
HAL Id: tel-03357061
https://theses.hal.science/tel-03357061

Submitted on 28 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online machine learning methods for visual tracking
Lei Qin

To cite this version:
Lei Qin. Online machine learning methods for visual tracking. Operations Research [math.OC].
Université de Technologie de Troyes, 2014. English. �NNT : 2014TROY0017�. �tel-03357061�

https://theses.hal.science/tel-03357061
https://hal.archives-ouvertes.fr

Thèse
de doctorat

de l’UTT

Lei QIN

Online Machine Learning Methods
for Visual Tracking

Spécialité :
Optimisation et Sûreté des Systèmes

2014TROY0017 Année 2014

THESE
pour l’obtention du grade de

DOCTEUR de l’UNIVERSITE
DE TECHNOLOGIE DE TROYES

Spécialité : OPTIMISATION ET SURETE DES SYSTEMES

présentée et soutenue par

Lei QIN

le 5 mai 2014

Online machine learning methods for visual tracking

JURY

M. I. NIKIFOROV PROFESSEUR DES UNIVERSITES Président
M. F. ABDALLAH MAITRE DE CONFERENCES - HDR Directeur de thèse
M. F. DORNAIKA PROFESSOR Rapporteur
M. T. RODET PROFESSEUR DES UNIVERISTES Rapporteur
M. M. SAHMOUDI ENSEIGNANT CHERCHEUR ISAE TOULOUSE Examinateur
M. H. SNOUSSI PROFESSEUR DES UNIVERSITES Directeur de thèse

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisors, Prof. Hichem

SNOUSSI and Dr. Fahed ABDALLAH, for all of their help, support and guidance

throughout the duration of my thesis in the past four years. During my research stay

at the Université de Technologie de Troyes, I have benefited enormously from their

valuable comments, their innovative approaches to research, and their persistent pursuit

of achieving results of high quality.

A special thank goes to Prof. Thomas RODET (ENS, Cachan), Prof. Fadi DORNAIKA

(University of the Basque Country), and Prof. Igor NIKIFOROV (Université de Tech-

nologie de Troyes), Dr. Mohamed SAHMOUDI (Institut Supérieur de l’Aéronautique et

de l’Espace, Campus SUPAERO), who kindly agreed to serve as reviewer (rapporteur)

or examiner (examinateur) in my Ph.D defense committee.

I am grateful to all secretaries who had helped me: Ms. Ling GONG of the international

office of UTT, Madame Veronique BANSE, Marie-jose ROUSSELET and Bernadette

ANDRÉ in the department of Optimization and Security of Systems (OSS), Madame

Isabelle LECLERCQ, Pascale DENIS and Therese KAZARIAN in the doctoral school

of UTT. Thanks for their kindness and friendliness during my study at UTT. At the

same time, I want to also thank all colleagues in the laboratory for sharing the research

environment and experience.

I would like to express my deep gratitude to my family. During the entire research

process, my parents provided me with unconditional support and encouragement. I

could always rely on them and they gave me the strength I needed to achieve this goal.

The funding for my PhD study was provided by the China Scholarship Council.

Lei QIN

i

Résumé

Nous étudions le problème de suivi de cible dans une séquence vidéo sans aucune connais-

sance préalable autre qu’une référence annotée dans la première image. Pour résoudre

ce problème, nous proposons une nouvelle méthode de suivi temps-réel se basant sur

à la fois une représentation originale de l’objet à suivre (descripteur) et sur un algo-

rithme adaptatif capable de suivre la cible même dans les conditions les plus difficiles

comme le cas où la cible disparâıt et réapparait dans le scène (ré-identification). Tout

d’abord, pour la représentation d’une région de l’image à suivre dans le temps, nous

proposons des améliorations au descripteur de covariance. Ce nouveau descripteur est

capable d’extraire des caractéristiques spécifiques à la cible, tout en ayant la capacité

à s’adapter aux variations de l’apparence de la cible. Ensuite, l’étape algorithmique

consiste à mettre en cascade des modèles génératifs et des modèles discriminatoires

afin d’exploiter conjointement leurs capacités à distinguer la cible des autres objets

présents dans la scène. Les modèles génératifs sont déployés dans les premières couches

afin d’éliminer les candidats les plus faciles alors que les modèles discriminatoires sont

déployés dans les couches suivantes afin de distinguer la cibles des autres objets qui lui

sont très similaires. L’analyse discriminante des moindres carrés partiels (AD-MCP) est

employée pour la construction des modèles discriminatoires. Enfin, un nouvel algorithme

d’apprentissage en ligne AD-MCP a été proposé pour la mise à jour incrémentale des

modèles discriminatoires.

Mots clés: apprentissage automatique, analyse multivarié, analyse de covariance, détection

du signal.

iii

Abstract

We study the challenging problem of tracking an arbitrary object in video sequences with

no prior knowledge other than a template annotated in the first frame. To tackle this

problem, we build a robust tracking system consisting of the following components. First,

for image region representation, we propose some improvements to the region covariance

descriptor. Characteristics of a specific object are taken into consideration, before con-

structing the covariance descriptor. Second, for building the object appearance model,

we propose to combine the merits of both generative models and discriminative models

by organizing them in a detection cascade. Specifically, generative models are deployed

in the early layers for eliminating most easy candidates whereas discriminative models

are in the later layers for distinguishing the object from a few similar “distracters”. The

Partial Least Squares Discriminant Analysis (PLS-DA) is employed for building the dis-

criminative object appearance models. Third, for updating the generative models, we

propose a weakly-supervised model updating method, which is based on cluster analy-

sis using the mean-shift gradient density estimation procedure. Fourth, a novel online

PLS-DA learning algorithm is developed for incrementally updating the discriminative

models. The final tracking system that integrates all these building blocks exhibits good

robustness for most challenges in visual tracking. Comparing results conducted in chal-

lenging video sequences showed that the proposed tracking system performs favorably

with respect to a number of state-of-the-art methods.

Key words: machine learning, multivariate analysis, analysis of covariance, signal

detection.

v

Contents

Contents vi

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 The visual object tracking problem . 1

1.2 Components of a typical visual tracking system 2

1.3 Main contributions . 3

1.4 Structure of the thesis . 4

2 Advances in Visual Tracking 7

2.1 Motion model . 7

2.2 Appearance description . 9

2.2.1 Feature descriptors . 10

2.2.2 Multiple features fusion . 11

2.3 Object appearance model and similarity measure 12

2.3.1 Generative models . 13

2.3.2 Discriminative models . 14

2.3.3 Hybrid models . 15

2.4 Updating of the object appearance model 16

3 Improved Region Covariance Descriptors and Clustering-Based Model
Updating 19

3.1 Introduction . 19

3.2 Review of the region covariance descriptor 20

3.2.1 Region covariance descriptor . 20

3.2.2 Distance metrics and intrinsic means of covariance matrices 20

3.2.3 Discussion . 21

3.3 Variants of the region covariance descriptor 23

3.3.1 A machine learning perspective of the region covariance descriptor
for object detection . 23

3.3.2 Regularized covariance descriptor 24

3.3.3 Adaptive covariance descriptor . 25

3.3.3.1 Computation of the adaptive covariance descriptor 25

3.3.3.2 Relation to the conventional covariance descriptor 26

vii

Contents viii

3.3.4 `1 norm for distance measure . 28

3.3.5 Empirical Evaluation . 28

3.3.5.1 Settings . 29

3.3.5.2 Results . 30

3.3.5.3 Discussion . 32

3.4 Object tracking . 33

3.4.1 Object appearance model . 34

3.4.2 Target localization . 35

3.4.3 Weakly-supervised model updating 36

3.4.3.1 Mean-shift clustering for sample selection 36

3.4.3.2 Updating of the object appearance model 37

3.4.4 Evaluation of the tracking system 38

3.4.4.1 Experimental setup . 39

3.4.4.2 Results . 40

3.5 Conclusion . 41

4 Online Learning Partial Least Squares Discriminant Model 45

4.1 Introduction . 45

4.2 The PLS analysis . 46

4.2.1 The NIPALS Algorithm . 46

4.2.2 The SIMPLS Algorithm . 48

4.2.3 Discussion . 48

4.3 Online PLS-1 methods . 48

4.3.1 A closed-form PLS-1 solution . 49

4.3.2 Incremental PLS model updating 51

4.3.3 Decremental PLS Model Updating 52

4.3.4 Weighted online PLS model updating 52

4.3.5 Regression residual . 53

4.3.6 Time and space complexities . 54

4.4 Experiments . 54

4.4.1 UCI dataset . 54

4.4.2 VIPeR dataset . 56

4.5 Conclusion . 59

5 Cascaded Generative and Discriminative Object Appearance Models
for Tracking 61

5.1 Introduction . 61

5.2 System overview . 62

5.3 Cascaded generative and discriminative object appearance models 64

5.3.1 Sample selection via the generative appearance model 64

5.3.2 Discriminative re-evaluation . 65

5.3.2.1 Training the discriminative appearance Model 65

5.3.2.2 Re-evaluation via the discriminative Model 66

5.4 Collaborative online model updating . 66

5.4.1 Updating of the generative model 66

5.4.2 Updating of the discriminative model 67

5.5 Extensions . 68

Contents ix

5.5.1 Multiple generative models . 68

5.5.2 Multiple discriminative models . 69

5.5.3 Illustration . 69

5.5.4 The overall tracking algorithm . 70

5.6 Experiments . 70

5.6.1 Implementation details . 70

5.6.2 Diagnostics . 73

5.6.3 Comparison with the state-of-the-art 77

5.7 Conclusion . 78

6 Summary and Perspectives 81

6.1 Summary . 81

6.2 Limitations and perspectives . 83

A Derivation of Equation (4.32) 85

B Résumé Etendu 87

B.1 Introduction . 87

B.2 Etat de l’art . 89

B.3 Vue d’ensemble du système . 91

B.3.1 Inférence bayésienne séquentielle pour le suivi visuel 91

B.3.2 Vue d’ensemble du système . 91

B.4 Suivi par des modèles d’apparence en cascade 93

B.4.1 Sélection des échantillons par le modèle d’apparence génératif . . . 93

B.4.2 Ré-évaluation par le modèle discriminatoire 94

B.4.2.1 Régression par moindres carrés partiels 94

B.4.2.2 Descripteur de covariance adaptatif 96

B.4.2.3 Initialisation du modèle d’apparence 97

B.4.2.4 Ré-évaluation par le modèle distriminatoire 98

B.5 Mise à jour des modèles . 99

B.5.1 Mise à jour du modèle génératif . 99

B.5.2 Mise à jour du modèle discriminatoire 100

B.5.2.1 Une Solution non-itérative de la régression PLS-1 101

B.5.2.2 Méthode incrémentale pour la mise à jour du modèle PLS102

Bibliography 105

List of Figures

1.1 An illustrative example of visual tracking. Left: the target annotated
in the first frame. Right: the tracked result in green rectangle and the
tracking trajectory in blue. 1

1.2 Diagram of a typical appearance-based tracking system. When a new
frame is captured, the tracking process works as follows. First, the mo-
tion model proposes a set of possible states of the target. The feature
description component then extract features or descriptor to represent
each of the candidates. The localization of the target is accomplished
by finding the candidate that optimizes the quantity measure associated
with the object appearance model. For adaptive systems, the object ap-
pearance model is then updated using the new observations obtained in
this frame. Besides, the estimated target location may be utilized by the
motion model for proposing candidate regions in the next frame. 3

3.1 Initial frame of each sequence with target marked in rectangle. 29

3.2 Some detection results on the “PkTest01” sequence (a) using the conven-
tional covariance descriptor, (b) using the regularized covariance descrip-
tor and (c) using the adaptive covariance descriptor. The initial frame
with the target object marked in rectangle is shown in Figure 3.1(a). . . . 32

3.3 Some detection results on the “PkTest02” sequence (a) using the conven-
tional covariance descriptor, (b) using the regularized covariance descrip-
tor and (c) using the adaptive covariance descriptor. The initial frame
with the target marked in rectangle is shown in Figure 3.1(b). 33

3.4 Detection results in the 84th and the 85th frames of the “PETS” sequence.
See text for details. The initial frame with the target marked in rectangle
is shown in Figure 3.1(d). 34

3.5 Illustration of the multiple-patches object representation. An object on
the left is represented by 6 adaptive covariance descriptors computed from
corresponding subregions on the right. Note that if the width of the object
is greater than its height, a similar division is performed in the horizontal
direction. 34

3.6 A clustering example: 10 samples on the left are simultaneously clustered
into 3 groups (each row for one group) on the right according to their
mutual similarities. 38

3.7 Tracking results on the “David-outdoor” sequence using different updat-
ing policies. Column 1: “MILTracker”. Column 2: “AdpCov+cu”. Col-
umn 3: “AdpCov+nu”. Column 4: “AdpCov+fu”. In the last three
columns, the blue rectangles indicate the search windows and the green
rectangles show the tracking results. Row1: frame #1. Row 2: frame
#100. Row3: frame #200. Row4: frame #250. 41

xi

List of Figures xii

3.8 Tracking results on the “White-outdoor” sequence using different update
policies. Column 1: “MILTracker”. Column 2: “AdpCov+cu”. Column
3: “AdpCov+nu”. Column 4: “AdpCov+fu”. In the last three columns,
the blue rectangles indicate the search windows and the green rectangles
are the tracking results. Row1: frame #1. Row 2: frame #100. Row3:
frame #200. Row4: frame #300. 42

3.9 Tracking results on the “Pedestrian1” sequence using different update
policies. Column 1: “MILTracker”. Column 2: “AdpCov+cu”. Column
3: “AdpCov+nu”. Column 4: “AdpCov+fu”. Row1: frame #1. Row2:
frame #50. Row3: frame #113. Row4: frame #136. 43

4.1 Computational time for NIPALS, SIMPLS and IPLS. X axis is the ex-
perimental step (535 in total) and Y axis is the computational time in
seconds. 55

4.2 Some examples from the VIPeR dataset. Each column is one of 632
same-person example pairs. There are wide range of viewpoint, pose, and
illumination changes. 57

4.3 CMC curve of recognition performance using each appearance model.
DM1 is the discriminative model using PLS. GM1 is the generative model
using `1 norm. GM2 is the generative model using `2 norm. 58

4.4 Some example queries to recognition database using the discriminative
appearance model trained by PLS-DA. Left column: the probe images.
Middle columns: top 9 results sorted from left to right. Right column:
the correct matches. 58

5.1 Overview of the cascaded tracking framework. 63

5.2 Cascaded detection structure with multiple generative models and multi-
ple discriminative models. G1, G2, . . . , Gn1 are the 1st, 2nd, . . . , n1

th gen-
erative models respectively and D1, D2, . . . , Dn2 are the 1st, 2nd, . . . , n2

th

discriminative models respectively. 70

5.3 An example illustrating the output of each layer of the cascaded tracking
framework which embeds two generative and two discriminative appear-
ance models. In 5.3(a), the transitional model propose 1000 particles
denoted by white rectangles; a set of 10 important samples is retained
by each generative model in 5.3(b) denoted by blue or red rectangles
according the generative model that has selected them; in 5.3(c) the se-
lected 20 samples are re-evaluated by the first discriminative model and
only 5 most promising candidates survive; finally the tracking result is
produced after the re-evaluation of the 5 most promising samples by the
second discriminative model and is shown in green rectangle in 5.3(d). . 72

5.4 Snapshots from the CasGD Pedestrian data set. 74

5.5 Some snapshots of tracking results using the CasGDT tracker on the self-
captured CasGD sequences. 76

5.6 Some snapshots of tracking results using the CasGDT tracker on six se-
quences from the TLD dataset. 79

A.1 Derivation of Equation (4.32) . 86

B.1 Vue d’Ensemble du Système. 93

List of Figures xiii

B.2 Illustration d’un multi-taches représentation de région. Un objet (a) sur
la gauche est représentée par six taches sur la droite, c’est à dire (b)
l’ensemble région, (c) de la moitié supérieure, (d) de la moitié du milieu,
c’est à dire de 1/4 à 3/4 de l’hauteur, (e) la moitié inférieure, (f)la 3/4
partie en haute (g)la 3/4 partie en bas. 97

List of Tables

3.1 Detection performance comparison using the conventional covariance de-
scriptor, the regularized covariance descriptor and the adaptive covariance
descriptor. Frames where the object is severely occluded are not counted
in the performance computation. 31

3.2 Information of the sequences and the tracking performances in terms of
PCF . 40

5.1 Challenges for tracking each target in the CasGD dataset. 74

5.2 Diagnostics of tracking performances in the CasGD dataset in terms of
precision. The best performance is in bold and the second best is in italic. 75

5.3 Tracking performances in the TLD dataset measured by Precision, Recall
and F-measure. The best performance is in bold. CasGDT scored best
in 5 out of 6 sequences. OB is in [1], SB in [2], BS in [3], MiL from [4],
CoGD from [5], TLD from [6] and CasGDT is the cascaded generative
and discriminative tracker presented in this work. 78

xv

To my parents.

xvii

Chapter 1

Introduction

1.1 The visual object tracking problem

Visual object tracking is a fundamental task within the field of computer vision. The use

of visual tracking is pertinent in a variety of applications, such as automated surveillance,

video indexing, human-computer interaction, vehicle navigation, and augmented reality.

In general, tracking is a challenging task which consists in generating an inference about

the motion of an object given a sequence of images. In this thesis, we consider a simplified

definition, which has been adopted by a majority of works in literature: starting from

a bounding box given in the first frame, tracking is the image analysis problem for the

purpose of localizing an arbitrary object over a sequence of frames [7]. In other words,

we focus on the problem of tracking an arbitrary object in a video sequence with no

prior knowledge other than the location of the object in the first frame. An illustrative

sample of visual tracking is presented in Figure 1.1.

Figure 1.1: An illustrative example of visual tracking. Left: the target annotated in
the first frame. Right: the tracked result in green rectangle and the tracking trajectory

in blue.

1

Chapter 1. Introduction 2

The challenges arising in visual tracking are due to a number of factors: the loss of

information caused by the projection of the 3D world on a 2D image, noise in images,

cluttered-background, complex object motion, partial or full occlusions, illumination

changes etc. In long-term unconstrained environments, this problem is even more chal-

lenging as the target can be fully occluded or can leaves the field of view for a long time

and requires the tracker to re-acquire it and to continue the tracking when it re-appears

in the visual scene.

To build a robust tracking system, some requirements should be considered. First,

the tracking algorithms need to be able to follow the object of interest even under

complicated conditions. Second, additional to various changes of the environment, the

object itself may also undergo appearance changes. This requires a steady adaptation

mechanism of the tracking system to the actual object appearance. Third, for practical

use, the speed of the system is of great concern for real-time implementation. Therefore,

selection of fast algorithms as well as optimized implementation are required.

1.2 Components of a typical visual tracking system

To tackle the visual tracking problem defined above, the majority of successful tracking

systems in literature are appearance-based methods. In these methods, image regions

are represented by their feature descriptors describing their appearances.

For localizing the target, the object has an appearance model derived from the feature

representation and a metric-based cost function associated with the model. This cost

function evaluates the similarity, likelihood, distance or other quantities alike of a can-

didate descriptor to the object appearance model. Localization of the target is then

achieved by finding a candidate region that optimizes the cost function. For tracking

purposes, a motion model is also needed for predicting possible locations of the target,

i.e. candidate regions, based on the current target position and a prior spatial motion

model. After localization, an adaptive tracker usually takes into account the observation

in the current frame and updates the object appearance model to adjust to potential

changes of the target or the background.

We depict in Figure 1.2 a reference model structuring most of the appearance-based

tracking systems. This reference model decomposes a system into four components,

namely motion representation, appearance description, object appearance model with its

decision metric, and updating of the object appearance model. Note that this reference

model can be simplified. For instance, some appearance-based methods may not include

a model updating mechanism, only a fixed static appearance model is used.

Chapter 1. Introduction 3

Figure 1.2: Diagram of a typical appearance-based tracking system. When a new
frame is captured, the tracking process works as follows. First, the motion model pro-
poses a set of possible states of the target. The feature description component then
extract features or descriptor to represent each of the candidates. The localization of
the target is accomplished by finding the candidate that optimizes the quantity mea-
sure associated with the object appearance model. For adaptive systems, the object
appearance model is then updated using the new observations obtained in this frame.
Besides, the estimated target location may be utilized by the motion model for propos-

ing candidate regions in the next frame.

1.3 Main contributions

In this thesis, we propose novel approaches for visual tracking. More specifically, our

contributions concern three of the four components of an appearance-based tracker,

except the motion representation component, namely the feature extraction, the feature

descriptor updating and the decision algorithm. The effectiveness of these approaches

are assessed empirically and/or theoretically.

For appearance description, we develop an improved region covariance descriptor [8],

which is able to adaptively extract visual features relevant to a specific target of inter-

est. These visual features are fused in a covariance descriptor. We name the covariance

descriptor, computed in this fashion, an “adaptive covariance descriptor” because the

feature extraction method is adaptive to the specific objet to be tracked. In fact, the

features are first projected to a principal subspace using principal component analysis,

before computing the covariance descriptor. Then, in subsequent frames, pixel features

in candidate regions are also projected in the target subspace, enhancing the distin-

guishability of the true target candidate. The rationale behind this idea is to use a

combination of features which is automatically optimized to distinguish a specific target

(colors, shape, correlation color/color, ...) by increasing the dissimilarity with potential

region candidates. This procedure could be interpreted as a modification of the metric

of the space of covariance descriptors according to the target to be tracked. The result-

ing adaptive covariance descriptor is not only more effective but also more efficient to

compute.

Chapter 1. Introduction 4

Concerning the decision algorithm yielding the localization of the target, we propose

to combine both merits of generative and discriminative models by organizing them in

a cascaded detection structure. The generative and discriminative models are trained

collaboratively in an online way in order to efficiently learn the target appearance. Fur-

thermore, multiple models are integrated in order to enhance the tracking performance.

Finally, for updating the object appearance models, we develop a clustering-based

method for updating the generative model(s) and an online PLS learning method for

updating the discriminative model(s). An efficient implementation of the online PLS

method is also proposed in this thesis.

We summarize the main contributions as following:

1. An ameliorated target-oriented region descriptor called adaptive covariance de-

scriptor which is able to extract compact and relevant features fused in a covariance

matrix descriptor for image region appearance representation.

2. An hybrid target detection algorithm by integrating multiple generative and dis-

criminative models in a cascaded detection structure.

3. A weakly-supervised method using the mean-shift clustering for updating the gen-

erative object appearance model(s).

4. An online Partial Least Squares (PLS) model learning method which is able to

incrementally or decrementally update a PLS-11 regression model within constant

time and space complexities. A weighted version is developed as well, that can

assign weights to the learned data and the newly acquired data when updating the

model.

The global tracking system integrates all the proposed methods as building blocks,

yielding a robust tracker that can handle most challenges involved in visual tracking.

Our experimental results showed that the final tracking system can work quite well in

difficult real-world video sequences and outperform several state-of-the-art methods.

1.4 Structure of the thesis

The structure of the thesis is organized as follows. In Chapter 2, we review the advances

in appearance-based tracking approaches. In Chapter 3, we introduce the adaptive co-

variance descriptor and the clustering-based model updating method. In Chapter 4, we

1PLS-1 algorithm refers to the the PLS regression method where the response data is univariate.

Chapter 1. Introduction 5

introduce the online PLS model learning method. In Chapter 5, we build a robust track-

ing system that integrates generative and discriminative models in a cascaded structure.

The tracker includes the adaptive covariance descriptor, the clustering-based updating

method and the online PLS learning method as well. Finally, Chapter 6 gives a summary

of thesis and the achieved results. It also introduces some possible future extensions and

perspectives.

Chapter 2

Advances in Visual Tracking

The state of the art of visual tracking has significantly evolved in the past 30 years. In

the early years, almost all visual tracking methods assumed that the object motion was

smooth [9, 10] and that the target may not undergo large appearance variations [11].

Recently, tremendous progress has been made and some algorithms can deal with the

problems of abrupt appearance variations [12], with situations where the target my leave

and re-appear in the visual scenes [6] and the problems of drifting [13], etc.

Yilmaz et al. reviewed in [14] the object tracking methods before 2006, presenting de-

tailed analysis and comparisons of various representative methods. Yang et al. reviewed

recent advances and trends from 2006 to 2011 in [15]. More recently, a experimental

survey is presented in [7] relating a few most influential trackers throughout history and

some open-source trackers that appeared in major conferences and journals between

2011 and 2012.

As stated in Chapter 1, most visual tracking methods take the structure of four compo-

nents: motion model, appearance description, similarity measurement within the detec-

tion algorithm and the model updating. We will present, in this chapter, more details

concerning each component and review representative works in terms of the emphasized

component(s). Some recent trends and most related works are also presented.

2.1 Motion model

When a new image frame arrives, one needs to make some assumptions of the possible

location of the target. This is the motion model for a tracking system. Motion con-

straints restrict the space of states to be searched for the target. Motions models in

existing tracking system generally fall into four categories, introduced in the following.

7

Chapter 2. Advances in Visual Tracking 8

• The first category for motion is the implicit motion prediction as in Mean Shift

Tracker [16], and KLT [17], which does not use any constraints on the motion

model. Instead, it seeks the maximum by using optimization methods. However,

it requires that the movements of the target are small relative to the appearance

changes in the visual scene, which is rarely the case in general tracking.

• The most straightforward general motion model is an exhaustive sliding window

approach where all possible locations in the frame are considered. This approach

makes no assumption of the motion of the object, making it robust to wild object

and camera motions. To handle object scale variation, a scale space is also ex-

haustively spanned. The problem of this motion model is the heavy computational

burden, which makes it unpractical for real-time implementation. An improved

approach is proposed in [18].

• A natural modification of the full-image search model is to search only in a local

region around the previous position of the target. This local sliding-window ap-

proach also leaves the object entirely free in its motion pattern, hence is likely to

be robust for many situations, but it may lose the target when its motion is quite

fast. The model is adopted by a number of state-of-the-art tracking systems, e.g.

[19][4][20], to name only a few.

• While the above models consider uniform search in the whole frame or in a local

window, an alternative is the use of a probabilistic Gaussian motion model usually

centered around the previous position as used in [21] and [22]. Moreover, due

to the great success of Particle Filtering [23], also known as sequential Monte

Carlo methods (SMC), visual tracking has been formulated in a Bayesian inference

framework. Given a set of observed images Ot = {o1, · · · , ot}, the inference aims at

estimating the value of the hidden state variable Θt. Assuming a Markovian state

transition and using the Bayes theorem, we have the following recursive equation

p(Θt|Ot) ∝ p(ot|Θt)

∫
p(Θt|Θt−1)p(Θt−1|Ot−1)dΘt−1 (2.1)

where p(Θt|Θt−1) is the state transition model, p(ot|Θt) is the observation model

and p(Θt−1|Ot−1) is the posterior probability recursively updated with time. The

state estimate Θ̂t is then determined as the maximum a priori probability (MAP)

estimate, i.e.

Θ̂t = Θmap
t = arg max

Θt

p(Θt|Ot). (2.2)

Compared with the regular exhaustive search-based methods, the main advantage of the

use of a particle filter is the reduction of sampling patches during tracking. Another

benefit of the particle filter is that the sampling effort can be kept constant, independent

Chapter 2. Advances in Visual Tracking 9

of the size of the object to track which is not the case with simply expanding the search

region around the object with a fixed factor. Despite its great success, Particle Filtering

often suffered from the curse of dimensionality [24] (very peaked likelihood), which is due

to the suboptimal sampling techniques. Therefore, introducing more advanced Monte

Carlo sampling methods would greatly elevate the visual tracking performance.

Some improvements of the basic Particle Filter motion model have been proposed. Zhou

et al. [25] proposed adaptive velocity, adaptive noise and adaptive number of particles

for a Particle Filter motion model. Kwon and Park proposed a Particle Filter on affine

group using auto-regressive motion model, which can propose particles more effectively.

Recently, prediction of motion as applied in Adaptive Coupled-Layer Tracker [27] may

be helpful to counter full speed targets but it is not easily applicable in general tracking

situations.

2.2 Appearance description

Appearance feature description plays a crucial role in visual tracking as the quality

of the description directly relates to the quality of the tracking performance. In gen-

eral, the most desirable property of a feature description is to make the object easily

distinguishable against non-targets in the feature space.

From one pixel within a color image, the R, G, B color features can be naturally ex-

tracted. It is then not difficult to transform them into other color spaces or to gray

levels. In addition, gradient and text features can also be extracted by considering the

pixel within a local neighborhood.

In order to describe a region of pixels in a higher level, one popular way is to use a

descriptor based on statistics, such as the histogram [28] and the covariance matrix [8]

which have been widely used in many computer vision applications to represent the

pixel feature distribution. The histogram descriptor is a nonparametric estimation of

the distribution over pixels values in a region. It owns a simple form and shows good

robustness against translation and rotation. It can be calculated efficiently, especially

with accelerated algorithm like the integral histogram [29] or distributive histogram

[30]. Although the histogram can accommodate any feature one at a time, the joint

representation of several different features through histogram has an exponential load

with the number of features. The covariance matrix [8], on the contrary, provides a

natural way of fusing multiple features which might be correlated. It can integrate the

spatial, color and gradient information all in one matrix and disclose the correlation

among them. It is shown, in [8], that the covariance descriptor greatly outperforms

Chapter 2. Advances in Visual Tracking 10

histogram descriptor for object detection and texture classification. Besides histogram

and covariance matrix, there are essentially other representations, such as 2D-array like

raw image data and feature vectors.

2.2.1 Feature descriptors

Gradient features characterize the shape information of the object and are often utilized

in human detection. Gradient descriptors are the statistical summarizations of the gra-

dients. For example, in [31], Lowe introduced the well-known SIFT descriptor for object

recognition. Later, Bay et al. proposed SURF [32], which is a much faster scale and

rotation invariant interest point descriptor. Dalal and Triggs [28] used the Histogram of

Oriented Gradient (HOG) descriptor in training SVM classifier for pedestrian detection.

Zhu et al. [33] improved its computational efficiency significantly by utilizing a boosted

cascade of rejectors. Maji et al. [34] also demonstrated promising results using the

multi-resolution HOG descriptor and the faster kernel SVM classification. Felzenszwalb

et al. [35] described a part based deformable model based on the multi-resolution HOG

descriptor for pedestrian detection.

Color descriptors have been proposed as well, showing robustness against certain pho-

tometric changes. The apparent color of an object is influenced primarily by two phys-

ical factors, (i) the spectral power distribution of the illuminance and (ii) the surface

reflectance properties of the object. Recent advances in color descriptors can be cate-

gorized into novel histogram-based color descriptors and SIFT-based color descriptors.

In the HSV color space, it is known that the hue becomes unstable near the gray axis.

Weijer et al. [36] applied an error propagation analysis to the hue transformation. The

analysis showed that the certainty of the hue is inversely proportional to the saturation.

Therefore, the hue histogram is made more robust by weighing each sample of the hue

by its saturation. The H color model is therefore scale-invariant and shift-invariant with

respect to light intensity. The SIFT descriptor is not invariant to light color changes,

because the intensity channel is a combination of the R, G and B channels. Weijer et al.

[36] introduced a concatenation of the hue histogram with the SIFT descriptor, which

is scale-invariant and shift-invariant. In [37], color invariants had been first used as an

input to the SIFT descriptor, which leads to a CSIFT descriptor that is scale-invariant

with respect to light intensity. More detailed performance evaluation of color descriptors

can be found in [38] and [39].

Texture is a measure of the intensity variation of a surface, which quantifies properties

such as smoothness and regularity. Gabor wavelet [40] is probably the most studied

texture feature. The Gabor filters can be considered as orientation and scale tunable

Chapter 2. Advances in Visual Tracking 11

edge and line detectors, and the statistics of these micro-features, in a given region, are

often used to characterize the underlying texture information. In recent years, increasing

interest is paid on investigating image local patterns for better detection and recogni-

tion. Especially, local patterns that are binarized with an adaptive threshold provide

state-of-the-art results on various topics, such as face detection and image classification.

In [41], Ojala et al. developed a very efficient texture descriptor, called Local Binary

Patterns (LBP). The LBP texture analysis operator is defined as a grayscale invariant

texture measure, derived from a general definition of texture in a local neighborhood.

The most important property of the LBP operator is its tolerance against illumination

changes. Another equally important characteristic is its computational simplicity. Mu

et al. proposed in [42] two variants of LBP: Semantic-LBP and Fourier LBP. These new

features can work in perceptually color space and prove more suitable for the human

detection task. Inspired by Weber’s Law, Chen et al. [43], developed a new local de-

scriptor called the Weber Local Descriptor (WLD). It is based on the fact that human

perception of a pattern depends not only on the change of a stimulus (such as sound,

lighting) but also on the original intensity of the stimulus.

