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Continuous models for multi-phase architectured/meta materials: homogenization for effective 

properties and damage evolution in three-dimensional lattices embedded in a softer matrix 

In this thesis, we present the result of the contact between two domains which in origin are very distant: the 

synthesis of new theory-driven conceived materials, the so-called metamaterials, and an homogenization 

framework based on some particular mathematical objects called Green operators, fruitfully used for 

describing the effective properties of composite materials. So, the main idea driving this thesis work is to 

design and study (and, possibly, to produce and measure) a mechanical system which we could call composite 

metamaterial. It should have both the enhanced properties of composite materials and of the smart architectures 

characteristic of metamaterials. 

The idea above described is obviously of not simple actuation and it obliges to face with very hard 

mathematical and technical problems. In this thesis work, we try to explain the first tentative to reach this very 

ambitious project.  

The first chapter of this thesis is devoted to the description of a particular metamaterial we have chosen as a 

reference for developing the composite. It is called the pantographic metamaterial and we are interested in its 

deformation enhanced properties, as, for example, large deformation ranges and late damage onset. We want 

to underline here that, from a mathematical point of view, the pantographic metamaterial is described by means 

of a generalized theory. Specifically, the presence of the microstructure makes it necessary to adopt a second 

gradient model for taking into account all its exotic effects. 

Experimental tests for 3D pantographic structures are presented in the second Chapter. A comparison with the 

evaluations obtained by means of the model developed in the previous chapter is performed and the limits of 

this model are experimentally evaluated. The above mentioned tests are finally analysed by using the Digital 

Image Correlation techniques, which allow to measure in a very precise way the displacement and the 

deformation fields.  

In the third and fourth chapters, the Green tensors homogenization framework is presented and used for 

modelling the pantographic-inspired material. This homogenization framework has some advantages: (i) it is 

very simple to be applied (in contrast with the Gamma convergence techniques needed to formally derived the 

homogenized description of the pantographic metamaterial); (ii) the result of this homogenization procedure 

consists in the direct access to the effective properties of the material; (iii) it is linear and, for this reason, the 

algorithmic code written to obtain the effective properties is very fast compared to the FEM based codes for 

numerically simulating the pantographic metamaterial. 

In the last Chapter, the damage modelling in pantographic structures is approached. The discussion about 

damage presented in this thesis is related to the deformation features of the interconnecting pivots: this allows 

us to carry on some comparisons with the pantographic-inspired material, where, as it is shown in Chapter 4, 

the role of the pivots is played by the matrix phase. On the basis of simple criteria, the damage forecasting is 

made possible if the pivots have specific geometrical features. 

 

 

MOTS-CLES: 

Pantographic structures, Homogenization Methods, Green Operators, Fiber reinforced matrix, Effective 
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Modèles continus pour metamateriaux multi-phasés : homogénéisation pour les propriétés effectives et évolution 

de l’endommagement dans des réseaux tridimensionels inclus dans une matrice souple 

Dans cette thèse, nous présentons le résultat du rencontre de deux domaines d'origine très éloignés : la synthèse 

de nouveaux matériaux de conception théorique, appelés métamatériaux, et un cadre d'homogénéisation basé 

sur des objets mathématiques particuliers appelés opérateurs de Green, utilisés pour décrire utilement les 

propriétés effectives des matériaux composites. L'idée principale de cette thèse est donc de concevoir et 

d'étudier (et, éventuellement, de produire et de mesurer) un système mécanique que l'on pourrait appeler 

métamatériau composite. Il doit posséder à la fois les propriétés renforcées des matériaux composites et les 

architectures sophistiquées caractéristiques des métamatériaux. 

L'idée décrite ci-dessus n'est évidemment pas de simple actuation et elle oblige à se confronter avec des 

problèmes mathématiques et techniques très durs. Dans ce travail de thèse, nous essayons d'expliquer la 

première tentative pour atteindre ce projet très ambitieux.  

Le premier chapitre de cette thèse est consacré à la description d'un métamatériau particulier que nous avons 

choisi comme référence pour développer le composite. C'est ce qu'on appelle le métamatériau pantographique 

et nous nous intéressons à ses propriétés de déformation renforcées, comme, par exemple, les grandes 

déformations et les endommagements différés. Nous voulons souligner ici que, d'un point de vue 

mathématique, le métamatériau pantographique est décrit par une théorie généralisée. Concrètement, la 

présence de la microstructure rend nécessaire l'adoption d'un modèle de second gradient pour prendre en 

compte tous ses effets exotiques. 

