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Introduction

The macroscopic properties of a system are connected to the statistical distributions of its
particles at the microscopic scale. In quantum physics, the form of the statistical distribu-
tion depends on the nature of the particles, with strong differences between fermions and
bosons. Furthermore, particles are described by quantum mechanical wavefunctions. At
low temperatures, when the extent of the particles wavefunctions becomes comparable to
the inter-particle distance, the system is in the quantum degenerate regime: the particles
manifest collective behaviors that differ strongly between bosons and fermions. In this
thesis, we will study systems with many particles in the degenerate regime, or in other
terms quantum many-body systems. At zero-temperature, the statistical distributions de-
termine the characteristics of the ground state of non-interacting particles. The ground
state of an ensemble of indistinguishable bosons is called a Bose-Einstein Condensate
(BEC), for which all bosons are in the state of lowest energy, whereas identical fermions
cannot be in the same quantum state, a principle known as Pauli exclusion principle [1],
and the ground state of an ensemble of identical fermions is characterized by the occu-
pation of the lowest energy states with one fermion each from bottom-up. On top of
quantum statistical effects, interactions between individual particles can affect the ground
state, modifying the microscopic properties as well as the macroscopic properties of the
system. For instance, depending on the interactions, a fermionic or a bosonic ensemble
can manifest superfluid properties, meaning they can flow without any viscosity.

Experimental evidence of the remarkable properties of a quantum many-body system
was first obtained with the discovery of the superconductivity (absence of resistivity) of
mercury, under a critical temperature of approximately 4.2 K, in 1911 by Kamerlingh
Onnes [2], pioneering the study of the properties of such systems. In the following
decades, several very unusual phenomena in many-body systems caused by the strong
quantum correlations were unearthed. Such examples of unexpected properties are the
superfluidity of bosonic liquid 4He under a critical temperature of 2.17 mK, highlighted
in the experiments of Kapitza [3] and Allen and Misener [4] in 1938, the superfluidity of
fermionic liquid 3He by Osheroff in 1970 [5], or, to give a different example, the fractional
quantum Hall effect, first observed in 1982 [6, 7]. The deep understanding of such many-
body systems is very challenging. Even if the Hamiltonian of the system is known, the
dimension of the Hilbert space grows exponentially with the number of particles and the
strong correlations add another layer of complexity to the system. The theoretical or nu-
merical study of such systems is generally hindered by the absence of general methods so
experimental works are strongly needed to help overcome these difficulties. For instance,
although London understood that the superfluidity of liquid 4He is connected to the Bose-
Einstein condensation [8] only months after the discovery, the precise determination of
the critical temperature requires the knowledge of the correlations in the system which is
very challenging. Another example is the problem of superconductivity of certain metals
at low temperature, that was only solved in the 1950’s, more than forty years after the
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experimental discovery: Bardeen, Schrieff and Cooper established the so-called BCS the-
ory [9], explaining the superconductivity of the system by valence electrons pairing up
thanks to an attractive interaction to form Cooper pairs. However, the discovery of a new
type of superconductors in quasi-2D cuprates in 1986, with high critical temperature [10],
was failed by BCS theory and has yet to be completely understood.

Ultracold quantum gases and quantum simulation

Quantum many-body systems are not restricted to condensed matter systems. Thanks to
the development of laser technology following the seminal work of Kastler and Brossel on
optical pumping in the 1950’s [11], the cooling and trapping of cold atom gases was made
possible in the 1980’s using the radiation pressure of laser beams and magnetic fields [12].
The achievement of Bose-Einstein condensation in 1995 with alkali atoms [13, 14], and
later in 1999 the obtention of a degenerate Fermi gas [15] marked the advent of the field
of quantum gases. Following these discoveries, ultracold gases have proven to be an
excellent system to study quantum properties observed in condensed matter [16], due
to their high versatility. First, the trapping potential of the gas can be tailored to one’s
need: the trapping can be harmonic, box-like, periodic or even disordered [17] and it
even enables to select the dimensionality of the system. Furthermore, the access to single
atom resolution in recent experiments for atoms trapped in lattices or even propagating
freely [18–24] gives access to multi-particle correlations (full counting statistics). Second,
the interactions between the atoms are short-ranged and can be tuned experimentally with
high precision using an external magnetic field through a Feshbach resonance [25]. This
enables to explore all interaction regimes, from the ideal gas to a strongly interacting
many-body system. Long-range interactions can also be obtained with the use of highly
magnetic atoms [26–28], polar molecules [29] or Rydberg atoms [30]. Another possibility
includes the coupling to artificial gauge fields to mimic the effect of a magnetic field or
charged particles [31].

This high versatility has enabled to use ultracold quantum gases to perform quantum
simulation. This notion, first introduced by R. Feynman in 1982 [32], consists in emu-
lating the behavior of a strongly correlated quantum system, either theoretical or hard to
investigate in condensed matter physics. Ultracold quantum systems can then be used to
investigate the properties of strongly correlated condensed matter systems or even to ver-
ify the predictions made for more exotic systems such as neutron stars [33] or quark-gluon
plasmas [34].

Many-body physics in ultracold quantum gases

Ultracold atoms have been used to investigate several types of many-body systems. The
most emblematic one is the implementing of the Bose-Hubbard model [35], which de-
scribes the physics of interacting particles in a lattice, with the observation of a transition
between a Mott insulating phase for strong on-site repulsive interactions and a superfluid
state for lower interactions [36]. Mott insulators were observed for fermionic and bosonic
species [37–39], and the quantum phase transition to a superfluid state was reported for
bosons in [37]. Another important example is the study of strongly correlated quantum
gases.
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Bose gas
Since the obtention of a BEC in 1995, the weakly interacting Bose gas has been studied
thoroughly experimentally. As it is condensed, we expect a superfluid behavior which was
demonstrated experimentally through the observation of quantized vortices in a rotating
cloud [40–42].

The strongly interacting Bose gas, accessible thanks to Feshbach resonances, is of
great value since it bridges the gap between the ideal Bose gas and superfluid liquid
Helium. Unfortunately, the lifetime of the gas is strongly reduced due to the enhancement
of the losses near the resonance [43–45]. This phenomenon can be explained using three-
body physics, in particular the Efimov effect, which predicts the existence of an infinite
set of three-body bound states near the resonance.

Fermi gas
An ultracold two-component Fermi gas realizes the BCS-BEC crossover: depending on
the interactions, the Fermi gas can go from a BCS-like behavior for weak attractive
interactions to a BEC-like behavior for strong attractive interactions, as predicted by
Leggett [46] as well as Nozières and Schmitt-Rink [47]. On the BEC side of the crossover,
a bound-state between fermions of opposite spin exist and they can form dimers, bosonic
in nature, that forms a BEC at low temperatures. On the BCS side of the crossover,
fermions of opposite spins can form Cooper pairs that are stabilized by the Fermi sea,
even though no bound-state exist. Superfluidity in a two-component Fermi gas is real-
ized in the whole BEC-BCS crossover for low enough temperatures: on the BEC side the
superfluidity is similar to that of a condensed Bose gas, whereas on the BCS side, the
superfluidity is analogous to the superconductivity in metals explained by BCS theory.
In-between those two regimes lies the unitary regime where fermions are interacting res-
onantly and exhibit remarkable properties such as a scale invariance and a high critical
temperature for superfluidity.

This crossover can be explored experimentally by changing the interactions from
weakly attractive to strongly attractive through the means of a Feshbach resonance [48].
Contrary to Bose gases, Fermi gases are stable, even in the strongly interacting regime:
strongly interacting degenerate Fermi gases were obtained in many laboratories [49–54].
Superfluidity of the two-component Fermi gas was observed experimentally unambigu-
ously through the gas reponse to a rotating confining potential, with a resistance to rota-
tion in the low rotation speed regime [55] and the formation of quantized vortices in the
large rotation speed regime [56]. Another experimental demonstration of superfluidity
was obtained through the observation of the second sound in the unitary Fermi gas [57]:
an entropy wave in which the superfluid phase and the normal phase of the gas oscillate
with opposite phases.

The realization of Bose [58] and Fermi [59] gases in box-like potential, enabling to
have homogeneous systems, opens new possibilities to study their properties and for in-
stance look for new exotic phases such as the FFLO (Fulde, Ferrell, Larkin, Ovchinnikov)
phase [60,61] characterized by Cooper pairs with non-zero momentum and spatial modu-
lation of the order parameter. This phase can be observed in a two-component Fermi gas
with imbalanced spin populations (partially polarized Fermi gas). The limiting case of a
partially polarized Fermi gas is a Fermi sea with exactly one impurity, that presents very
rich physics. The generalization of this system is the case of a single impurity immersed
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in a many-body ensemble, that we present in the following paragraph.

Impurity in a many-body ensemble
While being one of the simplest problem in many-body physics, the physics of an impurity
immersed in a many-body ensemble remains non-trivial and very rich.

One of the most fundamental examples is the polaron problem introduced by Landau
in 1933 in a one-page long article [62]. In 1948, Landau and Pekar further described
the properties of this system [63]. The term was introduced to describe the quasiparticle
arising from the interactions between the conduction electron and its induced polarization
in a polar semiconductor or an ionic crystal. The polaron problem then consisted in
the study of the interactions between a charge carrier (electron, hole) and the phonons
of an ionic crystal, described by a field-theoretical Hamiltonian derived by Frölich in
1954 [64]. This quasiparticle has different properties compared to the original impurity:
in particular, it is characterized by an effective mass, a binding energy and a renormalized
response to an external electric or magnetic field. The notion of polaron has then been
generalized to describe various physical systems across all fields of physics that shares its
general properties such as the polaronic exciton (exciton in a plar crystal), the spin polaron
(phonons interacting with a magnon field), or the piezopolaron (quasiparticle arising from
the piezoelectric interaction between an electron and acoustic phonons) [65].

Figure 0.1: Sketch of a polaron in two different systems, where the interaction between the
impurity and the background is attractive. On the left-hand side, the impurity is interacting
with a crystal lattice, on the right-hand side the impurity is interacting with a background
quantum gas.

The presence of impurities in a many-body system can affect its macroscopic prop-
erties in a spectacular way, with for instance the Kondo effect. In the 1930’s, puzzling
properties of gold were revealed: at low temperature, the resistivity of the material de-
creases with tempearture until it reaches a minimum at a non-zero temperature and then
rise as the temperature is lowered even further [66]. This property was observed in other
metals in the following years and was linked to the presence of impurities in the mate-
rial [67] (iron impurities in this work). It is only in the early 1960’s that Kondo suggested
that this behavior was due to the presence of magnetic impurities in the metallic sample,
and the possibility of a scattering process in which the internal spin state of the impurity
and a scattered electron are exchanged [68]. The third order perturbative calculations he
performed explained well the presence of a minimum but lead to a divergence of the re-
sisitivity of the material as T → 0. This problem, known as the Kondo problem, was
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revisited in 1975 by Wilson [69], using a non-perturbative renormalization group method
based upon the seminal work of Anderson on localized magnetic impurities immersed in
a Fermi sea [70].

Even the presence of one impurity can drastically modify the properties of the many-
body background as introduced in the historical problem of Anderson’s orthogonality
catastrophe (AOC) in 1967 [71]. Anderson showed that when a motionless impurity is
introduced in a Fermi sea, the ground state of this now perturbed system becomes or-
thogonal to the ground state without the impurity, with an overlap between the two states
that decreases with the size of the system with a power law. In cold atoms, an impu-
rity immersed in a Fermi sea can be dressed by the background and forms a polaronic
quasiparticle, but due to AOC, a motionless impurity or a heavy impurity will not form
a quasiparticle. The decoherence of “massive” 41K impurities immersed in a Fermi sea
of 6Li was measured in Innsbruck [72, 73], and direct observation of AOC may be real-
ized in this group by pinning the potassium atoms using a deep species-selective optical
lattice [74] to render them effectively motionless.

Other impurity problems can be found also in high energy physics, for instance in
neutron stars where protonic impurities can interact with the background neutronic su-
perfluid [75, 76], or in quantum chromodynamics where the Polyakov loop describes the
properties of a test color charge in a hot gluonic medium [77].

Furthermore, the impurity problems can be used as toy-models for more complex
many-body problems [78] for instance in the case of dynamical mean-field approaches
[79]: the idea is to replace a lattice model by a single-site quantum impurity problem,
with a self-consistency condition that encompasses the translation invariance and coher-
ence effects of the lattice, an approach also known as LISA (local impurity self-consistent
approximation). This mapping provides a simpler description of highly-correlated sys-
tems, and may be used for instance to solve the Kondo problem in a lattice system, or
to study Heavy fermions systems [80, 81] (Ce or U based metallic compounds with a
strongly enhanced effective mass for the conduction electrons, up to 1000 times the mass
of an electron).

An impurity in a system can also be used to probe experimentally the properties of
the background system itself, acting as a test particle. For instance, the observation of
the crossover from few-body physics to many-body physics of a fermionic ensemble was
studied via the measurement of the interaction energy between an impurity and a few
indistinguishable fermions [82] in a quasi one-dimensional trap. This study revealed a
rapid convergence to the many-body limit of a single impurity in a Fermi sea, showing
that the many-body description is already valid for a very low number of fermions in the
background (in [82] for N ≥ 5).

In this thesis, we focus on the problem of an impurity immersed in a two-component
Fermi gas, which is analogous to the original polaron problem. An impurity immersed in
a Fermi sea is called a Fermi polaron and an impurity immersed in a BEC is called a Bose
polaron, with both systems described in details in Chapter 2. In the last chapter of this
thesis, we will see how our specific impurity problem bridges between the Fermi polaron
and the Bose polaron thanks to the crossover between the BCS and the BEC limits.
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Outline of this thesis
This thesis is divided in six chapters.

• In the first chapter, we focus on the characterization of interactions in cold atoms
systems. Starting with two-body interactions, we introduce the scattering length, a
single parameter that encompasses all the details of the interaction potential for low-
energy scattering physics. We will see how the interactions can be tuned with high
precision by changing the magnetic field thanks to Feshbach resonances. Lastly, we
will briefly describe three-body physics and the Efimov effect.

• In the second chapter, we will present the physics of ultracold quantum gases. Start-
ing with the ideal Bose and Fermi gas, we will then study the effect of interactions
on these many-body systems. In the case of a two-component Fermi gas, we will
investigate the BCS-BEC crossover, and introduce the two-body fermionic contact
C2 to encapsulate the short-range correlations of this many-body system. Finally,
the problem of an impurity in a quantum gas will be explored with the study of the
Fermi and the Bose polaron.

• In the third chapter, we present an overview of the experimental set-up used to
obtain a degenerate Bose-Fermi mixture. We also present the physics of ultracold
gases trapped harmonically and our techniques to obtain the physical characteristics
of the Bose-Fermi mixture using absorption imaging.

• In the fourth chapter, we present experimental results obtained in [83], on the life-
time of an impurity in a two-component Fermi gas and show how this measurement
yields a measurement of the fermionic two-body contact C2. We measure the con-
tact on the BEC side and at unitarity, and we present some preliminary results on
the measurement of the contact at finite temperature at unitarity.

• In the fifth chapter, we present experimental results obtained in [84] on the counter-
flow of an impurity and a superfluid Fermi gas. We observe long-lived oscillations
and the study of their frequency informs us on the interactions between the impu-
rity and the Fermi superfluid. We then investigate the damping of these oscillations
that arise at high amplitude that we interpret as the presence of a critical velocity,
characteristic of superfluids, or at high temperature due to the loss of superfluidity.

• Finally, in the last chapter, we investigate theoretically the properties of an impurity
immersed in a superfluid. After giving a brief overview of the phase diagram of the
system, we focus on the calculation of the energy of the polaron beyond the mean-
field approximation. We highlight a logarithmic divergence of the second order
perturbative calculation that we regularize thanks to an insight from the three-body
problem. Lastly, we analyze the consequences of this energy calculation on the
experimental results presented in the fifth chapter.
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Interactions in cold atoms

The study of interactions in ultracold gases is essential to explain fully their properties.
We will present in this chapter the main concepts underlying the interactions between the
atoms that constitute such systems. We will start by describing the interactions between
two particles and build the simplest potential that can describe them without omitting
important details, by studying the low-energy scattering of two particles. We will then
see how we can tune experimentally these interactions through the use of Feshbach reso-
nances. Finally, we will review some aspects of three-body physics that can affect strongly
interacting quantum gases.

1.1 Interactions between two particles

To describe the interactions that take place in a quantum many-body system, we have to
start with the interactions between two particles.

1.1.1 Interaction potential

The typical shape of the interaction potential is given in Fig. 1.1. The generic interaction
potential between two atoms is the sum of a repulsive interaction at short distance with
a strong electron exchange repulsive barrier [85] and an attractive interaction at long dis-
tance, corresponding to a Van der Waals interaction arising from their induced dipoles.
The attractive interaction between two lithium atoms is behaving as −C6/r

6. From this
potential, we can build dimensionally the Van der Waals length lV dW = 1

2

(
mC6

~2
)1/4, typi-

cally a few nanometers for alkali atoms, which corresponds to the range of this potential.
The interaction potential can present several bound states, with the deepest bound

states having binding energies of the order of several hundred Kelvins.
Experiments with ultracold atoms operate in a regime where the typical size of the

wavepackets, given by the De Broglie wavelength λdB, is much bigger than lV dW . Con-
sequently, in a first approximation, the atoms do not feel the details of the interaction
potential. This limit constitutes the universal limit: physical systems that are completely
different at short distances exhibit similar behaviors at long distances. Hence we want to
find a simplified expression of this potential that can still describe accurately the behav-
ior of cold atom gases. In order to do so, we will first study the collisions between two
particles interacting with a potential V and characterize their scattering properties.

13
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Figure 1.1: Shape of the interaction potential VVdW. The sum of an attractive attraction
at long distances and a repulsive barrier at small distances induces a minimum of the
potential and several possible bound states for negative energies.

1.1.2 Low-energy scattering theory
Scattering amplitude and differential cross-section

We will work from now on in the center-of-mass frame of the two interacting particles.
The problem for two particles of mass m1 and m2, with positions r1 and r2, is reduced to
a one-body problem for a particle of reduced massmr = m1m2

m1+m2
and position r = r2−r1.

In that case, stationary states must obey the Schrödinger equation

Ĥψ(r) =

[
− ~2

2mr

∇2 + V (r)

]
ψ(r) = Eψ(r), (1.1)

where V is the interacting potential of range b1 and E the energy of the stationary state.
For negative energiesE, we obtain the bound states mentioned in the previous section.

For positive energies E, the two particles will scatter. In the center-of-mass frame, this
problem amounts to the scattering of an incident planewave of momentum k on a potential
V . We represent schematically this situation in Fig. 1.2, and we define two unitary vectors
n = k/k, which corresponds to the direction of propagation of the incoming wavepacket,
and n′ = r/r, the direction in which it is scattered.

At long distance, the stationnary scattering state ψ obeys the following asymptotic
form

ψ(r) '
r�b

eik.r + f(k,n,n′)
eikr

r
= ψ0(r) + ψsc(r). (1.2)

This solution corresponds to the sum of the incident plane wave |ψ0〉 and of a spherical
wave |ψsc〉 centered on the center of the potential, with an amplitude determined by the
function f called the scattering amplitude and which has the dimension of a length.

This scattering amplitude is linked to another important physical quantity, the differ-
ential scattering cross-section dσ

dΩ
, which corresponds to the number of particles scattered

in the solid angle dΩ per unit time over the number of incident particles per unit of area

1For a Van der Waals interaction, b = lVdW.
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Figure 1.2: Schematics of the scattering problem. An incoming wave plane of wavevector
k = mvinc/~ is scattered by a potential V which range b is represented in orange. The
unitary vectors n and n′ defined in the text are represented in blue.

and time, thus describing how efficient the scattering is in a given direction. They are
related through the simple equation

dσ

dΩ
= |f(k,n,n′)|2 . (1.3)

Low energy limit

The scattering states can be expanded onto a basis of partial spherical waves indexed by
the associated angular momentum quantum number `. A centrifugal barrier term of order
`(`+1)~2/mrb

2 & mK strongly suppress partial waves with ` > 0 at low temperatures, so
the scattering in ultracold systems is purely s-wave. In this low-energy limit, f is isotropic
and does not depend on the directions n and n′ anymore: it can be written simply as f(k).

For indistinguishable particles, the symmetrization (or anti-symmetrization) of the
wave function leads to dσ = |f(k,n,n′) + εf(k,n,−n′)|2dΩ with ε = 1 for identical
bosons and ε = −1 for identical fermions. In the low-energy limit, since f does not
depend on n and n′, we obtain the well-known result that two identical fermions do not
interact via s-wave channel (dσ = 0).

Furthermore, when k → 0, f has a limit that we will express as

lim
k→0

f(k) = −a (1.4)

where a is called the scattering length, with values which can vary from−∞ to +∞. The
regime in which a goes to infinity is called the unitary regime.

It is also possible to go beyond this simple limit, in which case the s-wave scattering
amplitude can also be expanded in powers of k and reads [86]

1

f(k)
=
k→0
−
(

1/a+ ik − 1

2
rek

2

)
, (1.5)

with re the effective range of the interaction. Systems that can be appropriately described
in the limit a � re are universal, with the behavior at long distances well described by a
scattering amplitude that only depends on the scattering length a. As soon as re is needed,
the system can no longer be considered universal.
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In the low-energy limit, we have simply dσ/dΩ = |f(k)|2, and a total cross-section
σtot = 4π|f(k)|2. For k → 0, we obtain σtot = 4πa2 for distinguishable particles
(σtot = 8πa2 for identical bosons) so we can interpret the scattering length a as the
effective size of the atoms for the collision problem.

In the unitary regime, the cross-section does not diverge but rather ”saturates”. Using
eq. (1.5), we find that the cross-section has the universal behavior σ ∼ 4π/k2 for two
distinguishable particles and σ ∼ 8π/k2 for two identical bosons.

In short, the scattering length a encapsulates the details of the potential into a single
parameter describing the low-energy scattering properties.

1.1.3 Born’s approximation
We want to explicit the relation between the interaction potential V and the scattering
properties. The goal of this paragraph is to do it at the lowest order in V that gives a finite
result. This approximation is known as the Born approximation.

Scattering amplitude in Born’s approximation

To introduce Born’s approximation, we will focus on the expression of the scattered state
|ψ〉 as a function of the incoming planewave |ψ0〉 = |k0n〉.

We can show readily using the Schrödinger equation that the stationary scattering
states |ψ〉 are also solutions of the Lippman-Schwinger equation

|ψ〉 = |ψ0〉+ Ĝ0(E0)V̂ |ψ〉 (1.6)

where |ψ0〉 is the incident plane wave, G0 is the retarded Green function with G0(E) =

(E + iε − Ĥ0)−1 with Ĥ0 the hamiltonian of the free particles without interactions, and
E0 is the energy of the incident plane wave |ψ0〉.

We see that this equation is an implicit equation on |ψ〉 and may be written as an
expansion

|ψ〉 = |ψ0〉+ Ĝ0(E0)V̂ |ψ0〉+ Ĝ0(E0)V̂ Ĝ0(E0)V̂ |ψ0〉+ ... (1.7)

The Born approximation consists here in keeping the first order term in V̂ , yielding
the expression

|ψBorn〉 = |ψ0〉+ Ĝ0(E0)V̂ |ψ0〉 (1.8)

In the position space, it reads

ψBorn(r) = ψ0(r) +

∫
d3r′G0(E0, r − r′)V (r′)ψ0(r′) (1.9)

where r = rn′, with n′ the direction in which the particle is scattered.
The expression of G0(E0, r−r′) can be calculated readily from its definition, and we

obtain

ψBorn(r) = eik0.r − mr

2π~2

∫
d3r′

eik0|r−r
′|

r − r′ V (r′)ψ0(r) (1.10)

The potential V (r′) is negligible for r′ > b with b the range of the potential. At long
distances r � b, we can simplify this expression as

ψBorn(r) = eik0n.r − mr

2π~2

eik0r

r

∫
d3r′eik0n

′.r′V (r′)ψ0(r′) (1.11)
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Identifying this expression with eq. (1.2), we deduce

fBorn(k0,n,n
′) = − mr

2π~2

∫
d3r′eik0n

′.r′V (r′)ψ0(r′) = −mrΩ

2π~2
〈k0n

′|V̂ |k0n〉 (1.12)

with Ω the quantization volume.

Zero-range limit

Since we saw that in cold atoms experiment the atoms do not see the details of the poten-
tial, the simplest model that we can consider is actually a contact interaction. In this case,
the simplest contact interaction we can write is a delta function:

V (r) = gBornδ(r) (1.13)

where gBorn is the coupling constant with the dimension of an energy times a volume.
This is what we will call the pseudopotential.

In this limit, we have 〈k0n
′|V̂ |k0n〉 = gBorn/Ω, and using eq. (1.12) we deduce a

relation between the coupling constant gBorn and the scattering length in the Born approx-
imation. We obtain:

gBorn =
2π~2a

mr

(1.14)

Therefore, we find that as long as we take the value from eq. (1.14) for the coupling
constant in the expression of the pseudopotential, the physics of the atomic gas will be
the same when considered in the Born approximation.

Beyond Born approximation...

We can wonder now what happens if we want to use this expression of the pseudopo-
tential to describe physics beyond the Born approximation. For instance, we can focus
on the second order expansion of the scattered state. The perturbative expansion of the
scattered state reads up to second order, for an interaction described by the zero-range
pseudopotential, in the direction n′

〈k′|ψ〉 = 〈k′|ψBorn〉+ 〈k′|Ĝ0(E0)V̂ Ĝ0(E0)V̂ |ψ0〉 (1.15)

To evaluate the second-order term, we introduce completeness relations and use the
fact that

〈k1|Ĝ0(E0)|k2〉 =
δk1,k2

E0 + iε− Ek1

(1.16)

to obtain

〈k′|ψ〉 = 〈k′|ψBorn〉+ 〈k′|Ĝ0(E0)|k′〉(g
Born)2

Ω2

∑

k′′

1

E0 + iε− ε(r)
k′′

(1.17)

with ε(r)
k′′ = ~2k′′2/2mr.

We can see that the sum that appears in the second-order term behaves as
∑

k 1/k2,
which is highly divergent (the sum is over the three dimensions) when k → ∞. In
conclusion, we saw with this example that as soon as we want to study the scattering
problem beyond Born’s approximation, the pseudopotential from eq. (1.13) with g =
gBorn fails miserably. To overcome this issue, we introduce in the next paragraph the
T -matrix formalism.
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1.1.4 Transition matrix

Definition

In order to solve the scattering problem out of Born’s approximation, we go back to the
Lippman-Schwinger equation defined in eq. (1.6). We then define the transition matrix or
more simply the T -matrix as an operator satisfying the relation

T̂ (E0)|ψ0〉 = V̂ |ψ〉 (1.18)

where the transition operator depends on the energy E0 of the initial state |ψ0〉 (conserved
during the collision).

We can then inject eq. (1.18) into eq. (1.6) and we get

|ψ〉 =
(

1 + Ĝ0(E0)T̂ (E0)
)
|ψ0〉 (1.19)

The equation is now explicit in |ψ〉 and we see how we can calculate the transition be-
tween the incident state |ψ0〉 and the scattered state |ψ〉. Following the same reasoning as
in section 1.1.3, without using an expansion of the scattered state |ψ〉, we can show that

f(k,n,n′) = −mrΩ

2π~2
〈k0n

′|T̂ |k0n〉 (1.20)

We have then obtained an exact expression of the scattering amplitude, which involves
the matrix elements of the transition operator.

Dyson equation

We want to obtain an expression for T̂ that can be used more easily than eq. (1.18).
For this purpose, we combine eq. (1.18) and (1.19) to finally deduce that the operator T
satisfies an implicit equation:

T̂ (E0)|ψ0〉 = V̂ |ψ〉 =
(
V̂ + V̂ Ĝ0(E0)T̂ (E0)

)
|ψ0〉 (1.21)

yielding the Dyson equation

T̂ (E0) = V̂ + V̂ Ĝ0(E0)T̂ (E0). (1.22)

From this last equation, we can get another insight on the Born approximation. Indeed,
the implicit Dyson equation defining the transition operator seems like a perfect basis for
a perturbative expansion. Indeed, eq. (1.22) can be expanded as

T̂ (E0) = V̂ + V̂ Ĝ0(E0)V̂ + V̂ Ĝ0(E0)V̂ Ĝ0(E0)V̂ + ... (1.23)

The Born approximation consists in simply stopping this expansion at the leading
order T̂Born = V̂ . The issue we get when we want to go beyond Born’s approximation is
that the expansion we wrote for the T -matrix is not always convergent, at least not for the
pseudopotential we obtained in the previous paragraph. This pseudopotential thus needs
to be regularized, as we will see in the next paragraph.
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1.1.5 Regularization of the pseudopotential
We start again with a simple contact interaction, written as a delta function:

V (r) = g0δ(r) (1.24)

where the coupling constant g0 is not assumed to be equal to gBorn.

The coupling constant g0

To go beyond the approximation, we have to calculate the matrix element 〈k′|T̂ |k〉, with
k = kn and k′ = kn′. To do this, we expand the Dyson equation, whose diagrammatic
representation is given in Fig. 1.3:

〈k′|T̂ |k〉 = 〈k′|V̂ |k〉+ 〈k′|V̂ Ĝ0(ε
(r)
k )V̂ |k〉+ ... (1.25)

where ε(r)
k = ~2k2/2mr the energy of the particle with the reduced mass mr in the center-

of-mass frame.

Figure 1.3: Diagrammatic representation of the expansion of the matrix element 〈k′|T̂ |k〉
using the Dyson equation.The dashed lines correspond to the two particles. Each vertical
red line correspond to an interaction term V̂ , and in-between two red lines there is a
propagation term Ĝ0.

This expansion can be written as a geometric sum by introducing the completeness
relations between two subsequent operator and yields:

〈k′|T̂ |k〉 =
g0/Ω

1− g0
Ω

∑
k′′

1

ε
(r)
k +iε−ε(r)

k′′

(1.26)

We now take the limit k → 0 to connect this expression to the scattering length and
we get

a =
mrΩ

2π~2

g0/Ω

1− g0
Ω

∑
k′′

−1

ε
(r)

k′′

. (1.27)

By using the inverse of this expression, we finally write

1

g0

=
1

g
− 1

Ω

∑

k′′

1

ε
(r)
k′′

(1.28)

In this last expression, the sum is highly divergent. We need to introduce a UV-
cutoff Λ in momentum space, so now g0 becomes a running coupling constant g0(Λ),
and the sum is performed over k′′, k′′ < Λ. We will thus call it the “bare” coupling
constant as opposed to g = 2π~2a/mr which is finite and therefore called the“physical”
coupling constant (and coincides with what we obtained in Born’s approximation). This
regularization is inherent of the nature of the pseudopotential itself and the zero-range
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limit that was taken, the UV-cutoff Λ is related to the inverse of the effective range of the
potential re.

We see that when Λ increases, the sum over k starts dominating eq. (1.28) and g0(Λ) is
small and negative. This fact that it is negative means that we have an attractive potential,
and provides an illustration that a zero-range approximation can only be achieved with
attractive potentials; for a purely repulsive potential there is always a finite range & a.
The fact that g0(Λ) becomes vanishingly small when the cutoff increases is also expected,
because the divergence that comes from decreasing the effective range of the potential
must be compensated by decreasing the coupling constant.

For the two-body problem, we can then apply this regularization of the pseudopo-
tential inspired from renormalization techniques. Other regularization approaches exist,
such as the use of Bethe-Peirls boundary conditions [87] or corrected expressions of the
pseudopotential [88, 89], but we will stay within this approach for the remaining of this
thesis.

Calculation of f(k)

Now that we have an expression for the bare coupling constant g0, we can calculate the
full scattering amplitude f(k) in the zero-range limit. We come back to eq. (1.26) and we
write

Ω〈k′|T̂ |k〉 =
1

1
g0
− 1

Ω

∑
k′′, k′′<Λ

1

ε
(r)
k +iε−ε(r)

k′′

(1.29)

Ω〈k′|T̂ |k〉 =
1

1
g
− 1

Ω

∑
k′′, k′′<Λ

[
1

ε
(r)
k +iε−ε(r)

k′′
+ 1

ε
(r)

k′′

] (1.30)

where Λ is the UV-cutoff that can now be set to infinity since the sum in the last expression
is convergent after using the regularization of g0.

The sum at the denominator can be calculated using the residue theorem and perform-
ing an integration over the upper part of the complex plane (positive imaginary parts). We
get

1

Ω

∑

k′′

[
1

ε
(r)
k + iε− ε(r)

k′′

+
1

ε
(r)
k′′

]
= − imr

2π~2
k (1.31)

which gives for the expression of the s-wave scattering amplitude in the zero-range limit

f(k) =
−a

1 + ika
(1.32)

We see that we recover the expression of the scattering amplitude we gave with eq. (1.5),
but with an effective range re = 0, consistent with the zero-range limit we are in.

1.2 Feshbach resonance
To change the interaction strength between two atoms, we have to modify their associated
scattering length. We will see in this section how we can vary widely the scattering length
a by taking advantage of Feshbach resonances. Those resonances are described in details
in [25, 86] and we will sum up their principal properties in this section.
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Figure 1.4: Schematics of the potential corresponding to the open (red) and closed (green)
channels. The light green dashed line in the closed channel correspond to the energy of
the bound state Eres. The orange arrow symbolizes the entrance of a pair of atoms of
energy E in the open channel.

Feshbach resonances can occur when two atoms in their respective initial spin states
can be coupled to different states during their collision. The initial spin state configura-
tion is called the entrance channel or open channel and the other state to which they can
be coupled is the closed channel, not accessible energetically at low temperatures. The
resonance takes place when the energy of the pair of colliding atoms of mass m initially
in the open channel is close to the energy of a bound state in the closed channel. We call δ
the difference in energy between the bound state in the closed channel and the continuum
threshold of the open channel. This is represented in Fig. 1.4, where we plotted two po-
tentials of the Van der Waals kind for the open and closed channels. The closed channel
can actually have several bound states but in general it is sufficient to consider only one
to describe the resonance [90].

To take advantage of a Feshbach resonance, the shift δ must be tunable with an ex-
ternal parameter, such as the magnetic field. When δ → 0, the bound-state becomes
resonantly coupled to the diffusive states of the open channel and leads to a divergence of
the scattering length.

1.2.1 Two-channel model
To investigate the main characteristics of a Feshbach resonance, we can use a two-channel
model [91]. We introduce an effective two-body Hamiltonian, in which we explicitly add
a molecular state of energy δ as well as a coupling term between the two channels. The
effective coupling g̃k between the channels is proportional to the overlap between the
diffusion state of momentum ~k in the open channel and the molecular state in the closed
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channel. In the center-of-mass frame, we only have a one-body problem for which the
Hamiltonian reads:

∑

k,σ

ε
(r)
k a†k,σak,σ + δb†b

︸ ︷︷ ︸
Ĥ0

+
∑

k

g̃k√
Ω

(
b†ak,↑a−k,↓ + a†k,↑a

†
−k,↓b

)

︸ ︷︷ ︸
V̂

(1.33)

where a†k,σ is an operator that creates a fermion of spin σ and momentum k in the open
channel and b† is the creation operator of a molecule in the bound state of the closed
channel. Since we work in the center-of-mass frame, there is no need to consider the
momentum of the molecule.

In order to recover the scattering length in this model, we calculate the matrix elements
〈k|T̂ |k′〉 of the T -matrix, where the state |k〉 correspond to a pair of atom of relative
momentum k in the open channel in the center-of-mass frame. To calculate this matrix
element, we will as usual do an expansion of the transition operator in V̂ , and since we
want the initial and final states to be both in the open channel, there must be an even
number of interactions V̂ in each term of the expansion. A diagrammatic representation
of each term is given in Fig. 1.5.

Figure 1.5: Diagrammatic representation of the expansion of the matrix element 〈k′|T̂ |k〉
in the two-channel model.The dashed lines correspond to free atoms, whereas the solid
black lines correspond to the atoms in the molecular state. Each vertical red line cor-
respond to an interaction term V̂ , and in-between two red lines there is a propagation
term.

The first term of the expansion reads

〈k′|V̂ Ĝ0V̂ |k〉 =
g∗k′√

Ω

1

ε
(r)
k − δ

gk√
Ω

(1.34)

The following terms can be calculated similarly, with the propagation term for the free
atoms (dashed vertices in the diagrams) corresponding to a sum of the type 1

Ω

∑
q |gq|2/(ε

(r)
k −

ε
(r)
q ). The total is again a geometric sum and we get:

〈k′|T̂ |k〉 =
g̃kg̃
∗
k′

Ω

1

ε
(r)
k − δ − 1

Ω

∑
q

|g̃q |2

ε
(r)
k −ε

(r)
q

(1.35)

At low energy, we can approximate g̃k = g̃0 but we have to be careful because ap-
plying this directly would make the sum at the denominator divergent. To avoid this
singularity, we mimic the regularization used in the previous section with

〈k′|T̂ |k〉 =
|g̃0|2

Ω

1

ε
(r)
k − δ − 1

Ω

∑
q

[
|g̃q |2

ε
(r)
k −ε

(r)
q

+ |g̃q |2

ε
(r)
q

]
+

1

Ω

∑

q

|g̃q|2

ε
(r)
q︸ ︷︷ ︸

δ0

(1.36)
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where we introduced δ0 which can be interpreted as an energy shift of the bound state due
to the coupling of the two channels. In the remaining sum, we can now apply the limit
g̃q = g̃0 without any divergence. This sum has already been calculated in the previous
section so we give directly:

f(k) = −Ωmr

2π~2
〈k′|T̂ |k〉 = −

|g̃0|2mr
2π~2(δ0−δ)

1 + i mr|g̃0|2
2π~2(δ0−δ)k + 1

(δ0−δ)
~2k2
2mr

(1.37)

f(k) =
−a

1 + iak +Reak2
(1.38)

where we introduced the scattering length

a =
mr|g̃0|2

2π~2(δ0 − δ)
, (1.39)

and the resonance range

Re =
π~4

m2
r|g̃0|2

, (1.40)

that characterize the Feshbach resonance.
In the following paragraphs we will discuss those two quantities in details, but right

now we can already see that the expression of the scattering amplitude we obtained in eq.
(1.38) is very similar to the one obtained in eq. (1.5). By identifying them we get the
equality Re = −re/2, meaning the resonance range is proportional to the effective range
obtained in the truncated expansion of the scattering amplitude at the order two in k.

1.2.2 Magnetic Feshbach resonances
The expression we obtained for the scattering length a diverges when δ− δ0 goes to zero.
In our experiment, we shift the energy δ using an external magnetic field, realizing a
magnetic Feshbach resonance.

For alkali atoms, the two channels correspond to the singlet and triplet potentials,
which are coupled by the hyperfine interactions between the nuclei and the valence elec-
tron. The relative energy between the triplet and singlet channels can be tuned with the
magnetic field B through a spin-Zeeman interaction since the two channel are associated
to different magnetic moments. If we write ∆µ the difference of magnetic moment be-
tween the two channels, we can write close to the resonance δ− δ0 = ∆µ(B−B0). If we
also include the background scattering length abg of the open channel, we can write the
scattering length as

a(B) = abg

(
1− ∆B

B −B0

)
(1.41)

where abg is the background scattering length in the open channel without the presence
of the closed channel, B0 gives the position of the resonance and ∆B characterizes the
width of the resonance, defined by

∆B =
mr

2π~2

|g̃0|2
abg∆µ

=
1

∆µ

~2

2mrReabg
. (1.42)

We see that the width of the resonance is more important when the magnetic moments of
the two channels are closer or for small resonance ranges Re.
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1.2.3 Bound state near the resonance
To find bound states of the Hamiltonian, one can look for bound states with the gen-
eral form |φ〉 =

(∑
k(ψka

†
k) + αb†

)
|0〉 and solve the stationary Schrödinger equation

Ĥ|φ〉 = E|φ〉 with E < 0. We then find that a bound state exists for δ < δ0, or equiva-
lently a > 0, with an energy

E = E0 − (δ − δ0)−
√

(E0 − (δ − δ0))2 + (δ − δ0)2 (1.43)

with

E0 =
~2

4mrR2
e

. (1.44)

We can distinguish two regimes:

• The limit |δ − δ0| � E0, or equivalently Re � a, the energy becomes

E = −
(√

δ0 − δ
)2

' − ~2

2mrRea
. (1.45)

This corresponds to a bound state nearly entirely in the closed channel.

• The opposite limit, |δ − δ0| � E0, or Re � a, gives the well-known expression of
the energy of a shallow dimer

E = − ~2

2mra2
. (1.46)

This expression, identical to the prediction of the zero-range model2, does not de-
pend on Re but only on the scattering length a, it does not depend on the details
of the resonance and thus is considered as universal. This energy is typically much
smaller than the energy of the deeply-bound dimers, so we will refer to this state
as the shallow dimer. This limit on the other hand, corresponds to a bound state
essentially present in the open channel: indeed, the fraction of the wavefunction in
the closed channel is given by (2|E|/E0)1/2 � 1.

This shows that the divergence of the scattering length in a Feshbach resonance is
associated with the emergence of a universal shallow bound state.

1.2.4 Narrow and broad Feshbach resonances
The universal expression of the binding energy given by eq. (1.46) is only valid in the
region a � Re, which we will address as the universal region. The size of this domain
varies widely depending on the nature of the resonance, and to give a criterion to charac-
terize them, one can use the resonance strength sres, defined in [25]. In the case where the
potentials of the two channels can be described at long range with an attractive Van der
Waals potential, this parameter amounts to

sres '
lV dW
Re

(1.47)

with lV dW the range of the Van der Waals potential, which is generally of the same mag-
nitude for the two channels. We can then distinguish two asymptotic limits:

2The energy of the bound state can also be found by looking for the poles of 〈k′|T̂ (z)|k〉, which in the
case of zero-range interaction directly yields eq. (1.46).
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• When sres � 1 or Re � lV dW , the resonance is known as broad. In this limit,
the domain over which a � Re is generally very wide, the bound state is strongly
dressed by the open channel and the description of the shallow dimers remains
universal in a large portion of the Feshbach resonance. The resonance is dominated
by the open channel and the scattering of the atoms can be effectively described by
a single channel model.

• On the contrary, when sres � 1 or Re � lV dW , the resonance is known as narrow.
The domain over which a� Re is much more restricted and the universal descrip-
tion of the dimer is only valid in a domain very close to the resonance. In this case,
the resonance is dominated by the closed channel and a single channel description
of the scattering is generally not possible. In addition, the resonantly coupled bound
state can easily decay into a deeply bound state of the closed channel, because of
the overlap between the closed channel bound state wave-function and that of the
deeply bound dimer, leading to strong inelastic collisions.

In conclusion, we described the Feshbach resonance with a two channel model. We
understand how we can change the scattering length with the use of an external magnetic
field and we introduce the resonance range Re that helps delimiting the boundaries of the
universal region, in which the scattering and the energy of the dressed bound state can
be described solely with the scattering length a. We can now wonder if this universality
of two-body physics close to a Feshbach resonance still holds for a larger number of
particles. In the following section, we give the basic principles of the three-body problem.

1.3 Three-body problem

When considering interactions between three particles, new physics can emerge. In 1970,
Efimov discovered the so-called Efimov effect [92], a remarkable phenomenon that occurs
when at least two pairs of particles out of the possible three have a large scattering length
compared to the range of the potential. An infinite sequence of universal three-body
bound states called Efimov trimers appears, even when the two-body potential cannot
host a two-body bound state.

Considering the system we will study in this PhD thesis, an impurity made of bosonic
atoms immersed in a two-component Fermi gas, and taking into account the Pauli ex-
clusion principle, we can be interested in two different types of trimers: three spinless
bosons, interacting with the same scattering length, or two fermions of opposite spin and
a boson. The latter will be studied briefly in Chapter 6 with more details in Appendix
C, while we present the basics of Efimov physics for the former one, simpler because
the three particles are of the same nature. Extensive details of three-body physics can be
found in the review [93].

1.3.1 A two-channel model for the three-body problem

We consider three bosons of mass m and scattering length a. To study the three-body
problem, it is possible to use a two-channel model, similar to the one we introduced in the
previous section, that was used in [94]. This method is quite different from the historic
calculations made by Efimov based on the study of the three-body wave-function, but
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it enables to retrieve the same results in the vicinity of a narrow Feshbach resonance
(a� Re). We then start with a two-channel effective Hamiltonian, that reads

Ĥ =
∑

k

εkâ
†
kâk +

∑

K

(δ+ εK/2)̂b†K b̂K +
g̃

Ω

∑

k,K

(
b̂†K âk+K/2â−k+K/2 + H.c.

)
. (1.48)

where εk = ~2k2/2m, âk is the boson operator and b̂K is a boson operator for the molec-
ular state in the closed channel. A difference we can note with the previous model is that
now we work in the center-of-mass frame of the three particles and we have to consider
the momentum of the molecule.

In [94], the three body problem was solved exactly using the following ansatz

∑

K

(
βK b̂

†
K â
†
−K +

∑

k

AK,kâ
†
k+K/2â

†
−k+K/2â

†
−K

)
|0〉 (1.49)

where the first part (featuring the coefficient βK corresponds to the creation of a dimer
and a free particle whereas the second part (featuring AK,k) is the creation of three free
particles.

By injecting this ansatz into the Schrödinger equation Ĥ|ψ〉 = E|ψ〉, with E < 0 for
we are looking for bound states, we obtain a set of two equations. After combination of
the two equations and integration over the angular variables, the solution can be expressed
as an equation over a ”wave function” ψ(k) for a fictitious 1D problem, that reads
[√

λ2 + 3k2/4 +Re(λ
2 + 3k2/4)− 1

a

]
ψ(k) =

2

π

∫ ∞

0

dq ln

(
k2 + q2 + kq + λ2

k2 + q2 − kq + λ2

)
ψ(q),

(1.50)
where λ is defined by E = −~2λ2/m.

We will not dwelve on the details of the resolution of eq. 1.50, but a resolution tech-
nique is suggested in Appendix C and the full calculations are presented in [94]. The
result of this resolution is an infinite set of bound Efimov trimers, with on-resonance
(a−1 = 0) energies

En = −~2κ2
∗

m
e−2πn/s0 (1.51)

with κ∗ the three-body parameter and the universal ratio 1/α2 = En+1/En = e−2π/s0 '
1/515.03. In this model, the three-body parameter can be expressed simply through a
numerical calculation by κ∗Re ' 2.6531.

1.3.2 Properties of the Efimov trimers
These results are very general and not a mere artifact of this model. We have obtained at
unitarity an infinite set of bound states, whose energies En obey a remarkable universal
geometric scaling as α−2n. However, we saw that a is not the only relevant parameter
anymore and we had to introduce the three-body parameter κ∗ which depends on the
details of the potentials, showing the non-universality of the three-body physics.

In our two-channel model, κ∗ is directly related to the resonance range Re. However,
this parameter exists independently of this framework and can actually be introduced in a
zero-range model, through a boundary condition used to regularize the otherwise singular
three-body problem [95, 96]. In the case of a zero-range interaction, there is also an
inifinite set of energies, with the same geometric scaling but without any lower bound for
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the energies. This property, discovered much earlier (1935) by L.H. Thomas [97], leads
to a collapse of the wavefunction known as ”Thomas collapse”.

As we saw with our model, this is cured as soon as a range is taken into account, the
resonance rangeRe for the two channel-model, or lV dW for a broad resonance, because the
Efimov scenario breaks down when the size of the Efimov trimers becomes comparable to
this range. In the same spirit, in realistic systems there is only a finite number of Efimov
trimer states, because an upper bound of the energy is imposed by the fact that at low
energies, the size of the trimers becomes larger than the interparticle distance, and will
consequently be affected by the surrounding atoms.

At finite scattering length, as long as a � Re, the Efimov trimers still exist, but their
number is reduced as |a| provides a new upper bound for their size. With a dimensional
argument, their energies have the general form:

En =
−~2κ2

∗
m

fn(1/κ∗a) (1.52)

where the function fn has to follow the scaling

fn(x) = f0(x/αn)/α2n (1.53)

for En to still have the scaling as α−2n. A general scheme of these energy states is given
in Fig. 1.6. More generally, any function g of x = 1/κ∗a should follow this type of
scaling g(x) = g(xα), which corresponds to a log-periodic behavior, signature of Efimov
physics.

Figure 1.6: Efimov spectrum as a function of the inverse scattering length. The Efi-
mov trimers energy levels (blue) connect to the continuum threshold for negative scat-
tering lengths. For positive a, they branch on the shallow dimer energy level (red curve,
∝ −1/a2). The outer shaded area represents the region dominated by short-range physics
where the Efimov physics are no longer valid. The inner shaded area is the region where
Efimov trimers are larger than the interparticle spacing and interactions with the surround-
ing atoms have to be considered.

Experimental evidence of the Efimov physics was first obtained with 133Cs atoms
[98, 99] by studying the three-body losses in their Bose gas. Indeed, when three particles
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get close to each other, as in an Efimov trimer, two of them can form a deeply-bound
dimer, with a binding energy of several hundred Kelvins. This energy is converted into
kinetic energy and the atoms are lost. The three-body loss rate of bosons is a log-periodic
function of κ∗a so there are specific values of a for which the losses are enhanced or
suppressed. This modulation of the loss rate was observed experimentally, signature of
the Efimov physics. This experiment was later extended to other atomic species and the
scaling factor α was tested experimentally through the observation of multiple resonances
[100–102]. The binding energy was also directly measured via RF spectroscopy, with a
three-component Fermi gas of 6Li [103, 104].

1.3.3 The atom-dimer scattering length
To give another striking example of a three-body observable following a log-periodic
behavior, we can present the case of the interaction between an atom and a dimer. This
interaction is characterized by a scattering length aad. In the case of three atoms of the
same species with scattering length a, close to the resonance a pair of atoms can form a
shallow dimer and interact with the third atom.

In the Born approximation, the interaction between an atom and a dimer can be de-
duced readily from the interaction between two atoms. Indeed, the coupling gad =
2π~2aad/madbetween an atom and a dimer, with mad the atom-dimer reduced mass, is
simply the sum of the coupling g between the atom and the first atom of the dimer and
again the coupling g between the atom and the second atom of the dimer, leading to
gad = 2g. In terms of scattering lengths, taking into account the ratio of mad and mr, it
becomes

aBornad =
8

3
a. (1.54)

In the limit a � Re, Efimov showed that the atom-dimer scattering length also be-
comes a log-periodic function, with a general expression [105]:

aad = a [b1 − b0 tan (s0 ln(aκ∗) + β)] (1.55)

where b0, b1 and β are universal numbers. This expression is universal in the sense it holds
for all identical bosons, independent of short range interactions, provided the shallow-
dimer is the only two-body bound state.

In short, three-body physics manifest a plethora of remarkable features. Despite in-
troducing some non-universality through the three-body parameter κ∗, it contains many
universal scalings and behaviors, such as the log-periodicity of many three-body observ-
ables, signature of the Efimov effect.

Conclusion
In conclusion, we described the two-body interactions in a quantum system using the
low-energy scattering theory. We showed that in a certain limit, these interactions were
universal and could be described using a single parameter, the scattering length a. We then
detailed how it was possible experimentally to vary this parameter, for instance through
the use of magnetic field as we do in our experiment. Details on the Feshbach resonances
for the Lithium atoms we use will be presented in Chapter 3. Finally, we presented the
three-body physics, and showed that the Efimov trimers that arise when the interactions
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become resonant also displayed a universal behavior but required the introduction of a
three-body parameter.

Hence, in the vicinity of a Feshbach resonance, at ultracold temperatures, we expect
many-body systems to exhibit universal properties. In the next chapter, we will describe
a few of these properties for ultracold bosons and fermions, highlighting the rich physics
that surround the systems that we study with our experiment.
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Chapter 2

Ultracold quantum gases: fermionic
superfluidity and impurity problems

In this chapter, we outline the physics of ultracold Bose and Fermi gases, the systems
we obtain and study with our experimental set-up. We will present the thermodynamics
of such systems depending on the interactions between their components. Starting with
the ideal quantum gases, we will turn on the interactions and study the weakly interacting
Bose gas, followed by the Fermi gas from the weakly interacting regime towards unitarity,
where interactions reach their maximum effective value and the scattering length diverges.
In this limit, the Fermi gas, as well as various quantum many-body systems from cold
atom gases to neutron stars, share the same universal thermodynamic properties [106,
107].

Though, in-between the unitary limit and the weakly interacting regime, no simple
description exists. The study of the strongly correlated regime is not just a theoretical
issue, and can be observed in various physical systems such as high-Tc superconductors
[108], graphene [109] or cold atom gases near a Feshbach resonance. In our set-up, we
have a broad Feshbach resonance between the fermions, so most of the domain we explore
is in the regime 1/kF |aff | < 1, therefore the study of the strongly interacting regime is
of utmost importance. For this purpose, the experimental measurement of the Equation
of State (EoS) for any interaction will be presented and we will introduce for the Fermi
gas the two-body contact C2, a thermodynamic quantity that encompasses the short-range
correlations of a many-body system, related to many properties of the fermionic ensemble.

Finally, in the last two sections, we will give an overview of the problem of an im-
purity immersed in either a Fermi sea or a Bose-Einstein condensate, showing how this
apparently simple system is actually non trivial and possesses remarkable properties.

2.1 Ideal quantum gases

Before studying the Fermi gas with interactions, let us start by giving the basic concepts
concerning ideal quantum gases (Bose and Fermi gases), for which dramatic features
already arise. Thus, we consider a gas of non-interacting identical particles of mass m at
a temperature T .

