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Abnormal Detection in Video Streams via One-class LearningMethods

Abstract: One of the major research areas in computer vision is visual surveillance. The
scientific challenge in this area includes the implementation of automatic systems for ob-
taining detailed information about the behavior of individuals and groups. Particularly,
detection of abnormal individual movements requires sophisticated image analysis. This
thesis focuses on the problem of the abnormal event detection, including feature descriptor
design characterizing the movement information and one-class kernel-based classification
methods. In this thesis, three different image features have been proposed: (i) global op-
tical flow features, (ii) histograms of optical flow orientations (HOFO) descriptor and (iii)
covariance matrix (COV) descriptor. Based on these proposed descriptors, one-class sup-
port vector machines (SVM) are proposed in order to detect abnormal events. Two online
strategies of one-class SVM are proposed: the first strategyis based on support vector de-
scription (online SVDD) and the second strategy is based on online least squares one-class
support vector machines (online LS-OC-SVM).
Keywords: Signal detection; Multivariate analysis; Support vector machines; Analysis of
covariance.





Algorithmes d’apprentissage mono-classe
pour la détection d’anomalies dans les flux vidéo

Résume:La vidéo surveillance représente l’un des domaines de recherche privilégiés en
vision par ordinateur. Le défi scientifique dans ce domaine comprend la mise en œuvre de
systèmes automatiques pour obtenir des informations détaillées sur le comportement des
individus et des groupes. En particulier, la détection de mouvements anormaux de groupes
d’individus nécessite une analyse fine des frames du flux vidéo. Dans le cadre de cette
thèse, la détection de mouvements anormaux est basée sur la conception d’un descripteur
d’image efficace ainsi que des méthodes de classification non linéaires.Nous proposon-
s trois caractéristiques pour construire le descripteur demouvement : (i) le flux optique
global, (ii) les histogrammes de l’orientation du flux optique (HOFO) et (iii) le descripteur
de covariance (COV) fusionnant le flux optique et d’autres caractéristiques spatiales de
l’image. Sur la base de ces descripteurs, des algorithmes demachine learning (machines à
vecteurs de support (SVM)) mono-classe sont utilisés pour détecter des événements anor-
maux. Deux stratégies en ligne de SVM mono-classe sont proposées : la première est basée
sur le SVDD (online SVDD) et la deuxième est basée sur une version “moindres carrés”
des algorithmes SVM (online LS-OC-SVM).
Les mots clés:Détection du signal; Analyse multivariée; Machines à vecteurs support;
Analyse de covariance.
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One of the major research areas in computer vision is visual surveillance. The scien-
tific challenge in this area includes the implementation of automatic systems for obtaining
detailed information about the behavior of individuals andgroups. Obtaining detailed in-
formation about the behavior of individuals from video frames obtained by a visual sensor,
is a challenging task. Particularly, detection of abnormalindividual movements requires
sophisticated image analysis.

1.1 Overview of video abnormal detection

The abnormal detection problems have other names in the literature, such as suspicious
event, irregular behavior, uncommon behavior, unusual activity /event/behavior, abnormal
behavior, anomaly, etc. [Popoola 2012]. The research focused on news broadcast video;
conference video; unmanned aerial vehicle (UAV) motion imagery and ground recognition
video; surveillance video of the areas including market, museum, warehouse, room of old
people, plaza, airport terminal, parking lot, traffic, subway stations, aerial surveillance,
and sign language data. In this section, firstly, several video abnormal detection systems
are introduced. And then, the abnormal event detection handled in this thesis is generally
described.

1.1.1 Video abnormal detection systems

Video analytics gained significant research interest in the90s of the last century, when
the defense advanced research projection agency (DARPA) started sponsoring detection,
recognition, and understanding of moving object events [Candamo 2010]. Digital image
processing, advanced video codec techniques and pattern recognition algorithms have been
applied to the visual surveillance field.
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The video analysis and content extraction (VACE) project focused on automatic video
content extraction, multi-model fusion, event recognition and understanding. DARPA
has supported several research projects, which include visual surveillance and monitor-
ing (VSAM, 1997) [Collins 2000], human identification at a distance (HID,2000), video
and image retrieval analysis tool (VIRAT, 2008) [Candamo 2010].

The public transportation system is also a domain related tocomputer vision problems.
The New York city transit system is the busiest metro system in the U.S.A. (based on 2006
statistics) [Metro b, Candamo 2010], Moscow metro is the busiest metro in Europe (based
on 2007 statistics) [Metro a], Paris public transportation network (RATP) is the second
busiest metro system in Europe [Metro c]. The challenge for real-time events detection
solutions (CREDS) [Ziliani 2005] defined by the needs of RATP focused on proximity
warning dropping objects on tracks, launching objects across platforms, persons trapped
by the door of a moving train, walking on rails, failing on thetrack and crossing the rails.
The French project SAMSIT (Système d’Analyse de Médias pourune Sécurité Intelligente
dans les Transports publics) aims at designing solutions for the automatic surveillance in
public transport vehicles, such as trains and metros, by analyzing human behaviors based
on audio-video stream interpretation [Vu 2006].

1.1.2 Definition of abnormal detection

Several normal and abnormal scenes are shown in Fig.1.1. In Fig.1.1(a)(b), all the peo-
ple are walking, these scenes are considered as normal. In Fig.1.1(d), an unusual group
movement is detected, the people are suddenly running in different directions. Another
abnormal example is shown in Fig.1.1(d), the major people in the frame are walking, while
one person is running. In abnormal detection problems, it issupposed that the samples
from a positive class are available. Thus, the one-class classification method is used in this
thesis.

1.2 Summary of the thesis

The main contributions in this thesis and the layout are briefly summarized below.

1.2.1 Main contributions

This thesis focuses on the abnormal detection problem via one-class classification methods.
The main thesis contributions are as follows:

Firstly, the algorithm is based on features of optical flow and one-class support vec-
tor machine (OC-SVM). The optical flow is computed at each pixel of the video frame,
and the nonlinear one-class SVM, after a learning period characterizing normal behavior,
detects the abnormal pixels or blobs in the current frame. The blob extraction method in
the crowded video scenes is proposed to detect abnormal blobevents. A structural high
dimensional descriptor, histograms of optical flow orientation (HOFO) is proposed as a
descriptor encoding the moving information of each video frame.
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(a) Normal plaza scene (b) Normal indoor scene (c) Mall scene

(d) Abnormal plaza scene (e) PETS (f) 2 people scene

Figure 1.1: Examples of the normal and abnormal scenes. (a) All the people are walking,
the normal plaza scene in UMN datasets [UMN 2006]. (b) All the people are walking,
the normal indoor scene in UMN datasets. (c) One person is running and the others are
walking, the normal and abnormal blobs. (d) All the people are running, the abnormal plaza
scene. (e) All the people are walking, the normal scene in PETS dataset [PETS 2009]. (f)
Two people are walking, a normal scene of UTT dataset.

Secondly, the covariance matrix descriptor (COV) is proposed to fuse the image inten-
sity and the optical flow. A multi-kernel learning strategy improving the detection perfor-
mance is proposed as well.

Thirdly, as the abnormal detection problem usually concerns a long video sequence,
we propose two online detection algorithms, online supportvector data description (online
SVDD) and online least squares one-class support vector machine (online LS-OC-SVM).

The proposed feature descriptor, online one-class classification methods, and the dataset-
s on which the proposed methods are tested on are abstracted in the TABLE1.2.1.

1.2.2 Layout of the thesis

The thesis is organized as follows.
In Chapter2, the state of the art of the abnormal detection and event recognition meth-

ods is introduced. Two main components, abstraction and event modeling, are identified.
In Chapter3, the basic structure of our work, which is based on event represention de-

scriptor and pattern classification method is introduced. The algorithm is based on optical
flow descriptor and one-class SVM classifier. Three feature extraction strategies, pixel-
by-pixel, block-by-block, and blockall-by-block are proposed. A blob extraction method
is presented to extract blobs from crowded scenes. We propose histogram of optical flow
orientation (HOFO) as a descriptor encoding the moving information of each video frame.
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Chapter Method Dataset
Chapter 3 Optical flow Pixel-by-Pixel UTT UMN

Block-by-Block UTT UMN
Blockall-by-Block UTT UMN

HOFO Blob UTT UMN Mall
HOFO Frame UMN PETS

Chapter 5 COV Blob UTT UMN Mall
COV Frame UMN PETS

Chapter 6 online SVDD dictionary fixed through train UMN
dictionary fixed through test UMN

online LS-SVM no dictionary through train UMN
dictionary through train UMN

Table 1.1: The proposed feature descriptors and online one-class classification methods.
The proposed feature descriptors include block optical flowfeature descriptor, histograms
of optical flow orientations (HOFO), and covariance matrix descriptor (COV). The pro-
posed online one-class classification methods include: online support vector data descrip-
tion (online SVDD), online least squares one-class supportvector machine (online LS-
OC-SVM), sparse online least squares one-class support vector machine (sparse online
LS-OC-SVM). The datasets used for presenting the method performance are labeled.

In Chapter4, we propose the covariance matrix descriptor fusing the image intensity
and the optical flow to encode moving information and image characteristics of a blob or
a frame. A multi-kernel strategy which consists of several parts tuning the importance of
each sub-image is proposed to improve the detection accuracy.

In Chapter5, abnormal detection via online support vector data description (online
SVDD) and via online least squares one-class support vectormachine (online LS-OC-
SVM) are proposed. Covariance matrix descriptor is used forthese online implementa-
tions.

Chapter6 concludes this thesis and discusses the future work.
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The abnormal events detection is the focus of this thesis, itincludes feature descrip-
tor characterizing the movement information and one-classclassification methods. In this
chapter, the state of the art related to abnormal event detection problems and event recog-
nition problems [Lavee 2009a, Lavee 2009b], are introduced. Two main components of
the abnormal detection and event recognition, namely abstraction and event modeling, are
identified. Abstraction is the process of modeling the data into informative units to be
used as input to the event model. Event modeling is devoted toformally describe events of
interest, enabling recognition of these events as they occur in the video sequence.

2.1 Abstraction

Abstraction is the organization of low-level inputs into various constructs (or “primitives”)
representing the properties of the video data. There are three main categories of abstraction
approaches: pixel-based, object-based, and logic-based abstractions. Pixel-based abstrac-
tion describes the properties of pixel features in the low-level input. Object-based abstrac-
tion describes the low-level input in terms of semantic objects. Logic-based abstraction
organizes the low-level input into statement of semantic knowledge [Lavee 2009b].
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2.1.1 Pixel-based abstraction

Pixel-based abstraction does not attempt to group pixel regions into blobs or objects, but
simply computes features based on the salient pixel regionsof an input video sequence. It
relies on pixel or pixel group features such as color, texture and gradient. This method is the
organization of low-level input into vectors in an N-dimensional metric space [Ribeiro 2005,
Zhong 2004, Shechtman 2005]. Additional information related to trajectory could be also
included in this category, such as in [Ribeiro 2005] where the speed of the object is used as
an additional feature.

Pixel-based abstraction methods include histograms of spatio-temporal gradients [Zelnik-Manor 2006];
spatio-temporal patches [Dollár 2005, Laptev 2007, Niebles 2008, Haines 2011, Kim 2009,
Benezeth 2011, Benezeth 2009, Bregler 1997, Wang 2006]; self-similarity surfaces [Shechtman 2005];
motion history images (MHI) motion energy images (MEI) and pixel change history (PCH)
[Bobick 2001, Zhong 2004, Ng 2001, Ng 2003, Gong 2003, Kosmopoulos 2010, Jiménez-Hernández 2010,
Bradski 2002, Davis 2001]; optical flow [Utasi 2010, Utasi 2008a, Utasi 2008b, Kwak 2011,
Adam 2008, Varadarajan 2009]; middle-level feature consisting of serval patches [Boiman 2007]
(please refer to details of middle-level feature in [Singh 2012, Doersch 2012]).

2.1.2 Object-based abstraction

Object-based abstraction is an approach based on the intuition that a description of the
objects participating in the video sequence is a good intermediate representation for event
reasoning. Thus the low-level input is abstracted into a setof objects within their associat-
ed properties such as speed, position and trajectory. The objects of the interest are labeled
by bounding boxes[Hongeng 2001, Xiang 2008a, Xiang 2005, Xiang 2008b, Xiang 2002,
Starner 1995, Medioni 2001, Varadarajan 2009, Yao 2010], silhouettes[Blank 2005, Schuldt 2004,
Wang 2007, Singh 2008, Chen 2007, Sminchisescu 2006], trajectories [Piciarelli 2008b,
Piciarelli 2006, Piciarelli 2005, Piciarelli 2007, Piciarelli 2008a, Calavia 2012, Jiang 2011,
Jiang 2012] and 3D trajectories [Lee 2012].

2.1.3 Logic-based abstraction

Logic-based abstraction aims at abstracting low-level inputs into statements of semantic
knowledge which can be reasoned on by a rule-based event model. This abstraction is
motivated by the observation that the world is not describedby multi-dimensional param-
eterizations of pixel distributions, or even a set of semantic objects and their properties,
but rather by a set of semantic rules and concepts, which act upon units of knowledge
[Lavee 2009b]. The representation space after the abstraction is smaller than the original
space, the influence of uncertainty errors is reduced.

In [Siskind 2000], low-level input is abstracted into line segments associated by kine-
matic stability concepts such as grounding and support. In [Cohn 2003], the chosen ab-
straction scheme focuses mainly on the spatial aspects of the event, where a set of qualita-
tive spatial relations is applied to the video sequence.
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2.2 Event modeling

Event modeling is the subsequent problem to abstraction. Given the choice of an abstrac-
tion scheme, event modeling seeks formal ways to describe and recognize events in a partic-
ular domain. There are roughly three categories: pattern-recognition methods, state event
models and semantic event models.

2.2.1 Pattern-recognition methods

The classifiers in this category do not consider the problem of event representation, they fo-
cus on the event recognition problem formulated as a traditional pattern recognition prob-
lem. This class consists of nearest neighbor, support vector machines, neural networks
[Lavee 2009a]. The main advantage of these techniques is that they can be fully specified
from a set of training data. As these methods exclude semantics, i.e. high-level knowledge
about the event domain, from the specification of the classifier, they are usually simple and
straightforward to be implemented. The representational considerations are usually left to
the abstraction scheme associated with the event recognition method.

2.2.1.1 Nearest neighbors

Nearest neighbors is widely used for classification. An unlabeled sample is labeled using
its “nearest” labeled neighbor in the database.K-nearest neighbor is a variation of nearest
neighbors methods where theK nearest neighbors vote the label of the test example. The
notion of closeness is defined by a distance measure decided upon during the model specifi-
cation [Bishop 2006]. The distance measure can be Euclidean [Blank 2005, Gorelick 2007,
Masoud 2003], Chi-squared [Zelnik-Manor 2006] and Linear programming based distance
[Jiang 2006]. Event-domain dependent metrics such as spatio-temporalregion intersection
[Ke 2007] and gradient matrix of motion field [Shechtman 2005] are also used as distance
measures. Template matching methods [Bobick 2001, Ng 2001, Ng 2003] also use nearest
neighbors models.

In [Bobick 2001], motion-energy images (MEI) and motion-history image (MHI) are
used to represent the movement. There were two component version of the templates. The
first value was a binary value indicating the presence of motion, and the second value was
a function of the recency of motion in a sequence. The Mahalanobis distance was used in
the nearest neighbor event model.

One can note that, the abstraction of video events is often high-dimensional, a suffi-
ciently dense nearest neighbor event model is intractable for recognition (complexity grows
with the dataset size).

2.2.1.2 Support vector machines

Support vector machines (SVM) [Cristianini 2000, Burges 1998] is a group of models de-
signed to find the optimal hyperplane separating two classes, or clustering one-class, in a
multi-dimensional space. Support vector machines (SVM) was initially proposed by Vap-
nik and Lerner [Vapnik 1963], it attempts to find a compromise between the minimization
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of empirical risk and the prevention of the overfitting. By applying a kernel trick, SVM can
handle nonlinear classification problems [Boser 1992, Piciarelli 2008b, Cristianini 2000,
Canu 2005].

The basic two class SVM can be generalized to multi-class decision problem (see for
example [Pittore 1999] for an application of a multi-class SVM in office surveillance).

Based on the theory of SVM and the soft-margin trick [Schölkopf 2000, Ben-Hur 2002],
one-class SVM is proposed to address the problem where only one category of samples (the
positive samples) with a few outliers are available. In [Piciarelli 2008b, Piciarelli 2006,
Piciarelli 2005, Piciarelli 2007, Piciarelli 2008a], the authors presented a method for anoma-
lous event detection by means of trajectory analysis. The trajectories were subsampled to a
fixed-dimension vector representation and clustered with an one-class support vector ma-
chines (SVM) algorithm. In these works, SVM classifiers are coupled with various feature
representation methods including pixel-based [Pittore 1999], object based [Piciarelli 2008b,
Piciarelli 2006, Piciarelli 2005, Piciarelli 2007, Piciarelli 2008a, Chen 2007]. In [Schuldt 2004],
an algorithm constructed video representations in terms oflocal space-time features based
on the silhouettes, integrated such representations with SVM classification schemes for
recognition, the gestures of one person, such as walking, jogging, running, hand-waving,
boxing and hand clapping were detected.

2.2.1.3 Neural networks

Neural networks is an another well know pattern recognitiontechnique. It simulates the
biological system by linking several decision nodes in layers. In [Vassilakis 2002], gesture
recognition problems such as recognizing head movements were addressed by applying
temporal data to both feedforward and generative feedback naturally static network models.
In [Casey 2011], a neural network was used to model the superior colliculus(SC) to detect
abnormalities in a panoramic image.

2.2.2 State event models

State event models are a class of techniques which are designed using semantic knowledge
of the state of the video event in space and time. Reasonable assumptions about the nature
of video events have been included in these technologies. State event models capture both
the hierarchical nature and the temporal evolution of the state.

2.2.2.1 Finite-state machines

Finite state machine (FSM) is a deterministic formalism useful for modeling the temporal
aspects of video events, it extends a state transition diagram with start and accept states to
allow recognition of processes. The hidden Markov model (HMM) could be considered as
a “probabilistic FSM”

In [Hongeng 2001], multi-agent event recognition was proposed, a single thread of
action was recognized from the characteristics of the trajectory and moving blob of the
actor by using finite state machine (FSM), a multi-agent event was represented by a number
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of action threads related by temporal constraints, multi-agent events were recognized by
propagating the constraints and likelihoods of event threads in a temporal logic network.

In [Medioni 2001], the moving regions in the sequence were detected and tracked, the
trajectories together with additional information in the form of geo-spatial context and goal
context were used to instantiate likely scenarios, in orderto recognize aerial events.

2.2.2.2 Bayesian Networks

In order to deal with the uncertainty of observations existing in video events, Bayesian Net-
works are used. Bayesian Networks (BN) is a class of directedacyclic graphical models.
Nodes in the BN represent random variables which may be discrete (finite set of states)
or continuous (described by a parametric distribution). Conditional independence between
these variables are represented by the structure of the graph [Jensen 2007, Pearl 1988]. BN
achieves a probability score indicating how likely the event could occur given the input. A
typical approach to anomaly detection is the basic latent Dirichlet allocation (LDA) model
[Blei 2003]. LDA is a typical standard topic model which has been used tomodel video
clips as being derived from a bag of topics drawn from a fixed (usually uniform) set of
proportions [Popoola 2012]. Other Bayesian modeling approaches are probabilistic latent
semantic analysis (pLSA) and hierarchical Dirichlet processes (HDP).

BN models do not have an inherent capacity of modeling temporal composition. So-
lutions to this problem include single-frame classification [Buxton 1995] and choosing ab-
straction schemes which encapsulate temporal properties [Lv 2006, Intille 1999].

Dynamic Bayesian Networks (DBN) benefits from a factorization of the state and the
observation space, and the temporal evolution of state. DBNgeneralizes BN to a temporal
context. It can be described formally by intra-temporal dependencies and inter-temporal
dependencies.

2.2.2.3 Hidden Markov models

HMM is a class of directed graphical models extended to modelthe temporal evolution
of the state. The HMM structure describes a model where the observations are dependent
only on the current state. The state is only dependent upon the state at the previous “time
slice” [Rabiner 1989, Ghahramani 1997].

In [Kosmopoulos 2010], multistream-fused HMM model (MFHMM) was used to rec-
ognize the real-life visual behavior understanding scenarios in a warehouse monitored by
camera networks. In [Utasi 2010, Utasi 2008a, Utasi 2008b], Gaussian mixture model (G-
MM) and hidden Markov model (HMM) were used to detect the abnormal events of out-
door traffic areas based on the optical flow features. In [Jiménez-Hernández 2010], HMM
model was used to identify uncommon motion events based on motion coding. Motion
coding was similar to motion history image (MHI), it encodedthe information and dis-
covered the intrinsic dynamics using only the visual information. In [Kim 2009], a space-
time Markov random field (MRF) model was proposed to detect abnormal activities in
video. Optical flow features were extracted at each frame, and then a mixture of probabilis-
tic principal component analyzers (MPPCA) was utilized to identify the typical patterns.
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In [Benezeth 2011, Benezeth 2009], an approach using spatio-temporal models of scenes
was presented. A Markov random field model parameterized by aco-occurrence matrix
was built. Abnormal activities in the direction, speed and size of objects were detected.
The work is similar to the change detection method when the background is not stable.
In [Bregler 1997], low level primitive were areas of coherent motion found byexpecta-
tion maximization (EM) maximum likelihood clustering, mid-level categories were simple
movements represented by dynamical systems, and high-level complex gestures were rep-
resented by hidden Markov models (HMM) as successive phasesof simple movements.
Human gait was recognized. In [Jiang 2011, Jiang 2012], a context-aware method was
proposed to detect anomalies, all moving objects in the video were tracked, a hierarchical
data mining approach, the co-occurrence anomaly detection, considered as an observa-
tion sequence generated from hidden Markov model (HMM), wasused to detect abnormal
trajectories in the traffic scenes. In [Zhu 2011b, Zhu 2011a], the people in the parking
lot were labeled by blobs, a clustering algorithm using hidden Markov models and latent
Dirichlet allocation based (HMM-LDA based) on action words. A runtime accumulative
anomaly was measured, an online likelihood ration test based (LRT-based) normal activity
recognition method was proposed for online anomaly detection.

2.2.2.4 Conditional Random Fields

Conditional random field (CRF) is based on the idea that in a discriminative statistical
framework only the conditional distribution is modeled. CRF is introduced in [Lafferty 2001],
it is an undirected graphical model generalizing the hiddenMarkov model by putting fea-
ture functions conditioned on the global observation instead of the transition probabilities.
Learning of CRF parameters can be achieved by using convex optimization methods such
as conjugate gradient decent [Sutton 2007]. CRF based event detection offers several par-
ticular advantages including the abilities to relax strongindependence assumptions in the
state transition [Wang 2006]. In [Yao 2010], the authors developed a random field model
using a structure learning method to learn important connectivity patterns between objects
and human body parts. In [Wang 2006], the event was presented by semantic, conditional
random field (CRF) was used to fuse temporal multi-modality cues for event detection in
the football match scene.

2.2.3 Semantic event models

The semantic event models are usually applied when the events of interest are relatively
complex with large variations in their appearance. These events can be described as a
sequence of a number of states, they can be defined by semanticrelationships between their
composing sub-events. This type of approach allows the event model to capture high-level
semantics such as long-term temporal dependence, hierarchy, partial ordering, concurrency
and complex relations among sub-events and abstraction primitives.
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2.2.3.1 Grammars

Grammar models [Aho 1972] specify the structure of video events as sentences composed
of words corresponding to abstraction primitives, it has been used in computer vision
[Chanda 2004]. The grammar formalism allows for mid-level semantic concepts (parts
of speech in language processing). In the event model context, these mid-level concepts
are used to model composing sub-events. This formalism naturally captures sequence and
hierarchical composition as well as long-term temporal dependencies. A grammar model
consists of three components: a set of terminals, a set of non-terminals and a set of produc-
tion rules. Terminals correspond to abstraction primitives. Non-terminals correspond to
semantic concepts. Production rules correspond to the semantic structure of the event. The
recognition of an event is reduced to determining whether a particular video sequence ab-
straction (sequence of terminals) constitutes an instanceof an event. This process is called
parsing. The particular set of production rules used in recognizing the event is called the
parse.

There are two extension models, stochastic grammars and attribute grammars. The s-
tochastic grammars allow probabilities to be associated with each production rule, it can
give a probability score to a number of legal parses [Stolcke 1995]. Attribute grammars
associate conditions with each production rule, each terminal has certain attributes associ-
ated with it [Knuth 1968]. Stochastic grammars allow reasoning with uncertainty, attribute
grammars allow further semantic knowledge to be introducedinto the parsing process, it
can describe constraints on features in addition to the syntactic structure of the input.

In [Calavia 2012], alarm detection in traffic was performed on the basis of the param-
eters of the moving objects and their trajectories by using semantic reasoning and ontolo-
gies. In [Antic 2011], the author parsed video frames by establishing a set of hypotheses
that jointly explain all the foreground, and by trying to findnormal training samples that ex-
plain the hypotheses. Abnormalities in the traffic scene were discovered indirectly as those
hypotheses which were needed for covering the foreground without finding an explanation
by normal samples for themselves. In [Ryoo 2006], a context-free grammar (CFG) based
representation scheme was used to recognize two-people activities, which were represented
as a composition of simpler actions and interactions. Eighttypes of interactions: approach,
depart, point, shake-hands, hug, punch, kick and push were recognized. In [Joo 2006],
the anomalies in a parking lot were detected by using attribute grammars, abnormal events
were detected when the input did not follow syntax of the grammar or the attributes did not
satisfy the constrains in the attribute grammar to some degree.

2.2.3.2 Petri Net

Petri Net (PN) formalism is a bipartite graph, which allows agraphical representation of
the event model and can be used to naturally model non-sequential temporal relations as
well as other semantic relations that often occur in video events. Place nodes are represent-
ed as circles and transition nodes are represented as rectangles. Place nodes hold tokens
and transition nodes specify the movement of tokens betweenplaces when a state change
occurs. Transition nodes are enabled if all input place nodes connected to that transition
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node have tokens. In [Ghanem 2004, Ghanem 2007], events were composed by combining
primitive events and previously defined events by spatial, temporal, and logical relations,
these primitive events are then filtered by Petri Nets filtersto recognize composite events
of interest to recognize airports and traffic intersection events. In [Albanese 2008], a prob-
abilistic Petri Net was proposed to recognize human activities in restricted settings such
as airports, parking lots and banks, the minimal sub-videosin a given activity was identi-
fied with a probability above a certain threshold, and the activity from a given set with the
highest probability was detected .

2.2.3.3 Constraint satisfaction

Constraint satisfaction is used to recognize the event as a set of semantic constraints on
the abstraction. The event recognition task in this method is reduced to mapping the set of
constraint to a temporal constraint network and determining whether the abstracted video
sequence satisfies these constraints. Constraint satisfaction event models represent video
events as a set of semantic constraints which include spatial, temporal and logical relation-
ships. An event is then recognized by determining wether a particular video sequence ab-
straction is consistent with these constraints. In [Vu 2003, Vu 2004], the authors represent-
ed a scenario model by specifying the characters involved inthe scenario, the sub-scenario
composing the scenario and the constraints combining the sub-scenarios. Stores totally
recognized scenarios (STRS) algorithm recognized usuallya scenario by performing an
exponential combination search. Stores partially recognized scenarios (SPRS) algorithms
tried all combinations of actors to recognize “multi-actors” scenarios. In [Fusier 2007],
a video understanding system based on scene tracking, coherence maintenance and scene
understanding was proposed, the events in airport surveillance have been recognized.