Des essais expérimentaux pour les structures pantographiques 3D sont présentés dans le deuxième chapitre. 

Une comparaison avec les évaluations obtenues par le modèle développé dans le chapitre précédent est 

effectuée et les limites de ce modèle sont évaluées expérimentalement. Les tests mentionnés ci-dessus sont 

finalement analysés en utilisant les techniques de corrélation d'images digitales, qui permettent de mesurer de 

manière très précise le déplacement et les champs de déformation.  

Dans les troisième et quatrième chapitres, le cadre d'homogénéisation des tenseurs de Green est présenté et 

utilisé pour modéliser le matériau d'inspiration pantographique. Ce cadre d'homogénéisation présente certains 

avantages : (ii) le résultat de cette procédure d'homogénéisation consiste en l'accès direct aux propriétés 

effectives du matériau ; (iii) il est linéaire et, pour cette raison, le code algorithmique écrit pour obtenir les 

propriétés effectives est très rapide comparé aux codes basés sur FEM pour la simulation numérique du 

métamatériau pantographique. 

Dans le dernier chapitre, la modélisation des endommagements dans les structures pantographiques est 

approchée. La discussion sur les endommagements présentée dans cette thèse est liée aux caractéristiques de 

déformation des pivots d'interconnexion : ceci nous permet d'effectuer certaines comparaisons avec le matériau 

d'inspiration pantographique, où, comme il est montré au chapitre 4, le rôle des pivots est joué par la phase de 

la matrice. Sur la base de critères simples, la prévision des endommagements est rendue possible si les pivots 

ont des caractéristiques géométriques spécifiques. 
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Introduction

In this thesis, we present the result of the contact between two domains which in
origin are very distant: the synthesis of new theory-driven conceived materials, the
so-called metamaterials, and an homogenisation framework based on some particular
mathematical objects called Green operators, fruitfully used for describing the effec-
tive properties of composite materials. So, the main idea driving this thesis work
is to design and study (and, possibly, to produce and measure) a mechanical sys-
tem which we could call composite metamaterial. It should have both the enhanced
properties of composite materials and of the smart architectures characteristic of
metamaterials.

The idea above described is obviously of not simple actuation and it obliges to
face with very hard mathematical and technical problems. In this thesis work, we
try to explain the first tentative to reach this very ambitious project. Clearly, we
are far from the complete resolution of the problem, but an ideal scheme has been
traced and many preliminary results have been obtained.

The Pantographic Metamaterial

As it is underlined in [1], mechanical metamaterials are a class of materials with
exotic mechanical properties due to their architecture (or microstructure, as it is
normally called in this field with no reference to the micro-scale) and they can be
divided in many different sub-classes by means of their specific features. In this thesis
we do not want to consider a general metamaterial, but we are interested in just one
of them. It is called the pantographic metamaterial [2, 3] and we are interested in
its deformation enhanced properties, as, for example, large deformation ranges and
late damage onset. The pantographic metamaterial, or pantographic structure in its
simplified version, can be regarded as a double array of parallel fibers, each array
lying on a different plane. These two plains are parallel and the directions of the fibers
are orthogonal in the reference configuration. The two plains are connected by means
of some cylinders, generally called pivots in the relative literature, positioned in the
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Figure 1: Example of a 3D printed (aluminum) pantographic structure: the two fiber
layers and the interconnecting pivots are shown.

crossing points of the two arrays of fibers. An example of pantographic structure is
shown in Fig. 1.

The first Chapter of this thesis is devoted to the description of this particu-
lar metamaterial. We want to underline here that, from a mathematical point of
view, the pantographic metamaterial is described by means of a generalised theory.
Specifically, the presence of the microstructure makes it necessary to adopt a second
gradient model for taking into account all its exotic effects. However, it has to be
considered that any model has its applicability limits and for different scales different
models are needed. This last concept is well explained in Fig. 2.

An important consideration must be done in order to connect the domain in
which the pantographic metamaterial has been introduced and developed and the
domain where we aim to describe it for designing a pantographic composite meta-
material. The consideration is the following: the deformation in the pantographic
metamaterial is extremely non-homogeneous and different zones with different de-
formation behaviours can be localised (see Fig. 3). In this thesis we approach the
description of the pantographic composite metamaterial, or pantographic-inspired
material, only for the homogeneous zones of the structure, where no bending of the
fibers is observed and no second gradient contributions are needed for mathematical
modelling it (the interface between the different zones is not treated, yet).

