selected equal to the number of presence-only records (Barbet-Massin et al. 2012). The KDE was established based on the aggregation of benthos sampling effort provided in the Biogeographic Atlas of the Southern Ocean (De Broyer et al. 2014, map available in supplementary material of Guillaumot et al. 2019 -Chapter 2). One hundred SDMs were generated and averaged for each species, with background data randomly sampled following the KDE for each replicate. SDMs were calibrated and reliability tested using a spatial cross-validation procedure. For each species, several procedures were compared following Guillaumot et al. (2019 -Chapter 2). The studied area was randomly subdivided into 2 to 6 areas of similar surfaces (longitude-split spatial folds), with presence and background data selected from one to three areas for model training and from the remaining areas for model testing. The "6-fold CLOCK" cross-validation approach was selected for B. loripes, G. antarctica, L. annulatus and O. validus and the "2-fold CLOCK" procedure was selected for A. hodgsoni and P. charcoti, according to the best percentage of test data correctly classified (Appendix 2.15).
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The Maximum sensitivity plus specificity threshold (MaxSSS), considered the most appropriate threshold for presence-only SDM [START_REF] Liu | Selecting thresholds for the prediction of species occurrence with presence-only data[END_REF]) was used to binarize models into suitable (>MaxSSS value) and unsuitable areas (<MaxSSS value). This threshold was used to measure the proportion of test data correctly classified. Modelling performances were also assessed using the three following metrics: Area Under the Receiver Operating Curve (AUC, Fielding and Bell 1997), the Point Biserial Correlation between predicted and observed values (COR, [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF]) and the True Skill Statistics (TSS, Allouche et al. 2006).

Two analyses were performed: in Analysis #0 ('no-depth limited'), SDMs were projected on the entire Southern Ocean surface (south of 45°S) and in Analysis #1 ('depth limited'), SDM projections and background samplings were restricted to areas limited by a maximum depth threshold defined for each species based on the available species presence-only records (Table 2.8).

MESS calculation

The MESS was measured using the dismo R package (Hijmans et al. 2017) and following the guidelines provided in [START_REF] Elith | The art of modelling range-shifting species[END_REF]. Pixels for which at least one environmental descriptor has a value that is outside the range of environmental values defined by presence-only records (calibration range) were considered to be extrapolation (i.e when MESS gets negative values, Appendix 2.16). The proportion of extrapolation areas (i.e. the proportion of cells defined as extrapolations over the total projection area) was calculated and compared between species. On SDM projection maps, extrapolated pixels were displayed in black.

Environmental parameters responsible for extrapolation were estimated by modifying the code provided in [START_REF] Elith | The art of modelling range-shifting species[END_REF]. Detailed R scripts are available at https://github.com/charleneguillaumot/THESIS. Methodological details are provided in Appendix 2.16.

Influence of the number and distribution of presence-only records on extrapolation

The proportion of extrapolation areas may vary with presence-only sampling effort. In order to study the influence of the number and distribution of these presence-only records on the proportion of extrapolation areas, two analyses were performed. First, several SDMs were generated with different numbers of presence-only records, following the chronological addition of new presenceonly records through time, from 1980 to 2016. Second, SDMs generated with 10-100% (10% increments, so 10 subsets) of the entire presence-only dataset were compared. In this analysis, in contrast to the previous one, presence-only records are randomly sampled among the datasets available.

In these two analyses, SDMs were projected on the environmental space limited by the maximum depth defined for each species (Table 2.8), 100 model replicates were generated and averaged in each case and spatial autocorrelation (SAC) was estimated to assess the influence of presenceonly records aggregation on modelling performances. The significance of SAC was tested using the Moran's I index computed on model residuals (Luoto et al. 2005, Crase et al. 2012).

The relationship between the number of presence-only records used in SDM and the relative proportion of extrapolation areas was characterised using linear regressions. This allowed, for each model, estimation of the minimum number of presence-only records required to obtain a 'reasonable' proportion of extrapolation area arbitrarily set to a 10% threshold.

RESULTS

Extrapolation and the extent of projection areas

All generated SDMs are accurate and performant, with high AUC (AUC>0.91), TSS (TSS>0.559) and COR (COR>0.68) values, low standard deviations and good percentages of correctly classified presence-only test data (77-90 %) (Table 2.9). Descriptors that contribute the most to SDMs are depth (22-34%), minimum POC (6-21%), POC standard deviation (8-20%), mean ice cover depth (7-17%) and mixed layer depth (3-10%). Contrasts between species are in the CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2.
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respective percentage of contribution of these descriptors. Descriptors that drive the most species distribution are similar between species (Appendix 2.17).

Models projected on the entire Southern Ocean (Analysis #0, 'no-depth limited') extrapolate on an area covering between 15-78% of the entire projection area, and 19-45% of the area initially predicted as suitable to the species distribution (Table 2.9, Fig. 2.16). Extrapolation areas cover more than 50% of the projection area for A. hodgsoni (78.6%), P. charcoti (67.8%), L. annulatus (64.8%) and O. validus (51.9%) and more than 30% of suitable areas (Table 2.9). For these four species, depth is responsible for 25-68% of extrapolation (Appendix 2.17). Geomorphology, mean ice cover and POC standard deviation are layers also contributing to 2-7% for extrapolation (Appendix 2.17). These descriptors that highly contribute to MESS also contribute to the model, and there are no descriptors for which the contribution to MESS is important whereas the contribution to the model is not substantial (Appendix 2.17).

In models projected on areas restrained in depth (Analysis #1, 'depth limited'), the percentage of extrapolation area sharply decreases from 59 to 18% according to the species (Table 2 Overall, descriptor contributions to the model remain unchanged between the two analyses, except for depth contribution that decreases to around 10% on average for all the species. In contrast, in Analysis #1, depth contribution to the MESS is very low (0.64-5.8%), except for P. charcoti (16.3%). Mean ice cover is the layer that contributes the most to extrapolation, extrapolation areas mainly corresponding to Weddell and Amundsen seas.
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Extrapolation and the number of presence-only records

Model performance and size of extrapolation area were compared between models run with different numbers of presence-only records, following the chronological addition of new samples (from 1980 to 2016). From 1980 to 2016, the number of presence-only records collected during oceanographic campaigns has increased from 1.9 to 3.3 times according to the species (1.9 times for O. validus, 3.3 times for A. hodgsoni) (Fig. 2.17A). Spatial autocorrelation between presenceonly records varies between species, with the highest Moran's I scores obtained for L. annulatus, O. validus and A. hodgsoni. The highest Moran's I values were mainly calculated for the oldest presence-only subsets (1980), strenghtening the fact that the addition of new presence-only records with additional campaigns reduces spatial autocorrelation (Table S2.18).
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Model performance increases (higher AUC scores) with the addition of new presence-only records, for all species except for models of A. hodgsoni and B. loripes for which AUC values are stable (Table S2. [START_REF] Guillaumot | Projecting species energetic performance in a spatially-explicit context: Trait Distribution Modelling of a key antarctic species[END_REF]. Similarly, the percentage of correctly classified test data presents important standard deviation values and improves with the addition of new presence-only records, except for O. validus (10% decrease) (Fig. 2.17B).

For all species, the addition of new data reduces the percentage of extrapolation over the total projection area (-30.7% for A. hodgsoni, -12.7% for B. loripes, -20.5% for G. antarctica, -17.6% for L. annulatus, -10.2% for O. validus and -11% for P. charcoti, i.e. differences between the two extrapolation % values) and over the species suitable area as well (Fig. 2.17C, Table S2.18). S2.18); (C) Proportion of grid-cell pixels of the projection area that are extrapolations (%). The maximal number of presence-only records present in Table 2.9 may not be reached here because some collection dates remain unknown.

The decrease of extrapolation with the addition of presence-only records was tested by running, for each species a series of models with different subsets of presence-only records randomly sampled from the total dataset. One hundred model replicates were progressively run with 10 to 100% of the total dataset and proportions of extrapolation areas were computed accordingly (Fig. 2.18, Table S2.19). Results confirm that the addition of presence-only records strongly reduces proportions of extrapolation areas. Proportions of extrapolation areas also vary between species models as a function of depth. Low proportions of extrapolation areas are obtained in models run for deep species and large datasets (e.g. 8.2% for 591 records in B. loripes and 23.9% for 851 records in G. antarctica). In contrast, models run for shallower species show higher proportions of CHAPTER 2.
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extrapolation areas (40.6% for 298 records in A. hodgsoni, 51.5% for 375 records in L. annulatus and 35.8% for 337 records in O. validus). For these last species, spatial autocorrelation values are also higher compared to other species (Table S2.19). missing for low percentages of presence-only records (10-30%, corresponding to close or less than 100 presence-only records) that do not allow models to be generated.

A linear regression model was fit to the relationship between the number of presence-only records and proportions of extrapolation areas. For all species, regression coefficients are all negative and tested significant showing that proportions of extrapolation areas decrease with the addition of new records (Table 2.10). The intersection point between regression models and the (arbitrary) 10% extrapolation threshold was used to provide an estimate of the minimum number of records required for each species model to have an "adequate" proportion of extrapolation areas of 10%. This minimum number of presence-only records is reached for none of the studied species, and according to species, the number of presence-only records available should be increased at least by 1.6 to 3.3 times (Table 2.10). Overall, models all show good performances (Table 2.9), the spatial cross-validation procedure ensuring a relevant evaluation of modelling performances when using spatially aggregated data (Muscarella et al. 2014[START_REF] Dhingra | Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3. 4.4 viruses with spatial cross-validation[END_REF], Guillaumot et al. 2019 -Chapter 2). However, models show high proportions of extrapolation areas, with extrapolation covering up to 78% of the projection area in A. hodgsoni model (Table 2.9). This means that even if models are evaluated as accurate, model extrapolation area can concern up to three quarters of the projection area! Assessing the proportion of the projection area for which models extrapolate is therefore necessary as a complementary statistic to adapt modelling methods and improve model predictions. Masking projections by extrapolation uncertainties is also important to perform accurate interpretations.
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Extrapolation uncertainty maps have already been associated to SDM projections once in the context of the Southern Ocean, by Torres et al. (2015) in their study of the grey petrel Procellaria cinerea, performed at the scale of the Southern Ocean. More recently, the MESS approach has been introduced in the methodological paper of Guillaumot et al. (2019 -Chapter 2), showing an extrapolation area covering 64% of the projection area for the distribution model of the sea star O. validus, the most studied benthic invertebrate of the Southern Ocean. However, uncertainties associated to extrapolation were not provided in most model projections performed for Southern Ocean species studies. For instance, modelled distributions performed for the sea urchins Sterechinus neumayeri and Sterechinus diadema [START_REF] Pierrat | Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling[END_REF] were generated using a relative low number of presence-only records (241 and 332, respectively). Based on results of the present study, extrapolation could be expected to cover up to 60% of modelled distribution areas for these last two species. Further Southern Ocean species distribution models were generated with sometimes less than 100 presence-only records (see [START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF][START_REF] Fabri-Ruiz | Can we generate robust Species Distribution Models at the scale of the Southern Ocean?[END_REF] for instance), suggesting that extrapolation could cover up to 70% of projection areas as visible in models of A. hodgsoni and P. charcoti performed in our study with few records (Fig. 2.17, Table S2. [START_REF] Guillaumot | Projecting species energetic performance in a spatially-explicit context: Trait Distribution Modelling of a key antarctic species[END_REF][19].

In addition to model uncertainties associated to extrapolation, other biases can alter the performance of SDMs generated at broad spatial scales including the spatial and temporal aggregation of data (Hortal et al. 2008, Tessarolo et al. 2014, 2017) 

How can we reduce model extrapolation? Enriching SDMs with knowledge of species ecology

One objective of this work was to provide some methods to mitigate the effect of extrapolation on model uncertainties. Our results show clear contrasts between models generated for "deep" and "shallow" species, with lower proportions of extrapolation areas computed for deep species models (29.1 and 15.73% respectively for B. loripes and G. antarctica). The model generated for P. charcoti departs from this general scheme, with extrapolation reaching 67.9% of the projection area. This is due to the strong spatial aggregation of records and the small presence-only record dataset available in deeper habitats. Depth is indeed responsible for 58.1% of the extrapolation for P. charcoti (Appendix 2.17). Indeed, the erroneous characterisation of species occupied space, due to an incomplete sampling, has been identified as a significant source of bias in SDM predictions (Hortal et al. 2007[START_REF] Lobo | More complex distribution models or more representative data?[END_REF], Rocchini et al. 2011[START_REF] Sánchez-Fernández | Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles[END_REF], Titeux et al. 2017[START_REF] El-Gabbas | Wrong, but useful: regional species distribution models may not be improved by range-wide data under biased sampling[END_REF].

Limiting model projection areas to biogeographically, or ecologically "realistic" depth ranges can help reduce extrapolation as exemplified in the present study, for models of A. hodgsoni and P. charcoti, for which extrapolation was reduced from 78.6 to 40.6% and 67.9 to 35.8% respectively (Table 2 been differentiated into distinct taxonomic units yet [START_REF] Rogers | Evolution and biodiversity of Antarctic organisms: a molecular perspective[END_REF], Arango et al. 2011, Havermans et al. 2011[START_REF] Near | Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes[END_REF]).

How can we reduce model extrapolation? Improving sampling effort

Increased sampling effort over enlarged areas allows the production of larger datasets from which many records can be used to generate reliable models with reduced extrapolation areas. In this study, proportions of extrapolation areas proportionally decreased when increased numbers of presence-only records were used to generate models. The occurrence datasets were significantly augmented between 1980 and 2016, with a number of presence-only records multiplied by 1.9 -3.3 times according to the studied species, which allowed reduction of model extrapolation from 10.2 to 30.7% according to the species (Fig. 2.17, Table S2.18). However, results suggest that about twice the number of presence-only records actually available would be necessary to reduce extrapolation down to a "satisfactory" threshold of 10% of the projection area (Table 2.10).

Generating reliable and stable models using a sufficient number of presence-only records is essential. In this study, some models could not be run when the number of presence-only records was too low (approaching 150 presence-only records or less) compared to the broad extent of the projection area and the spatial aggregation of these data (Table S2.19). Considering that the spatial cross-validation procedure splits the initial dataset into training and test data, and that at each step, 75% of these training data are randomly sampled by BRT to iterately create a model tree (and generate stochasticity in the procedure), the final number of presence-only records available to describe the presence data -environment relationship becomes too low (around 37.5% of the initial number of presence-only records).

The lowest number of presence-only records required to build a reliable model is speciesdependent as not all presence-only records are equally informative, due to species-specific relationships between records and the environment. When models are generated using BRT, records that bring no new environmental information to the model are dropped because they are not informative enough to improve the construction of BRT trees. Pruning non-informative data also reduces the total number of presence-only records available to generate a model (Elith et al. 2008). This is strongly related to prevalence that is, the ratio between the number of presence-only records and the size of the projection area (Jiménez-Valverde et al. 2009[START_REF] Santika | Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data[END_REF], Barbet-Massin et al. 2012). In order to accurately describe a vast projection area and be able to create a model, it is necessary to gather a substantial amount of information about the geographic environmental conditions and about species known distribution. If a limited number of records is available and these data are aggregated in space (i.e. weakly informative), the first trees produced by BRT will contain most of the model deviance, but as no new information is provided, the model will quickly overfit because redundant information is provided by close presence-only records.

Eventually, this will make the model collapse.

Increasing the number of presence-only records is proved an efficient alternative to generate more relevant models (Stockwell and Peterson 2002, Feeley and Silman 2011, van Proosdij et al. 2016), but the spatial distribution of these records is of importance as well [START_REF] Yates | Outstanding challenges in the transferability of ecological models[END_REF]. A uniform distribution of records over the entire projection area reduces spatial autocorrelation and optimizes the sampling and representativeness of environmental conditions under which species can thrive. In this study, the spatial aggregation of species records was particularly high for two species, O. validus and L. annulatus. It was estimated that the number of supplementary presence-only records necessary to reach a proportion of extrapolation areas of 10% should be twice as high as it is for other species (Table 2.10). Additional data are necessary to improve the establishment of the relationship between species distribution and the environment because species records are less informative when aggregated than when they are evenly distributed.

The Southern Ocean covers contrasting environmental conditions, biogeographic regions and ecoregions (Pierrat 2011[START_REF] Fabri-Ruiz | Benthic ecoregionalization based on echinoid fauna of the Southern Ocean supports current proposals of Antarctic Marine Protected Areas under IPCC scenarios of climate change[END_REF]. Ideally, both species presence and absence should be recorded in each ecoregion for an accurate description of the occupied space (Torres et al. 2015). Because such a sampling effort is usually not achievable, nor realistic, alternatives would consist of (1) a relevant adjustment of projection areas, with for instance the combination of several SDM projections using different grid sizes according to what is available. Generating SDM CHAPTER 2.
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projections for large areas and combining results with projections zoomed in on areas where more environmental detail is available would provide more relevant and realistic modelled species distributions (Seo et al. 2009, Anderson and[START_REF] Anderson | The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela[END_REF]. ( 2) In order to compensate for the lack of presence-record availability, the 'ensembles of small models' approach is another alternative. This method fits a set of bivariate models (i.e. generated with two environmental descriptors only), within a hierarchic multi-scale framework (i.e. zooming in and out in space from local to regional predictions), and finally averages this ensemble of models with a weighted ensemble approach, which subsequently provides more accurate and robust model predictions [START_REF] Lomba | Overcoming the rare species modelling paradox: a novel hierarchical framework applied to an Iberian endemic plant[END_REF][START_REF] Breiner | Overcoming limitations of modelling rare species by using ensembles of small models[END_REF], Habibzadeh and Ludwig 2019).

Some limitations to the MESS approach

The MESS approach can reveal parts of projection areas where models extrapolate. Extrapolation however can be over-estimated. Indeed, extrapolation is considered as soon as the value of a single environmental descriptor falls outside the range of the known species environmental requirements. But, some extreme values would not limit but can promote species presence: this is the case for descriptors relating to food resource availability (e.g. chlorophyll a, POC concentrations...), for which a high pixel value exceeding the range of values recorded based on species presences will be still considered as extrapolation, although more food usually means suitable conditions for species distribution. Some fine-tuning of the MESS approach would imply to identify, for each pixel, which descriptor is responsible for extrapolation and filter the conditions for which the model should really extrapolate. Such an approach was developed by Owens et al. ( 2013), who used the MOP method (Mobility Oriented Parity). Based on multivariate analyses, they determined if pixels contain a combination of environmental conditions that should induce extrapolation. In contrast to the MESS approach, the MOP method can directly differentiate proportions of extrapolation areas according to the combination of descriptors responsible for extrapolation. Another complex alternative is the ExDet tool, developed by [START_REF] Mesgaran | Here be dragons: a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models[END_REF], which also accounts for multivariate extrapolation possibilities, i.e. extrapolation linked to novel combinations between covariates. In this study, the MESS approach was favored as a more strict and conservative method to highlight the importance of extrapolation, the effect of data quantity and quality, and the relevance of the proposed corrections. The MESS is also simpler to apply and well suited to exploratory studies.

CONCLUSION

This study shows that when modelling species distribution on broad-scale areas, such as the Southern Ocean, important proportions of predicted distribution probabilities (suitable or not) are model extrapolations. This extrapolation uncertainty relies on the completeness of species sampling, and the definition of its occupied space to calibrate the model. Extrapolation occurs in areas where habitat suitability is unknown as no information on species presence or absence is provided.

Reducing extrapolation is possible by combining SDM with ecological and physiological knowledge of species requirements (e.g. depth range, temperature tolerance thresholds). Increased sampling effort over enlarged areas also allows the production of more reliable models with reduced extrapolation areas and our study shows that doubling the number of presence-only records available to generate the model would help reduce the extrapolation area down to 10% of the projected area. While more data samples remain unavailable, some methods are increasingly developed to improve model performances, by adjusting the extent of the projection area or by generating and aggregating several ensembles of small models.

Finally, present results call for a widespread use of extrapolation maps and uncertainties associated to model predictions in model outputs, along with information about the quantity of presence-only records available, the quality and resolution of environmental descriptors and the state of our knowledge of species ecology. These are all essential information needed to support CHAPTER 2.
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APPENDIX 2.14. List of environmental descriptors selected to generate the models POC amplitude [2005][2006][2007][2008][2009][2010][2011][2012] POC minimum [2005][2006][2007][2008][2009][2010][2011][2012] POC minimum [2005][2006][2007][2008][2009][2010][2011][2012] POC minimum [2005][2006][2007][2008][2009][2010][2011][2012] POC minimum [2005][2006][2007][2008][2009][2010][2011][2012] POC minimum [2005][2006][2007][2008][2009][2010][2011][2012] POC minimum [2005][2006][2007][2008][2009][2010][2011][2012] POC standard deviation [2005][2006][2007][2008][2009][2010][2011][2012] POC standard deviation [2005][2006][2007][2008][2009][2010][2011][2012] POC standard deviation [2005][2006][2007][2008][2009][2010][2011][2012] POC standard deviation [2005][2006][2007][2008][2009][2010][2011][2012] CHAPTER 2.
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APPENDIX 2.15. Spatial cross-validation procedure

The cross-validation procedure consists in using a subset of the total dataset to train the model, and the remaining part is used to test model predictions. In doing so, training and test data are independent whenever generating the model, which improves the reliability of model evaluation [START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF]. CHAPTER 2.

Article. [START_REF] Guillaumot | Extrapolation in species distribution modelling. Application to Southern Ocean marine species[END_REF] In the 'dismo' R package (Hijmans et al. 2017), the mess function calculates the value of the MESS for each pixel of the rasterstack used for model projection (P). This rasterstack contains the environmental conditions into which the model is projected.

In the first step explained by [START_REF] Elith | The art of modelling range-shifting species[END_REF], the environmental conditions experienced by the presence data are extracted, and the minimal and maximal values define the boundaries of each descriptor (Vi).

1. Let mini be the minimum value of descriptor Vi over the reference point set, and similarly for maxi.

Then, the environmental conditions of the projection layer P are extracted and compared to these minimal and maximal boundaries.

2. Let pi be the value of descriptor Vi at pixel Pj.

3. Let fi be the percent of reference points whose value of descriptor Vi is smaller than pi. 4. Then the similarity of Pj with respect to descriptor Vi is: (pi -mini) / (maxi -mini) * 100 if fi = 0 2 * fi if 0 < fi ≤ 50 2 * (100 -fi) if 50 ≤ fi < 100 CHAPTER 2.
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(maxi -pi) / (maxi -mini) * 100 if fi = 100 5. Finally, the multivariate similarity of Pj is the minimum of its similarity with respect to each descriptor. This calculation is then applied to each pixel Pj...n

The final value of the MESS represents how similar pixel values of each descriptor (V1, V2, ...) are to the reference set of values defined by presence records. It allows negative values, and whenever the MESS is negative, it corresponds to the situation when at least one descriptor has a value that is outside the range of environments over the reference. In this study, the MESS was estimated and all pixels for which the MESS value was negative were considered as extrapolation and colored in black.

The MESS calculation was also adapted for [START_REF] Elith | The art of modelling range-shifting species[END_REF] to be able to estimate for each pixel which descriptor is concerned with the extrapolation. The MESS was separately calculated for each layer of the rasterstack P. Whenever the MESS score calculated for pixel Pj was negative, it was considered that the model extrapolates at that specific pixel due to the specific layer studied.

Results were compiled and the contribution of each descriptor to the extrapolation was assessed (Appendix 2.17).
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INTEGRATED APPROACHES

Chapter 3 focusses on integrated approaches. Coupling SDM predictions with experimental results, in situ observations or results from other modelling approaches that detail species physiological tolerance, migratory potential or biotic interactions was shown to improve the relevance of species niche estimation. Such methods have however been rarely applied to Southern Ocean marine case studies. In this chapter, we studied the integration of SDM with physiological information. DEB models characterise the species fundamental niche, by explicitly highlighting the influence of abiotic factors on species physiology. On the other hand, SDMs estimate the species realised niche. SDMs are indeed implemented using presence records, hence providing an implicit assessment of the influence of abiotic conditions but also dispersal barriers and biotic interactions on species distribution.

This chapter illustrates three case examples.

The first study assessed the potential of the Patagonian crab Halicarcinus planatus (Fabricius, 1775) to survive in the Western Antarctic Peninsula using two approaches: experimental data that characterise the physiological boundaries of larvae and adult to temperature and salinities and SDMs that simulate species occupied space in present and future environmental conditions.

In the second analysis, the case study of the sea urchin Sterechinus neumayeri [START_REF] Meissner M ; ) Echinoideen | The marine fauna of New Zealand: family Hymenosomatidae (Crustacea, Decapoda, Brachyura)[END_REF], distributed all around the Antarctic continent, was used to compare DEB model spatial projections and SDM predictions. Comparisons were performed for contrasting environmental conditions and future simulations.

The third analysis used data from a long-term observing network located in the Kerguelen Islands, to implement for the first time in the Southern Ocean the integration of DEB and SDM models to predict the distribution of an endemic sub-Antarctic sea urchin, Abatus cordatus (Verrill, 1876) as a response to environmental drivers. We compared the performance of simple SDM and integrated approaches to predict A. cordatus distribution under seasonal variations. Two integrated approaches were studied and performed by either (1) including the spatial projection of the DEB model as an input layer inside the SDM or (2) using a Bayesian inference procedure to use DEB model outputs as priors of the Bayesian SDM. 

Abstract

The potential for biological colonisation of Antarctic shores is an increasingly important topic in the context of anthropogenic warming. Successful Antarctic invasions to date have been recorded exclusively from terrestrial habitats. While non-native marine species such as crabs, mussels and tunicates have already been reported from Antarctic coasts, none have as yet established there. Among the potential marine invaders of Antarctic shallow waters is Halicarcinus planatus (Fabricius, 1775), a crab with a circum sub-Antarctic distribution and substantial larval dispersal capacity. An ovigerous female of this species was found in shallow waters of Deception Island, South Shetland Islands, in 2010. A combination of physiological experiments and ecological modelling was used to assess the potential niche of H. planatus and estimate its future southward boundaries under climate change scenarios. We show that H. planatus has a minimum thermal limit of 1°C, and that its current distribution (assessed by sampling and niche modelling) is physiologically restricted to the sub-Antarctic region. While this species is presently unable to survive in Antarctica, future warming under both 'strong mitigation' and 'no mitigation' greenhouse gas emission scenarios will favour its niche expansion to the Western Antarctic Peninsula (WAP) by 2100. Future human activity also has potential to increase the probability of anthropogenic translocation of this species into Antarctic ecosystems.
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INTRODUCTION

Biological invasions are an important component of global change, and one of the most critical global threats to native biodiversity [START_REF] Sax | Species invasions: insights into ecology, evolution and biogeography[END_REF]. According to [START_REF] Richardson | Naturalization and invasion of alien plants: concepts and definitions[END_REF], a nonnative species becomes an invasive species when a set of individuals is able to traverse natural barriers (whether geographical, environmental, or ecological) and subsequently establish in new habitats. While numerous anthropogenic activities can promote invasions, climate change may represent a particularly potent threat to natural ecosystems (Malcolm et al. 2006). Both the rate and dimension of biological invasions are likely to be influenced by global warming (Walther et al. 2009). Understanding the mechanisms and routes of such range shifts may help facilitate the design of strategies for controlling or preventing invasion [START_REF] Estoup | Reconstructing routes of invasion using genetic data: Why, how and so what?[END_REF].

Notwithstanding the wide expanse of Southern Ocean waters isolating the southern tip of South America from other land masses, several non-native species have been reported in the Antarctic over recent decades (Smith and Richardson 2011). These examples include the invasive grass Poa annua (Molina-Montenegro et al. 2012[START_REF] Chwedorzewska | Poa annua in the maritime Antarctic: an overview[END_REF], seeds of the toad rush Juncus bufonius [START_REF] Cuba-Díaz | Juncus bufonius, a new non-native vascular plant in King George Island, South Shetland Islands[END_REF], the invasive mosquito Trichocera maculipennis (Potocka and Krzemińska 2018), and several South-American invertebrates (e.g. insects, worms, freshwater crustaceans; Hughes andWorland 2010, Hughes et al. 2015). Non-native species have also been reported in marine habitats and in the shallow subtidal zone, in particular in the south Shetland Islands (i.e. decapods and bivalves) and East Antarctica (i.e. bryozoans, hydrozoans, and tunicates) [START_REF] Mccarthy | Antarctica: The final frontier for marine biological invasions[END_REF], Avila et al. 2020[START_REF] Cárdenas | First mussel settlement observed in Antarctica reveals the potential for future invasions[END_REF]. However, there is as yet no evidence for any non-native marine species having established in Antarctica.

Reaching Antarctic coasts requires dispersal across vast and deep biogeographical barriers that have isolated the continent for millions of years, including traversal of the westward flowing Antarctic Circumpolar Current (ACC) that apparently impedes latitudinal dispersal [START_REF] Clarke | How isolated is Antarctica?[END_REF][START_REF] Rintoul | Antarctic Circumpolar Current S.R. In Encyclopedia of Ocean Sciences[END_REF]). The extreme cold temperatures of Antarctic waters (< +2°C) also imply a strong ecophysiological constraint to the survival and development of exotic marine species that have not adapted to near-zero and subzero temperatures [START_REF] Marsh | High macromolecular synthesis with low metabolic cost in Antarctic sea urchin embryos[END_REF], Fraser et al. 2007, Peck 2016) that can reach down to -1.85°C in winter. Consequently, Antarctic marine communities have been considered among the most isolated and endemic on Earth and invasion by non-native species as unlikely [START_REF] Clarke | How isolated is Antarctica?[END_REF][START_REF] Griffiths | Towards a generalized biogeography of the Southern Ocean benthos[END_REF].

Human activities such as fisheries, tourism and scientific operations rely on direct maritime traffic between Antarctica and lower latitude coasts, including potential transport of alien organisms through ship hull fouling and larval propagules via ballast water [START_REF] Lewis | Marine introductions in the Southern Ocean: an unrecognised hazard to biodiversity[END_REF][START_REF] Lewis | Assisted passage or passive drift: a comparison of alternative transport mechanisms for non-indigenous coastal species into the Southern Ocean[END_REF]. With more than 50,000 tourists visiting the same west Antarctic spots each southern summer [START_REF] Mccarthy | Antarctica: The final frontier for marine biological invasions[END_REF], and 4,000 scientists working in Antarctica during the summer and 1,000 in winter [START_REF] Hughes | Alien invasions in Antarctica -is anyone liable?[END_REF], tourism and science represent the main vectors of sub-Antarctic propagule pressure over Antarctic communities (Tavares and De Melo 2004[START_REF] Meredith | Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century[END_REF][START_REF] Lee | Mytilus on the move: transport of an invasive bivalve to the Antarctic[END_REF], Hellmann et al. 2008[START_REF] Diez | Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters[END_REF], Galera et al. 2018, Avila et al. 2020). Consequently, the records of non-native species in Antarctica are increasing in number, with potential for establishment now primarily constrained by ecological and physiological limitations. As the climate continues to warm, the potential for successful marine invasions into Antarctica is projected to increase substantially [START_REF] Richardson | Naturalization and invasion of alien plants: concepts and definitions[END_REF], Hellmann et al. 2008, Galera et al. 2018).

The Western Antarctic Peninsula (WAP) is the Antarctic region where the strongest climate warming has been recorded in the continent over the last 50 years [START_REF] Convey | Antarctic climate change and the environment[END_REF], Turner et al. 2014[START_REF] Gutt | The REFERENCES species characteristics on performance of different species distribution modeling methods[END_REF]. Sea-water and air temperatures have increased by +1ºC and +7°C respectively in the past half-century [START_REF] Meredith | The global importance of the Southern Ocean and the key role of its freshwater cycle[END_REF]King 2005, Schram et al. 2015), with particularly pronounced increases in winter air temperatures (King et al. 2003, Vaughan et al. 2003) and corresponding reductions in sea-ice cover (Stammerjohn et al. 2012, Ducklow et al. 2013, Turner et al. 2016[START_REF] Schofield | Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula[END_REF]. Global climate change may cause typically sub-zero Antarctic waters to warm up to (and beyond) zero, potentially providing suitable conditions to the survival of non-native species along Antarctic coasts (Hellmann et al. 2008, Galera et al. 2018).
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In February 2010, an ovigerous female of Halicarcinus planatus (Fabricius, 1775) (Brachyura, Hymenosomatidae) was found alive in shallow subtidal water of Deception Island (WAP; Aronson et al. 2014). Previous to this record, Stebbing (1914) reported this species in Macdougal Bay, South Orkney Islands; however, the reliability of this occurrence has been questioned, considering its circum-sub-Antarctic distribution (Thatje and Arntz 2004[START_REF] Diez | Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters[END_REF][START_REF] Aronson | No barrier to emergence of bathyal king crabs on the Antarctic shelf[END_REF]. Halicarcinus planatus is the only hymenosomatid crab that inhabits shallow waters [START_REF] Garth | Brachyura of the Pacific Coast of America[END_REF][START_REF] Varisco | Growth and maturity of the spider crab Halicarcinus planatus (Brachyura: Hymenosomatidae) females in the southwestern Atlantic Ocean. Can these parameters be influenced by the population sex ratio?[END_REF]) of southern South America and the sub-Antarctic Falkland/Malvinas, Marion, Crozet, Kerguelen and Macquarie Islands [START_REF] Boschi | Desarrollo larval del cangrejo, Halicarcinus planatus (Fabricius) (Crustacea, Decapoda, Hymenosomidae), en el laboratorio, con observaciones sobre la distribución de la especie[END_REF][START_REF] Melrose | The marine fauna of New Zealand: family Hymenosomatidae (Crustacea, Decapoda, Brachyura)[END_REF], Richer De Forges 1977, Griffiths et al. 2013, Aronson et al. 2014). This small crab (carapace width up to 15 mm and 20 mm for female and male, respectively, in Punta Arenas; Fig. 3.1) is an opportunistic feeder [START_REF] Boschi | Desarrollo larval del cangrejo, Halicarcinus planatus (Fabricius) (Crustacea, Decapoda, Hymenosomidae), en el laboratorio, con observaciones sobre la distribución de la especie[END_REF]) commonly found sheltered under rocks in the intertidal and subtidal zones, in between holdfasts of the giant kelp Macrocystis pyrifera or sheltered in hydrozoans and mussel colonies (Richer De Forges 1977, Chuang and Ng 1994[START_REF] Vinuesa | Reproduction of Halicarcinus planatus (crustacea, decapoda, hymenosomatidae) in the Deseado River estuary, southwestern Atlantic Ocean[END_REF]. The potential of marine taxa to establish in Antarctic waters is likely heavily constrained by ecological and physiological adaptations. H. planatus has a strong dispersal potential mediated by an extended planktonic larval stage (Richer De Forges 1977[START_REF] Diez | Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters[END_REF], Ferrari et al. 2011), lasting between 45 and 60 days (at temperatures of 11-13°C and 8°C respectively, in the laboratory) prior to benthic settlement (Boschi et al. 1969, Diez and[START_REF] Diez | Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters[END_REF]. This species has the physiological capacity to withstand low temperatures. Most decapod taxa exposed to cold waters experience increased magnesium ion concentration in the hemolymph ([Mg 2+ ]HL), reducing metabolic rates and aerobic activity, potentially leading to death [START_REF] Frederich | Distribution patterns of decapod crustaceans in polar areas: A result of magnesium regulation?[END_REF], Thatje et al. 2005a, Aronson et al. 2007[START_REF] Diez | Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters[END_REF]. However, H. planatus has the capacity to overcome these issues by reducing [Mg 2+ ]HL [START_REF] Frederich | Distribution patterns of decapod crustaceans in polar areas: A result of magnesium regulation?[END_REF], providing capacity for survival in cold waters like the Kerguelen Islands, where winter seawater temperatures range between +1.1 and +3.0°C [START_REF] Féral | Long-term monitoring of coastal benthic habitats in the Kerguelen Islands: a legacy of decades of marine biology research[END_REF]. A broad analysis by [START_REF] Diez | Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters[END_REF] considering its broad sub-Antarctic distribution, high dispersal potential, and ability to live at low temperatures, concluded that H. planatus is the most likely future decapod invader of Antarctic shallow waters.

Following the recent discovery of a living specimen of H. planatus in Deception Island, we evaluate in this study the capacity of the species to settle and spread in the WAP and adjacent islands by combining experimental designs and a niche modelling approach. Correlative niche modelling approaches have long proved useful to project the distribution range of species for conservation purposes under stable environmental conditions [START_REF] Richardson | Conservation biogeography -foundations, concepts and challenges[END_REF]. However, in the context of climate change, ecophysiological data are required to assess the capacity of organisms to survive under changing environmental conditions. In this study, we assessed experimentally the physiological capacity of H. planatus to tolerate extreme cold conditions in laboratory, and we evaluated the probability of the species to expand its distribution range southward using a Species Distribution Model (SDM). The modelled distribution of H. planatus was first projected under
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current climatic conditions in order to evaluate its distribution range in sub-Antarctic and Antarctic regions. Then the species distribution was modelled under the 'strong mitigation' and 'no mitigation' scenarios (RCP 2.6 and RCP 8.5 respectively) for 2050 and 2100 to determine the probability that H. planatus will colonize Antarctic shallow-water habitats in the future. RCP scenarios assess the evolution of the atmospheric radiative forcing towards 2300, and correspond to the level of the projected radiative forcing in 2100, expressed in W/m2 (RCP 2.6 corresponds to 2.6 W/m 2 in 2100; https://sos.noaa.gov/datas ets/catal og/datasets/air?order ing=name). (2.5 cm diameter). This unequal sample size between gender reflected to the disproportional sex ratio in nature [START_REF] Vinuesa | Distribución de crustáceos decápodos y estomatópodos del golfo San Jorge, Argentina[END_REF]Ferrari 2008, Diez et al. 2011), at the time of collection, 30% of the crabs were males and 70% were females. A plastic container of seawater was used for water replacement. Each jar and container were aerated and temperature was controlled by a cooler exchanger (Alpha RA12 and RA8, Lauda-Koenigshofen®, Germany). Individuals were acclimated for 15 days with temperature, salinity and photoperiod adjusted to the sampling location (9°C, 30 PSU, 11hrs light/13hrs dark, on April 9, 2018). Individuals were fed every four days with thawed and chopped mussels and polychaetes. The next day, 30% of seawater was removed from each jar, sucking the bottom to eliminate faeces and food debris.

MATERIAL AND METHODS

Recipients were then refilled with clean seawater at the exact same temperature and salinity from the plastic seawater container. The latter was then refilled with new seawater, which had the time to reach the specific temperature before the next refill. After acclimation, temperature was reduced by 0.5°C every day, until it reached a threshold value set at 5°C (control; minimal seawater temperature in Punta Arenas), 2°C, 1°C, 0°C, -1°C or -1.8°C, depending on the experiment, which was conducted for 90 days following (Vargas-Chacoff et al. 2009). The different temperature threshold values used in the experiment correspond to subtidal temperatures recorded in Fildes Bay (62°12'11.95''S 58°56'37.00''W; King George Island, South Shetland Islands, WAP), which ranged between -1.9ºC and 2.1ºC; summer average 1.2ºC (-0.2ºC to 2.1ºC) and winter average -1.6ºC (-1.9ºC to -1.1ºC) in 2017 (data from IDEAL-CENTER, published by [START_REF] Cárdenas | First mussel settlement observed in Antarctica reveals the potential for future invasions[END_REF].

The 90 days simulate the duration of winter. Survival was checked each morning, and dead specimens were removed and preserved in 96% ethanol.

Salinity and larval experiments.

To assess survival at different salinities, adult individuals of H. planatus were collected at the same location (RB) on July 5, 2018, transported to the laboratory and separated in containers. Eighteen females and four males were isolated in a recipient of 10-dm 3 filled in with seawater. After a 15-day acclimation period at the same temperature, salinity and photoperiod as the sampling location (5°C, 30 PSU, 8:16 L:D), individuals were submitted to different salinities of 30 PSU (control 1), 23 PSU, 18 PSU, 11 PSU and 5 PSU for 39 days at 5ºC. In parallel, some individuals submitted to natural 18-PSU seawater collected in Skyring Sound (52°33'48.07"S, 71°34'15.54"W) were used as a second control. The previously detailed protocol for feeding and cleaning was followed. Survival was checked every morning and dead specimens were removed and preserved in 96% ethanol.
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During the salinity experiment, at 30 PSU, some individuals released larvae which were subsequently collected and placed in a 1-dm 3 glass jar (200 larvae in each) filled with seawater at 5ºC, 2ºC and 1ºC for 12 days. Crab larvae were fed daily with newly hatched nauplii. Their survival was checked on days 1, 3, 6, 8, 10 and 12 and on the cleaning day which consists in the complete seawater replacement. Dead individuals were removed and preserved in 96% ethanol.

Species Distribution Modelling

Species Distribution Models (SDM) are used to project the distribution of organisms based on the statistical analysis of spatial relationships between environmental conditions and species records [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF], Peterson 2003, Peterson et al. 2011). SDMs have been widely used in the past decades for various applications among including assessing species potential distribution (Reiss et al. 2011, Nachtsheim et al. 2017[START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF]) and evaluating potential changes in predicted suitable areas under environmental shifts (Berry et al. 2002, Pearson and Dawson 2003, Thomas et al. 2004, Engler et al. 2009[START_REF] Meier | Co-occurrence patterns of trees along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica[END_REF]).

Occurrence dataset

The study had a limited geographical extent where occurrence records have been reported (Longitude: 70.5°E to 75.5°W, Latitude: 36°S to 70.5°S). Presence and absence data were collected during different sampling expeditions carried out between 2015 and 2019 ( PROTEKER 1,4,5 and 6,INACH ECA 53,54 and 55), obtained from collaborators, and retrieved from IOBIS and GBIF databases, and from the scientific literature (Appendix 3.2). The georeferencing of each occurrence was verified and for this study repeated geographical points were removed; the identification of collected specimens was checked following current taxonomy (Boschi 1964).

Occurrences located north of 34°S in Chile were not considered, since these points were outside the distribution range of the species and could not be corroborated.

A DarwinCore-compliant dataset was built using presence and absence data of H. planatus occurring on sub-Antarctic islands and South America between 1948 and 2019. Four types of records were included: individualized by specimen, by groups, records obtained from bibliographic reviews and absence records. The dataset was published in GBIF (López-Farrán et al. 2020).

Distribution models were built using 314 presence records of both adults and larvae, and 57 absence records (Fig. 3.2, Appendix 3.2).
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Environmental datasets

The distribution of H. planatus was modelled using 16 environmental parameters as descriptors of the crab habitat (Table 3.1). Depth and its derivatives (slope and roughness) were taken from GEBCO (Table 3.1). Other descriptors were compiled from the Bio-ORACLE marine layers dataset and obtained from pre-processed global ocean re-analyses, combining satellite and in situ observations at regular two-and three-dimensional spatial grids [START_REF] Assis | Bio-ORACLE v2. 0: Extending marine data layers for bioclimatic modelling[END_REF]. Minimal, maximal and mean values were used as descriptors and combined as suggested in the literature (Franklin 2010a, [START_REF] Bucklin | Comparing species distribution models constructed with different subsets of environmental predictors[END_REF]. Environmental layers provide average monthly values for the present decade [2000][2001][2002][2003][2004][2005][2006][2007][2008][2009][2010][2011][2012][2013][2014] at a spatial resolution of 5 arc-minutes (about 8 x 8 km) and describe monthly averages for the period 2000-2014.

Species distribution was also modelled according to two greenhouse gas emission scenarios, RCP 2.6 and RCP 8.5 scenarios for future decades 2040-2050and 2090-2100(IPCC 2014)). Maps of projected changes in ocean conditions were downloaded from Bio-ORACLE (https://www.biooracle.org/index.php; Table 1). The RCP 2.6 scenario (Appendix 3.3) predicts an increase of mean seafloor temperatures of up to +0.7°C along the Argentinian coasts by 2100, +1.3°C in the Weddell Sea region, and +1.3°C on the northern Kerguelen Plateau. The RCP 8.5 scenario (Appendix 3.3) for decade 2040-2050 predicts that seafloor waters will warm up by +1 °C along the southern South American coasts and in the Weddell Sea, and for decade 2090-2100 predicts an increase of seafloor mean temperatures of up to +4 °C along the Argentinian coasts, +0.5 to +1 °C in the WAP, up to +3 °C on the northern Kerguelen Plateau and a predicted decrease of -0.5 to -1 °C in insular regions such as South Georgia and the South Orkney Islands. Salinity is predicted to decrease in the sub-Antarctic and Antarctic regions from -0.1 to -0.2 PSU unit for 2050 and 2100 scenarios respectively, with close tendencies between RCP 2.6 and RCP 8.5. Sea-ice thickness is predicted to reduce in some areas from a few centimetres to 0.6 m in RCP 2.6 scenario and up to
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1.2 m for RCP 8.5 scenario, resulting in an expansion of ice-free areas in the Weddell Sea region (Fig. S3.3.A).

Primary production and oceanographic current speed for decades 2040-2050 and 2090-2100 were considered unchanged and similar to present-day conditions as there were no predictions available for these parameters. In order to spot and remove extrapolation errors, the Multivariate Similarity Environmental Estimate (MESS, [START_REF] Elith | The art of modelling range-shifting species[END_REF]) was computed based on the presence records (Guillaumot et al. 2019, 2020c -Chapter 2). The MESS provides an estimate of the range of environmental conditions under which species occurrences were found and used to calibrate the model. It is then used to select areas where model projections will be calculated, dismissing areas where environmental conditions are not met, and where the model extrapolates. This was helpful to prevent from projecting the model far from the conditions in which the species can be found (noteworthy for depth).
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Model calibration

Species distribution models were generated using the Boosted Regression Trees (BRT) algorithm with the following settings, learning rate 0.005, bag fraction 0.9 and tree complexity 4. These settings minimize the model predictive deviance according to the tests generated following Elith et al. (2008) (Appendix 3.4). The R package 'gbm' was used to run the model [START_REF] Ridgeway | Generalized boosted regression models. Documentation on the R Package 'gbm[END_REF], Elith et al. 2008). Models were calibrated using presence and absence data. Modelling performance was assessed using a spatial random cross-validation procedure adapted from Guillaumot et al. (2019 -Chapter 2) for model calibration using absence records (instead of background records). Also considering the limited number of occurrence records available and their patchy distribution at broad spatial scale, the occurrence dataset was randomly split into five spatial parts, with 80% (four parts) of the dataset used as a training subset and, 20% (one part) used as a test subset (Elith et al. 2008). The procedure was repeated 20 times to generate a set of 100 model replicates.

The proportions of presence and absence data falling into areas predicted as suitable and unsuitable for the species distribution was evaluated to assess modelling performance. Modelling performance was also assessed using the Area Under the Curve (AUC, [START_REF] Fielding | A review of methods for the assessment of prediction errors in conservation presence/ absence models[END_REF], the True Skill Statistics (TSS, Allouche et al. 2006) and the Biserial Correlation metrics (COR, [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF]).

Model outputs

Model predictions were projected on the entire study area (Longitude: -76°E to 178°W, Latitude: -35°S to -68°S) with a focus on areas where the species is mainly reported presently and where it may be expected in the future, in southern South America, the Scotia Arc and the WAP, the WAP alone, and the Kerguelen Plateau.

RESULTS

Survival rate in the temperature experiment

One individual died the next day after reaching the target temperature in the -1.8°C temperature experiment. Survival rate at -1.8°C reached 0% on day 11. Survival reached 0% on day 15 at -1.0 ºC. Survival rate at 0 ºC was 52% on day 27 and 0% on day 59. Survival rates were 60% at 1°C, 75% at 2°C and 95% at 5°C on day 90 (Fig. 3.3).
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SDM predictions under current environmental conditions [2000-2014]

SDMs showed high AUC scores of 0.947 ± 0.059, TSS of 0.795 ± 0.123 and COR of 0.873 ± 0.070. Correctly classified test data also reach high scores (89.9 ± 0. is very high (86.3%, Fig. 3.7) highlighting again the relevance of using the MESS method as recommended by Guillaumot et al. (2019, 2020c -Chapter 2). Mean sea-ice thickness (40.1 ± 3.2%) and seafloor temperatures are the two main drivers of the species distribution (mean, maximal, and minimal seafloor temperatures with 37.8 ± 3.7, 7.6 ± 1.9 and 6.9 ± 2.4% contribution to the model, respectively; Table 3.2), with suitable areas corresponding to low sea-ice coverage (<0.1%) and minimum temperatures over +2°C (Fig. 3.6). These environmental values match perfectly with the latitudinal partition in the distribution of H. planatus, with warmer temperatures (> +2°C) and lower ice coverage (< 0.1%) at the lower latitudes associated with most presence records and few absences, and in contrast, colder temperatures (< +2°C) and thicker sea ice coverage (> 0.1%) associated with absence records. Interestingly, primary production is not a good predictor of the species distribution (<1%).

As occurrence records are mainly distributed in coastal shallow-water areas, depth does not contribute much to the model as no contrast in bathymetry values are present in the dataset. Slope and roughness have probably more contrasting values in deep-sea habitats and consequently do not significantly contribute to the model (< 0.2%). The extrapolation mask importantly reduces the projected area to shallow habitats (Fig. 3.7). Distribution probabilities predicted by the model were the highest in southern South America, New Zealand and Australia and most sub-Antarctic Islands (Kerguelen, Heard, Marion, Bouvet and South Sandwich Islands; Fig. 3.7A). Interestingly, the model predicts an intermediate probability of distribution in South Georgia, for which a single absence was reported (Fig. 3.2), and a high probability on Heard Island, where no occurrence data have been reported yet. The WAP is predicted as unsuitable to the survival of H. planatus, as in the case of Deception Island (Fig.

3.7C).
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DISCUSSION

This study combines physiological and ecological modelling approaches to highlight the increased risk of marine incursions into Antarctic coastal ecosystem over the coming century. Specifically, we reveal that the widespread sub-Antarctic decapod H. planatus has significant potential to establish in Antarctic waters under realistic climate change scenarios in the coming decades. More broadly, this prospect of future marine introductions into Antarctic ecosystems potentially has crucial implications for the conservation of endemic Antarctic coastal assemblages. Indeed, over recent decades an increasing number of non-native marine taxa has been reported from Antarctic ecosystems, including: Rochinia gracilipes in the South Shetland Islands (Griffiths et al. 2013 No established non-native marine species have as yet been observed in Antarctica, suggesting that physiological barriers may be key in preventing such invasions [START_REF] Richardson | Naturalization and invasion of alien plants: concepts and definitions[END_REF]. In this study, we combined two independent approaches to define the environmental and geographical boundaries of H. planatus distribution under present and future environmental conditions. SDM provides an estimate of a species' 'realised niche' [START_REF] Hutchinson | Concluding remarks Cold Spring Harbor[END_REF][START_REF] Soberón | Interpretation of models of fundamental ecological niches and species' distributional areas[END_REF][START_REF] Soberón | Niche and area of distribution modeling: a population ecology perspective[END_REF]). The thermal limit of H. planatus established in this study, corresponds to the coldest conditions of its sub-Antarctic distribution, located in the Kerguelen Islands, where subtidal temperature ranges between +1.1 and +3.0 °C during the Austral winter (Richer De Forges 1977[START_REF] Lucas | Spider crabs of the family Hymenosomatidae (Crustacea; Brachyura) with particular reference to Australian species: systematics and biology[END_REF], Féral et al. 2019). This species can therefore potentially endure summer conditions in WAP (1ºC and above) in a wide range of salinity (between 18 PSU and 30-33 PSU), but would not survive during the cold winter months. Our experimental results may indicate that Antarctic seawater temperatures may impede larval development even during the summer, suggesting that this species is not able to complete its development in Antarctica under present conditions. In parallel, the survival rates among larvae were 65%, 85% and 92% at 1, 2 and 5°C, respectively, thus coinciding with adult rates, and confirming the sensibility to low temperature mentioned by Pörtner and Farrel (2008), confirming that at that stage larvae and adults can survive during Antarctic summer only.

Halicarcinus planatus has previously been highlighted as a potential invader of Antarctica [START_REF] Diez | Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters[END_REF], because of its potential to live in cold waters, through regulation of [Mg 2+ ]HL. However, the present results demonstrated that this physiological characteristic is not sufficient to survive the sub-zero temperatures that typify current Antarctic winters (Fig. 3.3). The finding that
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brachyuran crabs cannot currently establish in Antarctica may also help to explain their extinction from shallow Antarctic habitats from the mid-Miocene, ~14 million years ago, when ACC intensification led to cooling and the establishment of a perennial sea-ice cover in the region (Thatje et al. 2005b[START_REF] Zachos | An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[END_REF], Hansen et al. 2013[START_REF] Crampton | Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years[END_REF]. Numerous marine lineages including brachyurans, lobsters and sharks disappeared from Antarctic waters, along with most teleosteans except for cold-adapted nototheniids and liparids [START_REF] Aronson | Global climate change and the origin of modern benthic communities in Antarctica[END_REF][START_REF] Clarke | Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf[END_REF], Aronson et al. 2007). The simultaneous extinction of these diverse taxa was presumably driven by their lack of physiological tolerance to cold conditions [START_REF] Frederich | Distribution patterns of decapod crustaceans in polar areas: A result of magnesium regulation?[END_REF][START_REF] Clarke | Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf[END_REF], Aronson et al. 2007). Together, these data may highlight the crucial role of thermal barriers in preserving the integrity of Antarctic coastal ecosystem.

Under future warming scenarios with increased seawater temperatures and shortened sea-ice seasons, physiological barriers to Antarctic incursions are projected to weaken. For example, near Palmer Station the ice season decreased by 92 days from 1979/80 to 2012/13 [START_REF] Meredith | The global importance of the Southern Ocean and the key role of its freshwater cycle[END_REF]King 2005, Ducklow et al. 2013). According to IPCC RCP scenarios the WAP will continue to warm (Appendix 3.3), facilitating the establishment of alien species already arriving. Halicarcinus planatus is not able to establish in the WAP under present conditions because it is not a suitable environment (Table 3. 2,Fig. 3.6,3.7), however this may change in the future. In the South Shetland Islands, the worst scenario RCP 8.5 predicts a decrease in ice thickness, the expansion of ice-free areas (Appendix 3.3) and a 1 to 2°C increase of seafloor temperature in 2100, leading to suitable conditions for H. planatus establishment. SDM predictions indicate the highest suitability for H. planatus presence in South Georgia and some places of the WAP (Fig. 3.11B,C). The most optimistic climate change scenario RCP 2.6 predicts in 2100 a rise of seafloor water temperature of 0.4 ºC in the South Shetland Islands, resulting in intermediate SDM predictions in the WAP and South Georgia (Fig. 3.9B,C). Thus, according to these future scenarios, it is just a matter of time before the WAP would reach suitable environmental conditions for H. planatus.

Survival is not the only requirement for the establishment of a species in a new area. A successful invasion also implies developing, reproducing and then dispersing to new places [START_REF] Richardson | Naturalization and invasion of alien plants: concepts and definitions[END_REF], and active behaviour to escape, feed and mate [START_REF] Frederich | Distribution patterns of decapod crustaceans in polar areas: A result of magnesium regulation?[END_REF]. According to SDM predictions and the thermotolerance experiment, a successful invasion would be possible in an environment at +2ºC. Deception Island is the most active volcanic island of the South Shetland Islands, where many subtidal hydrothermal points and geothermal activity offer various temperatures that could favour the establishment of non-native species (Agusto et al. 2004), converting Port Foster into a key location for alien species colonization (Aronson et al. 2014, Avila et al. 2020) Forges 1977). This female certainly would not have grown up in situ; this place being on the outer coast under full Antarctic conditions (without geothermal activity or hydrothermal influence typical of the interior of Deception Island). Our results suggest its arrival at the mature stage or maybe the ovigerous stage, implying that its development was completed elsewhere. An arrival through rafting is also unlikely. Early stages of H. planatus have been observed in floating kelps (Macrocystis pyrifera) in the Internal Sea of Chiloé [START_REF] Hinojosa | Macroalgas flotantes en el mar interior de Chiloé, Chile y su fauna asociada con énfasis en peracarida y estados temprano de desarrollo de Decapoda (Crustacea)[END_REF], and kelps have been reported in Deception Island (Avila et al. 2020). However, the journey from the sub-Antarctic area to the WAP implies two years across the SO riding kelps, which is highly improbable. This female was more probably brought through the Drake by ship during the southern 2009-2010 summer; the extraction of an adult crab together with kelps frond and holdfast wrapped around an anchor is quite likely (K. Gérard pers. observation).
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The establishment of non-native marine species in Antarctica is an issue that is becoming more pressing. The composition of the community may change dramatically according to which species establishes. Antarctica is characterised by the absence of durophagous predators (bony and cartilaginous fishes and brachyurans) and short food webs. Therefore, according to Aronson et al. (2007), the arrival of a reptant crab may affect Antarctic ecology and the biodiversity of the shallow Antarctic. With the arrival of the invasive red king crab Paralithodes camtschaticus in the Barents Sea, reductions of diversity and benthic biomass were observed as a result of the predation pressure (Falk-Petersen et al. 2011), as well as shifts in interspecific competition [START_REF] David | Impacts of Invasive Species on Food Webs: A Review of Empirical Data[END_REF], Britton et al. 2018) and infection of native species by parasites associated with invaders (Bevins 2019). Although the effects of invasive species are impossible to predict, the return of durophagous predators such as decapods, chondrichthyans and teleosteans in Antarctic shallow waters has been feared, because they may cause shifts in benthic communities, modifying trophic relationships and homogenizing the Antarctic ecosystem (Aronson et al. 2007[START_REF] Aronson | No barrier to emergence of bathyal king crabs on the Antarctic shelf[END_REF]. However, H. planatus, with its small size, opportunistic feeding behaviour and soft exoskeleton, is definitely not a top predator [START_REF] Boschi | Desarrollo larval del cangrejo, Halicarcinus planatus (Fabricius) (Crustacea, Decapoda, Hymenosomidae), en el laboratorio, con observaciones sobre la distribución de la especie[END_REF]. It feeds on phytoplankton remains accumulated at the bottom, such as carrion, detritus, mucopolysaccharides from algae and small soft individuals, even of its own species (López-Farrán, personal lab. observation). They are prey for fishes (as Harpagifer bispinis, Patagonotothen tessellata and Austrolycus depressiceps; Diez et al. 2011), birds, crabs and sea stars, among others, and look for refuge among rocks and kelp holdfasts to survive (Richer De Forges 1977, Chuang and Ng 1994[START_REF] Vinuesa | Reproduction of Halicarcinus planatus (crustacea, decapoda, hymenosomatidae) in the Deseado River estuary, southwestern Atlantic Ocean[END_REF]. Halicarcinus planatus is part of the sub-Antarctic ecosystem, playing a fairly important role in food webs (Richer De Forges 1977, Diez et al. 2011). However, as it is not considered as a keystone or a bioengineer species, its establishement would not affect the Antarctic ecological community significantly.

Although the effects of introduced non-native species are impossible to project, H. planatus may just incorporate into the already well-represented detritivorous guild of the WAP shallow benthic ecosystems. Under warmer conditions (2°C), the increase of seawater temperature would affect the WAP ecosystem more intensively than the arrival of a small soft-shelled detritivorous brachyuran such as H. planatus (Turner et al. 2014[START_REF] Hughes | Breaking the ice: the introduction of biofouling organisms to Antarctica on vessel hulls[END_REF][START_REF] Clark | Lack of long-term acclimation in Antarctic encrusting species suggests vulnerability to warming[END_REF]). An example of a bioengineer species that would change the intertidal and shallow subtidal in the WAP is Mytilus cf. platensis, a non-native species recorded in 2019 [START_REF] Cárdenas | First mussel settlement observed in Antarctica reveals the potential for future invasions[END_REF]. Mussels have the capacity to provide dense three-dimensional matrices [START_REF] Alvarado | Tridimensional matrices of mussels Perumytilus purpuratus on intertidal platforms with varying wave forces in central Chile[END_REF] that persist for long periods, constituting a micro-habitat which reduces desiccation during low tides, offering a stress-free space for small fish, invertebrate and alga species (Prado and Castilla 2006).

Antarctic water temperature continues to rise and stirs up the debate on the potential establishment of incoming species through transport on ship hulls, in ballast waters or on floating kelps (Aronson et al. 2014, Avila et al. 2020). Maritime traffic and tourism have increased the footprint and intensity of human activity within Antarctica (Kruczek et al. 2018, Hughes et al. 2019), raising the pressure of propagules in marine Antarctica, and probably this will continue to increase in next years (Kruczek et al. 2018). However, the involuntary introduction of non-native species to the Antarctic region and the movement of species and/or individuals within Antarctica from one zone to any other are among the highest priority issues considered for the Committee for Environmental Protection (CEP) and the Scientific Committee for Antarctic Research (SCAR). Therefore, a strong effort has been invested to improve the ballast water management of ships in Antarctica and to develop a strategy for biofouling (MEPC 2011).

Regardless of whether H. planatus individuals are able to reach the WAP by themselves or not, the SDM projected under conditions of IPCC RCP 2.6 or 8.5 climate scenarios indicate that individuals could survive and settle, either sooner (Fig. 3.8, 3.10) or later (Fig. 3.9, 3.11) in the future depending on the warming rapidity. H. planatus is highly abundant around Punta Arenas and Ushuaia, two frequently used harbours for the ships with WAP destination [START_REF] Cárdenas | First mussel settlement observed in Antarctica reveals the potential for future invasions[END_REF]. Therefore, if the vectors of H. planatus, ship or rafting, persist [START_REF] Hinojosa | Macroalgas flotantes en el mar interior de Chiloé, Chile y su fauna asociada con énfasis en peracarida y estados temprano de desarrollo de Decapoda (Crustacea)[END_REF], Aronson et al. 2014, Avila et al. 2020), some stages (larval, juvenile or adult) may reach the WAP, survive and settle.

SDMs are tuned to generate a simple spatial representation of the occurrence of a species based on environmental variables (Guisan andZimmermann 2000 Mateo et al. 2011). Our results rely on
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models that simplify of complex facts [START_REF] Mateo | Modelos de distribución de especies: Una revisión sintética[END_REF], and make assumptions on future conditions. Beside temperture, ice thickness and salinity, there are many other variables that may vary over time and influence species distribution, such as primary production and ocean currents. Although niche models do not include eco-evolutionary parameters such as adaptation, gene flow or dispersal capacity, they are widely used to provide an insight into present and future species distribution [START_REF] Brotons | Presence-absence versus presence-only modelling methods for predicting bird habitat suitability[END_REF], Titeux et al. 2017). Combining such results with information on biological interactions, physiology, anthropic influence on individual introductions or a complete evaluation of the dispersal capacities of H. planatus using a spatial and dynamic approach would fill knowledge gaps about their real invasive capacities in future environmental conditions.

In conclusion, our results suggest that H. planatus cannot presently establish in WAP waters, but this situation has a very strong probability to change under projected climate change in the 21 st century. While the full consequences of Antarctic warming are yet to be realised, some changes in the distribution and composition of communities have already been observed (Turner et al. 2014[START_REF] Hughes | Breaking the ice: the introduction of biofouling organisms to Antarctica on vessel hulls[END_REF][START_REF] Clark | Lack of long-term acclimation in Antarctic encrusting species suggests vulnerability to warming[END_REF]). The key for future studies will be to track species distribution and demographic shifts directly as warming continues, to help understand and mitigate marine biological impacts on Antarctic coastal ecosystem.
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INTRODUCTION

Polar regions -and the Southern Ocean in particular-are increasingly affected by climate changes [START_REF] Martinson | Western Antarctic Peninsula physical oceanography and spatiotemporal variability[END_REF], 2012[START_REF] Schofield | How do polar marine ecosystems respond to rapid climate change?[END_REF], Turner et al. 2014). Temperature records over the previous decades unambiguously show an overall warming of water masses within the Antarctic Circumpolar Current area, from the surface down to 2,000 m depth, at a more rapid pace than average shifts measured in the global ocean (Gille 2002, Böning et al. 2008, Giglio and Johnson 2017). Contrasts however exist between regions of the Southern Ocean. For instance, a 1°C rise in sea water temperature has been recorded down to 25 meters in the water column at Potter Cove (King George Island, Antarctic Peninsula) over 19 years, with a decrease in sea ice extent [START_REF] Meredith | Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century[END_REF]. At the same time, sea ice has significantly been increasing in the Ross Sea both in concentration, extent [START_REF] Comiso | Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data[END_REF] 2009, 2014[START_REF] Liu | Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice[END_REF]. Associated to this overall warming, changes in the extent and duration of the Antarctic seasonal sea ice and water freshening close to glacier melting sources are also expected [START_REF] Meredith | Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century[END_REF][START_REF] Bracegirdle | Antarctic climate change over the twenty first century[END_REF], Stammerjohn et al. 2012). The Antarctic sea ice plays a crucial role in ecosystem functioning and regulates the timing of primary production (Petrou et al. 2016). Changes in sea ice regimes will impact the dynamics of phytoplankton blooms. Primary production constitutes an essential food intake for the benthos (Smith et al. 2006[START_REF] Lohrer | Altered sea ice thickness and permanence affects benthic ecosystem functioning in coastal Antarctica[END_REF], Petrou et al. 2016[START_REF] Schofield | Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula[END_REF]. Therefore, changes in phytoplankton dynamics could have a profound effect on the structure and functioning of benthic ecosystems. The tectonic, climate and glacial history of the Southern Ocean (waters below 60°S in latitude) have conditioned the evolution of the Antarctic marine biota through various adaptive radiations, speciation, dispersal and extinction events. Associated to the isolation of the Antarctic continent, this led to the evolution of an original benthic fauna unparalleled in other parts of the world's ocean [START_REF] Arntz | Antarctic marine biodiversity an overview[END_REF][START_REF] Clarke | How isolated is Antarctica?[END_REF], Linse et al. 2006[START_REF] Clarke | How well do we know the Antarctic marine fauna? A preliminary study of macroecological and biogeographical patterns in Southern Ocean gastropod and bivalve molluscs[END_REF][START_REF] Griffiths | Towards a generalized biogeography of the Southern Ocean benthos[END_REF], Pearse et al. 2009[START_REF] Rogers | Antarctic ecosystems: an extreme environment in a changing world[END_REF][START_REF] David | Biodiversity of the Southern Ocean[END_REF]. High Antarctic marine benthic invertebrates have adapted to sub-zero temperatures and their feeding strategies have been conditioned by the seasonality in food availability due to the variation of sea ice dynamics (Knox 2006). Antarctic species commonly exhibit low metabolic and growth rates associated with a high longevity compared to temperate and tropical species (Pearse and Giese 1966, Brey 1991[START_REF] Nolan | Growth in the bivalve Yoldia eightsi at Signy Island, Antarctica, determined from internal shell increments and calcium-45 incorporation[END_REF], Peck and Bullough 1993, Brey et al. 1995, Peck et al. 2016). Most of the marine species present on the Antarctic shelf are consequently stenothermic (Peck 2002[START_REF] Young | The effects of temperature on walking and righting in temperate and Antarctic crustaceans[END_REF] and very sensitive to seawater warming and temperature variations (Peck et al. 2009b).

Temperature changes can affect their physiological performance, phenology and distribution (Peck et al. 2009b, Morley et al. 2009a, 2010, 2011). Along Antarctic coasts, marine benthic communities are at the southernmost boundary of the temperature latitudinal gradient of the marine biome [START_REF] Young | The effects of temperature on walking and righting in temperate and Antarctic crustaceans[END_REF]. Consequently, in a context of warming temperatures, species are spatially limited and cannot easily migrate or find refuges to survive (Peck and Conway 2000).

Monitoring and predicting the response of Antarctic species to environmental change is challenging as gaps still persist in our knowledge of Antarctic marine species distribution [START_REF] Kaiser | Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding[END_REF][START_REF] Kennicutt | Six priorities for Antarctic science[END_REF], 2019, Gutt et al. 2018), despite the significant efforts led during the International Polar Year and the Census of Antarctic Marine Life [START_REF] Schiaparelli | The Census of Antarctic Marine Life: the first available baseline for Antarctic marine biodiversity[END_REF][START_REF] Fabri-Ruiz | Can we generate robust Species Distribution Models at the scale of the Southern Ocean?[END_REF] difficult to access) (Gutt et al. 2012). Ecological Niche Modelling (ENM) can represent an alternative to overcome this issue.

Correlative Ecological Niche Models (ENMc) can be used to predict species distribution based on the statistical relationship between species occurrence records and abiotic conditions [START_REF] Guisan | Predicting species distribution: offering more than simple habitat models[END_REF], Pearson 2007[START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF]. ENMc provide a spatial representation of the species realised niche under the assumption of equilibrium between species distribution and the abiotic environment (Guisan andZimmermann 2000, Pearson andDawson 2003). In contrast, mechanistic Ecological Niche Models (ENMm) use eco-physiological data and life history traits to describe organisms' physiology. They can predict species capabilities to survive, grow and reproduce under changing environmental conditions and describe a part of the species fundamental niche (Brown et al. 2004, Kearney et al. 2008, 2009, Sousa et al. 2008[START_REF] Cabral | Linking ecological niche, community ecology and biogeography: insights from a mechanistic niche model[END_REF].

ENMc have been widely developed for the study of Antarctic marine organisms such as pelagic plankton and fish (Pinkerton et al. 2010, Duhamel et al. 2014), deep-water shrimps (Basher and Costello 2016), cirripeds (Gallego et al. 2017), molluscs [START_REF] Xavier | Biogeography of Cephalopods in the Southern Ocean using habitat suitability prediction models[END_REF], echinoids [START_REF] Pierrat | Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling[END_REF][START_REF] Fabri-Ruiz | Can we generate robust Species Distribution Models at the scale of the Southern Ocean?[END_REF], 2020), or sea stars [START_REF] Guillaumot | AmP Nacella concinna[END_REF] , that already provides a list of 37 Antarctic marine and terrestrial species. Among them, the most commonly found in communities and well-studied Southern Ocean benthic invertebrates are the sea star Odontaster validus (Agüera et al. 2015), the bivalve Laternula elliptica (Agüera et al. 2017 -Appendix), the echinoid Abatus cordatus [START_REF] Guillaumot | AmP Nacella concinna[END_REF], Arnould-Pétré et al. 2020 -Chapter 1), the gastropod Nacella concinna (Guillaumot 2020b, Guillaumot et al. 2020a -Chapter 1) and the bivalve Adamussium colbecki (Guillaumot 2019a). DEB models have also been developed for pelagic species such as the Antarctic krill Euphausia superba, the salp Salpa thompsoni (Jager andRavagnan 2015, Henschke et al. 2018) and also for marine mammals such as the elephant seal Mirounga leonina (Goedegebuure et al. 2018).

Providing relevant projections of the impact of climate change on biodiversity is crucial to conservation biology (McMahon et al. 2004[START_REF] Gotelli | Patterns and causes of species richness: a general simulation model for macroecology[END_REF], Gutt et al. 2012[START_REF] Evans | Mechanistic species distribution modelling as a link between physiology and conservation[END_REF][START_REF] Hughes | Human-mediated dispersal of terrestrial species between Antarctic biogeographic regions: A preliminary risk assessment[END_REF]. Usually, ENMc and ENMm are independently used to study the relationship of a species with its environment (Dormann et al. 2012a). Combining both approaches has only recently emerged in link with computing advances [START_REF] Elith | The art of modelling range-shifting species[END_REF][START_REF] Buckley | Does including physiology improve species distribution model predictions of responses to recent climate change?[END_REF], Dormann et al. 2012a[START_REF] Meineri | Combining correlative and mechanistic habitat suitability models to improve ecological compensation[END_REF], Briscoe et al. 2016[START_REF] Enriquez-Urzelai | Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian[END_REF][START_REF] Hughes | Human-mediated dispersal of terrestrial species between Antarctic biogeographic regions: A preliminary risk assessment[END_REF]. This combination was proved efficient to improve predictions compared to simple models, as ENMm can address the deficits of ENMc by explicitly including processes, offering the opportunity to describe, within and without the predicted suitable boundaries of the ENMc predictions, the process-based causes of the species distribution (Kearney andPorter 2009, Dormann et al. 2012a). It can also provide more insight into drivers that shape species current distribution and potential distribution shifts under changing environmental conditions (Kearney and Porter 2009[START_REF] Buckley | Does including physiology improve species distribution model predictions of responses to recent climate change?[END_REF][START_REF] Ceia-Hasse | Integrating ecophysiological models into species distribution projections of European reptile range shifts in response to climate change[END_REF][START_REF] Meineri | Combining correlative and mechanistic habitat suitability models to improve ecological compensation[END_REF].