2.2.3.4 Logic Approaches

In logic approaches, an event domain is specified as a set of logic predicates. A particular
event is recognized using logical inference techniques such as resolution. These techniques
are useful as long as the number of predicates, inference rules and groundings are kept low.
In [Shet 2005, Shet 2006], the architecture of a visual surveillance system that combined
real time computer vision algorithms with logic programming to represent and recognize
activities involving interactions amongst people, pages and the environment through which
they moved was described.

2.3 One-class classification

This section presents the theoretical framework of statistical learning theory. The early
work comes back to 1960s, and becomes popular at 1990s since the support vector ma-
chines (SVM) have been proposed by Vapnik [Vapnik 2000, Vapnik 1998]. Brief introduc-
tions to this theory can be found in [Gunn 1998, Burges 1998, Bousquet 2004, Cristianini 2000].

In classification problems, the objective is to find the relation between each sample
(input) and the tag (output). The linear models are firstly reascended, then, the kernel
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trick extends the framework into a nonlinear setting, via reproducing kernel Hilbert spaces
[Aronszajn 1950, Shawe-Taylor 2004].

2.3.1 Support vector machines for binary classification

Support vector machines (SVM) are initially proposed by Vapnik and Lerner [Vapnik 1963].
SVM for classification and regression provides a powerful tool for learning models that
generalize well even in sparse, high dimension settings [Diehl 2003]. Traditional tech-
niques for pattern recognition are based on the minimization of the empirical risk, which
attempt to optimize the performance on the training set. SVMminimizes the structural risk,
the probability of misclassifying patterns for a fixed but unknown probability distribution
of the data [Pontil 1998]. It attempts to find a compromise between the minimization of
empirical rick and the prevention of overfitting. By applying kernel trick, SVM can handle
nonlinear classification problems [Boser 1992, Piciarelli 2008b, Cristianini 2000]. Consid-
er the problem of separating the set of training data{(x1, y1), (x2, y2), . . . , (xn, yn)}, x ∈ Rd

belong to two separate classesyi = ±1, the constraint is thatyiϕ
∗(xi) = 1. In linear classi-

fication, the data are separated by a hyperplane,

w⊤xi + ρ = 0, (2.1)

wherew is a vector,ρ is a constant.
The decision function for each datumx is:

ϕ(x) = sgn(w⊤xi + ρ). (2.2)

Assuming the minimization distance of the data to the separation plane is 1, one has:


w⊤xi + ρ ≥ +1, yi = +1,

w⊤xi + ρ ≤ −1, yi = −1.
(2.3)

The two equations above can be rewritten as:

yi(w
⊤xi + ρ) ≥ 1. (2.4)

The distance of each datum to the decision plane is:

d(x) =
yi(w⊤xi + ρ)
‖w‖

≥
1
‖w‖
, (2.5)

The problem maximizing the margin becomes minimizing‖w‖ under constraints.
By introducing Lagrange multipliersαi composing the vectorα, the corresponding

Lagrangian is,

L(w, ρ,α) =
1
2
‖w‖2 −

n∑

i=1

αi(yi (w
⊤xi + ρ) − 1). (2.6)

Taking the derivatives of function (2.6) with respect tow andρ, we have:
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Figure 2.1: Principle of support vector machines for two classes classification. The support
vectors are labeled by circle.

∂L
∂w
= 0 ⇒ w⊤ =

n∑

i=1

αiyix
⊤
i , (2.7)

∂L
ρ
= 0 ⇒

n∑

i=1

yiαi = 0. (2.8)

Replace (2.7) (2.8) into (2.6), the optimization problem becomes:

max
α

n∑

i=1

αi −
1
2

n∑

i, j=1

αiα jyiy jx
⊤
i x j , (2.9)

subject to:
n∑

i=1

αiyi = 0, αi ≥ 0. (2.10)

This problem can be addressed by standard quadratical program method. Only few
entries ofα are not 0, these correspond training samples are called support vector (SV).
Once theα are calculated, the optimal hyperplane is:

w =

n∑

i=1

αiyixi , (2.11)

ρ = −
1
2
w⊤(xr + xs), (2.12)

wherexr andxs are any support vectors from each class satisfying:

αr , αs > 0, yr = −1, ys = +1. (2.13)

As shown in Fig.2.1, the samples marked by circle in supplementary hyperplaneH1

andH2 are support vectors. The hard margin classifier is then,
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ϕ(x) = sgn(w⊤x + ρ) = sgn(
n∑

i=1

αiyix
⊤
i x + ρ). (2.14)

Usually, the data cannot be separated linearly, it is neededto tolerate the errors of
classification results of some samples. The error of classification of samplexi is quantified
by relaxation variableξi , ξi ≥ 0. The optimization problem becomes:

min
1
2
‖w‖2 +C

n∑

i=1

ξi , (2.15)

subject to:yi(w
⊤xi + ρ) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . , n. (2.16)

Address this optimization problem as the the method in hard margin classifier, we have:

max
n∑

i=1

αi −
1
2

n∑

i, j=1

αiα jyiy jx
⊤
i x j , (2.17)

subject to:
n∑

i=1

αiyi = 0, 0 < αi ≤ C, i = 1, 2, . . . , n. (2.18)

The standard quadratical program is used to address this soft margin problem. In non-
linear situation, the scale product is replaced by a define positive kernel which implicitly
transformers each sample by a nonlinear function. If an kernel κ is given, the decision
function becomes:

ϕ(x) = sgn(
n∑

i=1

αiyiκ(xi ,x) + ρ). (2.19)

2.3.2 Hyperplane one-class support vector machines

Based on the theory of SVM, one-class SVM is proposed to deal with problems that only
one category of (the positive) samples are available. One-class SVM aims to determine a
suitable region in the input data spaceX which includes mostly the samples drawn from
an unknown probability distributionP. It detects objects which resemble training samples.
Hyperplane based one-class SVM is the extended version of the original SVM to one-class
problems [Schölkopf 2001], it is also be called asν−SVM. It identifies outliers by fitting a
hyperplane from the origin, Fig.2.2 illustrates the hyperplane. Hyperplane one-class SVM
is used as the one-class classification method in Chapter3 and Chapter4. The hyperplane
one-class SVM is formulated as a constrained minimization optimization problem:

min
ω,ξ,ρ

1
2
‖w‖2 − ρ +C

n∑

i=1

ξi ,

subject to: 〈w,Φ(xi)〉 ≥ ρ − ξi , ξi ≥ 0,

(2.20)
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Figure 2.2: The decision hyperplane of one-class SVM divides the data in the feature space.

wherexi ∈ X, i ∈ {1, . . . , n} aren training samples in the input data spaceX, ξi is the slack
variable for penalizing the outliers. The hyperparameterC is the weight for restraining
slack variable, it tunes the number of acceptable outliers.‖ · ‖ denotes Euclidean norm
of a vector. 〈w,Φ(xi)〉 − ρ = 0 is the decision hyperplane.w defines a hyperplane in
feature space separating the coordinate origin from the projections of training data. The
nonlinear functionΦ : X → H maps datumxi from the input spaceX into the feature
spaceH , which allows to solve a nonlinear classification problem bydesigning a linear
classifier in the feature spaceH . For computing dot products inH , the positive definite
kernel functionκ is defined asκ(x,x′) = 〈Φ(x),Φ(x′)〉 to implicitly map the training or
testing datax into a higher (possibly infinite) dimensional feature spaceand compute the
dot product. Introducing the Lagrangian multipliersαi , the decision function in the input
data spaceX is defined as:

f (x) = sgn(
n∑

i=1

αiκ(xi ,x) − ρ). (2.21)

When f (x) = −1, the datumx is classified as anomaly, otherwisex is considered as
normal.

If proper parameters are given, classical kernels, such as Gaussian, polynomial, and
sigmoidal kernel, have similar performances [Schölkopf 2002]. Gaussian kernel is chosen
for handling spatial features in our work. It is a semi-positive definite kernel that contents
Mercer condition [Vapnik 2000, Vapnik 1998]. Gaussian kernel is defined as the following
expression:

κ(xi ,x j) = exp(−
‖xi − x j‖

2

2σ2
), (xi ,x j) ∈ X × X, (2.22)

wherexi ,x j are the data in the original data spaceX, the varianceσ indicates the scale
factor at which the data should be clustered.



2.3. One-class classification 17

2.3.3 Hypersphere one-class support vector machines

Hypersphere one-class SVM was proposed in [Tax 2001, Tax 2004], it identifies outliers
by fitting a hypersphere with a minimal radius, it is also be called support vector data
description (SVDD). The problem can be written as the following objective function to be
minimized:

min
R,c,ξ

R2 +C
n∑

i=1

ξi , (2.23)

subject to:‖Φ(x)i − c‖ ≤ R2 + ξi , i = 1, 2, . . . , n. (2.24)

By introducing the Lagrange multipliersα andγ, the Lagrangian becomes:

L(c,R, ξ,α,γ) = R2 +C
n∑

i=1

ξi −

n∑

i=1

αi(R
2 + ξi − ‖Φ(xi ) − c‖

2) −
n∑

i=1

γiξi . (2.25)

By KKT conditions, we have:

n∑

i=1

αi = 1, (2.26)

c =

n∑

i=1

αixi , (2.27)

C − αi − γi = 0, i = 1, 2, . . . , n. (2.28)

αi is obtained by:

max
α

n∑

i=1

αi κ(xi ,xi) −
n∑

i, j=1

αiα j κ(xi ,x j), (2.29)

subject to:
n∑

i=1

αi = 1, 0 ≤ αi ≤ C, i = 1, 2, . . . , n. (2.30)

Each samplexi is classified into 3 categories: the samples withαi = C are outside the
sphere, with 0< αi < C are on the sphere, withαi = 0 are inside the sphere. The samples
with αi , 0 are called support vector (SV), they can be expressed asi ∈ Isv. The radius is
computed as:

R= min
i∈Isv

‖Φ(xi ) − c‖. (2.31)

For classifying each sample, the distance isdis= ‖Φ(x) − c‖. If dis< R, the sample is
normal. The distance is computed as:
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‖Φ(x) − c‖2 =
∑

i, j∈IS V

αiα j κ(xi ,x j) − 2
∑

i∈IS V

αi κ(xi ,x) + κ(x,x). (2.32)

Fig.2.3 illustrates the hyperplane one-class SVM (ν-SVC) and hypershpere one-class
SVM (or support vector data description, SVDD).

r

R

Figure 2.3: Data descriptions by theν-SVC and the SVDD where the data is normal-
ized to unit norm [Tax 2001]. ν-SVC is for hyperplane one-class SVM or one-class SVM
[Schölkopf 2001]. SVDD is for hypershpere one-class or support vector data description.

2.3.4 Kernel PCA for abnormal detection

Kernel PCA extends standard principal component analysis (PCA) to a nonlinear setting.
Before performing a PCA, one can map then data pointsxi ∈ R

d to a higher-dimensional
feature spaceΦ(xi) ∈ H where standard PCA is performed [Hoffmann 2007]:

xi → Φ(xi). (2.33)

This mapping can be omitted by adopting a kernel functionκ(x,x′), which replaces the
scalar product〈(Φ(x) · Φ(x′)〉. In kernel PCA, an eigenvectorV of the covariance matrix
inH is a linear combination of pointsΦ(xi ):

V =
n∑

r=1

αiΦ̃(xi), (2.34)

Φ̃(xi) = Φ(xi) − Φ0

= Φ(xi) −
1
n

n∑

r=1

Φ(xr ),
(2.35)

where theαi are the components of a vectorα, which is an eigenvector of the Gram matrix
K̃i j = 〈Φ̃(xi) · Φ̃(x j)〉. Φ0 is the center of the data.

For abnormal (novelty) detection, the reconstruction error in the feature spacep(Φ̃(x))
is defined as:
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p(Φ̃(x)) = 〈Φ̃(x) · Φ̃(x)〉 − 〈(Φ̃(x) · V l) · (Φ̃(x) · V l)〉 (2.36)

with

〈Φ̃(x) · Φ̃(x)〉

= 〈(Φ(x) − Φ0) · (Φ(x) − Φ0)〉 (2.37)

= κ(x,x) −
2
n

n∑

i=1

κ(x,xi) +
1
n2

n∑

i, j=1

k(xi ,x j),

〈Φ̃(x) · V l〉

=

n∑

i=1

αl
i [κ(x,xi ) −

1
n

n∑

r=1

k(xi ,xr)− (2.38)

1
n

n∑

r=1

κ(x,xr ) +
1

n2

n∑

r,s=1

κ(xr ,xs)],

where〈Φ̃(x) · Φ̃(x)〉 is the potential of a pointx in the original space, which is computed
by the squared distance from the mappingΦ̃(x) to the centerΦ0. The indexl denotes the
l-th eigenvector, withl = 1 for the eigenvector with the largest eigenvalue.〈Φ̃(x) · V l〉 is
the projection of̃Φ(x) onto the eigenvectorV l .

If only first q rows of vectorV l are chosen, the reconstruction error of the original space
datax can be expressed as:

p(x) = Φ̃(x)2 −

q∑

l=1

(Φ̃(x) · V l)2. (2.39)

All the components in the eq. (2.39) can be computed by the kernel function while the
data are in the original space.

2.4 Conclusion

The event understanding process can be generally decomposed into two parts, abstrac-
tion and event modeling, respectively. Abstraction is the organization of low-level video
sequence data into intermediate units that capture salientand discriminative abstract prop-
erties of the video data. Event modeling is defined as the representation of occurrences
of interest, using those units (“primitives”) generated bythe abstraction of the video se-
quence, in such a way that allows recognition of these eventsas they occur in unlabeled
video sequences [Lavee 2009a]. Hyperplane one-class support vector machines (one-class
SVM, or OC-SVM, orν-SVC) method is used in Chapter3 and Chapter4. Chapter5 has
two parts. Hypersphere one-class support vector machines (support vector data descrip-
tion, or SVDD) based online algorithm is used in the first partof Chapter5. Least squares
one-class support vector machines (LS-OC-SVM) based online algorithm is used in the
second part of Chapter5.
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Because abnormal visual events are mainly characterized byobjects movements and
interactions in the scene, the optical flow is chosen as the low-level features based on which
various descriptors and classifiers could be designed to efficiently detect abnormal events.
Also, because only normal-event video sequences are available, variants of nonlinear one-
class support vector machines (OC-SVM) are used as classification algorithms. It is worth
noting that the proposed detection methods do not require a prior step of object tracking in
the scene, which makes it very efficient in practical situations.

The rest of the chapter is organized as follows. In Section3.1, the abnormal events
detection method based on optical flow is introduced. In Section 3.2, after presenting an
efficient technique to extract the foreground, abnormal detection is locally applied to detect
abnormal blobs (abnormal moving objects). In Section3.3, the proposed histograms of
optical flow orientation (HOFO) descriptor is described. Further, the fast version of the
detection algorithm is designed by fusing the optical flow computation with a background
subtraction step. Finally, Section3.4concludes this chapter.
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3.1 Abnormal detection based on optical flow

3.1.1 Feature selection

The optical flow can provide important information about thespatial arrangement of the ob-
jects and the change rate of this arrangement [Horn 1981]. It is the apparent velocity distri-
bution of brightness patterns movement in an image. B.Horn and B. Schunck [Horn 1981]
proposed an algorithm computing the optical flow by introducing a global constraint of
smoothness. We adopt the Horn-Schunck (HS) optical flow method combining a data term
with a spatial term. The data term assumes constancy of the same image property, and the
expected flow variation is modeled by the spatial term. The optical flow is formulated as
the minimization of the following global energy functional:

E =
∫ ∫

[(Ixu+ Iyv+ It)
2 + α2(‖∇u‖2 + ‖∇v‖2)]dxdy, (3.1)

whereIx,Iy and It are the derivatives of the image intensity along thex, y and timet di-
mension,u andv are the horizontal and vertical components of the optical flow, α is the
parameter representing the weight of the regularization term. Lagrange equations are uti-
lized to minimize the functionalE, yielding:



Ix(Ixu+ Iyv+ It) − α2△u = 0

Iy(Ixu+ Iyv+ It) − α2△v = 0,

(3.2)

subject to



△u(x, y) = u(x, y) − u(x, y)

△v(x, y) = v(x, y) − v(x, y),

(3.3)

whereu andv are weighted averages ofu andv calculated in a neighborhood around the
pixel location. The optical flow is computed in an iterative scheme as shown below:



uk+1 = uk −
Ix(Ixu

k
+Iyv

k
+It)

α2+I2
x+I2

y

vk+1 = vk −
Iy(Ixuk+Iyv

k+It)

α2+I2
x+I2

y
,

(3.4)

wherek denotes the algorithm iteration. A single time step was taken for normal scene and
abnormal scene, so that the computations are based on just two adjacent images.

3.1.2 Abnormal detection method

In this subsection, we describe a method of detecting abnormal events based on optical flow
in video streams. Assume that a set of frames{I1, I2, . . . , In} in which the person is walking
or loitering, are considered as normal events. The frames inwhich the person is running
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or walking with a sudden split are regarded as abnormal events. In abnormal detection
problem, it is assumed that the data from only one class, the positive class (or the normal
scene), are available. The one-class SVM frameworks is thensuitable to the specificity of
the abnormal event detection problem where only normal scene samples are available. The
general architecture of the abnormal detection method is presented in Fig.3.1, and outlined
in the following.
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Figure 3.1: Major processing states of the proposed one-class SVM abnormal frame events
detection method. The optical flow features is constructed.

Step 1: The first step consists of computing the optical flow featuresat gray scale
image. Each training frame is processed via Horn-Schunck (HS) optical flow algorithm to
get the moving features at every pixel. This step can be presented as the following:

{I1, I2, . . . , In}
HS
−−→ {OP1,OP2, . . . ,OPn}, (3.5)

where{I1, I2, . . . , In} are the training original images,{OP1,OP2, . . . ,OPn} are the corre-
sponding optical flow.

Step 2: One-class SVM is used to classify feature samples of incoming video frames.
Three strategies are proposed for obtaining the features ofthe image. The sketch image for
choosing the features is shown in Fig.3.2.

Method 1: Take the optical flow at each pixel of the image as feature samples, as
shown in Fig.3.2(a). In the dataset UMN [UMN 2006], define the movement of walking as
the normal event, running as abnormal event. The video sequence in our work is labeled
as normal and abnormal for performance evaluation. Training data for one-class SVM are
extracted from the normal images. Take the optical flowOPi, j,k as featureFi, j,k for (i, j)-th
pixel on thek-th frame. For each point at Cartesian coordinate (i, j) of n training frames, we
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Figure 3.2: Three strategies for choosing the optical flow features. (a) Choose the features
pixel-by-pixel. (b) Choose the features block-by-block. (c) Choose all the blocks in the
frame as the training sample, and test by block.

can get the training samplesFi, j,1...n, n ≥ 1, and then compute the support vectors. Based
on the support vectors, the incoming samplesFi, j,n+1...m at coordinate (i, j) are classified.
For the whole image, the abnormal events are detected pixel-by-pixel.

Method 2: Take the optical flow of all points in the block as feature samples. In this
strategy, the image is segmented into several blocks, as shown in Fig.3.2(b), the image is
separated intop × q blocks, p is the number of blocks at the vertical (height) dimension
of the image,q is the number of blocks at the horizontal (length) dimensionof the image.
The height of the block ish pixels, the length of the block isw pixels, there areh×w points
in theblock. The feature ofblockat i-th row and j-th column in thek-th frame is noted as
Fblock

i, j,k . For each block, the featureFblock is arranged by the optical flow of all the points
in the form{OP1,OP2,OP3, · · · ,OPh×w}. For the video streams, take the features of block
in the normal images as the training samples for one-class SVM, and then abnormal events
are detected block-by-block.

Method 3: The image is also split into blocks, but the training samplesare all the
blocks at one frame, as shown in Fig.3.2(c). Similar toMethod 2, we separate one frame
into p×q blocks, the size of each block ish×w. At k-th frame , the feature sample of all the
blocks on this frame is{Fblock

1,1,k , F
block
1,2,k , . . . , F

block
p,q,k }, a vector of dimension (p× q) × (h× w).

To get the training data in the normal frame from 1-st ton-th, the data are arranged as
{Fblock

1,1,1 , F
block
1,2,1 , . . . , F

block
p,q,1 , . . . , F

block
1,1,k , . . . , F

block
p,q,k , . . . , F

block
1,1,n , . . . , F

block
p,q,n }, a vector of dimen-

sion (p × q × k) × (h × w). For abnormal detection, the test sample is the feature of one
block.

The sequence which just has one person is taken as an example for detailing the algo-
rithm performance. The scene is presented in Fig.3.3. Four pictures in Fig.3.3 show the
scene without people, the person walking and the person running at different directions.
The training sequence, where the person is walking, learnt by SVM is shown in Fig.3.3(b).
The detected sequence, where the person is running, is shownin Fig.3.3(c)(d). The results
of these three strategies are shown in Fig.3.4. In Fig.3.4(b)(c), the abnormal detections on
the background are marked by white circles, they are taken asfalse alarms. The detec-
tion result via pixel-by-pixel feature selection strategyhas more false alarms than others.
Because pixel-by-pixel strategy takes the feature at one pixel, it is more susceptive to the
optical flow changing. The feature chosen by block can get better detection result than
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pixel-by-pixel result. The block-by-block strategy whichis shown in Fig.3.4(c) take each
block as the local monitor, it considers the situation of several pixels. The block-by-block
strategy is more robust than pixel-by-pixel strategy. Taking all the blocks on the image as
the training samples has no false alarms and has similar detected results on the person.

(a) Scene without persons (b) One person walking

(c) One person running (d) One person running

Figure 3.3: Video stream of one person walking and running. (a) The scene without per-
sons. (b) One person is walking. (c) One person is running. (d) The person is running
toward another direction.

Step 3: As the objective of abnormal event detection problem is to analyze human ac-
tion, the SVM detection result can be combined with foreground detection which extracts
moving objects. The abnormal detections on the background can be deleted, they are con-
sidered as noise of the detection results. The background subtraction method presented by
O. Tuzel et al.[Tuzel 2005, Porikli 2005] is adopted. Then, optical flow one-class SVM
classification results and the foreground information are fused. When the points or block-
s are detected as anomaly and also from the foreground, they are detected as abnormal
finally.

Step 4: After acquiring detection results of each point or each block, then the decision
of global frame anomaly is detected by presetting a number asthreshold. If the number
of abnormal points or blocks is larger than the threshold, the frame is considered as an
abnormal one.

Case 1:If there are no abnormal detected points or blocks in the frame, this frame is
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(a) One persons running (b) Result pixel by pixel

(c) Result block by block (d) Result blockall by block

Figure 3.4: Abnormal detection results of one person walking and running scene based on
three optical flow feature selection strategies via one-class SVM. (a)One person is running.
(b)Detection result viaMethod 1, pixel-by-pixel. (c)Detection result viaMethod 2, block-
by-block. (d)Detection result viaMethod 3, training sample is all blocks on whole image.

considered as a normal one.
Case 2: If the number of abnormal points or blocks in the frame exceeds the threshold

but this frame is labeled as a normal one, the detection result of the whole image via one-
class SVM is considered as a false alarm.

Case 3: If the number of abnormal points or blocks on the frame exceeds the threshold
and this frame is labeled as an abnormal one, then the detected result via one-class SVM is
considered as a true positive.

3.1.3 Experimental Results

This section presents the results of experiments conductedto analyze the performance of
the proposed method of detecting abnormal events based on optical flow features. The
normal and abnormal scenes are shown in Fig.3.5.

The detection results of the lawn scene are shown in Fig.3.6. The points marked with
white color are the abnormal detections via OC-SVM, the points marked with cyan color
are the abnormal detections and also on the foreground. In Fig.3.6(b)(c), the abnormal
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(a) Lawn normal (b) Lawn normal (c) Lawn abnormal

(d) Indoor normal (e) Indoor normal (f) Indoor abnormal

(g) Plaza normal (h) Plaza normal (i) Plaza abnormal

Figure 3.5: The lawn, indoor and plaza scenes of UMN dataset.(a)(b)(c) The first row is
lawn scene. (d)(e)(f) The second row is scene indoor. (g)(h)(i) The third row is plaza scene.
(a)(b)(d)(e)(g)(h) Normal events, all the persons are walking. (c)(f)(i) Abnormal events, all
the persons are running.

detection results on the background are marked by white circles. Fig.3.6(d) is the result
taking all blocks at the whole image as the training samples,it has the best performance.

We present one special situation of the abnormal events in the lawn scene. As presented
in Fig.3.7, when most people are running, in the lower half part of the image, one person
is walking. The walking person is cut out from the walking sequence at UMN dataset.
The detected results of this special situation are shown in Fig.3.7. The pixel-by-pixel and
block-by-block feature selection strategies detect the walking person as abnormal. These
two strategies model the movement of pixel or block at the fixed positions in the frame. At
the lower half part of image, there are no people on the training sequence, so the walking
person is regarded as an abnormal event. The appropriate strategy should be chosen by
depending on the application. If the region is “no admittance”, the walking person in this
region is abnormal. The feature selected strategy can be pixel-by-pixel or block-by-block.
If only the running movement is abnormal, the strategy for feature selection should take
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(a) Original image (b) Pixel by pixel (c) Block by block (d) Blockall by block

(e) Foreground (f) P-by-p on fg (g) B-by-b on fg (h) Ball-by-b on fg

Figure 3.6: Abnormalframedetection results of the lawn scene based on three optical flow
feature selection strategies via one-class SVM. (a)The original image. (b)The abnormal
detection via pixel-by-pixel. (c)The abnormal detection via block-by-block. (d)The ab-
normal detection via taking all the blocks on the whole imageas training samples. (e)The
dilative foreground of the image. (f)The abnormal detection via pixel-by-pixel and also on
the foreground. (g)The abnormal detection via block-by-block and also on the foreground.
(h)The abnormal detection via taking all blocks on the wholeimage as training samples
and also on the foreground.

all the blocks on the whole image as training samples. Fig.3.7(d) has the less abnormal
detections. Because the feature selection strategy takingall the blocks in the image as
training samples considers an overall situation, it is the most robust and least sensitive.
In Fig.3.7(b)(c)(d), the abnormal detection results are not on all thepersons. Because the
frame is the beginning of the running sequence, the optical flow is not much different from
walking. Some parts of these persons are detected as normal.

The abnormal detected results of indoor scene and plaza scene are shown in Fig.3.8.
The detection results show that the pixel-by-pixel featureselection strategy is the most
sensitive method for abnormal events detection. While taking the blocks at the whole
image as the training samples is the most robust method.

Performance summary on the UMN dataset compares with paper [Haque 2010] is
in TABLE 3.1. For these three scenes, we get approximative detection rate with paper
[Haque 2010], and the false alarms are reduced.

3.2 Blob extraction

In case of a stationary camera, the moving object segmentation becomes feasible due to
a background subtraction algorithm. The foreground of eachframe is obtained by the
background subtraction method presented by O. Tuzel et al. [Tuzel 2005]. The moving
objects are usually conflicted with others. As shown in Fig.3.9(a), the running person on
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(a) Lawn normal (b) Pixel-by-pixel result

(c) Block-by-block result (d) Blockall-by-block result

Figure 3.7: Abnormalframedetection results of a special situation of the lawn scene based
on three optical flow feature selection strategies via one-class SVM. (a)The original image
of one person walks on the lower part of the image. (b)The abnormal detection by pixel-
by-pixel strategy. (c)The abnormal detection by block-by-block strategy. (d)The abnormal
detection by taken all the blocks on the whole image as training sample.

the upper half in the 1-st rectangle is overlapped with another walking person. The running
person is moving from the right to left; the walking person ismoving from the left to right.
We present a method to improve the blob extraction performance by adopting optical flow,
which presents the moving information. The method is summarized in Algorithm3.9, and
explained below in detail.

Step1: The first step consists of labeling connected components from a binary fore-
ground image. DenoteBk

FG for the k-th blob in the foreground image. Because there are
usually occlusions of the people, some rectangles contain several objects. As shown in
Fig.1(a), the 1-st rectangle includes two people.