Experimental tests for 3D pantographic structures are presented in the second
Chapter. A comparison with the evaluations obtained by means of the model de-
veloped in the previous chapters is performed and the limits of this model are ex-
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Figure 2: Multi-scale nature of pantographic metamaterials. Depending on the cho-
sen scale, a different model (second gradient homogenised model, Euler-Bernoulli
beam theory, Cauchy Continuum Mechanics, etc...) must be adopted.

perimentally evaluated. The above mentioned tests are finally analysed by using the
Digital Image Correlation techniques, which allow to measure in a very precise way
the displacement and the deformation fields. These last results have been obtained in
the framework of a scientific collaboration with the LMT laboratory of the University
of Paris Saclay.

Green tensors homogenisation framework

In the third and fourth chapters of this thesis, the Green tensors homogenisation
framework is presented and used for modelling the pantographic-inspired material.
This homogenisation framework has some advantages: (i) it is very simple to be
applied (in contrast with the Gamma convergence techniques needed to formally de-
rived the homogenised description of the pantographic metamaterial); (ii) the result
of this homogenisation procedure consists in the direct access to the effective proper-
ties of the material; (iii) it is linear and, for this reason, the algorithmic code written
to obtain the effective properties is very fast compared to the FEM based codes for
numerically simulating the pantographic metamaterial.
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Figure 3: The three different deformation zones in the pantographic structure during
an extension test: no deformation (blue), shear at macro level and relative rotation
at micro level (red) and shear with a different angle (green). The bending of fibers
is concentrated in the interface zones.

The fact that we compare a strongly non-linear system, as the pantographic meta-
material (large displacement and large rotations), with a linear system as the one
described by means of the Green tensors must not lead to a misunderstanding. We
adopt a linearised description of the pantographic-inspired material, where the inter-
nal geometry of the network is changed ad hoc step-by-step and linear deformations
are considered for any step. The macroscopic response consists in a solution which
is linear in increments, but globally non-linear.

In Chapter 3, we introduce the homogenisation framework and the Inverse Radon
Transform (IRT), a method that allows to solve the integrals needed for the calculus
of the Green tensors components in the Fourier space. This simplifies extremely
the procedure and introduces a geometrical interpretation for the calculus of the
Green tensors. As a first example of application we present the estimate of effective
properties of a planar alignment and of a 1D bundle of infinite cylinders embedded
in a softer matrix. Specially the first case is of primary importance for our work. It
is, in fact, used in Chapter 4 to derive the Green tensor of the pantographic-inspired
material.

In Chapter 4, an explicit expression of the Green tensor for the pantographic-
inspired material is found and some applications are exhibited. One must remember
that only the central homogeneous zone of the pantographic structure has an analo-
gous in the described pantographic-inspired material (see Fig. 4). For this reason, the
results obtained in the framework of the Green tensors homogenisation procedure are
compared to numerical simulations obtained by means of a FEM code, originally de-
veloped to study wide-knit pantographic structures as composed by Euler-Bernoulli
non-linear beams, where the bending of fibers has been forbidden. The details of
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Figure 4: Particular of a 3D pantographic sample (left) which inspired the compos-
ite material treated by means of Green operators-based homogenization procedure
(right).

this code can be found in [4] and are discussed in the first Chapter of this thesis.

Phenomenological and qualitative analysis of damage

In the last Chapter, a phenomenological analysis of damage is presented. The dis-
cussion about damage, on the basis of the Refs. [5, 6], is related to the deformation
features of the interconnecting pivots: this allows us to carry on some comparisons
with the pantographic-inspired material, where, as it will be shown in Chapter 4, the
role of the pivots is played by the matrix phase. On the basis of simple criteria, the
damage forecasting is made possible if the pivots have specific geometrical features.
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Chapter 1

The Pantographic Metamaterial:
an example of theory-driven design

The discussion presented in this Chapter is based on the Chapter “The Pantographic
Metamaterial: a (not so) particular case” of the book [7].

1.1 Introduction

This Chapter is devoted to the discussion of a particular class of metamaterial,
termed as the Pantographic Metamaterial. The research work on this type of meta-
material began in 2003. However recently, owing to the very rapid development of 3D
printing technologies, this work has been enriched through experimental evidences.
The current chapter will focus upon the theoretical developments alone since a part
of the experiemental aspects, that include characterization and evaluation of panto-
graphic metamaterials, deserves its own dedicated discussion in a seperate chapter.