For the classical gas, in the grand canonical ensemble at the temperature T and chem-

31
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ical potential µ, the occupation number1 of a state |λ〉 of energy ελ is given by

Nλ(ελ) = e−β(ελ−µ) (2.1)

with β = 1/kBT . In classical systems, this occupation number is generally very small
compared to one, which means that there are much more available excited states than par-
ticles. The equation of state (EoS) associated to the 3D Hamiltonian for the free particles
is given by:

nλ3
th = eβµ (2.2)

where n is the density and λth =
√

2π~2/mkBT is the thermal De Broglie wavelength.
In this equation of state appear two length scales: the mean distance between particles

n−1/3, and the thermal De Broglie wavelength λth, which can be interpreted as the average
size of the wavepacket associated to the particles. When λth & n−1/3, the wavepackets
start interfering and quantum effects arise, the gas can no longer be considered as classi-
cal. From equations (2.1) and (2.2), we see that in this same limit, the occupation number
also becomes of the order of 1 for the states with low energies (ε � kBT ): the particles
occupy preferentially the lowest energy states and may behave collectively. To enter the
quantum regime, either the density has to be increased or the temperature decreased, or a
combination of both.

Quantum distributions

In the quantum regime, for identical fermions, the occupation number in a state |λ〉 is
given by the Fermi-Dirac distribution

N
FD

λ (ελ) =
1

eβ(ελ−µ) + 1
(2.3)

and for identical bosonic particles by the Bose-Einstein distribution

N
BE

λ (ελ) =
1

eβ(ελ−µ) − 1
(2.4)

This occupation number is always smaller than one as the Pauli exclusion principle
forbids to have two fermions in the same state, whereas for bosons it can take a priori
any positive value. At low fugacity or high temperature, both the Fermi-Dirac and the
Bose-Einstein distributions yield the occupation number for a classical gas as expected.
For 3D-uniform systems, assuming all states are weakly populated, the equation of states
are given by the functions [110]:

nbλ
3
th = Li3/2(eβµ) (2.5)

for bosons of density nb and

nfλ
3
th = −Li3/2(−eβµ) (2.6)

for fermions of density nf and where Li is a polylogarithm function2.

1mean number of particles in a given state
2Those functions are defined by:

Lis(z) =

∞∑

k=1

zk

ks
. (2.7)
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Low temperature behavior

When the temperature goes to zero, the Fermi-Dirac distribution takes the asymptotic
form N

FD

λ (ελ) = Θ(µ − ελ) with Θ the Heaviside function: all state with an energy
smaller than µ are occupied, all the others are not. We can note that the transition from
the classical thermal gas to this degenerate Fermi gas is not a phase transition. We define
the Fermi energy EF = µ(T = 0, Nf ) with Nf the total number of fermions3 and TF =
EF/kB the associated Fermi temperature, which sets a scale for the apparition of quantum
effects in Fermi gases.

The Fermi energy is solution of the equation giving the total number of fermions in
the system:

Nf =
∑

|λ〉

N
FD

λ (ελ, T = 0, µ = EF ) (2.8)

For a homogeneous 3D system in a box potential it yields for identical fermions4

EF =
~2

2m
(6π2nf )

2/3 (2.10)

Concerning the Bose-Einstein distribution, the occupation number must remain pos-
itive so the bosonic chemical potential is then constrained µb ≤ ε0 = Min

|λ〉
(ελ), where ε0

corresponds to the energy of the ground state. When µ → ε0, the occupation number of
the ground state diverges while it remains bounded for the excited states with an upper
bound that decreases as the temperature decreases: less and less particles can populate
the excited states whereas there is no limit for the ground state. Therefore, under a cer-
tain critical temperature Tc,b for which µ = ε0, the particles occupy macroscopically the
ground state. The gas forms what is called a Bose-Einstein condensate (BEC) since all
atoms are ”condensed” in the same state. The behavior of the Bose gas is then drastically
different from the behavior of the Fermi gas, for which the Pauli principle forbids com-
pletely to have all the fermions occupying the same state. Moreover, the transition to a
BEC is a phase transition, a peculiar one since it is purely statistical.

This critical temperature is solution of the equation where we place all particles in
the excited states with µ = ε0: when the temperature is decreased, the upper limit of the
occupation of excited states decreases whereas they were already saturated leading to the
condensation into the ground state. This equation reads as

Nb =
∑

|λ〉6=|0〉

N
BE

λ (ελ, µ = ε0, T = Tc,b) (2.11)

This equation yields in a box potential for a homogeneous system in 3D:

Tc,b =
1

(Li3/2(1))2/3

2π~2

mkB
n

2/3
b . (2.12)

3Although we stated that we were working in the grand canonical ensemble where the concept of a total
number makes no sense, these formulas are also valid in the canonical ensemble as long as we work in the
thermodynamic limit (N � 1 with the density remaining finite), thanks to the equivalence of statistical
ensembles.

4In the case of fermions of spin s, with possibly 2s+ 1 different spin states, the formula becomes:

EF =
~2

2m

(
6

2s+ 1
π2nf

)2/3

. (2.9)
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The ground state occupation number Nc reads

Nc = Nb

(
1−

(
T

Tc,b

)3/2
)

(2.13)

and it was verified recently using 87Rb atoms in a quasi uniform 3D box potential [58].
Now that we covered the ideal Bose and Fermi gases, we will study the effect of the

interactions on these many-body ensembles.

2.2 Interacting Bose gas
We consider a gas of Nb spinless bosons, with an interaction characterized by the scatter-
ing length abb, that can be changed by taking advantage of a Feshbach resonance.

In order to describe the weakly interacting Bose gas, we make an assumption that we
will call the universality hypothesis: we assume that the properties of a many-body system
with short-range interactions do not depend on the details of the interaction potential. This
hypothesis can be justified saying that the wavelength associated to the particles is much
bigger than the range of the potential, but it does not always work: as we saw before
in Chapter 1, close to unitarity, non-universal three-body physics emerges for strongly
interacting bosons.

Within the universality hypothesis, we can use the model of a contact interaction in
the mean-field approximation, and the Hamiltonian of the system without any external
potential reads

Ĥ =

∫
d3r

[
− ~2

2mb

ψ̂†∇2ψ̂ +
gbb
2
ψ̂†ψ̂†ψ̂ψ̂

]
(2.14)

with gbb = 4π~2abb/mb the physical coupling constant and mb the mass of the bosons.
At zero temperature, all bosons are condensed in the ground state of energy taken

equal to 0, so only the interaction part of the Hamiltonian contributes to the energy. In the
mean-field approximation, the energy can be calculated simply:

E0 =
1

2
gbbNbnb (2.15)

with nb the density of bosons.
For a system at thermodynamic equilibrium, the stability imposes a positive com-

pressibility which boils down to ∂n
∂P

∣∣
S
> 0 imposing abb ≥ 0: a uniform Bose-Einstein

condensate can only exist for a positive scattering length, corresponding to repulsive in-
teractions. Otherwise, for attractive interactions, the Bose gas collapses.

The inclusion of fluctuations of the BEC field around its MF value gives the Lee-
Huang Yang correction for the ground state energy density [111, 112] first calculated for
hard-sphere bosons [113]:

ε =
1

2
n2
bgbb

(
1 +

128

15
√
π

√
nba3

bb

)
(2.16)

The small dimensionless parameter that quantifies the corrections is found to be
√
nba3

bb,
thus the MF approximation in 3D is valid in the weakly-interacting regime. The use of
Feshbach resonances has allowed for the measurement of the LHY correction, using the
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excitation spectrum of a BEC through Bragg spectroscopy [114] or the direct measure-
ment of the Equation of State (EoS) [115].

Taking into account three-body physics, Wu pushed further this expansion [116]:

ε =
1

2
n2
bgbb

[
1 +

128

15
√
π

√
nba3

bb + 8

(
4

3
π −
√

3

)
nba

3
bb

(
ln(nba

3
bb) +D − 1

3

)
+ ...

]

(2.17)
The coefficient D is a non-universal term obtained with three-body calculations. The

logarithmic behaviour is a signature of a singularity in the three-body problem for parti-
cles with a contact interaction, first discovered by Wu for three bosons, but more recently
studied in the context of cold atoms [117–120].

As the scattering length increases, we enter the strongly interacting regime, where per-
turbative expansion in

√
nba3

bb cannot be used, and Efimov physics start emerging. More-
over, this regime is not accessible experimentally for Bose gases due to the emergence of
three-body losses scaling as L3 ∝ a4

bb [121], a dependence that was first measured with
133Cs atoms in [122]. Since this PhD focuses on a bosonic impurity immersed in a two-
component Fermi gas, we will not dwell on further on the strongly interacting Bose gas,
but rather focus in the following on the study of the Fermi gas.

2.3 Interacting Fermi gas : the BEC-BCS crossover
In this section, we will study the behaviour of the balanced two-component Fermi gas
at low temperature. We consider then a Fermi gas constituted of spin 1/2 fermions, each
species being referred to either ↑ or ↓ fermions, with a balanced distributionN↑ = N↓. We
write aff the scattering length characterizing the interaction between a ↑ and a ↓ fermion.

To describe the properties of the system, we again assume we are within the uni-
versality hypothesis. Due to Pauli blocking, three-body physics are suppressed and this
hypothesis is valid even for strong interactions. At T = 0, only two length scales are avail-
able: the scattering length aff which encompasses the two-body interactions and 1/kF ,
the inverse of the Fermi wavevector, defined with the Fermi energy EF = ~2k2

F/2m, and
related to the Fermi density in a homogeneous system through kF = (3π2nf )

1/3 (for a
two-component Fermi gas). We see with this equation that 1/kF is directly proportional to
the interparticle distance n−1/3

f . Consequently, all measurable observables are functions
of the universal dimensionless quantity5 1/kFaff .

At T = 0, the properties of the two-component Fermi gas depend on the interac-
tions. From the BCS limit 1/kFaff → −∞ to the BEC limit 1/kFaff → +∞, while
crossing the unitary limit 1/kFaff = 0, the properties of the Fermi gas vary consider-
ably. The transition between the BCS and the BEC regimes for a Fermi gas in the vicinity
of a Feshbach resonance is not a phase transition but a smooth crossover, known as the
BEC-BCS crossover, represented in Fig. 2.1. The BEC-BCS crossover was first proposed
by Leggett [46], Nozières and Schmitt-Rink [47] and confirmed by various theoretical
approaches [48] and experiments [123, 124]. In the whole BEC-BCS crossover, the two-
component Fermi gas is superfluid and is characterized by the pairing of fermions of
opposite spins, but the nature of this pairing changes drastically with the interactions.

In this section, we will detail the universal properties of Fermi gases in the BEC-BCS
crossover.

5This parameter is analogous to the bosonic parameter nba3bb since kF ∝ n1/3f .
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Figure 2.1: Representation of a magnetic Feshbach resonance with a the fermion-fermion
scattering length. Three distinct domains are represented: for 0 < kFa < 1 the system is
in the BEC limit and fermions of opposite spin pair up to form dimers, for−1 < kFa < 0
the system is in the BCS limit and fermions of opposite spin form Cooper pairs, and
finally for kF |a| > 1 we are in the strongly interacting regime. Here kF has been assumed
to be constant throughout the BEC-BCS crossover.

2.3.1 The BCS limit
For small negative scattering lengths, the interaction is weakly attractive. Contrary to the
Bose gas, there is no collapse of the Fermi gas for aff < 0 because of the Fermi degen-
eracy pressure, originating from the Pauli exclusion principle, that counters the pressure
due to the mean-field term of the energy that increases with density for aff < 0. This
phenomenon exists also on a macroscopic level where the Fermi degeneracy pressure
prevents the gravitational collapse of white dwarves or neutron stars.

It was shown by Cooper [125] that in this weakly attractive limit, fermions of opposite
spins pair together to form Cooper pairs similarly as the electrons in a superconducting
metal as described by Bardeen, Cooper and Schrieffer in the so-called BCS theory [126].
This pairing exists despite the absence of a shallow bound state on this side of the Fes-
hbach resonance: the Cooper pair is stabilized by the presence of the background Fermi
sea by reducing fluctuations. For aff → 0−, the Cooper pairs are very loose and the
interactions become negligible: the energy of the Fermi gas is the energy of the ideal gas
and we have E ' 3

5
NEF .

In this limit, the energy contribution of the BCS pairing in the superfluid phase is
exponentially small (see Appendix B), so the next terms of the energy expansion are
simply a perturbative expansion in kFaff and does not involve parameters from BCS
theory. The energy density is given by the expansion:

ε =
3

5
nEF

[
1 +

10

9π
kFaff +

4(11− 2 ln 2)

21π2
(kFaff )

2 + ...

]
(2.18)

where the first order term is the mean-field term and the last term was obtained by Gal-
itskii, Lee and Yang in the context of repulsive hard-sphere fermions [127, 128] before
being generalized more recently for attractive interactions [129].

2.3.2 Molecular BEC domain
For small and positive scattering lengths, opposite spin fermions can pair together into the
bosonic shallow dimer of binding energy Eb = −~2/ma2

ff , assuming we are still in the
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universality domain of the resonance, whereas it was not the case on the BCS side since
these dimers do not exist for a < 0 in the two-body problem (cf Chapter 1).

The Fermi gas is thus in the strongly attractive limit, though due to the Pauli exclu-
sion principle, the interaction between dimers is repulsive with an associated scattering
length of add = 0.6aff [130]. When the temperature goes down to zero, the dimers form
a molecular BEC, and behave similarly as a repulsive Bose gas, nearly sharing its equa-
tion of state [131]. The Bose-Einstein condensation of the dimers was indeed observed
experimentally [50–52, 132, 133].

In this domain the energy density can be written as follows:

ε = − ~2

ma2
ff

nd +
1

2
gddn

2
d

(
1 +

128

15
√
π

√
nda3

dd + ...

)
(2.19)

where gdd is the dimer-dimer coupling constant with gdd = 2π~2add/mf and nd the den-
sity of dimers. In this equation, the first term corresponds to the binding energy of the
shallow dimers (this term does not appear in the EoS of the repulsive Bose gas), the sec-
ond term gddn

2
d is a mean-field term (obtained in the Born approximation) quantifying

the interaction between two dimers, and the last term is the Lee-Huang-Yang correction.
We see that it is written as a function of

√
nda3

dd the bosonic equivalent to the fermionic
universal dimensionless parameter.

2.3.3 Unitary Fermi gas
The unitary Fermi gas lies in the strongly interacting regime. Contrary to the Bose gas,
three-body losses in a two-component Fermi gas are highly suppressed due to the Pauli
exclusion principle. The main loss mechanism concerns dimer-dimer collisions on the
BEC side, with a loss rate γ ∝ a−2.55 [130], which is vanishing close to unitarity. As a
consequence, Fermi gases remain stable over a large region of the BEC-BCS crossover,
including the domain of strong interactions. Indeed, the lifetime of Fermi gases on Fes-
hbach resonances was demonstrated to be long compared to equilibration experimen-
tally [134, 135].

At unitarity, the length scale corresponding to the scattering length aff vanishes and
only kF remains. Consequently, all its properties are proportional to that of a non-
interacting Fermi gas and involve a few universal numerical constants. In particular, the
chemical potential is simply given by:

µ = ξEF (2.20)

where ξ is the universal Bertsch parameter. The knowledge of ξ yields directly the EoS at
unitarity so it is essential to determine it. The theoretical description of the Unitary Fermi
gas remains challenging since perturbative methods cannot be used. A review of the
different theoretical and numerical techniques used to determine ξ can be found in [48].
The parameter ξ has been measured experimentally with high precision in [136], leading
to the now accepted value of:

ξ = 0.376(4). (2.21)

In the rest of the strongly interacting regime, no such simple expression of the EoS
exists, but it can still be investigated experimentally since the Fermi gas remains stable in
a large portion of the crossover. Therefore, we present in the next paragraph an experi-
mental measurement of the EoS in the BEC-BCS crossover
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2.3.4 Fermi equation of state at zero-temperature
In this paragraph, we present the experimental measurement of the EoS of the Fermi gas
in the crossover at zero-temperature that was obtained in our group [137].

In the grand canonical ensemble, the pressure, obtainable directly with the experiment,
can be written as:

P (µ, a) = 2P0(µ̃)hS(δ̃) (2.22)

µ̃ = µ+
~2

2ma2
Θ

(
1

a

)
(2.23)

δ̃ =
~

a
√

2mµ̃
(2.24)

P0(µ) =
1

15π2

(
2m

~2

)3/2

µ5/2 (2.25)

where Θ is the Heaviside function, µ̃ corresponds to the chemical potential shifted by the
binding energy of the dimers when they exist and P0 is the pressure of the non interacting
single-component Fermi gas hence the factor 2 in the expression of the pressure. Here δ
measures the strength of the interactions and hS is the dimensionless pressure.

In Fig. 2.2, we represent the equation of state in the crossover measured in our group
[137]. The data obtained was fitted with an expansion in terms of Padé approximants,
using rational functions containing logarithms to get the best approximation, yielding an
analytical expression of the EoS measured experimentally. The Padé approximants were
constrained using asymptotic behaviors and known theoretical limits such as the Lee-
Huang Yang correction to the energy. The expression of hS obtained through this method
is different on the BEC side and the BCS side but it is continuous, its first order derivative
is also continuous but not the higher order ones. It is given by6

hS(δ) =

{
β1+β2δ+β3δ log(1+δ)+β4δ2+β5δ3

1+β6δ2
for δ < 0 (BCS

δ2+α1δ+α2

δ2+α3δ+α4
for δ > 0 (BCS)

(2.26)

This result is in good agreement with a Nozières Schmitt-Rink calculation and with a
node Monte-Carlo method [138,139]. A full comparison with theories can be seen in [48].

In Fig. 2.2 is also represented the normalized energy ξ(x = 1/kFaff ) defined as

ξ =
E/N − Eb/2

EFG
(2.27)

where E/N is the energy per particle, Eb = Θ(aff )(−~2/ma2
ff ) is the binding energy

of the dimers (when they exist hence the Heaviside function Θ) and EFG = (3/5)EF is
the total energy of the ideal Fermi gas. It can be deduced from the grand canonical EoS
expressed with the Padé approximants using a Legendre transformation7.

6The coefficient of the Padé approximants determined by the fit are: α1 = −1.137, α2 = 0.533,
α3 = −0.606, α4 = 0.141, β1 = 3.78, β2 = 8.22, β3 = 8.22, β4 = −4.21, β5 = 3.65, β6 = 0.186.

7The Legendre transformation writes as:

x(δ) =
δ

(
hS(δ)− δ

5h
′
S(δ)

)1/3 , ξ(δ) =
hS(δ)− δ

3h
′
S(δ)

(
hS(δ)− δ

5h
′
S(δ)

)5/3 (2.28)
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Figure 2.2: Equation of state of the balanced Fermi gas at zero temperature, taken from
[137]. Left panel: dimensionless pressure in the BEC-BCS crossover and comparison
to many-body theories. Black dots: experimental data. It is compared to a Monte-Carlo
calculation (red open circles) [139], a diagrammatic method (green open squares) [140],
a Nozières-Schmitt-Rink approximation (blue open triangles) [138], and the BCS mean-
field theory (solid blue line). The inset is a zoom on the BCS side. Right panel: dimen-
sionless energy (EoS in the canonical ensemble). The solid black line is deduced from
the Padé approximants obtained fitting hS(δ̃). It is compared to Fixed-Node Monte-Carlo
theories: red squares [141], blue circles [142], and green triangles [143].

2.4 Tan’s contact for a two-component Fermi gas
We saw in the last section that in the strongly interacting regime, where many-body effects
have to be taken into account, we can measure experimentally the equation of state in
the BEC-BCS crossover for a Fermi gas but finding a theory without approximations to
describe these systems is very difficult.

In this section, we introduce a new parameter, Tan’s contact C2 first introduced by
Shina Tan in 2008 [144, 145], a fundamental thermodynamic quantity that appears in a
set of exact universal relations connecting thermodynamic observables to various other
microscopic or macroscopic quantities that would seem otherwise unrelated. Those re-
lations actually hold for any temperature, number of atoms, trap geometry or interaction
strength, in particular they hold in the strongly interacting regime. Detailed review on
the contact can be found in [146, 147], we will present in this section its most relevant
properties.

2.4.1 Universality hypothesis

In order to introduce this new parameter, we use for the interaction potential a contact
interaction, regularized by using a UV cut-off Λ and the running coupling constant g0(Λ)
introduced in Chapter 1, instead of the one valid in the Born approximation as it was
done to determine the properties of the weakly interacting Bose and Fermi gases. In this
context, the universality hypothesis means that if we use the regularized pseudopotential
then all physical quantities will remain finite. As we will see later, this is not completely
true. As we will see, in the context of two-body problem, the kinetic energy of the system
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T actually diverges but so does its interaction energy I: it is the binding energyE = T+I
that remains finite.

2.4.2 Momentum distribution and adiabatic sweep theorem
Let us write then the Hamiltonian of a two-component Fermi gas, an experimentally rel-
evant case, by using the pseudopotential g0(Λ)δ(r) to describe the interactions

Ĥ = T̂+V̂ =

∫
d3r

[
− ~2

2m

∑

σ

ψ̂†σ(r)∇2ψ̂σ(r)

]
+g0(Λ)

∫
d3r

[
ψ̂†↑(r)ψ̂†↓(r)ψ̂↓(r)ψ̂↑(r)

]

(2.29)
where σ corresponds to the two possible spin states noted ↑ and ↓.

To know perfectly the thermodynamics of our system, we would need to obtain its
free-energy F , or simply its energy at zero-temperature. This is not an easy problem
since we cannot calculate analytically the ground state of this Hamiltonian. However, we
will see that we can get some information about one of its derivative.

For this purpose, we will apply the Hellman-Feynman’s theorem [148] which states
that for any parameter λ, we have

dF

dλ
=

〈
∂Ĥ

∂λ

〉
(2.30)

where 〈...〉 correspond to the mean value taken in the canonical ensemble.
Here, we will consider g0 as the parameter λ and we can write

dF

dg0

=

〈∫
d3r

[
ψ̂†↑(r)ψ̂†↓(r)ψ̂↓(r)ψ̂↑(r)

]〉
(2.31)

dF

dg0

=

〈
Ĥ − T̂
g0

〉
=

1

g0

(
E − 〈T̂ 〉

)
(2.32)

where E is the mean energy of the system related to F by F = E − TS.
We can express the mean value of the kinetic energy using as a basis the waveplanes

|k〉 of energy εk = ~2k2/2m as 〈T̂ 〉 =
∑

kNkεk whereNk represents the mean number of
particles of the system with a wavevector of norm k. Not knowing if this sum converges,
we also use the UV-cutoff given by Λ for it. The normalization relation we put forth in
Chapter 1 concerned not g0 but 1/g0 so we modify the last equation to make 1/g0 appear:

− g0

g2
0

dF

d(1/g0)
= E −

∑

k, k<Λ

Nkεk (2.33)

−
(

1

g
− 1

Ω

∑

k, k<Λ

1

Ek

)
dF

d(1/g)
= E −

∑

k, k<Λ

Nkεk (2.34)

with Ek = ~2k2/m = 2εk and where we replaced the derivation of F with respect to
1/g0 by one with respect to 1/g because F can only depend on the physical coupling g
assuming universality. We redistribute the equation by keeping the sums on the same side

∑

k, k<Ω

[
Nkεk +

1

Ω

dF

d(1/g)

1

2εk

]
= E − 1

g

dF

d(1/g)
(2.35)
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The right-hand of this equation is finite, and according to the universality hypothesis it
shall not depend on the UV-cutoff Λ, so the argument of the sum in the left-hand side
must converge to 0. This leads to the relation

Nk ∼
k→∞

− 1

Ω

dF

d(1/g)

1

2ε2
k

(2.36)

which gives the behaviour at high k of Nk. From this equation, we see that Nk ∼ 1/k4

when k →∞. Therefore, we can define the contact C2 as the constant verifying

n(k) ∼
k→∞

2C2

k4
(2.37)

where n(k) is the momentum distribution which verifies Nf =
∫

d3k
(2π)3

n(k), and the
factor 2 accounts for the two spins. This momentum tails also appears in one and two-
dimensional systems [146,149] and is independent of the statistical nature of the particles
giving good generality to this definition of the contact. Other definitions, more mathemat-
ical, can also be found [146] but the properties remain the same.

From this definition, we get that C2 is related to the short-range physics (k → ∞) of
a many-body system. In addition, using eq. (2.36), we also get a relation between C2 and
the free energy F :

C2 = −4πm

~2

dF

d(1/a)
(2.38)

also known as the adiabatic sweep theorem. From this relation we can interpret the two-
body contact is coupled to 1/a so it corresponds to a generalized displacement associated
to the generalized force that constitutes 1/a. Besides, the adiabatic sweep theorem also
opens the way to a measurement of the contact C2 through the measurement of the EoS
of the Fermi gas.

2.4.3 Short-range correlations in a many-body system
We defined the contact using the asymptotic behavior of the momentum distribution at
high momenta. This definition establishes a link between C2 and short-range correlations
and we will explicit it even further in this section. The relations we give in this section
about correlation functions are demonstrated in [146].

First, the contact is involved in the first order correlations through:

G(1)
σσ(r) =

∫
d3R

〈
ψ†σ(R + r/2)ψσ(R− r/2)

〉
'
r→0

Nσ −
C2

8π
r +O(r2) (2.39)

where Nσ is the total number of fermions in the spin state σ.
In addition, it is also related to the probability of finding two fermions of opposite

spins at a short distance. First we define the pair distribution function:

g
(2)
↑↓ (r↑, r↓) =

〈
(ψ†↑ψ↑)(r↑)(ψ

†
↓ψ↓)(r↓)

〉
. (2.40)

The probability of finding two fermions within r is then given by:

G
(2)
↑↓ (r) =

∫
d3R g

(2)
↑↓

(
R +

r

2
,R− r

2

)
∼
r→0

C2

(4πr)2
(2.41)
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We can deduce from this expression the number of pairs of fermions of opposite spins
separated by a distance less than s:

N↑↓(s) =

∫

r<s

d3r G
(2)
↑↓ (r) =

C2

4π
s (2.42)

This result is different from the ∼ r3 behavior expected for a uniform density, showing
that particles cluster at short range.

In short, we see that the contact is intimately related to short-range correlations. We
listed relations valid for a two-component Fermi gas in 3D but similar ones can be found
for bosons and other dimensions.

2.4.4 Two-body contact in the BEC-BCS crossover
We can use the measure of the EoS and the adiabatic sweep theorem to obtain the two-
body contact. First we can list asymptotic behaviors using the expansions of the energies
listed in Chapter 1.

BEC side

On the BEC side, the energy is dominated by the binding energy of the molecules so at
first order we obtain:

C2 = −4πm

~2

d

d(1/aff )

[
Nf

2

(
−~2

ma2
ff

)]
= Nf

4π

aff
(2.43)

where Nf is the total number of fermions.

BCS side

On the BCS side, we have to use the expansion of the energy up to the mean-field term:

C2 = −4πm

~2

d

d(1/aff )

[
3

5
NEF

(
1 +

10

9π
kFaff

)]
= 4π2Nfnfa

2
ff (2.44)

where nf is the density of fermions.

Unitarity

An expansion of the energy of the system near unitarity can be found in [145] and writes
as

E =
3

5
NEF

(
ξ − ζ

kFaff

)
(2.45)

where ξ is the Bertsch parameter and ζ ' 0.87(3) is another universal constant, whose
most precise measurement was done via a local Bragg-spectroscopy experiment in [150].
Theoretical and numerical approaches to determine this parameter are reviewed in [48].

This yields a contact:

C2 =
6πζ

5
NfkF (2.46)

or a volumic contact C2 = C2/Ω, more frequent in literature:

C2 =
2ζ

5π
k4
F (2.47)
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In the whole crossover

To obtain the contact in the whole BEC-BCS crossover, we can use the expression of the
EoS in terms of the Padé approximants that was obtained in section 2.3.4 and derive it
with respect to 1/a. In Fig. 2.2, we represented the normalized energy ξ. To obtain the
contact from it, we use the adiabatic sweep theorem:

C2 = −4πm

~2

d

d(1/a)

(
Θ(a)

NEb
2

+
3

5
NEF ξ

)
(2.48)

with Θ the Heaviside function. To compare it with a calculation of the contact in the
crossover using a Luttinger-Ward approach [151], we express the dimensionless contact
density s = C2/k

4
F . It can be related to ξ through

s = Θ(x)
4

3π
x− 2

5π
ξ′(x) (2.49)

with x = 1/kFaff . We represented the result in Fig. 2.3 along the data from [151]. We
see on this graph that they agree well in most of the BEC-BCS crossover, in particular we
recover the asymptotic behaviors on the BEC and BCS sides. However, close to unitarity
we have a discontinuity of s′, yielding some kind of “bump”, that is not physical but
linked to discontinuity of the second derivative of the Padé approximants.

Figure 2.3: Dimensionless contact s in the crossover as a function of x = 1/kFaff . Blue
solid line: contact obtained from the EoS of the Fermi gas. Red solid line: contact obtain
with a Luttinger-Ward approach in [151]. Dashed gray line on the x < 0 side: BCS
asymptotic contact given by s = (2/3πx)2. Dashed gray line on the x > 0 side: BEC
asymptotic contact given by s = 4x/3π. Inset: zoom on the data in the BCS limit.

2.4.5 Other measurements of the contact
We already presented a first method to measure the contact, with the disadvantage of
not being able to recover precisely the contact at unitarity (as we have a “bump” at uni-
tarity). Another method consists in using RF-spectroscopy where interacting atoms are
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transferred to a non-interacting state, with a transition rate directly linked to the con-
tact [152, 153]

Γ(ω) ∝ C2

ω3/2
. (2.50)

This method was used in several experiments [154, 155] and also compared to the results
obtained by looking to the tail of the momentum distribution [156].

Other methods include photoassociation of atoms to form deeply-bound molecules
[54, 157] or the use of the structure factors measured by Bragg spectroscopy [158, 159].

In Fig. 2.4, we compare several measurements of the contact in the crossover per-
formed using those different techniques. It shows that all measurements are in agreement
and validates all the different relations involving the Contact that would seem otherwise
disconnected.

Figure 2.4: Normalized integrated contact (I =
∫

d3rC2(r)) over the cloud in the trap
in the BEC-BCS crossover (here kF =

√
2mfωf (3N)1/3/~ is the trap Fermi wavevec-

tor with ωf the geometric average of the trapping frequencies of fermions and N the
total number of fermions), taken from [123]. The black plain curve was deduced from
measurements of the equation of state performed in [137]. It is compared to three mea-
surements done at JILA: large momentum-tail of the momentum dustribution using a fast
magnetic sweep (solid blue circles), photoemission spectroscopy (red circles) and the
large frequency tail of the RF lines (green stars) [154, 156]. The brown empty squares
correspond to Bragg spectroscopy measurements [159,160] and the purple down triangle
use the number of closed-channel molecules [54].

2.5 The spin-polarized Fermi gas
Up to now, we only presented results on the balanced Fermi gas, for which the number of
fermions in each spin state is the same. In this section, we will study the consequence of
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an imbalance of the population of the two spin states on the behaviour of the Fermi gas in
the BEC-BCS crossover.

We will consider in this section a Fermi gas with two possible spin states ↑ and ↓. The
polarization of this Fermi gas is defined as

P =
N↑ −N↓
N↑ +N↓

(2.51)

with Nσ the number of fermions in the spin state σ =↑, ↓. A fully polarized Fermi gas
corresponds to P = ±1 whereas a balanced Fermi gas corresponds to P = 0. The species
with the greatest number of atoms will be referred to as the majority species, and the other
one as the minority species.

As the superfluidity of the Fermi gas relies on the pairing of fermions of opposite
spins, the question of the superfluidity of a polarized Fermi gas naturally arises. This
problem was first adressed independently by Clogston [161] and Chandrasekar [162], a
few years only after the emergence of the BCS theory for superconductivity, who con-
sidered the case where the spin polarization comes from the Zeeman coupling of the
electrons to an external magnetic field. Their considerations can also be applied to a po-
larized Fermi gas, for which the effective“magnetic” or spin-polarizing field is given by
the chemical potential difference between the two spin states µ = (µ↑ − µ↓)/2.

The fate of the superfluidity relies on the competition between the gain in flipping the
spin of an atom and the cost of breaking a pair, given in BCS theory by the order parameter
∆ which sets the gap for single-particle excitations. A criterion for the maintaining of a
superfluid state is obtained by comparing the energy of the unpolarized BCS state E =
E0−N0∆2

0/2 and the energy of the partially polarized normal stateE = E0−N0µ
2, where

E0 is the energy of the normal phase, N0 the density of states at the energy level and ∆0 is
the zero-temperature energy gap for µ = 0. Clogston and Chandrasekar evaluated using
a mean-field approximation that a superfluid can still exist for µ < ∆0/

√
2. Above this

value the normal state takes over and superfluidity disappears. This phase transition is
of first order because the unpolarized superfluid is still a local minimum in the energy
landscape [163]. On the BEC side, the energy cost to flip a spin is the energy of the
shallow dimer ~2/ma2

ff , which becomes increasingly large in the BEC limit. The system
will then be robust in presence of an effective magnetic field and a second order transition
to a polarized superfluid occurs [164], corresponding to a molecular Bose gas immersed
in a Fermi sea of unpaired excess atoms.

The polarized Fermi gas has been thoroughly discussed in the review [165] and Navon’s
PhD thesis [123]. We will present in this section its main aspects.

2.5.1 Imbalanced ultracold Fermi gases
The experimental study of a Fermi gas with imbalanced spin populations was rather
straightforward once balanced fermionic superfluidity was achieved. The first experi-
mental study of this system was conducted almost simulatenously by groups from Rice
University and MIT [166, 167] with unitary Fermi gases. Despite some discrepancies
between their results, both experiments are in agreement with Clogston-Chandrasekar’s
proposal that superfluidity is robust against spin polarization. Both groups were able to
observe a phase separation of the cloud in a shell structure, with a fully paired super-
fluid core with equal density for each spin state surrounded by a“magnetized” rim with
imbalanced populations [168, 169]. By rotating the cloud, the MIT group observed the
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appearance of vortices in the core, proving unambiguously its superfluidity, but none in
the outer rim, proving it is not superfluid.

This structure into two phases is expected for a Fermi gas in a harmonic trap: while
the effective spin-polarization field µ is constant in the cloud, the gap ∆ decreases with
the density that is maximum at the center of the trap and goes to zero at the edge of
the cloud. To interpret this shell structure within the Clogston-Chandrasekar scenario, we
introduce a critical value of the effective spin-polarizing field µc a priori different from the
expression obtained with BCS theory ( ∆0/

√
2) since the Fermi gases are in the unitary

regime. A superfluid core will exist if the condition µ < µc is verified at the center but, as
we move away from the center, the density decreases and eventually the condition is not
verified, leading to a normal phase on the outer rim.

Furthermore, for a strong enough polarization, the MIT group observed that no super-
fluid phase subsisted, corresponding to the case where µ > µc is already true at the center
of the cloud. They measured a critical polarization Pc ' 0.75 at unitarity, which was later
confirmed by measurements in our group [123].

One particularly interesting featured that was noticed by the MIT group is in the struc-
ture of the normal phase at the rim of the trap. Indeed, the normal phase is separated into
a fully polarized phase at the edge of the cloud and a mixed phase, in-between the super-
fluid core and the fully polarized phase, where the two spin components are present8. This
is also the case in our experiment and a typical analysis of the profile of such a system is
detailed in the next chapter.

The EoS of the superfluid phase has been measured in our group and was presented in
section 2.3.4 and the EoS of the fully polarized phase corresponds to the EoS of an ideal
gas, and the indermediate partially polarized phase can be described as a Fermi liquid of
quasiparticles made of minority atoms (here we choose the ↓ fermions) immersed in an
ideal Fermi sea of majority atoms (↑ fermions). In order to study this phase, we will focus
on the extreme case, on the frontier between the fully polarized and the partially polarized
phases, where we have one spin-down fermion and N↑ � 1 spin-up fermions.

2.5.2 The N+1 body problem: the Fermi polaron

The Fermi polaron is a quasiparticle that arises from the interaction of an impurity with an
ensemble of spin-polarized fermions, where the impurity is dressed by the particle-hole
excitations of the surrounding Fermi sea. A review on the polaron can be found in [171].

We introduce the Hamiltonian of the system

Ĥ =
∑

k,σ

ε
(f)
k â†k,σâk,σ

︸ ︷︷ ︸
Ĥ0

+
g0(Λ)

V

∑

k,k′,q

â†k+q,↑â
†
k′−q,↓âk′↓âk,↑

︸ ︷︷ ︸
V̂

(2.52)

where ak,σ is the fermionic operator for a fermion of momentum k and spin σ, g0(Λ) is
the bare coupling constant with Λ a UV-cutoff and ε(f)

k = ~2k2/2mf .

8This feature was not observed by the Rice group, who only observed a fully polarized normal phase.
This was explained later in [170] by a metastability of their system, and a dynamical spin-blocking which
forbade the formation of the mixed phase.
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Energy in the BCS limit

A first insight on the fermi polaron problem can be obtained in the weakly attractive limit,
where the interaction between the impurity and the majority fermions remains small. To
obtained the shift in energy δE of the system due to the impurity, we perform a pertur-
bative expansion of the energy at the order two in the interaction potential. The bare
coupling constant g0 can be expanded as

g0 = gff +
g2
ff

Ω

∑

k, k<Λ

1

2ε
(f)
k

(2.53)

in the limit Λaff � 1, with gff = 4π~2aff/mf .
The perturbative expansion of the energy reads

δE = 〈0|V̂ |0〉+
∑

|n〉6=|0〉

|〈0|V̂ |n〉|2
E0 − En

(2.54)

with |0〉 the fundamental state of the Fermi sea, |n〉 the excited states and E0 − En the
difference of energy between those two states. The first excitations consist in extracting a
majority fermion from the Fermi sea due to the interaction with the impurity. Its momen-
tum before the interaction must be k < kF and after the interaction k′ > kF . The energy
difference E0 −En can be written as ε(f)

k − ε
(f)
k′ − ε

(f)
|k−k′| where k− k′ is the momentum

of the impurity after the interaction.

δE = gffn↑




1 +
gff
Ω

∑

k′

1

2ε
(f)
k′

+
gff
Ω

∑

k,k′
k<kF
k′>kF

1

ε
(f)
k − ε

(f)
k′ − ε

(f)
|k−k′|




(2.55)

with n↑ the density of the majority species, related to the Fermi wavevector with kF =
(6π2n↑)

1/3. Thanks to the regularization of the coupling constant, this quantity is well-
defined at order two. The total sum can be calculated readily and we obtain

δE = EF

[
4

3π
(kFaff ) +

2

π2
(kFaff )

2 +O[(kFaff )
3]

]
(2.56)

Variational method

This method obviously does not hold in the strongly interacting regime where it would
lead to a diverging polaron energy. This problem was nevertheless adressed analytically,
for instance by F. Chevy who proposed a variational ansatz describing the scattering of
the impurity , creating one particle-hole excitation in the Fermi sea [172]:

|ψ〉 = φk0|k0, 0〉+
∑

k,q

φk,qâ
†
k,↑aq,↑|k0 + q − k, 0〉 (2.57)

where |k0, 0〉 is the state where the impurity has a momentum k0 and the Fermi sea of
the majority species is in its ground state. The sum describes the particle-hole excitations
where a majority atom of the Fermi sea of momentum q (q < kF ) is being excited to
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a momentum k (k > kF ). To determine the properties of the polaron, one finds the
parameters φk0 and φk,q that minimize the expectation value of the Hamiltonian presented
in eq. (2.52). This ansatz is correct up to second order in aff and yields eq. (2.56) in the
weakly attractive limit.

At low momenta, the dispersion relation of the impurity can be expanded as

E(k0) = AEF +
~2k2

0

2m∗
+ ... (2.58)

From this relation, we see that the dressing of the impurity by the Fermi sea results in
a quasiparticle with a dimensionless effective mass m∗/m and binding energy AEF , the
Fermi polaron. These two parameters depend on the interaction strength 1/kFaff . In the
BCS limit, the impurity behaves as a free particle so we have m∗ = mf and A = 0. At
unitarity, the variational approach yields A ' −0.6 and m∗ = 1.17m. Even though this
result is variational and can only give an upper bound for the value of A, it is remarkably
close to the variational Fixed Node Monte-Carlo predictions [173] (A = −0.59(1) and
m∗ = 1.09m) and the diagrammatic Monte-Carlo predictions [174] (A = −0.61(1) and
m∗ = 1.20(1)m). This can be explained by the relatively weak probability of excitation
of a particle-hole pair (∼ 25% in the variational calculation), confirmed by a systematic
expansion of the polaron energy as a function of the number of excited particle-hole pairs
that converges quite fast [174, 175]. Furthermore, experimental measurements from MIT
using a density profile analysis [176] and our group using a collective modes study [177]
showed that the effective mass is indeed close to unity, with m∗/m = 1.06 and m∗/m =
1.17(10) respectively, thus barely modified by the interactions. We represent in Fig. 2.5
the parameters A and m∗ in the crossover obtained using several theories, taken from
[123].

Figure 2.5: (a) Dimensionless binding energy A of the Fermi polaron in the crossover.
Dashed black line: single particle-hole ansatz [178]. Red squares: diagrammatic Monte-
Carlo calculations [174]. Green diamonds: Fixed-Node Monte Carlo calculations [143].
The purple triangle corresponds to a RF measurement at unitarity in agreement with the
theories [179]. The dashed blue curve corresponds to the binding energy of the halo-dimer
on the BEC side. (b) Effective mass m∗/m of the Fermi polaron in the crossover. Dashed
black line: single particle-hole ansatz [178]. Blue circles: Two-particle-hole analytical
calculation [175]. Black triangle: Fixed-node result at unitarity [173]. Green diamonds:
Fixed-Node Monte-Carlo calculation [143].

The partially polarized phase that was observed experimentally can then be interpreted
as a gas of polarons. It was observed numerically [143, 173] and confirmed analytically
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[180] that at finite concentration x = n↓/n↑, the small amount of Fermi polarons form a
degenerate gas with a Landau-Pomeranchuk EoS:

E =
3

5
N↑EF↑

[
1− 5

3
Ax+

m

m∗
x5/3 + Fx2 + ...

]
(2.59)

where EF↑ is the Fermi energy associated to the majority species (the precision is needed
since we no longer have only one impurity) and the term Fx2 accounting for interactions
between quasi-particles when x is not so small. This EoS in the grand canonical ensemble
can be written in the crossover as [181]:

P (µ↑, µ↓) =
1

15π2

[(
2m

~2

)3/2

µ
5/2
↑ +

(
2m∗

~2

)3/2

(µ↓ − Aµ↑)5/2

]
(2.60)

where it is separated between an ideal Fermi gas of the majority atoms and an ideal gas of
polarons with a renormalized mass m∗ and a shifted chemical potential µ↓ − Aµ↑ due to
the binding to the Fermi sea. The interaction term in the canonical EoS can be obtained
with the grand canonical one and reads [180]

F =
5

9

(
dAµ↑
dEF↑

)
. (2.61)

Moreover, the interaction between polarons can also be interpreted as an interaction me-
diated by the Fermi sea [182].

The grand canonical EoS can also be expressed in the crossover with dimensionless
parameters:

hPP (η, δ↑) = 1 +

(
m∗(δ↑)

m

)3/2

(η − A(δ↑))
5/2 (2.62)

where hPP is the dimensionless pressure in the partially polarized phase (with the same
definition as in section 2.3.4), η = µ↓/µ↑ is the spin imbalance and δ↑ defined by

δ↑ =
~√

2m(µ↑ − Eb)aff
(2.63)

whereEb is the energy of the shallow dimer for a > 0 and zero otherwise. We show in Fig.
2.6 the EoS of the partially polarized phase in the grand canonical ensemble measured
in our group [137], which were used to measure the effective mass in the crossover by
using the theoretical value of A and leaving m∗/m as a free parameter. The extracted
effective mass was indeed in good agreement with the theoretical predictions, confirming
the validity of this EoS.

2.5.3 Fermi polaron to molecule transition
In the BEC domain, the impurity can form a halo-dimer with an atom from the major-
ity species, giving rise to a bosonic rather than fermionic quasiparticle. Consequently,
there is a competition between the Fermi polaron state and the molecular state: the
transition between the two states was unveiled by Monte-Carlo simulation of the im-
purity problem [174]. It shows that the phase transition is of first order and located at
1/kFaff = 0.91(2), with a sharp crossing between the energy curves of the fermi polaron
and the halo-dimer on the BEC side. Above this critical interaction, the impurity can be
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Figure 2.6: Equation of state h of an imbalanced Fermi gas as a function of the spin
imbalance η, taken at different magnetic fields: on the BEC side B = 811 G (1/kFaff '
0.2) and B = 822 G (1/kFaff ' 0.1), near unitarity B = 834 G (1/kF |aff | < 0.01)
and on the BCS side B = 871 G (1/kFaff ' −0.2) (from [137]). Points corresponding
to the superfluid phase (normal phase) are in red (black). Vertical dashed lines with an
uncertainty gray shaded area are located around the normal/superfluid transition for each
curve. The black solid lines are fits using eq. (2.62) to determine the effective mass in the
crossover.

described as a point-like boson interacting with the Fermi sea with a mean-field energy
gadn↑, with the coupling constant associated to the scattering length aad ' 1.18aff [183].
Extensions of the variational description of the polaron in the molecular sector are de-
rived in [164, 184, 185], where the quasiparticle is described as a dimer dressed by single
particle-hole excitations, yielding results compatible with the Monte-Carlo calculations
and experimental measurements from MIT using RF spectroscopy [179]. From a com-
parison of both the fermionic and the bosonic ansatz on the BEC side, a ≈ 15% jump in
the contact of the system is expected at the transition [164].

In the BEC limit, the system can be described as a mixture of Bose-Einstein conden-
sates of dimers and a Fermi sea of excess fermions using the mean-field EoS [186, 187]:

E

V
= − ~2

ma2
ff

nb +
3

5
EF,freenfree +

1

2
gddn

2
b + gadnbnfree + ... (2.64)

where nb = n↓ is the density of bosonic dimers, nfree = n↑ − n↓ is the density of free
excess fermions, gdd is the coupling constant for s-wave dimer-dimer interactions and
EF,free is the Fermi energy calculated considering solely the free fermions.

Contrary to the BCS side of the crossover where the gap maintains a perfect pairing,
for nfree 6= 0, this equation describes a polarized superfluid. These theoretical predictions
on the BEC side still await experimental confirmation whereas the BCS side has been
explored thoroughly. The increase in the atomic loss rate on the BEC side (dimer-dimer
losses scale as a−2.55) makes it very challenging to study this part of the crossover.

2.5.4 Repulsive branch
Another important feature of the Fermi polaron is another polaronic branch on the BEC
side of the crossover. Indeed, the variational ansatz obtained by Chevy predicts two so-
lutions for the energy of the polaron for a > 0. The lower energy corresponds to the
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attractive polaron branch that was discussed before and the higher energy corresponds to
another type of polaron: the repulsive polaron. Instead of attracting the majority fermions
towards it, the repulsive polaron is dressed by the repulsion of the majority fermions. A
detailed theoretical review on the repulsive polaron can be found in [188].

Far on the BEC side, the repulsive polaron is very similar to the attractive polaron
far on the BCS side. The expansion of its energy gives exactly what we obtained in eq.
(2.56), with a first-order term giving the expected δE = gffn. The difference being that
since a > 0, this energy is also positive, contrary to the energy of the attractive polaron.
The effective mass of the repulsive polaron reduces to the impurity mass in the deep BEC
domain, and rises rapidly as we go in the strongly interacting regime, where the dressing
of the polaron by the particle-hole pairs increases drastically, until it diverges to infinity at
unitarity. An expansion of the effective mass in the weakly interacting limit reads [189]

m

m∗
= 1− 4

3π2
(kFaff )

2 + ... (2.65)

The repulsive polaron is not the most stable state since the attractive polaron and
the dimer have much lower energies (they both have negative energies), with a discrep-
ancy that increases as we go deeper in the BEC regime. The repulsive polaron is then a
metastable state with a finite lifetime. However, it was shown that the decay rate is small
compared to EF for 1/kFaff � 1, showing that the repulsive polaron is a well-defined
quasiparticle far from resonance [188]. The repulsive polaron was first realized experi-
mentally with a 6Li-40K mixture in [190] but around a narrow Feshbach resonance, for
which the universal regime is very restricted, and then realized in [191] with a resonant
mixture of 6Li atoms. Using RF spectroscopy, the effective mass, the energy and the decay
rate were extracted, in accordance with multiple theoretical predictions [188,192–194]. In
Fig. 2.7, we show the measurement of the energy and the effective mass of the repulsive
from [191] compared to a few theories.

Figure 2.7: Properties of the repulsive branch, taken from [191]. (a) Zero-momentum
repulsive polaron energy E+ as a function of 1/κFaff (blue circles), with κF ' 0.86kF
is the averaged Fermi wavevector over the fermion density. Inset: Energy of the attractive
polaron E− (blue circles). They are compared to theoretical predictions from [193] (dot-
dashed yellow line), [188] (dotted green line) and [192] (dashed red line) in both panels.
(b) Inverse effective mass m/m∗ of the repulsive polaron as a function of 1/κFaff (blue
circles), compared to theory predictions from [188]. The point corresponding to a negative
effective mass is in the domain where the repulsive polaron is ill-defined.

In short, we have described the main properties of an impurity immersed in a spin-
polarized Fermi sea, as well as the structure of the imbalanced Fermi gas at zero-temperature.
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A natural extension of this problem is the study of an impurity in a BEC, the Bose polaron,
that we will present in the next section.

2.6 The Bose polaron
The Bose polaron problem is connected to the original polaron problem investigated by
Landau and Pekar [63], for which a conduction electron is immersed in a phonon bath. In
cold atoms, the Bose polaron can be realized by considering an impurity immersed in a
Bose-Einstein condensate.

We note aib the scattering length associated with the interaction between the impurity
and a boson of the BEC, mib the impurity-boson reduced mass and nb the density of the
BEC. Similarly as the case of the Fermi polaron, the interaction strength is often defined as
1/knaib, with kn = (6π2nb)

1/3. It is associated to the energyEn = ~2k2
n/2mb. Depending

on the interaction strength, the Bose polaron exhibits different behaviors.
For weakly attractive interactions, the Bose polaron can be described perturbatively.

The mean-field expression of the energy is of the form δE = gibnb where gib = 2π~2aib/mib,
similar to the mean-field term of the Fermi polaron, and the second and third-order terms
can be found in [195]. In this limit, the effective mass m∗ of the Bose polaron tends
towards mi.

To explore the strongly interacting regime, a variational ansatz adapted from the Fermi
polaron ansatz has been used [196], as well as a field-theoretical study [197]. Both studies
are in agreement and determined the energy of the polaron for any interaction strength.
When aib > 0, an impurity-boson dimer can be formed, but contrary to the Fermi polaron
case, there is no sharp transition expected from the Bose polaron to the molecular state.
Both studies expect a smooth transition between the two states: the energy of the polaron
tends asymptotically towards that of the shallow dimer energy and the effective mass of
the Bose polaron tends smoothly towards m∗ = mi +mb, signature of the dimer state.

Similarly to the Fermi polaron, for aib > 0, a repulsive branch of the Bose polaron also
exists. While in the weakly interacting regime aib → 0+, the Bose polaron is well-defined
and can be described with a perturbative expansion, in the strongly interacting regime
the Bose polaron is ill-defined for 1/knaib . 1, with a strong decay into the lower-lying
energy branches.

Despite all these similarities, the Bose and Fermi polarons differ by two important
aspects. First, the background BEC can be interacting at low temperatures (which is not
the case for a spin-polarized Fermi sea). A comparison of a Bose polaron in an ideal BEC
and a weakly interacting BEC can be found in [196]. The boson-boson interactions in
the BEC do not seem to change the properties of the Bose polaron in first approximation.
Moreover, in the context of the Bose polaron there is the possibility of having three-body
Efimov correlations. The three-body effects were not taken into account in [196, 197]
but were investigated in [198, 199]. They showed that three-body physics can affect the
Bose polaron in the strongly interacting regime with an avoiding crossing between the
polaronic energy branch and the trimer energy branch, meaning the impurity becomes
smoothly bound into an Efimov trimer in this regime.

The Bose polaron has been investigated experimentally in the strongly interacting
regime in JILA with fermionic 40K impurities in a BEC of 87Rb [200] and in Aarhus Uni-
versity with 39K for the impurities and the BEC using two different internal states [201].
In the system used by JILA, the Efimov effects were only expected to take place in a very
narrow range around the resonance that they did not resolve, thus their experimental data
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matched the theories from [196, 197]. With the system used in Aarhus University, they
obtained data compatible with the predictions from [198] including three-body effects,
confirmed with a new analysis of their experimental data [202]. We show in Fig. 2.8 the
spectral response of the impurity in the BEC obtained in [201] through RF spectroscopy.
It proves indeed the presence of an attractive and a repulsive branch for the Bose polaron.

Figure 2.8: Spectral response of the impurity in the BEC obtained with RF spectroscopy,
taken from [201]. The false colors represent the spectral weight of the polaron for different
values of the detuning ∆ between the RF frequency and the frequency of the hyperfine
transition used for the RF spectroscopy, and different values of the interaction strength
1/knaib. The panel (a) corresponds to experimental measurements whereas the panel (b)
corresponds to a calculated spectrum. The independently measured molecular energy is
represented with white dots and the white dashed line corresponds to a fit to these points.