2.2.2 Multiple features fusion

Although tremendous progresses have been made, no single feature descriptor is robust

and efficient enough to deal with all kinds of situations. For instance, the HOG descriptor

focuses on edges and structures ignoring flat areas, but fails to deal with noisy edge

regions. Color features represent the global information of images, which are relatively

independent of the viewing angle, translation, and rotation of the objects and regions of

interest. However, objects with the same color histogram may be completely different in

texture, thus color histogram cannot efficiently characterize the object template. For the

LBP descriptor, a possible drawback is that the thresholding operation when comparing

the neighboring pixels could make it sensitive to noise.

To tackle this problem, feature combination has attracted more and more attention as it

usually lead to boosted system performance and robustness. As previously mentioned,

the covariance matrix descriptor [8] can encode the gradients strength, orientation and

position information in covariance matrices. The main disadvantage of the covariance

descriptor is that it is Symmetric Positive Definite (SPD) and thus lies on a Riemannian

manifold. Operations through Riemannian geometry are usually time-consuming. Be-

sides the design of new multiple features, some works show that using the combination

of existing features can also improve the performance. In [44], Alahi et al. proposed

a cascade of descriptors to detect and track objects through any network of cameras.

Schwartz and Davis presented in [45] an efficient descriptor for pedestrian detection

Chapter 2. Advances in Visual Tracking 12

based on Partial Least Squares (PLS) analysis. Such a descriptor includes the combina-

tion of gradient, texture and color information.

Recently, multiple kernel learning method has attracted increasing interest in computer

vision community. Given multiple sources of information, one might calculate multiple

basis kernels, one for each source. In such cases, the resulting kernel is often com-

puted as a convex combination of the basis kernels. Kembhavi et al. [46] proposed an

Incremental Multiple Kernel Learning (IMKL) approach for object recognition, which

combines the Pyramidal Histogram of Oriented Gradients (PHOG) [47] and Geomet-

ric Blur [48] together. In [49], baseline feature combination methods, Multiple Kernel

Learning (MLK) methods and ensemble methods inspired by Boosting are thoroughly

evaluated on object classification datasets using a multitude of descriptors. It was found

that even very simple baseline combination methods, which are much faster than MLK

methods, achieved highly competitive performances. On the other hand, the Boosting

type of methods produced consistently better results.

How to combine various kinds of features into a coherent framework still needs much

more study. Besides, deeper understanding of human vision principles would also benefit

feature descriptor research.

2.3 Object appearance model and similarity measure

The appearance representation implies a certain degree of constancy when transferring

one frame to the next. Without any such constancy assumption, tracking cannot work.

More precisely, it is assumed that the samples are generated from the same underlying

probability distribution. Machine learning methods are then suitable and have been

widely employed to fulfill visual tracking. The classifier learn to distinguish the target

object based on its appearance model and a quantitative decision function.

When computing a classifier for object recognition, one faces two main philosophies,

namely generative and discriminative models. Formally, the two categories can be de-

scribed as follows. Given an input x and a label y, a generative classifier learns a model

of the joint probability p(x, y) and classifies using p(y|x) which is obtained by using the

Bayes rule. In contrast, a discriminative classifier models the posterior p(y|x) directly

from the data or learns a map from the input x to labels y: y = f(x).

Chapter 2. Advances in Visual Tracking 13

2.3.1 Generative models

For visual tracking, the background is “the rest of the world” except the target ob-

ject, which is too wild to estimate its class conditional distribution. Therefore, most

generative models in the literature only model the target object and totally ignore the

background. In this sense, generative trackers represent the appearance of an object by

learning a model that provides sufficient reconstruction ability. Tracking is expressed as

finding the most similar object appearance to the model. As they model only the target

object, techniques employed are generally unsupervised, such as Principal Component

Analysis (PCA) [50], Independent Component Analysis (ICA) [51], Mixture Models

[52], Expectation Maximization (EM) [53] and Compressive Sensing [54]. To handle the

variability of a target, the object model is often updated online to adapt to appearance

variations. In the following, we introduce some of generative methods for visual tracking.

• The first group of generative models uses mixture models for building object ap-

pearance models. Black et al. [55] employ a mixture model to represent and recover

the appearance changes in consecutive frames. Jepson et al. [56] develop a more

elaborated mixture model with an online EM algorithm to explicitly model appear-

ance changes during tracking. Later, in [25], Zhou et al. embed the appearance

adaptive models into a particle filter to achieve a robust visual tracking.

• Besides mixture models, online subspace learning is also widely employed in gener-

ative models. Li [57] propose an incremental Principal Component Analysis (PCA)

algorithm for subspace learning. In [58], a weighted incremental PCA algorithm

for subspace learning is presented. In [21], a generalized tracking framework based

on the incremental image-as-vector subspace learning methods with a sample mean

update is presented.

• Learning on manifolds is exploited as well. chih Lee and Kriegman [59] presented

online learning of probabilistic appearance manifolds for video-based recognition

and tracking. Porikli et al. [60] proposed a tracking framework using covariance

matrix descriptor with mean update in Riemannian manifold. Based on the co-

variance matrix descriptor and the Log-Euclidean Riemannian metric [61], Li et al.

[62] presented an online subspace learning algorithm which models the appearance

changes by incrementally learning an eigenspace representation for each mode of

the target through adaptively updating the sample mean and the eigenbasis.

• Furthermore, tensor learning is also employed. In [63], Li et al. present a visual

tracking framework based on an online temporal tensor subspace learning. Later,

Chapter 2. Advances in Visual Tracking 14

Wu et al. [64] presented a tracking approach that incrementally learns a low-

dimensional covariance tensor representation, dealing with the temporal variations

of target appearance.

• A recent trend of generative models base is inspired from recent advances in com-

pressive sensing [54]. The l1 tracker [65] obtains robustness by seeking a sparse

representation of the tracked object via l1 norm minimization. Since then, sparse

representation for visual tracking has attracted an increasing interest. [66] ex-

tended the l1-tracker by using the orthogonal matching pursuit algorithm for solv-

ing the optimization problems efficiently. More recently, [67] proposed an appear-

ance model based on features extracted from the multi-scale image feature space

with data-independent basis. A very sparse measurement matrix is adopted to

efficiently extract the features for the appearance model. Both the target and the

background are compressed using the same sparse measurement matrix. Finally,

tracking is formulated as a binary classification via a naive Bayes classifier with

online updating in the compressed domain.

The main problem of generative models is that they are prone to similar background

regions (similar to the target) called “distracters”, especially in cluttered scenes.

2.3.2 Discriminative models

For trackers that adopt discriminative models, a classifier is trained directly from train-

ing samples to find a decision boundary that best distinguishes the object from the

background. This type of methods is aka “tracking-by-detection”, where a target ob-

ject, identified by the user in the first frame, is described by a set of features. A binary

classifier separates the target from the background in successive frames.

Classification tools employed by discriminative methods are typically supervised tech-

niques, such as Linear Discriminant Analysis (LDA) [68], Support Vector Machine

(SVM) [69], Relevance Vector Machine (RVM) [70], Boosting [71], Random Forests [72],

as well as their variants. When properly trained, discriminative methods can demon-

strate robustness to avoid distracters in the background, in contrast to their generative

counterparts.

Collins et al. [73] proposed a method to adaptively select color features that best dis-

criminate the object from the current background. Similarly, Wang et al. [74] propose a

tracking algorithm based on online selecting discriminative features from a large feature

space with the Fisher discriminant method. Later, Grabner et al. [1, 75] designed an

online boosting classifier that selects and maintains the best discriminative features from

Chapter 2. Advances in Visual Tracking 15

a pool of feature candidates. Later, Saffari et al. [76] proposed an online Random Forest

(RF) algorithm based on an online decision tree growing procedure. Compared with the

online boosting method [1, 75], the RF method is more robust against label noise.

Avidan [77] extended the optical flow approach [78] with an SVM classifier for object

tracking. Motivated by the SVM tracker, Williams et al. proposed a real-time tracker

using sparse probabilistic regression via RVMs [70]. The RVM tracker builds a displace-

ment expert, which directly estimates displacement from the target region. In addition,

the system used an object detector in tandem, for object verification, possibly automatic

initialization and recovery. In [19], the discriminative model maintains a set of discrim-

inant functions each distinguishing one pattern in the object region from background

patterns in the neighborhood. The discriminant functions are efficiently trained online

using a differential version of Linear Discriminant Analysis (LDA). Object detection

is performed by maximizing the sum of all discriminant functions. Later, Avidan [80]

used an adaptive ensemble of classifiers for visual tracking. Each weak classifier is a

linear hyperplane in an 11D feature space composed of R,G,B color and a histogram of

gradient orientations. Tian et al. [81] presented an online ensemble linear SVM tracker,

which makes good usage of history information during tracking.

In [82], Zhang et al. proposed a graph embedding based discriminative learning method,

in which the topology structures of graphs are carefully designed to reflect the properties

of the sample distributions. Wang et al. [83] proposed a beyond distance measurement

for video annotation. In [84], multi-graph learning was used to unify video annotation.

Psychological and cognitive findings indicate that the human perception is attentional

and selective. Inspired by this theory, Yang et al. [85] proposed a new visual tracking

approach by reflecting some aspects of spatial selective attention, and presents a novel

Attentional Visual Tracking (AVT) algorithm. The algorithm dynamically identifies a

subset of discriminative attentional regions through a discriminative learning on the

historical data on the fly.

2.3.3 Hybrid models

When applied separately for visual tracking, the discriminative methods are sensitive to

label noise and generative methods are not effective for distinguish the target from its

similar distracters. It has been shown that discriminative classifiers often outperform

generative models [86] if enough training data are available. However, generative meth-

ods often have better generalization performance when the size of training data is small.

For instance, [87] reported that a simple naive Bayes classifier (generative model) out-

performs logistic regression (its discriminative counterpart) when the amount of labeled

Chapter 2. Advances in Visual Tracking 16

training data is small. A number of hybrid approaches have been proposed aiming at

fusing the advantages of both strategies. [88] describes a hybrid model where a high-

dimensional subset of the parameters are trained to maximize generative likelihood, and

another small subset of parameters are discriminatively trained to maximize conditional

likelihood. In [89], Lin et al. train a model by optimizing a convex combination of the

generative and the discriminative objective functions. [90] propose a principled combi-

nation of generative and discriminative models, showing that when the supply of labelled

training data is limited, the optimum performance corresponds to a balance between the

purely generative and the purely discriminative methods. In [91], Grabner et al. pro-

posed a modified error function for boosting to select features that show good for both

discrimination and reconstruction. In [92], Woodley et al. presented a tracking system

using online discriminative feature selection guided by a local generative model. In [5],

Yu et al. proposed to online co-train a global generative model and a local discriminative

model for target tracking and reacquisition. The generative model uses a number of low

dimension linear subspaces to describe the appearance of the object, which encodes all

the appearance variations that have been seen in order to be able to reacquire the object.

The discriminative classifier is implemented as an online support vector machine, which

is trained to focus on recent appearance variations.

How to combine the generative machine learning methods and discriminative machine

learning methods into a coherent framework is a classic question within machine learning

field and also an interesting open question in the visual tracking literature.

2.4 Updating of the object appearance model

For visual tracking, handling appearance variations of a target object as well as its

background is of great importance for tracking robustness. In general, there are two

types of appearance variations: intrinsic and extrinsic. Pose variation and/or shape

deformation of a target object are considered as the intrinsic appearance variations

while the extrinsic variations are due to the changes resulting from different illumination,

camera motion, camera viewpoint, and occlusion.

These variations can only be handled with adaptive methods which are able to incre-

mentally update their object appearance models. To handle such variations, the object

appearance model needs to be adjusted to the new circumstances from time to time.

To handle appearance changes, the object appearance model is updated incrementally

over time. Thus, there is an essential need for on-line algorithms that are able to learn

continuously.

Chapter 2. Advances in Visual Tracking 17

Despite its efficiency, online adaption faces one key problem: each update of the tracker

may introduce an error which, finally, can lead to tracking failure. Most commonly,

the foreground and background are divided by a bounding box or a region around the

location of the object. No matter how tight the region is, such a partition is too rough

because some background regions are treated as a part of the foreground, especially when

the location of the object is not precise or the object is occluded. The adaptive tracking

system will eventually degrade due to inaccuracy in the estimation of the foreground

and background. This problem is called the Drifting Problem [13]. A closely related

problem is how to achieve good balance between adaptivity and stability when using

online learning methods.

To deal with these problems, a variety of efforts have been made. For instance, in [13],

the “drifting” problem was firstly presented and a template updating methods with

drifting correction is proposed. The drifting correction is based on the alignment of

the preliminary results to the initial template, which makes it ineffective for situations

where the appearance of the target changes significantly. Similarly, Grabner et al. [2]

proposed a semi-supervised approach where labeled examples come from the first frame

only, and subsequent training examples are left unlabeled. Although this method is well

suited for scenarios where the object leaves the field of view completely, it is difficult

to decide the exact object locations in the first frame. To obtain accurate boundaries

of the tracked object and thus alleviate the drifting problem, Aeschliman et al. [93]

proposed a novel probabilistic framework for jointly solving segmentation and tracking,

which achieved significantly improvement in tracking robustness. An alternative is [4],

which proposed a tracking-by-detection method based on the online Multiple Instance

Learning (MIL) method. The MIL resolves the uncertainties of where to take positive

updates during tracking, making the tracker robust to partial occlusion. Motivated by

the merits of both semi-supervised methods [94] and multiple instance learning methods

[4], Zeisl et al. [95] proposed an online semi-supervised learning algorithm which is able

to combine both of these approaches into a coherent framework. This leads to more

robust results than applying both approaches separately.

Recently, a trend to combine multiple trackers or to integrate trackers with detectors

has shown to be promising for increasing the robustness of online updating. We present,

in the following, some of theses promising directions.

• In [96], two classifiers with independent features are co-trained within online sup-

port vector machines. The predictions from different features are fused by com-

bining the confidence map from each classifier using a classifier weighting method,

resulting in a final classifier that performs better than any single classifier. Another

example is Yu et al.. As the previously mentioned method, the method co-trains a

Chapter 2. Advances in Visual Tracking 18

global generative model and a local discriminative model online. To enable reac-

quisition and recovery, the generative model uses a number of low dimension linear

subspaces to encode all the appearance variations that have been seen.

• Some other methods to deal with the drifting problem use cascaded classifiers

usually with distinctive thresholds. In [12], a cascade particle filter with discrimi-

native observers of different life spans is applied. The observers employed different

confidence thresholds in order to track in low frame rate videos. A disadvantage of

this approach is that offline training is required to learn a long life-span observer.

Along the same lines, Breitenstein et al. proposed in [97] a multi-person tracking-

by-detection algorithm with a cascade detection confidence threshold mechanism,

which aims at avoiding the errors introduced by the online learning classifier.

• In [98], Kwon and Lee proposed to sample multiple motion models and multi-

ple appearance models and integrate them through an interactive Markov Chain

Monte Carlo (IMCMC) framework. The overall observation model is decomposed

into multiple basic observation models that are constructed by Sparse Principal

Component Analysis (SPCA) of a set of feature templates covering a specific ap-

pearance of the object. The motion model is also represented by the combination

of multiple basic motion models, each of which covers a different type of motion.

• Santner et al. [99] proposed a sophisticated tracking system called PROST that

achieves top performance with a smart combination of complementary trackers.

Three trackers of different degrees of adaptivity are combined: a simple template

model based on normalized cross correlation [100] as a nonadaptive stable compo-

nent; an optical-flow based mean-shift tracker [101] as highly adaptive element and

an online random forest [76] as moderately adaptive appearance based learner.

• Later, Kalal et al. [6] proposed a Tracking-Learning-Detection (TLD) framework

where a Median-Flow tracker (a pyramidal Lucas-Kanade tracker [102] extended

with forward-backward error checking) is combined with online learned classifier.

The highlight in the TLD framework is the learning component called P-N learning

which exploits both temporal and spatial structure in a video to progressively

improve the accuracy of the classifier.

• More recently, an ensemble framework is proposed in [103] for multi-target tracking

that optimally chooses target tracking result from that of independent trackers and

a detector at each time step. Optimal selection is achieved through a hierarchical

data association step with parameters discriminatively trained from a max-margin

framework.

Chapter 3

Improved Region Covariance

Descriptors and Clustering-Based

Model Updating

3.1 Introduction

In this chapter, we will develop a novel tracking system that consists of novel approaches

for both region representation and object appearance model updating. For region ap-

pearance representation, we propose an improved region covariance descriptor, called

adaptive covariance descriptor. For object appearance model updating, we propose a

weakly-supervised method based on clustering analysis using mean-shift gradient density

estimation. In the first part of this chapter, we introduce region appearance representa-

tion using improved covariance descriptors, which are ameliorated variants of the widely

used region covariance descriptor [8]. A briefly review of the region covariance descriptor

as well as its distance metrics are presented in Section 3.2. In Section 3.3, we propose

some improvements to the conventional covariance descriptor. Effectiveness of these

improvements is empirically evaluated in Section 3.3.5.

In the second part of this chapter, we propose a novel object appearance model updating

method that exploits feature space analysis using mean-shift clustering. By combining

the improved covariance descriptor and the clustering-based model updating method, we

develop a preliminary tracking system, which is presented in Section 3.4 and evaluated

in Section 3.4.4.

19

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 20

3.2 Review of the region covariance descriptor

We will make a brief review of the region covariance descriptor in Section 3.2.1 as well

as its distance metrics and intrinsic means in Section 3.2.2. Properties and problems of

the covariance descriptor are discussed in Section 3.2.3.

3.2.1 Region covariance descriptor

The region covariance descriptor was firstly proposed by Tuzel et al. in [8]. The idea is

to represent a feature distribution using its sample covariance matrix.

Let I be a W × H one-dimensional intensity or three-dimensional color image, and F

be the W ×H × d dimensional feature image extracted from I

F (x, y) = Ψ(I, x, y), (3.1)

where Ψ is a function extracting image features such as intensity, color, gradients, and

filter responses, etc. For a given rectangular region R ∈ I, denote {fi}i=1,...,N as the

d-dimensional feature points obtained by Ψ within R. The region R is then represented

by a d× d covariance matrix:

CR =
1

N − 1

N∑
i=1

(fi − µ)(fi − µ)> (3.2)

where µ is the mean vector of {fi}i=1...N .

For fast calculation of covariance matrices, [8] also provided an intermediate represen-

tation called integral image. With this representation, covariance descriptor of any

rectangular region can be computed within constant time [8].

3.2.2 Distance metrics and intrinsic means of covariance matrices

Covariance matrices do not lie on the Euclidean space. Therefore, an arithmetic sub-

traction of two matrices would not measure the distance of the corresponding regions.

In fact, nonsingular covariance matrices are Symmetric Positive Definite (SPD) and lie

on a connected Riemannian manifold. Accordingly, Riemannian metrics should be used

for computing distance and mean of covariance matrices.

There are two Riemannian metrics proposed in the literature. One is the affine-invariant

Riemannian metric presented in [104] and [105]. The other is the bi-invariant Log-

Euclidean metric introduced in [61]. Under the affine-invariant Riemannian metric,

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 21

distance between two covariance matrices is computed as

ρ(C1, C2) =

√√√√ d∑
i=1

ln2 λi(C1, C2) (3.3)

where {λi(C1, C2)}i=1...d are the generalized eigenvalues of C1 and C2 computed from

λiC1xi − C2xi = 0 i = 1 . . . d (3.4)

and xi 6= 0 are the generalized eigenvectors. Under the affine-invariant metric, there is

no closed-form solution for computing the intrinsic mean of multiple covariance matri-

ces. By exploiting the Lie group structure of SPD matrices, [60] presented an iterative

optimization procedure for computing the intrinsic sample mean.

Under the Log-Euclidean Riemannian metric, distance measure between covariance ma-

trices preserves much of the natural properties of the affine-invariant metric while being

computationally straightforward: the distance between two covariance matrices C1 and

C2 is given by,

d(C1, C2) = ‖ log(C2)− log(C1)‖`2 , (3.5)

where ‖ · ‖`2 is the `2 vector norm (which is equivalent to the Frobenius norm in this

case) and log(C) is the matrix logarithm of the square matrix C. In addition, the log-

Euclidean mean of multiple covariance matrices {C1, . . . , Cn} can be obtained in closed

form as

C̄ = exp

(
1

n

n∑
i=1

log(Ci)

)
. (3.6)

Clearly, distance and mean under the Log-Euclidean metric take a much simpler form

than those under the affine-invariant metric. See more details and comparison of these

two metrics in [61].

With these metrics, similarity measurement between two image regions can be simplified

as distance of their corresponding covariance descriptors. Accumulated image patches

can be represented by the mean of their covariance descriptors. Based on this, most com-

puter vision applications, such as object detection, target tracking and texture analysis

have been deployed [8, 60, 106].

3.2.3 Discussion

Most applications that employ the covariance descriptor compute the descriptor using a

fixed set of features, which is often determined a priori. For instance, in [8], each pixel

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 22

is converted to a nine-dimensional feature vector for object detection:

f(x, y) = [x y R(x, y) G(x, y) B(x, y) |Ix(x, y)| |Iy(x, y)| |Ixx(x, y)| |Iyy(x, y)|] , (3.7)

where R, G, B are the three color channels in the RGB color space, I denotes the

pixel intensity and Ix, Ixx, Iy, Iyy are the first- and second-order image derivatives of I

with respect to the Cartesian coordinates x and y respectively. This feature set remains

unchanged in [8] for all kinds of objects, without considering the characteristics of each

object.

Actually, color can be interpreted and modeled in different ways. With the availability

of a variety of color spaces, e.g. RGB, HSV, YCrCb, YUV, CIE Lab, CIE Luv, etc.,

the inevitable question is how to select proper color models that can produce good

performance for detecting a particular object. Likewise, the gradient features, which

encode the shape information of the region context, can also have a variety of choices. In

deed, they can be computed using different combinations of orders, and further with their

corresponding magnitudes and orientations. Consequently, how to choose the feature

set to be fused in the covariance descriptor for detection is of great importance.

A number of works [44, 107–109] have empirically studied the performances of the co-

variance descriptor using different feature sets. The reported results showed that signif-

icantly different performances were achieved when using different features. This further

shows the importance of feature selection or extraction for the covariance descriptor.

Alahi et al. [44, 107] compared different feature sets for detection and tracking objects

across non-calibrated camera networks and claimed that increasing the number of fea-

tures may increase the performance of covariance descriptor. In addition, Alahi et al.

suggested that shape information is crucial for inter-category object detection. For in-

stance, gradient features perform well in pedestrian detection applications because the

shape of a human is a relevant cue to distinguish it from other objects, whereas color fea-

tures perform best in intra-category classification cases such as object re-identification

or recognition. In [108], Cortez-Cargill et al. constructed covariance descriptors with

nine sets of features based on various color spaces. They obtained a best feature set

which embeds many color channels from a variety of color spaces and reaches a perfor-

mance of 99% for face detection. However, the feature vector they got turned out to

be a 20-dimensional one and thus makes the construction and similarity measure of the

covariance matrices rather time-consuming.

In brief, two points can be drawn. First, different feature combinations generally pro-

duce different detection performances. Second, previous works generally reported better

results using more features. Subsequently, two questions naturally arise. First, how

to select proper feature set for detecting a specific object to ensure good performance

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 23

in terms of detection accuracy? Second, is it always true that fusing more features

produces better detection performance? If yes, are there alternatives that use compact

feature set while ensuring good performance? If not, what is the condition when more

features do not yield better performance? We will try to answer these questions in the

next section by analyzing the generalization ability of the region covariance descriptor

from a machine learning perspective.

3.3 Variants of the region covariance descriptor

3.3.1 A machine learning perspective of the region covariance descrip-

tor for object detection

The essence of image region matching is to measure the similarity between the object

template and a candidate image patch. Region descriptors using statistics of the pixel

set are designed to represent feature distribution of the pixels inside an image region.

As such, similarity between feature distributions are reduced to compare the distance

of corresponding region descriptors. Object detection using region descriptors takes

the underlying assumption that descriptors computed from image regions that contains

the same object have smaller distances than those computed from non-targets. This

is indeed a machine learning process. With a training set of the object template, one

seeks to compute statistics to characterize the feature distribution of the object. Two

typical statistics that represents feature distribution based on training samples are the

histogram and the covariance matrix.

For object detection, one has a training set, i.e. the pixel set of the object template.

Each pixel is represented by a vector of features that are extracted from the image.

As such, statistical models can be learned from this training set in order to represent

the object to be detected. In this sense, the region covariance descriptor estimates the

covariance of the feature distribution using the training sample set. It then estimates

variances of the features in the diagonal entries of the matrix and covariances between

pairs of features in off-diagonal entries to represent the second order statistics of the

pixel feature distribution. Testing a candidate sample is conducted by distance measure

between corresponding region descriptors. For the region covariance descriptor, this can

be done either using the affine-invariant metric or the Log-Euclidean metric. It is worth

noting that both of the Riemannian metrics compute logarithm of eigenvalues in order

to transform a point from the SPD Riemannian manifold into a local Euclidean space.

The detection performance of the descriptor depends mainly on the generalization ability

of the model, which can be analyzed by means of the bias and variance decomposition.

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 24

First, the eigenvalues are estimated from limited training samples. It is well known that

the estimates based on Equation (3.2) produces biased estimates of the eigenvalues; the

largest ones are largely biased and the smallest ones are biased towards values that are

too low. This bias is most pronounced when the population eigenvalues tend towards

equality, and is correspondingly less severe when their values are highly disparate. In all

cases, this phenomenon becomes more pronounced as the sample size decreases [110–112].

Second, if there are very small eigenvalues in the sample covariance matrix, logarithm of

these tiny eigenvalues will incur large disturbance which can dramatically degrade the

generalization ability.

Therefore, analysis of the eigenspectrum of the sample covariance matrix of the ob-

ject template is of importance. If there are some very small eigenvalues, reduction of

incurred variance is necessary. To this end, we propose in the subsequent two reme-

dies for poorly-conditioned covariance matrices: one by regularization and the other by

dimension reduction.

3.3.2 Regularized covariance descriptor

To cure the large variance problem caused by tiny eigenvalues, our first solution is to

use regularization techniques, which have been highly successful in the solution of ill-

and poorly-posed inverse problems. Specifically, we regularize the estimated covariance

matrix by adding a scaled identity matrix to it, i.e.

CR = CR + ηE (3.8)

where E is the identity matrix that has the same size as CR. With sufficiently large η,

this regularization can effectively cure the poorly-conditioned sample covariance matrix.

We name the resulting region covariance descriptor after regularisation the “regularized

covariance descriptor”.

Regularization reduces the variance associated with the sample based estimate at the

expense of potentially increased bias. Hence, the choice of the value of η is of importance.

Generally, over-regularization using large η will introduce large bias whereas under-

regularization will not effectively cure the large variance problem. To determine a proper

value for η, one needs to take into account several factors, e.g. the slope of the log

function, the range of the feature channels, among others.

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 25

3.3.3 Adaptive covariance descriptor

Another way to reduce variance caused by tiny eigenvalues is to use PCA projection

to remove those unreliable dimensions while preserving dominant information in the

principal components.

Specifically, we first extract raw features from the image patch to form a set of n d-vectors

(n indicates the number of pixels in this region and d is the dimension of features); based

on this point set, we not only construct the original covariance matrix, but also learn

a PCA projection. The d-dimensional data set is then projected to a subspace by

the learned PCA projection yielding a compact k-dimensional point set. Finally, the

adaptive covariance matrix descriptor is constructed using the projected point set.

For a candidate image patch to be compared with the template, the descriptor computa-

tion is similar except that it employs the PCA projection pre-learned from the template

point set. In this way, the feature extraction is adaptive to a specific target. We name

the region covariance descriptor computed in this fashion the “adaptive covariance de-

scriptor”.

3.3.3.1 Computation of the adaptive covariance descriptor

In the training stage, based on a d-dimensional feature pool and the point set from

the object template image, the PCA projection matrix is learned by keeping the k

(1 ≤ k ≤ d) top eigenvectors of the sample covariance matrix according the significance

of their corresponding eigenvalues. The mean vector of the training samples is preserved

as well.

When generating the adaptive covariance descriptor, each point represented by f(x, y)

is firstly subtracted by the mean of the training samples. Then, it is projected to

the subspace spanned by the k retained eigenvectors, yielding a compact k-dimensional

feature vector p(x, y). Finally, the adaptive covariance descriptor of an image region is

computed using the sample covariance of the extracted feature vector p(x, y)

Ca,R =
1

N − 1

N∑
i

pi × p>i (3.9)

We summarise the procedure in Algorithm 1. Note that since the adaptive covariance

descriptor is still a covariance matrix, the integral image [8] can be naturally inherited

for fast covariance matrices computation.

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 26

Algorithm 1 Procedure for computing the adaptive covariance descriptor.

Training Stage:

Input: target template image from the initial frame
Output: µ(f): the mean feature vector;

Vk: the projection matrix.
1: Form the pixels that are inside the template image.
2: Extract feature vector fi ∈ <d×1 for each pixel i.
3: Compute the mean vector: µ(f)← mean(fi).
4: Compute the covariance matrix: CR ← cov(fi).
5: Do eigenvalue decomposition for CR: CR = V ΛV >.
6: Keep the k (0 ≤ k ≤ d) eigenvectors vi=1···k in V that correspond to the k most

significant eigenvalues:
Vk ← [v1 · · · vk]

Generating Descriptors:

Input: any image region R, µ(f), Vk
Output: Ca,R: the adaptive covariance descriptor of the region R

1: Form the pixels that are inside the region R.
2: Extract feature vectors fi for each pixel i.
3: Perform the PCA projection on each fi and obtain a compact score vector pi ∈ <k×1:
pi ← V >k (fi − µ(f)).

4: Compute the adaptive covariance descriptor Ca,R ∈ <k×k using the sample covari-
ance matrix of pi: Ca,R ← cov(pi).

It is pointed out in [8] that for the conventional covariance descriptor, given a region

R, its covariance CR does not have any information regarding the ordering and the

number of points, which implies a certain scale and rotation invariance over the regions in

different images. However, if the matrix fuses the information regarding the orientation

of the points, such as the norm of gradient with respect to x and y, the covariance

descriptor is no longer rotationally invariant. The same argument is also correct for

scale and illumination. The features fused in the adaptive covariance descriptor are linear

combinations of the raw features. Therefore, its invariance property is the same as the

conventional descriptor. That is, if the raw features are scale, rotation or illumination

invariant, then the adaptive covariance descriptor is also scale, rotation and illumination

invariant. Otherwise, invariance does not hold.

3.3.3.2 Relation to the conventional covariance descriptor

We explore in this section the relationship between the conventional covariance descrip-

tor and the proposed adaptive covariance descriptor in order to elucidate the superior

representation ability of the proposed descriptor.

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 27

Let Cr denote the conventional covariance matrix descriptor computed for the target

template image (the reference) and Cc denote that of an arbitrary candidate image

region to be matched with Cr. Distance between Cr and Cc under the Log-Euclidean

metric [61] is written:

d(Cr, Cc) = ‖ log(Cr)− log(Cc)‖. (3.10)

After the PCA projection, the adaptive covariance descriptor for the target template

becomes

Ca,r = V >k CrVk. (3.11)

Similarly, the adaptive covariance descriptor for the candidate image becomes

Ca,c = V >k CcVk. (3.12)

The distance between the Ca,r and Ca,c is thus written:

d(Ca,r, Ca,c) = ‖ log(V >k CrVk)− log(V >k CcVk)‖

= ‖V >k · (log(Cr)− log(Cc)) · Vk‖.
(3.13)

It is interesting to find that if all the eigenvectors are kept, i.e. k = d, the new distance

in (3.13) is equal to the original distance (3.10). This equality indicates that rotation of

coordinate systems using PCA projection does not affect distances between covariance

matrices. Nevertheless, this rotation by PCA projection is of interest, because it provides

a most “suitable” coordinate system for analyzing the fused features from the perspective

of the target template image.

In other cases where only a few principal components are kept, the equality of (3.13) and

(3.10) no longer holds. The dimension reduction of PCA removes unreliable dimensions

and thus makes the adaptive covariance descriptor different from the conventional one.

From a machine learning perspective, the PCA projection during the computation of

the adaptive covariance descriptor preserves dominant information and removes noise.

Removing the unreliable dimensions can alleviate the overfitting problem and hence

improve generalization.

Compared to the conventional descriptor, another advantage of the adaptive descriptor

is that it is more compact. As such, it can make the subsequent operations, e.g. distance

measure and appearance model updating, much faster. We acknowledge that the adap-

tive covariance descriptor may impose additional computational burden for training the

PCA and projecting the raw feature vectors into principal components. However, this

additional computational effort for obtaining a compact representation is well worth it.

Firstly, training is an offline process, which is performed only once at the first frame.