Step2: The second step is labeling the blobs based on the optical flow. If the size of
the foreground blob is bigger than a presetting thresholdTblb, the optical flow in this area
is taken into account to refine the blob extraction.Tblb is set with respect to the scene to
represent the size of one person. In the mall scene, the size of the image is 240× 320,Tblb

is set as 50× 100. As the action of the people can be exhibited by the direction and the
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(a) Indoor (b) Point by point (c) Block by block (d) Blockall by block

(e) Plaza (f) Point by point (g) Block by block (h) Blockall by block

Figure 3.8: Abnormalframedetection results in the indoor and plaza scenes based on three
optical flow feature selection strategies via one-class SVM. (a) The original image of indoor
scene. (e) The original image of scene on the plaza. (b)(f) The abnormal detections by
pixel-by-pixel strategy. (c)(g) The abnormal detections by block-by-block strategy. (d)(h)
The abnormal detections taken all the blocks in the image as training samples.

DR[6] FPR[6] DR FPR

lawn 100% 0% 100% 0%
indoor 80% 12% 99.4% 1%
plaza 100% 4% 100% 2%

Table 3.1: The comparison of our proposed optical flow features and one-class SVM based
method with the state-of-the-art methods for abnormalframe events detection of UMN
dataset. DR=“detection rate”, FPR=“false positive rate”. The last two columns are the
statistic results of the proposed method.

amplitude of the movement, the optical flow is chosen as the scene description. The optical
flow algorithm introduced by Sunet al. [Sun 2010] is used in our work. It is a modified
method of the formulation of Horn and Schunck [Horn 1981] allowing higher accuracy by
using weights according to the spatial distance, brightness, occlusion state, and median
filtering.

In the proposed method, we generate a color imageIOP from the optical flow, as shown
in Fig.3.9(c), the mean-shift algorithm [Comaniciu 2002, Cheng 1995] is used to cluster
each channel of the optical flow image into different patches. If the difference of the speed
is larger than the bandwidth parameter, which is set as 0.2, in the mean-shift algorithm,
these two objects can be distinguished. This blob labeling method can not only be used
to distinguish different directions, but also be used suitably to distinguish two conflicted
objects moving in the same direction with different speeds.

Step3:The third step consists of applying non-maximum suppression (NMS) algorith-
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(a) (b) (c)

Figure 3.9: The blobs of the objects before and after our proposed blob extraction method.
(a) 2 extracted blobs based on the foreground template. (b) 3extracted blobs via the pro-
posed blob extraction method, which is based on the foreground template and the optical
flow. (c) The optical flow image of Fig.(a)(b). A black border is added to illustrate the
image clearly.

Algorithm 1 Blob extraction.
Require:

Foreground imageFG, optical flowOP
1: Label the separate blobs inFG, the blob of foreground imageBk

FG is obtained.
2: if Blob size inFG≥ presetting sizeTblb then
3: Draw the optical flow imageIOP in this blob.
4: The optical flows with similar magnitudes and directions areclustered by mean-shift

algorithm.
5: Delete redundance cluster by NMS algorithm, blob of opticalflow imageBi

OP is
obtained. The remaining part of the blobBRM = BFG− BOP.

6: TraverseBRM by a rectangle template to find the blobs overlapped by the foreground.
NMS algorithm is used to delete the redundance templates. Blob B j

RM of BRM is
obtained.

7: Replace foreground blobBk
FG by Bi

OP+ B j
RM.

8: The blobs of the image are extracted.

m [Neubeck 2006] to select largest weight value blobBi
OP. Take Fig.3.9 as an example,

denote the moving direction from the left to the right by the value “1”, and denote the mov-
ing direction from the right to the left by the value “-1”. Thesummation of the directions
of all the pixels in the blob is used as the weight of the NMS.

Step4: The fourth step is labeling the remaining regionBRM, which is in the blobBFG

except theBi
OP. Traverse the remaining region by a preset size rectangle template, with

the same size inStep2. The blobB j′

RM overlapped by the foreground image is recorded.

The non-maximum suppression (NMS) algorithm is used to choose the blobB j
RM from the

recorded blob set{B j′

RM}.

The foreground blobBk
FG is replaced by the optical flow blobBi

OP and the remaining

part blobB j
RM. As shown in Fig.3.9, the 1-st rectangle in Fig.3.9(a) is split into 3-rd and

4-th rectangle in Fig.3.9(b).
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3.3 Abnormal detection based on histograms of optical flow ori-
entations

In Section3.1, optical flow has been used to characterize movement information in abnor-
mal detection problems. The optical flow field was arranged ina vector form as an input to
the classification algorithm. Although this technique showed good results for some visual
scenes, using directly the optical flow does not ensure enough robustness for challenging
situations. In this section, we propose histograms of optical flow orientations (HOFO) as a
descriptor encoding moving information of each blob and also information about interact-
ing parts in the whole video frame. Furthermore, a fast version of the detection algorithm
is designed by fusing the optical flow computation with a background subtraction step.

3.3.1 Related work

Quantized optical flow directions have been used in several works. In [Dalal 2006b, Dalal 2006a],
a histogram of optical flow method was used to identify human beings, the derivatives of
optical flow,du anddv, were considered. In [Utasi 2010], a histogram of optical flow di-
rections in region of interest (ROI) was applied to build themodel, the magnitude of the
optical flow vectors was neglected. While in our work, the twocomponents,u andv of op-
tical flow, are used to compute the orientation feature of each pixel at a fixed resolution, and
then the magnitude of optical flow is considered as the weightto calculate the histogram.
In [Adam 2008, Kwak 2011], optical flow was used as the basic feature to characterize be-
havior. The frame was split into small patches, and a bag-of-words feature was computed
to represent the patch. In our work, the histograms of optical flow orientation (HOFO)
descriptor is computed over dense grids of overlapping blocks. Further, each block is s-
plit into small cells, for example one block is split into 4 cells, and then the histograms
of the cells are gathered into a high dimensional vector to represent the whole block. In
[Laptev 2008], a histogram of optical flow was computed in the neighborhood of detected
points to build a spatio-temporal descriptor. In our work, no feature points are pre-detected.

3.3.2 Histograms of optical flow orientations (HOFO) descriptor

In this subsection, we propose a novel scene descriptor computing the histogram of op-
tical flow orientation (HOFO) of theoriginal image, or theforeground image obtained
after applying background subtraction. The HOFO descriptor is computed over dense and
overlapping grids of spatial blocks, with optical flow orientation features extracted at fixed
resolution and gathered into a high dimensional feature vector to represent the movement
information of the frame. Fig.3.10illustrates the HOFO feature descriptor of theoriginal
image andforegroundimage. Each block is divided into cells where HOFO is computed. A
weighted vote of each pixel is calculated for the edge orientation histogram channel based
on the optical flow element orientation centered on it, then the votes are gathered into ori-
entation bins over local spatial regions. The optical flow magnitude of a pixel is considered
as a weight in the voting process.
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The calculation procedures of HOFO inoriginal frame andforegroundframe are simi-
lar. The HOFO descriptor is calculated at each block, and then accumulated into one global
vector denoted as featureFk for thek-th frame. Fig.3.11shows the computation of HOFO,
it is a feature vector innblocks× nbins dimension. Horizontal and vertical optical flow (u
andv fields) are distributed into 9 orientation bins, over a horizon 0◦-360◦. The HOFO is
computed with an overlapping proportion set as 50% of two contiguous blocks. A block
containsbh × bw cells ofch × cw pixels, wherebh andbw are the number of cells iny and
x direction in cartesian coordinates respectively,ch is the height of the cell, andcw is the
width of the cell. Analyzing jointly local HOFO blocks permits us to consider the behavior
in the global frame. Put another way, concatenation of HOFO cells allows us to model the
interaction between the motions of the local blocks.

Fig.3.12illustrates HOFO descriptor of the blobs. Each blob is takenas one frame, and
the HOFO computation processes are the same as the ones in Fig.3.11. In SVM abnormal
detection algorithm, all the blobs in normal frame are takenas training samples or normal
testing samples, while the blobs in the abnormal frame are considered as abnormal samples.

1framei+

framei

consecutive frame

optical flow field

histograms of the
optical flow orientation

1framei+

framei

consecutive frame with blobs

optical flow on the foreground pixels

block

cell

on the original image

on the foreground image

ì
í
î

Figure 3.10: Histograms of optical flow orientations (HOFO)of theoriginal frame, and of
the foreground frameobtained after applying background subtraction.

3.3.3 Abnormal detection method

For a given scene in video streams, suppose that a set of training blobs or training frames
describing the normal behavior is available. The abnormal behavior is defined as the
event deviating from the training set behavior. In this subsection, the abnormal events
detection consist of three parts. Firstly, the abnormal blob event detection based on HOFO
is proposed. Secondly, the abnormal global frame event detection is introduced. Thirdly, a
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Figure 3.11: Histograms of optical flow orientation (HOFO) computation of thek-th frame.
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Figure 3.12: Histograms of optical flow orientations (HOFO)computation of theblob in
thekth frame.

fast implementation of the HOFO descriptor will be given later.

3.3.3.1 Abnormal blob events detection method

Assume that a set of blobs{B
m′i
i } of the image set{Intrn+ntst

1 }, 1 ≤ i ≤ (ntrn+ntst), 1 ≤ m′i ≤ mi

describing the training (normal) and testing (normal and abnormal) blob behavior of the
given scene is available,ntrn is the number of the training frames,ntst is the number of the

testing frames,mi is the number of the blobs in thei-th frame,m′i is the index of a blob,B
m′i
i

is them′-th blob in thei-th frame. The abnormal blob behavior is defined as an event which
deviates from the training set of the blob events. The general architecture of the abnormal
blob event detection via one-class SVM is explained below.

Step 1: The first step consists of computing the optical flow featuresat a gray scale
image. The blobs are extracted via the method introduced in Section3.2.
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{I1, I2, . . . , Intrn+ntst} (3.6)

−→ {(FG1,OP1), . . . , (FGntrn+ntst,OPntrn+ntst)} (3.7)

−→ {(B1
1, . . . , B

m1
1 ), . . . , (B1

ntrn+ntst, . . . , B
mntrn+ntst

ntrn+ntst )} (3.8)

−→ {(OP1
1, . . . ,OPm1

1 ), (OP1
2, . . . ,OPm2

2 ), . . . , (OP1
ntrn+ntst, . . . ,OP

mntrn+ntst

ntrn+ntst )}, (3.9)

whereI i is thei-th frame, (FGi ,OPi) are the foreground image and optical flow of thei-th
frame,{B1

i , B
2
i , . . . , B

mi
i } are the 1-st tom-th blobs in thei-th frame,mi is the number of the

blobs in thei-th frame,{OP1
i , . . . ,OPmi

i } are the corresponding optical flow of the blobs.
Step 2: The second step is calculating the covariance matrix feature of the blobs.

Fig.3.12illustrates the details of this step.

{(OP1
1, B

1
1, . . . ,OPm1

1 , B
m1
1 ), . . . , (OP1

ntrn+ntst, B1
ntrn+ntst, . . . ,OP

mntrn+ntst

ntrn+ntst , B
mntrn+ntst

ntrn+ntst )}
−→ {(HOFO1

1, . . . ,HOFOm1
1 ), . . . , (HOFO1

ntrn+ntst, . . . ,HOFO
mntrn+ntst

ntrn+ntst )},
(3.10)

where{HOFO1
i , . . . ,HOFOmi

i } are the corresponding HOFO descriptor of the blobs in the
i-th frame.

Step 3: The third step is applying one-class SVM on the extracted descriptors of the
training normal blobs to obtain the support vectors.

{(HOFO1
1 . . .HOFOm1

1 ), . . . , (HOFO1
ntrn . . .HOFO

mntrn

ntrn )}
S VM
−−−−→ support vector{S p1,S p2, . . . ,S po},

(3.11)

where{(HOFO1
1 . . .HOFOm1

1 ), . . . , (HOFO1
ntrn . . .HOFO

mntrn

ntrn )} are the covariance matrix
descriptors of the training blobs. The number of blobs in theith frame ismi , the total
number of training samples ismNtrn = m1+m2+...+mntrn. A subset [S p1,S p2, . . . ,S po], o≪
mN are the support vectors contributing to the decision function.

Step 4: Based on the support vectors obtained from the training blobs, an incoming

blob sampleHOFO
m′l
l is classified. The flowchart of the abnormal detection methodis

shown in Fig.3.13, and described as the following equation:

f (HOFO
m′l
l ) = sgn(

o∑

i=1

αiκ(S pi ,HOFO
m′l
l ) − ρ) (3.12)

=


1 if f (HOFO

m′l
l ) ≥ 0

−1 if f (HOFO
m′l
l ) < 0,

(3.13)

whereHOFO
m′l
l is the HOFO descriptor of them′l -th blob in thel-th frame needed to be

classified.S pi is the support vector. “1” corresponds to the normal blob, “-1” corresponds
to the abnormal blob.
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Figure 3.13: Major processing states of the proposed one-class SVM abnormalblob event
detection method. HOFO of theblob is calculated.

The abnormalblob detection and localization conceptions are defined by depending
on the implementation. Firstly, if the blobs of moving objects are provided, the abnormal
action of the objects can be detected. Alternatively, the position of the object yielding
an abnormal behavior in crowded scenes can be localized. Thetarget that triggers the
abnormal event is labeled automatically without human intervention, thus the target can be
tracked.

3.3.3.2 Abnormal frame events detection method

The blob abnormal detection method can be adjusted to globalframe visual abnormal event
detection by taking the whole frame as one blob. The processes of feature descriptor com-
putation and one-class SVM classification are similar as ones introduced in Section3.3.3.3,
but the descriptor changes fromblobHOFO toframeHOFO. Moreover, for abnormalframe
events detection, the precondition of one event could be defined as normal or abnormal is
that it occurs during several consecutive frames. In other words, the normal or abnormal
event is not punctual. Based on this premise, the shortabnormalevent clip which occurs
intermittently at few frames in the long normal video sequence could be modified tonormal
state. Likewise, thenormal event frames which are detected among the long consecutive
sequence of abnormal frames could be altered toabnormal. A thresholdN of the number of
image frames is preset, the post-processing of the detection results is illustrated in Fig.3.14.
If the number of abnormal states (negative predicted results) exceed the thresholdN within
normal states (positive predicted results), then thenormal prediction labels are converted
into abnormal. The performance of this state transition model is analyzedin Chapter3.
The abnormalframedetection results in Chapter3 and Chapter3 are obtained by SVM



3.3. Abnormal detection based on histograms of optical flow orientations 37

classification method without applying the state transition model.

abnormal

SVM

+1

number(+1) N frames³

normal

-1

number(-1) N frames³

otherwiseotherwise

frame

Figure 3.14: State transition model.N is the preset threshold number to adjust the detection
result.

3.3.3.3 Abnormal frame events detection method based on foreground image

In case of a stationary camera, the foreground segregation becomes feasible by using
change detection algorithm. In the following, we propose a fast implementation of the
abnormal detection algorithm based on the foreground pixels.

Step 1: The first step consists of calculating the optical flow feature of the foreground
image. The training frames are processed via optical flow method. And then the optical
flow on the foreground is extracted. This procedure can be described as:

{I1, I2, . . . , In} −→ {OPFG
1 ,OPFG

2 , . . . ,OPFG
n }, (3.14)

where{I1, I2, . . . , In} are the training normal frames,{OPFG
1 ,OPFG

2 , . . . ,OPFG
n } are the cor-

responding optical flows of the training foreground frames.
Step 2: The second step is calculating the HOFO of training foreground frames. The

sketch map of choosing the features of the foreground image is shown in Fig.3.15. HOFO
is computed on the global foreground image, the background area is not considered when
the HOFO is being calculated. The proportion of consuming time between computing the
HOFO of foreground patches and computing the HOFO of whole image isAFG

Aimg
, whereAFG

is the area of the foreground,Aimg is the area of the whole image. The foreground area
can be regarded as the pixel number of the foreground. The step can be described as the
following expression:

{OPFG
1 ,OPFG

2 , . . . ,OPFG
n }

HOFO
−−−−−→ {HOFOFG

1 ,HOFOFG
2 , . . . ,HOFOFG

n }, (3.15)

where{OPFG
1 ,OPFG

2 , . . . ,OPFG
n } are optical flows of the training foreground frames,{HOFOFG

1 ,HOFOFG
2 , . . . ,HO

are the HOFO descriptors of the training foreground frames.
The following classification steps are the same as the steps proposed previously in

section , but the features of the frame change fromblobHOFO descriptor to theforeground
frameHOFO descriptor.
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optical flow of the foreground image HOFO

Figure 3.15: Feature selection. Compute the HOFO on theforegroundimages.

3.3.4 Experimental results

This section presents the results of experiments conductedto analyze the performance of
the proposed HOFO descriptor and one-class SVM based methodfor abnormal blob event
detection and abnormal frame event detection results.

3.3.4.1 Experimental results of abnormal blob events detection

This section presents the results of abnormal blob events detection. The detection results
of a scene with pedestrian movement parallel to the camera plane are show in Fig.3.16.
The individual is walking or running in the scene. It simulates the abruptly changing ve-
locity abnormal events scenes. The sequence is of low resolution, the people have a height
about 30 pixels. The moving people are detected by background subtraction method. The
samples for training and the normal samples for testing are obtained from the blobs that
people are walking. The abnormal samples which correspond to the blob events needed to
be detected areblob HOFO where people are running. Our method can distinguish the ab-
normal running blobs from the walking blobs. In receiver-operating characteristic (ROC)
curve [Hanley 1982, Bradley 1997, Metz 1978], the true positive rate means that the run-
ning blob is classified as abnormal, while the false positiverate means that the walking
blob is detected as abnormal. The detection accuracy of running people is 89.8%, the AUC
is 0.9318.

The detection results of lawn scene and plaza scene of UMN dataset are shown in
Fig.3.17. The objective of abnormal blob detection is to find all the abnormal blobs. The
normal samples are the scenes where the persons are walking toward all the direction-
s, these frames are chosen as training samples and normal testing samples, the abnormal
scenes are where persons are running, these frames are chosen as abnormal testing frames.
If the abnormal blob events are considered, the training samples are the HOFO of all the
walking blobs, the abnormal testing samples are the HOFO descriptors of the running blob-
s. The results show that the abnormal detection algorithm ofblob HOFO descriptor can
obtain satisfactory detection results. The ROC of abnormalframe detection results based
original frameHOFO (will be presented in Section3.3.4.2) are also shown in the figures
for comparing. In abnormal frame detection problem, the true positive means to classify
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(a) Normal scenes for training (b) Detect one person running

(c) Detect two persons walking
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Figure 3.16: Abnormalblob event detection results of two persons walking or running
scene based onblobHOFO descriptor via one-class SVM. (a) The normal scenes fortrain-
ing, two persons are walking. (b) The detection result of oneperson is running. The red
rectangle labels the abnormal blob, the person is running. The blue rectangle labels the
normal blob, the person is walking. (c) The detection resultof two persons are walking.
(d) ROC curve of two persons walking and running dataset. TheAUC is 0.9318

the frame where most of the persons are running as abnormal. In fact the blob detection
method cannot label all the persons exactly by rectangle, sometimes the rectangle is on the
background, or does not include all the parts of the human. These are the major reasons
of lower value AUC of the blob based method. Nevertheless, the abnormalblob detec-
tion can obtain similar performance as the abnormal globalframedetection by presetting a
threshold of the percentage of blobs in one frame. For example, if 80% of the blobs on one
frame are classified as abnormal, this frame is considered asabnormal frame. In the indoor
scene of UMN dataset, the persons are almost conflicted each other and moving toward the
same direction with similar velocities, the blob extraction cannot distinguish each person
separately. Thus, our blob extraction based abnormal detection method is not applied to
the indoor scene.

The detection results of local mall scenes in which people are running are shown in
Fig.3.18. The abnormal blobs representing unusual speed are detected. The AUC of ab-
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(a) Detection result of lawn scene (b) Detection result of plaza scene
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(c) ROC curve of lawn scene
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Figure 3.17: Abnormalblob event detection results of UMN dataset based onblob HOFO
descriptor via one-class SVM. (a) Abnormal Detection results of scene lawn. The red
rectangles label the abnormal running blobs. (b) Abnormal detection results of one scene
plaza, all the persons are running. The red rectangles labelthe abnormal running blobs. (c)
ROC curve of abnormal blob detection and abnormal frame detection in scene lawn. The
AUC of blob detection is 0.9642. The AUC of frame detection is0.9845. (d) ROC curve
of abnormal blob detection and abnormal frame detection in scene plaza. The AUC of blob
detection is 0.8698. The AUC of frame detection is 0.9284.

normal blobs detection results is 0.8868.

3.3.4.2 Experimental results of abnormal frame events detection and foreground
frame events detection

This subsection presents the results of experiments conducted to analyze the performance
of the proposed method. UMN [UMN 2006] and PETS2009 [PETS 2009] datasets are
adopted in our abnormal frame events detection experiments.

3.3.4.2.1 UMN dataset UMN dataset contains eleven video sequences of three differ-
ent scenes (lawn, indoor and plaza) of crowded escape events. The detection results of
the lawn scene and the plaza scene are shown in Fig.3.19and Fig.3.20. The normal scene
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(a) Normal scenes for training (b) Detect one person running

(c) Detect one person running
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Figure 3.18: Abnormalblobevent detection results of the mall scene based onblobHOFO
descriptor via one-class SVM. (a) The normal scenes for training, two persons are walking.
(b) The detection result of one person is running. The red rectangle labels the abnormal
blob, the person is running. The blue rectangle labels the normal blob, the person is walk-
ing. (c) The detection result of one person is running. (d) ROC curve of mall scene. The
AUC is 0.8868

is defined as individuals walking in different directions, the training samples and normal
testing samples are selected from these frames. The abnormal scene is where the individu-
als are running, the abnormal testing samples are extractedfrom these frames. The results
show that the abnormal detection algorithm of both theoriginal imageHOFO descriptor
and theforeground imageHOFO descriptor can obtain satisfactory detection performances.
However, taking the HOFO of theforeground imageas a feature saves the program running
time.

The detection results of the indoor scene are shown in Fig.3.21. The lower AUC value
of the indoor scene is mainly due to the time lags of the frame labels. There are no people
in the last few frames labeled as abnormal of each abnormal sequence. Whereas in the the
training frames, there is no person in the upper half of the image. Because the HOFO de-
scriptor shows the global moving information of the frame, the HOFO of training frame is
similar to the HOFO of the abnormal frame without people. OurHOFO feature descriptor
based classification method cannot distinguish this situation. However, this problem can
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(a) Normal lawn scene (b) Abnormal lawn scene
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(c) Lawn scene results
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Figure 3.19: Abnormalframeevent detection results of the lawn scene based onoriginal
frameHOFO andforeground frameHOFO via one-class SVM. (a) The detection result
of one normal frame. (b) The detection result of one abnormalpanic frame. (c) The
detection result bar represents the label of each frame based on the original frame HOFO.
The upper bar shows the detection results before post-processing. The lower bar shows
the results after applying state transition model.Blue, greenandred color represents the
training frames, normal frames, and abnormal frames respectively. Several pivotal frames
are marked. (d) ROC curve of lawn scene results before applying the state transition model.
The AUC of theoriginal frameHOFO result is 0.9845. The AUC of theforeground frame
HOFO result is 0.8975.
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(a) Normal plaza scene (b) Abnormal plaza scene
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(c) Plaza scene result
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Figure 3.20: Abnormalframeevent detection results of the plaza scene based onoriginal
frameHOFO andforeground frameHOFO via one-class SVM. (a) The detection result of
one normal frame. (b) The detection result of one abnormal panic frame. (c) The detection
result bar represents the labels of each frame of the datasetbased on the original frame
HOFO. The upper bar shows the detection results before post-processing. The lower bar
shows the results after applying state transition model. (d) ROC curve of plaza scene results
before applying the state transition model. The AUC of theoriginal frameHOFO result is
0.9284. The AUC of theforeground frameHOFO result is 0.9815.
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be resolved by utilizing the foreground information. For example, if there are no moving
objects in the frame, this frame is immediately classified asabnormal. In this paper, all
the performance data are obtained from the results based on the HOFO feature descriptor
classify algorithm.

The performances of our HOFO based method and of the state-of-the-art methods are
shown in TABLE3.2. The AUC value of our proposed method in the table is calculat-
ed from the detection results before applying the state transition model. The states of the
frames, where the event is changing from normal to abnormal,are inherently ambiguous.
These frames can be either be labeled as normal or abnormal. If the detection results of
these ambiguous frames (about 15 frames, 1 second in surveillance video) are not consid-
ered, the AUC of our abnormal detection results after applying state transition model can
approach 1.

Method Area under ROC
lawn indoor plaza

Social Force [Mehran 2009] 0.96
Optical Flow [Mehran 2009] 0.84
NN [Cong 2011] 0.93
SRC [Cong 2011] 0.995 0.975 0.964
STCOG [Shi 2010] 0.9362 0.7759 0.9661
HOFO (Ours) 0.9845 0.9037 0.9815

Table 3.2: The comparison of our proposed HOFO descriptor and one-class SVM based
method with the state-of-the-art methods for abnormalframe event detection of UMN
dataset. The AUC values of our HOFO descriptor based classified method are calculat-
ed from the detection results before applying the state transition model. The AUC can
approach 1 if a state transition model is applied.

3.3.4.2.2 PETS dataset Because taking an HOFO offoreground imageand original
imageas a feature descriptor has similar abnormal detection results, we only show the
results based on theoriginal imageHOFO of the PETS2009 dataset [PETS 2009]. The
detection results of the PETS scene (the sequence labeled asTime14-17) are shown in
Fig.3.22. The training samples and the normal testing samples are extracted from the se-
quence (Time14-55) where the individuals are walking in different directions. The abnor-
mal testing samples are the frames where the people are moving (walking or running) in
one direction. The abnormal detection results before and after applying the state transi-
tion model are exhibited in Fig.3.23. The accuracy of abnormal detection results before
state transition post-processing is 90.00%. By applying the state transition constraint, the
detection results fluctuate less.

Fig.3.24 shows the detection results of sequenceTime14-16, where individuals are
walking or running in the same direction. A normal state corresponds to the frames where
the individuals are walking, while an abnormal state corresponds to the frames where the
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Figure 3.21: Abnormalframeevent detection results of the indoor scene based onoriginal
frameHOFO descriptor andforeground frameHOFO descriptor via one-class SVM. (a)
The detection result of one normal frame. (b) The detection result of one abnormal panic
frame. (c) The detection result bar represents the labels ofeach frame based on the orig-
inal frame HOFO. The upper bar shows the detection results before post-processing. The
lower bar shows the results after applying state transitionmodel.Blue, greenandred color
represents the training frames, normal frames, and abnormal frames respectively. (d) ROC
curve of indoor scene results before applying the state transition model. The AUC of the
original frameHOFO is 0.9022. The AUC of theforeground frameHOFO is 0.9037.
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(a) Training (b) Abnormal scenes. Walk

(c) Abnormal scenes. Move (d) Abnormal scenes. Run

Figure 3.22: Abnormalframeevent detection results ofTime14-17based onoriginal frame
HOFO descriptor via one-class SVM. (a) Training frames, individuals are walking toward
different directions. (b) Abnormal frames, individuals are walking toward the identical
direction. (c) Abnormal frames, individuals are moving (walking or running) toward the
identical direction. (d) Abnormal frames, individuals arerunning toward the identical di-
rection.

people are running. The training samples are chosen from theframes (Time14-17, Time14-
31) where people are walking in the same direction. The detection results are illustrated
in Fig.3.25. The accuracy of the results before applying state transition post-processing is
93.24%. False alarms are reduced by applying the state transition model.