Conclusion
In this chapter, we have presented the physics of ultracold Bose and Fermi gases, focusing
on their most relevant aspects for this PhD thesis. In the next chapter, we will see how
superfluidity and the BEC-BCS crossover can be realized experimentally with a sequence
of trapping and cooling stages.

In the last two sections, we introduced the Fermi and Bose polarons, quasiparticles
arising from the interaction between an impurity and a Fermi or a Bose gas respectively.
In our set-up, we use a Fermi superfluid of 6Li interacting weakly with a Bose gas of 7Li
with typically much less atoms, thus can be seen as a gas of impurities immersed in the
Fermi gas and associated with the problem of an impurity in a two component Fermi gas.
On the BCS side of the crossover, the problem is analogous to the Fermi polaron with two
Fermi seas instead of one. On the BEC side, the Fermi superfluid becomes a condensate
of bosonic dimers, so the problem is analogous to the Bose polaron. Consequently, our
system realizes a crossover between the Fermi polaron and the Bose polaron, that we will
study thoroughly in the following chapters of this thesis.
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Chapter 3

Producing a superfluid Bose-Fermi
mixture

In this chapter, we will present the apparatus we used to produce an ultracold Bose-
Fermi mixture of Lithium. This experimental apparatus has already been described in
great details in the theses of G. Ferrari [203], F. Schreck [204], L. Tarruell [205] or S.
Nascimbène [206], so we will simply focus on the main technical aspects of the experi-
mental sequence needed to obtain the degenerate mixture, after having presented the two
Lithium species that are used in this set-up.

3.1 Overview of the set-up

The general idea is to cool down our mixture of 7Li and 6Li towards quantum degeneracy
using laser cooling and evaporative cooling. Schematics of the set-up are represented in
Fig. 3.1. A hot Lithium vapor is produced in the oven and escaping through a collimation
tube. The atomic jet is slowed down in the Zeeman slower and then captured in the
magnetic optical trap (MOT). Due to the small hyperfine splitting of the excited states, the
temperature at the end of our MOT is too high to be directly loaded in an optical dipolar
trap, so instead we transfer magnetically the atoms to a strongly confining magnetic trap
in an appendage of the glass cell where RF evaporation is used to cool down 7Li atoms
whereas 6Li is cooled sympathetically. Atoms are finally transferred in a dipolar trap
where a second evaporative cooling is applied at high magnetic field to take advantage
of the broad Feshbach resonance for 6Li, and this time 7Li atoms are sympathetically
cooled. At the end of this second evaporative cooling, experiments are performed in
a hybrid optical-magnetic trap. The different stages of the experimental sequence are
further described in the following sections.

3.2 Lithium atoms

Lithium is the third element of the periodic table, the lightest alkali metal, and possesses
two stable isotopes: 7Li and 6Li, a boson and a fermion with natural abundances of 92.5%
and 7.5% respectively and masses of mb = 7.016u and mf = 6.015u, with u = 1.661 ×
10−27 kg the atomic mass unit.

55
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Figure 3.1: Schematics of the set of coils needed for the several trapping and cooling
stages. In the middle-bottom part, we have the glass-cell where atoms coming from the
Zeeman slower (orange arrow) are loaded in the MOT. The three MOT beams are repre-
sented in light red and all cross at the center of the glass cell, the MOT coils are in purple
(labeled with a white M ). Then, the atoms are loaded in the Ioffe-Pritchard trap in the ap-
pendage above the glass cell. The Ioffe bars (in brown, labeled with IB) impose a strong
magnetic field gradient and the pinch coils (in green, labeled with a white P ) a curvature
in the axial direction. The bias field created by the pinch coils can be compensated by the
bias field created by the Feshbach coils (in blue with a white F ) and finely tuned using
the pinch-offset coils (in yellow, with a black O). After an RF evaporative cooling stage,
the atoms are loaded in a hybrid dipolar-magnetic trap. The dipolar trap is generated by a
red-detuned high-power laser represented by a plain red beam that crosses the appendage.
The magnetic trap is realized using the pinch coils to produce an axial curvature and the
Feshbach coils to independently tune the bias field, up to 800− 1000 G to take advantage
of the 6Li Feshbach resonances. After an optical evaporative cooling, the two clouds are
quantum degenerate.

3.2.1 Atomic structure

As an alkali, it has a single electron in its outer shell therefore its atomic structure is
rather simple and given in Fig. 3.2. The ground state is 22S1/2 and the two lowest excited
states are 22P1/2 and 22P3/2. The optical transition from the 2s orbital to the 2p orbital
is around 671 nm, corresponding to red light, available at reasonably high power from
commercial sources. The fine splitting between the 22P1/2 and 22P3/2 lines is 10 GHz,
which is identical to the isotope shifts between the two species of the 2s→ 2p transition.
As a consequence, the D1 line (22S1/2 → 22P1/2) of 7Li is almost in tune with the D2
line (22S1/2 → 22P3/2) of 6Li. The natural linewith of the transition is Γ ' 2π × 5.9
MHz for both isotopes, so the hyperfine splitting of the 22P3/2 state, smaller than Γ, is not
resolved.

In Fig. 3.3, we represent the energy levels of the 22S1/2 manifold with respect to
the magnetic field. In the following, we will label |kiso〉 the associated states, with k =
1, 2, 3, .. the numbering of the states starting from the lowest energy state at high field and
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Figure 3.2: Structure of the energy levels of 6Li (left) and 7Li (right). In red are repre-
sented theD1 andD2 lines for each isotope. The transitions used for cooling and repump-
ing in the MOT and Zeeman slower are represented for 6Li in blue and green respectively
and for 7Li in yellow and orange respectively.

iso refers to the isotope (f for 6Li and b for 7Li).

3.2.2 Feshbach resonances

Lithium presents a large number of Feshbach resonances for each of its isotopes that can
be exploited for the study of the strongly correlated regime in ultracold gases. In Fig. 3.4,
we show the different resonances corresponding to the states used in our experiments. We
give in Table 3.1 the parameters corresponding to the position B0, the magnetic width
∆B and the background scattering abg of these resonances.

States sres B0(G) ∆B(G) abg(a0)

|1b〉 − |1b〉 0.81 737.8(2) −171 −21

|2b〉 − |2b〉 ∼ 1 893.7(4) −237.8 −18.24

|2b〉 − |2b〉 � 1 845.5(5) 4.5 −18.24

|1f〉 − |2f〉 59 832.18(8) −262.3(3) −1582(1)

Table 3.1: Parameter values corresponding to the relevant Feshbach resonances in Lithium
for our experiment.
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Figure 3.3: Magnetic field dependence of the energy levels of the 22S1/2 manifold of the
fermions (left) and the bosons (right). For each panel, we took for the zero of the energy
the energy of the lowest hyperfine state at B = 0. We see that for strong magnetic fields
(B > 400 G), we enter in the Paschen-Bach regime where the energy levels have the same
magnetic field dependence (modulo the sign).

The resonance we use between our two fermionic states |1f〉 and |2f〉 is located at
B = 832.18 G [207] and is very broad sres = 59, allowing to explore easily the BEC-BCS
crossover. For 7Li, the Feshbach resonances are given for the two lowest energy states.
For the |1b〉 state, formerly used in the group we see that the corresponding scattering
length is negative near the fermionic resonance which forbids to obtain a BEC in this
region (see section 2.2). On the contrary, the scattering length associated with the |2b〉
state is compatible with having a BEC of bosons in a strongly interacting Fermi gas,
which is why we now use this state.

Concerning the boson-fermion interaction, the scattering length remains constant and
small in the region of interest, with a value of abf = 40.8a0, independent of the fermionic
spin state. Feshbach resonances between the two isotopes in various internal states exist,
some have been calculated or measured [208, 209], but we do not use them in our current
set-up.

3.2.3 Stability of the mixture

We have seen in the previous paragraph that we had a broad Feshbach resonance for
the fermion-fermion interaction meaning we can explore a wide region of the BEC-BCS
crossover. The goal of this section is to determine approximately the limits of the region
we can explore while maintaining a stable Bose-Fermi mixture where both species are
superfluid.

Obtaining an ultracold Bose-Fermi mixture is not an easy task. Indeed, in the case of
liquid Helium mixtures, the strong 3He-4He interaction prevents from having a mixture of
the two species at low temperatures with more than 6% of 3He, downshifting the critical
temperature for its superfluidity, because of its low density, to T = 50 µK, while the
coldest temperature reached in such mixtures is so far 100 µK [210, 211]. In our case,
the interactions between bosons and fermions are much weaker, relatively to the Fermi
energy of the system, but the stability still needs to be investigated.

The stability condition for the Bose-Fermi mixture can be expressed using the com-



3.2 59

Figure 3.4: Relevant Lithium Feshbach resonances for our set-up. In red we have a very
broad Feshbach resonance (the scale has been divided by a factor 100) for the two 6Li
spin states. In blue the two Feshbach resonances for the 7Li atoms in the state we use
at the end of the experimental sequence. In purple we see the 7Li Feshbach resonance
for the |1b〉 state: this state cannot be used while exploring the BEC-BCS crossover with
the fermions since the scattering length is negative for most of it. Finally, in green is the
boson-fermion scattering length, mostly constant in the domain of magnetic field we are
interested in.

pressibility matrix
(
∂µi
∂nj

)
i,j

with the indexes i, j = b, f corresponding to the two possible

isotopes. Indeed, for the mixture to be stable, the matrix must be definite positive [212].
This gives the following stability conditions:

∂µb
∂nb

> 0,
∂µf
∂nf

> 0 (3.1)

and
∂µb
∂nb

∂µf
∂nf
− ∂µf
∂nb

∂µb
∂nf

> 0 (3.2)

For our system, since the boson-fermion interaction remains very weak for all the
magnetic field we can work with, we will describe it with a mean-field approximation (a
treatment of this interaction beyond mean-field will be done in Chapter 6). We will also
use such an approximation for the weakly-interacting Bose gas. Therefore, we can write
the chemical potentials at T = 0 as:

µb = gbbnb + gbfnf (3.3)
µf = µf (nf ) + gbfnf (3.4)

(3.5)

with µf (nf ) given by the equation of states of the fermions in the absence of bosons.
The first condition (eq. 3.1), concerning the bosons only, is verified if gbb > 0. This

is already a condition on the stability of the Bose gas by itself, since for negative values
it collapses. For the fermions, eq. (3.1) is actually verified throughout the BEC-BCS
crossover. The last condition, corresponding to eq. (3.2) is the one that will be critical to
predict whether the mixture will phase separate or remain mixed.
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Unitarity

At Unitarity, the EoS yields

µf = ξEF = ξ
~2

2mf

(3π2nf )
2/3

This expression, injected in the stability condition, determines an upper bound for the
fermion density of around nf, max > 1016 cm−3, exceeding greatly the typical densities of
nf ' 0.5× 1013 cm−3 that we deal with, thus the two clouds will form a mixture.

BCS side

In the BCS regime, when aff → 0−, we have µf = EF so the stability condition will be
even less restrictive than at unitarity, except in the domain located around 850 G where
we have a zero-crossing of abb. The range for abb leading to a phase separation can be
evaluated using the typical density of nf ' 0.5 × 1013 cm−3 and the former relations:
there will be a phase separation for abb . 0.5a0, corresponding to a magnetic field range
of less than 50 mG above the true zero-crossing.

BEC side

In the BEC regime, when aff → 0+, ↑ and ↓ fermions pair together forming dimers and
the chemical potentials can be rewritten in the mean-field approximation as:

µb = gbbnb + gbdnd (3.6)
µd = gddnd + gbdnb (3.7)

with the index d designating dimers, gdd = 2π~2add/mf with add = 0.6aff [130,213] the
dimer-dimer scattering length, the dimer density nd = nf/2 at T = 0 and gbdnd = gbfnf
in the mean-field approximation.

With these equations, the stability condition becomes:

a2
bf

abbaff
≤ 0.3

η

(1 + η)2
' 0.075 (3.8)

with η = mb/mf ' 7/6 the ratio of the masses of the two isotopes.
This stability condition at zero temperature will be fulfilled on the BEC side for mag-

netic fields above Bc0 ' 730 G1 (this theoretical value is only an indication and would
need to be measured experimentally since beyond mean-field effects could be involved in
this process with 1/kFaff ' 1.4).

In conclusion, we have a large domain over which we can have a stable Bose-Fermi
mixture: for magnetic fields B ∈[730 G, 845 G]∪[850 G, 890 G] ie for 1/kFaff ∈[−0.4,
−0.14]∪[−0.1, 1.4] calculated with a typical central density of nf ' 0.5× 1013 cm−3.

1This value of the critical magnetic field is valid at zero-temperature. At high temperatures, the mixture
is stable even way beyond Bc0 because the interactions become negligible compared to the thermal part of
the energy.
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3.3 Laser system
The laser system uses a master-oscillator - power-amplifier scheme where three masters
lasers, locked using saturated absorption spectroscopy to act as a frequency reference,
inject a few slave lasers and tapered amplifiers to obtain more total optical power.

The master lasers have been changed during the course of my PhD to replace the old
homemade mounts which were external cavities in Littrow configuration for new Toptica
lasers, of the model DL pro 670 using an ”improved”, patented, Littrow configuration for
a better stability. They also have a better output power after a first fiber coupling thanks to
the use of a specialized FiberDock (see Fig. 3.5) and the integration of an optical isolator
inside the laser box. For comparison, the output power of the old master laser was around
20 mW compared to the 25 mW of the new lasers which seems similar but after a first
fiber coupling, the output for the old masters was typically around 6 mW whereas we can
get around 20 mW with the new ones, signature of much better gaussian modes. This
enabled us to get rid of one slave laser and to be very confortable with the total power
available to inject the slaves. Furthermore, their stability is indeed better since the old
masters sometimes had to be re-locked several times a day (sometimes up to ten times a
day) whereas the new ones only need to be locked once a day. They are locked on the D1

and D2 lines of 6Li and the D2 line of 7Li, and the different frequencies needed for our
set-up are produced using acousto-optic modulators.

Figure 3.5: Photography of the new Master laser box. The box contains a 670 nm diode
laser, an anamorphic prism pair for circular beam shaping and an optical isolator. The
FiberDock that is directly connected to the laser box includes an adjustable lens and a
fiber coupler. Once the FiberDock is optimized, the power after the fiber is very stable,
only requires small adjustments every other week.

The optical power is amplified by injecting the light in slave lasers. The slave diodes
are high-power laser diodes (Hitachi HL6545MG) with a maximal output power of 620
mW. Their spectrum at room temperature is centered around 660 nm, so we heat them up
to around 70◦C to reach the Lithium transitions which are around 671 nm. The diodes are
mounted inside thermally isolated boxes, which are currently being gradually replaced
for Thorlabs mounts (model TCLDM9). The diodes need to be replaced quite regularly
(every other month) due to their reduced lifetime at those temperatures. Two tapered



62 Chapter 3

amplifiers are used for the 7Li principal frequencies (corresponding to D2) to have even
more power for the MOT and Zeeman slower since the total number of 7Li atom is critical
for the experimental sequence.

Three Fabry-Perot cavities are used to monitor the locking of the different diodes.
One is used for the master lasers, another one for the MOT beams and a last one for the
Zeeman slower lasers.

3.4 Loading the magnetic-optical trap

3.4.1 The Lithium source
The atomic beam is created by heating Lithium samples (with natural abundances) in the
oven. The bottom of the oven is at a temperature around 400◦C and the entrance of the
collimation tube is around 520◦C, ensuring that enough saturated vapor is produced to
generate an atomic beam after collimation. To enable the recycling of liquid Lithium
that could otherwise form and accumulate in the collimation tube, we make sure there
is a negative gradient between the entrance and the end of the tube because the surface
tension of liquid Lithium decreases with temperature. Typically, the temperature at the
end of the collimation tube is around 190◦C. However, this strategy is not 100% reliable
and the collimation tube can get clogged from time to time in which case we have to heat
it up to 600◦C in order to get rid of the accumulated Lithium.

3.4.2 Zeeman slower
At the end of the collimation tube, the atoms have a mean thermal velocity of 1700 m.s−1

whereas the capture velocity of the MOT is only about ∼ 50 m.s−1. To slow down the
atoms we use a Zeeman slower. We send counter propagating beams at resonance on the
atoms: they absorb a high number of photons along their trajectory and slow down due to
the recoil. Because of the Doppler effect, the Zeeman laser beams cannot be at resonance
with the atomic transitions during their whole path. To compensate the Doppler effect, a
well designed magnetic field is applied on their way: due to the Zeeman effect, the atomic
levels are shifted and the magnetic field profile along the slower is conceived so that the
atoms are always at resonance with the laser beam.

Our Zeeman slower is in a spin-flip configuration with currents of opposite signs run-
ning through two successive coils so that the magnetic field becomes zero between the
two coils and is then reversed. In this configuration, the Zeeman light is made resonant
with atoms at the zero of the magnetic field, where their average velocity is around 250
m.s−1, but does not affect the trapped atoms in the MOT. The magnetic field in the Zeeman
slower goes from +800 G to −200G, and its capture velocity is around 1100 m.s−1.

For each isotope, a principal beam is used to cool down the atoms and a repumping
beam is used to recycle atoms falling in the wrong level of the ground state. Moreover,
the repumping is needed because there is no adiabatic following near the zero-crossing of
the magnetic field and atoms can flip to the wrong m′F states. The principal beams for 6Li
and 7Li are represented in blue and yellow respectively in Fig. 3.2, they are tuned to the
D2 lines of each isotope, more specifically to the transition D2 : F = 3/2 → F ′ = 5/2
for 6Li and D2 : F = 2 → F ′ = 3 for 7Li. The 6Li principal beam also affects the
slowing of the 7Li due to the proximity of the D2 line of the former and the D1 line of
the latter, forcing a trade-off between the loading of the two species in the MOT. The
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repumping beams 6Li and 7Li are represented in green and orange respectively in Fig.
3.2, they correspond to the transitions D1 : F = 1/2 → F ′ = 3/2 and D2 : F = 1 →
F ′ = 2 respectively. The four Zeeman beams are actually detuned from their respective
transitions of around 400 MHz to compensate for the Doppler effect taking place at the
zero-crossing of the magnetic field.

3.4.3 Magneto-optical trap
The slowed down atoms can now be trapped in the magneto-optical trap where further
cooling will also occur. The optical part of the trapping is made with three counterprop-
agating beams, with a circular polarization, and the magnetic part is a magnetic field
gradient of 25 G.cm−1 provided by a pair of coils (the MOT coils, in purple with an M
on Fig. 3.1). The combination of restoring and friction forces traps the atoms in real and
momentum space, in the vicinity of the zero magnetic field region.

Concerning the MOT light, we have again two frequencies for each isotope, a principal
and a repumper. The transitions for the principal beams are D2 : F = 3/2 → F = 5/2
and D2 : F = 2 → F ′ = 3 for 6Li and 7Li respectively and the transitions used for the
repumper beams are D1 : F = 1/2 → F = 3/2 and D2 : F = 1 → F ′ = 2, so very
similar to the Zeeman slower beams except for the detunings. Indeed, the detunings are
much smaller in the MOT, all beams are red-detuned with detuning of about δ6P = −6Γ
and δ7P = −7Γ for the principal beams while we have δ6R = −3Γ and δ7P = −5.5Γ for
the repumper beams.

The MOT loading requires about one minute, at which stage we have around 109

atoms of 7Li and 108 atoms of 6Li at around 3 mK. We then switch off the Feshbach
coils (blue coils with an F on Fig. 3.1) that were just applying a bias field to align the
center of the magnetic trap with the end of the Zeeman slower and shift the MOT. This
is then followed by a CMOT phase where the MOT is compressed and the detunings are
set closer to the resonance (δ6P = −1.5Γ and δ7P = −5Γ for the principal beams) while
the repumping intensities are ramped down to zero in 8 ms. This increases the atomic
density, all pumped in the lowest hyperfine manifold, and decreases the temperature to
about T ' 600 µK. The temperature is higher than the theoretical Doppler temperature
TD = ~Γ/2kB ' 140 µK, because the upper hyperfine states are unresolved and, at high
density, multiple photon scattering takes place.

The temperature at this stage is too high to have an efficient loading into the final
hybrid dipolar-magnetic trap. To reduce the temperature, we will perform an RF evapo-
rative cooling in a magnetic trap, and not in the MOT because it is not a conservative trap
due to the constant absorption and reemission of the resonant photons. If we switch off
the Zeeman slower, atoms in the MOT are all lost in less than a minute, whereas the RF
evaporation lasts around 30 seconds.

3.5 Magnetic trapping

3.5.1 Optical pumping
To load the atoms in the lower magnetic trap, we have to transfer the atoms in a low-field
seeking state (the energy increases with the magnetic field) since Maxwell’s equation
forbid local maxima of magnetic fields. Therefore we perform an optical pumping step
where the atoms are transferred into the states |6f〉 = |F = 3/2, mF = 3/2〉 and |8b〉 =
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|F = 2,mF = 2〉 of the second lowest manifold. These states are also stable against
spin-exchange collisions, a necessary condition for the sequence.

During this step, we use a beam with two frequencies and a σ+ polarization, as well as
a weak magnetic field B ' 10 G parallel to the axis of the beams. The first beam is tuned
to theD2 : F = 1→ F ′ = 2 transition to pump the 7Li atoms to the F = 2 manifold. The
second beam has two roles: first it transfers the 7Li atoms into the |F = 2, mF = 2〉 state
through the F ′ = 2 state of the D1 transition to realize the“Zeeman” optical pumping
of 7Li; then it also pumps the 6Li atoms from the F = 1/2 manifold to the F ′ = 3/2
manifold to realize the 6Li hyperfine pumping. The 6Li gas is not fully polarized in the
|F = 3/2, mF = 3/2〉 state, leading to some losses, but the number of 6Li atoms is not
as critical as for 7Li.

3.5.2 Lower magnetic trap and transport

After the optical pumping, a quadrupole trap is turned on by supplying the MOT coils
with currents running in opposite directions after a short ramp of 2 ms. The magnetic field
gradient in the quadrupole is around 200 G.cm−1 for a current of 300 A. The efficiency
of the optical pumping and quadrupole loading is around 50% for 7Li and 30% for 6Li,
corresponding to Nf = 7× 107 and Nb = 7× 108 trapped atoms at a temperature around
2− 3 mK.

The atoms are then transferred in the appendage of the glass cell: we ramp up the
current in the Feshbach coils and ramp down the current in the MOT coils at the same
time, for a total duration of 500 ms, so that the center of the magnetic trap is progressively
moved upwards towards the center of the appendage. At the end of the transfer, the current
in the MOT coils is even reversed to give a final push to the atoms. The efficiency of this
magnetic transport is around 50%, most of the losses being from the collisions between
the peripheral atoms and the walls of the appendage, since the atomic cloud is larger than
the appendage and clips on the walls.

3.5.3 Ioffe-Pritchard trap

Atoms are then transferred from the quadrupole trap to a Ioffe-Pritchard trap [214]. This
trap consists of four bars parallel to the z direction, represented in Fig. 3.1, that realize a
tight radial confinement and a pair of pinch coils (green coils with a P on Fig. 3.1) for the
axial confinement by inducing a strong curvature. Another pair of coils, which happen
to be the Feshbach coils, are used to implement a bias field strong enough to prevent any
Majorana losses [215] but not too strong to maintain a good radial confinement. The bias
field can also be finely tuned using the pinch-offset coils, represented in yellow with an O
in Fig. 3.1.

On a sidenote, during the course of my PhD, the Ioffe bars started leaking. Unfor-
tunately, they are located very closely to the appendage and inaccessible without taking
them out. Temporary solutions were tempted to fix this leak but eventually it appeared to
be irreparable. A project has thus been launched to replace them which is being carried
out currently. We have taken out the whole structure containing all the coils out of the
optical table to replace the bars. At the same time, to avoid the possible future leaks on
other coils, all the coils will be replaced following a similar design.

On the contrary, to try to increase the lifetime of the Ioffe bars, which is limited to the
appearance of leaks (they were replaced around ten years ago), we changed the general
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strategy for their conception. As represented in Fig. 3.1, we can see they have a triangular
section. In the former design, they were formed by folding standard cylindrical tubes and
crushing them in a press, resulting in the structure fragility. On the contrary, the future
bars will be 3D printed directly in the right shape and will be pierced to let water circulate
through them, hopefully for a better longevity. On top of that, the future use of a closed
loop water circuit should also ensure a much better longevity. A picture of the new bars
is given in Fig. 3.6.

Figure 3.6: Picture of a prototype of the new Ioffe bars. The yellow lines mark the
area where the triangular 3D printed bars are located, their extremities can be seen and
are pointed out by the arrows. There is a set of three triangular bars on each side of
the picture, corresponding to each yellow lines, interconnected at their extremities with
cylindrical copper tubes. The soldering used to connect the different Ioffe bars is Silver,
which has a lower resistivity than copper. The difficulty resides in the piercing of the bars
without breaking the system or creating leaks, which is a work in progress.

3.5.4 Doppler cooling
Back on the experimental sequence, when the atoms are loaded in the Ioffe trap, they have
a temperature around 3 mK. The collisional scattering cross-section of 7Li vanishes for a
relative collision energy of 6 mK and is still pretty low at 3 mK, therefore the temperature
of the gas is still too high to start the evaporative cooling of the cloud. Consequently, we
perform a Doppler cooling on 7Li atoms.

A single beam is sent on the atoms, circularly polarized, red-detuned to the transition
D2 : F = 2,mF = 2 → F ′ = 3,mF ′ = 3 to match the corresponding bias field felt
by the atom (' 500 G). This beam cools down the atoms in one direction and elastic
collisions as well as the anharmonicity of the trap enable the thermalization of the cloud
after recompression. This step is repeated a second time, with a stronger confinement and
smaller detuning. At the end of this step, the temperature is down to 300 µK, with atom
losses of only 25%, and the collision rate is multiplied by a factor ∼ 16, now enough to
perform an evaporative cooling.

3.5.5 RF evaporation
At this stage, the Ioffe-Pritchard trap is highly compressed and a low bias field is main-
tained (B ' 5 G) to avoid Majorana losses. Since the bias magnetic field produced by the
pinch coils in this phase reaches around 1000 G, compensating this field to reduce it to 5 G
while maintaining a good magnetic field stability may seem complicated. However, the
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pinch coils and Feshbach coils were designed to have the same characteristic for the bias
field (' 2.3 G/A) while the curvature produced by the Feshbach coils is small compared
to the one from the pinch coils. Hence, they are connected in series during this phase to
create a bias field very close to zero, that can be finely tuned with the pinch-offset coils.

The general idea of evaporative cooling is to remove the most energetic atoms from
the cloud and letting the rest of the atoms thermalize, so that the mean energy per particle
decreases and the phase-space density increases [216]. The strategy used at this step is
a radio-frequency (RF) evaporation: it consists in sendind a finely tuned RF signal to
transfer the hot atoms from a trapped Zeeman state to an anti-trapped state.

We perform this evaporative cooling only on 7Li atoms and 6Li atoms are cooled
sympathetically, by thermalization of the mixture: even if 6Li atoms are fully polarized
and cannot scatter through s-waves while higher partial wave channels are already frozen,
they can still scatter with 7Li atoms.

An RF signal, blue-detuned with respect to the frequency of the transition |8b〉 →
|1b〉 (803 MHz at B = 0 G) is sent on the atoms. The blue detuning is then reduced
progressively, so that only the hottest atoms are transferred in the |1b〉 state which is a
high-field seeker state thus anti-trapped.

The RF is decreased exponentially from 1040 MHz to around 840 MHz in about 22 s.
The final RF frequency is frequently finely tuned to optimize the atom numbers and tem-
perature of the cloud. At the end of this evaporation, the typical numbers of atoms are
down to Nf = 2 × 106 for 6Li and Nb = 6 × 105 for 7Li, with a typical temperature of
T ' 10 µK, corresponding to a phase-space density of around 10−1 for 6Li atoms. After
this final step, it is finally possible to load efficiently the atoms in the dipole trap thanks
to a good mode matching.

3.6 The final hybrid magnetic-dipolar trap
The final trap is a hybrid magnetic-dipolar trap, produced by a far red-detuned (λ = 1073
nm), high power, IPG Ytterbium fiber laser for the dipolar part and an axial magnetic field
produced by the pinch coils (green coils on Fig. 3.1). A bias field of 800− 1000 G can be
applied independently using the Feshbach coils, to be close to the Feshbach resonances
mentioned in section 3.2.2.

3.6.1 The magnetic-dipolar trap
First, let us recall some basic properties of dipole traps produced by the interaction of an
atom with a far detuned light beam. It relies on the dipole force [217], that arises when a
far-detuned light beam is sent on the atom clouds. The dominant effect of the laser is an
AC Stark shift proportional to the laser’s intensity, negative for a red-detuned laser, that
makes the atom attracted to the maxima of intensity. Since the fine and hyperfine splitting
of the atomic states is negligible compared with the laser detuning to the 22S → 22P
transition, the potential can be simply described using the expression:

Vdip(r) =
3πc2

2ω3
0

Γ

∆
I(r) (3.9)

where c is the speed of light in the vacuum, ω0 the frequency of the atoms’ transition with
natural linewidth Γ, ∆ = ωL − ω0 is the detuning between the laser pulsation and the
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pulsation of the transition, and I(r) is the intensity profile of the laser. For our trap, we
use a laser in a Gaussian TEM00 mode so we have:

I(r) =
2P

πw(z)2
e−2r2/w(z)2 , (3.10)

where P is the total laser power and w(z) is the 1/e2 radius of the beam at the position z
given by w(z) = w0

√
1 + (z/zR)2, with w0 the beam waist and zR = πw2

0/λL. For our
experiments, w0 = 36(3) µm and w0 = 27(2) µm for experiments presented in chapters 4
and 5. Close to the beam focus, for r � w0 and z � zR, the dipole potential is harmonic.
It reads for an atom of mass m:

Vdip(r) = −V0 +
1

2
m
(
ω2
rr

2 + ω2
zz

2
)

(3.11)

where V0 = 3c2ΓP/ω3
0|∆|w2

0 is the trap depth, ωr =
√

4V0/mw2
0 the radial frequency and

ωz = ωrλL/
√

2πw0 the axial trap frequency. Typical frequencies at the highest power we
send on the atoms (7 W) are ωr ' 2π × 7 kHz and ωz ' 2π × 40 Hz. The trap is cigar-
shaped, very elongated in the axial direction. In first approximation, both isotopes feel
the same trapping so mfω

2
f = mbω

2
b , and ωf/ωb '

√
7/6.

At low powers, to increase the axial trapping, we add a magnetic curvature using the
pinch coils. For low-field seeker states, we implement a magnetic field minimum in the
vicinity of the beam waist. For high-field seeker states, a saddle-point is created with a
maximum in the axial direction, by combining the action of the pinch coils to impose the
curvature and of the Feshbach coils to generate a high, negative, bias magnetic field so
that the minimum of the magnetic field becomes negative and a maximum in amplitude.
Typical axial trapping frequency provided by the pinch coils is ωz = 2π × 20 Hz. The
radially repulsive potential created in this configuration by the coils can be neglected
compared to the radial confinement due to the dipolar trap. This strategy can be used to
trap high-field seeking states near the Feshbach resonance of 6Li at 832G.

3.6.2 Loading of the trap
We load the atoms from the Ioffe-Pritchard trap to the hybrid magnetic-dipolar trap at
relatively high laser power (' 7 W), by simultaneously ramping up the optical trap power
and ramping down the current in the Ioffe-Pritchard bars. Since the geometry of both trap
are quite similar, the loading efficiency is about 80%.

3.6.3 Mixture preparation
To take advantage of the Feshbach resonance for 6Li, we want to prepare our atoms in
the states |1f〉 and |2f〉 for the fermions and |2b〉 for the bosons, as featured in Fig. 3.3.
This is done using several RF adiabatic transfers. In a two-level system, this technique
consists in dressing the levels by a strong field with Rabi frequency Ω and sweeping the
field detuning δ across the resonance, slowly enough so that the atoms follow the dressed
state to end up in the other level, having absorbed or emitted a photon of the coherent RF
field.

First, we transfer at low field the 7Li atoms from the state |8b〉 to |1b〉 and the 6Li
atoms from the |6f〉 state to the |1f〉 state, both high-field seeker states. To do so, we
send a fixed RF frequency of 827 MHz for the bosons and 240 MHz for the fermions
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and we ramp the magnetic bias field from 13 G to 4 G in 50 ms to cross the resonance.
Then, we increase the bias magnetic field up to 656 G, before reaching the Feshbach
resonance for the bosons at 738 G depicted in purple in Fig. 3.4, and we perform another
adiabatic passage by using an RF signal whose frequency is swept in 10 ms from 170.9
MHz to 170.7 MHz to transfer the 7Li atoms from the |1b〉 state to the |2b〉 state. The
typical efficiency of these transfers is about 90%, it is limited by decoherence effects due
to atom collisions, trap inhomogeneities or field fluctuations. Remaining atoms in the |8b〉
and |6f〉 are expelled from the trap which is now set to trap high-field seeking states and
remaining bosons in the |1b〉 state are lost to three-body collisions when their Feshbach
resonance is crossed at 738 G.

Finally, to prepare the 6Li atoms in the desired states, we increase the magnetic field
up to 835 G close to the Feshbach resonance at 832 G, by sweeping the frequency of an
RF signal from 76.25 MHz to 76.3 MHz. By varying the RF power or the total duration
of the sweep, we can adjust the transfer to obtain a mixture in the desired states according
to the Landau-Zener formula:

Ptr = 1− e−2πΩ2/ω̇ (3.12)

where Ptr is the transition probability, Ω is the Rabi frequency of the RF radiation and
ω̇ = dω/dt is the frequency sweep velocity.

Therefore, we can adjust the parameters of this last sweep to modify the polarization
of the Fermi cloud. The transfer efficiency can fluctuate or even drift and needs to be
readjusted from time to time to remain in the same polarization conditions.

3.6.4 Final evaporation
The evaporation starts as soon as 6Li atoms are being transferred in the |2f〉 state and col-
lisions are activated. The collision rate between | ↑〉 and | ↓〉 fermions is extremely large
(γff ∼ 10 kHz) thanks to the Feshbach resonance, allowing for an efficient evaporation,
whereas the 7Li atoms are sympathetically cooled by the fermions.

We start with typically Nf = 2× 106 fermions and Nb = 3× 105 bosons at a temper-
ature T = 40 µK for a trap depth V0 = 180 µK. We then decrease exponentially the laser
power to reach trap depths as low as V0 = 1.5 µK. After a waiting around 1 seconds for
the atoms to thermalize, we can obtain around Nf = 3× 105 fermions and Nb = 4× 104

bosons for temperatures down to 80 − 100 nK, ensuring, as we will see later, that both
clouds are indeed quantum degenerate.

3.7 Imaging
In the last sections, we saw how we could obtain an ultracold Bose-Fermi mixture by
using a succession of traps and evaporative coolings. To analyze these atomic clouds and
study their properties, we image them, either while trapped (in-situ) or after a time-of-
flight expansion.

3.7.1 Absorption imaging
Absorption imaging consists in sending a resonant probe on the atoms, that will partly
absorb it, along a given direction for instance the direction x. Using a CCD camera, we
obtain the intensity profile I(y, z) of the probe after passing through the cloud, as can
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be seen in Fig. 3.7. To account for inhomogeneities of the probe beam, another picture
is taken without the atomic cloud to obtain the intensity profile I0(y, z) that is needed
to deduce properties only related to the atomic cloud. For a probe with a small enough
intensity I � Isat where Isat is the saturation intensity for the frequency of the beam2, the
intensity of the probe beam after absorption by the atoms is given by the Beer-Lambert
law which reads

I(y, z) = I0(y, z)e−σ
∫

dxn(x,y,z) (3.13)

where n is the density of the cloud and σ is the absorption cross-section. Therefore, the
logarithm of the ratio I/I0 yields the density of the cloud, integrated along the imaging
direction.

The absorption cross-section can be expressed simply in the case of a resonant light
beam with a narrow linewidth and reads σ = 6π(λ/2π)2C with C the Clebsh-Gordan
coefficient associated with the absorption transition and the light polarization. However,
this theoretical value cannot be used exactly in our measurements since many experimen-
tal imperfections can reduce drastically this cross-section. Thankfully this problem can be
solved after a calibration of the atom numbers, as described in section 3.9, and absorption
imaging can very well be used to determine the clouds’ properties.

Figure 3.7: Schematics of the bidirectional imaging set-up, featuring real absorption im-
ages of the two spin states of a Fermi gas (labeled ↑ and ↓) and the Bose gas (labeled
b). The cigar-shaped clouds (blue for the bosons, red for the fermions) can be imaged
along the x or the z directions (two red arrows). The absorption images are represented in
false colors, with red corresponding to the highest densities and blue to the vacuum back-
ground. the bosonic image is taken after a time-of-flight of 4.5 ms while the fermionic
ones are taken after a time-of-flight of 0.5 ms, both were taken at 817 G after a full evap-
oration at 835 G.

2The saturation intensity at resonance for the D1 and D2 lines of 7Li are respectively Isat = 7.6
mW/cm2 and Isat = 2.5 mW/cm2.
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3.7.2 Double and Triple imaging
In the appendage, imaging can be done along two directions as depicted in Fig. 3.7: the z
direction, corresponding to the axial direction of the trap, and the x direction correspond-
ing to a radial direction of the trap.

Taking images along the z axis requires some time-of-flight to reduce the optical den-
sity and because the resolution along this axis is about 10 µm per pixel. However, imaging
along this axis enables to detect low number of atoms thanks to the integration along the
axial direction of the cigar-shaped cloud.

Along the x axis, images can be taken in-situ or after time-of-flight, the resolution is
about 5 µm per pixel thus still not sufficient to resolve along the x direction of the profile.
As a consequence, no information is lost after a second integration of the obtained profile
along a radial direction and we tend to work with doubly integrated profiles.

For this imaging, we use two PixelFly cameras that can be operated very fast. Each
of these cameras can take two images with a time separation as short as 3 µs. This allows
us to take quasi-simultaneous images in one direction of one fermionic species and the
bosons (double imaging), or of the two fermionic species with the bosons in the other
direction (triple imaging).

For the measurements of the oscillations of the fermionic and bosonic cloud performed
in Chapter 5, the former strategy was used whereas for the lifetime measurements of
Chapter 4 it was the latter. In this case, we imaged the two fermionic species in the x
direction and the bosons in the z directions as represented in Fig. 3.7. To avoid heating
of the cloud by the imaging beam, we used short 10 µs pulses, separated by 10 µs at
low intensities I/Isat = 0.06. Reference images are taken 20 ms later. This short pulse
duration combined with a readout noise of 7 electrons RMS yields a not so high signal-
to-noise ratio. Typically, at the end stage of the sequence we are able to resolve atom
numbers down to 103 bosons in the z direction and 2 × 103 fermions per spin state in
the x direction. The replacement of the cameras for an Andor one with better quantum
efficiency and the installation of a microscope objective for a better resolution are in
preparation.

In short, our imaging set-up allows us to obtain the integrated profiles of the three
species in our mixture quasi-simultaneously, which gives us many information such as
the pressure, the temperature, the number of atoms, ...

3.8 Analysis of the profiles

3.8.1 Degenerate bosons and thermometry
In our experiment, we work with bosons that are interacting weakly and the profiles are
rather simple to fit.

For high temperatures, the cloud can be fitted using a Gaussian profile, typical of any
thermal cloud. The doubly-integrated profile can thus be written as

nb(y) = nb(0) exp

(
− y

2

y2
th

)
(3.14)

where we supposed we integrated along the z and x directions and with yth related to the
temperature T by

1

2
mbω

2
b,ry

2
th = kBT. (3.15)
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When the temperature decreases, the profile of the gas changes drastically due to
Bose-Einstein condensation. The critical temperature for this phenomenon in a harmonic
trap for an ideal gas is given by

kBTc,b = ~ωb(Nb/ζ(3))1/3. (3.16)

Hence, for temperatures T < Tc,b, the 7Li atoms start forming a BEC. The number of
condensed atoms Nb,c is related to the temperature by

Nb,c

Nb

= 1−
(
T

Tc,b

)3

(3.17)

While the non-condensed atoms can still be analyzed using a Gaussian profile, the
condensed fraction corresponds to a Thomas-Fermi profile. This can be demonstrated in
the Local Density Approximation (LDA). The LDA assumes that at each position r of the
system, there exists a mesoscopic volume over which the system is homogeneous and at
equilibrium. All those small volumes are in contact and can exchange heat so they are at
thermal equilibrium at the temperature T . Likewise, they can exchange particles imposing
the constant chemical potential µ0 over the system. In the LDA, each small local volume
is treated as a homogeneous system shifted by the external potential µ(r) = µ0 − V (r)
with µ0 the chemical potential at the center of the trap. The LDA can be applied whether
the atoms are of bosonic or fermionic nature, or for a mixture of both in which case
the chemical potential of a species may depend on the density of the others through the
mean-field interaction.

Hence, in the LDA, and using a mean-field approximation to characterize the interac-
tions, we write for the bosons

µ(r) = µb −
1

2
mb

∑

i

ω2
i r

2 = gbbn(r) (3.18)

where the index i = x, y, z corresponds to the three directions of space, gbb is the coupling
constant between two bosons and µb is the chemical potential at the center of the cloud,
which reads

µb =
~ωb
2

(
15Nb,cabb

√
mbωb
~

)2/5

(3.19)

with abb the boson-boson scattering length and ωb = (ωz,bω
2
r,b)

1/3 the averaged trapping
frequency for the bosons.

The doubly-integrated density can then be written as

nb(y) = nb(0)

(
µb −

1

2
mbω

2
r,by

2

)2

(3.20)

Hence, the spatial extent of the cloud along the radial direction is given by the Thomas-
Fermi radius

RTF,z,b =

√
2µb
mbω2

r,b

. (3.21)

A similar formula can be obtained for the axial extent using the axial trapping frequency
instead of the radial one.
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The double-structure, a Thomas-Fermi profile with thermal gaussian wings can be
used to extract a lot of information, in particular the temperature of the gas, which is
also the temperature of the whole Bose-Fermi mixture. However, we often need to do
the imaging after a certain time-of-flight to reduce the optical density of the cloud, after
which the cloud expands and the temperature cannot be deduced directly from the profile.
Fortunately, the profile of the cloud after expansion can be connected to the in-situ profile
by a simple scaling. The behaviour of the thermal gas and the condensed fraction differ,
but, for an elongated cloud, they follow the same scaling in the radial direction and their
size grow by a factor λr(t) =

√
1 + (ωr,bt)2 [218,219]. In our experiment, the expansion

is done after turning off the dipolar trap but with the saddle potential of the coils still on,
which modifies the previous formula3. However, this effect is negligible for small enough
time-of-flights, typically a few percents for a 5 ms time-of-flight.

We show in Fig. 3.8 the doubly-integrated profile for a degenerate bosonic cloud
obtained at two different temperatures.

Figure 3.8: Profiles of the Bose gas at different temperatures. Left panel: for very low
temperatures, there are no visible thermal wings in the profile (blue solid curve), which
is fitted with a Thomas-Fermi profile (gray dashed curve) given in eq. (3.20), to extract
a Thomas-Fermi radius of 42 µm after a time-of-flight of 4.5 ms so corresponding to
approximately 3 µm in-situ. Right panel: bosonic profile (blue solid curve) at a higher
temperature where the thermal wings are visible and fitted with a Gaussian profile (black
solid curve). The whole profile is fitted with the sum of a Gaussian function and the
Thomas-Fermi profile (gray dashed curve) from eq. (3.20). It corresponds to a tempera-
ture of 306 nK, consistent with the temperature T = 295 nK obtained using the condensed
fraction deduced from the fit. This profile was obtained from an image taken after a time-
of-flight of 4 ms.

The first one, on the left-hand panel of Fig. 3.8, has no visible thermal fraction.
Typically, this is the case when the condensed fraction represents more than 80% of the
cloud4. In this case, we can only get an upper bound for the temperature, which for the

3In the radial direction, in the limit where the axial trapping is the same before and after the dipolar trap
is turned off, the scaling coefficient writes as [219]

λr(t) =

√
cosh2

(
1√
2
ωz,bt

)
+

2ω2
r,b

ω2
z,b

sinh2

(
1√
2
ωr,bt

)
. (3.22)

4Far from the boson-boson resonance, for abb → 0+, the condensed fraction can become very small and
the thermal wings can remain detectable at lower temperatures.
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profile presented in Fig. 3.8 corresponds to T ' 130 nK.
The second one, on the right-hand panel, presents two distinct features: a Thomas-

Fermi peak with thermal wings. From a Gaussian fit to the wings we extract a temperature
T = 306 nK. From integration of the fits, we obtain a condensed fraction Nc,b/Nb ' 0.5,
which can also be used to obtain the temperature with eq (3.17) and yields T ' 295 nK,
in good agreement with the first estimate.

In conclusion, we can fit very precisely the bosonic cloud to extract its characteristics
as well as the temperature of our mixture. We are able to reach temperatures low enough
to obtain a BEC, that we can distinguish very well using the doubly-integrated profile.

3.8.2 Superfluidity of the fermions
The fermionic profile depends on the interaction strength that we vary by exploring the
BEC-BCS crossover. For a Fermi gas in a harmonic trap, the Fermi energy Ef,h can be
calculated for a two-component ideal gas:

Ef,h = ~ωf (3Nf )
1/3 (3.23)

with ωf the trapping frequency averaged over the three directions x, y, z. A Fermi wavevec-
tor can be associated with this Fermi energy using Ef,h = ~2k2

F,h/2mf , as well as a har-
monic Fermi temperature defined with kBTF,h = EF,h. This ”harmonic” Fermi energy is
different from the homogeneous, or local Fermi energy EF which is proportional to n2/3

f

and thus vary in the trap. Both definitions of the Fermi energy can be used for a harmoni-
cally trapped gas depending on whether the study focuses on local or global properties of
the Fermi gas. In this thesis, if the homogeneous Fermi energy/wavevector/temperature is
used without precising the position in the trap, it means it corresponds to the value at the
center of the cloud.

At zero temperature, the profile depends on the interaction strength 1/kF,haff : far
on the BEC side, the profile coincides with the profile of an atomic BEC, whereas at
unitarity, or far on the BCS side, the profile corresponds to the Thomas-Fermi profile
of a non-interacting gas. For a unitary Fermi gas, the profile is given by the following
Thomas-Fermi profile:

nf (z) = nf (0)

(
µf −

1

2
mfω

2
z,fz

2

)5/2

(3.24)

with µf =
√
ξEf,h. In our experiments, since we mostly work in a domain where

1/kF,h|aff | < 1, we use the Thomas-Fermi profile of a unitary Fermi gas to obtain the
size of the cloud and the atom numbers.

The spatial extent of the gas is then given by

RTF,f,z = ξ1/4

√
2Ef,h
mfω2

f,z

. (3.25)

Since we only work with very short time-of-flights t for the fermions ωzt� 1, the profile
nf (z, t) integrated in both radial directions is always very close to the in-situ one.

The superfluidity of the Fermi gas is not revealed as obviously as the Bose-Einstein
condensation of the bosons in the doubly integrated profiles. However, the superfluidity
can be inferred in our experiment via two different arguments.
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Critical temperature

The superfluid/normal transition of the gas is a phase transition that happens at a certain
critical temperature Tc,f . One simple idea is to measure the temperature of the Fermi gas
and to compare it with Tc,f . However, in the strongly interacting regime, it becomes very
complicated to extract the temperature of the Fermi gas. To overcome this hurdle, we use
another species as an auxiliary thermometer, in our case the Bose gas, a technique first
used in [220, 221]. At the end of the last evaporation stage, we wait about 1 second to
ensure the thermalization of the two gases (the classically estimated collision rate is about
10 s−1), and then we extract the temperature of the Fermi gas by analyzing the density
profile of the Bose gas.

The critical temperature for superfluidity was measured very precisely at unitarity
in MIT [136] with Tc/TF = 0.167(13) (where TF is the local Fermi temperature) by
observing simultaneously a jump in the compressibility, a jump in the specific heat and
the vanishing of the condensed fraction at this temperature. It was also evaluated as
Tc/TF,h = 0.19 by our group [181], this time using the Fermi temperature in the harmonic
potential (kBTF,h = EF,h). Determining the critical temperature for superfluidity in the
crossover is a very complicated problem that is still under heavy investigation. Several
theories exist that do not agree with each other as can be seen for instance in this recent
review of T -matrix approaches [222], but the asymptotic regime is fairly well-known: on
the BEC side it should tend to a roughly constant value given by the critical temperature
for Bose-Einstein condensation of the dimers and on the BCS side it should decrease
exponentially [140]. Some theories predict a maximum near unitarity and some do not,
leaving the measurement of Tc in the crossover a burning issue, that has yet to be measured
experimentally to confirm or infirm the many predictions. In our experiment, since again
we work in the strongly interacting regime (1/kF |aff | < 1) most of the time, close to
unitarity, we use the critical value determined at unitarity as a reference.

For typical fermion numbers Nf = 3× 105, and trapping frequencies ωz,f = 2π × 18
Hz and ωr,f = 2π × 500 Hz, we get a critical temperature of Tc,f = 150 nK, above the
general upper bound temperature determined using the bosonic cloud.

Imbalanced Fermi gas

Another possibility is to look at the profiles of the imbalanced Fermi gas, where the num-
ber of fermions in each spin state is not the same. This technique can be used as long as
the imbalance is not too high, for polarizations P under the critical polarization Pc over
which the superfluid state does not exist anymore, as discussed in the previous chapter.

In addition, as we saw in the previous chapter, for an imbalance below this limit and
at low temperatures, the cloud is divided into three layers: a superfluid core where the
fermions are fully paired n↑(z) = n↓(z); a normal phase containing both spin states with
a strong imbalance corresponding to the polaron state detailed in Chapter 2; and a fully
polarized phase on the outside where atoms of the majority form an ideal Fermi gas.

This structure can be directly seen on the integrated profiles thanks to a remarkable
property of the integrated density. Indeed, under the local density approximation, the
pressure of a cylindrically symmetric atomic cloud along its symmetry axis z reads [223]

P (z, r = 0, T ) =
mω2

r

2π
n(z). (3.26)

This property was originately used to determine the EoS of the Fermi gas at zero
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temperature, but using the Gibbs-Duhem relation n = ∂P/∂µ, it can be written as

n(z, r = 0) = −ω
2
r

ω2
z

1

2πz

dn

dz
(3.27)

This property is remarkable since it connects the doubly-integrated density n to the
3D density n. Applied to our system, in the superfluid core where n↑(z) = n↓(z), we
should have

d

dz
(n↑(z)− n↓(z)) = 0 (3.28)

which results in a plateau in the difference of the doubly-integrated profiles of the majority
and the minority. This striking feature can be observed in Fig. 3.9, where we see a
plateau of n↑(z)−n↓(z) in the center, an outer domain where the difference coincides with
the majority profile (fully polarized) and in-between a domain with a strong population
imbalance.

Figure 3.9: Doubly-integrated density profiles of the two spin-states of a Fermi gas. Red
curve: majority spin-state (here ↑). Orange curve: minority spin-state (here ↓). Purple
curve: difference of the red and orange profiles. The two gray dashed curve are fits to
the majority and minority profiles using the Thomas-fermi profile given in eq. 3.24. We
also represented the three distinct regions of the Fermi cloud: the superfluid core (SF)
where the difference of the majority and minority profiles is constant, the polaron phase
(P) where the cloud is strongly polarized and the fully polarized phase (FP) where there
are no more minority atoms.

This plateau proves that the fermions are fully paired at the core. The superfluidity of
paired atoms was proven by observing the formation of vortices only in the core region of
a rotating fermi gas [167]. The presence of this well-defined plateau is a signature that the
temperature of the cloud is well below Tc,f as superfluids close to the critical temperature
are partially polarized at the center, resulting in a more curved central part [224].

In conclusion, we described how we can extract valuable information from the profiles
of the Fermi gas using the right fitting functions near unitarity at low temperatures. We
also detailed the two criteria we use to assess the superfluidity of the cloud, that can be
obtained reliably with our experimental set-up.
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3.9 Calibrations

Magnetic field calibration

The magnetic field has to be known precisely for the fine tuning of the various scattering
lengths, essential to characterize the interactions. It is determined thanks to the precise
knowledge of the magnetic field dependence of the hyperfine transition |1b〉 → |2b〉, by
measuring the radio-frequency resonance of the transition. Its typical magnetic field de-
pendence is 40 kHz/G, and we measured transitions frequencies with a typical linewidth
of 4 kHz, implying a magnetic field stability of around 0.1 G. This stability is sufficient
in our set-up thanks to the broad Feshbach resonances of 6Li and 7Li.

Trapping frequency calibration

The trapping frequency is calibrated by measuring the oscillation frequency of the center
of mass motion of the atoms (either bosons or fermions).

For the axial direction, we take advantage of the small shift between the centers of
the dipole trap and the magnetic trap. By slowly increasing the laser power, we displace
adiabatically the center of the atomic cloud. The laser power is then rapidly put back to
its initial value so that the atomic cloud is suddenly not at the center of the trap and starts
oscillating. By measuring the position of the center of mass of the cloud, we obtain the
axial frequency of the trap.