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 28

The computation during the training stage for learning the PCA is thus negligible. Sec-

ondly, the benefit of the compact representation in subsequent processing may outweigh

the cost of the PCA projection. In the practice of object detection, hundreds of thou-

sands of candidate descriptors need to be computed and be compared for a test image.

As such, employing the compact representation of the adaptive descriptor can result in

significant efficiency gain.

In brief, the adaptive covariance descriptor represents an object using a covariance ma-

trix that fuses a few relevant features formed by the principal components of the raw

feature distribution. Compared to the conventional descriptor, operations on the adap-

tive descriptor are generally faster. Furthermore, if the conventional descriptor has very

small eigenvalues, the adaptive descriptor should have better generalization ability than

the conventional one.

3.3.4 `1 norm for distance measure

Since the logarithm domain of the SPD matrices manifold is in Euclidean space [61],

one may consider using `1 norm instead of the `2 norm to measure the distance of two

matrices in the logarithm domain. The intuition is that the `1 is generally more robust

to outlier than the `2 norm [113]. We can thus expect the modified distance metrics

using `1 norm to yield better detection performances.

Specifically, the two Riemannian metrics are modified as follows. For the Affine-Invariant

metric, distance between two covariance matrices are modified as

ρ(C1, C2) =

d∑
i=1

|(λi(C1, C2)| (3.14)

where | · | is the abstract value function. Likewise, the Log-Euclidean metric can be

modified using `1 norm as

d(C1, C2) = ‖ log(C1)− log(C2)‖`1 (3.15)

where ‖ · ‖`1 is the `1 norm by taking the matrix log(C) as vector.

3.3.5 Empirical Evaluation

In order to validate the effectiveness of the claimed improvements to the conventional

region covariance descriptor, we empirically assessed the performances of the regular-

ized descriptor and the adaptive descriptor in comparison with that of the conventional

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 29

descriptor by repeatedly detecting objects in real-world video sequences.

As a benchmark, 3 publicly available sequences, namely “PkTest01”, “PkTest02” and

“PkTest03”, from the VIVID airborne sensor dataset1 [114] were used for evaluation.

The three sequences from VIVID dataset are thermal infrared data of vehicles captured

by moving cameras in airport circumstances. These sequences are selected because there

is strong correlation between the color channels. Therefore, if many color features are

used, there will be some very small eigenvalues in the covariance matrix. In addition,

there are similar vehicles in the scene, making the detection challenging. As the se-

quences are very long, we used only the first 100 frames of each sequence. In addition, a

public color sequence from the PETS dataset2 is used as well. The sequence is captured

from a static camera in a campus circumstance, where we seek to detect a walking pedes-

trian. There are some other pedestrians in the scene. Similar to the VIVID sequences,

we used only 100 frame (from Frame #1412 to Frame #1511) of the sequence. Figure

3.1 displays the target objects, marked in rectangles in the first frames.

(a) PkTest01 (b) PkTest02 (c) PkTest03 (d) PETS

Figure 3.1: Initial frame of each sequence with target marked in rectangle.

3.3.5.1 Settings

Using the annotated template image in the first frame, we first computed the three de-

scriptors, i.e. the conventional descriptor, the regularized descriptor and the adaptive

descriptor of the object respectively. As in [8], an object was represented by five covari-

ance matrices of the image features computed from five subregions (the whole region,

the left half part, the right half part, the top half part and the bottom half part) of the

object template image. Then, we used each descriptors to detect the object in the rest

of the sequence and evaluated its performance.

1Available at http://vision.cse.psu.edu/data/vividEval/datasets/datasets.html.
2Available at http://ftp.pets.rdg.ac.uk/PETS2001/DATASET1/TRAINING/CAMERA1 JPEGS/.

http://vision.cse.psu.edu/data/vividEval/datasets/datasets.html
http://ftp.pets.rdg.ac.uk/PETS2001/DATASET1/TRAINING/CAMERA1_JPEGS/

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 30

For all the sequences, we used a feature set f(x, y) defined as

f(x, y) =
[
R(x, y) G(x, y) B(x, y) H(x, y) L(x, y) S(x, y) a(x, y) b(x, y) u(x, y) v(x, y)

∂I(x, y)

∂x

∂I(x, y)

∂y

∂2I(x, y)

∂x2

∂2I(x, y)

∂y2

∂2I(x, y)

∂x∂y

∂3I(x, y)

∂x2∂y

∂3I(x, y)

∂x∂y2

∂4I(x, y)

∂x2∂y2

]>
(3.16)

where H(x, y), L(x, y) and S(x, y) are the feature channels from the HLS color space. Similarly,

a(x, y), b(x, y) and u((x, y), v(x, y) are from the CIE Lab and CIE Luv color spaces respectively.

The L channels in Lab and Luv colors spaces are not used because they are highly correlated

with each other and also with the L channel in the HLS space. Note that all the color channels

need to be adjusted to fall into the range of [0− 255]. The derivatives of the intensity image are

computed as they are using the Sobel operator with 3× 3 or 5× 5 kernels3.

The conventional descriptor used this set directly. The regularized descriptor used the same

feature set f(x, y). The parameter η was set to 0.5. For computing the adaptive descriptor, the

number of retained principal components after PCA projection was automatically determined.

Those dimensions with corresponding eigenvalues less than 0.01 were removed.

The search method for locating the object is also similar to that in [8]. Initially, we computed

only the descriptor of the whole region. We search the target image for a region having similar

covariance matrix. Search was performed by sliding-window from left to right and from top to

bottom in the whole image frame. The window size was fixed as that of the template image with

no scale change. The search window jumped horizontally 10% of the width or vertically 10% of

the height of the object between two search locations. After this first phase, we kept the best

matching 1000 locations. At the second phase we repeated the search in 1000 detected locations,

using all the five covariance matrices. The dissimilarity of the object and a candidate region

was computed by summarizing the distances of all five pairs of covariance matrices. Finally,

the region with the smallest distance was selected as the matching region. We used the Log-

Euclidean metric to measure the distances between covariance matrices. Our implementation is

in C++ and is based on the OpenCV library.

Two quantities were measured to evaluate the performance of the descriptors. One is the detec-

tion rate, which is defined as the ratio of the number of frames where object location is accurately

estimated to the total number of frames for detection. The detection result is considered to be

accurate if the center position of the best match is within the 9× 9 pixel neighborhood of that

of the ground truth. The other metric is the average processing time per frame, employed to

evaluate the computational efficiency.

3.3.5.2 Results

Table 3.1 summarizes the detection rates and the average processing time per frame using the

conventional covariance descriptor (denoted as “Cov”), the adaptive covariance descriptor (de-

noted as “AdpCov”), and the regularized covariance descriptor (denoted as “RegCov”).

3According to the summarised order of the partial derivatives, i.e. if the summarised order is less
than 3, we used the 3 × 3 kernel; otherwise the 5 × 5 kernel was used.

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 31

For comparing the `1 norm and the `2 norm, performances using each norm are presented

respectively. As such, in Table 3.1, “Cov1” denotes the utilization of conventional covariance

descriptor using the Log-Euclidean metric with `1 norm, i.e. Equation (3.15), whereas “Cov2”

denotes the utilization of the Log-Euclidean metric with the `2 norm. Other notations are similar.

Note that the average processing time is the total average of both `1 and `2 norms.

Table 3.1: Detection performance comparison using the conventional covariance de-
scriptor, the regularized covariance descriptor and the adaptive covariance descriptor.
Frames where the object is severely occluded are not counted in the performance com-

putation.

Sequence
Detection Rate Time Per Frame in Seconds

Cov1 Cov2 RegCov1 RegCov2 AdpCov1 AdpCov2 Cov RegCov AdpCov

PkTest01 84% 83% 100% 91% 100% 91% 1.614665 1.50845 0.42641
PkTest02 69% 69% 91% 75% 82% 68% 1.798325 1.173205 0.48842
PkTest03 100% 78% 100% 88% 100% 90% 2.199425 2.005465 1.043075
PETS 100% 98% 100% 100% 100% 98% 4.02714 2.88185 2.952495

On the VIVID sequences, there were a number of very small eigenvalues in the eigenspectrum

of the conventional descriptor. The detection rates clearly showed that these small eigenvalues

degraded the performance of the conventional descriptor. The regularized descriptor and the

adaptive descriptor both handled this problem effectively and boosted the detection rates. Be-

sides, the `1 norm generally outperformed the `2 norm. In terms of efficiency, benefited from

the reduced dimensionality, the adaptive descriptor was significantly faster than the other two

descriptors. Therefore, if efficiency is a major concern, the adaptive covariance is indeed a good

choice. We display some detection results detected by each descriptor on the “PkTest01” se-

quence in Figure 3.2 and those on the “PkTest02” sequence in Figure 3.3 respectively. Since the

`1 norm generally performed better than the `2 norm, the presented results are those detected

by the `1 norm.

On the PETS sequence, there were no very small eigenvalues in the eigenspectrum of the con-

ventional covariance descriptor of the target object. Indeed, all the eigenvalue were greater than

0.1. Therefore, no dimensions were removed for the adaptive covariance descriptor. In terms of

accuracy, we see that all the descriptors performed quite well with detection rates from 98% to

100%. The slight performance deterioration is due to a partial occlusion in the 84th and 85th

frames (Frame #1496 and Frame #1497 in the original sequence). The `1 norm successfully

overcame this problem for all the three descriptors while the `2 norm drifted to another pedes-

trian in the scene except for the regularized descriptor. This phenomenon is displayed in Figure

3.4, which further evidenced that the `1 norm is more robust to outliers than the `2 norm. In

terms of efficiency, as dimensionality was not reduced, the adaptive descriptor was slightly slower

than the regularized descriptor due to the extra computational burden of the PCA projection.

A mysterious observation is that on this sequence the conventional descriptor was much slower

than the other two descriptors. Similar phenomenon can also be noticed on the three VIVID

sequences: the regularized descriptor was generally faster than the conventional descriptor. A

plausible reason is that when the covariance matrices are poorly-conditioned (even though the

descriptor of the target object is not poorly-conditioned, there may be poorly-conditioned de-

scriptors among the numerous candidate regions), the implementation routine that performs

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 32

(a) Some detection results using the conventional covariance descriptor on the “Pktest01” sequence.

(b) Some detection results using the regularised covariance descriptor on the “Pktest01” sequence.

(c) Some detection results using the adaptive covariance descriptor on the “Pktest01” sequence.

Figure 3.2: Some detection results on the “PkTest01” sequence (a) using the con-
ventional covariance descriptor, (b) using the regularized covariance descriptor and
(c) using the adaptive covariance descriptor. The initial frame with the target object

marked in rectangle is shown in Figure 3.1(a).

the matrix logarithm operation conducts some extra computation to improve stability and thus

makes the conventional descriptor less efficient.

3.3.5.3 Discussion

The above experiments shows that small eigenvalues indeed degrade the generalization ability of

the conventional covariance descriptor. In general, a fixed feature set cannot always work well in

all circumstances. The analysis of the eigenspectrum of the conventional covariance descriptor

is thus important for detecting the small eigenvalue problem. Once detected, the proposed two

variants are both effective to cure this problem.

Another perspective of the adaptive covariance descriptor is that it uses PCA to extract relevant

compact features that are adaptive to a specific object. Irrelevant features are discarded. On the

contrary, the regularised descriptor tries to alleviate the adverse effect of the irrelevant features,

with the relevant features almost unaffected.

It is also interesting to draw an analogy between the two variants of the covariance descriptor

and those of the linear least squares regression. For regression from X to Y , the ordinary least

squares (OLS) solution is (X>X)−1X>Y . When X>X is ill- or poorly-conditioned, one can

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 33

(a) Some detection results using the conventional covariance descriptor on the “Pktest02” sequence.

(b) Some detection results using the regularised covariance descriptor on the “Pktest02” sequence.

(c) Some detection results using the adaptive covariance descriptor on the “Pktest02” sequence.

Figure 3.3: Some detection results on the “PkTest02” sequence (a) using the con-
ventional covariance descriptor, (b) using the regularized covariance descriptor and (c)
using the adaptive covariance descriptor. The initial frame with the target marked in

rectangle is shown in Figure 3.1(b).

either use the ridge regression or use the principal component regression (PCR) to handle this

problem. The rigid regression is analogous to the regularized descriptor here and the PCR is

analogous to the adaptive descriptor. This correspondence can be established because both the

function y = 1/x and the function y = log(x) have sharp slopes when x is very close to zero,

which make the results unstable.

3.4 Object tracking

In this section, we shall build a tracking system that integrates the newly proposed adaptive

covariance descriptor and a new model updating method. First, the object appearance model

using multiple patches is presented in §3.4.1. Second, target localization using the appearance

model and similarity measure is addressed in §3.4.2. Most importantly, for updating the model

during the tracking, we propose in §3.4.3 a weakly-supervised updating method which is based

on clustering analysis using the mean-shift procedure.

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 34

(a) Cov1 (b) Cov2

(c) RegCov1 (d) RegCov2

(e) AdpCov1 (f) AdpCov2

Figure 3.4: Detection results in the 84th and the 85th frames of the “PETS” sequence.
See text for details. The initial frame with the target marked in rectangle is shown in

Figure 3.1(d).

3.4.1 Object appearance model

To increase robustness, we use multiple patches of an image region, each of which is described by

an adaptive covariance descriptor. A simple heuristic is employed to divide the object into six

parts. If the width of the object is smaller than the height, the object is divided in the vertical

direction. Otherwise, it is divided in the horizontal direction. This multi-part representation

mechanism is illustrated in Figure 3.5, where an object on the left is vertically divided into

parts on the right because its height is greater than its width. As such, a region is represented

(a) (b) (c) (d) (e) (f) (g)

Figure 3.5: Illustration of the multiple-patches object representation. An object on
the left is represented by 6 adaptive covariance descriptors computed from correspond-
ing subregions on the right. Note that if the width of the object is greater than its

height, a similar division is performed in the horizontal direction.

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 35

by 6 adaptive covariance matrices computed from its 6 subregion patches. Each patch is then

represented by an adaptive covariance descriptor, denoted as {Cia}1≤i≤6. For instance, when

the height is greater than the width, C1
a is computed from the entire region as in Figure 3.5(b);

C2
a from the top half as in Figure 3.5(c); C3

a from the middle half as in Figure 3.5(d); C4
a from

the bottom half as in Figure 3.5(e); C5
a from the top 3/4 part as in Figure 3.5(f) and C6

a from

the bottom 3/4 part as in Figure 3.5(g). For objects that have width greater than height,

correspondence can be naturally established.

Although computed in a subspace, the adaptive covariance descriptor is indeed a sample co-

variance matrix, which lie on a Riemannian manifold. Using the Log-Euclidean transformation

[26, 61, 62], we first transform the adaptive descriptors of the 6 patches Cia(i = 1 · · · 6) to Eu-

clidean space as logCia(i = 1 · · · 6), then unfold each matrix and concatenate them to take a

vector form. Note that since the transformed matrices logCa are still symmetric, only upper tri-

angular matrices are used. For instance, if 10 out of 15 dimensions are retained when computing

the adaptive covariance descriptor, the dimension of the final vector representation of a region

is 10 × (10 + 1)/2 × 6 = 330, whereas the conventional covariance descriptor using 15 features

would generate a vector of size 15× (15 + 1)/2× 6 = 720.

Using the adaptive covariance descriptor and the transformations above, we obtain a vector-form

feature representation of the target object, denoted as Mr, as the object appearance model. The

appearance model learned from the initial target template image, denoted as M0
r , is preserved

throughout the tracking process for later participating the updating of Mr.

3.4.2 Target localization

To track the target in consecutive frames, we use an uniform sliding-window search around the

target’s previous position. That is, our motion model is such that the location of the tracker at

time t is equally likely to appear within a rectangle window around the tracker location at time

(t− 1). Let `∗(t− 1) denote the tracker location at time (t− 1), x(`∗t−1) be the x coordinate of

`∗(t− 1) and y(`∗t−1) be the y coordinate of `∗(t− 1). The motion model is formally defined as

p(`t|`∗t−1) ∝

 1 if‖x(`t)− x(`∗t−1)‖ < s1 and ‖y(`t)− y(`∗t−1)‖ < s2

0 otherwise
(3.17)

where s1 and s2 are predefined constants that constrain the boundaries of the searching area.

At time t, when a new image frame is captured, a number of candidate regions are generated

according to the motion model (3.17). Similar to the target object, each candidate region

is represented using 6 adaptive covariance descriptors and then transformed to a vector-form

feature representation. We denote the feature representation of the i-th candidate region as

M i
c,t. Distance between M i

c,t and the current target appearance model Mr is measured by

d(Mr,M
i
c,t) = ‖Mr −M i

c,t‖`1 , (3.18)

where ‖ · ‖`1 is the `1 vector norm.

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 36

The best match is the candidate region whose feature representation M∗c,t has the smallest

distance to Mr, i.e.

M∗c,t = arg min
i
d(Mr,M

i
c,t). (3.19)

The position of this best matching region then determines the location of the object, `∗(t), in

the current frame. Besides, M∗c,t is retained in a buffer for later updating the object appearance

model Mr.

3.4.3 Weakly-supervised model updating

As time progresses, the target object may undergo both intrinsic and extrinsic variations. Up-

dating of the appearance model Mr is thus necessary. An important issue for model updating is

to ensure that the model is updated with correctly labeled samples. Contaminating the model

with background samples will result in the well-known “drift” problem. Actually, tracking re-

sults collected during a certain period may contain optimal positive samples but also can have

suboptimal or background samples. Previous work usually neglects this issue or simply address it

by selecting good samples using a pre-fixed threshold, e.g. [25]. That is, updating is performed

with samples which have distances to the object model smaller than a predefined threshold.

However, during a long-term visual tracking, appearances of both the background and the target

object are ever-changing. It is very difficult (if not impossible) to estimate a threshold that can

separate optimal sample and suboptimal samples effectively in a long time.

To tackle this problem, our model updating method is based on two key observations that are

obtained in the practice of visual tracking. First, an appearance model can effectively represent

the target appearance for a certain duration. This indicates that with relatively robust appear-

ance representation, it is not necessary to update the object appearance model too frequently.

Second, in some cases there are no appropriate positive samples for updating the model. This

usually happens in an occluded/absent scene where there is no “good” image region that contains

the target object in that frame.

Based on the above observations, we propose to update the object appearance model by following

a relatively long cycle, e.g. every 10 frames, instead of updating at each frame. Our idea is that

a clustering analysis among the collected samples can naturally align similar optimal samples,

suboptimal samples and background samples into different groups. The clustered group whose

centroid is most close to the current object appearance model is selected for updating the object

appearance model. As such, we can not only keep the appearance model adaptive to the changes

but also prevent it from contamination when the tracker makes accidental tracking mistakes.

3.4.3.1 Mean-shift clustering for sample selection

As stated in §3.4.2, the tracking result sample estimated at each frame, i.e. M∗c,t, is saved in a

buffer which constitutes a sample set during a period of time. When the pre-fixed cycle is due,

a clustering analysis is performed in the feature space among these samples. In practice, the

concatenated vector representation is high dimensional. A PCA dimension-reduction procedure

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 37

can be performed in advance to obtain compact representation while preserving dominant in-

formation. In fact, Ding and He proved in [115] that principal components are the continuous

solutions to the discrete cluster memberships indicators for K-means clustering. It is plausible

that clustering in the projected subspace may improve the clustering accuracy [115, 116].

Since the tracker may occasionally make mistakes, the collected sample set can be any combina-

tion of optimal samples, suboptimal samples and background samples. It is thus very difficult

to predict the number of clusters that are present. Hence, a standard clustering approach such

as K-means is not appropriate. The mean shift clustering algorithm [117], which is an iterative

gradient ascent method for finding local density maxima, was used instead. It does not require

prior knowledge of the number of clusters and does not constrain the shape of the clusters. The

data association criteria is based on the underlying probability of the data points.

The algorithm begins by placing a window (actually a hyper-sphere) around each point in the

feature space. On each iteration, each window moves in the direction of the mean shift vector

which is computed as follows:

yt+1 =
1

|Θλ|
∑
x∈Θλ

(yt − x) (3.20)

where yt is the window center at iteration t, and Θλ is the set of points in the hyper-sphere

window of radius λ. It is also possible to use a kernel function to weight points according to how

far they are from the window center. The windows eventually converge towards local density

maxima yielding the cluster centroid. The points that converges to the same local maxima

naturally fall into the same cluster. As such, the mean shift clustering algorithm avoids the issue

of knowing the number of clusters at the price of introducing another bandwidth parameter λ.

This parameter, however, is intuitive and easy to tune regarding all possible inputs [118]. An

example is presented in Figure 3.6 to illustrate the sample clustering process.

After clustering, the arithmetic mean of each cluster is computed. Among these means, the

one M̄s that has the smallest distance to Mr according to Equation (3.18) is selected for later

updating Mr.

3.4.3.2 Updating of the object appearance model

As stated in §3.4.1, M0
r is preserved throughout the tracking. The updated object appearance

model M̂r is determined as a linear combination of M0
r , Mr, and M̄s, i.e.

M̂r = α ·M0
r + β ·Mr + γ · M̄s,

s.t. α+ β + γ = 1.0; 0 ≤ α, β, γ ≤ 1.0.
(3.21)

Finally, the model updating is accomplished by setting

Mr = M̂r. (3.22)

The advantage of employing the mixture coefficients, i.e. the α, β and γ, is that they can increase

the flexibility of the model. Specially, with α set to 1.0, the model is kept fixed at M0
r and no

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 38

Figure 3.6: A clustering example: 10 samples on the left are simultaneously clustered
into 3 groups (each row for one group) on the right according to their mutual similarities.

updating is going to take place. On the other extreme, setting γ to 1.0 makes the model totally

“forgets” its appearance history.

The clustering-based appearance model updating procedure is summarized in Algorithm 2.

Algorithm 2 Clustering-based method for updating the object appearance model

Input: the most recent N collected samples,
the initial appearance model M0

r ,
the current appearance model Mr.

Output: the updated generative model Mr.
1: Obtain a number of clusters by performing the mean-shift clustering process in the

feature space among the N samples.
2: Compute the sample mean of each cluster.
3: Find the mean M̄s that has the smallest distance to Mr according to (3.18).
4: Update the object appearance model using M0

r , M̄s and Mr according to (3.21) and
(3.22).

3.4.4 Evaluation of the tracking system

To evaluate the performance of the proposed tracking system, we compared it with some other

tracking methods on several challenging video sequences.

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 39

3.4.4.1 Experimental setup

The typical settings for each component of the proposed tracking system are as follows. The

feature set for the adaptive covariance descriptor is the f(x, y) in Equation (3.16). The number

of retained principal components is fixed to 14. If the whole image frame is large, the algorithm

searches in a local window as specified in the dynamical model (3.17) to accelerate the processing

speed. The size of the local search window is set to be proportional to the size of the object.

Otherwise, the algorithm searches in the whole frame. In both cases, the searching step is fixed

to 4 pixels horizontally or vertically.

For updating the appearance model using the clustering-based method, the updating cycle is

typically set to 10-15 frames. In general, longer cycles make the model less adaptive but more

stable. Besides, longer cycles can enable the appearance model being tolerant to longer occlu-

sions. However, if the appearance of the object changes quickly, long updating cycle may be

retarded. On the contrary, shorter cycles keep the model better up-to-date but more prone to

contamination of the model. Tradeoff between adaptivity and stability is to be considered. Set-

ting the updating cycle to 10-15 frames can generally handle short-term tracking mistakes while

keeping the model freshly adaptive to changes. In our experiments, the updating cycle was set to

10 frames. The bandwidth h of the mean-shift procedure is set to 1.5 for 10-dimensional vectors

(after PCA dimension reduction). The linear combination coefficients α, β and γ in Equation

(3.21) are indeed the learning the rates of the appearance model. Greater α is more conservative

and pull the model towards the initial one M0
r . Larger γ makes the model adapts to changes

quickly but also forgets its historical appearances quickly. Similar to the updating cycle, balance

between stability and adaptivity is to be considered when choosing the mixture parameter for

a specific application. A reference setting for α, β and γ is 0.10, 0.30 and 0.60 respectively.

In our experiments, we used this reference setting for the “David-outdoor” sequence and the

“White-outdoor” sequences because there are severe occlusions in these two sequences. In this

case, both stability and adaptivity need to be considered. For the “Pedestrian1” sequence, we

set α, β and γ to 0, 0, and 1.0 respectively, because there is no occlusion in this sequence and

the appearance change is rapid.

Three benchmark sequences were used to assess the tracking performances. The first sequence

is the “David-outdoor” sequence from [21], where the target undergoes partial occlusion, total

occlusion, pose change and nonrigid deformation. The second one is from a self-captured video,

where two pedestrians walk in in an outdoor campus environment, occasionally occluded by the

background. This sequence contain occlusions, appearance variations and cluttered scenes. We

refer to it as the “White-outdoor” sequence because the target pedestrian is in white clothes in

the scene. The third sequence is the “Pedestrian1” sequence from the TLD dataset [6]. This

sequence is captured by a moving camera, hence, with unpredictable camera movings and large

appearance variations.

We compared the proposed method with a state-of-the-art tracking method, the “MILTracker”

from [4], which uses online multiple instance boosting to handle partial occlusion. Moreover,

to validate the effectiveness of the clustering-based model updating method, we explicitly com-

pared it with two other updating schemes by keeping other components the same. For noting

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 40

convenience, the proposed tracking system that uses the adaptive covariance-based appearance

model and the clustering-based model updating model is denoted as “AdpCov+cu”. The first

comparing updating scheme is to fully adapt to the changes at every frame using the mean of

current tracking result and the last model updated as in [119]. We denote the tracking system

using this updating policy as “AdpCov+fu”. The other updating method is to use fixed initial

model M0
r without updating. The corresponding tracking system is denoted as “AdpCov+nu”.

The sequences are labeled with the “ground truth” for each frame. Percentage of Correctly

tracked Frames (PCF) was employed to quantitatively measure the performance of all the in-

volved trackers. PCF computes the percentage of correctly tracked frames over the total number

of frames in the sequence. Tracking is considered to be correct if the overlap of the bounding

box of the tracking result and that of the ground truth is greater than 25% of the area of the

ground truth.

3.4.4.2 Results

The performances in terms of PCF of all the comparing tracking methods are presented in Table

3.2. The “AdpCov+cu” achieved the best results on all the three sequences. For qualitative

comparison, we display a few screen snapshots of tracking results on the “David-outdoor” se-

quence, the “White-outdoor” sequence and the “Pedestrian1” sequence using all the comparing

tracking methods in Figure 3.7, Figure 3.8 and Figure 3.9 respectively4.

Table 3.2: Information of the sequences and the tracking performances in terms of
PCF

Sequence David-outdoor White-outdoor Pedestrian1

Number of frames 251 305 140
Frame size 640×480 640×480 320×240
Initial object size 38×126 16×70 16×65
Severe occlusion(s) Twice 4 times None

MILTracker 48.4 % 9.84% 69.78%
AdpCov+cu 96.0 % 93.44% 97.84%
AdpCov+nu 96.0 % 68.20% 61.15%
AdpCov+fu 12.8 % 6.89% 28.78%

The “MILTracker” generally fails when there are severe occlusions (see frame #100 in Figure

3.7) or fast appearance changes (see frame #113 in Figure 3.9). The “AdpCov+nu” tracker

drifts to non-targets when the target undergoes significant appearance deformation (see Frame

200 and Frame 300 in Figure 3.8) or when there are similar non-targets in the scene (see Frame

#113 in Figure 3.9). On the other hand, the “AdpCov+fu” tracker usually leads to tracking

failure because its object appearance model is eventually contaminated due to updating during

4The tracking videos are available at:
https://www.youtube.com/watch?v=lB8y4D6jG7A
https://www.youtube.com/watch?v=N5DiqNSt4EA and
https://www.youtube.com/watch?v=d11dXuvxWKs.

https://www.youtube.com/watch?v=lB8y4D6jG7A
https://www.youtube.com/watch?v=N5DiqNSt4EA
https://www.youtube.com/watch?v=d11dXuvxWKs

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 41

Figure 3.7: Tracking results on the “David-outdoor” sequence using different up-
dating policies. Column 1: “MILTracker”. Column 2: “AdpCov+cu”. Column 3:
“AdpCov+nu”. Column 4: “AdpCov+fu”. In the last three columns, the blue rect-
angles indicate the search windows and the green rectangles show the tracking results.

Row1: frame #1. Row 2: frame #100. Row3: frame #200. Row4: frame #250.

occlusion (see frame #100 in Figure 3.8) or accumulated tracking errors (see frame #50, #113

and #136 in Figure 3.9).

We see from the above results that the clustering-based updating method can effectively tolerate

short-term tracking mistakes, including drifting to non-targets, partial/full occlusions, keeping

the object appearance model steadily attached to the object and being up-to-date. The inte-

grated tracking system “AdpCov+cu” accomplished stable tracking and outperformed a state-

of-the-art tracker.

3.5 Conclusion

We have analyzed the generalization ability of the covariance descriptor and revealed that small

eigenvalues may incur large variance and thus degrade its generalization. Generally, fusing more

features can yield better detection performance, as long as it does not incur the small eigenvalue

problem. When there are very small eigenvalues, the covariance descriptor hardly generalize. It

is the logarithm function in the distance metrics that causes large disturbance and thus degrades

the descriptor’s generalization ability.

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 42

Figure 3.8: Tracking results on the “White-outdoor” sequence using different update
policies. Column 1: “MILTracker”. Column 2: “AdpCov+cu”. Column 3: “Adp-
Cov+nu”. Column 4: “AdpCov+fu”. In the last three columns, the blue rectangles
indicate the search windows and the green rectangles are the tracking results. Row1:

frame #1. Row 2: frame #100. Row3: frame #200. Row4: frame #300.

Regularization can effectively cure this problem and meanwhile preserve all the information

in the corresponding dimensions. PCA dimension reduction, on the other hand, removes the

unreliable dimensions, which can also be viewed as an adaptive feature extraction process. As

dimensionality is reduced, operations on the adaptive covariance descriptor are generally less

time-consuming.

The clustering-based updating method is able to select a group of reliable samples to update the

object appearance model, which is particularly useful when there are tracking mistakes during

tracking. Compared with other updating schemes, the clustering-based method showed merits

in both adaptivity and stability.

The tracking system that integrates the adaptive covariance descriptor and the clustering-based

updating accomplished stable tracking in several challenging real-world video sequences and

outperformed a state-of-the-art tracker. We thus believe that the two components proposed in

this work can be served as building blocks for constructing more robust tracking systems.

Chapter 3. Improved Covariance Descriptors and Clustering-Based Model Updating 43

Figure 3.9: Tracking results on the “Pedestrian1” sequence using different update
policies. Column 1: “MILTracker”. Column 2: “AdpCov+cu”. Column 3: “Adp-
Cov+nu”. Column 4: “AdpCov+fu”. Row1: frame #1. Row2: frame #50. Row3:

frame #113. Row4: frame #136.

Chapter 4

Online Learning Partial Least

Squares Discriminant Model

4.1 Introduction

The tracking system developed in Chapter 3 has some limitations. First, it uses generative

appearance model and did not exploit the background information. A common weakness of

generative models is that they are prone to similar non-targets in the background, called “dis-

tracters”, especially in cluttered scenes. Second, in cases where the target undergoes long time

occlusion or absence from the scene, the object appearance model will inevitably be contaminated

with non-target samples. To tackle these problems, we also resort to discriminative models for

distinguishing the object from distracters and for preventing updating the model during target

occlusion or absence. In particular, we use the Partial Least Squares (PLS) analysis to build

discriminative object appearance models.

Recently, PLS-DA (Partial Least Squares Discriminant Analysis) has attracted increasing at-

tentions in computer vision community. This may be attributed to its simplicity, effectiveness,

efficiency and the fact that it has a unique parameter, which is intuitive and easy to tune. In fact,

PLS-DA has been successfully applied to pedestrian detection [120], face identification [121, 122],

object tracking [123] and discriminative appearance model learning [45].

Despite its increasing popularity, all the aforementioned applications employed batch PLS algo-

rithms, e.g. NIPALS [124] or SIMPLS [125], which require maintaining all the training samples

and retrain the PLS model, each time when some new training data is available. Due to their

storage and computational requirements, these batch methods are unsatisfactory for real-world

applications. First, they use the entire set of training samples for each update. If an updating

is made at each time step, then the number of samples which must be retained grows linearly

with the length of the time series. Second, the cost of computation grows with the number of

samples, so they will run ever slower as time progresses.

45

Chapter 4. Online Learning Partial Least Squares Discriminant Model 46

To the best of our knowledge, few works have been proposed in the computer vision literature

for incremental PLS model updating. This may be due to the iterative computation procedure

of the PLS, which makes incremental methods not straightforward. This chapter is devoted to

review PLS algorithms and to develop an online PLS-1 algorithms that can update the model

incrementally or decrementally. Online learning discriminative object appearance model using

the incremental PLS for visual tracking will be addressed in the next chapter.