The echinoid Sterechinus neumayeri [START_REF] Meissner M ; ) Echinoideen | The marine fauna of New Zealand: family Hymenosomatidae (Crustacea, Decapoda, Brachyura)[END_REF] is abundant, common and endemic to the Antarctic continental shelf. It has widely been studied in various fields such as reproductive biology, embryology, toxicology, ecology and physiology (Bosch et al. 1987 -McMurdo;Stanwell-Smith and Peck 1998 -Signy Island;[START_REF] Marsh | Energy metabolism during embryonic development and larval growth of an Antarctic sea urchin[END_REF], 2001 -McMurdo;Tyler et al. 2000 al . 2017 -Peterson Channel). Widely distributed all around Antarctica (Fig. 3.12), its distribution ranges from the subtidal zone to 800-m depth with most records found in shallow waters of the continental shelf above 400-m depth (David et al. 2005). Recent molecular studies showed that the species combines a unique genetic entity all around the Antarctic continent (Díaz et al. 2011(Díaz et al. , 2018)). It plays an important ecological role in structuring benthic communities. The "grazing" pressure exerted by S. neumayeri is believed to control the local distribution of bryozoans and spirorbid annelids and could therefore have a negative feedback on the recruitment of some sessile species [START_REF] Mcclintock | Trophic biology of Antarctic shallow-water echinoderms[END_REF][START_REF] Bowden | Seasonality of recruitment in Antarctic sessile marine benthos[END_REF], Figuerola et al. 2013). Adult specimens are omnivorous and mainly feed on bryozoans, foraminifera, polychaetes, diatoms and macro-algae [START_REF] Mcclintock | Trophic biology of Antarctic shallow-water echinoderms[END_REF][START_REF] Amsler | An Antarctic feeding triangle: defensive interactions between macroalgae, sea urchins, and sea anemones[END_REF], Jacob et al. 2003[START_REF] Michel | Trophic plasticity of Antarctic echinoids under contrasted environmental conditions[END_REF] In the present work, we used both ENMc and ENMm approaches to project the distribution response of S. neumayeri to present-day conditions and to future IPCC scenarios of climate change RCP 4.5 and RCP 8.5. ENMc were generated to predict species distribution in these environmental conditions using the Random Forest algorithm (Breiman 2001). The DEB model created for S. neumayeri was spatially projected (i.e. ENMm model) in these three environmental scenarios. The results of both ENMc and ENMm models were compared to get more insight into the physiological processes and mechanisms that constrain the species distribution, and assess model performances and ecological significance under present-day conditions and future scenarios of climate change.

MATERIAL AND METHODS

Correlative ecological niche models (ENMc)

Occurrence data and environmental predictors.

An ENMc was generated using georeferenced presence-only data of S. neumayeri extracted from an extensive Southern Ocean echinoid distribution database (Fabri-Ruiz et al. 2017a) that includes field samples collected between 1901 and 2015 (Fig. 3.12). Considering the broad spatial scale of the analysis and the congruence between historical and present-day presence records (David et al. 2005[START_REF] Fabri-Ruiz | Can we generate robust Species Distribution Models at the scale of the Southern Ocean?[END_REF], it is here assumed that the species distribution did not significantly change over the last century at the scale of the entire Southern Ocean.

Environmental predictors used in the study were extracted from Fabri-Ruiz et al. (2017b) (Appendix 3.7). Predictors were selected based on their ecological relevance for explaining the distribution of S. neumayeri [START_REF] Pierrat | Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling[END_REF][START_REF] Saucède | Biogeographic Atlas of the Southern Ocean[END_REF][START_REF] Fabri-Ruiz | Can we generate robust Species Distribution Models at the scale of the Southern Ocean?[END_REF].

Collinearity between descriptors was tested to limit possible biases in predictor contributions and model predictive performances and the presence of spatial autocorrelation (Dormann et al. 2012b).

For this purpose, we performed a Spearman pairwise correlation test between descriptors that were iteratively removed for correlation values of rS > 0.8 (Dormann et al. 2012b). Over 26 possible descriptors, 13 were used to run the models. The physical habitat was described using the following descriptors: depth, geomorphology, slope, sea surface temperature range, seafloor temperature range, mean seafloor temperature and sea ice cover. Summer chlorophyll-a concentration was used as a proxy of food resources and habitat chemistry was described based on seafloor salinity, seafloor salinity range, sea surface salinity range, sea surface salinity and seafloor oxygen (Appendix 3.7). Predictor 'range' is here defined as the difference between winter and summer mean values.

Future projections were based on IPCC scenarios RCP 4.5 and RCP 8.5 (IPCC 2015, Appendix 3.8) extracted from the NOAA database (https://www.esrl.noaa.gov/psd/ipcc/ocn/ [accessed on 2019-12-19]). Future projections were not available for seafloor oxygen conditions under IPCC scenarios. The descriptor was therefore considered unchanged (present conditions) in future models.

ENMc calibration.

The distribution of S. neumayeri was modelled using Random Forests algorithm (RF) (Breiman 2001) computed with the biomod2 R package (Thuiller et al. 2009). In a former study, RF was proved relevant to model the distribution of S. neumayeri, models showing high and stable predictive performances, and appropriately captured the species environmental envelope [START_REF] Fabri-Ruiz | Can we generate robust Species Distribution Models at the scale of the Southern Ocean?[END_REF]). Here, the ENMc was parameterized with 500 classification trees, a tree number that minimizes the difference in predictive performance between models. This number was selected by testing different values of tree number (50, 100, 500 and 1000). Five node size (minimum size of the final node of any tree) and mtry =13 (the number of candidate variables to include at each split) was tuned using the 'tuneRF' function from the caret package (Kuhn 2012).
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The occurrence dataset was randomly split into a 70% subset used to train the model and a 30% subset to test model predictions. As only presence data were available, pseudo-absences were randomly generated following Barbet-Massin et al. (2012) with a number of pseudo-absences equal to the number of presences. Fifty pseudo-absence replicates were generated and for each, ten evaluation runs were computed.

Spatial sampling bias is generally pervasive in species occurrence data, which were typically not evenly sampled across the ocean (De Broyer and Koubbi 2014). This may generate strong spatial autocorrelation in model residuals, that is, the fact that close observations in geography will be more similar than random [START_REF] Legendre | Spatial autocorrelation: trouble or new paradigm?[END_REF]. The presence of spatial autocorrelation breaks the assumption of «independent errors» when significant [START_REF] Dormann | Methods to account for spatial autocorrelation in the analysis of species distributional data: a review[END_REF]) and leads to unreliable model evaluation [START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF], Kramer-Schadt et al. 2013, Warren et al. 2014).

To limit this bias, pseudo-absence data were sampled following the same sampling pattern as all Antarctic echinoid records available in the Southern Ocean. A Kernel Density Estimation map established from all Antarctic echinoid records using Spatial Analyst in ArcGIS v10.2 was used to target the pseudo-absence sampling accordingly [START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF], Guillaumot et al. 2018a -Appendix). In total, 50 pseudo-absence replicates were generated and spatial autocorrelation was quantified for each pseudo-absence replicate using the Moran I index computed with the ape R package (Paradis et al. 2008). Moran I measures the average correlation value of a variable between values taken at close localities. It is an easy correlation index to interpret, that varies between -1 (negative spatial autocorrelation: values at close localities are opposite compared to the mean value) and +1 (positive spatial autocorrelation: values at close localities are similar), with 0 for an absence of spatial autocorrelation. The significant values of spatial autocorrelation statistic are indicated by a p-value. Over the 50 replicates of pseudo-absences, we selected thirty replicates showing p > 0.5 (with p, the p-value of the significance of Moran's I), other pseudoabsences replicates have depicted a p-value less than 0.5.

The wide extent of the study area implies that a wide range of environmental conditions may be used to fit the models and leads to overestimate and extrapolate the species modelled niche (Giovanelli et al. 2010, Barve et al. 2011[START_REF] Anderson | A framework for using niche models to estimate impacts of climate change on species distributions[END_REF], Guillaumot et al. 2020c -Chapter 2). To limit extrapolation, the modelling area was limited to the maximum species registered depth (800 m, David et al. 2005) for model calibration and projection.

Model predictive performances were assessed with the TSS metric (True Skill Statistics) (Allouche et al. 2006) that is the sum of the sensitivity (proportion of correctly predicted presences) and the specificity (proportion of correctly predicted absences) minus one (sensitivity + specificity -1). The contribution of environmental predictors to the models was provided as "contribution permutation" available under the biomod2 R package (Thuiller et al. 2009). For each predictor, contribution permutation was calculated as the Pearson correlation coefficient between model predictions by randomly permuting the predictors. For this purpose, we performed ten permutation runs. The higher the value, the more the predictor contributes to the model. Response plots were provided to show the relationship between habitat suitability for S. neumayeri and environmental predictors.

ENMc projections.

ENMc projections were generated using three sets of environmental predictors: for the present time [2005][2006][2007][2008][2009][2010][2011][2012], for scenario RCP 4.5 [2050RCP 4.5 [ -2099] ] and scenario RCP 8.5 [2050RCP 8.5 [ -2099]]. Presence probability maps of S. neumayeri were produced with values close to zero indicating low presence probabilities, and values close to one indicating high presence probabilities.
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Mechanistic ecological niche model ENMm (spatial projection of Dynamic Energy Budget models)

Model description. DEB models provide a mechanistic and quantitative description of the energy fluxes in an organism that assimilates and uses energy for its maintenance, growth and reproduction throughout its entire life cycle (Kooijman 2010). DEB theory aims at describing how species energy fluxes change according to environmental conditions (i.e food and temperature) and can help estimate the species fundamental niche (Kearney and Porter 2004). DEB models rely on physiological and experimental data/traits (Kearney andPorter 2004, van der Meer 2006). This approach models a part of the species fundamental niche.

In DEB models, energy flows between four state variables: reserve (E), structure (V), maturation (EH) and reproductive buffer (ER) (Fig. 3.13). DEB models use a version of a Hollings' type II functional response. The functional response f changes when the resource (X) is different. The f value varies between 0 and 1 (van der Meer 2006).

Chlorophyll-a concentration was considered as a proxy of food resources for S. neumayeri [START_REF] Mcclintock | Trophic biology of Antarctic shallow-water echinoderms[END_REF], Jacob et al. 2003[START_REF] Michel | Trophic plasticity of Antarctic echinoids under contrasted environmental conditions[END_REF]. In Cape Evans (McMurdo), Pearse and Gierse (1966), based on gut content, has emphasized that food of S. neumayeri could be mainly constituted of diatoms which is also highlighted by Brockington et al. (2001).

Sea surface chlorophyll-a concentration data (X in Eq.2) and gut content (f in Eq. 2) were obtained from a long-term experiment conducted at Rothera Station (Western Antarctic Peninsula) in 1997[START_REF] Brueggeman | Underwater Field Guide to Ross Island & McMurdo Sound, Antarctica[END_REF](Brockington and Peck 2001). A non-linear least squares regression was performed to adjust the functional response (Eq. 2) using chlorophyll-a concentration and gut content (Appendix 3.9 for more details). The estimation gives a value of 2.95 mg.m -3 for the half-saturation coefficient (Xk).

After food ingestion, the energy is assimilated and stored into the reserve compartment at a given rate expressed in Joules per time (𝑝̇𝐴). The energy leaving the reserve (𝑝̇𝐶) is subdivided according to the "kappa-rule" (κ-rule) in between somatic maintenance ( 𝑝̇𝑀 ), growth ( 𝑝̇𝐺 ), maturity maintenance (𝑝̇𝐽), maturation, and reproduction (𝑝̇𝑅, proportion 1-κ) (van der Meer 2006, Kooijman 2010). Maturity does not contribute to body mass. The amount of energy contained in the maturity compartment thresholds the different life stages of the species during its life cycle (birth: ability to feed, puberty: ability to reproduce) (Jusup et al. 2017, Appendix 3.6). Once puberty is reached, the species is considered to be a fully developed adult, and the energy initially allocated to maturation begins to be used for reproduction.

There is no competition between the two branches of the κ-rule, which means that an organism can continue to grow and reproduce at the same time. However, energy is still primarily allocated to maintenance to prioritize body functions that are essential to the organism survival (i.e. maintenance of cell concentration gradients, protein turnover, enzyme functioning, mucus production, osmoregulation) and the maintenance of maturity (maintenance of the structure complexity).

Reserve compounds do not need maintenance as energy is continuously used. Growth corresponds to the increase of the body structure and maturation is the energy dissipated or expended by the body in the increase of maturity.

Estimation of DEB model parameters.

The DEB model was parameterized using literature data from field and experimental works mainly led at McMurdo and Rothera stations, Antarctica (Table 3 .3,Appendix 3.10,3.11).

Zero-variate data correspond to single measurements at a given time (characterised by specific food and temperature conditions) and uni-variate data are relationships between two variables (e.g. mass, oxygen consumption etc. against duration, temperature, etc.). From these data, DEB parameters were estimated using the covariation method (Lika et al. 2011a, 2011b[START_REF] Marques | The AmP project: comparing species on the basis of dynamic energy budget parameters[END_REF]) that aims at looking for the combination of parameters (Table 3.3) that minimizes the difference between observations and predictions (i.e. minimizing the loss function). The evaluation of the parameter estimation is assessed by calculating the Mean Relative Error (MRE) which can vary between 0 and ∞, with MRE=0 meaning a perfect match between observations and predictions. For each univariate and zero-variate data the relative error was computed as the ratio of the absolute error value to the variate value.
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Rothera data were used to perform sensitivity analysis of DEB model estimation (Appendix 3.13).

For this purpose, marginal confidence intervals of the estimated parameters were computed to provide the uncertainty related to the parameter estimations using the covariation method (Stavrakidis-Zachou et al. 2019). The profile method [START_REF] Marques | Fitting Multiple Models to Multiple Data Sets[END_REF]) was used to build the profile of the loss function of each parameter and estimate the level of the loss function that corresponds to the uncertainty. A total of 1,000 Monte-Carlo datasets was generated by adding a constant centered log-normal scatter to the predictions of each zero and uni-variate data. The threshold value of the loss function Fc that is used to assess the uncertainty level was obtained from P (X < Fc) = 0.9, with 0.9 being the confidence level initially chosen in the procedure. The marginal confidence interval of each parameter is the interval of values for which the loss function is below the threshold value Fc.
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Spatial projection of the DEB model.

For each pixel of the study area, food (i.e. summer chlorophyll-a concentration converted into f [0-1] according to the procedure explained above) and temperature were both used as input into the DEB model that consequently calculated how energy is used and allocated to the different metabolic processes, given these environmental conditions. Projections of the DEB model were performed according to present-day conditions [2005][2006][2007][2008][2009][2010][2011][2012] and future RCP 4.5 andRCP 8.5 scenarios [2050-2099] (environmental layers are displayed on Appendix 3.14). Different simulations were carried out for temperature or food changes only.

A first projection provides the maximum size reached by individuals, which gives some information about the species ability to survive and to invest energy into growth. It also provides a quantitative estimate of the stress experienced by S. neumayeri at large spatial scale, the smaller individuals, the less suitable the environment. According to DEB theory, the somatic maintenance has priority over reproduction and growth to ensure survival. In order to identify regions where individuals are able to survive from an energetic point of view, the somatic maintenance flow 𝑝̇𝑀 was calculated according to the given food and temperature conditions and compared to the values of the total energy available from the reserve 𝑝̇𝐶 . When somatic maintenance values are higher than the energy available in the reserve compartment (𝑝̇𝑀 > 𝑝̇𝐶), it suggests that individuals do not have enough energy to maintain their soma and should die (Fig. 3.13). 𝑝̇𝑀 values were also compared to the flow 𝜅. 𝑝 𝐶 ̇, that corresponds to the proportion of the mobilized energy from the reserve that is invested into growth and the somatic maintenance. The organism survives if 𝑝̇𝑀 < 𝜅. 𝑝 𝐶 ̇. On the other hand, if 𝑝̇𝑀 < 𝑝̇𝐶 but 𝑝̇𝑀 > 𝜅. 𝑝 𝐶 ̇, the organism will have difficulties to maintain its soma and a part of the energy allocated to maturation, reproduction and growth will be redirected to somatic maintenance.

A second projection provides suitable areas for reproduction that is, areas in which environmental conditions allow the species to invest energy into growth and reproduction. In DEB theory, the organism can reproduce when enough energy has been invested into maturity (𝐸 𝐻 > 𝐸 𝐻 𝑝 ), passing from the juvenile to the adult life stage ('puberty' threshold). To assess whether individuals can invest energy into reproduction, we first calculated the size (𝐿 𝑝 ) at which individuals reach puberty (Eq. 3) for each pixel of the projection map. The DEB parameter shape coefficient 𝛿 𝑀 estimated by the model is used to translate physical measurements taken from experimental data to the structural length used by the model (Appendix 3.12).

𝐿 𝑝 = 𝐿 𝑚 .𝑙 𝑝 𝛿 𝑀 [Eq. 3]
𝐿 𝑚 : Maximum structural size (cm)

𝑙 𝑝 : Standardized size at sexual maturity (= puberty) (unitless)

𝛿 𝑀 : Shape coefficient of post-metamorphic individuals (unitless)

Considering the body length at puberty (𝐿 𝑝 ), we then identified if somatic maintenance could be ensured at puberty (𝑝̇𝑐 > 𝑝̇𝑀 and 𝜅. 𝑝 𝐶 ̇> 𝑝̇𝑀). The total cost of maintenance (𝑝̇𝑀 + 𝑝̇𝐽) was also compared to the outflow from the reserve 𝑝̇𝐶 , with 𝑝̇𝐶 > 𝑝̇𝑀 + 𝑝̇𝐽 meaning that individuals can invest energy into reproduction. All DEB models were computed from R functions available at https://github.com/Echinophoria/DEB/.
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RESULTS

Species distribution models under present-day conditions

Correlative ecological niche model (ENMc).

For the ENMc generated under present-day environmental conditions, the average predictive accuracy of model replicates is good (TSS = 0.64 ± 0.078), which indicates a relatively good match between presences and predictions. High species presence probabilities (p > 0.8) are predicted south of the Polar Front: over the Antarctic shelf, along the Western Antarctic Peninsula and the Scotia Arc region (Fig. 3.14a). The highest values are in the northern tip of the Western Antarctic Peninsula, in East Antarctica and in the Ross Sea. Medium values (p ~ 0.5) are mainly located in the Amundsen and Bellingshausen seas, the Weddell Sea and in South Georgia. Regions located north of 55°S latitude such as the Kerguelen, Magellanic, and Campbell plateaus are mostly predicted as unsuitable areas (p < 0.2). Environmental predictors that most contribute to the model are seafloor temperature, geomorphology, slope, sea ice cover, and depth, in decreasing order of importance (Fig. 3b). Chlorophyll-a concentration was used as an indirect proxy of food supply but it does not contribute much to the model (ranked seventh most contributing predictor). Parameters such as seafloor oxygen concentration, seafloor temperature range, seafloor salinity, seafloor salinity range and sea surface salinity do not contribute much to the model.

Curves of the species response to main environmental predictors allow visualizing conditions that are the most suitable for species distribution (Fig. 3.14c). These are shallow areas (< 400 m depth) represented in geomorphology as banks, coastal terranes, seamounts and volcanoes (Appendix 3.16) with positive slope values (> 0.05°), cold water sea floor temperatures (< 1°C), and weak sea ice coverage (< 60%) (Fig. 

Projections under IPCC scenarios of climate change

Correlative ecological niche model (ENMc).

Projections of ENMc of S. neumayeri according to IPCC scenarios RCP 4.5 and RCP 8.5 (Fig. 3.16) display few changes compared to present-day maps (Fig. 3.14a), and both scenarios give very similar results. Areas predicted as suitable under future conditions are mainly predicted in the Ross Sea and in East Antarctica. In contrast, the species presence probabilities are low in the Bellingshausen and Amundsen seas compared to present-day projections. All areas located north of the Polar Front are predicted as unsuitable with very low presence probabilities (p < 0.2). 

Projection of the mechanistic Ecological Niche Model (ENMm).

Three projections were performed for each IPCC scenario according to (1) both food availability and temperature changes (Fig. 3.15c,d,e,f), (2) temperature only (Fig. 3.17a,b, Fig. 3.18a,b) and ( 3) food availability only (Fig. 3.17c,d,Fig. 3.18c,d). "Food and temperature" and "food only" projections give similar model outputs under both IPCC scenarios for maximum size and reproduction areas (Fig. 3.15c,d,e,f,Fig. 3.17c,d,Fig. 3.18c,d). The main differences with presentday models are located on the Antarctic shelf and Magellanic Plateau, which are mostly predicted as unsuitable to the species. In contrast "temperature only" projections (Fig. 3.17a,b,Fig. 3.18a,b) show no noticeable change with present-day models, and model outputs are identical under both IPCC scenarios of climate change.

Projections of "food and temperature" (Fig. 3.15c,e) and "food only" (Fig. 3.18c,d) models predict that individuals may reach very small sizes over the entire species distribution range, with a maximum size predicted to reach 1 cm only in the Weddell and Ross seas, in East Antarctica and on the Kerguelen and Campbell plateaus. Size is also predicted to be small (< 2 cm) along the Antarctic Peninsula and on the Magellanic Plateau. As a consequence, reproduction is predicted as impossible over the entire species distribution range under future IPCC scenarios, the model predicting that no energy would be available for maturity, maintenance and reproduction (Fig. 3.15d,f,Fig. 3.17c,d).

The "temperature only" model (Fig. 3.18a,b) predicts unsuitable areas for growth over the Kerguelen Plateau and some areas in East Antarctica (Prydz Bay excepted). In contrast, large individuals (> 4 cm) are predicted in the Bellingshausen-Amundsen seas, the Ross Sea and on the Magellanic Plateau. Suitable areas for the species reproduction match with areas where al. 2014, 2017[START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF][START_REF] Fabri-Ruiz | Can we generate robust Species Distribution Models at the scale of the Southern Ocean?[END_REF]. Along with geomorphology, slope and depth, these variables are related to main habitat characteristics (Appendix 3.16) and are considered to have a dominant role in the structure and composition of benthic communities (O'Brien et al. 2009[START_REF] Kaiser | Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding[END_REF], Post et al. 2014).

In addition to the importance of the environment, the endemicity of Antarctic benthic fauna is also believed to be favored by the presence of the Antarctic Circumpolar Current acting as a biogeographic barrier to dispersal towards the north [START_REF] Arntz | Antarctic marine biodiversity an overview[END_REF], Linse et al. 2006[START_REF] Clarke | How well do we know the Antarctic marine fauna? A preliminary study of macroecological and biogeographical patterns in Southern Ocean gastropod and bivalve molluscs[END_REF][START_REF] Griffiths | Towards a generalized biogeography of the Southern Ocean benthos[END_REF]. For instance, 68% of Antarctic echinoids species [START_REF] Saucède | Biogeographic Atlas of the Southern Ocean[END_REF]), 74% of gastropods [START_REF] Schiaparelli | Gastropoda[END_REF]) and 57% of bivalves [START_REF] Linse | Bivalvia[END_REF] were reported to be endemic to the Antarctic continental shelf.

Stable DEB models were produced (Appendix 3.13) and projections also show that under present conditions, Antarctic regions such as the western part of the Ross Sea, Prydz Bay area, the East Antarctic Peninsula, and the Bellingshausen-Amundsen seas are predicted to be suitable for the species growth and reproduction (Fig. 3.15). This is line with observed data in these regions where S. neumayeri is adapted to low temperatures with display of low aerobic scopes (Peck and Conway 2000, Peck 2002, Pörtner and Knust 2007). Previous works focused on the development rate of embryos and data were provided on the range of suitable temperatures for planktonic larvae to grow. Stanwell-Smith and Peck (1998) showed an increase in development rates between -2°C and +2°C, with low and stable rates between +0.2°C and +1.7°C. Development rates do not increase for temperatures above +2°C. Bosch et al. (1987) and Pauline et al. ( 2013) reported the onset of larval development between -0.8°C and +0.5°C, and between -1.8°C and -0.9°C respectively. [START_REF] Kapsenberg | Signals of resilience to ocean change: high thermal tolerance of early stage Antarctic sea urchins (Sterechinus neumayeri) reared under present-day and future pCO2 and temperature[END_REF] reported a larval upset at -0.7°C. Finally, food supply is also reported as sufficient for individuals to survive and allocate energy to reproduction (Appendix 3.14).

In contrast, the Kerguelen Plateau, the Western Antarctic Peninsula, East Antarctica (except Prydz Bay) and eastern part of the Ross Sea were modelled as suitable areas but for small individuals only (< 2cm). In these regions, the energy available and stored into the reserve compartment (𝑝̇𝑐) is only sufficient to ensure somatic maintenance (𝑝̇𝑀) but cannot cover energy costs related to growth and/or reproduction (𝑝̇𝑀 > 𝜅. 𝑝 ̇𝑐) as the somatic maintenance has priority over processes in the model. In these regions, the maintenance of species populations would exclusively depend on larval supply from other areas. This could be possible via the Antarctic Circumpolar Current that is a major vector of larval dispersal in the Southern Ocean (Pearse et al. 2009, Moon et al. 2017, González-Wevar et al. 2018a) but this hypothesis remains to be tested and supported by field data.

Projections under future scenarios of climate change. Future projections of ENMc showed few changes in the species potential distribution over the Antarctic shelf. This can be explained by the important contribution of physical descriptors, geomorphology, slope and depth to the model, three variables that were considered unchanged in a near future in the model, being here considered that predictions of sea level rise should have little effect on model outputs at large, ocean-wide scale (De Conto and Pollard 2016). Local shifts in the species distribution probabilities are however predicted, compared to the present-day model. They are mainly localized in the Bellingshausen-Amundsen seas and are triggered by future predictions of temperature rise and reduction in sea ice coverage (Appendix 3.14). A reduction in sea ice coverage will have serious impacts on the seasonal production of food supply and will also result in a reduction of the protection of shallow benthic organisms from UV-B induced damages (Lister et al. 2010). Changes in ice regime are also expected to have multiple impacts in the region due to ice shelf melting and collapses. This will result in the freshening of Antarctic waters and associated changes in water biogeochemistry, and to an increase in the intensity of iceberg scouring on seabeds in shallow water, coastal areas [START_REF] Meredith | Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century[END_REF][START_REF] Bracegirdle | Antarctic climate change over the twenty first century[END_REF], Stammerjohn et al. 2012). This phenomenon was shown to have serious effects on the structure of benthic communities, [START_REF] Gutt | On the direct impact of ice on marine benthic communities, a review[END_REF][START_REF] Gutt | Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica)[END_REF][START_REF] Gutt | Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs[END_REF], resulting in a decrease in habitat heterogeneity and local (alpha) diversity (Brown et al. 2004, Barnes andSouster 2011).

In projections of the ENMm performed for future conditions, the combined effect of "temperature and food change" on individual physiology is predicted to induce important shifts in energy availability (Fig. 3.15c,d,e,f). The allocation of energy into reproduction is predicted to become impossible anymore and growth rates are predicted to strongly decrease in the entire Southern Ocean. These results suggest a high sensitivity of S. neumayeri to environmental changes under RCP 4.5 and 8.5 scenarios. Overall, this also stresses the important impact of food availability for benthic species. The seasonal phytoplankton bloom is known to constitute an important source of food for many species (Brockington and Peck 2001, Ahn et al. 2003, Jacob et al. 2003[START_REF] Michel | Trophic plasticity of Antarctic echinoids under contrasted environmental conditions[END_REF], Agüera et al. 2017), and predicted shifts and decrease in this resource might have important consequences for marine communities.

In the ENMm, the future "only temperature change" projection (Fig. 3.17a,b, 3.18a,b) is identical to the present-day projection. Medium size (~ 4cm) to large (> 5 cm) individuals as well as suitable areas for reproduction are predicted north of the Polar Front for both periods. We could expect a synergetic and cumulative effect on growth and reproduction under "temperature and food change" (Fig. 3.15) than under "only food change" (Fig. 3.17c,d,Fig. 3.18c,d) or "only temperature change" (Fig. 3.17a,b,Fig. 3.18a,b). On the contrary, our results suggest similarities between "only food change" and "temperature and food change" projections. Metabolic rates of Antarctic species increase with temperature, as does the oxygen consumption. If temperature rises and oxygen supply are insufficient to meet the organism metabolic needs, the organism switches to an anaerobic metabolism (Peck and Conway 2000, Peck 2002, Pörtner and Knust 2007). The ability of individuals to survive depends on their ability to maintain an anaerobic metabolism over time. As a result, rising temperatures should lead to changes in the survival and resilience of Antarctic marine invertebrates.

S. neumayeri occurs in shallow waters compared to other Sterechinus species (David et al. 2005, Díaz et al. 2011). The hypothesis of a possible in-depth migration to colder water areas may be considered. In the future, warmer temperatures could occur in deeper areas corresponding to optimal temperature window of the species and decrease in sea-ice cover could also lead to higher exposure to UV-B in shallow waters. However, studies suggest that it may compete in these environments with Sterechinus diadema, its sister species living in deeper habitats (Jacob et al. 2003, Díaz et al. 2011). Moreover, pressure increase with depth reduces the thermal optimal window for the development of eggs and embryos, generating a new physiological stress and reducing the species fitness and survival (Tyler et al. 2000). It can therefore be assumed that current environmental changes are expected to lead to a potential reduction in the distribution of S. neumayeri.

Model comparison and complementarity

Model comparison.

Overall, ENMc and ENMm run for present-day conditions provide congruent projections (Fig. 3.14, 3.15a,b). For the Antarctic shelf, in regions such as the Ross Sea and the Prydz Bay area in particular, the ENMm predicts the prevalence of large (> 4cm) and sexually mature individuals and the ENMc shows high presence probabilities. These regions are characterised by cold temperatures and high food availability (f > 0.5), which are favorable conditions for the species development and survival. In contrast, in the northern Kerguelen Plateau and the Campbell Plateau, low presence probabilities are modelled by the ENMc due to warm water temperatures (> 4°C) (Fig. 3.14, Appendix 3.14), and small (< 1 cm) and sexually immature individuals are predicted by the ENMm due to low food availability limiting growth and reproduction (Appendix 3.14). Model projections however do not match for certain areas. For instance, small and sexually immature individuals are predicted along the Antarctic Peninsula in the ENMm, whereas the ENMc predicts high presence probabilities. In the sub-Antarctic, the ENMm predicts suitable conditions for the species growth (> 3cm) and reproduction on the Magellanic Plateau, whereas this area is predicted unsuitable in the ENMc. S. neumayeri is known to be endemic to the Antarctic Peninsula and East Antarctic shelf (David et al. 2005[START_REF] Saucède | Biogeographic Atlas of the Southern Ocean[END_REF], which suggests that the ENMm projection may not predict the species current distribution properly. This can be explained by the lack of eco-physiological data documenting the species response to variations in food resources and temperature (Bosch et al. 1987, Stanwell-Smith and Peck 1998[START_REF] Marsh | Energy metabolism during embryonic development and larval growth of an Antarctic sea urchin[END_REF], 2001, Tyler et al. 2000, Brockington and Peck 2001, Alexander et al. 2017). On the other hand, temporal scales of physiological experiments are over a limited time frame and different from the temporal scale of the used environmental layers, which characterise overall climate conditions.

In ENMm, the Arrhenius temperature is the parameter that determines the metabolic rate as a function of temperature variation (Appendix 3.12). In the present model, the Arrhenius temperature was estimated based on three measurement points only (Bosch et al. 1987), which may induce a lack of precision in the simulation of the species metabolic rate. In addition, lower and upper lethal temperatures could not be entered in the model due to the absence of relevant physiological data (Appendix 3.10) and the species optimal temperature range could not be determined precisely. As a consequence, the modelled physiological performance of the species tends to increase constantly with temperature and partly outreaches the biological optimum.

Only data on chlorophyll-a concentration and on the gut content were available to model the functional response of S. neumayeri to food resources [START_REF] Mcclintock | Trophic biology of Antarctic shallow-water echinoderms[END_REF], Jacob et al. 2003[START_REF] Michel | Trophic plasticity of Antarctic echinoids under contrasted environmental conditions[END_REF]. Therefore, in the model, sea surface chlorophyll-a concentration in summer was used as a proxy of food resources for S. neumayeri (Appendix 3.9), which is an opportunistic, omnivorous feeder. The species does not feed directly on chlorophyll-a but is indirectly dependent on this food supply as it feeds on various sources of particulate organic matter deposited on the sea floor as well as some suspension feeders (Smith et al. 2006[START_REF] Lohrer | Altered sea ice thickness and permanence affects benthic ecosystem functioning in coastal Antarctica[END_REF], Petrou et al. 2016[START_REF] Schofield | Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula[END_REF]). In addition, winter conditions are known as periods of low chlorophylla concentrations in Antarctic surface waters (Thomalla et al. 2011, Deppeler and[START_REF] Deppeler | Southern Ocean phytoplankton in a changing climate[END_REF], which could not be used as input in the model projection due to the lack of satellite data for this season. In a DEB model developed for the Antarctic bivalve Laternula elliptica (King and Broderip 1832), Agüera et al. ( 2017) -Appendix showed that reserve is seasonal and that low food availability generated a 25% loss in the species body mass, also delaying gonadal development. In S. neumayeri, post-metamorphic individuals do not feed in winter (Brockington and Peck 2001) but no quantitative data on energy allocation are available for this season. Additional works would be useful to refine the present DEB model. Complementary data based on new eco-physiological experiments describing the effect of different levels of food supplies, abundant, limited, or starvation, on the metabolic rate should contribute to improving model accuracy [START_REF] Sarà | Predicting biological invasions in marine habitats through eco-physiological mechanistic models: a case study with the bivalve Brachidontes pharaonis[END_REF], Augustine et al. 2014, Hamda et al. 2019).

Complementarity between modelling approaches.

The two modelling approaches mainly differ in their scientific objectives. To run the ENMc, 13 abiotic parameters were used to describe part of the species realised niche, the effect of biotic interactions and biogeographic constraints also indirectly acting on model outputs through the position of observed occurrences and the spatial correlation between abiotic descriptors, biotic factors and biogeographic barriers. Projections therefore partly fit to the species realised distribution because they partly take into account the multi-dimensions of the species realised niche. Parameters of the physical habitat such as geomorphology were shown to have an important role in the structuring and composition of Antarctic benthic communities (O'Brien et al. 2009[START_REF] Kaiser | Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding[END_REF], Post et al. 2014); such parameters were not considered to run the ENMm. In contrast, the ENMm integrates the effect of temperature and food resources on the species physiology, focusing on two dimensions of the species fundamental niche, whatever its distribution and realised niche. The ENMm provides biological insights for understanding the physiological processes that underpin the observed species distribution.

Major differences between models show up when it comes to run future projections under IPCC RCP scenarios. ENMm models predict unsuitable conditions for the species growth and reproduction over the entire ocean. In contrast, ENMc models predict the species persistence on the Antarctic shelf, the Bellingshausen and Amundsen seas excepted. The ENMc uncertainties increase when species' responses to environmental conditions are extrapolated out of the range of values for which the model was trained (Guillaumot et al. 2020c -Chapter 2). This holds particularly true for future conditions that do not prevail in present-day environments yet (Fitzpatrick and Hargrove 2009[START_REF] Elith | The art of modelling range-shifting species[END_REF], Jiménez-Valverde et al. 2011, Dormann et al. 2012a) so that the ENMc may fail to predict as unsuitable environmental conditions that would exceed the species physiological tolerance [START_REF] Anderson | A framework for using niche models to estimate impacts of climate change on species distributions[END_REF]. Moreover, without presence-absence or abundance data, habitat suitability is partly biased because all presences are treated equally. With presence-absence and if possible, abundance data, more discrimination of suitable habitat is gained, which is beneficial when ENMc are used to project species distribution across space and time. Adding absence data is known to provide greater ability to delineate species range boundaries and produce more accurate models [START_REF] Howard | Improving species distribution models: the value of data on abundance[END_REF][START_REF] Yates | Outstanding challenges in the transferability of ecological models[END_REF].

Such discrepancies between the two modelling approaches in a context of climate change were already highlighted in previous studies. For instance, [START_REF] Buckley | Does including physiology improve species distribution model predictions of responses to recent climate change?[END_REF] showed that ENMm predicted much greater migrations with climate change than ENMc in a study on Lepidotera. Further, Kearney et al. (2008) predicted that toad species survival in southern Australia would no longer be possible due to global warming according to ENMm, while the ENMc still predicted the region as suitable.

In the present study, while suggesting unrealistic projections on the Magellanic Plateau under present-day conditions, future projections of the ENMm are more in line with a majority of works suggesting that climate change would induce unsuitable conditions to the survival of Antarctic benthic marine ectotherms (Peck et al. 2014, Hawkins et al. 2018). All these results highlight the necessary complementarity of ENMc and ENMm approaches for providing independent and relevant projections, relying either on biogeographic (ENMc) or physiological (ENMm) data (Morin andThuiller 2009, Kearney et al. 2009). Comparing and combining projections from different modelling approaches provide more insight on both species present-day distributions and sensitivity to future projections [START_REF] Guisan | Predictive habitat distribution models in ecology[END_REF], Elith and Graham 2009[START_REF] Elith | The art of modelling range-shifting species[END_REF].

Future prospects

The present work underlines ENMc as a useful and powerful approach to predict current species distribution. ENMc are relatively simple to implement and do not require a deep knowledge of population dynamics nor of ecological processes linking organisms to their abiotic environment. They can be applied to a large number of taxa [START_REF] Guisan | Predictive habitat distribution models in ecology[END_REF], Elith and Graham 2009[START_REF] Elith | The art of modelling range-shifting species[END_REF] and are often used upstream to address conservation issues [START_REF] Evans | Mechanistic species distribution modelling as a link between physiology and conservation[END_REF]. However, ENMc do not imply any inference on causal relationships between species distribution and environmental descriptors, and such relationships may also imply indirect responses to collinear variables that are not entered in the model [START_REF] Guisan | Predicting species distribution: offering more than simple habitat models[END_REF].

In a context of environmental changes, extrapolation represents a serious limitation to ENMc that have limited capacities to transfer model outputs both in space and time [START_REF] Yates | Outstanding challenges in the transferability of ecological models[END_REF], Guillaumot et al. 2020c -Chapter 2). In the present study, such a limitation is highlighted by the mismatch between ENMm and ENMc future projections of S. neumayeri. ENMm appear to be more informative than the ENMc when it comes to describe species distribution under changing environmental conditions. However, few Antarctic species have been the focus of detailed ecophysiological studies and few mechanistic models were developed, considering the important amount of physiological data required. Mechanistic models are therefore generally used when species physiology has been relatively well studied (Kearney et al. 2008[START_REF] Buckley | Does including physiology improve species distribution model predictions of responses to recent climate change?[END_REF][START_REF] Evans | Mechanistic species distribution modelling as a link between physiology and conservation[END_REF], Thomas and Bacher 2018) and our knowledge of marine species physiology is usually biased toward 'model' species that most interest the public and researchers [START_REF] Clark | Taxonomic bias in conservation research[END_REF], Sousa-Silva et al. 2014, Feng and Papeş 2017). Many authors have stressed the importance and benefits of considering mechanistic approaches for conservation purposes and the implementation of management plans [START_REF] Cooke | Making conservation physiology relevant to policy makers and conservation practitioners[END_REF][START_REF] Cooke | Conservation physiology in practice: how physiological knowledge has improved our ability to sustainably manage Pacific salmon during up-river migration[END_REF], 2014[START_REF] Evans | Mechanistic species distribution modelling as a link between physiology and conservation[END_REF]. If the integration of biological data into open-access databases has significantly increased with multiple initiatives such as TRY, Globtherm, FSRD, Anage, GenBank, add-my-pet [START_REF] De Magalhaes | A database of vertebrate longevity records and their relation to other life-history traits[END_REF], Kattge et al. 2011[START_REF] Karányi | FSRD: fungal stress response database. Database, 2013. REFERENCES REFERENCES REFERENCES pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt niche models[END_REF][START_REF] Bennett | GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms[END_REF][START_REF] Marques | The AmP project: comparing species on the basis of dynamic energy budget parameters[END_REF], there is still no data portal devoted to describing species physiological traits. Mining such data through experiments and the literature to perform mechanistic models remains a complex, time-consuming task, limiting the integration of ENMm into conservation strategies [START_REF] Evans | Mechanistic species distribution modelling as a link between physiology and conservation[END_REF]. In contrast, ENMc are mainly based on occurrence or abundance data that are made available through international databases allowing open-access data sharing (Pearse et al. 2018, Wüest et al. 2020). Common databases would be particularly valuable to address ecological issues linking patterns to processes across spatial and temporal scales, and improving our knowledge of ecosystem functioning in a context of climate change (Sutter et al. 2015).

Conclusion

The present study highlights the complementarity of correlative and mechanistic ENM to predict species present distributions and sensitivity to changing environmental conditions. Overall, congruent projections were obtained with the two modelling approaches for present-day conditions. In contrast, different models were generated under future scenarios. Both models agree on the fact that S. neumayeri is circum-polar in distribution with suitable areas restricted to the Antarctic continental shelf area (< 400m), with low temperatures (< 2°C), limited sea ice concentrations (< 50%) and high food availability (f > 0.7). The ENMm approach provided an additional understanding of physiological processes determining the species distribution with regards to growth and sexual maturity as a function of temperature and food availability.

The combination of ecological modelling, ENMm and ENMc, with satellite remote sensing and climate models provides a valuable approach to study large-scale responses of marine species to climate change [START_REF] Guisan | Predicting species distribution: offering more than simple habitat models[END_REF], Pearson 2007, Kearney and Porter 2009[START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF][START_REF] Buckley | Does including physiology improve species distribution model predictions of responses to recent climate change?[END_REF], Thomas and Bacher 2018[START_REF] Rodríguez | Integration of physiological knowledge into hybrid species distribution modelling to improve forecast of distributional shifts of tropical corals[END_REF]. Multiple challenges however remain to be overcome. Eco-physiological data are still needed to produce reliable mechanistic DEB models, including data on Arrhenius temperatures. In addition, ENMm do not take into account extrinsic factors that shape species distribution such as biogeographic barriers, physical habitats and biotic interactions (predation/competition/facilitation). Combining correlative and mechanistic models in an integrative approach therefore constitutes a promising perspective, which has already been developed for certain terrestrial and marine organisms [START_REF] Elith | The art of modelling range-shifting species[END_REF], Dormann et al. 2012a[START_REF] Roos | Modeling sensitive parrotfish (Labridae: Scarini) habitats along the Brazilian coast[END_REF][START_REF] Mathewson | Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates[END_REF][START_REF] Rodríguez | Integration of physiological knowledge into hybrid species distribution modelling to improve forecast of distributional shifts of tropical corals[END_REF], and could prove particularly relevant to predict the sensitivity of Antarctic organisms to a fast changing environment. 

Article. Fabri-Ruiz et al. (2021). Using correlative and mechanistic niche models to assess the sensitivity of the Antarctic echinoid Sterechinus neumayeri [START_REF] Meissner M ; ) Echinoideen | The marine fauna of New Zealand: family Hymenosomatidae (Crustacea, Decapoda, Brachyura)[END_REF] to climate change. Polar Biology.

APPENDIX 3.9. . The estimated value for the half-saturation parameter Xk is the food density at which feeding rate is half of its maximum value, here Xk 2.95 mg.m -3 .

Data for sea surface chlorophyll-a concentration and gut content were extracted from Brockington and Peck (2001). Chlorophyll-a concentration and gut content data do not have the same time interval. These data were not calibrated to the same time interval. Data were splined according to time to get regular time intervals. Then, we used a moving average, which estimates the trendcycle at time t by averaging values within k periods of t. This method removes transient fluctuations and keeps an overall trend. The same computation has been done for temperature data according to time. These analyses were performed using the castr package (https://github.com/jiho/castr). Data for the gut content were corrected by temperature and scaled to values comprised between 0 and 1. A non-linear least squares regression model was then applied to adjust the functional response.

INTRODUCTION

For the last two decades, an ever-growing number of ecological studies have used modelling approaches to highlight the main ecological drivers of species distribution and evaluate the response of species to changing environmental conditions and anthropogenic stressors [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF][START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF], Franklin 2010b). The overall tendency is to use these models across groups of organisms and regions (Gutt et al. 2012) to inform stakeholders and conservation policies (Thuiller et al. 2013, Mouquet et al. 2015, Singer et al. 2016).

Current developments are focused on the integration of distinct modelling methods (i.e. hybrid modelling) that has long been considered as a way to improve the understanding of ecosystem functioning (Gutt et al. 2012, Dormann et al. 2018[START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF][START_REF] Benito Garzón | ΔTrait SDMs: species distribution models that account for local adaptation and phenotypic plasticity[END_REF]. For instance, combining correlative methods, which rely on spatial relationship between species occurrence records and the environment (e.g. Species Distribution Models, SDMs), with ecophysiological approaches (e.g. mechanistic models) was shown to improve the modelling performance compared to single correlative methods [START_REF] Elith | The art of modelling range-shifting species[END_REF], Singer et al. 2016[START_REF] Hughes | Human-mediated dispersal of terrestrial species between Antarctic biogeographic regions: A preliminary risk assessment[END_REF][START_REF] Schouten | Integrating dynamic plant growth models and microclimates for species distribution modelling[END_REF]. Correlative models statistically assess the main drivers of species distribution [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF], Peterson 2011), and are used to estimate the realised ecological niche (Elith andLeathwick 2009, Soberón 2010). As a consequence, SDMs perform well when species distribution and the environment are in equilibrium, in static systems, a prerequisite that is not verified in highly dynamic ecosystems subject to environmental changes or in studies addressing environmental rapid changes [START_REF] Loehle | Model-based assessments of climate change effects on forests: a critical review[END_REF]Leblanc 1996, Schouten et al. 2020, Fabri-Ruiz et al. in press -Chapter 3). Mechanistic models can evaluate the effect of environmental conditions on the physiological performance of individuals or populations (Kearney and Porter 2009). Such models typically require a greater level of biological knowledge, but, in contrast to static, correlative approaches, they explicitly include dynamic processes, offering the opportunity to describe process-based causes of species distribution change (Kearney andPorter 2009, Dormann et al. 2012a), even in non-equilibrium systems (Kearney et al. 2008, Keith et al. 2008). They include a set of mathematical functions relating to species' functional traits (morphology, behaviour, physiology) or associated life history (development, growth, reproduction) and then evaluate the effect of environmental drivers on species physiological traits (Dormann et al. 2012a, Kearney andPorter 2009), which leads to estimating the species' fundamental niche (Kearney and Porter 2009).

Several methods have been developed to integrate correlative and mechanistic models. For instance, mechanistic models can be spatially-projected and used as a input predictor in SDMs [START_REF] Elith | The art of modelling range-shifting species[END_REF][START_REF] Buckley | Does including physiology improve species distribution model predictions of responses to recent climate change?[END_REF][START_REF] Mathewson | Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates[END_REF][START_REF] Rodríguez | Integration of physiological knowledge into hybrid species distribution modelling to improve forecast of distributional shifts of tropical corals[END_REF]. Other close approaches consist in defining absence records from the mechanistic model and use the set of presence-absence records to implement SDMs (Elith et al. 2010, Feng andPapes 2017) or to finetune thresholds for lethal conditions from the mechanistic approach and associate uncertainty estimates to SDM predictions accordingly [START_REF] Woodin | Climate change, species distribution models, and physiological performance metrics: predicting when biogeographic models are likely to fail[END_REF]. Bayesian inference methods have also been widely used [START_REF] Ellison | Bayesian inference in ecology[END_REF], Brewer et al. 2016, Talluto et al. 2016, Feng et al. 2020, Gamliel et al. 2020), following the development and better accessibility of high-performance computers and programs (Van Dongen 2006). They were proved interesting to optimize the estimation of species habitat suitability [START_REF] Zurell | Benchmarking novel approaches for modelling species range dynamics[END_REF], to better assess the effect of seasonality in predictions and highlight critical tipping points in changing ecosystems (Oberle et al. 2013[START_REF] Zhao | Detecting changepoint, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm[END_REF]) providing accurate uncertainty estimates [START_REF] Zhao | Detecting changepoint, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm[END_REF]. Bayesian methods combine the information of a prior belief (i.e. the prior distribution, for instance our knowledge of species physiology) with new information (i.e. the distribution probabilities) to produce a posterior estimation (Van Dongen 2006). These two steps therefore update the probability of the hypothetical distribution as more evidence or information on species physiology is available (Van Dongen 2006).

Many regions of the Southern Ocean, either in Antarctic or sub-Antarctic zones [START_REF] Convey | Antarctic climate change and the environment[END_REF], Féral et al. 2019), are currently exposed to fast environmental changes [START_REF] Cook | Ocean forcing of glacier retreat in the western Antarctic Peninsula[END_REF], Turner et al. 2016[START_REF] Convey | Antarctic environmental change and biological responses[END_REF], including increasing seawater temperatures and shifting seasonality (Bers et al. 2013[START_REF] Schofield | Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula[END_REF], Henley et al. 2019), glacier melting, changing wind speed [START_REF] Meredith | The global importance of the Southern Ocean and the key role of its freshwater cycle[END_REF]King 2005, Cook et al. 2016), which in turn have an impact on
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food chains, organic matter production and processes of the bentho-pelagic coupling (see Convey andPeck 2019, Henley et al. 2019 as reviews). Climate changes together with the ever-increasing maritime traffic (i.e. fisheries, tourism and science) boost the introduction of non-native species in Southern Ocean coastal areas, a major threat to polar ecosystems usually characterised by high levels of endemic species [START_REF] Mccarthy | Antarctica: The final frontier for marine biological invasions[END_REF][START_REF] Hughes | Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region[END_REF]). These combined issues strongly urge the need to fill the gaps in our knowledge of ecological processes and ecosystem dynamics (Kennicutt et al. 2015).

Due to remoteness and harsh weather conditions, above all in winter, access to the field and data collection in the Southern Ocean are strongly limited (De Broyer et al. 2014), resulting in missing data, spatial and temporal aggregations of observations and difficulties to conduct biological experiments (see Guillaumot et al. in press -Chapter 2 as a review). However, research on marine life of the Southern Ocean has recently benefited from a significant coordinated and international effort with the emergence of oceanographic campaigns and international scientific programs such as the International Polar Year (IPY 2007(IPY -2008)), the Census of Antarctic Marine Life (CAML 2005(CAML -2010) ) or the Scientific Committee on Antarctic Research, Evolution and Biodiversity in Antarctica (SCAR-EBA 2006-2013) (non-exhaustive list) [START_REF] Schiaparelli | The Census of Antarctic Marine Life: the first available baseline for Antarctic marine biodiversity[END_REF], De Broyer et al. 2014).

Several studies have used correlative approaches to characterise the relationship between environmental conditions and the distribution of Southern Ocean species (Pinkerton et al. 2010, Bombosch et al. 2014, Freer 2018[START_REF] Fabri-Ruiz | Can we generate robust Species Distribution Models at the scale of the Southern Ocean?[END_REF] or used physiological models to evaluate the influence of environmental conditions on organisms' physiological performances (Agüera et al. 2015, Jager and Ravagnan 2015, Agüera et al. 2017) and population dynamics [START_REF] Groeneveld | How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model[END_REF], Goedegebuure et al. 2018, Arnould-Pétré et al. 2020 -Chapter 1). However, surprisingly, no study has used integrated modelling approaches despite their considerable potential for analyzing dynamic, complex and ill-known systems.

In this study, we used data from on-going research on a sea urchin species, Abatus cordatus (Verrill 1876), in the Golfe du Morbihan, the most visited area of the otherwise highly remote archipelago of the Kerguelen Islands (French sub-Antarctic islands). We tested the performance of integrated modelling approaches to deal with limited datasets for a study on a Southern Ocean marine species and compare model outputs with other 'simple' correlative (SDM) and mechanistic (Dynamic Energy Budgets) approaches. In addition, we integrate the effect of seasonality, a fundamental feature of ecosystem functioning in high latitudes and a key to understand the functioning of marine life in the Southern Ocean. Dealing with seasonality was here chosen to test the performance of different modelling procedures in a dynamic context.

MATERIAL AND METHODS

Study species

The heart urchin Abatus cordatus (Verrill, 1876) is a shallow deposit-feeder and sediment swallower restrained to soft sediment habitats (De Ridder andLawrence 1982, Poulin 1996) (Fig. 3.19A,B). Endemic to the Kerguelen Plateau, the species is distributed from shallow subtidal (< 2 m depth) to deep shelf areas exceeding 500 m depth (Poulin 1996). In coastal zones, populations of A. cordatus can locally reach densities of up to 280 individuals per square meter (Magniez 1980, Poulin 1996). High population densities along with the species endemicity were interpreted as a consequence of the species reproduction strategy and direct development that includes no dispersal larval stage (Mespoulhé 1992, Poulin andFéral 1995). Females brood their young on the aboral side of the test, inside four brood chambers formed by the sunken paired ambulacra, until juveniles exit the pouch and reach the sea bottom at proximity of their mothers (Fig. 3.19B, Magniez 1983). Depth, temperature and primary production were identified as major environmental drivers of the distribution of A. cordatus (Poulin 1996). In shallow-water areas, the species was shown to be tolerant to environmental stressors induced by high variations in salinity, as a result of fresh-water runoffs [START_REF] Guille | Consommation d'oxygène de l'oursin Abatus cordatus (Verrill) et activité oxydative de son biotope aux îles Kerguelen[END_REF], and sudden temperature shifts including heat waves in the austral summer (Motreuil et al. 2018).
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Study area, environmental predictors and seasonality

The study area focusses on the Golfe du Morbihan, a 700 km 2 silled basin 50 m deep on average, located in the east of the Kerguelen Islands (sub-Antarctic) (Fig. 3.19C,Fig.3.20A). Since the 1960s, the area has been recurrently studied by marine ecologists who conducted research programs in biological oceanography including studies of micro-and macrobenthic communities [START_REF] Delille | Seasonal changes in bacterial and phytoplankton biomass in a subantarctic coastal area (Kerguelen Islands)[END_REF], Poulin 1996).

In addition to depth, sea surface temperature and primary production were used as environmental predictors of the distribution of A. cordatus. Seasonality was assessed by focusing on environmental contrasts between the austral summer and the austral winter, here assessed by differences in monthly values between February (summer) and August (winter), the warmest and coldest months (http://www.proteker.net/) associated to the highest and the lowest values of primary production, respectively [START_REF] Delille | Seasonal changes in bacterial and phytoplankton biomass in a subantarctic coastal area (Kerguelen Islands)[END_REF].

Bathymetry.

The bathymetric chart was obtained from Beaman and O'Brien ( 2011), available at http://www.deepreef.org/publications/reports/99-kergdem.html (Fig. 3.20A), with a resolution of 0.001*0.001 arc-degree grid-cell pixels (equivalent to about 100 m). It was updated from [START_REF] Sexton | The Construction of a Bathymetric Grid for the Heard Island -Kerguelen Plateau REFERENCES Region[END_REF] using new single beam echosounder data from commercial fishing and research voyages, and some new multibeam swath bathymetry data. Satellite-derived datasets were used to provide island topography and to fill in no data areas (see Beaman and O'Brien 2011).

Chlorophyll-a concentration.

As a deposit-feeder, A. cordatus feeds upon organic grain coatings and particles present in sediments (Pascal et al. in press). Sea water chlorophyll-a concentration was used as a proxy of food availability, because data on the exact organic content of sediments is not available at the scale of the entire bay (Arnould-Pétré et al. 2020 -Chapter 1). Values were retrieved using imagery from Operational Land Imager (OLI) and Thermal InfraRed Sensor (TIRS) of Landsat 8 obtained from USGS (United States Geological Survey, 2019, https://earthexplorer.usgs.gov/, accessed on May 2020). Chlorophyll-a concentration was derived from OLI data using the Case-2 Regional Coast Colour processor (C2RCC) (Brockmann et al. 2016) for the SentiNel Application Platform (SNAP 2020). Main processing steps are described in Appendix 3.17. Due to the nearpermanent cloud cover, only images taken on 2017/02/09 and 2017/08/20 could be retained to depict the contrasting conditions prevailing in the austral summer and winter, respectively; assuming that these two days are each representative of overall seasonal conditions.
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Sea water temperature.

We used satellite-derived sea surface temperature (SST) data from the level 4 Multi-Scale Ultra-High-Resolution Global Foundation Sea Surface Temperature Analysis (MUR, 2015). The MUR SST v4.1 data are based upon night time skin and subskin SST observations from several instruments and are interpolated on a global 0.01 degree grid. Data are produced by the Group for High-Resolution Sea Surface Temperature (GHRSST) and were downloaded from The Physical Oceanography Distributed Active Archive Center (PO.DAAC, https://worldview.earthdata.nasa.gov, accessed May 2020). SST data were downloaded for 2017/02/09 and 2017/08/20, the two dates retained for chlorophylla concentration data. The accuracy of satellite-derived SST data was verified by the close similarity obtained with local in situ measurements performed at five distant stations of the bay (program PROTEKER, Appendix 3.17). The spatial resolution of satellite-derived chlorophyll-a and SST data was resampled at 0.001° by a neighbor joining approach to fit with the resolution of the bathymetric chart.
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Dynamic Energy Budget (DEB) model

The DEB theory defines individuals as dynamic systems and provides a mathematical framework for the life cycle of an organism, from the start of the embryo development to the death. It describes the physiological processes with four primary state variables: reserve, structure, maturity and reproduction buffer (the latter for adults only), directly linked to mass and energy flows and influenced by two forcing environmental variables: temperature and food resources availability (Fig. 3.21, Kooijman 2010). DEB theory relies on key concepts such as first laws of thermodynamics for conservation of mass, energy and time [START_REF] Jusup | Physics of metabolic organization[END_REF]) and assumes that the various energetic processes, such as assimilation and maintenance rates are dependent either on surface area or on body volume (van der Meer 2006). 

DEB model forcing by food.

Food resource is included in the DEB model by the scaled functional response f parameter, with values between 0 and 1. As previously stated, chlorophyll-a concentration was used to characterise food availability in the area. However, the linkage between chlorophyll-a concentration and food availability for A. cordatus is indirect. Chlorophyll-a concentration constitutes a proxy of
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primary production and food resources for the zooplankton. Then, the organic matter produced in the upper water layers will sink in the water column and reaches the seafloor to be consumed by the benthos following a process that can take several days (Turner 2002). Sediments also contain organic matter remineralized by bacteria [START_REF] Nixon | Remineralization and nutrient cycling in coastal marine ecosystems[END_REF][START_REF] Becquevort | Aggregation, sedimentation and biodegradability of phytoplankton-derived material during spring in the Ross Sea, Antarctica[END_REF], Jacquet et al. 2008), which constitutes a background food storage for the sea urchin (Pascal et al. in press).

In order to estimate f, the minimal food availability necessary in sediments for the survival of A. cordatus individuals, growth rates were simulated for different f values (Appendix 3.18). Results showed that below f = 0.45, the sea urchin will never reach the reproduction size (1.9 cm) within its expected average life span (8-9 year-old) [START_REF] Guillaumot | AmP Nacella concinna[END_REF]). We therefore hypothesized that f = 0.45 is a minimum threshold value for populations of A. cordatus to occur and reproduce (Appendix 3.18). According to [START_REF] Delille | Bacterial responses to natural organic inputs in a marine sub-Antarctic area[END_REF], Port-aux-Français is the station in the bay area where a minimum level of food is available in August (austral winter) that is, 1.35 mg.m -3 according to satellite-derived data. It was therefore assumed that f = 0.45 is a minimum in areas where chlorophyll-a concentrations reach at least 1.35 mg.m -3 . It was also assumed that f < 0.45 in areas where chlorophyll-a concentrations are lower than 1.35 mg.m -3 . Highest population densities of A. cordatus and food quantity were recorded at Anse du Halage station in the summer (Delille andBouvy 1989, Poulin 1996), which corresponded to chlorophyll-a concentrations of 10.9 mg.m -3 on 2017/02/09. This value was used to define the maximum value of f = 1 and to scale f values comprised between f = 0.45 (1.35 mg.m -3 ) and f = 1 (10.9 mg.m -3 ). Final f maps showed important spatial and seasonal contrasts in food availability in the bay area (Fig. 3.20D,E).

DEB model forcing by temperature.

The DEB model generated by [START_REF] Guillaumot | AmP Nacella concinna[END_REF] for A. cordatus was complemented with experimental data obtained in the Kerguelen Islands (Motreuil et al. 2018), which provided individual respiration rates of sea urchins at 5, 6, 7 and 9°C. Along with data from the literature, these results were used to define the maximum temperature range for survival A. cordatus, comprised between -1°C and + 12°C, with an optimal metabolic performance observed at +6°C and a performance decrease above +8°C. These results were used to determine five Arrhenius parameters in the calculation of a temperature correction factor, integrated into the model to take into consideration the influence of temperature on metabolic rates. Considering Tau, a given metabolic rate, the following equation was applied: Tau(T=Ti)= Tau(T) * TC, where Ti is the environmental temperature and TC the temperature correction factor, with:

Tc = exp { 𝑇 𝐴 𝑇 1 - 𝑇 𝐴 𝑇 } . (1 + exp { 𝑇 𝐴𝐿 𝑇 1 - 𝑇 𝐴𝐿 𝑇 𝐿 } + exp { 𝑇 𝐴𝐻 𝑇 𝐻 - 𝑇 𝐴𝐻 𝑇 1 }) . (1 + exp { 𝑇 𝐴𝐿 𝑇 - 𝑇 𝐴𝐿 𝑇 𝐿 } + exp { 𝑇 𝐴𝐻 𝐻 - 𝑇 𝐴𝐻 𝑇 }) -1
with Tref the reference temperature (4°C), TL and TH the lower and higher boundaries of the optimal tolerance range and TAL and TAH the Arrhenius temperatures beyond the lower and higher temperatures, respectively (Thomas and Bacher 2018).

Spatial projection of the DEB model.

Outputs of the DEB model were projected over the entire bay area by estimating the species physiological performance for each pixel of the map, using pixel-specific values of food availability and temperature (Thomas and Bacher 2018, Fabri-Ruiz et al. in press -Chapter 3). Reproduction and survival capacities were estimated by comparing somatic maintenance 𝑝𝑀 ̇ and maturation maintenance 𝑝𝐽 ̇ costs over the total energy available from the reserve compartment 𝑝𝐶 ̇ (Fig. 3.21).

According to DEB theory, the somatic maintenance 𝑝𝑀 ̇ has priority over growth and reproduction to ensure survival. Maturity maintenance 𝑝𝐽 ̇ has priority over reproduction (Kooijman 2010). These conditions imply that if the energy available in the reserve compartment 𝑝𝐶 ̇ is not sufficient to pay for the required maintenance costs (𝑝𝐶 ̇ < 𝑝𝑀 ̇ + 𝑝𝐽 ̇), the organism cannot reproduce, and will progressively starve and die.

INTEGRATED APPROACHES CHAPTER 3.
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'Simple' Species Distribution Modelling (SDM)

A set of 26 presence-only records of A. cordatus sampled from 1898 to 2015 in the Golfe du Morbihan was compiled from Guillaumot et al. (2016), checked for georeferencing errors and complemented with data from Poulin and Féral (1995) (Fig. 3.20A). Data are homogeneously distributed in the area with a Moran's I score of -0.01 (p-value= 0.15). Consequently, background records were randomly sampled in the area without any targeted sampling approach as the effect of spatial autocorrelation was not significant [START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF], Guillaumot et al. 2018a -Appendix). In order to sample environmental conditions prevailing in the study area as precisely as possible, while being close to the number of presence-only records available, 200 background records were sampled across the entire projection area (Barbet-Massin et al. 2012).

Generalized linear models (GLMs) (here referred as 'simple SDM') were used to relate species occurrences with the three environmental predictors previously described (depth, food availability, sea surface temperature and their square forms, Fig. 3.20). In this approach, presence and background data are treated as Bernoulli trials, where p is the probability of finding A. cordatus. A non-informative normal distribution (μ=0, sigma= 10,000) was used as a prior for the regression coefficients. The model was run using a burn-in period of 4,000 samples, followed by 4,000 additional MCMC samples to estimate the posterior distribution of regression coefficients. The procedure was replicated for 50 background records sampling, and average species distribution probabilities were predicted on a map. Posterior parameters were saved and used afterwards to initiate the 'integrated Bayesian' approach (section 2.6).

Model extrapolation areas were defined using the Multivariate Environmental Similarity Surface index (MESS, [START_REF] Elith | The art of modelling range-shifting species[END_REF]. Extrapolation areas correspond to all grid-cell pixels where descriptor values are not contained within the range of environmental conditions for which presence-only data are recorded. Extrapolation is defined for negative values of MESS, and the environmental predictor responsible for extrapolation was evaluated (for further details see [START_REF] Elith | The art of modelling range-shifting species[END_REF][START_REF] Guillaumot | Extrapolation in species distribution modelling. Application to Southern Ocean marine species[END_REF] -Chapter 2).

Integrated 'SDM-DEB' model

Integrating correlative and mechanistic models was first tested by using the spatial projection of the DEB model (section 2.3) as an environmental predictor in the SDM [START_REF] Elith | The art of modelling range-shifting species[END_REF][START_REF] Buckley | Does including physiology improve species distribution model predictions of responses to recent climate change?[END_REF][START_REF] Mathewson | Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates[END_REF][START_REF] Rodríguez | Integration of physiological knowledge into hybrid species distribution modelling to improve forecast of distributional shifts of tropical corals[END_REF]). The procedure is similar to the 'simple' SDM model approach (section 2.4), except that the DEB layer (i.e. '𝑝𝐶 ̇ > (𝑝𝑀 ̇+𝑝𝐽 ̇)?', Fig. 3.22) was added to the initial set of environmental predictors (depth, temperature, food availability). Similarly, the procedure was replicated for 50 background records sampling, and average distribution probabilities were predicted on a map.

'Integrated Bayesian' model

The method developed by Talluto et al. ( 2016), and applied by Gamliel et al. ( 2020) was used to develop an 'integrated Bayesian model' (physiology-SDM model). For this purpose, the 'simple SDM' (section 2.4) was combined with some physiological information obtained by a physiological submodel (detailed below). This combination was performed with a Bayesian approach by using the posterior distributions of the physiological submodel as priors for the SDM to create 'integrated Bayesian model' coefficients (see also the detailed method in Talluto et al. ( 2016) supplementary material).

Using DEB equations and parameters (Eq. 1), average growth rates were calculated for individuals measuring from 2.5 to 4.5 cm, according to food availability (for all values available in the projection area, Fig. 3.20) and a random selection of temperatures within the range of values of the considered season. This constitutes the 'physiological submodel' that therefore takes into account both food availability and temperature. Twenty-five replicates of individual sizes and temperature selection were performed. The growth rate was calculated with the following DEB equation CHAPTER 3.
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Simple Species Distribution Models (SDMs)

Overall distribution probabilities predicted by 'simple SDMs' are low (<0.5, Fig. Areas where model extrapolation occurs correspond from 36 (in February) to 37.8% (in August) of the total surface of the projection area and is mainly to be related to depth and to temperature in large patches for February (black and grey patches, Fig. 3.23E,F).
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'Integrated SDM-DEB' model

Model predictions are highly contrasting between February and August according to the 'integrated SDM-DEB' model (Fig. 3.24A,B). In February, distribution probabilities are close to 0.55 over the entire area, except for some patches located in the center of the bay and in coastal zones with predictions of up to 0.85. In contrast, low prediction scores are evenly predicted over the entire area for August (0.33 maximum, Fig. 
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'Integrated Bayesian' model

'Integrated Bayesian' models were implemented using the following set of parameters as priors (Table 3.4). The coefficient values of f and f 2 are high compared to the other parameters (average and tau scores), increasing the influence of food availability in final model outputs (Table 3.4). In August, the coefficient value of the f parameter is eight times higher than in February (8.43 compared to -0.89) but f 2 is twice lower (11.38 compared to 27.78) (Table 3.4).
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Article. Guillaumot et al. (submitted). Simple or hybrid? The performance of next generation ecological models to study the response of Southern Ocean species to changing environmental conditions. Diversity and Distributions. In 'integrated Bayesian' models, distribution probabilities vary within a large range, between 0.1 and 1, a sharp difference with low probability values (< 0.5) obtained with the 'simple SDM' approach (Fig. 3.23, Fig. 3.25A,B). The 'integrated Bayesian' approach also predicts differences between the two seasons, but not as important as the 'integrated SDM-DEB' model results (Fig.

3.24)

. Overall, the study area is predicted as less suitable to A. cordatus in August than in February, when food availability and temperatures are higher (Fig. 3.20B,E). More precisely, in August, suitable areas are mainly restricted to shallow waters and nearshore zones, especially in the west. In February, habitat suitability is more extended but remains mainly located close to the coasts (Fig. In February, most of the areas for which standard deviation are the highest for the 'integrated Bayesian' model (Fig. 3.25C) correspond to the extrapolation areas of the 'simple SDM' maps (Fig.

3.23C

). This is less clear for the August scenario (Fig. 3.25D, Fig. 3.23F).
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Contribution of predictors and model performance

'Model performance (Table 3.5) is good for all approaches except for the 'spatial DEB' approach, for which the percentage of correctly predicted presence data is very low in August (38.5%).

Among the three other approaches, model performance is very similar between the two seasons in the 'integrated Bayesian' approach. AUC scores are significantly the highest (t test with p-values < 0.001), with values reaching a minimal score of 0.76 in August with the lowest variability. The percentage of correctly classified presence data are good (> 81.7 %) for February, significantly higher than in the two other approaches (compare to 77.8 and 67.3%), but a bit lower for August (88.8% compared to 94.8 and 94.4% for the 'simple SDM' and integrated 'SDM-DEB' approaches, respectively).
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The 'integrated Bayesian' model results (Fig. 3.26) suggest a more substantial influence of environmental values on predicted probabilities, with higher temperatures, higher food availability and lower depths associated with higher predicted habitat suitability. This highlights a more important sensitivity of the seasonal effect on model predictions. These results are more in line with the ecology of A. cordatus and are confirmed by the higher performance metrics observed for the 'integrated Bayesian' approach, noteworthy in February (Table 3.5).
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DISCUSSION

Potential and main limitations to the different modelling approaches

Correlative approaches ('simple SDMs') are aimed at describing the correlation between species occurrence records and environmental conditions. SDM outputs can provide knowledge on the main environmental factors that drive species distribution [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF], Peterson 2011).

Because presence records are used as input data, SDMs also indirectly integrate the influence of other factors such as the effect of biotic interactions (either competition, exclusion or facilitation between species) and the biogeographic context (barriers or dispersal vectors) on species distribution, thereby simply and explicitly assessing the species realised niche [START_REF] Soberón | Niche and area of distribution modeling: a population ecology perspective[END_REF].

However, the relevance of niche estimation often constitutes the main limitation to 'simple SDMs', because their predictive performance strongly relies on sampling completeness [START_REF] Loehle | Model-based assessments of climate change effects on forests: a critical review[END_REF], Vaughan and Ormerod 2003, Araújo et al. 2005[START_REF] Randin | Are niche-based species distribution models transferable in space?[END_REF], Broennimann et al. 2007[START_REF] Holt | Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives[END_REF] Combining the merits of both correlative and mechanistic approaches to fine-tune the estimation of the species realised niche can provide important benefits (Dormann et al. 2012a), as prior information on the influence of the environment on species metabolism, given by physiological models, can be used to improve correlative models (Feng et al. 2020). This combined approach is also valuable to assess the effect of fast changing environmental conditions (e.g. seasonality or future predictions), which generate non-equilibrium states (Kearney et al. 2008, Keith et al. 2008) that cannot be accurately modelled by static, correlative approaches [START_REF] Loehle | Model-based assessments of climate change effects on forests: a critical review[END_REF]Leblanc 1996, Schouten et al. 2020, Fabri-Ruiz et al. in press -Chapter 3).