For the radial direction, we suddenly turn off the dipole trap for a short time (500 µs).
The anti-trapping of the magnetic curvature in the axial direction (the magnetic field is
like a saddle-point, trapping axially and anti-trapping radially) and the gravity are enough
to induce a displacement of the cloud that starts oscillating when the laser is turned back
on. Again, the measurement of the position of the center of mass of the cloud over time
yields the trapping frequency.

Atom numbers calibration

As stated before, the atom number obtained through the absorption imaging needs to be
calibrated. We consider the imaged extent of the cloud to be reliable but not the total
count, and we can use the size of the cloud to calibrate the detectivity. Indeed, at low
temperatures, interactions provide a relationship between the size of the cloud and the
atom numbers as seen with eq. (3.21) for bosons and eq. (3.25) for fermions at unitarity.

The principle of this calibration is to multiply our integrated density by a certain factor
κ (κ6 for fermions and κ7 for bosons), as shown in Fig. 3.10, so that the size of the cloud
remains the same but the number of atoms is adjusted and both quantities can finally
coincide. The true number Ntrue is linked to the number obtained through integration of
the profiles Nint by the simple relation Ntrue = κNint.

For the fermions, to obtain κ6, we work at T = 0 and at unitarity where their EoS
is well known, and the extent of the cloud is given by eq. (3.25). This method gives the
calibration factor κ6 = 1.9(5).

For the bosons, this method can also be applied, and gives κ7 = 2.8(5). Another
similar method consists in comparing the temperature at the onset of Bose-Einstein con-
densation with the critical temperature, which gives κ7 = 2.7(5), consistent with the first
method.
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Figure 3.10: Blue: doubly integrated profile of an atomic gas obtained after absorption
imaging analysis (simulated). Red: same profile readjusted after calibration: the size of
the cloud is not modified, only the corresponding atom number.

The origin of these large calibration factors is not yet fully understood. Due to the
finite spectral width of the probe light beams we expect a reduction of detectivity by a
factor ≈ 1.7, which is far from the measured calibration factors.

Conclusion
In this chapter, we presented the set-up we use to produce and study Bose-Fermi mixtures
from a hot vapor of Lithium, only with the right laser beams and magnetic fields. We
presented the different steps needed to produce degenerate gases, using all the classical
tools of quantum gases to achieve this goal.

At the end of the last evaporative cooling, the typical numbers we obtain usually verify
Nf � Nb, justifying that we treat most of the time the bosonic gas of 7Li as an impurity
immersed in the Fermi superfluid of 6Li. In the next two chapters, we will present the
most recent experiments we performed in our lab. First we will study the lifetime of
the mixture, and more specifically the three-body losses in the mixture. Then, we will
investigate the counterflow of the impurity and the Fermi superfluid. These experiments
will not only yield results on the interaction between the Bose and Fermi gases but mainly
on the characteristics of the Fermi superfluid itself, as the bosonic impurities act as a
probe of the Fermi cloud properties. The physics of the impurity interacting with a Fermi
superfluid will be further investigated theoretically in the last chapter, needed to achieve
percent-level precision between theory and the experiments we perform.
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Chapter 4

Lifetime of an impurity in a
two-component Fermi gas

With our setup we are able to produce an ultracold Bose-Fermi mixture. We already
discussed in the previous chapter the conditions needed for this mixture to be thermody-
namically stable. However, cold atom gases are metastable systems: at the temperature
and pressure they reach, the only stable state would be the solid state. Consequently
their lifetime must be limited, and since we would like to perform experiments with this
mixtures, manipulating it for times up to a few seconds, we need to investigate it.

To go from the gaseous state to the solid state, the atoms need to start binding together,
and to release this binding energy they need an impurity to collide with. Due to Pauli
blocking, this process is highly suppressed in a two-component Fermi gas, but the 7Li
bosons can perfectly play the role of the impurity. When the density becomes large, or
the interactions become strong, this three-body recombination can strongly reduce the
lifetime of the system.

Although these three-body recombination processes are linked to short-range correla-
tions which are highly non-trivial, especially in the strong interaction regime where many-
body effects take place, we will establish in the first section a framework in which they
become simple, with all the many-body physics contained in one parameter, the fermionic
two-body contact C2, that we introduced in Chapter 2. It is because of the nature of the
system itself, consisting of an impurity immersed in a Fermi gas, that a three-body process
is reduced to a two-body parameter.

Therefore, measuring the lifetime of the system is not a mere preliminary testing of
its dynamic stability, but it informs us on the properties of the Fermi gas itself. In the last
two sections, we will perform such lifetime measurements in various conditions, and we
will see how the impurity act as a probe within the Fermi cloud.

4.1 Three-body recombination

4.1.1 General description
When three atoms collide, two of them can form a deeply bound molecule. The released
binding energy is converted into kinetic energy: typically around 102 − 104 K, orders of
magnitude larger than any relevant energy scale in ultracold systems, it is consequently
more than enough for the two bodies resulting from this collision to escape the trap.
This inelastic process is usually called a three-body recombination event. We character-
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ize these three-body recombinations by introducing a three-body loss rate coefficient Γ3,
defined with the following differential equation:

1

N

dN

dt
= −Γ3(N). (4.1)

The parameter Γ3 increases with the density of both species, it depends on the interac-
tion between species and other parameters such as the temperature. Moreover, it contains
all the non-universal and complicated short-range physics that describe the formation of
a molecule when three atoms are close to each other. In the zero-range limit, a � lVdW,
and assuming perturbative losses, the recombination rate possess universal properties that
will depend on the scattering length a and, if the Efimov effect is present, the three-body
parameter κ∗. The knowledge of the associated scaling laws enable to predict the lifetime
and stability of the gas.

These losses will affect the lifetime of the system, but they can also affect the rest of
the gas in several manners, the main one being a source of heating. Indeed, in a non-
uniform trap, maxima of densities are associated with minima of the trapping potential,
and three-body losses will more likely affect atoms in denser areas. Consequently, they
will remove the less energetic atoms and will increase the mean energy of the system.

4.1.2 Expected scalings in our system
We now focus on the losses that can occur for an impurity immersed in a two-component
Fermi gas. Several loss processes can take place and limit the lifetime of the system:

• Three-body recombination involving three impurity atoms may happen when they
are of bosonic nature. In this case, the losses scale as ∝ a4

bbn
3
b with nb the boson

density and abb the boson-boson scattering length.

• On the BEC side, the fermions form dimers and dimer-dimer losses can happen,
with a scaling as ∝ n2

ma
−2.55
ff [130], with nm the molecule density.

• Finally, three-body recombination between an impurity atom and two fermions of
opposite spin can also take place. This is the main process in our system1 and we
will focus on it in the rest of this Chapter. We discuss its expected scalings in the
BEC-BCS crossover in the remaining of this paragraph.

On the BEC side of the crossover, fermions form dimers. Hence, the recombination
process actually involves one fermionic dimer and one impurity atom, thus the loss rate
equation reads as

dni
dt

= −L2ninm (4.2)

where ni and nm are the impurity and molecule density respectively.
This recombination process was studied previously in [225] using a mixture of 40K

atoms and 87Rb Feshbach molecules, for which the two-body loss rate was shown to scale
as 1/aff , as predicted in [226].

1One could also imagine three-body losses between two impurity atoms and one fermion. As our mea-
surements on a polarized Fermi gas will prove in section 4.2.1, these losses are negligible in our set-up and
we will not consider them.



4.1 81

On the BCS side of the crossover, the fermions form loose Cooper pairs, behaving
similarly as isolated particles so the recombination process involves three distinguishable
particles, one spin-up fermion, two fermions of opposite spins and one impurity atom.
The loss rate equation becomes:

dni
dt

= −L3nin
2
f (4.3)

In the case of a weakly coupled impurity, the loss rate scales as a2
ff [226], leading to

vanishing losses in the BCS limit.
The lifetime of an impurity immersed in a two-component Fermi superfluid is here

described in the two limits of the BEC/BCS crossover. However, as depicted in Fig. 4.1,
these two asymptotic behaviors seem contradictory when we consider them at unitarity:
the lifetime vanishes on the BCS side and diverges on the BEC side.

Figure 4.1: Inelastic loss rate asymptotic behavior on the BEC side and the BCS side. On
the BEC side, up and down fermions form tightly bound dimers and the decay mechanism
can be described by a two body process between the impurity (green disk) and a dimer.
On the BCS side, the losses occur through a three-body process. The extrapolations of
these two asymptotic behaviors (dashed parts) towards the strongly correlated regime
(grey area) seems to yield contradictory results.

At unitarity, the only remaining length scale is given by n−1/3
f , and if we replace aff

in the expressions of the loss rate on both the BEC and BCS side we get ṅi ∝ nin
4/3
f . This

dimensional argument would yield a finite loss rate with an unusual fractional exponent
on the fermion density.2

4.1.3 From the three-body loss rate to the two-body contact
The formation of deeply-bound molecules requires the three atoms to be close enough,
within a typical distance R∗, the size of the bound states. In our case, we are interested

2In the case of three bosons, this dimensional argument would lead to losses at unitarity proportional to
n
5/3
b , once again with a fractional exponent, and was confirmed experimentally [227].
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in the three-body recombination process that involves two resonant fermions of opposite
spins and an impurity atom as it is represented in Fig. 4.2. Indeed, since we have around
ten times more fermions than bosons at the final stage of our experiment, the bosons can
be seen as impurities.

Figure 4.2: Sketch showing the process of three-body recombination. First, on the left-
hand side, the three atoms (here two fermions of opposite spins in red and a boson in blue)
have to get close enough, within R∗. Then, a deeply bound molecule may be formed
between the two highly interacting fermions. Finally, on the right-hand side, the large
binding energy is released as kinetic energy and the two resulting bodies can escape the
trap. The deeply bound molecule and the boson have very large, opposite momenta (black
arrows), independent from the initial momenta of the particles since the binding energy is
very large compared to all the other energy scales. Here we did not represent the many-
body system which is nevertheless present in the background and affects the probability
to have the three particles within R∗.

Since the binding energy is orders of magnitude beyond any other energy scale in
the system, the final state of the three-body system is completely decoupled from the
momenta of the initial incoming particles. In addition, the final state does not depend on
the external magnetic field anymore: the deeply-bound state that is formed is no longer
resonant and its distance to the continuum varies very slowly with the magnetic field.
Therefore, we can say in a good approximation that the recombination rate is simply
proportional to the probability of having the three different particles within a distance
R∗ [83]:

Γ3NM ∝
∫

R<R∗

d3r1d3r2d3r3〈ψ̂†1(r1)ψ̂†2(r2)ψ̂†3(r3)ψ̂3(r3)ψ̂2(r2)ψ̂1(r1)〉 (4.4)

with NM the number of molecules formed in this process, R is the hyperradius associated
with the three particules, ψ̂α are the field operators for the atoms (α = 1, 2, 3) and the
proportionality constant only depends on short-range physics.

This shows that three-body losses are probing the few-body short-range correlations
of the system. In our experiment, we study the three-body recombination with an impu-
rity interacting weakly with a two-component Fermi superfluid. In the case of a weakly
interacting impurity, here corresponding to α = 3, the probability distribution of the
fermions and the impurity become independent and can be factorized. By isolating the
terms corresponding to the impurity we obtain:
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Γ3nM ∝ ni

∫

R<R∗

d3r1d3r2〈ψ̂†1(r1)ψ̂†2(r2)ψ̂2(r2)ψ̂1(r1)〉 (4.5)

Γ3nM ∝ ni

∫

R<R∗

d3r G(2)(r) (4.6)

where ni is the impurity density and where we introduced G(2)(r) the probability density
of finding two particles within r.

As we saw in Chapter 2, in the limit r → 0, this probability density is given by
[144, 146]:

G(2)(r) ∼
r→0

C2

(4πr)2
(4.7)

where C2 is Tan’s contact for two fermions.
This shows that the three-body loss rate Γ3 is directly proportional to the fermionic

two-body contact C2. The contact C2 encompasses all the effects of resonant interactions
between the fermions, which are decoupled from the short-range physics included in the
proportionality constant. All the dependence of the three-body loss rate on the system
parameter T , n, a, and the three body parameter is encapsulated in the contact parameter.
The differential equations describing the losses for a weakly interacting impurity writes
as

dni
dt

= −γniC2 (4.8)

with γ a numerical constant containing all the short-range physics that does not depend on
external parameters such as the magnetic field or the temperature in first approximation,
and C2 = C2/V the two-body contact density.

The scalings of the fermionic two-body contact in the BEC-BCS crossover is known
and was detailed in Chapter 2. We give them again in Table 4.1 along the expected losses
scalings: we then see that the contact scalings match exactly the loss rate scalings we
gave in section 4.1.2. Furthermore, the dependence of the loss rate on the density at
unitarity, that was only obtained using a dimensional argument, is consistent with the
density dependence of the contact. As the contact is continuous at unitarity, we expect no
divergence in the loss rate in the crossover, and the asymptotic regimes given in Fig. 4.1
have to be reconciled in the strongly interacting regime.

BEC Unitarity BCS

ṅi
ni
∝ nm

aff
∝ n

4/3
f ∝ n2

fa
2
ff

C2

V
8π nm

aff

2ζ
5π
k4
F 4π2a2

ffn
2
f

Table 4.1: Scalings for the loss rate and Tan’s contact

In short, we have shown that the three-body loss rate associated with an impurity in a
Fermi superfluid is proportional to the two-body fermionic contact. Therefore, measuring
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the lifetime of a weakly interacting impurity in a Fermi superfluid not only informs us
on the dynamic stability of the system but also allows us to probe the properties of the
many-body fermionic background.

4.2 Lifetime measurements
In our set-up we have a Fermi superfluid of 6Li and the impurity corresponds to 7Li atoms.
We will thus use the index b instead of the index i to characterize the impurity. The 6Li
atoms are prepared in a mixture of ↑ and ↓ states corresponding to the states |1f〉 and |2f〉,
and the 7Li atoms are in the state |2b〉. The atoms are confined in a hybrid magnetic-optical
trap, they are evaporated at the 6Li Feshbach resonance. We ramp the magnetic field to
the wanted value in 200 ms and wait for a time t. We then measure the atom numbers
of the two species by in situ imaging or after time of flight. We repeat this sequence for
various wait times t and we get the number of atoms for each species as a function of t.

In the following, we will present experiments performed in different magnetic field
and temperature conditions:

• First, we conducted some experiments on the BEC side at relatively high temper-
atures T/TF ' 0.75. This was done for two main reasons. First, at higher tem-
peratures the gases are less dense which maintains the losses low enough to be
measured using reasonable waiting times. Second, at high temperatures, there is no
phase separation between the bosons and fermions, as it was mentioned in Chapter
3, which allows us to go to magnetic fields as low as 680 G, far on the BEC side.
In these conditions, we performed experiments to confirm the nature of the losses
(section 4.2.1) and to extract the proportionality constant γ between the contact C2

and the loss rate (section 4.2.2).

• Then, we measured the lifetime of the mixture at unitarity at T = 0. Since γ
does not depend on the temperature nor the magnetic field, we can use its value
to measure the contact at unitarity and more specifically its density dependence
(section 4.2.3).

4.2.1 Investigating the nature of the losses
To investigate the origin of the boson losses, we compared the decay of bosons in the
presence of spin balanced and spin polarized Fermi gases. The comparison between those
two decays is done by measuring the total number of atoms at a time ti = 0 and the
remaining number of atoms after a waiting time tf − ti = 1 s for balanced fermions
and t = 1.5 s for spin-polarized fermions with 90% polarization. For each value of the
magnetic field, we record 3 to 5 images for each waiting time to determine the remaining
fraction of atoms N(tf )/N(ti). These measurements are displayed in Fig. 4.3.

We see that the boson losses in the presence of a polarized Fermi gas are highly sup-
pressed: both spin states are needed to allow for boson decay. This is consistent with hav-
ing three-body recombination between two fermions of opposite spin and a boson. We
also observe that in this domain the three-body recombination between three bosons is
negligible: this is due to the fact that the associated loss rate follows the scaling L3 ∝ a4

bb

and abb remains small in the magnetic field domain we explored.
Furthermore, we see that for both fermions and bosons the losses increase drastically

the further we go on the BEC side. This is due to the scaling of the three-body loss-rate
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Figure 4.3: Remaining fraction of bosons (blue squares) and fermions (red circles, inset),
when the Fermi gas is polarized (empty) or balanced (solid), in the BEC domain of the
crossover. For a polarized Fermi gas, the losses are highly suppressed. The blue shaded
area corresponds to the 1σ fluctuations for the remaining fraction of bosons in presence
of a polarized Fermi gas. The blue dash-dotted curve (red dashed in the inset) is a coupled
loss model taking into account the boson-dimer losses and the dimer-dimer losses [130].

ṅ/n ∝ 1/aff as well as the scaling of the dimer-dimer losses ∝ a−2.55
ff (for the fermions

only).

4.2.2 Losses on the BEC side
For our measurements on the BEC side, we worked with approximately Nf ' 300× 103

fermions and Nb ' 150× 103 bosons, with trapping frequencies of ωz = 2π× 26 Hz and
ωr = 2π×2.0 kHz, at a temperature T ' 1.6 µK, corresponding to T/TF,h ' 0.75 where
kBTF,h is the Fermi energy in the harmonic trap (not local).

On the BEC side, Eq. (4.8) becomes for our system:

dnb
dt

= −γ 8π

aff
nmnb (4.9)

with nb the density of the Bose gas. The goal is to confirm this relation and to extract the
coefficient γ that will be used for our measurements at unitarity.

Extraction of a loss rate

Since these measurements are performed in a nearly thermal regime (T/TF,h & 0.75), we
can make the approximation that the Bose and Fermi gases are thermal clouds, that we
will describe simply with a Gaussian density profiles.3 In Fig. 4.4, we show a typical
measurement, done at B = 720 G. Each point is the average of several data points, the
limit being the presence of long term drifts in the atom numbers.

3The density profiles read as

nb(r) = Nb
ω3
b

(2πkBT/mb)3/2
e
− mb

2kBT (ω2
r,br

2+ω2
z,bz

2) (4.10)
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The bosonic loss equation, after integration over the trap, becomes

Ṅb = −Lbf〈nf〉bNb − ΓvNb (4.12)

where 〈nf〉b is the averaged fermion density in the trap in presence of bosons4, Lbf is the
constant we want to determine and Γv is the one-body residual gas loss rate (0.015 s−1)
measured independently.

We extract the loss rate by fitting the boson atom numbers with the solution of this dif-
ferential equation. We do not try to obtain it from the fermion numbers: several processes
can contribute to the fermionic losses such as the Bose-Fermi losses of course but also
dimer-dimer losses or residual evaporation. We simply use an ad-hoc two-body decay
function for the fermions:

Nf (t) =
N0

1 + t/τ
(4.14)
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Figure 4.4: Bosonic (blue solid circles) and fermionic (red solid circles) losses atB = 720
G for a non-degenerate mixture at T = 1.25 µK. Each point is the average of 3 to 5
data points. The red dashed curve is a fit to the fermion decay using an ad-hoc function
described in Eq. (4.14) to determine nf (t). The blue dashed curve is a fit to the boson
decay using the solution of Eq. (4.12) and the previously fitted nf (t) to extract the loss
rate.

Therefore, we can extract a loss rate but eq. (4.9) involves directly the density of
molecules nm, which is not as simple as nf/2 at finite temperature.

and assuming all the fermions are bound into molecules

nf (r) = Nf
ω3
f

(πkBT/mf )3/2
e
− mf

kBT (ω2
r,fr

2+ω2
z,fz

2) (4.11)

with ω = (ωzω
2
r)1/3

4Using the gaussian density profiles and the approximation mfω
2
f = mbω

2
b for the three trapping direc-

tions, we get

〈nf (t)〉b =

∫
d3rnb(r)nf (r)

Nb
= Nf (t)

(
mfω

2
f

3πkBT

)3/2

. (4.13)
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Molecular aspect of the losses

The number of dimers in the Fermi gas is not directly accessible, though in the weakly
interacting regime (nfa3

ff � 1), the molecular fraction ηm = 2Nm/(Nfree +2Nm), where
Nm is the number of molecules and Nfree the number of free fermions, can be estimated
using a mass-action law [228]. To apply this law, we consider the Fermi gas to be a
mixture of non-interacting molecules and free-atoms at chemical equilibrium, which is
justified by the high formation rate of halo-dimers ∝ ~a4

ff/mf [229]. The chemical
equilibrium condition can be written as

Nfree = 2

(
kBT

~ω

)3

Li3(z) (4.15)

Nm =

(
kBT

~ω

)3

Li3(z2e−Eb/kBT ) (4.16)

with ω the average trapping frequency, z = eµ/kBT the fugacity and Eb = −~2/mfa
2
ff the

binding energy of the dimers. The fugacity is imposed by the total number of fermions
Nf = Nfree + 2Nm.

In Fig. 4.5, we represent the estimated molecular fraction in the BEC domain for a
temperature T ' 1.6µK. We see that η ' 1 in the deep BEC domain: all fermions pair
up to form molecules. Alongside this graph, we plotted the measured loss rate Lbf as
a function of the molecular fraction ηm. To obtain this curve, we measured the losses
at a magnetic field of 720 G, at different temperatures ranging from 1 µK to 4 µK and
different 6Li densities from 0.2× 1013 cm−3 to 1× 1013 cm−3 in order to vary ηm. These
temperature and density variations are obtained experimentally by performing different
evaporation ramps and trap recompressions. From these measurements, we see that the
loss rate is proportional to the molecular fraction, showing that the losses are indeed
between a boson and a dimer on the BEC side.

Figure 4.5: Left-hand panel: Molecular fraction ηm (green) and nfa
3
ff (blue) ver-

sus magnetic field in the BEC domain. The model used to estimate ηm is valid for
nfa

3
ff � 1. Right-hand panel: Three-body loss rate Lbf as a function of the molec-

ular fraction ηm (black circles). A linear fit (red dashed line) yields the dependence
Lbf = (1.12(21)ηm + 0.14(13))× 1013 cm3/s.

As a consequence, we can introduce the constantLbm, defined byLbm〈nm〉b = Lbf〈nf〉b,
and expect Lbm to be directly proportional to 1/aff whereas Lbf also contained the de-
pendence from the molecular fraction.
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Extracting the coefficient γ

We measure the boson and fermion decay for several value of the magnetic field, at a
temperature T ' 1.6µK and we extract a loss rate Lbm〈nm〉b. Thanks to the molecular
fraction and eq. (4.13), we can deduce Lbm that we plot against 1/aff in Figure 4.6.
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Figure 4.6: Boson-dimer loss rate with respect to inverse scattering length. The blue
dashed line is a linear fit to the data with kFaff < 1 (black solid circles), yielding γ =
1.17(11)× 10−27 m4.s−1.

From Fig. 4.6, we recover that the loss rate is proportional to 1/aff as expected. We
can use the slope from the linear fit performed on the data points for which interaction
effects were negligible (kFaff < 1) to deduce the value of the parameter γ ' 1.17(11)×
10−27 m4.s−1. Since γ does not depend on the magnetic field nor the temperature, we will
use this value for any case, especially at unitarity at T = 0.

4.2.3 Losses at unitarity
In this paragraph, we focus on the strongly interacting regime, where the quantum correla-
tions between nearby particles become very important, making three-body recombination
a many-body process. Using the relation between the loss rate and the contact, and using
the expression of the contact at unitarity, we expect a loss rate equation for the impurity
of the form:

dnb
dt

= −γ 2ζ

5π
(3π2nf )

4/3nb (4.17)

Consequently, we measure the boson decay rate at unitarity (B = 832 G) at low temper-
atures T/TF ' 0.1. In this regime, the density of fermions can be easily deduced from
the total fermion number Nf and the trap frequencies5, and the bosons are condensed in a
Bose-Einstein condensate, so they probe the contact locally, at the center of the fermionic
cloud, instead of averaging it over the whole Fermi cloud. The Bose-Fermi mixture is
initially composed of about Nb = 30× 103 fully condensed bosons and Nf = 150× 103

spin-balanced fermions.
5We have at unitarity and at T = 0:

nf (0) =
8
√
Nf

π2ξ3/4
√

24

1

a3ho
(4.18)

where aho =
√

~/mfωf is the typical length of the harmonic oscillator.
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At this value of the magnetic field, we are closer to the Feshbach resonance of the
boson-boson interaction (located at B = 845.5 G), so we have to take into account three-
body losses among the bosonic cloud itself, and the loss rate equation for the bosons
becomes6

Ṅb = −Lb〈n2
b〉Nb − ΓbfNb − ΓvNb (4.20)

where this time Γbf includes the dependence in nf .
For our experimental conditions, with the Bose-Fermi mixture, the difficulty is to

measure Γbf while the majority of the losses (around 80%) are due to three-body recom-
binations among the bosons themselves.

Consequently, we first need to determine the three-body bosonic loss rate Lb, by doing
loss measurements on a 7Li BEC alone, without any fermions, over wait times for which
we do not have a visible thermal fraction surrounding the BEC. We get Lb = 0.11(1) ×
1026 cm6.s−1, consistent with [230] and corresponding to typical lifetimes of the cloud of
2.5− 10 seconds. This is extracted from the data plotted in green in Fig 4.7.

We can see how important the three-body losses between three bosons are compared to
the three-body losses between a boson and two fermions by looking at the blue curves of
Fig 4.7: the light blue curve corresponds to the losses we would get without the fermions,
using the value of Lb determined with the bosons alone (green curve), whereas the darker
blue curve corresponds to a fit to the data points with all the terms of Eq. (4.20) including
the one containing the Bose-Fermi three-body recombinations. The two curves are close
but are still sufficiently distinguishable to extract a Bose-Fermi loss rate Γbf .

We can also note that the fermion numbers vary far less (compared to the measure-
ments on the BEC side) over the period of time chosen, with a decrease of about 10%, and
we still do not use them to determine Γbf because of larger number fluctuations and addi-
tional decaying channels such as evaporative losses which are complicated to estimate.

Repeating this method for different initial fermion densities nf , by acting on either
the trap confinement or the initial fermion numbers, we can test the expected n4/3

f density
dependence of the Bose-Fermi loss rate at unitarity (Table 4.1). During these loss rate
measurements, we restrict ourselves to wait times where the fermion numbers do not vary
much (see Fig 4.7), and since nf ∝

√
Nf at unitarity and T = 0, we assume Γbf to be

constant for each measurement.
We get the data points shown in Fig. 4.8. We can fit our data points with a power-

law fit of the type Anpf to extract an exponent p = 1.36(15) perfectly compatible with
the predicted exponent of 4/3 presented in Table 4.1. As stated before, during these
measurements the bosons remain condensed so that we probe the local contact, at the
center of the cloud, where the fermion density is nf (0). However, the bosonic cloud has a
finite size so there is some averaging of the contact over the bosonic cloud, which implies
a correcting factor is required to obtain the local contact. We write the correction as:

Γbf/γ

C2(0)
=
〈n4/3

f 〉bosons

n
4/3
f (0)

=

∫
d3r nb(r)nf (r)4/3

nf (0)4/3
∫

d3r nb(r)
= 1− 6

7
ρ2 +

5

21
ρ4 + ... (4.21)

6Using a Thomas-Fermi profile for the bosons, we have:

〈n2b〉 =
1

Nb

∫
d3rnb(r)2 =

7

6

(
152/5

14π

)2(
mbωb
~√abb

)12/5

N
4/5
b (4.19)
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Figure 4.7: Atom numbers with respect to time at unitarity in the dual superfluid regime.
Green points: boson numbers taken with condensed bosons alone. Blue Points: boson
numbers taken in presence of a two-component Fermi superfluid. Green dashed curve: fit
to the green data points using Eq. 4.20 with Γbf = 0 (no fermions) in order to determine
Lb. Light blue dashed curve: fit to the data using the same Lb and also Γbf = 0, showing
that the three-body recombination processes between bosons in the BEC are not enough
to explain the totality of the boson losses in the mixture. Darker blue curve: Fit to the
data using the previous value of Lb and leaving Γbf as an adjustable parameter. It yields
Γbf = 0.14(4) s−1. Inset: fermion numbers for the same duration (data points). The
red-dashed curve is the mean value of these data points, used to compute the peak density
of the fermionic cloud during this measurement.

with ρ ' 0.35(5) the ratio of the Thomas-Fermi radii for bosons and fermions, C2(0) =
2ζ
5π

(3π2nf (0))4/3 the contact density at the center of the Fermi cloud. We can estimate the
correction factor around 0.89(3).

The prediction of Eq. (4.17), with the correction factor given by eq. (4.21), is plotted
as a red line in Fig 4.8: it matches very well with the data points without any adjustable
parameters. Finally, we can also fit our data points with a function An4/3

f , fixing the ex-
ponent to the theoretical value 4/3 in order to determine the experimental value of the
prefactor A. This gives a value for the homogeneous dimensionless contact ζ ' 0.82(9)
in good agreement with previous measurements, for instance ζ = 0.87(3) [150].

In conclusion, we showed that we could connect the inelastic losses in our Bose-Fermi
mixture to the fermions two-body contact both in weakly and strongly interacting regimes.
We determined that the lifetime of the mixture is connected to short-range correlations in a
many-body system. In particular, we observed the peculiar n4/3

f dependence, signature of
non-trivial many-body effects in the system. Consequently, we developed a new technique
to probe locally the two-body contact, using the losses between the bosonic impurity and
the fermionic superfluid. We will see in the next section how we can further this study
by looking into the temperature dependence of the contact, throughout the BEC-BCS
crossover.
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Figure 4.8: Boson loss rate with respect to the fermion peak density at unitarity, nf =
nf (0). The black circles are the experimental data. The red line is the prediction of
Eq. (4.21) without any adjustable parameter. The red shaded area represents the 1 σ
uncertainty coming from the value of γ.

4.3 Lifetime at finite temperatures

In this section, we are interested in the contact at finite temperature. We already obtained
measurements of the contact at a relatively high temperature in the previous section, but
here we will be particularly interested in its behavior around the superfluid transition. The
principle of the measurement of the contact at finite temperature is exactly the same. We
measure the losses in our Bose-Fermi mixtures at a give temperature, and thanks to the
knowledge of γ, which does not depend on the temperature in first approximation, we
can deduce the contact. To control the temperature we adjust the optical power at the
end of the last evaporative cooling step of our experimental sequence and we measure the
temperature using the bosons as an auxiliary thermometer.

This may seem simple, but in order to get a value for the local contact that does
not depend on the number of atoms and that can be compared to other experiments, we
need to determine the density (not the integrated density) of the Fermi gas at the center
of the cloud (also called fermionic peak density), which can be tricky. At T = 0 and
at unitarity, we had an explicit formula giving the peak density of the Fermi cloud, only
knowing the number of atoms and the trap frequencies. At high temperatures, we modeled
our thermal gases with simple Gaussian profiles, and the peak density was also simply
known. At intermediate regimes, there is no such explicit formula. We detail thoroughly
our method to determine the fermionic density in the appendix A. This method, relying on
the curvature of the doubly-integrated profile does not require specific knowledge of the
profile, works when there is also a Bose gas, at any temperature and for any interaction.

In this section, we will first present some theoretical considerations and experimental
results on the contact at unitarity, and then we will detail our preliminary measurements
on the unitary contact at finite temperature.
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4.3.1 Previous results on the unitary contact
At unitarity, the system is universal. At finite temperature, it is described with two energy
scales: the Fermi energy EF and the thermal energy kBT . A dimensionless contact such
as C2/NkF is only a function of T/TF .

At high temperatures, for T/TF � 1, the scalings of the contact correspond to the one
of an ideal gas. We expect C2 ∝ n2

f , similar to the scaling we gave on the far BCS side
where the interactions tends to zero, which translates in terms of losses as standard three-
body losses between two fermions and an impurity. As for the temperature dependence,
at high temperature the contact should reflect the inverse mean free path l∗ in the gas, thus
we expect C2 ∝ 1/l∗ ∝ 1/T .

For lower temperatures, in particular near Tc,f the critical temperature for superfluid-
ity, theoretical predictions on the contact vary widely. In particular, some theories predict
a discontinuity in the contact or its derivative [231,232] though it seems to be an artifact of
numerical calculations for the contact should be continuous at the transition. Indeed, we
can describe the temperature dependence of the contact near the transition by the use of a
critical exponent. We introduce the critical exponent α, defined byCV ∝

T→Tc,f
|T−Tc,f |−α,

where CV is the heat capacity at constant volume. In the canonical ensemble, we have

CV = −T ∂2F

∂T 2

∣∣∣∣
V,N

. (4.22)

Close to the superfluid transition, this yields

F = f0 + f1|T − Tc,f (N, 1/aff )|2−α (4.23)

C2 ∝
∂F

∂(1/aff )
⇒ C2 = c0 + c1|T − Tc,f (N, 1/aff )|1−α (4.24)

where f0, f1, c0 and c1 are quantities that do not depend on the temperature.
The superfluid transition for a 3D system is a U(1) transition, which belongs to the 3D

XY or O(2) university class, where α ' −0.0151(3) [233]. Therefore, the temperature
dependence of the contact near the transition should be as |T − Tc,f |1,0151 so it should be
continuous.

Finally, at very low temperatures T � Tc,f , the remaining excitations correspond
probably to phonons, and are expect to follow a Stefan law thus contributing to the con-
tact with a scaling as T 4 [234].

Very recently (2019), the contact was measured in MIT as a function of the tem-
perature at unitarity using RF spectroscopy [235] and in Swinburne University with the
measurement of structure factors via Bragg spectroscopy [236]. We represent in Fig. 4.9
the measurements realized in [235] in comparison with many numerical predictions and
previous experimental results obtained at JILA [237]. Close to T = 0, they agree well
with the contact we measured using the three-body losses, and above Tc,f they match
well with the predictions made with bold-diagrammatic Monte-Carlo calculations [238].
The experimental results from [235, 236] do not suggest any discontinuity close to the
superfluid transition, though they show a significant decrease around T = Tc,f .

Hence, there seems to be a clear signature of the superfluid transition in the contact
dependence on the temperature at unitarity. If we assume that this signature is still present
everywhere else, the contact measurements may be used to determine the critical temper-
ature in the crossover. Measuring the contact at finite temperature in the whole BEC-BCS
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Figure 4.9: Dimensionless local contactC/NkF versus the T/TF . Red dots: experimental
data measured in [235]. They are compared with several theoretical calculations: Bold-
Diagrammatic Monte Carlo (BDMC) [238], QMC [239], Luttinger-Ward (L-W) [240],
Large-N [241], and Gaussian pair fluctuations (GPF) [231]. There is also the contact we
obtained (ENS) [83] and whose measurement we will detail in the next chapter, from
Bragg spectroscopy by the CQOS group [150], and using rf spectoscopy by the JILA
group across a range of temperatures [237]. The vertical blue dashed line corresponds
to the critical temperature Tc,f/TF = 0.167(13) measured previously in [136]. The inset
shows the temperature dependence over a wider range and the agreement with third order
virial expansion (green line) [242].

crossover could very well give us Tc,f (1/kFaff ), a very complicated problem still under
heavy investigation, as we mentioned it in Chapter 3.

4.3.2 Lifetime measurements at finite temperature (preliminary)
With our set-up, we performed a preliminary series of losses measurements at finite tem-
perature, with typically Nf ' 200 × 103 fermions, Nb ' 50 × 103 bosons, and trapping
frequencies after recompression to prevent further evaporation of ωz = 2π × 21 Hz and
ωr = 2π × 1.6 kHz. For these measurements, we had a temperature T ' 800 nK, corre-
sponding to T/Tc,b ' 1.2, so we will consider the bosonic gas to be a thermal gas. We also
evaluated a mean peak density for the Fermi gas nexp

f (0) = 0.7(1)×1019 m−3 from which
we deduce a mean T/TF = 0.6(1). We did not observe a particular time-dependence of
these parameters, so they will be assumed to be constant.

We give the equation describing the bosonic losses in presence of the Fermi gas, con-
sidering the bosonic gas as a thermal gas7

Ṅb = −L̃bN3
b − ΓbfNb − ΓvNb (4.25)

7Here, we have L̃bN2
b = Lb〈n2b〉. Since the Bose gas is considered to have a Gaussian profile, 〈n2b〉 ∝

N2
b and the constant L̃b we defined does not depend on Nb.
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Similarly as we did at zero-temperature, we first determine the constant L̃b looking
at the losses of bosons alone and then we determine Γbf . The corresponding curves are
presented in Fig. 4.10.

Figure 4.10: Blue points and blue curve: Three-body losses between bosons. Red points
and red curve: data points and fit to the data using Eq. 4.25. Green curve : Fit to the data
without any boson-fermions losses and using the three-body bosonic losses coefficient
determined thanks to the blue data. It shows the introduction of Γbf is necessary to explain
the losses.

The fit to the data, using the solution of eq. 4.25, gives us Γbf ' 0.074(029) s−1.
From this value, we would like to obtain the dimensionless contact and compare it to the
measurements plotted in 4.9. However, this measurement cannot be directly used because
at this temperature, the Bose gas has a spatial extent comparable to the Fermi gas thus we
do not probe the contact locally. The loss rate Γbf that we obtained is related to the value
of the contact averaged over the Bose gas:

Γbf = γ 〈C2〉b (4.26)

with γ the proportionality factor between the loss rate and the contact that was determined
in Section 4.2.2 and amounts to γ = 1.17× 10−27 m4.s−1.

This averaging makes the comparison with the measurements from MIT and Swin-
burne University complicated, but at least we know it should be lower than the local
contact. We define % = 〈C2〉b/C2(0) the ratio between the averaged contact and the lo-
cal contact C2(0). To obtain a value of the local contact from the dimensionless contact
C2/NkF measured by the teams from MIT and Swinburne University, we use the equation

C2(0) =

(
C2

NkF

)
(3π2)1/3n

4/3
f (0) (4.27)

where n4/3
f (0) is the fermion peak density we obtain in our experiment with the method

described in Appendix A.
From this last equation, we get a ratio % = 0.7(3), indeed inferior to one. In the

following section, we will assess quantitatively the effect of the averaging.
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4.3.3 Effect of the finite size of the impurity cloud
At high temperatures, for T � TF , we can evaluate the correcting factor due to the size
of the Bose gas rather simply. In this regime, both the Fermi and the Bose gas are thermal
gases, their density follow the equation nα = nα(0)e−βV (r) with the index α = b, f
distinguishing the two species, β = 1/kBT and V (r) the trapping potential which is the
same for each species. Using the fact that C2 ∝ n2

f at high temperatures, we get

%ideal =
T�TF

〈n2
f〉b

n2
f (0)

=

∫
d3re−3βV (r)

∫
d3re−βV (r)

=
1

3
√

3
' 0, 19. (4.28)

For temperatures T & TF , we can use the third virial expansion of the contact. It is
an expansion in powers of the fugacity eβµ that is explained in many details in [242], and
represented in the inset of Fig. 4.9. This expansion reads

C2

V
=

16π2

λ4
th

(
c2e

2βµ + c3e
3βµ + ...

)
(4.29)

with λth =
√

2π~2/mkBT the thermal de Broglie wavelength. We see that the k4
F de-

pendence at T = 0 has been replaced here by 1/λ4
th, signature of this expansion at fi-

nite temperature. The coefficients ci can be deduced from the usual virial coefficients bi
through a derivative with respect to λth/aff , which explains why there is no first order
term in fugacity since b1 is constant. Their numerical values are given by c2 = 1/π and
c3 = −0.141 [242].

To obtain, C2(r), we use the LDA for which µ(r) = µ0 − V (r) with µ0 the chemical
potential at the center of the trap. After integration over the Bose gas treated as a thermal
gas (T ' 1.2Tc,b), we obtain

%virial =
1

3
√

3

c2

c2 + c3eβµ0
+

1

8

c3e
βµ0

c2 + c3eβµ0
(4.30)

Thanks to the EoS of the unitary Fermi gas [136] that we detail in the appendix A, we
have βµ0 as a function of nfλ3

th ∝ (T/TF )−3/2, hence we plot %virial as a function of T/TF
in Fig. 4.11. We can see it remains close to the value of the correction factor for high
temperatures until it diverges around T/TF ' 0.4, due to the limitations of this expansion.
Since we obtained the loss rate near T/TF ' 0.6(1), the third virial expansion is not valid
and it is not surprising that the correction factor this expansion yields (%virial(0.6) ' 0.25)
is different from the one we obtained experimentally (%exp = 0.7(3)). However, the
discrepancy between the two values is particularly important thus it may require further
investigation in the future.

The error bars are quite important due to shot-to-shot number fluctuations, that af-
fect at the same time the density, the Fermi temperature, and the determination of the
loss rate. This preliminary work on the temperature dependence of the contact will likely
be furthered in the future, but is currently stopped because we are replacing the leaking
Ioffe bars (see Chapter 3), so our dataset was rather limited (only 40 points for the losses
measurements) which is the main explanation for the important error bars. These error
bars could be reduced vertically by obtaining experimentally larger datasets and horizon-
tally by doing a post-selection on the temperature, assuming it does not vary significantly
during the timescale of the loss measurements.

At T = 0, we had an expression of the correction factor as a function of the relative
size of the Bose and Fermi gases, that was given in eq. (4.21), and gave a correction factor
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Figure 4.11: Ratio % of the averaged contact C2 due to the finite size of the impurity and
the contact at the center. A ratio of 1 means the measurement yields the local contact at
the center of the cloud. Green solid line: Calculation of % using the third virial expansion
of the contact, valid for T/TF & 1, where it remains quite close to the high temperature
limit, corresponding to the red dashed curve. The purple solid circle is our experimental
point. The dashed blue vertical line marks the critical temperature for the Fermi gas
superfluidity Tc,f/TF = 0.167(3) [136]. The orange star corresponds to the ratio close
to T = 0, evaluated in the previous section. Inset: A similar curve (solid dark blue)
obtained numerically for the averaging of a loss rate Γbf by considering the Fermi gas
as an ideal gas, as well as the thermal part of the Bose gas (their density profile are a
Polylog function [219]). For the condensate fraction of the bosons we took a Thomas-
Fermi profile. In this hypothesis, the loss rate has been taken Γbf ∝ n2

f (ideal gases).
At high temperatures, this correction factor tends towards the correction obtained in the
high temperature limit (red dashed curve) while at low temperatures it converges towards
the value we obtained at T = 0 (orange star). A vertical dashed cyan line marks the
critical temperature for the condensation of the bosons Tc,b. Once again, the purple solid
circle is our experimental point which falls far from the curve. This is not a curve giving
the expected correction for the contact as a function of T but merely a way to show the
contribution to the averaging that comes solely from the BEC transition of the bosons. It
connects nicely the regimes of low-temperature and high-temperature but the intermediate
regime may not reflect the behavior of %.

% ' 0.9. As a consequence, % must go from 0.9 at T = 0 to the values obtained with the
third virial expansion (which remain close to 0.2) near T = TF . Unfortunately, it does
not seem possible to evaluate the correction factor % in the intermediate regime since we
do not know the precise density dependence (or fugacity dependence) of the contact for
these low temperatures.

Hence, in order to obtain local measurements of the contact, we should restrict our-
selves to a temperature domain in which most of the bosons are in the condensed fraction,
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which is generally the case around the critical temperature of the Fermi gas8. Therefore,
we can still use our lifetime measurements to determine the local fermionic two-body
contact, as long as we remain at temperatures not too high above Tc,f , which is not really
a drawback since it is the regime we were interested in anyway.

To conclude, our method could very well be used to determine the critical tempera-
ture for superfluidity in the crossover, assuming there is a signature in the temperature-
dependence of the contact at the superfluid transition in the whole crossover. Furthermore,
to our knowledge this is the only method that can be used to measure the contact at fi-
nite temperature in the whole crossover. Indeed, the MIT group currently needs to stay
at unitarity to determine the temperature of their Fermi gas because they use the EoS of
the unitary Fermi gas. Thus, they cannot determine the temperature anywhere else in the
crossover whereas it is not an issue for us since we have the Bose gas as an auxiliary
thermometer.

Conclusion

In this chapter, we studied the lifetime of a an impurity immersed in a Fermi superfluid
in the BEC-BCS crossover. Beyond the fact that knowing this lifetime informs us on
the dynamic stability of the system, we highlighted the connection between this lifetime
and the properties of the Fermi superfluid. Thus, we noted that the three-body losses
between two fermions of opposite spin and a weakly interacting impurity atom give us a
measurement of the fermionic two-body contact C2.

Using our Bose gas as the impurity, we were able to measure the contact on the BEC
side where we showed that C2 ∝ nm/aff . At unitarity and at T = 0, since the BEC of
7Li is much smaller than the Fermi cloud, it acts as a local probe for the measurement
of C2 at the center of the Fermi cloud. Hence we measured the local contact at unitarity,
for which we demonstrated a peculiar density dependence C2 ∝ n

4/3
f where the fractional

exponent 4/3 is the signature of many-body effects.
Finally, we presented a preliminary work on the contact at finite temperature. Our

method of measurement using the losses between an impurity and a two-component Fermi
gas can very well be used at finite temperature and anywhere in the crossover. We saw
that in order to measure the local contact we needed to remain at temperatures for which
most of the bosons are condensed, which is generally the case around Tc,f allowing for
a measurement of the local contact at the superfluid transition. This could lead us to
determining Tc,f (1/kFaff ) if the signature of the transition that was observed at unitarity
is present everywhere in the crossover.

Another perspective would be the measurement of the contact of a polarized Fermi
cloud, which is also possible with our lifetime measurements, and in particular to observe
the transition between the Fermi polaron and the molecular state we evoked in Chapter 2,
for which we expect a discontinuity or at least a jump in the contact [164].

In the next chapter, we will present another experiment that was performed in our
group, where we produced a counterflow of the impurity and the Fermi superfluid. We

8It is not simple to give estimations, because the critical temperature for the condensation of the bosons
Tc,b depends on the frequencies of the trap, and to fix a given temperature we act on these frequencies.
So, as we increase T/TF , we also increase Tc,b. To give a typical value anyway, for T = Tc,f , we have
generally T/Tc,b ' 0.6 which corresponds to a condensed fraction of Nc/N0 ' 80%, so the probing
remains local.
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will show how this experiment informs us on the interaction between the impurity and the
superfluid as well as the properties of the superfluid itself once again.



Chapter 5

Counterflow of a dual Bose-Fermi
superfluid

Superfluidity was discovered in 4He in 1938 when two teams in Oxford [4] and Moscow
[3] reported the anomalous hydrodynamic behaviour of liquid 4He, and later observed in
3He in 1970 [5]. Since the Bose and Fermi superfluids were only observed separately,
getting a mixture combining both superfluid has since been coveted [243,244]. However,
for 3He and 4He, the strong interactions between both species prevents from getting this
dual superfluid: such a mixture contains a very small fraction of 3He (around 6%), thus
decreasing drastically its density and lowering its critical temperature for superfluidity
under any temperature reachable yet with liquid Helium [210, 211].

Although getting a Bose-Fermi mixture with both species in the superfluid state has
not be obtained with Helium, the advent of ultracold atom gases has made it theoretically
possible: as we saw in Chapter 3 the much lower interspecies interactions in gases involve
a better stability of the mixture. Mixtures of degenerate gases were produced with Bose-
Bose superfluid mixtures [245], or Bose-Einstein condensates immersed in a Fermi sea
[246]. Bose-Fermi mixtures of many kinds have been obtained, to cite a few: 23Na-6Li
[247], 87Rb-40K [248], 87Rb-6Li [249], 174Yb-6Li [250, 251], 162Dy-161Dy [252], 133Cs-
6Li [253], 87Rb-171Yb [254] or 41K-6Li [255]. However, it is in our group, in 2014, that a
dual superfluid Bose-Fermi mixture was first obtained. Two years later, three other group
have obtained another such mixture and found similar properties: in Seattle with 174Yb
and 6Li [256], in Shanghai with 41K and 6Li [257], and in Tokyo with 6Li and 7Li [258].

In this chapter, we will study the interactions between the Bose and the Fermi super-
fluids. The low Bose-Fermi interactions ensures the stability of the mixture of the two
superfluids in a large range of external magnetic fields, which is at the same time a bless-
ing and a curse since it also means that it is harder to observe the effects of the interactions
between the two gases. In order to observe them, we perform a counterflow experiment:
we create a relative motion between the bosonic and the fermionic superfluid, an experi-
mental technique previously used for the study of mixtures of Bose-Einstein condensates
[259, 260], mixtures of Bose-Einstein condensates and spin-polarized Fermi sea [261],
spin diffusion in Fermi gases [262] or integrability in one-dimensional systems [263].
This work was presented in [84, 264] and also throughly described in [265, 266]. We will
here sum up the main results and show how this counterflow experiment enables to use
the bosonic impurities as probes for the interactions between the two species as well as
the EoS of the Fermi superfluid.
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5.1 Dipole mode excitations

We prepare a Bose-Fermi mixture in the internal states described in Chapter 3, with bal-
anced spin population for the Fermi gas. We have typically Nb = 30 × 103 bosons and
Nf = 300 × 103 fermions, the trapping frequencies are typically ωz = 2π × 16 Hz and
ωr = 2π × 550 Hz, with at temperature T/TF . 0.1 ensuring both gases are superfluid.

5.1.1 Creating the counterflow

We create this relative motion between the Bose and Fermi clouds by taking advantage
of the fact that the center of the magnetic trap does not totally coincide with the center
of the dipolar trap. When the YAG laser is working at low powers, the axial trapping is
mainly due to the magnetic confinement and the two clouds lie at its center. Since we
work at high external magnetic fields, both isotopes are in the Paschen-Back regime, thus
all particles have the same energy dependence with magnetic field and they feel the same
trapping in the axial direction ie mfω

2
f = mbω

2
b .

When the power of the laser is increased, both cloud centers are displaced along the
z direction: we can ramp up slowly the power of the laser so that both clouds move
adiabatically in the axial direction then decrease quickly the power back to its original
value so that both clouds lie away from the center of the axial trapping and therefore
will start oscillating in the harmonic trap as shown in Fig 5.1. The first step needs to be
done slowly compared to the trap oscillation period (typically we have tup = 150 ms, to
compare with the radial and axial frequencies) so that both clouds follow the displacement
of the center of the axial trap.

5
0

0
Μ

m
5

0
0

Μ
m

0 ms 100 ms 200 ms 300 ms 400 ms 500 ms

Figure 5.1: The fermionic cloud (top) and the bosonic cloud (down) oscillate in the axial
direction simultaneously. Here we can see the absorption images of both clouds and the
sinusoidal motion of their center of mass at two different frequencies taken at different
times and then all gathered in this picture.

These oscillations constitute excitations of the dipole modes of the two clouds. To
ensure we are not exciting radial modes, the duration of the ramp of the laser power
down to low values has to be slow compared to the radial oscillation periods, but still
fast compared to the axial oscillation period, conditions that are satisfied for tdown = 20
ms. With this process, quadrupole axial modes can still be excited but thanks to the small
compression of the trap, the Thomas-Fermi radius of the two clouds vary by less than
10%, so we will neglect them in first approximation, as well as higher order excitation
modes.
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Since both clouds feel the same trapping and the two isotopes do not have the same
mass, they will oscillate at different frequencies, typically ωb = 2π × 17 Hz and ωb =
2π × 15 Hz in the axial direction1. Consequently, they will not be synchronized and will
acquire a relative motion, having opposite phases for the first time after approximately
4.5 periods. The clouds positions are then monitored for durations up to 4 s, as seen in
Fig. 5.1 so that we can determine precisely the frequencies of oscillation.

5.1.2 Uncoupled oscillations
First, we study the oscillations of the Bose and Fermi clouds when they are alone. We
obtain the oscillations frequencies of the bosons ωb = 2π×15.68(10) Hz and the fermions
ωf = 2π × 17.14(10) Hz, with a ratio ωf/ωb = 1.09 '

√
7/6, in agreement with the

expected ratio. The bosonic oscillations are presented in Fig. 5.2. The decay time of
the oscillations is τ & 20 s, yielding a quality factor Q = ωτ/2 & 1500, showing that
the axial trapping is harmonic in a very good approximation. This is due to the fact that
the axial confinement is mainly due to the magnetic confinement which is produced with
coils whose size is much bigger than the amplitude of the oscillations of the clouds.

Figure 5.2: Position of the center of mass of the Bose gas when oscillating alone in the trap
versus time, for an external magnetic field of B = 832 G, corresponding to the Feshbach
resonance of the fermions. The oscillations have a very long time of life confirming
the very good harmonicity of the trap. We can measure an oscillating frequency ωb =
2π × 15.27(1) Hz.

For the rest of the chapter, we will study the oscillations when both clouds are present
to retrieve information on the interactions. This will be presented in the next two sections:
the first one corresponds to the case of nearly undamped, long-term oscillations, whereas
the second one will be focused on the study of the damping.

5.2 Long-lived oscillations: probing the interactions be-
tween the impurities and the superfluid

5.2.1 Effect of the Fermi superfluid on the impurities oscillations
At low temperatures, when both species are superfluid, and for small amplitudes of oscil-
lation (typically ≤ 100 µm, we observe long-term oscillations of the bosonic impurities

1The ratio
√

7/6 between the two frequencies is due to the relation mfω
2
f = mbω

2
b .
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and the Fermi superfluid, see Fig. 5.3, and the measurement is only limited by the lifetime
of the mixture (cf section 4.2.2).
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Figure 5.3: Position of the center of mass of the bosonic cloud (top) and the fermionic
cloud (down) versus time taken at unitarity (B = 832 G). The Fermi cloud oscillates with
almost no beating, at the frequency ω̃f ' ωf = 2π × 16.80(2) Hz. The bosonic cloud’s
motion reveals a beating feature, between the pulsations ω̃f and ω̃b = 2π × 15.00(1) Hz,
revealing a frequency shift of around 1.8% on the bosonic frequency.