The crowd splitting sequence (Time14-31) detection results are shown in Fig.3.26.
Frames where there is one cohesive crowd are considered as normal, while frames where
the crowd is splitting are considered as abnormal. Trainingsamples are extracted from the
frames (Time14-16) where people are walking in the same direction. Fig.3.26(c) shows the
detection results of each frame. The accuracy of the resultsbefore state transition post-
processing is 94.62%. The state transition model leads to a 13 frame delay of predicting
an abnormal event, but the fluctuations between theabnormaland thenormal state are
reduced.

The crowd formation and evacuation sequence (Time14-33) detection results are pre-
sented in Fig.3.27. Crowd formation is defined by the scene in which the people are walk-
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Figure 3.23:Time14-17results based onoriginal frameHOFO descriptor via one-class
SVM. Greencolor represents the normal frames, andred color corresponds with abnormal
frames. 400 training frames (Frame 0th to 399th), and 89 normal testing frames (Frame
400th to 488th) are obtained fromTime14-55. 89 abnormal testing frames (Frame 0th to
89th) are selected fromTime14-17. The accuracy of detection results before state transition
post-processing is 90.00%.

ing towards the convergence point. Evacuation refers to thescene in which the people are
diverging. The essence of abnormal detection is to find the sample which differs from the
training data, hence the outputs are two states, normal and abnormal. The frames where the
people are loitering in small areas around a location are considered as normal, as shown in
Fig.3.27(c). The other two situations including crowd formation andindividual evacuation
are considered as abnormal. The training frames are chosen from sequence (Time14-55)
where people are walking in different directions. Because the orders of events are obtained
in advance, the abnormal states before the normal events areclassified as “gathering (crowd
formation)”, while the other abnormal events are labeled as“evacuation”. If the abnormal
detection mission, distinguishing running event from walking is taken into account: such as
the example of sequenceTime14-16shown in Fig.3.24, the two events, “gathering” and “e-
vacuation”, can be discriminated without the prior information of event order. Each frame
is split into four partsA,B,CandD, as illustrated in Fig.3.27(a). The HOFO feature de-
scriptor is calculated in each sub-image, respectively. Based on this image segmentation,
the global frame abnormal detection task is decomposed intosub-frame events analysis.
However, partD is not considered, for there are no people in this sub-image in the crowd
formation period. Fig.3.28 presents the detection results of each frame. The individuals
gather at the convergence point at different times, the earlier “gathering” events occurs in
sub-frameC. The individuals assemble in sub-frameC, B and A at frames 73, 111 and
175, respectively. The rapid dispersion event occurs at almost the same time in these three
sub-images, close to frame 341. The global frame detection accuracy of the results after
state transition post-processing is 97.88%.

The local dispersion sequence (Time14-27) detection results are shown in Fig.3.29. As
shown in Fig.3.29(a), each frame is split into five partsA,B,C,DandE, the cross-point is the
convergence place of the individuals. Owning to the occlusion in partA, people loitering
obscure the people dispersing, a precise partE is segmented out ofA. Local dispersion is
defined by the scene in which people in each part are walking inone direction, the opposite
direction from the convergence point. Local dispersion is considered as an abnormal event,
loitering is considered as a normal event. Training samplesare chosen from the sequence



48 Chapter 3. Abnormal detection based on optical flow and HOFO

(a) Normal scenes. Walk (b) Abnormal scenes. Run

(c) Normal scenes. Walk (d) Normal scenes. Run

Figure 3.24: Abnormalframeevent detection results ofTime14-16based onoriginal frame
HOFO descriptor via one-class SVM. (a) Pedestrians are walking toward the identical di-
rection, from right to left. (b) Pedestrians are running toward the identical direction, from
right to left. (c) Pedestrians are walking toward the identical direction, from left to right.
(d) Pedestrians are running toward the identical direction, from left to right.

(Time14-55) where people are walking in different directions. The detection result of each
frame is shown in Fig.3.30. In sub-imageE, the frames 92 to 106, 120 to 130, and 273
to 294 are classified as abnormal states, which are defined as local dispersion. Frames
107 to 119 in the sub-frameE, the optical flows of the moving are not detected for the
occlusion. These frames are detected as normal states. In part B, the local dispersion is not
easy to detect, as few individuals in this part are moving. The accuracy of the global frame
detection results after state transition post-processingis 88.89%.

The experimental results on the sequences show that our proposed method can success-
fully discriminate panic-driven events and irregular moving queues. Our feature is based
on the optical flow obtained by the HS method, whereas there are other methods that can
compute precise optical flow. If a more precise optical flow can be obtained, the more
robust abnormal detection results that our HOFO based method can provide than this pa-
per. Nevertheless, based on the optical flow which is calculated by the HS method, our
proposed method can give satisfactory abnormal detection results.
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Figure 3.25:Time14-16results based onoriginal frameHOFO descriptor via one-class
SVM. Greencolor represents the normal frames, andred color corresponds with abnormal
frames. Trains frames are chosen fromTime14-17andTime14-31: 61 frames (Frame 0th

to 60th) in Time14-17where pedestrians are walking from left to right, 50 frames (Frame
0th to 49th) in Time14-31where pedestrians are walking from right to left. The accuracy of
detection results before state transition post-processing is 93.24%.

3.4 Conclusion

In this chapter, the abnormal frame detection based on blockfeature of optical flow is
proposed. For analyzing the activity of the single person, the blob extraction method based
on the foreground and the optical flow in a crowded scene is proposed. Also, an other
descriptor based on the histogram of optical flow orientations (HOFO) is proposed to detect
abnormal blobs and abnormal frames. Nonlinear one-class SVM algorithms are then used
for classification. A fast implementation based on background subtraction is also proposed.
The proposed detection algorithms have been tested on several video datasets yielding
successful results in detecting abnormal events.
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(a) Normal scenes. Cohesive crowd (b) Abnormal scenes. Crowds split
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(c) PETSTime14-31results

Figure 3.26: Abnormalframeevent detection results ofTime14-31based onoriginal frame
HOFO descriptor via one-class SVM. (a) Cohesive crowd of persons. (b) Multiple diverg-
ing flows. (c) The detection result bar represents the labelsof each frame. 41 training
frames (Frame 0th to 40th) are obtained fromTime14-16. The detection accuracy before
state transition post-processing is 94.62%.
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(a) Frame is split into 4 parts (b) Abnormal scenes. Gather

(c) Normal scenes. Loiter (d) Abnormal scenes. Evacuation

Figure 3.27: Abnormalframeevent detection results ofTime14-33based onoriginal image
HOFO descriptor via one-class SVM. (a) The frame is split into 4 parts,A,B,CandD. (b)
Crowd formation. (c) Individuals are loitering. (d) Evacuation of the persons.
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Figure 3.28:Time14-33results based onoriginal image HOFO descriptor via one-class
SVM. 269 training frames (Frame 81th to 349th) are obtained fromTime14-55. The ac-
curacy before applying state transition model of results, in PartA is 90.98%, in PartB is
81.96%, in PartC is 85.68%. The accuracy after applying state transition model of the
global frame is 97.88%.



52 Chapter 3. Abnormal detection based on optical flow and HOFO

(a) Frame is split into 5 parts (b) Normal scenes. Loiter

(c) Normal scenes. Loiter (d) Abnormal scenes. Dispersion

Figure 3.29: Abnormalframeevent detection results ofTime14-27based onoriginal image
HOFO descriptor via one-class SVM. (a) The frame is split into 5 parts. (b) Individuals are
loitering in small areas. (c) Another frame of individuals are loitering in small areas. (d)
Local dispersion of crowds.
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Figure 3.30:Time14-27results based onoriginal image HOFO descriptor via one-class
SVM. 269 training frames (Frame 81th to 349th) are chosen fromTime14-55. In sub-image
B, the abnormal state defined as local dispersion is detected at frame 102th,104th,106th,and
from 108th to 110th. The accuracy after applying state transition model is 88.89%.
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In this chapter, we propose a covariance matrix descriptor fusing both optical flow and
intensity information of a blob or a whole image. This proposed descriptor is inspired
by region covariance [Tuzel 2006] used for patch matching in a tracking problem and for
object detection. One of the advantages of the covariance descriptor is its constant and low
dimensionality whatever the number of considered pixels from which low-level features
are extracted. As in the previous chapter, we use the one-class support vector machines
(OC-SVM), as a model-free pattern recognition method to detect abnormal events. In the
nonlinear one-class SVM, a multi-kernel strategy is also proposed to tune the importance
of the partial features, in order to enhance improve the abnormal detection performances.

The rest of the chapter is organized as follows. In Section4.1, the proposed covariance
matrix descriptor encoding motion features and intensity features is introduced. In Section
4.2, we propose the multi-kernel strategy, and an overview of our visual-based abnormal
blob or frame event detection method. In Section4.3, we present the abnormal blob local-
ization and abnormal frame detection results on benchmark datasets. Finally, Section4.4
concludes the chapter.

4.1 Covariance Descriptor

The covariance matrix is proposed by O. Tuzel [Tuzel 2006] for describing gray or col-
or blob image features. It has been successfully used in the object detection problem
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[Tuzel 2007, Tuzel 2008], the face recognition problem [Pang 2008], and the tracking prob-
lem [Porikli 2006c]. The covariance descriptor is robust against noise, illumination distor-
tions, and rotation [Porikli 2006a]. A fast construction of the covariance matrix is intro-
duced in [Porikli 2006b]. The performance of different features constructing the covariance
matrix descriptor has been analyzing in [Cortez-Cargill 2009]. We propose to construct co-
variance matrix descriptor based on the optical flow and the intensity to encode movement
features both in a blob and in a global image. The covariance descriptor is defined as:

F(x, y, ℓ) = φℓ(I , x, y) (4.1)

whereI is an image (which can be gray, red-green-blue (RGB), etc.),F is a W × H × d
dimensional feature of imageI , W is the image width,H is the image height,d is the
number of used features,φℓ is a mapping relating the image with theℓ-th feature from the
imageI . For a given rectangular regionR, the feature points can be represented asd × d
covariance matrix:

CR =
1

n− 1

np∑

k=1

(zk − µ)(zk − µ)⊤, (4.2)

whereµ is the mean of the points,CR is the covariance matrix of the feature vectorF, zk

is the feature vector of pixelk, np pixels are chosen. The diagonal entries of the covariance
matrix represent the variance of each feature, the rest entries of the matrix represent the
correlation between different features. The covarianceCR of a given regionR does not
have any information regarding the order and the number of points.

Based on the optical flow and the intensity, 13 different feature vectorsF shown in
TABLE 4.1are proposed to construct the covariance descriptor. WhereI is the intensity of
the gray image, the optical flow is obtained from the gray image,u is the horizontal optical
flow, v is the vertical optical flow;Ix, ux, vx and Iy, uy vy are the first derivatives of the
intensity, horizontal optical flow and vertical optical flowin thex direction andy direction;
Ixx, uxx, vxx andIyy, uyy, vyy are the second derivatives of the corresponding features inthe
x direction andy direction; Ixy, uxy andvxy are the second derivatives in they direction
of the first derivatives in thex direction of the corresponding features. Fig.4.1 illustrates
the covariance matrix feature of the blobs, for thek-th blob in i-th frameBk

i , covariance
matrix feature isCk

i . The optical flow shows the inter-frame information, it describes the
movement information. The intensity shows the intra-frameinformation, it encodes the
appearance information. If the whole frame is taken as a big blob, the covariance matrix
descriptor ofi-th frame isCi .

4.2 Abnormal blob detection and localization

Based on the covariance matrix descriptor, we introduce theabnormal blob detection method
in this section by three parts. Firstly, one-class support vector machines (OC-SVM) is
briefly introduced. The second part proposes the multi-kernel strategy for the covariance
matrix descriptor. The third part is the description of the global strategy of the abnor-
mal blob detection method via one-class SVM. If the global image is taken as one blob,
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Feature Vector F
optical F1(4× 4) [y x u v]
flow F2(6× 6) [y x u v ux uy]

F3(6× 6) [y x u v vx vy]
F4(8× 8) [y x u v ux uy vx vy]
F5(12× 12) [y x u v ux uy vx vy uxx uyy vxx vyy]
F6(14× 14) [y x u v ux uy vx vy uxx uyy vxx vyy uxy vxy]

optical F7(5× 5) [y x u v I]
flow F8(9× 9) [y x u v ux uy vx vy I ]
with F9(13× 13) [y x u v ux uy vx vy uxx uyy vxx vyy I ]
intensity F10(15× 15) [y x u v ux uy vx vy uxx uyy vxx vyy uxy vxy I ]

F11(11× 11) [y x u v ux uy vx vy I I x Iy]
F12(17× 17) [y x u v ux uy vx vy uxx uyy vxx vyy I I x Iy Ixx Iyy]
F13(20× 20) [y x u v ux uy vx vy uxx uyy vxx vyy uxy vxy I I x Iy Ixx Iyy Ixy]

Table 4.1: FeaturesF used to form the covariance matrices. For example,F1(4× 4) means
the covariance matrix (COV) descriptor is in size 4× 4.

1framei+

framei

consecutive frame with blobs

optical flow on the foreground pixels

( , , )F x y j

1,2,...,j n=
k
iblob

C

features

k

iOP

Figure 4.1: Computation of the covariance matrix (COV) descriptor of the blob.

the strategy of the abnormal blob detection method can also detect global abnormal frame
events.

4.2.1 Nonlinear One-class SVM

The problem of non-linear one-class SVM [Schölkopf 2001, Canu 2005] can be presented
as a constrained minimization one:

min
ω,ξ,ρ

1
2
‖w‖2 +

1
νn

n∑

i=1

ξi − ρ, (4.3)

subject to: 〈w,Φ(xi)〉 ≥ ρ − ξi , ξi ≥ 0. (4.4)

The decision function in the data spaceX is defined as:
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f (x) = sgn(
n∑

i=1

αiκ(xi,x) − ρ), (4.5)

wherex is a vector in the input data spaceX, κ is the kernel function implicitly mapping
the data into a higher dimensional feature space where a linear classifier can be designed.

4.2.2 Kernel for Covariance Matrix Descriptor

For one-class SVM, the kernelκ of two covariance matrices must be computed. If proper
parameters are given, the traditionally used kernel, such as the Gaussian, polynomial, and
sigmoidal kernel, has similar performances [Schölkopf 2002]. We choose the Gaussian
kernel defined by the following expression:

κ(xi ,x j) = exp(−
‖xi − x j‖

2

2σ2
), (xi ,x j) ∈ X × X, (4.6)

where the parameterσ indicates the scale factor where the data should be clustered,xi and
x j are two vectors.

The covariance matrix is an element in a Lie GroupG, where the distance measuring
the dissimilarity of two elements is defined as:

d(X1,X2) =‖ log(X−1
1 X2)‖, (4.7)

with ‖A‖ =

√√√ m∑

i=1

n∑

j=1

|ai j |2, (4.8)

where‖ · ‖ is the Frobenius norm,ai j is an element in the matrixA, Xi andX j are the
matrices in a Lie GroupG. Thus, the Gaussian kernel in a Lie GroupG is:

κ(Xi ,X j) = exp(−
‖ log(X−1

i X j)‖

2σ2
), (Xi ,X j) ∈ G×G. (4.9)

The Baker Campbell Hausdorff formula [Hall 2003] in the theory of Lie Group is:

log(expX expY ) =
∑

n>0

(−1)n−1

n

∑

r i+si>0
1≤i≤n

(
∑n

i=1(r i + si))−1

r1!s1! · · · rn!sn!
[X r1Y s1X r2Y s2 . . .X rnY sn].

(4.10)
By using the first term of eq.(4.10), the approximate form of the Gaussian kernel in Lie

Group is:

κ(Xi ,X j) = exp(−
‖ log(Xi) − log(X j)‖2

2σ2
), (Xi ,X j) ∈ G×G, (4.11)

where log(X) is a symmetrical matrix. The covariance descriptorCR is of sized × d, due
to symmetryCR has onlyd2+d

2 different features. By choosing thed2+d
2 upper triangular
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and the diagonal elements of the matrix log(X) to construct a vectorx, replacing log(X)
in eq.(A.19) by x, the Gaussian kernel can be written as:

κ(Xi ,X j) = exp(−
‖xi − x j‖

2

2σ2
), (4.12)

where xi is the vector constructed by elements of the upper triangular and the diagonal
elements of the matrix log(X).

For constructing a more representative and discriminativefeature descriptor, we split
each frame intom parts. The multi-kernel strategy for our covariance matrixdescriptor is
defined by [Noumir 2012a, Rakotomamonjy 2008, Chen 2013]:

κ(Xi ,X j) =
m∑

s=1

µsκs(xi , x j). (4.13)

Eq.(A.21) is a kernel consisting ofm basic kernelsκs, s = 1, · · · ,m. Because each
basic kernel satisfies Mercer condition, their summation isalso a semi-positive definite
kernel under the condition of non-negativeµs. In this expression, the Gaussian kernel is
adopted with:

κs(xi , x j) = exp(−
‖xi − x j‖

2
[s]

2σ2
). (4.14)

The kernelsκs, s= 1, · · · ,m are Gaussian kernels. Each sample vectorx consists ofm
parts, [x1, x2, . . . , xm]. This kernel strategy is similar to filter the frame by usinga mask.
For example, a frame is split into 4 parts, as shown in Fig.4.2. If s = 1, the left-up part
of the image is selected. We preset the weightµs according to the characteristic of the
image to tune the importance of each sub-image. In the indoorscene, in the normal and
the abnormal frames, there are no people in the upper half of the image. Thus, we set
µ1,2 = 0.1, µ3,4 = 0.4 to reduce the importance of the sub-image wheres = 1 ands = 2.
In this case, sinceµs ≥ 0 and

∑4
s=1 µs = 1, the resulting kernel belongs to the convex

hull of the 4 considered kernels. By considering this combination, the resulting kernel out
performs each kernelκs used individually.

(a) Image

1s =

(b) S = 1

2s =

(c) S = 2

3s =

(d) S = 3

4s =

(e) S = 4

Figure 4.2: Filter the image by the mask to select a sub-image. (a) An original frame of the
indoor scene. (b)S = 1, µ1 = 0.1, the left-upper part of the image is selected. (c)S = 2,
µ2 = 0.1, the right-upper part. (d)S = 3, µ3 = 0.4, the left-lower part. (e)S = 4, µ4 = 0.4,
the right-lower part.
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4.3 Abnormal Events Detection and Localization Results

This section presents the results of experiments conductedto analyze the performance of
the proposed method for abnormal blob localization, and global abnormal frame events
detection. In the experiments below, if a frame is split into4 parts, the frame feature
consists of 4 covariance matrix descriptors, we mark it as “4 covariances”, otherwise, we
mark the feature as “1 covariance”. If the multi-kernel strategy is used, we mark it as “4
kernels”, otherwise, we mark the kernel strategy as “1 kernel”.

4.3.1 Abnormal Blob Detection Results

The samples for training and the normal samples for testing are the blobs where people are
walking. The abnormal samples correspond to the blobs wherepeople are running. Our
method can distinguish the abnormal running blobs from the walking blobs. In ROC curve,
the true positive rate means that the running blob is classified as abnormal, while the false
positive rate means that the walking blob is classified as abnormal.

The detection results of a scene of two pedestrians moving parallel to the camera plane
are shown in Fig.4.3. It simulates the abnormal scenes where the velocity of the object
changes. The sequence is of a low resolution, the people havea height about 30 pixels.
The maximum AUC value is 0.8759.

The detection results of the lawn scene and the plaza scene inUMN dataset [UMN 2006]
are shown in Fig.4.4. The maximum AUC value of the lawn scene is 0.9721, of the plaza
scene is 0.8523. The results show that the abnormal detection algorithm of theblobcovari-
ance feature can obtain satisfactory detection results.

The detection results of mall scenes [Adam 2008] are shown in Fig.4.5. In one frame,
there are walking people and also the running ones. The maximum AUC value is 0.8583.

The AUC of the detection results of different scenes and different covariance features
are summarized in the TABLE4.2. Generally, the features including both optical flow
and intensity induce better detection results than the oneswhere only the optical flow is
considering.

4.3.2 Abnormal Frame Detection Results

Taking the globalframeas one blob, the abnormalblobdetection method can be adjusted to
detect abnormalframe. The detection results of UMN dataset [UMN 2006] and PETS2009
dataset [PETS 2009] are introduced below.

4.3.2.1 Abnormal Frame Detection Results of the UMN dataset

The UMN dataset includes eleven video sequences of three different scenes of crowded
escape events. The detection results of lawn scene, plaza scene and indoor scene are shown
in Fig.4.6, Fig.4.7and Fig.4.8, respectively. The training samples and normal testing sam-
ples are the frames where the people are walking in different directions. The abnormal
testing samples are the frames where the people are running.The“1 covariance descriptor
and 1 kernel”strategy results are shown in TABLE4.3, the“4 covariance descriptors and
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(a) A training frame (b) A running person

(c) Optical flow image
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Figure 4.3: Abnormalblob event detection results of the two people walking or running
scene based onblobcovariance matrix descriptor via one-class SVM. (a) The normal scene
for training, two people are walking. (b) The detection result. The red rectangle labels the
abnormal blob, the person is running. The blue rectangle labels the normal blob, the person
is walking. (c) The optical flow image of (b). A black border isadded to show the image
clearly. (d) ROC curve of different featureF results by using“1 covariance descriptor and
1 kernel”. The maximum AUC value is 0.8759.
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(a) Detection result of lawn scene (b) Detection result of plaza scene
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(c) ROC curve of lawn
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Figure 4.4: Abnormalblob event detection results of UMN dataset based onblob covari-
ance matrix descriptor via one-class SVM, the abnormalblob event localization results of
the lawn scene and the plaza scene. (a) The abnormal detection results of lawn scene. All
the people are running. The red rectangles label the abnormal running blobs. (b) The ab-
normal detection results of plaza scene. (c) ROC curve of different featureF results of the
lawn scene results by using“1 covariance descriptor and 1 kernel”. The maximum AUC
value is 0.9721. (d) ROC curve of different featureF results of the plaza scene by using“1
covariance descriptor and 1 kernel”. The maximum AUC value is 0.8523.
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(a) Normal scenes for training (b) Detect one person running

(c) Detect one person running
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Figure 4.5: Abnormalblob event detection results of the mall scene based onblob covari-
ance matrix descriptor via one-class SVM. (a) The normal blobs for training, two people
are walking. (b) The detection result. The red rectangles label the abnormal blobs, the
people are running. The blue rectangles label the normal blobs, the people are walking.
(c) Another abnormalblob event detection result. (d) ROC curve by using“1 covariance
descriptor and 1 kernel”. The maximum AUC value is 0.8583.
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Features 2persons lawn plaza mall

Blob one-class SVM1 covariance 1 kernel
optical F1(4× 4) 0.8739 2© 0.9504 9© 0.8200 13© 0.8583 1©

flow F2(6× 6) 0.8645 7© 0.9562 6© 0.8201 12© 0.8359 3©

F3(6× 6) 0.8700 3© 0.9533 8© 0.8289 10© 0.7934 13©

F4(8× 8) 0.8654 6© 0.9424 12© 0.8275 11© 0.8240 7©

F5(12× 12) 0.8523 10© 0.9649 2© 0.8430 7© 0.8066 11©

F6(14× 14) 0.8500 12© 0.9218 13© 0.8449 4© 0.8071 10©

optical F7(5× 5) 0.8759 1© 0.9591 5© 0.8439 6© 0.8217 8©

flow F8(9× 9) 0.8660 5© 0.9637 3© 0.9426 8© 0.8340 4©

with F9(13× 13) 0.8521 11© 0.9441 11© 0.8442 5© 0.8248 6©

intensity F10(15× 15) 0.8500 13© 0.9625 4© 0.8499 3© 0.8110 9©

F11(11× 11) 0.8665 4© 0.9721 1© 0.8380 9© 0.8404 2©

F12(17× 17) 0.8525 9© 0.9474 10© 0.8466 2© 0.8028 12©

F13(20× 20) 0.8546 8© 0.9541 7© 0.8523 1© 0.8266 5©

Table 4.2: AUC of abnormalblob event detection results based onblob covariance matrix
descriptor constructed from different covariance featuresF via one-class SVM (OC-SVM)
by using“1 covariance descriptor and 1 kernel”. The biggest value of each scene is shown
in bold and red color.

1 kernel” strategy results are shown in TABLE4.4, the “4 covariance descriptors and 4
kernels” multi-kernel strategy results are shown in TABLE4.5. The indoor scene is more
difficult than the other two scenes, due to the instable illumination situation and the gloom
circumstance. The camera is far away from the moving people.When some people come
into or go out from the room, the illumination becomes much stronger. Our proposed ab-
normal detection method can handle a this bad illumination scene, and obtain satisfactory
detection results.

By comparing the results of all these three senses in TABLE4.3 and TABLE 4.4,
we can see that splitting a frame into 4 parts can generally improve the performance of
abnormal detection results. By comparing the results of “indoor” and “indoor♯” in TABLE
4.5, we can see by choosing suitable coefficients of the multi-kernel strategy to adapt the
characteristic of the scene, the performances are much better in every feature.

By comparing the abnormalblob detection results in TABLE4.2 and the abnormal
framedetection results, we can see that abnormalframedetection performance is a little
better than the abnormalblob detection performance. In fact the blob detection method
cannot label all the people very exactly. The rectangle may be on the background, or
does not include all the parts of the human. These are the major reasons of lower AUC
value of theblob feature based method. Nevertheless, the abnormalblob detection can
obtain similar performance as abnormal globalframedetection by presetting a threshold
of the percentage of blobs in one frame. For example, if 80% ofthe blobs in one frame
are classified as abnormal, this frame is then considered as an abnormal frame. Thus, the
abnormalblob detection has the results as the same as the ones when the covariance of a
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Features lawn indoor plaza

Frameone-class SVM1 covariance 1 kernel
optical F1(4× 4) 0.9382 12© 0.7359 13© 0.9103 13©

flow F2(6× 6) 0.9474 11© 0.8381 10© 0.9148 12©

F3(6× 6) 0.9583 10© 0.8410 9© 0.9192 11©

F4(8× 8) 0.9656 7© 0.8483 8© 0.9367 9©

F5(12× 12) 0.9798 2© 0.8744 6© 0.9782 2©

F6(14× 14) 0.9803 1© 0.8752 5© 0.9790 1©

optical F7(5× 5) 0.9337 13© 0.8314 11© 0.9220 10©

flow F8(9× 9) 0.9617 8© 0.8529 7© 0.9419 8©

with F9(13× 13) 0.9786 4© 0.8797 4© 0.9721 4©

intensity F10(15× 15) 0.9789 3© 0.8145 12© 0.9734 3©

F11(11× 11) 0.9583 9© 0.9000 3© 0.9472 7©

F12(17× 17) 0.9758 6© 0.9291 1© 0.9549 6©

F13(20× 20) 0.9767 5© 0.9253 2© 0.9580 5©

Table 4.3: AUC of abnormalframeevent detection results based onframecovariance ma-
trix descriptor constructed from different featuresF via one-class SVM (OC-SVM) by
using“1 covariance descriptor and 1 kernel”of the UMN dataset.

frameis chosen as a descriptor.
The performances of the covariance matrix descriptor basedmethod and the state-

of-the-art methods are shown in TABLE4.6. The covariance matrix based multi-kernel
learning strategy abnormal frame detection method obtainscompetitive performance. Our
method is better than others except sparse reconstruction cost (SRC) [Cong 2011], which
takes multi-scale HOF as a feature, classifies a testing sample by its sparse reconstruction
cost, through a weighted linear reconstruction of the over-complete normal basis set. For a
particular scene, the kernel coefficients in the multi-kernel strategy can be tuned to obtain
a better performance. By using the integral image strategy [Tuzel 2006], the covariance
matrix descriptor of theblob can be computed quickly from the globalframecovariance.
Because our abnormal detection method can detect abnormal global frameand abnormal
blob, we can localize theblob in the abnormalframeconveniently.