In Section 4.2, we review classical PLS methods, the NIPALS algorithm and the SIMPLS al-

gorithm. The proposed online PLS learning methods are developed in Section 4.3 based on

an alternative non-iterative PLS solution. The proposed online PLS methods are evaluated in

Section 4.4. Conclusions are drawn in Section 4.5.

4.2 The PLS analysis

The Partial Least Squares (PLS) regression is a statistical method which models relations be-

tween sets of observed variables X and Y by means of latent variables. It is a powerful statistical

tool that consists of dimension reduction (compact feature extraction) and regression techniques,

while considering the response variables in the process.

It constructs new predictor variables, known as components, as linear combinations of the origi-

nal predictor variables, with consideration of the observed response values. According to whether

Y is a vector or a matrix, PLS is categorized into two algorithms, the PLS-1 and PLS-2. Fur-

thermore, by setting Y as categorical labels, PLS can be applied as a discriminant tool for the

estimation of a low dimensional space that maximizes the separation between samples of different

classes. This is the so called Partial least squares Discriminant Analysis (PLS-DA).

We shall review two popular PLS algorithms, namely NIPALS and SIMPLS, and point out the

difficulties for developing online methods based on these algorithms.

4.2.1 The NIPALS Algorithm

Let X ∈ <N×r be a mean-centered matrix of predictor variables, with rows corresponding to

observations and columns to variables and Y ∈ <N×m be the mean-centered response matrix.

PLS methods find new spaces where most variations of the observed samples can be preserved,

and the learned latent variables from two blocks are more correlated than those in the original

spaces

X = TP> + E

Y = UQ> + F
(4.1)

where T ∈ <N×p and U ∈ <N×p are factor (score, component, latent variable) matrices, P ∈
<r×p and Q ∈ <m×p are loading matrices, and E ∈ <N×r and F ∈ <N×m are error terms.

Discriminative features T are extracted and the dimension is reduced when p < r.

Chapter 4. Online Learning Partial Least Squares Discriminant Model 47

To decompose X and Y by Equation (4.1), the nonlinear iterative partial least squares (NIPALS)

algorithm [124], which is the classical form of the PLS method, performs in an iterative fashion.

In the first iteration, the algorithm computes two weight vectors w1 and c1 such that most

variations in X and Y can be retained in t1 = Xw1 and u1 = Y c1, while optimizing the

covariance between the two score vectors as

max [cov(t1, u1)]
2

= max||w1||=||c1||=1[cov(Xw1, Y c1)]2 (4.2)

where cov(t1, u1) = t>1 u1/N denotes the sample covariance between t1 and u1. The optimal

weight vector w1 and c1 for the above optimization problem (4.2) are the first left singular

vector and the first right singular vector of the cross scatter matrix X>Y respectively [126].

Mathematically, the singular value decomposition (SVD) of X>Y is written

X>Y = UΛV >; U = [u1 · · · ur], V = [v1 · · · vm]. (4.3)

w1 and c1 are thus obtained by setting

w1 = u1,

c1 = v1.
(4.4)

When w1 and c1 are available, the score vectors t1 and u1 (first columns of T and U) can be

computed by t1 = Xw1, u1 = Y c1, and loadings p1 and q1 (first columns of P and Q) can be

computed by p1 = X>t1
t>1 t1

and q1 = Y >u1

u>
1 u1

. The data matrices X and Y are then deflated by

subtracting their rank-one approximations

X ← X − t1p>1
Y ← Y − u1q

>
1 .

(4.5)

After the first step, the deflated X and Y are used to compute w2 and c2 based on Equation (4.3)

and (4.4). This process is repeated iteratively until the residuals are small enough or a predefined

number of weight vectors w1, . . . , wp are obtained. Such deflation rule ensures orthogonality

among the latent vectors ti and also among the weight vectors wi that are extracted over the

iterations.

For PLS regression, a linear relation between the score vectors t and u exists; i.e.

U = TD +H (4.6)

where D ∈ <p×p is a diagonal matrix and H denotes the matrix of residuals. It follows that Y

is regressed by T as

Y = TDQ> + (HQ> + F). (4.7)

By integrating the relationship [127]

T = XW (P>W)−1 (4.8)

Chapter 4. Online Learning Partial Least Squares Discriminant Model 48

where P is the loading matrix defined in Equation (4.1), the overall (from X to Y) regression

equation is written

Y = X(W (P>W)−1DQ>) + F ∗, (4.9)

where F ∗ = HQ> + F is the overall residual. The overall regression coefficient β is thus formu-

lated as

β = W (P>W)−1DQ>. (4.10)

For a test feature vector xt, its regression response yt is therefore evaluated by

yt = (xt − µ(X))>β + µ(Y), (4.11)

where µ(X) and µ(Y) are the sample means of X and Y before the mean centering respectively.

Additional details regarding PLS methods can be found in [128].

4.2.2 The SIMPLS Algorithm

For make this thesis self-contained, we present here another popular PLS method, the SIMPLS

algorithm, as proposed in [125]. SIMPLS is generally faster than NIPALS because it does not

deflate the X. Instead, it deflate the matrix X>Y , which is usually much smaller in dimension

than X. The complete procedure for computing PLS using SIMPLS is summarized in Algorithm

3.

4.2.3 Discussion

We see that both algorithms require the raw data blocks, X or Y , to participate in the com-

putation at each iteration. This dependency makes it difficult to update the model when new

data is available in a sequential scheme. In addition, when the number of samples is large, these

kinds of methods are rather time-consuming.

For online updating a PLS model, the conventional PLS algorithms are not appropriate. For each

updating, the batch PLS algorithms would require to recompute the PLS model using the accu-

mulated samples ever seen. For an object tracking application, the storage and computational

requirements of the batch algorithms are ever increasing as tracking evolves.

4.3 Online PLS-1 methods

We limit our discussion to regression problems with a single dependent variable, i.e. the PLS-

1 algorithm, and propose a novel PLS-1 learning algorithm which can update a PLS-1 model

incrementally or decrementally.

Chapter 4. Online Learning Partial Least Squares Discriminant Model 49

Algorithm 3 SIMPLS algorithm for computing PLS model

Input: X: the independent data block
Y : the response data block
p: the number of factors (latent variable, retained components)

1: Y0 = Y −MEAN(Y)
2: S = X> × Y0

3: for i = 1 · · · p do
4: q = dominant eigenvector of S> × S
5: ~r = S × q
6: t = X × ~r
7: t = t−MEAN(t)
8: normt = SQRT (t> × t)
9: t = t/normt

10: ~r = ~r/normt
11: p = X> × t
12: q = Y >0 × t
13: u = Y >0 × q
14: v = p
15: if i > 1 then
16: v = v − V × (V > × p)
17: u = u− T × (T> × u)
18: end if
19: v = v/SQRT (v> × v)
20: S = S − v × (v> × S)
21: Store ~r, t, p, q, u and v into R, T , P , Q, U and V , respectively.
22: end for
23: β = R×Q>
Output: β

4.3.1 A closed-form PLS-1 solution

Rather than the conventional PLS algorithms, we adopt an alternative approach [129], which

provides a closed-form PLS-1 solution. The closed-form PLS-1 solution takes two scatter ma-

trices, namely Sxx and Sxy, as input to compute the PLS model instead of using the raw data

blocks X and Y . The two scatter matrices are defined as

Sxx =

N∑
i=1

(xi − µ(X))(xi − µ(X))> (4.12)

Sxy =

N∑
i=1

(xi − µ(X))(yi − µ(Y))>, (4.13)

where N is the number of samples in X (and also Y) and µ(X) and µ(Y) are sample means of

X and Y respectively. Note that in (4.12) and (4.13), each xi and yi are arranged in vector form

and we have Sxx ∈ <r×r and Sxy ∈ <r×m.

Chapter 4. Online Learning Partial Least Squares Discriminant Model 50

With Sxx and Sxy, the Krylov Matrix Kr ∈ <r×rm of the pair (Sxx, Sxy) is defined as

Kr = [Sxy SxxSxy S2
xxSxy · · · Sr−1

xx Sxy]. (4.14)

A reduced Krylov matrix Kp ∈ <r×pm is formed by the first p (1 ≤ p ≤ r) columns of Kr:

Kp = [Sxy SxxSxy S2
xxSxy · · · Sp−1

xx Sxy]. (4.15)

According to [129], the relationship between the weight matrix W of the trained PLS model and

the Krylov matrix of the pair (Sxx, Sxy) is well established. It is revealed that for univariate Y , i.e.

when m = 1, the conventional orthonormal weighting matrix Wp ∈ <r×p using p latent variables

and the Krylov matrix Kp span the same column space. Moreover, Wp can be computed directly

by performing the QR decomposition (and take the Q part) or the (modified) Gram-Schmidt

procedure on Kp.

Furthermore, the regression coefficient β can be computed in a direct formula either using Kp as

βKp = Kp(K
>
p SxxKp)

−1K>p Sxy (4.16)

or using Wp as

βWp
= Wp(W

>
a SxxWp)

−1W>p Sxy. (4.17)

The two expressions βKp and βWp yield identical results because Kp and Wp span the same

column space [129]. They correspond to the partial least squares (PLS) regression using p latent

variables when p < r and reduce to the ordinary least squares (OLS) regression (assuming that

K>r SxxKr is nonsingular) when p = r.

In practice, the explicitly formulated Krylov matrix Kp in Equation (4.15) may be ill-conditioned

due to accumulated round off errors when computing the powers of Sxx, especially when p is

large. This adversely affects the accuracy of the resulted Wp and β. As suggested in [129], we

use the Arnoldi’s method [130] to extract the orthonormal basis of Kp from Sxx and Sxy. The

pseudo code procedure of the Arnoldi’s method for computing Wp is described in Algorithm 4,

where || · ||F is the Frobenius norm. The regression coefficient β can thus be obtained using the

resulting Wp according to Equation (4.17).

We remind that the above introduced non-iterative PLS solution works for univariate Y only, i.e.

Y is vector instead of matrix, which is the case for many applications, e.g. [45, 120, 121, 123].

For detailed proof and further information of the non-iterative PLS solution, we refer the readers

to [129].

It is worth noting that the two scatter matrices Sxx and Sxy are constant in size (independent

of N) and can be updated incrementally with new samples, an incremental PLS model updating

algorithm can thus be developed. In fact, the output W and β of a PLS model trained from the

data blocks X and Y can be fully determined by Sxx, Sxy and the dimension of retained latent

variables p using Algorithm 4 and Equation (4.17) respectively. Besides, in order to update Sxx

and Sxy, it is necessary to store the number of samples N(X) and the samples means µ(X) and

Chapter 4. Online Learning Partial Least Squares Discriminant Model 51

Algorithm 4 Arnoldi’s method for computing orthonormal weight matrix Wp

Input: Sxx and Sxy: the scatter matrices
p: the number of retained components

Output: the weight matrix Wp

1: w1 ← Sxy/||Sxy||F
2: for i = 2 · · · p do
3: wi ← Sxxwi−1

4: for j = 1 · · · i− 1 do
5: hj,i−1 ← w>j wi
6: wi ← wi − hj,i−1wj
7: end for
8: hi,i−1 ← ||wi||F
9: wi ← wi

hi,i−1

10: end for
11: Wp = [w1 w2 · · · wp]

µ(Y). Therefore, we suggest to specify a PLS model trained from the data block X and Y as

Θ(X,Y, p) = (N(X), µ(X), µ(Y), Sxx, Sxy,W, β). (4.18)

The advantage of adopting this model is that all the elements specified in the model are of

constant size (independent of the number of training samples), which makes the model having a

constant space complexity.

4.3.2 Incremental PLS model updating

We now propose a novel incremental PLS (IPLS) updating method. Suppose we have trained

a PLS model with training set X1 and Y1 with dimension p1. The model is thus denoted as

Θ(X1, Y1, p1). When new samples, i.e. feature vectors X2 with their corresponding labels Y2,

are available, the incremental updating algorithm seeks to update the PLS model Θ with X2

and Y2 without resorting to the original training set X1 and Y1.

We describe in the following the updating of each element in the model. Firstly, the first

five elements for Θ(X2, Y2, p2) are computed as N(X2), µ(X2), µ(Y2), Sxx2, Sxy2 respectively.

Incremental updating of N(X), µ(X) and µ(Y) is straightforward:

N(X) = N(X1) +N(X2); (4.19)

µ(X) =
N(X1)

N(X)
µ(X1) +

N(X2)

N(X)
µ(X2), (4.20)

µ(Y) =
N(X1)

N(X)
µ(Y1) +

N(X2)

N(X)
µ(Y2). (4.21)

The scatter matrix Sxx can be updated using the following equation:

Sxx = Sxx1 + Sxx2 +
N(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(X1)− µ(X2))>. (4.22)

Chapter 4. Online Learning Partial Least Squares Discriminant Model 52

Similarly, Sxy can also be updated as

Sxy = Sxy1 + Sxy2 +
N(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(Y1)− µ(Y2))>. (4.23)

The weight matrix W can thus be updated using the newly updated Sxx and Sxy according to

Algorithm 4. Finally, the regression coefficient β is updated by Equation (4.17). We note that

although p can be different from both p1 and p2, no information is lost, since the number of

samples, the means and scatter matrices have embedded all information needed to update the

model.

4.3.3 Decremental PLS Model Updating

It is interesting to note that in some applications, one needs to remove (as opposed to update)

some samples. Now we have trained a PLS model on the data set of X1 and Y1, we need to

update the model after removing a training data block X2 as well as its corresponding response

Y2. This is the decremental PLS (DPLS) model update problem.

This can be a straightforward extension of the incremental updating procedure. We compute

the number of data, and their mean:

N(X) = N(X1)−N(X2) (4.24)

µ(X) =
N(X1)

N(X)
µ(X1)− N(X2)

N(X)
µ(X2), (4.25)

µ(Y) =
N(X1)

N(X)
µ(Y1)− N(X2)

N(X)
µ(Y2). (4.26)

Then it is not difficult to prove that the scatter matrices Sxx, Sxy can be updated as

Sxx = Sxx1 − Sxx2 −
N(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(X1)− µ(X2))>. (4.27)

Similarly, Sxy can also be updated as

Sxy = Sxy1 − Sxy2 −
N(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(Y1)− µ(Y2))>. (4.28)

The weight matrix W and the regression coefficient β are then updated using Algorithm 4 and

Equation (4.17) respectively using the updated Sxx and Sxy.

4.3.4 Weighted online PLS model updating

In some applications, it is interesting to give different weights to different training samples when

updating the model. For example, in visual tracking, when the target undergoes the appearance

changes, it is likely that recent observations will be more indicative of its appearance than more

ancient ones. Therefore, it may be desirable to focus more on recently-acquired images and

Chapter 4. Online Learning Partial Least Squares Discriminant Model 53

down-weight the contribution of earlier observations. On the other hand, for semi supervised

learning, a classifier is trained using labeled data, it exploits a set of unlabeled data to improve

its accuracy. In this case, one may need to give smaller weights to the unlabeled samples.

To tackle this problem, we propose a weighted extension of the IPLS called weighted incremental

PLS (WIPLS) model update method. The key idea is the concept of the “effective number” of a

sample. By default, all observations have the same weight of 1.0. If a sample is assigned with a

weight of 2.0, the result would be the same as if we had repeated this sample twice when counting

the sample number, computing the means and the scatter matrices. On the other extreme, a

point associated with a weight of 0 would make the result as if it had not been included in the

computation at all. For WIPLS, we assign weights to the two training blocks with two scalar

factors f1 and f2 when updating the model. The effective number of samples N(X) and sample

means µ(X), µ(Y) are updated with the weight factor f1 and f2 as

N(X) = f1N(X1) + f2N(X2), (4.29)

µ(X) =
f1N(X1)

N(X)
µ(X1) +

f2N(X2)

N(X)
µ(X2), (4.30)

µ(Y) =
f1N(X1)

N(X)
µ(Y1) +

f2N(X2)

N(X)
µ(Y2). (4.31)

The scatter matrix Sxx can be updated using the following equation:

Sxx = f1Sxx1 + f2Sxx2 +
f1f2N(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(X1)− µ(X2))>. (4.32)

The derivation of formula (4.32) is presented in Appendix A. Similarly, Sxy is updated with

forgetting factor f as

Sxy = f1Sxy1 + f2Sxy2 +
f1f2N(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(Y1)− µ(Y2))>. (4.33)

Finally, the regression model W and β can be updated via Algorithm 4 and Equation (4.17)

respectively using the newly updated Sxx and Sxy.

It is easy to observe that when f1 = f2 = 1.0, WIPLS is identical to IPLS. Similarly, WIPLS

is reduced to DPLS when f1 = 1.0 and f2 = −1.0. This indicates that WIPSL is the general

method for updating PLS model and both IPLS and DPIS are special cases of WIPLS. Besides,

it is worth noting that when 0 < f1 < 1.0 and f2 = 1.0, f1 is the so-called the “forgetting factor”

because it weights less (forgets) the previously trained samples.

4.3.5 Regression residual

An issue that has not been discussed is the regression residual. For our online PLS-1 methods,

the raw data blocks X and Y are not maintained. We therefore propose to measure the regression

residual using Sxx and Sxy. Specifically, we calculate the residual of regressed Sxy = X>Y using

Chapter 4. Online Learning Partial Least Squares Discriminant Model 54

Sxx = X>X and β, that is

ε = ||X>Y −X>Xβ||F = ||Sxy − Sxxβ||F . (4.34)

The percentage of explained norm is then computed as 1− ||ε||F
||Sxy||F .

4.3.6 Time and space complexities

The space complexity of the proposed algorithm is O(r2), where r is the dimension of the

predictors in X. This is in line with the size of the scatter matrix Sxx. For incremental or

decremental updating, typically we have N(X2) � p � r. Therefore, the time complexity is

analyzed as follows: computing Sxx2 requires O(r2) operations; computing W using Algorithm

4 takes O(pr2) operations and computing β using Equation (4.17) consumes O(rp2) + O(p3)

operations. As both complexities are independent of the number of training set N(X), constant

time and space complexities are achieved. In contrast, for batched PLS algorithms, the effect of

N(X) cannot be ignored. In that case, the space complexity would be O(N(X)r) and the time

complexity be O(N(X)r2) +O(N(X)rp), which are ever increasing.

In practice, there are situations where we do not need to compute W and β immediately after

some new data are available. We can thus encode the information by updating only the first five

elements, i.e. N , µ(X), µ(Y), Sxx and Sxy, instead of storing raw data. Computation of W and

β are performed whenever necessary. This can be referred to as the “light updating” operation,

which further reduces the computational cost. Note that in the “light updating” case, in order

to enable testing an unknown sample, the original means, i.e. the means µ(X) and µ(Y) before

updating, need to be preserved.

4.4 Experiments

4.4.1 UCI dataset

In order to validate the effectiveness of the incremental and decremental PLS model updating

approaches proposed in the above section, we conducted an empirical study on benchmark data

set from UCI Repository [131]. The relative location of CT slices on axial axis data set1 is used.

The data were retrieved from a set of 53500 CT images from 74 different patients (43 male,

31 female). Each CT slice is described by two histograms in polar space. The first histogram

describes the location of bone structures in the image, the second the location of air inclusions

inside of the body. Both histograms are concatenated to form the final feature vector. Bins that

are outside of the image are marked with the value -0.25. The class variable (relative location of

an image on the axial axis) was constructed by manually annotating up to 10 different distinct

landmarks in each CT Volume with known location. The location of slices in between landmarks

was interpolated.

1URL: https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis

https://archive.ics.uci.edu/ml/datasets/Relative+location+of+CT+slices+on+axial+axis

Chapter 4. Online Learning Partial Least Squares Discriminant Model 55

Figure 4.1: Computational time for NIPALS, SIMPLS and IPLS. X axis is the ex-
perimental step (535 in total) and Y axis is the computational time in seconds.

For training the PLS models, the X block is the feature vectors, i.e. concatenated histograms,

and the Y block is the response data (class variables). We compared IPLS and DPLS with

their batch counterparts. Without confusion, we denote PLS as the batch PLS methods in the

following. For PLS, we employed the two most popular algorithms, NIPALS [124] and SIMPLS

[125].

The following strategy is taken: the training sample is provided in an online way, with 100 new

samples at each following step. At the initial step, both the PLS and the IPLS methods train a

model using the initial 100 samples respectively. When new samples are available, PLS methods

has to retrain the model and IPLS can update the model online according to the procedure

described in section 4.3.2. As we have 53500 samples in total, PLS retrained the model 534

times and IPLS updated the model also 534 times. The number of retained latent variables P

is set to 15 for all the three methods (NIPALS, SIMPLS and IPLS).

The experiments were carried out by running Matlab implementations on a desktop with 2.30GHz

CPU and 12 GB memory. We recorded the Frobenius norm of the difference of the weight

matrices W , and the Frobenius norm of the difference between regression coefficients β estimated

by the two types of methods at each step. The computational time for (re)training or updating

the models is also recorded.

Fig. 4.1 shows the computation time of the three methods each time when they retrain or update

their models respectively. Not surprisingly, computation complexities of both NIPALS and

SIMPLS grow linearly with the number of training samples. For NIPALS, average computational

time is 1.1145 seconds and the value for SIMPLS is 0.1938 seconds. In contrast, computational

time for IPLS is almost constant and average processing time is 0.0057 seconds.

Concerning accuracy, the average norm of differences between the weight matrices W produced

by IPLS and that of NIPAL or SIMPLS2 (we took a maximum) during the 534 updates is

2Actually, the weight matrix produced by SIMPLS is the R matrix in Algorithm 3, which is not the
same as the W produced by NIPALS or IPLS. However, they share the same column space. Therefore,
we first perform a QR decomposition of the R of SIMPLS and use the orthogonal basis Q for comparison.

Chapter 4. Online Learning Partial Least Squares Discriminant Model 56

4.8131e−012, with a maximum value of 4.2417e−011. Likewise, the norm of the differences be-

tween regression coefficients β have an average value of 6.4392e−012 and a maximum value of

1.7628e−011.

When evaluating the DPLS method, we re-ran the experiments in a reverse way. We began with

53500 samples in the initial step and removed 100 samples at each step. Consequently, there

were 534 times of retraining for NIPALS and SIMPLS and 534 times of updating for DPLS. For

DPLS, the initial model was taken from the final model produced by IPLS in the last experiment.

As expected, our results showed that the computational time of NIPLS and SIMPLS in this

setting decreased linearly with the number of training samples. Average processing time for

NIPALS is 1.1053 seconds. It is 0.1918 seconds for SIMPLS and 0.0056 seconds for DPLS.

The average norm of differences of W between DPLS and NIPALS or SIMPLS (the larger one

is taken) is 1.2621e−009. The maximum norm of differences is 5.3754e−007. Average norm of

differences of β is 7.2808e−010 with a maximum value of 2.1860e−007.

We see from the above results that the proposed IPLS and DPLS methods are both accurate

and efficient. In terms of accuracy, the differences is still negligible after thousands of times of

updating. On the other hand, substantial time gain was achieved using IPLS or DPLS. Although

we didn’t explicitly measure the space complexity, it is easy to see that the proposed IPLS and

DPLS methods have constant space complexity.

4.4.2 VIPeR dataset

In this section, we train discriminative object appearance model using PLS and evaluate the

performance of the model on real image dataset. The viewpoint invariant pedestrian recognition

(VIPeR) dataset3 of [132] is used as a benchmark. The VIPeR dataset consists of 632 pedestrian

image pairs with large viewpoint, pose and lighting differences captured from two cameras. The

objective is to recognize the corresponding image among a large number of pedestrians when

provided with one image from the other camera. Some example images are shown in Figure 4.2.

As the whole dataset is large, we used a subset consisting of the first 50 pedestrians.

In order to design a pedestrian recognition system, we use the first elements of images pairs

(first view = first row in Figure 4.2) as training samples and the second elements (second view =

second row in Figure 4.2) for testing the performances. We built discriminative object appearance

models using PLS-DA. The features (the data block X in PLS) are covariance descriptors that

are transformed into vector form as described in Chapter 3 Section 3.4.1. For each pedestrian,

a PLS model is constructed by labeling the image as y = +1 for the pedestrian of interest and

y = −1 for the remaining pedestrians. The number of retained variables of PLS are set to 10.

After training, a ranking is then performed by sorting the PLS regression output responses of

the images of the second view.

For comparison of performance, we use generative models associated with distance measures as

described in Chapter 3. Then, during testing, a ranking is obtained by sorting the distances

3Available at http://vision.soe.ucsc.edu/node/178

http://vision.soe.ucsc.edu/node/178

Chapter 4. Online Learning Partial Least Squares Discriminant Model 57

Figure 4.2: Some examples from the VIPeR dataset. Each column is one of 632
same-person example pairs. There are wide range of viewpoint, pose, and illumination

changes.

between the descriptors of the candidate pedestrian from the second view and the pedestrian of

interest in the first view. Both `1 and `2 norms were employed. We denote the generative model

using `1 norm as GM1, the one using `2 norm as GM2. The discriminative model using PLS is

denoted as as DM.

It is worth noting that a direct implementation of the above system requires the implementation

of N PLS batch algorithms, where N is the number of pedestrians. However, we can also note

that all these PLS share the majority of training samples: the difference between 2 PLS is only

the labels of 2 pedestrians (the labeled dataset of the second PLS is obtained by just relabeling

2 samples). In this case, the proposed incremental and decremental PLS algorithm will be of

great help as the training of one PLS could be based on a previous one by applying one step of

decremental PLS (taking off 2 samples) and one step of incremental PLS (adding 2 samples).

This implementation makes the adaptivity of the learning system very fast for large datasets of

pedestrian.

We computed the recognition accuracies in terms of the cumulative matching characteristic

(CMC) [132]. Figure 4.3 shows the CMC curve demonstrating the recognition performance of

each model.

We display in Figure 4.4 some examples of pedestrians observed by a camera, and the corre-

sponding most similar pedestrians found by the discriminative appearance model (DM) within

another camera. The images are sorted (from left to right) and the the correct match is presented

at the end.

We see that the discriminative model using PLS outperforms the generative ones by a consider-

able margin. This is enabled by the fact that the discriminative models can explore information

from both positive and negative samples while their generative counterparts learn from only one

Chapter 4. Online Learning Partial Least Squares Discriminant Model 58

Figure 4.3: CMC curve of recognition performance using each appearance model.
DM1 is the discriminative model using PLS. GM1 is the generative model using `1

norm. GM2 is the generative model using `2 norm.

Figure 4.4: Some example queries to recognition database using the discriminative
appearance model trained by PLS-DA. Left column: the probe images. Middle columns:

top 9 results sorted from left to right. Right column: the correct matches.

Chapter 4. Online Learning Partial Least Squares Discriminant Model 59

positive sample. This suggests that properly trained discriminative model is helpful for enhanc-

ing performance of recognition, re-acquisition, and tracking. Besides, we see that GM1 performs

slightly better than GM2, which coincides with our analysis in Chapter 3 indicating that the `1

norm is generally more robust than the `2 norm.

4.5 Conclusion

We have presented online methods for updating PLS-1 regression models in an incremental or

decremental fashion. The proposed methods have constant space and time complexities. It is

observed that these incremental and decremental model update methods are special cases of a

generalized weighted extension, which can assign weights to different training data blocks when

updating the model.

The proposed incremental PLS-1 algorithm obeys the following general criteria for an incremental

learning algorithm: 1)it does not require access to the original data; 2)it preserves previously

acquired knowledge; 3)it is able to learn new information from new data. Analysis reveals that

the proposed online updating algorithms possess the appealing property of constant storage and

computational complexities while being accurate compared to their batch counterparts.

The proposed online PLS-1 algorithms are mathematically accurate. Deviations from batch

methods may be observed due to machine precision and accumulated round off errors. Our

experiments on UCI dataset showed that after thousands of updates, the observed deviation is

still negligible. We therefore expect that the online PLS-1 approaches presented in this chapter

can find applications in a variety of areas outside of visual tracking.

Our experiments on the VIPeR dataset showed that compared to generative models, training

discriminative appearance models using PLS-DA is an effective way to improve recognition ac-

curacy. In the next chapter, we will apply the PLS methods developed in this chapter for visual

tracking.

Chapter 5

Cascaded Generative and

Discriminative Object

Appearance Models for Tracking

5.1 Introduction

In long-term unconstrained environments, motion is not a reliable cue. In fact, the target can be

fully occluded or can leave the field-of-view for a long time. A robust tracker requires building

a reliable appearance model used to efficiently reacquire the target and to continue its tracking

when it reappears. Inspired by the cascaded face detector of [133], we propose a principled

scheme fusing the merits of generative and discriminative models by incorporating them in a

cascaded fashion: the generative model eliminates “easy” negative examples in the early layers

of the cascade, while in the later layers, the discriminative model generates a decision boundary

distinguishing the object from its most similar distracters. In particular, we employ a simple

histogram-based generative model to filter out most easy candidate regions and retain a few

prominent non-overlapping candidates. These retained samples are further re-evaluated by the

discriminative model using the Partial Least Squares (PLS) discriminant analysis, which is able

to distinguish the subtle differences between the target and its most confusing distracters. Both

models are collaboratively updated online to adapt to appearance variations of the target and

the background.

The first part of this chapter consists in proposing a cascaded framework that integrates both

generative and discriminative appearance models. The cascaded appearance models for tracking

is presented in Section 5.3. Our motivation for blending generative and discriminative models

in such a cascaded manner can be explained in three folds. First, the cascaded structure can

effectively tackle the asymmetry problem of training and testing data. Object tracking (and

also object detection) has the intrinsic problem of unbalanced samples, i.e. the limited target

instances are positive samples while all “the rest of world” being negative samples. In this sense,

61

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 62

the cascaded structure provides a remedy for handling the asymmetry problem. Second, the

cascaded structure is more efficient, i.e. with lower computational complexity, than parallel con-

figurations. Hybrid approaches that combine multiple models in parallel, e.g. using co-training

[96], generally have more computational complexity because all candidate samples need to be

evaluated by each model before making a final decision. Besides, these approaches still face

the problem of unbalance data, which may adversely affect the performance of a discriminative

classifier. Third, the underlying assumption of machine learning is that the training samples and

the test samples are drawn from the same (although unknown) distribution. In the literature

there has been a convention to randomly select samples for training or updating a discriminative

appearance model. We argue that training and testing on pre-selected samples by the precedent

layer in a cascaded structure is more likely to satisfy the assumption than the random selection

policy. Therefore, better detection accuracy may be expected within a cascaded detection struc-

ture. The advantages of the cascaded detection structure has been evidenced by the success of

the cascaded face detection system [133].

The second part of this chapter is the online updating of the appearance models in the detection

cascade. Efficient and effective model updating is the key component for appearance model-

based tracking systems. In Section 5.4, we will employ the clustering-based updating method

for the generative model and the online PLS-1 method for updating the discriminative model.

Both model updating methods can be performed efficiently which makes our tracking system

practically applicable.

In order to balance adaptivity and stability and to increase robustness as well, the third part

of this chapter is to embed multiple homogenous generative and discriminative models that are

coherently integrated in the cascade framework. Tradeoff between stability and adaptivity is

accomplished by adopting distinct learning rate for each layer of the cascade. The enhance-

ment that embeds multiple generative models and multiple discriminative models is presented

in Section 5.5.

The fourth part is an implementation and empirical evaluation of the proposed tracking frame-

work presented in Section 5.6. We first diagnostically evaluated the contributions of the compo-

nents in the system and then compared the overall system with the state-of-the-art. Diagnostic

results suggest that cascade of generative and discriminative models is an effective fashion to

boost detection performance and embedding multiple models is important for further accuracy

improvement. Comparative results on challenging public video sequences showed superior or

comparable performances with respect to the state-of-the-art.

5.2 System overview

Given a set of observed images Ot = {o1, · · · , ot}, we aim to estimate the value of the hidden

state variable Θt, which describes the affine motion parameters of the target at time t. In

this work, we consider the state variable denoted by four affine transformation parameters as

Θt = (xt, yt, st, ϕt), where xt, yt, st, ϕt denote x, y coordinates, scale ratio and aspect ratio

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 63

Figure 5.1: Overview of the cascaded tracking framework.

respectively. In practice, many candidate regions are sampled at every frame according to a

Gaussian distribution around the lastly estimated target position:

p(Θt|Θ̂t−1) = N(Θt; Θ̂t−1,Ψ) (5.1)

where Ψ is a diagonal covariance matrix whose elements are the corresponding variances of

respective affine parameters, i.e., σ2
x, σ

2
y, σ

2
s , σ

2
ϕ. Then, a maximum likelihood estimate Θ̂t could

be approximated by locally searching among the sampled population as follows,

Θ̂t = arg max
Θt

p(ot|Θt). (5.2)

In the following, we focus on the observation model because it is crucial for determining the image

region that is most likely to be the target object. As stated in the introduction section, we propose

to use a cascade of generative and discriminative appearance models as our observation model for

the likelihood measure. Roughly, the proposed observation model can be viewed as a cascade of

two appearance models (one generative and the other discriminative) that work sequentially to

boost the performance of the combined model. The intuition behind the cascaded tracker is that

the generative model may make confusion between the target and similar background regions

from time to time, it is safer to consider several most prominent candidates, as long as the real

target is included in this collection. The discriminative model then specifically learns a decision

boundary to distinguish the target from its rivals. In fact, the generative model provides the

discriminative model with carefully selected training and testing samples while the discriminative

tracker serves as performance re-evaluation or refining of the output of the generative model.