In the present study, the comparison of 'simple SDM', the most commonly used approach in ecological studies of Southern Ocean species, with 'integrated' approaches, was performed. All approaches have good performance statistics (Table 3.5), except for the 'spatial DEB' model. Spatial projections of the 'spatial DEB' approach are strongly driven by food availability (strong similarities between Fig. 3.20D,E and Fig. 3.22), and provide a biased representation of species distribution for August (Table 3.5), as "low food" areas are simply and systematically predicted as unsuitable to the species survival, with no consideration for the influence of the other environmental drivers. However, the model is interesting because it stresses the link between energetic costs and one major environmental driver (Appendix 3.19), a good complement to physiological submodels, and interesting to assess the environmental conditions that drive species distribution.

'The simple SDM' is characterised by good validation scores (AUC > 0.71 and percentage of correctly classified presence data > 77.8%) (Table 3.5) but distribution probabilities are contrasting for August compared to February (Fig. 3.23), when food concentration is high and evenly distributed in the all bay area (Fig. 3.20D). As a consequence, the contribution of this variable to model predictions is low (Fig. 3.26), an unrealistic prediction that contrasts with results obtained with the integrated approaches ('integrated SDM-DEB' and 'integrated Bayesian') (Fig. 3.26).

Using a physiological submodel to inform a SDM has been applied in recent works by directly adding a physiological layer to the SDM [START_REF] Elith | The art of modelling range-shifting species[END_REF][START_REF] Buckley | Does including physiology improve species distribution model predictions of responses to recent climate change?[END_REF][START_REF] Mathewson | Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates[END_REF][START_REF] Rodríguez | Integration of physiological knowledge into hybrid species distribution modelling to improve forecast of distributional shifts of tropical corals[END_REF] or by generating absence data from the modelled physiological information (Elith et al. 2010, Feng andPapes 2017). Model outputs are easy to interpret but the approach requires the combination of several models, as in any hybrid approach, and implies a
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risk inherent in the addition of biased estimations of each individual models (Feng and Papes 2017). In the present work, predictions of the 'integrated SDM-DEB' model are similar to results obtained with the 'spatial DEB' projections. This was expected, especially for the August model with corresponding low-food concentration conditions (Fig. 3.20), consequent low survival capacities (Fig. 3.22) leading to predicted low species distribution probabilities for the entire area (Fig. 3.24). The DEB layer contributes to the model as do environmental predictors [START_REF] Elith | The art of modelling range-shifting species[END_REF] resulting in some inconsistencies, as shown by the lower model performances obtained for February (percentage of correctly classified presence data= 67.3% and AUC= 0.60) (Table 3.5), whereas predictions are the highest in areas where survival and reproduction are impossible (i.e. where reserve 𝑝𝐶 ̇ is lower than the energy required for overall maintenance (𝑝𝑀 ̇ -𝑝𝐽 ̇)) (Fig. 3.24A). This statistical artefact is due to the spatial correlation between the occurrence of a high number of presence records in areas where 𝑝𝐶 ̇ -(𝑝𝑀 ̇+𝑝𝐽 ̇) values are low (i.e. energy available into the reserves 𝑝𝐶 ̇ is barely sufficient to pay for maintenance costs). This is shown in Figure 3.26, where the highest distribution probabilities are associated to low food values. The integration of the 'spatial DEB' layer into the 'integrated SDM-DEB' model led to over-estimating the influence of food availability on the prediction of species occurrences.

Another noticeable drawback of the 'integrated SDM-DEB' method is that important variations are obtained between model outputs depending on the DEB layer that is added into the SDM (Mathewson et al. 2017) (Fig. 3.24, Appendix 3.20A). The choice of the DEB layer to be used also influences model extrapolation (Appendix 3.20B) [START_REF] Rodríguez | Integration of physiological knowledge into hybrid species distribution modelling to improve forecast of distributional shifts of tropical corals[END_REF]), which must be taken into consideration when interpreting model results [START_REF] Elith | The art of modelling range-shifting species[END_REF][START_REF] Buckley | Does including physiology improve species distribution model predictions of responses to recent climate change?[END_REF], and increases the complexity of model calibration. Therefore, real benefits of adding modelled physiological information to SDMs are case dependent and the improvement of modelling performances are not certain [START_REF] Buckley | Does including physiology improve species distribution model predictions of responses to recent climate change?[END_REF][START_REF] Rodríguez | Integration of physiological knowledge into hybrid species distribution modelling to improve forecast of distributional shifts of tropical corals[END_REF]. However, the method can prove helpful for future predictions and analyses of non-equilibrium states, which constitute the main limitation to the SDM approach [START_REF] Elith | The art of modelling range-shifting species[END_REF][START_REF] Buckley | Does including physiology improve species distribution model predictions of responses to recent climate change?[END_REF][START_REF] Martínez | Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae[END_REF][START_REF] Mathewson | Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates[END_REF]. When there is few data available and the causal relationship between organism physiology and environment drivers difficult to model in a robust way, using the 'integrated SDM-DEB' approach can be problematic and model outputs must be interpreted with caution.

Bayesian methods are increasingly used in marine sciences [START_REF] Colloca | Identifying fish nurseries using density and persistence measures[END_REF], Muñoz et al. 2013, Pennino et al. 2014[START_REF] Roos | Modeling sensitive parrotfish (Labridae: Scarini) habitats along the Brazilian coast[END_REF], Gamliel et al. 2020). They were proved to have several advantages compared to other methods, including (1) a more accurate and realistic estimation of uncertainty as observations and model parameters are both used as random variables in model predictions [START_REF] Robert | The Bayesian choice: from decision-theoretic foundations to computational implementation[END_REF]) and ( 2) the possibility to integrate information from different sources, scales or nature (Peters et al. 2004[START_REF] Hobbs | Introducing datamodel assimilation to students of ecology[END_REF][START_REF] Dormann | Correlation and process in species distribution models: bridging a dichotomy[END_REF]).

In the present work, the highest AUC scores and correctly classified presence data were obtained with the 'integrated Bayesian' approach. Models performed well in representing uncertain areas, compared to other approaches (Fig. 3.23,3.24), as the areas predicted with the highest standard deviation scores by the 'integrated Bayesian' approach (Fig. 3.25) strongly overlap with the extrapolation areas estimated for the 'simple SDMs' (Fig. 3.23). The influence of environmental variations on model predictions are more marked (Fig. 3.26), with a better fit of the species response to environmental variations, and prediction performances show less contrast in evaluation scores between February and August (Table 3 .5). This suggests that the 'integrative Bayesian' approach is the best among the three tested approaches, at estimating the realised niche of A. cordatus.

Seasonality and predicted distribution of Abatus cordatus

In all model predictions, distribution probabilities are the highest in coastal areas, where populations of A. cordatus were known to be the most abundant (Poulin andFéral 1995, Poulin 1996). Interestingly, with some rare exceptions, sediment granulometry and hydrodynamics were shown to be important drivers of population densities in A. cordatus (Poulin and Féral 1995). These two key factors were not included in our models but suitable areas to the species perfectly match with conditions of high food availability and high temperature that prevail in coastal areas.
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Important contrasts, however, were obtained in model predictions between February and August, suggesting that seasonal variations significantly affect the metabolism of A. cordatus as organisms face different conditions in terms of food availability and temperature. According to the physiological model ('spatial DEB',Fig. 3.22,Appendix 3.19), maintenance costs are higher in winter (August) than in summer (February) due to lower temperatures that increase the demand of energy to maintain the metabolism (Kooijman 2010). Besides, there is less energy available in the reserve compartment to compensate for the increased maintenance costs as food availability is low in winter too (Appendix 3.19).

These results are strongly dependant on the assumption that metabolism performance (and therefore requested energy) follows Arrhenius laws as determined with summer acclimated individuals (Motreuil et al. 2018). For some Antarctic sea urchins, such as Sterechinus neumayeri [START_REF] Meissner M ; ) Echinoideen | The marine fauna of New Zealand: family Hymenosomatidae (Crustacea, Decapoda, Brachyura)[END_REF] it was reported a sharp metabolic switch during winter conditions. During this hypothesised non-feeding period, metabolic rates are decreasing with lower recorded oxygen consumption and slow or absent somatic growth (Brockington et al. 2001, Brockington and Peck 2001, Brockington et al. 2007). Such seasonal metabolic changes has never been observed nor studied for A. cordatus, but, if existing, it could bias the estimation of the Arrhenius curve implemented in the model and change some of the metabolic estimations.

Model outputs are in line with our knowledge of the reproduction cycle of A. cordatus and its timing. In most places of the Golfe du Morbihan, individuals invest energy in the growth of gonads in March, when food is the most abundant (Magniez 1983). Once fertilized, the eggs are brooded in the female incubating chambers for almost nine months (a period of low-food availability and low temperature) before the young are released and settle on the seabed [START_REF] Schatt | Completely direct development of Abatus cordatus, a brooding schizasterid (Echinodermata: Echinoidea) from Kerguelen, with description of perigastrulation, a hypothetical new mode of gastrulation[END_REF] or live sheltered between holdfasts of the giant kelp Macrocystis pyrifera (Poulin 1996). The reproduction cycle of A. cordatus is constant across years for a given place (Magniez 1983). However, it was observed that the reproduction period can shift from a few months between sites [START_REF] Schatt | The brooding cycle of Abatus cordatus (Echinodermata: Spatangoida) at Kerguelen Islands[END_REF][START_REF] Mespoulhé | Morphologie d'un échinide irrégulier subantarctique de l'archipel des Kerguelen: ontogenèse, dimorphisme sexuel et variabilité[END_REF], Poulin 1996), which was explained by spatial and temporal variations in food availability and sediment enrichment in nutrients [START_REF] Schatt | The brooding cycle of Abatus cordatus (Echinodermata: Spatangoida) at Kerguelen Islands[END_REF].

Modelling with such details the influence of environmental variations on the species metabolic performance and distribution bring valuable insights to interpret model predictions and assess the species realised niche. Integrating the effect of seasonal variations in niche modelling, herein assessed as differences between February and August, has long been suggested in SDMs (Elith andLeathwick 2009, Franklin 2010a) but it is seldom achieved due to limited data availability [START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF] 

Study improvements

To generate accurate models, this study focused on a well-documented echinoid species, A. cordatus, which had long been studied in the favorable context of a long-term observing system of coastal marine life, in the Golfe du Morbihan, the most visited area of the highly remote archipelago of the Kerguelen Islands. However, some limitations were highlighted by our results.

(1) The first limitation is the absence of a precise evaluation of food availability for A. cordatus in the total area of the Golfe du Morbihan. Estimates of chlorophyll-a concentration were used as a proxy of food abundance and availability but this constitutes a strong assumption that can impact model outputs. Chlorophyll-a concentration in sea surface waters is a partial surrogate to the measurement of food availability for a benthic species like A. cordatus as the abundance of nutrients on the sea bottom depends on the processes of organic matter consumption, degradation and transfer from the water column to the sea bottom [START_REF] Laurenceau-Cornec | Phytoplankton morphology controls on marine snow sinking velocity[END_REF]. Food
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interesting to have some information about benthic detritic organic matter that the sea urchins could consume (Pascal et al. in press). These data were however not available for the study area but such models offer promising perspectives. ( 2) Detailed information on the link between temperatures and physiological performances are still missing, as we only have and use here the results of a survival experiment performed at different temperatures in 2018 (Motreuil et al. 2018). DEB modelling has the potential to include five Arrhenius parameters to precisely characterise the link between temperature and metabolism (Kooijman 2010, Thomas and Bacher 2018), but available experimental data on A. cordatus do not permit measuring them with precision. More data are still needed for our case study to reach this precision and improve the performance of the DEB model. ( 3) Finally, there is a lack of presence data to correctly calibrate the model and to validate it. Generating ecological models with small datasets was indeed shown to reduce modelling performances (Stockwell andPeterson 2002, Liu et al. 2019) as it truncates predicted distribution and niche definition (Hortal et al. 2008, El-Gabbas andDormann 2018), and may lead to a reduction in model accuracy because presence and background datasets would not differ markedly (Luoto et al. 2005) INTEGRATED APPROACHES CHAPTER 3.
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Conclusions

Our results suggest good performances of 'integrated Bayesian' approaches to estimate species realised niche, compared to single correlative approaches or 'integrated SDM-DEB' approaches that might be biased by the subjective choice of the DEB layer used as an input into the SDM. More data are still necessary to better evaluate the model, to more accurately establish the relationship between the environmental conditions and the species physiology and to better represent the whole environment, but this study showed the possibility to apply the method for a data-poor case study, which opens perspectives for future applications to a broad panel of natural examples.
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Results highlighted a lack of genetic differentiation between Southern Ocean populations, influenced by an important connectivity between sub-Antarctic Islands, induced by the stepping-stone transport and promoted by the strong water flow of the Antarctic Circumpolar Current.

[Appendix section] López-Farrán Z, Frugone MJ, Gerard K, Vargas-Chacoff L, Poulin E, Guillaumot C and Dulière V (in preparation). Can the Patagonian crab Halicarcinus planatus reach the Antarctic Peninsula ? Study of the dispersal potential of its larvae using a lagrangian approach.

Dulière V / Guillaumot C (co-first authorship), López-Farrán Z, Lacroix G, Saucède T, Danis B and Baetens K (submitted). Potential impact of ballast water exchanges on the introduction of invasive species in Marine Protected Areas of the Western Antarctic Peninsula. Diversity and Distributions.

Christiansen H, Van de Putte A, Guillaumot C, Barrera-Oro E, Volckaert FAM and Young EF (in preparation). Integrated assessment reveals large scale connectivity of a historically overexploited fish in the Southern Ocean.

INTRODUCTION

Antarctic marine life is characterised by high levels of endemism [START_REF] Griffiths | Antarctic Marine Biodiversity -What Do We Know About the Distribution of Life in the Southern Ocean?[END_REF]) as a result of the long climatic, geodynamic and oceanographic histories of the Southern Ocean (SO) [START_REF] Crame | An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica[END_REF], Pfuhl and McCave 2005, Aronson et al. 2007[START_REF] Clarke | Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas[END_REF]. The SO, here, is defined as water masses bounded by the Antarctic continent to the south and the Polar Front (PF) to the north [START_REF] Rintoul | Antarctic Circumpolar Current S.R. In Encyclopedia of Ocean Sciences[END_REF]; with the PF being the most significant of a series of circumpolar marine fronts associated with the eastward-flowing jets of the Antarctic Circumpolar Current (ACC) [START_REF] Orsi | REFERENCES ecological niche modeling: a review and empirical evaluation using Phelsuma day gecko groups from Madagascar[END_REF]. Both the PF and the ACC form physical barriers preventing Antarctic surface water exchanges between the SO and northern ocean expanses (Aronson et al. 2007[START_REF] Griffiths | Antarctic Marine Biodiversity -What Do We Know About the Distribution of Life in the Southern Ocean?[END_REF][START_REF] Sanches | Multivariate analyses of Antarctic and sub-Antarctic seaweed distribution patterns: An evaluation of the role of the Antarctic Circumpolar Current[END_REF], hence blocking the dispersal of most marine organisms (Peck et al. 2014, Convey andPeck 2019). As a result from the prevalence of such important marine fronts, combined with strong currents and the remoteness from other land masses, a unique SO marine diversity has been shaped [START_REF] Lawver | The development of paleo seaways around Antarctica[END_REF][START_REF] Crame | An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica[END_REF][START_REF] Clarke | How isolated is Antarctica?[END_REF], Barnes and Clarke 2011).

Polar regions are currently challenged by the multiple effects of climate change at a fast pace [START_REF] Ansorge | Sentinels to climate change. The need for monitoring at South Africa's Subantarctic laboratory[END_REF], Henley et al. 2019). Antarctic coastal marine ecosystems are notoriously sensitive because many shallow-water species have limited resilience abilities and limited southward migration capacities, towards more suitable areas (Stenni et al. 2017[START_REF] Cárdenas | The importance of local settings: within-year variability in seawater temperature at South Bay, Western Antarctic Peninsula[END_REF], Gutt et al. 2018). Direct and indirect impacts of climate change are expected to alter the structure and functions of these marine ecosystems leading to species distribution shifts, local extinctions, and favorable condi-tions for colonization by introduced non-native species (Hughes andConvey 2010, Bender et al. 2016). Anthropogenic impacts induced by fisheries, tourism and research activities have been shown to facilitate the transport and introduction of alien organisms through ship hull fouling and ballast water exchanges [START_REF] Lewis | Assisted passage or passive drift: a comparison of alternative transport mechanisms for non-indigenous coastal species into the Southern Ocean[END_REF], Lee and Chown 2009c, Hugues and Ashton 2017).

The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) was created in 1982 to regulate trade and exploitation of Antarctic marine living resources, and set up marine protected areas (MPAs) (https://www.ccamlr.org/en/organisation/home-page, accessed October 2020). The Scientific Committee and Commission of CCAMLR yearly review and rule on new MPA projects proposed by national experts. To date, two Antarctic MPAs have been initiated and include waters off the South Orkney Islands (in 2009) and within the Ross Sea region (in 2016). Antarctic mineral and core resources are not exploited yet (Westermeyer et al. 2020) but commercial fishing and tourism are on the rise, in particular along the west coast of the WAP (Lee and Chown 2009a[START_REF] Bender | Patterns of tourism in the Antarctic Peninsula region: a 20-year analysis[END_REF][START_REF] Mccarthy | Antarctica: The final frontier for marine biological invasions[END_REF]. During the last five austral summers (2014 to 2019), the yearly number of tourists visiting Antarctica has increased from 36,700 to 55,400 (IAATO 2019).

As a consequence of increasing human pressure, the Antarctic region has progressively become less isolated and more affected by human footprint [START_REF] Chu | Heavy metal pollution in Antarctica and its potential impacts on algae[END_REF], Joblin et al. 2020). Among others, the rising maritime traffic has resulted in an increasing risk of introducing non-native species to the SO (Hughes andConvey 2010, Bender et al. 2016) [START_REF] Lee | Quantifying the propagule load associated with the construction of an Antarctic research station[END_REF], Volonterio et al. 2013[START_REF] Hughes | Biological invasions in terrestrial Antarctica: what is the current status and can we respond?[END_REF].

Ship hull fouling and ballast water release are major vectors of alien species dispersal and introduction to Antarctic coastal waters [START_REF] Lavoie | The potential for intracoastal transfer of non-indigenous species in the ballast water of ships[END_REF], Barnes 2002[START_REF] Lewis | Marine introductions in the Southern Ocean: an unrecognised hazard to biodiversity[END_REF][START_REF] Lewis | Assisted passage or passive drift: a comparison of alternative transport mechanisms for non-indigenous coastal species into the Southern Ocean[END_REF][START_REF] Chan | Relative importance of vessel hull fouling and ballast water as transport vectors of nonindigenous species to the Canadian Arctic[END_REF], Hughes et al. 2019). Ballast water tanks are filled at ships' home ports in South America to safely navigate across the Drake passage to Antarctica. Fishing vessels progressively discharge most of their ballast waters as it is replaced by their catch. Cruise ships typically discharge ballast waters to travel faster and regularly take up new water to replace the volume left by fuel consumption [START_REF] Hughes | Human-mediated dispersal of terrestrial species between Antarctic biogeographic regions: A preliminary risk assessment[END_REF].

The the-Control-and-Management-of-Ships'-Ballast-Water-and-Sediments-(BWM).aspx-, accessed October 2020). This convention, ratified by 83 countries so far, establishes standards and procedures for the management and control of ship ballast water and sediments to avoid the unintentional dispersal of alien species. The main document also states that ballast water exchange should be done at least 200 nautical miles from the nearest land and in water at least 200m deep, but "in cases where the ship is unable to conduct ballast water exchange [in these conditions], this should be as far from the nearest land as possible, and in all cases at least 50 nautical miles from the nearest land".

In the present study, a Lagrangian model was developed to simulate the drift of virtual particles as they are transported along the water masses. The model calculates particle trajectories (identified here as potential propagules) according to different point locations where ballast water is discharged. This was exemplified by the Patagonian crab, Halicarcinus planatus (Fabricius, 1775), reported in Deception Island (Western Antarctic Peninsula) in 2010. The potential impact of ballast water release on the introduction of alien species in Antarctic coastal waters was analyzed through pluriannual and multi-seasonal time scales. A map of recommended areas for ballast water release is proposed as a tool to support good practices for ballast water discharge and for conservation purposes

MATERIAL AND METHODS

Study area

The study area is enclosed by the strong eastward flowing ACC (Appendix 4.1) and includes the Scotia Arc region, the Antarctic Peninsula, and the Weddell Sea, as they concentrate most of the maritime traffic between Antarctica and southern South America and therefore, the highest risk of alien species introduction [START_REF] Lynch | Spatial patterns of tour ship traffic in the REFERENCES Antarctic Peninsula region[END_REF][START_REF] Mccarthy | Antarctica: The final frontier for marine biological invasions[END_REF]).

Lagrangian model principle and hydrodynamic settings

In this study, we used a Lagrangian particle model, which combines oceanographic information (e.g. bathymetry, current direction and speed) forced by atmospheric factors (temperatures, winds, atmospheric pressure) (Huthnance 1991, Robinson and[START_REF] Robinson | The physical and dynamical oceanography of the Mediterranean Sea[END_REF] with biological features (e.g. organisms ' size, development rate, buoyancy, Van Sebille et al. 2018). The model used in this study is based on the model described in Dulière et al. (2013) and made available as a module of the free and open-source aquatic modelling system COHERENS v2 (Luyten 2011). This system has already been used to study, among others, oil spill dispersal [START_REF] Legrand | OSERIT: A downstream service dedicated to the Belgian Coastguard Agencies[END_REF], jellyfish drift [START_REF] Dulière | Where is my jelly?[END_REF]) and the movement of harbor porpoises (Haelters et al. 2015). Particles are transported under advective and diffusive processes. The classical fourth-order Runge-Kutta method is used to estimate horizontal transport. The diffusive velocities are obtained from random walk theory with constant horizontal and vertical diffusion coefficients of 10 and 0.0001m².s -1 , respectively. The same diffusion coefficient values are used as in Young et al. (2014) and are equivalent to values observed in the SO (empirical values or commonly accepted by modelers; [START_REF] Sheen | Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES)[END_REF], Watson et al. 2013) reaching the sea surface or seabed, and particles that leave the model domain through the ocean open boundary are assumed to have left the region. Stranding is not allowed, so when a particle reaches a dry cell, its position is set to its previous position at sea. The Lagrangian module is used off-line with a computation time step of 5 minutes. To ensure the general purpose of this study, the model has been set up with no specific organismal behaviour (i.e. swimming or tidal or diurnal vertical migration) and particles are assumed to move along with water masses (i.e. no buoyancy effect).

The hydrodynamic conditions used to force the Lagrangian model are based on the 2008-2016 PHY_001_024 datasets produced by the high-resolution global analysis and forecasting system, provided by Mercator Ocean (Law Shune et al. 2019). These products contain daily mean fields of sea surface elevation and horizontal ocean currents. In addition, they also contain sea ice information (i.e. concentration, thickness and velocity), sea water potential temperature, sea water salinity and ocean mixed layer thickness. These datasets have been generated with NEMO 3.1 and LIM2 EVP models forced with 3-hourly atmospheric forcing from ECMWF (European Centre for Medium-Range Weather Forecasts, https://www.ecmwf.int/). Daily averaged model products are made available after interpolation from the native model grid to a global standard Arakawa C grid of 1/12° horizontal resolution and 50 fixed vertical levels (from 0 to 5,000 m). The quality of the Global high-resolution products has been assessed in [START_REF] Lellouche | Quality Information Document For Global Sea Physical Analysis and Forecasting Product GLOBAL_ANALYSIS_FORECAST_PHY_001_024[END_REF]. 3D vertical ocean currents are estimated from the divergence in the horizontal velocity from the PHY_001_024 forcing fields, assuming null surface and bottom vertical velocity.

The model grid was built from a sub-sample of the global grid of the hydrodynamic forcing field from latitude 45°S down to the South Pole. The horizontal resolution of 1/12° (~8km) was kept and the 50 vertical levels have been adapted to 50 sigma levels for the COHERENS system. The Lagrangian particle model has been previously validated in Dulière et al. (2013), [START_REF] Legrand | OSERIT: A downstream service dedicated to the Belgian Coastguard Agencies[END_REF] and a quality analysis of the hydrodynamic forcing is provided in [START_REF] Lellouche | Quality Information Document For Global Sea Physical Analysis and Forecasting Product GLOBAL_ANALYSIS_FORECAST_PHY_001_024[END_REF].

Particle release scenarios

Three scenarios were defined for simulating drift trajectories of organisms potentially released during ballast water discharge along the Antarctic coasts, according to ATCM (2006). The first scenario considers that ballast waters are released 190 to 210 Nautical Miles (NM) away from the nearest coasts ('200 NM scenario'), which complies with the ATCM ratified guidelines (Fig. 

Particles' trajectory and age: statistical comparisons

Model simulations have produced large datasets with model estimations of the daily age and positions (latitude, longitude and depth) of virtual particles. Model results have been postprocessed for different years and seasons (January-February-March; April-May-June; July-August-September; October-November-December) and for each ballast water release scenario, to generate maps of dispersal patterns. Results for averaged years and seasons are first provided to describe the overall dispersal patterns of particles drift. Then, interannual and seasonal variabilities are described. Due to the different number of released particles among release areas and scenarios, a scaling correction has been applied for statistical analyses (giving a 'weighted number of particles').

Proposed Marine Protected Areas

The likely consequences of ballast water release on the potential introduction of alien organisms in MPAs of the 

Focus on Deception Island

In February 2010, a living and mature female of the brachyuran crab Halicarcinus planatus (Fabricius, 1775) was reported in shallow, subtidal waters of Deception Island (WAP) (Aronson et al. 2014) (Fig. 4.3). Halicarcinus planatus is usually distributed in shallow water areas of southern South America and along coastal areas of some sub-Antarctic Islands (Falkland, Marion, Crozet, Kerguelen and Macquary islands) [START_REF] Boschi | Desarrollo larval del cangrejo, Halicarcinus planatus (Fabricius) (Crustacea, Decapoda, Hymenosomidae), en el laboratorio, con observaciones sobre la distribución de la especie[END_REF], Richer de Forges 1977, Aronson et al. 2014[START_REF] Varisco | Growth and maturity of the spider crab Halicarcinus planatus (Brachyura: Hymenosomatidae) females in the southwestern Atlantic Ocean. Can these parameters be influenced by the population sex ratio?[END_REF]. This little crab (shell diameter from 15 to 20 mm, Fig. 4.3) is an opportunistic feeder [START_REF] Boschi | Desarrollo larval del cangrejo, Halicarcinus planatus (Fabricius) (Crustacea, Decapoda, Hymenosomidae), en el laboratorio, con observaciones sobre la distribución de la especie[END_REF]) that is commonly found sheltered below intertidal and subtidal rocks (Richer de Forges 1977, [START_REF] Vinuesa | Reproduction of Halicarcinus planatus (crustacea, decapoda, hymenosomatidae) in the Deseado River estuary, southwestern Atlantic Ocean[END_REF]. 3). The hypothesis of a potential introduction of H. planatus in Deception Island through ballast water release was tested by subsetting the model results to a maximum drift period of 2 months, following the known maximal drifting time of the crab larvae (Boschi et al. 1969, Diez and[START_REF] Diez | Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters[END_REF]. The hypothesis has been tested for all three release scenarios.

RESULTS

Dispersal patterns according to the different release scenarios

General dispersal patterns were different among the three release scenarios (Fig. 4.4). The 200 NM scenario leads to the widest dispersal pattern that expands further eastward across the PF to the sub-Antarctic area. The 50 and 11 NM scenarios comparatively lead to narrower and less extended dispersal patterns (Fig. 4.4). Geographical and oceanographic features (such as the Weddell Sea gyre, the PF, the ACC, the Scotia Ridge) clearly delineate the shape of the dispersal of particles in the corresponding areas.

Release scenarios also show differences in the weighted number of particles (Fig. 

DISCUSSION

Particle dispersal

Lagrangian models have been widely used over the last decades for defining and delineating MPAs in many different regions and oceans (Gaines et al. 2003, Berglund et al. 2012[START_REF] Burgess | Beyond connectivity: how empirical methods can quantify population persistence to improve marine protected-area design[END_REF], Thomas et al. 2014), and study the spread dynamics of invasive species [START_REF] Brandt | Rapid invasion of Crassostrea gigas into the German Wadden Sea dominated by larval supply[END_REF], Brickman 2014). In the SO, Lagrangian models have already been used to simulate dispersal abilities and the distribution of fish species or top predators, to understand the main key drivers of population connectivity and assess the position of the main foraging areas, in the aim of determining an effective management of natural resources [START_REF] Young | Physical and behavioural influences on larval fish retention: contrasting patterns in two Antarctic fishes[END_REF], 2014, 2015[START_REF] Della Penna | Lagrangian analysis of multi-satellite data in support of open ocean Marine REFERENCES Protected Area design[END_REF]).

In the present work, daily variations of the environment were simulated over a 9-year period and model outputs were analyzed to test the significance of dispersal patterns with regards to interseasonal and inter-annual variations. In simulating a large number of particles, Lagrangian models integrate natural variability of hydrodynamic systems (Van Sebille et al. 2018). However, the model should rely on assumptions (parameterization of the general environment, of the properties of the simulated particle), which may not be trivial considering the broad spatial scale of the analysis, the overall system complexity, and the unknown propagule pressure state (i.e., occurrence and density of non-native species in ship ballast waters). Furthermore, some propagule traits such as buoyancy, physiology, survival rate and tidal behaviour were hypothesized; the actual traits of invasive species could potentially have a substantial impact on model outputs (Stanwell-Smith et al. 1999[START_REF] North | Vertical swimming behaviour influences the dispersal of simulated oyster larvae in a coupled particletracking and hydrodynamic model of Chesapeake Bay[END_REF][START_REF] Young | Physical and behavioural influences on larval fish retention: contrasting patterns in two Antarctic fishes[END_REF][START_REF] Miller | Interspecific differences in depth preference: Regulation of larval transport in an upwelling system[END_REF], Barbut et al. 2019).

Model simulations show that in six months, particles can drift along the coasts of the WAP up to South Georgia, driven by the power of the ACC and highlighting the importance of connectivity between Antarctic coasts and the Scotia Sea region (Appendix 4.1, Rintoul 2009[START_REF] Caccavo | Along-shelf connectivity and circumpolar gene flow in Antarctic silverfish (Pleuragramma antarctica)[END_REF], Moffat and Meredith 2018). Other oceanographical features such as the Weddell Sea gyre and major marine fronts off the Scotia Sea (PF) [START_REF] Della Penna | Lagrangian analysis of multi-satellite data in support of open ocean Marine REFERENCES Protected Area design[END_REF], along with geomorphological features such as the South Orkney Ridge or the South Georgia shelf also clearly influence dispersal patterns (Fig. 4.4, Young et al. 2012, 2015, Vernet et al. 2019), and play a crucial role in the connectivity among sub-Antarctic islands [START_REF] Young | Physical and behavioural influences on larval fish retention: contrasting patterns in two Antarctic fishes[END_REF]. Comparisons of the three different scenarios indicate that release distance from the nearest coasts has significant impacts on particle trajectories, on the frequency and weighted number of particles reaching the Antarctic coasts (Fig. 4.4-5-7). Overall, particles are less likely to reach Antarctic coastal areas when ballast waters are released at least 200 NM away from the nearest coasts (Fig. 4.4-5).

Inter-seasonal and inter-annual variability were also shown to have significant effects on modelled dispersal patterns (Appendix 4.2,. This was expected here, given that SO hydrodynamics are highly controlled by the variability of atmospheric and climate regimes at both high and low frequencies (Henley et al. 2019). Some of our results indicate that in years 2008, 2009, 2014 and 2015 particles were spread furthest while dispersal was the lowest in 2011 and 2012. These results are linked to specific climate events and in particular, to regimes of westerly winds and to the intensity of the Southern Annular Mode (Limpasuvan and Hartmann 1999), which has been shown to be strongly and linearly teleconnected to the phase of El Niño Southern Oscillation, explaining roughly 25% of the SAM interannual variance during the austral summer season (Carvalho et al. 2005, L'Heureux and Thompson 2006, Ciasto and Thompson 2008). Years 2009, 2014 and 2015 were characterised by a negative Southern Oscillation Index with strong El Niño episodes (warmer temperatures and stronger westerly winds); in contrast, years 2010-2011 were characterised by strong positive Southern Ocean Indexes and with La Niña episodes (weaker westerly winds, dryer and colder atmosphere) (Nicolas et al. 2017).

Results' overview in the general context

The WAP is among the regions on Earth that experience climate warming at the fastest pace, where rising temperatures also directly or indirectly drive other environmental shifts (i.e. glacier melting, phytoplankton community shifts, changes in sea ice duration and extent) [START_REF] Convey | Antarctic climate change and the environment[END_REF], Bers 2013[START_REF] Schram | Multi-frequency observations of seawater carbonate chemistry on the central coast of the western Antarctic Peninsula[END_REF][START_REF] Schofield | Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula[END_REF][START_REF] Convey | Antarctic environmental change and biological responses[END_REF]. This makes the WAP one of the most sensitive regions to potential invasions by introduced species in Antarctica [START_REF] Meredith | Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century[END_REF], Hellman et al. 2008, McGeoch et al. 2015, Hughes et al. 2019) because increased temperatures and related environmental shifts may favour the acclimation of alien species introduced from warmer climates over cold-adapted native taxa (Hellmann et al. 2008, Galera et al. 2018).

For a few decades, maritime traffic has also steadily increased in the SO and in the WAP in particular, due to its relative proximity to harbors of southern South America [START_REF] Mccarthy | Antarctica: The final frontier for marine biological invasions[END_REF]. This increasing traffic has been cited as the main cause for alien species introduction in coastal waters of the WAP (Tavares and De Melo 2004[START_REF] Lee | Mytilus on the move: transport of an invasive bivalve to the Antarctic[END_REF][START_REF] Diez | Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters[END_REF]. Many observations of non-native species have been reported in the last years including decapods, algae, bivalves (Thatje and Fuentes 2003, Fraser et al. 2018[START_REF] Mccarthy | Antarctica: The final frontier for marine biological invasions[END_REF], Avila et al. 2020[START_REF] Cárdenas | First mussel settlement observed in Antarctica reveals the potential for future invasions[END_REF], as well as the Patagonian crab H. planatus, which was found in Deception Island in summer 2010 (Aronson et al. 2014).

Our study is strongly embedded within this context, by evaluating the impact of ship circulation on marine environments, and in MPAs in particular. Results highlight the importance of the distance of ballast water release from coasts to control the frequency and density of particles reaching Antarctic coasts. Focusing more specifically on Deception Island, our simulations indicate that no particle reach the Gerlache Strait when ballast waters are released at 200 NM from the coasts, suggesting that the non-native crab H. planatus could not have been introduced to Deception Island due to ballast water release if the ATCM guidelines had been respected. If the introduction to Deception Island indeed occurred through ballast water of cruise ships sailing southwards from ports of southern South America, which we consider to be a likely scenario, the crab must have been released at a distance equal or less than 50 NM from the Antarctic coasts (Fig. 4.10,Appendix 4.3). These results could be generalized to other species, with the ensuing consequences of species introductions (Walsh et al. 2016, David et al. 2017, Britton et al. 2018).

Our results also highlight that the variability in climate regimes has a strong effect on dispersal patterns meaning that in certain years, particles may drift further and reach areas that are on average not considered to be potentially impacted by ballast water release and the risk of alien species introduction, as already discussed by Fraser et al. (2018) andWaters et al. (2018) for kelp rafting. Other authors stressed the significance of transient events in long-distance dispersal [START_REF] Leese | Longdistance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean isopod[END_REF][START_REF] Saucède | Biogeographic Atlas of the Southern Ocean[END_REF]. Such events may become more frequent in future decades, owing to ongoing climate change, since climate projections for the Southern Hemisphere for the 21st century predict a further southward shift and intensification of storm tracks (Perlwitz 2011) and therefore hypothesize an increasing threat for potential species introductions (Hugues et al. 2020).

Future management of MPAs

The ATCM (2006) guidelines recommend that ballast water should be discharged north of the PF before entering Antarctic waters and "preferably north of either the Antarctic Polar Frontal Zone or 60°S, whichever is the furthest north". In practice, the position of the Polar Front is usually noticed after passing it and exchanging ballast waters in these regions is not realistic considering the weather and sea conditions (Wallis B., person. comm.). Consequently, the 200 NM guidelines, provided both by IMO and ATCM (2006) texts, should be as widely as possibly applied by ships that sail across the PF. Our results however suggest that releasing ballast waters at 200 NM around the WAP (Rz.1) may still lead to particles reaching the Antarctic coasts including, the eastern and northernmost proposed MPAs of the region (notably KFZ-NWAP, Fig. 4.5,Fig. 4.8). The particle numbers reaching the Antarctic coasts are considerably reduced when released at 200 NM from the nearest coasts than when released at 50 NM or 11 NM. Although the origin of particles arriving in MPAs varies among years and seasons, the model indicates that ballast water release should best be conducted further away than 200 NM or wherever possibly, avoided altogether on the western side of the Antarctic Peninsula (Fig. 4.9).

When ballast waters are released on the eastern side of the WAP (Rz.2 and Rz.4), particles are predicted to drift north-eastward in the sub-Antarctic region, reaching the KFZ-SOI, GPZ-SOI or SOI-MPA areas within a few days at the earliest, and within 3 months on average (Fig. 4. 5-7-8).

Regardless of the release scenario, our simulations indicate that it is not possible to prevent particles from reaching the aforementioned MPAs when ballast water is discharged on the eastern side of the WAP (Rz.2; Fig. 4.5 and Fig. 4.8). Avoiding this region for ballast water release is therefore recommended (Fig. 4.9). Discharging ballast water in the East Weddell Sea and around South Georgia and Sandwich Islands (Rz. 3,Rz.5 and Rz.6,respectively) results in the absence of particles reaching the MPAs. East Weddell Sea (Rz.3) is however not suitable for ballast water release due to practical reasons, because this region is ice-covered all year long (Vernet et al. 2019). Results also show that particles released in the South Georgia and Sandwich Islands region will not reach the proposed MPAs of the WAP, but the impact on islands located further east was not investigated in the present work.

Given the dense and increasing maritime traffic along the Antarctic Peninsula and Scotia Sea regions, the present model could be improved with more detailed data on ship routes, ballast water discharge events [START_REF] Mccarthy | Antarctica: The final frontier for marine biological invasions[END_REF], Hugues et al. 2020) and propagule pressure (Lee and Chown 2009a). Such adapted models could then be used to generate maps delineating recommended zones for ballast water release with a higher precision. Our results strongly stress the necessity to further strengthen existing conservation measures for visitors and ships approaching Antarctic coasts and complementing studies that highlighted the urgency of protecting Antarctica from species introduction (Lennox et al. 2015, McGeoch et al. 2015, Hugues et al. 2020). Such conservation measures should be joined to MPAs proposals.

Awaiting the definition and acceptance of recommended ballast water release zones, countries that ratified the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWM), could meanwhile already make ballast water treatments compulsory.

Infrastructures for ballast water treatment are technologically improving [START_REF] Aravossis | Creating shared value with eco-efficient and green chemical systems in ship operations and in ballast water management[END_REF]Pavlopoulou 2013, Chaplin 2019), although this approach brings additional practical and financial issues being the responsibility of ship owners [START_REF] Aravossis | Creating shared value with eco-efficient and green chemical systems in ship operations and in ballast water management[END_REF].
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CONCLUSIONS

This study provides insights on how ballast water release can contribute to the arrival of potentially invasive species in current and proposed MPAs of the WAP, being one of the most vulnerable Antarctic regions to biological invasions.

The existing ballast water release guidelines produced by the IMO andAntarctic Treaty (Antarctic Treaty 1959, ATCM 2006) are not sufficient to prevent the introduction of non-native species in these MPAs, although respecting ballast water discharges at 200 NM away from the nearest coasts lowers the risk of introduction. This is especially true for ballast water being discharged in the areas of the western and eastern WAP. Because of the expected future increase in maritime traffic and the correlated risk of alien species introduction and invasions potentially increasing due to global warming, we here advocate for delineating ballast water discharge zones, so that propagules released within ballast waters would not reach the most fragile Antarctic ecosystems. These discharge zones could be further fine-tuned with more data about maritime traffic and accounting for climatic variability.

We also recommend increasing the ratified distance of ballast water release over 200 NM in the WAP and avoiding discharges in the Eastern Antarctic Peninsula, two recommendations that could be included in future MPA proposals. This study shows that ballast water release at 50 NM or closer to the coasts pose a dangerous threat, as these results in drifting propagules reaching Antarctic coasts. This is in particular exemplified by the case study of the introduction of the Patagonian crab H. planatus in Deception Island. Our results indicate that, if the crab was indeed brought after ballast water discharge, the ballast water would have likely been discharged at 50 NM or closer to the Antarctic coast.

INTRODUCTION

Connectivity and spatial genetic structure in marine organisms is determined through the interplay of ecological traits, such as dispersal mode, duration and behavior, and the physical setting, that is environmental conditions including hydrodynamics, and evolutionary forces, such as selection and genetic drift [START_REF] Hidalgo | Advancing the link between ocean connectivity, ecological function and management challenges[END_REF][START_REF] Hoey | Genomic signatures of environmental selection despite near-panmixia in summer flounder[END_REF][START_REF] Xuereb | Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RAD seq, in a highly dispersive marine invertebrate (Parastichopus californicus)[END_REF]. This multitude of factors can lead to complex patterns and makes the relative importance of each factor difficult to discriminate (Moon et al. 2017[START_REF] Miller | Complex genetic structure revealed in the circum-Antarctic broadcast spawning REFERENCES sea urchin Sterechinus neumayeri[END_REF], Milligan et al. 2018). However, spatial population structure and its temporal dynamics are crucial information for sound biodiversity management and protection (Funk et al. 2012, Momigliano et al. 2019). Management of marine organisms aims to protect the biodiversity of species, populations and ecosystems under competing influences of various anthropogenic disturbances [START_REF] Everson | Designation and management of large-scale MPAs drawing on the experiences of CCAMLR[END_REF][START_REF] Ropert-Coudert | Happy feet in a hostile world? The future of penguins depends on proactive management of current and expected threats[END_REF].

Taxonomic ranks at the species level are readily available, at least for macro-organisms, but recent research has shown that it is imperative to also consider intraspecific variation [START_REF] Mee | Identifying designatable units for intraspecific conservation prioritization: a hierarchical approach applied to the lake whitefish species complex (Coregonus spp.)[END_REF], Carvalho et al. 2017[START_REF] Des Roches | The ecological importance of intraspecific variation[END_REF], Paz-Vinas et al. 2018). In order to assess intraspecific variation in the ocean, putative subpopulations are characterised with respect to their ecology and evolution. These two aspects are intertwined, leading to eco-evolutionary dynamics that determine the long-term fate of a species. Similarly, a species may persist in the form of a metapopulation comprised of subpopulations that are linked through ecological and evolutionary connectivity [START_REF] Cowen | Larval dispersal REFERENCES and marine population connectivity[END_REF]Sponaugle 2009, Pinsky et al. 2017). Ecological connectivity is the contemporary exchange of individuals between fragmented habitats. Evolutionary connectivity additionally considers the long-term degree of connection between a given number of separate (sub)populations through genetic exchange and drift (Waples and Gaggiotti 2006). All these aspects gain relevance in an exploitation context. Fisheries in particular can have drastic and immediate effects on reproductive output and thus ecological connectivity. In addition, fisheries can reduce genetic diversity and may have evolutionary consequences by imposing artificial selection on a species [START_REF] Hoey | Genomic signatures of environmental selection despite near-panmixia in summer flounder[END_REF]Palumbi 2014, Heino et al. 2015). Recognizing and mitigating these consequences is a global challenge for fisheries and ocean management, especially in areas beyond national jurisdiction (Ortuño Crespo et al. 2019).

The Southern Ocean provides an example of ecosystem-and consensus-based fisheries management in an area that is not governed by a single nation (Kock et al. 2007[START_REF] Constable | Lessons from CCAMLR on the implementation of the ecosystem approach to managing fisheries[END_REF][START_REF] Everson | Designation and management of large-scale MPAs drawing on the experiences of CCAMLR[END_REF]). As such the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), can be considered progressive [START_REF] Constable | Managing fisheries to conserve the Antarctic marine ecosystem: practical implementation of the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR)[END_REF][START_REF] Nilsson | Consensus management in Antarctica's high seas-Past success and current challenges[END_REF][START_REF] Hofman | Stopping overexploitation of living resources on the high seas[END_REF] Article. Christiansen et al. (in prep.). Integrated assessment of large-scale connectivity in a historically overexploited fish population in the Southern Ocean.

2019b). Much research has been devoted to provide the scientific information needed for the establishment of an appropriate MPA network [START_REF] Groeneveld | How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model[END_REF], 2019[START_REF] Constable | Developing priority variables ("ecosystem Essential Ocean Variables"-eEOVs) for observing dynamics and change in Southern Ocean ecosystems[END_REF][START_REF] Hill | Model-based mapping of assemblages for ecology and conservation management: A case study of demersal fish on the Kerguelen Plateau[END_REF][START_REF] Brasier | Observations and models to support the first Marine Ecosystem Assessment for the Southern Ocean (MEASO)[END_REF], Parker et al. 2019). In addition, several large-scale research initiatives have increased our knowledge of biodiversity and bioregions in the Southern Ocean over the past decades [START_REF] Schiaparelli | The Census of Antarctic Marine Life: the first available baseline for Antarctic marine biodiversity[END_REF], De Broyer et al. 2014). Nevertheless, Antarctica and the Southern Ocean remain a data-poor environment in the global context. Data availability is biased, due to high sampling effort around research bases [START_REF] Griffiths | Antarctic Marine Biodiversity -What Do We Know About the Distribution of Life in the Southern Ocean?[END_REF]) and difficult accessibility of the remote and often ice-covered Southern Ocean [START_REF] Convey | Antarctic environmental change and biological responses[END_REF]. A combined methodological approach, including genetic analyses, environmental measurements and modelling techniques, could help eliminate knowledge gaps concerning population structure and connectivity of key species in the Southern Ocean ecosystems (Gutt et al. 2018).

The genomic revolution has enabled the relatively fast and economic characterisation of thousands of genetic markers in non-model organisms [START_REF] Elshire | A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species[END_REF][START_REF] Andrews | Harnessing the power of RADseq for ecological and evolutionary genomics[END_REF]. High resolution genetic data promises to yield new insights into speciation, differentiation and adaptation patterns and is thus a valuable tool to fully use the potential of precious Antarctic samples [START_REF] Christiansen | Connectivity and evolution of fishes in the Southern Ocean -from species to populations[END_REF]. Species distribution modelling (SDM), sometimes referred to as ecological niche modelling, is a powerful technique to correlate environmental and occurrence data and subsequently predict the occurrence probability of a given species in other habitats or under changing environmental conditions [START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF]. Such techniques can be useful in data-limited situations, albeit care must be taken to ensure appropriate parameterization (Guillaumot et al. 2018a-Appendix, 2019 -Chapter 2). Lastly, individual-based modelling (IBM) can be used to simulate dispersal and thus obtain a spatially explicit prediction of connectivity between habitats [START_REF] Cowen | Larval dispersal REFERENCES and marine population connectivity[END_REF]. Combining genomic data and modelled connectivity estimates is most useful in the marine realm, where direct observations of migration and dispersal are often virtually impossible (Pinsky et al. 2017[START_REF] Xuereb | Asymmetric oceanographic processes mediate connectivity and population genetic structure, as revealed by RAD seq, in a highly dispersive marine invertebrate (Parastichopus californicus)[END_REF]. We use the methods mentioned above complimentarily to advance our understanding of large-scale connectivity in N. rossii, a fish that is both valuable as a living resource and vulnerable to overfishing.

The marbled rockcod grows to more than 50 cm in length, can form dense shoals in sub-Antarctic and Antarctic fjords and shelf waters, and occurs widely in the Southern Ocean [START_REF] Dewitt | Nototheniidae. In: Fishes of the Southern Ocean[END_REF], Duhamel et al. 2014). Its life cycle has been well described for the population at South Georgia by [START_REF] Olsen | South Georgian cod, Fischer[END_REF] and [START_REF] Burchett | The life cycle of Notothenia rossii from South Georgia[END_REF] and for the population at Kerguelen Islands by Duhamel (1982). Spawning takes place between April and June on the bottom of continental shelf areas at about 200-360 m depth, where ripe adults migrate during fall. Hatching occurs between September and October in the water column, where larval and young pelagic blue-phase fingerling stages remain before they migrate inshore approximately in January-February [START_REF] Dewitt | Nototheniidae. In: Fishes of the Southern Ocean[END_REF], Kock and Kellermann 1991, Kock and Jones 2000[START_REF] North | Early life history strategies of notothenioids at South Georgia[END_REF]). The fingerlings then change morphologically to the brown-phase fingerling stage and become demersal, settling in the algae beds. At about 5-7 years of age and 41-45 cm of length, N. rossii reaches sexual maturity and migrates to the offshore shelf feeding area joining the adult population. These offshore-inshore phases in the life cycle of the marbled rockcod are assumed to be similar in the geographical areas of its range (Kock 1992).

The ecological habits of N. rossii as a benthic-benthopelagic species constitute an important trophic link between lower trophic levels (macroalgae, benthic invertebrates, small fish) and Antarctic top predators, such as seals and birds (Barrera-Oro 2002, McInnes et al. 2017, Bertolin and Casaux 2018).

Previous studies have reasoned that this extended pelagic period contributes to the widespread distribution and low or absent genetic structure of N. rossii [START_REF] Dewitt | Nototheniidae. In: Fishes of the Southern Ocean[END_REF][START_REF] Young | Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species[END_REF].

The Antarctic Circumpolar Current (ACC), the world's largest ocean current system, is a prime candidate to facilitate eastward advection and thus connectivity [START_REF] Orsi | REFERENCES ecological niche modeling: a review and empirical evaluation using Phelsuma day gecko groups from Madagascar[END_REF][START_REF] Matschiner | Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons[END_REF]). The ACC is comprised of a series of approximately zonal fronts, where there are rapid changes in water mass properties and associated geostrophic currents. These current jets are not fixed in time and space, rather they show a high degree of meso-scale variability, with frequent DISPERSAL MODELS : LAGRANGIAN APPROACH CHAPTER 4.
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splitting and merging. However, long-term trends in frontal positions show very little variability [START_REF] Chapman | New perspectives on frontal variability in the Southern Ocean[END_REF], in part due to the strong steering of the ACC by the seafloor topography. Broadly speaking, the ACC has a pervasive eastward flow. However, within the Scotia Sea this flow assumes a more northward component as the current system recovers from its most southerly excursion in Drake Passage. Population genetic investigations of N. rossii have focused on this area, using microsatellite loci and connectivity models [START_REF] Young | Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species[END_REF]. However, the connection between N. rossii in the Scotia Sea and the Kerguelen Plateau, initially described as two subspecies [START_REF] Dewitt | Nototheniidae. In: Fishes of the Southern Ocean[END_REF], has not been investigated with modern genomic methods or numerical modelling.

Here, we hypothesize that despite the fragmented distribution only subtle genetic structure and adaptive divergence are present in N. rossii due to the long pelagic phase. Species distribution modelling is used to determine which localities are likely important habitats for N. rossii, while genome-wide polymorphisms are used to test for genetic population structure. Individual-based modelling is employed to quantify dispersal between sites. Combining population genomics with distribution and dispersal modelling enables us to infer gene flow and environmental specialization in a spatially explicit framework. Finally, we evaluate large-scale distribution and spatial connectivity patterns in the Southern Ocean in light of current fisheries management and conservation actions.

MATERIAL AND METHODS

Species occurrence and sampling

Publicly available occurrence data for marbled rockcod N. rossii were mined from the Ocean Biogeographic Information System (OBIS) and the Global Biodiversity Information Facility (GBIF) (both accessed September 2019) using R softwage with the packages 'robis' v2. 1.8 (Provoost andBosch 2019), 'rgbif' v1.3.0 (Chamberlain et al. 2019) and 'SOmap' for plotting [START_REF] Maschette | SOmap: Southern Ocean maps[END_REF]. Duplicate entries (identical coordinates) were removed. A total of six occurrences that appear likely to be misidentified (based on these occurrences being drastically outside the generally accepted species distribution) were removed, in an attempt to provide exclusively highly reliable input data for species distribution modelling. For genetic analyses, adult fish were caught during many expeditions throughout the Southern Ocean (Fig. 4.11,Table 4.1). Fin, muscle, or liver biopsies were taken and stored in 90% ethanol or frozen until further processing. The samples from South Georgia, the South Orkney Islands, Elephant Island, and King George Island/Isla 25 de Mayo (collected in 2006) were previously analyzed using microsatellites [START_REF] Young | Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species[END_REF]. In addition, samples from trammel nets were taken in 2016 on King George Island/Isla 25 de Mayo (Barrera-Oro et al. 2019) and from research trawling in 2016 on Skiff Bank (Leclaire Rise) and on the Northeast part of the Kerguelen Islands shelf. The occurrence data from these samples were added to the OBIS/GBIF occurrence data set for species distribution modelling if not already included. All available metadata per sampled individual can be found on data.biodiversity.aq.
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Species distribution modelling

The assembled occurrence data (Fig. 4.11) and a subset of environmental variables describing the habitat of benthic Antarctic organisms at 0.1° resolution [START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF] were used for predictive species distribution modelling (SDM) with boosted regression trees (BRT, Elith et al. 2008). Twelve environmental variables were included after selecting the most informative variables based on biological knowledge, and the Variation Inflation Factor (VIF) stepwise procedure was used to prune highly correlated descriptors [START_REF] Naimi | Where is positional uncertainty a problem for species distribution modelling?[END_REF]. Retained variables were: depth, geomorphology, sediments, slope, seafloor current speed, maximum ice cover, maximum ice thickness, mixed layer depth, minimum and maximum particulate organic carbon (POC), and minimum seafloor salinity and temperature. POC, temperature and salinity are an average of interpolated values of the time period 2005-2012. Models were run using only unique occurrences per 0.1° grid-cell and environmental layers were masked to areas shallower than 1000 m depth, which encompasses the observed depth range of adult N. rossii (the upper 550 m of the water column, [START_REF] Dewitt | Nototheniidae. In: Fishes of the Southern Ocean[END_REF]). The models were spatially limited to -100 and 100° longitude and -45 and -70° latitude. This longitudinal selection excludes most of the Pacific, and parts of the Indian Southern Ocean sectors. Notothenia rossii is documented to occur around Macquarie Island (Fig. 4.11). However, no samples from this comparatively isolated site (only known occurrence in the Pacific sector) were available. Hence, modelling focused on the area from the western Antarctic Peninsula to the Kerguelen Plateau. The latitudinal selection covers all assembled occurrences and therefore the area in which the species can likely biologically occur. Optimal BRT parameters, which in combination reduce modelling error while avoiding overfitting to the occurrence data set, were calibrated following Elith et al. (2008). The selected combination used for the final SDMs were: tree complexity 4, bag fraction 0.8 and learning rate 0.02. The number of background data used to characterise the environmental conditions was set at 500 and a four-fold 'CLOCK' method was applied to spatially segregate the proportion of occurrence records used to train the model (75%) and test the model (25%) (Guillaumot et al. 2019 -Chapter 2). In addition, a kernel density estimation layer [START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF]) and a multivariate environmental similarity surface index [START_REF] Elith | The art of modelling range-shifting species[END_REF] were estimated and applied as described in detail in Guillaumot et al. (2019 -Chapter 2). These corrections were applied to correct for the influence of autocorrelation within occurrence records and model extrapolation, respectively. A final total of 240 replicate SDMs were run and the mean probabilities of occurrence were used for plotting. Model performance was assessed by measuring the Area Under the receiver operating Curve (AUC, [START_REF] Fielding | A review of methods for the assessment of prediction errors in conservation presence/ absence models[END_REF], and assessing the number of presence test data correctly classified as suitable areas by the model predictions. Analyses were conducted in R using the packages 'ncdf4' v1.16.1 (Pierce 2019), 'raster' v3.0-2 (Hijmans et al. 2019), 'usdm' v1.1-18 (Naimi and Araújo 2016), 'dismo' v1.1-4 (Hijmans et al. 2017), 'MASS' v7.3-51.4 (Venables and Ripley 2002), and 'gbm' v2.15 (Greenwell et al. 2019). Input data and R scripts are available at https://doi.org/10.5281/zenodo.3552609.

Reduced representation sequencing

Large numbers of single nucleotide polymorphism (SNP) loci were sourced with reduced representation sequencing, a methodology that reproducibly samples the full genome [START_REF] Andrews | Harnessing the power of RADseq for ecological and evolutionary genomics[END_REF]. Genomic DNA was extracted using a standard salting out protocol to avoid shearing during column purification. DNA concentration was determined using the Quant-iT PicoGreen dsDNA kit (Thermo Fisher Scientific Inc.) and an Infinite M200 microplate reader (Tecan Group Ltd.) according to the manufacturer's instructions. Extractions were then standardized, checked for signs of degradation on agarose gels and quantified and standardized again to approximately 10 ng µL -1 . Four reduced representation sequencing libraries containing 96 individuals each were constructed (Table 4.1). Thirty of these were within-and between-library controls (i.e. DNA replicates from identical individuals). A modified GBS library preparation protocol based on [START_REF] Elshire | A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species[END_REF] but with size selection was used, as described in full detail in [START_REF] Christiansen | Connectivity and evolution of fishes in the Southern Ocean -from species to populations[END_REF]. The restriction enzyme ApeKI and a size selection window of 240-340 bp, using a Pippin Prep (Sage Science), were applied to achieve high marker density. The libraries were paired-end sequenced on four lanes of a HiSeq 2500 with v4 chemistry (Illumina Inc.) at the KU Leuven Center for Human Genetics (GenomicsCore).

Variant calling and filtering

Sequencing data was checked for general quality using FastQC v0.11.5 [START_REF] Andrews | FastQC: a quality control tool for high throughput sequencing data[END_REF]. The Stacks pipeline v2.4 [START_REF] Rochette | Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics[END_REF]) was used to genotype samples both de novo and using DISPERSAL MODELS : LAGRANGIAN APPROACH CHAPTER 4.
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the reference genome of Notothenia coriiceps (Shin et al. 2014). First, each library was demultiplexed and quality filtered using process_radtags (options: -c -q -r). Library 2 and 4 were demultiplexed with quality control disabled (without -q), because low Phred scores at the cutsite otherwise lead to discarding of all reverse reads. For the de novo approach the sequences were trimmed to 119 bp, to fulfill Stacks' requirement of uniform read length. In addition, forward, reverse and remainder reads were concatenated after demultiplexing to treat both reads as individual loci, because GBS reads cannot be oriented preventing Stacks from building paired-end contigs [START_REF] Rochette | Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics[END_REF]. A parameter test series using a subset of 24 individuals (four from each locality) was conducted as described in [START_REF] Rochette | Deriving genotypes from RAD-seq short-read data using Stacks[END_REF]. The retained parameters were m=3, M=4, n=4 (see Appendix 4.4) and subsequently applied to the entire data set. A catalog was built using 10 individuals per locality (cstacks module); all individuals were matched against the catalog (sstacks) and data was transposed (tsv2bam). For the reference approach, forward and reverse reads were aligned to the N. coriiceps genome after demultiplexing using BWA v0.7.17 and SAMtools v1.9 and default parameters (Li andDurbin 2009, Li et al. 2009). In both cases (reference-based and de novo) genotyping of SNPs was conducted using gstacks with default parameters, that is under a Bayesian low coverage framework from [START_REF] Maruki | Genotype calling from population-genomic sequencing data[END_REF].

Stringent quality control and filtering is necessary before downstream processing of GBS data, because high-throughput sequencing data has comparably high error rates (Shafer et al. 2017[START_REF] O'leary | These aren't the loci you're looking for: principles of effective SNP filtering for molecular ecologists[END_REF]. In a first filtering step, genotypes of the reference-based and de novo data set were pruned using the populations module of Stacks, requiring loci to be present in at least 80 % of the individuals of each population, to have a minor allele frequency > 0.05 and heterozygosity < 0.7 [START_REF] Rochette | Deriving genotypes from RAD-seq short-read data using Stacks[END_REF]. Subsequently, genepop files were imported and filtered extensively in R software using the 'radiator' package v1.1.1 [START_REF] Gosselin | Radiator: RADseq Data Exploration[END_REF]). This filtering approach was conducted without and with technical replicates to assess the genotyping error rate before and after filtering. In brief, data was filtered on missing values, heterozygosity, minor allele count, coverage, SNP position, linkage disequilibrium (LD) and departures from Hardy-Weinberg proportions (Appendix 4.5).

Population genomics

Analyses of the filtered genomic data sets were conducted mostly in R, with code and input data available under https://doi.org/10.5281/zenodo.3552609. Overall and pairwise differentiation measures (FST, GST, D), expected and observed heterozygosity and hierarchical analyses of molecular variance (AMOVA) were calculated using 'adegenet' v2. 1.1 (Jombart 2008, Jombart and Ahmed 2011), 'hierfstat' v0.04-30 (Goudet and Jombart 2015), 'mmod' v1.3.3 (Winter 2012), and 'pegas' v0.11-12 R packages (Paradis 2010). Additional data filtering was conducted using 'poppr' v2.8. updates for dealing with missing data (Peel et al. 2013), as implemented in 'NeEstimator' v2.1 [START_REF] Do | NeEstimator v2: reimplementation of software for the estimation of contemporary effective population size (Ne) from genetic data[END_REF]. Finally, a simple genome scan for signs of selection was conducted using R packages 'pcadapt' v4.1.0 [START_REF] Luu | pcadapt: an R package to perform genome scans for selection based on principal component analysis[END_REF]'qvalue' v2.16.0 (Storey et al. 2019). Loci with q < 0.05 were retained as candidate loci and the contigs that contained these SNPs were matched against the nucleotide (nt) collection of the NCBI database using BLASTN 2.10.0+ (Altschul et al. 1997). Only top hits with an E-value ≤ 1 x 10 -6 and at least 70 % similarity were retained [START_REF] Benestan | Sex matters in massive parallel sequencing: Evidence for biases in genetic parameter estimation and investigation of sex determination systems[END_REF] and then further investigated using BLASTX 2.9.0+ and the UniProtKB vertebrate database for their putative function [START_REF] Apweiler | UniProt: the universal protein knowledgebase[END_REF]).

Individual-based connectivity modelling

Five-day mean flow fields for the Southern Ocean region from a state-of-the-art oceanographic modelling framework, Nucleus for European Modelling of the Ocean (NEMO), underpinned the numerical modelling simulations. Simulated flows for the period 1996-2001 were provided by the National Oceanography Centre, Southampton (UK), from a global application of NEMO with an eddy-permitting nominal horizontal resolution of 1/4°, and a partial step z-coordinate with 64 levels in the vertical. Full details of the ocean model are available at http://www.nemo-ocean.eu/About-NEMO. NEMO has been widely used over a range of spatial scales and resolutions and has been shown to provide a good representation of the dominant oceanography of the southern Atlantic Ocean region [START_REF] Renner | Validation of three global ocean models in the Weddell Sea[END_REF][START_REF] Renner | Advective pathways near the tip of the Antarctic Peninsula: Trends, variability and ecosystem implications[END_REF].

Mean flows from the circulation model were used to advect Lagrangian particles representing the early life stages of N. rossii. The Lagrangian model has been applied previously to the simulation of the dispersal of the eggs and larvae of N. rossii around South Georgia [START_REF] Young | Physical and behavioural influences on larval fish retention: contrasting patterns in two Antarctic fishes[END_REF]) and in the Scotia Sea region [START_REF] Young | Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species[END_REF][START_REF] Young | Stepping stones to isolation: Impacts of a changing climate on the connectivity of fragmented fish populations[END_REF]. In summary, particles were advected at each model time step (5 min) according to the imposed three-dimensional velocity field, using a secondorder Runge-Kutta method. Additional horizontal and vertical diffusions were included using a random-walk approach [START_REF] Dyke | Coastal and Shelf Sea Modelling[END_REF], to account for unresolved turbulent motion in the ocean model flow fields. Particles representing the early life stages of N. rossii were released at known spawning populations (Fig. 4.11) (DeWitt et al. 1990, Barrera-Oro and Casaux 1992, Duhamel et al. 1995, Kock and Belchier 2004). Appropriate spawning areas at each location were identified by a comparison of local model depth with the known spawning depth range, 200-360 m (Kock and Belchier 2004). Modelled particles were released randomly within appropriate grid cells, with one thousand particles released per day at each site for the duration of the observed spawning periods. Dispersal of eggs was simulated for four months (Atlantic Ocean) or three months (Indian Ocean), with subsequent larval dispersal simulated for three months. There are no data to suggest that N. rossii larvae perform diel vertical migration and like all notothenioids the species does not possess a swimbladder; thus model eggs and larvae were allowed to move randomly within observed depth ranges: upper 100 m for eggs and upper 50 m for larvae (A. W. North, personal communication).

The potential for successful dispersal between isolated populations was assessed by comparing the position of each model larva with recruitment boxes encompassing each known population location (Fig. 4.11) over a 4-week period centered on the end of the planktonic phase. If a larva was within a recruitment box at any point during the 4-week period, it was considered to potentially recruit successfully to a nursery ground at this site. The percentage of larvae from each spawning site successfully reaching each recruitment box was calculated, and the results were combined into a single connectivity matrix describing the proportion of individuals arriving in a destination population (rows) from a given source population (columns). Such matrices describe potential connectivity; they do not include mortality or inter-annual variability in biological processes such as spawning and development rates. The effect of inter-annual variability in the underlying flow fields on predicted dispersal and connectivity was assessed by repeating the simulations for a five-year period (1996)(1997)(1998)(1999)(2000). The results were combined to give a single mean connectivity matrix, and a matrix showing the number of years in which non-zero connectivity occurred (i.e. persistence).
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RESULTS

Species distribution probability

Species distribution modelling results showed high modelling relevance with an AUC score of 0.975 and > 90 % of test data correctly classified (Table 4.2). Generally, model predictions are confined to areas of the Southern Ocean that are depth-wise potentially relevant for N. rossii ; large deep-sea areas are not included in the model here. The largest contribution to the modelling results was from mixed layer depth (51.6 ± 7.4%), with moderate contribution from maximum ice thickness (15.4 ± 3.7%), geomorphology (6.9 ± 4.1%), and depth (5.3 ± 2.5%), and little contribution from the remaining variables (< 5 % each). Areas with high occurrence probability overlap well with documented occurrence records. South Georgia and the Kerguelen Plateau are the largest areas of high occurrence in the part of the Southern Ocean that was evaluated (Fig. 4.12). In addition, suitable habitat for N. rossii is predicted in areas that are not documented in the occurrence data set: around Patagonia (low probability), around Bouvet Island and some seamounts north of that (high to medium probability), and west and east of Prydz Bay off the Antarctic continent (medium to low probability). Interestingly, the occurrence probability at the Ob and Lena banks is comparatively high. In contrast, predicted occurrence is low around the Edward and Marion Islands and Crozet Island. 

Sequencing data

No sequencing problems were indicated by FastQC reports. On average each individual received 4.86 ± 2.29 million (M) reads. Four low coverage (< 1 M reads), as well as four high coverage (> 13 M reads) individuals were excluded before bioinformatics. After genotyping using Stacks, global coverage (as the average number of reads per locus per individuals) was at 10.64 ± 11.84. This coverage is at the minimum required for calling heterozygotes reliably [START_REF] Rochette | Deriving genotypes from RAD-seq short-read data using Stacks[END_REF]. Therefore, extensive downstream filtering of SNP data sets was conducted with relatively high thresholds (Appendix 4.5). After pre-filtering using the population module of Stacks, 73,554 and 85,980 SNPs were present in the reference-based and de novo based data sets, respectively. Global genotyping error rates of these data sets (calculated from technical replicates) were between 1.48 % and 5.30 % in the reference-based data and 0.61 % and 8.80 % in the de novo data. Such genotyping error rates are not ideal, but also not uncommon, and likely related to the comparably low coverage [START_REF] Mastretta-Yanes | Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference[END_REF], Fountain et al. 2016). We circumvented negative impacts as far as possible by applying very extensive downstream filtering in R (Appendix 4.5). In brief, individual genotypes with high amounts of missing data, abnormal heterozygosity patterns or signs of duplicate genomes were filtered. Loci were filtered based on missing data, minor allele count, minor allele frequency, coverage, linkage, SNP position, and departure form Hardy-Weinberg proportions. Even after these filtering steps, a bias related to sequencing library remained detectable in the data, as evidenced by PCA and AMOVA. Loci that contributed to this bias were also excluded. All these steps are described in detail in Appendix 4.5. Eventually, 272
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Modelled connectivity

The predicted mean connectivity matrix suggests wide dispersal of N. rossii within the Scotia Sea, with high and persistent levels of connectivity between populations around the Antarctic Peninsula (AP) and South Georgia, and lower but persistent connectivity with the South Orkney and South Sandwich Islands (Fig 4 .15). There is low but persistent connectivity from the South Sandwich Islands to Bouvet Island, and from Bouvet to populations in the Indian Ocean, in particular Edward and Marion Islands and Crozet Island. Although persistent connectivity pathways are predicted in the Indian Ocean, for example from Ob and Lena Banks to Crozet Island, Skiff Bank and Kerguelen Islands, the magnitude of connectivity is generally weaker than in the Scotia Sea, with the exception of the Kerguelen Plateau region. The patterns of connectivity suggest highly asymmetric dispersal, with a greater occurrence of non-zero values below the diagonal of the connectivity matrix, indicating unidirectional transport to the northeast across the Scotia Sea, and eastward towards and within the Indian Ocean in accordance with the dominant flows of the Antarctic Circumpolar Current. Bidirectional transport is predicted between proximate sites with complex local oceanography, in particular around the Antarctic Peninsula and the Kerguelen Plateau region. The pattern of connectivity suggests that gene flow includes an element of stepping-stone transport. Notothenia rossii is widely dispersed within the Scotia Sea, but there is no direct connectivity between sites in the Scotia Sea and those in the Indian Ocean. Gene flow over this larger geographic scale is achieved through stepping-stone transport via Bouvet Island. DISPERSAL MODELS : LAGRANGIAN APPROACH CHAPTER 4.
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DISCUSSION

Distribution, genomic diversity and connectivity of Notothenia rossii

Contrary to our working hypothesis, even thousands of genomic markers screened across many individuals from locations > 5,000 km apart reveal no evidence of genetic differentiation. The historically overexploited Antarctic fish N. rossii therefore exhibits no contemporary spatial genetic population structure, although connectivity modelling suggests that exchange between the Scotia Sea and the Kerguelen Plateau regions occurs via stepping-stone transport. This apparent discrepancy may be due to the different temporal scales resolved by the observational and modelling analyses, i.e. ecological vs. evolutionary time. As we will further detail, our results show 1) the detailed distribution of the species in the Atlantic and Indian Ocean sectors of the Southern Ocean, 2) the contemporary genome-wide levels of diversity and 3) the direction and magnitude of dispersal connectivity.