From Fig. 5.3, we can make two observations. Firstly, there is an amplitude mod-
ulation, mainly on the bosonic oscillations. Secondly, we can measure the oscillation
frequency of the Bose gas ω̃b = 2π × 15.00(1) Hz, which is downshifted of about 1.8%
from the bare frequency ωb obtained when it is alone, whereas the oscillating frequency
of the fermions barely changes ie ω̃f ' ωf = 2π × 16.80(2). Moreover, a measurement
of the pulsation of the amplitude modulations gives ωmod ' ω̃f − ω̃b.

The first feature corresponds to a coherent energy exchange between the two super-
fluids: the modulation comes from a beating between the two dipole modes dressed by
the coupling. It is also present on the fermions but is way smaller due to a larger iner-
tia Nfmf � Nbmb. A phenomenological model of coupled oscillators can be used to
recover the equations of motion of the two clouds [267] which are given below:

zf (t) = d [(1− εmρ) cos(ω̃f t) + ρεm cos(ω̃bt)] (5.1)
zb(t) = d [−εm cos(ω̃f t) + (1 + εm) cos(ω̃bt)] (5.2)

with ρ = Nb/Nf ' 1/10, and εm = 2mb
mf−mb

ωb−ω̃b
ωb
≈ 0.25 at unitarity. The small value for

ρ explains why the beating is barely present in the Fermi gas oscillations, whereas the not
so negligible value of εm makes it very visible in the bosonic ones.

The second feature, the frequency shift, will be discussed in more details in the fol-
lowing section.
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5.2.2 Frequency shift through the BEC-BCS crossover
Theoretical expression

We now focus on the calculation of the frequency shift of the bosons. The bosons feel
an effective potential which is the sum of the trapping potential V (r) and the interaction
energy Ebf (nf (r)). In first approximation, we neglect the back-action of the bosons on
the fermions, considering them as impurities in the Fermi superfluid, so the density of the
fermion is given simply, in the local-density approximation, by nf (r) = nf (µ

0
f − V (r))

with µ0
f the chemical potential at the center of the cloud. Since the extension of the

bosonic cloud is much smaller than the Fermi gas (RTF,b ' 0.35RTF,f ), it remains mainly
at the center of the Fermi cloud. Therefore, we perform an expansion of the effective
potential seen by the impurities near the center of the cloud:

Veff = V (r) + Ebf

[
nf (µ

0
f )−

dnf
dµf

∣∣∣∣
0

V (r)

]
(5.3)

Veff = V (r) + Ebf (nf (µ
0
f ))−

dnf
dµf

∣∣∣∣
0

V (r)
dEbf
dnf

(5.4)

Veff = Ebf (nf (µ
0
f )) + V (r)

[
1− dEbf

dnf

dnf
dµf

∣∣∣∣
0

]
(5.5)

By writing Veff (r) = 1
2
mbω̃

2
br

2, we obtain the expression of ω̃b. In the mean-field
approximation, we have Ebf (nf (r)) = gbfnf (r), so we can simplify the last expression
as:

ω̃b = ωb

[
1− 1

2
gbf

dnf
dµf

∣∣∣∣
0

]
(5.6)

or again, by writing δωb = ωb − ω̃b:
δωb
ωb

=
1

2
gbf

dnf
dµf

∣∣∣∣
0

(5.7)

This expression can also be obtained within a fully quantum formalism through a
sum-rule approach (see [267], Supplementary material).

Universal expression of the shift

To compare this prediction with this experiment, we need to determine dnf
dµf

∣∣∣
0

throughout
the BEC-BCS crossover. It can be estimated by using the EoS of the Fermi gas, mea-
sured in our group [137] and presented in Chapter 2. However, this quantity depends not
only on the interaction strength but also on the atom numbers, leading to complicated
dependencies. Fortunately, one can also show that the frequency shift obeys a universal
scaling:

δωb
ωb

= kF,habff

(
1

kF,haff

)
(5.8)

with kF,h =
√

2mfωf (3Nf )1/3/~ the Fermi wavevector of the trapped Fermi gas.
We can retrieve the expression of the function f in several asymptotic regimes:

• First, in the deep BCS regime, we have µf ' EF = ~
2mf

(3π2nf )
2/3 the derivative

can be computed easily, and we obtain:

f

(
1

kF,haff

)
∼

1
kF,haff

→0−

13

7π
(5.9)
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• In the far BEC limit, the Fermi gas forms a molecular BEC and the expression of
the chemical potential reads in the mean-field regime µd = gddnd + gbdnb as seen in
section 3.2.3. Using this expression, we obtain:

f

(
1

kF,haff

)
∼

1
kF,haff

→0+
6.19× 1

kF,haff
(5.10)

• Finally, at unitarity, where 1/kF,haff → 0, we have µf = ξEF , similar to the BCS
limit, and we get:

f(0) =
13

7πξ5/4
(5.11)

Comparison to experimental data

To verify the expression of the frequency shift throughout the BEC-BCS crossover, we
performed counterflow experiments for different magnetic fields, ranging from 780 G to
860 G corresponding to values of 1/kF,haff from −0.4 to 0.8. The comparison of the
curve calculated using eq. (5.7) and the EoS measured in [137] with the experimental
data is presented in Fig. 5.4.
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Figure 5.4: Frequency shift across the BEC-BCS crossover renormalized to have a uni-
versal scaling in 1/kF,haff . The red points are the data points, the horizontal uncertainty
comes from the atom number fluctuations and the vertical uncertainty comes from both
number fluctuations and the frequency shift measurement. The blue solid curve is com-
puted using the EoS measured in [137]. The blue triangle at unitarity is the value obtained
using eq. (5.11) and the Bertsh parameter measured in [136]. The black dashed curve is
the asymptotic value of the frequency shift on the BCS side predicted in eq. (5.9).

The experimental data matches very well with the calculated curve, showing that the
collective dipole modes of the Bose gas are an accurate probe to the equation of state of the
Fermi gas, revealing the properties of a quantum many-body system, as it did in a different
way in Chapter 4. Yet, we must notice that, at unitarity, our experimental point matches
with the theoretical curve obtained from our measurement of the Equation of State but is
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shifted from the theoretical point we would obtain using the value of the Bertsh parameter
measured at MIT [136], taken to be more precise. This (small) discrepancy between our
data point and this theoretical value may find an explanation in the last chapter, after
calculating the shift beyond a mean-field approach.

5.3 Damping of the oscillations
In the former section, we saw that at low temperatures and low amplitudes, the oscillations
of the two clouds were long-lived, with no visible damping, as expected from a superfluid
with no viscosity. However, when we deviate from these conditions, damping may appear.
The damping of the oscillations of the two clouds can appear in two different conditions.
On the one hand, damping appears when the amplitude of the oscillations increases. On
the other hand, damping appears when the temperature of the clouds increases and the
two gases are no longer superfluid.

The damping of the oscillations can be interpreted as the finite lifetime of the elemen-
tary excitations in the Fermi gas that are created by the counterflow. The finite lifetime
of these excitations, seen as phonons, is explained by the different scattering processes
they can undergo. In the case of the counterflow of an impurity and a Fermi superfluid, in
order to provide a hand waving interpretation for the two different origins of the damping
we observed, we consider two simplified scattering processes expressed in the referential
of the superfluid and adapted from the scattering processes that may occur in a superfluid
with no impurity [268]. First, there is the Beliaev process [269, 270] where an impurity
of momentum p releases a phonon of momentum ~q and ends up with a decreased mo-
mentum p′. Then, a Landau-Khalatnikov process [268] where an impurity interacts with
a phonon, which may modify its impulsion and the energy of the phonon. Those two
processes are represented in Fig 5.5.

Figure 5.5: Schematics of the two scattering processes we considered for the excitations
in our system. We represented the Beliaev process on the left-hand side and the Landau-
Khalatnikov process on the right-hand side. The black solid lines correspond to the im-
purity and the green lines to the phonons.

The Landau-Khalatnikov process requires an incoming phonon, thus is more likely
at finite temperature where thermal excitations exist. The Beliaev process will be the
dominant process at low temperature [271] and, as we will see in the next paragraph, it
exists only above a given critical velocity of the impurity, so for oscillations with high
amplitudes.

In order to distinguish both mechanisms of dissipation, we will first study oscillations
with high amplitude and low temperature and then oscillations with low amplitude and
higher temperatures.
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5.3.1 Higher amplitudes: critical velocity
Experimental observations

In this regime, the damping of the oscillations is very peculiar: at first, the amplitude is
rather important and some damping occurs, then the amplitude decreases until it reaches a
certain value at which the damping stops, finally leading to long-lived oscillations at this
new, lower amplitude. These experimental behaviors are plotted in Fig. 5.6.
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Figure 5.6: Position of the center of mass of the bosonic impurity (top) and the fermionic
cloud (bottom) versus time at unitarity, taken with a starting amplitude of z0 ' 200 µm.
The oscillations are first damped until the amplitude of the fermionic cloud reaches z0 '
120 µm at which point the damping stops. The beating in the bosonic motion is still very
observable.

From these curves, we can extract a damping rate using a phenomenological model
where we replace the constant amplitude in eq. 5.1 and 5.2 with a time-dependent one:

df (t) = d(1 + δfe
−γf t) (5.12)

db(t) = d(1 + δbe
−γbt) (5.13)

At a given magnetic field, we can repeat the experiment for several initial displace-
ments and extract a damping rate for each one, and find out their dependency. However,
it is not the amplitude but rather the relative velocity that is the relevant parameter as we
will see later. Anyway, increasing the amplitude amounts to increasing the relative veloc-
ity, so the former remarks still hold. In Fig. 5.7, we plot the damping rate as a function
of the maximal relative velocity, for three different magnetic fields: one on the BEC side,
another at unitarity and the last one on the BCS side.

We see that, for each curve there is a velocity threshold under which the damping
rate is close to zero, and above which the damping rate starts rising. To extract the criti-
cal velocity corresponding to this threshold, we use another phenomenological model to
account for this behavior:

γ = γ0Θ(v − vc)((v − vc)/vF )p (5.14)
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Figure 5.7: Damping rate versus the maximum relative velocity between the two clouds
for three different magnetic fields. Dark blue circles: on the BEC side (B = 780 G). Red
squares: at unitarity (B = 832 G). Light blue diamonds: on the BCS side (B = 880 G).
The solid curves are fits to the data using the function from eq. (5.14) and p = 1.

with Θ the Heaviside function and vF = ~kF,h/mf the Fermi velocity.
The best fits, using χ2 as a criterion, give out p ' 1 so we will retain this value for

the exponent. Using this fit, we can extract the critical velocity for different values of the
magnetic field, throughout the BEC-BCS crossover. The critical velocities corresponding
to the three curves plotted in Fig. 5.7 are:

• At 1/kF,haff = 0.68: vc = 0.17+0.06
−0.10vF ,

• At 1/kF,haff = 0: vc = 0.42+0.08
−0.14vF ,

• At 1/kF,haff = −0.42: vc = 0.40+0.10
−0.20vF ,

with the uncertainty coming from the exploration of the exponent p around 1.

Landau’s criterion for superfluidity

The presence of a critical velocity in superfluids was predicted first by Landau in 1941
[272]. Landau described the case of a microscopic impurity of mass m moving through a
homogeneous superfluid at constant speed. In order to have dissipation, the impurity must
generate an elementary excitation in the superfluid, and we will see that due to energy and
momentum conservation, it will lead to the appearance of a critical velocity. For a Beliaev
scattering process (see Fig. 5.5), the initial and final momentum and energy of the system
{impurity + excitation} in the frame of the superfluid read as

Ei =
mv2

2
, pi = mv (5.15)

Ef =
mv′2

2
+ ε(p), pf = mv′ + p (5.16)

where ε(p) is the energy of the excitation with p is its momentum. The conservation of
momentum and energy yield:

p2

2m
+ ε(p) = p.v ≤ p× v (5.17)
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leading to the following criterion:

v ≥ vc = Min
p

[
ε(p) + p2

2m

p

]
(5.18)

For an impurity with a very lage mass m→∞, the criterion is simplified into:

vc1 = Min
p

[
ε(p)

p

]
. (5.19)

In a Fermi gas, there are actually two excitations branches:

• The first one corresponds to bosonic collective excitations ie phonons with bosonic
statistics [273]. We write the critical velocity associated with this phononic branch
as vp. The dispersion relation of this branch is linear at low momenta:

ε(p) =
p→0

p× cf (5.20)

with cf the sound velocity in the Fermi superfluid, given by

cf =

√
nf
mf

∂µf
∂nf

(5.21)

and can be calculated through the BEC-BCS crossover using the EoS (similarly at
what was done to compute the frequency shift).

The dispersion relation from eq. (5.20) is only valid in the limit k → 0, and the
critical velocity obtained with eq. (5.19) will depend on the concavity/convexity of
the dispersion relation. The dispersion relation of the low-energy excitations in a
Fermi superfluid changes from convex to concave in the BEC-BCS crossover, close
to the strongly interacting limit [274, 275]. On the BEC side, the dimers condense
to form a BEC and the dispersion relation can be described with the Bogoliubov
form

εBEC(p) =

√
p2

2m

(
p2

2m
+ 2µd

)
(5.22)

with µd the chemical potential of dimers. This expression of the dispersion relation
is essentially convex, so in the BEC limit, the critical velocity associated with the
phononic branch corresponds to the sound velocity.

On the BCS side, the presence of the pair-breaking continuum can bend downwards
the dispersion relation of the phonons, implying a concave dispersion relation. The
dispersion relation is actually concave for 1/kFaff . 0.14 [268]. In this case, the
critical velocity does not correspond necessarily to sound velocity and its determi-
nation requires the precise knowledge of the dispersion relation.

• The second excitation branch corresponds to the breaking of Cooper pairs [276]. In
BCS theory, the critical velocity due to the pair-breaking vpb can be expressed as2

vpb =

√
1

mf

(√
∆2 + µ2

f − µf
)

(5.23)

2The energy of the elementary excitations due to pair-breaking in BCS theory corresponds to Ek =√
(ε

(f)
k − µf )2 + ∆2 as seen in Appendix B. The expression of the critical velocity is obtained by looking

for the minimum of Ek/k. The search for a minimum leads to eq. (5.23) for the critical velocity, realized
for k =

√
2mf/~2(∆2 + µ2

f )1/4.
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where ∆ is the gap parameter that can also be computed throughout the BEC-BCS
crossover (see Appendix B). For this calculation, we also have simplified the prob-
lem a bit since two elementary excitations are actually created by a pair-breaking in
the Fermi superfluid, the detailed calculation is described in [277].

The critical velocity in the Fermi superfluid is then vc = Min(vp, vpb). The critical
velocity on the BEC side corresponds more to the one obtained with the phononic branch
whereas on the BCS side it is rather the one due to the pair-breaking. The precise domains
where the critical velocity is due to a given branch can be found in [277].

However, in our experiment, the impurity is played by the bosons that condense into
a BEC. We may wonder if the BEC can be treated as a rigid impurity or if we have to
take into account its collective behaviors, in particular the possible creation of excitations
within the BEC. To account for this, the Landau’s criterion was adapted to counterflowing
superfluids in [277]. The minimal process for dissipation is the creation of an elementary
excitation in each superfluid with opposite momenta (or two in the Fermi superfluid in the
case of pair-breaking excitations). Energy and momentum conservation lead to

εf (p) + εb(−p) + p.v = 0 (5.24)

with εf (p) the energy of the excitation in the Fermi superfluid and εb(p) the energy of the
excitation in the Bose superfluid. We then obtain the critical velocity:

vc2 = Min
p

[
εf (p) + εb(p)

p

]
. (5.25)

In the bosonic superfluid, the excitations are phonons so εb(p) = p × cb at low mo-
menta with cb the sound velocity in the bosonic superfluid3 and the dispersion relation is
convex. Consequently, we see that the critical velocity given by eq. 5.25 is essentially the
same as the one given by eq. 5.19, only shifted by cb.

In order to distinguish if the collective behavior of the Bose gas plays a role in the
dissipation process, we have to compare our experimental measurements of the critical
velocity to the theoretical values vc1 and vc2 obtained using the standard Landau criterion
and the extended Landau criterion to counterflowing superfluids respectively.

Comparison between theory and experiments

In Fig. 5.8, the critical velocity obtained from the experiment is plotted along with vc1,
the theoretical critical velocities obtained from eq. (5.19) , vc2, the one from 5.25, and the
sound velocity in the Bose gas cb, all of them integrated over the transverse density profile
of the cloud.

Even though it is plotted against 1/kF,haff , cb actually does not depend directly on this
parameter but rather the external magnetic field and the bosons number. It is small com-
pared to the experimental values, so it is excluded as a candidate for the critical velocity.
On the other hand, the experimental data is consistent with either vc1 and vc2, confirming

3The sound velocity in the Bose gas has the same definition as in the Fermi gas. It is given by:

cb =
√
gnb/mb (5.26)

where nb is the boson density and mb their mass.
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Figure 5.8: Critical velocity, normalized by the Fermi velocity, versus 1/kF,haff . Red cir-
cles: data points measured across the BEC-BCS crossover, the vertical uncertainty mainly
comes from the uncertainty on the value of the critical velocity from the fit, obtained by
varying the p coefficient in Eq. 5.14. Red line: theoretical critical velocity vc1 obtained
with eq. (5.19) derived from Landau’s criterion. Blue bars: calculated sound velocity in
the bosonic impurity, with the uncertainty corresponding to the fluctuations on the bosons
numbers. Green squares: theoretical critical velocity vc2 obtained using the extension of
Landau’s criterion from eq. 5.25. The data points matches with both vc1 and vc2, not
allowing to choose one over the other.

the nature of the dissipation, but not enabling to distinguish between the model corre-
sponding to the original Landau criterion (with a ”rigid” impurity) and the one from the
adapted criterion (with a BEC).

The drop on the last value of the experimental critical velocity, near 1/kF,haff = 0.7,
the furthest value taken on the BEC side has yet to be explained. A first explanation could
come from the interaction between the two clouds that modifies the expression of the
sound velocities. As detailed in [278], the critical velocity has to be corrected to take into
account the interactions between the clouds, with a correcting factor Ac writing as

Ac =

√√√√1−
∂µf
∂nb

∂µb
∂nf

∂µf
∂nf

∂µb
∂nb

. (5.27)

This correction factor drops to zero when the condition

∂µf
∂nb

∂µb
∂nf
− ∂µf
∂nf

∂µb
∂nb

= 0 (5.28)

is realized. It corresponds to exactly the same condition as the one for phase separation
described in section 3.2.3, so it implies that the correction factor is close to one in most
of the crossover and will drop to zero on the BEC side around B = 730 G corresponding
to 1/kF,haff ' 1.6. On a side-note, it shows that phase separation can be determined by
looking for a drop in the critical velocity.

For 1/kF,haff = 0.7, the correction factor can be evaluated around 0.8 inducing a
20% correction on the critical velocity, not enough to explain the discrepancy with the
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theoretical value. Other effects, such as a back bending of the dispersion relation due
to radial confinement [279, 280], blurring of the threshold due to oscillatory motion of
the impurity [281, 282] or finally thermal fluctuations which can also reduce the apparent
critical velocity [281], and are more prone to happen far on the BEC side where inelastic
losses (three body recombination or dimer-dimer losses as detailed in chapter 4) are en-
hanced. In retrospect, our measurement of the critical velocity is surprisingly close to the
theoretical values in most of the crossover despite these different effects, and compared
to previous experiments on Bose superfluids [283–285] and Fermi superfluids [282,286].

5.3.2 Higher temperatures: out of the superfluid phase
At finite temperatures, over the critical temperatures for superfluidity of the two species,
the oscillations of both clouds are damped down to zero amplitude. This can be explained
by the fact that the clouds are no longer superfluid and frictionless movement no longer
occurs. More strikingly, the friction becomes so strong that the two clouds start oscillating
in phase, at almost the same frequency, the fermionic frequency, as can be seen in Fig.
5.9.
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Figure 5.9: Position of the center of mass of the bosonic impurity (top) and the fermionic
cloud (bottom) versus time, taken at unitarity at T = 0.4TF , above the critical threshold
for both gases. Amplitudes are both damped towards zero and the two clouds are locked
in phase at the fermionic frequency (see dashed lines to observe the synchronization).

As stated before, the significantly less massive impurity is dragged by the fermionic
cloud when the friction becomes very high, making it oscillate in phase with the Fermi
cloud. To study this effect, the frequency of oscillation of the bosons is plotted against
the temperature in Fig. 5.10. We see that the frequency locking occurs when the temper-
atures reaches the critical temperature for the Bose-Einstein condensation Tc,b, way after
the critical temperature for the superfluidity of the fermions has been reached. This can
be explained by the fact that the thermal fraction of the impurity oscillates at ωf while
the remaining condensed fraction keep oscillating at ω̃b as was proven through separate
spectral analysis of the condensed fraction and the thermal part of the cloud in [265].

This shows that in this context, the collective behavior of the Bose gas cannot be ne-
glected as long as it remains superfluid, limiting the damping of the oscillations even when
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the Fermi gas is no longer superfluid, whereas the thermal Bose gas is simply dragged by
the Fermi gas and behaves as an ensemble of impurities.
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Figure 5.10: Frequency of oscillation of the bosonic cloud versus temperature. Blue cir-
cles correspond to temperatures beneath both critical thresholds for superfluidity. Yellow
squares correspond to temperatures where the Fermi cloud is in the normal phase while
part of the bosonic cloud remains condensed. Green empty diamonds correspond to tem-
peratures where both clouds are not superfluid anymore. The phase-lock between the
clouds happen near the critical threshold for superfluidity of the bosonic impurity.

On a side-note, the frequency locking happens at T = Tc,b, in the experimental con-
ditions we described at the beginning of the Chapter for which we have Tc,f < Tc,b. One
may wonder what would happen if we prepared the atoms in specific conditions such that
Tc,f > Tc,b, which can be realized by increasing even more the ratio Nf/Nb. We could ex-
pect the frequency locking to happen near T = Tc,f , where there can be friction between
the thermal Bose gas and the no longer superfluid Fermi gas, which could give a new
means to determine Tc,f in the crossover, in addition to the measurement of the contact
we explained in section 4.3, though it would be very challenging experimentally4.

5.4 Conclusion
In this chapter, we detailed experimental results on the counterflow of a cloud of bosonic
impurities in a Fermi superfluid. For small oscillation amplitudes, the two cloud flow with
no visible damping, despite being quickly out-of-phase since they oscillate at different
frequencies, confirming the superfluidity of the Fermi gas. We observed a shift in the
oscillating frequency of the Bose gas whether it was alone or in presence of the Fermi
superfluid. We were able to explain this shift by the interaction between both clouds
using a mean-field calculation.

In a second part, we presented results concerning the damping of the counterflow.
First, when increasing the oscillation amplitude and with it the relative velocity between
the two cloud, we saw that the oscillations where damped right until the amplitude was

4At unitarity, where we know Tc,f , we can evaluate that in order to have Tc,b < Tc,f , we would need
to have Nf & 27Nb, requiring Nb < 10 000 since the total number of fermions at low temperatures is
limited at around Nf ≈ 300 000 in our experimental set-up. This very low number of bosons is at the limit
of detectivity in our set-up and would be subjected to high shot-to-shot fluctuations, limiting the precise
measurement of the oscillation frequency.
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low enough. This was consistent with the presence of a critical velocity, explainable with
Landau’s criterion for superfluidity or its extension for the counterflow of two superfluids,
whose experimental values across the BEC-BCS crossover were measured and found out
to be compatible with both models. Then, in the case of counterflow at finite tempera-
ture, the two clouds were no longer superfluid and we found that the bosonic impurity
was phase-locked with the Fermi gas due to the high friction between them. This last
experiment showed the limit of the treatment of the bosons as mere impurities since their
collective behavior ie their superfluidity ensured oscillations with limited damping despite
being at temperatures where the Fermi gas was no longer superfluid.

In the next chapter, we will see how we can treat theoretically the interactions between
an impurity and the Fermi superfluid beyond mean-field calculations, taking into account
the many-body effects in the strongly interacting regime, ultimately coming back to the
calculations of the frequency shift, which may explain for instance the discrepancy be-
tween our experimental point and the point calculated using the MIT data at unitarity in
Fig. 5.4.
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Chapter 6

The 2N+1 body problem

In the previous chapter, we studied the oscillations of an impurity in a Fermi superfluid.
In this experiment, the polaron was weakly coupled to the background Fermi gas and we
were able to interpret the frequency shift of the impurity oscillations using a mean-field
approximation for the impurity-fermion interaction. The case of an impurity interacting
strongly with the Fermi superfluid was studied theoretically [117, 287] but by using a
mean-field theory to describe the fermionic many-body ensemble, revealing the role of
Efimov physics for the system and as a consequence the existence of unphysical ultra-
violet divergences in some results. Our objective is to study the interaction between an
impurity and a many-body ensemble, beyond the mean-field approach for the impurity-
fermion interaction and without making assumptions on the Fermi superfluid.

In our experiment, the impurity is the Bose gas of 7Li, though the exact nature of
the impurity does not matter in this problem. For the sake of generality and simplicity,
we will now write a the scattering length for the interaction between two fermions and
a′ the scattering length for the interaction between an impurity and a fermion, assuming
the interaction between the impurity and the fermions is the same for both spin states,
as it is in our set-up. Moreover, g and g′ will be the associated coupling constants with
g = 4π~2a/mf and g′ = 2π~2a′/mr, with mr the reduced mass between the impurity
and a fermion.

Concerning our specific problem, different phenomena arise depending on the inter-
actions. In the case of small, negative values of a′, as we saw in Chapter 2, the impurity
can be seen as a polaronic quasi-particle: we will refer to this phase as the polaron phase.
For small, positive values of a′, the impurity atoms can form molecules with fermions
from the many-body background: we will call them dimerons, to differentiate them from
the dimers that can form between two fermions on the BEC side of the Feshbach reso-
nance. Finally, for strong interactions, when 1/a′ → 0, Efimov physics have to be taken
into account and the impurity atoms can form trimers with a Cooper pair made of two
fermions of opposite spin: we will call them trimerons. Consequently, the phase diagram
of the impurity will be separated into those three phases, depending on the strength of
impurity/fermion interactions.

In Fig. 6.1, we see the typical shape of the energy curve of the three possible states.
This is a representation for a given a. By increasing 1/a′ all the way from the negative
values, it shows the transition from the polaron state to the trimeron state, which is actually
expected to be merely a smooth crossover due to earlier variational calculations [117,287],
to eventually the dimeron state.

In the appendix C, we describe how we can build a phase diagram by comparing the
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Figure 6.1: Sketch of the energy branches of an impurity (red dot) immersed in an ensem-
ble of Cooper-paired fermions when the impurity/fermion scattering length a′ is varied.
Blue: polaronic branch. Green: Trimeronic branch. Orange: Dimeronic branch. Ac-
cording to mean-field calculations [117, 287], the polaron/trimeron transition is actually
a smooth crossover, which should correspond to an avoided crossing between the two
branches.

energy of these three phases. For this phase diagram, the relevant parameters are not only
the two scattering lengths a and a′ but also the resonance range Re introduced in Chapter
1, since we use a similar two-channel model to describe the trimeron and the dimeron.

Since the size of the ground-state of the trimeron is typically much smaller than the
distance between particles (see section 1.3), its binding energy is much larger than the
Fermi energy of the fermionic background, or than the energy of the polaron which is a
correction to the Fermi energy. Consequently, the internal structure of the trimer is only
weakly affected by the many-body background, except when the Efimov trimer becomes
resonant with the atomic continuum and its binding energy tends to zero. Likewise, the
dimeron state is very weakly affected by the many-body background. The calculation of
their energy can be done using few-body physics and is presented in the appendix C. The
phase diagram we obtained is given in Fig. 6.2.

Since the trimeron and dimeron states can be essentially described using few-body
physics, we will now study the polaronic branch, which is much more affected by the
many-body background, in particular in the regime |a′| . Re which is compatible with
our experimental conditions that correspond to |a′| ' Re. When the fermion-fermion
interaction is varied in the BCS-BEC crossover, from a weakly attractive interaction on
the BCS side of the crossover where fermions form loose Cooper pairs to a strongly
attractive interaction on the BEC side where the Fermi gas condensates in a BEC of tightly
bound dimers, the polaronic state switches from a Fermi polaron on the BCS side to a
Bose polaron on the BEC side. Our objective is to determine the energy of the polaron
in this crossover between the Fermi polaron and the Bose Polaron, for small fermion-
impurity interactions and with a given value of Re/a

′, thus exploring horizontally the
phase diagram.

In the first section, we will start with a perturbative expansion of the polaron energy
for small fermion-impurity interactions, and we will see that a logarithmic divergence
arises already in the second order term of the expansion. The following sections will
treat the regularization of this many-body problem using few-body physics in order to
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Figure 6.2: Phase diagram of an impurity immersed in a two-component Fermi superfluid.

obtain an expression of the polaron energy in the crossover. Finally, we will come back to
the counterflow experiments, where we will see how this polaronic energy can affect the
theoretical curve of the frequency shift that was compared to the experimental data in the
previous chapter.

6.1 Perturbative expansion of the polaron energy

6.1.1 Theoretical framework
We consider an impurity of mass mi immersed in a many-body ensemble of spin 1/2
fermions of mass mf . We write the Hamiltonian of the system as

Ĥ = Ĥimp + Ĥmb + Ĥint, (6.1)

where Ĥimp (resp. Ĥmb) is the Hamiltonian of the impurity (resp. many-body back-
ground) alone, and Ĥint describes the interaction between the impurity and the fermions.
We label the eigenstates of the impurity by their momentum q and energy ε(i)

q = ~2q2/2mi.
The eigenstates and eigenvalues of Ĥmb are noted |α〉 and Eα, where α = 0 corresponds
to the ground state of the fermionic background.

We consider a contact interaction between the impurity and the fermions, so the inter-
action Hamiltonian reads

Ĥint = g′0
∑

σ=↑,↓

∫
d3rψ̂†σ(r)ψ̂σ(r)φ̂†(r)φ̂(r), (6.2)

where ψ̂σ and φ̂ are the field operators for spin σ particles of the fermionic superfluid
and of the impurity respectively. We used the bare coupling constant g′0 between the
impurity and the fermions, defined in Chapter 1, linked to the physical coupling constant1

1We recall g′ = 2π~2a′/mr with mr the reduced mass of the impurity and the fermions: mr =
mimf/(mi +mf ).
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g′, through the equation:
1

g′0
=

1

g′
− 1

Ω

∑

k<Λ

1

ε
(r)
k

, (6.3)

with Ω the quantization volume, Λ an ultraviolet cut-off and ε(r)
k = ~2k2/2mr, mr be-

ing the impurity-fermion reduced mass. Assuming the contact interaction can be treated
perturbatively, in the limit Λa′ � 1, we can expand eq. (6.3) up to second order into

g′0 = g′ +
g′2

Ω

∑

k<Λ

1

ε
(r)
k

+ o(g′
2
). (6.4)

Calculating perturbatively the energy of the polaron ∆Epert beyond the mean-field
term, we get

∆Epert = 〈0, 0|Ĥint|0, 0〉+
∑

α,q

∣∣∣〈α, q|Ĥint|0, 0〉
∣∣∣
2

E0 − Eα − ε(i)
q

(6.5)

After expanding the bosonic wavefunctions φ̂ over plane-wave field-operators, the
bosonic part of the equation simplifies into an exponential and the whole expression can
be recast as

∆Epert = g′n+
g′2n

Ω

∑

q

1

ε
(r)
q

+
g′2

Ω2

∑

α,q

∣∣∣〈α|
∑

σ

∫
d3rψ̂†σ(r)ψ̂σ(r)e−iq·r|0〉

∣∣∣
2

E0 − Eα − ε(i)
q

, (6.6)

where n is the particle density in the many-body medium.
We define:

ρ−q =
∑

σ

∫
d3rψ̂†σ(r)ψ̂σ(r)e−iq·r (6.7)

the Fourier transform of the density operator and also the response function χ:

χ(q, E) =
1

N

∑

α

|〈α|ρ̂−q|0〉|2
Eα − E0 + E

. (6.8)

The density response function is actually a complex function and contains a +i0+ at its
denominator. The real and imaginary parts should satisfy Kramers-Kronig relations.

Using these functions, we can write the energy as

∆Epert = g′n+
g′2n

Ω

∑

q

[
1

ε
(r)
q

− χ(q, ε(i)
q )

]
. (6.9)

6.1.2 Asymptotic limit and structure factor
To get a first glimpse of the behavior of this expression, we study the asymptotic regime
of χ for q → ∞. In this limit, the function χ must have a 1/q2 dependence to cancel out
the one found in the 1/ε

(r)
q term.

For large momenta q, the eigenstates of the many-body Hamiltonian excited by the
operator ρ̂q correspond to free-particle excitations of momentum q and energy ε

(f)
q =

~2q2/2mf . For an ideal Fermi gas, the response function then simplifies into

χ(q, E) '
(

1

ε
(f)
q + E

)
1

N

∑

α

|〈α|ρ̂−q|0〉|2 . (6.10)
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for q � kF .
Since we are here interested in a semi-quantitative argument to obtain an asymptotic

behaviour of χ, we will extend this expression to the case of an interacting gas, neglecting
the fact that the energy of the final state can no longer be considered as fixed but should
depend on the interactions.

Let us introduce the static structure factor S(q), defined by

S(q) =
1

N

∑

α

|〈α|ρ̂q|0〉|2 (6.11)

The static structure factor characterize two-body correlations of interacting systems.
Indeed, in condensed matter systems, it enters in many relations for thermodynamic func-
tions and kinetic coefficients, and more importantly it constitutes a mathematical de-
scription of the scattering from a disordered system of neutrons, electrons, photons,...
and is thus directly measurable [288, 289]. The static structure factor is linked to the
Fourier transform of the density-density response function in the long-wave limit [290],
and thanks to the works of Tan giving us the expression for this response function [145],
we have an expression of the static structure factor in this limit [158]:

S(q) = 1 +
C2

4Nq
+ o

(
1

q

)
, (6.12)

with C2 Tan’s contact for two fermions, already introduced in chapter 4, coming from the
density-density response function. Hence

χ(q, ε(i)
q ) '

q→∞

S(q)

ε
(f)
q + ε

(i)
q

' 1

ε
(r)
q

+
C2

4Nqε
(r)
q

+ o

(
1

q3

)
. (6.13)

The first term in the expansion cancels out with the 1/ε
(r)
q coming from the expres-

sion of the bare coupling constant, and this should remain true even without making any
assumptions on the interactions in the Fermi cloud. Finally, the term inside the sum in the
expression of the polaron energy from eq. (6.9) behaves as

1

ε
(r)
q

− χ(q, ε(i)
q ) ∝ C2

Nq3
. (6.14)

This subdominant term in the expression of χ is only an approximation, and we cannot use
the prefactor we would obtain through this calculation, however we consider the general
behaviour to be correct, as confirmed by the calculations present in the following sections.
As a consequence, the correction to the polaron energy still presents a logarithmic UV-
divergence, meaning the regularization of the coupling constant was not enough.

This logarithmic divergence is typical of a singularity in the three-body problem for
particles with contact interactions. This characteristic was first discovered by Wu [116]
for a system of three bosons and was also investigated in the context of nuclear physics
[75] or more recently with cold atoms [117–120]. Therefore, we will now work on the
three-body problem to find a solution to renormalize this energy and see how few-body
physics will help us regularize this many-body problem.
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6.2 Regularization of the three-body scattering amplitude
The general idea is to introduce a three-body interaction to cure the divergence of the
perturbative expansion of the polaron energy. In order to do that, one could try calculating
the function χ directly and deduce the energy of the polaron. This can be done within
the framework of BCS theory for instance as presented in Appendix B, but in the very
general case it is much more challenging. Instead, we are going to calculate the three-
body scattering amplitude of an impurity and two fermions of opposite spins, which will
also lead us to the determination of g3(Λ).

We consider a system of three particles, an ↑ fermion, a ↓ fermion and an impurity
that we will label as 1, 2 and 3 respectively. The interaction potential V̂ of this system
can be written as V̂ = V̂1 + V̂2 + V̂3 with V̂i the two-body interaction potential between
the two particles other than i. Before introducing a three-body interaction, we will first
calculate the T -matrix of this system and watch out for logarithmic divergences.

6.2.1 T -matrix in Faddeev’s formalism
The T -matrix is a mathematical tool of in scattering theory we introduced in Chapter 1
for a two-body interaction. A three-body T -matrix can also be defined similarly for the
three-body scattering problem. Similarly as the two-body T -matrix, it follows the Dyson
equation we gave in Chapter 1:

T̂ = V̂ + V̂ Ĝ0T̂ (6.15)

where V̂ is the potential of interaction for the three bodies and Ĝ0(z) = (z − Ĥ0)−1 the
resolvent operator for the Hamiltonian Ĥ0 of the free particles, with z = E0 + iε where
E0 corresponds to the total energy of the three particles, conserved during the scattering
process.

Since it obeys this self-consistent equation, the T -matrix can thus be calculated per-
turbatively writing T̂ = V̂ + V̂ Ĝ0V̂ + .... The goal would then be to obtain the matrix
elements to resolve the three-body scattering problem. To simplify this study, we will
work within Faddeev’s formalism [291]. The principle of this formalism is to write the
three-body T -matrix as the sum of three contributions T̂1, T̂2 and T̂3 solutions of the set
of coupled equations:




T̂1

T̂2

T̂3


 =




t̂1

t̂2

t̂3


+




0 t̂1 t̂1

t̂2 0 t̂2

t̂3 t̂3 0


 Ĝ0




T̂1

T̂2

T̂3


 (6.16)

where t̂i is the two-body T -matrix leaving the particle i unaffected. We will choose for
convention that the particles 1, 2 and 3 correspond to the spin-up fermion, the spin-down
fermion and the impurity respectively.

By using this formalism, we essentially reduce a three-body problem to a sum of two-
body problems. Indeed, we can expand perturbatively the operator T̂1 = t̂1 + t̂1Ĝ0t̂2 +
t̂1Ĝ0t̂3 + ... which now only involves the two-body operators t̂i. This is the same for
the three operators T̂i and for T̂ = T̂1 + T̂2 + T̂3. Each of the terms involved in these
expansions can be interpreted as a succession of two-body interactions t̂i separated by
the free propagation of the particles as in Ĝ0. We can note that the contribution T̂i to the
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T -matrix correspond to the sum of all the terms starting by ti: it encapsulates all series of
interaction/propagation starting with an interaction leaving the particle i unaffected.

Furthermore, Faddeev’s formalism also includes a resummation: by construction, the
term t̂iĜ0t̂i never appears in the expansions because all the consecutive t̂i interactions
have been added together. This is actually very important because otherwise these terms
would lead to singularities (delta functions), a major issue out of Faddeev’s framework.

6.2.2 Diagrammatic representation of the solutions

In the expansion of the T -matrix, we have many terms of the form t̂i, t̂iĜ0t̂j , t̂iĜ0t̂jĜ0t̂k,
... In order to make the resolution more efficient, we represent these different terms as
diagrams.

On Fig. 6.3, we show a diagram corresponding to the term t̂1Ĝ0t̂3Ĝ0t̂2Ĝ0t̂3.

Figure 6.3: Diagrammatic representation of the matrix element 〈0|t̂1Ĝ0t̂3Ĝ0t̂2Ĝ0t̂3|0〉.
Each horizontal solid line corresponds to one of the three particles, each dashed vertical
line corresponds to an interaction between the two particles having a black solid circle on
their line. The possible momenta are written over the particle lines, we set the initial and
final state to zero. Taking into account the boundary conditions, we have here to introduce
two independent momenta p and p′ over which we need to sum in order to calculate the
matrix element.

In this representation, each line corresponds to a particle, here we placed the two
fermionic spin states at the top two lines and the impurity at the bottom line. In these
diagrams, we will go to the low energy limit where the energy of the initial and final
states goes to zero, thus setting their momenta to zero as we did in Fig. 6.3. The dif-
ferent interactions are symbolized by a dashed line with black circles to specify exactly
which particles are involved in the interaction. Each time there is an interaction between
two particles, momentum is transferred between the two partners, whereas the remaining
particle has its momentum unchanged.

To account for this effect while respecting the boundary conditions, we had to intro-
duce two independent momenta p and p′ in Fig. 6.3. They can take any value so the term
corresponding to this diagram is the sum over these two momenta of the matrix elements
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of the operators involved. The entire expression reads

〈0|t̂1Ĝ0t̂3Ĝ0t̂2Ĝ0t̂3|0〉 =
∑

p,p′

[
〈0|t̂1|0,p,−p〉〈0,p,−p|G0(z)|0,p,−p〉

〈0,p,−p|t̂3|p− p′,p′,−p〉〈p− p′,p′,−p|Ĝ0(z)|p− p′,p′,−p〉
〈p− p′,p′,−p|t̂2| − p′,p′,0〉〈−p′,p′,0|Ĝ0(z)| − p′,p′,0〉〈−p′,p′,0|t̂3|0〉

]
(6.17)

where |0〉 is the state where the three particle each have a null momentum, corresponding
to the limit of low energy, and a state |k1,k2,k3〉 is a state where particle i has a momen-
tum ki for i = 1, 2, 3. In the remainder of this thesis, we will write t1G0t3G0t2G0t1 =
〈0|t̂1Ĝ0t̂3Ĝ0t̂2Ĝ0t̂1|0〉 to lighten slightly the expressions.

This notation is very cumbersome hence the use of diagrams to clarify it. This shows
that we have to calculate many matrix elements involving the operator Ĝ0 and the opera-
tors ti. For the former, the matrix elements can be written very simply:

〈k1,k2,k3|Ĝ0(z)|k1,k2,k3〉 =
1

z − ε(f)
k1
− ε(f)

k2
− ε(i)

k3

(6.18)

On the other hand, for the t̂i operators, it is more complicated. We already gave their
expression in the first chapter of this thesis in the center-of-frame of the two interacting
particles but here we are working in the center-of-mass frame of the three particles. This
distinction may appear subtle but requires careful treatment to avoid mistakes.

6.2.3 Calculation of ti
In Chapter 1, section 1.1.5, we already obtained an expression of its matrix elements
〈k|t̂i|k〉, with k the relative momentum of the two particles in the center-of-mass frame
of the two particles.

In this section, we will calculate for instance the matrix elements of the operator t̂1,
leaving particle 1 (corresponding in our convention to the spin-up fermion) unaffected,
this time in the center-of-mass frame of the three particles. The calculation method is
very much the same as in Chapter 1, since the operator t̂1 obeys the Dyson equation,
involving the interaction potential V̂1.

To address the difference in reference frame from Chapter 1, we have to describe pre-
cisely the quantum states of the particles in the center-of-mass frame of the three particles.
The initial state is characterized by the momenta k1, k2 and k3 for the particles 1, 2 and 3
and for the final state we include the symbol ’ in the notation. We write K = k2 + k3 the
momentum of the center of mass of particles 2 and 3, conserved during the collision, and
k = k2 − k3 the relative momentum of the two particles. The momentum of particle 1 is
also conserved as it is not affected. With these notations, calculating the matrix element
〈k′1,k′2,k′3|t̂1|k1,k2,k3〉 boils down to computing 〈k1,K,k′|t̂1|k1,K,k〉.

The difference of reference frame is solely critical in the calculation of the matrix
elements of the propagator Ĝ0(z) of the three particles. The relevant matrix elements of
Ĝ0(z) read in this reference frame:

〈k1,K,k′′|Ĝ0(z)|k1,K,k′′〉 =
1

z − Ecm − Enon − ε(r)
k′′

, (6.19)
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where Ecm = ~2K2/2(mi+mf ) is the energy of the center of mass of the two interacting
particles and Enon = ε

(f)
k1

is the energy of the non-interacting particle, a fermion in this
example.

Finally, after following the same reasoning as in section 1.1.5, we obtain the expres-
sion

〈k1,K,k′|t̂1|k1,K,k〉 =
g′/Ω

1 + ia′
√

2mr
~2 (z − Ecm − Enon) + a′2Re

a′
2mr
~2 (z − Ecm − Enon)

.

(6.20)
where we also included a term involving the resonance range Re > 0.

This expression is the same as the one found in Chapter 1, except for the fact that
the total energy of the particles z has to be shifted by the energy of the non-participating
particle (Enon) and the energy of the center-of-mass of the two interacting particles (Ecm).
In the following, we will consider the limit of low energies, which means Re(z)→ 0 but
not necessarily the two energies mentioned just before since they are associated with
relative momenta in the center-of-mass frame thus can take any value.

By using the exact same reasoning, we can show that t̂2 is essentially the same as t̂1
because the interaction between the impurity and the fermions is not spin-dependent and
calculate t3 where we would obtain the same expression but with a, g and mf instead of
a′, g′ and 2mr.

6.2.4 Power counting
The main idea now is to see if some of the diagrams have a logarithmic divergence, similar
to the one we found in section 6.1 with our perturbative expansion of the energy.

If we calculate the diagrams using eq. (6.20) for the expression of the t̂i operators,
there is no divergence. However, this is not in contradiction with the logarithmic diver-
gence we found in the polaron energy in section 6.1 because the divergence appeared
when it was calculated perturbatively at the order two in g′. Consequently, we will do the
same expansions with the t̂i operators for i = 1, 2, which writes for i = 1 as2

〈k1,K,k′|t̂1|k1,K,k〉 =
g′

Ω

(
1− ia′

√
2mr

~2
(z − Ecm − Enon) +O(a′2)

)
. (6.21)

On the other hand, we keep the full expression for the t̂3 operators.
Since we want an expansion up to order two in g′, we will restrict ourselves to di-

agrams containing one or two t̂1 or t̂2 operators (the operators containing a fermion-
impurity interaction). To look for the diverging terms we want to find if some of the
diagrams in this Born expansion have the typical behavior

∫
dp/p.

Let us analyze the general structure of the diagram:

• On the sides, where the momenta of each particle are set to zero, the interaction
terms are reduced to a constant since Ecm = Enon = 0.

• Between two successive interactions, we have a propagation term associated with
the operator Ĝ0 with a general dependence 1/p2. If we call N the number of these
propagation terms, the total contribution of these terms will be of the order 1/p2N .

2In this expansion, we consider a′ → 0 while Re/a′ remains constant, so the term in a′2(Re/a
′) is

considered of the order two and does not appear in the expansion of t̂1 since it would be a third-order term
after multiplication by g′.
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• The operator t̂3, if located between two other operators, has a general behavior in
1/p due to the term

√
z − Ecm − Enon at the denominator. If we write k the number

of occurrences of these specific terms, their total contribution amounts to 1/pk.

• If we have N + 1 interactions, thus N propagation terms, we have to introduce in
total N − 1 different momenta, so the integration is over d3(N−1)p→ p3N−4dp.

Taking everything into consideration, the term corresponding to a diagram has the
asympotic behavior

∫
dppN−4−k. The general illustration of this reasoning has been ap-

plied to the particular diagram introduced with Fig. 6.3, and it is represented in Fig. 6.4,
where we see that the corresponding term was convergent.

Figure 6.4: Analysis of the convergence of a diagram. In green are given the contributions
of the propagators Ĝ0, in orange the contributions of the t̂3 interactions, and in purple
the contribution due to the number of independent momenta to sum over. The resulting
analysis shows that it is a second order term in g′, with no logarithmic divergence.

We first consider the case of a single fermion-impurity interaction, where t̂1−2 is ex-
panded up to order 2 in g′. If it is on the edge, the expansion will only be of the order
1 in g′ so it must be in the middle where its contribution to the integral is of the order p.
Keeping the same reasoning as before, we must have N − 4− k+ 1 = −1 so N − 2 = k.
With only one fermion-impurity interaction, we must have k = 0 so it imposes N = 2.
This yields two equivalent diagrams, corresponding to the term t̂3Ĝ0t̂1−2Ĝ0t̂3. Their sum
will be written t̂3Γ̂It̂3.

In the case of two fermion-impurity interactions, the contribution of the operators t̂1−2

amounts to a constant so in order to have a term that diverges logarithmically, we must
have N − 4 − k = −1 or again k = N − 3. Since the number k′ of interactions be-
tween fermions and impurity has been set to 2, we can have a maximum of 3 interactions
(counting the ones on the sides of the diagram) between two fermions since they cannot
be consecutive. This means that the total number of interactions N + 1 cannot exceed 5
so N ≤ 4.
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This gives two possibilities: N = 3 and k = 0 or N = 4 and k = 1. They correspond
to two types of diagrams:

• In the first case, there is a total of four interactions with no fermion-fermion in-
teraction in the center of the diagram. This imposes to have two fermion-impurity
interactions at the center and two fermion-fermion interactions on the sides for a
total of two equivalent diagrams: t̂3Ĝ0t̂1/2Ĝ0t̂2/1Ĝ0t̂3. The total contribution is
written t̂3Γ̂IIt̂3.

• In the second case, there are five interactions in total. Since we only consider
the case of two fermion-impurity interactions, there are three fermion-fermion in-
teractions. Considering they cannot be consecutive, this yields the only possible
sequence: t̂3Ĝ0t̂1−2Ĝ0t̂3Ĝ0t̂1−2Ĝ0t̂3 corresponding to four equivalent diagrams.
Their sum is written t̂3Γ̂IIIt̂3

In Fig. 6.5, we represent one example of diagram for each type of diverging term.

Figure 6.5: Representation of an example of diagram associated with each type of diverg-
ing term (I, II and III). Starting from the top, the first line correspond to the ↑ fermion, the
second line to the ↓ fermion and the last line to the impurity atom. As before, the dashed
vertical lines are interactions between the two particles that have a black solid circle on
their line.

It can be shown using this line of reasoning that every diagram at the order 2 in g′ is
not diverging more than logarithmically, which is due to the Faddeev resummation which
prevents from having two consecutive interactions that would otherwise lead to strongly
diverging terms. We notice that all the diverging terms begin and end with an operator t̂3,
and we write their total contribution as t̂3Γ̂t̂3.

Before going on, we have to remember that Γ is only diverging when we treat the two-
body T -matrices perturbatively. We will actually use the notation ΓBorn to designate the
term calculated at the second order in g′ while we will use ΓFaddeev to designate the term
corresponding to the same diagrams calculated with the full expression of t̂i operators.

6.2.5 Calculation of the diverging term

In this section we will focus on the calculation of Γ̂. We can start by expressing the
energies Ecm and Enon that appear in the expression of the ti matrix elements. For the
diagrams we want to calculate, those energies always take the same form because the
fermion-impurity interaction always happen right before or right after a fermion-fermion
interaction located on the edge of the diagram. Consequently, we only have to consider
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the case where the fermions have momenta of p and−p and the impurity has a momentum
equal to zero (cf Fig. 6.5). This leads to:

Enon =
~p2

2mf

, Ecm =
p2

2(mf +mi)
(6.22)

2mr

~2
(Ecm + Enon) = p2η(2 + η)

(1 + η)2
(6.23)

with η = mi/mf .
Finally, we can write t̂1 or t̂2 for the three types of diagram we consider as:

t̂1−2 =
g′/Ω

1−
√

η(2+η)
(1+η)2

a′p− η(2+η)
(1+η)2

(Re
a′ )(a

′p)2
=
g′

Ω
t(p) (6.24)

Then, we can write below the expressions corresponding to each of the diverging
terms.

ΓI = 2
m2
f

~4

g′

Ω

∑

p

1

p4
t(p) (6.25)

ΓII = −2
m3
f

~6

g′2

Ω2

∑

p1,p2

1

p2
1p

2
2

t(p1)t(p2)

(p2
1 + p2

2)(η+1
2η

)− 1
η
~p1. ~p2

(6.26)

ΓIII = 4
m3
f

~6

g′2

Ω3

∑

p1,p2,p3

[
1

p2
1p

2
3

4π

1/a− p2

√
η+2
4η

t(p1)

p2
1 + p2

2(η+1
2η

)− ~p1. ~p2

t(p3)

p2
3 + p2

2(η+1
2η

)− ~p3. ~p2

]

(6.27)

To calculate the Faddeev term for Γ, one has to use the full expression of t(p) that was
given in eq. (6.24). Concerning the Born term, one has to expand the expression of t(p)
up to first order in a′ for ΓI and just replace it by 1 for the other two components, so that
all three components of Γ are expanded up to order two in a′. Besides, for the term ΓIII,
we calculate the sum in the limit 1/a � 1/a′ (strongly interacting fermions), in which
case the difference between the Faddeev term and the Born term does not depend on a.

To calculate these different sums we go the continuous limit and replace the sums by
integrals. We write these integrals in the case of the Born approximation, the idea will be
exactly the same for the Faddeev terms.

ΓBorn
I = 2

m2
f

~4
g′
∫

d3p

(2π)3

1

p4
(1 + a′

√
η(2 + η)

(1 + η)2
p) = Cst +

m3
f

~6
g′2κI(η)

∫
dp

p
(6.28)

ΓBorn
II = −

m3
f

~6
g′2

η

8π4

∫
dp1
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∫
dp2
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2)(η+1

2η
) + 1

η
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2)(η+1
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)− 1
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)
(6.29)

ΓBorn
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m3
f
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1

2π5

√
4η
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∫
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p2
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ln

(
p2
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2η
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2(η+1
2η

)− p1p2

)]2

(6.30)

where we performed the angular integrations (yielding the logarithms). The last term
involves the square of an integral because the integrals over the momentum p1 and p3 are
exactly the same.
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From these equations, we conclude readily that all three terms diverge logarithmically
and we can write

ΓBorn ∼
Λ→∞

m3
f

~6
g′2κ(η) ln Λ (6.31)

where κ(η) is a constant, sum of the contributions of the three terms constituting ΓBorn,
which reads

κ(η) =

√
η3(η + 2)

2π3(η + 1)2
− η

2π3
arctan

(
1√

η(η + 2)

)
− 4

π3

√
η

η + 2
arctan

(√
η

η + 2

)2

.