4.3.2.2 Abnormal Frame Detection results of the PETS dataset

The covariance descriptor can not only encode the magnitudeinformation of a frame, and
also describe the direction. The detection results ofTime 14-17scene are show in Fig.4.9.
The training samples and normal testing samples are chosen from the sequence (Time 14-
55), where the people are walking in different directions. The abnormal testing samples are
chosen from the sequence (Time 14-17), where the people are walking or running in one
direction. The proposed abnormal detection method detect the one direction movement,
the maximum AUC value is 0.9662.

The detection results of crowd splitting sequence (Time 14-31) are shown in Fig.4.10.
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(a) Normal lawn scene (b) Abnormal lawn scene
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Figure 4.6: Abnormalframeevent detection results of the indoor scene based onoriginal
frame covariance descriptor via one-class SVM. (a) The detectionresult of one normal
frame. (b) The detection result of one abnormal panic frame.(c) ROC curve of differ-
ent featureF results by using“1 covariance descriptor and 1 kernel”. The maximum
AUC value is 0.9803. (d) ROC curve by using“4 covariance descriptors and 4 kernels”,∑4

s=1 µsκs, µ1,2,3,4 = 0.25. The maximum AUC value is 0.9900.
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(a) Normal indoor scene (b) Abnormal indoor scene

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive

T
ru

e 
P

os
iti

ve

ROC indoor SVM 1cov 1kernel

F
1

F
4

F
6

F
7

F
12

F
13

0 0.1 0.2 0.3 0.4

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(c) ROC 1covariance 1kernel
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Figure 4.7: Abnormalframeevent detection results of the indoor scene based onoriginal
frame covariance descriptor via one-class SVM. (a) The detectionresult of one normal
frame. (b) The detection result of one abnormal panic frame.(c) ROC curve by using“1
covariance descriptor and 1 kernel”. The maximum AUC value is 0.9291. (d) ROC curve
by using“4 covariance descriptors and 4 kernels”,

∑4
s=1 µsκs, µ1,2 = 0.1, µ3,4 = 0.4. The

maximum AUC value is 0.9522.
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(a) Normal plaza scene (b) Abnormal plaza scene
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Figure 4.8: Abnormalframeevent detection results of the plaza scene based onoriginal
frame covariance descriptor via one-class SVM. (a) The detectionresult of one normal
frame. (b) The detection result of one abnormal panic frame.(c) ROC curve by using
“1 covariance descriptor and 1 kernel”. The maximum AUC value is 0.9790. (d) ROC
curve by using“4 covariance descriptors and 4 kernels”,

∑4
s=1 µsκs, µ1,2,3,4 = 0.25. The

maximum AUC value is 0.9829.
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Features lawn indoor plaza

Frameone-class SVM4 covariances 1kernle
optical F1(4× 4) 0.9868 12© 0.8473 13© 0.9372 12©

flow F2(6× 6) 0.9920 1© 0.8637 10© 0.9486 11©

F3(6× 6) 0.9905 2© 0.8801 9© 0.9498 10©

F4(8× 8) 0.9879 9© 0.8736 10© 0.9502 9©

F5(12× 12) 0.9888 6© 0.9072 4© 0.9738 5©

F6(14× 14) 0.9891 4© 0.9045 5© 0.9735 6©

optical F7(5× 5) 0.9868 12© 0.8676 11© 0.9417 13©

flow F8(9× 9) 0.9874 10© 0.8818 8© 0.9599 8©

with F9(13× 13) 0.9889 5© 0.9102 3© 0.9775 3©

intensity F10(15× 15) 0.9890 3© 0.8878 7© 0.9761 4©

F11(11× 11) 0.9873 11© 0.8943 6© 0.9639 7©

F12(17× 17) 0.9883 7© 0.9151 1© 0.9818 1©

F13(20× 20) 0.9882 8© 0.9148 2© 0.9810 2©

Table 4.4: AUC of abnormalframeevent detection results based onframecovariance ma-
trix descriptor constructed from different featuresF via one-class SVM (OC-SVM) by
using“4 covariance descriptors and 1 kernel”of the UMN dataset.

Features lawn indoor indoor♯ plaza

Frameone-class SVM4 covariances 4 kernels
optical F1(4× 4) 0.9828 12© 0.8381 13© 0.9522 1© 0.9374 12©

flow F2(6× 6) 0.9866 9© 0.8840 11© 0.9007 13© 0.9441 11©

F3(6× 6) 0.9870 7© 0.8971 10© 0.9136 11© 0.9454 10©

F4(8× 8) 0.9863 10© 0.9008 8© 0.9141 10© 0.9485 9©

F5(12× 12) 0.9900 1© 0.9344 2© 0.9422 5© 0.9783 4©

F6(14× 14) 0.9895 4© 0.9318 3© 0.9442 4© 0.9790 3©

optical F7(5× 5) 0.9817 13© 0.8714 12© 0.8976 12© 0.9153 13©

flow F8(9× 9) 0.9862 11© 0.9088 7© 0.9245 8© 0.9506 8©

with F9(13× 13) 0.9899 3© 0.9309 5© 0.9416 6© 0.9763 6©

intensity F10(15× 15) 0.9894 6© 0.8982 9© 0.9242 9© 0.97675©

F11(11× 11) 0.9870 8© 0.9298 6© 0.9289 7© 0.9555 7©

F12(17× 17) 0.9899 2© 0.9310 4© 0.9453 3© 0.9809 2©

F13(20× 20) 0.9895 5© 0.9365 1© 0.9484 2© 0.9829 1©

Table 4.5: AUC of abnormalframeevent detection results of the UMN dataset by using
“4 covariance descriptors and 4 kernels”,

∑4
s=1 µsκs. The “indoor♯” meansµ1,2 = 0.1,

µ3,4 = 0.4. The other results obtained by usingµ1,2,3,4 = 0.25.
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Method Area under ROC
lawn indoor plaza

Social Force [Mehran 2009] 0.96
Optical Flow [Mehran 2009] 0.84
NN [Cong 2011] 0.93
SRC [Cong 2011] 0.995 0.975 0.964
STCOG [Shi 2010] 0.9362 0.7759 0.9661
COV SVM (Ours) 0.9920 0.9522 0.9829

Table 4.6: The comparison of our proposed covariance matrixdescriptor and one-class
SVM based method with the state-of-the-art methods for abnormal frameevent detection
of the UMN dataset.

(a) Training (b) An abnormal frame. Walk

(c) An abnormal frame. Move

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive

T
ru

e 
P

os
iti

ve

ROC 1417 SVM 4cov 4kernel

F
1

F
4

F
6

F
7

F
12

F
13

0 0.05 0.1 0.15 0.2
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

(d) ROC 4covariances 4kernels

Figure 4.9: Abnormalframeevent detection results ofTime14-17based onoriginal frame
covariance matrix descriptor via one-class SVM. (a) A training frame (Time 14-55). The
people are walking in different directions. (b) An abnormal frame (Time 14-17). The people
are walking in the same direction. (c) An abnormal frame (Time 14-17). The people are
moving (walking or running) in the same direction. (d) ROC curve by using“4 covariance
descriptors and 4 kernels”. The biggest AUC value is 0.9662.
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The training samples are chosen from the scene (Time 14-16), where there is one cohesive
crowd. The normal and abnormal testing samples are chosen from sequenceTime 14-31.
The abnormal scene is the frames where the crowd is splitting. The maximum AUC value
is 0.9988. The detection results ofTime 14-17andTime 14-31are shown in TABLE4.7.
By using the multi-kernel learning strategy, the performance of the detection results are
improved.

(a) Training (b) Normal scenes. Cohesive crowd

(c) Abnormal scenes. Crowds split
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Figure 4.10: Abnormalframeevent detection results ofTime14-31based onoriginal frame
covariance matrix descriptor via one-class SVM. (a) A training frame. A people cohesive
crowd (Time 14-16) in the frame. 41 training frames (0 to 40) are chosen fromTime14-
16. (b) A normal testing frameTime14-31. (c) A people cohesive crowd abnormal frame.
Multiple diverging flowsTime14-31. (c) ROC curve by using“4 covariance descriptors
and 4 kernels”. The biggest AUC value is 0.9988.

4.4 Conclusion

The covariance matrix descriptor constructed by different features of the intensity and the
optical flow is proposed to encode the moving information of ablob or a frame. The influ-
ence of the different features is analyzed by experiments. The covariance matrix descriptor
can be computed conveniently from the frame to the blob by adopting integral image. A
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Features 1417 1431 1417∗ 1431∗ 1417♯ 1431♯

Frameone-class SVM
1 covariance 1 kernel 4 covariances 1 kernel 4 covariances 4 kernels

optical F1(4× 4) 0.7357 6© 0.6341 12© 0.9275 13© 0.9953 1© 0.9136 9© 0.9934 11©

flow F2(6× 6) 0.7283 11© 0.6650 9© 0.9391 11© 0.9911 7© 0.9214 8© 0.9973 8©

F3(6× 6) 0.7541 1© 0.7291 5© 0.9378 12© 0.9900 10© 0.9059 13© 0.9960 9©

F4(8× 8) 0.7196 13© 0.7145 6© 0.9432 8© 0.9951 2© 0.9125 11© 0.9956 10©

F5(12× 12) 0.7388 5© 0.8256 2© 0.9412 9© 0.9905 8© 0.9135 10© 0.9981 4©

F6(14× 14) 0.7314 7© 0.8258 1© 0.9402 10© 0.9884 12© 0.9081 12© 0.9983 2©

optical F7(5× 5) 0.7396 3© 0.5464 13© 0.9463 5© 0.9923 5© 0.9662 1© 0.9874 6©

flow F8(9× 9) 0.7233 12© 0.6449 10© 0.9490 1© 0.9944 3© 0.9385 5© 0.9931 12©

with F9(13× 13) 0.7396 3© 0.7886 4© 0.9453 7© 0.9901 9© 0.9235 7© 0.9974 6©

intensity F10(15× 15) 0.7301 8© 0.7963 3© 0.9464 4© 0.9881 13© 0.9240 6© 0.9983 2©

F11(11× 11) 0.7294 10© 0.6448 11© 0.9460 6© 0.9935 4© 0.95462© 0.9914 13©

F12(17× 17) 0.7447 2© 0.6730 8© 0.9475 2© 0.9913 6© 0.9501 4© 0.9988 1©

F13(20× 20) 0.7301 8© 0.7070 7© 0.9474 3© 0.9898 11© 0.9546 2© 0.9980 5©

Table 4.7: AUC of abnormalframeevent detection results based onframecovariance ma-
trix descriptor constructed by different featuresF via one-class SVM (OC-SVM) of PETS
dataset. “1417” and “1431” are the results by using“1 covariance descriptor and 1 k-
ernel”. “1417 ∗” and “1431∗” are the results by using“4 covariance descriptors and 1
kernel”. “1417 ♯” and “1431♯” are the results by using“4 covariance descriptors and 4
kernels”,

∑4
s=1 µsκs, µ1,2,3,4 = 0.25.

multi-kernel strategy is proposed to adapt the detection method to the characteristics of a
particular scene, improving the detection results. The proposed method has been tested
on several datasets, and it was shown that the proposed method is able to detect abnormal
events both at the blob and the frame levels.
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In Chapter3 and Chapter4, the abnormalblob and frame event detection methods
have been proposed. These methods are based on histograms ofoptical flow orientations
(HOFO) descriptor or covariance matrix (COV) descriptor, and one-class support vector
machines (OC-SVM) classification. SVM is usually trained ina batch model, i.e., all
training data are given a priori and learning is conducted inone batch. If additional training
data arrive later, the SVM must be retrained from scratch [Shilton 2005]. In the problem of
abnormal event detection for videosurveillance, the normal sequence for training may last
for a long time. It is impractical to train the whole big training set of normal samples as
one batch. Moreover, if a new frames are added to a large training dataset, they will likely
have only a minimal effect on the previous decision surface. Resolving the problemfrom
scratch seems computationally wasteful. Considering these two aspects, the online strategy
is adopted in our work to respect both the computational and memory requirements. Two
online one-class SVM algorithms are introduced, the onlinesupport vector data description
(online SVDD) and the online least squares one-class support vector machines (online LS-
OC-SVM). The covariance matrix descriptor proposed in Section 4.1is used in this chapter.
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5.1 Abnormal detection via online support vector data descrip-
tion

In this section, we propose two strategies of abnormal eventdetection based on online sup-
port vector data description (SVDD). Before introducing these strategies, we first describe
the online hypersphere one-class SVM classification methodin the following.

5.1.1 Hypersphere one-class support vector machines

There are two frameworks for one-class SVM. One is theν- support vector classifier (ν-
SVC) introduced in [Schölkopf 2001], which is used in Chapter3 and Chapter4 for abnor-
mal classification. The other is support vector data description (SVDD) which is present-
ed in [Tax 2001, Tax 1999]. The SVDD method (considered in this chapter) computes a
sphere shaped decision boundary with minimal volume arounda set of objects. The cen-
ter of the spherec and the radiusR are to be determined via the following optimization
problem:

min
R,ξ,c

R2 +C
n∑

i=1

ξi , (5.1)

subject to: ‖Φ(xi) − c‖
2 ≤ R2 + ξi , ξi ≥ 0,∀i, (5.2)

wheren is the number of training samples,ξi is the slack variable for penalizing the outliers.
The hyperparameterC is the weight for restraining slack variables, it tunes the number of
acceptable outliers. The nonlinear functionΦ : X → H maps a datumxi into the feature
spaceH , it allows to solve a nonlinear classification problem by designing a linear classifier
in the feature spaceH . κ is the kernel function for computing dot products inH , κ(x,x′) =
〈Φ(x),Φ(x′)〉. By introducing Lagrange multipliers, the dual problem associated with (5.2)
is written by the following quadratic optimization problem:

max
α

n∑

i=1

αiκ(xi ,xi) −
n∑

i, j=1

αiα jκ(xi ,x j), (5.3)

subject to: 0≤ αi ≤ C,
n∑

i=1

αi = 1, c =
n∑

i=1

αiΦ(xi). (5.4)

The decision function is:

f (x) = sgn(R2 −

n∑

i, j=1

αiα jκ(xi ,x j) + 2
n∑

i=1

αiκ(xi ,x) − κ(x,x)). (5.5)

For the large training data, the solution cannot be obtainedeasily. An online strategy
to train the data is used in our work. LetcD denotes a sparse model of the centercn =
1
n

∑n
i=1Φ(xi) by using a small subset of available samples which called dictionary:
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cD =
∑

i∈D

αiΦ(xi), (5.6)

whereD ⊂ {1, 2, . . . , n}, and letND denotes the cardinality of this subsetxD.
The distance between any mapped dataΦ(x) respecting to the centercD can be calcu-

lated by:

‖Φ(x) − cD‖ =
∑

i, j∈D

αiα j κ(xi ,x j) − 2
∑

i∈D

αi κ(xi ,x) + κ(x,x). (5.7)

A modification of the original formulation of the one-class classification algorithm consist-
ing of minimizing the approximation error‖cn − cD‖ is [Noumir 2012c, Noumir 2012b]:

α = arg min
αi ,i∈D

‖
1
n

n∑

i=1

Φ(xi) −
∑

i∈D

αiΦ(xi)‖
2. (5.8)

The final solution is given by:

α =K−1κ, (5.9)

whereK is the Gram matrix with (i, j)-th entryκ(xi ,x j), andκ is the column vector with
entries1

n

∑n
i=1 κ(xk,xi), k ∈ D.

In the online scheme, at each time step there is a new sample. Let αn denote the
coefficients,Kn denote the Gram matrix, andκn denote the vector, at time stepn. A
criterion is used to determine whether the new sample can be included into the dictionary. A
thresholdµ0 is preseted, for the datumxt at time stept, the coherence-based sparsification
criterion [Honeine 2012, Richard 2009] is:

εt = max
i∈D
|κ(xt,xwi )|, (5.10)

First case: εt > µ0

In this case, the new dataΦ(xn+1) is not included into the dictionary. The Gram matrix
Kn+1 =Kn. κn changes online:

κn+1 =
1

n+ 1
(nκn + b) (5.11)

αn+1 =K−1
n+1κn+1 =

n
n+ 1

αn +
1

n+ 1
K−1

n b. (5.12)

whereb is the column vector with entriesκ(xi ,xn+1), i ∈ D.

Second case:εt ≤ µ0

In this case, the new dataΦ(xn+1) is included into the dictionaryD. The Gram matrix
K changes:
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Kn+1 =

[
Kn b

b⊤ κ(xn+1,xn+1)

]
. (5.13)

By using Woodbury matrix identity:

(A+ UCV)−1 = A−1 − A−1U
(
C−1 + VA−1U

)−1
VA−1, (5.14)

K−1
n+1 can be calculated iteratively:

K−1
n+1 =

[
K−1

n 0

0
⊤ 0

]
+

1

κ(xn+1,xn+1) − b⊤K−1
n b
×

[
−K−1

n b

1

]
×
[
−b⊤K−1

n 1
]
. (5.15)

The vectorκn+1 is updated fromκn,

κn+1 =
1

n+ 1

[
nκn + ~b
κn+1

]
, (5.16)

with κn+1 =

n+1∑

i=1

κ(xn+1,xi). (5.17)

Computingκn+1 as eq.(5.17) needs to save all the samples{xn+1
i=1 } in memory. For con-

quering this issue, it can compute asκn+1 = (n+ 1)κ(xn+1,xn+1) by considering an instant
estimation. The update ofαn+1 from αn is:

αn+1 =
1

n+ 1

[
nαn +K

−1
n b

0

]

−
1

(n+ 1)(κ(xn+1,xn+1) − b⊤K−1
n b)

×

[
K−1

n b

1

] (
nb⊤αn + b

⊤K−1
n b − κn+1

)
.

(5.18)

Based on eq.(5.18), we have an online implementation of the one-class SVM learning
phase.

5.1.2 Abnormal Event detection

In an abnormal event detection problem, it is assumed that a set of training frames{I1 . . . In}

(the positive class) describing the normal behavior is obtained. The general architectures
of online support vector data description (online SVDD) abnormal detection are introduced
below.

The offline training strategy refers to the case where all the training samples are learnt
as one batch, as shown in Fig.5.1(a). We propose two abnormal detection strategies, the
difference between these two strategies is the time when the dictionary is fixed. These
two strategies are shown in Fig.5.1(b) and (c). Strategy 1 is shown in Fig.5.1(b). The
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training data are learnt one-by-one. When the training period is finished, the dictionary
and the classifier are fixed. Each test datum is classified based on the dictionary. Fig.5.1(c)
illustratesStrategy 2. The training procedure is as the same asStrategy 1. But in the
testing period, the dictionary is updated if the datumxi satisfies the dictionary update
condition. The details of these two strategies are explained below.

m n m-

Train data

Test online

offline

n

(a) Strategy offline

m n m-

Train data Dictionary fixed

online

Test online

offline

n

(b) Strategy 1

m n m-

Train data

Train and test online

Dictionary fixed

Test online

offline

n

(c) Strategy 2

Figure 5.1: Offline and two online abnormal event detection strategies based on online
support vector data description (SVDD). (a) Strategy offline. The training data are learnt
as one batch offline. (b) Strategy 1. The dictionary is fixed when all the training data are
learnt. (c) Strategy 2. The dictionary continues being updated through the testing period.

The abnormalblob events detection and abnormalframe events detection proposed
in Chapter3 and in Chapter4 are in the same way in the one-class SVM classification
processes, the difference is whether the HOFO descriptor or COV descriptor is calculated,
in the blob or in the frame. Chapter5 focuses on the online one-class SVM algorithm, so
only COV descriptor is chosen, and the abnormalframeevents detection task is considered.

5.1.2.1 Strategy 1

In Strategy 1, the dictionary is updated merely through the training period. The COV de-
scriptor computation processes are the same as the ones in Chapter4. After COV descriptor
of each frame is calculated, the training and testing processes of online one-class SVM are
introduced hereinbelow.

Step 1: The first step is calculating the covariance matrix descriptor of training frames
based on the image intensity and the optical flow. This step can be generalized as:
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{(I1,OP1), (I2,OP2), . . . , (In,OPn)} −→ {C1,C2, . . . ,Cn}, (5.19)

where{(I1,OP1), (I2,OP2), . . . , (In,OPn)} are the image intensity and the corresponding
optical flow of the 1st to nth frame.{C1,C2, . . . ,Cn} are the covariance matrix descriptors.

Step 2: The second step consists of applying one-class SVM on the small subset of
extracted descriptor of the training normal frames to obtain the support vectors. Consider a
subset{Ci}

m
i=1, 1 ≤ m≪ n of data selected from the full training sample set{Ci}

n
i=1, without

loss of generality, assume that the firstm examples are chosen. This set ofm examples is
called dictionaryCD:

{C1,C2 . . .Cm}, 1 ≤ m≪ n
S VM
−→ support vector{S p1,S p2, . . . ,S po}, (5.20)

where the set{C1,C2 . . .Cm} is the firstm covariance matrix descriptors of the training
frames, it is the original dictionaryCD. In one-class SVM, the majority of the train-
ing samples do not contribute to the definition of the decision function. The entries of
a monitory subset of the training samples,{S p1,S p2, . . . ,S po}, o ≤ m, are support vectors
contributing to the definition of the decision function.

Step 3: After learning the dictionaryCD which includes the firstm, 1 ≤ m ≪ n
samples, the training samples{Cm+1,Cm+2, . . . ,Cn} are learned online via the technique
described in Section5.1.1. This step can be generalized as:

{CD,Ck},m< k ≤ n
S VM
−→

support vector{S p1,S p2, . . . ,S pp}, o ≤ p ≤ n,
CD := CD ∪Ck, if εt ≥ µ0,

(5.21)

whereCD is the dictionary obtained throughStep 2, Ck is a new sample in the remaining
training dataset. According to the criterion introduced inSection5.1.1, if the new sample
Ck satisfies the dictionary updated condition, it will be included into the dictionaryCD.

Step 4: Based on the dictionary and the classifier obtained from the training frames,
the incoming frame sampleCn+l is classified. The workflow ofStrategy 1 is shown in
Fig.5.2, and described by the following equation:

f (Cn+l )

= sgn(R2 −

n∑

i, j=1

αiα jκ(Ci ,C j) + 2
∑

i

αiκ(Ci ,Cn+l) − κ(Cn+l ,Cn+l))

=


1 f (Cn+l ) ≥ 0

−1 f (Cn+l ) < 0.
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Figure 5.2: Major processing states of the proposed online support vector data description
(SVDD) abnormalframeevent detection method. TheframeCOV descriptor is computed.

5.1.2.2 Strategy 2

In this strategy, the dictionary is updated through both training and testing periods. The
feature extraction step (Step 1) and the online training steps (Step 2, Step 3) are as the
same as the ones presented inStrategy 1. The testing step is different. The new coming
datum which is detected as normal, but satisfies dictionary update condition should be
included intoCD. The dictionary is needed to be updated through the testing period to
include new samples.

Step 4-Strategy 2:If the incoming frame sampleCn+l is classified as normal (f (Cn+l ) =
1), the data is checked by the criterion described in Section5.1.1. When the data satisfies
the dictionary update criterion, this testing sample will be included into the dictionary. This
step can be generalized by the following equation:

f (Cn+l )

= sgn(R2 −

n∑

i, j=1

αiα jκ(Ci ,C j) + 2
∑

i

αiκ(Ci ,Cn+l) − κ(Cn+l ,Cn+l))

=



1 f (Cn+l) ≥ 0


εt ≥ µ0→ CD := CD ∪Cn+l

εt < µ0→ CD := CD

−1 f (Cn+l) < 0.
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5.1.3 Abnormal Detection Results

This section presents the results of experiments conductedto analyze the performance of
the proposed method. A competitive performance through both Strategy 1andStrategy 2
of UMN [UMN 2006] dataset is presented. The normal samples for training or for normal
testing are the frames where the people are walking in different directions. The samples for
abnormal testing are the frames where people are running.

5.1.3.1 Abnormal Visual Events Detection–Strategy 1

The results of the proposed abnormal events detection method via Strategy 1online one-
class SVM of UMN [UMN 2006] dataset are shown below.

The detection results of lawn scene, indoor scene and plaza scene are shown in Fig.5.3,
Fig.5.4 and Fig.5.5 respectively. Gaussian kernel for the Lie Group is used in these three
scenes. Different value ofσ and penalty factorC are chosen, the area under the ROC
curve is shown as a function of these parameters [Hanley 1982]. The results show that
taking covariance matrix as descriptor can obtain satisfactory performance for abnormal
detection. And also, training the samples online can obtainsimilarly detection performance
as training all the samples offline. Online one-class SVM is appropriate to detect abnormal
visual events. There are 1431 frames in the lawn scene, 480 normal frames are used for
training. In the offline strategy, all the 480 frames covariance matrices shouldbe saved in
the memory. InStrategy 1, 100 frames covariance matrices are considered as the dictionary
firstly. When F5-17 × 17 feature is adopted to construct the covariance descriptor, the
variance of Gaussian kernel isσ = 1, the preset threshold of the criterion isµ0 = 0.5, the
dictionary size increases from 100 to 101, the maximum accuracy of the detection results is
91.69%. In the indoor scene, there are 2975 normal frames and 1057 abnormal frames. In
the plaza scene, there are 1831 normal frames and 286 abnormal frames. The processes of
the experiments are similar to the ones of the lawn scene. When feature vector isF5-17×17,
σ = 1, µ0 = 0.5, the dictionary size of theses two scenes remain 100. The online strategy
keeps the memory size almost unchanged when the size of training dataset increases.

5.1.3.2 Abnormal frame events detection–Strategy 2

The results of the abnormal event detection method viaStrategy 2 of UMN dataset are
shown as follows. In the experiment process of the lawn scene, 100 normal samples from
the training samples are learnt firstly, and then other 380 training data are learnt online one-
by-one. After these two training steps, we can obtain the basic dictionary from the training
samples, and also the classifier. In the following testing step, the dictionary is updated
if the sample satisfies the dictionary update criterion. When a new sample is coming, it
is firstly detected by the previous classifier. If it is classified as anomaly, the dictionary
and the classifier are not changed. Otherwise, if the sample is classified as a normal one,
the sparse criterion introduced in Section5.1.1 is used to check the correlation between
the earlier dictionary and this new datum. It will be included into the dictionary when it
satisfied the update condition. The dictionary will be updated through the whole testing
period. The other two scenes, the indoor and plaza scene are handled by the same methods.
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(a) Normal lawn scene (b) Abnormal lawn scene
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(d) ROC Strategy 1

Figure 5.3: Abnormalframe event detection results of the lawn scene based onframe
covariance matrix descriptor via online support vector data description (online SVDD)
Strategy 1. (a) The detection result of one normal frame. (b) The detection result of one
abnormal panic frame. (c) ROC curve of different featuresF of the lawn scene results via
one-class SVM. All the training samples are learned together offline. The biggest AUC
value is 0.9591. (d) ROC curve of different featuresF results viaStrategy 1online one-
class SVM. The biggest AUC value is 0.9581.
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(a) Normal indoor scene (b) Abnormal indoor scene
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(d) ROC Strategy 1

Figure 5.4: Abnormalframeevent detection results of the indoor scene based onframeco-
variance matrix (COV) descriptor via online support vectordata description (online SVDD)
Strategy 1. (a) The detection result of one normal frame. (b) The detection result of one
abnormal panic frame. (c) ROC curve of different featuresF of the lawn scene results via
one-class SVM. All the training samples are learned together offline. The biggest AUC val-
ue is 0.8649. (d) ROC curve of different featuresF results viaStrategy 1online one-class
SVM. The biggest AUC value is 0.8628.
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(a) Normal plaza scene (b) Abnormal plaza scene
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(c) ROC train offline
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(d) ROC Strategy 1

Figure 5.5: Abnormalframeevent detection results of the plaza scene based onframeco-
variance matrix (COV) descriptor via online support vectordata description (online SVDD)
Strategy 1. (a) The detection result of one normal frame. (b) The detection result of one
abnormal panic frame. (c) ROC curve of different featuresF of the plaza scene results via
one-class SVM. All the training samples are learned together offline. The biggest AUC val-
ue is 0.9649. (d) ROC curve of different featuresF results viaStrategy 1online one-class
SVM. The biggest AUC value is 0.9632.
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Features Area under ROC
lawn indoor plaza

training samples are learned offline
F2(6× 6du) 0.9426 0.8351 0.9323
F3(6× 6dv) 0.9400 0.8358 0.9321
F4(8× 8) 0.9440 0.8375 0.9359
F5(12× 12) 0.9591 0.8440 0.9580
F12(17× 17) 0.9567 0.8649 0.9649

Strategy 1
F2(6× 6du) 0.9399 0.8328 0.9343
F3(6× 6dv) 0.9390 0.8355 0.9366
F4(8× 8) 0.9418 0.8377 0.9411
F5(12× 12) 0.9581 0.8457 0.9573
F12(17× 17) 0.9551 0.8628 0.9632

Strategy 2
F2(6× 6du) 0.9427 0.8237 0.9288
F3(6× 6dv) 0.9370 0.8241 0.9283
F4(8× 8) 0.9430 0.8274 0.9312
F5(12× 12) 0.9605 0.8331 0.9505
F12(17× 17) 0.9601 0.8495 0.9746

Table 5.1: AUC of abnormalframeevents detection results based onframeCOV descriptor
constructed by different featuresF via original support vector data description (SVDD),
Strategy 1 online hypersphere one-class SVM, andStrategy 2 online hypersphere one-
class SVM of UMN dataset. The biggest value of each method is shown in bold.