When designing the two appearance models, some considerations should be taken into account.

For efficiency, the generative model is expected to adopt a feature descriptor and a model that are

simple to compute. In contrast, the discriminative model requires more informational features

for ensuring accuracy, i.e. the features need to contain the information that can distinguish

subtle differences between the real target and the “distracters” similar to it.

We present an overview of the tracking framework as depicted in Fig. 5.1. The details of

the cascaded observation model will be illustrated in the next section. The tracking process

works as follows. For an incoming test frame, a large number of candidates are sampled by a

random transition model. Features are then extracted for each sample. Assuming that both

the generative and the discriminative models have been trained, a sample is firstly evaluated by

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 64

the generative model usually by distance measurement or probability estimation. Only a few

samples are selected for re-evaluation by the discriminative model. New samples are labeled and

both appearance models are updated using the new samples. Finally, the location of the target

is estimated based on the positive-labelled samples.

5.3 Cascaded generative and discriminative object appear-

ance models

5.3.1 Sample selection via the generative appearance model

The likelihood of all the possible states sampled by the dynamical model is firstly measured by

the generative model. The generative model is required to be not only effective but also simple to

compute. In our implementation, we consider the feature vector obtained by concatenating 16-bin

intensity histograms from a spatial pyramid of 4 levels as the region representation. Specifically,

at each level L, the patch is divided into L×L cells resulting in a 480-dimensional feature vector.

The evaluation is a typical template matching process by computing the distances between test

sample features and the current generative model. We adopt the Chi-square distance in this

work to measure the similarity between a test feature vector Ht and the generative model Mg,

which is defined as

d(Ht,Mg) =
∑
i

(Ht(i)−Mg(i))
2

0.5(Ht(i) +Mg(i))
. (5.3)

We note that other features and distance measurements can also be considered as long as they

meet the requirements for the generative model as previously stated.

If only the generative model was used, we merely retain the best match that has the smallest

distance to the generative model and consider it to be the target in the current frame. On

the contrary, for our cascaded tracker, a few most promising samples are retained in this stage.

Selecting these important samples is performed in an iterative manner. Denote Sa as the set of all

possible samples, we first select in Sa the sample s∗ that has smallest distance to the generative

model and add it to the retained sample set Sr. Next, we remove from Sa all the samples that

have region overlap with s∗. The two steps are repeated iteratively till the desired number of

samples have been collected in Sr. It can be seen that samples retained in Sr are mutually non-

overlapping. The reason for this non-overlapping selection policy is to get promising samples

globally from different maximal peaks, avoiding being trapped to the neighborhood of only one

local maxima. The selection process is summarized in Algorithm 5, where f(s) is the feature

vector (which is in our case the concatenated intensity histogram) extracted from sample s and

ROI(s) is the bounding box of the image patch.

With the above procedure, the large number of “easy” samples that have been discarded in this

stage can be regarded as having p(ot/Θt) equal to zero, while the preserved samples in Sr will

be re-evaluated by the subsequent discriminative model.

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 65

Algorithm 5 Selection of important samples via the generative model

Input: {Sa, N, Sr,Mg}
Sa = {all possible samples},
N : the desired number of samples,
Sr = ∅ : the retained sample set

Output: {Sr}
1: while |Sr| 6= N do
2: s∗ ← arg min

s∈Sa

d(f(s),Mg)

3: Sr ← Sr ∪ {s∗}
4: Sa ← Sa - {s ∈ Sa|ROI(s) ∩ROI(s∗) 6= 0}
5: end while

5.3.2 Discriminative re-evaluation

The samples retained in the previous step are re-evaluated by a discriminative model using the

partial least squares (PLS) [128] discriminant analysis. Training the discriminative appearance

model using PLS with the new descriptor is addressed in 5.3.2.1. Sample re-evaluation using the

discriminative model is presented in 5.3.2.2.

5.3.2.1 Training the discriminative appearance Model

For our visual tracking application, the matrix X in the PLS formulation is the matrix formed

by accumulating vector representations as computed in the previous section. A discriminative

model can be trained by setting Y as binary labels. Training samples are taken from the set Sr

of samples retained by the generative model layer. As tracking evolves, two sets are constructed:

a positive sample set Bp and a negative sample set Bn. These two sets are initialized as empty

sets and then filled online when applying the PLS regressor which assigns labels to samples in

Sr.

For training the discriminative model, we use more sophisticated region descriptor instead of

the simple intensity histogram to increase robustness. In fact, in this discriminative layer, this

is possible as the number of retained samples has been greatly reduced and generating complex

descriptors for these fewer samples becomes affordable. Specifically, the adaptive covariance

descriptor, which is introduced in Chapter 2 Section 3.3.3, is exploited for training the discrim-

inative model.

At the very initial phase of tracking where the object appearance variation is not intense, the

samples are simply labeled by the generative tracker until the minimal number of samples to

perform PLS is collected. That is, the sample with the smallest distance to the generative model

is labeled as positive (y = +1) and be added to Bp, and the others in Sr are added to Bn with

y = −1. The state of the positive sample is then considered to be the state of the target in that

frame. We note that the duration of this initial phase can be very short. For example, if we

retain 15 latent variables for the PLS model, at least the same amount of samples is required.

Suppose 4 samples are collected at each frame to Sr, this initial phase takes only 4 frames.

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 66

The PLS training is performed by the the closed-form PLS-1 method described in the Chapter 4

Section 4.3.1. After training, the sample means µ(X), µ(Y) and the regression coefficient β are

saved for later evaluating test samples. Scatter matrices Sxx, Sxy are saved as well for updating

the model.

As time evolves, the model is punctually updated with newly labeled samples. Discriminative

re-evaluation using the learned PLS model and the labeling of new samples are addressed in the

next section. The model updating will be addressed in Section 5.4.

5.3.2.2 Re-evaluation via the discriminative Model

Once the discriminative model is learned, it is used at every frame to re-evaluate the repre-

sentation matrix Xr of samples retained in Sr using (4.11) to obtain response scores Yr. It is

worth noting that this testing process is particularly fast because only a single dot product of

the feature vector with the regression coefficient β is needed in (4.11) to obtain the response

from the PLS regression model.

According to the labeling scheme, the best match ŝ ∈ Sr is chosen to be the one associated

with the greatest response value ŷ. A predefined constant τ ∈ [0, 1) is employed as threshold

to measure the significance of ŷ. If ŷ has value no less than τ , the state of ŝ, namely Θ(ŝ), is

considered to be the estimation of Θ̂t and is thus considered as the tracking result. ŝ will be

labeled as a new positive sample, i.e. with y = +1 and will be added to the positive sample

buffer Bp, while the other samples in Sr being labeled as negative (with y = −1) and added to

the negative sample buffer Bn for later updating the models. Otherwise, that is if ŷ is less than

τ , an occlusion (actually it may also be the out of the field-of-view case) event is declared, all

the samples in Sr are discarded and the state of the target Θ̂t in this frame is estimated using its

last state Θ̂t−1 in the previous frame. Algorithm 6 summarizes the PLS re-evaluation procedure.

5.4 Collaborative online model updating

Both the generative and the discriminative models need to be updated as tracking evolves in

order to adapt to the variations of the target and the background. Except the occlusion case,

selected samples in Sr are labeled as stated in the previous section and are utilized for updating

the appearance models.

5.4.1 Updating of the generative model

The generative model considers positive samples only. A baseline mean update can be served

for model updating. In order to increase robustness, we adopt the clustering-based updating

scheme as proposed in Chapter 3 Section 3.4.3. That is, instead of updating at every frame, the

clustering-based updating works less frequently, e.g. every 10 frames. It collects the positive

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 67

Algorithm 6 Re-evaluation via the PLS discriminative model

Input: {Sr, β, τ, Θ̂t−1, Bp, Bn, µ(X), µ(Y)}
Output: {Θ̂t, Bp, Bn}

1: for i = 1 · · · |Sr| do

2: X
(i)
r ← feature of the ith sample s(i) in Sr

3: Y
(i)
r ← (X

(i)
r − µ(X))>β + µ(Y)

4: end for
5: ŷ ← max

i=1...|Sr|
Y

(i)
r

6: ŝ← arg max
ŝ∈Sr,i=1...|Sr|

Y
(i)
r

7: if ŷ ≥ τ then
8: Θ̂t ← Θ(ŝ)
9: Bp ← Bp ∪ ŝ

10: Bn ← Bn ∪ Sr\ŝ
11: else
12: declare occlusion/absent
13: Θ̂t ← Θ̂t−1

14: end if

samples in this period, i.e. the most recent 10 samples in Bp, and performs a mean-shift clustering

among them. Outliers are filtered out by retaining only the most similar cluster (whose mean

has the smallest distance to the current generative model). The updated model M̂g is then

determined as linear combination of the initial model M0
g (model computed from the initial

frame), the current model Mg and the mean of the samples in the retained cluster M̄s defined

as in Equation (3.21).

One can note that, in this way, a sample is used to update the generative model if it survives the

sample selection by the generative model, the re-evaluation by the discriminative model and also

the cluster selection by the mean-shift clustering. This helps protecting the model from being

contaminated and hence increasing robustness.

5.4.2 Updating of the discriminative model

With the online PLS-1 model learning methods described in Chapter 4, we are able to update

the discriminative model. Except the “occlusion/absent” case, the discriminative model is

updated at each frame using the proposed incremental PLS updating algorithm (with a forgetting

factor) and the newly labeled samples, which are collected in that frame as described in section

5.3.2.2.

One practical concern when updating the PLS model is how to dynamically choose the number

of retained components for the PLS model. One way to tackle this is to make the number of

components adaptive to the regression residual, i.e. ||Y −Xβ||F , where || · ||F is the Frobenius

norm and assuming that X and Y have been mean centered. As the original data blocks X and

Y are not maintained in our incremental PLS algorithm, we use Sxx and Sxy to compute the

regression residual as described in Chapter 4 Section 4.3.5.

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 68

A threshold τ2 ∈ (0, 1) is defined to measure the significance of the percentage of norm explained

by the model. When the explained percentage is less than τ2, the algorithm automatically

augment the number of components by one. This ensures that dominant information is explained

by the regression model. We note that as there is the forgetting factor, this auto-determined

number may also reach equilibrium instead of ever increasing.

5.5 Extensions

To further increase robustness in long-term tracking, combining more appearance models seems

to be promising. As the cascaded detection structure is scalable, we show in this section exten-

sions of the tracking system by coherently embedding more homogenous generative and discrim-

inative appearance models into the cascade structure.

5.5.1 Multiple generative models

The assumptions behind the cascaded framework is that the target object is always included in

the retained sample set by the generative model, as long as it is present in the frame. This is

highly possible if the number of the retained samples are fairly large. However, if the unique

generative model failed to retain the good positive sample in the sample set, the tracking frame-

work will definitely fail. This problem is likely to happen when the features of the generative

model are not effective for the specific scene because no prefixed feature can work effectively in

all scenes.

To tackle this problem, we suggest to use multiple generative models that work in parallel.

Formally, we use n generative models, each of which retains a sample set, denoted as Sir for the

ith generative model. The retained sample set of the overall generative model, denoted as Sr,0,

is thus the union of all these individual sets:

Sr,0 = S1
r ∪ S2

r ∪ · · · ∪ Snr . (5.4)

One way to extend the current system to have multiple generative models is to use histograms

of different color channels. As the generative models are distinct, samples retained by different

generative models can be quite complementary.

An issue raised by using multiple generative models is that the samples retained by different gen-

erative models no longer guarantee the property of mutual non-overlapping. We therefore need

some modifications in line 10 of Algorithm 6 when labeling new negative samples. Specifically,

we label the samples that do not overlap with ŝ as negative samples. Those who overlaps with

ŝ are discarded. Therefore, in the case of using multiple generative models, line 10 in Algorithm

6 is modified as

Bn ← Bn ∪ {s ∈ Sr,0|ROI(s) ∩ROI(ŝ) = ∅} (5.5)

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 69

For the updating of multiple generative models, each model is updated independently by the

clustering-based method using its corresponding feature.

5.5.2 Multiple discriminative models

The discriminative model can also be augmented by integrating more discriminative models.

Instead of blending them in parallel, we propose to combine multiple discriminative models in a

sequential manner. That is, to extend the cascade structure with more layers.

The layer extension procedure is similar to the basic two-layered case. When we intend to

add a new layer at the end of the cascade, we retain a few most promising samples (instead

of only one sample), from the precedent layer, and then re-evaluate them in this newly added

layer. As the cascade structure is scalable, more layers can be integrated at the price of higher

computational complexity. Tradeoff between accuracy and efficiency is to be considered when

designing a specific application. The re-evaluation procedure by each discriminative model is

similar as described in Algorithm 6, except that for discriminative models in inner layers a set

of samples are retained. For the ith discriminative model, it evaluates the sample set Sr,i−1

passed from precedent layer and retains a smaller sample set Sr,i. At the initial phase, all the

discriminative models are identically initialized. After tracking each frame, the ith model is

updated using the newly labeled samples in Sr,i−1.

An advantage of integrating multiple discriminative layers is that the sample asymmetry problem

(i.e. positive samples are much fewer than negative samples) is more alleviated in later layers.

In addition, with multiple discriminative models, different thresholds and learning rates can be

adopted for each layer to achieve balance between stability and adaptivity. In general, higher

thresholds and lower learning rates should to assigned to later discriminative layers, because

they deal with fewer and harder samples.

5.5.3 Illustration

We depict a detection cascade with n1 generative models and n2 discriminative models in Figure

5.2, where Sr,i, 1 ≤ i ≤ n2, denotes the sample set retained by the ith discriminative model. Sr,0

is the samples retained by the generative models and Sr,n2
contains the only one sample that will

be considered as the target in the current frame. Note that when re-evaluated by whichever of

the discriminative models, if the highest response value is smaller than the pre-defined threshold

of that model, the cascaded detection process stops and an occlusion/absent event is declared.

We present in the following a detection example by a system with two generative models (em-

bedded in one layer) and two discriminative models. The dynamic model generates 1000 samples

for a test frame. The two generative models filter out most easy samples and each retain a set

of 10 samples, stored in S1
r and S2

r respectively. The overall number of samples in Sr,0 passed

to the first discriminative model is thus reduced to 20 (assuming that there are no duplicate

samples in S1
r and S2

r). After re-evaluation, 5 most promising samples are preserved and are

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 70

Figure 5.2: Cascaded detection structure with multiple generative models and multi-
ple discriminative models. G1, G2, . . . , Gn1 are the 1st, 2nd, . . . , n1

th generative models
respectively and D1, D2, . . . , Dn2 are the 1st, 2nd, . . . , n2

th discriminative models re-
spectively.

passed to the second discriminative model, which then makes a final decision. A real detection

scene is shown in Figure 5.3.

5.5.4 The overall tracking algorithm

We now summarize in Algorithm 7 the overall tracking algorithm described so far.

5.6 Experiments

We assessed the performance of the proposed tracking algorithm by conducting extensive exper-

iments on challenging sequences and compared it with several state-of-the-art trackers.

5.6.1 Implementation details

Our current implementation of the proposed cascaded tracking system uses two generative ap-

pearance models and two discriminative models. As previously stated in section 5.5.1 and 5.5.2,

the generative models work in parallel and the discriminative models work in sequential. The

two generative models employ the histogram of pixel intensity and the histogram of the B color

channel (from the RGB color space) as region descriptors respectively. The two discrimina-

tive models utilize the adaptive covariance descriptor (which is transformed into vector form as

described in Chapter 3) in contrary.

For computing the adaptive covariance descriptor, we used a raw feature pool that contains a

variety of features: pixel coordinates (x, y), color values from channels of a number of color spaces

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 71

Algorithm 7 The Overall Tracking Algorithm

Input: Image frames F1, · · · , FT and Θ̂1

Output: {Θ̂2, · · · , Θ̂t}
1: for t = 1, · · · , T do
2: if t = 1 then
3: Initialize the n1 generative models and the n2 discriminative models.
4: Continue;
5: end if

6: if t <= 2 then
7: Generate all possible samples by brute-force sliding window search.
8: else
9: Draw a number of candidate regions according to the dynamical model in (5.1)

and compute the histogram features for each candidate region.
10: end if

11: for i = 1, · · · , n1 do
12: Select a set of most important samples and store them in Sir using the ith

generative model according to Algorithm 5.
13: end for

14: Form the overall retained sample set Sr,0 by Equation (5.4) and compute the
adaptive covariance descriptor-based representation for each sample in this set.

15: for j = 1, · · · , n2 do
16: Re-evaluate the samples in Sr,j−1 retained by the precedent layer via the jth

discriminative model according to Algorithm 6 and retain a most promising
sample set Sr,j .

17: end for

18: if no occlusion/absent event then
19: Θ̂t ← the state of the only sample in Sr,n2 .
20: Update each discriminative model using the incremental PLS learning method

with respective forgetting factor.
21: else
22: Declare that the target is “invisible”.
23: Θ̂t ← Θ̂t−1.
24: end if

25: if the generative updating cycle is due then
26: Update each generative model using the clustering-based method as in Algo-

rithm 2.
27: end if
28: end for

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 72

(a) (b)

(c) (d)

Figure 5.3: An example illustrating the output of each layer of the cascaded tracking
framework which embeds two generative and two discriminative appearance models.
In 5.3(a), the transitional model propose 1000 particles denoted by white rectangles;
a set of 10 important samples is retained by each generative model in 5.3(b) denoted
by blue or red rectangles according the generative model that has selected them; in
5.3(c) the selected 20 samples are re-evaluated by the first discriminative model and
only 5 most promising candidates survive; finally the tracking result is produced after
the re-evaluation of the 5 most promising samples by the second discriminative model

and is shown in green rectangle in 5.3(d).

and the derivatives of the intensity image of various orders with respect to x and y. Specifically,

each pixel in a region is converted to a 20-dimensional feature vector

f(x, y) =
[
x y R(x, y) G(x, y) B(x, y) H(x, y)

L(x, y) S(x, y) a(x, y) b(x, y) u(x, y) v(x, y)

∂I(x, y)

∂x

∂I(x, y)

∂y

∂2I(x, y)

∂x2

∂2I(x, y)

∂y2

∂2I(x, y)

∂x∂y

∂3I(x, y)

∂x2∂y

∂3I(x, y)

∂x∂y2

∂4I(x, y)

∂x2∂y2

]>
where x, y are the cartesian coordinates, R, G, B are the three channels from the RGB color

spaces, H, L and S are the three feature channels from the HLS color space. Similarly a, b and

u, v are the two color channels from the CIE Lab and CIE Luv color spaces respectively except

the illumination channels L. We note that the coordinates and the color channels need to be

adjusted to fall into the range of [0−255]. The intensity-image derivatives are computed as they

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 73

are using the Sobel operator with 3×3 or 5×5 kernels1. The number of retained eigenvectors for

PCA projection is determined adaptively. Empirically, only those have corresponding eigenvalues

greater or equal than 5.0 are kept.

For the dynamical model, 10000 particles are generated in each frame. The standard deviations

of the affine transform parameters are set to σ(x, y, s, ϕ) = [100 100 0.1 0.05]. For generative

appearance models, the updating cycle is set to 10 frames and the weights in Equation (3.21) for

updating the model is set to α1 = 0.15, α2 = 0.40 and α3 = 0.45. Concerning the discriminative

models, the number of retained samples by the first discriminative model, i.e. |Sr,1|, is set to 5.

When initializing the discriminative models, the number of latent variables in the PLS models is

set to explain at least 99.99% of the total information. This number is kept the same throughout

the tracking. Thresholds for both discriminative models is set to be zero. Forgetting factor

for the first discriminative model is 0.96 and that of the second layer is 0.999 (the higher the

forgetting factor, the lower the learning rate). We kept these settings as the default values of

the parameters for all the experiments unless stated otherwise.

Although the number of particles generated by the dynamical model is very large, we were

able to compute the histogram feature vector of an arbitrary region for the generative models

very quickly with the help of integral histogram [134]. In addition, our C++ implementation

employed the Intel Threading Building Blocks (TBB) to take advantage of the speedup by multi-

cores parallelization on modern CPUs. The tracking system runs at 8-15 frames per second (FPS)

for 320× 240 images on a 2.30 GHz CPU with 8 execution threads and 12 GB memory.

5.6.2 Diagnostics

In this subsection, we evaluate the contributions of the components in the cascaded tracking

framework.

In order to validate the effectiveness of the proposed tracking framework in long-term uncon-

strained environment, we collected a series of challenging long-term sequences by ourselves. In

the following, for notation convenience, we refer the proposed cascaded generative and discrimi-

native tracker as CasGD tracker and the newly introduced sequences as the CasGD dataset.

The four sequences, namely View1, View2, View3 and View4, each consists of 640 × 480-pixels

color images that are captured in a campus environment by cameras installed at different view-

points. Each sequence contains two or three walking pedestrians with different color of clothes.

We evaluated the performances of the CasGD tracker as well as the contributions of its compo-

nents by trying to track each pedestrian in every sequence. When treated as tracking target, the

pedestrians are denoted by the sequence name and the color of their clothes. For example, the

pedestrian in blue in the second sequence is denoted as “View2-Blue”. Similarly, “View4-Red”

denotes the pedestrian in red to be tracked in the sequence View4. We therefore had 11 targets

to track in total.

1According to the summarised order of partial derivatives, i.e. if the summarised order is less than
3, we use the 3 × 3 kernel; otherwise the 5 × 5 kernel is used.

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 74

The CasGD dataset is difficult because there are a combination of challenges in these sequences.

The involved targets undergo significant changes in poses, scales, nonrigid deformations etc. In

addition, there are abrupt motions, full occlusions and out of the field-of-views (absent), which

are typical challenges for long-term visual tracking. Table 5.1 summarizes the challenges in the

sequences when tracking each target. Fig. 5.4 shows snapshots corresponding to each sequence.

To enable evaluating the tracking performance, the sequences were manually annotated. Those

Table 5.1: Challenges for tracking each target in the CasGD dataset.

Targets Frames Nonrigid Full Partial Out of Abrupt Scale
deformation occlusion occlusion view motion change

View1-Black 702 4 4 5 4 5 5

View1-Blue 1058 4 4 4 4 5 5

View1-Yellow 713 4 4 5 4 5 5

View2-Black 1131 4 4 5 4 4 4

View2-Blue 80 4 5 5 5 4 4

View2-Yellow 1049 4 4 5 4 4 4

View3-Black 300 4 5 5 5 5 4

View3-Blue 415 4 4 5 5 5 4

View3-Yellow 418 4 4 4 5 5 4

View4-Red 278 4 4 4 5 5 5

View4-White 322 4 4 4 5 5 5

(a) View1 (b) View2

(c) View3 (d) View4

Figure 5.4: Snapshots from the CasGD Pedestrian data set.

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 75

Table 5.2: Diagnostics of tracking performances in the CasGD dataset in terms of
precision. The best performance is in bold and the second best is in italic.

Target T1 T2 T3 T4 CasGDT

View1-Black 32.81% 97.72% 40.14% 92.70% 98.86%
View1-Blue 18.34% 99.34% 18.92% 99.34% 99.62%
View1-Yellow 29.92% 99.72% 21.79% 88.67% 99.72%
View2-Black 11.24% 11.24% 30.43% 11.17% 98.93%
View2-Blue 93.67% 100% 100% 96.20% 100%
View2-Yellow 13.45% 98.32% 13.50% 92.65% 99.90%
View3-Black 99.00% 100% 63.57% 13.78% 100%
View3-Blue 93.48% 96.83% 98.80% 96.12% 99.52%
View3-Yellow 62.50% 61.82 37.07% 36.78% 97.09%
View4-Red 81.88% 99.28% 98.91% 98.55% 99.28%
view4-White 34.89% 98.13% 93.15% 91.32% 98.44%

with more than 75 percent of occlusion were annotated as “not visible”.

To attribute the contributions of the components, we compared the precisions of the overall

CasGD tracker with a number of simplified variants. The first one, denoted as T1, used only

one generative model (the intensity histogram) without discriminative models. The second one,

T2, uses one generative model (the intensity histogram) and one discriminative model. To

complete the comparison, we lack the configuration that uses one discriminative model without

generative models. To implement it, we used the configuration with one generative model and one

discriminative model. In contrast to T2, this third variant, denoted as T3, retains a large number

of samples (50 samples in our implementation) after the generative selection. As such, the effect

of sample selection by the generative model diminishes, making T3 close to the setting using one

discriminative model and no generative model. The fourth variant, T4, employs two generative

models (the intensity histogram and the blue histogram) and one discriminative model.

These four variants are compared with the overall tracking system, denoted as CasGDT, which

uses two generative models (intensity and blue histograms) and two discriminative models. For

faire comparison, all the other settings keep the same for all the involved trackers. Note that in

the “View1” sequence and the “View4” sequence, we used fixed size without scale and aspect

ratio change, i.e. σ(s) = 0 and σ(ϕ) = 0. In the “View2” and the “View3” sequences, we used

the default setting, i.e. σ(s) = 0.1 and σ(ϕ) = 0.05.

Performances in terms of precision for tracking the 11 targets in the CasGD dataset are presented

in Table 5.2. The overall CasGDT consistently achieved the best or one of the best results. This

suggests that integrating multiple generative and discriminative models is important to increase

tracking performance. We display in Figure 5.5 some representative snapshots when tracking

several targets using the overall CasGDT tracker.

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 76

(a) View1-Black

(b) View1-Blue

(c) View2-Blue

(d) View2-Black

(e) View2-Yellow

(f) View3-Blue

(g) View3-Yellow

Figure 5.5: Some snapshots of tracking results using the CasGDT tracker on the
self-captured CasGD sequences.

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 77

5.6.3 Comparison with the state-of-the-art

To better evaluate the performance of the proposed CasGD tracker, we also apply it on the

challenging TLD dataset [6] and compared it with the results reported in [6]. The full TLD

data set consists of ten sequences. Due to the color features used in CasGD, we took a subset

of six sequences that consist of the color image, namely Pedestrian1, Pedestrian2, Pedestrian3,

Motocross, Carchase and Panda. This set of sequences contains fast camera movings, total

occlusions and dramatic target disappearances. In particular, the sequences Motocross, Carchase

and Panda are long and contain all the typical challenges for long-term tracking. Specially, for

the Pedestrian1, Pedestrian2 and Pedestrian3 sequences, σs and σϕ are set to zero as they do

not involve apparent scale or aspect ratio changes. For the Panda sequence, we used a larger

standard deviation for aspect ratio by setting σϕ = 0.3 because the nonrigid deformation of the

target is intense in this sequence. Other settings use the default values specified in Section 5.6.1.

As in [6], the performance is evaluated using precision P , recall R and f-measure F . P

is the number of true positives divided by number of all responses, R is the number true

positives divided by the number of object occurrences that should have been detected.

F combines these two measures as F = 2PR/(P +R). We used the manually annotated

ground truth provided by the authors of [6]. The ground truths were annotated such

that frames where more than 50% of occlusion or more than 90 degrees of out-of-plane

rotation were considered as “not visible”. A detection was considered to be correct if

its overlap with ground truth bounding box was larger than 25%. Those “not visible”

frames were not counted during performance computation. This evaluation methodology

is identical to that used in [6].

In [6], performances in terms of P/R/F of seven trackers were reported. The seven track-

ers are the Online Boosting (OB) tracker [1], the Semi-supervised Boosting (SB) tracker

[2], the Beyond Semi-supervised Boosting (BS) tracker [3], the Multiple Instance Learn-

ing (MIL) tracker [4], the Co-trained Generative and Discriminative (CoGD) tracker

[5] and the Tracking Learning Detection (TLD) tracker [6]. TLD dominated in the

comparison as it enabled re-detection of the object.

Table 5.3 summarizes the performances of all the 8 involving trackers. The last column

shows the performance of CasGD and the results in the other columns are taken from

those in [6]. CasGD achieved the best performance on 5 out 6 sequences. Compared

to the TLD tracker, we examined the reasons for the inferior performances in sequence

Carchase. In this sequence, low recall rate of the CasGD tracker is reported. This is due

to the fact that the sequence is extremely long and it is very difficult (if not impossible)

to distinguish the target only by its appearance in some part of the sequence. This

problem occurs typically when the target, a car, becomes very small and situates among

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 78

Table 5.3: Tracking performances in the TLD dataset measured by Precision, Recall
and F-measure. The best performance is in bold. CasGDT scored best in 5 out of 6
sequences. OB is in [1], SB in [2], BS in [3], MiL from [4], CoGD from [5], TLD from
[6] and CasGDT is the cascaded generative and discriminative tracker presented in this

work.

Sequence Frames OB SB BS MIL CoGD TLD CasGDT

1. Pedestrian1 140 0.61/0.14/0.23 0.48/0.33/0.39 0.29/0.10/0.15 0.69/0.69/0.69 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00
2. Pedestrain2 338 0.77/0.12/0.21 0.85/0.71/0.77 1.00/0.02/0.04 0.10/0.12/0.11 0.72/0.92/0.81 0.89/0.92/0.91 0.97/0.97/0.97
3. Pedestrian3 184 1.00/0.33/0.49 0.41/0.33/0.36 0.92/0.46/0.62 0.69/0.81/0.75 0.85/1.00/0.92 0.99/1.00/0.99 0.99/1.00/1.00
4. Motocross 2665 0.33/0.00/0.01 0.13/0.03/0.05 0.14/0.00/0.00 0.05/0.02/0.03 0.93/0.30/0.45 0.89/0.77/0.83 0.87/0.88/0.88
5. Carchase 9928 0.79/0.03/0.06 0.80/0.04/0.09 0.52/0.12/0.19 0.62/0.04/0.07 0.95/0.04/0.08 0.86/0.70/0.77 0.84/0.55/0.66
6. Panda 3000 0.95/0.35/0.51 1.00/0.17/0.29 0.99/0.17/0.30 0.36/0.40/0.38 0.12/0.12/0.12 0.58/0.63/0.60 0.95/0.81/0.87

mean 16255 0.74/0.09/0.14 0.72/0.08/0.14 0.56/0.11/0.18 0.47/0.12/0.13 0.79/0.13/0.18 0.8165/0.7091/0.7558 0.8771/0.6759/0.7603

a crowd of hundreds of similar cars on the road. The TLD tracker performed better

in this case plausibly thanks to its embedded Median-Flow tracker [135] component

which is extended with failure detection, and the P-expert component which verifies a

reliable trajectory of the target. In other words, when the appearance of the target is

not a reliable cue, the TLD tracker gain a distinct advantage entrained by exploring

the temporal and spatial constraints during tracking. Nonetheless, the proposed CasGD

achieved comparable or superior performances in the sequences where the appearance

cue of the target is reliable.

The last row of Table 5.3 shows a weighted average performance (weighted by number

of frames in the sequence). Since the sequence Carchase contributes 9928 of total 16255

frames, very heavy weight is imposed by this particular sequence. The CasGD tracker

scored the best with 76.03% in terms of the overall mean F-measure, which is slightly

superior to that of TLD of 75.58%. Other approaches range between 13%− 18%.

We display in Figure 5.6 some snapshots of tracking results using the proposed CasGDT

tracker.

5.7 Conclusion

We have proposed a novel tracking method which combines the merits of both gener-

ative and discriminative models by incorporating them in a cascaded framework. The

two types of appearance models work collaboratively to boost the performance. In par-

ticular, the generative model provides the discriminative tracker with carefully selected

training and testing samples and the discriminative model explicitly learns the differ-

ence between the target and its most confusing counterparts. The proposed approach

thus shows strong robustness against “drifting”. In addition, the occlusion problem is

also addressed and the proposed method can work in unconstrained circumstance where

long time (full) occlusions or out of the field-of-view are present. Our empirical results

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 79

(a) pedestrain1

(b) pedestrian2

(c) pedestrian3

(d) motocross

(e) carchase

(f) panda

Figure 5.6: Some snapshots of tracking results using the CasGDT tracker on six
sequences from the TLD dataset.