(6.32)
For an impurity as massive as the fermions (η = 1), we obtain

κ(1) =

√
3

8π3
− 1

12π2
− 1

9π
√

3
' −0.0219, (6.33)

and for a 6Li-7Li Bose-Fermi mixture, we have κ(7/6) ' −0.025.
Since ΓFaddeev does not diverge at all, we can introduce a three-body characteristic

length R3 defined by

ΓBorn − ΓFaddeev =
Λ→∞

m3
f

~6
g′

2
κ(η) ln(ΛR3) + o(1), (6.34)

One could notice that the integrals we gave for the different terms of ΓBorn were diver-
gent in p = 0. The integrals for ΓFaddeev actually present the exact same divergences so
we can calculate numerically the difference between the two terms without any problem,
which allows us to get the value of R3 (see appendix D). In this perturbative approach,
R3/a

′ only depends on the mass ratio η and Re/a
′.

6.2.6 Three-body contact interaction
To cure the divergence of Born’s expansion, we now introduce a three-body hamiltonian
Ĥ3b containing a three-body contact interaction that will contribute to the total energy of
the polaron and regularize it. It reads in the most general way

Ĥ3b = g3(Λ)

∫
d3rψ̂†1(r)ψ̂†2(r)ψ̂†3(r)ψ̂3(r)ψ̂2(r)ψ̂1(r), (6.35)

This technique follows the effective field theory approach discussed in [120].
The diagram corresponding to the three-body interaction is given in Fig. 6.6: it is built

similarly as the other ones, beginning and ending with a fermion-fermion interaction, with
a three-body contact interaction in-between.

Following the calculation principles laid out in the previous paragraph, the diagram
can be written as t3Γ3bt3 with

Γ3b =
1

Ω2

∑

p,p′

−1

2ε
(f)
p

−1

2ε
(f)
p′

g3(Λ) = g3(Λ)

(
1

Ω

∑

p

1

2ε
(f)
p

)2

(6.36)

In this expression, we have the square of a highly divergent sum3 contained by its
prefactor g3(Λ).

3This also shows what would happen if we had terms with the same interaction successively: we would
get the same divergent sums but without the factor g3(Λ) to tame them.
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Figure 6.6: Diagram containing the three-body contact interaction where the three particle
lines cross at the same point. The fermions correspond again to the top two lines and the
impurity to the bottom line.

Using this three-body interaction to regularize the logarithmic divergence in ΓBorn, we
must have ΓBorn + Γ3b = ΓFaddeev. Combining this equation with eq. (6.34) yields:

g3(Λ)

(
1

Ω

∑

p

1

2ε
(f)
p

)2

= −
m3
f

~6
g′

2
κ(η) ln(ΛR3). (6.37)

6.3 Renormalization of the polaron energy

6.3.1 Expression of the polaron energy

We can now evaluate the contribution ∆E3b to the energy of the polaron. This first-order
(in g3(Λ)) perturbative expansion of this three-body energy reads

∆E3b = 〈0,0|Ĥ3b|0,0〉 =
g3(Λ)

Ω
〈0|
∫
d3r ψ̂†↑(r)ψ̂†↓(r)ψ̂↓(r)ψ̂↑(r)|0〉 (6.38)

where we labeled |0,0〉 the state where the impurity is in the state k = 0 and the fermions
are in their ground state. The right hand side term can also be written with the hamiltonian
of the many-body background. Indeed,

〈0|
∫
d3r ψ̂†↑(r)ψ̂†↓(r)ψ̂↓(r)ψ̂↑(r)|0〉 = 〈0|∂Ĥmb

∂g0

|0〉 (6.39)

where g0 is the bare coupling constant for the fermion-fermion interaction.
Using Hellman-Feynman’s theorem, and noting E0 the energy of the ground state of

the Fermi ensemble, we can write:

∆E3b =
g3(Λ)

Ω

∂E0

∂g0

=
g3(Λ)

Ω

1

g2
0

∂E0

∂(1/g0)
(6.40)

∆E3b '
g3(Λ)

Ω

(
1

Ω

∑

k<Λ

1

2ε
(f)
k

)2
∂E0

∂(1/g)
(6.41)

where we used the relation between the bare coupling g0 and the physical coupling g,
equivalent to (eq. 6.3), and the fact that E0 only depends on g and not g0. By using eq.
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(6.37), as well as the adiabatic sweep theorem we presented in Chapter 2, we can finally
write

∆E3b = −mfC2

~2Ω
g′

2
κ(η) ln(ΛR3) (6.42)

We now add this term to the energy ∆Epert calculated perturbatively, which yields the
energy ∆E of the polaron

∆E = g′n

[
1 + kFa

′F

(
1

kFa

)
− 2π

mf

mr

κ(η)
a′C2

N
ln(kFR3) + ...

]
, (6.43)

with

F

(
1

kFa

)
=

Λ→∞

2π

kF

[
~2

mr

∫

q<Λ

d3q

(2π)3

(
1

ε
(r)
q

− χ(q, ε(i)
q )

)
− mf

mr

κ(η)
C2

N
ln(Λ/kF )

]
.

(6.44)
Since we work in a regime where the polaron is the ground state and there are no

Efimov trimers, this regularization scheme is sufficient and we do not need to use non-
perturbative approaches involving Efimov physics, that would otherwise lead to a log-
periodic dependence of the three-body observables of the system [292].

The last two equations show that the second order correction to the polaron energy can
be written as the sum of two contributions: a first term which is regular and characterized
by the function F defined in eq. (6.44) and a second term, involving the logarithm of R3

and proportional to the contact C2. This expression bridges between the Fermi polaron
on the BCS side and the Bose polaron on the BEC side, on the condition of knowing the
F function, which is investigated in the next paragraph.

6.3.2 The F function: Asymptotic expansions
On the BCS limit, when the fermions are weakly interacting, we have to recover the Fermi
polaron problem that was investigated in Chapter 2, section 2.5.2, with a factor 2 due to
the two spin states. In this limit, C2 ∝ a2 → 0, so the only term from eq. (6.44) that
remains is the one with the F function. For the case η = 1, we can deduce

F

(
1

kFa
→ −∞

)
=

3

2π
(6.45)

Far in the BEC domain, the fermions pair up to form dimers and condense into a
weakly interacting BEC. The polaron energy must take the mean-field form ∆EBEC =
gadn/2 where gad is the impurity-dimer s-wave coupling constant and n/2 the dimer den-
sity. In particular, the expression of the energy does not depend directly on kF . Since in
the BEC limit, the contact reads C2/N = 4π/a, we must have

F

(
1

kFa

)
=

a→0+
8π2κ(η)

mf

mr

1

kFa
(ln(kFa) + Cad) + ... (6.46)

with then

gad = 2g′
[
1− 8π2κ(η)

mf

mr

a′

a
(ln(R3/a) + Cad) + ...

]
(6.47)

where Cad is a constant that depends on the mass ratio η, which can be obtained from the
analysis of the atom-dimer scattering problem (see Appendix D).
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This equation also sheds new light on the range of validity of our perturbative expan-
sion: in addition to the diluteness assumption kF |a′| � 1 and the condition |a′| . Re, our
expansion is only valid for |a′|/a � 1 when a > 0. It may seem odd that this condition
only appears on the BEC side (a > 0), but it is due to the fact that the energy of the Fermi
gas on the BCS side converges towards a constant in this limit (and the contact vanishes),
whereas it becomes increasingly important as we go in the BEC limit (also true for the
contact), so there is no need for such a condition on the BCS side. Under this assumption,
the atom-dimer coupling given in eq. (6.47) does not diverge when a → 0 since |a′|/a
remains small.

The result we obtained in Eq. (6.43) for the energy of the polaron can be used to
benchmark approximation schemes addressing this problem. We will present a few of
them in the next section.

6.3.3 Comparison with other theories
Polaron problem within BCS theory framework

Using a standard BCS approach, we obtain the same form for the energy of the polaron,
but with a different prefactor κ (see Appendix B). Indeed, the value κMF obtained with
BCS theory corresponds to the first two terms of the true constant κ, excluding the con-
tribution from diagrams with a fermion-fermion in the middle. This can be perfectly
understood since BCS theory excludes interactions between the Bogoliubov excitations
of the superfluid which only appeared in the third type of diagrams. For η = 1, we
have κ/κMF ' 15, showing that BCS theory fails to evaluate those beyond mean-field
corrections.

It is easy to compute the F function with BCS theory and our numerical calculations
are represented in Fig. 6.7. We recover the expected BCS limit while on the BEC side we
get a logarithmic behaviour with the wrong prefactor.

6.3.4 The atom-dimer scattering problem
Our work also gives a value for the impurity-dimer scattering length aad. It can be ob-
tained from gad using the formula gad = 2π~2aad/mad with mad = mf (2η/η + 2) the
impurity-dimer reduced mass. This yields the result

aad = aBorn

(
1− 8π2κ(η)

mf

mr

a′

a
(ln(R3/a) + Cad) + ...

)
(6.48)

with aBorn/a
′ = 4(1 + η)/(2 + η).

This was compared directly to numerical calculation reported in [293] where the au-
thors solved Skorniakov-Ter Markirosian’s equations for this problem. The comparison
between numerics and our analytical results are shown in Fig. 6.8, where we see that the
two are indeed in very good agreement. The small discrepancy (there is a maximum of
15% difference on an already small (∼ 10%) correction) can be explained due to the fact
that in [293] a UV cutoff Λ was used to regularize the equations with Λ between 2/a′ and
8/a′, rather different from our method. This cutoff could be somehow compared to the
inverse range 1/Re in our calculations but there is actually no direct quantitative way to
compare our regularization schemes, so we simply decided to take Re = 0 for the curves
in Fig. 6.8.
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Figure 6.7: Representation of the F function calculated numerically using BCS Theory.
Blue circles: numerical data points. Red curve on the negative side: BCS limit with
F (−∞) = 3/2π. Red curve on the positive side: BEC limit given by eq. (6.46) with
κMF as the proportionality constant. Green curve: same limit but using the real κ constant
instead. We see that BCS theory fails to give a quantitative result for the F function on the
BEC side but gives the right qualitative behavior.

6.3.5 Infinite-mass impurity

When mi goes to infinity, ε(i)
q → 0 and χ(q, ε

(i)
q ) = χ(q, 0) is given directly by the static

response of the superfluid. In our case, we do not have an exact expression of χ but for
equation (6.44) to actually converge, it must have the asymptotic behavior:

χ(q, ε(i)
q ) =

1

ε
(r)
q

[
1− π2κ(η)

mf

mr

C2

Nq

]
(6.49)

In the case where mi → +∞, we have mr → mf and η → ∞. Using the full
expression of κ, we also have κ(∞) = −1/4π. This gives the equation:

χ(q, 0) =
1

ε
(f)
q

[
1 +

π

4

C2

Nq

]
(6.50)

This result is in total agreement with the expression derived in [294] using operator
product expansion. We can also notice that the BCS theory would not have agreed with
this independent result since κMF(∞) = 0.

To sum up, our beyond mean-field correction of the polaron energy is confirmed by
independent theoretical approaches. In the last paragraph, we will apply these corrections
to the problem we studied in the previous chapter and see how our correction can help us
get percent-level agreement between experiment and theory.
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Figure 6.8: Representation of the correction to the atom-dimer coupling constant beyond
Born’s approximation, as a function of a′/a, for different mass ratios, compared to the
results given in [293]. Data points: numerical calculations from [293]. The colors cor-
respond to different experimentally relevant mass ratios, from bottom to top: η = 7/40
(blue), η = 23/40 (red), η = 7/6 (purple), η = 87/6 (green), η = 133/6 (orange). Solid
curves: asymptotic results from eq. (6.47), where R3 and Cad are computed numerically
and given in appendix D, in the case Re = 0. The small discrepancy at large η is probably
due to the finite range Re . a′ used in [293] to regularize the three-body problem.

6.4 Consequences on the experiment: frequency shift cor-
rections

In this section, we study the effect of this energy correction on the frequency shift mea-
sured in the counterflow experiment in the previous chapter.

First, we have to address a major difference between the situation in our experiment
and the problem that was studied in this chapter. Indeed, in our experiment we do have
|a′| � a but a′ > 0. According to the phase diagram, we should be in the dimeron phase
where dimers made of an impurity atom and a fermion should form. However, in Chapter
5, we detected no such dimeron; instead we observed the counterflow of the impurity
and the Fermi superfluid. This means that in our set-up, the system is not in its ground
state (dimeron phase) but more so in an excited state, such as the repulsive branch of the
polaronic state that was introduced in Chapter 2.

We will then make the assumption that the asymptotic behavior (|a′| → 0) of the
attractive branch a′ < 0 is the same as that of the repulsive branch (a′ > 0), and use the
same expansion of the polaron energy, simply with a′ > 0.

We recall that the formula giving the frequency shift in the counterflow experiment
reads

δωb
ωb

= −1

2

dEbf
dnf

dnf
dµf

∣∣∣∣
0

. (6.51)

In the mean-field approximation, we simply took Ebf = gbfnf which gave the theo-
retical curve we presented in section 5.2.2. We will discuss in this section the effect of
the beyond mean-field terms. Other corrections to this formula have also been evaluated



6.4 133

such as the back-action of the impurity on the fermions or the second-order term of the
expansion used to obtain eq. 6.51, but they were both assessed to be under 1% of the shift
value, negligible compared to the corrections we are going to present. We are going to
evaluate

β =
(δωb/ωb)− (δωb/ωb)

MF

(δωb/ωb)MF
(6.52)

the correction to the mean-field relative shift noted (δωb/ωb)
MF.

6.4.1 BCS side
Far on the BCS side, we have C2 ∝ a2 → 0, and the function F converges to the constant
value 3/2π, and F ′(−∞) = 0. The correction then corresponds to the already known
Fermi polaron correction, which reads here

β =
3

2π
kFa

′ (6.53)

Using this equation we get β(−∞) ' +0.5%, too small to be measured with our
current set-up.

6.4.2 BEC side: corrections to the atom-dimer scattering length
On the far BEC side, fermions form dimers and the energy takes the form ∆EBEC =
gadn/2. In the mean-field approximation, we have gadn/2 = g′n and we recover the
usual result. Here, we obtained a beyond mean-field correction to gad, which can be used
to obtain

β = −8π2κ(η)
mf

mr

a′

a
(ln(R3/a) + Cad) + ... (6.54)

We cannot really use our data points to confirm this formula because the furthest
we went on the BEC side was about 1/kF,h|a| = 0.7 with kF,h the Fermi wavevector
calculated in the harmonic trap (defined in section 3.8.2). If that formula was correct for
this data point, we would get a correction of β ' −5% which remains within the error
bars of this data point. We took Re = a′ for this evaluation.

If we managed to take data points further on the BEC side, for instance on the theoret-
ical phase separation limit (see Chapter 3), we would have 1/kF,h|a| = 1.6, a′/a ' 0.016,
so we would be in the right regime and the correction would be of the order β ' −9%.

6.4.3 Unitarity: interactions with the many-body background
At unitarity, we have to use the full expression of the energy ∆E we gave in eq. (6.43).
After some straightforward calculation, we obtain

β =
4

3
kFa

′
(
F (0)− 2πκ(η)

mf

mr

6πζc
5

(
ln(kFR3) +

1

4

))
. (6.55)

However, we do not know the F function at unitarity. To get an estimation never-
theless, we can use the value obtained with BCS theory, corresponding to the function
represented in Fig. 6.7. This value gives F (0) = 0.4 which is negligible compared to
the other term containing the logarithm. Considering that it is still the case with the real
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expression of F , we can estimate a correction of β = −5% on the value of the frequency
shift.

This is interesting because in the previous chapter, in section 5.2.2, we had two calcu-
lated results at unitarity. The first one corresponded to the equation of state (solid curve)
measured in our lab but which gives a value for the Bertsh parameter of ξ ' 0.41 higher
than the more accepted value measured at MIT of ξ = 0.376 corresponding to the second
theoretical comparison made, represented by the triangle.

Our data point at unitarity matches very well with our measurement of the EoS but
was not matching within error bars with the theoretical point using MIT data. If we apply
this −5% correction to each theory, they both match with the data point within error bars.

Conclusion
In this chapter, we have studied the physics of an impurity immersed in a Fermi su-
perfluid. After discussing the three possible phases of this system, we focused on the
polaron phase, more affected by many-body physics. We evaluated the polaron energy
up to second order in g′, the impurity-fermion coupling constant, and revealed a loga-
rithmic singularity that we regularized by encapsulating three-body interactions within a
field theoretical approach. This work unifies the framework between the Fermi polaron
and the Bose polaron, in particular with the F function from eq. (6.44) that encompasses
the physics of this crossover. Finally, we compared our theory to independent theoretical
studies, confirming our results, and we also evaluated the impact of these corrections to
the interaction energy on the counterflow experiment performed in this group.

To observe stronger experimental effects of this correction with our experimental set-
up, we have essentially two possibilities.

The first one is to go as far as possible on the BEC side to increase the ratio a′/a by
decreasing a. This is challenging experimentally, because the further we go on the BEC
side, with a → 0, the stronger the dimer-dimer losses become (γ ∝ a−2.55 [130]) and it
becomes harder to maintain a Fermi superfluid.

A second option would be to simply increase a′ to enhance the impact of the correc-
tive term across the whole crossover. In order to do that, we would need to use different
internal states for our atoms, so that we get a Feshbach resonance between the impurity
and the fermions. While it may rise new questions such as having two different values of
a′ for the interaction with each spin state, this would be a very interesting study to conduct
with our set-up.

A theoretical extent of this work would be to obtain a correction valid for a′ & a, to
be able to explore further on the BEC side, where dimers are tightly bound.

In our approach, we regularize the three-body problem by looking at the perturbative
expansion of the polaron energy (or equivalently the parameter Γ) and by using it to
deduce g3(Λ). Once we obtained g3(Λ), we derived the renormalization of the energy
and the atom-dimer scattering length, using that we should have E = gadnd on the BEC
side. A consequence of our regularization scheme is that this approach is limited to values
|a′| � a when a > 0, as we explained in section 6.4.2.

However, instead of regularizing the problem using the polaron energy, we could use
the atom-dimer scattering length. Assuming we would have calculated aad (or equiva-
lently gad) independently, we would obtain another expression for g3(Λ). The polaron
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energy would then be deduced from the regularized gadnd. This would then be valid as
long as we have dimers, meaning for a > 0. This second method for regularization would
then extend our calculation of the polaron energy for a′ & a.

The validity domain for these two approaches are represented in Fig. 6.9. We can see
that they have an area of validity in common over which both expression of g3(Λ) must
have the same asymptotic behavior.

Figure 6.9: Validity domains of two possible regularization approaches to determine g3.
Red: validity domain for a regularization using Γ calculated perturbatively, as it was
performed in this thesis. Blue: validity domain for a regularization using aad

In the regime of deeply bound dimers, this problem could become similar to that of
an impurity interacting with two bosons (each boson corresponding to a dimer) that has
been studied in [195] where a logarithmic singularity was also observed. Comparing our
problem to this one would give yet another confirmation of our theory, and it may be
further studied by our group in the future.
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Conclusion

Summary
In this thesis, we studied experimentally and theoretically the physics of an impurity im-
mersed in a Fermi superfluid, in the BEC-BCS crossover. A common feature of these
investigations is that they are always twofold: while we uncover the properties of the
impurity and its interactions with the many-body background, the impurity probes the
properties of the many-body background itself, sometimes inaccessible to other investi-
gation methods.

In Chapter 4, the measurement of the lifetime of the impurity acted as a probe of
short range correlations of the medium and gave us access to the contact parameter. Our
measurement of the two-body fermionic contact at unitarity showed a n4/3 dependence,
whose fractional exponent is a signature of many-body effects.

In Chapter 5, the measurement of the frequency shift of the oscillations of the impurity
informed us on the interactions between the impurity and the superfluid and provided a
check on the Equation of State of the Fermi gas in the crossover at the same time. Further-
more, for oscillations at high amplitudes, we observed a damping that can be explained by
introducing the notion of critical velocity, whose value is related to the dispersion relation
of the elementary excitations of the system.

Finally, in Chapter 6, we studied the system of an impurity immersed in a Fermi
superfluid and we calculated perturbatively its energy beyond the mean-field approxima-
tion that was used in the previous chapters. After regularizing the second-order term by
introducing a three-body interaction, we obtained an expression of the energy bridging
between the Fermi polaron on the BCS side and the Bose polaron on the BEC side. This
expression of the energy can be used to refine the quantitative analyses of our experimen-
tal results: for instance, in the measurement of the frequency shift, due to this calculation
we expect a 5% shift at unitarity, which is measurable experimentally. Consequently,
this beyond mean-field calculation is needed to achieve percent-level agreement between
experiment and theory, sought in many-body physics.

Theoretical extensions

Calculations beyond our approximations

The second-order perturbative calculation of the polaron energy we presented is valid
under a few assumptions, all regarding the impurity-fermion interaction. Indeed, we must
have |a′| � a, a′ � Re and kFa′ � 1.

Concerning the first approximation we listed, a first theoretical extension we can con-
sider is the one we already discussed in the conclusion of the former chapter: regularizing
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the divergence of the polaron energy by using the atom-dimer problem in order to have an
expression valid for all values of a > 0, and connect with the calculations made in [195]
for three bosons.

When a′ & Re, there is the polaron/trimeron transition, expected to be a smooth
crossover [287]. To address it, we would need to come up with a variational scheme
including Efimov physics and independent of assumptions made on the many-body back-
ground, which constitutes a great theoretical challenge.

Finally, in order to go beyond the perturbative approach in general, we would need
to calculate the many-body diagrams of the system instead of three-body diagrams. This
is a current project led by X. Leyronas. Another possibility is to evaluate the dynamical
response function χ(q, ω), as it was done using Random Phase Approximation in [273].

Interactions between polarons

In our experiment, we cannot have only one impurity atom immersed in a Fermi sea as we
considered in our theoretical calculations, but we always have a cloud with many impuri-
ties. Hence, the importance of the interactions between impurities and more generally the
collective behaviour of the bosons sometimes had to be taken into account to interpret our
experimental results. For instance, in Chapter 5, in order to evaluate the critical velocity
we considered a model taking into account the excitations that can arise in the Bose gas,
and the superfluidity of the Bose gas was necessary to explain the low damping of the
oscillations for temperatures at which the Fermi gas was no longer superfluid. Therefore,
an extension of our calculation of the polaron energy would be to include the case of
multiple impurities, taking into account the possible interaction between polarons.

In the case of two impurities in a Bose-Einstein condensate, the two polarons can bind
together and form a Bipolaron [295]. For more impurities in a Fermi sea, we already
presented in chapter 2 the theory of the partially polarized Fermi gas, interpreted as a gas
of polarons. We also gave the EoS of this system:

E =
3

5
N↑EF↑

[
1− 5

3
Ax+

m

m∗
x5/3 + Fx2 + ...

]
(6.56)

where the term Fx2 accounts for the interaction between polarons. The interactions be-
tween polarons will depend on the interactions between the fermions of the background,
and bridging between the Fermi polaron and the Bose polaron will be once again required.

The study of many impurities immersed in a Fermi sea would enable us to have a full
description of our experimental system, and constitutes a great challenge.

In the last section, we discuss the possible experimental extensions of this thesis.

Experimental outlook

The first experimental extension of this thesis is the one we already evoked in quite some
depth in Chapter 4. In that chapter, we presented some preliminary results on the contact
at finite temperature. A natural extension would be to complete these measurements, at
unitarity and in the rest of the crossover. In addition to a measurement of the contact, this
could lead to a determination of the critical temperature in the crossover, if the jump at
Tc,f that was observed at unitarity is present in the whole crossover.
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We will now focus on two possible experimental extensions that would enable to ver-
ify experimentally our calculation of the polaron energy beyond mean-field approxima-
tion. Though it is within the reach of our experimental capabilities, this correction on the
energy of the polaron remains small with our experimental parameters (less than 10%),
but in specific conditions this corrective term can be enhanced. We will here present two
such examples: the first one concerns the frequency shift of the bosonic cloud we mea-
sured in Chapter 5, and the second one deals with the location of the Bose-Fermi phase
separation we discussed in Chapter 3.

Oscillations

We already evaluated in Chapter 6 the consequences of the beyond mean-field term of
the polaron energy on the frequency shift measured in Chapter 5. We will focus in this
section on the precise ways to increase the effect of this beyond mean-field term. In the
previous chapter, we evoked two possibilities concerning our experiment:

• The first one is to go deeper on the BEC side, where the correction is proportional to
a′/a. At the theoretical limit for the stability of the mixture we discussed in Chapter
3, it would correspond to a ratio a′/a ' 0.016 and a correction of the order of 9%.

• The second one is to use different internal states, and take advantage of a Bose-
Fermi Feshbach resonance.

Let us discuss this second option in more details. The new internal states must be
compatible with having a stable BEC of 7Li near the Feshbach resonance of interest, and
the resonance must be sufficiently broad to enable a precise control of the Bose-Fermi
interactions. Moreover, we would need to be on the BCS side of the crossover for the
fermions, or at least not too far on the BEC side so that our calculations are valid.

In a private discussion with our group, Eite Tiesinga from NIST suggested a combina-
tion of internal states that could fit the different criteria. For fermions in the states |1f〉, and
bosons in the state |6b〉, Tiesinga predicts an adequate Feshbach resonance near B = 740
G. For the second fermionic species, the state |2f〉 could be used but the Fermi gas would
be far on the BEC side, in a limit |a′| > a for which our calculations are not valid any-
more, so we would use instead the state |3f〉, for which a characterization of the Feshbach
resonance can be found in [207] and predicts a broad resonance at B0 = 689.68(8) G,
meaning the Fermi gas would be strongly interacting on the BCS side. In this case, near
the 6Li-7Li Feshbach resonance, the BEC would be stable and the fermions would be
strongly interacting on the BCS side of the crossover, which seems like good conditions
to test the validity of our perturbative expansion and even determine experimentally the
F function. However, another issue would arise in that the fermionic states considered
are low-field seekers whereas the bosonic state is a high-field seeker. Therefore, trapping
both states at the same time would require to use an all-optic final trap, or at least a trap
where the axial confinement is dominated by an optical confinement, using two crossed
beams for instance, which is not a project at the time but could still be implemented in the
future.

Finally, we can consider another possibility: performing the conterflow experiment
with a different mass ratio between the impurity and the fermions, thus using different
species. This is obviously not possible with our current experimental set-up but the coun-
terflow experiment could be done in the other experiments which obtained a dual super-
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fluid Bose-Fermi mixture [256–258]. The constant κ(η) increases with η and saturates at
−1/4π ' 3× κ(7/6). We represent it in Fig. 6.10, along with dashed line corresponding
to the mass ratio of the species used in [256–258]. For instance, the experiment in Seattle
using 174Yb and 6Li [256], would have a factor of 3 on their coefficient κ compared to
us, which would make that much more impactful the second-order term of the polaron
energy.
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Figure 6.10: Black solid curve: coefficient −κ with respect to the mass ratio of the impu-
rity and the fermions η, with a logarithmic scale for the X-axis. Red-dashed curve: value
corresponding to a 7Li-6Li mixture (our group and [258]). Blue-dashed curve: value cor-
responding to a 41K-6Li mixture [257]. Green-dashed curve: value corresponding to a
174Yb-6Li mixture [256].

Phase separation of the mixture

Another example that can be affected by our calculations is the critical threshold for phase
separation of the Bose-Fermi mixture. We evaluated in Chapter 3, two cases where the
mixture becomes unstable: one on the BCS side close to a Feshbach resonance for the
bosons, and one on the BEC side where the Bose-Fermi interaction becomes less and less
negligible compared to the boson-boson and fermion-fermion interaction. We will focus
on the latter, for which we obtained the value of a critical magnetic field Bc0 ' 730 G
under which phase separation of the Bose-Fermi mixture occurs. To obtain this value, we
used a mean-field approximation to characterize the atom-dimer interaction. Using the
expression we obtain in Chapter 6 with eq. (6.47), we have a correction for the critical
magnetic field which now corresponds to Bc0 ' 740 G (the atom-dimer interaction is
increased compared to the mean-field evaluation so the phase separation occurs less far in
the BEC domain).

However, we also have to consider the effect of finite temperatures. Above the critical
temperatures of the two species, the densities become lower, and the thermal excitations
dominate the mean-field interaction terms, so the mixture is expected to be stable for
temperatures T & Tc, with Tc the highest of the two critical temperatures of the Bose and
Fermi gases. This was observed in our group, for instance in the conditions described in
Chapter 4, section 4.2.2, where we had a stable mixture at magnetic fields well beyond
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Bc0 at a temperature T > Tc. At finite temperature, under Tc, the effect of the temperature
is non trivial. This was investigated recently in [296] with a new approach, based on a
generalization of Popov theory [297–299] to obtain the energy at finite temperature. In
this paper is studied the case of a mixture of two Bose gases, with identical bosons in two
different internal states, where both species are condensed thus for T < Tc. This does not
correspond exactly to our situation where we have a mixture of a BEC of 7Li and a BEC
of dimers of 6Li, but is sufficiently close to share the same qualititative behavior. In this
framework, it was found that there is a magnetic phase transition occurring at T ∗ < Tc
characterized by a phase separation of the system for T > T ∗, with T ∗ depending on
the different interactions between bosons in the same or different internal states. This
unstability is revealed by the negative sign of the magnetic susceptibility4 of the system for
T > T ∗. This prediction, applied to our system, corresponds to the following behavior:

• For B < Bc0, we expect the mixture to be always unstable for T . Tc.

• For B > Bc0, we expect the mixture to be stable for T < T ∗ and unstable against
phase separation for T ∗ < T < Tc.

Using the equations of [296], we can for instance evaluate the onset of phase sepa-
ration at T = Tc/2 to be around B ' 50 G. Of course, this evaluation is only correct
when the two bosonic species have the same mass which is not the case in our experiment
(md/mb = 12/7).

To check our beyond mean-field predictions and the prediction of phase separation at
finite temperature, the phase separation has to be located experimentally. In order to do
so, several methods could be used. A first possibility is to measure the critical velocity of
the counterflow of the two dimers, since we noted in Chapter 5 that the critical velocity
goes to zero at the same time there is a phase separation, as it was done in [278]. Another
possibility is to look at the boson losses: near B = Bc0, we are far from the Feshbach
resonance for the boson-boson interaction so the bosonic losses will be completely dom-
inated by the three-body recombination between two fermions and a boson as studied in
Chapter 4. If the two superfluid clouds were separated, these losses would disappear, and
we would be able to notice a significant drop in the bosonic loss rate. This method has
been used in [300] with a Bose-Fermi mixture of 41K and 6Li. The three-body losses in
their system mainly involved recombination between two bosons and a fermion. They
found that the drop in the loss rate was not sharp but rather smooth due to residual overlap
of the two clouds and kinetic energy terms in the total energy, but it was nevertheless a
signature of the demixing of the two clouds.

However, whatever the method considered, this study requires to maintain a dual su-
perfluid on the far BEC side, where dimer-dimer losses in the Fermi gas become notably
strong, which constitutes an experimental challenge that has yet to be overcome, mainly
due to the dimer-dimer losses which are proportional to a−2.55

ff and become very important
this deep on the BEC side. An alternative would be to use different internal states such
as the one we described in the previous section as a way to increase a′. In this case we

4The magnetic susceptibility κM is defined by:

∂2F/V

∂m2

∣∣∣∣
m=0

(6.57)

with m = n1 − n2 the magnetization density, difference of the density of each species (labeled here by the
indexes 1 and 2).
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would be close to a Feshbach transition for the Bose-Fermi mixture so phase separation
could also be observed, though this time the fermions on the BCS side of the crossover
thus corresponding to a very different situation than the one we described.



Appendix A

Determination of the fermionic peak
density

In order to obtain a dimensionless contact we can compare with other experiments, we
need to be able to determine the fermionic peak density at finite temperature, which is
not trivial for a harmonically trapped gas. In this appendix, we present a method to
evaluate this peak density that can be used for any temperature, everywhere in the BEC-
BCS crossover.

A.1 The inverse Abel transformation
We give in Fig. A.1 an example of a typical doubly-integrated profile from which we want
to extract the peak 3D density.
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Figure A.1: Typical doubly integrated density profile obtained at relatively high temper-
ature, after summation of the integrated density profiles of the two spin states, given in
units of the harmonic oscillator length aho =

√
~/mfωf . This corresponds to a total

number of fermions Nf ' 200× 103. The corresponding absorption image was taken in
the presence of approximately Nb ' 30× 103 bosons. Measuring the temperature thanks
to the bosons, we obtain T ' 800 nK, above the critical threshold for the condensation of
the Bose gas and corresponding to T/TF ' 0.6.

A first method that can be used to determine the peak density of an atomic cloud is

143



144 Chapter A

the inverse Abel transformation. This method was used for instance to determine the 3D
density for the measurement of the EoS of the unitary Fermi gas in [136, 176, 224, 301],
or the measurement of the unitary contact [235,236]. It can be applied not only at unitary
but actually anywhere in the BEC-BCS crossover, as long as the trap has a cylindrical
symmetry. However, we will see that for a noisy profile such as the one in Fig. A.1, this
method cannot be used.

The Abel transformation corresponds physically to the integration of an axially sym-
metric image along one direction. The inverse Abel transform consists in reversing this
process to obtain the 3D density from the 2D integrated density. Since in our set-up the
pictures of the Fermi gas are not radially resolved (see Chapter 3), we actually have to
apply this process twice to get the 3D density from the 1D doubly-integrated density.

In the case of a spherical potential, the inverse Abel transformation would read:

n3D(ρ =
√
x2 + y2, z) = − 1

π

∞∫

ρ

dñ2D(y, z)

dy

dy√
y2 − ρ2

(A.1)

ñ2D(R =
√
y2 + z2) = − 1

π

∞∫

R

dn1D(z)

dz

dz√
z2 −R2

(A.2)

whereas for an ellipsoidal cloud we just need to change the scaling of the z axis with a
factor ωz/ωr to be able to use these transformations.

These transformations are exact, however we have two main issues arising from them:
we need to use the second derivative of a very noisy density profile (the noise is even more
important at finite temperature than at T = 0) and the divisions by the factors such as√
z2 −R2 make the final profile especially noisy at the center. In conclusion, we cannot

apply this method directly to our data to get the peak density without pre-processing it
(artificial smoothing, high-order polynomial fits) and we do not want to resort to this.

A.2 Peak density of the unitary fermi gas

At unitarity, we can actually take advantage of the fact that an EoS has been measured in
other groups to determine the peak density in our cloud.

A.2.1 The EoS of the Unitary Fermi gas

The Fermi gas at finite temperature has been studied experimentally extensively [181],
and the EoS of the Fermi gas was measured experimentally with high precision in [136]
at Unitarity. The corresponding EoS is represented in Fig. A.2, where they showed the
pression and the density as functions of the temperature, it is in very good agreement with
diagrammatic Monte-Carlo theory [302]. To obtain their EoS, the MIT team measured the
pressure using the integrated density as described before, and obtained the non-integrated
density through the inverse Abel transformation of the column density. From these mea-
surements, the critical temperature for superfluidity was evaluated at Tc/TF = 0.167(13)
(with TF the local Fermi temperature) by observing simultaneously a jump in the com-
pressibility, a jump in the specific heat and the vanishing of the condensed fraction at this
temperature.
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Figure A.2: Density (left panel) and pressure (right panel) of a unitary Fermi gas versus
µ/kBT , normalized respectively by the density and pressure of a noninteracting Fermi
gas at the same chemical potential µ and temperature T . Red solid circles: data points
measured in [136]. Blue dashed curves: low-temperature behavior with ξ = 0.364 (up-
per), 0.376 (middle), and 0.388 (lower). Black dashed curve: low-temperature behavior
with ξ at upper bound of 0.383 from [303]. It is compared to three theoretical calcula-
tions of the EoS: diagrammatic Monte Carlo calculation [302] for density / pressure (blue
solid squares / blue curve, with blue dashed curves denoting the uncertainty bands), self-
consistent T-matrix calculation [140] (open black squares) and lattice calculation [304]
(open green circles). The solid green line on each panel corresponds to the third-order
Virial expansion, it is correct at high temperatures but fails as expected as the temperature
decreases. The orange star and blue triangle on the right panel correspond to the critical
point from the Monte Carlo calculations, [305] and [306] respectively. The MIT data is
also compared to previous experimental data [181] (solid diamonds) and [307] (purple
open diamonds). At the bottom of each panel the experimental/theoretical data from MIT
for the ideal gas can be seen (green solid circles / black fine dashed line).

More recent theoretical works relying on Feynman diagrammatic calculations [308]
have been performed, agreeing very well with the experimental data. Thanks to F. Werner
who contributed to this paper, I had access to their data for the normalized pressure P and
the normalized density Υ, defined by

P(βµ) = P (µ, T )βλ3
th (A.3)

Υ(βµ) = n3D(µ, T )λ3
th (A.4)

where λth =
√

2π~2/mkBT is the thermal de Broglie wavelength and β = 1/kBT .

A.2.2 Using the EoS to determine the peak density

We start with a doubly-integrated profile, such as the one that was given in Fig. A.1.
We recall that thanks to the doubly-integrated density, we have directly access to the
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pressure in our Femi gas, using

P (µ(z), T ) =
mfω

2
rad

2π
n(z) (A.5)

By writing the reverse of the P function as P−1, we have :

βµ(z) = P−1

(
βλ3

th

mfω
2
rad

2π
n(z)

)
(A.6)

Since we have numerical data points for P , we have easily access to P−1. In order to
apply this last transformation, we need to interpolate the data points. Since there are
many data points and no sudden variations in the EoS, we consider this interpolation to be
of high fidelity. In addition, we need the value of the temperature that we obtain thanks
to the bosonic gas.

Using the LDA approximation, we then have:

βµ(z) = β ×
(
µ0 −

mfω
2
zz

2

2
− gbfnb(z)

)
(A.7)

with the last term accounting for mean-field boson-fermion interactions, negligible in our
case.

By applying the P−1 function to our profile (multiplied by the right quantity) as in
Eq. A.6, we obtain a parabola (corrected by the bosonic mean-field term) which contains
all the information that we need. The offset term of the parabola gives us the fugacity
at the center of the cloud whereas the term of degree 2 gives us a confirmation on the
temperature obtained through the bosonic profile. Unfortunately, seeing the noise we
have on our profiles (see Fig. A.3), it is not reasonable to retrieve the term of degree
2: the standard deviation for this term is estimated to be over 300%. The offset term,
however, can be determined quite precisely, with a set of basic constant fits f(z) = A0

performed around the maximum. We do several fits because we vary the window ∆ of
values over which the fit is performed (ie for a window ∆ we only use the part of the
profile with |z| < ∆ to do the fit) with 0.1 ≤ ∆/R ≤ 0.2, where R is the spatial extent of
the cloud in the z direction. This window was optimized by performing a series of fits on
simulated noisy parabolic profiles, with a noise chosen to be similar to the one we have in
our data. We average the value A0 obtained by this different fits to obtain the fugacity at
the center of the cloud. We expect a systematic error of around 3% for this fit (due to the
window) that we take into account for determining the density.

Once we obtain the value βµ(0), we can use the other part of the equation of state
to obtain the density by using Υ(βµ(0)). In the example of Fig. A.3, we obtain a peak
density of n3D(0) = 0.8× 1013 cm−3.

This method can be applied at unitarity, for any temperature that falls in the range
of the experimental and theoretical data that was taken. This typically fails for very
low temperatures but can be used around the critical temperature for superfluidity and
above. However, this method does not work for data taken anywhere else in the BEC-
BCS crossover, so we came up with an alternate method.
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Figure A.3: Representation of the fugacity βµ along z, centered in 0, obtained from the
doubly-integrated profile given in Fig. A.1. The red line corresponds to the fit of the max-
imum of the parabola, taken with a window of 0.2R. As soon as |z| > 100aho, the profile
cannot be used because values of the fugacity below−1.5 correspond to extrapolations of
the equation of state (thus the very small signal-to-noise ratio in this domain).

A.3 A new method: using the curvature of the integrated
profile

A.3.1 Principle of the method
In order to determine the density at the center of the cloud and the local Fermi temperature,
we can use the doubly integrated profiles that we normally get for image analysis.

We consider a doubly integrated profile obtained after a time of flight t, integrated
along the x and y directions as it is the case for our Fermi gas:

n(z) =

∫ ∫
dxdy n

(√
x2

R2
x

+
y2

R2
y

+
z2

R2
z

, t

)
(A.8)

with Ri for i = x, y, z the respective sizes of the cloud in each direction which also
depend on t.

We make a first variable change ρ =
√

x2

R2
x

+ y2

R2
y

and z̃ = z/Rz and rewrite the
integrated density as:

n(z) = 2πRxRy

∫
dρ n

(√
z̃2 + ρ2, t

)
(A.9)

We finally make the variable change s = ρ2 + z̃2 and we can write:

n(z) = 2πRxRy

∫ ∞

z̃2
ds n

(√
s, t
)

(A.10)

Then,

dn

d(z2)
= −πRxRy

n(z/Rz, t)

R2
z

(A.11)

1

z

dn

dz
= −2π

RxRy

R2
z

n(z/Rz, t) (A.12)
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We are only interested at the density at the center and at t = 0, so we introduce the
expansion factors λi of the cloud along the direction i = x, y, z after a time of flight t.

1

z

dn

dz

∣∣∣∣
0

= −2π
Rx(0)Ry(0)

R2
z(0)

λxλy
λ2
z

n(0, t = 0)

λxλyλz
(A.13)

1

z

dn

dz
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0

= −2π
ω2
z

ω2
r

n(0)
1

λ3
z

(A.14)

with ωi the trapping frequency along direction i before the release of the trap.
This last expression yields the peak density of the Fermi gas:

nf (0) = − 1

2π
λ3
z

ω2
r

ω2
z

1

z

dn

dz

∣∣∣∣
0

(A.15)

The time of flight for fermions is typically τf = 0.4 ms, so we are in the limit τfωz �
1 and we can write simply λz =

√
1 + ω2

zτ
2
f ' 1.

Therefore, we have to calculate the quantity C = 1
z

dn
dz

∣∣
0

which in the case of a maxi-
mum coincides with the second derivative as well as the curvature of the integrated density
taken at its center, in order to determine the peak density of the cloud.

To evaluate this curvature, we first do some tests on data taken at T = 0 to calibrate
our method and then we apply it to determine the contact at higher temperatures.

A.3.2 Calibration at T=0
In our experiment, as we explained in Chapter 3, we need to calibrate the number of atoms
obtained from the integrated profiles. We detailed the method used for calibration, where
we consider the spatial extent of the profile to be reliable but not the total count, so we
multiply our integrated density by a factor κ6 so that the size of the cloud remains the
same but the number of atoms is adjusted and both quantities can finally coincide. The
true numberNtrue is linked to the number obtained through integration of the profilesNint

by the simple relationNtrue = κ6Nint. However, the spatial extent of the gaz, given by the
Thomas-Fermi radius at T = 0 has the dependence RTF ∝ N

1/6
true, which is not the best to

determine the calibration factor with precision.
Since the set of data we used is relatively older than the one used to determine the

values of the calibration factor determined in Chapter 3, not knowing what might affect it,
we decided to perform a new calibration, using the curvature C. The principle is basically
the same but there is a subtlety as the curvature obtained from the profile changes if we
multiply it by κ6, contrary to the Thomas-Fermi radius. Indeed, for a fixed Thomas-Fermi
radius, we understand that multiplying the profile by κ6 will multiply the curvature by the
same factor. Let us write Cexp the curvature obtained with the Thomas-Fermi fit to the
non-modified doubly integrated profile after a fit using a Thomas-Fermi profile and Ctrue

the ”true” curvature. If κ6 is well determined then

Ctrue = κ6Cexp. (A.16)

The peak density of a unitary Fermi gas containing Nf atoms at T = 0 is given by the
equation:

nf (0) =
8
√
Nf

π2ξ3/4
√

24

1

a3
ho

(A.17)
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with aho the typical size of the harmonic oscillator. We can then given an expression of
the theoretical curvature in respect with the number of fermions:

Ctrue(Nf ) = −ω
2
z

ω2
r

4
√
Nf

π3ξ3/4
√

24

1

a3
ho

(A.18)

Therefore, the true curvature can be written as

Ctrue = Cth(Ntrue) =
√
κ6Cth(Nint) (A.19)

.
Finally, we can use eq. (A.16) and (A.19) to obtain the calibration factor as:

κ6 =

(
Cth(Nint)

Cexp

)2

(A.20)

The big advantage of this method is that the curvature depends on N1/2, which is far
more sensitive than N1/6, hence more reliable. This calibration method can be used if
there are bosons present but with adjustments on the theoretical formula for the central
density. After analysis of several set of data with different trapping frequencies, we ob-
tained a calibration factor κ6 = 2.4(5), compatible with the former value within error
bars. By construction, by using this calibration factor the relation between the corrected
curvature and the peak density is always verified.

While it was important to determine this calibration factor, the main interest of cal-
ibrating at zero-temperature is to test a method to determine the curvature that does not
rely on the precise knowledge of the shape of the integrated profile. At high temperature
at unitarity, even if the shape of the profile is known, it involves the ratio of two Polylog
functions 1, and the fits to our noisy profiles are not reliable and anywhere else in the
BEC-BCS crossover, the shape of the profile is not precisely known at finite temperature
anyway.

To this purpose, we test the measurement of the curvature using a polynomial fit. To
perform these fits, we have to consider two parameters. The first one is the degree of this
polynom: since it is a symmetric profile, we expect an expansion with only even terms:
n(z) '

z≈0
A0 + A2z

2 + A4z
4 + A6z

6 + .... The other one is the extent of the profile over
which we want to perform this fit, what we call the window ∆. To decide which of these
parameters we want to chose, we tested fits of a simulated noisy Thomas-Fermi profile
with different windows and for the polynomial degrees up to 6. The results are presented
in Fig. A.4.

We see from Fig. A.4 that the best choice is a polynom of degree 4 for a window
∆/RTF between 0.8 and 0.9. We will calculate the curvature for several ∆ corresponding
to this domain and then take the mean as the curvature. We can note that the difference
between the curvature calculated with this polynomial profile and the real one for this
window is expected to be about 3 % (due to the divergence from the polynomial expan-
sion).

1At higher temperatures, the general expression for the doubly-integrated profile can be expressed as :

n(z) = n(0)
Li5/2

(
− exp

[
q− z2

R2
z
f(eq)

])

Li5/2(−eq)
(A.21)

with f(q) = 1+q
q ln(1 + q) and q = βµ the fugacity and Li the PolyLog function.
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Figure A.4: Left: Simulated noisy Thomas-Fermi profile. The random noise is chosen to
have an amplitude of 20% of the max value at the center and 50 % for the background,
to reproduce more closely the experimental profiles. Right: Ratio of the ”true” curvature
(calculated from the non-noisy profile) over the fitted curvature, depending on the win-
dow ∆ over the Thomas-Fermi radius of the profile R. This ratio is best when equal to
one, corresponding to the pink straight line. The red curve corresponds to a polynom of
degree 2 : the area where the fit would be optimal is dominated by the noise, this choice
is not reliable. The blue curve corresponds to a polynom of degree 6 : even if we tend
approximately to the right curvature, the standard deviation remains quite high, because
the fit tries too hard to follow irrelevant noise fluctuations. Finally, the green curve cor-
responds to a polynom of degree 4: it is the best choice, for a window ∆/R between 0.8
and 0.9, for which the ratio is reliably steady and close to 1.

On Fig. A.5, we show an example of the determination of the calibration factor and
the peak density using these two methods on a doubly-integrated density profile obtained
experimentally.

To confirm the validity of this method, we compared the peak density determined
using the curvature calculated from the Thomas-Fermi fit and the polynomial fit on the
sets of data that were used to determine the calibration factor. By compiling all the results
(' 150 images), the mean ratio of the central density obtained through a Thomas-Fermi
fit and a polynomial fit is : nTF

npoly
' 1.04(05), consistent with the estimations made on

simulated profiles, confirming the validity of this alternate method.

A.3.3 Measurements at finite temperature

At higher temperatures, we only use polynomial fits to determine the curvature. Similarly
as in the previous section, we generated simulated noisy profiles using eq. (A.21), for
several values of the fugacity contained in a reasonable range, and determined that the
best window to perform the fit was again ∆/R ' 0.8 − 0.9, and that we would in this
case systematically underestimate the curvature by around 4%, a correction that we will
apply to our calculations.

A typical profile is given in Fig. A.6, along with a curve giving the density for several
windows. We see that the value of the central density is indeed stable in the domain
∆/R ' 0.8− 0.9, and the final value of the central density will be taken as a mean of the
density values obtained in this range.

We can then use this method for our whole data set at finite temperature and compare
it to the first method. This is gathered in Fig. A.7. We see that we have a very good
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Figure A.5: Top left: doubly integrated profiles for the top (blue) and bottom (red)
fermions, fitted with a Thomas-Fermi profile. We also use a window for the fit but we
always keep points corresponding to the background in order to have a well-defined base-
line. Top right: total (top + bottom) doubly-integrated density fitted with a polynomial fit.
Bottom left : calibration factor according to the window taken to perform the Thomas-
Fermi fit, we see it is not sensitive to the window. Bottom right: densities obtained with
the Thomas-Fermi fit (purple) and the polynomial fit (green), according to the window of
the fit. The two fits give out approximately the same result in the range ∆/R ' 0.8− 0.9.

Figure A.6: Left: typical density profile (blue) with a polynomial fit (red) taken with a
window ∆/R = 1, which is outside the range we consider to determine the curvature.
Right: Calculated central density in respect with the window taken to perform the fit. We
see that the value becomes stable in the range mentioned in the text.

correspondence between the two methods which strongly reinforces our confidence in the
use of polynomial fits to determine the curvature, the only method that can be used in any
condition (for any temperature, through the BEC-BCS crossover or for any boson-fermion
interaction).
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Figure A.7: Comparison of the density obtained through the equation of state (X axis)
and the curvature measurements (Y axis). We fit with a linear curve and obtain a slope of
1.00(02), showing the two methods give consistent results.

Conclusion
We have detailed here a method to determine the fermionic peak density at finite tem-
perature, in the BEC-BCS crossover, in presence or not of a Bose gas, by measuring the
curvature of the integrated profiles. We compared it to a method relying on the EoS of
the unitary gas and concluded that they were consistent, confirming the robustness of our
method.



Appendix B

BCS Theory

In this appendix, we present some elements of BCS theory relevant to this thesis. We start
by introducing the BCS model and then we focus on the determination of the response
function described in Chapter 6 and obtaining the polaron energy up to second order using
BCS theory.

B.1 Elements of BCS Theory

We consider a two-component Fermi gas of spin 1/2 fermions of mass mf , with equal
populations in each spin state, with a scattering length a. Within BCS theory, the fermionic
medium is described by the mean-field Hamiltonian:

Ĥmb =
∑

k,σ

ξkĉ
†
kσ ĉkσ + ∆∗

∑

k

ĉk↑ĉ−k↓ + h.c. (B.1)

with ξk = ε
(f)
k − µ, µ is the chemical potential, and the gap ∆ is defined by

∆ =
g

Ω

∑

k

〈ĉ−k↓ĉk↑〉 (B.2)

with gff = 4π~2a/mf the coupling constant in the mean-field approximation.
To diagonalize the Hamiltonian, we introduce the Bogoliubov operators γ̂k± defined

by:

ĉk↑ = ukγ̂k+ − vkγ̂−k− (B.3)
ĉk↓ = ukγ̂k− + vkγ̂−k+, (B.4)

with

uk =

√
1

2

(
1 +

ξk
Ek

)
, vk =

√
1

2

(
1− ξk

Ek

)
(B.5)

and Ek =
√
ξ2
k + |∆|2.

In this representation we have the diagonalized Hamiltonian Ĥmb =
∑

k,±Ekγ̂
†
k±γ̂k±.

We see thatEk corresponds to the energy of the excited states, always greater than the gap
∆, the minimum energy needed to break a pair.
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Two parameters have yet to be determined, the gap ∆ and the chemical potential µ, so
we need two equations. The first one is the gap equation, that can be written as

∆ =
g0

Ω

∑

k

ukvk (B.6)

The second one is the equation giving the total number of atoms, given by

Nf =
1

Ω

∑

k

2v2
k (B.7)

Using these two equations, we obtain ∆ and µ that we represent in Fig. B.1.
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Figure B.1: BCS parameters µ (red squares) and ∆ (blue circles) in the BEC-BCS
crossover, calculated using eq. (B.6) and (B.7). Solid orange curves (Solid cyan curves)
correspond to the asymptotic behavior of the chemical potential (gap) in the BCS and
BEC limits.

On Fig. B.1, we also represented the asymptotic behaviors of the chemical potential
and the gap in the BCS limit and the BEC limit that we list below [47, 309]:

• BCS limit: µf ≈ EF and ∆ ∼ EF ×8e−2 exp(−π/2kF |a|). The chemical potential
corresponds to the Fermi energy and the gap decreases exponentially to zero, which
coincides with the ideal Fermi gas.