As a shelf dwelling fish that prefers shallower waters to feed and reproduce, the occurrence of N. 2010, Miya et al. 2013)). Therefore, the habitat requirements alone induce a fragmented distribution in this species. Species distribution modelling predictions confirm this and highlight many welldocumented population hotspots as highly probable habitats (Fig. 4.12). The South Shetland Islands, South Georgia and the Kerguelen Plateau are localities where N. rossii is most often caught [START_REF] Dewitt | Nototheniidae. In: Fishes of the Southern Ocean[END_REF], Duhamel et al. 2014). However, other areas, some of which are less well-studied, may also be relevant habitats for N. rossii. For example, SDM data show high occurrence probability at Bouvet Island, even though the shelf around this island is narrow and the species was never caught there [START_REF] Dewitt | Nototheniidae. In: Fishes of the Southern Ocean[END_REF], Jones et al. 2008a, Padilla et al. 2015). However, incidental data (chinstrap penguin stomach content) indicate that N. rossii is present at Bouvet Island (Niemandt et al. 2015). This would corroborate our SDM prediction, although the record is based on a single otolith, which could also be misidentified. Ultimately, only more extensive sampling, particularly of the near shore fish fauna, will be able to resolve the matter. It also remains to be investigated whether other new occurrence localities predicted by the SDM, that is around Prydz Bay and Patagonia, are realistic. At least the latter seems very unlikely as the ecological niche in Patagonian waters is filled by different species such as Paranotothenia magellanica or Patagonothen spp. [START_REF] Cousseau | The Magellanic Province and its fish fauna (South America): Several provinces or one?[END_REF]. Notothenia rossii has not been recorded off Prydz Bay so far either despite regular surveys [START_REF] Hoddell | The distribution of Antarctic pelagic fish and larvae (CCAMLR division 58.4. 1)[END_REF], Van de Putte et al. 2010).

The genetic diversity of N. rossii in terms of heterozygosity is similar to that observed in other fishes with SNPs (Fig. 4.13a, Berg et al. 2016, Pérez-Portela et al. 2018[START_REF] Christiansen | Connectivity and evolution of fishes in the Southern Ocean -from species to populations[END_REF]). In addition, there are no signs of spatial variation in heterozygosity, despite spatially heterogeneous fishing pressure (Duhamel 1982, Kock 1992). These results are in contrast to the expectation that overharvesting reduces genetic diversity (Pinsky and Palumbi 2014). However, objective comparisons between studies are challenging due to the wide variety of settings employed to generate a "final" SNP data set (Shafer et al. 2017). Fifty years post-exploitation the genetic diversity of N. rossii does not seem dramatically reduced across thousands of markers. As there is no baseline for pre-exploitation diversity levels, it remains elusive at this point whether these levels of heterozygosity are representative of the unperturbed state. In fact, even if overall average diversity is high, rare alleles, potentially important for rapid adaptation, may be lost (Pinsky and Palumbi 2014). The genetic data furthermore demonstrate a striking lack of spatial structure with very low FST values and no genetic clusters discernable (Table 4.3 & 4.4,Fig. 4.13b).

Consequently, this implies regular gene flow, at least via stepping stones between all established population patches of N. rossii (Fig. 4.14b). This is an important implication to consider in the context of the results of the connectivity modelling exercise. Finally, several candidate loci show indications of putative recent selective pressure, despite the lack of overall population structure. This is not unexpected, given that selection and adaptation can occur in the presence of high gene DISPERSAL MODELS : LAGRANGIAN APPROACH CHAPTER 4.
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flow (Tigano andFriesen 2016, Hoey and[START_REF] Hoey | Genomic signatures of environmental selection despite near-panmixia in summer flounder[END_REF]. Nevertheless, we emphasize that these candidate loci might be false positives or even related to genotyping error. High coverage studies or whole genome sequencing approaches are needed for a more detailed understanding of local or global adaptation in N. rossii (Booker et al. 2019).

Dispersal of the early life stages of N. rossii is generally high, but the large-scale unidirectional connectivity predicted by the modelling suggests that inter-ocean connectivity is achieved through stepping-stone transport (Fig. 4.15). The South Sandwich Islands and Bouvet Island in particular are predicted to be key links between the abundant N. rossii aggregations at the Antarctic Peninsula and Scotia Sea, and the Kerguelen Plateau. The relatively large effective population sizes indicated by the genomic data may secure successful large-scale connectivity over evolutionary time scales. Thus, for example, if the exchange of individuals between the Scotia Sea and the Kerguelen Plateau were to fail in some years, successful recruitment in other years may suffice to maintain gene flow.

A unifying framework to explain contemporary patterns

Here, we suggest that our results can be collectively explained through a scenario that incorporates the life history, physical setting and exploitation history of N. rossii. Three main aspects help to unify the patterns observed through SDM, genomics and dispersal modelling. First, important stepping stones such as the South Sandwich Islands and potentially Bouvet Island may also act as temporal refuges for juvenile fish. Even if small, the local benthic ecosystem at Bouvet Island provides suitable conditions including some macroalgae and a variety of invertebrate prey items for N. rossii fingerlings [START_REF] Arntz | Missing link in the Southern Ocean: sampling the marine benthic fauna of remote Bouvet Island[END_REF], Jacob et al. 2006). The model simulations stopped after seven months, at which point observational data suggest larvae develop into brown -phase fingerlings and recruit to kelp beds [START_REF] North | Early life history strategies of notothenioids at South Georgia[END_REF]. However, the recruitment behavior of early juveniles is not well known. For example, blue-phase fingerlings may be able to continue a pelagic life style for an extended period until a suitable recruitment site is reached. Such behavior would increase the dispersal range of the early life stages, and potentially reduce the dependence on small, isolated stepping stones for inter-ocean connectivity. In addition, it is unknown so far, but not inconceivable that, for example, juveniles that reached a stepping stone may later proceed to migrate further toward habitats in the Kerguelen Plateau where they continue to grow, mature and eventually reproduce. In fact, Shcherbich (1975) for South Georgia and Barrera-Oro et al. (2014) for the South Shetland Islands indicated that some juveniles spend at least a full year as bluephase fingerlings in the water column before settling to a benthic life style. The adults also undertake at least short distance migrations, such as from coastal kelp belts to the outer archipelago (on the Kerguelen Plateau) or to their spawning ground (Duhamel 1982[START_REF] Dewitt | Nototheniidae. In: Fishes of the Southern Ocean[END_REF]). Tagging studies have been used so far to validate age determination (Moreira et al. 2013), but could be used in the future to verify whether juveniles or adults of N. rossii are capable of more extensive migrations. Such behavior is documented in Antarctic toothfish, that undertake longdistance migrations at least occasionally (Hanchet et al. 2010). As the genomic data suggests circumpolar transport, it is possible that other, potentially small stepping-stone population patches exist. An important area for circumpolar connectivity could be the documented occurrence off Macquarie Island in the Pacific sector of the Southern Ocean. The lack of samples and data precluded us from investigating this further. Model simulations, however, suggested the potential for transport from the Kerguelen Plateau to Macquarie Island with an extended dispersal period of a year, although successful dispersal from Macquarie Island to the Antarctic Peninsula was not predicted within this time frame. Therefore, to achieve circumpolar connectivity, the modelling setup would suggest a longer pelagic phase or the existence of undocumented population patches, or both.

The slow recovery of N. rossii following severe overfishing may be the result of historically diminished effective population size in conjunction with the stepping-stone nature of large-scale connectivity. Large stocks around South Georgia and Kerguelen were heavily exploited in the 1970s, likely leading to considerably reduced effective population size at these localities. Possibly, the South Georgia stock would have been resupplied through dispersal from the western Antarctic Peninsula in the years following its overexploitation. However, the spawning stock at the Antarctic DISPERSAL MODELS : LAGRANGIAN APPROACH CHAPTER 4.
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receive adequate protection. Long-distance connectivity has clear benefits for the effectiveness of MPA networks, although it has previously rarely been quantified [START_REF] Razgour | Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections[END_REF].

A second important conservation implication concerns the Antarctic Peninsula. A recent MPA proposal that was presented to CCAMLR concerns this area and was put forward by Argentina and Chile during 2018, but so far not adopted (CCAMLR 2019b). The modelled oceanographic connectivity strongly suggests that N. rossii populations at the Antarctic Peninsula are sources for the fish assemblages off South Georgia and, to a lesser extent, the South Sandwich and South Orkney Islands. They are therefore important for re-establishing and maintaining a large population throughout the Scotia Sea. In addition, if the population of N. rossii is to be managed throughout its range in a precautionary approach in the future, conservation and monitoring of the northwest region of the Antarctic Peninsula marine ecosystem, including Bransfield Strait, will be important. This region experiences drastic climate change effects, including increases in temperature and reduction of ice cover, with consequences for the entire ecosystem (McClintock et al. 2008b, Ducklow et al. 2013). It can therefore be a natural laboratory to detect the effects of global warming, for example, on the high-Antarctic and sub-Antarctic Notothenia species (N. coriiceps and N. rossii) that occur here in sympatry. Adaptive genetic variance in these species may bear the potential to mitigate climate change effects as shown theoretically in terrestrial species [START_REF] Razgour | Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections[END_REF]. Continued multidisciplinary investigations as presented here could help achieve adequate monitoring and prevent unsustainable loss of biodiversity.

Methodological considerations and future research perspectives

Applying species distribution models at large scales and in data-poor environments is challenging. Particular problems include spatially aggregated data, presence-only data, and extensive gaps in environmental data, which can be partly circumvented with appropriate calibration and validation methods (Guillaumot et al. 2018a-Appendix, Guillaumot et al. 2019 -Chapter 2). In conjunction with other methods, SDM data can be used successfully to fill specific knowledge gaps, such as the case of Bouvet Island, presented here. Sometimes, interpolating from data collected elsewhere is a valuable alternative to costly or near impossible direct observation (Gutt et al. 2012). In addition to collecting more data, a future improvement of SDM approaches would be the separation of the model by life stages. For Notothenia rossii in particular it could be highly informative to generate a robust SDM for larval stages, provided that sufficient ecological information can be gathered. The genomic data created here have limitations especially with regard to sequencing coverage, which causes further downstream issues such as potential genotyping error and low quality genotypes that necessitated very extensive filtering [START_REF] Mastretta-Yanes | Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference[END_REF]. The available data were thus dramatically reduced, but the overall pattern of little genetic structure and comparatively normal diversity levels is likely accurate. In contrast, determining with certainty which loci or genes are important for local adaptation would require further efforts. The reason for our low coverage is likely an underestimation of the true genome size of N. rossii or of the number of fragments that the restriction enzyme ApeKI produces. More extensive a priori testing could help alleviate such issues (Christiansen 2020) as well as a high quality reference genome (Fountain et al. 2016, Shafer et al. 2017).

The oceanographic model used in this study has a relatively coarse resolution, due to the large spatial scale at which it is applied and resultant computation demands. The development of highresolution oceanographic models that better resolve fine-scale circulation features has the potential to reveal further details on the connectivity of N. rossii, for example regarding the extent of local retention. In addition, the skill of the IBM is highly dependent on the accuracy of its biological parameterization. We have used the best available biological knowledge gathered over decades of research, but some uncertainty remains. In particular, there is uncertainty over the total permissible length of the pelagic phase, and the active behavior of larvae, fingerlings, and juveniles. Further knowledge of the behavior of fingerlings and juveniles, for example, would allow the incorporation of these additional life stages into the IBM. Observational evidence for feeding behavior, active swimming and diel vertical migration, would allow further refinement of the IBM, improving its predictive skill. In addition, both SDM and IBM models could be refined by further integrating spatially variable biological traits, when additional such information becomes available. Even in the DISPERSAL MODELS : LAGRANGIAN APPROACH CHAPTER 4.
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Modelling the Southern Ocean marine life: challenges and model performance

As partly reviewed in , ecological modelling applied to Southern Ocean (SO) organisms faces many challenges given limitations and peculiarities of available datasets. In my PhD thesis, I aimed at highlighting the different biases that alter modelling performance and I developed several methods to correct for such issues. After all these steps, are settled corrections sufficient to generate accurate models ? And which are the remaining limits?

The quality of biological data: limitations and spatial aggregation.

My PhD results show that the limited number of occurrence records available for modelling is a recurrent issue in SO studies. The number of available occurrence data is not a problem (Stockwell and Peterson 2002, van Proosdij et al. 2016) as far as it respects the assumption that the sampled data cover the species full ecological range [START_REF] Sánchez-Fernández | Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles[END_REF], Raes 2012). However, this is not always the case in broad-scale SO SDMs (Guillaumot et al. 2020b -Chapter 2). The species prevalence, being the ratio between the species occupied space (represented by presence record locations) and the total surface of the study area (McPherson et al. 2004), can also influence model predictions. The model performance increases with decreasing prevalence (Barbet-Massin et al. 2012, Tessarolo et al. 2014, van Proosdij et al. 2016), meaning that for a similar projection area, a model based on more occurrence records would theoretically perform better. This explains the low performance obtained in SDMs generated at the scale of the SO. In Guillaumot et al. (2020b -Chapter 2), the modelled distribution of six sea star species barely showed any contrast between species ecological niches, although the six species are known to have contrasting feeding diets, reproductive strategies and trophic positions. In [START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF], evaluation scores of SDMs predicting the distribution of species with wide ecological niches, were much weaker than those obtained for species with narrow niches.

Increasing the number of occurrence data available for modelling was shown to improve model predictions (Guillaumot et al. 2018a-Appendix, Fabri-Ruiz et al. 2019), with a small increase in a very small dataset resulting in a large benefit in model performance (van Proosdij et al. 2016).

Using historical data to improve datasets does not impact model relevance as far as the species niche, or distribution, has not changed too much during the time period of reference, and as far as datasets are thoroughly checked for georeferencing errors and taxonomic inconsistencies (Newbold 2010, Guillaumot et al. 2018a -Appendix, Guillaumot et al. in press -Chapter 2). Adding absence records (even patchily distributed) to datasets, when available, is also a good option to improve the accuracy of presence-only model predictions (Peel et al. 2019) but the method was developed at the regional scale and never tested at a broader scale.

A limited number of data also limits the efficiency of model evaluation. For SDMs, a limited number of occurrence records was shown to imply a reduction in the number of training data available to generate the model (i.e. reducing modelling performance, Guillaumot et al. 2020b -Chapter 2) or to induce considerable limits when testing the model . In , solely 26 presence-only records were available to characterise the abiotic environment occupied by the sea urchin species Abatus cordatus in a bay of the Kerguelen Islands. This was sufficient to run the model, but methodologically difficult to subset a part of this dataset as independent test data. The model was therefore tested alternatively with presence records and evaluation metrics (Area Under the Curve) but more relevant evaluation strategies, using independent datasets are required to improve the quality of studies.
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Regarding other modelling approaches, such as DEB and IBM models, it was also difficult to access supplementary information to evaluate models based on independent observations, as it is usually done [START_REF] Marn | Environmental effects on growth, reproduction, and life-history traits of loggerhead turtles[END_REF], Haberle et al. 2020) Agüera et al. 2015[START_REF] Agüera | Trait distributions of key marine species from the Western Antarctic Peninsula[END_REF].

Regarding the influence of the spatial aggregation of occurrence records on model predictions, I showed that the targeted background data approach (Dormann 2007[START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF], Syfert et al. 2013) can be applied and is efficient to correct modelling biases (Guillaumot et al. 2018a -Appendix). Data aggregation was also shown to have some negative effect on the performance of model evaluation (Guillaumot et al. 2019 -Chapter 2). I showed that it was possible to correct such a bias using spatial cross-validation procedures that spatially separate training and test data (Guillaumot et al. 2019 -Chapter 2), as previously stated in other works (Hijman 2012, Muscarella et al. 2014[START_REF] Roberts | Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure[END_REF]. I strongly recommend to apply this method in future studies to improve modelling performance (application codes are available in Guillaumot et al. 2021 -Thesis material).

The poor quality of abiotic environment datasets.

The access to abiotic data with good temporal and spatial resolutions at the scale of the entire SO was challenging, a common issue in broad-scale oceanographic studies [START_REF] Robinson | A systematic review of marine-based Species Distribution Models (SDMs) with recommendations for best practice[END_REF]. This implied to work with average values in time and large grid-cell pixels that do not accurately take into account environmental variability and complexity (Galante et al. 2018, Guillaumot et al. 2018a -Appendix), and biases the reliability of the occurrence-environment relationship, a strong prerequisite in correlative approaches (Morales et al. 2017[START_REF] Araújo | Standards for distribution models in biodiversity assessments[END_REF].

Given averaged values available in abiotic datasets, the large panel of ecoregions identified in the SO [START_REF] Fabri-Ruiz | Benthic ecoregionalization based on echinoid fauna of the Southern Ocean supports current proposals of Antarctic Marine Protected Areas under IPCC scenarios of climate change[END_REF]) and the spatial aggregation of occurrence datasets, SDMs were shown to extrapolate, as training occurrence data may not encompass the entire range of environmental values existing in the study area (Guillaumot et al. 2020c -Chapter 2) or the whole possibilities of combinations between all environmental descriptors [START_REF] Mesgaran | Here be dragons: a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models[END_REF]. My results highlighted that areas where models extrapolate can cover high proportions (up to 75%) of the projection area (Guillaumot et al. 2020c -Chapter 2). It is therefore necessary to identify extrapolation areas and provide them along with prediction maps to facilitate model interpretation (Guillaumot et al. 2020c -Chapter 2). Extrapolation areas can be reduced by restraining model projection areas based on species ecological or physiological tolerance thresholds, using experimental data or field observations (Guillaumot et al. 2020c -Chapter 2), which suggests that a good prior knowledge of the studied species is necessary before modelling.

Taxonomic uncertainties.

Dispersal through the Antarctic Circumpolar Current (ACC) and the ability of planktotrophic larvae to drift during several months in the water column both result in complex phylogeographic patterns, questioning the established taxonomy of many marine species in the SO [START_REF] Hunter | Phylogeography of the Antarctic planktotrophic brittle star Ophionotus victoriae reveals genetic structure inconsistent with early life history[END_REF], Gonzalez-Wevar et al. 2011[START_REF] Martin | Éco-régionalisation et conservation des communautés benthiques de la zone économique exclusive française des îles Kerguelen, Ecoregionalisation and conservation of benthic communities in the French exclusive economic zone of Kerguelen[END_REF], 2020). When generating a model at the scale of the SO, the uncertain taxonomic status of the studied species also questions the uniqueness of ecological niches such as species physiological performances and responses to environmental forcing factors. This may lead models to alternatively over-or under-estimate the predicted distribution of species suitable environments (Cacciapaglia and 2018) performed small ensemble SDMs to build distribution models based on spatial aggregates defined on genetic differentiation measures (Fst). The small, individual SDMs, are projected on sub-areas and the ensemble of results is then averaged to generate the total prediction of the entire species potential distribution (see also [START_REF] Breiner | Overcoming limitations of modelling rare species by using ensembles of small models[END_REF]. Other approaches, when implementing the model, subsample the environment [START_REF] Cacciapaglia | Marine species distribution modelling and the effects of genetic isolation under climate change[END_REF] or presence records (Gotelli andStanton-Geddes 2015, Ikeda et al. 2017) according to the distribution of genetic entities. In other works, alternatives consist in introducing into the SDM a predictor that describes the species genotype (Banta et al. 2012).

Adapting models to the physiology and ecology of SO species. Verrill, 1876) were constrained in the model due to the fact that juveniles remain isolated in brood pouches for eight months before they become autonomous to feed upon the sea bottom (Magniez 1983). Still in this study, the DEB model was complemented with estimated Arrhenius parameters to threshold metabolic performances within the species temperature tolerance (Kooijman 2010, Thomas and Bacher 2018), as it was already done for the SO species Odontaster validus (Agüera et al. 2015) and Laternula elliptica [START_REF] Agüera | Trait distributions of key marine species from the Western Antarctic Peninsula[END_REF]). To do so, results of an experimental analysis that assesses species metabolic rates according to temperature variation are necessary, and up to five Arrhenius parameters, characterising the upper and down slopes of the Arrhenius curve can be implemented into the DEB model (Agüera et al. 2015, Lavaud et al. 2020) The influence of data gaps on DEB physiological models.

The performance of DEB models is highly dependent on the completeness of available datasets. Lower significant predictive abilities are shown for models implemented with data gaps, both at the individual and population levels (Accolla et al. 2020). This impacts in turn the capacity of models to address the initial research objectives. For example, in this PhD, we applied the augmented-loss function method (Guillaumot et al. 2020a -Chapter 1) recently developed by [START_REF] Lika | The use of augmented loss functions for estimating Dynamic Energy Budget parameters[END_REF]. In [START_REF] Lika | The use of augmented loss functions for estimating Dynamic Energy Budget parameters[END_REF], they obtained impressive detailed contrasts between their four catfish species (contrasts in predicted weights and sizes, in energy allocation or reproduction performance). However, in our case study, we only found minor differences in model predictions between populations of the Antarctic limpet (intertidal vs. subtidal morphotypes of Nacella concinna), although their respective morphology and physiology were proved to differ in field experiments and observations [START_REF] Butlin | Sympatric, parapatric or allopatric: the most important way to classify speciation?[END_REF][START_REF] Hoffman | No evidence for genetic differentiation between Antarctic limpet Nacella concinna morphotypes[END_REF]). These results show that it was possible to build a DEB model for these two limpet morphotypes by extensively recycling data from the literature. However some data (above all) on larval and juvenile stages were missing and would have been necessary in the model to catch physiological and morphological differences that do exist between populations.

The biology of many SO marine benthic species is still poorly known to generate precise DEB models as it is difficult to study their life cycle in situ or ex situ. In the field, winter conditions make access to research stations and local investigations difficult, which complicates the settlement of experiments or observations. The lack of knowledge of species larval stage remains the main limitation (i.e. size and weight of eggs and larvae, feeding ability and ecology, precise knowledge of drifting duration in the water column, behaviour in the water column, metamorphosis event, Guillaumot et al. 2020a -Chapter 1, Christiansen et al. -Chapter 4). This is a common issue in the marine realm (Thorrold et al. 2002, Jones et al. 2008b), that is particularly important in the SO given the strong impact of marine currents [START_REF] Sanches | Multivariate analyses of Antarctic and sub-Antarctic seaweed distribution patterns: An evaluation of the role of the Antarctic Circumpolar Current[END_REF], the substantial duration of larval stages and drift (Stanwell-Smith et al. 1999), harsh weather conditions that constrain offshore sampling and difficulties encountered to bring and raise larvae in aquaria.

Integrating in SO benthic species DEB models an exhaustive overview of environmental conditions that influence species physiology is another limitation. Standard DEB models rely on two main forcing parameters: food availability and temperature (Kooijman 2010), but it is sometimes very difficult to describe food availability for benthic species . Generally, sea surface chlorophyll-a concentrations are used as a proxy of food availability (Arnould- Pétré et al. 2020 -Chapter 1, Guillaumot et al. submitted -Chapter 3), with few time series available to make the link between chlorophyll-a concentrations and organisms' nutrition (Agüera et al. 2015, 2017, Fabri-Ruiz et al. in press -Chapter 3). Even when the diet of some benthic species has been accurately studied and described (Dearborn et al. 1991[START_REF] Calizza | Time-and depth-wise trophic niche shifts in Antarctic benthos[END_REF], Pascal et al. 2021), most of the time environmental data are not available at a precise spatial or temporal scale to describe in details food availability. Hydrodynamics, sediment properties, sea ice coverage and dynamics, pH variation or light availability are also poorly documented in coastal areas. These factors strongly influence species distribution, survival and fitness [START_REF] Grange | Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: hotspots of abundance and beta diversity[END_REF]Smith 2013, Cummings et al. 2018) but cannot be included into models due to the lack of data (Arnould- [START_REF] Pétré | Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions[END_REF], Guillaumot et al. 2020a -Chapter 1). This also explains why we did not manage to predict the morphological and physiological contrasts between the two morphotypes of Nacella concinna in Guillaumot et al. (2020a -Chapter 1). Morphological contrasts are linked to the stronger impact of waves in the intertidal zone compared to the subtidal and the more frequent time spent by individuals out of water (Beaumont andWei 1991, Hoffman et al. 2010). However, only food and temperature could be used as environmental drivers in the model (Guillaumot et al. 2020a -Chapter 1). Including other environmental data in physiological models is therefore necessary to provide more precise and relevant outputs for SO species.

Using models to extrapolate: future simulations and invasive species

Climate change scenarios.

As in other regions on Earth, the SO is exposed to strong environmental changes (Henley et al. 2019) that have a cascading effect on marine species [START_REF] Convey | Antarctic environmental change and biological responses[END_REF]. Modelling climate changes and their impact on species distribution is however challenging, as it is embedded in an extrapolation context, given that some future climatic conditions may not have modern analogs (Miller et al. 2004, Fitzpatrick andHargrove 2009). SDM projections based on future conditions should be therefore considered with care. Furthermore, one of the main assumptions made by SDMs is that occurrence records and environmental conditions are at the equilibrium (Newbold 2010[START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF], Václavík and Meentemeyer 2012). When not at the equilibrium (i.e. non-analog climate conditions), the species predicted distribution can be misinterpreted, as the model projects results for a new environment and does not integrate species interactions, population growth rates nor changes in dispersal abilities (Williams and Jackson 2007, Fitzpatrick and Hargrove 2009[START_REF] Zurell | Static species distribution models in dynamically changing systems: how good can predictions really be?[END_REF][START_REF] Woodin | Climate change, species distribution models, and physiological performance metrics: predicting when biogeographic models are likely to fail[END_REF], Tingley et al. 2014). The lack of future predictions for some environmental descriptors constitutes another issue. Water pH, primary productivity, current speed, are often not available which necessitates to assume that conditions are similar to present-day conditions (Guillaumot et al. 2018b, Fabri-Ruiz et al. in press -Chapter 3), which strongly limits the potential of simulations (Guillaumot et al. 2018b, Guillaumot et al. in press -Chapter 2, López-Farrán/Guillaumot et al. in press -Chapter 3). The poor spatial resolution of future environmental descriptors (1° ≅ 100 km on https://www.bio-oracle.org/) also considerably alters the precision and relevance of model future predictions for marine benthic species [START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF]. Validating future predictions is not possible, which also constitutes a serious issue to address [START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF]). In Fabri-Ruiz et al. (in press -Chapter 3), the distribution of the sea urchin Sterechinus neumayeri was modelled with both SDM and a spatial projection of the DEB model. Contrasting results were obtained in predicted suitable areas between the two methods but I could not select the true prediction, as no validation could be performed. Similarly, in Arnould-Pétré et al. ( 2020) -Chapter 1, the population model of the sea urchin Abatus cordatus predicted population dynamics under future conditions could not be compared with time series of population densities. These future simulations are interesting to draw some preliminary hypotheses on the influence of some environmental changes on species distribution but results should really be considered with care as some important ecological information are not integrated into models.

As for physiological models, the lack of experimental data to correctly link temperature to physiological performance is a strong constraint to generate accurate future simulations (Arnould- ). This supplementary physiological information is indeed an interesting complement to evaluate the reliability of model predictions [START_REF] Buckley | Does including physiology improve species distribution model predictions of responses to recent climate change?[END_REF], Greiser et al. 2020, López-Farrán/Guillaumot et al. in press -Chapter 3). The knowledge of species physiological tolerance for defined environmental conditions was also shown helpful to restrain the projection area and consequently limit extrapolation uncertainty (Feng et al. 2020, Guillaumot et al. 2020c -Chapter 2). As a perspective, the Stack-SDM approach (S-SDM, [START_REF] Mateo | Do stacked species distribution models reflect altitudinal diversity patterns?[END_REF]), which has not been applied to SO species yet, integrates the information brought by several species-level models using a knowledge of species interactions (competition or predation) (Guisan andRahbek 2011, Hortal et al. 2012b). The performance of SDMs generated for future scenarios is clearly improved when biotic interactions are integrated. This was exemplified in Davis et al. (2021), where the predicted distribution of a sea urchin facilitated the identification of potential kelp refugia in future environmental conditions. However this necessitates to study the influence of environmental conditions on each species and the consequence of future changes on species interactions (Freitas et al. 2007[START_REF] Lika | The "covariation method" for estimating the parameters of the standard Dynamic Energy Budget model I: Philosophy and approach[END_REF], which again necessitates more field observations.

Invasive species modelling.

Along with climate change, the SO experiences a consequent development of tourism, associated with an increasing number of cruise ships and visitors reaching Antarctic coasts [START_REF] Mccarthy | Antarctica: The final frontier for marine biological invasions[END_REF]. The risk of non-native species introduction and their survival therefore constitutes one critical threat to SO marine communities in the future [START_REF] Hughes | Invasive non-native species likely to threaten biodiversity and ecosystems in the Antarctic Peninsula region[END_REF]. SDMs tend to be used to address the issues of species introduction, but as for climate change scenarios, models predict in an extrapolation context [START_REF] Robinson | Comparison of alternative strategies for invasive species distribution modeling[END_REF], with difficulties for SDMs to infer species potential distribution under novel environment settings compared to the species native range (Venette et al. 2010, Kumar et al. 2015). Such simulations also ignore ecological processes (e.g.
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dispersal and biotic interactions) and thus provide an incomplete picture of invasion risks (Srivastava et al. 2019). Building a SDM for mapping species invasion risk has been done once in the SO for the case study of the Arctic sea star Asterias amurensis [START_REF] Byrne | From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean[END_REF]), but it is a meticulous exercise that requires many tests, a thorough knowledge of the species ecology and environmental tolerance, and ideally to complete SDM predictions with information related to the species physiology, dispersal abilities or biotic interactions (Araújo andGuisan 2006, Srivastava et al. 2019). Some of these central points are not considered in [START_REF] Byrne | From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean[END_REF].

In this PhD, the potential of the Patagonian crab Halicarcinus planatus to invade SO coastal areas was studied by associating SDM with physiological information from experiments on adult and larvae tolerance to contrasting salinity and temperature values (López-Farrán/Guillaumot et al. in press -Chapter 3) and completed with a study on the species dispersal potential using a Lagrangian approach (López-Farrán et al. in prep. -Appendix). These complementary analyses provided a complete overview of the species invasion risk. This approach could be extended to the use of physiological models (such as DEB models) to complete our physiological knowledge of non-native species. DEB models could be used to investigate the bioclimatic envelope of non-native species (including adult and larval life stages) in order to evaluate their survival capacity under present or future conditions. This was already applied in Monaco and McQuaid (2018) to assess the ability of two South African bivalve species to survive across a steep intertidal environmental gradient. In Monaco et al. (2019), they also studied the acclimation abilities of the South African mussel in the Mediterranean Sea and [START_REF] Lavaud | Dynamic Energy Budget modelling to predict eastern oyster growth, reproduction, and mortality under river management and climate change scenarios[END_REF] predicted the growth and reproductive potential of the eastern oyster Crassostrea virginica in future scenarios.

DEB models could also be used to characterise biotic interactions between species of a community in which non-native species could potentially settle. The respective species physiology could be compared [START_REF] Marn | Comparative physiological energetics of Mediterranean and North Atlantic loggerhead turtles[END_REF], and the influence of environmental conditions on each species life traits studied [START_REF] Cardoso | Growth and reproduction in Bivalves. An energy budget approach[END_REF], Marn et al. 2017). These models can be used to compare the species' fundamental niches and to provide an evaluation of the non-native species capacity to survive in the community (Fig. D). Occurrence records are positioned in space according to the environmental conditions recorded at different sites (x axis: food availability, y axis: temperature) and metabolic performances are calculated for each area, according to these environmental conditions. This helps indicate areas where species are well adapted to local conditions and in contrast, the limits of the species fundamental niche beyond which metabolism is less performant (Fig. D). Finally, associating DEB and spatial dynamic models such as Lagrangian models into an integrative approach enables to analyse the movement of species in complement to metabolic changes that are iteratively updated during the particle journey and following spatio-temporal variations of the environment (Bahlburg et al. 2021). This approach was already used in many marine studies to describe larval development along drifting periods under present (Ayata et al. 2010) or future environmental conditions (Lett et al. 2010[START_REF] Lacroix | Complex effect of projected sea temperature and wind change on flatfish dispersal[END_REF], van de Wolfshaar et al. 2021), to evaluate species-specific responses to environmental changes (Falcini et al. 2020) or population connectivity between habitats (La [START_REF] Mesa | Predicting early life connectivity of Antarctic silverfish, an important forage species along the Antarctic Peninsula[END_REF], Thomas et al. 2020). The method could be applied to SO case studies by combining hydrodynamic models, available so far for the entire SO or smaller regions, with DEB models implemented for larvae or propagules. It constitutes a powerful analysis when studying the potential of an alien species to reach and survive along Antarctic coasts.

What did models tell us about the ecology of SO species ? How useful are the generated models ?

Models are a simple representation of a complex reality. After the many corrections introduced to take into account all methodological biases presented above, what did we finally learn about the ecology of SO species? In other words, how useful were the generated models even if they are all fundamentally wrong in the words of [START_REF] Box | Robustness in the strategy of scientific model building[END_REF])? concentrations (Troost et al. 2010, Wijsman and Smaal 2011, Klok et al. 2014a), salinity [START_REF] Lavaud | Integrating the effects of salinity on the physiology of the eastern oyster, Crassostrea virginica, in the northern Gulf of Mexico through a Dynamic Energy Budget model[END_REF]), O2 concentration [START_REF] Lavaud | Modeling the impact of hypoxia on the energy budget of Atlantic cod in two populations of the Gulf of Saint-Lawrence, Canada[END_REF] or exposure to suspended sediment particle loads (La [START_REF] Peyre | Eastern oyster clearance and respiration rates in response to acute and chronic exposure to suspended sediment loads[END_REF]. Applying this modelling approach to SO case studies is feasible, as long as enough observations are available.

I showed that food availability always has a low influence on species physiological performances compared to temperature (Arnould- [START_REF] Lawrence | Energy acquisition and allocation by echinoderms (Echinodermata) in polar seas: adaptations for success. Echinodermata[END_REF]. However, this may also be partly explained by an erroneous representation of food availability and a misleading evaluation of the relationship between food availability and energetic performances as it is implemented in the DEB model (Arnould-Pétré et al. 2020 -Chapter 1). First, the scaled functional response f, comprised between 0 and 1, is commonly used in DEB models to represent food availability (Kooijman 2010) but it is too general to accurately characterise food availability for a benthic species. Further, sea surface chlorophyll-a concentration was often used as a relative poor proxy of food availability, as previously stated. Considering the approach of Jansen et al. ( 2018), that assessed the redistribution of surface productivity at the seafloor using a pelagic-benthic coupling approach, could be an interesting perspective. In that study, a regional ocean model with remotely sensed sea-surface chlorophyll-a maps was combined with data on diatom abundances obtained from sediment grabs and with a particle tracking approach to infer the potential density of food available on the seabed. Detailed information on the species surrounding habitat is necessary to apply this method, but it could substantially improve the representation of food availability for application of physiological models to benthic species. Another modelling perspective consists in considering several food resources to represent energy supply to organisms in DEB models (Galasso et al. 2020[START_REF] Reid | Performance measures and models for open-water integrated multi-trophic aquaculture[END_REF]. This existing modelling framework is based on empirical results on growth performance according to food quality (Galasso et al. 2020 

Personal feedbacks on DEB and SDM applications.

Mechanistic models: DEB theory.

Applying DEB models to SO species was not so easy and took several months from initiation to model finalisation. A lot of concepts have to be understood (van der Meer 2006, Kooijman 2010) to generate a model and to be able to interpret the link between DEB parameters and species' physiological traits (van der Meer 2006). Hopefully, an increasing number of available tutorials (see the DEBwiki page https://en.wikipedia.org/wiki/Dynamic_energy_budget_theory) and Matlab codes help implement DEB models (https://www.bio.vu.nl/thb/deb/) including a newly developed module that automatically fills Matlab codes (AmPeps, http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/AmPeps.html). Moreover, every two years, DEB schools are organised and include training courses on DEB model applications (https://deb2021.sciencesconf.org/). They are completed with a 3-weeks MOOC to learn DEB theory principles. These events have been organised for several years and considerably help increase the number of DEB applications (https://www.zotero.org/groups/500643/deb_library/library). Alternatives to the DEB theory exist, as well as internal alternatives of the standard DEB model that rely on different assumptions regarding energy allocation priorities or new parameters to describe individual metabolism (comments on DEB3 Kooijman 2010, Lika and Kooijman 2011). The DEBkiss model ('kiss' for 'keep it simple stupid') proposes a simple version of the standard DEB (no reserve compartment) and is widely used for routine applications such as for toxicity analyses (Jager et al. 2013[START_REF] Ashauer | Modelling survival: exposure pattern, species sensitivity and uncertainty[END_REF]. However, according to Lika and Kooijman (2011), this model also presents weaknesses compared to the standard DEB procedure and cannot be used as an alternative but as a first step before more complex implementations are carried out. Several other conceptual models of individual metabolism also exist, including the WBE West, Brown and Enquist theory (Brown et al. 2004) according to which energy supply is determined by branching networks that change with body size (West et al. 2002, Kearney andWhite 2012), or the Scope for Growth approaches that specifically focus on a precise metabolic process (Filgueira et al. 2011) and can integrate empirical information (Table 11.1 in Kooijman 2010). Among all these approaches, the DEB theory is the most applied.

Implementing DEB models requires detailed information on species physiology, morphology or energetics, according to environmental conditions and for different life stages [START_REF] Jusup | Physics of metabolic organization[END_REF], Guillaumot et al. 2020a -Chapter 1). When available in the literature, these data can be sufficient enough to parameterize a DEB model for a SO species (Guillaumot 2019a). Unfortunately, this is rarely the case, these data are missing for most species depending on model objectives and on the expected details (Guillaumot et al. 2020a -Chapter 1). Upscaling the DEB approach at the population level (DEB-IBM) was proved time and data consuming (Arnould-Pétré et al. 2020 -Chapter 1). It required a thorough knowledge of the species ecology, physiology, and of the surrounding environment to model processes that drive population dynamics (i.e. mortality, interspecific relationships, reproduction) [START_REF] Beaudouin | An individual-based model of zebrafish population dynamics accounting for energy dynamics[END_REF][START_REF] Groeneveld | How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model[END_REF], Arnould-Pétré et al. 2020-Chapter 1, Groeneveld et al. 2020). However, once applied, DEB models are extremely interesting and provide a large panel of outputs that can be applied to all species development states (e.g. larval development, growth rate, energy allocation description, reproduction performance, survival potential in given food and temperature conditions) and consequently allow a thorough understanding of species physiology and its link to the environment (Aguëra et al. 2015, Marn et al. 2017, Arnould Pétré et al. 2020-Chapter 1, Haberle et al. 2020, Guillaumot et al. submitted -Chapter 3). The use of DEB models for SO marine species is therefore totally adapted. I also showed it is really interesting to combine DEB estimation of the species fundamental niche along with other modelling approaches that focus on other parts of the ecological niche, such as correlative approaches (i.e. the realised niche) and dispersal models.

DEB modelling is a powerful approach that could open to other applications for SO studies such as ecotoxicology analyses. The amount of works studying the influence of pollutants on SO marine species has been increasing for a few years [START_REF] Ansari | Heavy metals in marine pollution perspective-a mini review[END_REF], Poulsen et al. 2012, Majer et al. 2014, Furtado et al. 2019), including microplastics [START_REF] Jovanović | Ingestion of microplastics by fish and its potential consequences from a physical perspective[END_REF][START_REF] Cappello | New insights into the structure and function of the prokaryotic communities colonizing plastic debris collected in King George Island (Antarctica): preliminary observations from two plastic fragments[END_REF]. DEB theory was proved efficient in ecotoxicology, at the individual or population scale (Martin et al. 2013), to describe the sublethal effects of toxicants (Muller et al. 2010, Sherborne andGalic 2020), to model the uptake, elimination and (metabolic) transformation of the toxic compounds (Kooijman et al. 2009, Pousse et al. 2019) or using the principle of Synthesizing Units to represent the impact of inhibitors and damaging agents on enzyme kinetics (Muller et al. 2019). Only some experiments and specific information regarding the pollution and its effect on metabolic processes would be necessary before such modelling analyses can be used for SO studies. Some works have already been led in the Arctic to assess the impact of petroleum substances on copepods (Klok et al. 2012a), fish (Klok et al. 2014b) or food chains (Klok et al. 2012b). To put it in a nutshell, the development of DEB modelling can be really an interesting perspective for future SO modelling works.

Correlative models: SDMs

I found SDMs easy to implement and general principles easy to understand. Some tutorials are available to quickly learn how to generate these models (Naimi and Araújo 2016, Hijmans and Elith 2017[START_REF] Oliver | A very brief introduction to species distribution models in R[END_REF], Barbosa 2020). To build a SDM, the compilation of occurrence data is generally the most time-consuming part as it often requires to implement databases (Guillaumot et al. 2016, Fabri-Ruiz et al. 2017a[START_REF] Guillaumot | Modelled distributions of benthic species of the Southern Ocean in a fast-changing environment[END_REF], to check for data georeferencing and taxonomic accuracy, or to delete duplicates generated during the automatisation of online and free-access catalogs [START_REF] Guillaumot | Modelled distributions of benthic species of the Southern Ocean in a fast-changing environment[END_REF]. Similarly, to compile the set of environmental descriptors, it is often necessary to get familiarized with Geographic Information Systems (GIS) and homogeneize and stack the ensemble of raster layers that will be necessary to generate the SDM. The choice of environmental descriptors also requires some ecological knowledge of the studied species, and consequently to go through the literature (Guillaumot et al. 2018a -Appendix). Some statistical analyses should also be performed to study potential correlations between these descriptors, in order to limit model complexity (Guillaumot et al. 2020b -Chapter 2) and resulting biases in model predictions (Harisena et al. 2021). Several syntheses were published on the subject, describing the different steps of dataset preparation [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF], Peterson et al. 2011, Dormann et al. 2012b), including my recent review focussed on SO case studies . However, despite the fact that SDM principles are easy to understand, the choice of the algorithm may generate additional complexity to analyse the link between occurrence records and the environment (Olden et al. 2008, Elith and[START_REF] Elith | Species distribution models: ecological explanation and prediction across space and time[END_REF]. A good trade-off must be found between generalist algorithms that are insufficient to describe the relationship between the environment and species occurrences, and complex ones that overfit based on training data and cannot efficiently transfer in space or time (Syfert et al. 2013[START_REF] Merow | What do we gain from simplicity versus complexity in species distribution models?[END_REF]. For SO studies, BRT (Boosted Regression Trees, Elith et al. 2008) and Random Forests (RF, Breiman 2001) were compared to other algorithms and were proved performant to deal with missing environmental data and presence-only records. They can also easily integrate supplementary modules to correct for spatial aggregation for example (Guillaumot et al. 2018a-Appendix, Fabri-Ruiz et al. 2019). However these two machine learning algorithms are greedy in calculation time and generally require the use of a public cluster to be launched. They also may overfit to datasets, leading to limited transferability performances [START_REF] Schweiger | Increasing range mismatching of interacting species under global change is related to their ecological characteristics[END_REF], Wenger and Olden 2012[START_REF] Crimmins | Evaluating ensemble forecasts of plant species distributions under climate change[END_REF]. Interpretation should therefore be always done with caution.

My PhD results suggest that modellers should consider with caution SDMs when occurrence datasets are not complete enough to correctly cover the species full ecological range. This is notably the case for SDMs performed at the scale of the SO, but it could also be the case at a regional scale (see section 1). Results should also be treated with care when models extrapolate under future climate scenarios or to study the potential of alien species to invade new areas (see section 2). Apart from these particular applications, SDMs can prove really useful to interpolate species distribution and thus are interesting to fill knowledge gaps on SO species biogeography and ecology. I developed many corrections in a synthesis paper and the SDMPlay R package (Guillaumot et al. 2021 -Thesis material) can help users implement models for SO studies. I also recommend modellers, whenever possible, to provide maps that represent model uncertainties along with model predictions (Rocchini et al. 2011, Guillaumot et al. 2020c -Chapter 2) in order to give realistic estimates of confidence intervals around model predictions (Beale and Lennon 2012) and ensure accurate interpretations (Beale and Lennon 2012, [START_REF] Addison | Practical solutions for making models indispensable in conser vation decision-making[END_REF], Guisan et al. 2013).

Finally, complementing SDMs with additional physiological information was proved powerful to improve the description of the species realised niche (Guillaumot et al. submitted,. This could also be done with the addition of information on biotic interactions [START_REF] Araújo | The importance of biotic interactions for modelling species distributions under climate change[END_REF], Heikkinen et al. 2007[START_REF] Anderson | A framework for using niche models to estimate impacts of climate change on species distributions[END_REF], Dormann et al. 2018), one key feature in the BAM diagram model [START_REF] Soberón | Grinnellian and Eltonian niches and geographic distributions of species[END_REF], Peterson et al. 2011, Sillero 2011[START_REF] Lang=en Saupe | Variation in niche and distribution model performance: the need for a priori assessment of key causal factors[END_REF]. Integration of biotic data can be done by restricting the predicted distribution of a given species by the occurrence of another one [START_REF] Schweiger | Increasing range mismatching of interacting species under global change is related to their ecological characteristics[END_REF], or by using occurrence (or abundance) data of other species as predictors within the abiotic descriptor dataset [START_REF] Leathwick | Competitive interactions between tree species in New Zealand's old-growth indigenous forests[END_REF][START_REF] Leathwick | Intra-generic competition among Nothofagus in New Zealand's primary indigenous forests[END_REF][START_REF] Meier | Biotic and abiotic variables show little redundancy in explaining tree species distributions[END_REF][START_REF] Lomba | Overcoming the rare species modelling paradox: a novel hierarchical framework applied to an Iberian endemic plant[END_REF][START_REF] Bebber | Biotic interactions and climate in species distribution modelling[END_REF]. This could constitute a strong complement in understanding species distribution and community structure (Hellmann et al. 2012[START_REF] Wisz | The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling[END_REF], Alexandridis et al. 2017). However, this targets much more complex modelling approaches. Ecological networks vary along environmental gradients (Pellissier et al. 2017) and some species present strong feeding plasticity [START_REF] Michel | Trophic plasticity of Antarctic echinoids under contrasted environmental conditions[END_REF][START_REF] Michel | Increased sea ice cover alters food web structure in East Antarctica[END_REF] which implies that a lot of observations must be performed at local scale to accurately characterise species interactions within communities.

Concluding remarks

Ecological modelling has considerably been used during the past two decades to study SO marine species. Modelling is a way to synthetise different information gathered by several scientific teams and during several campaigns. Model maps are handy to interpret, and thus help bridge between scientists and politicians during decision-making processes. Models are interesting to quickly identify knowledge gaps and set research priorities. They are attractive, as they can integrate different types of data and information and can help recycle left-behind historical data. They are helpful to simplify complex processes, therefore offering the possibility of making preliminary assumptions before further researches are conducted. Finally, within a few months of reading and training, anyone can now generate a model to predict species distribution or model an organism's metabolism. Modelling is not only accessible to people having a mathematical background. The impressive collection of articles, R packages or tutorials that guide people to create a model, using open source available scripts. All these points can explain the growing popularity of the approach, as experienced in the community of Antarctic biologists.

However, several issues should be stressed, as final conclusions to this PhD work.

(i) It is essential to anticipate the possibility of evaluating model's predictive performance before creating it [START_REF] Grimm | Mathematical models and understanding in ecology[END_REF]Berger 2016, Railsback andGrimm 2019). Model evaluation is indeed not always considered with enough importance in SO modelling applications. The evaluation method is often not adapted to the dataset (Guillaumot et al. 2019 -Chapter 2) or the model not evaluated at all [START_REF] Griffiths | More losers than winners in a century of future Southern Ocean seafloor warming[END_REF]).

(ii) What is the point of generating future climate change simulations without accurate input data? IPCC scenarios are global average scenarios, most of them are not adapted to study species ecology [START_REF] Cavanagh | A synergistic approach for evaluating climate model output for ecological applications[END_REF]) and methodological difficulties prevent from incorporating climate scenario uncertainties into model predictions (Freer et al. 2018). Climate scenarios represent the environment with a coarse spatial resolution (100 km) and most environmental conditions are not available. Therefore, doubtful assumptions are usually made for future environmental conditions with no possibility to evaluate final model predictions. Therefore, I would suggest to consider ecological simulations based on future climate scenarios with a very critical eye.

(iii) Results of my PhD suggest that we are not ready to generate distribution models at the scale of the entire SO, as the quality of environmental and occurrence datasets is not sufficient to precisely distinguish contrasts between species (Guillaumot et al. 2020b -Chapter 2). I would recommend to run models at the regional scale and when data are abundant enough to describe environmental conditions, and when the relationship between species and their environment (i.e. abiotic conditions, biotic interactions and dispersal abilities) has been the subject of former studies that provide a detailed overview of species ecological preferences and interactions. Providing uncertainty maps along with model results is also strongly encouraged.

The SO is not as poorly known as often stated [START_REF] Griffiths | Antarctic Marine Biodiversity -What Do We Know About the Distribution of Life in the Southern Ocean?[END_REF]. A lot of oceanographic campaigns were undertaken and many datasets are available to modellers. The development of underwater imagery also considerably helps collecting new data. It is just a matter of time before the completeness and quality of datasets can be improved and more accurate models generated. Open-access databases, at the regional scale, could be really helpful for improving modelling studies. Such ideas are progressively being developed (J. Stark MEASO congress, April 2018; special issue https://www.mdpi.com/journal/diversity/special_issues/Ross_Sea_Marine). This would allow an efficient international collaborative sampling and would be also really interesting to support conservation decisions. To conclude, results of my PhD thesis will be, I hope, useful for future modelling works applied to SO species and for conservation purposes. I hope the provided guidelines will be helpful to adjust model predictions, improve their accuracy, relevance and facilitate the interpretation of model outputs. . The estimated value for the half-saturation parameter Xk is the food density at which feeding rate is half of its maximum value. 

THESIS MATERIAL

In the matter of replicating results of this PhD, scripts used to generate the models relating to the different studies were annotated and shared:

For Chapter 1 (DEB modelling), the Matlab codes for Nacella concinna DEB model (Guillaumot et al. 2020a) For Chapter 2 (SDM modelling), R codes corresponding to the four studies are available on my Github page (https://github.com/charleneguillaumot/THESIS). In addition, these codes were compiled into the SDMPlay R package (https://CRAN.R-project.org/ package=SDMPlay) as simplified functions. Have a specific look at the package vignettes: they were created purposely to apply these different functions and help beginners to generate their first SDM for Southern Ocean case studies.

For Chapter 3 (Integrated approaches), R codes to generate SDM models for Halicarcinus planatus case study (López-Farrán / Guillaumot et al. in press) come from the SDMPlay codes. For Fabri-Ruiz et al. (2021) analysis, you need to directly contact Salomé Fabri-Ruiz (salome.fabriruiz@gmail.com). Finally for the last study (Guillaumot et al. submitted), codes related to the simple GLM models, integrated DEB-SDM and integrated Bayesian approaches are available on my GitHub page (https://github.com/ charleneguillaumot/THESIS). Don't hesitate to contact me for any issue (charleneguillaumot21@gmail.com).

Finally, Chapter 4 (dispersal models) mainly relies on Valérie Dulière's codes (vduliere@naturalsciences.be). A last calibrat ion st ep t hat you can perform before modelling is delineat ing t he modelled area (Fig. 4). The delim.area funct ion can be used t o rest rict in geography and/ or dept h t he environment al descript or layers. T his st ep can play an import ant role t o enhance modelling performances by limit ing t he ext ent of ext rapolat ion.

# restrict to 1500m depth predictors2005_2012_1500m <-SDMPlay:::delim.area(predictors2005_2012, longmin=62, longmax=80, latmin=-55, latmax=-45, interval=c(0,-1500)) # plot the new layer (Fig. 4) plot(subset(predictors2005_2012_1500m,1), col=bluepalette,legend.width=0. 5,legend.shrink=0.4,legend.args=list(text='Depth (m)', side=3, font=2, cex=0.8)) points(worldmap, type="l") You can focus your background sampling on t his rest rained environment (Fig. 5). Run again t he SDMtab code wit h t hese changes. T he funct ion will omit t he N/ A pixels when select ing t he random background dat a. # Observe the changes (Fig. 5) background.occ_1500 <-subset(SDMtable_ctenocidaris_1500,SDMtable_ctenocidaris_1500$id== 0) [,c(2,3)] plot(subset(predictors2005_2012_1500m,1), col=bluepalette, cex=0.8, legend.width=0. 5,legend.shrink=0.4,legend.args=list(text='Depth (m)', side=3, font=2, cex=0.8)) points(worldmap, type="l") points(ctenocidaris.nutrix.occ, pch= 20, col="black") points(background.occ_1500, pch= 20, col="red") legend("bottomleft", pch=20, col=c("black", "red"), legend=c("presence-only data", "background data"), cex=0.6)

Perform species dist ribut ion models

Once you have built your SDMtab dat aframe, you can easily perform models using t he compute.brt or compute.maxent funct ions. # you can then plot your predictions and the test data subset on top of that (Fig. 7) palettecolor <-colorRampPalette(c("deepskyblue", "darkseagreen","lightgreen","green", "yellow","gold","orange", "red","firebrick"))( 100 # Compare background records samples (Fig. 5) bluepalette<-colorRampPalette(c("blue4","blue","dodgerblue", "deepskyblue","lightskyblue"))( 800) par(mfrow=c(1,2)) plot(subset(predictors2005_2012,1), col=bluepalette, main="Background sampling without KDE", cex.axis= 0.7) points(worldmap, type="l") points(background_detail, pch=20) plot(subset(predictors2005_2012,1), col=bluepalette, main="Background sampling with KDE", cex.axis= 0.7) points(worldmap, type="l") points(background_detail_KDE, pch=20) ## [1] 100

G enerate a model wit h a spat ial cross-validat ion

T his t ime, you will make t he t raining/ t est part it ion wit h a spat ial condit ion. You can split your environment int o 2, 3, 4, 5. . . areas t hat will cont ain eit her t raining or t est dat a. See Guillaumot et al. (2019) for furt her det ails. # Loop to calculate the value of dissimilarity of each environmental descriptor # For each pixel, it will be determined if extrapolation occurs for each environmental descriptor for (k in 1:nlayers(predictors2005_2012)){ presvals <-raster::extract(subset(predictors2005_2012, k), ctenocidaris.nutrix.occ) x_amelio <-dismo::mess(subset(predictors2005_2012, k),presvals) stack_amelio_MESS <-stack(stack_amelio_MESS,x_amelio) } 3 for envir onmental managers. M odeling results can help interpolate species distributions, identify the potential drivers of a species' distribution and predict the potential effects of envir onmental changes on habitat suitability. However, modeling species distributions over vast and remote marine areas like the Souther n Ocean using poor and heterogeneous data sets remains challenging, and improvement of biological and envir onmental data sets is still required.

In the present study, we show ed that reliable SDM s can be produced in such areas as long as the amount and quality of data allow testing and correcting for the effects of biases. Using historical data requir es proper envir onmental descriptors for modeling the effect of envir onmental changes on species distributions. Using time-averaged predictors over long time periods can generate unr ealistic models.

M odel selection is also crucial at this stage and the statistical performance of models is not the only criteria to be consider ed. M odeling procedur es must be chosen with regar ds to the scientific issues that are being addressed. Two procedur es (BRT and RF) performed best in our case study, but one of them (BRT) proved to be more relevant because it dealt better with transferability and data patchiness.

M odeling species distributions in data-poor areas poses the practical problem of the minimum number of presence-only data points requir ed to run reliable models, although this is not the only or most critical issue. The number of occurrence records must be high enough for testing model robustness and reliability. In regions w ith limited access, sampling effort may be heterogeneous, which influences model performance. We show ed that sampling bias can be corrected, but the efficiency of the correction depends on species niche width, with narrow -niche species models being more troublesome to correct. In our study, A. cordatus is a species limited to shallow coastal areas, which implies a strong correlation be tween species occurrence and sampling patterns. Restricting the model to a more reduced area could allow for correction of spatial bias and improve modeling performance.

There is also a crucial need for improving the quality of data sets [START_REF] Kennicutt | Six priorities for Antarctic science[END_REF]) and running more accurate models to better tackle conser vation issues [START_REF] Rodríguez | The application of predictive modelling of species distribution to biodiversity conser vation[END_REF], Guisan et al. 2013). For the time being, producing uncertainty maps can be an alter native (Rocchini et al. 2011, Tessar olo et al. 2014) and can provide additional information to environmental managers and stak eholders (A ddison et al. 2013(A ddison et al. , Guisan et al. 2013)).

M odel reliability and performance also depend on the interaction between data set completeness and a spe-cies' intrinsic ecological properties. Hence, we show ed that the type and width of ecological niches are important to consider, with the distribution of narrowniche species being easier to model and less sensitive to incomplete data sets [START_REF] Guo | Uncertainty in ensemble modelling of large-scale species distribution: effects from species characteristics and model techniques[END_REF][START_REF] Ranc | Performance tradeoffs in targetgroup bias correction for species distribution models[END_REF]. However, narrow niches usually imply that species are distributed over small areas, for which distribution models will be highly sensitive to extrapolations.

Our protocol show ed that reliable SDM s can be produced when enough data are available and data set bias can be tested and corrected. In the present study, only one SDM (C. nutrix) could be corrected for spatial and temporal heterogeneities to generate reliable distribution predictions. H ow ever, our results stress the need to consider methodological issues when modeling species distributions based on poor and spatially biased data sets, and should contribute to bringing new insights and enhancing modeling per formance in futur e studies. In the present work, we ran ensemble models as a decision tool to select algorithms that are the most appropriate to the type of data to be analysed [START_REF] Scales | Identifying predictable foraging habitats for a wide-ranging marine predator using ensemble ecological niche models[END_REF]. The performance of 10 different algorithms was compared using the default parametrization settings proposed in the 'biomod2' R package (see In a second step, standard deviation of the 100 replicates were compared between models as the number of data was progressively increased between runs to represent the improvement of sampling effort through time (Fig S1B ,S1D). Presence-only records associated to non-informative environmental data (NA/, no data values) were removed as required to perform the biomod2 analysis. Occurrence duplicates located on one single 0.1° grid cell were removed to reduce spatial weighting. 200 pseudoabsences were selected to perform the analysis.

Results show that Boosted Regression Trees (BRT) and Random Forest (RF) are the algorithms that perform best to model the distribution of C. nutrix and S. diadema (Fig. S1), with relatively stable (SD < 0.025) and high AUC values varying between [0.976,1] and [0.994,1] respectively of the analysis that studies data addition. Unexpectedly, algorithms previously shown to be well suited to presence-only data and small datasets (e.g. SRE or MaxEnt, see Araújo andPeterson 2012, Yackulic et al. 2013) did not perform well in our case study. Low performances of SRE have already been reported [START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF]. The low number of pseudo-absences used to calibrate the model could explain the low performance of MaxEnt (Barbet-Massin et al. 2012, Phillips andDudik 2008). 
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  Figure 0.1.Trade-off between model properties when designing a model. The balance between generality, precision and realism depends on the questions the modeller addresses. It is also dependent on data availability. This scheme highlights the fact that a broad range of models can be generated to represent a given system.

Figure 0 . 2 .

 02 Figure 0.2. Diversity and complexity of marine benthic communities in the Southern Ocean. Each species interacts with its neighbours and is influenced by the coupled actions of physical, chemical and biological processes of the surrounding environment. © J. Stark, MEASO 2018.
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 03 Figure 0.3. Effects of coupled large-scale climate, local physical forcing and environmental chemicalproperties on biological processes in the vicinity of a free-drifting iceberg in the northwest Weddell Sea. Global climate forcing induces regional ice melting, causing shifts in water column stratification and water movement at local scales, which may affect the survival, behaviour and dynamics of planktonic communities at regional scales. This illustrates marine systems' complexity and inter-scale interactions. Figure extracted from Smith et al. (2013).

Figure 0 . 4 .

 04 Figure 0.4. Theoretical scheme of an experimental design, that aims at isolating the most relevant key drivers to optimise the understanding of an ecological process. Main influencing drivers are identified (e.g. Fig. 0.2), (b) full-factorial designs are created to study interactions and effects and (c) subsets are defined to isolate processes that best explain the research questions. Extracted from Boyd et al. (2018).
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  Figure 0.5. Analysis of a marine community, using a modelling approach, with the individual being the central foundation of the model, from which processes will be downscaled to organs or cells or upscaled to population or community levels (inspired from Railsback and Grimm 2019).
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 06 Figure 0.6. Schematic representation of the equilibrium bias, that compromises the definition of occurrence occupied space according to sampling effort. Figure extracted from J. Artois PhD thesis (2019).
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 08 Figure 0.8. Examples of different configurations of the BAM diagram, figure from Peterson et al. (2011). Go is the realised niche, defined as RN in Figure 0.7. Panel A shows an intuitive hypothetical and theoretical configuration. Panel B shows a situation in which all of the abiotic suitable area A is accessible, so the invadable distributional area Gi is null. Panel C shows a situation in which A and B are almost coincident, and the entire area is accessible to the species, so neither biotic nor movement considerations reduce the distributional potential of the species, solely the environmental conditions are limiting the distribution. Panel D depicts a situation similar to C, except that substantial restrictions of dispersal exist, such that not all suitable potential distributional areas are inhabited. In all panels, open circles denote absences of the species, solid circles denote presences of the species, light stippling indicates Gi, and darker stippling indicates Go = RN.

Figure 0 . 9 .

 09 Figure 0.9. Conceptual scheme of the basic parameters and theoretical compartments of the DEB theory. Food initiates energy availability in the reserve compartment, energy is then allocated to the different metabolic processes. Temperature influences metabolism following Arrhenius principle (Kooijman 2010).Figure modified from Monaco et al. (2013).

  Figure 0.9. Conceptual scheme of the basic parameters and theoretical compartments of the DEB theory. Food initiates energy availability in the reserve compartment, energy is then allocated to the different metabolic processes. Temperature influences metabolism following Arrhenius principle (Kooijman 2010).Figure modified from Monaco et al. (2013).
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 010 Figure 0.10. Number of DEB models built and published in the Add-my-Pet (AmP) collection: 2765 modelled species on 8th February 2021. Source: https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/about.html.
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 012 Figure 0.12. Spilhaus projection representing the Southern Ocean compared to all other oceans. The global thermohaline circulation is represented by red arrows for upper-layer flows (surface water currents) and blue arrows for lower-layer flows (deep water currents). The overturning of this 'conveyor belt' lasts between 1,000 and 2,000 years (Döös et al. 2012). Figure from Meredith (2019).
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 013 Figure 0.13. Main currents and marine fronts of the Southern Ocean system. The Antarctic Circumpolar Current flows eastward in the blue area, contained between the Sub-Antarctic Front in the north and the Antarctic Divergence in the south. Modified from https://geographyeducation.org/2017/01/07/the-worldsnewest-official-ocean/ (accessed January 2020) and Rintoul et al. (2001).
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 014 Figure 0.14. Pictures of seafloor communities at Useful Island (Gerlache Strait, Western Antarctic Peninsula), 15 m depth, March 2018. Rocky shallows to muddy substrate with gravels, with regular but shallow iceberg disturbance. Left picture: high macroalgae coverage, purple sea stars Odontaster validus on the left hand corner of the picture and white worm Parborlasia corrugatus on the bottom right corner. Right picture: Some Nacella concinna limpets are also present on rocks. © B121 Expedition.
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 015 Figure 0.15. Mean ocean temperatures and overall glacier area changes, from 1945 to 2009 along the Western Antarctic Peninsula. Mean in situ ocean temperature at 150 m depth (shaded) and glacier change (points). For each of the 674 glaciers along the west coast, the point shows overall change between its earliest and latest recorded ice-front position, relative to basin size (% relative change rate a -1 ). A similar spatial pattern is found for changes in absolute area loss per glacier. The point symbols are layered in the same order as in the legend (i.e. blue above red). Ocean circulation and water masses are also shown schematically: CDW (Circumpolar Deep Water), Shelf Water (SW), BSW (Bransfield Strait Water), and ACC (Antarctic Circumpolar Current). From Cook et al. (2016).
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 016 Figure 0.16. Political map of Antarctica, from https://www.geographicguide.com/antarctica-political-map.htm, accessed November 2019.

  Figure 0.17. Proposed and adopted MPAs, management areas, and fisheries in the CCAMLR area. CCAMLR boundary indicated by thick black line with management area delineations labelled numerically. CCAMLR's adopted MPAs and MPA proposals from 2012 to 2018, including the South Orkney Islands Southern Shelf MPA (yellow), Ross Sea MPA (blue), East Antarctic (violet), Weddell Sea (purple) and the western Antarctic Peninsula (orange). Total Allowable Catch (TAC) for toothfish (blue) and krill (red) in the CCAMLR management area; circles proportional to respective TAC (tonnes in 2017/18), transparency indicates underutilization. Shaded circles around subantarctic islands reflect delineated exclusive economic zone boundaries generated prior to the signing of the CCAMLR Convention. Shaded squares indicate toothfish management areas around South Georgia and South Sandwich Islands. Figure does not include subantarctic MPAs which fall outside of CCAMLR's jurisdiction. From Brooks et al. (2020).
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 11 Figure 1.1. Nacella concinna in apical view (a) and lateral view (b). Scale bar: 1 cm. Source: Q. Jossart, B121 expedition.

Figure 1 . 3 .

 13 Figure 1.3. Comparison of model predictions (uni-variate data). Blue dots joined by lines: subtidal model predictions, blue stars: subtidal data (observations); orange dots joined by lines: intertidal model predictions, orange stars: intertidal data (observations); black triangle joined by lines: merged model predictions. Prediction points may overlap (D).
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 14 Figure 1.4. Evolution of Mean Relative Error (MRE) values along the merging of the different parameters.
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 11 Experimental design S. Morley February 2018, Rothera Station Collection of limpets Intertidal N. concinna were collected from East Beach at low tide and subtidal N. concinna by SCUBA divers at 30m depth off the wharf at the British Antarctic Survey Research Station, Rothera Point, Adelaide Island (67°34.25′S, 68°08.00′W). Representative habitats are shown in Figure S1.1.

Figure S1. 1 .

 1 Figure S1.1. Left panel, image of the intertidal Nacella concinna habitat at low tide. Right panel, representative image of the N. concinna habitat at 30m. In the right panel the urchin Sterechinus neumayeri and the limpet N. concinna are clearly visible on the rock in the foreground.

Figure S1 .

 S1 Figure S1.2A. Picken (1980)'s protocol to characterise ring growth through time. Dark rings correspond to winter growth and light rings to summer growth periods.

Figure S1. 2 .

 2 Figure S1.2.B. Details of the 'mesuroscope' (a,b) with the binocular loop connected to the computer, which automates the acquisition of the x,y,z measurements. (c) Schematic representation of the procedure adopted for the measurements of the rings. First, the apex was positioned, and the distance from the apex to the right and left part of each ring was measured (x, y) and summed to get the diameter of each dark ring (M#1, M#2, M#3). (d) Example of picture captured by P. Pernet to prepare ahead the measurement the position of the black rings.

  1.5): Ile Longue (for the model at Anse du Halage), Ile Haute, an island in the North-Western corner of the Morbihan Bay, and Port Couvreux, a coastal site outside the Morbihan Bay, in the Gulf of the Baleiniers on the Northern coast of the archipelago (Fig. S1.5).
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 15 Figure 1.5. Location of the studied sites in the Kerguelen Islands, calibration site (Anse du Halage, red star) and projection sites (Ile Haute and Port Couvreux, red triangles).

  substrate nature and exposure to the open sea. Distributed from the intertidal area to the deep shelf over 500m depth, populations highest densities are found in very shallow (0-2m depth) and sheltered areas with soft bottoms of fine to medium sand (Poulin 1996). In shallow areas, observed density vary from less than 5 individuals/m 2 (in the Fjord des Portes Noires, Poulin and Féral 1995) to 10 ind./m 2 (at Port-aux-Français, Mespoulhé 1992), 130 ind./m 2 (Ile Haute, Mespoulhé 1992, Poulin 1996), 168 ind./m 2 (Port Couvreux, Poulin 1996) and up to 280 ind./m 2 (Anse du Halage,
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 16 Figure 1.6. Specimens of Abatus cordatus. (a) Aboral view of a specimen half buried in sand, (b) Aboral view of a female showing the brood pouches with juveniles inside. © Féral J.P. Sexual reproduction in A. cordatus occurs every year, with all mature females producing eggs (Magniez 1983) and incubating their young in their four brood pouches located on the aboral side of the test (Fig. 1.6). After brooding, juveniles exit the pouches and start their autonomous development on the seabed, in the vicinity of their mother (Magniez 1983, Schatt 1985). Reproduction time can greatly differ between sites: generally extending from March to May (as in Anse du Halage and Ile Haute), reproduction can also occur from June to August (Ile Suhm), from December to February (Port Matha) or from August to November (Port Couvreux) (Poulin 1996).Females usually spawn once a year (Poulin 1996). Brooding and burrowing behaviours imply a relative sedentary lifestyle and can explain a part of the species endemicity, with dense populations scattered all around the archipelago and only a few older individuals that may be found isolated from core populations(Mespoulhé 1992, Poulin and Féral 1995).
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 17 Figure 1.7. Schematic representation of the DEB-IBM (Dynamic Energy Budget -Individual-Based Model). Individuals (A) undergo development through the DEB model and reproduce (purple arrow). Altogether and with a slight inter-individual variability in DEB parameters (*), they form the population of the IBM (B) which undergoes population-specific processes (temperature and background mortalities) at the scale of a simple square metre patch at the reference site (C). The IBM population is embedded within this specific environment, whose environmental conditions (temperature and food resources) affect individual and population dynamics. Additionally, the population influences the resources availability following a densitydependence regulation.