Chapter 5. Cascaded Generative and Discriminative Models for Tracking 80

on challenging long-term sequences demonstrate that the cascade of generative and dis-

criminative models is a good way to boost detection accuracy and embedding multiple

models into the cascade structure can further improve robustness.

Chapter 6

Summary and Perspectives

6.1 Summary

Building a robust visual tracking system is a complicated task which requires designing

multiple modules and structuring them in a coherent framework.

We have proposed novel approaches in several aspects and designed a robust visual

tracking system. The final tracker developed in this thesis has the following innovative

properties:

• region representation using improved covariance descriptors by regularization and

adaptive feature extraction;

• clustering-based generative model updating method;

• online Partial Least Squares model learning methods that has constant time and

space complexities;

• cascaded generative and discriminative object appearance models with a further

extension that accommodates multiple models.

Fusing multiple features is important. We studied the region covariance descriptor from

a machine learning perspective and examined its generalization ability. We reveal that

small eigenvalues in the eigenspectrum of the conventional region covariance descriptor

may cause large disturbance and thus degrade the generalization ability of the descrip-

tor. We then proposed two improvements by regularization and PCA dimension reduc-

tion, resulting in two variants of the conventional region covariance descriptor called

regularized covariance descriptor and adaptive covariance descriptor respectively. Effec-

tiveness of these variants for improving generalization ability in case of small eigenvalues

81

Chapter 6. Summary and Perspectives 82

is verified by empirical experiments. In addition, the adaptive covariance descriptor can

achieve a significant time gain benefited from its reduced dimensionality.

For visual tracking, model updating is necessary in order to adapt the model to changes.

Updating using reliable samples is crucial. We proposed to select a group of reliable

samples collected in a short period to update the model. Sample selection is performed

by feature space analysis using the mean-shift density gradient estimation procedure.

Experiments showed that this selective updating strategy is able to keep the model up

to date and to help preventing the model from being contaminated, particularly in case

of short term occlusion or absence (out of the field-of-view).

We also exploited discriminative models and employed PLS as a tool for building dis-

criminative appearance model. As tracking is an online process, we developed new online

methods to incrementally update the PLS model. A more general weighted version is

proposed as well. These methods have constant time and space complexities. We ex-

pect that the online PLS methods presented in this thesis could find more applications

outside visual tracking. In fact, these online PLS methods can serve as time and space

saving alternatives wherever PLS-1 could be applied.

Machine learning for visual tracking needs the model to ensure high prediction accuracy.

Besides, it requires handling appearance changes which usually resorts to online learning.

Online learning methods face the intrinsic problem of the tradeoff between stability and

adaptivity. Since it is very hard for one appearance model to achieve all these merits,

we have proposed to combine multiple models as a promising way to achieve this goal.

We proposed to cascade discriminative models after generative models to ensure detec-

tion accuracy. Generative models possess reconstructive ability while suffering from a

lack of discriminative information between similar samples. Discriminative models on

the other hand focus on discriminative information while discarding most reconstruc-

tive information. Cascading them in a such manner can make the detection structure

both reconstructive and discriminative. High prediction accuracy can thus be expected.

To further increase robustness and balance between stability and adaptivity, we further

proposed an augmented version by integrating multiple generative models and multiple

discriminative models into the cascade detection structure. Typically, tradeoff between

stability and adaptivity can be achieved by employing proper thresholds and learning

rates in different layers.

Our empirical results on self-captured sequences showed that a performance boost is

achieved by integrating multiples models. Compared to state-of-the-art tracking meth-

ods on public sequences for long-term tracking, our method achieved superior average

performance.

Chapter 6. Summary and Perspectives 83

6.2 Limitations and perspectives

There are some open problems that our system did not focus on. Although full occlusions

and out of the field-of-views can be well handled by our system, a gradual partial to

full occlusion might degrade the performance of our system. We expect that integrating

the merits of fragment/part-based representations as in [136, 137] may provide insights

to overcome this problem. The non-negative matrix factorization [138] is also worth

exploiting in this situation.

Another problem is the requirement for real-time processing, which is necessary for

practical tracking system. Our current system employs the Intel Thread Building Block

(TBB) to take advantage of parallel computing on modern multi-thread CPUs. We

expect that a hybrid CPU/GPU parallel implementation could further boost up the

speed of the tracking system and thus enable more advanced machine learning techniques

to be applied.

In addition to part-based methods to circumvent partial occlusion, we present below

some other perspectives that may be helpful for building robust visual tracking systems.

• Robust statistics can be naturally incorporated to increase the robustness of the

tracking system. In particular, the Least Absolute Deviation (LAD) is generally

recognized to be more robust than Least Squares (LS). It is plausible that when ap-

plied properly, the variants of popular machine learning techniques using `1 norm,

e.g. `1-PCA, `1-LDA, or `1-PLS etc., may yield better tracking performances.

• Sparse representation for classification has gained great attentions in the recent

years. In this thesis, we didn’t exploit this family of methods. Although a number

of works have been proposed in the literature [22, 67], further investigation in this

direction may still be of interest.

• Machine learning for visual tracking faces the intrinsic problem of asymmetric

(positive versus negative) training and testing samples. In this thesis, we tackle

this problem by the cascaded classifier structure. It is also possible to explicitly

build asymmetric classifiers. Some related works can be found in [112, 139].

• Recently, a new approach called self-paced learning that can retrospectively edit

and select previous frames for learning is proposed in [140] and is shown to be

effective for online adjusting the object appearance model. Further researches

exploiting this idea might be promising.

Appendix A

Derivation of Equation (4.32)

See Fig. A.1.

85

Appendix A. Derivation of Equation (4.32) 86

For notation convenience, we denote N(X1) as N1 and N(X2) as N2.

Sxx =

N1∑
i=1

f1(xi − µ(X))(xi − µ(X))> +

N1+N2∑
i=N1+1

f2(xi − µ(X))(xi − µ(X))>

=

N1∑
i=1

f1(xi − µ(X1) + µ(X1)− µ(X))(xi − µ(X1) + µ(X1)− µ(X))>

+

N1+N2∑
i=N1+1

f2(xi − µ(X2) + µ(X2)− µ(X))(xi − µ(X2) + µ(X2)− µ(X))>

= f1

N1∑
i=1

(xi − µ(X1))(xi − µ(X1))> + f1N1(µ(X1)− µ(X))(µ(X1)− µ(X))>

+

N1+N2∑
i=N1+1

f2(xi − µ(X2))(xi − µ(X2))> + f2N2(µ(X2)− µ(X))(µ(X2)− µ(X))>

By definition, we have

Sxx1 =

N1∑
i=1

(xi − µ(X1))(xi − µ(X1))>

Sxx2 =

N1+N2∑
i=N1+1

(xi − µ(X2))(xi − µ(X2))>,

which yield

Sxx = f1Sxx1 + f1N1(µ(X1)− µ(X))(µ(X1)− µ(X))> + f2Sxx2 + f2N2(µ(X2)− µ(X))(µ(X2)− µ(X))>

= f1Sxx1 + f2Sxx2 + f1N1(µ(X1)− µ(X))(µ(X1)− µ(X))> + f2N2(µ(X2)− µ(X))(µ(X2)− µ(X))>.

By further plugging

µ(X) =
f1N1µ(X1) + f2N2µ(X2)

f1N1 + f2N2
,

we have

Sxx = f1Sxx1 + f2Sxx2 + f1N1(µ(X1)−
f1N1µ(X1) + f2N2µ(X2)

f1N1 + f2N2
)(µ(X1)−

f1N1µ(X1) + f2N2µ(X2)

f1N1 + f2N2
)>

+ f2N2(µ(X2)−
f1N1µ(X1) + f2N2µ(X2)

f1N1 + f2N2
)(µ(X2)−

f1N1µ(X1) + f2N2µ(X2)

f1N1 + f2N2
)>

= f1Sxx1 + f2Sxx2 +
f − 1N1(f2N2)2

(f1N1 + f2N2)2
(µ(X1)− µ(X2))(µ(X1)− µ(X2))>

+
f2N2(f1N1)2

(f1N1 + f2N2)2
(µ(X1)− µ(X2))(µ(X1)− µ(X2))>

= f1Sxx1 + f2Sxx2 +
f1N1f2N2

f1N1 + f2N2
(µ(X1)− µ(X2))(µ(X1)− µ(X2))>

= f1Sxx1 + f2Sxx2 +
f1f2N(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(X1)− µ(X2))>.

Figure A.1: Derivation of Equation (4.32)

Appendix B

Résumé Etendu

B.1 Introduction

Le suivi visuel est une tâche fondamentale pour une variété d’applications de vision par

ordinateur. Dans ce travail, nous nous concentrons sur le problème de la poursuite d’un

objet quelconque dans une séquence vidéo sans aucune connaissance préalable autre que

l’emplacement de l’objet dans la première image. Ce problème est difficile, car la cible

peut subir diverses variations, causées par les occultations, les changements d’éclairage,

etc. Il est encore plus difficile dans des environnements non contraints où la cible peut

être totalement occlue ou quitte et puis réapparait dans le champ de vue de la caméra.

Dans le problème de suivi en mode “long terme”, le mouvement n’est pas une infor-

mation pertinente. La construction d’un modèle d’apparence fiable est une étape de

toute première importance. Récemment, un certain nombre de méthodes ont abordé le

problème de suivi par “suivi-par-détection”. Un classifieur ou une variable explicative

est appris en ligne pour s’adapter aux changements de la cible et aux variations du fond.

Malgré leur succès, un certain nombre de problèmes est soulevé par ces méthodes. Le

premier est la sélection d’échantillons dans l’image courante, la plupart des approches

utilisent un échantillonnage aléatoire pour obtenir des échantillons négatifs. Le second

problème est le compromis entre la stabilité et l’adaptabilité, comme les deux propriétés

sont contradictoires entre elles. Une faiblesse de l’adaptabilité entrâınerait l’incapacité

du traceur à suivre les variations de l’objet et du fond tandis que le manque de stabilité

au problème connu de “drifting”. Le troisième problème est l’aspect asymétrique du

classifieur ou de la variable explicative. Pour le suivi d’un seul objet, on se trouve en

général dans le cas où des échantillons négatifs sont beaucoup plus nombreux que les

échantillons positifs.

87

Résumé Etendu 88

Inspiré par le détecteur de visage en cascade de [133], nous proposons de traiter ces

problèmes en intégrant des modèles d’apparence multiples qui sont organisés en une

structure de détection en cascade et mis à jour en ligne. La première contribution de

ce travail consiste à proposer le cadre en cascade qui intègre des modèles d’apparence

génératifs et discriminatoires. Plus précisément, le modèle génératif filtre candidats

les plus faciles rapidement dans le stade précoce à l’aide des caractéristiques simples

et conserve quelques candidats les plus prometteurs. Le modèle discriminatoire alors

ré’evaluer ces échantillons à l’aide des descripteurs de région plus sophistiqués par les

moindres carrés partiels (PLS) d’analyse discriminante. En organisant les modèles de la

structure en cascade, l’évaluation de la confiance d’un échantillon de candidat peut être

particulièrement efficace. Après un examen de travaux connexes dans la Section B.2,

nous allons illustrer les détails des modèles d’apparence en cascade dans la Section B.4.

Notre motivation pour le mélange modèles génératifs et discriminatoires de la manière

en cascade peut être expliqué en trois plis. Tout d’abord, la structure en cascade ne

peut lutter efficacement le problème de l’asymétrie de la formation et des données de

test. Suivi d’objets (et de détection d’objet) a le problème intrinsèque des échantillons

asymétriques, à savoir les instances cibles limitées sont les échantillons positifs alors

que tout le reste de “monde” étant échantillons négatifs. En ce sens, la structure en

cascade autre que la structure parallèle prévoit un recours pour traiter le problème de

l’asymétrie. En second lieu, la structure en cascade est plus efficace, c’est à dire a moins

complexité de calcul, que les configurations parallèles. Les approches hybrides qui com-

binent plusieurs modèles en parallèle, par exemple en utilisant la co-formation [96], ont

généralement plus de complexité de calcul parce que tous les échantillons de candidats

doivent être évalués par chaque modèle avant de prendre une décision finale. En outre,

ces approches sont encore confrontés au problème de déséquilibre des données, ce qui

peut affecter les performances d’un classificateur discriminatoire. Troisièmement, l’ hy-

pothèse sous-jacente de l’apprentissage automatique est que les échantillons de formation

et les échantillons d’essai sont issus de la même (même si inconnu) distribution. Dans la

littérature, il a été une convention de sélectionner au hasard des échantillons pour la for-

mation ou la mise à jour d’un modèle d’apparence discriminatoire. Nous soutenons que

la formation et les tests sur des échantillons pré- sélectionnés par la couche de précédent

dans une structure en cascade est plus susceptible de satisfaire l’hypothèse que la poli-

tique de sélection aléatoire. Par conséquent, une meilleure précision de détection peut

être attendu dans une structure de détection en cascade. Les avantages de la structure

de détection en cascade a été mis en évidence par le succès du système de détection de

visage en cascade [133].

La deuxième contribution majeure est l’apprentissage en ligne des modèles d’apparence

dans la structure de détection en cascade. Efficiente et efficace mise à jour des modèles

Résumé Etendu 89

est l’élément clé pour les systèmes de suivi basées sur des modèles d’apparence. Dans

la Section B.5, nous allons utiliser une méthode de mise à jour sur la base clustering

pour le modèle génératif et de développer une méthode d’apprentissage de PLS en ligne

pour le modèle discriminatoire. Les deux méthodes modèle de mise à jour peuvent être

réalisées efficacement, ce qui rend notre système de suivi utile dans la pratique.

B.2 Etat de l’art

Génératives modèles représentent l’ aspect d’un objet par l’apprentissage d’un modèle

qui fournit une puissance suffisante reconstructive. Comme modèle des méthodes génératives

de l’objet cible, les techniques employées par ces méthodes sont généralement sans

surveillance, comme l’analyse en composantes principales (PCA), l’analyse en com-

posantes indépendantes (ICA), l’attente maximisation (EM), etc suivi est alors exprimé

en trouver le plus proche apparition objet au modèle. Quelques exemples d’algorithmes

de suivi générateurs peuvent être trouvés dans [141], [56] et [21]. Pour s’adapter aux

changements d’apparence, le modèle d’apparence est souvent mis à jour en ligne comme

dans [21] et [56].

D’autre part, les méthodes discriminatoires cherchent à trouver une frontière de décision

qu’il est préférable de séparer l’objet cible à partir de l’arrière-plan. Ceux-ci peuvent être

appelés “suivi par la détection” méthodes comme proposé dans [1, 4, 19, 73, 77, 79, 80].

Techniques employées par les méthodes discriminatoires sont généralement l’analyse

discriminante linéaire (LDA), machine à vecteurs de support (SVM), machine à vecteur

de pertinence (RVM) [70], stimulant ainsi que leurs variantes. Lorsqu’il est correctement

formé, les méthodes discriminatoires peuvent démontrer la robustesse pour éviter de

distraction dans le fond, comme la différence de leurs homologues génératifs.

Visant à fusionner les avantages des deux méthodes, génératives et discriminatoires,

plusieurs approches hybrides [88–90] ont été proposées. [88] décrit un modèle hybride

où un sous-ensemble de grande dimension des paramètres sont formés pour maximiser la

probabilité générative, et un autre petit sous-ensemble de paramètres sont discrimina-

tive formés pour maximiser la probabilité conditionnelle. Dans [89], Lin et al. forment

un modèle en optimisant une combinaison convexe de la génératrice et les fonctions dis-

criminatoires objectifs. [90] a proposé une Hybrides principes de Generative et modèles

discriminatoires qui a montré que lorsque la fourniture de données de formation marqué

est limité, la performance optimale correspond à un équilibre entre l’aspect purement

générative et purement discriminatoire.

Résumé Etendu 90

Récemment, une tendance à la combinaison de plusieurs trackers ou l’intégration de

trackers avec des détecteurs a montré prometteur. Méthodes d’apprentissage en ligne

semi-supervisés sont couramment utilisés dans ces méthodes. Dans [96], deux clas-

sificateurs avec des fonctions indépendantes sont co-formés dans ligne support vector

machines. Les prévisions à partir des caractéristiques différentes sont fusionnées par

combinaison de la carte de confiance de chaque classificateur à l’aide d’une méthode

de pondération du classifieur, ce qui entrâıne un classificateur final qui se comporte

mieux que tout classificateur individuel. De même, Yu et al. dans [5] proposent à la

co-formation en ligne d’un modèle génératif global et d’un modèle discriminatoire local.

Pour activer la nouvelle acquisition, le modèle génératif utilise un certain nombre de

sous-espaces de faibles dimensions linéaires pour coder toutes les variations d’apparence

qui ont été vus. [12] proposent un filtre à particules en cascade avec des observateurs

discriminatoires des durées de vie différentes pour suivre en vidéo à faible cadence. Bien

que similaire à notre approche dans la structure, la formation en ligne est nécessaire

pour cette méthode pour apprendre une longue durée de vie observateur. Dans [98],

Kwon and Lee proposent de goûter à des modèles de mouvement et plusieurs modèles

d’apparence multiples et de les intégrer à travers une châıne interactive de Markov

Monte-Carlo (IMCMC) cadre. Le modèle global d’observation est décomposé en de

multiples modèles d’observation de base qui sont construites par clairsemée analyse en

composantes principales (SPCA) d’un ensemble de modèles d’entités portant un aspect

spécifique de l’objet. Le modèle de mouvement est également représentée par la com-

binaison de plusieurs modèles de mouvement de base, dont chacun couvre un type de

mouvement différent.

Au lieu d’utiliser l’apprentissage semi-supervisé, [99] propose d’augmenter ligne (supervi-

sion) Méthode d’apprentissage avec des approches complémentaires de suivi pour obtenir

des résultats plus stables. Trois trackers de différents degrés de l’adaptabilité sont com-

binés: un modèle de modèle simple comme un composant non adaptatif stable, un suivi

moyen de décalage en fonction de flot optique comme élément hautement adaptative

et une forêt aléatoire en ligne apparence que modérément adaptative de l’apprenant

en fonction. De même, Kalal et al. proposent dans [6] un cadre de Tracking-Learning-

Detection (TLD) où un tracker médian-Flow (pyramidale Lucas-Kanade traqueur [102]

étendu avec vérification des erreurs avant-arrière) est combiné avec classificateur en ligne

appris. Le point culminant dans le cadre de TLD est le composant penchant appelé ap-

prentissage PN qui exploite à la fois la structure temporelle et spatiale dans une vidéo

pour améliorer progressivement la précision du classificateur. Plus récemment, un cadre

d’ensemble est proposé dans [103] pour le suivi multi-cible qui choisit de manière opti-

male résultat de poursuite de cible de celle de trackers indépendants et un détecteur à

Résumé Etendu 91

chaque pas de temps. Sélection optimale est obtenue par une étape de liaison de données

hiérarchique avec des paramètres discriminative formés à partir d’un cadre max-marge.

Nous renvoyons les lecteurs à une enquête de suivi visuel dans [14] et un examen des

progrès récents et des tendances dans [15] pour plus d’informations.

B.3 Vue d’ensemble du système

B.3.1 Inférence bayésienne séquentielle pour le suivi visuel

Nous formulons le problème de suivi visuel comme un problème d’estimation d’état

d’une manière similaire à celle de [23] et [21] incrementalpca. L’état variable Thetat

décrit les paramètres de mouvement affine de la cible au temps t. Dans ce travail, nous

considérons la variable d’état notée par quatre paramètres de transformation affines

que Θt = (xt, yt, st, ϕt), où xt, yt, st, ϕt désignent x, y coordonnées, facteur d’échelle et

l’aspect ratio respectivement.

Étant donné un ensemble d’images observées Ot = {O1, · · · , ot}, nous cherchons à es-

timer la valeur de l’état caché variable Thetat. En supposant une transition markovienne

de l’Etat et en utilisant le théorème de Bayes, nous avons l’équation récursive suivante

p(Θt|Ot) ∝ p(ot|Θt)

∫
p(Θt|Θt−1)p(Θt−1|Ot−1)dΘt−1 (B.1)

où p(Θt|Θt−1) est le modèle de transition d’état, p(ot|Θt) est le modèle d’observation et

p(Θt−1|Ot−1) est la probabilité a posteriori de mise à jour de manière récursive avec le

temps. L’estimation de l’état Θ̂t est alors déterminé que le maximum de probabilité a

priori (MAP) estimation, c’est à dire

Θ̂t = Θmap
t = arg max

Θt

p(Θt|Ot). (B.2)

B.3.2 Vue d’ensemble du système

L’équation d’inférence (B.1) est régie par la transition modèle p(Θt|Θt−1) qui indique

la corrélation temporelle des résultats de suivi de trames consécutives, et le modèle

d’observation p(ot|Θt) qui évalue la probabilité de Θt observant ot.

Il a été souligné dans [140] que dans des circonstances difficiles de suivi, des modèles

d’apparence fiables sont plus importantes que les modèles de mouvement complexes.

Nous adoptons donc un modèle de transition simple mais efficace. Plus précisément,

à chaque image, nous prélevons un certain nombre de particules selon une distribution

Résumé Etendu 92

gaussienne qui indépendamment des modèles de chaque paramètre Θt autour de la cible

état précédemment estimé Θ̂t−1 comme

p(Θt|Θt−1) = N(Θt; Θ̂t−1,Ψ) (B.3)

où Ψ est une matrice de covariance diagonale dont les éléments sont les variances cor-

respondantes des paramètres affines respectives, c’est-à-dire σ2
x, σ

2
y , σ

2
s , σ

2
ϕ. Pendant ce

temps, le poids de chaque particule est également réinitialisé à chaque trame. Par

conséquent, la probabilité postérieure p(Θt|Ot) devient entièrement dominée par le

modèle d’observation p(ot|Θt). L’estimation de l’état Θ̂t peut donc être obtenue en

utilisant l’expression simplifiée

Θ̂t = arg max
Θt

p(ot|Θt). (B.4)

Nous concentrons sur le modèle d’observation dans ce qui suit car il est essentiel pour

déterminer la correction de l’image qui est la plus susceptible d’être la cible d’intérêt. En

particulier, nous proposons d’utiliser une cascade de modèles d’apparence génératives

et discriminatoires comme notre modèle d’observation pour mesurer la probabilité. En

résumé, le modèle d’observation proposé peut être considérée comme une cascade de deux

modèles d’apparence (une génératif et l’autre discriminatoire) qui travaillent de manière

séquentielle pour stimuler la performance du modèle combiné. L’intuition derrière le

tracker en cascade est qu’un modèle génératif peut faire la confusion entre la cible et les

régions de fond similaires de temps en temps, il est préférable de tenir compte de plusieurs

candidats les plus en vue, aussi longtemps que la véritable cible est inclus dans cette

collection. Le modèle discriminatoire apprend alors une frontière de décision délicate à

distinguer la cible de ses rivaux. D’un autre point de vue, le modèle génératif fournit le

modèle sélectif avec des échantillons de formation et d’essais soigneusement sélectionnés

tandis que le modèle discriminatoire sert la ré-évaluation/raffinage des résultats du

modèle génératif.

Lors de la conception des deux types de modèles d’apparence, certaines considérations

sont prises. Pour des raisons de rapidité, nous utilisons certaines caractéristiques sim-

ples qui ne coûtent pas cher à calculer pour le modèle génératif car il évalue tous les

échantillons possibles. En revanche, pour le modèle discriminatoire, nous employons

des caractéristiques plus sophistiquées pour garantir l’exactitude, parce que les car-

actéristiques doivent contenir des informations riches qui peuvent distinguer les différences

subtiles entre la vraie cible et les “distracteurs” semblables à lui.

Nous présentons une vue d’ensemble du cadre de poursuite comme cela est représenté

sur la Fig. B.1. Les détails du modèle d’observation en cascade seront illustrés dans la

Résumé Etendu 93

Figure B.1: Vue d’Ensemble du Système.

section suivante.

B.4 Suivi par des modèles d’apparence en cascade

B.4.1 Sélection des échantillons par le modèle d’apparence génératif

La probabilité de chaque échantillon proposé par le modèle dynamique est tout d’abord

mesurée par le modèle génératif. Le modèle génératif est nécessaire pour être à la

fois efficace et efficiente. Dans notre implémentation, nous considérons le vecteur de

caractéristique obtenue par concaténation de 16-bin intensité des histogrammes d’une

pyramide spatiale de 4 niveaux que la représentation de la région. Plus précisément,

à chaque niveau L, le patch est divisé en L × L cellules résultant en un vecteur de

caractéristique de 480 dimensions. Le modèle génératif Mg est donc une représentation

de l’histogramme vecteur-forme. Le modèle initial M0
g est générée par le modèle cible

annoté (ou détectée) dans la première image. Nous allons aborder l’évolution de Mg

dans la Section B.5.1.

L’évaluation de la probabilité de l’échantillon est effectuée par un processus de corre-

spondance de fonction qui calcule la distance entre la caractéristique de l’échantillon

candidat et le modèle d’observation génératif. Dans ce travail, nous adoptons la dis-

tance du chi carré pour mesurer la différence entre un vecteur de fonction de test ht et

le modèle génératif Mg, qui est défini comme

d(Ht,Mg) =
∑
i

(Ht(i)−Mg(i))
2

0.5(Ht(i) +Mg(i))
. (B.5)

Si seulement le modèle génératif a été utilisé, un seul meilleur match qui a la plus petite

distance au modèle génératif serait choisi et être considérée comme le résultat de suivi

pour la trame courante. Par contraste, notre système en cascade conserve quelques

échantillons les plus prometteurs dans cette étape. La sélection de ces échantillons

Résumé Etendu 94

importants est effectuée de manière itérative. Notons Sa comme l’ensemble de tous les

échantillons possibles, nous choisissons la première fois en Sa l’échantillon s∗ qui a la plus

petite distance au modèle génératif et l’ajouter à SR. Ensuite, nous retirons de Sa tous

les échantillons qui ont région de chevauchement avec s∗. Les deux étapes sont répétées

de manière itérative jusqu’à ce que le nombre voulu d’échantillons ont été recueillis

dans SR. On peut voir que les échantillons conservés en SR sont mutuellement non-

chevauchement. La raison pour la sélection non-chevauchement est de se promettant

échantillons à l’échelle mondiale à partir de différents pics maximaux, éviter d’être pris

au piège dans le quartier d’un seul maxima locaux. Nous résumons cette procédure de

sélection dans l’algorithme 8, où f(s) est le vecteur de caractéristiques (dans notre cas,

l’histogramme de l’intensité enchâıné) extrait de l’échantillon s, ROI(s) est sa bôıte

englobante.

Algorithm 8 Sélection des échantillons importants via le modèle génératif

Input: {Sa, N, Sr,Mg}
Sa = {tous les échantillons possibles},
N : le nombre d’échantillons à conserver,
Sr = ∅: l’ensemble des échantillons retenus

Output: {Sr}
1: while |Sr| 6= N do
2: s∗ ← arg min

s∈Sa

d(f(s),Mg)

3: Sr ← Sr ∪ {s∗}
4: Sa ← Sa - {s ∈ Sa|ROI(s) ∩ROI(s∗) 6= ∅}
5: end while

B.4.2 Ré-évaluation par le modèle discriminatoire

Les échantillons retenus à l’étape précédente sont réévalués par un modèle discriminatoire

en utilisant les carrés partiels (PLS) moins [128] analyse discriminante adoptée dans

ce travail. Nous allons examiner brièvement PLS dans B.4.2.1 et introduire une région

descripteur plus sophistiqué pour la représentation de l’objet dans B.4.2.2. Formation du

modèle d’aspect discriminatoire aide est adressée dans B.4.2.3 PLS. Enfin, la réévaluation

des échantillons retenus par le modèle discriminatoire appris est présenté dans B.4.2.4.

B.4.2.1 Régression par moindres carrés partiels

PLS est un puissant outil statistique qui comprend la réduction de la dimension (d’extraction

de caractéristiques compact) et des techniques de régression et considère la variable de

réponse dans le processus.

Résumé Etendu 95

Soit X ∈ <N×r une matrice centrée moyen-de variables prédictives, avec des lignes

correspondant à des observations et des colonnes à des variables et Y ∈ <N×m la matrice

de réponse moyenne centrée. PLS méthodes trouver de nouveaux espaces où la plupart

des variations des échantillons observés peuvent être conservés, et les variables latentes

acquises à partir de deux blocs sont plus corrélés à ceux dans les espaces originaux

X = TP> + E

Y = UQ> + F
(B.6)

où T ∈ <N×p and U ∈ <N×p sont des facteurs (score, composants, variables latentes)

matrices, P ∈ <r×p andQ ∈ <m×p sont en cours de chargement matrices, et E ∈ <N×r et

F ∈ <N×m sont des termes d’erreur. Caractéristiques discriminatoires T sont extraites

et la dimension est réduite lorsque p < r.

Pour la régression PLS, une relation linéaire entre le score vecteurs t et u existe, c’est à

dire

U = TD +H (B.7)

où D ∈ <p×p est une matrice diagonale et H désigne la matrice des résidus. Il s’ensuit

que Y est régressé par T comme

Y = TDQ> + (HQ> + F). (B.8)

En injectant l’équation [127]

T = XW (P>W)−1 (B.9)

où P est la matrice de chargement défini dans l’équation (B.6), l’équation de régression

globale (à partir de X à Y) est écrit

Y = X(W (P>W)−1DQ>) + F ∗, (B.10)

où F ∗ = HQ> + F est le résiduel global. Le coefficient de régression globale β est donc

formulée,

β = W (P>W)−1DQ>. (B.11)

Pour une fonction de test vecteur xt, sa réponse de régression yt est donc évaluée par

yt = (xt − µ(X))>β + µ(Y), (B.12)

où µ(X) et µ(Y) sont les moyennes des échantillons de X et Y avant le moyen de centrage

respectivement. D’autres détails concernant les méthodes de PLS peuvent être trouvés

dans [128].

Résumé Etendu 96

B.4.2.2 Descripteur de covariance adaptatif

Pour l’apprentissage du modèle discrimininatoire, nous utilisons une région descripteur

plus sophistiqués pour assurer l’exactitude. Maintenant, c’est possible parce que le

nombre d’échantillons conservés a été considérablement réduit et génère des descripteurs

complexes pour ces moins d’échantillons devient abordable.

Le descripteur région de covariance proposée dans [8] fournit un moyen élégant de fu-

sionner les caractéristiques spatiales et statistiques dans une matrice de covariance et a

été largement utilisé dans diverses applications de vision par ordinateur [8, 60, 142].

L’idée du descripteur de covariance est de représenter d’abord un pixel par un vecteur de

caractéristiques pixelliques, comme par exemple les canaux de couleurs à partir d’une

variété d’espaces de couleurs et des dérivés d’intensité de différents ordres. Dans un

deuxième temps, on utilise une projection PCA pour extraire un certain nombre de

caractéristiques pertinentes de cet ensemble de caractéristiques. La matrice de pro-

jection PCA est formée en utilisant l’ensemble de pixels de l’image r éférence de la

cible dans l’image initiale en retenant les principaux vecteurs propres correspondant aux

valeurs propres les plus importantes. Finalement, le descripteur de covariance adaptatif

est généré par le calcul du descripteur de matrice de covariance en utilisant les car-

actéristiques pertinentes extraites.

En bref, le descripteur de covariance adaptatif effectue d’abord une extraction de car-

actéristiques par projection PCA et calcule le descripteur de covariance en utilisant

les caractéristiques extraites alors. Il est adaptatif à un objet spécifique parce que la

méthode d’extraction de caractéristiques, à savoir le vecteur moyen et la matrice de

projection de l’PCA, est formé sur l’ensemble de pixel du référence de l’objet.

La projection PCA pendant le calcul du descripteur de covariance adaptatif préserve

l’information dominante et supprime le bruit. Il est bien connu que les petites valeurs

propres dans un eigenspectrum ne sont pas stables [110–112] et sont sensibles aux

données de formation limitées. Retrait des dimensions non fiables peut alléger le problème

de sur-apprentissage et donc d’améliorer la généralisation.

Un autre avantage du descripteur de covariance adaptatif est qu’elle génère une représentation

plus compacte pour une région d’image. Cela peut faire les opérations suivantes sur la

représentation, par exemple, formation ou la mise à jour du modèle discriminatoire

et évaluer échantillon probabilité, beaucoup plus rapide. Bien que le descripteur de

covariance adaptative nécessite calcul supplémentaire pour la formation de l’PCA et

d’extraction de caractéristiques compacts en projetant les vecteurs de caractéristiques

premières des principaux vecteurs propres, ces efforts de calcul supplémentaires sont

Résumé Etendu 97

abordables et semble être bien utile. Tout d’abord, le calcul pour l’apprentissage de la

PCA est négligeable, car elle est effectuée une seule fois à première image. Deuxièmement,

le gain de vitesse dans les traitements ultérieur entrâıné par la représentation compacte

peut être considérablement supérieurs aux coûts de la projection de la PCA.