Materials on demand In the last few years, the field of so-called metamaterials
has been vigorously explored and exploited in many different ways. In the literature,
metamaterials are, generally, treated as material systems endowed with particular
microstructures, and, typically, the global properties of these material systems are
analyzed using methods devised within the framework of classical or generalized
mechanical theories. In contrast, it is more fascinating to regard metamaterials as
material systems “on demand,” which are expected to fulfill certain functional re-
quirements. In this sense, we must first concieve the theoretical governing equations
that describe the requirements and, subsequently, search for material system whose
physics (or mechanical properties if the interest so demands) is specified, in some
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way, perhaps not exactly, by the concieved equations. Clearly, this point of view
opens the horizon to innumerable possibilities of applications. Moreover, the cur-
rent capabilities to produce in a relatively simple way the designed microstructures
makes possible to establish experimental foundations for certain mathematical the-
ories which have been an object of different controversies up to recent times. Thus,
the general problem to be solved for designing a new metamaterial is the following:
given a desired behaviour, to first find the evolution equations that mathematically
describes such a behavior, and to then specify the material (micro)structure governed
by the chosen equations.

With the advancements in manufacturing techniques (e.g., 3D-printing technol-
ogy and, more generally, of rapid prototyping techniques), the small scale production
of materials with complex geometries has become more affordable than ever [8–11].
The exploitation of these new technologies has impelled, in the last few years, the
development of material systems with many different sub-structures. Consequently,
there has been an acceleration in the determination and study of new microstructures
that, at a well-specified macroscopic scale, exhibit behaviors that are best described
by non-standard mathematical models like generalized continuum theories. For in-
stance, the motivations that led to the consideration of the pantographic microstruc-
tures, i.e. to be well-described at certain macroscopic spatial scale by second gradient
continuum theories, have been extensively discussed in the literature [12–14]. As a
rather significant consequence, these considerations have supported the development
of a flourishing litrature on the history of such higher gradient and generalized con-
tinuum theories, some of which have shown that [15, 16] that many “generalized”
theories were formulated before or together with the so-called “classical” ones and
then lost, suggesting [17, 18] that some generalized theories were already known at
least two centuries ago.

The Pantographic Metamaterial The mathematically-driven design of the pan-
tographic metamaterial has clearly established that the pioneering efforts to give
practical foundations to generalized continuum theories has shown the pathway to
manufacture constructs (microstructures and mechanisms) using existing materials
and emerging technology of additive manufacturing that have non-trivial, appealing
and tailorable mechanical properties. A pantographic metamaterial (or fabric) con-
cieved through this approach consists of a planar grid obtained by the superposition
of two families of fibers (see Fig. 1.1) that are connected by means of small cylinders,
called pivots. In the desin of these pantographic structures, the aim was to find a ma-
terial system exhibiting mechanical properties described by a second gradient theory.
This theory, which has been studied by Germain [19], Toupin [20], Mindlin [21] and

16



Figure 1.1: Example of polyamide 3D printed pantographic structures: (a) a “stan-
dard” pantographic fabric; (b) a pantographic structure with perfectly compliant
pivots; (c) a bi-pantographic plate; (d) a “millimetric” pantographic structure.

Hellinger [22,23], is based upon the consideration that the strain energy depends not
only on the displacement gradient but also on its second gradient. In what follows,
we will first introduce the result of the theory-driven design since this is the main
concern of this chapter.

At the first stage of the research effort, the problem was approached from a
theoretical point of view. The mathematical models, which were initially introduced,
belong to the class of generalized continua: as we have mentioned before. The
introduced independent kinematic fields include not only the displacement field but,
eventually, also microstretch and microrotation fields. In the second stage it was
necessary to develop numerical integration schemes and the corresponding codes for
solving, in physically relevant cases, the equations chosen to describe the desired
behavior. Finally, it was necessary to physically realize the microstructures. We can
schematize the whole research process in the following way:

i. design: modelling novel and exotic architectured metamaterials based on a
mathematical understanding of the related mechanical problems and on suit-
ably designed numerical simulations;
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ii. production: building the designed prototypes by using 3D printing technology;

iii. testing: testing with experimental apparatuses the so-built prototypes;

iv. model calibration: producing a careful model fitting of the experimental data
by means of the systematic use of numerical simulations;

v. validation: elaborating the obtained data with image correlation techniques for
comparing the proposed models with experimental evidence.