• BEC limit: µf ≈ −~2/ma2, corresponding to the binding energy of the dimers and

∆ ∼
√

16

3π

EF√
kFa

. (B.8)

B.2 Perturbative expansion of the polaron energy within
BCS Theory

This section presents a derivation of the results presented in Chapter 6 within the simpli-
fied framework of BCS mean-field theory. We first determine the response function χ,
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then the F function and finally we compare it to the exact expressions obtained in this
thesis.

With BCS theory, we do not expect to obtain quantitatively correct results but only a
qualitative check of the behavior of the different relevant functions. Therefore, we only
consider the simple case mf = mi = m, corresponding to η = 1, a ratio close to the mass
ratio we have with our Lithium experiment (7/6). We also write a′ the scattering length
associated to the impurity-fermion interaction.

B.2.1 Mean-field compressibility

As described in Chapter 6, second order perturbation theory connects the polaron energy
shift to the fermionic superfluid dynamical response function χ(q, E) defined by

χ(q, E) =
1

N

∑

α

|〈α|ρ̂−q|0〉|2
Eα − E0 + E

. (B.9)

To derive the BCS expression of the response function, we express the matrix elements
appearing in the response function

〈α|ρ̂−q|0〉 =
∑

σ

〈α|ĉ†k−q,σ ĉk,σ|0〉 (B.10)

using the Bogoliubov creation and annihilation operators. We obtain readily

χMF(q, E) =
1

N

∑

k

2u2
k−qv

2
k + 2ukvkuk−qvk−q

Ek + Ek−q + E
, (B.11)

where we have used the fact that the excited states |α〉 correspond to pairs of Bogoliubov
excitations, hence Eα − E0 = Ek + Ek−q. We use the notation MF to signify that this
result is only valid in BCS theory, a mean-field theory.

B.2.2 Perturbative calculation of the energy

In order to calculate the polaron energy shift, we need to consider the perturbative devel-
opment we obtained in Chapter 6, adapted to BCS theory:

∆EMF
pert =

[
g′n+

g′2n

Ω

∑

q

(
1

ε
(r)
q

− χMF(q, ε(i)
q )

)]
(B.12)

After converting sums into integrals and performing the angular integrations, this ex-
pression becomes

∆EMF
pert = g′n+

g′2

8π4

m

~2

∫
k2dk

∫
q2dq

[
4v2

k

q2
−

2u2
qvk

2 + 2ukvkuqvq

kq
ln

(
Ek + Eq + ~2(k+q)2

2m

Ek + Eq + ~2(k−q)2
2m

)] (B.13)
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In order to describe the behavior of these integrals for high momentum k, we perform
the variable change k → u = (k/kF )/

√
|∆|/EF , q → v = (q/kF )/

√
|∆|/EF and we

get

∆EMF
pert = g′n

[
1 + kFa

′ 3

2π

∣∣∣∣
∆

EF

∣∣∣∣
2

I(Λ/kF )

]
(B.14)

with I corresponding to the integral left to calculate in Eq. (B.13) that depends on the
cut-off Λ and also on the ratio µ/|∆|.

In the limit u, v � 1, we can simplify greatly the expression of the integral I . First,
we can see that the terms u2

k and v2
k can be rewritten, in this limit:

u2
k ∼ 1, v2

k ∼
1

4

|∆|2
ξ2
k

→ 1

4u4
(B.15)

From this last expression, we can also get the fermionic two-body contact C2 in BCS
theory. Indeed, using the property of momentum distribution [145]:

n↑(k) ∼
k→∞

n↓(k) ∼
k→∞

C2

k4
(B.16)

and knowing that in BCS theory we have n(k) = n↑(k) + n↓(k) = 2v2
kΩ, we see that we

have the right dependence for the momentum distribution and we can extract the contact

C2

N
=

3π2

4

∣∣∣∣
∆

EF

∣∣∣∣
2

kF . (B.17)

In the high momentum limit, using the simplified expressions of uk and vk derived in
eq. (B.15), we obtain for I:

I(Λ/kF ) =

∫
du

u

∫
dv

u

[
1− 1

2

(v
u

+
u

v

)
ln

(
1 + v/u+ (v/u)2

1− v/u+ (v/u)2

)]
. (B.18)

The second integral (over v/u) converges towards 2π4κMF and the first integral (over
u) gives the logarithmic divergence:

I = 2π4κMF(ln(Λ/kF ) + ...) (B.19)

with κMF:

κMF =

√
3

8π3
− 1

12π2
. (B.20)

In Chapter 6, we found:

κ(1) =

√
3

8π3
− 1

12π2
− 1

9π
√

3
. (B.21)

The two results are very similar except for the last term of κ(1) which does not appear
in the mean-field approach because BCS theory does not account for interactions between
excitations of the superfluid, whereas the missing term corresponds to the third diagram
in Fig. 6.5 from Chapter 6, which is the only diagram that features an interaction between
two fermionic excited states. This missing term is actually the most important one in κ,
which is why we get a ratio κ(1)/κMF ' 15.
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B.2.3 The F function
We demonstrated analytically that there is again a logarithmic divergence of the second
order term of the expansion of the polaron energy. By combining equations (B.14), (B.17)
and (B.19), we get the expression of the energy calculated up to second order in perturba-
tion using BCS theory :

∆EMF
pert = g′n

[
1 + kFa

′FMF

(
1

kFa

)
+ 4πκMFa′

C2

N
ln(Λ/kF )

]
(B.22)

withFMF a function that can be computed numerically throughout the BEC-BCS crossover
by calculating the difference between the exact expression of the integral I defined in Eq.
(B.13) and the logarithmic term we obtained in Eq. (B.19). In particular, these numer-
ical calculations show that this function does not depend on the cut-off but only on the
parameter 1/(kFa).

Then, if we introduce a renormalization with a three-body interactions, similarly as
what was done in Chapter 6, the energy reads

∆EMF = g′n

[
1 + kFa

′FMF

(
1

kFa

)
− 4πκMFa

′C2

N
ln(kFR3) + ...

]
, (B.23)

We get a very similar expression to the one we found in Chapter 6, only we replace F
and κ(1) by FMF and κMF.

The function FMF is represented in Fig. B.2, and we can observe the two asymptotic
behaviors on the BCS and BEC sides:

• In the BCS limit we recover once again the Fermi-polaron, hence FMF(−∞) =
3/2π for η = 1.

• In the BEC limit, we get a behavior consistent with the energy of the Bose polaron
gadn that does not depend on kF :

FMF

(
1

kFa

)
= 16π2κMF ln (kFa)

kFa
+ ... (B.24)

Since the value we get for the FMF function at unitarity does not deviate much from
the values on the BCS side (see Fig. B.2) which have the same asymptotic behavior as F
in Chapter 6, we used in a first approximation the value of FMF(0) at unitarity instead of
the (unknown) value F (0) in the calculation of the frequency shift at unitarity in section
6.4.

In conclusion, BCS theory predicts the correct qualitative behavior for the polaron
energy shift but is quantitatively wrong. The discrepancies between the BCS calculations
and the calculations led in Chapter 6 can be explained by the absence of interactions
between the excitations of the superfluid in BCS theory.
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Figure B.2: Blue dots: Representation of the function FMF through the crossover for
η = 1. Red curves: Asymptotic behaviors described in the text on the BCS side:
FMF(−∞) = 3

2π
, and the BEC Side : FMF(X) ' 16π2κMFX ln(1/X) + A0X with

A0 an adjustable parameter found out to be, after optimization, A0 ' 1.1. Green curve:
asymptotic behavior on the BEC side using the true value of κ, Cad and R3 (the last two
are given in Appendix D).



Appendix C

Phase diagram of an impurity
immersed in a Fermi superfluid

We detail in this appendix the construction of the phase diagram of an impurity immersed
in a Fermi superfluid, depending on the interaction between the impurity and the fermions
of the superfluid (chracterized by the scattering length a′) and the interaction between
two fermions of the superfluid (characterized by the scatering length a). We consider our
system to be in the vicinity of narrow Feshbach resonances of resonance range Re > 0
for the fermion-impurity interaction and the fermion-fermion interaction. To simplify the
study we consider that the fermions and the impurity all have the same mass m.

We recall the three possible phases of the system: for a′/Re → 0− we have the polaron
phase, for a′/Re → 0+ it is the dimeron phase (impurity atom + fermion) and the domain
Re/a

′ → 0 corresponds to the trimeron phase (impurity atom + ↑ fermion + ↓ fermion).
To build the phase diagram, we will first study each phase separately before discussing

the equation of the different frontiers separating the different phases. The energy of the
dimeron and the trimeron will be evaluated by an analysis of the two-body and the three-
body problems respectively since their binding energy is much bigger than the Fermi
energy in each case (as discussed in the introduction of Chapter 6). This treatment is
valid as long as they are not resonant with the atomic continuum, when their structure is
not really affected by the many-body background.

The boundaries of the phase diagram that we will determine are only semi-quantitative
and model-dependent, but still constitute a pedagogical discussion of the general behavior
of the system.

C.1 Polaron
In the case of an impurity immersed in a two-component Fermi gas, the nature of the
polaron quasiparticle depends on the interactions between the fermions of the superfluid.
As long as this interaction remains weak, which is the case in our experiment abf � aff ,
we can use a mean-field approximation to determine the energy of the polaron EP . We
can write in two particular cases:

• BCS side, Fermi polaron: EP = ESF + g′n with ESF the ground state energy of
the superfluid without the impurity and n the density of fermions.

• BEC side, Bose polaron: EP = ESF + gadn/2 with ESF with gad the coupling
constant between an impurity atom and a dimer of two fermions.

159
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This stops being valid when a′ becomes stronger, but since we expect the transition
between the polaron and the trimeron to be a mere crossover, its exact position is not
relevant experimentally, so we will remain within the hypothesis that the energy of the
system in the polaron phase is solely a mean-field correction to the energy of ground state
of the superfluid alone.

C.2 Dimeron

In the case of a narrow Feshbach resonance, in the dilute limit na′3 � 1, the energy E ′2
of a dimeron can be written in general as [310]:

E ′2 =
−~2

m

(
−1 +

√
1 + 4Re/a′

2Re

)2

. (C.1)

Close to the Feshbach resonance, in the limit Re/a
′ � 1, we recover the universal

result E ′2 = ~2/ma′2 with this expression, corresponding to the energy of a shallow
dimer, strongly dressed by the open channel of the resonance. For Re/a

′ � 1, we obtain
E ′2 = ~2/mRea

′, corresponding to the result we obtained in Chapter 1 in this limit.
The energy of fermion-fermion dimers follows the same expression, written asE2(Re, a),

corresponding to the expression of E ′2 where a′ is replaced by a.
To form a dimeron, one has to extract a Cooper pair from the superfluid, break it and

pair one of the fermions with the impurity. The energy needed to extract the two fermions
from the background is 2µF which value depends on where we stand on the fermion BEC-
BCS crossover: on the BCS side, we have µF ' EF , at unitarity µF = ξEF and on the
BEC side it is dominated by the binding energy of the fermion dimers 2µF ' E2.

On top of that, we have to add the mean-field energy between the dimeron, the re-
maining fermion and the particles of the superfluid. The total energy reads as:

• On the BCS side: ESF − 2µF + E ′2 + g′adn + gn with g′ad the coupling constant
between a dimeron and a fermion of the superfluid.

• On the BEC side: ESF − 2µF + E ′2 + g′ddn + gadn with g′dd the coupling constant
between a dimeron and a dimer from the superfluid.

C.3 Trimeron

Two-channel model

Here we want to determine the energy E3 of a trimer made of an impurity atom and two
fermions of opposite spins, focusing only on three-body physics. To study this problem,
we adapt the limited-range two channel model, previously used to determine the Efimov
spectrum of three identical bosons [94, 311], that we presented in Chapter 1. The open
channel is characterized by atomic annihilation operators âk,σ with σ = 1, 2, 3 desig-
nating one of the three distinguishable particles. The closed channel is represented by
the operators b̂K,σ describing a dimer of two particles not involving the particle σ. The
Hamiltonian reads:



C.3 161

Ĥ =
∑

k,σ

εkâ
†
k,σâk,σ +

∑

K,σ

(Eσ,0 + εk/2)̂b†K,σ b̂K,σ

+
~2

2m

√
2π

Re

∑

K,k,k<Λ
σ1 6=σ2 6=σ3

(̂b†K,σ1 âk+K/2σ2 â−k+K/2,σ3 + H.c.).
(C.2)

where Λ is a UV momentum cut-off.
In this model we make the assumption that the atom-dimer coupling is the same for all

three-species. However, the atom-atom scattering lengths are controlled independently by
the bare molecular binding energies Eσ,0. We can determine their expression by solving
the two-body problem. The atomic scattering length aσ between two atoms (σ1, σ2) 6= σ
is given by:

1

aσ
=

2

π
Λ− RemEσ,0

~2
. (C.3)

To solve the three-body problem, we introduce an ansatz of the three-body bound
states:

|ψ〉 =
∑

k1,k2

β(k1,k2)â†k1,1
â†k2,2

â†−k1−k2,3
|0〉+

∑

σ,k

ασ(k)

k
â†−k,σ b̂

†
k,σ|0〉. (C.4)

where |0〉 is the vacuum. The first term corresponds to three atoms in the open channel
and the second one to a molecule in the closed channel with the third atom being in the
open channel.

To determine the energy E3 = −~2κ2/m of the trimer, we calculate 〈ψ|Ĥ|ψ〉 and we
obtain a set of three equations:

[√
1 + 3p2/4 + κRe(1 + 3p2/4)− 1

κaσ

]
ασ(p)

=
1

π

∫ ∞

0

dq ln

(
p2 + q2 + pq + 1

p2 + q2 − pq + 1

)[∑

σ′ 6=σ

ασ′(q)

]
,

(C.5)

An example of solution

To see an example on how to resolve this problem, we will the study the particular case
where a = a′. In this case, all three equations defined by eq. (C.6) are the same and we
have α1(p) = α2(p) = α3(p). The equation to solve is then:

[√
1 + 3p2/4 + κRe(1 + 3p2/4)− 1

κa

]
α(p) =

2

π

∫ ∞

0

dq ln

(
p2 + q2 + pq + 1

p2 + q2 − pq + 1

)
α(q)

(C.6)
To solve it, we write x = κRe, considered as a given parameter, and we discretize the

integral to transform this equation into an eigenproblem, where the eigenvalue to find is
1/κa. Since we are looking for the fundamental state, we want the eigenvalue maximizing
κ so the minimal eigenvalue. We represent in Fig. C.1 κRe as a function of Re/a, and we
compare it to the equivalent of κ in the case of the trimeron. We see that in this particular
case we do not get a clear transition between the two states, which will reflect on the
phase diagram given in Fig. C.2.
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Figure C.1: Representation of κRe versus Re/a calculated in the case a = a′, and its
equivalent for the dimeron. Blue solid curve: trimeron, we see that the start of the Efimov
spectrum is at a− ' −11Re, consistent with the “universal” value a− ' −9.1lV dW . Red
dashed curve: dimeron, where we took κ =

√
m|E ′2|/~2. When the red curve surpasses

the blue one, the dimeron state becomes more stable, in this particular case it actually
leads to a triple point as will be seen in the phase diagram presented in the following
section. Grey dot-dashed curve: dimeron, where we took the simpler expression κ = 1/a
corresponding to the limit Re/a � 1. The intersection with the trimeron energy curve is
neater in this case and is more representative of what happens away from the triple point.

We then repeat this method for several values of Re/a and Re/a
′ to get the energy of

the trimer E3 for all the conditions possible, though the calculations are not as straight-
forward.

To form a trimeron, one has again to extract a Cooper pair from the superfluid and
break it. Taking also the mean-field energies into account, we get the energy ESF −
2µF + E3 + gtn with gt the coupling constant between the trimeron and fermions (or
dimers) from the superfluid.

C.4 Building the diagram
The full phase diagram is represented in Fig. C.2.

In experiments, Re is small compared to the interparticle distance, corresponding
roughly to k−1

F , where we defined the Fermi wavevector kF = (3π2n)1/3, hence kFRe �
1. We work generally in a domain where −1 . 1/kFa . 1, so with Re/|a| = kFRe ×
1/kFa � 1. Consequently, the crossover region of the superfluid is actually located in a
very narrow region around the y-axis. The consequence of this separation of scales is that
outside of this narrow region, fermions form very loose Cooper pairs on the BCS side and
weakly interacting tightly-bound dimers on the BEC side. This region is reprensented by
a gray band on the phase diagram in Fig. C.2.

Concerning the impurity-fermion interaction, we have kFa′ = (Re/a
′)−1 × kFRe, so

except in a narrow region around the x-axis where Re/a
′ is small, we have kFa′ � 1,
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Figure C.2: Phase diagram of the system, for mi = mf . Variational approaches based on
a mean-field description of the background superfluid suggest that the polaron/trimeron
transition is a crossover [287]. The domain limits are calculated as explained in this
section, the numbers correspond to the one in the text. We see that the trimeron/dimeron
transition line is tangent to the line a = a′, a consequence of what was seen in Fig.
C.1. The grey bands correspond to the parameter range where many-body effects affect
few-body physics for a typical value kFRe = 5× 10−2.

corresponding to the conditions of our experiment.
Depending on the different parameters, we determine which state has the lowest en-

ergy to determine the most stable one. In the dilute limit where n, kF , Ef go to zero,
we can neglect some of the terms (including the mean-field terms) and simplify all the
expressions of the energies. Those are gathered in Table C.1.

BCS limit BEC limit

Dimeron ESF + E ′2 ESF − E2 + E ′2

Trimeron ESF + E3 ESF − E2 + E3

Polaron ESF ESF

Table C.1: Energy of the system in the different phases

Below, we list the equation of the different lines separating the stability domains of
each phase, each number corresponding to the one on Fig. C.2 where we represented the
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phase diagram of the system.

1. Fermi polaron (Re/a < 0) vs trimeron: E3(Re, a, a
′) = 0.

2. Dimeron vs trimeron: E3(Re, a, a
′) = E ′2(Re, a

′).

3. Bose polaron (Re/a > 0) vs trimeron: E3(Re, a, a
′) = E2(Re, a).

4. Bose polaron vs dimeron: E2(Re, a) = E ′2(Re, a
′), which coincides with a = a′ so

it is included in the first bisector of Fig. C.2.

Finally, we can notice in Fig. C.2 that the Fermi polaron/trimeron separation line
(corresponding to the number 1) approaches the x-axis for Re/a′ → −∞. In this region,
the calculation is not controlled since kF is not negligible anymore. However, since the
polaron/trimeron is a crossover [287], the transition line cannot be defined precisely any-
way. Furthermore, for a = a′, our results are consistent with the ones reported in [310]
for three-component color Fermi gases.



Appendix D

Determination of the R3 and Cad
constants

We present in the section our numerical evaluations of the constants R3 and Cad that we
introduced in Chapter 6. We first go back to the evaluation of the three-body T -matrix to
get R3 and then study the atom-dimer T -matrix to obtain Cad.

D.1 Calculating R3

The parameter R3 is defined by the relation

ΓBorn − ΓFaddeev =
Λ→∞

g′
2
κ(η) ln(ΛR3) + o(1). (D.1)

Consequently, we can obtain R3 by calculating numerically the difference between
ΓBorn and ΓFaddeev. In our framework,R3/a

′ only depends on the ratioRe/a
′ and the mass

ratio η. The general scheme of the calculation of these terms has already been detailed in
Chapter 6, so here we will directly give the results of the numerical calculations.

In Fig. D.1, we represent the numerical calculations of the difference ΓBorn−ΓFaddeev

for the mass ratio η = 7/6 and Re/|a′| = 1. We see that we indeed get the logarithmic
behavior for this difference, with κ(7/6) as the proportionality constant.

We show in Fig. D.2 the dimensionless parameter R3/|a′| for different values of the
ratio Re/|a′| and for a mass ratio η = 7/6. For Re/|a′| � 1, we get the asymptotic
behavior R3 ' 1.50|a′|. For Re/|a′| � 1, we see that R3 increases exponentially:

R3 ∝
Re
|a′|�1

√
Re|a′| exp

( √
3

16π2|κ(7/6)|

√
Re

|a′|

)
. (D.2)

At this stage, we recall that in Chapter 6, in the perturbative expansion in a′ for the
polaron energy, we consider expansions for Λ|a′| � 1 but with Re/|a′| as an independent
parameter with a given value. Consequently, we consider this exponential term as a con-
stant included inR3 in our perturbative calculations, and it does not affect the perturbative
expansion.

The dependence on the mass ratio η is given in Table D.1 which lists numerical values
of the parameter R3 for experimentally relevant mass ratios and Re = 0. For η & 0.5
the value of R3 is approximately constant with less than 10% variations, but it decreases
significantly for smaller values.
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Figure D.1: Blue dots: numerical calculations of (ΓBorn − ΓFaddeev)/g′2, for η = 7/6 and
Re = |a′|. Red curve: fitting curve of the blue dots in the limit Λ|a′| � 1. We fit the
data for Λ|a′| � 1 with the function κ(7/6) ln(X × A0) with A0 a fitting parameter. The
parameter A0 gives us the value of R3/|a′|: we obtain for this curve A0 ' 3.10.
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√
X
)

,
with A an adjustable parameter. A ' 0.8 after optimization.

D.2 Atom-dimer scattering

In order to determine the constant Cad that appears in Chapter 6 concerning the BEC side
of the crossover, we study the atom-dimer problem, for fermions are tightly bound into
halo-dimers in this regime.

The atom-dimer T -matrix can be computed similarly as the three-body T -matrix. In-
deed, in the BEC domain the fermions are asymptotically bound, so we can treat the
impurity-fermion interaction as a perturbation. This T -matrix can also be transcribed into
diagrams. The initial and final states are taken with a fermion-fermion dimer and an im-
purity with momenta taken equal to zero. Since we want to decompose the atom-dimer in-
teraction into a sequence of two-body interactions, all diagrams have to start and finish by
a fermion-fermion interaction to ”open” the molecule to enable isolated impurity-fermion
interactions. A typical diagram is represented in Fig. D.3.

As all diagrams have to start and end with a fermion-fermion interaction, we have to
consider the same diagrams as in the three-body scattering problem. As a consequence,
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η 7/40 23/40 7/6 87/6 133/6

R3/a
′ 1.03 1.41 1.50 1.46 1.46

Table D.1: Dimensionless parameter characterizing the Born expansion of the three-body
scattering amplitude (Eq. (D.1)) for Re = 0 .

Figure D.3: Example of diagram considered for the study of atom-dimer scattering. In the
initial and final state there is a dimer and an impurity atom. With the same dimensional
analysis as in Chapter 6, we see that it corresponds to a logarithmically divergent term.

the atom-dimer scattering length presents the same logarithmic divergence when the range
of the potential vanishes. For large Λ, the atom-dimer T -matrix scales as

T div
ad =

2g′

Ω

[
1 + 8π2mf

mr

κ(η)
a′

a
(ln(Λa) + Cad + ...)

]
(D.3)

where the constant Cad is computed numerically and is given in Table D.2 for experimen-
tally relevant values of the mass ratio η. Contrary to the three-body diagrams, there is no
divergence for k → 0 because the binding energy of the dimer acts as a low momentum
cutoff (hence the Λa in the logarithm).

η 7/40 23/40 7/6 87/6 133/6

Cad 1.52 1.59 1.56 1.37 1.36

Table D.2: Dimensionless parameter characterizing the Born expansion of the atom-dimer
scattering amplitude (Eq. (D.3)) for Re = 0.

Once again, the logarithmic divergence is regularized by introducing the three-body
interaction. Its contribution to the atom-dimer T -matrix is computed using the renormal-
ized expression of g3(Λ). It reads

T 3b
ad = −16π2g′

Ω

mf

mr

κ(η)
a′

a
ln(ΛR3). (D.4)

By combining equations (D.3) and (D.4), we obtain the regularized atom-dimer T -
matrix:

Tad = T div
ad + T 3b

ad = Tad,Born

[
1− 8π2mf

mr

κ(η)
a′

a
(ln(R3/a) + Cad + ...)

]
(D.5)
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where Tad,Born = 2g′/Ω corresponds to an atom-dimer scattering length obtained in the
mean-field approximation, ie aad,Born/a

′ = 4(1 + η)/(2 + η). We can note that this
expression is consistent with the asymptotic expression of gad we obtained in Chapter 6.
As pointed out in Chapter 1 and [312], in the Efimovian regime Re � |a′| not considered
here, Tad should acquire a log-periodic dependence in a′.
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collisions. An analysis with some similarities to
ours for the bright debris disk of HD 172555
(20) found that dust created in a hypervelocity
impact will have a size slope of ~ –4, in agreement
with the fits of (10) to the IR spectrum of ID8.
After the exponential decay is removed from

the data (“detrending”), the light curves at both
wavelengths appear to be quasi-periodic. The
regular recovery of the disk flux and lack of ex-
traordinary stellar activity essentially eliminate
coronal mass ejection (21) as a possible driver of
the disk variability. We employed the SigSpec al-
gorithm (22) to search for complex patterns in
the detrended, post-impact 2013 light curve. The
analysis identified two significant frequencies with
comparable amplitudes, whose periods are P1 =
25.4 T 1.1 days and P2 = 34.0 T 1.5 days (Fig. 3A)
and are sufficient to qualitatively reproducemost
of the observed light curve features (Fig. 3B).
The quoted uncertainties (23) do not account for
systematic effects due to the detrending and thus
are lower limits to the real errors. Other peakswith
longer periods in the periodogram are aliases or
possibly reflect long-term deviation from the ex-
ponential decay. These artifacts make it difficult
to determine whether there are weak real signals
near those frequencies.
We now describe the most plausible inter-

pretation of this light curve that we have found.
The two identified periods have a peak-to-peak
amplitude of ~6 × 10−3 in fractional luminosity,
which provides a critical constraint for models of
the ID8 disk. In terms of sky coverage at the disk
distance inferred from the IR SED, such an am-
plitude requires the disappearance and reappear-
ance every ~30days of the equivalent of an opaque,
stellar-facing “dust panel” of radius ~110 Jupiter
radii. One possibility is that the disk flux perio-
dicity arises from recurring geometry that changes
the amount of dust that we can see. At the time
of the impact, fragments get a range of kick ve-
locities when escaping into interplanetary space.
This will cause Keplerian shear of the cloud (24),
leading to an expanding debris concentration
along the original orbit (supplementary text). If
the ID8 planetary system is roughly edge-on, the
longest dimension of the concentration will be
parallel to our line of sight at the greatest elon-
gations and orthogonal to the line of sight near
conjunctions to the star. This would cause the
optical depth of the debris to vary within an
orbital period, in a range on the order of 1 to 10
according to the estimated disk mass and par-
ticle sizes. Our numerical simulations of such dust
concentrations onmoderately eccentric orbits are
able to produce periodic light curves with strong
overtones. P2 and P1 should have a 3:2 ratio if
they are the first- and second-order overtones of
a fundamental, which is consistent with the mea-
surements within the expected larger errors (<2s
or better). In this case, the genuine period should
be 70.8 T 5.2 days (lower-limit errors), a value
where it may have been submerged in the perio-
dogram artifacts. This period corresponds to a
semimajor axis of ~0.33 astronomical units, which
is consistent with the temperature and distance
suggested by the spectral models (10).

Despite the peculiarities of ID8, it is not a
unique system. In 2012 and 2013, we monitored
four other “extreme debris disks” (with disk frac-
tional luminosity ≥10−2) around solar-like stars
with ages of 10 to 120My. Various degrees of IR
variations were detected in all of them. The
specific characteristics of ID8 in the time domain,
including the yearly exponential decay, addition-
al more rapid weekly to monthly changes, and
color variations, are also seen in other systems.
This opens up the time domain as a new dimen-
sion for the study of terrestrial planet formation
and collisions outside the solar system. The var-
iability of many extreme debris disks in the era
of the final buildup of terrestrial planets may
provide new possibilities for understanding the
early solar system and the formation of habitable
planets (25).
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SUPERFLUIDITY

A mixture of Bose and Fermi superf luids
I. Ferrier-Barbut,* M. Delehaye, S. Laurent, A. T. Grier,† M. Pierce,
B. S. Rem,‡ F. Chevy, C. Salomon

Superconductivity and superfluidity of fermionic and bosonic systems are remarkable
many-body quantum phenomena. In liquid helium and dilute gases, Bose and Fermi
superfluidity has been observed separately, but producingamixture inwhich both the fermionic
and the bosonic components are superfluid is challenging. Here we report on the observation
of such a mixture with dilute gases of two lithium isotopes, lithium-6 and lithium-7.We probe
the collective dynamics of this system by exciting center-of-mass oscillations that exhibit
extremely low damping below a certain critical velocity. Using high-precision spectroscopy
of these modes, we observe coherent energy exchange and measure the coupling between
the two superfluids. Our observations can be captured theoretically using a sum-rule
approach that we interpret in terms of two coupled oscillators.

I
n recent years, ultracold atoms have emerged
as a unique tool to engineer and study quantum
many-body systems. Examples include weakly
interacting Bose-Einstein condensates (1, 2),
two-dimensional gases (3), and the superfluid-

Mott insulator transition (4) in the case of bosonic
atoms, and the crossover between Bose-Einstein
condensation (BEC) and fermionic superfluidity
described by the the theory of Bardeen, Cooper,
and Schrieffer (BCS) for fermionic atoms (5). Mix-

tures of Bose-Einstein condensates were produced
shortly after the observation of BEC (2), and a
BEC mixed with a single-spin state Fermi sea
was originally observed in (6, 7). However, realizing
a mixture in which both fermionic and bosonic
species are superfluid has been experimentally
challenging. This has also been a long-sought goal
in liquid helium, where superfluidity was achieved
separately in both bosonic 4He and fermionic 3He.
The double superfluid should undergo a transition
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between s-wave and p-wave Cooper pairs as the
3He dilution is varied (8). However, because of
strong interactions between the two isotopes,
3He-4He mixtures contain only a small fraction
of 3He (typically 6%) which, so far, has prevented
attainment of simultaneous superfluidity for the
two species (8, 9).
Here we report on the production of a Bose-

Fermi mixture of quantum gases in which both
species are superfluid. Our system is an ultracold
gas of fermionic 6Li in two spin states mixed with
7Li bosons and confined in an optical dipole trap.
Using radio-frequency pulses, we prepare 6Li atoms
in their two lowest hyperfine states j1f 〉 and j2f 〉,
whereas 7Li is spin polarized in the second-to-
lowest state j2b〉 (10). For this combination of states,
in the vicinity of the 6Li Feshbach resonance at a
magnetic field of 832 G (11), the scattering length
of the bosonic isotope ab = 70a0 (a0 is the Bohr
radius) is positive, preventing collapse of the BEC.
The boson-fermion interaction is characterized by
a scattering length abf ¼ 40:8a0 that does not
depend on magnetic field in the parameter range
studied here. At resonance, the Fermi gas exhibits
a unitary limited collision rate, and lowering the
optical dipole trap depth leads to extremely ef-
ficient evaporation. Owing to a large excess of
6Li atoms with respect to 7Li, the Bose gas is sym-
pathetically driven to quantum degeneracy.
The two clouds reach the superfluid regime

after a 4-s evaporation ramp (10). As the 7Li Bose
gas is weakly interacting, the onset of BEC is
detected by the growth of a narrow peak in the
density profile of the cloud. From previous studies
on atomic Bose-Einstein condensates, we con-
clude that the 7Li BEC is in a superfluid phase.
Superfluidity in a unitary Fermi gas is notori-
ously more difficult to detect because of the
absence of any qualitative modification of the
density profile at the phase transition. To dem-
onstrate the superfluidity of the fermionic com-
ponent of the cloud, we slightly imbalance the
two spin populations. In an imbalanced gas, the
cloud is organized in concentric layers, with a
fully paired superfluid region at its center, where
Cooper pairing maintains equal spin popula-
tions. This 6Li superfluid core can be detected
by the presence of a plateau in the doubly in-
tegrated density difference (12). Examples of
density profiles of the bosonic and fermionic
superfluids are shown in Fig. 1, where both the
Bose-Einstein condensate (blue circles) and the
plateau (black diamonds in the inset) are clearly
visible. Our coldest samples containNb ¼ 4" 104
7Li atoms and Nf ¼ 3:5" 105 6Li atoms. The
absence of a thermal fraction in the bosonic cloud
indicates a temperature below 0.5Tc,b, where
kBTc;b ¼ 0:94ℏwbN

1=3
b is the critical temperature

of the 7Li bosons, and wb (wf ) is the geometric

mean trapping frequency for 7Li (6Li). Com-
bined with the observation of the 6Li plateau,
this implies that the Fermi cloud is also super-
fluid with a temperature below 0:8Tc;f . Here,
Tc;f is the critical temperature for superfluid-
ity of a spin-balanced, harmonically trapped
Fermi gas at unitarity, Tc;f ¼ 0:19TF (13), and
kBTF ¼ ℏwfð3NfÞ1=3 is the Fermi temperature.
The superfluid mixture is very stable, with a
lifetime exceeding 7 s for our coldest samples.
As seen in Fig. 1, the Bose-Fermi interaction is

too weak to alter significantly the density pro-
files of the two species (14). To probe the inter-
action between the two superfluids, we study the
dynamics of the mass centers of the two isotopes
(dipole modes), a scheme used previously for the
study of mixtures of Bose-Einstein condensates
(15, 16),mixtures of Bose-Einstein condensates and
spin-polarized Fermi seas (17), spin diffusion in
Fermi gases (18), or integrability in one-dimensional
systems (19). In a purely harmonic trap and in
the absence of interspecies interactions, the di-
polemode of each species is undamped and can
therefore be measured over long time spans to
achieve a high-frequency resolution and detect
small perturbations of the system. We excite the
dipole modes by shifting the initial position of
the 6Li and 7Li clouds by a displacement d along
the weak direction z of the trap (10). We then
release themand let themevolve during a variable
time t, after which we measure their positions. By
monitoring the cloud oscillations during up to 4 s,
we determine their frequencies with high precision
(Dww ≲ 2" 10−3Þ: In the absence of the other spe-
cies, the oscillation frequencies of 6Li and 7Li are,
respectively, wf ¼ 2p" 16:80ð2Þ Hz and wb ¼

2p" 15:27ð1Þ Hz. In the axial direction, the con-
finement is mostly magnetic, and at high mag-
netic field, both species are in the Paschen-Back
regime, where the electronic and nuclear spin
degrees of freedomare decoupled. In this regime,
the magnetic confinement mostly results from
the electronic spin and is therefore almost iden-
tical for the two isotopes. The ratio wf=wb is then
very close to the expected value

ffiffiffiffiffiffiffiffi
7=6

p
≃ 1:08

based on the ratio of the atomic masses (20).
Contrary to the large damping observed in the

Bose-Bose mixtures (15), we observe long-lived
oscillations of the Bose-Fermi superfluid mixture
at frequencies (w̃b, w̃f ). These oscillations extend
over more than 4 s with undetectable damping
(Fig. 2 and fig. S2). This very weak dissipation
is only observed when the initial displacement
d is below 100 mm, corresponding to a maxi-
mum relative velocity vmax ¼ ðw̃b þ w̃fÞd below
18 mm/s ≃ 0:4 vF, where vF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTF=mf

p
. In

this situation, the BEC explores only the central
part of the much broader Fermi cloud. When
vmax > vc ¼ 0:42þ0:05

−0:11 vF ¼ 20þ2
−5 mm/s, we ob-

serve a sharp onset of damping and heating of
the BEC compatible with the Landau criterion for
breakdown of superfuidity (Fig. 2C) (10). For com-
parison, the sound velocity of an elongated Fermi
gas at its center is vs0 ¼ x1=4vF=

ffiffiffi
5

p
¼ 17 mm/s

(21), where x ¼ 0:38 is the Bertsch parameter
(5, 13). The measured critical velocity vc is very
close to vs0 and is clearly above the BEC sound
velocity of ≃5 mm/s at its center.
Two striking phenomena are furthermore ob-

served. First, whereas the frequency w̃f of 6Li
oscillations is almost unchanged from the value
in the absence of 7Li, that of 7Li is downshifted
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Fig. 1. Density profiles in the double superfluid regime. Nb ¼ 4" 104 7Li atoms and Nf ¼ 3:5" 105 6Li
atoms are confined in a trap at a temperature below 130 nK. The density profiles nb (blue circles) and
nf;↑(red squares) are doubly integrated over the two transverse directions.The blue (red) solid line is a fit
to the 7Li (6Li) distribution by a mean-field (unitary Fermi gas) EoS in the Thomas-Fermi approximation.
Inset: Spin-imbalanced Fermi gas (Nf;↑ ¼ 2" 105, Nf;↓ ¼ 8" 104) in thermal equilibrium with a BEC.
Red circles: nf;↑; green squares: nf;↓; black diamonds: difference nf;↑−nf;↓. The plateau (black dashed line)
indicates superfluid pairing (12). Gray solid line: Thomas-Fermi profile of a noninteracting Fermi gas for the
fully spin-polarized outer shell prolonged by the partially polarized normal phase (gray dashed line).
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to w̃b ¼ 2p" 15:00ð2Þ Hz. Second, the ampli-
tude of oscillations of the bosonic species displays
a beat at a frequency ≃ðw̃f − w̃bÞ=ð2pÞ, reveal-
ing coherent energy transfer between the two
clouds (Fig. 2B). To interpret the frequency shift
of the 7Li atoms, we note that Nb ≪ Nf ; which
allows us to treat the BEC as a mesoscopic im-
purity immersed in a Fermi superfluid. Similar-
ly to the Fermi polaron case (22), the effective
potential seen by the bosons is the sum of the
trapping potential V ðrÞ and the mean-field in-
teraction gbfnfðrÞ, where nf is the total fermion
density, gbf ¼ 2pℏ2abf =mbf , and mbf ¼ mbmf

mbþmf
is

the 6Li/7Li reduced mass. Neglecting at first
the back-action of the bosons on the fermions,
we can assume that nf is given by the local-density-
approximation result nfðrÞ ¼ nð0Þ

f ðm0f − V ðrÞÞ,
where nð0Þ

f ðmÞ is the stationary equation of state
(EoS) of the Fermi gas. Because the Bose-Einstein
condensate is much smaller than the Fermi cloud
(Fig. 2A), V ðrÞ is smaller than m0f over the BEC
volume. We can thus expand nð0Þf , and we get

VeffðrÞ ¼ gbfnfð0Þ þ V ðrÞ 1 − gbf
dnð0Þ

f

dmf

 !

r¼0

" #

ð1Þ
We observe that the effective potential is still har-
monic and the rescaled frequency is given by

w̃b ≃ wb 1 − 1
2
gbf

dnð0Þ
f

dmf

 !

r¼0

 !

ð2Þ

For a unitary Fermi gas, the chemical potential is
related to the density by mf ¼ xℏ2ð3p2nfÞ2=3=2mf .

In theweakly coupled limit,weget dwb
wb

¼ wb − w̃b
wb

¼
13kFabf
7px5=4

, whereℏkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏmfwfð3NfÞ1=3

q
is theFermi

momentum of a noninteracting harmonically
trapped Fermi gas. Using our experimental pa-
rameters kF ¼ 4:6" 106 m−1, we predict a value
w̃b ≃ 2p" 14:97 Hz, in very good agreement with
the observed value 15.00(2)Hz.
To understand the amplitude modulation, we

now take into account the back-action on the
fermions. A fully quantum formalism using a
sum-rule approach (23–25) leads to a coupled
oscillator model in which the positions of the
two clouds obey the following equations (10)

Mf
::
z f ¼ −Kfzf − Kbfðzf − zbÞ ð3Þ

Mb
::
zb ¼ −Kbzb − Kbfðzb − zfÞ ð4Þ

whereMb ¼ Nbmb (Mf ¼ Nfmf ) is the total mass
of the 7Li (6Li) cloud, Kb ¼ Mbw2

b ðKf ¼ Mfw2
f Þ

is the spring constant of the axial magnetic con-
finement, and Kbf is a phenomenological (weak)
coupling constant describing the mean-field in-

teraction between the two isotopes. To recov-
er the correct frequency shift (Eq. 2), we take
Kbf ¼ 2Kb

dwb
wb

: Solving these equations with the
initial condition zfð0Þ ¼ zbð0Þ ¼ d, and defining
r ¼ Nb=Nf and e ¼ 2mb

mb−mf

w̃b − wb
wb

" #
, in the limit

r; e ≪ 1 we get

zf ¼ d½ð1 − erÞcosðw̃f tÞ þ ercosðw̃btÞ' ð5Þ

zb ¼ d½−ecosðw̃ftÞ þ ð1þ eÞcosðw̃btÞ' ð6Þ

The predictions of Eqs. 5 and 6 agree well with
experiment (Fig. 2B). Interestingly, the peak-to-
peak modulation of the amplitude of 7Li is much
larger than the relative frequency shift, a conse-
quence of the almost exact tuning of the two
oscillators (up to a factor

ffiffiffiffiffiffiffiffi
6=7

p
). Thus, the mass

prefactor in the expression for e is large (=14) and
leads to e ≃ 0:25 at unitarity. This results in
efficient energy transfer between the two modes
despite their weak coupling, as observed.
We now extend our study of the Bose-Fermi

superfluid mixture to the BEC-BCS crossover by
tuning the magnetic field away from the reso-
nance value Bf ¼ 832 G. We explore a region
from 860 G down to 780 G where 1=kFaf spans
the interval ½−0:4;þ0:8'. In this whole domain,
except in a narrow region between 845 and
850 G where the boson-boson scattering length
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Fig. 2. Coupled oscillations of the superfluid mixture. (A) Center-of-mass
oscillations. The oscillations are shown over the first 500 ms at a magnetic
field of 835 G for a Fermi superfluid (top) and a Bose superfluid (bottom).The
oscillation period of 6Li (7Li) is 59.7(1) ms [66.6(1) ms], leading to a
dephasing of π near 300 ms. These oscillations persist for more than 4 s
with no visible damping.The maximum relative velocity between the two clouds
is 1.8 cm/s. (B) Coupled oscillations. Symbols: Center-of-mass oscillation of
7Li (top) and 6Li (bottom) displaying coherent energy exchange between both

superfluids. Solid lines: Theory for an initial displacement d of 100 mm at a
magnetic field of 835 G; see text. (C) Critical damping. Symbols: Damping
rate (blue circles) of the amplitude of the center-of-mass oscillations of the
7Li BEC as a function of the maximal relative velocity between the two
superfluids normalized to the Fermi velocity of the 6Li gas. Data taken at
832 G. From these data and using a fit function given in (10) (solid line), we
extract vc ¼ 0:42þ0:05

−0:11 vF.The red dashed line shows the speed of sound of an
elongated unitary Fermi superfluid v

0

s ¼ x1=4vF=
ffiffiffi
5

p
¼ 0:35vF (20).
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is negative, the mixture is stable and the damp-
ing extremely small.
The frequency shift of the BEC (Eq. 2) now

probes the derivative of the EoS nfðmfÞ in the BEC-
BCS crossover. In the zero-temperature limit and
under the local density approximation, Eq. 2
obeys the universal scaling dwb

wb
¼ kFabf f 1

kFaf

" #

In Fig. 3, we compare our measurements to
the prediction for the function f obtained from the
zero-temperature EoS measured in (26). On the
BCS side, (1=kFaf < 0), the frequency shift is re-
duced and tends to that of a noninteracting
Fermi gas. Far on the BEC side ð1=kFaf ≫ 1Þ, we
can compute the frequency shift using the EoS
of a weakly interacting gas of dimers. Within the
mean-field approximation, we have dnf

dmf
¼ 2mf

pℏ2add
,

where add ¼ 0:6af is the dimer-dimer scatter-
ing length. This expression explains the increase
in the frequency shift when af is reduced, i.e.,
moving toward the BEC side [see (10) for the
effect of Lee-Huang-Yang quantum correction].
The excellent agreement between experiment

and our model confirms that precision measure-
ments of collective modes are a sensitive dynamical
probe of equilibrium properties of many-body quan-
tum systems (27). Our approach can be extended to
the study of higher-order excitations. In particular,
although there are two first sound modes, one for
each atomic species, we expect only one second
sound for the superfluid mixture (28) if cross-
thermalization is fast enough. In addition, the
origin of the critical velocity for the relative motion
of Bose and Fermi superfluids is an intriguing ques-
tion that can be further explored in our system.
Finally, a richer phase diagram may be revealed
when Nb=Nf is increased (29) or when the super-
fluid mixture is loaded in an optical lattice (30).
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EARTHQUAKE DYNAMICS

Strength of stick-slip and creeping
subduction megathrusts from heat
flow observations
Xiang Gao1 and Kelin Wang2,3*

Subduction faults, called megathrusts, can generate large and hazardous earthquakes.The
mode of slip and seismicity of a megathrust is controlled by the structural complexity of the
fault zone. However, the relative strength of a megathrust based on the mode of slip is far from
clear.The fault strength affects surface heat flow by frictional heating during slip.We model
heat-flow data for a number of subduction zones to determine the fault strength.We find that
smooth megathrusts that produce great earthquakes tend to be weaker and therefore
dissipate less heat than geometrically rough megathrusts that slip mainly by creeping.

S
ubduction megathrusts that primarily ex-
hibit stick-slip behavior can produce great
earthquakes, but some megathrusts are ob-
served to creep while producing small and
moderate-size earthquakes. The relation-

ship between seismogenesis and strength of sub-
duction megathrust is far from clear. Faults that
produce great earthquakes are commonly thought
of as being stronger than those that creep (1).

Megathrusts that are presently locked to build
up stress for future great earthquakes are thus
described as being “strongly coupled.” However,
some studies have proposed strong creeping
megathrusts because of the geometric irregular-
ities of very rugged subducted sea floor (2, 3).
Contrary to a widely held belief, geodetic and

seismic evidence shows that very rough subduct-
ing sea floor promotes megathrust creep (2). All
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Connecting Few-Body Inelastic Decay to Quantum Correlations in a Many-Body System:
A Weakly Coupled Impurity in a Resonant Fermi Gas
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We study three-body recombination in an ultracold Bose-Fermi mixture. We first show theoretically that,
for weak interspecies coupling, the loss rate is proportional to Tan’s contact. Second, using a 7Li=6Li
mixture we probe the recombination rate in both the thermal and dual superfluid regimes. We find excellent
agreement with our model in the BEC-BCS crossover. At unitarity where the fermion-fermion scattering

length diverges, we show that the loss rate is proportional to n4=3f , where nf is the fermionic density. This

unusual exponent signals nontrivial two-body correlations in the system. Our results demonstrate that
few-body losses can be used as a quantitative probe of quantum correlations in many-body ensembles.

DOI: 10.1103/PhysRevLett.118.103403

Understanding strongly correlated quantum many-body
systems is one of the most daunting challenges in modern
physics. Thanks to a high degree of control and tunability,
quantum gases have emerged as a versatile platform for the
exploration of a broad variety of many-body phenomena
[1], such as the crossover from Bose-Einstein condensation
(BEC) to Bardeen-Cooper-Schrieffer (BCS) superfluidity
[2], quantummagnetism [3], or many-body localization [4].
At ultralow temperatures, atomic vapors are metastable
systems and are plagued by three-body recombination
which represents a severe limitation for the study of some
dense interacting systems. A prominent example is the
strongly correlated Bose gas [5,6] that bears the prospect of
bridging the gap between dilute quantum gases and liquid
helium. However, inelastic losses can also be turned into an
advantage. For instance, they can be used to control the
state of a system through the Zeno effect [7–9], or serve as a
probe of nontrivial few-body states, as demonstrated by the
observation of Efimov trimers, originally predicted in
nuclear physics, but observed for the first time in Bose
gases as resonances in three-body loss spectra [10].
In this Letter, we study inelastic losses in a mixture of

spinless bosons and spin 1=2 fermions with tunable inter-
action.We show that when theBose-Fermi coupling is weak,
the loss rate can be related to the fermionic contact parameter,
a universal quantity overarching between microscopic and
macroscopic properties of a many-body system with zero-
range interactions [11–19]. We first check our prediction on
the strongly attractive side of the fermionic Feshbach
resonance, where we recover known results on atom-dimer
inelastic scattering. We then turn to the unitary limit where
the fermion-fermion scattering length is infinite. We dem-
onstrate both theoretically and experimentally—with a
6Li=7Li Fermi-Bose mixture—that the bosons decay at a

rate proportional ton4=3f , wherenf is the fermion density. The

unusual fractional exponent results from nontrivial quantum
correlations in the resonant gas.Ourmethod offers a newway
to measure the two-body contact of the homogeneous Fermi
gas. More generally, our work shows that the decay of an
impurity immersed in a strongly correlated many-body
system is a quantitative probe of its quantum correlations.
Inelastic decay of an impurity inside a two-component

Fermi gas has been studied previously both in the weakly

Loss rate (a.u)

-1/kFa

1/a

a 2

-1 +1
BEC side BCS side

0

FIG. 1. Sketch of inelastic decay of an impurity immersed in a
tunable Fermi gas. On the BEC side, ↑ and ↓ fermions are paired
in tightly bound molecules and the decay mechanism is a two-
body process involving the impurity (green disk) and a molecule.
The loss rate scales as 1=aff [20,24]. On the BCS side, the loss
occurs through a three-body process and it scales as a2ff in
the mean-field limit [20]. The extrapolation of these two
asymptotic behaviors towards the strongly correlated regime
yields contradictory results (grey area).
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and strongly attractive limits of the BEC-BCS crossover
[20–23], see Fig. 1 and Table I. When the fermion-fermion
interaction is weak, the fermions behave almost as isolated
particles and the recombination can be described as a three-
body process involving one spin-up (↑), one spin-down (↓)
fermion and the impurity (a boson in our experiments). In
this case, the impurity or boson density nb follows a rate
equation _nb ¼ −L3n2fnb, with L3 ∝ a2ff, where aff is the
fermion-fermion scattering length [20,22,24]. In contrast,
on the strongly attractive side of the Feshbach resonance,
the fermions form halo dimers of size ≃aff and the
relaxation occurs through two-body processes between
one such molecule and one boson. In this case the rate
equation for bosons reads _nb ¼ −L2nmnb, where nm ¼
nf=2 is the molecule density. Far from the Feshbach
resonance, the two-body loss rate scales as 1=aff as a
consequence of the enhanced overlap of the halo dimer
wave function with the deeply bound product molecules
[20,24]. However, these two scalings give rise to a paradox
in the central region of the BEC-BCS crossover. Indeed, as
depicted in Fig. 1, the extrapolation towards unitarity leads
to contradictory results depending on whether we approach
the resonance from the BEC or the BCS side. In the former
case, one would predict an increasingly long lifetime at
unitarity while it tends to a vanishingly small value in the
latter case. This paradox has a fundamental origin: these
two scalings are obtained in the dilute limit where the
recombination can be described by a well-defined few-
body process, whereas this hypothesis fails in the strongly
correlated regime where nfjaffj3 ≫ 1. There, it is not
possible to single out two fermions from the whole many-
body system. Instead, the inelastic loss involving a boson
and two fermions is tied to the correlations of the whole
ensemble. A first hint towards reconciling these two
behaviors near unitarity is to assume that they saturate
for aff ≃ n−1=3f , yielding the same scaling _nb ∝ n4=3f nb.
The three asymptotic regimes—BEC, BCS, and unitary—

were obtained using different theoretical approaches and we
now show that, using Tan’s contact, they can be unified
within the same framework. The recombination rate is
proportional to the probability of having the three particles
within a distance b from each other, where b is the typical
size of the deeply bound molecule formed during the

collision [26–28]. Take ρ3ðr↑; r↓; rbÞ the three-body prob-
ability distribution of the system. When the bosons are
weakly coupled to the fermions, we can factor it as
ρ3ðr↑; r↓; rbÞ ¼ ρfðr↑; r↓ÞρbðrbÞ. Integrating over the posi-
tions of the three atoms we readily see that the three-body
loss rate is proportional to Tan’s contact parameter C2

of the fermions that gives the probability of having two
fermions close to each other [11]. C2 is calculated using the
equation of state of the system thanks to the adiabatic-sweep
theorem

C2 ¼ −
4πmf

ℏ2

∂F
∂ð1=affÞ ; ð1Þ

wheremf is the fermion mass andF is the free-energy of the
fermionic gas per unit-volume [12,13]. The asymptotic
expressions of C2 in the BEC, BCS and unitary regimes
are listed in Table I. In the deep BEC limit, the free energy is
dominated by the binding energy of the molecules
ℏ2=mfa2ff; in the BCS regime C2 is derived using the
mean-field approximation [11]. At unitary, the expression of
the contact stems from the absence of any length scale other
than the interparticle distance. The dimensionless parameter
ζ ¼ 0.87ð3Þ was determined both theoretically [29] and
experimentally [14–19]. Expressions listed in Table I con-
firm that the contact parameter and the bosonic loss rate
follow the same scalings with density and scattering length.
We support this relationship between inelastic losses

and Tan’s contact by considering a microscopic model
where the recombination is described by a three-body
Hamiltonian

Ĥ3 ¼
Z

d3rbd3r↑d3r↓gðrb; r↑; r↓Þ

× Ψ̂†
m

�
r↑ þ r↓

2

�
Ψ̂†

bðrbÞΨ̂bðrbÞΨ̂↑ðr↑ÞΨ̂↓ðr↓Þ

þ H:c:; ð2Þ

where Ψ̂α is the field operator for the species α and the
coupling g takes significant values only when the three
particles are within a distance b [30]. Assuming that b is the
smallest distance scale in the problem and that this
Hamiltonian can be treated within Born’s approximation
we find that (see Ref. [31])

_nb ¼ −γC2nb: ð3Þ
The constant γ depends on the coupling g and describes the
coupling to deeply bound nonresonant states; hence, γ has
essentially no variation with the magnetic field across the
fermionic Feshbach resonance.
Equation (3) is the main prediction of this Letter and we

explore the consequences of this equation by measuring the
lifetime of an ultracold Fermi-Bose mixture of 6Li and 7Li
atoms. Our experimental setup is described in Ref. [37].