  The individual DEB model is used to simulate each individual as an entity of the individual-based population model (IBM). An IBM represents the individual components (individuals of A. cordatus) of an environmental system (Anse du Halage) and their behaviours, enabling to feature each individual as an autonomous entity and looking at results at the scale of the whole population (DeAngelis and Mooij 2005, Grimm and Railsback 2005, Railsback and Grimm 2019). In our model, each individual does not have any direct interaction nor adaptive behaviour towards their environment nor the other members of the population. They follow a continuous development governed by metabolic fluxes (DEB model) that are influenced by environmental conditions (temperature and food resources) along their entire life. Each individual is a component of the modelled population, which is itself affected by population death rate and density-dependent processes.
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 18 Figure 1.8. Simulation of the variation of energy allocated to the reserve (a) and the reproduction buffer (b) compartments over one year. Males were not considered in the model when simulating reproduction processes, and thus results presented here only take females into consideration. Average results for all mature females, in 100 model simulations are presented by the green line. The grey area corresponds to the variation range (variation induced by differences between individuals: age, size, energy allocation) between all females among the 120 individuals that initiate the model. The variation in energy allocated is the change in a scaled variable X: ∂X here stands for dX dt
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 19 Figure 1.9. Modelled population structure and density under present-day environmental conditions: monthly values of juvenile density (purple) and adult density (orange) over 30 years (for 100 simulations). Bold lines: mean density value. Shaded areas: variation range for the 100 simulations. 'T' symbol: sharp decrease in population density due to temperature-induced mortality. Dashed-line rectangle: 6-year cycle in population dynamics (this 6-year pattern is due to the input temperature data and not to a biological cycle inherent to the population).
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 110 Figure 1.10. Model predictions under IPCC scenarios RCP 2.6 and RCP 8.5 (for 100 simulations). Purple: adult population, orange: juvenile population. Coloured bold lines show mean values for 100 simulations. Shaded areas are simulation variation ranges. (a) Population model under present-day conditions, (b) model under IPCC scenario RCP 8.5 of T° change only (+1.7°C compared to present) and for resistant organisms; (c) model under IPCC scenario RCP 8.5 of f change only (-20% compared to present) and for resistant organisms; (d) model under IPCC scenario RCP 2.6 of T° and f changes (-10% of f and +1.1°C compared to present) and for 'resistant' organisms; (e) model under IPCC scenario RCP 2.6 of T° and f changes and for 'intermediate' organisms; (f) model under IPCC scenario RCP 2.6 of T° and f changes and for 'vulnerable' organisms; (g) model under IPCC scenario RCP 8.5 of T° and f changes and for 'resistant' organisms; (h) model under IPCC scenario RCP 8.5 of T° and f changes and for 'intermediate' organisms; (i) model under IPCC scenario RCP 8.5 of T° and f changes and for 'vulnerable' organisms.
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 111 Figure 1.11. Mortality simulations (in individuals/m 2 ) per month (a) and year (b-f) under present-day (a-b) and future (c-f) predictions of the two IPCC scenarios (for 100 model simulations). (a) Model under presentday conditions for 12 months (year #7 [2016-2017] was chosen as an example); (b) Model under presentday conditions for 50 years of simulations; (c) Simulated mortality under scenario RCP 8.5 for resistant organisms and predicted changes in food availability only (f=-20% compared to present); (d) Simulated mortality under scenario RCP 8.5 for resistant organisms and predicted changes in temperature only (+1.7°C compared to present); (e) Simulated mortality under scenario RCP 2.6 for resistant organisms and predicted changes in both food availability and temperature (food reduction of -10%, T° increase of +1.1°C); (f) Simulated mortality under scenario RCP 8.5 for resistant organisms and predicted changes in food availability and temperature (food reduction of -20%, T° increase of +1.7°C).
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 15 Figure S1.5.A. Onsite temperature records (monthly mean values) at the three sites used in the model. Red: Ile Longue (reference site for Anse du Halage), Green: Ile Haute, Blue: Port Couvreux. Data provided by IPEV program Proteker (n°1044); Ile Longue: http://www.proteker.net/Ile-Longue-5m-depth.html?lang=en; Ile Haute: http://www.proteker.net/Ile-Haute-5m-depth.html?lang=en; Port Couvreux: http://www.proteker.net/Ilot-des-Trois-Bergers-5m-depth.html?lang=en (accessed on 08/05/2019).
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 5116 Figure S1.5.B. f values (food resources) used as input in the model. Black: Anse du Halage (data from Delille and Bouvy 1989). Yellow: 50% values of Anse du Halage. Blue: 30% values of Anse du Halage.
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 7 Figure S1.7. Comparisons of individual metabolic performances between models calibrated with a monthly (black line) or daily (grey line) timestep: (A) variation in scaled reserve (dUE), (B) in the reproduction buffer (dUR) or (C) variation in structural length (dL) over time. Models are generated without any process structuring populations except for reproduction events (i.e. recruitment of new juveniles). Average values of all individuals of the population are represented.These results strongly highlight that models calibrated with different timesteps present very close patterns, and suggest that changing model timestep does not influence the shape and order of magnitude of individual metabolic performances predictions. In our model, time is continuous for individual processes (individual development is modelled using ordinary differential equations), but not for all population processes which were taken from literature and experimental sources. These population processes are based on a monthly scale and used as a baseline to model population dynamics over time. Running the model at a smaller timestep implies altering all population processes to fit a narrower time increment, which is also not always relevant ecology-wise when studying population dynamics, since A. cordatus is a slow growing individual that lives in stable environmental conditions. Environmental changes do not occur often enough to significantly influence individual metabolism on a day-to-day basis and to consider mortality due to temperature changes at a daily step.
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 18 Figure S1.8.A. Temperatures for the different future projections based on the 2012-2018 dataset. Black: reference temperatures at Anse du Halage under present-day conditions. Green: Projection for scenario RCP 2.6 (+1.1°C warming). Orange: Projection for scenario RCP 8.5 (+1.7°C warming).
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 8 Figure S1.8.B. Decision tree explaining the three types of sea urchin sensitivity available in the model for the population temperature mortality rates. A triple population resistance scenario was used: 'resistant', 'intermediate, 'vulnerable'.For each threshold of the gradient of population mortality due to temperature, the 'resistant' population endures a mortality rate 15% lower than the 'sensitive population' (i.e. at 8°C for two months, the 'resistant' population suffers a 10% mortality rate, the 'sensitive' population suffers a 25% mortality rate). For the 'short resistance' population, rates are the same as for the 'resistant' population, but mortality takes effect only after one month of temperatures reaching over the threshold (rather than two months in the other cases).

Figure S1. 8 .

 8 Figure S1.8.C. f values (food resources availability) estimated over one year for the different future projections. Black: reference f at Anse du Halage under present-day conditions from Delille and Bouvy(1989). Green: Projection for scenario RCP 2.6 (linear decline of 10% of food availability compared to present-day conditions). Orange: Projection for scenario RCP 8.5 (decline of 20% of food availability compared to present-day conditions).

  -30% of ini*al (0.287) #B. -20% of ini*al (0.328) #C. -10% of ini*al (0.369) INIT. Ini*al mortality (0.41) #D. +10% of ini*al (0.451) #E. +20% of ini*al (0.492) #F. +30% of ini*al (0.533)
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 9 Figure S1.9. Model sensitivity to (a) the initial population number, (b) inter-species variation coefficient, (c, d)juvenile and adult background mortalities, (e) egg number produced per female during a reproduction event, and (f) the egg survival rate. Variations of -30%, -20%, -10%, +10%, +20% and +30% were tested for these parameters (#A to #F). For each analysis, the model was run until 100 simulations of 210 years of simulation were obtained. The model is considered as a 'crash' when the population is not stable and collapses before the end of the simulation period. The proportion of crashes relates to the number of crashes counted for 100 simulations (i.e., for 15 crashes and 100 simulations, the proportion is 15/(100+15)). Due to computing time limitations, the analysis was stopped when reaching a proportion higher than 66% of crashes (indicated by a black cross).The percentage of changes obtained between the initial and the #A to #F scenarios values was calculated for average population density (ind/m 2 ), average juvenile/adult ratio, average physical length (cm), average
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 11010 Figure S1.10. Simulation of the monthly variation of structural length (∂L, stands for !" !" , dimension L.t -1 ) over one year. Average results for all individuals (all sex and age), in fifty simulations, are presented by the green line. The grey area corresponds to the variation range (variation induced by differences between individuals: age, size, energy allocation) between all individuals, with the same number of individuals at model initiation (population then varies over time). (a) Model under present-day conditions; (b) model under IPCC scenario RCP 2.6 of T° and f changes (-10% of f and +1.1°C compared to present); (c) model under IPCC scenario RCP 8.5 of T° and f changes (-20% of f and +1.7°C compared to present); (d) model under IPCC scenario RCP 8.5 of T° change only (+1.7°C compared to present); (e) model under IPCC scenario RCP 8.5 of f change only (-20% compared to present). These results give an illustration of what is discussed in section 4.2.1:In the DEB model of this work, we do not have the data to infer the descending slope of the Arrhenius curve, that is the temperature range beyond the optimal temperatures in which the metabolic rates slow down with higher temperatures. Thus, in its current implementation, the model gives better results at the individual level when confronted to higher temperatures, which is not in accordance with field and experimental observations. This is corrected at the population level with the use of the rate of mortality induced by temperature.
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 111 Figure S1.11. Modelled population structure and density under current environmental conditions calibrated at Anse du Halage and projected for two sites: Ile Haute (a, b) and Port Couvreux (c, d). Monthly density of juveniles (purple) and adults (orange) over 30 years (100 simulations). Bold lines: mean density value. Shaded areas: variation range. (a) Projection at Ile Haute based on local temperature records and 50% f values (Fig. S1.5.B, yellow), (b) Projection at Ile Haute based on local temperature records and 30% f values (Fig. S1.5.B, blue), (c) Projection at Port Couvreux based on local temperature records and 50% f values (Fig. S1.5.B, yellow), (d) Projection at Port Couvreux based on local temperature records and 30% f values (Fig. S1.5.B, blue). The pattern observed at Port Couvreux with f=30% of f values estimated at Anse du Halage (Fig. S1.7) is due to local conditions of low food availability and temperatures (2013 and 2014 temperature data for Port Couvreux, Fig. S1.5.A, blue) impeding the conception of new individuals when females are few and do not reach GSI values high enough to reproduce. Some years, background mortality is not compensated by new cohorts and the population continuously decreases. The cyclic pattern is controlled by temperature data input in the model (six years period transposed for the entire simulation time).

3 .

 3 Individuals (A) undergo development through the DEB model and reproduce (purple arrow). Altogether and with a slight inter-individual variability in DEB parameters (*), they form the population of the IBM (B) which undergoes population-specific processes (temperature and background mortalities) at the scale of a simple square metre patch at the reference site (C). The IBM population is embedded within this specific environment, whose environmental conditions (temperature and food resources) affect individual and population dynamics. Additionally, the population influences the resources availability following a densitydependence regulation. Article. Arnould-Pétré et al. (2020). Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling. Below is the description of the model following the ODD (Overview, Design concepts and Details) protocol from Grimm et al. (2010), where information on the following characteristics can be found: 1. Purpose Short presentation of the objective of the model 2. Entities, state variables & scales Parameters with their DEB notation, code notation, dimension and signification Types of entities in the model, their state variables Temporal resolution and temporal extent of the model, spatial resolution Process overview & scheduling Pseudo-code of a simulation (what the model does in one 'go once' simulation) Order in which agents execute commands, when variables get updated How time is represented in the model, presentation of calendars and timers 4individuals are grouped under types of entities, specific characteristics •Observations Outputs of the model for results or tests 5. Initialisation Elements to select and parameters to input for initialisation Initial state of the model at setup Origin of initial parameters, Initialisation of individuals What differs from one initialisation to another 6. Input data Data taken from external files, How the files are compiled and read Specific data for the standard basic model (Anse du Halage) 7. Submodels Detailed description of each submodel, with equations and processes: •Update calendar •Update environmental variables •Competition and f •Convert parameters with TC (temperature correction factor) •Change in reserve •Change in maturity or reproduction buffer •Change in structural length •The model was developed from the individual mechanistic Dynamic Energy Budget (DEB) model to study the response of the populations of the sea urchin Abatus cordatus, endemic to the 1

1 '

 1 Sites: 'Anse du Halage' projection: 'present' future: 'mixed temp & food' sensitivity: 'resistant' competition: 'On' run_time: '210' cv: '0.The initial DEB parameters can be calculated by the model if the 'add-my-pet?' switch is set to ON in the interface and the basic DEB parameters [ṗM], 𝐸 𝐻 𝑏 , 𝐸 𝐻 𝑝 , [EG] and Lm for the species as taken from the Add-my-Pet database are input into the relevant boxes (respectively: p_M, E_H^b, E_H^p, E_G, zoom). The standard model is run for 210 years in total for the site Anse du Halage under present-day conditions, with a population sensitivity set to 'resistant' and competition affecting resources availability. At setup, the values for the temperature and f at the site are taken from the time-series data found in the input files and compiled into lists usable by the model. The model is initialised with environmental conditions of October (month_time 10). If the model is set for future projections, the values are modified according to the chosen scenario (i.e. either one of RCP 2.6 and RCP 8.5 with food only, temperature only or food and temperature combined). The carrying capacity is set at 200 ind./m 2 and the proportion of females at 0.5. Initial parameters are based on A. cordatus DEB model parameters, developed in Guillaumot (2019c). Two simulation procedures are run for the initialisation of individuals: (1) a simulation of embryonic development to determine the initial reserve at birth, and (2) a simulation of the development of one individual from 0 till 5 years old at constant f and temperature values.

  altered and as energy is entirely redirected to somatic maintenance and all other fluxes (growth, reproduction or maturation) are set to 0. The model follows these conditions: Mobilisation flux SC = ([ṗM] / L 3 ) / {ṗAm}. Since [ṗM] = [EG] * 𝑘 ̇M and [EG] = g * κ * {ṗAm} / 𝑣̇ we can rewrite SC = (L 3 * 𝑘 ̇M * g * κ * {ṗAm} / 𝑣) / {ṗAm} = (L 3 * 𝑘 ̇M * g * kap) / 𝑣̇ then recalculate ∂UE = SA -SC . When e < 0, the organism doesn't have enough energy to pay somatic maintenance and dies. The starvation strategy used in the population model was chosen among the ones presented in Kooijman (2010) based on Magniez (1983) research on A. cordatus reproduction and development. Ageing Two ordinary differential equations are calculated: changes in ageing acceleration 𝑞̈ (also called the scaled density of damage inducing compounds) and changes in hazard mortality rate ḣ: ∂𝑞̈ = (𝑞̈ * (L / Lm) 3 * sG + ḧa) * e * (𝑣 ̇/ L -𝑟) -𝑟̇ * 𝑞̈ ∂ḣ = 𝑞̈ -𝑟̇ * ḣ, with 𝑟̇ = (3 / L) * ∂L

Figure 2 . 1 .

 21 Figure 2.1. Flow chart of the species distribution model construction process. Steps 1 to 4 concern data collection and treatment. Steps 5 to 7 integrate procedures for model implementation and evaluation. Dashed rectangles allow for a possible step backwards when assessing model uncertainties or evaluating model performance. GIS: Georeferencing Information System. AUC = area under the receiver operating curve. TSS: True Skill Statistics. COR: Pearson correlation.
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 22 Figure 2.2. Cumulative number of Antarctic species described over time, according to data available in the Register of Antarctic Marine species (until March 2010). From De Broyer and Danis (2011). This long-lasting and irregular effort in biogeographical (occurrence) data collection has had an impact on data compilation and has resulted in heterogeneous datasets, as observed in several data papers and associated Integrated Publishing Toolkit (IPT) databases such as Guillaumot et al. (2016), Fabri-Ruiz et al. (2017a) or Moreau et al. (2018), or in the general platform biodiversity.aq web portal. The historical compilation of biological data includes (1) taxon misidentifications and taxonomic inconsistencies due to the various taxonomic revisions published through time, (2) errors in the

  2.3) (Griffiths et al. 2014, Guillaumot et al. 2019 -Chapter 2).
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 23 Figure 2.3. Distribution of benthos sampling sites (red dots) in the Southern Ocean (SO, < 45°S). Sampling sites are not evenly distributed in the SO, showing important spatial aggregation in the Scotia Arc region and Western Antarctic Peninsula with several clusters along the Antarctic shelf, and over the Kerguelen and Campbell plateaus. In contrast, deep-sea regions and remote areas of the Antarctic shelf are undersampled. From Guillaumot et al. (2019 -Chapter 2), updated from Griffiths et al. (2014).

Figure 2 . 4 .

 24 Figure 2.4. Compared Area Under the Curve (AUC) performances of species distribution models generated with different algorithms (ANN=Artificial Neural Network, BRT=Boosted Regression Trees, CTA=Classification Tree Analysis, FDA=Flexible Discriminant Analysis, GAM=Generalized Additive Model, GLM=Generalized Linear Model, MARS=Multivariate Adaptive Regression Splines, MAXENT=Maximum Entropy, RF=Random Forest, SRE=Surface Range Envelope) to predict the distribution of the sea urchin Sterechinus diadema in the Southern Ocean. Results show a good performance for BRT and RF, adapted to small, historically compiled datasets (temporally heterogeneous) and spatially aggregated presence-only data. Models were calibrated with presence-only data and 200 background data randomly sampled in the study area. Average scores of 100 model replicates. See Guillaumot et al. (2018b) for details.
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 25 Figure 2.5. Comparison of predicted distribution probabilities (between 0 and 1) of the sea urchin Ctenocidaris nutrix on the Kerguelen Plateau: (A) without compensating for sampling bias; (B) with a kernel density estimator (KDE) correction: more background data are sampled in highly sampled areas. The spatial aggregation of presence-only records near the shoreline of the Kerguelen Islands strongly biases model predictions. The KDE correction was proven to be efficient at correcting for such a bias and provides more relevant predictions. From Guillaumot et al. (2018a -Appendix).

  2.6) (Guillaumot et al. 2020c -Chapter 2).
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 26 Figure 2.6. Extrapolation map of the species distribution model generated for the sea star Acodontaster hodgsoni, with all presence-only records available. Extrapolation corresponds here to the ensemble of environmental conditions that are outside of the boundaries of the calibration range. The extrapolation area is displayed in black and covers 78.6% of the entire projection area; coloured pixels (yellow-red colour palette) show distribution probabilities (included between 0 and 1). Extracted from Guillaumot et al. (2020c -Chapter 2).

  2.6), it is possible to fine-tune the analysis and define which environmental descriptors and areas are concerned with extrapolation(Owens et al. 2013[START_REF] Guillaumot | SDMPlay. Species Distribution Modelling Playground[END_REF] -Thesis material) (Fig.2.7). Such information could be used to resample the environmental descriptors implemented in the model. In any case, it has been recommended to provide information on model extrapolation and more generally to other concepts of uncertainties (species detection, errors, etc.), along with model predictions, because they are essential to accurate interpretation (Beale and Lennon 2012,[START_REF] Addison | Practical solutions for making models indispensable in conser vation decision-making[END_REF], Guisan et al. 2013).Limiting model projections to 'realistic' depth ranges or some other environmental limiting factor based on a robust knowledge of species ecology (i.e. some expert-driven decision) was proven to be efficient at reducing extrapolation(Kearney and Porter 2009, Hare et al. 2012[START_REF] De Villiers | Combining field phenological observations with distribution data to model the potential distribution of the fruit fly Ceratitis rosa Karsch (Diptera: Tephritidae)[END_REF], Guillaumot et al. 2020b -Chapter 2). Such a strategy is transitional until complementary samples and more comprehensive occurrence datasets are made available to better define the species-occupied space(Guillaumot et al. 2020b -Chapter 2).

Figure 2 . 7 .

 27 Figure 2.7. Extrapolation map of the species distribution model generated for the sea star Acodontaster hodgsoni indicating environmental descriptors responsible for extrapolation (black pixels of Fig. 2.6 are here coloured according to the descriptor responsible for extrapolation; i.e. for each pixel, the predictor in question lies outside the calibration range). In this case study, 14 environmental descriptors are responsible for extrapolation, with depth being the main contributor. White pixels correspond to areas where the model does not extrapolate (the corresponding model predictions are shown in Fig. 2.6). POC stands for 'Particulate Organic Carbon' and Chla is the concentration in chlorophyll a on the sea-surface. Generated from Guillaumot et al. (2021).

Figure 2 . 8 .

 28 Figure 2.8. Different cross-validation procedures based on the study of the sea star Odontaster validus, showing presence-only records and a random set of 1,000 background data selected according to a Kernel Density Estimation (KDE) weighting scheme from the dataset of Griffiths et al. (2014) on sampling effort of the Southern Ocean benthos. Data are split into training (pink) and test (green) subsets. The blue background corresponds to bathymetry and grey areas to emerged lands. (A) Random cross-validation procedure, with a random split into 75% training and 25% test data. (B) '2-fold CLOCK' clustering by random spatial partition of the dataset into two groups (one training and one test). (C) 'BLOCK' splitting, generated according to median latitudinal and longitudinal values (Muscarella et al. 2014). After the generation of four groups (corresponding to the four colours), one group is randomly defined as the test subset and the other three groups as the training subsets. A different system of projection was used to represent this map in order

Figure 2 . 9 .

 29 Figure 2.9. Comparison of the different cross-validation procedures. Dots represent Odontaster validus presence-only records and a random set of 1000 background data, sampled according to the Kernel Density Estimation weighting scheme. Colors indicate data splitting into training (pink) and test (green) subsets. Blue background corresponds to bathymetry and grey areas to emerged lands. For each case, 100 replicates of random background-data sampling and transects partitioning are performed, symbolised by the arrows on the figure. (A) Random cross-validation procedure, with a random splitting into 75% training and 25% test data. (B) '2-fold CLOCK' clustering by random spatial partition of the dataset into two groups (one training, one test). (C) 'BLOCK' splitting, generated according to the median latitudinal and longitudinal values (Muscarella et al., 2014). After generation of four groups (corresponding to the four colors), one group is randomly defined as the test subset, the other three groups as the training subset. A different system of projection was used to represent this map to highlight the latitudinal and longitudinal definition of the transects. (D) '3-fold CLOCK' clustering by random spatial partition of the dataset into three groups (2 training, 1 test). (E) '4-fold CLOCK' clustering by random spatial partition of the dataset into four groups (3 training, 1 test).

  2.10a). The niche occupied by O. validus does not cover the entire range of environmental conditions prevailing in the projection area (Fig.2.10b). O. validus is recorded in conditions close to zero and sub-zero seafloor temperatures (Fig.2.10b) and is mainly distributed in shallow and coastal areas. Most of O. validus presence records are aggregated in regions where scientific benthic surveys are most often led and where sampling effort was privileged due to access facilities (e.g. the Ross Sea and the Antarctic Peninsula). Overall, this holds true for presence records of all benthic Southern Ocean taxa as well (Fig.S2.2), although, in this case, most environmental conditions are covered by the total benthic samples (Fig.2.10b).

Figure 2 .

 2 Figure 2.10. (A) Presence-only records of the sea star Odontaster validus in the Southern Ocean. Duplicates (occurrences falling on a same 0.1° resolution pixel) were removed from the display. (B) Values of the environmental range covered by the entire benthos sampling dataset presented in Fig. S2.2 (black dots), by presence-only records of O. validus (green dots) in comparison with a set of 1000 background dots randomly sampled according to the Kernel Density Estimation scheme (grey dots) for two environmental descriptors: mean seafloor temperature (°C) and mean seafloor salinity (PSU). A part of the environment (grey dots) does not contain benthic occurrence samples (black dots), illustrating that sampling effort is not geographically exhaustive.

Figure 2 . 11 .

 211 Figure 2.11. SDM performed with the spatial cross-validation '2-fold CLOCK' method. Average of 100 model replicates. Distribution probabilities are darkened according to the Multivariate Environmental Similarity Surface (MESS) layer, with dark pixels corresponding to regions where the model extrapolates outside of the environmental conditions in which the species was sampled. Dark pixels represent 64.2% of the entire projected area. Probabilities of presence are contained between 0 and 1 but the colorbar was scaled until 0.6 to enhance visual contrast.

  SDM uncertainty assessment has been a widely discussed topic (Barry andElith 2006, Carvalho et al. 2011, Beale and Lennon 2012, Guisan et al. 2013). Uncertainty in model predictions has been often assessed as the variation among the predicted distribution probabilities[START_REF] Buisson | Uncertainty in ensemble forecasting of species distribution[END_REF]) but this approach does not provide precise information on the origin of uncertainty(Tessarolo et al. 2014). The MESS metric is a relevant indicator of SDM extrapolation performance[START_REF] Elith | The art of modelling range-shifting species[END_REF][START_REF] Dhingra | Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3. 4.4 viruses with spatial cross-validation[END_REF]. The Mobility Oriented Parity (MOP) introduced by Owens et al.(2013) 
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 21 Model calibrationModels were calibrated using all presence-only records available and a random selection of background points sampled within the species environmental range (< 1,500m depth). Different numbers of background data were sampled and compared to the total environmental range using convex hulls (Fig.S2.1.A). The best background data number to be used to calibrate SDM was the one describing well environmental conditions (e.g. mean seafloor salinity, depth, mean seafloor temperature, seafloor temperature amplitude, Fig.S2.1.A) while being as close as possible to the number of species presence records(Barbet-Massin et al. 2012). 1,000 background data were finally sampled to perform the model.

Figure S2. 1 .

 1 Figure S2.1.A. Values of the environment available (black dots) and of the background sample environment randomly sampled on the environment limited at 1,500m depth (coloured dots). 300, 600, 1000 and 1500 background data were sampled. Convex hulls were calculated with the chull function of the grDevices R package. They delimit the environment described by the background data sample.

Figure S2. 1 .

 1 Figure S2.1.B. Comparison of the predictive deviance of models generated with different combination of parameters. Tc: tree complexity, lr: learning rate; bf: bag fraction (see Elith et al. 2008 for details).
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 22 Benthic occurrence records in the Southern Ocean Benthos occurrence records available for the Southern Ocean (Fig. S2.2) were obtained by completing the dataset of benthos sampling sites published in the Biogeographic Atlas of the Southern Ocean (Chapter 2, Griffiths et al. 2014) with recent datasets published after 2014 (Table

Figure S2. 2 .

 2 Figure S2.2. Map of the benthic Southern Ocean sampling sites updated, from the Atlas of the Southern Ocean (<45°S)(Griffiths et al. 2014).
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 212 Figure 2.12. Contribution of environmental descriptors to SDMs projected until (a) 1,500 m and (b) 4,000 m depth for the six species. Environmental descriptors contributing less than 1% to all models are not shown. Error bars correspond to standard deviation values of the contribution percentages (100 replicates of background sampling and spatial cross-validation splitting).

Figure 2 . 13

 213 Figure 2.13 Influence of the number of environmental descriptors on SDM performance. Boxplot of 100 model replicate scores. Changes in biserial correlation (COR) values for (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Labidiaster annulatus, (d) Glabraster antarctica, (e) Odontaster validus and (f) Psilaster charcoti. Average values are indicated in blue. Red asterisks indicate significant changes in median values between the series and preceeding value (Wilcoxon rank paired test, p-value < 0.05). The left-side and right-side columns correspond to species for which models are respectively projected until 1,500 m and 4,000 m depth.

Figure 2 . 14 .

 214 Figure 2.14. PCA of environmental values (grey dots) from descriptors used in final species distribution models, and that are common between the six species (Appendix 2.10: depth, geomorphology, sediments, slope, roughness, mixed layer depth, seasurface and seafloor current speed, ice cover mean, chlorophyll-a min, max and mean concentrations for 2005-2012, POC minimum concentrations for 2005-2012), limited to 1,500 m (a-c) and 4,000 m depth (e-g) respectively. Colour dots: species suitable area (probabilities > average maxSSS scores) for (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Labidiaster annulatus, (e) Glabraster antarctica, (f) Odontaster validus, (g) Psilaster charcoti. PCA plot of environmental descriptors (d,h) and appended tables with the associated correlations to PC1 and PC2. All correlation values are significant (p< 0.05).

Figure 2 . 15 .

 215 Figure 2.15. SDMs generated based on the final selection of environmental descriptors for the six studied species (Appendix 2.10). Projection areas are limited to 1,500 m depth (left-hand column) or 4,000 m depth (right-hand column) for (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Labidiaster annulatus, (d) Glabraster antarctica, (e) Odontaster validus, (f) Psilaster charcoti. Blue colours correspond to depth gradient. The colour chart indicates species presence probability comprised between 0 and 1. Polar stereographic projection.

Figure S2. 5 .

 5 Figure S2.5.B. Example an extreme event raster layer. Average number of maximum chlorophyll-a concentrations extreme events per pixel compiled between 2005 and 2012.
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 266 Figure S2.6. Cumulative occurrence collective curves through time and per species.

Figure S2. 8 .

 8 Figure S2.8. Comparison of model predictive deviance according to the number of trees used to build the models, for each species and for different parameter settings (tree complexity, tc; learning rate, lr; bag fraction, bf). Parameters for which the lowest predictive deviance is reached with the lowest number of trees are selected to generate the model (Elith et al. 2008). Species: (A) Acodontaster hodgsoni, (B) Bathybiaster loripes, (C) Glabraster antarctica, (D) Labidiaster loripes, (E) Odontaster validus, (F) Psilaster charcoti.

Figure S2. 9 .

 9 Figure S2.9.B Influence of the number of environmental predictors on SDM performance. Boxplot of 100 model replicates scores. Change in True Skill Statistics (TSS) values for (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Labidiaster annulatus, (d) Glabraster antarctica, (e) Odontaster validus, (f) Psilaster charcoti. Average values are indicated in blue. Red stars indicate significant changes in median values between two successive series (Wilcoxon Mann-Whitney rank paired test, p < 0.05). Left-side and right-side columns correspond to species for which models are respectively projected down to 1,500 m and 4,000 m depth.

Figure S2. 9 .

 9 Figure S2.9.C. Influence of the number of environmental predictors on SDM performance. Boxplot of 100 model replicates scores. Change in the percentage of correctly classified test data (cross-validation procedure) for (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Labidiaster annulatus, (d) Glabraster antarctica, (e) Odontaster validus, (f) Psilaster charcoti. Average values are indicated in blue. Red stars indicate significant changes in median values between two successive series (Wilcoxon Mann-Whitney rank paired test, p < 0.05). Left-side and right-side columns correspond to species for which models are respectively projected down to 1,500 m and 4,000 m depth.

Figure 2 . 16 .

 216 Figure 2.16. Maps of extrapolation areas covering SDM predictions, generated with all presence-only records available for the studied species. Left panel: projection area not limited in depth (Analysis #0), right panel: projection area limited to -1,500 m and -4,000 m depth (Analysis #1), according to the species (A. hodgsoni, L. annulatus, O. validus until 1,500 m; B. loripes, G. antarctica, P. charcoti until 4,000 m; Table 2.8). (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Glabraster antarctica, (d) Labidiaster annulatus, (e) Odontaster validus, (f) Psilaster charcoti. Extrapolation areas displayed in black; pixels colored by the yellow-red color palette provide SDM distribution probabilities (comprised between 0 and 1); bathymetric chart in shades of blue.

Figure 2 . 17 .

 217 Figure 2.17. Evolution of model performances with the increase of data (chronological addition of presenceonly records, by 5-year periods, from 1980 to 2016). (A) Number of presence-only records available to generate the model; (B) Mean correctly classified test data (%) (standard deviation values available in TableS2.18); (C) Proportion of grid-cell pixels of the projection area that are extrapolations (%). The maximal number of presence-only records present in Table2.9 may not be reached here because some collection dates remain unknown.

Figure 2 . 18 .

 218 Figure 2.18. Boxplot diagrams representing the decrease of proportions of extrapolation areas (in % of the total projection area) with addition of presence-only records used to generate model replicates (in % of data available, seeTable 2.8 and Table S2.19), for:(a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Glabraster antarctica, (d) Labidiaster annulatus, (e) Odontaster validus, (f) Psilaster charcoti. For each box, mean values (blue dots) and outliers (black dots) are shown for the 100 model replicates. Some boxes are

  The selection of training and test subsets is often done randomly, and most of the time, 70% of presence records are randomly chosen to train the model and 30% to test it (Fabri-Ruiz et al. 2019). However, when presence-only records are aggregated in space, splitting data at random would bias model evaluation and will inflate model performances. Splitting training and test data following a defined spatial pattern was shown to improve the relevance of model evaluation, in a context of aggregated data (Muscarella et al. 2014, Dhingra et al. 2016, Roberts et al. 2017, Guillaumot et al. 2019 -Chapter 2). Several methods were assessed and compared in Guillaumot et al. (2019 -Chapter 2). Here, we tested and selected the '2-fold CLOCK' method for models performed for A. hodgsoni and P. charcoti (Fig. S2.15a) and the '6-fold CLOCK' method (Fig. S2.15b) for other SDMs, based on the best AUC scores and percentage of correctly classified test data.

Figure S2. 15 .

 15 Figure S2.15. (a) '2-fold CLOCK' method and (b) '6-fold CLOCK' method. For each model replicate, the geographic space is split into 2 and 6 areas respectively, and test (green) and training (pink) presence and background data are selected in the defined areas. The model is built based on training data and model predictions are evaluated using presence test data. One hundred model replicates are generated and the average prediction calculated.

Figure S2. 17 .

 17 Figure S2.17.B. Influence of the different environmental descriptors on extrapolation (mean values calculated on the the 100 model replicates), for Analysis #0 (dark blue bars) and Analysis #1 (light blue bars). Analysis #0: models were projected on the entire Southern Ocean area. Analysis #1: the projection area was limited in depth according to each species distribution range (A. hodgsoni, L. annulatus, O. validus until 1,500 m; B. loripes, G. antarctica, P. charcoti until 4,000 m).

Figure 3 . 1 .

 31 Figure 3.1. Male (a) and female (b) specimens of Halicarcinus planatus (Fabricius, 1775) collected in the Magellan Strait. Scale: 1 cm. Photograph credit to C. Ceroni and K. Gérard.

Figure 3 . 2 .

 32 Figure 3.2. Presence (red dots) and absence (yellow dots) records of Halicarcinus planatus in the Southern Ocean used in the present study.

Figure 3 . 4 .

 34 Figure 3.4. Survival rates of adults of Halicarcinus planatus at different salinities over 39 days.

Figure 3 . 5 .

 35 Figure 3.5. Survival rates of larvae of Halicarcinus planatus for 12 days at different temperatures.

Figure 3 . 6 .

 36 Figure 3.6. Partial dependence plots for the four environmental descriptors that contribute the most to the model. Scaled density distribution of the marginal effect of the descriptors to the model, data points (grey) fitted with a generalized additive model (GAM, blue line).
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 38 Figure 3.8. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected under environmental conditions IPCC RCP 2.6 climate scenario for 2050 for the entire Southern Ocean (A), with focus on southern South America, the Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the WAP alone (C), and the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which predictions are not reliable and were removed from projection (according to the Multivariate Environmental Similarity Surface index, MESS).

Figure 3 . 9 .

 39 Figure3.9. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected under environmental conditions IPCC RCP 2.6 climate scenario for 2100 for the entire Southern Ocean (A), with focus on southern South America, the Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the WAP alone (C), and the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which predictions are not reliable and were removed from projection (according to the Multivariate Environmental Similarity Surface index, MESS).

Figure 3 . 10 .

 310 Figure 3.10. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected under environmental conditions IPCC RCP 8.5 climate scenario for 2050 for the entire Southern Ocean (A), with focus on southern South America, the Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the WAP alone (C), and the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which predictions are not reliable and were removed from projection (according to the Multivariate Environmental Similarity Surface index, MESS).
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 311 Figure 3.11.SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected under environmental conditions IPCC RCP 8.5 climate scenario for 2100 for the entire Southern Ocean (A), with focus on southern South America, the Scotia Arc and the Western Antarctic Peninsula (WAP) (B), the WAP alone (C), and the Kerguelen Plateau (D). Black pixels correspond to extrapolation areas for which predictions are not reliable and were removed from projection (according to the Multivariate Environmental Similarity Surface index, MESS).

Figure S3. 3 .

 3 Figure S3.3.B. Focus on the Kerguelen Plateau (Kerguelen and Heard islands). Differences in seafloor salinities in PSU (a-b), seafloor temperatures in °C (c-d) and ice thickness in metre (e-f); between predicted future scenarios RCP 2.6 (mean values) for 2050 and 2100 and actual environmental conditions (mean maximal values recorded between 2000 and 2014).

Figure S3. 3 .

 3 Figure S3.3.C. Focus on the Western Antarctic Peninsula and Southern America. Differences in seafloor salinities in PSU (a-b), seafloor temperatures in °C (c-d) and ice thickness in metre (e-f); between predicted future scenarios RCP 8.5 (mean values) for 2050 and 2100 and actual environmental conditions (mean maximal values recorded between 2000 and 2014).

Figure S3. 4 .

 4 Figure S3.4.D. Focus on the Kerguelen Plateau (Kerguelen and Heard islands). Differences in seafloor salinities in PSU (a-b), seafloor temperatures in °C (c-d) and ice thickness in metre (e-f); between predicted future scenarios RCP 8.5 (mean values) for 2050 and 2100 and actual environmental conditions (mean maximal values recorded between 2000 and 2014).

  -Rothera; Brockington and Peck 2001 -Rothera; Pace and Manahan 2007 -McMurdo; Moya et al. 2012 -Bellingshausen Sea; Yu et al. 2013 -McMurdo; Lister et al. 2015 -McMurdo; Alexander et -Ruiz et al. (2021). Using correlative and mechanistic niche models to assess the sensitivity of the Antarctic echinoid Sterechinus neumayeri (Meissner, 1900) to climate change. Polar Biology.

  . As in many other Antarctic species, the development rate of S. neumayeri is low(Bosch et al. 1987), longevity can exceed 40 years(Brey 1991, Brey et al. 1995) and the feeding period is seasonal (Brockington and Peck 2001). S.neumayeri is a broadcast spawner, planktonic larvae can drift in the water column for more than 8 months before metamorphosis takes place on the seabed (Pearse and Giese 1966) (see details inAppendix 3.5 and 3.6). The test of adult specimens can reach a final size of seven centimeters in diameter(Brey et al. 1995).

Figure 3 . 12 .

 312 Figure 3.12. Sterechinus neumayeri occurrence data extracted from Fabri-Ruiz et al. (2017a). Illustration of Sterechinus neumayeri © J-G. Fabri.

Figure 3 . 13 .

 313 Figure 3.13. Conceptual representation of the standard Dynamic Energy Budget model. Arrows show energy flows (J.d -1) involved in the dynamics of the four state variables (represented by boxes: reserve (E), structure (V), maturation (EH) and reproductive buffer (Er). 𝑝̇𝐴 is the assimilation rate into the reserve, 𝑝̇𝐶 is the energy rate leaving the reserve which is divided in two branches: 𝜅. 𝑝 ̇𝐶 allocated to the somatic maintenance ( 𝑝̇𝑀 ) and growth ( 𝑝̇𝐺 ) and the fraction (1 -𝜅). 𝑝̇𝐶 allocated to maturity maintenance ( 𝑝̇𝐽 ), maturation and reproduction (𝑝̇𝑅).

3 .

 3 3.14c, Appendix 3.15). The response curve to chlorophyll-a concentration values shows little variation, the highest probability values corresponding to low chlorophyll-a concentrations (< 2mg/m 3 , Fig.3.14c).CHAPTERArticle. Fabri-Ruiz et al. (2021). Using correlative and mechanistic niche models to assess the sensitivity of the Antarctic echinoid Sterechinus neumayeri (Meissner, 1900) to climate change. Polar Biology.

Figure 3 .

 3 Figure 3.14 (a) Spatial projection of the ENMc under present-day conditions in the Southern Ocean with (b)the respective contributions of environmental descriptors to the model and (c) the species response (distribution probability) to the main contributing predictors (mean seafloor temperature, slope, sea ice coverage and depth) and for chlorophyll-a concentration (as a proxy of food supply). No response curve can be displayed for geomorphology, which is a categorical variable (seeAppendix 3.16).

CHAPTER 3 .

 3 Article.Fabri-Ruiz et al. (2021). Using correlative and mechanistic niche models to assess the sensitivity of the Antarctic echinoid Sterechinus neumayeri[START_REF] Meissner M ; ) Echinoideen | The marine fauna of New Zealand: family Hymenosomatidae (Crustacea, Decapoda, Brachyura)[END_REF] to climate change. Polar Biology.
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 315 Figure 3.15. Projections of the mechanistic ecological niche model (ENMm, DEB). (a,c,e) classes of maximum size reached by individuals and (b,d,f) suitable areas for reproduction under present-day (a,b), RCP 4.5 (c,d) and RCP 8.5 (e,f) scenarios. Future projections were modelled for both food and temperature changes.
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 316 Figure 3.16. Projections of the correlative model under (a) RCP 4.5 (left panel) and (b) RCP 8.5 (right panel) scenarios [2050-2099].

APPENDIX 3 . 5 .Figure S3. 5 .

 355 Figure S3.5. Life cycle of Sterechinus neumayeri. Red crossed boxes: inactive functions at different life stages; green ticked boxes: active functions at different life stages. From Fabri-Ruiz (2018).Life cycle of Sterechinus neumayeri starts with sexual mature individuals. The vitellogenic cycle lasts from 18 to 24 months, with oocytes starting to develop during the first winter and achieving development during the second winter(Brockington et al. 2007). The gametes are then expelled in the water column, where fertilization occurs, and the onset of the embryonic stage takes place between mid-November and December(Pearse and Giese 1966, Bosch et al. 1987). Premetamorphic larvae appear between late December and early March when they are able to feed (i.e. DEB 'birth' stage), taking advantage of the summer phytoplankton bloom[START_REF] Chiantore | Reproduction and condition of the scallop Adamussium colbecki (Smith, 1902), the sea-urchin Sterechinus neumayeri (Meissner, 1900) and the sea-star Odontaster validus (Koehler, 1911) at Terra Nova Bay (Ross Sea): different strategies related to inter-annual variations in food availability[END_REF]. The larval recruitment on the sea bed corresponds to the metamorphosis stage and mainly occurs between the end of February and March of the following year(Bosch et al. 1987).

Figure S3. 9 .

 9 Figure S3.9. Observed values (circles) and projection (line), based on a type II feeding functional response f = X X+X K

Figure 3 .

 3 Figure 3.19. (A) Specimen of Abatus cordatus half buried into the sand with aboral side emerging from the sediment surface, (B) Aboral view of a female brooding its young in the incubating pouches. Adults can reach a maximum diameter of 4.9 cm (Mespoulhé 1992) © Féral J-P. (C) Location of the Golfe du Morbihan in the east of the Kerguelen Islands. Monitoring sites of program PROTEKER (http://www.proteker.net/?lang=en) are indicated in green. Mean daily temperature records measured at these sites were used to cross-validate sea surface temperature values derived from satellite data.

Figure 3 .

 3 Figure 3.20. (A) Bathymetry (in meters, red dots show presence records of A. cordatus). (B) Sea surface temperature in February, on 2017/02/09 and (C) in August, on 2017/08/20. (D) Food availability (scaled between 0 and 1, see section 3) in February, on 2017/02/09 and (E) in August, on 2017/08/20, in the Golfe du Morbihan. Water is colder in August (temperatures range between 2.7 and 3.3°C) and food availability much lower than in February, with the richest environments located nearshore.

Figure 3 .

 3 Figure 3.21. Conceptual scheme of the basic parameters and theoretical compartments of the DEB theory. Figure modified from Monaco et al. (2013). Each DEB parameter has a defined link with physiological processes (van der Meer 2006) and the combination of these parameters covers the different energetic processes of the organism (feeding, digestion, storage, maintenance, growth, development, reproduction, ageing) (Marques et al. 2018). The model was built using zero-variate (single data) and uni-variate (x~y relationship data) datasets extracted from the literature or obtained from experiments set-up purposely for the DEB model. These data were recorded at different life stages of the individual, with food and temperature conditions recorded and informed in the model (list of data available in Guillaumot 2019c, Arnould-Pétré et al. 2020 -Chapter 1). The model was validated by estimating the goodness of fit using the mean relative error (MRE) which quantifies the overall model performance. MRE values can have values from 0 to infinity, with 0 value meaning that predictions match observation data exactly (Marques et al. 2018). The MRE of A. cordatus DEB model is 0.121 (Arnould-Pétré et al. 2020 -Chapter 1).

(

  Kooijman 2010): 𝑝𝐺 ̇= (kap * 𝑝𝐶 ̇ -𝑝𝑀 ̇) / 𝑘𝑀 ̇/ TC (Eq.1)

Figure 3 .

 3 Figure 3.22. Spatial projections of the DEB model in February (A) and August (B). Reproduction and survival capacity is given by 𝑝𝐶 ̇ -(𝑝𝑀 ̇+𝑝𝐽 ̇) (energy.time -1 ), with 'Reproduction and survival possible' for values >0 (color bar) ; 'Not possible' for values <0 (black).

  3.23A,B) for the entire area and both seasons, and standard deviations are comparatively high (homogeneously close to 0.45 for February and more contrasted in space but coastal areas reaching 0.45 too for August, Fig. 3.23C,D), stressing an important variability between model replicates. Average predictions are more contrasting in August than in February (Fig. 3.23A,B). For August, the model predicts the highest distribution probabilities (around 0.5) near the shoreline, in shallowwater areas, and the lowest probabilities (around 0.2) in the center of the bay and in a northwestern fjord characterised by deep waters (Fig. 3.23B). In February, distribution probabilities are homogeneous in all the area and close to 0.4 (Fig. 3.23A).

Figure 3 .

 3 Figure 3.23. Spatial projections of the 'simple SDM' for February (A,C,E) and August (B,D,F), average of 50 model replicates. Average distribution probabilities (A,B), standard deviations (C,D) and average distribution probabilities with extrapolation areas associated to for each environmental descriptor (depth, temperature or food availability) (E,F).

  3.24B). Standard deviations are higher in August than in February in coastal areas (0.4 vs. 0.3 for August and February, respectively) and reach the same range of values (around 0.3) in the deep central area of the Golfe du Morbihan (Fig. 3.24C,D).

Figure 3 .

 3 Figure 3.24. Spatial projections of the 'integrated SDM-DEB' models for February (A,C) and August (B,D), averaged of 50 model replicates. Average distribution (A,B) and associated standard deviations (C,D). The available energy after paying off the somatic and maturity maintenances is integrated in the model as a predictor that assesses for each pixel the value of 𝑝𝐶 ̇ -(𝑝𝑀 ̇ -𝑝𝐽 ̇), with 𝑝𝐶 ̇ the amount of energy contained in the reserve compartment, 𝑝𝑀 ̇ the amount of energy required for somatic maintenance and 𝑝𝐽 ̇ the amount of energy required for maturity maintenance.

  3.25A). Standard deviation scores (Fig. 3.25C,D) are within the range of values obtained for the two other models (0.2-0.4) and values are similar between the two seasons, although high values (around 0.45) cover a broader area in August. Compared to February, some patchy areas nearby coasts present low values in August (Fig. 3.25D).

Figure 3 .

 3 Figure 3.25. Spatial projections of the 'integrated Bayesian' models for February (A,C) and August (B,D), averaged of 50 model replicates. Average distributions (A,B) and associated standard deviations (C,D).

Figure 3 . 26 .

 326 Figure 3.26. Partial dependence plots, representing model predictions (y axis, probabilities between 0 and 1) aligned with the environmental values (x axis). Grey solid line: simple SDM, yellow solid line: integrated SDM-DEB model; blue solid line: integrated Bayesian model. Average prediction values of 50 model replicates.
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 317 Figure S3.17 Overview of images captured by the Landsat 8 satellite for the selected dates (a) 2017/02/09 and (b) 2017/08/20. Some clouds are present in August over the Golfe du Morbihan that should be considered for interpretation. Source: https://worldview.earthdata.nasa.gov, accessed May 2020.

  Figure S3.19. Results of the spatial projection of the DEB model for February (A,C) and August (B,D). Evaluation of the available energy in the reserve compartment 𝑝 𝐶 ̇ (A,B). Energy required for somatic maintenance 𝑝 𝑀 ̇ (C,D).
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 S3 Figure S3.20.B Extrapolation areas (MESS) associated with the descriptor responsible for the extrapolation (depth, temperature, food availability or DEB layer), for the 'integrated SDM-DEB' approach. Application with three different DEB layers: '𝑝 𝐶 ̇ -(𝑝 𝑀 ̇+𝑝 𝐽 ̇)', 𝑝 𝐶 ̇ or 𝑝 𝑀 ̇.
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 4 Article.Dulière/Guillaumot et al. (submitted). Dispersal model alert on the risk of alien species introduction by ballast waters in protected areas from the Western Antarctic Peninsula. Diversity and Distributions.
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 41 Figure 4.1. Locations of the six particle release zones for the 200 NM (A), 50 NM (B) and 11 NM (C) scenarios.

  bioregions and species in an attempt to mitigate or eliminate specifically identified ecosystem threats from fishing; and support existing and future scientific research and monitoring and (2) Krill Fishery Zones (KFZ) that include fishing areas in addition to protecting benthic habitats (CCAMLR report SC-CAMLR-38/BG/03 2019). (3) The established MPA of the South Orkney Islands (May 2010) belongs to this conservation proposal and already prohibits any fishing activity, any transshipment activities and any discharge or dumping. All activities occurring in the area should be declared according to the CCAMLR delegation (CCAMLR report 91-03 2009, Trathan and Grant 2020).

Figure 4 . 2 .

 42 Figure 4.2. Map of proposed marine protected areas. Modified from SC-CAMLR-38/BG/03 report. NWAP and SWAP stand for Northern and Southern Western Antarctic Peninsula, respectively. SOI and SOI MPA stand for South Orkney Islands and South Orkney Islands Marine Protected Area, respectively.
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 4 Article.Dulière/Guillaumot et al. (submitted). Dispersal model alert on the risk of alien species introduction by ballast waters in protected areas from the Western Antarctic Peninsula. Diversity and Distributions.
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 43 Figure 4.3. Location of Deception Island in the Western Antarctic Peninsula and representative male individual of the crab Halicarcinus planatus, scale= 1cm © Karin Gérard.

  4.4B), with 15fold more particles reaching the coastlines for the 11 NM scenario compared to the other scenarios, mainly closeby the coasts of the WAP. /Guillaumot et al. (submitted). Dispersal model alert on the risk of alien species introduction by ballast waters in protected areas from the Western Antarctic Peninsula. Diversity and Distributions.
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 46 Figure 4.6. Age of particles (in days) reaching the proposed marine protected areas under the 200 NM scenario (black), 50 NM scenario (grey) and 11 NM scenario (white) for the January-February-March season. Values are averaged over the 9 years (2008-2016), blue solid horizontal lines indicate the average year minimal value recorded within the period (2008-2016).

3. 4 .

 4 Intra-and inter-annual variabilitiesComparison of dispersal patterns among the nine simulated years show inter-annual variations in the extent of dispersal areas: such variation is mainly noticeable in the sub-Antarctic region and in the East Weddell Sea. Interannual variation is more obvious in the 11 NM scenario relative to the total extent of the dispersal pattern (Fig.4.7; right panel). Interestingly, the dispersal area is broader in years 2008 and 2009, more extended to the east in 2014 and 2015 and conversely, more contracted in 2011 and 2012 (results not shown). Inter-seasonal variation is comparatively less marked than inter-annual variation (Appendix 4.2), and main shifts in particle distributions are concentrated to the north-east and south of particle overall distribution, following the same pattern of inter-annual variation (Fig.4.7, Appendix 4.2). /Guillaumot et al. (submitted). Dispersal model alert on the risk of alien species introduction by ballast waters in protected areas from the Western Antarctic Peninsula. Diversity and Distributions.
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 410 Figure 4.10. Model estimated dispersal patterns, averaged for the nine-year period (2008-2016), for the January-February-March season (southern summer). Particle drift was simulated during two months. The weighted number of particles was obtained by scaling the number of particles by the number of release locations (which differ among scenarios). Results are presented for the three different release scenarios: 200 NM (A), 50 NM (B) and 11 NM (C). Particles are released in all areas at the same time. Blue background: bathymetry chart.

  /Guillaumot et al. (submitted). Dispersal model alert on the risk of alien species introduction by ballast waters in protected areas from the Western Antarctic Peninsula. Diversity and Distributions.
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 411 Fig. 4.11. Species occurrence of Notothenia rossii in the Southern Ocean (red dots) and localities used for individual-based hydrodynamic connectivity modelling (black crosses). Ocean fronts after Orsi et al. (1995) indicated from north to south: sub-Antarctic Front, Polar Front, Southern Boundary of the Antarctic Circumpolar Current. Current marine protected areas (MPAs), i.e. the South Orkney Islands Southern Shelf and Ross Sea MPAs, are shown as black rectangles and exclusive economic zones (EEZs) as black circles. Background shading (white-blue) reflects ocean depth. Modelling sites from west to east: Dallman Bay (DB), South Shetland Islands (SSh), Joinville Island (JI), Elephant Island (EI), South Orkney Islands (SO), South Georgia (SG), South Sandwich Islands (SSa), Bouvet Island (BI), Edward and Marion Islands (EM), Ob and Lena Banks (OL), Crozet Island (CI), Skiff Bank (SB), Kerguelen Islands (KI), Heard and McDonald Islands (HM). Samples for genetics were available from SSh, EI, SO, SG, SB, and KI (see Table 4.1).
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 412 Figure 4.12. Predicted species occurrence probability for Notothenia rossii in the Atlantic and Indian sector of the Southern Ocean (prediction only between -100 and 100° longitude) based on mean prediction values from 240 model replicates using boosted regression trees (a). Insets show predictions around Bouvet Island (b) and the Ob and Lena Banks (c). Ocean fronts after Orsi et al. (1995) indicated from north to south: sub-Antarctic Front, Polar Front, southern Boundary of the Antarctic Circumpolar Current. Background shading (white-blue) reflects ocean depth. Only predictions in areas where the model does not extrapolate are shown.
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 415 Figure 4.15. Simulated dispersal connectivity of Notothenia rossii throughout most of the Southern Ocean: (a) mean connectivity as a percentage of particles from source populations (columns) successfully reaching destination populations (rows), on a transformed log scale [log((10x)+1)], (b) frequency of non-zero connectivity.

APPENDIX 4. 6 .

 6 Pairwise genetic differentiation of Notothenia rossii in the Southern Ocean using alternative differentiation metrics.

APPENDIX 4. 7

 7 Annotation of loci identified through genome scans for selection in GBS data of Notothenia rossii. Candidate outlier SNPs were matched against the NCBI database.

Figure D .

 D Figure D. Simple representation of species adaptation to local environmental conditions using a DEB model approach. X axis represents food conditions at each occurrence location, y axis temperature values. Environmental conditions are averaged values for summers 2002-2005. Star symbol corresponds to the sea star species Odontaster validus and filled circles to the sea urchin species Sterechinus neumayeri. The color bar indicates species metabolic performances, represented by growth rates (cm/year). The figure highlights areas where local environmental conditions are very favourable to the species development and in contrasts, the limits of their niche, where metabolim is less performant. Figure presented during the 2019 DEB Symposium.
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 12 Figure 1.2. Schematic representation of the standard DEB model, with energy fluxes (in J.d -1 ) that connect the four compartments.
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 13 Figure 1.3. Comparison of model predictions (uni-variate data) and observations for Nacella concinna DEB model.
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 14 Figure 1.4. Evolution of Mean Relative Error (MRE) values along the merging of the different parameters,for Nacella concinna DEB model.
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 1 Figure S1.1. Upper panel, image of the intertidal Nacella concinna habitat at low water. Lower panel, representative image of the N. concinna habitat at 30m.
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 2 Figure S1.2.A. Picken (1980)'s protocol to characterise ring growth through time. Dark rings correspond to winter growth and light rings to summer growth periods.
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 2 Figure S1.2.B. Details of the 'mesuroscope' with the binocular loop connected to the computer, whichautomates the acquisition of the x,y,z measurements. Schematic representation of the procedure adopted for the measurements of the rings of Nacella concinna.
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 415 Figure S1.4. Evolution of Mean Relative Error (MRE) values along the merging of the different parameters for Nacella concinna DEB model, for the five replicates. Trial 5 is presented in the main manuscript (Figure 1.4). Arnould-Pétré et al. (2020) -Abatus cordatus DEB-IBM model -Figure 1.5. Location of the studied sites in the Kerguelen Islands, calibration site (Anse du Halage) and projection sites (Ile Haute and Port Couvreux).
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 16 Figure 1.6. Specimens of Abatus cordatus. Aboral view of a specimen half buried in sand, and aboral view of a female showing the brood pouches with juveniles inside. © Féral J.P.
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 17 Figure 1.7. Schematic representation of the DEB-IBM (Dynamic Energy Budget -Individual-Based Model).
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 18 Figure 1.8. Simulation of the variation of energy allocated to the reserve and the reproduction buffer compartments over one year.
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 19 Figure 1.9. Modelled population structure and density under present-day environmental conditions:monthly values of juvenile and adult densities over 30 years (for 100 simulations).
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 110 Figure 1.10. Model predictions under IPCC scenarios RCP 2.6 and RCP 8.5 (for 100 simulations).
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 111 Figure 1.11. Mortality simulations (in individuals/m 2 ) per month and year under present-day and future predictions of the two IPCC scenarios (for 100 model simulations).
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 5 Figure S1.5.A. Onsite temperature records (monthly mean values) at the three sites used in the model: Ile Longue, Ile Haute, Port Couvreux (Kerguelen Islands).
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 5 Figure S1.5.B. f values (food resources) used as input in the model, for Ile Longue, Ile Haute, Port Couvreux (Kerguelen Islands).
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 6 Figure S1.6. Uni-variate observations (red dots) used to calibrate the DEB model of Abatus cordatus and DEB model predictions.
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 7 Figure S1.7. Comparisons of individual metabolic performances between models calibrated with a monthly or daily timestep.
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 8 Figure S1.8.A. Temperatures for the different future projections based on the 2012-2018 dataset: present, future RCP 2.6 (+1.1°C warming), future RCP 8.5 (+1.7°C warming).
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 8 Figure S1.8.B. Decision tree explaining the three types of sensitivity (implemented for Abatus cordatus)available in the model for the population temperature mortality rates.

Figure S1. 8 .

 8 Figure S1.8.C. f values (food resources availability) estimated over one year for the different future projections: present, future RCP 2.6 (-10% availability), future RCP 8.5 (-20% availability).
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 9 Figure S1.9. DEB-IBM model sensitivity to the initial population number, inter-species variation coefficient, juvenile and adult background mortalities, egg number produced per female during a reproduction event, and the egg survival rate. Variations of -30%, -20%, -10%, +10%, +20% and +30% of initial parameter values and evaluation of their influence on model predictions.
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 10 Figure S1.10. Simulation of the monthly variation of structural length (∂L) over one year for present and future scenarios.
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 112 Figure S1.11. Modelled population structure and density under current environmental conditions calibrated at Anse du Halage and projected for two sites: Ile Haute and Port Couvreux.
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 21 Figure 2.1. Flow chart of the SDM construction process. Steps 1 to 4 concern data collection, and treatment. Steps 5 to 7 integrate procedures for model implementation and evaluation.Figure 2.2. Cumulative number of Antarctic species described over time, according to data available in the Register of Antarctic Marine species (until March 2010). From De Broyer and Danis (2011).
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 22 Figure 2.1. Flow chart of the SDM construction process. Steps 1 to 4 concern data collection, and treatment. Steps 5 to 7 integrate procedures for model implementation and evaluation.Figure 2.2. Cumulative number of Antarctic species described over time, according to data available in the Register of Antarctic Marine species (until March 2010). From De Broyer and Danis (2011).
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 23 Figure 2.3. Distribution of benthos sampling sites in the Southern Ocean (< 45°S).Figure 2.4. Compared Area Under the Curve (AUC) performances of SDMs generated with different algorithms.
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 24 Figure 2.3. Distribution of benthos sampling sites in the Southern Ocean (< 45°S).Figure 2.4. Compared Area Under the Curve (AUC) performances of SDMs generated with different algorithms.
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 25 Figure 2.5. Comparison of predicted distribution probabilities (between 0 and 1) of the sea urchinCtenocidaris nutrix on the Kerguelen Plateau: without compensating for sampling bias or with a kernel density estimator (KDE) correction.
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 26 Figure 2.6. Extrapolation map of the SDM generated for the sea star Acodontaster hodgsoni, with all presence-only records available.Figure 2.7. Extrapolation map of the SDM generated for the sea star Acodontaster hodgsoni indicating environmental descriptors responsible for extrapolation.Figure 2.8. Different cross-validation procedures based on the study of the sea star Odontaster validus.
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 28 Figure 2.6. Extrapolation map of the SDM generated for the sea star Acodontaster hodgsoni, with all presence-only records available.Figure 2.7. Extrapolation map of the SDM generated for the sea star Acodontaster hodgsoni indicating environmental descriptors responsible for extrapolation.Figure 2.8. Different cross-validation procedures based on the study of the sea star Odontaster validus.
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 29 Figure 2.9. Comparison of the different cross-validation procedures.
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 210 Figure 2.10. Presence-only records of the sea star Odontaster validus in the Southern Ocean and values of the environmental range covered by the entire benthos sampling dataset
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 212 Figure 2.12. Contribution of environmental descriptors to SDMs projected until 1,500 m or 4,000 m depth for the six species.Figure 2.13. Influence of the number of environmental descriptors on SDM performance. Boxplot of 100 model replicate scores. Changes in biserial correlation (COR) values for the six species.

Figure 2 . 13 .

 213 Figure 2.12. Contribution of environmental descriptors to SDMs projected until 1,500 m or 4,000 m depth for the six species.Figure 2.13. Influence of the number of environmental descriptors on SDM performance. Boxplot of 100 model replicate scores. Changes in biserial correlation (COR) values for the six species.
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 214 Figure 2.14. PCA of environmental values from descriptors used in final species distribution models, and that are common between the six species.
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 215 Figure 2.15. SDMs generated based on the final selection of environmental descriptors for the six studied species.
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 5 Figure S2.5.A. Theoretical plot showing the determination of extreme events.Figure S2.5.B. Example an extreme event raster layer: average number of maximum chlorophyll-a concentrations.
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 5 Figure S2.5.A. Theoretical plot showing the determination of extreme events.Figure S2.5.B. Example an extreme event raster layer: average number of maximum chlorophyll-a concentrations.
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 6 Figure S2.6. Cumulative occurrence collective curves through time and per species.Figure S2.7. Presence-only records available for the six studied species: Acodontaster hodgsoni (n=297), Bathybiaster loripes (n=585), Labidiaster annulatus (n=373), Glabraster antarctica (n=844), Odontaster validus (n=309), Psilaster charcoti (n=350).
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 7 Figure S2.6. Cumulative occurrence collective curves through time and per species.Figure S2.7. Presence-only records available for the six studied species: Acodontaster hodgsoni (n=297), Bathybiaster loripes (n=585), Labidiaster annulatus (n=373), Glabraster antarctica (n=844), Odontaster validus (n=309), Psilaster charcoti (n=350).
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 8 Figure S2.8. Comparison of model predictive deviance according to the number of trees used to build the models, for each species and for different parameter settings (tree complexity, tc; learning rate, lr; bag fraction, bf).
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 9 Figure S2.9.A. Influence of the number of environmental predictors on SDM performance. Boxplot of 100 model replicates scores. Change in Area Under the Curve (AUC) values for the six species.
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 9 Figure S2.9.B. Influence of the number of environmental predictors on SDM performance. Boxplot of 100 model replicates scores. Change in True Skill Statistics (TSS) values for the six species. Figure S2.9.C. Influence of the number of environmental predictors on SDM performance. Boxplot of 100 model replicates scores. Change in the percentage of correctly classified test data (crossvalidation procedure)for the six species.
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 9 Figure S2.9.B. Influence of the number of environmental predictors on SDM performance. Boxplot of 100 model replicates scores. Change in True Skill Statistics (TSS) values for the six species. Figure S2.9.C. Influence of the number of environmental predictors on SDM performance. Boxplot of 100 model replicates scores. Change in the percentage of correctly classified test data (crossvalidation procedure)for the six species.
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 12 Figure S2.12. Partial dependence plots. Scaled density distributions of the marginal effect of environmental descriptors used to generate final models and common to all species.
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 216 Figure 2.16. Maps of extrapolation areas covering SDM predictions, generated with all presence-only records available for the studied species.
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 217 Figure 2.17. Evolution of model performances with the increase of data (chronological addition of presenceonly records, by 5-year periods, from 1980 to 2016).
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 218 Figure 2.18. Boxplot diagrams representing the decrease of proportions of extrapolation areas (in % of the total projection area) with addition of presence-only records used to generate model replicates.
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 13 Figure S2.13. Distribution of presence-only records of the six sea star species studied in this work.Figure S2.15. '2-fold CLOCK' method and '6-fold CLOCK' method. For each model replicate, the geographic space is split into 2 and 6 areas respectively, and test and training presence and background data are selected in the defined areas.
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 15 Figure S2.13. Distribution of presence-only records of the six sea star species studied in this work.Figure S2.15. '2-fold CLOCK' method and '6-fold CLOCK' method. For each model replicate, the geographic space is split into 2 and 6 areas respectively, and test and training presence and background data are selected in the defined areas.
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 16 Figure S2.16. Illustrated principle of the Multivariate Environmental Similarity Surface approach.Figure S2.17.A Influence of the different environmental descriptors on models, for Analysis #0 and Analysis #1. Analysis #0: models were projected on the entire Southern Ocean area. Analysis #1: the projection area was limited in depth according to each species distribution range.
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 17331 FigureS2.17.B Influence of the different environmental descriptors on extrapolation, for Analysis #0 and Analysis #1. Analysis #0: models were projected on the entire Southern Ocean area. Analysis #1: the projection area was limited in depth according to each species distribution range.
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 32 Figure 3.1. Male and female specimens of Halicarcinus planatus (Fabricius, 1775) collected in the Magellan Strait. Figure 3.2. Presence and absence records of Halicarcinus planatus in the Southern Ocean used in the present study.
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 33 Figure 3.3. Survival rates of adults of Halicarcinus planatus at different temperatures over 90 days.Figure 3.4. Survival rates of adults of Halicarcinus planatus at different salinities over 39 days.Figure 3.5. Survival rates of larvae of Halicarcinus planatus for 12 days at different temperatures.Figure 3.6. Partial dependence plots for the four environmental descriptors that contribute the most to the model. Figure 3.7. SDM predictions of presence probability (contained between 0 and 1) for Halicarcinus planatus, projected under current environmental conditions [2000-2014].
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 34 Figure 3.3. Survival rates of adults of Halicarcinus planatus at different temperatures over 90 days.Figure 3.4. Survival rates of adults of Halicarcinus planatus at different salinities over 39 days.Figure 3.5. Survival rates of larvae of Halicarcinus planatus for 12 days at different temperatures.Figure 3.6. Partial dependence plots for the four environmental descriptors that contribute the most to the model. Figure 3.7. SDM predictions of presence probability (contained between 0 and 1) for Halicarcinus planatus, projected under current environmental conditions [2000-2014].
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 35 Figure 3.3. Survival rates of adults of Halicarcinus planatus at different temperatures over 90 days.Figure 3.4. Survival rates of adults of Halicarcinus planatus at different salinities over 39 days.Figure 3.5. Survival rates of larvae of Halicarcinus planatus for 12 days at different temperatures.Figure 3.6. Partial dependence plots for the four environmental descriptors that contribute the most to the model. Figure 3.7. SDM predictions of presence probability (contained between 0 and 1) for Halicarcinus planatus, projected under current environmental conditions [2000-2014].
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 3637 Figure 3.3. Survival rates of adults of Halicarcinus planatus at different temperatures over 90 days.Figure 3.4. Survival rates of adults of Halicarcinus planatus at different salinities over 39 days.Figure 3.5. Survival rates of larvae of Halicarcinus planatus for 12 days at different temperatures.Figure 3.6. Partial dependence plots for the four environmental descriptors that contribute the most to the model. Figure 3.7. SDM predictions of presence probability (contained between 0 and 1) for Halicarcinus planatus, projected under current environmental conditions [2000-2014].
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 38 Figure 3.8. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected under environmental conditions IPCC RCP 2.6 climate scenario for 2050.
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 39 Figure 3.9. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected under environmental conditions IPCC RCP 2.6 climate scenario for 2100.
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 310 Figure 3.10. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected under environmental conditions IPCC RCP 8.5 climate scenario for 2050.
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 311 Figure 3.11. SDM predictions of presence probability (between 0 and 1) for Halicarcinus planatus, projected under environmental conditions IPCC RCP 8.5 climate scenario for 2100.
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 1 Figure S3.1. Schematic representation of the 6 containers (and their content) for the thermo-tolerance experiment on adult specimens. Figure S3.2. Chronology of occurrence through sampling and human observation.Figure S3.3.A. IPCC climate scenarios. Focus on the Western Antarctic Peninsula and southern South America. RCP 2.6 (mean values) 2050 or 2100. Figure S3.3.B. IPCC climate scenarios. Focus on Kerguelen Plateau and Heard Islands. RCP 2.6 (mean values) 2050 or 2100. Figure S3.3.C. IPCC climate scenarios. Focus on Western Antarctic Peninsula and South America. RCP 8.5 (mean values) 2050 or 2100.
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 3 Figure S3.3.D. IPCC climate scenarios. Focus on Kerguelen Plateau and Heard islands. RCP 8.5 (mean values) 2050 or 2100.
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 4312 Figure S3.4. Comparison between model predictive deviance using different combinations of parameters. Tc: tree complexity, lr: learning rate; bf: bag fraction. Fabri-Ruiz et al. (2021) -SDM/DEB Sterechinus neumayeri -Figure 3.12. Sterechinus neumayeri occurrence data extracted from Fabri-Ruiz et al. (2017a).Figure 3.13. Conceptual representation of the standard Dynamic Energy Budget model.Figure 3.14. Spatial projection of the ENMc under present-day conditions in the Southern Ocean with the respective contributions of environmental descriptors to the model and the species response (distribution probability) to the main contributing predictors.
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 314 Figure 3.12. Sterechinus neumayeri occurrence data extracted from Fabri-Ruiz et al. (2017a).Figure 3.13. Conceptual representation of the standard Dynamic Energy Budget model.Figure 3.14. Spatial projection of the ENMc under present-day conditions in the Southern Ocean with the respective contributions of environmental descriptors to the model and the species response (distribution probability) to the main contributing predictors.
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 315 Figure 3.15. Projections of the mechanistic ecological niche model (ENMm, DEB). Present and future environmental conditions.
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 316 Figure 3.16. Projections of the correlative model under RCP 4.5 and RCP 8.5 scenarios [2050-2099].
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 317 Figure 3.17. Projections of the DEB ENMm under future conditions: maximum size reached by individuals under IPCC scenarios RCP 4.5 and RCP 8.5.

Figure 3 . 18 .

 318 Figure 3.18. Projections of the DEB ENMm under future conditions: predicted suitable areas to the species reproduction under IPCC scenarios RCP 4.5 and RCP 8.5.
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 5 Figure S3.5. Life cycle of Sterechinus neumayeri.

Figure S3. 6 .

 6 Figure S3.6. Reproduction and feeding functions represented over a theoritical life cycle according to DEB theory and correspondence with the life cycle of Sterechinus neumayeri.
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 9 Figure S3.9. Observed values and projection, based on a type II feeding functional response f = X X+X K
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 10 Figure S3.10. DEB model fit and experimental values for univariate data.Figure S3.14. Current and future environmental layers (food and temperature) used to project DEB model outputs.
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 14 Figure S3.10. DEB model fit and experimental values for univariate data.Figure S3.14. Current and future environmental layers (food and temperature) used to project DEB model outputs.
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 15319 Figure S3.15. Response curve of all predictors used in the correlative niche model approach.Figure S3.16. Presence probabilities for each geomorphological category in the ENMc.
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 3 Figure 3.21. Conceptual scheme of the basic parameters and theoretical compartments of the DEB theory.Figure 3.22. Spatial projections of the DEB model in February and August.Figure 3.23. Spatial projections of the 'simple SDM' for February and August.Figure 3.24. Spatial projections of the 'integrated SDM-DEB' models for February and August.Figure 3.25. Spatial projections of the 'integrated Bayesian' models for February and August.Figure 3.26. Partial dependence plots, representing model predictions (y axis, probabilities between 0 and 1) aligned with the environmental values (x axis).
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 17 Figure S3.17. Overview of the images captured by Landsat 8 satellite for the selected dates 2017/02/09 and 2017/08/20. Figure S3.18. Simulated growth rates by the DEB model for different levels of food availability (f values).

Figure S3. 19 .

 19 Figure S3.19. Results of the spatial projection of the DEB model for February and August: evaluation of the available energy in the reserve compartment 𝑝𝐶 ̇ and of the energy required for somatic maintenance 𝑝𝑀 ̇. Figure S3.20.A Distribution probabilities predicted for integrated SDM-DEB models.
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 4 Figure S3.20.B Extrapolation areas (MESS) associated with the descriptor responsible for the extrapolation,for the 'integrated SDM-DEB' approach.
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 41 Figure 4.1. Locations of the six particle release zones for the 200 NM, 50 NM and 11 NM scenarios (NM= nautical miles).
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 42 Figure 4.2. Map of proposed marine protected areas in the Western Antarctic Peninsula region. Modified from SC-CAMLR-38/BG/03 report.Figure 4.3. Location of Deception Island in the Western Antarctic Peninsula and representative male individual of the crab Halicarcinus planatus.Figure 4.4. Model estimated dispersal patterns for the three release scenarios: 200 NM, 50 NM and 11 NM.
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 44 Figure 4.2. Map of proposed marine protected areas in the Western Antarctic Peninsula region. Modified from SC-CAMLR-38/BG/03 report.Figure 4.3. Location of Deception Island in the Western Antarctic Peninsula and representative male individual of the crab Halicarcinus planatus.Figure 4.4. Model estimated dispersal patterns for the three release scenarios: 200 NM, 50 NM and 11 NM.
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 45 Figure 4.5. Sums of the weighted numbers of particles reaching the proposed marine protected areas (MPAs) during the January-February-March season (austral summer, being the season with the largest number of ships entering the Southern Ocean) over the 9-year period (2008-2016) and for each release scenario (200 NM, 50 NM and 11 NM).

Figure 4 . 6 .