When F5-17× 17 feature is adopted, the variance of the Gaussian kernel isσ = 1, and
the preset threshold of the criterion isµ0 = 0.5, the dictionary size of the lawn, indoor and
plaza scene are increased from 100 to 106, 102 and 102, respectively. The ROC curve of
detection results of these three scenes are shown in Fig.5.6(a), (b) and (c). Besides the
merit of saving memory ofStrategy 1, Strategy 2also has the advantage of adaptation to
the long duration sequence.

The results performances of offline strategy,Strategy 1andStrategy 2are shown in
TABLE 5.1. The performances of these two strategies results are similar to that of the
results when all training samples are learnt together. WhenF4(12× 12) or F5(17× 17)
are chosen as the features to form covariance matrix descriptor, the results have the best
performance. These two features are more abundant to include movement and intensity
information.

The result performances of the covariance matrix descriptor based online one-class
SVM method and the state-of-the-art methods are shown in TABLE 5.2. The covariance
matrix based online abnormal frame detection method obtains competitive performance.
In generally, our method is better then others except sparsereconstruction cost (SRC)
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(a) ROC Strategy 2 lawn scene
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(b) ROC Strategy 2 indoor scene
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(c) ROC Strategy 2 plaza scene
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Figure 5.6: ROC curve of abnormalframeevents detection results of the lawn, indoor, and
plaza scenes based onframe COV descriptor via online support vector data description
(online SVDD)Strategy 2. (a) ROC curve of different featuresF results viaStrategy 2
of lawn scene. The biggest AUC value is 0.9605. (b)Strategy 2 results of indoor scene.
The biggest AUC value is 0.8495. (c)Strategy 2results of plaza scene. The biggest AUC
value is 0.9746. (d) The ROC curve of best performance of lawn, indoor and plaza scene
when the training samples are learnt offline. The biggest AUC value of lawn, indoor and
plaza are 0.9591, 0.8649 and 0.9649.
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Method Area under ROC
lawn indoor plaza

Social Force [Mehran 2009] 0.96
Optical Flow [Mehran 2009] 0.84
NN [Cong 2011] 0.93
SRC [Cong 2011] 0.995 0.975 0.964
STCOG [Shi 2010] 0.9362 0.7759 0.9661
COV online (Ours) 0.9605 0.8628 0.9746

Table 5.2: The comparison of our proposedframecovariance matrix descriptor and on-
line support vector data description (online SVDD) based method with the state-of-the-art
methods for abnormalframeevent detection of UMN dataset.

[Cong 2011] in lawn scene and indoor scene. In that paper, multi-scale HOF is taken
as a feature, and a testing sample is classified by its sparse reconstructor cost, through a
weighted linear reconstruction of the over-complete normal basis set. But computation
of the HOF might take more time than calculating covariance.By adopting the integral
image [Tuzel 2006], the covariance matrix descriptor of the subimage can be computed
conveniently. So the covariance descriptor can be appropriately used to analyze the partial
movement.

5.2 Abnormal detection via online least squares one-class SVM

In this section, we propose a novel online classification method, namely online least squares
one-class support vector machines (online LS-OC-SVM). TheLS-OC-SVM extracts a hy-
perplane as an optimal description of training objects in a regularized least squares sense.
The online LS-OC-SVM firstly learns from a training set with alimited number of samples
to provide a basic normal model, and then updates the model through remaining data. In the
sparse online scheme, the model complexity is controlled bythe coherence criterion. And
then, the online LS-OC-SVM is adopted to handle the abnormalevent detection problem.

5.2.1 Least squares one-class support vector machines

Least squares SVM (LS-SVM) was proposed by Suykens in [Suykens 1999, Suykens 2002].
By using the quadratic loss function, Choi proposed least squares one-class SVM (LS-OC-
SVM) [Choi 2009]. LS-OC-SVM extracts a hyperplane as an optimal description of train-
ing objects in a regularized least squares sense. It can be written as the following objective
function:

min
w,ξ,ρ

1
2
‖w‖2 − ρ +

1
2

C
n∑

i=1

ξ2i

subject to: 〈w,Φ(xi)〉 = ρ − ξi .

(5.22)
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The condition for the slack variables in OC-SVM,ξi ≥ 0, is no longer in need. The
variable,ξi, represents an error caused by a training object,xi , with respect to the hyper-
plane. The definitions of the other parameters in eq.(5.22) are the same as the ones in
OC-SVM. The associated Lagrange is:

L =
1
2
‖w‖2 − ρ +

C
2

n∑

i=1

ξ2i −

n∑

i=1

αi

(
w⊤Φ(xi) − ρ + ξi

)
. (5.23)

Setting derivatives of eq.(5.23) with respective to primal variables,w, ξi , ρ andαi, to
zero, we have the following stationarity conditions:

∂L
∂w
= 0 ⇒ w =

n∑

i=1

αiΦ(xi), (5.24)

∂L
∂ξi
= 0 ⇒ Cξi = αi , (5.25)

∂L
∂ρ
= 0 ⇒

n∑

i=1

αi = 1, (5.26)

∂L
∂αi
= 0 ⇒ w⊤Φ(xi) + ξi − ρ = 0. (5.27)

Substituting eq.(5.24)–(5.26) into (5.27) yields:

n∑

i, j=1

αiΦ
⊤(xi)Φ(x j) +

αi

C
− ρ = 0. (5.28)

For all i = 1, 2, . . . , n, we can rewrite eq.(5.28) in matrix form as:

[
K + I

C 1

1
⊤ 0

] [
α

−ρ

]
=

[
0

1

]
, (5.29)

whereK is the Gram matrix with (i, j)-th entry κ(xi ,x j), I is the identity matrix with
the same dimension as Gram matrixK andα is the column vector withi-th entryαi for
training samplexi. 1 and0 are all-one and all-zero column vectors, respectively, with
compatible lengths. The parameters,α andρ, could be obtained by:

[
α

−ρ

]
=

[
K + I

C 1

1
⊤ 0

]−1 [
0

1

]
. (5.30)

The hyperplane is then described by:

f (x) =
n∑

i=1

αiκ(xi,x) − ρ = 0. (5.31)

The distance,dis(x), of a datum,x, with respect to the hyperplane is calculated by:

dis(x) =
| f (x)|
‖α‖

=
|(
∑n

i=1 αiκ(xi ,x) − ρ)|

‖α‖
, (5.32)
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wherexi is a training sample,‖α‖ is the two-norm of vectorα. An object with a low
dis(x) value lies close to the hyperplane thus resembles the training set better than other
objects with highdix(x) values. The distance,dis(x), is used as a proximity measure to
determine the normal and abnormal class of the data [Choi 2009].

5.2.2 Online least squares one-class support vector machines

In an online learning scheme, the training data continuously arrive. We thus need to tune
hyperparameters in the objective function and the hypothesis class in an online manner
[Diehl 2003]. Let αn, Kn andIn denote the coefficient, Gram matrix and identity matrix
at the time step,n, respectively. The parameters of LS-OC-SVM [αn − ρn]⊤ at the time
step,n, could be calculated as:

[
αn

−ρn

]
=

[
Kn +

In
C 1n

1
⊤
n 0

]−1 [
0n

1

]
. (5.33)

In order to proceed, recall the matrix inverse identity for matricesA, B, C and D with
suitable sizes [Honeine 2012]:

[
A B
C D

]−1

=

[
A−1 0
0 0

]
+

[
−A−1B

1

]
× (D −CA−1B)−1 × [−CA−1 1]. (5.34)

The matrix,Kn, with diagonal loadingIn
C can be calculated recursively with respect to time

stepn by:

[
Kn+1 +

In+1

C

]−1

(5.35)

=

[
Kn +

I

C κn+1

κn+1 κn+1 +
1
C

]−1

(5.36)

=


(
Kn +

In
C

)−1
0n

0
⊤
n 0

 +
1

(
κn+1 +

1
C

)
− κn+1

(
Kn +

In
C

)−1
κn+1


−
(
Kn +

In
C

)−1
κn+1

1


[
−κ⊤n+1

(
Kn +

In
C

)−1
1
]
. (5.37)

where κn+1 is the column vector withi-th entry κ(xi ,xn+1), i ∈ {1, 2, . . . , n}, and
κn+1 = κ(xn+1,xn+1). Based on eq.(5.33) and (5.35), we arrive at an online implemen-
tation of LS-OC-SVM.

5.2.3 Sparse online least squares one-class support vectormachines

The procedures for calculating the parameters,α andρ, of LS-OC-SVM in Section5.2.2
lose sparseness, due to the quadratic loss function in the objective function eq.(5.22). This
formulation is inappropriate for large-scale data and unsuitable for online learning, as the



5.2. Abnormal detection via online least squares one-classSVM 87

number of training samples grows infinitely [Noumir 2012c]. We propose a sparse solution
to provide a robust formulation. A dictionary is adopted to address the sparse approxima-
tion problem [Tropp 2004].

Instead of eq.(5.24), wherew is expressed with all available data, we intend to ap-
proximate it by adopting a dictionary in a sparse way. Consider a dictionary,xD, D ⊂
{1, 2, . . . , n}, of sizeD with elementsxwj , j ∈ D. Instead of eq.(5.24), we approximatew
with theseD dictionary elements:

w =

D∑

j=1

β jΦ(xwj ). (5.38)

The hyperplane becomes:

f (x) =
D∑

j=1

β jκ(x,xwj ) − ρ = 0. (5.39)

In sparse online LS-OC-SVM, the distance,disD(x), of a datum,x, to the hyperplane is:

disD(x) =
|
∑D

j=1 βiκ(x,xwj ) − ρ|

‖β‖
, (5.40)

wherexwj is a dictionary element andβ is the column vector with the entries,β j . Replacing
eq.(5.38) into Lagrange Function (5.23), we have:

L =
1
2
β⊤KDβ − ρ +

C
2

n∑

i=1

ξ2i −

n∑

i=1

αi(
D∑

j=1

β jΦ
⊤(xwj )Φ(xi) + ξi − ρ). (5.41)

Taking the derivatives of the Function (5.41) with respect to primal variables,β, ξi, ρ and
αi , yields:

∂L
∂β
= 0 ⇒ KDβ = K⊤D(x)α, (5.42)

∂L
∂ξi
= 0 ⇒ Cξi = αi , (5.43)

∂L
∂ρ
= 0 ⇒

n∑

i=1

αi = 1, (5.44)

∂L
∂αi
= 0 ⇒

D∑

j=1

β jκ(xwj ,xi) + ξi − ρ = 0. (5.45)

The matrix form for Condition (5.45) is written:

KD(x)β + ξ − ρ = 0. (5.46)

Replacing Conditions (5.42) and (5.43) into (5.46) leads to:
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KD(x)K−1
D
K⊤
D

(x)α +
α

C
− ρ = 0. (5.47)

Combining Equations (5.44) and (5.47), the equation for computing coefficients
[
α − ρ

]⊤

becomes:

[
KD(x)K−1

D
K⊤
D

(x) + I

C 1

1
⊤ 0

] [
α

−ρ

]
=

[
0

1

]
. (5.48)

After providing these relations with the dictionary, we nowdiscuss the dictionary
construction. The coherence criterion is adopted to characterize a dictionary in sparse
approximation problems. It provides an elegant model reduction criterion with a less
computationally-demanding procedure [Noumir 2012c, Tropp 2004, Richard 2009]. The
coherence of a dictionary is defined as the largest correlation between the elements in the
dictionary,i.e.,

µ = max
i, j∈D,i, j

|κ(xi ,x j)|. (5.49)

In the online case, the coherence between a new datum and the current dictionary is
calculated by:

εt = max
j∈D
|κ(xt,xwj )|, (5.50)

wherexwj is the element in the dictionary,xD. Presetting a threshold,µ0, the new arrival
sample,xt, at the time step,t, is tested with the coherence criterion to judge whether the
dictionary remains unchanged or is incremented by including the new element. Forn train-
ing samples, the subset, which includes
m (1 ≤ m≪ n) samples, is considered the initial dictionary. Then, eachremaining sample
is tested with eq.(5.50) to determine the relation between itself and the previous dictionary.
If εt ≤ µ0, it will be included into the dictionary. Concretely, the algorithm is performed
with two cases described herein below.

First case: εt > µ0

In this case, at time stepn + 1, the new data,xn+1, is not included into the dictionary.
The Gram matrix,KD, with the entries,κ(xi ,x j), i, j ∈ {1, 2, . . . ,D}, is unchanged. When
a new sample,x, arrives, we need to compute:

[[
KD(x)
κ⊤

]
K−1
D

[
KD(x)⊤ κ

]
+

I

C

]−1

=

[
KD(x)K−1

D
K⊤
D

(x) + I

C KD(x)K−1
D
κ

κ⊤K−1
D
K⊤
D

(x) κ⊤K−1
D
κ + I

C

]−1

,

(5.51)

where at time stepn+1,κ is the column vector with entriesκ(xn+1,xwj ), j ∈ {1, 2, . . . ,D}.
KD(x) is the matrix with the (i, j)-th entryκ(xi ,xwj ), i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,D}.

Second case: εt ≤ µ0



5.2. Abnormal detection via online least squares one-classSVM 89

In this case, the new data,xn+1, is added into the dictionary,xD. Then, the Gram
matrix should be changed by:

KD =

[
KD d

d⊤ d

]
, (5.52)

whereKD is the Gram matrix of the dictionary, including the new arrival dictionary sam-
ple, xn+1, andKD is the Gram matrix of the dictionary at the last time step,n. Let
xD = {xw1,xw2, . . . ,xwD } denote the dictionary at time stepn; d is the column vector
with entriesd j = κ(x,xwj ), j ∈ {1, 2, . . . ,D}, andd = κ(xn+1,xn+1).

By adopting the matrix inverse identity eq.(5.34), we have:

K
−1
D =

[
K−1
D
+A b

b⊤ c

]
, (5.53)

where:

c =
1

d − d⊤K−1
D
d
, (5.54)

A = cK−1
D
dd⊤K−1

D
, (5.55)

b = − cK−1
D
d. (5.56)

Because the dictionary changes, the value ofKD(x) and also
[
KD(x)K−1

D
K⊤
D

(x) + I

C

]−1

should be updated. Let theS denote the updated
[
KD(x)K−1

D K⊤
D

(x) + I

C

]−1
at time step

n+ 1; we have:

S =

[[
KD(x) q

]
K
−1
D

[
K⊤
D

(x)
q⊤

]
+

I

C

]−1

(5.57)

=[KD(x)K−1
D
KD(x)⊤ +

I

C
+KD(x)AK⊤

D
(x)+

qb⊤K⊤
D

(x) +KD(x)bq⊤ + cqq⊤]−1. (5.58)

where at time stepn + 1, q is the column vector with entriesqi = κ(xi ,xD+1), i ∈
{1, 2, . . . , n}, andxD+1 is the new arrival datumxn+1, which is included into the dictio-
nary. The matrix inverse in eq.(5.57) can be calculated by using four-times Woodbury
identity:

(A+ UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1, (5.59)

with proper choices of matricesA, U, C andV, such thatU andV should be chosen as
two vectors, andA should be chosen as a scaler. Thus, the inverse, (C−1 + VA−1U), is a
scaler; eq. (5.57) can be calculated very efficiently. For instance, for computing the inverse,
including the term, (KD(x)bq⊤), we regard two vectors, (KD(x)b) andq⊤, as vectorU
andV, respectively, whileC in Equation (5.59) is one.

Once knowingS, using eq.(5.51) to add the newκ with entries κ(xn+1,xwj ),
j ∈ {1, 2, . . . ,D,D + 1}, xwj is an element of the dictionary.
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5.2.4 Abnormal Event Detection detection method

In an abnormal event detection problem, it is assumed that a set of training frames,{I1, I2, . . . , In}

(the positive class), describing the normal behavior is obtained. The abnormal detection s-
trategies relative to the online algorithms proposed in Section 5.2.2and Section5.2.3are
introduced below.

5.2.4.1 Online LS-OC-SVM Strategy

The general architecture of the abnormal event detection method via online least squares
one-class SVM (online LS-OC-SVM) proposed in Section5.2.2is summarized in Algo-
rithm 2; the flowchart is shown in Fig.5.7and explained below.
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Figure 5.7: Major processing states of the proposed abnormal frame event detection method
based onframecovariance matrix descriptor via one-class SVM.

The feature descriptor computation processes are the same as before. The training
and testing processes of LS-OC-SVM are explained bellow. The two strategies proposed
in Section5.1.2.1and Section5.1.2.2are also suitable in online OC-LS-SVM and sparse
online OC-LS-SVM algorithms. In this section, we introducethe learning processes on the
training samples.

Step 1: The first step consists of calculating the covariance matrixdescriptor of the
training frames. This step can be generalized as:

{OP1,OP2, . . . ,OPn} −→ {C1,C2, . . . ,Cn}, (5.65)
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Algorithm 2 Visual abnormal event detection via online least squares one-class support
vector machine (LS-OC-SVM) and sparse online LS-OC-SVM.
Require
n training frames{I i}

n
i=1 and the corresponding optical flow{OPi}

n
i=1.

Compute the covariance matrix of each frame.

{OP1,OP2, . . . ,OPn} −→ {C1,C2, . . . ,Cn} (5.60)

(a) Online strategy: Applying LS-OC-SVM on the small subset of training samples to
calculate the coefficient matrix.

{C1,C2, . . . ,Cm}, 1 ≤ m≪ n
online
−−−−→ coefficient matrix

[
K
] [

α − ρ
]⊤

(5.61)

(b) Sparse online strategy: Applying LS-OC-SVM to train the initial dictionary,CD,
offline.

CD = {C1,C2, . . . ,Cm}, 1 ≤ m≪ n
offline
−−−−→ coefficient matrix

[
K
] [

β − ρ
]⊤

(5.62)

(a) Online strategy: Applying online LS-OC-SVM on the remaining samples to calculate
the coefficient matrix.

{Cm+1,Cm+2 . . .Cn},
[
K
] online
−−−−→ coefficient matrix

[
K
] [

α − ρ
]⊤

(5.63)

(b) Sparse online strategy:Applying sparse online LS-OC-SVM on the remaining samples
to calculate the coefficient matrix and to update the dictionary.

{CD,Ck},m< k ≤ n
sparse online
−−−−−−−−−−→ coefficient matrix

[
β − ρ

]⊤
,

CD := CD ∪Ck, if εt ≥ µ0,

CD := CD, if εt < µ0.

(5.64)

Each frameCn+l is classified via LS-OC-SVM.
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where{OP1,OP2, . . . ,OPn} are the image optical flows of the 1st ton−th frames;{C1,C2, . . . ,Cn}

are the covariance matrix descriptors.
Step 2: The second step is applying LS-OC-SVM on a small subset of thetraining

samples to calculate the coefficient parameters,α andρ, in eq. (5.29). Consider a subset
{Ci}

m
i=1, 1 ≤ m≪ n of data selected from the training set{Ci}

n
i=1. Without loss of generality,

assume that the firstm frames are chosen. Thesem samples are trained offline. This step
can be described in the following equation:

{C1,C2 . . .Cm}, 1 ≤ m≪ n
offline
−−−−→ coefficient matrix

[
K
] [

α − ρ
]⊤
, (5.66)

where
[
K
]

and
[
α − ρ

]⊤
are defined in eq. (5.29).

Step 3: After learning the firstm samples, the coefficient matrices,K and
[
α − ρ

]⊤
,

are obtained. The online LS-OC-SVM method (Section5.2.2) is applied to learn the re-
mainingn−m samples{Cm+1,Cm+2 . . .Cn}. This step can be expressed as:

{Cm+1,Cm+2 . . .Cn},
[
K
] online
−−−−→ coefficient matrix

[
K
] [

α − ρ
]⊤
. (5.67)

Step 4:Based on the coefficient matrix,
[
α − ρ

]⊤
, the distance of the training samples

{Ci}
n
i=1 and the incoming test sample,Cn+l , with respect to the decision plane is computed.

By comparing the distances of the samples, an abnormal eventis detected:

dis(Cn+l ) =
|(
∑n

i=1 αiκ(C,Ci ) − ρ)|

‖α‖
(5.68)

=


1 if f (Cn+l) ≥ Tdis,

−1 if f (Cn+l) < Tdis,
(5.69)

whereCn+l is the covariance matrix descriptor of the (n + l) − th frame needed to be
classified, andCi is the sample of the training data. “1” corresponds to an abnormal frame;
“−1” corresponds to a normal frame.Tdis is the threshold of the distance, it is the maximum
distance of the training samples to the hyperplane.

5.2.4.2 Sparse online LS-OC-SVM strategy

The abnormal event detection via sparse online least squares one-class SVM (sparse online
LS-OC-SVM) is introduced below. A subset of the samples is chosen to form the dictio-
nary,CD, making a sparse representation of the training data. The initial dictionary,CD, is
learned offline. Each remaining training sample is learned one-by-one online. Meanwhile,
it is checked to be included, or not, into the dictionary. Thetest datum is classified based
on the dictionary. The feature extraction step (Step 1) and the detection step (Step 4) are
the same as the ones presented in Section5.2.4.1. Owing to the dictionary, the training
steps are different.
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Step 2-sparse:The second step is applying LS-OC-SVM to train the initial dictionary
offline. The firstm samples are the initial dictionary denoted asCD. This step can be
generalized as:

CD = {C1,C2, . . . ,Cm}, 1 ≤ m≪ n
offline
−−−−→ coefficient matrix

[
K
] [

β − ρ
]⊤
. (5.70)

Step 3-sparse:After learning the initial dictionary,CD, including the firstm (1 ≤ m≪
n) samples, the remaining training samples,{Cm+1,Cm+2, . . . ,Cn}, are learned via sparse
online LS-OC-SVM described in Section5.2.3. This step can be described in the following
equations:

{CD,Ck},m< k ≤ n
sparse online
−−−−−−−−−−→

coefficient matrix
[
β − ρ

]⊤

CD := CD ∪Ck if εt ≥ µ0

CD := CD if εt < µ0,

(5.71)

whereCD is the dictionary andCk is a new incoming remaining sample in the training
dataset. According to the coherence criterion introduced in Section5.2.3, if the new sam-
ple,Ck, satisfies the dictionary updated condition, it will be included into the dictionary,
CD.

5.2.5 Abnormal Event Detection Results

This section presents the results of experiments conductedto illustrate the performance
of the two proposed classification algorithms, online leastsquare one-class SVM (online
LS-OC-SVM) and sparse online least square one-class SVM (sparse online LS-OC-SVM).
The two-dimensional synthetic distribution dataset and the University of Minnesota (UMN)
[UMN 2006] dataset are used.

5.2.5.1 Synthetic Dataset via Online LS-OC-SVM and Sparse Online LS-OC-SVM

Two synthetic data, “square” and “ring-line-square” [Hoffmann 2007], are used. The “square”
consists of four lines, 2.2 in length and 0.2 in width. In the area of these lines, 400 points
were randomly dispersed with a uniform distribution. The “ring-line-square” distribution
is composed of three parts: a ring with an inner diameter of 1.0 and an outer diameter of
2.0, a line of 1.6 in length and 0.2 in width, and a square the same as dataset “square”
introduced above. 850 points are randomly dispersed with a uniform distribution. These
two data are shown in Fig.5.8.

The first sample is used for initializing the online LS-OC-SVM proposed in Sec-
tion 5.2.2; the 399 remaining samples in “square” and 849 remaining samples in “ring-
ling-square” are learned in the online manner.

Via the sparse online LS-OC-SVM method proposed in Section5.2.3, the first sample
is trained offline, and this sample is considered the initial dictionary. Then, each arrival
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Figure 5.8: Synthetic datasets. (a) Dataset square. (b) Dataset ring-line-square.

sample in 399 remaining samples in “square” and 849 remaining samples in “ring-ling-
square” are checked by the coherence criterion to determinewhether the dictionary should
be retained or updated by including the new element.

The distances are shown in contours illustrating the boundary. The contours of “square”
and “ring-line-square” are shown in Fig.5.9 and5.10, respectively. Gaussian kernel was
used in these two data, with bandwidthσ = 0.065. The preset threshold of the coher-
ence criterion isµ0 = 0.08. The detection results obtained by these two online training
algorithms are the same as the ones when training data were learned in a batch model.

5.2.5.2 Abnormal Visual Event Detection via Online LS-OC-SVM

UMN dataset [UMN 2006] results via online LS-OC-SVM which is proposed inSection
5.2.2are shown below. The detection results of lawn scene, indoorscene and plaza scene
are shown in Fig.5.11, Fig.5.12and Fig.5.13, respectively. A Gaussian kernel for the co-
variance matrix in the Lie group is used. Various values of the variance,σ, in the Gaussian
function and the penalty factor,C, are chosen to form the receiver operating characteristic
(ROC) curve. In the indoor scene, time lags of the frame labels lead to the lower area un-
der the ROC curve (AUC) value. In the last few frames, labeledas abnormal of abnormal
sequences, there are no people, while, in the training samples, there are no people in the
upper half of the image. The covariance of the training frameis similar to the covariance
of the abnormal frame without people. Our covariance feature descriptor-based classifi-
cation method cannot distinguish between these two situations. However, this issue can
be resolved by utilizing the foreground information. For example, if there are no moving
objects in the frame, this frame is immediately classified asabnormal. The results of these
three scenes show that the covariance descriptor can distinguish between normal and ab-
normal events. The performance of online LS-OC-SVM is almost the same as that of the
offline method.
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Figure 5.9: Offline, online least squares one-class SVM and sparse online least squares one-
class SVM results of’square’ dataset. The figure might be viewed better electronically, in
color and enlarged. (a) The contours of the distances when all the date are trained as one
batch offline. (b) The contours of the distances when the data are trained via online LS-
OC-SVM. (c) The blue circle (pointed out by the arrow) shows the original dictionary. The
red points show the232new data which are included into the dictionary via sparse online
LS-OC-SVM. (d) The contours of the distances when the data are trained via sparse online
LS-OC-SVM.
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Figure 5.10: Offline, online least squares one-class SVM and sparse online least squares
one-class SVM results of’ring-line-square’dataset. (a) The contours of the distances when
all the date are trained as one batch offline. (b) The contours of the distances when the data
are trained via online LS-OC-SVM. (c) The blue circle (pointed out by the arrow) shows
the original dictionary. The red points show the534new data which are included into the
dictionary via sparse online LS-OC-SVM. (d) The contours ofthe distances when the data
are trained via sparse online LS-OC-SVM.
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(a) Normal lawn scene (b) Abnormal lawn scene
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Figure 5.11: Abnormalframeevent detection results of the lawn scene based onframe
COV descriptor via online least squares one-class SVM. (a) The detection result of one
normal frame. (b) The detection result of one abnormal panicframe. (c) ROC curve of
different featuresF of the lawn scene results via one-class SVM. All the trainingsamples
are learned together offline. The biggest AUC value is 0.9874. (d) ROC curve of different
featuresF results via online LS-OC-SVM. The biggest AUC value is 0.9874.
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(a) Normal indoor scene (b) Abnormal indoor scene
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Figure 5.12: Abnormalframeevent detection results of the indoor scene based onframe
COV descriptor via online least squares one-class SVM. (a) The detection result of one
normal frame. (b) The detection result of one abnormal panicframe. (c) ROC curve of
different featuresF of the lawn scene results via one-class SVM. All the trainingsamples
are learned together offline. The biggest AUC value is 0.9548. (d) ROC curve of different
featuresF results via online LS-OC-SVM. The biggest AUC value is 0.9619.
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(a) Normal plaza scene (b) Abnormal plaza scene
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Figure 5.13: Abnormalframeevent detection results of the plaza scene based onframe
COV descriptor via online least squares one-class SVM. (a) The detection result of one
normal frame. (b) The detection result of one abnormal panicframe. (c) ROC curve of
different featuresF of the plaza scene results via one-class SVM. All the training samples
are learned together offline. The biggest AUC value is 0.9800. (d) ROC curve of different
featuresF results via online LS-OC-SVM. The biggest AUC value is 0.9839.
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5.2.5.3 Abnormal visual events detection via sparse onlineLS-OC-SVM

The UMN dataset abnormal events detection results via sparse online LS-OC-SVM which
is proposed inSection5.2.3are shown below. Take the lawn scene as the examples, the
1st normal sample from the training samples is included into thedictionary firstly, and
then other remaining training samples are learnt online by the sparse online LS-OC-SVM
method. If the newly arrival sample satisfies the subspace sparse control criterion, the
dictionary and the classifier is updated through the training period. The ROC curve of
detection results of lawn scene, indoor scene and plaza scene are shown in Fig.5.14(a), (b)
and (c) respectively.