TABLE I. Scaling of the boson-fermion mixture loss rate and of
Tan's contact [11], C2, in the BEC-BCS crossover. Both scalings
are identical in the weakly and strongly attractive limits. As
kF ¼ ð3π2nfÞ1=3, at unitarity C2 scales as n

4=3
f . ζ is a dimension-

less constant, ζ ¼ 0.87ð3Þ [17,25].

BEC Unitary BCS

ð _nb=nbÞ ∝ ðnm=affÞ [20] ∝ n4=3f ∝ a2ffn
2
f [20]

C2 8πðnm=affÞ ð2ζ=5πÞk4F 4π2a2ffn
2
f
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The 6Li atoms are prepared in a spin mixture ↑;↓ of jF ¼
1=2; mF ¼ �1=2i for which there is a broad Feshbach
resonance at 832 G [33]. The 7Li atoms are transferred into
the jF ¼ 1; mF ¼ 0i featuring two Feshbach resonances, a
narrow one at 845.5 G and a broad one at 893.7 G [31].
The scattering length between bosons and fermions is
abf ¼ 40.8a0 and is equal for the ↑;↓ states. It can be
considered constant in the magnetic field range that we
explored, 680–832 G. The atoms are confined in a hybrid
magnetic-optical trap and are evaporated at the 6Li
Feshbach resonance until we reach dual superfluidity or
any target temperature. We ramp the magnetic field to an
adjustable value in 200 ms and wait for a variable time t.
We then measure the atom numbers of the two species by
in situ imaging or after time of flight.
We first show that the dominant boson loss mechanism

on the BEC side of the resonance involves one boson, one
fermion ↑, and one fermion ↓. This is easily done by
comparing the boson losses for spin-balanced and spin-
polarized fermionic samples. Figure 2 displays the remain-
ing fraction of bosons and fermions after a waiting time of
1 s for balanced fermions and 1.5 s for spin-polarized
fermions with 90% polarization. We observe that the losses
for high spin polarization are strongly suppressed indicat-
ing that fermions of both spin components are required to
eliminate one boson.
Second we show that the losses in the weakly interacting

regime na3ff ≪ 1 (deep BEC side of the resonance, 720 G)
are proportional to the fraction of molecules in the sample,
η ¼ 2Nm=ðNf þ 2NmÞ. This fraction is varied by changing

the temperature from 1 μK to 4 μK and 6Li densities from
2 × 1012 cm−3 to 1.0 × 1013 cm−3. In these temperature
and density ranges, both gases are well described by
Maxwell-Boltzmann position and velocity distributions.
The molecular fraction is calculated using the law of mass
action [31,36] and is assumed to be time independent
owing to the high formation rate of halo dimers
(≃ℏa4ff=mf)[38]. We extract the interspecies decay rate
by fitting the time evolution of the bosonic population

_Nb ¼ −LbfhnfiNb − ΓvNb; ð4Þ
where h� � �i represents the trap average, and Γv is the one-
body residual gas loss rate (0.015 s−1).
The data in Fig. 3(a) show that the boson loss rate is

proportional to the molecule fraction of the fermionic
cloud. Introducing the boson-fermion dimer molecule loss
rate Lbm defined by Lbmhnmi ¼ Lbfhnfi, we check the
proportionality of Lbm with 1=aff predicted in Table I by

FIG. 2. Remaining fraction of bosons (blue symbols) and
fermions (red symbols, inset) after a 1 s and 1.5 s waiting time
for spin-balanced (filled symbols), resp. 90% polarized (open
symbols) fermions. The blue dash-dotted (red dashed, inset)
curve is a coupled loss model describing the competition between
boson fermion-dimer decay (∝ 1=aff) and dimer-dimer decay
(∝ 1=a2.55ff ) [27,31]. The blue-shaded area represents the 1σ

fluctuations for the remaining fraction of bosons with spin-
polarized fermions. The initial atom numbers are 3 × 105 for 6Li
and 1.5 × 105 for 7Li at a temperature T ≃ 1.6 μK with trap
frequencies νz ¼ 26 Hz and νr ¼ 2.0 kHz.

(a)

(b)

FIG. 3. (a) Boson-fermion loss rate vs molecule fraction.
Circles: Experimental data. The vertical error bars represent
the statistical errors for Lbf from fitting the loss curves. The
horizontal error bars represent the statistical errors on the
molecule fraction due to 6Li number fluctuations. The red dashed
line is a linear fit to the data. (b) Boson-dimer loss rate vs inverse
scattering length. The blue dot-dashed line is a linear fit to the
data with nfa3ff ≤ 0.025 (black circles), providing γ¼1.17ð11Þ×
10−27m4 ·s−1, see Eq. (3).
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repeating the loss measurements for different magnetic
fields in the interval 690–800 G, see Fig. 3(b). From a linear
fit to the data where interaction effects are negligible
(nfa3ff ≤ 0.025), we extract the slope γ ¼ 1.17ð11Þ ×
10−27 m4 · s−1 entering in Eq. (3).
Since γ doesn’t depend on the magnetic field, we can

now predict the loss rate anywhere in the BEC-BCS
crossover using Eq. (3). The strongly interacting unitary
regime (1=aff ¼ 0) is particularly interesting and we
measure the boson decay rate at 832 G in the low
temperature dual superfluid regime [37]. The mixture is
initially composed of about 40 × 103 fully condensed 7Li
bosons and 150 × 103 6Li spin-balanced fermions at a
temperature T≃ 100 nKwhich corresponds to T=TF ≃ 0.1
where TF is the Fermi temperature. At this magnetic field
value, the atoms are now closer to the boson Feshbach
resonance located at 845.5 G and bosonic three-body losses
are no longer negligible. The time dependence of the boson
number is then given by

_Nb ¼ −Lbhn2biNb − ΓbfNb − ΓvNb: ð5Þ
To extract Γbf we measure independently Lb with a BEC

without fermions in the same trap and inject it in Eq. (5),
see Ref. [31]. We typically have Lbhn2bi ¼ 0.1–0.4 s−1, and
Lb ¼ 0.11ð1Þ × 1026 cm6 · s−1 consistent with the model
of Ref. [35]. Repeating such measurements for different
fermion numbers and trap confinement, we now test the
expected n4=3f dependence of the Bose-Fermi loss rate at
unitarity (central column in Table I). In this dual superfluid
regime, the size of the BEC is much smaller than that of the
fermionic superfluid and the BEC will mainly probe the
central density region nfðr ¼ 0Þ. However, it is not truly a
pointlike probe, and introducing the ratio ρ of the Thomas-
Fermi radii for bosons and fermions, we obtain the finite
size correction for Eq. (3) [31]:

Γbf ¼ γC2ð0Þ
�
1 −

6

7
ρ2
�
; ð6Þ

where C2ð0Þ ¼ ð2ζ=5πÞ(3π2nfð0Þ)4=3, and the last factor
in parenthesis amounts to 0.9. The prediction of Eq. (6) is
plotted as a red line in Fig. 4 and is in excellent agreement
with our measurements without any adjustable parameter.
Alternatively, a power-law fit Anp to the data yields an
exponent p ¼ 1.36ð15Þ which confirms the n4=3f predicted
scaling at unitarity. Finally, fixing p to 4=3 provides the
coefficient A and a value of the homogeneous contact
ζ ¼ 0.82ð9Þ in excellent agreement with previous mea-
surements, ζ ¼ 0.87ð3Þ [17,25]. This demonstrates that
impurity losses act as a microscopic probe of quantum
correlations in a many-body system.
The bosonic or fermionic nature of the probe is of no

importance. Provided the coupling between the impurity
and the resonant gas is weak, our method can also be

applied to other mixtures. It gives a framework to interpret
the experimental data on 6Li=40K [22] and, in particular, to
test our prediction on the BCS side of the Feshbach
resonance. It can also be applied to the recently observed
6Li=174Yb [39], 6Li=41K [40], and 6Li=7Li [41] dual-
superfluid Bose-Fermi mixtures and even to the case where
one of the collision partners is a photon as in photo-
association experiments [42,43]. Our observation of a loss
rate scaling ∝ n4=3f at unitarity is in stark contrast with the
generic case np, where the integer p is the number of
particles involved in the recombination process. A frac-
tional exponent is also predicted to occur for the resonant
Bose gas [5,6] and Fermi gas [27,44].
A first extension of this work is to investigate regimes

where abf ≃ aff ≫ n−1=3 and the Born approximation
breaks down. In this case Efimovian features are expected
to occur [45,46]. Second, our method provides a unique
microscopic way to measure the contact quasilocally in a
harmonic trap. An important perspective is to determine the
homogeneous contact of the unitary Fermi gas at finite
temperature, whose behavior is largely debated near the
normal-superfluid transition [18].
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2Laboratoire de physique de l’Ecole normale supérieure,
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In this article we investigate the properties of an impurity immersed in a superfluid of strongly
correlated spin 1/2 fermions. For resonant interactions, we first relate the stability diagram of dimer
and trimer states to the three-body problem for an impurity interacting with a pair of fermions.
Then we calculate the beyond-mean-field corrections to the energy of a weakly interacting impurity.
We show that these corrections are divergent and have to be regularized by properly accounting for
three-body physics in the problem.

The physics of an impurity immersed in a many-
body ensemble is one of the simplest although non-trivial
paradigms in many-body physics. One of the first exam-
ples of such a system is the polaron problem which was
introduced by Landau and Pekar [1] to describe the in-
teraction of an electron with the acoustic excitations of
a surrounding crystal. Likewise, in magnetic compounds
Kondo’s Effect arises from the interaction of magnetic
impurities with the background Fermi sea [2, 3]. Similar
situations occur in high-energy physics, e.g. in neutron
stars to interpret the interaction of a proton with a su-
perfluid of neutrons [4], or in quantum chromodynamics
where the so-called Polyakov loop describes the prop-
erties of a test color charge immersed in a hot gluonic
medium [5]. Finally, impurity problems can be used as
prototypes for more complex many body-systems [6], as
illustrated by the dynamical mean-field theory [7].

The recent advent of strongly correlated quantum
gases permitted by the control of interactions in these
systems have opened a new research avenue for the
physics of impurities [8–11]. Experiments on strongly po-
larized Fermi gases [12–14] were interpreted by the intro-
duction of the so-called Fermi polarons, a quasi-particle
describing the properties of an impurity immersed in
an ensemble of spin-polarized fermions and dressed by
a cloud of particle-hole excitations of the surrounding
Fermi Sea [15–17]. More recently, the physics of Bose po-
larons (impurities immersed in a Bose-Einstein conden-
sate) was explored using radio-frequency spectroscopy
[18, 19]. Contrary to the Fermi polaron, this system is
subject to an Efimov effect [20] and three-body interac-
tions play an important role in the strongly correlated
regime [21]. Finally recent experiments on dual super-
fluids have raised the question of the behaviour of an
impurity immersed in a superfluid of spin 1/2 fermions
[22–24]. In these experiments, the polaron was weakly
coupled to the background superfluid and the interaction
could be accurately modeled within mean-field approxi-
mation. Further theoretical works explored the strongly
coupled regime using mean-field theory to describe the

Polaron

Dimeron

Trimeron

1/𝑎𝑎𝑎

𝐸𝐸

FIG. 1. Sketch of the energy branches of an impurity (red dot)
immersed in an ensemble of Cooper-paired fermions when
the impurity/fermion scattering length a’ is varied. Blue:
polaron branch; green: ground-state Efimov trimer branch;
orange: dimer branch. According to mean-field calculations
[25, 26] the polaron/trimer transition corresponds to a smooth
avoided crossing between the two branches.

fermionic superfluid [25, 26]. They highlighted the role
of Efimov physics in the phase diagram of the system and
as a consequence some results were plagued by unphysi-
cal ultraviolet divergences. In this letter we address this
problem without making any assumption on the proper-
ties of the superfluid component. We calculate the first
beyond-mean-field corrections to the energy of the po-
laron and we show that the logarithmic divergence arising
from three-body physics can be cured within an effective
field theory approach introduced previously in the study
of beyond mean-field corrections in Bose gases [27, 28].

Qualitatively speaking, the phase diagram of the im-
purity can be decomposed in three different regions when
the strength of the impurity/fermion interaction is var-
ied (see Fig. 1). For a weak attraction, the impurity
can be described as a polaronic quasi-particle. When
attraction is increased, the impurity binds to an existing
Cooper pair and the polaronic branch connects to the res-
onant Efimov trimer states. Earlier variational calcula-
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tions suggest that the transition between the polaron and
trimeron states is a smooth crossover [25, 26]. Finally,
in the strongly attractive regime, impurity/fermion at-
traction overcomes Cooper pairing leading to a dimeron
state describing an impurity/fermion dimer immersed in
a fermionic superfluid medium.

Since the size of the ground-state Efimov trimer is typ-
ically much smaller than the interparticle spacing, its
binding energy is much larger than the Fermi energy of
the fermionic superfluid. As a consequence, except when
the Efimov trimer becomes resonant with the atomic con-
tinuum, the internal structure of the trimer is only weakly
affected by the many-body environment. A first insight
on the phase diagram of the system can thus be obtained
from the study of the three-body problem to determine
the stability domain of the Efimov trimers with respect
to the free-atom and atom-dimer continuum. In this pur-
suit, we use a two-channel model similar to the one pre-
sented in e.g. [29] in the case of the bosonic Efimov prob-
lem [30]. For the sake of simplicity, we assume here that
the masses of the fermions and the impurity are the same,
and that the impurity interacts the same way with both
spin states of the fermionic ensemble (these assumptions
are well satisified in the experiments reported in [22]).
The properties of the system are therefore characterized
by three different length scales: the fermion-fermion scat-
tering length (a), the fermion-impurity scattering length
(a′) and the effective range of the interaction poten-
tial (Re) [31]. The corresponding phase diagram is dis-
played in Fig. 2. When the fermion/fermion interaction
strength is varied, the superfluid explores the BEC-BCS
crossover [9] that connects the weakly attractive regime
(a→ 0−) where the fermions form loosely bound Cooper
pairs described by BCS (Bardeen-Cooper-Schrieffer) the-
ory, to the strongly attractive limit (a→ 0+) where they
form a Bose-Einstein Condensate (BEC) of deeply bound
dimers. As a consequence, the polaronic state smoothly
evolves from a Fermi polaron (an impurity immersed in
a non-interacting Fermi sea) to a Bose polaron (an im-
purity immersed in a BEC of dimers). The trimeron
stability region is obtained by a numerical resolution
of the three-body problem [30]. The polaron-dimeron
frontier simply corresponds to a competition between
fermion/fermion and fermion/impurity pairings.

Since the trimeron and dimeron regimes are dominated
by few-body physics, we now focus on the energy of the
polaronic branch that is more strongly affected by the
presence of the superfluid. We furthermore assume that
the impurity-fermion interaction can be treated pertur-
batively.

Consider thus an impurity of mass mi immersed in a
bath of spin 1/2 fermions of mass mf . We write the
Hamiltonian of the system as

Ĥ = Ĥimp + Ĥmb + Ĥint, (1)

Dimeron

Trimeron

Polaron

B
os
e
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m
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FIG. 2. Stability diagram of the polaron, dimeron and
trimeron states with the effective range for mf = mi using
a coupled channel model (see text and [30]). Variational ap-
proaches based on a mean-field description of the background
superfluid suggest that the polaron/trimeron transition is a
crossover [25, 26].

where Ĥimp (resp. Ĥmb) is the Hamiltonian of the impu-

rity (resp. many-body background) alone, and Ĥint de-
scribes the interaction between the two subsystems. We
label the eigenstates of the impurity by its momentum q

and its eigenvalues are ε
(i)
q = ~2q2/2mi. The eigenstates

and eigenvalues of Ĥmb are denoted |α〉 and Eα, where
by definition α = 0 corresponds to the ground state of
the fermionic superfluid.

Assuming for simplicity an identical contact interac-
tion between the impurity and each spin component of
the many-body ensemble, we write

Ĥint = g′0
∑

σ=↑,↓

∫
d3rψ̂†σ(r)ψ̂σ(r)φ̂†(r)φ̂(r), (2)

where ψ̂σ and φ̂ are the field operators for spin σ particles
of the many-body ensemble and of the impurity respec-
tively. In this expression, the bare and physical coupling
constants g′0 and g′ are related through

1

g′0
=

1

g′
− 1

Ω

∑

k<Λ

1

ε
(r)
k

, (3)

where Ω is the quantization volume, Λ is some ultravi-

olet cutoff and ε
(r)
k = ~2k2/2mr, with mr the impurity-

fermion reduced mass. Assuming that the contact in-
teraction can be treated perturbatively, we have up to
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second order

g′0 = g′ +
g′2

Ω

∑

k<Λ

1

ε
(r)
k

+ o(g′
2
). (4)

Calculating the energy ∆E of the polaron to that same
order, we have

∆Epert = g′n+
g′2n

Ω

∑

q

[
1

ε
(r)
q

− χ(q, ε(i)
q )

]
. (5)

where n is the particle density in the many-body medium
and

χ(q, E) =
1

N

∑

α

|〈α|ρ̂−q|0〉|2
Eα − E0 + E

, (6)

with ρ̂q =
∑
σ

∫
d3rψ̂†σ(r)ψ̂σ(r)eiq·r.

In the sum, the presence of the two terms allows for a
UV cancellation of their 1/q2 asymptotic behaviours. In-
deed, for large q the eigenstates of the many-body Hamil-
tonian excited by the translation operator ρ̂q correspond
to free-particle excitations of momentum q and energy

ε
(f)
q = ~2q2/2mf . We therefore have

χ(q, E) ' S(q)

ε
(f)
q + E

, (7)

where S(q) =
∑
α |〈α|ρ̂q|0〉|2/N is the static structure

factor of the many-body system. At large momenta, we
have S(q) = 1 + C2/4Nq + ..., where C2 is Tan’s con-
tact parameter of the fermionic system and characterizes
its short-range two-body correlations [32, 33]. From this
scaling we see that the UV-divergent 1/q2 contributions
in Eq. (5) cancel out. However, the next-to-leading or-
der term in S(q) suggests that this cancellation is not
sufficient to regularize the sum that is still log-divergent.
This logarithmic behaviour is supported by a directed
calculation of χ using BCS mean-field theory [30] and is
characteristic of a singularity in the three-body problem
for particles with contact interactions that was pointed
out first by Wu for bosons [34] and was more recently in-
vestigated in the context of cold atoms (see for instance
[26, 27, 35, 36]).

To get a better insight on the origin of this singular-
ity, we analyze first the scattering of an impurity with a
pair of free fermions. Within Faddeev’s formalism [37],
the corresponding three-body T -matrix is written as a
sum of three contributions, T̂i=1,2,3 solutions of the set
of coupled equations



T̂1

T̂2

T̂3


 =



t̂1

t̂2

t̂3


+




0 t̂1 t̂1

t̂2 0 t̂2

t̂3 t̂3 0


 Ĝ0



T̂1

T̂2

T̂3


 (8)

1

2

1

2
3

1

2
3

1

2
3

FIG. 3. Singular diagrams at second order of Born’s approx-
imation. The red line corresponds to the impurity. In Fad-
deev’s expansion, each interaction vertex corresponds to a
two-body t-matrix t̂1,2,3. In Born’s approximation, the t̂1,2’s
are expanded to second order in a′ which leads to a logarith-
mic UV divergence of the corresponding terms.

where Ĝ0 = 1/(z− Ĥ0) is the free resolvant operator and
t̂i is the two-body T -matrix leaving particle i unaffected.
The solutions of this equation can be expressed as a se-
ries of diagrams where a given two-body t-matrix never
acts twice in a row and T̂i corresponds to the sum of all
diagrams finishing by t̂i. Assuming that the impurity is
labeled by the index i = 3 and that its interaction with
the other two atoms (i = 1, 2) is weak, we can expand
the solutions of Faddeev’s equation with t̂1 and t̂2. To
be consistent with the polaron-energy calculation out-
lined in previous section, we proceed up to second order
in t̂1,2.

When the full 2-body T -matrices t1,2 = g′/Ω/(1 +
ia′k + a′Rek2) are used, all terms of the expansion are
finite. However, when treating them within second or-
der Born’s approximation (i.e. taking simply t1,2 =
g′(1−ika′)/Ω and stopping the expansion of the T -matrix
at second order in a’), some diagrams are logarithmically
divergent. The singular diagrams are listed in Fig. 3:
they all start and end with t3 and their contribution can
be written as (t3)outΓ(t3)in. In Born’s approximation the
sums over inner momenta are divergent and the integrals
are therefore dominated by the large-k behaviour of t3
and G0. After a straightforward calculation, we obtain
that

ΓBorn ∼
Λ→∞

m3
f

~6
g′

2
κ(η = mb/mf ) ln(Λ) (9)

with

κ(η) =

√
η3(η + 2)

2π3(η + 1)2
− η

2π3
arctan

(
1√

η(η + 2)

)

− 4

π3

√
η

η + 2
arctan

(√
η

η + 2

)2
(10)

Since Γ is finite when the full two-body physics is taken
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into account we introduce a three-body characteristic
length R3 such that

ΓBorn − ΓFaddeev =
Λ→∞

m3
f

~6
g′

2
κ(η) ln(ΛR3) + o(1), (11)

where ΓFaddeev corresponds to the value of Γ obtained
by using the full two-body T-matrices t1,2 to calculate
the first three diagrams of Fig. (3). In this perturba-
tive approach, R3/a

′ depends on η and Re/a
′ and can

be computed numerically [30]. Since we work in a regime
where the polaron is the ground state and Efimov trimers
are absent, we do not have to use non-perturbative ap-
proaches compatible with Efimov physics and leading to
a log-periodic dependence of R3 [38].

Following the effective field theory approach discussed
in [36], divergences plaguing Born’s expansion can be
cured by introducing an explicit three-body interaction
described by a Hamiltonian

Ĥ3b = g3(Λ)

∫
d3rψ̂†1(r)ψ̂†2(r)ψ̂†3(r)ψ̂3(r)ψ̂2(r)ψ̂1(r)

(12)

The contribution of this three-body interaction to Γ
corresponds to the fourth diagram of Fig. 3 and yields
the following expression

Γ3b = g3(Λ)

(
1

Ω

∑

k<Λ

1

2ε
(f)
k

)2

. (13)

Using this three-body interaction to cure Born’s approx-
imation, we must have ΓBorn + Γ3b = ΓFaddeev, hence the
following expression for the three-body coupling constant

g3(Λ)

(
1

Ω

∑

k<Λ

1

2ε
(f)
k

)2

= −
m3
f

~6
g′

2
κ(η) ln(ΛR3) (14)

The introduction of the three-body Hamiltonian im-
plies a new contribution to the second-order energy shift
(5). This new term amounts to

∆E3b = g3(Λ)〈0|ψ̂†1(r)ψ̂†2(r)ψ̂2(r)ψ̂1(r)|0〉 (15)

Using Eq. (14) as well as the properties of Tan’s contact
parameter, we obtain after a straightforward calculation

∆E3b = −g′2κ(η)
mfC2

~2Ω
ln(ΛR3). (16)

Adding this contribution to Eq. (5), we obtain for the
polaron energy ∆E = ∆Epert + ∆E3b:

∆E = g′n

[
1+kFa

′F

(
1

kFa

)

− 2π
mf

mr
κ(η)

a′C2

N
ln(kFR3) + ...

]
,

(17)

with

F

(
1

kFa

)
=

Λ→∞
2π

kF

[
~2

mr

∫

q<Λ

d3q

(2π)3

(
1

ε
(r)
q

− χ(q, ε(i)
q )

)

− mf

mr
κ(η)

C2

N
ln(Λ/kF )

]

(18)

Eq. (17) and (18) are the main results of this paper.
They show that the second order correction of the po-
laron energy is the sum of two terms: a regular term
characterized by the function F defined by Eq. (17),
as well as a second term, characterized by a logarithmic
singularity and proportional to the fermionic contact pa-
rameter.

The function F is in general hard to compute exactly
but we can obtain its exact asymptotic expression in the
BEC and BCS limits. When the fermions of the back-
ground ensemble are weakly interacting, we must recover
the Fermi-polaron problem (see Fig. 2). For the mass-
balanced case η = 1, we obtain F (−∞) = 3/2π. In
the strongly attractive limit, the fermionic ensemble be-
haves as a weakly interacting Bose-Einstein condensate
of dimers and the polaron energy takes a general mean-
field form gadn/2, where gad is the impurity-dimer s-wave
coupling constant and n/2 is the dimer density. Since in
the BEC limit, C2/N = 4π/a, identifying Eq. (17) with
the mean-field impurity-dimer interaction implies that

F

(
1

kFa

)
=

a→0+
8π2κ(η)

mf

mr

ln (kFa)

kFa
+ ... (19)

and

gad = 2g′
[
1− 8π2κ(η)

mf

mr

a′

a
(ln(R3/a) + Cad) ...

]
,

(20)
where the constant Cad can be obtained from the direct
analysis of the atom-dimer scattering problem [30].

Eq. (17) can be used to benchmark previous works on
this problem. Ref. [25, 26] were based on a mean-field
description of the superfluid component of the system.
The mean-field calculation obeys BCS and BEC asymp-
totic behaviours similar to those predicted by Eq. (17)
except for the value of κ that does not coincide with the
present result since the last term in Eq. (10) is missing
within a BCS approach [30]. This discrepancy is eas-
ily understandable. Indeed, this term corresponds to the
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FIG. 4. Atom-dimer s-wave coupling constant relatively to
Born’s approximation prediction gBorn = 2g′. Dots: numer-
ical resolution of the three-body problem from [39]. From
bottom to top: η= 7/40 (blue), 23/40 (red), 7/6 (purple),
87/6 (orange), 133/6 (green). Solid line: Asymptotic result
Eq. (20) where R3 and Cad are computed numerically and are
given in [30]. Here R3 and Cad are computed taking Re = 0
and the slight discrepancy observable at large η is probably
due to the finite range used in [39] to regularize the three-body
problem.

third diagram of Fig. (3) where the two fermions inter-
acts between their interaction with the impurity, which
contradicts the BCS assumption of non-interacting Bo-
goliubov excitations. For η = 1, κ/κMF ' 15, showing
that BCS approximation underestimates strongly beyond
mean-field contributions. Eq. (20) can also be compared
to the numerical calculation of the atom-dimer scattering
length reported in [39]. The comparison between numer-
ics and our analytical result for experimentally relevant
mass ratios is shown in Fig. (4) which demonstrates a
very good agreement between the two approaches. Note
also that Eq. (20) clarifies the range of validity of the
perturbative expansion. In addition to the diluteness as-
sumption kF |a′| � 1, the validity of Born’s expansion
requires the additional condition |a′|/a� 1 when a > 0.

Finally, the convergence of Eq. (18) entails that χmust
obey the large momentum asymptotic behavior

χ(q, ε(i)
q ) =

q→∞
1

ε
(r)
q

[
1− π2κ(η)

mf

mr

C2

Nq
+ ...

]
(21)

For mi → ∞, ε
(i)
q = 0, we have κ(∞) = −1/4π and

we recover the asymptotic result derived in [40] using
operator product expansion. Note that mean-field theory
predicts κMF(∞) = 0, and therefore disagrees with this
independent result.

Using the mean-field estimate for F at unitarity, we
see that the second-order correction to the polaron en-
ergy (Eq. (17)) is dominated by the logarithmic contribu-
tion. In the case of the polaron oscillation experiments
reported in [22], the predicted correction amounts to a

5% shift of the oscillation frequency. Although small,
this correction is within the reach of current experimental
capabilities and shows that the results presented in this
work are necessary to achieve the percent-level agreement
between experiment and theory targeted by state of the
art precision quantum many-body physics.
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THREE-BODY PHASE-DIAGRAM

Efimov ground state

The Efimov spectrum can be obtained without further
regularization of the three-body problem using a two-
channel model described by the hamiltonian [1, 2]

Ĥ =
∑

k,σ

εkâ
†
k,σâk,σ +

∑

K,σ

(Eσ,0 + εk/2)b̂†K,σ b̂K,σ

+
~2

2m

√
2π

Re

∑

K,k,k<Λ
σ1 6=σ2 6=σ3

(b̂†K,σ1
âk+K/2σ2

â−k+K/2,σ3
+ H.c.).

(S1)

In this expression, σ ∈ {1, 2, 3} labels the three atomic
species, âk,σ is the atomic (open channel) annihilation

operator for species σ, b̂K,σ the molecular (closed chan-
nel) annihilation operator describing dimers not involv-
ing spin σ atoms, and Re the effective range of the po-
tential. For the sake of simplicity, we assume that all
three atomic species have the same mass m and that the
atom-dimer coupling is the same for all three species.
The atom-atom scattering lengths are nevertheless con-
trolled independently by the bare molecular binding en-
ergies Eσ,0.

The solutions of the two-body problem shows that the
scattering length aσ between two atoms (σ1, σ2) 6= σ is
given by

1

aσ
=

2

π
Λ− RemEσ,0

~2
, (S2)

where Λ is a UV momentum cut-off.

The three-body bound states are described by the
Ansatz

|ψ〉 =
∑

k1,k2

β(k1,k2)â†k1,1
â†k2,2

â†−k1−k2,3
|0〉

+
∑

σ,k

ασ(k)

k
â†−k,σ b̂

†
k,σ|0〉.

(S3)

where |0〉 is the vacuum.

The trimer energy E3 = −~2κ2/m is then obtained by

FIG. S1. Phase diagram of an impurity immersed in a
fermionic superfluid. The typical energy of each phase (de-
tailed in the text) is written in each domain, the dots in
each expression contain the mean-field terms that are neg-
ligible compared to the other terms. The typical expression
of the chemical potential in the BEC-BCS crossover is given
at the top (on the BCS side, it corresponds approximately to
the Fermi energy which is negligible compared to the other
energy scales presented here, hence the 0). The four num-
bers correspond to the four frontiers described in the text.
The grey bands correspond to the parameter range where
many-body effects affect few-body physics for a typical value
kFRe = 5× 10−2.

solving the set of three equations

[√
1 + 3p2/4 + κRe(1 + 3p2/4)− 1

κaσ

]
ασ(p)

=
1

π

∫ ∞

0

dq ln

(
p2 + q2 + pq + 1

p2 + q2 − pq + 1

)
∑

σ′ 6=σ
ασ′(q)


 ,

(S4)

Frontiers of the stability diagram

We explain here how the different domains of the sta-
bility diagram of Fig. S1 are obtained (corresponding to
Fig. 2 of the main text).

In experiments, Re is small compared to the interpar-
ticle distance, therefore we have Re kF � 1, where the
Fermi wavevector kF is defined by n ≡ k3

F /(3π
2). On

the BCS side of the BEC-BCS crossover of the super-
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fluid, we have 1/(kFa) < 0 and 1/|kFa| ∼ 1 and there-
fore |Re/a| = Re kF /|kFa| � 1. For the same reason,
the BEC side corresponds to 1/(kFa) ∼ 1 and we have
Re/a = Re kF /(kFa) � 1. On the graph of Fig. S1,
the crossover region of the superfluid is therefore con-
centrated in a narrow region around the y-axis. The
consequence of this separation of scales is that, except
in this narrow region, for Re/a > 0, the superfluid is
made of weakly interacting tightly bound dimers, while
for Re/a < 0, it is made of extremely loose Cooper pairs
corresponding essentially to non-interacting fermions (ex-
cept for superfluid properties).

Concerning the impurity-fermion interaction regime,
we have similarly (kFa

′) = (Re/a
′)−1(kF Re), which is

a small dimensionless number for Re/a
′ not too small.

Therefore, except in a narrow region around the x-axis
in Fig. S1, we have kF |a′| � 1.

In the (Re/a
′ < 0, Re/a < 0) quadrant (Fermi polaron

sector), the energy of the impurity immersed in the su-
perfluid is given by ESF + g′ n, where ESF is the ground
state energy of the superfluid without the impurity.

In the Bose-polaron sector (Re/a
′ < 0, Re/a > 0), the

energy of the polaron in the superfluid is given by ESF +
g′b−f n, where g′b−f is the coupling constant between the
impurity and a dimer of the superfluid.

In the (Re/a
′ > 0, Re/a < 0) quadrant the energy of

the dimeron in the superfluid is ESF−2µf+E′2+g′b−fn+
gn. The −2µf contribution originates from Cooper pair
breaking. One of the fermions of the pair binds to the
impurity to form a dimer of energy E′2 while the second
remains unbound and contributes to the mean-field term
gn. For Re/a < 0, µf ≈ ~2k2

F /(2m) is the chemical
potential of an ideal gas. The dimer energy is given by

[3] E′2 = −~2

m κ
′
2
2, with Re κ

′
2 = 2Re

a′

(
1 +

√
1 + 4Re

a′

)−1

.

For (Re/a
′ > 0), and (Re/a > 0) , the energy of the

dimeron in the superfluid is ESF −E2 +E′2 + g′b−bn+ gn
where we have substracted the dimer energy E2 lost by
the binding of a fermion of the bath with the impurity.
The expression for E2 is obtained from the expression of
E′2 by replacing a′ by a. g′b−b is the coupling constant
characterizing the interaction between the dimeron and
the dimers of the superfluid.

Finally, the energy of the trimeron in the superfluid is
given by ESF +E3−2µf +g′t−fn. E3 is the trimer energy
(a 3-body bound state), gt−f is a trimer-fermion coupling
constant, and −2µf is the energy of the two fermions of
the trimer coming from the superfluid bath.

Depending on the parameters, we determine which
state has the lowest energy. In this limit where kF tends
to zero, all the terms containing n or kF vanish. All
these energies, minus the neglected mean-field terms, are
gathered in Fig. S1. We then consider four cases (corre-
sponding to the four numbers displayed in Fig. S1):

1. Fermi polaron (Re/a < 0) vs trimeron. The fron-

tier is obtained by solving E3(Re, a, a
′) = 0.

2. Dimeron vs trimeron. The frontier is obtained by
solving E3(Re, a, a

′) = E′2.

3. Bose polaron (Re/a > 0) vs trimeron. The frontier
is obtained by solving E3(Re, a, a

′) = E2.

4. Bose polaron vs dimeron. The frontier is obtained
by solving E′2 = E2. Since E′2 and E2 are given
by the same function evaluated for a′ and a, this
frontier is included in the line a′ = a, i.e. the first
bisector in S1.

We end this section by noticing that the Fermi polaron-
trimeron frontier approaches the x-axis for Re/a→ −∞.
In this region, the calculation is no more controlled
(kF is not negligible anymore). However, since the po-
laron/trimeron is a crossover [4], the transition line can-
not be defined precisely anyway.

Moreover we note that for a = a′, our results agree
with the calculations reported in [3] for three-component
color Fermi gases.

BCS THEORY

This section presents a derivation of the results pre-
sented in the paper within the simplified framework of
BCS mean-field theory. We first determine χ, then the
F function and finally we compare it to the exact expres-
sions presented in this paper.

Since these results will only confirm the general be-
haviour but will not yield quantitative predictions, we re-
strain our calculations to the simplest case mf = mi = m
so for η = 1, a ratio close to the mass ratio we have with
our Lithium experiment (7/6).

Mean-field compressibility

As described in the main text, second order pertur-
bation theory relates the polaron energy shift to the
fermionic superfluid dynamical compressibility χ(q, E)
defined by

χ(q, E) =
1

N

∑

α

|〈α|ρ̂−q|0〉|2
Eα − E0 + E

. (S5)

Here, we derive the expression of χ using BCS theory
where the fermionic medium is described by the mean-
field Hamiltonian

Ĥmb =
∑

k,σ

ξk ĉ
†
kσ ĉkσ + ∆∗

∑

k

ĉk↑ĉ−k↓ + h.c. (S6)
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with ξk = ε
(f)
k − µ, µ is the chemical potential, and the

gap ∆ is defined by

∆ =
g0

Ω

∑

k

〈ĉ−k↓ĉk↑〉. (S7)

The Hamiltonian is diagonalized by introducing Bo-
goliubov operators γ̂k± defined by:

ĉk↑ = ukγ̂k+ − vkγ̂−k− (S8)

ĉk↓ = ukγ̂k− + vkγ̂−k+, (S9)

with

uk =

√
1

2
(1 +

ξk
Ek

), vk =

√
1

2
(1− ξk

Ek
) (S10)

and Ek =
√
ξ2
k + |∆|2.

To derive the BCS expression of the compress-
ibility, we express the matrix elements 〈α|ρ̂−q|0〉 =∑
σ〈α|ĉ

†
k−q,σ ĉk,σ|0〉 using the Bogoliubov creation and

annihilation operators. After a straightforward calcula-
tion, we finally obtain

χMF(q, E) =
1

N

∑

k

2u2
k−qv

2
k + 2ukvkuk−qvk−q

Ek + Ek−q + E
, (S11)

where we have used the fact that the excited states |α〉
correspond to pairs of Bogoliubov excitations, hence Eα−
E0 = Ek + Ek−q. We use the notation MF to signify
that this result is only valid in BCS theory, a mean-field
theory.

Perturbative calculation of the energy

In order to calculate the polaron energy shift, we need
to consider the perturbative development we obtained in
the article, adapted to BCS theory:

∆EMF
pert =

[
g′n+

g′2n
Ω

∑

q

(
1

ε
(r)
q

− χMF(q, ε(i)
q )

)]

(S12)
After turning sums to integrals and performing the an-

gular integrations we can write this expression as:

∆EMF
pert = g′n+

g′2

8π4

m

~2

∫
k2dk

∫
q2dq

(
4v2
k

q2
−

2u2
qvk

2 + 2ukvkuqvq

kq
ln

(
Ek + Eq + ~2(k+q)2

2m

Ek + Eq + ~2(k−q)2
2m

))

(S13)

To study the behaviour of these integrals for high
k, we perform the variable change k → u =
(k/kF )/

√
|∆|/EF , q → v = (q/kF )/

√
|∆|/EF and we

get

∆EMF
pert = g′n

[
1 + kFa

′ 3

2π

∣∣∣∣
∆

EF

∣∣∣∣
2

I(Λ/kF )

]
(S14)

with I corresponding to the integral left to calculate in
Eq. (S13) that depends on the cut-off Λ and also on the
ratio µ/|∆|.

In the limit u, v � 1, we can simplify greatly the ex-
pression of the integral I.

First, we can see that the terms u2
k and v2

k can be
rewritten, in this limit:

u2
k ∼ 1, v2

k ∼
1

4

|∆|2
ξ2
k

→ 1

4u4
(S15)

From this last expression, we can also get Tan’s contact
for two fermions C2 in BCS theory. Indeed, using the
property of momentum distribution [5]:

n↑(k) ∼
k→∞

n↓(k) ∼
k→∞

C2

k4
(S16)

and knowing that in BCS theory we have n(k) = n↑(k)+
n↓(k) = 2v2

kΩ, we see that we have the right dependence
for the momentum distribution and we can extract the
contact

C2

N
=

3π2

4

∣∣∣∣
∆

EF

∣∣∣∣
2

kF . (S17)

The integral can then be simplified in this limit as

I(Λ/kF ) =

∫
du

u

∫
dv

u

[
1−

1

2

( v
u

+
u

v

)
ln

(
1 + v/u+ (v/u)2

1− v/u+ (v/u)2

)]
.

(S18)

The second integral (over v/u) converges towards
2π4κMF and the first integral (over u) gives the loga-
rithmic divergence. We can finally write:

I = 2π4κMF(ln(Λ/kF ) + ...) (S19)

with κMF:

κMF =

√
3

8π3
− 1

12π2
. (S20)

In the main text we found:

κ(1) =

√
3

8π3
− 1

12π2
− 1

9π
√

3
(S21)
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The two results are very similar except for the last term
of κ(1) which does not appear in the mean-field approach
because BCS theory does not account for interactions
between excitations of the superfluid. This missing term
is actually pretty important since it is the leading term
in κ, therefore we get a ratio κ(1)/κMF ' 15.

The F function

We find out analytically that there is again a logarith-
mic divergence of this second order term, consistently
with what we stated before. By combining equations
(S14), (S17) and (S19), we get the expression of the en-
ergy calculated up to second order in perturbation using
BCS theory :

∆EMF
pert = g′n

[
1 + kFa

′FMF

(
1

kFa

)

+ 4πκMFa′
C2

N
ln(Λ/kF )

] (S22)

with FMF a function that can be computed numerically
throughout the BEC-BCS crossover by calculating the
difference between the exact expression of the integral I
defined in Eq. (S13) and the logarithmic term we ob-
tained in Eq. (S19). These numerical calculations show
that this function does not depend on the cut-off but only
on the parameter 1/(kFa).

Then, by introducing a similar renormalization with a
three-body term, we can rewrite the energy as:

∆EMF = g′n

[
1 + kFa

′FMF

(
1

kFa

)

−4πκMF a
′C2

N
ln(kFR3) + ...

]
,

(S23)

We get a very similar expression to the one we found
in this letter, only we replaced F and κ(1) by FMF and
κMF.

The function FMF is represented in Fig. S2, and we
can observe the two asymptotic behaviours on the BCS
and BEC sides:

1. In the BCS limit we recover once again the Fermi-
polaron, hence FMF(−∞) = 3/2π for η = 1.

2. In the BEC limit, we get a behaviour consistent
with the Bose-Polaron:

FMF

(
1

kFa

)
= 16π2κMF ln (kFa)

kFa
+ ... (S24)

In conclusion, BCS theory predicts the correct qualita-
tive behaviour for the polaron energy shift but is quanti-
tatively wrong, which is illustrated in Fig. S5 at the end
of this supplementary material.
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FIG. S2. Blue dots: Representation of the function FMF

through the crossover for η = 1. Red curves: Asymptotic be-
haviours described in the text on the BCS side: FMF(−∞) =
3
2π

, and the BEC Side : FMF(X) ' 16π2κMFX ln(1/X) +
A0X with A0 an adjustable parameter found out to be, after
optimization, A0 ' 1.1. Green curve: asymptotic behaviour
on the BEC side using the true value of κ, Cad and R3 (the
last two are given in the last section of this Supplementary
material).

THREE-BODY PARAMETERS

Calculating R3

We can obtain the three-body parameter R3 intro-
duced in the equation

ΓBorn − ΓFaddeev =
Λ→∞

g′
2
κ(η) ln(ΛR3) + o(1) (S25)

by calculating numerically this difference. We break
down this term into three parts, each corresponding to
one of the first three diagram of Fig. 3 from this letter.

Firstly, in the effective range approximation, the two-
body T-matrix is given by

t̂i =
g′/Ω

1 + ika′ +Rea′k2
(S26)

where Re is the effective range of the potential and k is
given by:

k =
√

2mr(E + i0+)/~2 (S27)

with E the energy of the initial state in the center-of-
mass frame of the three particles at the moment of the
interaction. For the diagrams we want to calculate, we
only have to consider the case where the fermions have
impulsions of p and −p and the impurity has an impul-
sion equal to zero (cf Fig. 3 from the article). This leads
to:
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E/~ = 0− (
p2

2mf
+

p2

2(mf +mb)
) = −3

4

p2

m
(S28)

Finally, the two-body T-matrix can be written as:

t̂i =
g′/Ω

1−
√

η(2+η)
(1+η)2 a

′p− η(2+η)
(1+η)2 (Re

a′ )(a′p)2 + i0+
=
g′

Ω
t(p)

(S29)
Then, we can write below the expressions correspond-

ing to each of these three diagrams.

Γ(1) = −2
m2
f

~4

g′

Ω

∑

p

1

p4
t(p) (S30)

Γ(2) = −2
m3
f

~6

g′2

Ω2

∑

p1,p2

1

p2
1p

2
2

t(p1)t(p2)

(p2
1 + p2

2)(η+1
2η )− 1

η ~p1. ~p2

(S31)

Γ(3) = −4
m3
f

~6

g′2

Ω3

∑

p1,p2,p3

[
1

p2
1p

2
3

4π

1/a− p2

√
η+2
4η

× t(p1)

p2
1 + p2

2(η+1
2η )− ~p1. ~p2

t(p3)

p2
3 + p2

2(η+1
2η )− ~p3. ~p2

] (S32)

In order to calculate the Faddeev term for Γ, one has
to use the expression of t(p) given in S29. On the other
hand, to obtain the Born term, one has to expand this
expression of t(p) up to first order in a′ for Γ(1) and up to
zero order for the other two components (so just replacing
it by 1), so that all three components of Γ are expanded
up to order two in a′.

For Γ(3), we calculate the sum in the limit 1/a� 1/a′

(highly interacting fermions) in which the difference be-
tween the Faddeev term and the Born term does not
depend on a. To calculate these different sums we pro-
ceed similarly as we did in the previous section for BCS
theory.

In this framework, one can show that R3/a
′ only de-

pends on the ratio Re/a
′ and the mass ratio. We show

in Fig. S3 the numerical calculations of the differ-
ence ΓBorn − ΓFaddeev for the mass ratio η = 7/6 and
Re/|a′| = 1. We see that we indeed get the logarithmic
behaviour with κ(7/6) as the proportionality constant.

We show in Fig. S4 the parameter R3/|a′| for dif-
ferent values of the ratio Re/|a′| in the case η = 7/6.
For Re/|a′| � 1, we get the asymptotic behaviour R3 '
1.50|a′|. For Re/|a′| � 1, we see that R3 increases expo-
nentially:

R3 ∝
Re
|a′|�1

√
Re|a′| exp

( √
3

16π2|κ(7/6)|

√
Re
|a′|

)
. (S33)
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FIG. S3. Blue dots: numerical calculations of the left-hand
side of eq. (S25), divided by g′2, for η = 7/6 and Re =
|a′|. Red curve: fitting curve of the blue dots in the limit
Λ|a′| � 1. We fit the data for Λ|a′| � 1 with the function
κ(7/6) ln(X×A0) with A0 a fitting parameter. The parameter
A0 gives us the value of R3/|a′|: here we get A0 ' 3.10.

At this point we should remind that we consider expan-
sions for Λ|a′| � 1 but with Re/|a′| as an independent
parameter with a given value. Consequently, we consider
this exponential term as a constant included in R3 in our
perturbative calculations.
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FIG. S4. Blue dots: numerical calculations of R3/|a′| for
different Re/|a′| ratios and η = 7/6. Red curve: fit for

Re/|a′| � 1 using a function A
√
X exp

( √
3

16π2|κ(7/6)|
√
X
)

,

with A an adjustable parameter. A ' 0.8 after optimization.

To see the dependence on the mass ratio η, Table I
lists numerical values of the parameter R3 that were
computed for experimentally relevant mass ratios and
Re = 0.
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η 7/40 23/40 7/6 87/6 133/6

R3/a
′ 1.03 1.41 1.50 1.46 1.46

TABLE I. Dimensionless parameter characterizing the Born
expansion of the three-body scattering amplitude (Eq. (S25))
for Re = 0 .

Atom-dimer scattering

The atom-dimer T-matrix can be computed using the
same approach. Indeed, since the fermions are asymp-
totically bound, we can treat the impurity-fermion inter-
action as a perturbation. This leads to the same dia-
grams as in the three-body scattering problem and the
atom-dimer scattering length consequently suffers from
the same logarithmic divergence when the range of the
potential vanishes. For large Λ the associated T -matrix
scales as

T
(1)
ad =

2g′

Ω

[
1 + 8π2mf

mr
κ(η)

a′

a
(ln(Λa) + Cad + ...)

]

(S34)
where the constant Cad is computed numerically and is
given in Table II for experimentally relevant values of
the impurity-fermion mass ratios.

η 7/40 23/40 7/6 87/6 133/6

Cad 1.52 1.59 1.56 1.37 1.36

TABLE II. Dimensionless parameter characterizing the Born
expansion of the atom-dimer scattering amplitude (Eq. (S34))
for Re = 0.

The logarithmic divergence is once again cured by in-
troducing the three-body interaction. Using the renor-
malized expression of g3(Λ) the three-body interaction
contribution to the atom-dimer T -matrix amounts to

T
(2)
ad = −16π2g′

Ω

mf

mr
κ(η)

a′

a
ln(ΛR3). (S35)

We indeed recover the asymptotic result Eq. [20] from
the main text since we have

Tad = T
(1)
ad + T

(2)
ad =

Tad,Born [1− 8π2mf

mr
κ(η)

a′

a
(ln(R3/a) + Cad + ...)

]

(S36)

where Tad,Born = 2g′/Ω corresponds to an atom-dimer
scattering length aad,Born/a

′ = 4(1 + η)/(2 + η).

Finally, to highlight the shortcomings of BCS theory
and the consistency of our three-body calculations, we

fit the atom-dimer scattering length calculated in [6], see
Fig. S5. There is no hesitation possible in seeing that
the coefficient before the log obtained through BCS the-
ory (including κMF) is too small to show the logarithmic
behaviour whereas the real κ enables a much better fit.
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FIG. S5. Blue dots: Points from [6] showing the ratio of
the atom-dimer scattering length aad over a′, for η = 7/6.
Red solid curve: fit to the blue dots using the function
aad,Born/a

′(1 + AX(lnX + B)) where A is a fixed parame-
ter corresponding to the analytical result obtained through
BCS theory (A ∝ κMF) and B is an adjustable parameter.
Green solid curve: theoretical curve obtained through three-
body calculations, its equation is the same as the one used for
the red curve but now with A ∝ κ and B obtained through
Cad and R3. We see that the curve corresponding to BCS
theory (red) does not match at all the results reported in [6],
contrary to the other one (green).
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ABSTRACT 

The physics of strongly correlated quantum many-body systems is a very rich problem under heavy 
investigation. These systems can present many spectacular properties at the macroscopic scale such as 
superfluidity. Cold atom gases are excellent systems to investigate quantum many-body physics thanks to 
their great versatility and their high degree of controllability. This thesis deals with the study of the 
properties of an impurity immersed in a two-component Fermi superfluid, through the BEC-BCS crossover. 
 We measure experimentally the lifetime of boson impurities immersed in a Fermi superfluid, as well 
as the fermion-impurity interactions. The lifetime measurements not only informs us on the stability of the 
system but also on the short-range correlations of the Fermi gas by giving us access to the two-body 
fermionic contact parameter. The study of the impurity-fermion interactions is realized with the analysis of 
the oscillations of a gas of impurities inside a Fermi superfluid. 
 Finally, we pursue a theoretical study of the phase diagram of an impurity interacting weakly with a 
Fermi superfluid, as well as a calculation of the polaron energy beyond the mean-field approximation, 
obtained after a regularization of this 2N+1 body problem using a three-body interaction. Qualitatively 
speaking, obtaining this energy in the BEC-BCS crossover allows us to bridge between the descriptions of 
the Bose polaron and the Fermi polaron. Quantitatively-wise, this calculation provides a correction beyond 
the mean-field term, needed to achieve a percent-level agreement between theory and experiment sought 
in quantum many-body physics.

MOTS CLÉS 

atomes froids, système quantique à N corps, impureté, polaron, crossover BEC-BCS, mélange Bose-Fermi

RÉSUMÉ 

La physique des systèmes quantiques à N corps fortement corrélés est un problème très riche au cœur de 
nombreuses recherches actuelles. En particulier, ces systèmes peuvent posséder des propriétés 
spectaculaires à l’échelle macroscopique, comme la superfluidité.  Les gaz d’atomes froids constituent 
d’excellents systèmes pour l’étude du problème à N corps du fait de leur grande versatilité et de leur haute 
contrôlabilité. Cette thèse porte sur l’étude des propriétés d’une impureté plongée dans un gaz de fermions 
superfluide à deux composantes à travers le crossover BEC-BCS. 
 Nous étudions expérimentalement le temps de vie d’impuretés bosoniques dans un superfluide 
fermionique ainsi que les interactions entre impuretés et fermions. La mesure du temps de vie des 
impuretés dans le superfluide nous renseigne sur la stabilité du système et nous permet d’obtenir le contact 
de Tan pour deux fermions, lié à la physique des corrélations à courte portée au sein du superfluide dans le 
crossover. L’étude des interactions entre une impureté et le superfluide est réalisée en analysant les 
oscillations d’un gaz d’impuretés à l’intérieur du superfluide. 
 Finalement, nous menons une étude théorique du diagramme de phase de l’impureté faiblement 
couplée au superfluide, avec une étude approfondie de l’énergie du polaron au-delà de l’approximation de 
champ moyen en régularisant ce problème à 2N+1 corps grâce à l’utilisation d’une interaction à trois corps. 
Du point de vue qualitatif, l’obtention de l’énergie de ce système à travers le crossover BEC-BCS nous 
permet de faire le pont entre les descriptions du polaron de Bose et du polaron de Fermi. Du point de vue 
quantitatif, ce calcul fournit une correction au terme de champ moyen, nécessaire pour atteindre un accord 
au pour-cent près entre la théorie et l’expérience, un des objectifs de la physique des systèmes quantiques. 

KEYWORDS 

cold atoms, quantum many-body systems, impurity, polaron, BEC-BCS crossover, Bose-Fermi mixture
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