 46 Figure 4.6. Age of particles (in days) reaching the proposed marine protected areas under the 200 NM scenario, 50 NM scenario and 11 NM scenario for the January-February-March season.

Figure 4 . 7 .

 47 Figure 4.7. Model estimated dispersal patterns assuming the release scenarios: 200, 50 and 11 NM, for particles released from all release zones at the same time. Colors represent the frequency of occurrence among the nine years (2008-2016) with a maximal score of 9 for pixels that receive particles every year.
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 1 Figure 1: Some environment al descript ors on t he K erguelen Plat eau area

Figure 2 :Figure 3 :Figure 4 :

 234 Figure 2: Bat hymet ry layer at t he Sout hern Ocean ext ent

  SDMtable_ctenocidaris_1500 <-SDMtab(xydata=ctenocidaris.nutrix.occ,

Figure 5 :

 5 Figure 5: Rest raining t he area and t he background sampling t o 1,500m dept h

Figure 6 :

 6 Figure 6: Project ion for [2005-2012], Ct enocidaris nut rix predict ed dist ribut ion, BRT

Figure 6 :

 6 Figure 6: Plot creat ed subset s of t raining and t est dat a on t op of t he bat hymet ry layer

Figure 7 :Figure 2 :Figure 3 :

 723 Figure 7: Similar model predict ions as for Figure 1, except t hat only your subset of presence dat a is used t o generat e t he model and t est dat a (black dot s) are present ed on t op of predict ions

Figure 4

 4 Figure 4: K DE layer

Figure 5 :#Finally

 5 Figure 5: Comparison of background dat a samplings wit hout (left ) or wit h (right ) K DE sampling.

5 556 6 557#

 56 Example of part it ion int o 2 areas# Tag presence and background datasets with a new variable idP <-which(SDMtable$id == 1) # id of presence data partition_function <-SDMPlay:::clock2(SDMtable[idP, c("longitude", "latitude")],SDMtable [-idP, c("longitude", "latitude")])# Generate a variable that will contain the spatial splitting information (factor format) MyFold <-rep(NA, nrow(SDMtable)) # training/test data will be labelled 1 or 2 MyFold[idP] <-partition_function$occ.grp # splitting within the presence data MyFold[-idP] <-partition_function$bg.coords.grp # splitting within the background data # Plot training and test data basemap <-SOmap(bathy_legend= T, graticules= T, fronts= T, border_width= 0.8) plot(basemap) SOplot(SDMtable[,c(2,3)], col=c("orange","darkblue")[as.factor(MyFold)], pch=20) SOleg(col=c("orange","darkblue"), position = "topright", tlabs = c("training","test"), type = "discrete") hat if you run t he code several t ime, t he part it ion changes: it depends on random select ions. You can t herefore run t he code several t ime in a loop t o make several split t ing replicat es (see one example below). #Run your model with the splitting, fill the 2 new arguments (n.folds and fold.vector) # that indicate to the function that you are using a spatial cross-validation procedure Model_output <-SDMPlay:::compute.brt(x=SDMtable, proj.predictors=predictors_stack_SO, tc = 2, lr = 0.001, bf = 0.75, n.trees = 500Calculate evaluation scores maxSSS <-Model_output$eval.stats$maxSSS # extract predictions at test data location location_presence_test <-SDMtable[as.factor(MyFold)==1,c(2,3)] extracted_values <-raster::extract(Model_output_map,location_presence_test) #extracted_values # compare the values with the maxSSS value and evaluate the percentage # of correctly classified presence test data 100* length (which(na.omit(extracted_values) >= maxSSS)) / length(na.omit(extracted_values)) hen overlap t his layer t o SDM predict ions when int erpret ing your result s or preparing your maps for your publicat ions! See examples in Guillaumot et al. (2020). # Calculate the proportion of the area where extrapolation occurs MESS<-reclassify(MESS_layer,cbind(1,NA)) # compare the number of pixels = 0 to the number of total pixels of the area length(which(!is.na(values(MESS))))*100 / length(which(!is.na(values(subset(predictors2005_2012,1))))) ## [1] 82.89967 A ssess which environment al descript ors are responsible for ext rapolat ion at each pixel # create an empty raster to initiate a Rasterstack stack_amelio_MESS <-subset(predictors2005_2012,1); values(stack_amelio_MESS) <-NA

1Supplement 1 :

 1 The following supplements accompany the articleMethods for improving species distribution models in data-poor areas: example of sub-Antarctic benthic species on the Kerguelen PlateauCharlène Guillaumot*, Alexis Martin, Marc Eléaume, Thomas Saucède *Corresponding author: charleneguillaumot21@gmail.com Marine Ecology Progress Series 594: 149-164 (2018) Evaluation and choice of the model

Supplement 2 :

 2 Spatial autocorrelation (SAC)

FigureFigure S5 :

 S5 Figure S3: Maps%showing%species%distribution%models%computed%before%and%after% correcting%for%spatial%bias%by%background%sampling.%

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

TABLE OF CONTENTS INTRODUCTION 1.MODELLING IN ECOLOGY INTRODUCTION

 OF 

Table 0 .

 0 

	INTRODUCTION

2. Example of observations used to calibrate the DEB model of the Antarctic sea star Odontaster validus, from Agüera et al. (2015).

  𝑝̇C is the proportion of the mobilized energy diverted to 𝑝Ṁ and 𝑝Ġ, while the remaining part(1-κ). 𝑝Ċ is used for 𝑝J and 𝑝Ṙ.

	(sexually	immature	individuals)	and
	reproduction 𝑝̇R (mature individuals). κ.

Figure 1.2. Schematic representation of the standard DEB model, with energy fluxes (arrows, in J.d -1

) that connect the four compartments (boxes). Energy enters the organism as food (X), is assimilated at a rate of 𝑝Ȧ into the reserve compartment (E). The mobilization rate 𝑝Ċ, regulates the energy leaving the reserve to cover somatic maintenance 𝑝̇𝑀 , structural growth 𝑝 𝐺 ̇, maturity maintenance 𝑝 𝐽 ̇, maturity 𝑝̇𝑅

Table 1 . 1 .

 11 List of the main DEB parameters, definition and units.

	Parameters	Description	Units
	Primary DEB parameters	
	{𝑝 ̇Am}	surface-area-specific maximum assimilation rate	J.cm -2 d -1
	𝑣̇	energy conductance (velocity)	cm.d -1
	κ	fraction of mobilised reserve allocated to soma	-
	[𝑝 ̇M]	specific volume-linked somatic maintenance rate: 𝑝Ṁ / V	J.cm -3 d -1
	[EG]	volume-specic costs of structure; better replaced by [EV]= κG, where κG is the fraction of growth	J.cm -3
		energy fixed in structure: [EV]=[EG]	
	𝐸 𝐻 𝑏	maturity at birth	J
	𝐸 𝐻 𝑗	maturity at metamorphosis	J
	𝐸 𝐻 𝑝	maturity at puberty	J
	ℎ ̈a	Weibull ageing acceleration for animals	d -2
	sG	Gompertz stress coefficient	-
	δM	shape (morph) coefficient: L=Lw	-

δM_larvae shape (morph) coefficient of the larvae -Other parameters z zoom factor to compare body sizes inter-specifically; z = 1 for Lm = 1 cm -sM Acceleration factor at f =1, it is equal to the ratio of structural length at metamorphosis and birth. -[Em]

Table 1 . 2 .

 12 Zero and uni-variate data used to build the intertidal and subtidal models. AFDW stands for 'Ash Free Dry Weight'.

	INTERTIDAL GROUP			SUBTIDAL GROUP
	Zero-variate data, (unit)	Value	Reference	Value	Reference
	Age at birth ab (days)	10	Peck et al. (2016)		Same as intertidal
	Age at puberty ap (years)	4	Shabica (1976)		Same as intertidal
	Maximal observed age am (years)	14	Shabica (1976)		Same as intertidal
	Length at birth Lb (cm)	0.0228	Peck et al. (2016)		Same as intertidal
	Length at puberty Lp (cm)	1.54	S. Morley experiment (2018)	1.59	Picken (1980)
	Maximal observed shell length Li (cm)	5.8*	Shabica (1976)	5.52**	S. Morley experiment (2018)
	Wet weight of the egg Ww0 (g)	5.8.10 -6 ***	Peck et al. (2016)		Same as intertidal
	AFDW at puberty Wdp (g)	0.0236	Shabica (1976)	0.057	S. Morley experiment (2018)

  2 (Table 1.3). Average MRE value of the AmP collection is close to 0.06. Relative Errors are quite low, with the highest values obtained for length~GSI data (RE= 0.6089 and 0.8702 for intertidal and subtidal models respectively) and time~length relationships, obtained from the sclerochronology measurements, that are highly variable between each measured shell (respectively RE= 0.3645 and 0.5924 for intertidal and subtidal models) (Fig.1.3, Table 1.3, Appendix 1.2).

Table 1 . 3 .

 13 Summary of goodness of fit, DEB model estimates at a reference temperature of Tref= 20°C. RE: Observed and predicted values for zero-variate data, relative error (RE) for the uni-variate data. See Fig.1.3 for comparisons for uni-variate predictions between models. MRE= Mean Relative Error. For the merged model, the MRE values respectively correspond to the mean relative error of model prediction for data of both intertidal and subtidal populations. All DEB parameters indicated were allowed to vary during covariance estimation. The abj parameters that are not mentioned in that table were kept constant with the standard initial values.

		INTERTIDAL	SUBTIDAL	MERGED
	MRE	0.166	0.192	0.196	0.227
	Loss function	0.2441	0.2345	0.7936
	Parameters				
	z (-)	0.3055	0.4317	0.2579
	{𝒑 ̇Am} (J/d. cm -2 )	8.361	19.07	8.859
	𝒗̇ (cm/d)	0.0501	0.0426	0.0499
	Κ (-)	0.9084	0.9368	0.9256
	[𝒑 ̇M] (J/d. cm -3 )	19.62	31.68	24.62
	[EG] (J. cm -3 )	3956	3949	3952
	𝑬 𝑯 𝒃 (J)	0.00174	0.00115	0.0014
	𝑬 𝑯 𝒋 (J)	0.8749	0.0779	0.9206
	𝑬 𝑯 𝒑 (J)	75.23	121.4	94.66
	𝒉 ̈a (1/d -2 )	5.003.10 -8	8.335.10 -8	4.24.10 -8
	sG (-)	10 -4	10 -4	10 -4	
	δM (-)	0.4517	0.3866	0.4247
	δM_larvae (-)	0.7167	0.7125	0.7215
	sM (-)	7.862	4.0491	8.5372

Zero-variate Data // prediction// RE Data // prediction// RE prediction// RE

  

					MECHANISTIC MODELS	CHAPTER 1.
	Uni-variate							
			RE		RE			RE
	LWd_signy (cm, g)		0.1443		0.1698		0.1274
	LWd (cm, g)		0.1469		0.1834		0.216
	LGSI (cm, -)		0.6089		0.8702		0.5835
	LJO (cm, μmol/h)		0.2567		0.2831		0.2487
	TJO (K, μL/h)		0.1034		0.1216		0.0876
	tL (d, cm)		0.3645		0.5924		0.4097
	ab (d)	10	10.62	0.0619 10	10.59	0.0586	10.61	0.0609
	ap (y)	4	3.54	0.1141 4	3.75	0.0607	3.66	0.0845
	am (y)	14	14	9.4.10 -5 14	13.99	4.8.10 -4	14	1.6.10 -4
	Lb (cm)	0.0228 0.02279 2.4.10 -4 0.0228 0.0228 6.05.10 -4	0.0228	1.424.10 -6
	Lp (cm)	1.54	1.225	0.2045 1.59	1.81	0.1384	1.49	0.0323
	Li (cm)	6.5	5.319	0.1816 5.52	4.515	0.1827	5.184	0.2024
	Ww0 (g)	5.8.10 -6 5.8.10 -6 0.0181 5.8.10 -6 5.7.10 -6 0.0157	5.72.10 -6	0.0138
	Wdp (g)	0.0236 0.0263	0.1181 0.057	0.05649 0.0089	0.0396	0.6762

Article.
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. Can DEB models infer metabolic differences between intertidal and subtidal morphotypes of the Antarctic limpet Nacella concinna
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Table S1 .

 S1 1A. Size, dry mass, Ash Free Dry Mass and routine metabolic rate of Nacella concinna collected from the intertidal and 30m depth in January 2018. Shore Height Shell Length/mm Shell height / mm Tissue Wet Mass/g Ash Free Dry Mass/g MO2/ μmol.O2hr -1 .g AFDM -1

				MECHANISTIC MODELS	CHAPTER 1. CHAPTER 1.
	30m	23.3	5.8	0.95	0.16	11.29
	30m	26.0	6.8	1.28	0.14	9.81
	30m	28.2	7.2	1.22	0.09	9.63
	30m	17.5	4.3	0.35	0.05	14.93
	Intertidal 30m	23.0 20.9	7.9 5.8	1.39 0.77	0.23 0.11	31.92 9.60
	Intertidal 30m	27.1 21.5	11.4 5.8	1.89 0.60	0.34 0.09	6.09 7.47
	Intertidal 30m	27.1 24.5	9.7 7.3	1.45 1.15	0.20 0.18	8.05 4.22
	Intertidal 30m	19.2 27.5	6.4 6.8	0.59 1.57	0.11 0.18	16.58 6.56
	Intertidal 30m	22.8 18.3	8 4.6	1.08 0.33	0.18 0.03	7.20 14.63
	Intertidal 30m	22.6 20.3	7.7 4.7	0.88 0.43	0.16 0.07	6.66 6.12
	Intertidal 30m	28.8 23.8	11.7 6.5	2.53 0.92	0.35 0.15	18.18 7.21
	Intertidal 30m	21.3 26.0	6.1 7.5	0.73 1.34	0.12 0.16	9.57 11.78
	Intertidal 30m	25.7 20.8	11.3 6.2	1.70 0.62	0.23 0.08	5.65 18.07
	Intertidal 30m	21.5 23.0	7.4 6.7	0.93 0.76	0.14 0.10	8.62 8.03
	Intertidal 30m	16.6 27.8	5.3 6.6	0.39 1.59	0.08 0.24	9.38 6.83
	Intertidal 30m	24.8 30.4	9.3 9.1	1.41 1.62	0.18 0.18	7.94 8.90
	Intertidal 30m	22.1 22.5	7.5 4.9	1.01 0.58	0.16 0.07	9.99 21.05
	Intertidal 30m	30.5 25.5	15.3 5.6	2.85 1.02	0.55 0.16	7.45 8.04
	Intertidal 30m	31.4 21.1	12.3 4.9	3.02 0.65	0.47 0.07	10.65 5.48
	Intertidal 30m	23.2 22.5	7.8 5.4	0.97 0.60	0.20 0.11	5.62 11.36
	Intertidal 30m	20.2 31.7	5.8 10.9	0.52 2.26	0.08 0.26	4.39 5.53
	Intertidal 30m	38.1 33.2	19.7 6.9	2.06 3.25	0.29 0.41	6.34 9.02
	Intertidal 30m	26.0 22.9	10.8 6.4	1.81 0.76	0.27 0.08	9.80 7.49
	Intertidal 30m	19.9 18.1	6.4 4.1	0.49 0.42	0.08 0.05	9.80 10.57
	Intertidal 30m	30.2 17.1	11.6 4.6	2.32 0.25	0.40 0.02	17.98 10.25
	Intertidal 30m	28.7 22.3	10.4 6	2.56 0.85	0.40 0.11	7.20 8.67
	Intertidal 30m	22.0 21.6	8.4 5.3	0.88 0.60	0.12 0.07	10.09 8.77
	Intertidal 30m	20.3 17.4	6.6 3.8	0.69 0.23	0.09 0.04	8.19 10.90
	Intertidal 30m	27.0 19.6	10.9 6	1.79 0.47	0.25 0.07	5.96 8.82
	Intertidal	21.2	6.6	0.72	0.10	9.03
	Intertidal	16.2	5	0.35	0.06	8.74
	Intertidal	25.4	7.9	1.11	0.19	7.13
	Intertidal	25.6	9.6	1.60	0.32	7.69
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Guillaumot et al. (2020a)

. Can DEB models infer metabolic differences between intertidal and subtidal morphotypes of the Antarctic limpet Nacella concinna

(Strebel, 1908)

? Ecological Modelling.

Table S1 .

 S1 1B. Size at first reproduction for both intertidal and subtidal (30m depth) Nacella concinna collected from Rothera Point, Adelaide Island. Sex was determined where possible; otherwise individuals were classified as immature. There was only one ripe male in January when measurements were made.

							MECHANISTIC MODELS MECHANISTIC MODELS	CHAPTER 1. CHAPTER 1. CHAPTER 1.
	30m 30m	25.5 29.8		1.28 1.29		0.03 0.04		1.25 1.25		0.02 M 0.03 F
	30m 30m	22.5 41.0		0.86 5.28		0.01 0.56		0.84 4.72		0.01 M 0.11 M
	Shore Height 30m 30m	Shell Length/mm 41.2 30.3	Tissue wet mass/g	4.79 2.29	Gonad wet mass/ g	0.54 0.05	Somatic wet mass/ g	4.26 2.24	Gonad somatic Index 0.11 M sex Note 0.02 F
	intertidal 30m 30m	18.8 41.8 25.7		0.38 5.50 1.39		0.01 0.30 0.00		0.38 5.19 1.39		0.02 F 0.05 M 0.00 I
	intertidal 30m 30m	26.1 24.4 39.3		1.63 0.96 4.72		0.20 0.44 0.00		1.43 0.52 4.72		0.12 M 0.46 M 0.00 I
	intertidal 30m 30m	26.2 31.1 28.3		1.43 1.92 1.44		0.11 0.01 0.08		1.31 1.91 1.36		0.08 F 0.01 F 0.05 M
	intertidal 30m 30m	26.3 24.2 26.7		1.29 0.85 1.52		0.11 0.00 0.07		1.18 0.85 1.44		0.08 F 0.00 M 0.05 M
	intertidal 30m 30m	25.8 24.1 25.5		1.49 0.89 1.05		0.18 0.01 0.01		1.31 0.87 1.03		0.12 F 0.01 M 0.01 F
	intertidal 30m 30m	17.5 21.9 32.9		0.30 0.68 2.63		0.01 0.01 0.13		0.29 0.68 2.50		0.02 M 0.01 M 0.05 M
	intertidal 30m 30m	30.7 17.7 34.7		2.57 0.31 2.95		0.65 0.01 0.12		1.92 0.31 2.83		0.25 M 0.02 M 0.04 F	ripe
	intertidal 30m 30m	15.4 28.3 32.7		0.35 1.72 2.91		0.04 0.06 0.32		0.31 1.67 2.59		0.11 M 0.03 M 0.11 M
	intertidal 30m 30m	30.0 18.7 29.0		2.04 0.56 1.44		0.34 0.00 0.02		1.70 0.56 1.43		0.17 M 0.00 I 0.01 F
	intertidal 30m 30m	17.0 20.1 24.4		0.34 0.44 0.91		0.03 0.00 0.00		0.31 0.44 0.91		0.09 M 0.00 I 0.00 I
	intertidal 30m 30m	27.5 18.2 28.6		1.45 0.33 0.71		0.15 0.00 0.11		1.30 0.33 0.60		0.10 F 0.00 I 0.15 F
	intertidal 30m 30m	26.8 30.1 23.9		1.52 2.25 0.92		0.17 0.05 0.02		1.35 2.20 0.91		0.11 M 0.02 M 0.02 F
	intertidal 30m 30m	22.1 21.7 31.2		0.85 0.84 2.53		0.06 0.02 0.01		0.78 0.82 2.53		0.08 M 0.02 M 0.00 F
	intertidal 30m 30m	25.2 22.5 26.5		1.30 0.89 1.38		0.07 0.01 0.07		1.23 0.89 1.31		0.06 M 0.01 M 0.05 M
	intertidal 30m 30m	22.8 25.6 29.0		0.87 1.16 1.60		0.07 0.10 0.09		0.80 1.06 1.52		0.08 F 0.09 M 0.05 M
	intertidal 30m 30m	24.2 23.1 26.4		1.10 1.15 1.24		0.11 0.04 0.03		0.99 1.11 1.20		0.10 F 0.03 M 0.03 M
	intertidal 30m 30m	29.5 24.1 36.7		1.64 1.04 3.11		0.10 0.02 0.17		1.54 1.02 2.94		0.06 F 0.02 M 0.05 M
	intertidal 30m	29.8 20.3		2.31 0.61		0.23 0.00		2.07 0.61		0.10 F 0.00 I
	intertidal 30m	33.5 18.5		2.79 0.42		0.32 0.00		2.48 0.42		0.11 F 0.00 I
	intertidal 30m	19.9 27.7		0.55 1.24		0.00 0.06		0.55 1.18		0.01 F 0.05 M
	intertidal 30m	17.8 30.2		0.38 1.91		0.03 0.13		0.35 1.78		0.09 M 0.07 M
	intertidal 30m	20.1 28.0		0.59 1.31		0.03 0.03		0.57 1.28		0.05 F 0.02 F
	intertidal 30m	19.5 23.8		0.51 0.88		0.03 0.01		0.48 0.87		0.06 M 0.01 F
	intertidal 30m	21.8 32.8		0.68 2.06		0.02 0.00		0.66 2.05		0.03 M 0.00 M
	intertidal 30m	17.2 27.1		0.34 1.63		0.00 0.02		0.34 1.62		0.00 I 0.01 F	no gonad visible
	intertidal 30m	18.3 29.0		0.54 2.07		0.01 0.02		0.53 2.04		0.01 F 0.01 M
	intertidal 30m	26.3 26.8		1.15 1.54		0.21 0.02		0.94 1.52		0.18 M 0.01 F
	intertidal 30m	21.7 34.7		0.65 3.54		0.00 0.04		0.65 3.50		0.00 M 0.01 F
	intertidal 30m	18.5 40.0		0.49 4.88		0.03 0.49		0.45 4.39		0.07 M 0.10 M
	30m 30m	24.4 29.5		1.18 2.18		0.00 0.14		1.18 2.04		0.00 I 0.07 M
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Table S1 . 3 .

 S13 Summary of goodness of fit, DEB parameter estimates at a reference temperature of Tref= 20°C of the different merging trials. Predicted values for zero-variate data, relative error (RE) for the uni-variate data. MRE= Mean Relative Error. 'Trials' are defined as merging procedures where the parameters are merged in different orders, namely, Trial #1: Merge ℎ ̈a, EH p , κ, EH b , z, [𝑝 ̇M], [EG], 𝑣, EH j , δM_larvae, δM; Trial #2: merge [EG], EH j , EH b , 𝑣, ℎ ̈a, κ, δM_larvae, [𝑝 ̇M], δM, EH p , z; Trial #3: merge δM, EH b , EH j , EH p , ℎ ̈a, κ, [𝑝 ̇M], 𝑣, z, δM_larvae, [EG]; Trial #4: merge z, EH p , δM, [𝑝 ̇M], δM_larvae, κ, ℎ ̈a, 𝑣, EH b , EH j , [EG]; Trial #5: Merge z, [𝑝 ̇M], δM_larvae, κ, ℎ ̈a, 𝑣, EH b , [EG], EH j , EH p , δM.

						MECHANISTIC MODELS	CHAPTER 1. CHAPTER 1.
	Wdp (g)	0.03956	0.6762	0.03967	0.3038	0.0396	0.3057 0.03957	0.677	0.03956	0.6762
	Uni-variate										
		RE		RE		RE	RE			RE
	LWd_signy	0.1271		0.3323		0.3322		0.1273		0.1274
	(cm, g)										
	LWd (cm, g)	TRIAL #1 0.2156	TRIAL #2 0.3307	TRIAL #3 0.3306	TRIAL #4 0.2158	0.216	TRIAL #5
	MRE intertidal LGSI (cm, -)	0.196 0.5828		0.197 1.061		0.196 1.054		0.196 0.5812		0.196 0.5835
	MRE subtidal (cm, μmol/h) LJO	0.227 0.2488		0.228 0.3133		0.227 0.3138		0.227 0.2487		0.227 0.2487
	Loss function TJO (K, μL/h)	0.7936 0.0878		0.7937 0.0882		0.79363 0.0874		0.79364 0.08764		0.79363 0.08757
	DEB parameters tL (d, cm)	0.4096		0.4772		0.475		0.4101		0.4097
	z	0.2586		0.259		0.2576		0.2582		0.2579
	{𝒑 ̇Am}	6.8590		6.8688		6.86581		6.85855		6.8617
	𝒗̇	0.0498		0.04984		0.04987		0.04988		0.04989
	κ	0.9257		0.925		0.9254		0.9261		0.9256
	[𝒑 ̇M]	24.56		24.54		24.66		24.6		24.62	
	[EG]	3953		3952		3952		3952		3952	
	𝑬 𝑯 𝒃	0.0014		0.0014		0.0014		0.001409		0.0014
	𝑬 𝑯 𝒋	0.9179		0.9324		0.9252		0.9145		0.9206
	𝑬 𝑯 𝒑	94.56		95.7		95.01		93.96		94.66	
	𝒉 ̈a	4.248.10 -8		4.328.10 -8		4.234.10 -8		4.242.10 -8		4.24.10 -8
	sG	10 -4		10 -4		10 -4		10 -4		10 -4	
	δM	0.4249		0.4247		0.4247		0.4248		0.4247
	δM_larvae	0.7215		0.7233		0.7215		0.7215		0.7215
	sM	8.5311		8.5484		8.54249		8.53997		8.5372
	Zero-variate										
		prediction// RE	prediction// RE	prediction// RE	prediction// RE	prediction// RE
	ab (d)	10.62	0.0618	10.62	0.6158	10.61	0.0611	10.61	0.0611	10.61		0.0609
	ap (y)	3.66	0.0839	3.66	0.0855	3.66	0.0849	3.66	0.0850	3.66		0.0845
	am (y)	14	3.10 -4	13.92	0.0054	14	1.34.10 -5 14	3.75.10 -5 14		1.6.10 -4
	Lb (cm)	0.0228	1.7.10 -6	0.02274	0.0026	0.0228	2.93.10 -5 0.0228	2.64.10 -5 0.0228	1.42.10 -6
	Lp (cm)	1.49	0.0325	1.492	0.0617	1.491	0.0624 1.49	0.0323	1.49		0.0323
	Li (cm)	5.192	0.2013	5.212	0.0564	5.182	0.0618 5.19	0.201	5.184		0.2024
	Ww0 (g)	5.72.10 -6	0.0137	5.72.10 -6 0.0133	5.72.10 -6 0.0136	5.72.10 -6 0.0144	5.72.10 -6	0.0138
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  The region is highly impacted by climate change, and coastal marine ecosystems and habitats are particularly at risk given that species have long adapted to cold and stable conditions(Waller et al. 2017, Gutt et al. 2018[START_REF] Convey | Antarctic environmental change and biological responses[END_REF]. Coastal marine species of the Kerguelen Islands are threatened by temperature and seasonality shifts, which are expected to intensify in a near future(Turner et al. 2014, IPCC 5th report). Future predictions of the Intergovernmental Panel on Climate Change (IPCC 5th report) are provided as possible Representative Concentration Pathways (RCP) scenarios of climate change and can be used to infer the potential response of ecosystems to future environmental conditions. However, the insufficient spatial and time resolutions of such models constitute serious limitations for assessing the effects of future environmental changes on sub-Antarctic species (Murphy and Hofmann 2012,[START_REF] Constable | Climate change and Southern Ocean ecosystems I: How changes in physical habitats directly affect marine biota[END_REF]). The echinoid Abatus cordatus (Verrill, 1876) is endemic to the Kerguelen oceanic plateau and common in coastal benthic habitats of the Kerguelen Islands. It is reported in the northern Kerguelen plateau, and around Heard and Kerguelen islands but most records are from shallow, coastal areas of the Kerguelen Islands where dense populations are commonly observed (Agassiz

Table 1 .4. Parameters

 1 estimated for the DEB model developed for Abatus cordatus. Values are given for the reference temperature of 20°C. The MRE of the model is 0.121.

	Parameter
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Table 1 .5. Zero

 1 and uni-variate data used for the estimation of the DEB model parameters. All values are given at a measured temperature of 5°C. MRE: Mean Relative Error. Plots related to uni-variate data can be found in Appendix 1.6.

	Variable	Symbol	Obs.	Prediction	Unit	MRE	Reference
	Zero-variate data						
	Age at metamorphosis 1		aj		142	143		d	0.0072	Schatt (1985)
	Age at puberty 2		ap		1098	1018		d	0.0731	Mespoulhé (1992)
	Life span		am		2190	2190		d	5.10 -8	Mespoulhé (1992)
	Length at metamorphosis		Lj		0.276	0.324		cm	0.1738	Schatt (1985)
	Length at puberty		Lp		1.9	1.824		cm	0.0399	Mespoulhé (1992)
	Maximal observed length (at 6 years old)	L6		4.2	3.65		cm	0.1321	Mespoulhé (1992)
	Ultimate maximal length		Li		8	9.507		cm	0.1883	guessed
	Wet weight of the egg	Ww0		1.78.10 -3	1.59.10 -3	g	0.1081	Schatt (1985)
	Wet weight at metamorphosis	Wwj		1.03.10 -2	1.70.10 -2	g	0.6482	Schatt (1985)
	Wet weight at puberty	Wwp		2.9	3.03		g	0.0448	Féral and Magniez (1988)
	Wet weight at 6 years old	Ww6		25	24.18		g	0.0328	Féral and Magniez (1988)
	Gonado-somatic index 3	GSI		0.07	0.078		-	0.1194	Magniez (1983)
	Variable	Symbol Obs. /Prediction	Unit	MRE	Reference
	Uni-variate data						
	Time since birth vs. length	tL					d // cm	0.2259
	Egg diameter vs. egg wet weight	LW_egg	See Appendix 1.6	cm // g	0.1262
	Length vs. Wet weight adult	LW					cm // g	0.3248
	Length vs. O2 consumption	LJO				cm // µL/h	0.2872

  conducted, Appendix 1.7). At each timestep, food and temperature conditions are first input into the model, state variable values of each individual are calculated in order to assess whether new maturity thresholds are reached or whether energy is sufficient for survival, growth or reproduction. The population state is reassessed at the end of each month. Spatially, population structure and density are simulated on a patch of one square metre at each site and individuals do not leave the patch during their entire life.

	CHAPTER 1.
	Initialisation. The initial population density value was set to 120 ind./m 2 and this figure was split into
	classes of equal densities of 20 individuals of different age-classes, between 0 and 5 years old, in
	order to stabilize the initialisation between the different replicates. An initial run is realised to
	capture the values of the four state variables that characterise the individual of each age class (at
	October 2012 temperatures and f=1), in order to initiate the model (Appendix 1.12).
	The first decade of the simulation period was always considered as the initialisation phase and
	was removed from the analysis, the model showing important outliers (in individual metabolism
	and population structure) during these first ten years.
	Inter-individuals variability. Each individual is characterised by similar energetic performances
	estimated by the DEB estimation (Table 1.4). Five DEB parameters were divided by a scatter-
	multiplier parameter that was generated in order to create inter-individual variability. These five
	DEB parameters were selected because they are associated to the four state variables that
	characterise the individuals and are not null at the time the individual is initiated into the model
	(following Martin et al. 2010): (1) maturity level at birth (U H b , d.cm 2 ), that is the amount of energy
	accumulated in the maturity compartment needed to reach the juvenile stage; (2) maturity level at
	puberty (U H p , d.cm 2 ), the amount of energy accumulated into the maturity compartment to reach the
	adult stage; (3) energy investment ratio (g, no dimension), the cost of the added volume relative to
	the maximum potentially available energy for growth and maintenance; (4) the initial energy
	reserve at birth (UE, d.cm 2 ); and (
	A.cordatus
	Model structure. The model includes two types of entities: the individuals and the environment.
	Individuals are divided into 4 types of sub-agents, depending on their life stage and sex: embryos,
	juveniles, adult males and adult females. The values of four primary state variables are attributed
	to each individual (scaled reserve UE, volumetric structural length L, scaled maturity UH and
	scaled reproduction buffer UR). The level of energy contained in the scaled maturity UH thresholds
	the life stages. These four variables are 'scaled', meaning here that the energy dimension has
	been removed by dividing with the surface-area-specific maximum assimilation rate {ṗAm} (in J.L -2 .t -
	1 ), based on DEB theory (Kooijman 2010).
	Simulations were run with a monthly timestep for calculation, in regard to the slow growth of the
	species and the available data (an analysis of the effect of the timestep on the individual model
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	Mortality induced by temperatures. As no precise information is available to accurately describe A.
	cordatus temperature tolerance, three different types of sensitivity were designed to cover different
	hypotheses (Fig. S1.8.B). Based on experimental results obtained in the Kerguelen Islands
	(personal observation), mortality gradient due to temperature was applied to the population for
	temperatures comprised between 8 and 12°C. Over 12°C, all individuals are considered to die in
	the model, as none survived in the experiment. (1) A 'vulnerable' type was defined with population
	death rates of 25%, 35% and 45% when the sea urchins are exposed to temperatures respectively
	reaching 8, 9.5 and 11°C during two consecutive months. (2) The 'resistant' type was defined with
	a mortality rate 15% lower than the vulnerable one for the same temperature thresholds (e.g. 10%
	instead of 25% population mortality at +8°C), for similar exposure duration (i.e. two months). (3)
	The 'intermediate' type is similar to the 'resistant' type but individuals are considered to die after
	one month of exposure to each temperature instead of two (Fig. S1.8.B).
	Density-dependent regulation. Population density autoregulates through competition for food
	resources. This procedure relies on the monitoring of population density in relation to the carrying
	capacity and allows stabilizing the model. The model calculates the current population density and
	quantifies the competition effect on food availability depending on how far from the carrying
	capacity (K) the population density (P) is, and updates food availability in accordance.
	It is considered that at each timestep, a certain amount of food is available in the environment (fenv)
	but according to population size, competition for food (FC, quantified food competition) is present
	and influences effective food availability (feff), with feff= fenv + FC, following Goedegebuure et al.

Table 1 .6. List

 1 of parameters integrated in the individual and population models. Descriptions and values. The source reference that justifies the choice of the parameterization is provided in the 'reference' column. The last column synthetises which parameters where modified to performed a sensitivity analysis, whose results are presented in Appendix 1.9.

	Parameters	Model parameterization	Reference	Sensitivity analysis
	Individuals			
	Time of development until birth	8 months	254 days (Schatt 1985)	MRE DEB model
	Time of development until puberty	Thresholded by U H b value	2.5 to 3 years old (Schatt 1985, Mespoulhé 1992)	MRE DEB model
	Starvation	e < l	Kooijman (2010)	Not tested
	Ageing	Probability depending on	Damage probability: following Martin et al. (2010) and	Not tested, calibrated parameter
		accumulated cell damages,	Kooijman (2010) rules for ageing	
		constrained by stochasticity	Stochasticity: calibrated at the end of model construction	
			until reaching model stability	
	Population			
	Initial population density	120 ind./m 2	Rounded from literature (Guille and Lasserre 1979,	-30 to +30% variation tested
			Magniez 1980, Mespoulhé 1992, Poulin 1996)	
	Initial population structure	5 age-classes of 20 individuals	Follow average population structure observed by	Not tested
			Mespoulhé (1992)	
	Variation coefficient (cv) from the inter-	0.1	Follow IBM parameterization of Martin et al. (2010) study	-30 to +30% variation tested
	individual variability			
	Ratio females/males	50/50	Sex-ratio: 0.99 (Poulin 1996)	Not tested
	Initial GSI	0.03%	Magniez (1983)	Not tested
	GSI threshold for reproduction	0.07%	Magniez (1983)	Tested with the upper (0.116) and lower (0.028) values
				of the GSI calculated at the onset of reproduction in
				Magniez (1983)
	Reproduction period	3 months once a year	Magniez (1983), Schatt and Féral (1996), Poulin (1996)	Not tested
	Energy investment into reproduction	52% of the reproductive energy at	Magniez (1983)	Not tested
		the onset of the period		
	Number of eggs	27 eggs per adult female	Magniez (1983), Schatt (1985)	-30 to +30% variation tested
	Eggs survival to juvenile stage (birth)	65%	Poulin (1996)	-30 to +30% variation tested
	Yearly background mortality rates	41% of juveniles	Equation provided in Ebert et al. (2013), implemented	-30 to +30% variation tested
		24% of adults	with population data from Mespoulhé (1992)	
	Mortality induced by temperature tolerance	Three sensitivity scenarios	Designed from experimental results	Not tested
	Carrying capacity	200 ind./m 2	Calibrated at the end of model construction until reaching	Not tested, calibrated parameter
			model stability, no information available in the literature	
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Projections of the population dynamics model to other sites

  

	MECHANISTIC MODELS	CHAPTER 1.
	Among all parameters set at the model initialisation, egg number and egg survival are the most
	important determining model stability, as they directly control juvenile density. High juvenile
	densities (induced by a low background juvenile mortality and a high number of eggs and egg
	survival) always result in fast population collapses as a result of high competition for food between
	individuals. As population density increases, the amount of food available for each individual
	decreases and individuals start starving to death. In contrast, a reduction in the number of
	juveniles causes a reduction in the average population density due to a strong mortality rate of
	juveniles. It does not imply model instability and the proportion of modelled population crashes is
	always lower than 15%. The reduction of population density also strongly influences the average
	amount of energy available for each individual: the more energy is available, the more individuals
	can grow in structural length.	
	The dynamic population model built at Anse du Halage was implemented (Appendix 1.11) for the
	two sites of Ile Haute (inside the Morbihan Bay) and Port Couvreux (outside the Morbihan Bay).
	Both models were simulated twice with initial estimates of 50% and 30% of food availability (f)
	compared to Anse du Halage (fH). Temperature inputs were based on local temperature variations
	recorded at the two sites. Model outputs predict lower population densities at both sites compared
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Table 1 .7. Modelled

 1 

	population densities (a) and juveniles over adults ratio (b) at the calibration (Anse du
	Halage) and projection (Ile Haute and Port Couvreux) sites. Average and standard deviation values are
	given for 100 model replicates and 200 years of simulation. fH: time series of f value at Anse du Halage
	(Delille and Bouvy 1989).
	(a)

Anse du Halage Ile Haute Port Couvreux fH, T°Halage 50% of fH, T°site 30% of fH, T°site

  

	182.6 ± 49	-	-
	-	137.6 ± 40	137.4 ± 41
	-	123.2 ± 38	91.8 ± 44
	(b)		

Anse du Halage Ile Haute Port Couvreux fH, T°Halage 50% of fH, T°site 30% of fH, T°site

  

	6.53 ± 3.12	-	-
	-	6.31 ± 4.40	6.32 ± 4.31
	-	6.04 ± 4.31	3.87 ± 2.61

  Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov …

						MECHANISTIC MODELS	CHAPTER 1.	
	Reset the death counts												
	Update calendar repro_time 7 8	9	10	11	0	1	2	3	4	5	6	7	8	…
	GSI_time (For each patch: 5 6 birth_time 1 0 Update environmental variables 7 8 9 10 0 0 0 8 month_time 10 11 12 1 2 3 If competition ON [ Gregorian Calculate competition ] Calculate f) calendar	11 7 4	12 6 5	1 5 6	2 4 7	3 3 8	4 2 9	5 1 10	6 0 11	… … …
	(For each individual:												
	Remove if marked as deceased									
	Convert relevant parameters with temperature correction factor			
	Calculate change in reserve									
	If not mature [												
	Calculate change in maturity]								
	If mature [												
	Calculate change in reproduction buffer ]					
	Calculate change in structural length								
	If scaled reserve < scaled length [								
	Starve]												
	Calculate ageing)											
	Update individuals												
	(For each individual:												
	Update reproduction timers)									
	(For each females:												
	Update birth timer											
	If first month of reproduction period [							
	If reproduction ON [									
			Mark GSI down									
			Prepare eggs]]									
	Calculate GSI												
	If GSI >= 0.07 [											
	Turn ON reproduction									
	If month before reproduction period [						
			Mark U_R down									
			Launch reproduction (with birth_time)]]				
	If GSI < 0.07 [												
	Turn OFF reproduction]									
	If reproduction ON [											
	If within reproduction period [							
			reproduce]									
	If within birth-giving period [							
			release offsprings]])							
	Background mortality												
	Check temperature													
	Monitoring of population											
	Update time													

Article. Arnould-

[START_REF] Pétré | Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions[END_REF]

. Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions. Ecological Modelling.

  [START_REF] Elith | Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models[END_REF]: plant distribution in South Australian landscapes,Marmion et al. 2009: European butterflies,[START_REF] Lorena | Comparing machine learning classifiers in potential distribution modelling[END_REF]: plants in South America, Beaumont et al. 2016: mammals in Australia), or(2) an ensemble of worldwide distributed terrestrial[START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF] or marine species[START_REF] Ready | Predicting the distributions of marine organisms at the global scale[END_REF], for (3) certain regions only[START_REF] Guisan | Sensitivity of predictive species distribution models to change in grain size[END_REF]: trees in Switzerland, Tsoar et al. 2007: snails, birds and bats in Israel, Reiss et al. 2011: benthic marine species in the North Sea,[START_REF] Bucklin | Comparing species distribution models constructed with different subsets of environmental predictors[END_REF]: vertebrates of Florida) or (4) using virtual species[START_REF] Meynard | Predicting species distributions: a critical comparison of the most common statistical models using artificial species[END_REF], García-Callejas and Araujo 2016, Qiao et al. 2015). Zhou 2012), input datasets (occurrence or environmental descriptors datasets) or parameterizations(Araújo and[START_REF] Araújo | Ensemble forecasting of species distributions[END_REF] see Hao et al. 2019 for a review of applications). The approach is interesting as it can provide predictions that take into account the variability of several models(Araújo and New 2007, Hao et al. 2019). Ensemble modelling has been used for various studies with SDMs[START_REF] Araújo | Ensemble forecasting of species distributions[END_REF], Marmion et al. 2009, Thuiller et al. 2009[START_REF] Buisson | Uncertainty in ensemble forecasting of species distribution[END_REF][START_REF] Luedeling | Agroforestry systems in a changing climate-challenges in projecting future performance[END_REF], Trolle et al. 2014, Carvalho et al. 2015[START_REF] Scales | Identifying predictable foraging habitats for a wide-ranging marine predator using ensemble ecological niche models[END_REF], Jerosch et al. 2019) and has benefitted from the development of R packages to implement them(Biomod: Thuiller et al. 2009, BiodiversityR: Kindt et al. 2017, biomod2: Thuiller et al. 2018, sdm: Naimi et al. 2019).

	However, in order to generate such comparisons (Fig. 2.4), it is important to specifically adjust
	each algorithm to the case study. Algorithms all perform differently with regards to overfitting,
	spatial aggregation and transferability, and comparing model performances using different
	parameter settings is challenging (Merow et al. 2014) given that model parameterization has

The different fields of application and the respective performance of existing algorithms have been extensively compared in various works based on (1) a single species

(Pearson et al. 2006

: plants in South Africa, strong effects on the quality of model outputs

[START_REF] Anderson | Speciesspecific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent[END_REF][START_REF] Rodda | Challenges in identifying sites climatically matched to the native ranges of animal invaders[END_REF], Warren and Seifert 2011[START_REF] Yackulic | Presence-only modelling using MAXENT: when can we trust the inferences?[END_REF], Radosavljevic and Anderson 2014, Moreno-Amat et al. 2015, Halvorsen et al. 2016, Galante et al. 2018[START_REF] Lieske | Ensembles of Ensembles: Combining the Predictions from Multiple Machine Learning Methods[END_REF]

.

Initially developped in the 1990s, ensemble modelling has been increasingly used since then

(Hansen and Salamon 1990, Schapire 1990

). Ensemble modelling consists of combining several algorithms (

  . Such studies often stress the need for taxonomic revisions[START_REF] González-Wevar | Cryptic speciation in Southern Ocean Aequiyoldia eightsii (Jay, 1839): Mio-Pliocene trans-Drake Passage separation and diversification[END_REF][START_REF] Ocaranza-Barrera | Molecular divergence between Iridaea cordata (Turner) Bory de Saint-Vincent from the Antarctic Peninsula and the Magellan Region[END_REF][START_REF] Guillaumot | Extrapolation in species distribution modelling. Application to Southern Ocean marine species[END_REF]. SDMs can be generated based on a spatial subdivision of presence records according to the genetic structure of taxa, and in a second step, the different predictions can be merged together to the broader scale(Knowles et al. 2007, Marcer et al. 2016[START_REF] Cacciapaglia | Marine species distribution modelling and the effects of genetic isolation under climate change[END_REF], Ikeda et al. 2017[START_REF] Roberts | Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure[END_REF], Pardo-Gandarillas et al. 2018). However, defining the genetic structure of benthic species in the SO is a long-term endeavour that requires a constantly renewed sampling effort, considering the extent and complexity of the study area[START_REF] Martin | Éco-régionalisation et conservation des communautés benthiques de la zone économique exclusive française des îles Kerguelen, Ecoregionalisation and conservation of benthic communities in the French exclusive economic zone of Kerguelen[END_REF], Fraser et al. 2018, Moore et al. 2018). Waiting for taxonomic revisions and enhanced sampling efforts to best depict relationships between genetic units and environmental conditions (Vandersteen 2011) and combining SDM with experimental data or mechanistic approaches can be alternatives for taking into account the possible physiological contrasts between populations(Kearney and Porter 2009[START_REF] Elith | The art of modelling range-shifting species[END_REF][START_REF] Buckley | Can mechanism inform species' distribution models?[END_REF], Fordham et al. 2013, Briscoe et al. 2016, Feng and Papes 2017, López-Farrán/Guillaumot et al. in press - Chapter 3).

  when the number of background records is much higher than the number of presence-only records or when background and presences are associated with very different environmental values. This incidentally inflates AUC scores[START_REF] Phillips | M aximum entropy modeling of species geographic distributions[END_REF][START_REF] Raes | A null-model for significance testing of presence-only species distribution models[END_REF][START_REF] Lobo | More complex distribution models or more representative data?[END_REF][START_REF] Hortal | Basic questions in biogeography and the (lack of) simplicity of species distributions: putting species distribution models in the right place[END_REF] and invalidates the relevance of the AUC metrics(van Proosdij et al. 2016). Even when properly employed, the AUC cannot be used to compare models when SDMs are generated for different species based on different environmental descriptors or projected on distinct regions because the values depend on the relative size of suitable areas and prevalence scores may contrast (see section 3.3)(Wisz et al. 2008, Anderson and[START_REF] Anderson | Speciesspecific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent[END_REF]. The AUC metrics must be used as a simple measure of the relative ranking of model predictions associated with a specific dataset (El-Gabbas and Dormann 2018). Overall, each statistic is characterized by specific advantages and potential biases, so that it is recommended that one uses several statistics for evaluating model predictions(Allouche et al. 2006). The accuracy of model predictions can also be evaluated by testing the classification of independent test data, where the available occurrence dataset can be split into independent subsets to train or test the model (for a review, see[START_REF] Fielding | A review of methods for the assessment of prediction errors in conservation presence/ absence models[END_REF]. Radosavljevic and[START_REF] Galante | EN M eval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models[END_REF], Valavi et al. 2018, Guillaumot et al. 2019 -Chapter 2) depending on the spatial scale of the analysis, the number and spatial distribution of the presence data and the selected algorithm (and its associated complexity) used for modelling[START_REF] El-Gabbas | Wrong, but useful: regional species distribution models may not be improved by range-wide data under biased sampling[END_REF] Dormann 2018, Hao et al. 2020).

	5.2. Cross-validation procedures.

Article.

[START_REF] Guillaumot | SDMPlay. Species Distribution Modelling Playground[END_REF]

. Species Distribution Modelling of the Southern Ocean benthos: a review on methods, cautions and solutions. Antarctic Science. overestimated Cross-validation procedures are aimed at evaluating model predictions using a subset of presence or absence records retrieved from the initial dataset used for modelling in order to assess how well the test data match with the modelled predictions (Bahn and McGill 2013). When working with presence-only datasets, two subsets of presence records are used: one subset is used to train the model (the training group) and the second subset is used to test the model (the test group). Test data and training data must be spatially independent from each other (Hijmans 2012, Bahn and McGill 2013). In most modelling exercises, standard cross-validation procedures are commonly used, in which the initial presence dataset is randomly split into a training and test subset. Frequently, as previously discussed, presence data are spatially aggregated in SO datasets and the necessary condition of independence between training and test data is seldom met, making the model accuracy evaluation overly optimistic (Telford and Birks 2009, Hijmans 2012, Radosavljevic and Anderson 2014). In contrast to random procedures, spatial cross-validation procedures improve the performance of the validation step by spatially segregating the training and test subsets, ensuring the spatial independence between data even when they are spatially aggregated in the initial datasets (Dhingra et al. 2016, Roberts et al. 2017, Guillaumot et al. 2019 -Chapter 2, see also http://cran.rapporter.net/web/packages/blockCV/vignettes/BlockCV_for_SDM.html). Several spatial cross-validation procedures have been proposed (Fig. 2.8), and the most appropriate one can be determined by comparing the different procedures in order to define the one that is the most suitable for the study (Muscarella et al. 2014, Article. Guillaumot et al. (2021). Species Distribution Modelling of the Southern Ocean benthos: a review on methods, cautions and solutions. Antarctic Science.
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  ) by the heterogeneous quality of environmental data describing environmental conditions (e.g. missing data in coastal areas, low resolution of environmental layers, limited number of environmental descriptors available), and (3) by the sampling bias (spatial and temporal aggregation of data collection) (Barry andElith 2006, Robinson et al. 2011, Hortal et al. 2012a, Tessarolo et al. 2014, Guillaumot et al. Sampling effort has mostly been carried out offshore or in the vicinity of research stations during the austral summer while remote shallow areas are seldom accessed and dense winter sea ice conditions limit oceanographic studies(Gutt et al. 2012).Several studies have proposed model corrections or alternatives to separately mitigate the induced impacts of spatial and temporal biases on modelling performance[START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF], Newbold 2010, Barbet-Massin et al. 2012[START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF], Tessarolo et al. 2014[START_REF] Guillera-Arroita | Is my species distribution model fit for purpose? Matching data and models to applications[END_REF], Guillaumot et al. 2018a -Appendix, Valavi et al. 2018). However, to our knowledge, no study has yet proposed methodological guidelines to address such issues when dealing with data-poor and broad spatial areas (i.e. at continental or oceanic scales).

2018a -Appendix). Several statistical tools such as the Area Under the Curve of the Receiver Operating characteristic (AUC), the True Skill Statistic, or the Point Biserial Correlation are commonly used to evaluate the relevance of SDM predictions

[START_REF] Fielding | A review of methods for the assessment of prediction errors in conservation presence/ absence models[END_REF] Bell 1997, Allouche et al. 2006)

. Using these indices for models performed with presence-only data has been widely discussed because backgrounddata are usually considered as absences, leading to confusion in model interpretation and violating most test assumptions (i.e. computing AUC and TSS statistics requires the use of true absences)

(Jiménez-Valverde 2012, Li and 

  SDMs were generated using presence-only data made available for the sea star O. validus by[START_REF] Guillaumot | Modelled distributions of benthic species of the Southern Ocean in a fast-changing environment[END_REF]. Presence-only records of O. validus are strongly aggregated in space (i.e. concentrated in "easily" accessible and frequently visited areas characterised by relatively low sea ice concentrations), a condition also prevailing in the total dataset available for Southern Ocean benthic taxa (updated from[START_REF] Griffiths | CHAPTER 2.2. Data distribution: Patterns and implications[END_REF], Fig.S2.2), making O. validus a representative case study for Southern Ocean benthic studies. Models were generated using the environmental descriptors published as raster layers byFabri-Ruiz et al. (2017b). They were collected from different sources and modified to fit modelling requirements at the scale of the Southern Ocean (from 45°S latitude to Antarctica coasts). Collinearity between environmental descriptors was tested using the Variance Inflation Factor (VIF) stepwise procedure of the 'usdm' R package[START_REF] Naimi | Where is positional uncertainty a problem for species distribution modelling?[END_REF] and Spearman correlations (rs). Surface temperature and roughness, a depthderived variable, were respectively correlated to ice cover and depth. They were omitted according to the commonly used thresholds of VIF > 5 and rs > 0.85[START_REF] Pierrat | Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling[END_REF], Dormann et al. 2012b, Duque-Lazo et al. 2016). A final set of 16 environmental descriptors at 0.1° resolution was compiled to build the models (Table

  It will serve as a reference model for comparison with Moran's I scores of model null #1 and to assess the degree of spatial aggregation due to sampling effort. To correct for the effect of spatial aggregation on modelling performance, a target-background correction method was applied[START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF]). The total Southern Ocean benthic dataset (Fig.S2.2) was used to create a Kernel Density Estimation layer that provides an estimate of the probability to find a benthic presence data for each pixel. The Kernel Density Estimation was calculated with the 'kde2d' function of the MASS R package[START_REF] Ripley | MASS: Support Functions and Datasets for Venables and Ripley's MASS[END_REF] on the extent of the Southern Ocean (n and lims parameters defined to fit a raster layer of extent(-180, 180, -80, -45) and 0.1° resolution). Null model #1 was corrected by randomly sampling 1000 background records according to the weighting scheme of the Kernel Density Estimation layer. After evaluating spatial aggregation in the total Southern Ocean benthic dataset, spatial autocorrelation was specifically assessed for O. of the Kernel Density Estimation layer. Each model was generated 100 times and the two averaged models (average models A and B) were compared to each other. Differences between models A and B quantify the importance of spatial aggregation on model outputs. Finally, model relevance was assessed using three statistics: the Area Under the Receiver Operating Curve (AUC)[START_REF] Fielding | A review of methods for the assessment of prediction errors in conservation presence/ absence models[END_REF], the Point Biserial Correlation between predicted and observed values (COR,[START_REF] Elith | Novel methods improve prediction of species' distributions from occurrence data[END_REF] the True Skill Statistic (TSS, Allouche et al. 2006).

S2.2)

. Null model #1 was produced to evaluate the overall spatial aggregation of benthic records in the Southern Ocean due to sampling effort. It was generated by randomly sampling n=309 occurrence records (corresponding to the number of non-duplicate presence-only data available for O. validus) in the total Southern Ocean benthic dataset (Fig.

S2

.2). 1000 background records were randomly sampled in the entire Southern Ocean. The Moran's I score was calculated by comparing model #1 predictions to the distribution of the total Southern Ocean benthic dataset (Fig.

S2.

2). Null model #2 was built to compute a reference Moran's I score for a model generated with randomly distributed records. 309 presence data and 1000 background data were randomly sampled in the entire Southern Ocean. Null model #2 will provide a reference value for spatial autocorrelation scores due to the intrinsic structure of environmental data. validus. Spatial autocorrelation was measured for two models generated without (model A) and with (model B) Kernel Density Estimation correction. Comparison between the two models aimed at assessing the efficiency of the Kernel Density Estimation correction for O. validus. Model A (without correction) was built using all presence-only data available for O. validus and 1000 background records randomly sampled in the Southern Ocean. Model B (with correction) was built using all presence-only data available for O. validus and 1000 background records that were sampled following the weighting CHAPTER 2.

Article.

Guillaumot et al. (2019)

. Species distribution models in a data-poor and broad scale context. Progress in Oceanography. scheme

  . The MESS calculation consists in extracting the environmental conditions where presence-only data were recorded and determining for each pixel of the model projection layer if environmental conditions are covered by presence-only records. Negative MESS values indicate areas of model extrapolation in which the value of at least one environmental descriptor is beyond the environmental range covered by available presence-only records. Conversely, positive MESS values indicate areas of model projection in which values of environmental descriptors are within the environmental range covered by presence-only records. According to the number of environmental descriptors that are not included inside the range of presence records values, MESS outcome can strongly vary. The MESS evaluation deals with each environmental descriptor equally (unweighted analysis) and in this study, a pixel was considered as unsuitable as soon as a single descriptor value does not match the environmental range of presence-only records. On a projection map, SDM predictions were darkened according to the MESS extrapolation range to visualise the uncertain area due to extrapolation. Extrapolation performance of SDMs was assessed by comparing the proportion of the environment predicted as suitable by the model with the total set of environmental conditions.

Table 2 . 1 .

 21 Comparison between models of spatial autocorrelation values measured on model residuals (average and standard deviation of Moran's I values computed for 100 model replicates). Moran's I significance is indicated by p-values; for p < 0.05, the absence of spatial autocorrelation (null hypothesis) is rejected. Null model #1: 309 presence records were randomly sampled among occurrences of the total Southern Ocean benthic dataset (Fig.S2.2) and background data are composed of 1000 points randomly sampled in the entire Southern Ocean; model #2: 309 records (to define presence records) and 1000 background data both randomly sampled in the entire Southern Ocean; model #1 with Kernel Density Estimation: similar to model null #1 but with 1000 background data randomly sampled following the Kernel Density Estimation weighting scheme; model A: 309 presence records of Odontaster validus and 1000 background data were randomly sampled in the entire Southern Ocean; model B: similar to model A but with the 1000 background data sampled following the Kernel Density Estimation weighting scheme. AUC: Area Under the Receiver Operating Curve, TSS: True Skill Statistic, COR: Point Biserial Correlation.

		Null model #1	Null model #2 Null model #1	Model A	Model B
				with Kernel Density Estimation		
	Spatial autocorrelation	0.050 ± 0.011	0.005 ± 0.004	0.034 ± 0.011	0.085 ± 0.009	0.069 ± 0.006
	(Moran's I)	p<0.001	p=0.19	p<0.001	p<0.001	p<0.001
	AUC	0.976 ± 0.010	0.710 ± 0.014	0.964 ± 0.015	0.997 ± 0.001	0.948 ± 0.003
	TSS	0.674 ± 0.013	0.331 ± 0.020	0.660 ± 0.019	0.698 ± 0.002	0.696 ± 0.003
	COR	0.850 ± 0.028	0.336 ± 0.018	0.801 ± 0.037	0.944 ± 0.011	0.923 ± 0.015
		p<0.001	p<0.001	p<0.001	p<0.001	p<0.001
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 22 Average Spatial Sorting Bias (SSB) and standard deviation values for the 100 model replicates (background sampling+test/training clustering). AUC: Area Under the Receiver Operating Curve; Correctly classified test data (%): percentage of presence-test and background-test records falling on predicted suitable areas (prediction > maximum sensitivity plus specificity (maxSSS) threshold); TSS: True Skill Statistic; COR: Point Biserial Correlation; ntrees: averaged optimal number of trees required to generate BRTs. Stars are indicated for spatial cross-validation groups significantly different from the random crossvalidation procedure (nonparametric pairwise Mann-Whitney Wilcoxon test, p-value < 0.01).

		Random cross-validation	Spatial cross-validation	Spatial cross-validation	Spatial cross-validation	Spatial cross-validation
		Random splitting	Block method	2-fold Clock method	3-fold Clock method	4-fold Clock method
	Mean SSB	0.101 ± 0.04	0.802 ± 0.37	0.832 ± 0.09	0.803 ± 0.23	0.848 ± 0.32
	AUC	0.947 ± 0.013	0.854* ± 0.06	0.811* ± 0.053	0.818* ± 0.078	0.824* ± 0.089
	Correctly classified	89.452 ± 1.523	80.946* ± 7.504	80.039* ± 3.489	80.713* ± 5.421	79.471* ± 8.538
	test data (%)					
	Test data (% of total	25%	[13-38]%	[19-81%]	[1-68%]	[1-66%]
	dataset)					
	TSS	0.715 ± 0.041	0.542* ± 0.188	0.465* ± 0.088	0.490* ± 0.136	0.576* ± 0.165
	COR	0.792 ± 0.029	0.632* ± 0.126	0.584* ± 0.089	0.591* ± 0.12	0.483* ± 0.197
	ntrees	1580 ± 251.058	543.5* ± 88.9	375* ± 91.9	424.5* ± 131.1	379* ± 98.5

3.3. Proposed model and uncertainty map

We decided to maximise the spatial independence between training and test subsets, minimise model complexity and optimise generalization performances in O. validus model. Using these criteria, we found that the '2-fold CLOCK' modelling method was well adapted to O. validus dataset (second highest TSS and COR scores; high proportion of test data being correctly classified, with the lowest standard deviation score (80.04 ± 3.49%); an important proportion of the total dataset used a test subset [19-81%

Table 2 . 3 .

 23 Proportion of interpolated and extrapolated pixels according to the averaged SDM predictions.

  ,Torres et al. 2015, Phillips et al. 2017) but the method has been rarely compared to alternative procedures. The present study shows that contrasting model assessments are obtained when using different crossvalidation procedures (Radosavljevic and[START_REF] Galante | EN M eval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models[END_REF][START_REF] Roberts | Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure[END_REF]. Applying a random cross-validation to an aggregated dataset at a broad spatial scale can result in training and test subsets being sampled in the same area, and leads to an inflation of modelling performances(Veloz 2009[START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF], Radosavljevic and Anderson 2014, Wenger and Olden 2012). In the context of this study, SDMs produced with a broad-scale and spatially aggregated occurrence dataset and a random cross-validation procedure are more complex and likely over-fit the training dataset. This also may account for the high evaluation scores obtained (AUC, TSS, COR) and may also explain the apparent high generalization performance of BRTs fitted with random crossvalidation. The lack of model generality can a posteriori lead to strong caveats and unreliable models with poor transferability performance when projected on a new environmental space (Wenger andOlden 2012[START_REF] Crimmins | Evaluating ensemble forecasts of plant species distributions under climate change[END_REF]. Methods that select the most parsimonious BRT, combine low model complexity and high modelling performance should therefore be preferred. The spatial cross-validation procedures tested in this study were shown to produce less complex models than the random cross-validation procedure. Increased model generality (i.e. decrease in model overfitting) and forced spatial segregation between training and test subsets result in decreasing SDM validation scores. These results show that applying a random cross-validation procedure for a patchy dataset can lead to over-estimation of SDM predictive performance if training and test subsets are not independent. This is in line with several works(Brenning 2005[START_REF] Elith | The art of modelling range-shifting species[END_REF][START_REF] Anderson | A framework for using niche models to estimate impacts of climate change on species distributions[END_REF], Muscarella et al. 2014

Table S2 .2. List

 S2 

				CHAPTER 2.
	Taxon	Author	Public release	URL

of IPT (Integrated Publishing Toolkit) data (collected and published after 2014) added to the map of the Southern Ocean benthic sites.
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 S23 List of environmental descriptors selected for the species distribution models available for[2005][2006][2007][2008][2009][2010][2011][2012]. Spatial extent of the data: 78°S; 45°S/-180; 180°W. Spatial resolution: 0.1°

	Environmental descriptor	Unit		Description	Source
	Depth	Meters	Bathymetric grid around the Kerguelen Plateau	This study. Derived from [6]
	Sea surface temperature amplitude*	°Celsius degrees	Difference between austral summer (mean January-March) and winter (mean July-September) sea surface temperature	This study. Derived from World Ocean Circulation Experiment 2013 [1] sea surface temperature layers
	Seafloor mean temperature*	°Celsius degrees	Mean seafloor temperature	This study. Derived from World Ocean Circulation Experiment 2013 [1] sea surface temperature layers
	Seafloor temperature amplitude*	°Celsius degrees	Difference between austral summer (mean January-March) and winter (mean July-September) seafloor temperature	This study. Derived from World Ocean Circulation Experiment 2013 [1] sea surface temperature layers
	Sea surface mean salinity*	PSS			Mean sea surface salinity	This study. Derived from World Ocean Circulation Experiment 2013 [1] sea surface salinity layers
	Sea surface salinity amplitude*	PSS			Difference between austral summer (mean January-March) and winter (mean July-September) sea surface salinity	This study. Derived from World Ocean Circulation Experiment 2013 [1] sea surface salinity layers
	Seafloor mean salinity*	PSS			Mean seafloor salinity	This study. Derived from World Ocean Circulation Experiment 2013 [1] seafloor salinity layers
	Seafloor salinity amplitude*	PSS			Difference between austral summer (mean January-March) and winter (mean July-September) seafloor salinity	This study. Derived from World Ocean Circulation Experiment 2013 [1] sea surface salinity layers
	Mean surface chlorophyll a	mg/m	3	Surface chlorophyll a concentration. Summer mean over 2002-2009	MODIS AQUA (NASA) 2010 [2]
	Sediments	Categorical	Sediment features	[7], updated by Griffiths 2014 (unpublished)
	Geomorphology	Categorical	Geomorphologic features	ATLAS ETOPO2 2014 [8]
	Slope	Unitless	Bathymetric slope	[6]
	Mean seafloor oxygen concentration	mL/L			Mean seafloor oxygen concentration over 1955-2012	This study. Derived from World Ocean Circulation Experiment 2013 [1] sea surface oxygen concentration layers
	Ice cover	-			Proportion of time during which ocean is covered by sea ice of concentration 85% of higher. Projection 2003-2010	This study. Derived from Australian Antarctic Data Centre [3]
	POC export	gC/m	2 /day	Particulate organic carbon 2002-2015 averages	This study. Published on Australian Antarctic Data Center [4]

  ,Ingels et al. 2012, Constable et al. 2014a, De Broyer et al. 2014[START_REF] Convey | Antarctic environmental change and biological responses[END_REF]. The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) actively works for the sustainable management of Antarctic marine ecosystems and marine life (see https://www.ccamlr.org/en/organisation, access August 2019). Recent proposals from CCAMLR and existing marine protected areas (MPAs), such as those newly designated around the South Orkney Islands or in the Ross Sea(CCAMLR 2009(CCAMLR , 2016)), partly rely on species distribution modelling (SDM)(Ballard et al. 2012[START_REF] Anderson | Habitat suitability models for predicting the occurrence of vulnerable marine ecosystems in the seas around New Zealand[END_REF], Davis et al. 2017[START_REF] Arthur | Managing for change: Using vertebrate at sea habitat use to direct management efforts[END_REF]).

,

  Labidiaster annulatus Sladen, 1889, Odontaster validus Koehler, 1906 and Psilaster charcoti (Koehler, 1906) (McClintock et al. 2008a, Mah and Blake 2012[START_REF] Lawrence | Starfish: Biology and ecology of the Asteroidae[END_REF][START_REF] Brandt | Southern Ocean benthic deep-sea biodiversity and biogeography. Biogeographic atlas of the Southern Ocean[END_REF], Danis et al. 2014, Moles et al. 2015[START_REF] Guillaumot | Modelled distributions of benthic species of the Southern Ocean in a fast-changing environment[END_REF]. Because the Southern Ocean is scarcely accessed and sampled, spatial analyses of species distribution are usually based on aggregated and relatively small presence-only datasets, often compiled from historical records(De Broyer et al. 2014, Guillaumot et al. 2016, Fabri-Ruiz et al. 2017a, Guillaumot et al. 2018a -Appendix, Moreau et al. 2018), which strongly hampers SDM performances(Hortal et al. 2008, Loiselle et al. 2008[START_REF] Phillips | Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data[END_REF], Costa et al. 2010, Newbold 2010[START_REF] Guillera-Arroita | Is my species distribution model fit for purpose? Matching data and models to applications[END_REF][START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF]. The objectives of this study are to assess the limits and potential of BRT to generate robust models for Southern Ocean benthic species and to provide some recommendations on the selection of environmental descriptors.

Table 2 . 4 .

 24 The six studied species and their respective ecological traits. Presence-only records duplicates present on a same grid-cell pixel are removed from the count of occurrences. The model maximum depth is defined for each species independently according to the density distribution of recorded depth values. Images sources: Brueggeman 1998, BIOMAR ULB database (P. Pernet), proteker.net, B121 expedition (Q. Jossart).

		Acodontaster	Bathybiaster	Glabraster	Labidiaster	Odontaster	Psilaster
		hodgsoni (Bell	loripes (Sladen	antarctica (Smith	annulatus Sladen	validus Koehler,	charcoti
		1908)	1889)	1876)	1889	1906	(Koehler, 1906)
	Feeding diet	Predator (mainly	Detritivorous	Deposit feeder,	Predator (Dearborn	Opportunistic	Deposit feeder,
		sponges)	(Dearborn 1977)	predator, or	et al. 1991)	feeder	predator
		(Brueggeman		scavenger		(suspensivorous,	(Brueggeman
		1998)		(Brueggeman		deposit	1998)
				1998)		feeder,predator,	
						scavenger)	
						(Brueggeman	
						1998)	
	Reproduction and	Broadcaster with	Broadcaster with	Broadcaster with	Broadcaster and	Broadcaster with	Broadcaster
	development modes	non-feeding	non-feeding	feeding	probably feeding	feeding planktonic	with non-
		planktonic larvae	planktonic larvae	planktonic larvae	planktonic larvae	larvae (Bosch and	feeding
		(Bosch and	(Bosch and	(Bosch 1989)	(Janosik et al.	Pearse 1990)	planktonic
		Pearse 1990)	Pearse 1990)		2008)		larvae (Bosch
							and Pearse
							1990)
	Occurrence number	297	585	844	373	309	350
	Model maximum	1,500 m	4,000 m	4,000 m	1,500 m	1,500 m	4,000 m
	depth						

  Philipps et al. 2009). In this approach, background data are randomly sampled in the area of interest, following a weighting scheme defined by a Kernel Density Estimation (KDE) of sampling effort in the Southern Ocean(Guillaumot et al. 2018a - Appendix, supplementary material in Guillaumot et al. 2019 -Chapter 2). When using spatially aggregated records, standard cross-validation procedures used to evaluate modelling performances can be strongly biased[START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF][START_REF] Roberts | Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure[END_REF], Guillaumot et al. 2019 -Chapter 2). The random selection of training and test data leads to the violation of independence between training and test subsets, which can induce an over-estimation of correctly predicted test data by the model[START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF]. Using cross-validation procedures that spatially segregate training and test data (defined based on presence and background subsets) is a good alternative to accurately evaluate the performance of SDMs based on aggregated datasets. In the present study, a "6-fold CLOCK" cross-validation approach adapted fromGuillaumot et al. (2019 - Chapter 2) was applied. This procedure randomly defines six sectors around Antarctica according to longitude, three for training data and three for test data.

al. 2019 -Chapter 2: supplementary material) while being as close as possible to the number of records used to generate the model (Barbet-Massin et al. 2012). One hundred background data samples are generated as model replicates. Spatial aggregation of occurrence records is a recurrent bias in Antarctic benthic species databases (Fabri-Ruiz 2018, Guillaumot et al. 2018a -Appendix, Guillaumot et al. 2019 -Chapter 2). To reduce the effect of spatial aggregation on model outputs, background records are sampled CHAPTER 2.
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 25 Average contribution of each environmental descriptor (based on 100 model replicates) generated for the six studied species using the total set of 58 descriptors. In dark blue, descriptors always contribute more than 1% to all models. In light blue, descriptors contributing more than 1% to some species models only (A: Acodontaster hodgsoni, B: Bathybiaster loripes, G: Glabraster antarctica, L: Labidiaster annulatus, O: Odontaster validus, P: Psilaster charcoti). In red, descriptors never contributing more than 1% to all species models. The description of the different environmental descriptors is provided in Appendix 2.4.