The resulting performances when all training samples are learned offline via one-class
SVM (OC-SVM), learned via least squares one-class SVM (LS-OC-SVM), learned via on-
line least squares one-class SVM (online LS-OC-SVM) and learned via sparse online least
squares one-class SVM (sparse LS-OC-SVM), are shown in Table 5.3. The LS-OC-SVM
algorithm obtains better performance than the original OC-SVM. The performances of on-
line and sparse online strategy results are similar to the resulting performances when all
training samples are learned offline. The sparse online strategy can be computed efficiently
and can adapt to the memory requirement.

The resulting performances of the covariance matrix descriptor-based online least squares
one-class SVM method, and of state-of-the-art methods, areshown in Table5.4. The co-
variance matrix-based online abnormal frame detection method obtains competitive perfor-
mance. In generally, our sparse online LS-OC-SVM method is better than others, except
sparse reconstruction cost (SRC) [Cong 2011]. In that paper, multi-scale histogram of op-
tical flow (HOF) was taken as a feature and a testing sample wasclassified by its sparse
reconstruction cost, through a weighted linear reconstruction of the over-complete normal
basis set. However, the computation of the HOF takes more time than the computation of
covariance. By adopting the integral image [Tuzel 2006], the covariance matrix descriptor
of the subimage can be computed conveniently. The covariance descriptor can appropriate-
ly be used to analyze partial image movement. In [Cong 2011], the whole training dataset
was saved in the memory in advance; then, the dictionary was chosen as an optimal subset
for reconstructing. Our sparse online LS-OC-SVM strategy enables one to train the classi-
fier with sequential inputs. This property makes our proposed method extremely suitable
to handle large volumes of training data, while the method in[Cong 2011] fails to work
due to lack of memory.

5.3 Conclusion

In this chapter, we proposed two online abnormal detection methods. The first method is
based on the online nonlinear one-class SVM classification method. The second method is
based on online least squares one-class SVM (online LS-OC-SVM) and sparse online least
squares one-class SVM (sparse online LS-OC-SVM). Online LS-OC-SVM learns training
samples sequentially; sparse online LS-OC-SVM incorporates the coherence criterion to
form the dictionary for a sparse representation of the detector. The proposed detection
algorithms have been tested on a synthetic dataset and a real-world video dataset yielding
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Figure 5.14: ROC curve of abnormalframe events detection results of the lawn, plaza,
and indoor scenes based onframeCOV descriptor via sparse online least squares one-class
SVM. (a) ROC curve of different featuresF results via sparse online LS-OC-SVM of lawn
scene. The biggest AUC value is 0.9609. (b) Sparse online LS-OC-SVM results of indoor
scene. The biggest AUC value is 0.9287. (c) Sparse online LS-OC-SVM results of plaza
scene. The biggest AUC value is 0.9515. (d) The ROC curve of best performance of lawn,
plaza and indoor scene when the training samples are learnt offline. The biggest AUC value
of lawn, plaza and indoor are 0.9874, 0.9800 and 0.9548.
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Features Area under ROC
lawn indoor plaza

training samples are learned offline
F2(6× 6du) 0.9755 0.8605 0.9422
F3(6× 6dv) 0.9738 0.8603 0.9489
F4(8× 8) 0.9788 0.8662 0.9538
F5(12× 12) 0.9874 0.8900 0.9800
F12(17× 17) 0.9832 0.9548 0.9680

Online LS One-class SVM
F2(6× 6du) 0.9755 0.8616 0.9403
F3(6× 6dv) 0.9720 0.8730 0.9517
F4(8× 8) 0.9795 0.8670 0.9563
F5(12× 12) 0.9874 0.8904 0.9839
F12(17× 17) 0.9833 0.9619 0.9699

Sparse Online LS One-class SVM
F2(6× 6du) 0.8840 0.8077 0.9245
F3(6× 6dv) 0.9435 0.8886 0.9515
F4(8× 8) 0.9269 0.8266 0.9428
F5(12× 12) 0.9510 0.8223 0.9501
F12(17× 17) 0.9609 0.9287 0.9229

Table 5.3: AUC of abnormalframeevent detection results based onframecovariance ma-
trix descriptor constructed by different featuresF via least squares one-class SVM (LS-
OC-SVM) (Section5.2.1), online LS-OC-SVM (Section5.2.2,Section5.2.4.1), and sparse
online LS-OC-SVM (Section5.2.3,Section5.2.4.2) of UMN dataset. The biggest value of
each method is shown in bold.

successful results in detecting abnormal events.
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Method Area under ROC
lawn indoor plaza

Social Force [Mehran 2009] 0.96
Optical Flow [Mehran 2009] 0.84
NN [Cong 2011] 0.93
SRC [Cong 2011] 0.995 0.975 0.964
STCOG [Shi 2010] 0.9362 0.7759 0.9661
LS-SVM (Ours) 0.9874 0.9548 0.9800
Online (Ours) 0.9874 0.9619 0.9839
Sparse Online(Ours) 0.9609 0.9287 0.9515

Table 5.4: The comparison of our proposedframe covariance matrix descriptor, online
least squares one-class SVM (online LS-OC-SVM) and sparse online least squares one-
class SVM (sparse online LS-OC-SVM) based methods with the state-of-the-art methods
for abnormalframeevent detection of UMN dataset.
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6.1 Contributions

Abnormal detection is a key component in intelligent video surveillance. In this thesis, our
contributions are summarized as follows. Firstly, we adoptoptical flow as the basic move-
ment information, the block of the optical flow is constructed as mid-level feature descrip-
tor. One-class support vector machines (OC-SVM) after learning one category of positive
samples (normal samples), yields a decision function for detecting abnormal frames. Sec-
ondly, histograms of optical flow orientation (HOFO) is proposed as a new feature descrip-
tor encoding the movement information. Thirdly, a covariance matrix descriptor fusing the
optical flow information and the intensity is also proposed as an input to the classification
algorithm. By adopting the integral image, the covariance can be efficiently computed at
a frame level or at blob level. Fourthly, as the abnormal detection is usually applied on a
long video sequence, two on-line abnormal detection methods are proposed. One is based
on the support vector data description (SVDD), with a dictionary-based sparsification. Two
strategies are proposed to construct and update the dictionary. Another on-line abnormal
detection method, based on least squares one-class supportvector machine (LS-OC-SVM)
with a sparse formulation, is also proposed.

6.2 Perspectives

In crowded scenes, in one camera view, the people are overlapped with others. It is diffi-
cult to detect people from the occluded group. This situation can be improved by multi-
cameras. By fusing the information from the multi-views, the people can be separated, if
the person could be captured by a camera. The camera calibration technology could be
used in this situation.

The object selection strategies for extracting the blobs should also be more robust. In
this thesis, we used the background subtraction method, butthis method is not very stable
under lighting changes and unstable cameras. Other featureselection strategies which does
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not depend on consequent frames, such as SIFT (scale-invariant feature transform) feature
detection, should be tested and integrated to enhance the abnormal detection.

The feature descriptor can be improved by including the temporal information. In this
thesis, the optical flow encodes a type of temporal information between successive frames.
Other types of temporal features, such as 3-dimension histograms and temporal-spatial
blocks, should be considered. Also, the semantic event models representing the sub-events
and state event models representing the relationship of thesub-events by directional graph
can be used to improve the discriminative capability of the abnormal detector.

The abnormal event detection can be combined with other computer vision techniques,
such as single people action recognition, face detection, and texture analysis. For instance,
if an abnormal event occurs, some people will be labeled and individually tracked. Also,
the faces can be detected and recognized, and the texture of the clothes can be analyzed. In
other words, abnormal event detection could be considered as a pre-processing step, other
procedures to find deeper information for surveillance are to be post-deployed.

The voice information in the video sequence is also to be considered for abnormal event
detection. The sound should be fused with video to detect andrecognize events.

From a methodological side, advances in machine learning theory could improve the
performance of video event detection. The kernel methods, online learning, sparse repre-
sentation and deep learning theories can be used to enhance the learning and classification.
As the amount of video streams will continuously grow, big data research will be helpful
for dealing with video event detection problems.



Appendix A

Résume de Thèse en Français

Comme la demande de Ecole Doctorale de l’Université de Technologie de Troyes, cette
appendice est un résumé substantiel en Français de 20 à 30 pages, pour les mémoires
rédigés en Anglais.

A.1 Introduction

L’un des principaux domaines de recherche en vision par ordinateur est la surveillance
visuelle. Le défi scientifique dans ce domaine comprend la mise en œuvre de systèmes
automatiques pour obtenir des informations détaillées surle comportement des individus et
des groupes. En particulier, la détection de mouvements anormaux de groupes d’individus
nécessite une analyse sophistiquée des images vidéo.

La détection d’événements anormaux, étudiée dans le cadre de cette thèse, est basée
sur la conception d’un descripteur caractérisant les informations de mouvement et la con-
ception de méthodes de classification non linéaire. Dans cette thèse, trois types de car-
actéristiques sont étudiés : flux optique global, les histogrammes des orientations du flux
optique (HOFO) et le descripteur de covariance (COV). Sur labase de ces descripteurs,
des algorithmes se basant sur les machines à vecteurs support (SVM) mono-classe sont
utilisés pour détecter des événements anormaux. Ensuite, deux stratégies en ligne de SVM
mono-classe ont été proposées pour une implémentation en temps réel des algorithmes de
détection. La Fig.A.1 montre quelques exemples illustratifs des travaux qui sontmenés
dans le cadre de cette thèse.

A.2 Détection sur la base du flux optique et des histogrammes
d’orientation

Dans cette section, nous introduisons les descripteurs se basant sur des caractéristiques de
flux optique, et sur les histogrammes des orientations du fluxoptique (HOFO). La méthode
d’extraction de blob anormal dans une scène vidéo est aussi décrite dans cette section.

A.2.1 Détection d’anormalies sur la base du flux optique

Comme l’action peut être caractérisée par la direction et l’amplitude du mouvement de
l’objet dans la scène, on utilise le flux optique pour extraire des caractéristiques de bas
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(a) Normale scène de la place (b) Normale scène du intérieur (c) Scène du mall

(d) Anormale scène de la place (e) PETS (f) Scène des deux personnes

Figure A.1: Des exemples des scènes normaux et anormaux. (a)Toutes les personnes
se déplacent normalement dans un lieu public (jeux de données UMN). (b) Se déplacent
normalement dans une gare (jeux de données UMN). (c) Une personne se déplace d’une
manière anormale alors que toutes les autres personnes ont un mouvement normal. (d,e,f)
Des scènes où il y a des mouvements anormaux que ce soit au niveau du groupe ou au
niveau des individus.

ù

niveau. Le flux optique peut fournir des informations importantes sur la disposition spatiale
des objets et le degré de changement de cette structure spatiale [Horn 1981]. Il s’agit de la
distribution de la vitesse apparente de déplacement des modèles de brillance d’une image.
Horn et Schunck ont proposé un algorithme de calcul du flux optique en introduisant une
contrainte globale de régularité. La méthode Horn-Schunck(HS) combine un terme de
données avec un terme spatial. Le terme de données exploite les informations sur les
variations des caractéristiques de bas niveau de l’image etle terme spatial pénalise les
disparités du champ du flux optique. Le flux optique est calculé en minimisant l’énergie
globale fonctionnelle suivante:

E =
∫ ∫

[(Ixu+ Iyv+ It)
2 + α2(‖∇u‖2 + ‖∇v‖2)]dxdy, (A.1)

où Ix,Iy et It sont les dérivés de l’intensité d’image le long dex, y et t, u et v sont les
composantes horizontale et verticale du flux optique,α est le paramètre de régularisation.
Les équations de Lagrange sont utilisées pour minimiser la fonctionnelle, ce qui donne :



Ix(Ixu+ Iyv+ It) − α2△u = 0

Iy(Ixu+ Iyv+ It) − α2△v = 0,

(A.2)
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sous la contrainte que :



△u(x, y) = u(x, y) − u(x, y)

△v(x, y) = v(x, y) − v(x, y),

(A.3)

où u et v sont les moyennes pondérées deu et v calculées dans une zone autour de la
position du pixel. Le flux optique est calculée dans un schémaitératif tel que représenté
ci-dessous:



uk+1 = uk −
Ix(Ixu

k+Iyv
k+It)

α2+I2
x+I2

y

vk+1 = vk −
Iy(Ixuk

+Iyv
k
+It)

α2+I2
x+I2

y
,

(A.4)

où k désigne l’itération de l’algorithme. Un seul pas de temps a été pris de telle sorte que
les calculs sont basés sur seulement deux images successives.

Dans la suite, nous décrivons le système global proposé pourdétecter des événements
anormaux en se basant sur le flux optique. Supposons que les frames{I1, I2, . . . , In} sont
considérés comme des événements normaux. Dans le problème de détection d’anomalies,
il est supposé que les données d’une seule classe, la classe positive (ou la scène normale),
sont disponibles. Le cadre du SVM mono-classe est alors bienadaptée à la spécificité de ce
problème de détection d’événement normaux où seuls les échantillons de scènes normaux
sont disponibles. L’architecture générale de la méthode dedétection est présentée dans la
Fig.A.2.

Ci-dessous, on décrit les principales étapes de l’algorithme proposé:
Étape 1: La première étape consiste à calculer les caractéristiquesde flux optique

d’image à échelle de gris à. Chaque image est traitée via Horn-Schunck (HS) pour obtenir
les caractéristiques en mouvement à chaque pixel. Cette étape peut ötre présentée comme
suit:

{I1, I2, . . . , In}
HS
−−→ {OP1,OP2, . . . ,OPn}, (A.5)

où {I1, I2, . . . , In} sont les images originales et{OP1,OP2, . . . ,OPn} sont le flux optique
correspondant.

Étape 2: La procédure SVM mono-classe est utilisée pour classer les échantillons de
caractéristiques de images vidéo entrants. Trois stratégies sont proposées pour l’obtention
des caractéristiques de l’image. L’image d’esquisse pour le choix des caractéristiques est
représenté dans Fig.A.3.

Méthode 1:Il s’agit de prendre le flux optique au niveau de chaque pixel de l’image
sous forme d’échantillons de caractéristiques, comme le montre la Fig.A.3(a). La séquence
vidéo dans notre travail est étiquetée comme étant normal ouanormal . Ces étiquettes sont
utilisées pour l’évaluation des performances. Les donnéesd’entrée pour les SVM mono-
classe sont extraites des images normaux. Ceci consiste à prendre le flux optiqueOPi, j,k

comme fonctionFi, j,k pour (i, j)-th pixel sur le cadrek. Pour chaque point de coordonnées
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Figure A.2: Architecture du système global de détection d’anomalies se basant sur le flux
optique et l’algorithme SVM mono-classe.

cartésiennes (i, j) desn images d’entrée, nous pouvons obtenir la formation échantillons
Fi, j,1...n, n ≥ 1, puis calculer les vecteurs de support. Sur la base des vecteurs de support,
les échantillons entrantsFi, j,n+1...m à coordonner (i, j) sont détectés. Pour l’ensemble de
l’image, les événements anormaux sont détectés pixel par pixel.

Méthode 2: Il s¡¯agit de prendre le flux optique de tous les points dans lebloc des
échantillons. Dans cette stratégie, l’image est segmentéeen plusieurs blocs, comme le
montre la Fig.A.3(b), l’image est divisée en blocs dep × q, p est le nombre de blocs à la
verticale (hauteur) etq est le nombre de blocs à l’horizontale de l’image. La hauteurdu
bloc esth pixels, la longueur du bloc estw pixels, il y a des pointsh× w dans le bloc. La
fonctionnalité de bloc aui-th ligne et de la colonnej-th dans le cadre dek-th est à noter
queFblock

i, j,k . Pour chaque bloc, la fonctionFblock est organisée par le flux optique de tous les
points de la forme{OP1,OP2,OP3, · · · ,OPh×w}. Pour les flux vidéo, prendre les fonctions
de bloc à des images normaux que les échantillons de formation pour les SVM une classe,
puis des événements anormaux sont détectés block-by-block.

Méthode 3:L’image est également divisée en blocs, mais les échantillons sont tous
les blocs de l’image d’éntrée, comme illustré sur la Fig.A.3(c). D’une manière similaire
à la Méthode 2, nous décomposons l’image enp × q blocs, la taille de chaque bloc es-
t h × w. À l’image dek, l’échantillon caractéristique de tous les blocs de ce cadre est
{Fblock

1,1,k , F
block
1,2,k , . . . , F

block
p,q,k }, un vecteur de dimension (p × q × k) × (h × w). Pour obtenir

les données de formation à l’image normale de 1-e àn-ième, un vecteur de dimension
(p×q×k)× (h×w). Pour la détection, l’échantillon d’essai est la caractéristique d’un bloc.



A.2. Détection sur la base du flux optique et des histogrammesd’orientation 111

  
 
 

 

 

  

 
 

(a) Pixel par pixel

1 q

p

  

 
 

(b) Bloc par bloc

1 q
  

 
 

p

(c) Blocall par bloc

Figure A.3: Trois stratégies pour choisir les caractéristiques de flux optique. (a) Choisir les
caractéristiques pixels par pixel. (b) Choisir les caractéristiques bloc-par-bloc. (c) Choisir
tous les blocs dans le cadre de l’échantillon d’apprentissage, et test en bloc.

A.2.2 Extraction et détection de blob anormaux

Dans le cas d’une caméra fixe, la segmentation d’objet en mouvement grâce à des méth-
odes de soustraction de fond. Cependant, l’extraction de blobs est peu efficace à cause
de chevauchements éventuels de plusieurs objets en mouvement dans la scène. Comme
le montre la Fig.A.4(a), la personne à l’intérieur du premier rectangle est confondue avec
une personne voisine. Comme les mouvements de ces personnessont différents, nous pro-
posons, dans cette thèse une méthode pour améliorer l’extraction des blobs en se basant sur
le flux optique. La méthode est résumée dans l’algorithme 1, et illustrée dans la Fig.A.4(c).

(a) (b) (c)

Figure A.4: Les blobs avant et après la méthode d’extractionproposé. (a) 2 blobs extraits
sur la base du gabarit de premier plan. (b) 3 blobs extraits par la méthode d’extraction de
blob proposé, qui est basé sur le modèle de premier plan et du flux optique. (c) L’image du
flux optique de la Fig.(a)(b).

On présente, dans la suite, les détails de la méthode proposée pour l’extraction de blobs
en exploitant le flux optique.

Étape 1: La première étape consiste à l’étiquetage des composantes connexes d’une
image de premier plan binaire. ReprésententBk

FG pour le blob dek-th à l’image de premier
plan. Comme il ya généralement des occlusions des gens, certains rectangles contiennent
plusieurs objets. Comme le montre la Fig.3(a), le 1-er rectangle comprend deux personnes.

Étape 2: La deuxième étape est l’étiquetage des blobs en fonction du flux optique.
Si la taille du blob de premier plan est plus grand qu’un seuilde pré-réglageTblb, le flux



112 Appendix A. Résume de Thèse en Français

Algorithm 3 Extraction de Blob.
Require:

Image de premier planFG, flux optiqueOP
1: Étiquter les blobs dansFG, le blob à l’image de premier planBk

FG est obtient.
2: if Taille de blob àFG≥ seuil de préréglageTblb then
3: Le flux optiqueIOP dans le blob est pris en compte.
4: Les flux optiques avec des amplitudes et des directions similaires sont regroupés.
5: Supprimer groupe de redondance par NMS algorithme, blobBi

OP est obtient. La
régionBRM = BFG− BOP restante.

6: TraverseBRM par un rectangle référence de taille prédéfinie. NMS algorithme per-
met de choisir le blobB j

RM du blob enregistréBRM.

7: Remplacer blobBk
FG par blobBi

OP+ B j
RM.

8: Les blobs de l’image sont extraits.

optique dans ce domaine est pris en compte pour affiner l’extraction de blob.Tblb est
réglé par rapport à la scène. Dans la scène du centre commercial, la taille de l’image est
240× 320,Tblb est fixée à 50× 100. Comme l’action de la population peut être représentée
par la direction et et l’amplitude du mouvement, le flux optique est choisi comme étant la
description de scène. L’algorithme de flux optique introduit par Sunet al. [Sun 2010] est
utilisé dans notre travail. Il s’agit d’une méthode modifiéede la formulation de Horn et
Schunck [Horn 1981] permettant une plus grande précision en utilisant des poids selon la
distance spatiale, la luminosité, l’état de l’occlusion, et la médiane de filtrage.

Étape 3: La troisième étape consiste à appliquer la suppression non-maximale (NMS)
algorithme [Neubeck 2006] pour sélectionner le blobBi

OP. La somme des directions de
tous les pixels de la blob est utilisée comme le poids des NMS.

Étape 4: La quatrième étape est l’étiquetage de la régionBRM restante, qui est dans le
BFG sauf leBi

OP. Ceci consiste à traverser la région restante par un rectangle référence de

taille prédéfinie, avec la même taille qu’à l’Étape 2. L’algorithme NMS permet de choisir
le blobB j

RM du blob enregistré{B j′

RM}.

Le blob planBk
FG est remplacé par le blobBi

OP et la partie restante blobB j
RM. Comme le

montre la Fig.A.4, le rectangle 1-er dans Fig.A.4(a) est divisé en 3-ème et 4-ème rectangle
en Fig.A.4(b).

A.2.3 Détection d’anomalies avec les histogrammes d’orientation du flux op-
tique

Afin de coder les informations de mouvement dans un frame de l’image, nous avons con-
sidéré des histogrammes de l’orientation des flux optiques au niveau de plusieurs blocs qu
parcourent toute l’image avec un chevauchement de plusieurs pixels. Ensuite, après nor-
malisation, ces histogrammes sont concaténés pour former le vecteur descripteur HOFO.
La Fig.A.5 illustre le calcul du descripteur HOFO de l’image originaleet de l’image de
premier plan. Chaque bloc est divisé en cellules où l’histogramme des orientations du flux
optique est calculé.
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Les procédures du calcul de HOFO dans le frame d’origine (sans soustraction de fonds)
et dans le l’image de premier plan sont similaires. Le descripteur HOFO est calculé à
chaque bloc, puis accumulé dans un vecteur global notée fonction Fk pour le cadre dek.
Fig.A.6 et Fig.A.7 montre le calcul de HOFO. Les flux optique horizontale et verticale (u et
v champs) sont répartis en 9 intervalles d’orientation, sur un horizon de 0◦-360◦. Le HOFO
est calculé avec une proportion de recouvrement fixé à 50% de deux blocs contigus.

Un bloc contientbh× bw cells dech× cw pixels, oùbh etbw sont les nombre de cellules
dans la directiony et x , respectivement, en coordonnées cartésiennes,ch est la hauteur
de la cellule etcw est la largeur de la cellule. L’analyse des blocs de HOFO conjointe-
ment locales permet de considérer le comportement dans le cadre mondial. En d’autres
termes, la concaténation de cellules HOFO nous permet de modéliser l’interaction entre
les mouvements des blocs locaux.

1framei+

framei

consecutive frame

optical flow field

histograms of the
optical flow orientation

1framei+

framei

consecutive frame with blobs

optical flow on the foreground pixels

block

cell

on the original image

on the foreground image

ì
í
î

Figure A.5: Histogrammes des orientations de flux optique (HOFO) de la cadre d’origine,
et de la cadre de premier plan obtenu après l’application de la soustraction du fond.

Supposons qu’un ensemble de blobs{B
m′i
i } de l’ensemble de l’image{Intrn+ntst

1 }, 1 ≤ i ≤
(ntrn + ntst), 1 ≤ m′i ≤ mi décrivant la formation (normal) et de tester le comportement
de blob (normal et anormal) de la scène donnée est disponible, ntrn est le nombre des
cadres de formation,ntst est le nombre de cadres de test,mi est le nombre de blobs dans
la cardei, m′i est l’indice du blob,B

m′i
i est lem′ blob dans la cardei. Le comportement du

blob anormal est défini comme un événement qui s’écarte de l’ensemble des événements
des blobs normaux. L’architecture générale de la détectionde blobs anormaux par SVM
mono-classe est expliquée ci-dessous.

Étape 1: La première étape consiste à calculer les caractéristiquesde flux optique
d’une image à échelle de gris.
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Figure A.6: Histogrammes d’orientation de flux optique (HOFO) de calcul de lak cadre.
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Figure A.7: Histogrammes de flux optique orientations (HOFO) calcul de la blob en lak
cadre.

{I1, I2, . . . , Intrn+ntst} (A.6)

−→ {(FG1,OP1), . . . , (FGntrn+ntst,OPntrn+ntst)} (A.7)

−→ {(B1
1, . . . , B

m1
1 ), . . . , (B1

ntrn+ntst, . . . , B
mntrn+ntst

ntrn+ntst )} (A.8)

−→ {(OP1
1, . . . ,OPm1

1 ), (OP1
2, . . . ,OPm2

2 ), . . . , (OP1
ntrn+ntst, . . . ,OP

mntrn+ntst

ntrn+ntst )}, (A.9)

où I i est le cadre dei, (FGi ,OPi) sont l’image de premier plan et flux optique de la cadre
i, {B1

i , B
2
i , . . . , B

mi
i } sont les 1 aum blobs dans le cadre dei, mi est le nombre des blobs,

{OP1
i , . . . ,OPmi

i } sont le flux optique correspondant des blobs.

Étape 2: La deuxième étape est le calcul de la fonction de matrice de covariance des
blobs.
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{(OP1
1, B

1
1, . . . ,OPm1

1 , B
m1
1 ), . . . , (OP1

ntrn+ntst, B1
ntrn+ntst, . . . ,OP

mntrn+ntst

ntrn+ntst , B
mntrn+ntst

ntrn+ntst )}
−→ {(HOFO1

1, . . . ,HOFOm1
1 ), . . . , (HOFO1

ntrn+ntst, . . . ,HOFO
mntrn+ntst

ntrn+ntst )},
(A.10)

où {HOFO1
i , . . . ,HOFOmi

i } sont les matrices de covariance descripteur correspondantdes
blobs dans le cadre dei.