(a) (b) (c) (d) (e) (f) (g)

Figure B.2: Illustration d’un multi-taches représentation de région. Un objet (a) sur
la gauche est représentée par six taches sur la droite, c’est à dire (b) l’ensemble région,
(c) de la moitié supérieure, (d) de la moitié du milieu, c’est à dire de 1/4 à 3/4 de

l’hauteur, (e) la moitié inférieure, (f)la 3/4 partie en haute (g)la 3/4 partie en bas.

Afin d’augmenter encore la robustesse, une région est représentée par six matrices de

covariance d’adaptation de ses sous-régions 6 comme représenté sur la Fig. B.2. Le de-

scripteur de covariance d’adaptation est en effet la matrice de covariance (bien que dans

le sous-espace), qui est symétrique définie positive (SPD) et se trouve dans une variété

Riemannienne. Utilization directement du descripteur pour l’analyse discriminante n’est

pas approprié. En utilisant la transformation Log-Euclidien [61], nous poing transformer

les descripteurs d’adaptation des 6 patchs logC
(i)
a (i = 1 · · · 6) à l’espace euclidien comme

logC
(i)
a (i = 1 · · · 6), puis déplier chaque matrice et de les enchâıner à prendre une forme

vectorielle. Nous notons que les matrices transformées logCa sont toujours symétrique,

seules matrices triangulaires supérieures sont utilisés. Par exemple, si 10 de 15 dimen-

sions sont retenues pour le calcul du descripteur de covariance d’adaptation, la dimension

de la représentation de vecteur final d’une région est de 10× (10+1)/2×6 = 330, tandis

que le descripteur de covariance classique en utilisant 15 traits générerait un vecteur de

taille 15× (15 + 1)/2× 6 = 720.

B.4.2.3 Initialisation du modèle d’apparence

Pour notre application de suivi visuel, X dans la formulation PLS est la matrice formée

par des représentations vectorielles accumulés calculé dans la section perméable qui

décrivent les zones d’image de l’échantillon de formation. Un modèle discriminatoire

peut être formé en mettant Y que les étiquettes binaires. Échantillons de formation

sont de SR qui sont collectées à chaque image lors de la poursuite avec les étiquettes

correctement assignés. En particulier, nous maintenons un échantillon positif définir Bp

Résumé Etendu 98

et un échantillon négatif définir Bn, qui sont initialisées comme des ensembles vides et

sont finalement remplis d’échantillons marqués à partir de SR lorsque le suivi évolue.

Dans la première image, nous utilisons l’échantillon positif annoté et un certain nom-

bre d’échantillons négatifs pour initialiser le modèle discriminatoire. Les échantillons

négatifs sont obtenus de la façon suivante. Tout d’abord, nous utilisons une méthode

de recherche de glissement de fenêtre par force brute pour la recherche dans l’ensemble

de l’image et de conserver quelques échantillons les plus prometteurs SR. Comme le

cible a été annoté de ce cadre, les autres échantillons dans SR sont étiquetés comme

des échantillons négatifs avec y = −1. Le modèle discriminatoire est alors initialisé par

la formation PLS sur les ces échantillons. Pratiquement, nous utilisons un échantillons

positifs et 20 échantillons négatifs pour initialiser le modèle discrimininatoire.

Pour la formation du modèle PLS, il peut être effectué soit par le NIPALS classique

algorithme [124] ou par le plus rapide SIMPLS algorithme [125]. Comme alternative,

nous allons introduire dans la Section B.5.2.1 une solution de PLS non-itératif qui peut

permettre la mise à jour en ligne de modèle PLS. Après la formation, l’échantillon

signifie µ(X), µ(Y) et le coefficient de régression β sont enregistrées pour évaluer plus

tard échantillons d’essai.

Comme les progrès de temps, le modèle est mis à jour ponctuellement avec des échantillons

nouvellement étiquetés. Ré-évaluation discriminatoire à l’aide du modèle PLS appris et

l’étiquetage des nouveaux échantillons sont traités dans la suite et la mise à jour du

modèle sera abordée dans la Section B.5.

B.4.2.4 Ré-évaluation par le modèle distriminatoire

Une fois le modèle discriminatoire est appris, il est utilisé à chaque trame de réévaluer la

matrice de fonction Xr d’échantillons conservés dans SR en utilisant (B.12) pour obtenir

des scores de réponse Yr. Il est à noter que ce processus de test est particulièrement

rapide, car seulement un produit de point unique de vecteur de caractéristiques avec le

coefficient de régression β est nécessaire (B.12) pour obtenir la réponse du PLS modèle

de régression.

Selon le système d’étiquetage, la meilleure correspondance ŝ ∈ SR est choisi pour être

celui associé à la plus grande valeur de la réponse ŷ. Un prédéfinie constante τ ∈ [0, 1)

est utilisé comme seuil pour mesurer l’importance de ŷ. Si ŷ a une valeur pas moins

de τ , l’état de ŝ, noté Θ(ŝ), est considéré comme l’estimation de Θ̂t et est donc sor-

tie comme le résultat de suivi. ŝ sera étiqueté comme un nouvel échantillon positif,

c’est à dire avec y = 1 et seront ajoutés à la mémoire tampon de l’échantillon posi-

tif Bp, tandis que les autres échantillons dans SR être étiquetés comme négatif (avec

Résumé Etendu 99

y = −1) et être ajouté au tampon d’échantillon négatif Bn pour mettre à jour le modèle

d’apparance ultérieurement. Sinon, c’est à dire si ŷ est inférieur à τ , une occlusion/ab-

sent événement est déclaré, c’est l’objectif est considéré comme “invisible” dans ce cadre,

et tous les échantillons dans SR sont jetés.

Algorithme 9 résume la procédure de ré-évaluation par le modèle PLS.

Algorithm 9 Ré-évaluation par le modèle discriminitoire.

Input: {Sr, β, τ, Θ̂t−1, Bp, Bn, µ(X), µ(Y)}
Output: {Θ̂t, Bp, Bn}

1: for i = 1 · · · |Sr| do

2: X
(i)
r ← caractéristique de la ième échantillon s(i) dans Sr

3: Y
(i)
r ← (X

(i)
r − µ(X))>β + µ(Y)

4: end for
5: ŷ ← max

i=1...|Sr|
Y

(i)
r

6: ŝ← arg max
s∈Sr

Yr(s)

7: if ŷ ≥ τ then
8: Θ̂t ← Θ(ŝ)
9: Bp ← Bp ∪ ŝ

10: Bn ← Bn ∪ Sr\ŝ
11: else
12: Déclarer occlusion/absent
13: end if

B.5 Mise à jour des modèles

Tant le générateur et les modèles discriminatoires doivent être mis à jour que le suivi

développe pour s’adapter aux changements de la cible et le fond.

Sauf le cas occlusion/absent, les échantillons sélectionnés dans Sr sont étiquetés

comme indiqué dans la section précédente et sont utilisés pour mettre à jour les modèles

d’apparence.

B.5.1 Mise à jour du modèle génératif

Le modèle génératif concerne les échantillons positifs seulement. Une ligne de base

signifie la mise à jour peut être servi pour la mise à jour. Afin d’augmenter la robustesse,

nous adoptons le système de mise à jour sur la base clustering. Au lieu de mettre à jour

à chaque trame, la mise à jour sur la base clustering fonctionne moins fréquemment, par

exemple, toutes les 10 images. Il recueille les échantillons positifs marqués dans cette

période, c’est à dire les 10 derniers échantillons dans Bp, et effectue un regroupement

Résumé Etendu 100

des sauts entre eux. Les valeurs aberrantes sont filtrés en ne retenant que le groupe

le plus proche de (dont la moyenne a la plus petite distance par rapport au modèle de

générateur de courant). Le modèle M̂g est alors déterminé comme combinaison linéaire

du modèle initial M0
g (modèle calculé à partir de l’image initiale), le modèle actuel Mg

et la moyenne des échantillons à la groupe retenue m̄S défini comme

M̂g = α1 ·M0
g + α2 ·Mg + α3 · M̄s,

s.t. Σ3
i=1αi = 1.0,

0 ≤ αi ≤ 1.0; i = 1, 2, 3.

(B.13)

De cette manière, un échantillon est utilisé pour mettre à jour le modèle génératif s’il

survit à la filtration de l’échantillon par le modèle de générateur, la ré-évaluation par

le modèle discriminative et également la sélection de la grappe par le regroupement des

sauts. Cela permet de protéger le modèle de la contamination et donc d’augmenter la

robustesse.

B.5.2 Mise à jour du modèle discriminatoire

Pour la mise à jour en ligne du modèle discriminatoire PLS, les PLS algorithmes clas-

siques tels que l’algorithme de NIPALS [124, 126] et la SIMPLS algorithme [125] ne

sont pas adaptés car ils reposent sur l’ensemble de la formation X et Y pour calculer

la sortie W et β. Pour chaque mise à jour, ils auraient besoin de recalculer le modèle

PLS en utilisant les échantillons accumulés jamais vu. Ils sont donc des algorithmes

de traitement par lots. Comme suivi évolue, le stockage et les exigences de calcul des

algorithmes de traitement par lots ne cessent d’augmenter.

Pour contourner ce problème, nous adoptons une solution non-itératif alternatif [129]

pour calculer le modèle PLS. Au lieu d’utiliser la première bloc de données X et Y ,

la méthode non-itérative prend les deux dispersion matrices Sxx et sxy en entrée pour

calculer le modèle PLS, qui sont définis comme

Sxx =

N∑
i=1

(xi − µ(X))(xi − µ(X))>

Sxy =

N∑
i=1

(xi − µ(X))(yi − µ(Y))>

où N est le nombre d’échantillons dans X (et Y) et µ(X) et µ(Y) sont des moyens

d’échantillonnage de X et Y respectivement. Lorsque X et Y ont été moyenne centrée

Résumé Etendu 101

a priori, nous avons Sxx = X>X et Sxy = X>Y (organisation X et Y par lignes corre-

spondant à des observations et des colonnes à des variables). Depuis ces deux matrices

de dispersion sont constants dans la taille (indépendant de N) et peuvent être mis à

jour progressivement avec de nouveaux échantillons, un algorithme PLS incrémentale

devient possible.

Nous allons brièvement présenter la solution de PLS non-itératif dans la Section B.5.2.1

et de proposer à la Section B.5.2.2 un algorithme PLS incrémentale qui peut mettre à

jour le modèle PLS dans la constante de temps et la complexité de l’espace. Le modèle

discriminatoire dans notre cadre de suivi est ensuite mis à jour en ligne en utilisant

l’algorithme PLS incrémentale nouvellement développé.

B.5.2.1 Une Solution non-itérative de la régression PLS-1

Selon la solution de PLS non-itératif [129], la relation entre la matrice de poids Wa et

une matrice Krylov est reconnu. Le Krylov matrice Kr ∈ <r×rm de la paire (Sxx, Sxy)

est définie comme

Kr = [Sxy SxxSxy S2
xxSxy · · · Sr−1

xx Sxy]. (B.14)

Une matrice Krylov réduite Kp ∈ <r×pm est formée par les colonnes de premier p

(1 ≤ p ≤ r) colonnes de Kr:

Kp = [Sxy SxxSxy S2
xxSxy · · · Sp−1

xx Sxy]. (B.15)

La non-itératif solution à PLS [129] révèle que pour Y univariée, c’est à dire quand

m = 1, la matrice classique de pondération orthonormé Wp ∈ <r×p avec p variables

latentes et la matrice Krylov Kp couvrent le même espace de colonne. De plus, Wp peut

être calculé directement en effectuant la décomposition QR (et prendre la partie Q) ou

la procédure de Gram-Schmidt modifié sur Kp.

En outre, le coefficient de régression β peut être calculé par une formule directe soit en

utilisant Kp

βKp = Kp(K
>
p SxxKp)

−1K>p Sxy (B.16)

ou en utilizant Wp

βWp = Wp(W
>
a SxxWp)

−1W>p Sxy. (B.17)

Les deux expressions βKp et βWp donnent des résultats identiques car Kp et Wp durée

de la même sous-espace [129]. Ils correspondent aux moindres carrés partiels (PLS) de

Résumé Etendu 102

régression en utilisant des variables latentes p lorsque p < r et de réduire les moindres

carrés ordinaires (MCO) (en supposant que K>r Kr est inversible) lorsque p = r.

Dans la pratique, la matrice Krylov explicitement formulé Kp dans l’équation (B.15)

peut être mal conditionné en raison d’arrondir des erreurs lors du calcul des puissances

de Sxx, surtout quand p est large. Cela affecte négativement la précision de la résultante

Wp et β. Dans ce travail, nous proposons d’utiliser la méthode de la Arnoldi [130] pour

extraire la base orthonormée de Kp directement à partir de Sxx et Sxy. La procédure

de pseudo-code de la méthode de la Arnoldi pour le calcul de Wp est décrite dans

l’algorithme 10, où ‖ · ‖|F est la norme de Frobenius. Le coefficient de régression β peut

Algorithm 10 La méthode de Arnoldi pour calculer la matrice de poids orthonormé
Wp

Input: Sxx and Sxy: les matrices de dispersion
p: le nombre de composantes conservées

Output: la matrice de poids Wp

1: w1 ← Sxy/||Sxy||F
2: for i = 2 · · · p do
3: wi ← Sxxwi−1

4: for j = 1 · · · i− 1 do
5: hj,i−1 ← w>j wi
6: wi ← wi − hj,i−1wj
7: end for
8: hi,i−1 ← ||wi||F
9: wi ← wi

hi,i−1

10: end for
11: Wp = [w1 w2 · · · wp]

ainsi être obtenue à l’aide du résultat Wp selon l’équation (B.17).

B.5.2.2 Méthode incrémentale pour la mise à jour du modèle PLS

Comme la sortie W et β de l’algorithme PLS peuvent être calculées directement par Sxx

et Sxy, nous pouvons spécifier un modèle PLS appris à partir d’un ensemble d’échantillons

de formation X et Y comme

Θ(X,Y, p) = (N(X), µ(X), µ(Y), Sxx, Sxy,W, β), (B.18)

où p est la dimension de variables latentes, N(X) est le nombre d’échantillons de forma-

tion dans X, µ(X) et µ(Y) sont des moyens. W et β peuvent être calculées par Sxx, Sxy

et p par l’algorithme 10 et l’équation (B.17) respectivement. En fait, les cinq premiers

éléments ont codé toutes les informations pour calculer ou mettre à jour un modèle PLS.

Résumé Etendu 103

L’avantage de l’adoption de ce modèle, c’est qu’il a la complexité de l’espace constant

parce que tous les éléments du modèle ont une taille constante.

Nous proposons maintenant une méthode PLS de la mise à jour incrémentale roman.

Supposons que nous avons formé un modèle PLS formation mis X1 et Y1 de dimension

p1. Le modèle est ainsi notée Θ(X1, Y1, p1). Lorsque de nouveaux échantillons, X2 et Y2,

sont disponibles, l’algorithme de mise à jour incrémentale vise à mettre à jour le modèle

PLS Θ avec X2 et Y2 sans avoir recours à l’ensemble des données initiales X1 et Y1.

Tout d’abord, les cinq premiers éléments de Θ(X2, Y2, p2) est calculé comme N(X2),

µ(X2), µ(Y2), Sxx2, Sxy2 respectivement. Mise à jour incrémentale de N(X), µ(X) et

µ(Y) est simple:

N(X) = N(X1) +N(X2); (B.19)

µ(X) =
N(X1)

N(X)
µ(X1) +

N(X2)

N(X)
µ(X2), (B.20)

µ(Y) =
N(X1)

N(X)
µ(Y1) +

N(X2)

N(X)
µ(Y2). (B.21)

La dispersion matrice Sxx peut être mis à jour en utilisant l’équation suivante:

Sxx = Sxx1 + Sxx2 +
N(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(X1)− µ(X2))>. (B.22)

De même, Sxy peut être mis à jour

Sxy = Sxy1 + Sxy2 +
N(X1)N(X2)

N(X)
(µ(X2)− µ(X1))(µ(Y1)− µ(Y2))>. (B.23)

La matrice de poids W peut donc être mis à jour en utilisant la nouvelle mise à jour

Sxx et Sxy en fonction de l’algorithme 10. Enfin, le coefficient de régression β est mis à

jour par l’équation (B.17). Nous notons que, bien que p peut être différent des deux p1

et p2, aucune information n’est perdue, puisque le nombre d’échantillons, les moyens et

les matrices de dispersion ont intégré toutes les informations nécessaires pour mettre à

jour le modèle.

Dans le suivi visuel, lorsque la cible subit des changements d’apparence, il est probable

que des observations récentes seront plus indicatif de son apparence que les anciens

plus. Par conséquent, il peut être souhaitable de se concentrer davantage sur les images

récemment acquises et la baisse du poids de la contribution d’observations antérieures.

Une façon de modérer l’équilibre entre les anciennes et les nouvelles observations est

d’intégrer un facteur d’oubli dans la mise à jour incrémentale de PLS, comme cela se

fait dans [143] et [21]. L’idée clé est la “nombre effectif” d’une observation. Par défaut,

toutes les observations ont le même poids de 1. Si un échantillon est affecté d’un poids de

Résumé Etendu 104

2, le résultat serait le même que si nous avions répété cet exemple deux fois en comptant

le nombre de l’échantillon, le calcul des moyens et les matrices de dispersion. À l’autre

extrême, un point associé à un poids de 0 serait le résultat comme si elle n’avait pas été

inclus dans le calcul du tout.

Pour l’application de suivi, à chaque mise à jour, nous pouvons pondérer les observations

connues par un facteur scalaire f ∈ [0, 1], où f = 1 indique que pas d’oubli se produit.

Le nombre effectif d’échantillons N(X) et les moyennes de l’échantillon µ(X), µ(Y) sont

mis à jour à l’aide du facteur d’oubli f comme

N(X) = fN(X1) +N(X2), (B.24)

µ(X) =
fN(X1)

N(X)
µ(X1) +

N(X2)

N(X)
µ(X2), (B.25)

µ(Y) =
fN(X1)

N(X)
µ(Y1) +

N(X2)

N(X)
µ(Y2). (B.26)

La matrice de dispersion Sxx peut être mis à jour en utilisant l’équation suivante:

Sxx = fSxx1 + Sxx2 +
fN(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(X1)− µ(X2))>. (B.27)

De même, Sxy est mis à jour avec facteur d’oubli f comme

Sxy = fSxy1 + Sxy2 +
fN(X1)N(X2)

N(X)
(µ(X1)− µ(X2))(µ(Y1)− µ(Y2))>. (B.28)

Enfin, le modèle de régression W et β peuvent être mises à jour via l’algorithme 10 et

l’équation (B.17) respectivement en utilisant le nouveau Sxx et Sxy qui sont récemment

mis à jour.

Comme indiqué dans [21], un avantage d’intégrer le facteur d’oubli dans la mise à jour de

moyenne, c’est que la moyenne peut encore changer en réponse à de nouvelles observa-

tions, même si le nombre réel d’observations tend vers l’infini. Plus précisément, en util-

isant N(X) = fN(X) +N(X2), le nombre effectif d’observations atteindra l’équilibre à

N(X) = N(X2)/(1− f). Par exemple, quand f = 0.95 et N(X2) = 4 de nouvelles obser-

vations sont ajoutées à chaque mise à jour, la taille effective de l’histoire de l’observation

abordera N(X) = 100.

Avec l’algorithme PLS incrémentale développé ci-dessus, nous mettons à jour le modèle

discriminatoire à l’aide des nouveaux échantillons marqués à chaque trame sauf le oc-

clusion/absent événement se produit. Le nombre de variables latentes pour le modèle

PLS est resté inchangé pendant la mise à jour.

Bibliography

[1] Helmut Grabner and Horst Bischof. On-line boosting and vision. In Proceedings

of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition - Volume 1, CVPR ’06, pages 260–267, Washington, DC, USA, 2006.

IEEE Computer Society. ISBN 0-7695-2597-0. doi: 10.1109/CVPR.2006.215. URL

http://dx.doi.org/10.1109/CVPR.2006.215.

[2] Helmut Grabner, Christian Leistner, and Horst Bischof. Semi-supervised on-line

boosting for robust tracking. In Proceedings of the 10th European Conference on

Computer Vision: Part I, ECCV ’08, pages 234–247, Berlin, Heidelberg, 2008.

Springer-Verlag. ISBN 978-3-540-88681-5.

[3] S. Stalder, H. Grabner, and L. Van Gool. Beyond semi-supervised tracking: Track-

ing should be as simple as detection, but not simpler than recognition. In Inter-

national Conference on Computer Vison Workshops, 2009.

[4] Babenko Boris, Yang Ming-Hsuan, and Belongie Serge. Robust object tracking

with online multiple instance learning. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 33(8):1619–1632, August 2011. ISSN 0162-8828. doi:

10.1109/TPAMI.2010.226. URL http://dx.doi.org/10.1109/TPAMI.2010.226.

[5] Qian Yu, Thang Ba Dinh, and Gérard Medioni. Online tracking and reacquisi-

tion using co-trained generative and discriminative trackers. In Proceedings of the

10th European Conference on Computer Vision: Part II, pages 678–691, Berlin,

Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-88685-3.

[6] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Tracking-learning-detection.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7):1409–

1422, 2012. ISSN 0162-8828. doi: http://doi.ieeecomputersociety.org/10.1109/

TPAMI.2011.239.

[7] Arnold W. M. Smeulders, Dung M. Chu, Rita Cucchiara, Simone Calderara, Afshin

Dehghan, and Mubarak Shah. Visual tracking: An experimental survey. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 99(PrePrints):1, 2013.

105

http://dx.doi.org/10.1109/CVPR.2006.215
http://dx.doi.org/10.1109/TPAMI.2010.226

Bibliography 106

ISSN 0162-8828. doi: http://doi.ieeecomputersociety.org/10.1109/TPAMI.2013.

230.

[8] O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast descriptor for detec-

tion and classification. In Proc. 9th European Conf. on Computer Vision, volume 2,

pages 589–600, 2006.

[9] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique

with an application to stereo vision. In Proceedings of the 7th International Joint

Conference on Artificial Intelligence - Volume 2, IJCAI’81, pages 674–679, San

Francisco, CA, USA, 1981. Morgan Kaufmann Publishers Inc. URL http://dl.

acm.org/citation.cfm?id=1623264.1623280.

[10] Jianbo Shi and Carlo Tomasi. Good features to track. In 1994 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR’94), pages 593 – 600, 1994.

[11] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Kernel-based object

tracking. IEEE Trans. Pattern Anal. Mach. Intell., 25(5):564–575, May 2003.

ISSN 0162-8828. doi: 10.1109/TPAMI.2003.1195991. URL http://dx.doi.org/

10.1109/TPAMI.2003.1195991.

[12] Yuan Li, Haizhou Ai, Takayoshi Yamashita, Shihong Lao, and Masato Kawade.

Tracking in low frame rate video: A cascade particle filter with discrimina-

tive observers of different life spans. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 30(10):1728–1740, 2008. ISSN 0162-8828. doi:

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.73.

[13] I. Matthews, T. Ishikawa, and S. Baker. The template update problem. IEEE

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 26(6):810–

815, 2004.

[14] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey. ACM

Comput. Surv., 38(4), December 2006. ISSN 0360-0300. doi: 10.1145/1177352.

1177355. URL http://doi.acm.org/10.1145/1177352.1177355.

[15] Hanxuan Yang, Ling Shao, Feng Zheng, Liang Wang, and Zhan Song. Recent

advances and trends in visual tracking: A review. Neurocomput., 74(18):3823–

3831, November 2011. ISSN 0925-2312. doi: 10.1016/j.neucom.2011.07.024. URL

http://dx.doi.org/10.1016/j.neucom.2011.07.024.

[16] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Kernel-based object

tracking. IEEE Trans. Pattern Anal. Mach. Intell., 25(5):564–575, May 2003.

ISSN 0162-8828. doi: 10.1109/TPAMI.2003.1195991. URL http://dx.doi.org/

10.1109/TPAMI.2003.1195991.

http://dl.acm.org/citation.cfm?id=1623264.1623280
http://dl.acm.org/citation.cfm?id=1623264.1623280
http://dx.doi.org/10.1109/TPAMI.2003.1195991
http://dx.doi.org/10.1109/TPAMI.2003.1195991
http://doi.acm.org/10.1145/1177352.1177355
http://dx.doi.org/10.1016/j.neucom.2011.07.024
http://dx.doi.org/10.1109/TPAMI.2003.1195991
http://dx.doi.org/10.1109/TPAMI.2003.1195991

Bibliography 107

[17] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying framework.

Int. J. Comput. Vision, 56(3):221–255, February 2004. ISSN 0920-5691. doi: 10.

1023/B:VISI.0000011205.11775.fd. URL http://dx.doi.org/10.1023/B:VISI.

0000011205.11775.fd.

[18] Christoph H. Lampert, Matthew B. Blaschko, and Thomas Hofmann. Beyond

sliding windows: Object localization by efficient subwindow search. In In Proc. of

the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR, pages 1–8,

2008.

[19] Hieu T. Nguyen and Arnold W. M. Smeulders. Robust tracking using foreground-

background texture discrimination. International Journal of Computer Vision, 69

(3):277–293, 2006.

[20] Sam Hare, Amir Saffari, and Phil Torr. Struck: Structured output tracking with

kernels. In Proceedings of IEEE International Conference on Computer Vision

(ICCV), 2011.

[21] D. A. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning for robust visual

tracking. IJCV, 77:125–141, 2008.

[22] Xue Mei and Haibin Ling. Robust visual tracking and vehicle classification via

sparse representation. IEEE transactions on pattern analysis and machine intel-

ligence, 33(11):2259–72, November 2011. ISSN 1939-3539. doi: 10.1109/TPAMI.

2011.66. URL http://www.ncbi.nlm.nih.gov/pubmed/21422491.

[23] Michael Isard and Andrew Blake. CONDENSATION - conditional density propa-

gation for visual tracking. International Journal of Computer Vision, 29(1):5–28,

1998.

[24] M. Sanjeev Arulampalam, Simon Maskell, and Neil Gordon. A tutorial on particle

filters for online nonlinear/non-gaussian bayesian tracking. IEEE TRANSAC-

TIONS ON SIGNAL PROCESSING, 50:174–188, 2002.

[25] Shaohua Zhou, Rama Chellappa, and Baback Moghaddam. Visual tracking and

recognition using appearance-adaptive models in particle filters. IEEE Transac-

tions on Image Processing, 13:1434–1456, 2004.

[26] J. Kwon and F.C. Park. Visual tracking via particle filtering on the affine group.

The International Journal of Robotics Research, 29(2-3):198–217, 2010. (Special

issue on robot vision).

[27] Luka Cehovin, Matej Kristan, and Ales Leonardis. Robust visual tracking us-

ing an adaptive coupled-layer visual model. IEEE Trans. Pattern Anal. Mach.

http://dx.doi.org/10.1023/B:VISI.0000011205.11775.fd
http://dx.doi.org/10.1023/B:VISI.0000011205.11775.fd
http://www.ncbi.nlm.nih.gov/pubmed/21422491

Bibliography 108

Intell., 35(4):941–953, 2013. URL http://dblp.uni-trier.de/db/journals/

pami/pami35.html#CehovinKL13.

[28] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

volume 1, pages 886–893, 2005.

[29] F. Porikli. Integral histograms in cartesian spaces. In CVPR, 2005.

[30] M. Sizintsev, K. Derpanis, and A. Hogu. Histogram-based search: a comparative

study. In CVPR, 2008.

[31] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int.

J. Comput. Vision, 60(2):91–110, November 2004. ISSN 0920-5691. doi: 10.

1023/B:VISI.0000029664.99615.94. URL http://dx.doi.org/10.1023/B:VISI.

0000029664.99615.94.

[32] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up

robust features (surf). Comput. Vis. Image Underst., 110(3):346–359, June 2008.

ISSN 1077-3142. doi: 10.1016/j.cviu.2007.09.014. URL http://dx.doi.org/10.

1016/j.cviu.2007.09.014.

[33] Qiang Zhu, Shai Avidan, Mei chen Yeh, and Kwang ting Cheng. Fast human

detection using a cascade of histograms of oriented gradients. In In CVPR06,

pages 1491–1498, 2006.

[34] Subhransu Maji, Alexander C. Berg, and Jitendra Malik. Classification us-

ing intersection kernel support vector machines is efficient. 2013 IEEE Con-

ference on Computer Vision and Pattern Recognition, 0:1–8, 2008. doi: http:

//doi.ieeecomputersociety.org/10.1109/CVPR.2008.4587630.

[35] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively

trained, multiscale, deformable part model. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2008.

[36] J. Van De Weijer, Th. Gevers, and A.D. Bagdanov. Boosting color saliency in

image feature detection. IEEE TRANS. PATTERN ANALYSIS AND MACHINE

INTELLIGENCE, 28:150–156, 2005.

[37] Alaa E. Abdel-Hakim and Aly A. Farag. Csift: A sift descriptor with color invari-

ant characteristics. In Proceedings of the 2006 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition - Volume 2, CVPR ’06, pages 1978–

1983, Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2597-0.

doi: 10.1109/CVPR.2006.95. URL http://dx.doi.org/10.1109/CVPR.2006.95.

http://dblp.uni-trier.de/db/journals/pami/pami35.html#CehovinKL13
http://dblp.uni-trier.de/db/journals/pami/pami35.html#CehovinKL13
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1109/CVPR.2006.95

Bibliography 109

[38] Gertjan J. Burghouts and Jan-Mark Geusebroek. Performance evaluation of local

colour invariants. Comput. Vis. Image Underst., 113(1):48–62, January 2009. ISSN

1077-3142. doi: 10.1016/j.cviu.2008.07.003. URL http://dx.doi.org/10.1016/

j.cviu.2008.07.003.

[39] Koen van de Sande, Theo Gevers, and Cees Snoek. Evaluating color descriptors

for object and scene recognition. IEEE Trans. Pattern Anal. Mach. Intell., 32

(9):1582–1596, September 2010. ISSN 0162-8828. doi: 10.1109/TPAMI.2009.154.

URL http://dx.doi.org/10.1109/TPAMI.2009.154.

[40] B. S. Manjunath and W. Y. Ma. Texture features for browsing and retrieval of

image data. IEEE Trans. Pattern Anal. Mach. Intell., 18(8):837–842, August

1996. ISSN 0162-8828. doi: 10.1109/34.531803. URL http://dx.doi.org/10.

1109/34.531803.

[41] Timo Ojala, Matti Pietikäinen, and Topi Mäenpää. Multiresolution gray-scale

and rotation invariant texture classification with local binary patterns. IEEE

Trans. Pattern Anal. Mach. Intell., 24(7):971–987, July 2002. ISSN 0162-8828.

doi: 10.1109/TPAMI.2002.1017623. URL http://dx.doi.org/10.1109/TPAMI.

2002.1017623.

[42] Yadong Mu, Shuicheng Yan, Yi Liu, Thomas S. Huang, and Bingfeng Zhou. Dis-

criminative local binary patterns for human detection in personal album. In

CVPR. IEEE Computer Society, 2008. URL http://dblp.uni-trier.de/db/

conf/cvpr/cvpr2008.html#MuYLHZ08.

[43] Jie Chen, Shiguang Shan, Chu He, Guoying Zhao, Matti Pietikainen, Xilin Chen,

and Wen Gao. Wld: A robust local image descriptor. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 32(9):1705–1720, 2010. ISSN 0162-

8828. doi: http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.155.

[44] A. Alahi, P. Vandergheynst, M. Bierlaire, and M. Kunt. Cascade of descriptors

to detect and track objects across any network of cameras. Computer Vision and

Image Understanding, 114(6):624–640, June 2010.

[45] W. R. Schwartz and L. S. Davis. Learning Discriminative Appearance-Based Mod-

els Using Partial Least Squares. In Brazilian Symposium on Computer Graphics

and Image Processing, 2009.

[46] Aniruddha Kembhavi, Behjat Siddiquie, Roland Miezianko, Scott McCloskey, and

Larry S. Davis. Incremental multiple kernel learning for object recognition. In

ICCV, pages 638–645, 2009.

http://dx.doi.org/10.1016/j.cviu.2008.07.003
http://dx.doi.org/10.1016/j.cviu.2008.07.003
http://dx.doi.org/10.1109/TPAMI.2009.154
http://dx.doi.org/10.1109/34.531803
http://dx.doi.org/10.1109/34.531803
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2008.html#MuYLHZ08
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2008.html#MuYLHZ08

Bibliography 110

[47] Anna Bosch, Andrew Zisserman, and Xavier Munoz. Representing shape with a

spatial pyramid kernel. In Proceedings of the 6th ACM International Conference

on Image and Video Retrieval, CIVR ’07, pages 401–408, New York, NY, USA,

2007. ACM. ISBN 978-1-59593-733-9. doi: 10.1145/1282280.1282340. URL http:

//doi.acm.org/10.1145/1282280.1282340.