	Descriptor	Contribution	Descriptor	Contribution Descriptor	Contribution
	depth		ice_thickness_range		seafloor_sali_2005_2012_min
	geomorphology	A,B,G,L	chla_ampli_alltime_2005_2012		seafloor_sali_2005_2012_sd
	sediments	A,B,G,O,P	chla_max_alltime_2005_2012	A	seafloor_temp_2005_2012_ampli
	slope		chla_mean_alltime_2005_2012	A,B,L,P	seafloor_temp_2005_2012_max
	roughness		chla_min_alltime_2005_2012	A,B,G,L,P seafloor_temp_2005_2012_mean
	mixed_layer_depth		chla_sd_alltime_2005_2012	A,B,L,P	seafloor_temp_2005_2012_min	B,G,L,P
	seasurface_current_speed		POC_2005_2012_ampli	A,B,G,O,P seafloor_temp_2005_2012_sd
	seafloor_current_speed		POC_2005_2012_max	A,B,G,O,P extreme_event_max_chl_2005_2012_ampli
	distance_antarctica		POC_2005_2012_mean	A,B,G,O,P extreme_event_max_chl_2005_2012_max
	distance_canyon		POC_2005_2012_min		extreme_event_max_chl_2005_2012_mean
	distance_max_ice_edge		POC_2005_2012_sd	A,B,G,O,P extreme_event_max_chl_2005_2012_min
	distance_shelf	A,B,G,O,P seafloor_oxy_19552012_ampli		extreme_event_min_chl_2005_2012_ampli
	ice_cover_max		seafloor_oxy_19552012_max		extreme_event_min_chl_2005_2012_max
	ice_cover_mean		seafloor_oxy_19552012_mean		extreme_event_min_chl_2005_2012_mean	B,G,O,P
	ice_cover_min		seafloor_oxy_19552012_min		extreme_event_min_chl_2005_2012_min	P
	ice_cover_range		seafloor_oxy_19552012_sd		extreme_event_min_oxy_1955_2012_nb
	ice_thickness_max		seafloor_sali_2005_2012_ampli		extreme_event_max_sali_2005_2012_nb
	ice_thickness_mean	B,G,L,O,P seafloor_sali_2005_2012_max		extreme_event_min_sali_2005_2012_nb
	ice_thickness_min		seafloor_sali_2005_2012_mean		extreme_event_max_temp_2005_2012_nb
					extreme_event_min_temp_2005_2012_nb
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 26 Mann-Kendall statistic scores (τ). Models are built with58, 52, 46, 40, 34, 28, 22, 16, 10 and 4 environmental descriptors respectively. 100 replicates are generated in each case. The Mann-Kendall trend test is realised on the median value of the 100 replicates. All tests are not significant. The direction of the monotonic trend is given by the sign of the τ values. AUC: Area Under the Curve, COR: biserial Pearson correlation, TSS: True Skill Statistic. The percentage of correctly classified test data is defined by the proportion of presence test data correctly predicted by the model.Most SDMs generated with and without collinear descriptors show similar performance statistics (AUC, TSS, COR, and percentage of correctly classified test data) and a comparable number of trees is used to build models (Table2.7). However, for A. hodgsoni and G. antarctica, lower AUC, TSS and COR values are obtained for models generated without collinear descriptors. The percentage of correctly classified test data remains unchanged except in models generated without

		Acodontaster	Bathybiaster	Glabraster	Labidiaster	Odontaster	Psilaster
		hodgsoni	loripes	antarctica	annulatus	validus	charcoti
	AUC	-0.111	0.022	-0.644	-0.067	-0.378	-0.289
	COR	-0.111	0.156	-0.556	-0.244	-0.289	-0.289
	TSS	-0.244	-0.067	-0.600	-0.067	-0.289	-0.422
	Number of trees	0.205	0.675	0.303	-0.322	0.023	-0.210
	% correctly classified test data	-0.067	0.511	0.156	0.511	-0.156	0.511
	Average number of suitable pixels	0.167	0.111	0.200	0.333	0.333	0.289
	3.3. Collinearity						

collinear descriptors for A. hodgsoni (-9.9%) and O. validus (-19.5%) in which it significantly decreases. For all species but G. antarctica, the proportion of predicted suitable area increases in models generated without collinear descriptors (Table

2.7

).

Table 2 . 7

 27 Distance layers (i.e. distance to Antarctic coasts, to shelves, to the nearest canyons, to the maximum ice edge in winter, see Appendix 2.4) are used as descriptors in a first phase of the analysis to test for the effect of collinearity and the number of descriptors on model performance because they are commonly used in SDMs performed for Southern Ocean species(Mormède et al. 2014c). However, although relevant when interpolating species distribution patterns (Table2.5), : 13 of these descriptors are common to the six studied species and for three species, additional descriptors on extreme events on chlorophyll-a concentration are used (Appendix 2.10). The performance of final models is good for all species, with AUC values ranging from 0.810 ± 0.09 to 0.872 ± 0.07 (mean and standard deviation values), TSS values from 0.461 ± 0.121 to 0.546 ± 0.08, COR values from 0.503 ± 0.136 to 0.656 ± 0.121 and correctly classified test data from 51.6 ± 23.7% to 80.7 ± 10.1% (Appendix 2.11).

			1,500m			4,000m	
		Acodontaster	Labidiaster	Odontaster	Bathybiaster	Glabraster	Psilaster
		hodgsoni	annulatus	validus	loripes	antarctica	charcoti
	AUC	6041*	4754	5738	5578	5931*	5280
	COR	5842*	4783	5867*	5596	5964*	5247
	TSS	6138**	4792	5748	5596	5840*	5425
	% correctly classified test data	6234**	5546	6247.5**	5590	5145	4512.5
	Number of trees	5359	4352	4811	5031.5	4641.5	4312
	% suitable area	3526***	6272**	8695***	9759***	4796	8571***
	3.4. Comparison between final SDMs					

. Mann-Whitney Wilcoxon pairwise test (W) comparing statistics of models generated without collinear descriptors and models run with the total set of 58 environmental descriptors. Associated p-values are summarized by asterisks (no star p >0.05, * p < 0.05, ** p < 0.01 and *** p < 0.001). AUC: Area Under the Curve, COR: biserial Pearson correlation, TSS: True Skill Statistic. The percentage of correctly classified test data is defined by the proportion of presence test data correctly predicted by the model. interpreting the contribution of such descriptors is not straightforward when it comes to describe species ecological niche. Therefore, these descriptors are excluded from analyses in the final set of SDMs. In addition, descriptors that never contribute more than 1% to SDMs (Table

2

.5) as well as collinear descriptors (depending on species) are removed from the initial set of descriptors. Depending on the species under study, a set of 14 to 16 descriptors is used to calibrate final CHAPTER 2.
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4 List of environmental descriptors and sources

  The selected descriptors are not collinear to limit interpretation errors, reduce model complexity and favour the ecological relevance of models (Austin and van Niel 2011,[START_REF] Braunisch | Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change[END_REF][START_REF] Bucklin | Comparing species distribution models constructed with different subsets of environmental predictors[END_REF], Petitpierre et al. 2017). However, final SDMs are not very contrasted between species despite significant differences in species ecological niches(McClintock et al. 2008a, Mah and Blake 2012[START_REF] Lawrence | Starfish: Biology and ecology of the Asteroidae[END_REF][START_REF] Brandt | Southern Ocean benthic deep-sea biodiversity and biogeography. Biogeographic atlas of the Southern Ocean[END_REF], Danis et al. 2014, Moles et al. 2015). The performed SDMs are more sensitive to the number of occurrence records available and to the extent of the projection area. This final result questions the ecological relevance of using modelling approaches at broad spatial scale when based a limited number of occurrence data, spatially aggregated and using descriptors with coarse spatial and temporal resolutions.These results match those obtained in previous studies and suggest that the validation of model predictions should use independent data, appropriate statistics and expert-based interpretations(Guisan et al. 2013, Fois et al. 2018, Fourcade et al. 2018, Leroy et al. 2018). Combining model outputs performed at narrow spatial scale and complementary data on biotic interactions[START_REF] Wisz | The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling[END_REF][START_REF] Leach | Modelling the influence of biotic factors on species distribution patterns[END_REF], Van der Putten et al. 2017), habitat features[START_REF] Ferrari | Integrating distribution models and habitat classification maps into marine protected area planning[END_REF]) and physiological traits(Kearney and Porter 2009, Fordham et al. 2013[START_REF] Wittmann | Confronting species distribution model predictions with species functional traits[END_REF], Feng and Papes 2017[START_REF] Mathewson | Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates[END_REF], Pertierra et al. 2017) constitutes a good alternative. This can enhance the relevance of explanatory models and their use for ecological studies and conservation purposes. Downscaling SDM studies also has the advantage of improving model accuracy relating to particular, local to regional phenotypic or physiological traits of populations, which may differ at broader scale(Thatje 2012). Waiting for more data and ensuring the taxonomic quality of datasets, we recommend the use of SDMs for narrow-scale studies using scrutinized and comprehensive occurrence datasets, as much as possible, while selecting non-collinear and ecologically relevant descriptors to minimize model overfitting[START_REF] El-Gabbas | Wrong, but useful: regional species distribution models may not be improved by range-wide data under biased sampling[END_REF] Dormann 2018, Fois et al. 2018). /github.com/AustralianAntarcticDivision/blueant/tree/data_Charlene/vignettes. Spatial extent of the data: latitude: 45°S_80°S / longitude: -180°_180°W. Spatial resolution: 0.1° x 0.1° (approximately 11km). Complementary information about "extreme events" layers can be found in Appendix 2.5.

												CHAPTER 2.			
	Table	S2.4.	List	of	environmental	descriptors	selected	for	species	distribution	models.	Downloadable	on	the	'blueant'	R	package
	(https://github.com/AustralianAntarcticDivision/blueant).	The	procedure	to	download	the	data	is	explained	in	the	"data_for_SDM_vignette"	at
	https:/Environmental descriptor		Unit						Description						Source
						Bathymetry. Downloaded from GEBCO 2014 (0.0083°= 30sec arcmin resolution) and set at 0.1°		
		Depth			meters	resolution. Completed with the bathymetry layer manually corrected and provided in Fabri-Ruiz et			This study. Derived from GEBCO [2]
											al. (2017b) [1]						
	Geomorphology			categorical	Derived from the seafloor geomorphic feature dataset of O'Brien et al. (2009) [3]. 27 categories		This study. Derived from Australian Antarctic Data Centre [4]
	Sediments			categorical					Sediment features (14 categories)						Griffiths 2014 (unpublished)
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  antarctica km Distance to the nearest part of Antarctic continent This study. Derived from Australian Antarctic Data Centre [4] Particulate organic carbon; model Lutz et al. (2007) [10]. Amplitude value (difference maximal and minimal values, see previous layers) of all average seasonal layers of 2005-2012This study. Following[START_REF] Lutz | Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean[END_REF] [10], data available on Australian Antarctic Data Centre[11] 

			CHAPTER 2.	
	Ice thickness mean seafloor_temp_2005_2012_ampli	m °C	Ice thickness, mean on 1957-2017 time period Amplitude (difference max/min) value encountered for each pixel on all month layers of seafloor temperature over 2005-2012, modified from WOCE	BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] Derived from World Ocean Circulation Experiment 2013 [12] temperature layers
	Ice thickness min seafloor_temp_2005_2012_max	m °C	Ice thickness, minimum on 1957-2017 time period Maximum value encountered for each pixel on all monthly layers of seafloor temperature over 2005-2012, modified from WOCE	BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] Derived from World Ocean Circulation Experiment 2013 [12] temperature layers
	Ice thickness range seafloor_temp_2005_2012_mean	m °C	Ice thickness, difference maximum-minimum on 1957-2017 time period Mean seafloor temperature over 2005-2012 (average of all monthly layers), modified from WOCE	BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] Derived from World Ocean Circulation Experiment 2013 [12] temperature layers
	chla_ampli_alltime_2005_2012 seafloor_temp_2005_2012_min chla_max_alltime_2005_2012 seafloor_temp_2005_2012_sd chla_mean_alltime_2005_2012 extreme_event_max_chl_2005_2012_ampli chla_min_alltime_2005_2012 extreme_event_max_chl_2005_2012_max chla_sd_alltime_2005_2012 extreme_event_max_chl_2005_2012_mean POC_2005_2012_ampli extreme_event_max_chl_2005_2012_min	mg.m -3 °C mg.m -3 °C mg.m -3 integer mg.m -3 integer mg.m -3 integer gC.m -2 .d -1 integer	Chlorophyll-a concentrations obtained from MODIS satellite images. Amplitude of pixel values (difference between maximal and minimal values encountered by each pixel during all months of Minimum value encountered for each pixel on all monthly layers of seafloor temperature over 2005-2012, modified from WOCE the period 2005-2012) Chlorophyll-a concentrations obtained from MODIS satellite images. Maximal value encountered Standard deviation seafloor temperature over 2005-2012 (of all monthly layers), modified from WOCE by each pixel during all months of the period 2005-2012 Chlorophyll-a concentrations obtained from MODIS satellite images. Mean value of each pixel Amplitude value (Maximum-Minimum) of the number of extreme events (maximal chlorophyll-a concentrations) recorded between 2005 and 2012 during all months of the period 2005-2012 Chlorophyll-a concentrations obtained from MODIS satellite images. Minimal value encountered by Maximum number of extreme events (maximal chlorophyll-a concentrations) recorded between 2005 and 2012 each pixel during all months of the period 2005-2012 Chlorophyll-a concentrations obtained from MODIS satellite images. Standard deviation value of Mean of the number of extreme events (maximal chlorophyll-a concentrations) recorded between 2005 and 2012 each pixel during all months of the period 2005-2012 Minimum number of extreme events (maximal chlorophyll-a concentrations) recorded between 2005 and 2012	MODIS Aqua [9] Derived from World Ocean Circulation Experiment 2013 [12] temperature layers MODIS Aqua [9] Derived from World Ocean Circulation Experiment 2013 [12] temperature layers MODIS Aqua [9] Derived from chla_max_alltime_2005_2012 layer MODIS Aqua [9] Derived from chla_max_alltime_2005_2012 layer MODIS Aqua [9] Derived from chla_max_alltime_2005_2012 layer Derived from chla_max_alltime_2005_2012 layer
	POC_2005_2012_max extreme_event_min_chl_2005_2012_ampli	integer	Amplitude value (Maximum-Minimum) of the number of extreme events (minimal chlorophyll-a concentrations) recorded between 2005 and 2012	Derived from chla_min_alltime_2005_2012 layer
	extreme_event_min_chl_2005_2012_max	integer	Maximum number of extreme events (minimal chlorophyll-a concentrations) recorded between 2005 and 2012	Derived from chla_min_alltime_2005_2012 layer
	extreme_event_min_chl_2005_2012_mean	integer	Mean of the number of extreme events (minimal chlorophyll-a concentrations) recorded between 2005 and 2012	Derived from chla_min_alltime_2005_2012 layer
	Distance canyon Distance max ice edge Distance shelf POC_2005_2012_sd extreme_event_min_chl_2005_2012_min seafloor_oxy_19552012_ampli extreme_event_min_oxy_1955_2012_nb seafloor_oxy_19552012_max nb_extreme_event_max_sali_2005_2012 seafloor_oxy_19552012_mean nb_extreme_event_min_sali_2005_2012 seafloor_oxy_19552012_min extreme_event_max_temp_2005_2012_nb seafloor_oxy_19552012_sd extreme_event_min_temp_2005_2012_nb	km km km gC.m -2 .d -1 integer mL.L -1 integer mL.L -1 integer mL.L -1 integer mL.L -1 integer mL.L -1 integer	Distance to the axis of the nearest canyon Mean maximum winter sea ice extent derived from daily estimates of sea ice concentration. Distance of each grid point to this extent. Distance to the nearest area of sea floor of depth 500m or less Particulate organic carbon; model Lutz et al. (2007) [10]. Standard deviation all seasonal layers of 2005-2012 Minimum number of extreme events (minimal chlorophyll-a concentrations) recorded between 2005 and 2012 Amplitude (difference max/min) value encountered for each pixel on all month layers of seafloor oxygen concentrations over 2005-2012, modified from WOCE Number of extreme events (minimal seafloor oxygen concentration records) that happened between January and December of the year Maximum value encountered for each pixel on all month layers of seafloor oxygen concentrations over 2005-2012, modified from WOCE Number of extreme events (maximal seafloor salinity records) that happened between January and December of the year Mean seafloor oxygen concentrations over 2005-2012 (average of all monthly layers), modified from WOCE Number of extreme events (minimal seafloor salinity records) that happened between January and December of the year Minimum value encountered for each pixel on all month layers of seafloor oxygen concentration over 2005-2012, modified from WOCE Number of extreme events (maximal seafloor temperature records) that happened between January and December of the year Standard deviation seafloor oxygen concentration over 2005-2012 (of all monthly layers), modified from WOCE Number of extreme events (minimal seafloor temperature records) that happened between January and December of the year	This study. Derived from Australian Antarctic Data Centre [4] This study. Derived from Australian Antarctic Data Centre [4] This study. Derived from Australian Antarctic Data Centre [4] This study. Following Lutz et al. (2007) [10], data available on Derived from chla_min_alltime_2005_2012 layer Australian Antarctic Data Centre [11] Derived from World Ocean Circulation Experiment 2013 [12] Derived from seafloor_oxy_19552012_min layer oxygen concentration layers Derived from World Ocean Circulation Experiment 2013 [12] Derived from seafloor_sali_2005_2012_max layer oxygen concentration layers Derived from World Ocean Circulation Experiment 2013 [12] Derived from seafloor_sali_2005_2012_min layer oxygen concentration layers Derived from World Ocean Circulation Experiment 2013 [12] Derived from seafloor_temp_2005_2012_max layer oxygen concentration layers Derived from World Ocean Circulation Experiment 2013 [12] oxygen concentration layers Derived from seafloor_temp_2005_2012_min layer
	Ice cover max seafloor_sali_2005_2012_ampli	-PSS	Ice concentration fraction, maximum on 1957-2017 time period Amplitude (difference max/min) value encountered for each pixel on all month layers of seafloor salinity over 2005-2012, modified from WOCE	BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] Derived from World Ocean Circulation Experiment 2013 [12] salinity layers
	Ice cover mean seafloor_sali_2005_2012_max	-PSS	Ice concentration fraction, mean on 1957-2017 time period Maximum value encountered for each pixel on all month layers of seafloor salinity over 2005-2012, modified from WOCE	BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] Derived from World Ocean Circulation Experiment 2013 [12] salinity layers
	Ice cover min seafloor_sali_2005_2012_mean	-PSS	Ice concentration fraction, minimum on 1957-2017 time period Mean seafloor salinity over 2005-2012 (average of all monthly layers), modified from WOCE	BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] Derived from World Ocean Circulation Experiment 2013 [12] salinity layers
	seafloor_sali_2005_2012_min	PSS	Minimum value encountered for each pixel on all month layers of seafloor salinity over 2005-2012, modified from WOCE	Derived from World Ocean Circulation Experiment 2013 [12] salinity layers
	seafloor_sali_2005_2012_sd	PSS	Standard deviation seafloor salinity over 2005-2012 (of all monthly layers), modified from WOCE	Derived from World Ocean Circulation Experiment 2013 [12] salinity layers

Ice cover range -Ice concentration fraction, difference maximum-minimum on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] Ice thickness max m Ice thickness, maximum on 1957-2017 time period BioOracle accessed 24/04/2018, see Assis et al. (2018) [8] CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2. Article. Guillaumot et al. (2020b). Selecting environmental descriptors is critical to modelling the distribution of Antarctic benthic species. Polar Biology gC.m -2 .d -1 Particulate organic carbon; model Lutz et al. (2007) [10]. Maximal value encountered on each pixel among all seasonal layers of 2005-2012 This study. Following Lutz et al. (2007) [10], data available on Australian Antarctic Data Centre [11] POC_2005_2012_mean gC.m -2 .d -1 Particulate organic carbon; model Lutz et al. (2007) [10]. Mean of all seasonal layers of 2005-2012 This study. Following Lutz et al. (2007) [10], data available on Australian Antarctic Data Centre [11] POC_2005_2012_min gC.m -2 .d -1 Particulate organic carbon; model Lutz et al. (2007) [10]. Minimal value encountered on each pixel among all seasonal layers of 2005-2012

This study. Following
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10. List of environmental descriptors selected to generate final models Table S2.10.

  List of environmental descriptors selescted to generate final models, after removing distance descriptors, descriptors that always contribute less than 1% to species SDM (Table2.5) and collinear descriptors (species-specific).

					CHAPTER 2.
	Acodontaster	Bathybiaster	Glabraster	Labidiaster	Odontaster	Psilaster
	hodgsoni	loripes	antarctica	annulatus	validus	charcoti
	depth	depth	depth	depth	depth	depth
	geomorphology	geomorphology	geomorphology	geomorphology	geomorphology	geomorphology
	sediments	sediments	sediments	sediments	sediments	sediments
	slope	slope	slope	slope	slope	slope
	roughness	roughness	roughness	roughness	roughness	roughness
	mixed layer depth	mixed layer depth	mixed layer depth	mixed layer depth	mixed layer depth	mixed layer depth
	seasurface current	seasurface current	seasurface current	seasurface current	seasurface current	seasurface
	speed	speed	speed	speed	speed	current speed
	seafloor current	seafloor current	seafloor current	seafloor current	seafloor current	seafloor current
	speed	speed	speed	speed	speed	speed
	ice cover mean	ice cover mean	ice cover mean	ice cover mean	ice cover mean	ice cover mean
	10 chlorophyll a max	chlorophyll a max	chlorophyll a max	chlorophyll a max	chlorophyll a max	chlorophyll a max
	concentration	concentration	concentration	concentration [2005-	concentration	concentration
	[2005-2012]	[2005-2012]	[2005-2012]	2012]	[2005-2012]	[2005-2012]
	11 chlorophyll a mean	chlorophyll a mean	chlorophyll a mean	chlorophyll a mean	chlorophyll a mean	chlorophyll a
	concentration	concentration	concentration	concentration [2005-	concentration	mean
	[2005-2012]	[2005-2012]	[2005-2012]	2012]	[2005-2012]	concentration
						[2005-2012]
	12 chlorophyll a min	chlorophyll a min	chlorophyll a min	chlorophyll a min	chlorophyll a min	chlorophyll a min
	concentration	concentration	concentration	concentration [2005-	concentration	concentration
	[2005-2012]	[2005-2012]	[2005-2012]	2012]	[2005-2012]	[2005-2012]
	13 POC minimum	POC minimum	POC minimum	POC minimum [2005-	POC minimum	POC minimum
	[2005-2012]	[2005-2012]	[2005-2012]	2012]	[2005-2012]	[2005-2012]
	14 POC amplitude	POC standard	POC standard	POC standard	POC standard	POC standard
	[2005-2012]	deviation [2005-	deviation [2005-	deviation [2005-2012]	deviation [2005-	deviation [2005-
		2012]	2012]		2012]	2012]
	15		Chlorophyll a	Chlorophyll a	Chlorophyll a	
			minimum extreme	minimum extreme	minimum extreme	
			events, minimun	events, average	events, minimun	
			values	values	values	
	16			Chlorophyll a		
				minimum extreme		
				events, minimun		
				values		
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11. Modelling performance scores of final modelsTable S2 .

 S2 11. Statistics (mean and standard deviation) measured for each species of models generated with the final set of environmental descriptors (TableS2.10). AUC: Area Under the Curve, COR: biserial Pearson correlation, TSS: True Skill Statistics. The percentage of correctly classified test data is defined by the proportion of test data that falls into pixels predicted as suitable (probability > maxSSS score).

			Acodontaster	Bathybiaster	Glabraster	Labidiaster	Odontaster	Psilaster
			hodgsoni	loripes	antarctica	annulatus	validus	charcoti
	AUC		0.810±0.09	0.871±0.07	0.872±0.07	0.837±0.117	0.830±0.09	0.868±0.05
	TSS		0.461±0.121	0.546±0.08	0.545±0.09	0.492±0.146	0.489±0.120	0.543±0.06
	COR		0.503±0.136	0.632±0.137	0.656±0.121	0.566±0.240	0.561±0.168	0.545±0.100
	Correctly	classified	55.4±11.3	76.0±10.8	80.7±10.1	59.0±17.5	51.6±23.7	78.3±9.3
	test data (%)							

Table 2 . 8

 28 

		Acodontaster	Bathybiaster	Glabraster	Labidiaster	Odontaster	Psilaster charcoti
		hodgsoni	loripes	antarctica	annulatus	validus	(Koehler, 1906)
		(Bell, 1908)	(Sladen, 1889)	(Smith, 1876)	Sladen, 1889	Koehler, 1906	
	Presence-only	298	591	851	375	337	353
	records number						
	Model maximum	1500 m	4000 m	4000 m	1500 m	1500 m	4000 m
	depth						

.8)

. The six species, Acodontaster hodgsoni

(Bell, 1908)

, Bathybiaster loripes (Sladen, 1889), Glabraster antarctica

(Smith, 1876)

, Labidiaster annulatus

Sladen, 1889, Odontaster validus Koehler, 1906 and Psilaster charcoti (Koehler, 1906) 

are abundant and common in benthic communities in the Southern Ocean. The biology, ecology and distribution of these species have been extensively studied and are relatively well documented

(McClintock et al. 2008a, Mah and Blake 2012[START_REF] Lawrence | Starfish: Biology and ecology of the Asteroidae[END_REF]

). Presence-only records were compiled from a recently updated database, thoroughly scrutinised with the World Register of Marine Species (WoRMS Editorial Board 2016), to delete potential discrepancies, update taxonomy and correct for georeferencing errors

[START_REF] Guillaumot | Modelled distributions of benthic species of the Southern Ocean in a fast-changing environment[END_REF]

. Models were generated for the different species using 298-851 presence-only records, and projected at different depth ranges (Table

2.8

). The distributions of these presence-only records are contrasting between species (Appendix 2.13), with A. hodgsoni, B. loripes and G. antarctica having an Antarctic and sub-Antarctic distribution, with an important number of data available for B. loripes and G. antarctica but less data for A. hodgsoni (respectively 591, 851 and 298 presenceonly records). Labidiaster annulatus has a distribution mainly gathered in the sub-Antarctic region with few data available (375 presence-only records). Odontaster validus and P. charcoti are mainly present on the coasts of the Antarctic shelf.
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. Extrapolation in species distribution modelling. Application to Southern Ocean marine species.

Progress in Oceanography. . Sea star species investigated in the present study. The number of presence-only records available was summed up after removal of duplicates from each grid cell pixel. Image sources: Brueggeman 1998, BIOMAR ULB database (P. Pernet), proteker.net, B121 expedition (Q. Jossart).

Table 2 . 9 .

 29 Modelling performances for each species. Average and standard deviation values of the 100 model replicates. Pres. NB: number of presences-only records available for modelling (duplicates excluded); AUC: Area Under the Curve; TSS: True Skill Statistics; COR: Biserial Correlation.
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Table 2

 2 

.8 and Table S2.19), for: (a) Acodontaster hodgsoni, (b) Bathybiaster loripes, (c) Glabraster antarctica, (d) Labidiaster annulatus, (e) Odontaster validus, (f) Psilaster charcoti. For each box, mean values (blue dots) and outliers (black dots) are shown for the 100 model replicates. Some boxes are CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2.
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Table 2 .

 2 10. Equations of simple linear regressions between the number of presence-only records X and the average proportion of extrapolation areas Y (Table2.9, significance levels: * p<0.1, ** p<0.05). The estimate of the number of presence-only records necessary to have a minimum "adequate" arbitrary proportion of extrapolation areas of 10% is given in the last column. Most of the sea star samples were collected close to the coasts of the Western Antarctic Peninsula, the Ross Sea and sub-Antarctic Islands such as the Kerguelen Islands. Consequently, high spatial autocorrelation values were computed, for L. annulatus and O. validus in particular (TableS2.18).

	Species	Equation	R 2	Estimated Pres.NB. (with multiplier of
				actual Pres.NB. available)
	Acodontaster hodgsoni	Y=-0.1358X + 73.616**	0.60	468 (x 1.6)
	Bathybiaster loripes	Y=-0.0249X + 28.974*	0.42	762 (x 1.3)
	Glabraster antarctica	Y=-0.0304X + 44.991**	0.61	1151 (x 1.4)
	Labidiaster annulatus	Y=-0.0913X + 88.078**	0.85	855 (x 2.3)
	Odontaster validus	Y=-0.0561X + 71.112**	0.93	1089 (x 3.2)
	Psilaster charcoti	Y=-0.0301X + 44.613*	0.37	1150 (x 3.3)
	4. DISCUSSION			

4.1. Modelling performances and extrapolation

SDMs were generated for Southern Ocean sea star species, with contrasting distributions and different numbers of presence-only records available (Table

2

.8, Appendix 2.13). Overall, species presence-only records are spatially concentrated in the most accessible and visited areas of the Southern Ocean.

  , the selection and quality of environmental descriptors(Davies et al. 2008, Synes and Osborne 2011), the choice of modelling algorithms and the definition of model settings(Hartley et al. 2006, Marmion et al. 2009). Providing such uncertainty information, highlighted with some model statistics is very much encouraged here, as they are essential to model interpretation (Beale and Lennon 2012,Guisan et al. 2013[START_REF] Yates | Outstanding challenges in the transferability of ecological models[END_REF]).

  .9). Restraining model projection areas based on species ecological or physiological tolerance thresholds is a common approach in ecological modelling using experimental data or field observations(Kearney and Porter 2009, Hare et al. 2012[START_REF] De Villiers | Combining field phenological observations with distribution data to model the potential distribution of the fruit fly Ceratitis rosa Karsch (Diptera: Tephritidae)[END_REF]).

	Knowledge
	of species ecology and physiology can also be useful to delineate transferability areas (Feng and
	Papes 2017) and improve distribution models, as recently shown for Southern Ocean species
	(Guillaumot et al. 2018a, Guillaumot et al. 2019 -Chapter 2). Feng et al. (2020) developed a new
	modelling algorithm, called Plateau, which uses experimental data to define upper temperature
	conditions in distribution models. For temperature and salinity, physiological experiments and field

observations can be used in models to determine species tolerance thresholds. This requires knowledge about the species ecology and physiology and the input from specialists, all conditions that remain difficult to meet, regarding deep-sea species of the Southern Ocean

(Gage 2004[START_REF] Gutt | Marine Life in the Antarctic[END_REF][START_REF] De Broyer | How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species[END_REF]

. Moreover, several studies suggested that some Southern Ocean species might have found refuges in deep sea habitats in the past, during glacial maxima, which makes species depth range difficult to precise when deep and shallow populations have not CHAPTER 2.
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Table S2 .

 S2 [START_REF] Guillaumot | Modelling species distribution shifts with environmental changes in data-poor areas. An example from the Kerguelen Plateau[END_REF] List of species-specific environmental descriptors selected to generate final models after removal from the initial dataset of spatial distance descriptors, descriptors that always contribute less than 1% to SDMs[START_REF] Guillaumot | Selecting environmental descriptors is critical to modelling the distribution of Antarctic benthic species[END_REF] -Chapter 2) and collinear descriptors. Extracted from the list of 58 layers available at https://data.aad.gov.au/metadata/records/environmental_layers[START_REF] Guillaumot | Extrapolation in species distribution modelling. Application to Southern Ocean marine species[END_REF]).

	Acodontaster	Bathybiaster	Glabraster	Labidiaster	Odontaster	Psilaster
	hodgsoni	loripes	antarctica	annulatus	validus	charcoti
	depth	depth	depth	depth	depth	depth
	geomorphology	geomorphology geomorphology	geomorphology	geomorphology	geomorphology
	sediments	sediments	sediments	sediments	sediments	sediments
	slope	slope	slope	slope	slope	slope
	roughness	roughness	roughness	roughness	roughness	roughness
	mixed layer depth	mixed layer depth	mixed layer depth	mixed layer depth	mixed layer depth	mixed layer depth
	seasurface current	seasurface	seasurface	seasurface	seasurface	seasurface
	speed	current speed	current speed	current speed	current speed	current speed
	seafloor current	seafloor current	seafloor current	seafloor current	seafloor current	seafloor current
	speed	speed	speed	speed	speed	speed
	ice cover mean	ice cover mean	ice cover mean	ice cover mean	ice cover mean	ice cover mean
	chlorophyll a max concentration [2005-2012]	chlorophyll a max concentration [2005-2012]	chlorophyll a max concentration [2005-2012]	chlorophyll a max concentration [2005-2012]	chlorophyll a max concentration [2005-2012]	chlorophyll a max concentration [2005-2012]
	chlorophyll a mean concentration [2005-2012]	chlorophyll a mean concentration [2005-2012]	chlorophyll a mean concentration [2005-2012]	chlorophyll a mean concentration [2005-2012]	chlorophyll a mean concentration [2005-2012]	chlorophyll a mean concentration [2005-2012]
	chlorophyll a min concentration [2005-2012]	chlorophyll a min concentration [2005-2012]	chlorophyll a min concentration [2005-2012]	chlorophyll a min concentration [2005-2012]	chlorophyll a min concentration [2005-2012]	chlorophyll a min concentration [2005-2012]

16. Multivariate Environmental Similarity Surface principle Figure S2.16. Illustrated

  

. Extrapolation in species distribution modelling. Application to Southern Ocean marine species. Progress in Oceanography. APPENDIX 2.principle of the Multivariate Environmental Similarity Surface approach.

18. Influence of the chronological addition of presence-only records on extrapolation area Table S2.18.

  Evolution of model performances with the increase of data (chronological addition of presenceonly records, by 5-year periods, from 1980 to 2016). Pres. NB: number of presence-only records used to generate the model; AUC: Area Under the Curve; Moran I index: spatial autocorrelation scores measured on model residuals (mean and standard deviation values are given). The maximal number of presence-only records present in Table2.9 may not be reached here because some collection dates remain unknown.

		CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS	CHAPTER 2. CHAPTER 2. CHAPTER 2.
		Year	Pres.	AUC	Correctly classified	Moran I	Extrapolation	Extrapolation (%
			NB		test data (%)		(% total area)	suitable area)
	Labidiaster	1980	162	0.900 ± 0.04	61.6 ± 26.9	0.17 ± 0.08	77.1		56.2 ± 11.9
	annulatus							
		1985	175	0.902 ± 0.04	64.4 ± 21.8	0.17 ± 0.07	72.2		52.4 ± 12.5
		1990	183	0.905 ± 0.03	66.2 ± 24.1	0.16 ± 0.07	70.5		47.7 ± 10.3
		1995	192	0.897 ± 0.03	63.6 ± 20.8	0.16 ± 0.07	70.5		48.6 ± 14
	Species	Year 2000	Pres. NB 194	AUC 0.903 ± 0.03	Correctly classified test data (%) 71.2 ± 20	Moran I 0.16 ± 0.07	Extrapolation (% total area) 70.5	Extrapolation (% suitable area) 45.4 ± 11.7
	Acodontaster	2005	85 218	0.843 ± 0.06 0.903 ± 0.04	42.2 ± 21.6 63.4 ± 16.1	0.24 ± 0.06 0.18 ± 0.09	73.59 63.3		57.9 ± 9.6 47.5 ± 11.5
	hodgsoni	2010	147 304	0.836 ± 0.05 0.913 ± 0.05	45.5 ± 17.5 60.7 ± 18	0.14 ± 0.04 0.18 ± 0.09	52.2 60.5		42.5 ± 7.5 44.8 ± 14
		2016	170 330	0.822 ± 0.07 0.921 ± 0.03	43.7 ± 22.9 62.4 ± 15.8	0.13 ± 0.03 0.17 ± 0.08	44.5 59.5		39.4 ± 9.6 41.5 ± 12.1
		Year	171 Pres. NB	0.835 ± 0.05 AUC	48.1 ± 18.7 Correctly classified test data (%)	0.13 ± 0.03 Moran I	44.5 Extrapolation (% total area)	Extrapolation (% 38.6 ± 8.7 suitable area)
	Odontaster	1980	180 163	0.827 ± 0.06 0.860 ± 0.06	44.3 ± 19.9 60.1 ± 16.6	0.12 ± 0.03 0.17 ± 0.10	43.5 62.8		35 ± 8.1 52.4 ± 7.5
	validus	1985	197 191	0.836 ± 0.05 0.883 ± 0.06	48.9 ± 20.7 66.2 ± 16	0.11 ± 0.04 0.15 ± 0.08	43.5 61.6		35.2 ± 8.6 49.9 ± 6.9
		1990	252 198	0.829 ± 0.06 0.875 ± 0.07	45.3 ± 16.9 61.8 ± 17.7	0.10 ± 0.03 0.16 ± 0.07	43 58.9		31.4 ± 8.1 44.7 ± 8.2
		1995	280 200	0.821 ± 0.06 0.873 ± 0.07	47.9 ± 15.3 66.8 ± 16.1	0.10 ± 0.02 0.16 ± 0.08	42.9 58.9		29.3 ± 7.3 44.2 ± 7.3
		Year 2000	Pres. NB 222	AUC 0.856 ± 0.08	Correctly classified test data (%) 63.3 ± 15.4	Moran I 0.13 ± 0.05	Extrapolation (% total area) 58.1	Extrapolation (% suitable area) 45.7 ± 9.4
	Bathybiaster	2005	193 283	0.860 ± 0.05 0.922 ± 0.03	61.6 ± 16.2 50.7 ± 23.5	0.13 ± 0.09 0.13 ± 0.05	30.9 55.5		29.2 ± 11.1 42.5 ± 6
	loripes	2010	252 306	0.855 ± 0.05 0.920 ± 0.02	66.6 ± 14.5 51.1 ± 24.9	0.12 ± 0.07 0.12 ± 0.05	21.6 54.8		27.7 ± 6.6 38.9 ± 6.9
		2016	269 321	0.849 ± 0.04 0.914 ± 0.02	70 ± 13.1 53.1 ± 24.1	0.10 ± 0.06 0.13 ± 0.05	21.6 52.6		27.7 ± 6.7 37.6 ± 7.5
		Year	286 Pres. NB	0.854 ± 0.03 AUC	69.7 ± 13.6 Correctly classified test data (%)	0.10 ± 0.06 Moran I	18.6 Extrapolation (% total area)	Extrapolation (% 26.3 ± 6.4 suitable area)
	Psilaster	1980	299 134	0.850 ± 0.03 0.847 ± 0.05	71.8 ± 13.3 50.4 ± 24.2	0.10 ± 0.05 0.11 ± 0.07	18.5 46.7		25.2 ± 5.8 39.4 ± 7.2
	charcoti	1985	349 182	0.869 ± 0.04 0.848 ± 0.05	74 ± 12.6 76.4 ± 10.6	0.10 ± 0.04 0.10 ± 0.06	18.2 36.9		25.4 ± 5.2 37.8 ± 3.9
		1990	480 200	0.878 ± 0.03 0.844 ± 0.05	77.8 ± 11.3 81.4 ± 10.7	0.09 ± 0.03 0.10 ± 0.06	18.2 36.3		22 ± 4.3 39.5 ± 3.9
		1995	521 203	0.879 ± 0.03 0.851 ± 0.04	80.7 ± 9.1 79.7 ± 11.8	0.10 ± 0.03 0.12 ± 0.07	18.2 36.3		22.2 ± 4.3 38.1 ± 4.3
		Year 2000	Pres. NB 220	AUC 0.861 ± 0.04	Correctly classified test data (%) 81.6 ± 7.1	Moran I 0.10 ± 0.05	Extrapolation (% total area) 36.3	Extrapolation (% suitable area) 37.4 ± 4.5
	Glabraster	2005	296 257	0.895 ± 0.03 0.867 ± 0.03	69.2 ± 14.6 79.5 ± 8.1	0.14 ± 0.06 0.10 ± 0.05	44.4 36.3		30.4 ± 8.5 36.4 ± 4.1
	antarctica	2010	374 321	0.894 ± 0.04 0.878 ± 0.03	76.1 ± 10.7 83.5 ± 7.1	0.10 ± 0.04 0.10 ± 0.04	30.3 35.8		24.8 ± 4.6 33.8 ± 4.2
		2016	421 353	0.900 ± 0.03 0.891 ± 0.02	78.3 ± 11.1 82 ± 7.1	0.11 ± 0.04 0.10 ± 0.04	30.1 35.7		25.8 ± 6.1 32.9 ± 4.2
			439	0.894 ± 0.03	79.7 ± 10.5	0.10 ± 0.03	30		23.9 ± 5.2
			472	0.900 ± 0.02	80 ± 10.7	0.10 ± 0.03	30		23.9 ± 4.8
			535	0.907 ± 0.02	81.4 ± 7.3	0.11 ± 0.03	24.1		22.7 ± 4.6
			719	0.910 ± 0.02	84 ± 7.4	0.10 ± 0.03	23.9		18.9 ± 4
			804	0.914 ± 0.02	83.1 ± 6.4	0.10 ± 0.03	23.9		19.2 ± 3.8
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19. Influence of the addition of presence-only records on extrapolation areaTable S2 .

 S2 19. Evolution of model performances with a random increase of data number (10 to 100% of the available presence datasets, randomly sampled). Measured average and standard deviation values. Pres. NB: corresponding number of presence-only records used to generate the model; AUC: Area Under the Curve; Moran I index: spatial autocorrelation scores measured on model residuals. The cells with no figure information correspond to models that could not be generated due to a too low number of presence records.

							CHAPTER 2. CHAPTER 2.
		30	340	0.889 ± 0.03 0.844 ± 0.05	84.5 ± 8.3 84.5 ± 9.7	0.11 ± 0.04 0.10 ± 0.06	38.4 ± 7.9 58 ± 11.4	29.9 ± 6.4 49 ± 5.8
		40	426	0.896 ± 0.03 0.861 ± 0.04	83.7 ± 7.8 84.3 ± 9.5	0.11 ± 0.04 0.11 ± 0.06	33 ± 5.9 53.3 ± 10.3	27.6 ± 5.7 45.9 ± 5.7
		50	511	0.899 ± 0.02 0.863 ± 0.04	81.2 ± 8.7 82.4 ± 9.8	0.11 ± 0.04 0.11 ± 0.06	30.1 ± 5.3 48 ± 9.7	25 ± 5.5 41.9 ± 5.3
		60	596	0.903 ± 0.02 0.870 ± 0.03	81.2 ± 7.9 83.6 ± 8.8	0.10 ± 0.03 0.11 ± 0.06	28.9 ± 5.1 44.1 ± 8.1	22.9 ± 5.1 39.7 ± 4.8
		70	681	0.908 ± 0.02 0.875 ± 0.03	80.7 ± 8.5 82 ± 8.6	0.11 ± 0.03 0.10 ± 0.04	27.1 ± 3.3 41.3 ± 6.3	21.3 ± 4.5 38 ± 4.8
		80	766	0.913 ± 0.02 0.876 ± 0.03	80.2 ± 8.2 83.2 ± 7.6	0.10 ± 0.02 0.10 ± 0.05	25.4 ± 2.7 40.1 ± 6.3	19.6 ± 4.3 36.7 ± 5.1
	Species	NB % Pres. 100 851 90	AUC 0.915 ± 0.01 0.885 ± 0.02	test data (%) Correctly classified 81.8 ± 7.7 82.2 ± 8.1	Moran I 0.10 ± 0.03 0.10 ± 0.04	(% total area) Extrapolation 23.9 37 ± 1.65	(% suitable area) Extrapolation 18.64 ± 3.5 34.4 ± 5.1
	Acodontaster	10 % Pres. 30 NB 100	-AUC 0.885 ± 0.02	-test data (%) Correctly classified 83 ± 6.6	-Moran I 0.09 ± 0.04	-(% total area) Extrapolation 35.78	-(% suitable area) Extrapolation 33.2 ± 5.1
	hodgsoni Labidiaster	20	60 38	--	--	--	--	--
	annulatus	30	89 75	--	--	--	--	--
		40	113	0.808 ± 0.05 -	45.8 ± 19.4 -	0.10 ± 0.04 -	56.3 ± 5.1 -	43.1 ± 7.9 -
		50	150	0.821 ± 0.04 0.850 ± 0.12	46.2 ± 16.2 59.1 ± 23.2	0.10 ± 0.03 0.17 ± 0.08	52 ± 4.4 69.8 ± 3.8	40.4 ± 9.5 46.7 ± 15.4
		60	188	0.812 ± 0.05 0.897 ± 0.06	46.5 ± 16.9 58.1 ± 20	0.10 ± 0.03 0.17 ± 0.09	48 ± 3.4 67.4 ± 3.5	36 ± 9 48.1 ± 14.5
		70	225	0.818 ± 0.05 0.898 ± 0.05	45.1 ± 16 55.4 ± 19.4	0.10 ± 0.02 0.15 ± 0.07	45.5 ± 2.9 64.9 ± 3.1	32.3 ± 7.7 45.5 ± 14.8
		80	263	0.821 ± 0.05 0.903 ± 0.05	45.8 ± 18.1 59.7 ± 18.7	0.09 ± 0.02 0.18 ± 0.1	43.8 ± 1.9 63 ± 2.5	30.7 ± 8.3 44.2 ± 15.6
		90	300	0.832 ± 0.05 0.918 ± 0.03	45 ± 17.8 58.4 ± 20	0.10 ± 0.02 0.16 ± 0.08	42 ± 1.5 61.2 ± 1.6	28.1 ± 6.4 39.7 ± 13.1
		100	338	0.823 ± 0.05 0.923 ± 0.03	45.5 ± 18.1 57.7 ± 18.7	0.09 ± 0.02 0.15 ± 0.06	40.6 60.4 ± 1.3	27.5 ± 8.5 38.9 ± 14.1
		NB % Pres. 100 375	AUC 0.918 ± 0.03	test data (%) Correctly classified 57.98 ± 20	Moran I 0.15 ± 0.06	(% total area) Extrapolation 59.5	(% suitable area) Extrapolation 38.7 ± 14.6
	Bathybiaster	10 % Pres. 59 NB	-AUC	-Correctly classified test data (%)	-Moran I	-Extrapolation (% total area)	-Extrapolation (% suitable area)
	loripes Odontaster	20	33	--	--	--	--	--
	validus	30	67	--	--	--	--	--
		40	101	0.863 ± 0.06 -	73.8 ± 12.5 -	0.10 ± 0.04 -	37.2 ± 9 -	31.5 ± 7.3 -
		50	135	0.869 ± 0.04 0.873 ± 0.05	75.5 ± 12 55.6 ± 25.4	0.10 ± 0.04 0.13 ± 0.08	31.4 ± 7.7 63.9 ± 4.1	28.4 ± 7.2 54.3 ± 9.5
		60	169	0.876 ± 0.03 0.878 ± 0.05	75.6 ± 12.8 58.3 ± 21.1	0.09 ± 0.04 0.13 ± 0.06	27.4 ± 6.4 60.5 ± 3.5	25.4 ± 5.7 49.9 ± 8.5
		70	202	0.881 ± 0.03 0.896 ± 0.03	75.7 ± 12.6 52 ± 23.3	0.09 ± 0.03 0.14 ± 0.06	23.7 ± 3.8 58.3 ± 3	25 ± 5.6 45.3 ± 9.2
		80	236	0.888 ± 0.02 0.899 ± 0.04	76.8 ± 11.7 54.4 ± 23.2	0.10 ± 0.04 0.13 ± 0.06	21.7 ± 3.4 56 ± 2.5	24.3 ± 5.6 44.9 ± 8.1
		90	270	0.882 ± 0.03 0.900 ± 0.03	76.5 ± 12.6 55.9 ± 22.8	0.09 ± 0.02 0.13 ± 0.04	19.5 ± 1.9 54.7 ± 2.2	22.4 ± 5.5 38.9 ± 6.7
		100	303	0.887 ± 0.03 0.911 ± 0.03	78.4 ± 11 52.8 ± 23	0.09 ± 0.02 0.12 ± 0.05	18.2 52.7 ± 1.4	20.8 ± 4.8 38.1 ± 7.7
	Glabraster	100 % Pres. 337 NB 10 85 % Pres. NB	AUC 0.908 ± 0.03 -AUC	Correctly classified 57.68 ± 21 test data (%) -Correctly classified test data (%)	Moran I 0.12 ± 0.04 -Moran I	Extrapolation 51.5 (% total area) -Extrapolation (% total area)	Extrapolation 38.3 ± 6.97 (% suitable area) -Extrapolation (% suitable area)
	antarctica Psilaster	20	35	0.872 ± 0.04 -	82.7 ± 10.3 -	0.12 ± 0.05 -	50.9 ± 11.2 -	40.2 ± 7.7 -
	charcoti	30	71	0.883 ± 0.03 0.837 ± 0.06	82.8 ± 9.3 82.9 ± 14.7	0.11 ± 0.04 0.09 ± 0.06	42.6 ± 9.2 70.8 ± 12.1	34.5 ± 5.8 55.7 ± 7.9
					Progress in Oceanography.		
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. Is the southern crab Halicarcinus planatus

(Fabricius, 1775) 

the next invader of Antarctica? Global Change Biology.

  All experiments were performed in compliance with bioethics guidelines established by the Comisión Nacional de Ciencia y Tecnología de Chile (CONICYT) and the CICUA from Universidad de Chile (Comité Institucional de Cuidado y Uso de Animales). One hundred and twenty adult specimens of H. planatus were collected alive in the subtidal zone by SCUBA diving at Rinconada Bulnes (RB) (53°35'49.91"S, 70°56'5.19"W, south to Punta Arenas, Chile) on April 9, 2018. Individuals were transported to the IDEAL-CENTER laboratory (Punta Arenas) and distributed in six containers for the experiment. In each container (Appendix 3.1), 15 females and five males were isolated individually in a 1-dm 3 glass jar of seawater containing a 2-cm-long PVC tube

	2.1. Experimental design
	Ethical Protocol.
	Thermotolerance experiments.

Table 3 . 1 .

 31 Environmental descriptors used for modelling and sources. Spatial resolution set at 5 arc minutes (around 8 km).

	Descriptors	Present	Future	Source
	Depth	-	-	GEBCO 1
	Roughness	-	-	Modified from Depth layer,
				'raster' R package function terrain
	Slope	-	-	Modified from Depth layer,
				'raster' R package function terrain
	Seafloor mean temperature	2000-2014	RCP 2.6 and 8.5 for 2050 and 2100	BioOracle 2
	Seafloor min temperature	2000-2014	RCP 2.6 and 8.5 for 2050 and 2100	BioOracle 2
	Seafloor max temperature	2000-2014	RCP 2.6 and 8.5 for 2050 and 2100	BioOracle 2
	Seafloor mean salinity	2000-2014	RCP 2.6 and 8.5 for 2050 and 2100	BioOracle 2
	Seafloor min salinity	2000-2014	RCP 2.6 and 8.5 for 2050 and 2100	BioOracle 2
	Seafloor max salinity	2000-2014	RCP 2.6 and 8.5 for 2050 and 2100	BioOracle 2
	Seafloor mean primary productivity	2000-2014	Same as present conditions	BioOracle 2
	Seafloor min primary productivity	2000-2014	Same as present conditions	BioOracle 2
	Seafloor max primary productivity	2000-2014	Same as present conditions	BioOracle 2
	Ice mean thickness	2000-2014	RCP 2.6 and 8.5 for 2050 and 2100	BioOracle 2
	Ice min thickness	2000-2014	RCP 2.6 and 8.5 for 2050 and 2100	BioOracle 2
	Ice max thickness	2000-2014	RCP 2.6 and 8.5 for 2050 and 2100	BioOracle 2
	Seafloor mean current	2000-2014	Same as present conditions	BioOracle 2
	1. https://download.gebco.net/, accessed February 2020	
	2. https://www.bio-oracle.org/index.php, accessed February 2020	

Table 3 . 2 .

 32 Average contribution values and standard deviation (SD) of the 16 environmental descriptors to model predictions.

	Descriptor	Mean ± SD (%) Descriptor	Mean ± SD (%)
	Mean Ice thickness	40.1 ± 3.2	Mean seafloor primary production	0.8 ± 0.1
	Mean Seafloor temperature	37.8 ± 3.7	Max seafloor primary production	0.5 ± 0.02
	Max Seafloor temperature	7.6 ± 1.9	Depth	0.5 ± 0.05
	Min Seafloor temperature	6.9 ± 2.4	Slope	0.2 ± 0.06
	Min Seafloor salinity	1.4 ± 0.2	Roughness	0.1 ± 0.03
	Mean Seafloor salinity	1.4 ± 0.1	Max Seafloor salinity	0.1 ± 0.03
	Mean Seafloor current speed	1.3 ± 0.2	Max seafloor primary production	0.001 ± 0.001
	Max Ice thickness	1.1 ± 0.1	Min Ice thickness	0
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. Is the southern crab Halicarcinus planatus

(Fabricius, 1775) 

the next invader of Antarctica? Global Change Biology.

  Hyas araneus (Decapoda) from Elephant Island in the 1980s (McCarthy et al. 2019); Ectopleura crocea (Hydrozoa) off Dronning Maud Land and off Queen Mary Land (East Antarctica); and Ciona intestinalis (Ascidiacea) off Dronning Maud Land (East Antarctica) in the 1990s (McCarthy et al. 2019). Newer records since 2000 include Emerita sp. and Pinnotheres sp. (larval stage) in King George Islands in the 2000s (Thatje and Fuentes 2003); H. planatus from Deception Island (Aronson et al. 2014); Membranipora membranacea (Bryozoa) and Macrocystis pyrifera (Brown algae) from Deception Island (Avila et al. 2020); Durvillaea antarctica (Brown Algae) from King George Island (Fraser et al. 2018) and Livingston Island (Avila et al. 2020); and Mytilus cf. platensis (Bivalvia) in King George Island (Cárdenas et al. 2020) in the 2010s. There are potentially several different modes of dispersal for species to reach Antarctica. Fraser et al. (2018) and Avila et al. (2020) identified dispersal by rafting on buoyant kelps as a possible mechanism for the arrival of non-native species to Antarctica. The former study also included a Lagrangian analysis to show that particles released from South Georgia and the Kerguelen Islands were able to drift across the Polar Front and reach Antarctic coasts following strong storm events.

	);
	Bugula neritina (Bryozoa) off Dronning Maud Land (East Antarctica) in the 1960s (McCarthy et al.
	2019);

According to this model, storm conditions may enable buoyant kelps to reach the WAP. Such conditions may not be rare, as remains of the kelp D. antarctica were observed onshore in the WAP in 2019 and 2020 (López-Farrán personal observation). Direct observations (from southern New Zealand) of Halicarcinus adult individuals associated with D. antarctica holdfasts, and also in detached, drifting D. antarctica at sea (Waters unpublished data) imply rafting as a direct mechanism for adults of this decapod taxon into Antarctic waters. Anthropogenic activities may also be potential dispersal vectors for this decapod

(Avila et al. 2020[START_REF] Cárdenas | First mussel settlement observed in Antarctica reveals the potential for future invasions[END_REF] 

; e.g. via ship hulls, ballast waters, outdoor and personal equipment of tourists or oceanographic equipment of scientists).

  . During three scuba diving campaigns between 2017 and 2019, we searched for H. planatus in several places in the WAP, including where it was collected in 2010 -shallow waters off Baily Head outside the caldera of Deception Island(Aronson et al. 2014) -and other active sites (within the caldera of Deception Island, in Penguin Island (South Shetland Islands), and Paulet Island in the Weddell Sea), or inactive sites like King George Island (South Shetland Islands), Doumer Island, Roberts Island, Coppermine Peninsula, Chile Bay in Greenwich Island, among other places, and none were found. This absence agrees with our results, but contradicts the presence of the ovigerous female in Deception Island(Aronson et al. 2014), which would need at least two years to reach pubertal molt, the time required in the Kerguelen Islands (Richer De

  and duration (Stammerjohn et al. 2012). In the last report (IPCC 2015) of the Intergovernmental Panel on Climate Change (IPCC), CMIP5 (Coupled Model Intercomparison Project) climate models predict a global warming of the entire water column south of the Polar Front by the end of the century under either moderate (RCP 4.5) or business-as-usual Representative Concentration Pathway scenarios (RCP 8.5) (Turner et al.

  ). In contrast, ENMm (such as the projection of Dynamic Energy Budget models, DEB, Kooijman 2010) have never been developed for Antarctic species case studies so far, due to the more important amount of data required to implement the DEB model (eco-physiological data on the different species life stages; van der Meer 2006, Kearney and Porter 2009), and the novelty of the DEB projection method (Thomas and Bacher 2018).

Once created, DEB models are published in the Add-my-Pet collection (https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/about.html)

Table 3 . 3 .

 33 DEB parameter values estimated by the covariation method(Lika et al. 2011a, 2011b[START_REF] Marques | The AmP project: comparing species on the basis of dynamic energy budget parameters[END_REF] 

	DEB parameter	Unit	Value
	𝑧, zoom factor	-	1.364
	𝛿 𝑀.𝑒𝑚𝑏 , shape coefficient embryos	-	0.487
	𝛿 𝑀.𝑙𝑟𝑣 , shape coefficient larvae	-	0.505
	𝛿 𝑀 , shape coefficient	-	0.612
	{𝐹 𝑚 ̇}, max. specific searching rate	L.d -1 .cm -2	6.5
	𝜅 𝑋 , digestion efficiency of food to reserve	-	0.83
	𝑣, energy conductance	cm.d -1	0.033
	𝜅, allocation fraction to soma	-	0.722
	𝜅 𝑅 , reproduction efficiency	-	0.95
	[𝑝 𝑀 ] ̇, vol-specific somatic maintenance	J.cm -3 .d -1	24.42
	𝑘 𝐽 ̇, maturity maintenance rate coefficient	d -1	2.5. 10 -3
	[𝐸 𝐺 ], specific cost for structure	J.cm -3	2350
	𝐸 𝐻 𝑏 , energy maturity at birth	J	4.5. 10 -3
	𝐸 𝐻 𝑗 , energy maturity at metamorphosis	J	0.3
	𝐸 𝐻 𝑝 , energy maturity at puberty	J	2266
	ℎ 𝑎 ̈, Weibull aging acceleration	d -2	2. 10 -8
	𝑆 𝐺 , Gompertz stress coefficient	-	1. 10 -4

Table 3 . 4 .

 34 Matrices of priors used to calibrate 'integrated Bayesian' models for February and August, with the equation y=b0 + b1*depth + b2*f + b3*temperature + b4*temperature 2 + b5*f 2 . Tau is the inverse of the variance (1/Standard deviation 2 ), arbitrarily set at 0.01 (i.e. variance = 100) when the parameter is considered to be a vague prior.

	Parameter		Source	Mean	St. deviation	Tau
	b0	intercept	simple SDM	-18.37 (Feb.)	11.00 (Feb.)	0.01 (Feb.)
				0.32 (Aug.)	3.98 (Aug.)	0.01 (Aug.)
	b1	depth	simple SDM	0.18 (Feb.)	0.01 (Feb.)	0.01 (Feb.)
				0.16 (Aug.)	0.01 (Aug.)	0.01 (Aug.)
	b2	f	Physiological submodel	-0.89 (Feb.)	0.09 (Feb.)	125.16 (Feb.)
				8.43 (Aug.)	0.06 (Aug.)	260.22 (Aug.)
	b3	temperature	simple SDM	1.03 (Feb.)	2.99 (Feb.)	0.01 (Feb.)
				-0.19 (Aug.)	2.60 (Aug.)	0.01 (Aug.)
	b4	temperature 2	simple SDM	0.19 (Feb.)	0.22 (Feb.)	0.01 (Feb.)
				-0.09 (Aug.)	0.47 (Aug.)	0.01 (Aug.)
	b5	f 2	Physiological submodel	27.78 (Feb.)	0.15 (Feb.)	41.64 (Feb.)
				11.38 (Aug.)	0.20 (Aug.)	25.88 (Aug.)

Table 3 . 5 .

 35 Comparison of model performances (percentage of presence data correctly classified and Area Under the Curve, AUC, metric) for the two seasons. Average and standard deviation of 50 model replicates.

		Spatial DEB	Simple SDM	Integrated SDM-	Integrated
				DEB	Bayesian
	% presence data correctly	96.15% (Feb.)	77.8 ± 12.8 (Feb.)	67.3 ± 18.1 (Feb.)	81.7 ± 12.1 (Feb.)
	classified	38.5% (Aug.)	94.8 ± 1.9 (Aug.)	94.4 ± 6.1 (Aug.)	88.8 ± 7.1 (Aug.)
	AUC		0.71 ± 0.03 (Feb.)	0.60 ± 0.12 (Feb.)	0.80 ± 0.02 (Feb.)
			0.72 ± 0.03 (Aug.)	0.75 ± 0.04 (Aug.)	0.76 ± 0.02 (Aug.)

  . The heterogeneity of presence sampling induce statistical artefacts that can bias model predictions (Bahn and McGill 2007, Currie 2007), a substantial limitation that has already been stressed in former works on the Southern Ocean (Guillaumot et al. 2018a -Appendix, Guillaumot et al. 2020b -Chapter 2, Guillaumot et al. in press -Chapter 2). Compared to SDMs, mechanistic models require more data (and require a good knowledge of species ecology or physiology) for parameter estimation and model implementation (Kearney and Porter 2009). However, if the model can be built, the approach is powerful to evaluate the survival capacity of individuals in given environmental conditions (Arnould-Pétré et al. 2020 -Chapter 1, Fabri-Ruiz et al. in press -Chapter 3) and can estimate the species fundamental niche (Kearney and Porter 2009).

  ). Conversely, ignoring the effect of seasonality in ecological niche estimation has been recently shown to reduce prediction performance(Smeraldo et al. 2018). Seasonality is a fundamental feature of environmental systems. It is particularly critical to life in temperate and high latitudes, and one key phenomenon to consider for studying both species distribution (Morelle and Lejeune 2015,[START_REF] Zuckerberg | Novel seasonal land cover associations for eastern North American forest birds identified through dynamic species distribution modelling[END_REF] metabolism (Bahlburg et al. 2021).

  and constrains the evaluation process(Pearson et al. 2007) (reviewed in. Therefore, common validation approaches such as the cross-validation method (that uses a part of the dataset to train the model and another part to test it independently,[START_REF] Hijmans | Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model[END_REF], Guillaumot et al. 2019 -Chapter 2) could not have been used for our study, which limited the power of our model evaluation.

Table S3 .

 S3 17.B.Comparison between daily in situ temperatures (°C) recorded by the PROTEKER program at defined stations within the Golfe du Morbihan (Fig.3.19) and satellite-derived sea surface temperatures from the MUR dataset. Temperatures at Port-aux-Français are measured at a 2-minutes frequency by a tide gauge installed on the dock, at shallow depth. It is highly influenced by warm air temperatures.

			INTEGRATED APPROACHES	CHAPTER 3.
	Station (Latitude ; Longitude)	February 9th, 2017	August 20th, 2017
		In situ T° (°C)	MUR (°C)	In situ T° (°C)	MUR (°C)
	Ile Haute (-49.3875 ; 69.9415)	6.87	7.31	3.03	2.71
	Ile Longue (-49.5387 ; 69.8838)	7.77	6.98	3.13	3.07
	Port aux Français (-49.352 ; 70.221)	9.37	7.31	3.21	2.95
	Ile Suhm (-49.493 ; 70.1613)	7.34	7.24	3.04	2.87
	Ilot Channer (-49.3826 ; 70.1857)	8.36	7.33	3.1	2.91
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. Simple or hybrid? The performance of next generation ecological models to study the response of Southern Ocean species to changing environmental conditions. Diversity and Distributions.

  The first study (presented in the appendix section) used a lagrangian model to evaluate the capacity of the Patagonian crab Halicarcinus planatus(Fabricius, 1775) to reach Antarctic coasts. The model was developed at the scale of the Southern Ocean. Propagules were launched from South America southern tip and from some sub-Antarctic Islands, were the crab was observed. The model simulated particle drift in 3D and according to several climatic scenarios (negative or positive Southern Annular Mode index). Results highlighted an eastward drift and the impossibility of propagules to reach Antarctic coasts in any scenario: they are blocked by the Antarctic Circumpolar Current.The second study focussed on the Western Antarctic Peninsula region. From the previous study, it was hypothesized that the female individual of Halicarcinus planatus found in Deception Island in 2010, should have been brought by ballast waters released closeby Antarctic coasts. The lagrangian model was used to simulate the passive drift of virtual propagules departing from ballast waters released at contrasting distances from the nearest coasts: 200 (international guidelines), 50 or 11 nautical miles. Results showed that releasing ballast waters at 200 nautical miles considerably reduces the arrival of propagules in proposed marine protected areas. Simulations suggested that the crab could have reached Deception Island only if the international guidelines have been violated, with ballast water exchanged at 50 nautical miles or less from the coasts.

	CHAPTER 4	DISPERSAL MODELS: LAGRANGIAN APPROACH
	Chapter 4 finally focusses on another driver of the species ecological niche and BAM
	diagram: dispersal capacities. Among modelling approaches that exist to model the
	movement of propagules in water masses are lagrangian models. This approach was
	exemplified in this chapter.	

  , as already reported for terrestrial (e.g. the bluegrass Poa annua, the brachypterous chironomid Eretmoptera murphyi or the enchytraeid worm Christensenidrilus blocki,[START_REF] Hughes | The protection of Antarctic terrestrial ecosystems from inter-and intracontinental transfer of non-indigenous species by human activities: A review of current systems and practices[END_REF][START_REF] Chown | Challenges to the future conservation of the Antarctic[END_REF][START_REF] Chwedorzewska | Poa annua in the maritime Antarctic: an overview[END_REF] and marine environments (e.g. the seaweed Ulva intestinalis, the crab Hyas araneus, the mussel Mytilus platensis or the tunicate Ciona intestinalis, seeHughes et al. 2019 and[START_REF] Mccarthy | Antarctica: The final frontier for marine biological invasions[END_REF] for a review). Introduction of non-native species have almost exclusively been reported in the vicinity of research stations and visitor landing sites

  text of the Antarctic Treaty Consultative Meeting(ATCM, 2006) provides practical guidelines for ballast water release in the SO to mitigate the risk of introducing non-native species in coastal areas. Point 5 of the text says "For vessels needing to discharge ballast water within the Antarctic Treaty area, ballast water should [...] (be released) at least 200 nautical miles from the nearest land [...] if this is not possible for operational reasons then such exchanges should be undertaken in waters at least 50 nautical miles from the nearest land". Complementary, the International Maritime Organization (IMO) adopted the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWM) in September 2017 (http://www.imo.org/en/About/Conventions/ListOfConventions/Pages/International-Convention-for-

  . A bouncing condition is used for particles Article. Dulière/Guillaumot et al. (submitted). Dispersal model alert on the risk of alien species introduction by ballast waters in protected areas from the Western Antarctic Peninsula. Diversity and Distributions.

	DISPERSAL MODELS: LAGRANGIAN APPROACH	CHAPTER 4.

  WAP, was assessed by analyzing particle entry into proposed MPAs. Proposed MPAs for this region are the interest of the Chilean and Argentinian delegations at CCAMLR. The SC-CAMLR-38/BG/03 report (CCAMLR report SC-CAMLR-38/BG/03 2019), proposes seven regulated areas, selected according to multiple arguments, including the spatial distribution of the benthos to top predators, oceanographic processes, climate change and fishing activities (Fig.4.2). CCAMLR will rule on this proposal at the next international meeting. Among these proposed regulated areas, CCAMLR distinguishes (1) General Protection Zones (GPZ) that aim at protecting habitats,

	DISPERSAL MODELS: LAGRANGIAN APPROACH	CHAPTER 4.

Article.
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. Dispersal model alert on the risk of alien species introduction by ballast waters in protected areas from the Western Antarctic Peninsula. Diversity and Distributions.

  , albeit constantly facing challenges(Ainley and Pauly 2013, Brooks 2013, Abrams et al. 2016). Before CCAMLR came into force in 1982, a number of fish populations were severely overfished. Most strikingly, the endemic marbled rockcod Notothenia rossiiRichardson, 1844 (Nototheniidae, Perciformes) was an early target species with a cumulative reported catch of 501,262 t in the first two fishing seasons (1969/70 and 70/71) around South Georgia (Kock 1992) and near 150,000 t aroundKerguelen in 1971 (Duhamel 1982). Thereafter, large trawlers were still active throughout the Southern Ocean, but with considerably lower catches, until the fishery was closed by CCAMLR in 1986/87 (Kock 1992). Since the inception of CCAMLR, conservation measures have been adopted progressively in order to assist the recovery of several notothenioid species by banning directed fisheries and establishing stringent by-catch limits in many Antarctic zones (CCAMLR 2019a). Recovery of the N. rossii stocks took more than 35 years with the species only in the past decade showing clear signs of increasing abundance (Barrera-Oro andMarschoff 2007[START_REF] Marschoff | Slow recovery of previously depleted demersal fish at the South Shetland Islands, 1983-2010[END_REF], Barrera-Oro et al. 2017, Duhamel et al. 2019).At present, new initiatives are underway to enhance biodiversity protection in the Southern Ocean through a network of Marine Protected Areas (MPAs). The South Orkney Islands Southern Shelf (SOISS) and large parts of the Ross Sea are designated MPAs since2009 and 2016, respectively (Fig. 4.11). The waters around South Georgia and the South Sandwich Islands are also widely protected against overexploitation(Trathan et al. 2014). Additional MPAs were proposed in the Atlantic, Indian and Pacific sectors of the Southern Ocean to create a MPA network (CCAMLR

	DISPERSAL MODELS : LAGRANGIAN APPROACH	CHAPTER 4.
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 41 Sampling details (location, location code, latitude (Lat) and longitude (Lon), sample size (N) and year) and genetic diversity of Notothenia rossii from the Southern Ocean. Geographical coordinates are listed in decimal degrees; note that values are approximate for most locality samples; all available metadata per individual can be found on data.biodiversity.aq. Expected (HE) and observed heterozygosity (HO) were calculated for filtered genotypes from de novo and reference-based bioinformatics.

	Location	Code	Lat	Lon	N	Year	HO de novo	HO reference	HEde novo	HE reference
	South Shetlands, Deception Island	SSD-06	-62.95	-60.65	34	2006	0.246 ± 0.004	0.212 ± 0.007	0.253 ± 0.005	0.219 ± 0.006
	South Shetlands, King George Island	SSK-06	-62.23	-58.68	35	2006	0.230 ± 0.004	0.217 ± 0.006	0.235 ± 0.004	0.227 ± 0.006
	South Shetlands, King George Island	SSK-15-16	-62.23	-58.68	40	2015/16	0.244 ± 0.004	0.213 ± 0.006	0.249 ± 0.004	0.223 ± 0.006
	Elephant Island	EI-02	-61.24	-55.62	33	2002	0.255 ± 0.004	0.215 ± 0.006	0.261 ± 0.004	0.226 ± 0.006
	Elephant Island	EI-06-07	-61.24	-55.62	31	2006/7	0.253 ± 0.005	0.211 ± 0.006	0.260 ± 0.005	0.219 ± 0.006
	South Orkney Islands	SO-06	-60.70	-45.57	22	2006	0.251 ± 0.005	0.224 ± 0.008	0.258 ± 0.005	0.236 ± 0.008
	South Georgia	SG-02-03	-55.24; -53.70	-35.6; -37.51 35	2002/3	0.247 ± 0.004	0.216 ± 0.006	0.252 ± 0.004	0.224 ± 0.006
	South Georgia	SG-05	-53.70	-37.51	45	2005	0.244 ± 0.004	0.210 ± 0.005	0.250 ± 0.004	0.220 ± 0.005
	Kerguelen Islands Shelf	KI-15	-47.41; -48.67	69.7; 70.98	39	2016	0.238 ± 0.004	0.204 ± 0.007	0.243 ± 0.004	0.213 ± 0.007
	Skiff Bank, Kerguelen Islands	SB-15	-49.8; -50.01	64.8; 65.64	40	2016	0.236 ± 0.004	0.217 ± 0.006	0.242 ± 0.004	0.228 ± 0.006
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 42 Model statistics describing the outcome of species distribution modelling to predict occurrence probability of Notothenia rossii in the Atlantic and Indian sectors of the Southern Ocean (mean ± standard deviation).

	Model statistic	Mean and standard deviation
	AUC	0.975 ± 0.016
	COR	0.831 ± 0.069
	TSS	0.768 ± 0.117
	maxSSS	0.469 ± 0.230
	Correctly classified test data (%)	92.3 ± 3.0 %

AUC: Area Under the Receiver Operating Curve; COR: Point Biserial Correlation; TSS: True Skill Statistic; maxSSS: maximum sensitivity plus specificity threshold; Correctly classified test data (%): percentage of presence-test and background-test records falling on predicted suitable areas (prediction > maxSSS).
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. Integrated assessment of large-scale connectivity in a historically overexploited fish population in the Southern Ocean.
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 43 Pairwise genetic differentiation of Notothenia rossii per sampling locality (see Table4.1 for codes) based on 7,501 SNP genotypes derived from mapping against a de novo assembly. FST followingWeir and Cockerham (1984) (also referred to as GST) below the diagonal (negative values set to zero) and confidence intervals after 1000 bootstraps above the diagonal. FST values where confidence intervals do not span zero are marked in bold.