Étape 3: La troisième étape est l’application SVM une classe sur les descripteurs
extraits de la formation des taches normaux pour obtenir lesvecteurs de support.

{(HOFO1
1 . . .HOFOm1

1 ), . . . , (HOFO1
ntrn . . .HOFO

mntrn

ntrn )}
S VM
−−−−→ support vector{S p1,S p2, . . . ,S po},

(A.11)

où {(HOFO1
1 . . .HOFOm1

1 ), . . . , (HOFO1
ntrn . . .HOFO

mntrn

ntrn )} sont les descripteurs de HOFO
des blobs.

Étape 4: Sur la base des vecteurs de support obtenus à partir des blobsde formation,

un échantillon de blob entrantHOFO
m′l
l est classé.

f (HOFO
m′l
l ) = sgn(

o∑

i=1

αiκ(S pi ,HOFO
m′l
l ) − ρ) (A.12)

=


1 if f (HOFO

m′l
l ) ≥ 0

−1 if f (HOFO
m′l
l ) < 0,

(A.13)

où HOFO
m′l
l est le descripteur de la HOFO du blobm′l dans le cadrel. “1” correspond à la

tache normale, “-1” correspond à la tache anormale.
Pour la détection des événements anormaux, la condition préalable d’un événement

peut être défini comme normal ou anormal, c’est qu’il se produit pendant plusieurs cadres
consécutifs. En d’autres termes, l’événement normal ou anormal n’est pas ponctuel. Sur
cette base, la courte séquence d’événements anormaux qui seproduit par intermittence
à quelques images de la séquence vidéo normale pourrait êtremodifiée à l’état normal.
De même, les événements cadres normaux qui sont détectés parmi la longue séquence
d’images anormaux pourraient être modifiés pour anormal. Unseuil N du nombre de
cadres d’image est prédéfinie, le post traitement des résultats de la détection est illustré sur
la Fig.A.8. Si le nombre d’états anormaux (résultats négatifs prévus)dépasse le seuilN
dans les états normaux (résultats positifs prévus), puis les étiquettes de prédiction normaux
sont convertis en anormal.

A.3 Algorithmes de détection en ligne à base de SVM mono-
classe

Avant de présenter nos contributions dans les aspects algorithmiques de détection en ligne,
on introduit dans la suite le descripteur de covariance qui permet de fusionner plusieurs
caractéristiques locales de l¡¯image d¡¯une manière efficace.
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abnormal

SVM

+1

number(+1) N frames³

normal

-1

number(-1) N frames³

otherwiseotherwise

frame

Figure A.8: Modèle de transition d’état.N est le seuil prédéterminé pour ajuster le résultat
de détection.

La matrice de covariance est proposée par O. Tuzel [Tuzel 2006] pour décrire blob
caractéristiques d’image de gris ou couleur. Il a été utilisé avec succès dans le problème
de détection d’objet [Tuzel 2007, Tuzel 2008], le problème de la reconnaissance de visage
[Pang 2008], et le problème de cheminement [Porikli 2006c]. Le descripteur de covari-
ance est robuste contre le bruit, les distorsions d’éclairage, et la rotation [Porikli 2006a].
Nous proposons de construire la matrice de covariance en se basant sur le flux optique
et l’intensité de mouvement pour coder des caractéristiques à la fois d’une blob et d’une
image globale. Le descripteur de covariance est calculée entant que:

F(x, y, ℓ) = φℓ(I , x, y), (A.14)

où I est une image (qui peut être gris, rouge-vert-bleu (RVB), etc.),F est unW×H×d fonc-
tion dimensions de l’imageI , W est la largeur de l’image,H est la hauteur de l’image,d est
le nombre de fonctions utilisées,φℓ est une application concernant l’image avec la fonc-
tion deℓ de l’imageI . Pour une région donnéeR rectangulaire, les points caractéristiques
peuvent être représentés commed × d matrice de covariance :

CR =
1

n− 1

np∑

k=1

(zk − µ)(zk − µ)⊤, (A.15)

oùµ est la moyenne des points,CR est la matrice de covariance de la fonctionF, zk est le
vecteur d’éléments de pixelk, np pixels sont choisis. Les éléments diagonaux de la matrice
de covariance représentent la variance de chaque caractéristique, les entrées de la matrice
de repos indiquent la relation entre des caractéristiques différentes. LeCR de covariance
d’une région donnéeR ne dispose pas d’information concernant l’ordre et le nombre de
points.

Basé sur le flux optique et l’intensité, 13 vecteurs de caractéristiques différentesF
indiquées dans le TableA.1 sont proposés pour construire le descripteur de covariance. I
est l’ intensité de l’image gris, le flux optique est obtenue àpartir de l’image gris,u est le
flux optique horizontale,v est le débit optique vertical;Ix, ux, vx et Iy, uy vy sont les dérivés
premiers de l’intensité, le flux horizontal optique et flot optique vertical dans la direction
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x et la directiony; Ixx, uxx, vxx et Iyy, uyy, vyy sont les dérivées secondes des fonctions
correspondantes dans la directionxet la directiony; Ixy, uxy etvxy sont les dérivées secondes
dans la directionydes dérivées premières dans la directionxdes fonctions correspondantes.
Fig.A.9 illustre la fonction de matrice de covariance des blobs, pour le blob dek dansi cadre
Bk

i , fonction de la matrice de covariance estCk
i . Le flux optique montre l’information inter-

cadre, il décrit les informations de mouvement. L’intensité montre l’information intra-
cadre, il encode les informations de l’apparence. Si la cadre entière est prise comme une
grosse blob, la matrice de covariance descripteur dei cadre estCi .

Feature Vector F
flux F1(4× 4) [y x u v]
optique F2(6× 6) [y x u v ux uy]

F3(6× 6) [y x u v vx vy]
F4(8× 8) [y x u v ux uy vx vy]
F5(12× 12) [y x u v ux uy vx vy uxx uyy vxx vyy]
F6(14× 14) [y x u v ux uy vx vy uxx uyy vxx vyy uxy vxy]

flux F7(5× 5) [y x u v I]
optique F8(9× 9) [y x u v ux uy vx vy I ]
et F9(13× 13) [y x u v ux uy vx vy uxx uyy vxx vyy I ]
intensité F10(15× 15) [y x u v ux uy vx vy uxx uyy vxx vyy uxy vxy I ]

F11(11× 11) [y x u v ux uy vx vy I I x Iy]
F12(17× 17) [y x u v ux uy vx vy uxx uyy vxx vyy I I x Iy Ixx Iyy]
F13(20× 20) [y x u v ux uy vx vy uxx uyy vxx vyy uxy vxy I I x Iy Ixx Iyy Ixy]

Table A.1: CaractéristiquesF utilisée pour former les matrices de covariance.

1framei+

framei

consecutive frame with blobs

optical flow on the foreground pixels

( , , )F x y j

1,2,...,j n=
k
iblob

C

features

k

iOP

Figure A.9: Calcul du descripteur matrice de covariance (COV) de la blob.

La matrice de covariance est un élément d’un groupe de LieG, où la mesure de la
distance de deux éléments est définie par:
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d(X1,X2) =‖ log(X−1
1 X2)‖, (A.16)

with ‖A‖ =

√√√ m∑

i=1

n∑

j=1

|ai j |2, (A.17)

où ‖ · ‖ est la norme de Frobenius,ai j est un élément de la matriceA, Xi etX j sont les
matrices dans un groupe de LieG. Ainsi, le noyau gaussien dans un groupe de LieG est:

κ(Xi ,X j) = exp(−
‖ log(X−1

i X j)‖

2σ2
), (Xi ,X j) ∈ G×G. (A.18)

En utilisant la formule Baker Campbell Hausdorff [Hall 2003] séparé dans la théorie
de groupe de Lie, le noyau est:

κ(Xi ,X j) = exp(−
‖ log(Xi) − log(X j)‖2

2σ2
), (Xi ,X j) ∈ G×G, (A.19)

κ(Xi ,X j) = exp(−
‖xi − x j‖

2

2σ2
), (A.20)

où xi est le vecteur construit par des éléments de la triangulairesupérieure et les éléments
diagonaux de la matrice de log(X).

Pour construire un élément descripteur plus représentatifet discriminatoire, nous nous
sommes séparés de chaque frame enm parties. La stratégie multi-noyau de notre de-
scripteur de matrice de covariance est définie par [Noumir 2012a, Rakotomamonjy 2008,
Chen 2013]:

κ(Xi ,X j) =
m∑

s=1

µsκs(xi , x j). (A.21)

Eq.(A.21) est un noyau constitué dem noyaux de base. Parce que chaque noyau de
base remplit la Mercer condition, leur somme est aussi un noyau définie semi-positive en
vertu de l’état deµs non-négatifs. Dans cette expression, le noyau gaussien estadopté avec:

κs(xi , x j) = exp(−
‖xi − x j‖

2
[s]

2σ2
). (A.22)

Les noyauxκs, s = 1, · · · ,m sont des gaussiennes. Chaque vecteurx de l’échantillon
se compose dem parties [x1, x2, . . . , xm]. Cette stratégie de noyau est similaire à la frame
d’un filtrage en utilisant un masque. Par exemple, une frame est divisée en quatre parties,
comme le montre dans la Fig.A.10. Si s = 1, la partie gauche vers le haut de l’image est
sélectionnée. Nous présélectionner le poidsµs according à la caractéristique de l’image
pour régler l’importance de chaque sous-image. Dans la scène intérieure, dans les images
normaux et les images anormaux, il n’y a personne dans la moitié supérieure de l’image.
Ainsi, nous avons mis enµ1,2 = 0.1, µ3,4 = 0.4 à réduire l’importance de la sous-image où
s= 1 et s= 2. Dans ce cas, le noyau résultant appartient à l’enveloppe convexe des quatre
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(a) Image

1s =

(b) S = 1

2s =

(c) S = 2

3s =

(d) S = 3

4s =

(e) S = 4

Figure A.10: Filtrer l’image par le masque pour sélectionner une sous-image. (a) Une
image original de la scène intérieure. (b)S = 1, µ1 = 0.1, la partie gauche supérieure
de l’image est sélectionné. (c)S = 2, µ2 = 0.1, la partie supérieure droite. (d)S = 3,
µ3 = 0.4, la partie gauche inférieure. (e)S = 4, µ4 = 0.4, la partie inférieure droite.

noyaux considérés. En considérant cette combinaison, le noyau résultant exécute chaque
κs du noyau individuellement.

Dans les problèmes de détection d’événements anormaux, leséchantillons d’apprentissage
peuvent durer une longue période de temps. L’algorithme SVMest généralement appliqué
en batch, c’est à dire, où toutes les données de formation sont donnés a priori. Si des
données de formation supplémentaires arrivent après, le SVM doit être recalculé. Dans le
problème de la détection des événements anormaux pour la surveillance vidéo, la séquence
normale pour la formation peut durer pendant une longue période. Il est impossible de for-
mer la grande série d’échantillons normaux. En outre, si unenouvelle donnée est ajoutée à
un grand ensemble, il n’aura probablement qu’un effet minime sur la surface de la décision
précédente. Compte tenu de ces deux aspects, la stratégie enligne est adoptée dans notre
travail pour s’adapter aux exigences de calcul et de mémoire.

A.3.1 Détection anormale en ligne via le soutien vecteur de description de
données

La méthode de description de données de vecteurs de support (SVDD) calcule une forme de
sphère décision frontière avec le volume minimal autour d’un ensemble d’objets. Le centre
de la sphèrec et rayonRsont à déterminer par l’intermédiaire du problème d’optimisation
suivant:

min
R,ξ,c

R2 +C
n∑

i=1

ξi , (A.23)

subject to: ‖Φ(xi) − c‖
2 ≤ R2 + ξi , ξi ≥ 0,∀i, (A.24)

où n est le nombre d’échantillons de formation,ξi est une variable utilisée pour pénaliser
les valeurs aberrantes. Le hyperparamètreC est le poids pour retenir variables d’écart, il
règle le nombre de valeurs aberrantes acceptables. La fonction non-linéaireΦ : X → H
cartographie unxi de référence dans dans la fonction espaceH , il permet de résoudre un
problème de classification non linéaire par la conception d’un classificateur linéaire dans
l’espace des fonctionsH . κ est la fonction du noyau de calcul de produits scalaires dans
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H , κ(x,x′) = 〈Φ(x),Φ(x′)〉. En introduisant des multiplicateurs de Lagrange, le problème
dual (A.24) est écrit par le problème d’optimisation quadratique suivante:

max
α

n∑

i=1

αiκ(xi ,xi) −
n∑

i, j=1

αiα jκ(xi ,x j), (A.25)

subject to: 0≤ αi ≤ C,
n∑

i=1

αi = 1, c =
n∑

i=1

αiΦ(xi). (A.26)

La fonction de décision est:

f (x) = sgn(R2 −

n∑

i, j=1

αiα jκ(xi ,x j) + 2
n∑

i=1

αiκ(xi ,x) − κ(x,x)). (A.27)

Pour les grandes données de formation, la solution ne peut être obtenue facilement, une
stratégie en ligne pour former les données est utilisée dansnotre travail. LaissezcD désigne
un modèle rare du centrecn =

1
n

∑n
i=1Φ(xi) l’aide d’un petit sous-ensemble d’échantillons

disponibles qui appelle dictionnaire:

cD =
∑

i∈D

αiΦ(xi), (A.28)

oùD ⊂ {1, 2, . . . , n}, et laissezND désigne le cardinal de ce sous-ensemblexD.
La distance d’un tracé de référenceΦ(x) par rapport au centrecD peut être calculée

par:

‖Φ(x) − cD‖ =
∑

i, j∈D

αiα j κ(xi ,x j) − 2
∑

i∈D

αi κ(xi ,x) + κ(x,x). (A.29)

Une modification de la formulation initiale de l’algorithmede classification une classe con-
siste à minimiser l’erreur d’approximation‖cn − cD‖ est [Noumir 2012c, Noumir 2012b]:

α = arg min
αi ,i∈D

‖
1
n

n∑

i=1

Φ(xi) −
∑

i∈D

αiΦ(xi)‖
2. (A.30)

La solution finale est donnée par:

α =K−1κ, (A.31)

oùK est la matrice de Gram avec (i, j)-ième entréeκ(xi ,x j), etκ est le vecteur de colonne
dont les entrées1n

∑n
i=1 κ(xk,xi), k ∈ D.

Dans le schéma en ligne, à chaque pas de temps, il y a un nouvel échantillon. Lais-
sezαn désigne les coefficients,Kn représentent la matrice de Gram, etκn représentent le
vecteur, au moment de l’étapen. Un critère est utilisé pour déterminer si le nouvel échantil-
lon peut être inclus dans le dictionnaire. Un seuilµ0 est prédéfini, pour laxt de référence au
tempst, le critère de base de la cohérence sparsification est [Honeine 2012, Richard 2009]:

εt = max
i∈D
|κ(xt,xwi )|, (A.32)
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Premier cas: εt > µ0

Dans ce cas, la nouvelle donnéeΦ(xn+1) est incluse dans le dictionnaireD:

κn+1 =
1

n+ 1
(nκn + b) (A.33)

αn+1 =K−1
n+1κn+1 =

n
n+ 1

αn +
1

n+ 1
K−1

n b. (A.34)

oùb est le vecteur de colonne dont les entréesκ(xi ,xn+1).

Deuxième cas:εt ≤ µ0

Dans ce cas, la nouvelle donnéΦ(xn+1) est inclus dans le dictionnaireD. La matrice
de GramK change:

Kn+1 =

[
Kn b

b⊤ κ(xn+1,xn+1)

]
. (A.35)

En utilisant la matrice d’identité de Woodbury:

(A+ UCV)−1 = A−1 − A−1U
(
C−1 + VA−1U

)−1
VA−1, (A.36)

K−1
n+1 peut être calculée de manière itérative:

K−1
n+1 =

[
K−1

n 0

0
⊤ 0

]
+

1

κ(xn+1,xn+1) − b⊤K−1
n b
×

[
−K−1

n b

1

]
×
[
−b⊤K−1

n 1
]
. (A.37)

Le vecteurκn+1 est mis à jour à partir deκn,

κn+1 =
1

n+ 1

[
nκn + ~b
κn+1

]
, (A.38)

avec κn+1 =

n+1∑

i=1

κ(xn+1,xi). (A.39)

αn+1 =
1

n+ 1

[
nαn +K

−1
n b

0

]

−
1

(n+ 1)(κ(xn+1,xn+1) − b⊤K−1
n b)

×

[
K−1

n b

1

] (
nb⊤αn + b

⊤K−1
n b − κn+1

)
.

(A.40)

Dans un problème de détection d’événements anormaux, il estsupposé qu’une série
de frames de formation{I1, . . . , In} (la classe positive) décrivant le comportement normal
est obtenu. Les architectures générales de détection anormale sont introduites ci-dessous.
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Nous proposons deux stratégies de détection anormaux, la différence entre ces deux straté-
gies est le temps lorsque le dictionnaire est fixe. Ces deux stratégies sont représentées
sur la Fig.A.11(b) et (c). Stratégie 1 est représentée sur la Fig.A.11(b). Les données
d’apprentissage sont tirés un par un. Lorsque la période de formation est terminée, le
dictionnaire et le classificateur sont fixés. Chaque donnée de test est classée selon le dic-
tionnaire. Fig.A.11(c) illustratesStratégie 2. La procédure de formation est aussi la même
que laStratégie 1. Mais dans la période d’essai, le dictionnaire est mis à joursi la donnée
xi satisfait à la condition de mise à jour du dictionnaire.

m n m-

Train data

Test online

offline

n

(a) Stratégie offline

m n m-

Train data Dictionary fixed

online

Test online

offline

n

(b) Stratégie 1

m n m-

Train data

Train and test online

Dictionary fixed

Test online

offline

n

(c) Stratégie 2

Figure A.11: Hors ligne et deux stratégies de détection d’événements anormaux en ligne
basés sur la description des données de vecteur de support enligne (SVDD). (a) Stratégie
hors ligne. Les données sont tirées de formation comme un hors-ligne de lot. (b) Stratégie
1. Le dictionnaire est fixé quand toutes les données d’entraînement sont apprises. (c)
Stratégie 2. Le dictionnaire continue à être mis à jour pendant la période d’essai.

A.3.2 Détection anormale en ligne par des moindres carrés SVM mono-classe

Nous proposons une nouvelle méthode de classification en ligne par moindres carrés (LS-
OC-SVM). Le LS-OC-SVM extrait un hyperplan comme une description optimale des ob-
jets de formation dans un sens des moindres carrés régularisés. La ligne LS-OC-SVM ap-
prend tout d’abord à partir d’un ensemble d’apprentissage avec le nombre limite d’échantillons
à fournir un modèle normal de base, puis met à jour le modèle à travers les données
restantes. Dans le schéma en ligne, la complexité du modèle est commandée par le critère
de cohérence. Et puis, la ligne LS-OC-SVM est adoptée pour traiter le problème de la
détection d’événements anormaux.



A.3. Algorithmes de détection en ligne à base de SVM mono-classe 123

A.3.2.1 SVM mono-classe moindres carrés

LS-OC-SVM extrait un hyperplan comme une description optimale des objets de formation
dans un sens des moindres carrés régularisés. Il peut être écrit comme la fonction objective
qui suit:

min
w,ξ,ρ

1
2
‖w‖2 − ρ +

1
2

C
n∑

i=1

ξ2i

sujet à: 〈w,Φ(xi)〉 = ρ − ξi .

(A.41)

Le Lagrange associé est:

L =
1
2
‖w‖2 − ρ +

C
2

n∑

i=1

ξ2i −

n∑

i=1

αi

(
w⊤Φ(xi) − ρ + ξi

)
. (A.42)

En dérivant par rapport aux variables primales :

∂L
∂w
= 0 ⇒ w =

n∑

i=1

αiΦ(xi), (A.43)

∂L
∂ξi
= 0 ⇒ Cξi = αi , (A.44)

∂L
∂ρ
= 0 ⇒

n∑

i=1

αi = 1, (A.45)

∂L
∂αi
= 0 ⇒ w⊤Φ(xi) + ξi − ρ = 0. (A.46)

On a:

n∑

i, j=1

αiΦ
⊤(xi)Φ(x j) +

αi

C
− ρ = 0. (A.47)

[
K + I

C 1

1
⊤ 0

] [
α

−ρ

]
=

[
0

1

]
, (A.48)

L’hyperplan est alors décrit par:

f (x) =
n∑

i=1

αiκ(xi,x) − ρ = 0. (A.49)

La distance,dis(x), d’une donnée,x, par rapport à l’hyperplan est calculée par:

dis(x) =
| f (x)|
‖α‖

=
|(
∑n

i=1 αiκ(xi ,x) − ρ)|

‖α‖
. (A.50)
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A.3.2.2 En ligne des moindres carrés SVM mono-classe

Dans un régime d’apprentissage en ligne, les données de formation arrivent en perma-
nence. Nous devons donc accorder hyper paramètres dans la fonction objective et la classe
de l’hypothèse d’une manière en ligne [Diehl 2003]. Laissezαn, Kn et In désignent le
coefficient, matrice de Gram et la matrice d’identité à l’étape de temps,n, respectivement.
Les paramètres de LS-OC-SVM [αn − ρn]⊤ à l’étape de temps,n, peuvent être calculés
comme suit:

[
αn

−ρn

]
=

[
Kn +

In
C 1n

1
⊤
n 0

]−1 [
0n

1

]
, (A.51)

Afin de procéder, rappeler la matrice inverse identité pour les matricesA, B, C et D de
dimensions adaptées: [Honeine 2012]:

[
A B
C D

]−1

=

[
A−1 0
0 0

]
+

[
−A−1B

1

]
× (D −CA−1B)−1 × [−CA−1 1]. (A.52)

La matrice,Kn, à chargement diagonaleIn
C peut être calculée de façon récursive par rapport

au temps de l’étapen par:

[
Kn+1 +

In+1

C

]−1

(A.53)

=

[
Kn +

I

C κn+1

κn+1 κn+1 +
1
C

]−1

(A.54)

=


(
Kn +

In
C

)−1
0n

0
⊤
n 0

 +
1

(
κn+1 +

1
C

)
− κn+1

(
Kn +

In
C

)−1
κn+1


−
(
Kn +

In
C

)−1
κn+1

1


[
−κ⊤n+1

(
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où κn+1 est le vecteur colonne aveci-ième entry κ(xi ,xn+1), i ∈ {1, 2, . . . , n}, et
κn+1 = κ(xn+1,xn+1).

A.3.2.3 Sparse en ligne LS-OC-SVM

Nous approchons avec ces éléments de dictionnaireD:

w =

D∑

j=1

β jΦ(xwj ). (A.56)

L’hyperplan devient:

f (x) =
D∑

j=1

β jκ(x,xwj ) − ρ = 0. (A.57)
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La distance,disD(x), devient:

disD(x) =
|
∑D

j=1 βiκ(x,xwj ) − ρ|

‖β‖
, (A.58)

La fonction de Lagrange est:

L =
1
2
β⊤KDβ − ρ +

C
2

n∑

i=1

ξ2i −

n∑

i=1

αi(
D∑

j=1

β jΦ
⊤(xwj )Φ(xi) + ξi − ρ). (A.59)

En annulant les dérivées de la fonction de Lagrange (A.59) par rapport aux variables pri-
maires,

∂L
∂β
= 0 ⇒ KDβ = K⊤D(x)α, (A.60)

∂L
∂ξi
= 0 ⇒ Cξi = αi , (A.61)

∂L
∂ρ
= 0 ⇒

n∑

i=1

αi = 1, (A.62)

∂L
∂αi
= 0 ⇒

D∑

j=1

β j .κ(xwj ,xi) + ξi − ρ = 0 (A.63)

On a:

[
KD(x)K−1

D
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D

(x) + I

C 1

1
⊤ 0

] [
α

−ρ

]
=

[
0

1

]
. (A.64)

Premier cas: εt > µ0

Dans ce cas, au moment de l’étapen + 1, les nouvelles données,xn+1, n’est pas in-
clus dans le dictionnaire. La matrice de Gram,KD, avec les entrées,κ(xi ,x j), i, j ∈
{1, 2, . . . ,D}, est inchangée. Quand un nouvel échantillon,x, arrive, nous devons calculer:

[[
KD(x)
κ⊤

]
K−1
D

[
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I
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(A.65)

Deuxième cas: εt ≤ µ0

Dans ce cas, les nouvelles données,xn+1, est ajouté dans le dictionnaire,xD. Ensuite,
la matrice de Gram doit être changé par:

KD =

[
KD d

d⊤ d

]
, (A.66)
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Après quelques manipulations algébriques, nous avons:

K
−1
D =

[
K−1
D
+A b

b⊤ c

]
, (A.67)

où:

c =
1

d − d⊤K−1
D
d
, (A.68)

A = cK−1
D
dd⊤K−1

D
, (A.69)

b = − cK−1
D
d. (A.70)

SoitS la mise à jour
[
KD(x)K−1

D K⊤
D

(x) + I
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]−1
nous avons alors:
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Algorithmes d’apprentissage mono-
classe pour la détection d'anomalies 
dans les flux vidéo 
 
 
La vidéosurveillance représente l’un des domaines 
de recherche privilégiés en vision par ordinateur. Le 
défi scientifique dans ce domaine comprend la mise 
en œuvre de systèmes automatiques pour obtenir 
des informations détaillées sur le comportement des 
individus et des groupes. En particulier, la détection 
de mouvements anormaux de groupes d’individus 
nécessite une analyse fine des frames du flux vidéo. 
Dans le cadre de cette thèse, la détection de 
mouvements anormaux est basée sur la conception 
d’un descripteur d’image efficace ainsi que des 
méthodes de classification non linéaires.  Nous 
proposons trois caractéristiques pour construire le 
descripteur de mouvement : (i) le flux optique global, 
(ii) les histogrammes de l’orientation du flux optique 
(HOFO) et (iii) le descripteur de covariance (COV) 
fusionnant le flux optique et d’autres 
caractéristiques spatiales de l’image. Sur la base de 
ces descripteurs, des algorithmes de machine 
learning (machines à vecteurs de support (SVM)) 
mono-classe sont utilisés pour détecter des 
événements anormaux. Deux stratégies en ligne de 
SVM mono-classe sont proposées : la première est 
basée sur le SVDD (online SVDD) et la deuxième est 
basée sur une version « moindres carrés » des 
algorithmes SVM (online LS-OC-SVM). 
 
 
Mots clés : détection du signal - analyse multivariée 
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covariance. 
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Abnormal Detection in Video Streams 
via One-class Learning Methods 
 
 
 
One of the major research areas in computer vision 
is visual surveillance. The scientific challenge in this 
area includes the implementation of automatic 
systems for obtaining detailed information about the 
behavior of individuals and groups. Particularly, 
detection of abnormal individual movements 
requires sophisticated image analysis. This thesis 
focuses on the problem of the abnormal events 
detection, including feature descriptor design 
characterizing the movement information and one-
class kernel-based classification methods. In this 
thesis, three different image features have been 
proposed: (i) global optical flow features, (ii) 
histograms of optical flow orientations (HOFO) 
descriptor and (iii) covariance matrix (COV) 
descriptor. Based on these proposed descriptors, 
one-class support vector machines (SVM) are 
proposed in order to detect abnormal events. Two 
online strategies of one-class SVM are proposed: 
The first strategy is based on support vector 
description (online SVDD) and the second strategy is 
based on online least squares one-class support 
vector machines (online LS-OC-SVM). 
 
 
Keywords: signal detection - multivariate analysis - 
support vector machines - analysis of covariance. 

Ecole Doctorale "Sciences et Technologies" 

Thèse réalisée en partenariat entre :
 
 

    
 