[48] A C Berg and J Malik. Geometric blur for template matching. In Computer

Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE

Computer Society Conf. on, volume 1, pages I—-607—-I—-614 vol.1, 2001. doi:

10.1109/CVPR.2001.990529.

[49] Peter V. Gehler and Sebastian Nowozin. On feature combination for multiclass

object classification. In ICCV, pages 221–228. IEEE, 2009. URL http://dblp.

uni-trier.de/db/conf/iccv/iccv2009.html#GehlerN09.

[50] Michael E. Tipping and Chris M. Bishop. Probabilistic principal component anal-

ysis. Journal of the Royal Statistical Society, Series B, 61:611–622, 1999.

[51] A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and appli-

cations. Neural Netw., 13(4-5):411–430, May 2000. ISSN 0893-6080. doi: 10.1016/

S0893-6080(00)00026-5. URL http://dx.doi.org/10.1016/S0893-6080(00)

00026-5.

[52] Geoffrey Mclachlan and David Peel. Finite Mixture Models. Wiley Series in

Probability and Statistics. Wiley-Interscience, 1 edition, October 2000. ISBN

9780471006268. URL http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20&path=ASIN/0471006262.

[53] T. K. Moon. The expectation-maximization algorithm. IEEE Signal Processing

Magazine, 13(6):47–60, November 1996. ISSN 10535888. doi: 10.1109/79.543975.

URL http://dx.doi.org/10.1109/79.543975.

[54] Richard Baraniuk. Compressive sensing. IEEE Signal Processing Mag, pages 118–

120, 2007.

[55] Michael J. Black, David J. Fleet, and Yaser Yacoob. A framework for modeling

appearance change in image sequences. In ICCV, 1998.

[56] Allan D. Jepson, David J. Fleet, and Thomas F. El-Maraghi. Robust online ap-

pearance models for visual tracking. In IEEE Conference on Computer Vision and

and Pattern Recognition, volume I, pages 415–422, 2001.

[57] Yongmin Li. On incremental and robust subspace learning. Pattern Recognition,

37:1509–1518, 2004.

http://doi.acm.org/10.1145/1282280.1282340
http://doi.acm.org/10.1145/1282280.1282340
http://dblp.uni-trier.de/db/conf/iccv/iccv2009.html#GehlerN09
http://dblp.uni-trier.de/db/conf/iccv/iccv2009.html#GehlerN09
http://dx.doi.org/10.1016/S0893-6080(00)00026-5
http://dx.doi.org/10.1016/S0893-6080(00)00026-5
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471006262
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471006262
http://dx.doi.org/10.1109/79.543975

Bibliography 111

[58] Danijel Skocaj and Ales Leonardis. Weighted and robust incremental method for

subspace learning. In ICCV, pages 1494–1501, 2003.

[59] Kuang chih Lee and David Kriegman. Online learning of probabilistic appearance

manifolds for video-based recognition and tracking. In In Proc. of CVPR, pages

852–859, 2005.

[60] Fatih Porikli, Oncel Tuzel, and Peter Meer. Covariance tracking using model

update based on lie algebra. volume 1, pages 728–735, Los Alamitos, CA, USA,

2006. IEEE Computer Society. doi: http://doi.ieeecomputersociety.org/10.1109/

CVPR.2006.94.

[61] V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Geometric means in a novel

vector space structure on sysmetric positive-definite matrices. SIAM Journal on

Matrix Analysis and Applications, 29 1:328–347, 2006.

[62] Xi Li, Weiming Hu, Zhongfei Zhang, Xiaoqin Zhang, Mingliang Zhu, Jian Cheng,

and Guan Luo. Visual tracking via incremental log-euclidean riemannian sub-

space learning. In In Proceedings IEEE Conference Computer Vision and Pattern

Recognition, 2008.

[63] Xi Li, Weiming Hu, Zhongfei Zhang, Xiaoqin Zhang, and Guan Luo. Robust visual

tracking based on incremental tensor subspace learning. In ICCV, 2007.

[64] Yi Wu, Jian Cheng, Jinqiao Wang, and Hanqing Lu. Real-time visual tracking via

incremental covariance tensor learning. In ICCV, pages 1631–1638. IEEE, 2009.

URL http://dblp.uni-trier.de/db/conf/iccv/iccv2009.html#WuCWL09.

[65] Xue Mei and Haibin Ling. Robust visual tracking using ℓ1 minimization.

In ICCV, pages 1436–1443, 2009.

[66] Hanxi Li, Chunhua Shen, and Qinfeng Shi. Real-time visual tracking using

compressive sensing. In CVPR, pages 1305–1312. IEEE, 2011. URL http:

//dblp.uni-trier.de/db/conf/cvpr/cvpr2011.html#LiSS11.

[67] Kaihua Zhang, Lei Zhang, and Ming-Hsuan Yang. Real-time compressive tracking.

In Proceedings of the 12th European Conference on Computer Vision - Volume Part

III, ECCV’12, pages 864–877, Berlin, Heidelberg, 2012. Springer-Verlag. ISBN

978-3-642-33711-6. doi: 10.1007/978-3-642-33712-3 62. URL http://dx.doi.

org/10.1007/978-3-642-33712-3_62.

[68] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals

of Eugenics, 7(7):179–188, 1936.

http://dblp.uni-trier.de/db/conf/iccv/iccv2009.html#WuCWL09
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2011.html#LiSS11
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2011.html#LiSS11
http://dx.doi.org/10.1007/978-3-642-33712-3_62
http://dx.doi.org/10.1007/978-3-642-33712-3_62

Bibliography 112

[69] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20

(3):273–297, September 1995. ISSN 0885-6125. doi: 10.1023/A:1022627411411.

URL http://dx.doi.org/10.1023/A:1022627411411.

[70] Michael E. Tipping. Sparse bayesian learning and the relevance vector machine.

J. Mach. Learn. Res., 1:211–244, September 2001. ISSN 1532-4435. doi: 10.1162/

15324430152748236. URL http://dx.doi.org/10.1162/15324430152748236.

[71] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-

line learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139,

1997.

[72] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001. ISSN

0885-6125. doi: 10.1023/A:1010933404324. URL http://dx.doi.org/10.1023/

A:1010933404324.

[73] Robert Collins, Yanxi Liu, and Marius Leordeanu. On-line selection of discrim-

inative tracking features. IEEE Transaction on Pattern Analysis and Machine

Intelligence, 27(10):1631–1643, October 2005.

[74] Jianyu Wang, Xilin Chen, and Wen Gao. Online selecting discriminative tracking

features using particle filter. In In Proc. CVPR, pages 1037–1042, 2005.

[75] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting.

In Proceedings of the British Machine Vision Conference, pages 6.1–6.10. BMVA

Press, 2006. ISBN 1-901725-32-4. doi:10.5244/C.20.6.

[76] Amir Saffari, Christian Leistner, Jakob Santner, Martin Godec, and Horst Bischof.

On-line random forests. In 3rd IEEE - ICCV Workshop on On-line Learn-

ing for Computer Vision, 2009. URL http://www.ymer.org/papers/files/

2009-OnlineRandomForests.pdf.

[77] Shai Avidan. Support vector tracking. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(8):1064–1072, 2004.

[78] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique

with an application to stereo vision. In Proceedings of the 7th International Joint

Conference on Artificial Intelligence - Volume 2, IJCAI’81, pages 674–679, San

Francisco, CA, USA, 1981. Morgan Kaufmann Publishers Inc. URL http://dl.

acm.org/citation.cfm?id=1623264.1623280.

[79] Oliver Williams, Andrew Blake, and Roberto Cipolla. Sparse bayesian learn-

ing for efficient visual tracking. IEEE Transactions on Pattern Analysis and

http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1162/15324430152748236
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://www.ymer.org/papers/files/2009-OnlineRandomForests.pdf
http://www.ymer.org/papers/files/2009-OnlineRandomForests.pdf
http://dl.acm.org/citation.cfm?id=1623264.1623280
http://dl.acm.org/citation.cfm?id=1623264.1623280

Bibliography 113

Machine Intelligence, 27(8):1292–1304, 2005. ISSN 0162-8828. doi: http://doi.

ieeecomputersociety.org/10.1109/TPAMI.2005.167.

[80] Shai Avidan. Ensemble tracking. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 29(2):261–271, feb 2007. ISSN 0162-8828. doi: 10.1109/

TPAMI.2007.35. URL http://dx.doi.org/10.1109/TPAMI.2007.35.

[81] Min Tian, Weiwei Zhang, and Fuqiang Liu. On-line ensemble svm for robust

object tracking. In Yasushi Yagi, Sing Bing Kang, In-So Kweon, and Hongbin Zha,

editors, ACCV (1), volume 4843 of Lecture Notes in Computer Science, pages 355–

364. Springer, 2007. ISBN 978-3-540-76385-7. URL http://dblp.uni-trier.de/

db/conf/accv/accv2007-1.html#TianZL07.

[82] Xiaoqin Zhang, Weiming Hu, Stephen J. Maybank, and Xi Li. Graph based

discriminative learning for robust and efficient object tracking. In ICCV, pages

1–8. IEEE, 2007. URL http://dblp.uni-trier.de/db/conf/iccv/iccv2007.

html#ZhangHML07.

[83] Meng Wang, Xian-Sheng Hua, Jinhui Tang, and Richang Hong. Beyond dis-

tance measurement: Constructing neighborhood similarity for video annotation.

IEEE Transactions on Multimedia, 11(3):465–476, 2009. URL http://dblp.

uni-trier.de/db/journals/tmm/tmm11.html#WangHTH09.

[84] Meng Wang, Xian-Sheng Hua, Richang Hong, Jinhui Tang, Guo-Jun Qi, and Yan

Song. Unified video annotation via multigraph learning. IEEE Trans. Circuits

Syst. Video Techn., 19(5):733–746, 2009. URL http://dblp.uni-trier.de/db/

journals/tcsv/tcsv19.html#WangHHTQS09.

[85] Ming Yang, Junsong Yuan, and Ying Wu. Spatial selection for attentional visual

tracking. In CVPR, 2007.

[86] Julia A. Lasserre. Principled hybrids of generative and discriminative models. In

In CVPR ’06: Proceedings of the 2006 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, pages 87–94. IEEE Computer Society,

2006.

[87] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers:

A comparison of logistic regression and naive bayes. In Thomas G. Dietterich,

Suzanna Becker, and Zoubin Ghahramani, editors, NIPS, pages 841–848. MIT

Press, 2001. URL http://dblp.uni-trier.de/db/conf/nips/nips2001.html#

NgJ01.

http://dx.doi.org/10.1109/TPAMI.2007.35
http://dblp.uni-trier.de/db/conf/accv/accv2007-1.html#TianZL07
http://dblp.uni-trier.de/db/conf/accv/accv2007-1.html#TianZL07
http://dblp.uni-trier.de/db/conf/iccv/iccv2007.html#ZhangHML07
http://dblp.uni-trier.de/db/conf/iccv/iccv2007.html#ZhangHML07
http://dblp.uni-trier.de/db/journals/tmm/tmm11.html#WangHTH09
http://dblp.uni-trier.de/db/journals/tmm/tmm11.html#WangHTH09
http://dblp.uni-trier.de/db/journals/tcsv/tcsv19.html#WangHHTQS09
http://dblp.uni-trier.de/db/journals/tcsv/tcsv19.html#WangHHTQS09
http://dblp.uni-trier.de/db/conf/nips/nips2001.html#NgJ01
http://dblp.uni-trier.de/db/conf/nips/nips2001.html#NgJ01

Bibliography 114

[88] Rajat Raina, Yirong Shen, Andrew Y. Ng, and Andrew Mccallum. Classification

with hybrid generative/discriminative models. In In Advances in Neural Informa-

tion Processing Systems 16. MIT Press, 2003.

[89] Ruei-Sung Lin, David A. Ross, Jongwoo Lim, and Ming-Hsuan Yang. Adaptive

discriminative generative model and its applications. In Advances in Neural In-

formation Processing Systems 17 [Neural Information Processing Systems, NIPS

2004, December 13-18, 2004, Vancouver, British Columbia, Canada], 2004.

[90] Julia A. Lasserre. Principled hybrids of generative and discriminative models. In

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, pages 87–94. IEEE Computer Society, 2006.

[91] Helmut Grabner, Peter M. Roth, and Horst Bischof. Eigenboosting: Combin-

ing discriminative and generative information. In CVPR. IEEE Computer So-

ciety, 2007. URL http://dblp.uni-trier.de/db/conf/cvpr/cvpr2007.html#

GrabnerRB07.

[92] T. E. Woodley, B. Stenger, and R. Cipolla. Tracking using online feature se-

lection and a local generative model. In Proceedings of the British Machine

Vision Conference, pages 86.1–86.10. BMVA Press, 2007. ISBN 1-901725-34-0.

doi:10.5244/C.21.86.

[93] Chad Aeschliman, Johnny Park, and Avinash C. Kak. A probabilistic framework

for joint segmentation and tracking. In CVPR, pages 1371–1378. IEEE, 2010. URL

http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#AeschlimanPK10.

[94] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for

robust tracking. In ECCV, 2008.

[95] Bernhard Zeisl, Christian Leistner, Amir Saffari, and Horst Bischof. On-line semi-

supervised multiple-instance boosting. In CVPR, page 1879. IEEE, 2010. URL

http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#ZeislLSB10.

[96] Feng Tang, Shane Brennan, Qi Zhao, and Hai Tao. Co-tracking using semi-

supervised support vector machines. In Computer Vision, IEEE International

Conference on, volume 0, pages 1–8, Los Alamitos, CA, USA, 2007. IEEE Com-

puter Society. ISBN 978-1-4244-1630-1. doi: http://doi.ieeecomputersociety.org/

10.1109/ICCV.2007.4408954.

[97] Michael D. Breitenstein, Fabian Reichlin, Bastian Leibe, Esther Koller-Meier, and

Luc Van Gool. Robust tracking-by-detection using a detector confidence particle

filter. In IEEE International Conference on Computer Vision, October 2009.

http://dblp.uni-trier.de/db/conf/cvpr/cvpr2007.html#GrabnerRB07
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2007.html#GrabnerRB07
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#AeschlimanPK10
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2010.html#ZeislLSB10

Bibliography 115

[98] Junseok Kwon and Kyoung Mu Lee. Visual tracking decomposition. In CVPR,

pages 1269–1276, 2010.

[99] Jakob Santner, Christian Leistner, Amir Saffari, Thomas Pock, and Horst Bischof.

PROST Parallel Robust Online Simple Tracking. In IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco,

CA, USA, 2010.

[100] K. Briechle and U. D. Hanebeck. Template matching using fast normalized cross

correlation. In Proceedings of SPIE: Optical Pattern Recognition XII, volume 4387,

pages 95–102, March 2001. doi: 10.1117/12.421129. URL http://dx.doi.org/

10.1117/12.421129.

[101] Manuel Werlberger, Werner Trobin, Thomas Pock, Andreas Wedel, Daniel Cre-

mers, and Horst Bischof. Anisotropic huber-l1 optical flow. In BMVC. British

Machine Vision Association, 2009. URL http://dblp.uni-trier.de/db/conf/

bmvc/bmvc2009.html#WerlbergerTPWCB09.

[102] Jean-Yves Bouguet. Pyramidal implementation of the lucas kanade feature tracker

description of the algorithm, 2000.

[103] Xu Yan, Xuqing Wu, Ioannis A. Kakadiaris, and Shishir K. Shah. To track or

to detect? an ensemble framework for optimal selection. In Andrew W. Fitzgib-

bon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, edi-

tors, ECCV, volume 7576 of Lecture Notes in Computer Science, pages 594–607.

Springer, 2012. ISBN 978-3-642-33714-7.

[104] W. Förstner and B. Moonen. A metric for covariance matrices. Technical report,

Dept. of Geodesy and Geoinformatics, Stuttgart University, 1999.

[105] Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A riemannian framework for

tensor computing. INTERNATIONAL JOURNAL OF COMPUTER VISION, 66:

41–66, 2006.

[106] X. Li, W. Hu, Z. Zhang, X. Zhang, and J. Cheng. Visual tracking via incremental

log-euclidean riemannian subspace learning. In CVPR, 2008.

[107] A. Alahi, D. Marimon, M. Bierlaire, and M. Kunt. Object detection and matching

with mobile cameras collaboratin with fixed cameras. In Proc. 10th European

Conference on Computer Vision, pages 1523–1550, 2008.

[108] P. Cortez-Cargill, C. Undurraga-Rius, D. Mery-Quiroz, and A. Soto. Performance

evaluation of the covariance descriptor for target detection. In International Con-

ference of the Chilean Computer Science Society, pages 133–141, 2009.

http://dx.doi.org/10.1117/12.421129
http://dx.doi.org/10.1117/12.421129
http://dblp.uni-trier.de/db/conf/bmvc/bmvc2009.html#WerlbergerTPWCB09
http://dblp.uni-trier.de/db/conf/bmvc/bmvc2009.html#WerlbergerTPWCB09

Bibliography 116

[109] M. J. Metternich, M. Worring, and A. W. M. Smeulders. Color based tracing

in real-life surveillance data. Transactions on Data Hiding and Multimedia Se-

curity, V, 2010. URL http://www.science.uva.nl/research/publications/

2010/MetternichTDHMS2010a.

[110] Jerome H. Friedman. Regularized discriminant analysis. Journal of the American

Statistical Association, 84(405):165–175, 1989. ISSN 0162-1459 (print), 1537-274X

(electronic).

[111] Xudong Jiang, Bappaditya Mandal, and Alex Kot. Eigenfeature regulariza-

tion and extraction in face recognition. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 30(3):383–394, 2008. ISSN 0162-8828. doi:

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2007.70708.

[112] Xudong Jiang. Asymmetric principal component and discriminant analyses

for pattern classification. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 31(5):931–937,, 2009. ISSN 0162-8828. doi: http://doi.

ieeecomputersociety.org/10.1109/TPAMI.2008.258.

[113] C.R. Rao and H. Toutenburg. Linear Models: Least Squares and Alternatives.

Springer series in statistics. Springer, 1999. ISBN 9780387988481. URL http:

//books.google.fr/books?id=mfsnCM_q_T8C.

[114] R. Collins, X. Zhou, and S. Teh. An open source tracking testbed and evluation

website. In PETS, 2005.

[115] Chis Ding and Xiaofeng He. K-means clustering via principal component analysis.

In International Conference on Machine Learning, Banff, Canada, 2004.

[116] Hongyuan Zha, Xiaofeng He, Chis Ding, and Horst Simon. Spectral relaxation

for k-means clustering. In Advances in Neural Information Processing Systems

(NIPS), pages 1057–1064, 2002.

[117] Yizong Cheng. Mean shift, mode seeking, and clustering. TPAMI, 17(8)(8):790–

799, 1995.

[118] Nadav Ben-Haim, Boris Babenko, and Serge Belongie. Improving web-based image

search via content based clustering. In SLAM, New York City, 2006.

[119] Yunpeng Liu, Guangwei Li, and Zelin Shi. Covariance tracking via geometric

particle filtering. EURASIP Journal on Advances in Signal Processing, 2010:22:1–

22:9, February 2010.

http://www.science.uva.nl/research/publications/2010/MetternichTDHMS2010a
http://www.science.uva.nl/research/publications/2010/MetternichTDHMS2010a
http://books.google.fr/books?id=mfsnCM_q_T8C
http://books.google.fr/books?id=mfsnCM_q_T8C

Bibliography 117

[120] W. R. Schwartz, A. Kembhavi, D. Harwood, and L. S. Davis. Human detection us-

ing partial least squares analysis. In IEEE International Conference on Computer

Vision, pages 24–31, 2009.

[121] W. R. Schwartz, H. Guo, J. Choi, and L. S. Davis. Face identification using large

feature sets. IEEE Transactions on Image Processing, 21(4):2245–2255, 2012.

[122] G. Chiachia, N. Pinto, W. R. Schwartz, A. Rocha, A. X. Falcao, and D. Cox.

Person-specific subspace analysis for unconstrained familiar face identification. In

British Machine Vision Conference, 2012.

[123] Qing Wang, Feng Chen, Wenli Xu, and Ming-Hsuan Yang. Object tracking via

partial least squares analysis. IEEE Transactions on Image Processing, 21(10):

4454–4465, 2012.

[124] Herman Wold. Path models with latent variables: The nipals approach. In H M

Blalock, A Aganbegian, F M Borodkin, R Boudon, and V Capecchi, editors, Quan-

titative Sociology: International perspectives on mathematical and statistical mod-

eling, pages 307–357. Academic Press, 1975.

[125] Sijmen de Jong. Simpls: An alternative approach to partial least squares regres-

sion. Chemometrics and Intelligent Laboratory Systems, 18:251–263, March 1993.

[126] Hervé Abdi. Partial least squares (PLS) regression. In Encyclopedia for research

methods for the social sciences, pages 792–795. Sage, 2003.

[127] Rolf Manne. Analysis of two partial-least-squares algorithms for multivariate cal-

ibration. Chemometrics and Intelligent Laboratory Systems, 2(1):187–197, 1987.

[128] Roman Rosipal and Nicole Krämer. Overview and recent advances in partial least

squares. In Lecture Notes in Computer Science, volume 3940, pages 34–51, 2006.

[129] David di Ruscio. A weighted view on the partial least-squares algorithm. Auto-

matica, 36:831–850, 2000.

[130] Walter Edwin Arnoldi. The principle of minimized iterations in the solution of the

matrix eigenvalue problem. Quarterly of Applied Mathematics, 9(17):17–29, 1951.

[131] K. Bache and M. Lichman. UCI machine learning repository, 2013. URL http:

//archive.ics.uci.edu/ml.

[132] Doug Gray, Shane Brennan, and Hai Tao. Evaluating appearance models for

recognition, reacquisition, and tracking. In In IEEE International Workshop on

Performance Evaluation for Tracking and Surveillance, Rio de Janeiro, 2007.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Bibliography 118

[133] Paul Viola and Michael J. Jones. Robust real-time face detection. Internaltional

Journal of Computer Vision, 57(2):137–154, May 2004. ISSN 0920-5691. doi: 10.

1023/B:VISI.0000013087.49260.fb. URL http://dx.doi.org/10.1023/B:VISI.

0000013087.49260.fb.

[134] Fatih Porikli. Integral histogram: A fast way to extract histograms in cartesian

spaces. In in Proc. IEEE Conf. on Computer Vision and Pattern Recognition,

pages 829–836, 2005.

[135] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Forward-backward error:

Automatic detection of tracking failures. In ICPR, pages 2756–2759. IEEE, 2010.

[136] Luka Cehovin, Matej Kristan, and Ales Leonardis. Robust visual tracking us-

ing an adaptive coupled-layer visual model. IEEE Trans. Pattern Anal. Mach.

Intell., 35(4):941–953, 2013. URL http://dblp.uni-trier.de/db/journals/

pami/pami35.html#CehovinKL13.

[137] Rui Yao, Qinfeng Shi, Chunhua Shen, Yanning Zhang, and Anton van den Hen-

gel. Part-based visual tracking with online latent structural learning. In CVPR,

pages 2363–2370. IEEE, 2013. URL http://dblp.uni-trier.de/db/conf/cvpr/

cvpr2013.html#YaoSSZH13.

[138] Inderjit S. Dhillon and Suvrit Sra. Generalized nonnegative matrix approximations

with bregman divergences. In In: Neural Information Proc. Systems, pages 283–

290, 2005.

[139] Hai-Ni Qu, Guo-Zheng Li, and Wei-Sheng Xu. An asymmetric classifier based

on partial least squares. Pattern Recognition, 43(10):3448 – 3457, 2010. ISSN

0031-3203. doi: http://dx.doi.org/10.1016/j.patcog.2010.05.002. URL http://

www.sciencedirect.com/science/article/pii/S0031320310002037.

[140] James Steven Supančič III and Deva Ramanan. Self-Paced Learning for Long-

Term Tracking. 2013 IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 2379–2386, June 2013. doi: 10.1109/CVPR.2013.308. URL http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6619152.

[141] Michael J. Black and Allan D. Jepson. Eigentracking: Robust matching and

tracking of articulated objects using a view-based representation. International

Journal of Computer Vision, 26(1):63–84, January 1998. ISSN 0920-5691. doi: 10.

1023/A:1007939232436. URL http://dx.doi.org/10.1023/A:1007939232436.

[142] O. Tuzel, F. Porikli, and P. Meer. Human detection via classification on riemannian

manifolds. In IEEE Int’l Conf. Computer Vision and Pattern Recognition, 2007.

http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb
http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb
http://dblp.uni-trier.de/db/journals/pami/pami35.html#CehovinKL13
http://dblp.uni-trier.de/db/journals/pami/pami35.html#CehovinKL13
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2013.html#YaoSSZH13
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2013.html#YaoSSZH13
http://www.sciencedirect.com/science/article/pii/S0031320310002037
http://www.sciencedirect.com/science/article/pii/S0031320310002037
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6619152
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6619152
http://dx.doi.org/10.1023/A:1007939232436

Bibliography 119

[143] Avraham Levy and Michael Lindenbaum. Sequential karhunen-loeve basis extrac-

tion and its application to images. IEEE Transactions on Image Processing, 9(8):

1371–1374, 2000.

Algorithmes d’apprentissage en ligne
pour le suivi visuel

Nous étudions le problème de suivi de cible dans
une séquence vidéo sans aucune connaissance
préalable autre qu'une référence annotée dans la
première image. Pour résoudre ce problème, nous
proposons une nouvelle méthode de suivi temps-réel
se basant sur à la fois une représentation originale
de l’objet à suivre (descripteur) et sur un algorithme
adaptatif capable de suivre la cible même dans les
conditions les plus difficiles comme le cas où la
cible disparaît et réapparait dans le scène (ré-
identification). Tout d'abord, pour la représentation
d’une région de l’image à suivre dans le temps, nous
proposons des améliorations au descripteur de
covariance. Ce nouveau descripteur est capable
d’extraire des caractéristiques spécifiques à la cible,
tout en ayant la capacité à s’adapter aux variations
de l’apparence de la cible. Ensuite, l’étape
algorithmique consiste à mettre en cascade des
modèles génératifs et des modèles discriminatoires
afin d’exploiter conjointement leurs capacités à
distinguer la cible des autres objets présents dans la
scène. Les modèles génératifs sont déployés dans
les premières couches afin d’éliminer les candidats
les plus faciles alors que les modèles
discriminatoires sont déployés dans les couches
suivantes afin de distinguer la cibles des autres
objets qui lui sont très similaires. L’analyse
discriminante des moindres carrés partiels (AD-
MCP) est employée pour la construction des
modèles discriminatoires. Enfin, un nouvel
algorithme d'apprentissage en ligne AD-MCP a été
proposé pour la mise à jour incrémentale des
modèles discriminatoires.

Mots clés : analyse multivariée - détection du signal
- analyse de covariance – apprentissage
automatique.

Lei QIN
Doctorat : Optimisation et Sûreté des Systèmes

Année 2014

Online Machine Learning Methods for
Visual Tracking

We study the challenging problem of tracking an
arbitrary object in video sequences with no prior
knowledge other than a template annotated in the
first frame. To tackle this problem, we build a robust
tracking system consisting of the following
components. First, for image region representation,
we propose some improvements to the region
covariance descriptor. Characteristics of a specific
object are taken into consideration, before
constructing the covariance descriptor. Second, for
building the object appearance model, we propose
to combine the merits of both generative models and
discriminative models by organizing them in a
detection cascade. Specifically, generative models
are deployed in the early layers for eliminating most
easy candidates whereas discriminative models are
in the later layers for distinguishing the object from
a few similar "distracters". The Partial Least
Squares Discriminant Analysis (PLS-DA) is employed
for building the discriminative object appearance
models. Third, for updating the generative models,
we propose a weakly-supervised model updating
method, which is based on cluster analysis using
the mean-shift gradient density estimation
procedure. Fourth, a novel online PLS-DA learning
algorithm is developed for incrementally updating
the discriminative models. The final tracking system
that integrates all these building blocks exhibits
good robustness for most challenges in visual
tracking. Comparing results conducted in
challenging video sequences showed that the
proposed tracking system performs favorably with
respect to a number of state-of-the-art methods.

Keywords: multivariate analysis - signal detection -
analysis of covariance – machine learning.

Ecole Doctorale "Sciences et Technologies"

Thèse réalisée en partenariat entre :

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 The visual object tracking problem
	1.2 Components of a typical visual tracking system
	1.3 Main contributions
	1.4 Structure of the thesis

	2 Advances in Visual Tracking
	2.1 Motion model
	2.2 Appearance description
	2.2.1 Feature descriptors
	2.2.2 Multiple features fusion

	2.3 Object appearance model and similarity measure
	2.3.1 Generative models
	2.3.2 Discriminative models
	2.3.3 Hybrid models

	2.4 Updating of the object appearance model

	3 Improved Region Covariance Descriptors and Clustering-Based Model Updating
	3.1 Introduction
	3.2 Review of the region covariance descriptor
	3.2.1 Region covariance descriptor
	3.2.2 Distance metrics and intrinsic means of covariance matrices
	3.2.3 Discussion

	3.3 Variants of the region covariance descriptor
	3.3.1 A machine learning perspective of the region covariance descriptor for object detection
	3.3.2 Regularized covariance descriptor
	3.3.3 Adaptive covariance descriptor
	3.3.3.1 Computation of the adaptive covariance descriptor
	3.3.3.2 Relation to the conventional covariance descriptor

	3.3.4 1 norm for distance measure
	3.3.5 Empirical Evaluation
	3.3.5.1 Settings
	3.3.5.2 Results
	3.3.5.3 Discussion

	3.4 Object tracking
	3.4.1 Object appearance model
	3.4.2 Target localization
	3.4.3 Weakly-supervised model updating
	3.4.3.1 Mean-shift clustering for sample selection
	3.4.3.2 Updating of the object appearance model

	3.4.4 Evaluation of the tracking system
	3.4.4.1 Experimental setup
	3.4.4.2 Results

	3.5 Conclusion

	4 Online Learning Partial Least Squares Discriminant Model
	4.1 Introduction
	4.2 The PLS analysis
	4.2.1 The NIPALS Algorithm
	4.2.2 The SIMPLS Algorithm
	4.2.3 Discussion

	4.3 Online PLS-1 methods
	4.3.1 A closed-form PLS-1 solution
	4.3.2 Incremental PLS model updating
	4.3.3 Decremental PLS Model Updating
	4.3.4 Weighted online PLS model updating
	4.3.5 Regression residual
	4.3.6 Time and space complexities

	4.4 Experiments
	4.4.1 UCI dataset
	4.4.2 VIPeR dataset

	4.5 Conclusion

	5 Cascaded Generative and Discriminative Object Appearance Models for Tracking
	5.1 Introduction
	5.2 System overview
	5.3 Cascaded generative and discriminative object appearance models
	5.3.1 Sample selection via the generative appearance model
	5.3.2 Discriminative re-evaluation
	5.3.2.1 Training the discriminative appearance Model
	5.3.2.2 Re-evaluation via the discriminative Model

	5.4 Collaborative online model updating
	5.4.1 Updating of the generative model
	5.4.2 Updating of the discriminative model

	5.5 Extensions
	5.5.1 Multiple generative models
	5.5.2 Multiple discriminative models
	5.5.3 Illustration
	5.5.4 The overall tracking algorithm

	5.6 Experiments
	5.6.1 Implementation details
	5.6.2 Diagnostics
	5.6.3 Comparison with the state-of-the-art

	5.7 Conclusion

	6 Summary and Perspectives
	6.1 Summary
	6.2 Limitations and perspectives

	A Derivation of Equation (4.32)
	B Résumé Etendu
	B.1 Introduction
	B.2 Etat de l'art
	B.3 Vue d'ensemble du système
	B.3.1 Inférence bayésienne séquentielle pour le suivi visuel
	B.3.2 Vue d'ensemble du système

	B.4 Suivi par des modèles d'apparence en cascade
	B.4.1 Sélection des échantillons par le modèle d'apparence génératif
	B.4.2 Ré-évaluation par le modèle discriminatoire
	B.4.2.1 Régression par moindres carrés partiels
	B.4.2.2 Descripteur de covariance adaptatif
	B.4.2.3 Initialisation du modèle d'apparence
	B.4.2.4 Ré-évaluation par le modèle distriminatoire

	B.5 Mise à jour des modèles
	B.5.1 Mise à jour du modèle génératif
	B.5.2 Mise à jour du modèle discriminatoire
	B.5.2.1 Une Solution non-itérative de la régression PLS-1
	B.5.2.2 Méthode incrémentale pour la mise à jour du modèle PLS

	Bibliography