		SSD-06	SSK-06	SSK-15-16	EI-06-07	EI-02	SO-06	SG-02-03	SG-05	SB-15	KI-15
			-0.0002 -	-0.0001 -	-0.0002 -	-0.0003 -	0.0001 -	0.0001 -	-0.0001 -	0.0000 -	-0.0004 -
	SSD-06		0.0003	0.0003	0.0002	0.0001	0.0006	0.0005	0.0003	0.0004	0.0001
				0.0000 -	-0.0002 -	-0.0002 -	0.0001 -	0.0001 -	-0.0003 -	-0.0001 -	-0.0002 -
	SSK-06	0.0000		0.0004	0.0002	0.0002	0.0006	0.0005	0.0000	0.0002	0.0003
					-0.0005 --	-0.0001 -	-0.0002 -	-0.0003 -	-0.0002 -	-0.0001 -	-0.0002 -
	SSK-15-16 0.0005	0.0004		0.0001	0.0002	0.0003	0.0001	0.0001	0.0003	0.0001
						-0.0003 -	0.0000 -	-0.0001 -	-0.0002 -	-0.0003 -	-0.0002 -
	EI-06-07	0.0003	0.0007	0.0000		0.0001	0.0004	0.0003	0.0002	0.0001	0.0002
							-0.0002 -	0.0000 -	-0.0002 -	-0.0003 -	0.0000 -
	EI-02	0.0000	0.0000	0.0000	0.0000		0.0002	0.0004	0.0001	0.0001	0.0004
								0.0001 -	-0.0004 -	0.0002-	-0.0001 -
	SO-06	0.0018	0.0011	0.0002	0.0012	0.0003		0.0005	0.0000	0.0006	0.0004
									-0.0001 -	0.0000 -	0.0000 -
	SG-02-03	0.0005	0.0006	0.0000	0.0000	0.0000	0.0006		0.0002	0.0004	0.0004
										-0.0003 -	0.0000 -
	SG-05	0.0005	0.0000	0.0002	0.0007	0.0001	0.0000	0.0000		0.0000	0.0003
											-0.0003 -
	SB-15	0.0006	0.0002	0.0004	0.0003	0.0000	0.0007	0.0008	0.0000		0.0001
	KI-15	0.0000	0.0003	0.0000	0.0002	0.0003	0.0004	0.0005	0.0001	0.0000
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 44 Pairwise genetic differentiation of Notothenia rossii per sampling locality (see Table4.1 for codes) based on 3,503 SNP genotypes derived from mapping against the reference genome of N. coriiceps(Shin et al. 2014). FST followingWeir and Cockerham (1984) (also referred to as GST) below the diagonal (negative values set to zero) and confidence intervals after 1000 bootstraps above the diagonal. FST values where confidence intervals do not span zero are marked in bold.

		SSD-06	SSK-06	SSK-15-16	EI-06-07	EI-02	SO-06	SG-02-03	SG-05	SB-15	KI-15
			-0.0002 -	-0.0005 -	-0.0007 -	-0.0004 -	-0.0003 -	-0.0002 -	-0.0003 -	-0.0004 -	-0.0007 --
	SSD-06		0.0003	0.0001	0.0000	0.0001	0.0004	0.0004	0.0002	0.0002	0.0001
				0.0001 -	-0.0002 -	-0.0001 -	0.0000 -	0.0002 -	-0.0001 -	-0.0004 -	-0.0001 -
	SSK-06	0.0006		0.0007	0.0003	0.0004	0.0006	0.0008	0.0004	0.0001	0.0005
					0.0000 -	-0.0002 -	-0.0005 -	-0.0005 -	-0.0002 -	-0.0001 -	-0.0001 -
	SSK-15-16	0.0000	0.0017		0.0006	0.0002	0.0001	0.0000	0.0002	0.0004	0.0005
						-0.0003 -	0.0001 -	-0.0003 -	-0.0001 -	-0.0003-	-0.0005 -
	EI-06-07	0.0001	0.0013	0.0011		0.0003	0.0007	0.0003	0.0005	0.0002	0.0004
							-0.0002 -	-0.0004 -	-0.0003-	-0.0003-	-0.0001 -
	EI-02	0.0000	0.0007	0.0002	0.0002		0.0003	0.0001	0.0001	0.0002	0.0004
								-0.0002 -	-0.0001 -	0.0001-	-0.0003 -
	SO-06	0.0008	0.0027	0.0000	0.0015	0.0012		0.0005	0.0005	0.0007	0.0003
									-0.0002 -	-0.0002 -	-0.0002 -
	SG-02-03	0.0005	0.0010	0.0000	0.0005	0.0000	0.0009		0.0003	0.0003	0.0004
										-0.0001 -	-0.0002 -
	SG-05	0.0000	0.0003	0.0002	0.0004	0.0000	0.0007	0.0000		0.0004	0.0003
											-0.0001 -
	SB-15	0.0000	0.0001	0.0010	0.0000	0.0003	0.0016	0.0003	0.0002		0.0004
	KI-15	0.0000	0.0005	0.0004	0.0000	0.0007	0.0005	0.0004	0.0001	0.0000

Article.

Christiansen et al. (in prep.)

. Integrated assessment of large-scale connectivity in a historically overexploited fish population in the Southern Ocean.

Table 4 . 5 .

 45 Effective population size (Ne) of Notothenia rossii from various locations in the Southern Ocean. Estimates were calculated using the linkage disequilibrium method for filtered genotypes from de novo and reference-based bioinformatics; with 95 % confidence intervals (CI) calculated based on the jackknife method ofWaples and Do (2008).

	Sample	Ne de novo	CI de novo	Ne reference	CI reference
	SSD	2,089	197 -Infinite	2,677	319 -Infinite
	SSK	6,207	1,312 -Infinite	6,846	1,302 -Infinite
	EI	4,777	1,036 -Infinite	Infinite	1,422 -Infinite
	SO	6,629	182 -Infinite	42,299	228 -Infinite
	SG	4,837	1,327 -Infinite	21,601	1,864 -Infinite
	SB	2,327	385 -Infinite	1,957	390 -Infinite
	KI	1,665	256 -Infinite	1,449	206 -Infinite

  rossii is relatively localized in the Southern Ocean. Juveniles develop in algae beds(Duhamel et al. 1982, Barrera-Oro and Winter 2008), which are only found close to the coast(Wiencke et al. 2014). The cold temperatures of the high-Antarctic are, however, likely detrimental for the species as its blood equilibrium freezing point is comparatively high for a notothenioid (Bilyk and DeVries

Table S4 .6.A.

 S4 Pairwise genetic differentiation of Notothenia rossii per sampling locality (see Table4.1 for codes) based on 7,501 SNP genotypes derived from mapping against a de novo assembly. Jost's D (2008) below the diagonal and Hedrick'sGST (2005) above the diagonal, as calculated with R package 'mmod' (Winter 2012).

		SSD-06	SSK-06	SSK-15-16	EI-06-07	EI-02	SO-06	SG-02-03	SG-05	SB-15	KI-15
	SSD-06		0.0008	0.0015	0.0010	0.0002	0.0030	0.0013	0.0013	0.0015	0.0000
	SSK-06	0.0002		0.0015	0.0017	0.0006	0.0024	0.0015	0.0003	0.0010	0.0013
	SSK-15-16	0.0004	0.0004		0.0002	0.0004	0.0013	0.0000	0.0009	0.0012	0.0008
	EI-06-07	0.0003	0.0004	0.0001		0.0004	0.0023	0.0004	0.0015	0.0010	0.0009
	EI-02	0.0000	0.0001	0.0001	0.0001		0.0013	0.0006	0.0006	0.0006	0.0012
	SO-06	0.0008	0.0006	0.0003	0.0006	0.0003		0.0016	0.0005	0.0018	0.0014
	SG-02-03	0.0003	0.0004	0.0000	0.0001	0.0001	0.0004		0.0006	0.0018	0.0014
	SG-05	0.0003	0.0001	0.0002	0.0004	0.0002	0.0001	0.0002		0.0005	0.0007
	SB-15	0.0004	0.0003	0.0003	0.0003	0.0001	0.0004	0.0004	0.0001		0.0006
	KI-15	0.0000	0.0003	0.0002	0.0002	0.0003	0.0003	0.0004	0.0002	0.0002

Table 4 . 6

 46 

.B. Pairwise genetic differentiation of Notothenia rossii per sampling locality (see Table 4.1 for codes) based on 3,503 SNP genotypes derived from mapping against the reference genome of N. coriiceps (Shin et al. 2014). Jost's D (2008) below the diagonal and Hedrick's GST (2005) above the diagonal, as calculated with R package 'mmod' (Winter 2012).

SSD-06 SSK-06 SSK-15-16 EI-06-07 EI-02 SO-06 SG-02-03 SG-05 SB-15 KI-15 SSD-06

  

			DISPERSAL MODELS : LAGRANGIAN APPROACH	CHAPTER 4.			
			0.0020	0.0017	0.0015	0.0006	0.0029	0.0017	0.0012	0.0008	0.0000
	SSK-06	0.0004		0.0036	0.0025	0.0019	0.0048	0.0021	0.0013	0.0010	0.0016
	SSK-15-16	0.0004	0.0008		0.0031	0.0016	0.0018	0.0010	0.0015	0.0026	0.0022
	EI-06-07	0.0003	0.0006	0.0007		0.0012	0.0035	0.0015	0.0014	0.0009	0.0009
	EI-02	0.0001	0.0004	0.0004	0.0003		0.0031	0.0006	0.0003	0.0012	0.0019
	SO-06	0.0006	0.0011	0.0004	0.0008	0.0007		0.0025	0.0024	0.0033	0.0022
	SG-02-03	0.0004	0.0005	0.0002	0.0003	0.0001	0.0005		0.0005	0.0012	0.0015
	SG-05	0.0003	0.0003	0.0003	0.0003	0.0001	0.0005	0.0001		0.0011	0.0012
	SB-15	0.0002	0.0002	0.0006	0.0002	0.0003	0.0007	0.0003	0.0003		0.0009
	KI-15	0.0000	0.0004	0.0005	0.0002	0.0004	0.0005	0.0003	0.0003	0.0002
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Table S4 .

 S4 7.A. BLAST results from 12 candidate SNPs from the de novo data set.

	Nr Name	Top Hit	Accession Number	Percent	E value
					Identity	
	1	>CLocus_130488	Cottoperca gobio genome assembly, chromosome: 19	LR131926.1	82.353	4.72E-23
	2	>CLocus_138804	Cottoperca gobio genome assembly, chromosome: 12	LR131919.1	81.818	4.73E-04
	3	>CLocus_221130	Cottoperca gobio genome assembly, chromosome: 12	LR597562.1	89.474	4.42E-17
	4	>CLocus_223132	PREDICTED: Notothenia coriiceps ubiquitin specific peptidase 38 (usp38), mRNA XM_010793758.1	100	3.88E-24
	5	>CLocus_237675	Sparus aurata genome assembly, chromosome: 6	LR537126.1	91.892	2.00E-03
	6	>CLocus_240253	Gossypioides kirkii chromosome KI_01	CP032244.1	90.909	2.40E-01
	7	>CLocus_251284	Myripristis murdjan genome assembly, chromosome: 22	LR597571.1	88.889	2.29E-33
	8	>CLocus_263048	Centromochlus existimatus isolate S1A2_08 ATPase subunit 8 (ATPase 8) gene,	JX910183.1	88.889	8.50E-01
			complete cds; and ATPase subunit 6 (ATPase 6) gene, partial cds; mitochondrial			
	9	>CLocus_38304	Apteryx australis mantelli genome assembly AptMant0, scaffold scaffold1406	LK066414.1	88.095	7.00E-02
	10 >CLocus_60053	Cottoperca gobio genome assembly, chromosome: 3	LR131933.1	82.353	9.74E-13
	11 >CLocus_6959	Lateolabrax maculatus linkage group 21 sequence	CP032596.1	84.507	4.14E-11
	12 >CLocus_96107	Cottoperca gobio genome assembly, chromosome: 12	LR131919.1	87.288	1.19E-30

Table S4 .7.B. BLAST

 S4 results from 37 candidate SNPs from the reference data set.

	DISPERSAL MODELS : LAGRANGIAN APPROACH	CHAPTER 4.		
	>CLocus_2457922	Cottoperca gobio genome assembly, chromosome: 10		LR131917.1	73.973	6.69E-10
	[AZAD01071921.1, 3456, +]				
	>CLocus_51011	Cottoperca gobio genome assembly, chromosome: 21		LR131929.1	76.136	6.26E-23
	[KL662357.1, 5270500, -]				
	>CLocus_139511	Cottoperca gobio genome assembly, chromosome: 10		LR131917.1	74.658	1.29E-12
	[KL662384.1, 326949, -]				
	>CLocus_198071	Cottoperca gobio genome assembly, chromosome: 1		LR131916.1	83.333	3.46E-26
	[KL662552.1, 248239, +]				
	>CLocus_210679	PREDICTED: Notothenia coriiceps uncharacterized LOC104965236	XM_010794195.1	87.5	3.95E-19
	[KL662597.1, 16029, -]	(LOC104965236), mRNA			
	>CLocus_210838	Cottoperca gobio genome assembly, chromosome: 14		LR131921.1	83.571	2.33E-28
	[KL662599.1, 5111, +]				
	>CLocus_261220	Dissostichus mawsoni haplotype 2 AFGP/TLP gene locus, partial sequence	HQ447060.1	92.405	1.38E-56
	[KL662789.1, 79206, +]				
	>CLocus_292518	Sparus aurata genome assembly, chromosome: 17		LR537137.1	76.829	7.63E-22
	[KL662880.1, 318427, +]				
	>CLocus_313316	Cottoperca gobio genome assembly, chromosome: 9		LR131939.1	76.531	6.69E-29
	[KL662933.1, 117387, -]				
	>CLocus_512277	Cottoperca gobio genome assembly, chromosome: 6		LR131936.1	85.87	5.48E-49
	[KL663578.1, 176442, +]				
	>CLocus_550684	PREDICTED: Notothenia coriiceps symplekin-like (LOC104960710), mRNA	XM_010788863.1	82.707	8.14E-28
	[KL663710.1, 313820, +]				
	>CLocus_612378	Cottoperca gobio genome assembly, chromosome: 10		LR131917.1	77.397	5.86E-17
	[KL663896.1, 102980, +]				
	>CLocus_676688	Lateolabrax maculatus chromosome Lm22		CP027283.1	76.301	6.69E-29
	[KL664078.1, 28095, -]				
	>CLocus_984478	Thalassophryne amazonica genome assembly, chromosome: 13	LR722978.1	80	8.00E-03
	[KL665099.1, 640019, +]				
	>CLocus_1083361	Cicer arietinum chromosome Ca2		CP039332.1	85.714	3.20E-01
	Nr Name [KL665382.1, 29521, +] 1 >CLocus_207926 >CLocus_1090835 [KL665412.1, 447335, +] [AZAD01004947.1, 742, +] 2 >CLocus_417728 [AZAD01011137.1, 181, +] >CLocus_1092384 [KL665412.1, 1044395, +] 3 >CLocus_664045 >CLocus_1179376 [KL665586.1, 242786, -] [AZAD01019142.1, 1235, -] 4 >CLocus_1150506 [AZAD01034986.1, 5571, -] >CLocus_1224872 [KL665708.1, 68516, -] 5 >CLocus_1462038 >CLocus_1425216 [KL666295.1, 8396428, +] [AZAD01044248.1, 240, +] 6 >CLocus_1491991 [AZAD01045372.1, 5082, +] >CLocus_1534498 [KL666587.1, 97216, +] 7 >CLocus_2032174 [AZAD01062243.1, 5021, +] [KL666590.1, 947841, +] >CLocus_1551285	Top Hit Chionodraco hamatus Cu/Zn superoxide dismutase (SOD1) mRNA, partial cds AY736281.1 Accession Number Cottoperca gobio genome assembly, chromosome: 1 LR131916.1 Gymnodraco acuticeps zona pellucida protein ZPC5 isoform 1 (ZPC5) mRNA, KU522427.1 PREDICTED: Aplysia californica calmodulin-like protein 3 (LOC106012422), XM_013085361.1 mRNA complete cds Cottoperca gobio genome assembly, chromosome: 10 LR131917.1 Gouania willdenowi genome assembly, chromosome: 8 LR131991.1 PREDICTED: Notothenia coriiceps transcription initiation factor IIB-like XM_010785544.1 Lateolabrax maculatus linkage group 21 sequence CP032596.1 (LOC104957872), partial mRNA Dissostichus mawsoni haplotype 1 AFGP/TLP gene locus, partial sequence HQ447059.1 Cottoperca gobio genome assembly, chromosome: 4 LR131934.1 PREDICTED: Notothenia coriiceps transcription initiation factor IIB-like XM_010785544.1 Sparus aurata genome assembly, chromosome: 9 LR537129.1 (LOC104957872), partial mRNA PREDICTED: Notothenia coriiceps transcription initiation factor IIB-like (LOC104957872), partial mRNA XM_010785544.1 complete cds Chionodraco hamatus transposon helitron polyprotein (HeliNoto) gene, GU014476.2	Percent Identity 90.244 84.277 89.655 82.222 83.092 75 87.903 72.358 95.96 89.103 85.484 89.899 85.484 77.236	E value 9.28E-40 1.38E-18 4.00E+00 1.68E-55 1.21E-06 3.03E-52 9.93E-08 2.49E-34 5.48E-49 3.45E-83 6.67E-67 5.49E-30 5.49E-30 7.14E-16
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  . Alternative approaches were used such as in, where the profile method developed by[START_REF] Marques | Fitting Multiple Models to Multiple Data Sets[END_REF] and used byStavrakidis-Zachou et al. (2019) helped calculate the marginal confidence intervals of the estimated DEB parameters and hence provided the uncertainty related to parameter estimation. In the population model developed in Arnould-Pétré et al. (2020) -Chapter 1, no time series on population densities nor structure were available to test model performance. A sensitivity analysis was applied, aiming at evaluating model stability regarding changes in parameter values (± 30% of the initial value). Such a method is referred to as the "robustness analysis". It evaluates model performance by a systematic deconstruction of the model, by forcefully changing model parameters, structure, and representation of processes[START_REF] Grimm | Mathematical models and understanding in ecology[END_REF] Berger 2016, Railsback and Grimm 2019). Awaiting for more data for DEB model evaluation, another alternative, commonly used in our case studies was to compare DEB estimation mean relative errors (MRE, comparison between input observations and model predictions) with the average score of the DEB collection (MRE < 0.1,[START_REF] Marques | The AmP project: comparing species on the basis of dynamic energy budget parameters[END_REF]. So far, DEB models built for benthic SO marine species showed good performances (Abatus cordatus: MRE= 0.121;

Adamussium colbecki MRE: 0.08; Nacella concinna MRE: 0.203; Laternula elliptica MRE: 0.1; Odontaster validus MRE: 0.123; Sterechinus neumayeri MRE: 0.136; http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/species_list.html,

  [START_REF] Cacciapaglia | Marine species distribution modelling and the effects of genetic isolation under climate change[END_REF], Thyrring et al. 2017). To address this issue, I did my best to choose study species with little taxonomic uncertainties, based on the literature or discussions with experts(Guillaumot et al. 2020a -Chapter 1, Guillaumot et al. submitted -Chapter 3, Fabri-Ruiz et al. in press -Chapter 3). However, on-going taxonomic works inevitably question some results of my PhD. For example, recent findings on the sea star Bathybiaster loripes Sladen 1889, showed that it is a species complex structured according to depth[START_REF] Guillaumot | Extrapolation in species distribution modelling. Application to Southern Ocean marine species[END_REF], although I formerly modelled its distribution as a single species(Guillaumot et al. 2020b -Chapter 2). Even if not applied to SO species yet, it is possible to model the distribution of a species complex and consider local, potential adaptations within the SDM.Breiner et al. (

  Particular environmental conditions of the SO (e.g. extreme cold temperatures, seasonal food and light availability, ice dynamics and impact on shallow benthic communities;[START_REF] Martinson | Western Antarctic Peninsula physical oceanography and spatiotemporal variability[END_REF], Barnes et al. 2014[START_REF] Cummings | Linking Ross Sea coastal benthic communities to environmental conditions: documenting baselines in a spatially variable and changing world[END_REF]) necessitate some adaptations of physiological models formely developed for other conditions and organisms (Arnould-[START_REF] Pétré | Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions[END_REF], Guillaumot et al. 2020a -Chapter 1). When creating a species model, the standard DEB approach calls pseudodata, that are extra data coming from close taxa that help calibrate the model estimation similarly to a prior element(Lika et al. 2011a). Parameter estimation is thus performed at a reference temperature of +20°C (Kooijman 2010). This implies that results must be transformed to correctly interpret estimated parameters for polar species and some caution is necessary when comparing model outputs with those obtained for their counterparts from other regions of the world(Guillaumot et al. 2020a -Chapter 1).

SO species also present behavioural, morphological and physiological peculiarities that necessitate the development of new modules in existing physiological models (e.g. adaptation to the cold, Cziko et al. 2014; slower larval development and growth rates, Peck et al. 2007, Peck 2016; low protein production, Pörtner et al. 2007; direct development and brooding of the young, Moreau et al. 2017). In Arnould-Pétré et al. (2020) -Chapter 1, energy fluxes that determine the development of the sea urchin species Abatus cordatus (

  . The method is powerful, but unfortunately, this kind of experimental data are not always available for SO marine species or datasets not complete enough to draw the ascending and descending parts of the Arrhenius curve (Arnould-Pétré et al. 2021 -Chapter 1, Guillaumot et al. submitted -Chapter 3), which limits the potential of DEB predictions, above all for temperature change simulations.

  Pétré et al. 2020 -Chapter 1, Fabri-Ruiz et al. in press -Chapter 3). However, when available, this can prove powerful to improve models, as it was done in Muller and[START_REF] Martin | Limitations of extrapolating toxic effects on reproduction to the population level[END_REF] for simulating growth and calcification rates in the phytoplankton species Emiliania huxleyi under ocean acidification and changing ocean carbonate system or in[START_REF] Lavaud | Dynamic Energy Budget modelling to predict eastern oyster growth, reproduction, and mortality under river management and climate change scenarios[END_REF] that evaluated the influence of warmer and fresher waters on oyster growth, reproduction and mortality. Regional or local-scale studies, with abundant experimental information that accurately describe species physiological performances in link with environmental conditions would provide more relevant projections for future simulations. In many cases, future scenarios are simulated with an ensemble of scenarios (range of potential temperature shifts, changes in one or several conditions,Mangano et al. 2019, Arnould-Pétré et al. 2020 -Chapter 1), in order to understand the relative influence of environmental shifts rather than providing a single approximated prediction. Combining SDM predictions with experimental analyses was also shown to improve the relevance of future model predictions (López-Farrán/

  Pétré et al. 2020 -Chapter 1, Fabri-Ruiz et al. in press - Chapter 3). This may be consistent with our knowledge of physiological peculiarities of SO organisms, namely metabolisms adapted to low temperatures(Peck 2016, Peck et al. 2018), with poor abilities to acclimate to warmer temperatures(Peck et al. 2014) and a noticeable adaptation to low and seasonal food inputs

  ). Following these works, prospective studies will link DEB theory with stable isotope dynamics ("Dynamic Isotope Budget", DIB, talk given byLefebvre et al. at DEB Symposium 2019). The method that describes stable isotope fluxes within organisms already exists(Pecquerie et al. 2010) andLefebvre et al. (DEB Symposium 2019) objectives are to put the analysis in the framework of trophic network studies and relate organism diet with energetics. Trophic network analyses have been developed for the SO region(Ducklow et al. 2006, 2007, 2013, Western Antarctic Peninsula; Murphy et al. 2007, Scotia sea pelagos;Hill et al. 2012, South Georgia pelagos; Pinkerton et al. 2013, 2014, Ross Sea pelagos; Ballerini et al. 2014, Western Antarctic Peninsula; Ortiz et al. 2016, Marina et al. 2018 and Zenteno et al. 2019, King George Island) and could constitute a good basis to apply this method.Finally, dispersal models were proved helpful to highlight the role of the ACC as a barrier to the dispersal of propagules arriving from neighbour continents(López-Farrán et al. in prep. -Appendix) and also connect the SO regions between each other. Such information on species dispersal abilities are really interesting to further understand species realised niche(Christiansen et al. in prep. -Chapter 4) and test dispersal scenarios (López-Farrán et al. in prep. -Appendix). Combined together, the three studies of this PhD performed on the Patagonian crab Halicarcinus planatus (López-Farrán et al. in prep. -Appendix, López-Farrán/Guillaumot et al. in press -Chapter 3, Dulière/Guillaumot et al. submitted -Chapter 4) suggested that the crab found in Deception IslandGENERAL DISCUSSIONin 2010 could not have naturally crossed the Drake Passage to reach the Western Antarctic Peninsula coasts, as the ACC targeted its drift eastward along the 60°S latitude line(López-Farrán et al. in prep. -Appendix). A natural arrival could be by rafting over buoyant kelps(Fraser et al. 2018), but it constitutes a questionable alternative, which is possible during a stormy weather event, and suggests the survival of the adult crab during its long way, attached on macroalgae holdfasts (López-Farrán/. The hypothesis of an accidental anthropogenic introduction was therefore suggested, either by transport on ship hulls or release of ballast waters. Results from Dulière/Guillaumot et al. (submitted -Chapter 4) highlighted a higher probability of its arrival in Deception Island, whether ballast waters were exchanged at 50 nautical miles from the coasts or closer. The respect of the Antarctic Treaty guidelines, promoting ballast water release at least at 200 nautical miles away from the coasts, prevented the crab propagules from reaching the western coasts of the Western Antarctic Peninsula. Once introduced, physiological experiments showed that it is difficult for the crab to survive in present Antarctic winter conditions (López-Farrán/, but suggested a potential settlement of this non-native species under future conditions, when warmer temperatures will allow its physiological acclimation (López-Farrán/.
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  are available on the Add-my-Pet platform (https://www.bio.vu.nl/ thb/deb/deblab/add_my_pet/entries_web/Nacella_concinna/Nacella_concinna_res.html). For the NetLogo codes of the DEB-IBM of Abatus cordatus (Arnould-Pétré et al. 2020), a specific page was created on the Netlogo platform (http://modelingcommons.org/browse/one_model/6201). Input data and some guidelines are provided to help you implement the model.

  [START_REF] Zurell | Benchmarking novel approaches for modelling species range dynamics[END_REF] for calibration details andMarmion et al. (2009) for modeling documentation). The compared algorithms include Artificial Neural Network (ANN), Boosted Regression Trees (BRT), Classification Tree Analysis (CTA), Flexible Discriminant Analysis (FDA), Generalized Additive Model (GAM), Generalized Linear Models (GLM), Multivariate Adaptive Regression Splines (MARS), Maximum Entropy (MaxEnt), Random Forest (RF), and Surface Range Envelope (SRE). Two analyses were realised to compare the respective performance of the models. First, for each algorithm, AUC values of 100 model replicates were computed. Models were performed using all occurrence data available for the species Ctenocidaris nutrix and Sterechinus diadema only (Fig S1A, S1C) because there were not enough data to perform the analysis for Abatus cordatus and Brisaster antarcticus.

Table S2 :

 S2 Moran I SAC index computed from mean residuals of the 100 model replicates and the associated significance for each species before and after spatial bias correction.

			Before		After
		correction	correction
		I obs	p-value	I obs	p-value
	Abatus cordatus	0.16	1.19e-9 0.06 5.85e-4
	Brisaster antarcticus	0.05	0.04	0.04	0.08
	Ctenocidaris nutrix	0.07	7.37e-8 0.01	0.17
	Sterechinus diadema	0.06	3.90e-3 0.02	0.13
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Availability Models could be developed (Jansen et al. 2018) to estimate the proportion of organic matter that reach the seafloor based on the knowledge of water currents. It could be also
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Article. [START_REF] Guillaumot | Selecting environmental descriptors is critical to modelling the distribution of Antarctic benthic species[END_REF]. Selecting environmental descriptors is critical to modelling the distribution of Antarctic benthic species. Polar Biology APPENDIX 2.8. Calibration of Boosted Regression Trees and parameter settings BRT models are generated using the cross-validation procedure developed by Elith et al. (2008) that is, using the functions provided in their supplementary material and in the gbm R package [START_REF] Ridgeway | Generalized boosted regression models. Documentation on the R Package 'gbm[END_REF]. We set the maximum number of trees to 10,000 and models are calibrated with the combination of parameters that minimizes the predictive deviance while producing the lowest number of trees (Fig. S2.8). Models are calibrated with all presence records available, using 1,000 background data randomly sampled in the area (restrained in depth for each species specifically) and according to the Kernel Density Estimate weighting scheme for the total Southern Ocean benthic samples (Guillaumot et al. 2019 -Chapter 2) and all the 58 environmental descriptors available. The following parameters are finally selected for each species: Acodontaster hodgsoni (tc=4, lr=0.007, bf=0.75), Bathybiaster loripes (tc=4, lr=0.012, bf=0.7), Glabraster antarctica (tc=4, lr=0.013, bf=0.75), Labidiaster annulatus (tc=4, lr=0.012, bf=0.75), Odontaster validus (tc=4, lr=0.007, bf=0.7), Psilaster charcoti (tc=4, lr=0.007, bf=0.7).
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Article. [START_REF] Guillaumot | Selecting environmental descriptors is critical to modelling the distribution of Antarctic benthic species[END_REF]. Selecting environmental descriptors is critical to modelling the distribution of Antarctic benthic species. Polar Biology APPENDIX 2.12. Marginal effect of environmental descriptors Partial dependence plots indicate the effect of an environmental descriptor on the model response after accounting for the average effects of all other descriptors in the model ("marginal effect", Elith et al. 2008).

Results show weak contrasts between species and environmental descriptors. Species preferences for slope, roughness, mixed layer depth, sea surface current speed are a consequence of the environmental preponderance of such conditions in the Southern Ocean environments. However, for other descriptors such as depth, seafloor current speed, average ice coverage, chlorophyll-a and POC concentrations species predicted preferences differ from what dominates in the environment (Fig. S2.12). This may be biased by sampling effort as it is exemplified by species distribution probabilities predicted in shallow areas (Fig. CORRELATIVE APPROACH: SPECIES DISTRIBUTION MODELS CHAPTER 2.
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.12. Partial dependence plots. Scaled density distributions of the marginal effect of environmental descriptors used to generate final models (Table S2.10) common to all species. Environmental values recorded in the entire Southern Ocean (<45°S, maximal m depth) are indicated in grey.
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Survival rate of adults and larvae in the salinity experiment

Survival rate in the salinity experiment at 5 PSU was 0% on day 2. Survival rate at 11 PSU was 0% on day 14. Survival rate was 50% on day 36 and 36% on day 39 at 18 PSU. Interestingly, survival rate was over 50% (67%) for the experiment at 18 PSU performed with seawater from Skyring Sound. Survival rates were 95% on day 39 at 25 PSU and 30 PSU (Fig. 3.4).

Females collected on July 5 were ovigerous and released larvae at the end of August at 5 ºC, 30 PSU and 25 PSU. The survival rate of larvae at 1 ºC was 62.5% on day 12. Survival rates at 2 ºC and 5 ºC were 85% and 92.5%, respectively, on day 12 (Fig. 3.5).
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APPENDIX 3.4. BRT calibration

BRTs were generated using the cross-validation procedure of Elith et al. (2008) and the gbm R package [START_REF] Ridgeway | Generalized boosted regression models. Documentation on the R Package 'gbm[END_REF] with codes provided in their supplementary material. A maximum number of 10,000 trees was set and models were calibrated with the combination of parameters that minimises the predictive deviance to the test data while producing the lowest number of trees (Fig. S3.4). Parameters finally selected to generate the models are: tree complexity tc = 4, learning rate lr = 0.005, and bag fraction bf = 0.9. The one that reaches the minimal predictive deviance while requiring the lower number of trees to build the model is favoured (light blue curve). Tc: tree complexity, lr: learning rate; bf: bag fraction (see Elith et al. 2008 for details).
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Using correlative and mechanistic niche models to assess the sensitivity of the Antarctic echinoid Sterechinus neumayeri (Meissner, 1900) to climate change

Fabri-Ruiz Salomé 

Abstract

The Southern Ocean is undergoing rapid environmental changes that are likely to have a profound impact on marine life, as organisms are adapted to sub-zero temperatures and display specific adaptations to polar conditions. However, species ecological and physiological responses to environmental changes remain poorly understood at large spatial scale owing to sparse observation data. In this context, correlative ecological niche modelling (ENMc) can prove useful. This approach is based on the correlation between species occurrences and environmental parameters to predict the potential species occupied space. However, this approach suffers from a series of limitations amongst which extrapolation and poor transferability performances in space and time. Mechanistic ecological niche modelling (ENMm) is a process-based approach that describes species functional traits in a dynamic environmental context and can therefore represent a complementary tool to understand processes that shape species distribution in a changing environment. In this study, we used both ENMc and ENMm projections to model the distribution of the Antarctic echinoid Sterechinus neumayeri. Both models were projected according to present [2005][2006][2007][2008][2009][2010][2011][2012] and future IPCC scenarios RCP 4.5 and8.5 for [2050-2099].

ENMc and ENMm projections are congruent and predict suitable current conditions for the species on the Antarctic shelf, in the Ross Sea and Prydz Bay areas. Unsuitable conditions are predicted in the northern Kerguelen Plateau and South Campbell Plateau due to observed lower food availability and higher seawater temperatures compared to other areas. In contrast, the two models diverge under future RCP 4.5 and 8.5 scenarios.

According to ENMm projections, the species would not be able to grow nor reach sexual maturity over the entire ocean, whereas the Antarctic shelf is still projected as suitable by the ENMc. This study highlights the complementarity and relevance of ENM approaches to model large-scale distribution patterns and assess species sensitivity and potential response to future environmental conditions.
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Projection of the Dynamic Energy Budget model (ENMm).

Experimental data available for the different life stages of S. neumayeri allow a robust prediction of DEB parameters (Appendix 3.10,3.11) with a total goodness of fit resulting in relative low error values (MRE = 0.095). For comparison, the values fall within the range of median values usually obtained for DEB models (median MRE < 0.1; [START_REF] Marques | The AmP project: comparing species on the basis of dynamic energy budget parameters[END_REF].

Most zero-variate and uni-variate data are accurately described by the estimated model parameters with low error values. For uni-variate data, the highest relative error values are obtained for the C:N mass of fertilized egg (RE = 0.29) and the uni-variate data Ash Free Dry Mass (AFDM, g) vs. O2 consumption in μmol/h in summer (RE= 0.27) (Appendix 3.10,3.11). The pre-metamorphic larval size is slightly underestimated in the model but the error is low (RE= 0.093) (Appendix 3.10). The prediction of the adult size-age relationship also shows a low error value (RE= 0.13) (Appendix 3.10) as for the weight-size data (RE= 0.05) (Appendix 3.10). Models of winter and summer oxygen consumption ~ weight data have similar patterns (Appendix 3.10) with a shift in oxygen consumption values for individuals of 0.2 g (AFDM), which corresponds to a transition stage between the embryo and the pre-metamorphic larvae.

Model validation gives low marginal confidence intervals for each parameter (Appendix 3.13), which means that the DEB model is stable.

The predicted suitable areas were projected for the different size classes (Fig. 3.15a). Overall, the Antarctic shelf is suitable to the largest individuals (> 5 cm), while the Magellanic Plateau is predicted as suitable for individuals < 4 cm. Suitable areas for individuals of the maximum size class are restricted to regions of East Antarctica (Prydz Bay, the Amundsen-Bellingshausen and the Ross seas) and in the Western Antarctic Peninsula. Areas predicted as unsuitable to the species survival are the South Campbell and northern Kerguelen plateaus. Small individuals (< 2 cm) are predicted to survive at all latitudes south of 45° south, from the Magellanic Plateau to the Antarctic shoreline but individuals of 1 to 2 cm are restricted to the Kerguelen Plateau, the Western Antarctic Peninsula and some regions in East Antarctica.

Reproduction is possible when individuals grow over 3 cm in diameter, that are individuals able to invest energy into reproduction (Fig. 3.15b). Suitable areas for the species to reproduce are mainly located on the Magellanic Plateau and East Antarctica, in Prydz Bay and the Amundsen-Bellingshausen and the Ross seas. The Kerguelen and Campbell plateaus are predicted as unsuitable to the species reproduction as hypothetical individuals present in these areas would never reach sexual maturity.
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DISCUSSION

Model projections and their ecological significance

Present-day projections.

The ENMc predicts suitable conditions to S. neumayeri in Antarctic cold waters south of the Polar Front for the present time period (temperature < +2°C, Fig. 3.13,Appendix 3.15). This is in line with our knowledge of the species biogeography, which is endemic to the Antarctic continental shelf [START_REF] Pierrat | Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling[END_REF][START_REF] Fabri-Ruiz | Can we generate robust Species Distribution Models at the scale of the Southern Ocean?[END_REF], 2020). Temperature is usually a major driver of species distribution as already shown in former studies on Antarctic echinoid species (Saucède et
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APPENDIX 3.6. In a standard DEB model (Kooijman 2010), the organism is isomorphic, i.e. it maintains the same shape throughout its entire life cycle. This life cycle is characterised by three stages that are distinguished by their energy flow: the embryo, juvenile and adult (Fig. S3.6). The embryo does not assimilate food and relies on reserves. The juvenile stage happens after birth (i.e. according to DEB theory, it corresponds to the moment when the organism is able to feed). The transition between the embryo and juvenile stages occurs when the individual has reached a particular threshold of energy invested into its development.

At this point, the individual is complex enough to start feeding and uses the energy gained from food to continue its development, growth and maintenance but it does not provide energy into reproduction. The other stage of the organism development is the transition from the juvenile to the adult stage called puberty. After this stage, when the organism becomes an adult, it stops allocating energy into its development and redirects the energy towards reproduction and the production of gametes.
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Table S3.8. Environmental descriptors used to build the ENMc models for future IPCC scenarios (RCP 4.5 and RCP 8.5). Predictor 'range' is here defined as the difference between winter and summer mean values.

Environmental data

Years RCP Units Sources
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APPENDIX 3.10. APPENDIX 3.12. Temperature sensitivity and post-metamorphic shape coefficient 1) Temperature sensitivity a. The Arrhenius temperature The Arrhenius temperature (TA) provides information on metabolic rate variations as a function of temperature and can be calculated from observed, experimental values at different temperatures. In this study, TA was estimated using embryonic development time data at different temperatures (Bosch et al. 1987). Values were standardized for a value of 1 at a reference temperature of 273 K (0°C). The Arrhenius temperature was then obtained by fitting the Arrhenius function (Eq. A) to the scaled values using a linear least squares regression (Agüera et al. 2015[START_REF] Agüera | Trait distributions of key marine species from the Western Antarctic Peninsula[END_REF] with the R package minpack.lm [START_REF] Elzhov | minpack. lm: R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds[END_REF]. b. Thermo-tolerance window When data are sufficiently detailed, the DEB model can also include the description of the influence of body temperature on physiological rates over the temperature range in which enzymes are assumed to be active and delimited by the parameters T L and T H (Eq. B). Above and below the thermo-tolerance window enzymes become inactive, leading to a decline in physiological rates, which can be traced by the parameters T AL and T AH , respectively. These five parameters fully define an organism thermal performance curve, in accordance to the formula:

𝑘 ̇(𝑇) = 𝑘 ̇(𝑇

where 𝑘(𝑇) ̇ is the value of the physiological rate at a given body temperature T and is the known value of the metabolic rate at a reference temperature T 1 .

2) Post-metamorphic shape coefficient

From birth to metamorphosis, S. neumayeri larvae grow exponentially, conducting to an increase of the assimilation flux 𝑝̇𝐴 (energy flow from assimilated food into the reserve) and mobilization 𝑝̇𝐶 (outflow from the reserve) (Kooijman 2010). In addition, during recruitment (planktonic larval stage to benthic juvenile) (Fig. S3. 5,Fig. S3.6), individuals undergo metamorphosis that is, a change in body shape. These changes during the life cycle are included in the DEB model, using the shape parameter 𝛿 𝑀 .

The relation between size (L) and the volume of the structure (V) is provided by the following relation:

The shape coefficient δM is used to convert size into the structural volume (V, i.e the cube of volumetric length). DEB theory partitions the body mass into the abstract quantities of structural volume V and the reserve E. The structure is the 'permanent' biomass such as proteins and membranes proportional to structural volume. The structural volume is the key feature that allows body size to be included in the complete budget of the organism. Several shape factors were used, δM.larv for the pre-metamorphic larva and δM for the post-metamorphic larva and the adult. An acceleration factor sM allows taking into account changes in the parameters related to the exponential growth period between birth and metamorphosis.
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APPENDIX 3.13. with kap being the fraction of energy directed towards complexity (-), 𝑝𝐶 ̇ the mobilisation flux (energy.time -1 ), 𝑝𝑀 ̇ the somatic maintenance rate (energy.time -1 ), 𝑘𝑀 ̇ the somatic maintenance rate coefficient (time -1 ) and TC the temperature correction factor (-).

A Bayesian beta regression, with food availability as a predictor and growth performance probability as a response, was applied to estimate how physiology changes with food conditions. A total of 4,000 MCMC samples were used for burn-in and the posterior distribution was estimated using 4,000 additional samples. The physiological submodel coefficients were initiated with Gaussian priors, with the mean taken from the maximum likelihood estimation to improve convergence and a vague prior set on the variance (set at 1,000).

Posterior priors of this physiological submodel were then used as priors to represent food availability f and its square form f 2 in the 'integrated Bayesian model'. As for the other priors (intercept, depth, temperature and temperature 2 ), they were attributed the posterior priors of the 'simple SDM', with their variance arbitrarily fixed at 100, as we considered them as vague priors (Gamliel et al. 2020). The detail of prior values is given in the result section (Table 3. 4).

Similarly, 50 model replicates (i.e. background samplings) were generated, averaged and plotted for comparisons.

Model performance

Model predictions for all approaches were evaluated by measuring the Area Under the Curve (AUC) [START_REF] Fielding | A review of methods for the assessment of prediction errors in conservation presence/ absence models[END_REF], Allouche et al. 2006, Elith et al. 2006) using the R package ROCR (Sing et al. 2005). In complement, the percentage of correctly classified presence data was measured by extracting prediction values over the position of each presence data and compared to the MaxSSS threshold (Maximum Sensitivity plus Specificity threshold), highlighted to be the best threshold to characterise predicted suitable (>MaxSSS value) and unsuitable areas (<MaxSSS value) for presence-only models [START_REF] Liu | Selecting thresholds for the prediction of species occurrence with presence-only data[END_REF]. Standard deviations of model replicates were used as uncertainty maps [START_REF] Buisson | Uncertainty in ensemble forecasting of species distribution[END_REF], Swanson et al. 2013).

Partial dependence plots were used to represent the relationship between model predictions and environmental values and compared between models. They are built by plotting model prediction values of each grid-cell pixel (y axis) against the value of the environment at the same pixel (x axis; each partial dependence plot is specific of a single environmental layer).

R codes developed for this study are available at https://github.com/charleneguillaumot/THESIS.

RESULTS

Spatial projection of the DEB model

Spatial projections of DEB model outputs show important contrasts between the two seasons (Fig. 3.22). In February, when temperatures are higher than 6°C and food availability homogeneously higher than 0.5 over the entire bay area (Fig. 3.20), high species survival and reproduction are predicted almost everywhere (Fig. 3.22A), except in some areas where food availability is very low (Fig. 3.20). Nearly four times more energy is predicted to be contained in the reserve compartment of A. cordatus in February compared to August (Appendix 3.19), an energy available for individuals' maintenance and development.

In contrast, in August, the DEB model predicts maintenance costs of up to three times higher than in February while the energetic load available is lower (Appendix 3.19), leading to reduced reproduction and survival abilities in the majority of the study area. Individual survival is modelled to be higher closer to the shoreline due to higher food availability (Fig. 3.22B).
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Recurrent arrivals in MPAs during austral summer periods

Gridded weighted numbers of particles have been summed up in each proposed MPA. Results show for the austral summer period contrast between scenarios (Fig. 

Particle age upon arrival in MPAs

The Inter-seasonal and inter-annual variations in the origin of particles (release zones) that reach the proposed MPAs highlighted a comparable influence of years and seasons on dispersal contrasts (Fig. 4.8). The origin of particles reaching the MPAs located along the WAP (GPZ-SWAP, KFZ-NWAP, Livingston, Anvers, Joinville), especially the one located in the south (GPZ-SWAP) is less variable. In these MPAs, particles mainly originate from the WAP and the Eastern Antarctic Peninsula zones (Rz.1, Rz.2).

The variability in the origin of particles reaching the GPZ-SOI, KFZ-SOI and SOI-MPA areas, located further north-eastward, is much higher and strongly varies according to the release scenario, season and year, with particles originating either from the WAP, the Eastern Antarctic Peninsula or the South Orkney zones (Rz. 1,Rz.2 and Rz.4,respectively).

For the 200 NM scenario, some particles (less than 100 particles, i.e. less than 2%) from the South Georgia zone (Rz.5) appear for the first time in the statistics but logically does not present important proportions given the eastward flowing ACC (Fig. 

Invasion risks

Previous results were summarized in a synthesis map (Fig. 4.9) that indicates the release zones and the simulated risk of particle introduction into proposed MPAs. We defined a 'high risk', when models simulate the arrival of particles every year and every season in all neighboring MPAs. The 'no risk' release zones correspond to zones where released particles never reach any proposed MPAs. A 'moderate risk' category was added for zones where particles may not reach neighboring MPAs during some years and some seasons (according to climatic events) and/or in significantly lower densities.

Results clearly show that releasing ballast waters on the western and eastern sides of the WAP and nearby Scotia Islands generally leads to a high to moderate risk to introduce particles into proposed MPAs, even if released at 200 NM from the nearest coast. In the case of ballast water released in the East Weddell Sea and around South Georgia and Sandwich Islands (Rz.3, Rz.5 and Rz.6, respectively) particles never reach proposed MPAs. Other areas that might also be at risk were not included in this study.

A focus on Deception Island

When ballast waters are released from distances exceeding 200 NM from the nearest coasts, the Lagrangian model predicts that no particle reaches the coasts of the WAP, nor the Gerlache Strait where Deception Island is located (Fig. (2009,2010,2011,2012) or partly (2008,2013,2014,2015,2016).
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DATA ARCHIVING STATEMENT

Demultiplexed, but otherwise raw sequencing data has been deposited on NCBI's Sequence Read Archive (SRA). Metadata for each individual using the same identification codes is available and cross-linked at GeOMe [START_REF] Deck | The Genomic Observatories Metadatabase (GeOMe): A new repository for field and sampling event metadata associated with genetic samples[END_REF]) and data.biodiversity.aq. In addition, vcf and genepop files, R scripts and additional input files for analysis are available at https://doi.org/10.5281/zenodo.3552609.
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individuals and 3,503 SNPs in the reference data set and 261 individuals and 7,501 SNPs in the de novo data set remained and were used for all subsequent analyses.

Genomic variability

While the number of SNPs is more than twice as high in the final filtered de novo data set compared to the reference-based data set, patterns of genetic diversity are largely congruent between the data sets. Observed heterozygosity was minimally lower than expected heterozygosity in both data sets (Table 4.1, Fig. 4.3a) and on average heterozygosity was slightly higher in the de novo data compared to the reference data (Table 4 DISPERSAL MODELS : LAGRANGIAN APPROACH CHAPTER 4.

Article. Christiansen et al. (in prep.). Integrated assessment of large-scale connectivity in a historically overexploited fish population in the Southern Ocean. Article. Christiansen et al. (in prep.). Integrated assessment of large-scale connectivity in a historically overexploited fish population in the Southern Ocean. Geographic clustering as attempted through discriminant analysis of principal components is shown along the first two principal components (a). Relative migration as estimated from Nei's GST reveals overall high and no asymmetric gene flow (b). Genome scans for loci putatively under influence of selection detected 12 outliers at q > 0.05 (c). Sample codes as in Table 4.1; samples from different years but same locality are combined.
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Peninsula was also largely removed through fishing in 1979/80 (Kock 1992). In turn, the Kerguelen stock was not supplied sufficiently, because the influx of larvae or fingerlings from South Georgia via stepping stones was interrupted. Thus, the already low levels of long-distance ecological connectivity that we estimated here may be an explanation for the long recovery time. This could mean that the original, unexploited population went through a genetic bottleneck leading to large genetic homogeneity of the extant population. In addition, other species, for example the opportunistically feeding grey notothen Lepidonotothen squamifrons at South Georgia [START_REF] Howard | Improving species distribution models: the value of data on abundance[END_REF], may have filled vacant ecological niches in the meantime and further hampered the reestablishment of highly abundant N. rossii stocks. Kock and Belchier (2004) rightfully pointed out that the biomass estimation is particularly difficult in N. rossii due to its patchy distribution as adults. Yet, the most recent surveys were able to document large catches of N. rossii once again, at least in the Kerguelen Plateau (Duhamel et al. 2019). This trend is corroborated in the South Shetland Islands (Barrera-Oro et al. 2017), suggesting that the species is indeed slowly recovering.

Lastly, a comparison with other Southern Ocean fish indicates that relatively high connectivity may be the most common scenario among sub-Antarctic fish. [START_REF] Matschiner | Gene flow by larval dispersal in the Antarctic notothenioid fish Gobionotothen gibberifrons[END_REF] ). In the sub-Antarctic the habitat is less affected by ice, but discontinuous for benthic species through the sheer geographical setting, while it is comparatively barrier-free for pelagic species. In order to persist in this habitat and maintain vast distribution ranges, species may have adapted their dispersal capabilities to achieve persistent (even if low) long-distance connectivity as in the case of N. rossii, but also kelp, toothfish and crustaceans, for example (see Moon et al. 2017 and references therein).

Implications for MPA design and fisheries management

The fisheries data shows clearly that N. rossii experienced a dramatic overexploitation in the 1970s (Kock 1992, CCAMLR 2019a). The recovery is more difficult to assess due to fewer systematic stock assessment methods (trawling, acoustics) compared to less remote oceans. Nevertheless, several recent ecological and fisheries surveys indicate an ongoing recovery [START_REF] Marschoff | Slow recovery of previously depleted demersal fish at the South Shetland Islands, 1983-2010[END_REF], Barrera-Oro et al. 2017, Duhamel et al. 2019). If a slow recovery process was indeed the result of long generation time, slow growth, reduced effective population size and stepping stone connectivity, as we suggest here, then future management plans should remain very precautionary, which is in accordance with CCAMLR. Importantly, a precautionary approach should not only regard each management area separately, but considers the interconnectivity between these areas. Successful ecological connectivity in at least some years may be an important prerequisite for a stable circum-Antarctic population. In turn, this suggests that it is important to protect areas that act as key stepping stone habitats. The waters around Bouvet Island have been fished in the past [START_REF] Arntz | Missing link in the Southern Ocean: sampling the marine benthic fauna of remote Bouvet Island[END_REF]), but are currently a designated marine reserve to 12 nautical miles from the coast. Controversially though, some krill fisheries permits are granted in this area as well. Our results demonstrate that the Bouvet Island marine ecosystem may be a unique stepping stone of large ecological importance. Endemism levels at Bouvet are very low, further supporting the premise that many species are in fact transported here by advection [START_REF] Arntz | Missing link in the Southern Ocean: sampling the marine benthic fauna of remote Bouvet Island[END_REF][START_REF] Gutt | Mega-epibenthos at Bouvet Island (South Atlantic): a spatially isolated biodiversity hot spot on a tiny geological spot[END_REF][START_REF] Martin | Éco-régionalisation et conservation des communautés benthiques de la zone économique exclusive française des îles Kerguelen, Ecoregionalisation and conservation of benthic communities in the French exclusive economic zone of Kerguelen[END_REF] absence of genetic differentiation, some spatial differences in life history parameters between N. rossii assemblages have been reported over large distances, but recent ecological comparisons are scarce [START_REF] Dewitt | Nototheniidae. In: Fishes of the Southern Ocean[END_REF], but see also [START_REF] Calì | Life history traits of Notothenia rossii and N. coriiceps along the southern Scotia Arc[END_REF]. Considering intraspecific diversity is difficult but the necessary next step for most accurate biological models (in SDM, IBM and population genomics) with clear conservation benefits [START_REF] Mee | Identifying designatable units for intraspecific conservation prioritization: a hierarchical approach applied to the lake whitefish species complex (Coregonus spp.)[END_REF], Marcer et al. 2016[START_REF] Des Roches | The ecological importance of intraspecific variation[END_REF], Paz-Vinas et al. 2018).

CONCLUSIONS

Multidisciplinary approaches to assess connectivity are extremely useful in data-limited situations as is the case in the vast and remote Southern Ocean. The integration of data from three different sources allowed us to identify areas important for conservation and provide a hypothesis that explains the slow recovery of Notothenia rossii stocks. These results are relevant for the ongoing effort to establish a network of MPAs and implement ecosystem based management for the region. Further challenges lay ahead, with climate change potentially altering the suitable habitat and connectivity, which demands continued research and monitoring, and flexible, adaptive management.
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APPENDIX 4.4.

Results from parameter optimization with Stacks v2.4 (Rochette et al. 2019) for de novo assembly and genotyping of four genotyping-by-sequencing (GBS) libraries of Notothenia rossii.

A parameter test series using a subset of 24 individuals (4 from each population) was conducted as described in [START_REF] Rochette | Deriving genotypes from RAD-seq short-read data using Stacks[END_REF]. The Stacks parameter m was kept constant in two test series (m = 2 and m = 3), while parameters M and n were varied together from 1 to 9. Subsequently, only loci present in 80 % of the samples were retained and for each M=n parameter the number of loci and polymorphic loci was plotted, as well as the proportion of these loci containing 0 to 10 or >10 SNPs. Optimal values were inferred from these results as m=3 and M=n=4. Article. Christiansen et al. (in prep.). Integrated assessment of large-scale connectivity in a historically overexploited fish population in the Southern Ocean.

APPENDIX 4.5.

Filtering conducted on raw SNP data sets produced from bioinformatics of four GBS libraries of Notothenia rossii from the Southern Ocean.

Genotypes of the reference-based and de novo data sets were first pruned using the population module of Stacks v2.4 [START_REF] Rochette | Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics[END_REF], requiring loci to be present in at least 80 % of the individuals of each population, to have a minor allele frequency > 0.05 and heterozygosity < 0.7 [START_REF] Rochette | Deriving genotypes from RAD-seq short-read data using Stacks[END_REF]. Subsequently, genepop files were imported and filtered extensively in R software using the 'radiator' package v1. 1.1 (Gosselin 2019).

At the start of the radiator filtering pipeline, the data sets contained genotypes from 349 individuals at 85,980 (de novo) and 73,554 (reference-based) SNPs. First, loci that were not shared across all populations were removed, i.e. 65,269 and 54,850 SNPs. Subsequently, individual genotypes were filtered based on an outlier statistic of missing data and of heterozygosity. These steps removed data from 62 (de novo) and 45 (reference) individuals. Then, markers were filtered based on minor allele count (mac), requiring a minimum mac of 10, and on coverage, removing all loci with coverage below 10 or above 100. SNPs were also removed when showing signs of unnormal positioning with the RAD fragment and on short linkage disequilibrium. For the latter, only one SNP per fragment was retained, the one with highest mac. Finally, duplicate genomes were detected and removed and loci significantly (p < 0.01) departing from Hardy-Weinberg proportions were removing. After these steps, 277 individuals and 12,400 loci remained in the de novo data set and 294 individuals and 4,505 loci in the reference data set. As a last filtering steps, these data were filtered on minor allele frequency (maf, threshold: 0.05), leaving 9,806 and 4,079 SNPs. Because a bias related to sequencing library was still detectable using principal component analysis in the above data sets, further loci, contributing to this bias, were removed. The final data sets then contain 261 individual genotypes at 7,501 SNPs in the de novo data and 272 individual genotypes at 3,503 SNPs in the reference-based data.
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APPENDIX 4.8 Results of the population genomic analysis of Notothenia rossii in the Southern

Ocean using the reference genome aligned SNP data set. Article. Christiansen et al. (in prep.). Integrated assessment of large-scale connectivity in a historically overexploited fish population in the Southern Ocean. Genome scans for loci putatively under influence of selection detected 37 outliers at q > 0.05 (c). Sample codes as in Table 4.1; samples from different years but same locality are combined.

GENERAL DISCUSSION

The generated SDMs were helpful to interpolate the distribution of species from hundreds of observations, including the distribution of the sea urchin Abatus cordatus, an endemic species of the Kerguelen Plateau (that belongs to the French marine protected reserve) (Guillaumot et al. 2018a,b, Guillaumot et al. submitted -Chapter 3) and the sea urchin Ctenocidaris nutrix [START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF], considered as a VME species (Vulnerable Marine Ecosystem) by CCAMLR (https://www.ccamlr.org/en/compliance/vulnerable-marine-ecosystems-vmes). Models showed good predictive performance. These models could be interesting for conservation and nature management, such as SDMs generated by [START_REF] Hibberd | Describing and predicting the spatial distribution of benthic biodiversity in the sub-Antarctic and Antarctic[END_REF] My studies were also helpful to investigate the quality of occurrence datasets (i.e. number, spatial and temporal coverage). In Guillaumot et al. (2018a -Appendix), among four sea urchin studied species of the Kerguelen Plateau area, only one presented a dataset that fulfilled all methodological requirements to produce a reliable distribution model. In Guillaumot et al. (2020b -Chapter 2), I showed that occurrence datasets of six sea stars species were not complete enough to highlight contrasts between species modelled niches at the scale of the SO. Such results are however useful to identify knowledge gaps and guide future sampling plans [START_REF] Guisan | Using niche-based models to improve the sampling of rare species[END_REF].

When enough data are available, model predictions were proved interesting to delineate species occupied environmental subspaces and thus helped describe environmental conditions preferentially occupied by the species along with the main abiotic descriptors driving the distribution (Guillaumot et al. 2018b, López-Farrán/Guillaumot et al. in press -Chapter 3, Guillaumot et al. submitted -Chapter 3). This was proved particularly relevant and powerful when distribution models are combined with experimental data (López-Farrán/ . Such results can be used to interpret the potential response of species to changes in some environmental factors (Guillaumot et al. 2018b, López-Farrán/Guillaumot et al. in press -Chapter 3) and guide conservation strategies accordingly [START_REF] Guillaumot | Benthic species of the Kerguelen Plateau show contrasting distribution shifts in response to environmental changes[END_REF]).

Similarly, DEB physiological models were interesting to disentangle the respective importance of food availability and temperature on species metabolic performances (Fabri-Ruiz et al. in press -Chapter 3), to describe the species life cycle (Agüera et al. 2015) or to determine species feeding histories according to observed gonadal cycles (Agüera et al. 2017 -Appendix). They also helped highlight the negative effect of increasing temperatures on metabolic costs (Abatus cordatus, Distributions,, 490-502. (2015). Effect of chronological addition of records to species distribution maps: The case of Tonatia saurophila maresi (Chiroptera, Phyllostomidae) in South America. Austral Ecology, 40 (7) (5), 763-773.

Wisz, M.S. & Guisan, A. (2009). Do pseudo-absence selection strategies influence species distribution models and their predictions? An informationtheoretic approach based on simulated data. BMC Ecology, 9(1), 8. 
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3 Comparison between maps shows higher similarity values between the different models run with BRT (Schoener's ! =0.867± 0.034) than with RF (! =0.761± 0.036), which highlights that BRT performs best for spatial transferability. Because transferability performance is a central criterion of model selection in our study (Araújo andGuisan 2006, Wenger andOlden 2012), BRT was selected for the further analyses. This result is in line with previous studies that highlight the high performance of BRT for prediction (Elith andGraham 2009, Guo et al. 2015) and transferability [START_REF] Schweiger | Increasing range mismatching of interacting species under global change is related to their ecological characteristics[END_REF], Wenger and Olden 2012[START_REF] Crimmins | Evaluating ensemble forecasts of plant species distributions under climate change[END_REF] while RF has been shown to generate geographically restricted models with high accuracy [START_REF] Guo | Uncertainty in ensemble modelling of large-scale species distribution: effects from species characteristics and model techniques[END_REF], Qiao et al. 2015[START_REF] Beaumont | Which species distribution models are more (or less) likely to project broad-scale, climateinduced shifts in species ranges?[END_REF]). 
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Article. López-Farrán et al. (in prep.). Can the Patagonian crab Halicarcinus planatus (Fabricius, 1775) reach Antarctic coasts? Study of the dispersal potential of its larvae using a Lagrangian approach.

FOREWORDS AND OBJECTIVES

In February 2010, an ovigerous female of Halicarcinus planatus (Fabricius, 1775) (Brachyura, Hymenosomatidae) was found alive in shallow subtidal waters of Deception Island (WAP; Aronson et al. 2014). This small crab (carapace width up to 15 mm and 20 mm for female and male, respectively, in Punta Arenas; Fig. 1) is an opportunistic feeder [START_REF] Boschi | Desarrollo larval del cangrejo, Halicarcinus planatus (Fabricius) (Crustacea, Decapoda, Hymenosomidae), en el laboratorio, con observaciones sobre la distribución de la especie[END_REF], commonly found sheltered under rocks in the intertidal and subtidal zones, in between holdfasts of the giant kelp Macrocystis pyrifera or sheltered in hydrozoans and mussel colonies (Richer De Forges 1977, Chuang and Ng 1994[START_REF] Vinuesa | Reproduction of Halicarcinus planatus (crustacea, decapoda, hymenosomatidae) in the Deseado River estuary, southwestern Atlantic Ocean[END_REF]. The crab is commonly found in the Southern tip of South America, including Tierra del Fuego, Cape Horn and Diego Ramirez Islands and in some sub-Antarctic Islands (Prince Edward and Marion Islands, Crozet and Kerguelen Islands, Falkland Islands, Macquarie Island, Auckland Islands in New-Zealand and Campbell Island archipelago) up to 36°S latitude (Fig. 2) [START_REF] Boschi | Desarrollo larval del cangrejo, Halicarcinus planatus (Fabricius) (Crustacea, Decapoda, Hymenosomidae), en el laboratorio, con observaciones sobre la distribución de la especie[END_REF][START_REF] Melrose | The marine fauna of New Zealand: family Hymenosomatidae (Crustacea, Decapoda, Brachyura)[END_REF], Richer De Forges 1977, Griffiths et al. 2013, Aronson et al. 2014).

Halicarcinus planatus mainly inhabits shallow environments, although it has also been reported from lower intertidal down to 270 m [START_REF] Garth | Brachyura of the Pacific Coast of America[END_REF][START_REF] Vinuesa | Distribución de crustáceos decápodos y estomatópodos del golfo San Jorge, Argentina[END_REF], Griffiths et al. 2013[START_REF] Varisco | Growth and maturity of the spider crab Halicarcinus planatus (Brachyura: Hymenosomatidae) females in the southwestern Atlantic Ocean. Can these parameters be influenced by the population sex ratio?[END_REF].

Halicarcinus planatus has a strong dispersal potential mediated by an extended planktonic larval stage (Richer De Forges 1977[START_REF] Diez | Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters[END_REF], Ferrari et al. 2011), lasting between 45 and 60 days (at temperatures of 11-13°C and 8°C in laboratory respectively) prior to benthic settlement (Boschi et al. 1969, Diez and[START_REF] Diez | Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters[END_REF]. The species can either spawn between April and May (e.g. in the Beagle Channel), or in the end of the austral winter between August and December (e.g. in the Kerguelen Islands) [START_REF] Diez | Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters[END_REF][START_REF] Diez | Seasonal variations in size, biomass, and elemental composition (CHN) of Halicarcinus planatus (Brachyura: Hymenosomatidae) larvae from the Beagle Channel, Southern South America[END_REF][START_REF] Vinuesa | Reproduction of Halicarcinus planatus (crustacea, decapoda, hymenosomatidae) in the Deseado River estuary, southwestern Atlantic Ocean[END_REF].

According to Richer de Forges (1977) the larval hatching occurs between October and November and the larvae can be found in the epipelagic plankton in austral summer, i.e. from November to March.

Halicarcinus planatus has the physiological capacity to withstand low temperatures. Indeed, while most decapod taxa exposed to cold waters experience increased magnesium ion concentration in the hemolymph ([Mg 2+ ]HL), reducing metabolic rates and aerobic activity, potentially leading to death [START_REF] Frederich | Distribution patterns of decapod crustaceans in polar areas: A result of magnesium regulation?[END_REF][START_REF] Thatje | Challenging the cold: crabs reconquer the Antarctic[END_REF], Aronson et al. 2007[START_REF] Diez | Reproductive biology of the crab Halicarcinus planatus (Brachyura, Hymenosomatidae) in sub-Antarctic waters[END_REF], H. planatus has the capacity to overcome these issues by reducing [Mg 2+ ]HL [START_REF] Frederich | Distribution patterns of decapod crustaceans in polar areas: A result of magnesium regulation?[END_REF] providing capacity for survival in cold waters like the Kerguelen Islands, where winter seawater temperatures range between +1.1 and +3.0°C [START_REF] Féral | Long-term monitoring of coastal benthic habitats in the Kerguelen Islands: a legacy of decades of marine biology research[END_REF]. 

OBJECTIVES

Following the recent discovery of a living specimen of H. planatus in Deception Island, the aim of this study is to use a dispersal model (Lagrangian approach) to evaluate whether crab propagules can reach Antarctic coasts from their actual presence locations. Simulations would help assess whether the natural transport via currents would be responsible of its presence in Deception Island.

MATERIAL AND METHODS

Lagrangian model settings

The Lagrangian particle model used in this study is based on the model described in Dulière et al. (2013) and made available as a module of the free and open-source aquatic modelling system COHERENS v2 (Luyten 2011).

Particles are transported under advective and diffusive processes. The classical fourth-order Runge-Kutta method is used to estimate horizontal transport. The diffusive velocities are obtained from random walk theory with constant horizontal and vertical diffusion coefficients of 10 and 0.0001m².s -1 , respectively. The same diffusion coefficient values are used as in Young et al. (2014) and are equivalent to values observed in the Southern Ocean (empirical values or commonly accepted by modellers; [START_REF] Sheen | Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES)[END_REF], Watson et al. 2013). A bouncing condition is used for particles reaching the sea surface or seabed, and particles that leave the model domain through the ocean open boundary are assumed to have left the region. Stranding is not allowed, so when a

APPENDIX

Article. López-Farrán et al. (in prep.). Can the Patagonian crab Halicarcinus planatus (Fabricius, 1775) reach Antarctic coasts? Study of the dispersal potential of its larvae using a Lagrangian approach.

particle reaches a dry cell, its position is set to its previous position at sea. The Lagrangian module is used off-line with a computation time step of 5 minutes. The hydrodynamic conditions used to force the Lagrangian model are based on the 2008-2016 PHY_001_024 datasets produced by the high-resolution global analysis and forecasting system, provided by Mercator Ocean (Law Shune et al. 2019). These products contain daily mean fields of sea surface elevation and horizontal ocean currents. In addition, they also contain sea ice information (i.e. concentration, thickness and velocity), sea water potential temperature, sea water salinity and ocean mixed layer thickness. These datasets have been generated with NEMO 3.1 and LIM2 EVP models forced with 3-hourly atmospheric forcing from ECMWF (European Centre for Medium-Range Weather Forecasts, https://www.ecmwf.int/). Daily averaged model products are made available after interpolation from the native model grid to a global standard Arakawa C grid of 1/12° horizontal resolution and 50 fixed vertical levels (from 0 to 5,000 m). The quality of the Global high-resolution products has been assessed in [START_REF] Lellouche | Quality Information Document For Global Sea Physical Analysis and Forecasting Product GLOBAL_ANALYSIS_FORECAST_PHY_001_024[END_REF]. 3D vertical ocean currents are estimated from the divergence in the horizontal velocity from the PHY_001_024 forcing fields, assuming null surface and bottom vertical velocity.

The model grid was built from a sub-sample of the global grid of the hydrodynamic forcing field from latitude 36°S down to the South Pole. The horizontal resolution of 1/12° (~8km) was kept and the 50 vertical levels have been adapted to 50 sigma levels for the COHERENS system.

Biological assumptions used in the Lagrangian model

Particles were assumed to drift during three months, corresponding to the maximal duration of the larval stage. They were launched from presence locations points (Fig. 2). Particles were limited to 200 m depth during their journey. The propagules were assumed to passively drift (without swimming capacity). No nycthemeral behaviour was considered. Particles were released from August to November and the drift was studied until the end of February.

Studied years.

The model was launched over different years, in order to assess possible contrasts in propagule dispersal trajectories under the influence of contrasting climatic regimes. Noteworthy, the intensity of the Southern Annular Mode (SAM, Limpasuvan and Hartmann 1999), has been shown to be strongly and linearly teleconnected to the phase of El Niño Southern Oscillation (Carvalho et al. 2005, L'Heureux and Thompson 2006, Ciasto and Thompson 2008). A negative SAM with strong El Niño episodes is characterised by warmer temperatures and stronger westerly winds. In contrast, years with strong positive SAM and with La Niña episodes present weaker westerly winds and a dryer and colder atmosphere (Nicolas et al. 2017) 

RESULTS

Results suggest that the crab larvae, within their 3-month drift in the water column, cannot reach Antarctic coasts independently of the different climatic regimes (Fig. 3). The Antarctic Circumpolar Current (ACC) constitutes a physical barrier that prevents propagules from crossing the Southern Ocean (Fig. 4).

The simulations also highlights the influence of the ACC to disperse the particles eastward (Fig. 5) and explain the genetic connectivity in between the different populations of Halicarcinus planatus (Fig. 2).
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Abstract: Among tools that are used to fill knowledge gaps on natural systems, ecological modelling has been widely applied during the last two decades. Ecological models are simple representations of a complex reality. They allow to highlight environmental drivers of species ecological niche and better understand species responses to environmental changes. However, applying models to Southern Ocean benthic organisms raises several methodological challenges. Species presence datasets are often aggregated in time and space nearby research stations or along main sailing routes. Data are often limited in number to correctly describe species occupied space and physiology. Finally, environmental datasets are not precise enough to accurately represent the complexity of marine habitats. Can we thus generate performant and accurate models at the scale of the Southern Ocean ? What are the limits of such approaches ? How could we improve methods to build more relevant models ? In this PhD thesis, three different model categories have been studied and their performance evaluated. ( 1) Mechanistic physiological models (Dynamic Energy Budget models, DEB) simulate how the abiotic environment influences individual metabolism and represent the species fundamental niche. ( 2) Species distribution models (SDMs) predict species distribution probability by studying the relationship between species presences and the environment. They represent the species realised niche. ( 3) Dispersal lagrangian models predict the drift of propagules in water masses. Results show that physiological models can be developed for marine Southern Ocean species to simulate the metabolic variations in link with the environment and predict population dynamics. However, more data are necessary to highlight detailed physiological contrasts between populations and to accurately evaluate models. Results obtained for SDMs suggest that models generated at the scale of the Southern Ocean and future simulations are not relevant, given the lack of data available to characterise species occupied space, the lack of precision and accuracy of future climate scenarios and the impossibility to evaluate models. Moreover, model extrapolate on a large proportion of the projected area. Adding information on species physiological limits (observations, results from experiments, physiological model outputs) was shown to reduce extrapolation and to improve the capacity of models to estimate the species realised niche. Spatial aggregation of occurrence data, which influenced model predictions and evaluation was also succefully corrected. Finally, dispersal models showed an interesting potential to highlight the role of geographic barriers or conversely of spatial connectivity and also the link between species distribution, physiology and phylogeny history. This PhD thesis provides several methodological advice, annoted codes and tutorials to help implement future modelling works applied to Southern Ocean marine species.