The Pantographic Paradigm: an example of theory driven design We
want now to point out a further peculiarity: the case of pantographic metama-
terials constitutes a Scientific Paradigm, which can be translaed to very different
fields. Every scientific theory can be produced on the basis of two different starting
points: conjectures, if there are not initial experimental observations, or hypothesis,
if everything begins by an effort to interpret some experimental phenomena. The
subsequent development of a scientific theory is then always based on the validation
of the proposed model by experiments. In this sense, the same word theory derives
its meaning by the Greek one θεωρός (observer, more precisely a θεωρός was an envoy
sent to consult the oracle: similarly, the word theory catches the sense of looking
for obtaining some information), which is a word composed by θέα (view, sight) and
the verb ὁράω (to see): we have to look at experimental observations to validate a
scientific theory. From this point of view, it is interesting to consider the definition of
theory as reported by Russo in his book [15], because it is possible there to find the
same logic employed in the development of the theory of pantographic structures.
The rationale is a very old one: it is the basis of the Science. In his book, Russo
states that (literal citation):

A theory has to be such that:

1. Its statements are not about concrete objects, but about specific theo-
retical entities. [. . . ]

2. The theory has a rigorously deductive structure; it consists of a few
fundamental statements (called axioms, postulates, or principles) about
its own theoretical entities, and it gives a unified and universally accepted
means for deducing from them an infinite number of consequences. [. . . ]

3. Applications to the real world are based on correspondence rules between
the entities of the theory and concrete objects. [. . . ]
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Any theory with these three characteristics will be called a scientific theory.
The same term will be used for some other theories, which we may call “of a
higher order”. They differ from the theories we have been considering so far
in that they possess no correspondence rules for application to the real world
- they are applicable only to other scientific theories.

For a very long time, second gradient materials have been treated as the objects of
a theory whose set of described phenomena was empty, as experimental evidences
able to well underline the necessity of recurring to a theory different from classical
Cauchy elasticity were missing. Pantographic fabrics provide not only an example of
real materials whose description needs the introduction of a second gradient theory,
but also an easy-to-handle example of a powerful methodological approach, which
can be used to analyse more complex and exotic structures.

1.2 Modeling Pantographic Structures: a rèsumè

of obtained results

Pantographic structures have been studied from different points of view during the
last decade. Here we give an overview on the models developed to describe the dif-
ferent aspects of this particular metamaterial. Specifically, the fundamental nucleus
of the Chapter is constituted by the presentation of the three main 2D models: the
basic Hencky-type discrete model; an intermediate “meso-model” in which the panto-
graphic structure is considered as composed by Euler-Bernoulli beams; a continuum
second gradient model, which is derived by an euristic homogenization of the discrete
one. This last model representsone of the main reasons for the development of the
research on pantographic structures. In fact, the theoretical interest in pantographic
structures is due to the fact that, for a correct description of their peculiar phe-
nomenology, it is necessary to use higher gradient continuum theories [24, 25] with
the relative problem of homogenization [26] and of different possibilities of numerical
integration [27, 28]. The presentation of the three 2D models is anticipated by an
overview on some existing works which inspired the further formulation. Finally, we
give some details on two elastic surface models representing a generalization of the
2D model, formulated in order to take into account the possibility that the structures
undergo some out-of-plane deformations (e.g. buckling or wrinkling modes).
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1.2.1 Pantographic (micro-)structures: the original path

The very first theorisation of a pantographic structure as micro-model associated
to a macroscopic second gradient continuum model can be found in [13]. The fun-
damental idea was the following: to find the micro-model leading to, in the sense
of some homogenization procedure, the simplest second gradient continuum model.
The described development can be classified as a multiscale procedure. The history
of Mechanics offers many examples of multiscale procedures, developed principally to
set the relations between macro-models and micro-models. Among the first examples,
as reported by Benvenuto in his book about the history of Structural Mechanics [29],
are due to Maxwell and Saint-Venant [30].

In the field of multiscale procedures, a very efficient approach consists in the
asymptotic identification. Once the micro and macro models have been postulated
a priori, a kinematic correspondence is found between them and, subsequently, the
equality of the power expended in the corresponding (micro- and macro-) motions
is enforced. Through this approach it is possible to evaluate the parameters of con-
stitutive equations of the macro-model in terms of the ones of the basic cells which
compose the micro-model. Before proceeding with the description of the model em-
ployed in [13], we want to remark a peculiar fundamental aspect of this approach.
In this approach, we first postulate the macro-model as a second gradient contin-
uum, and only after that we look for a possible micro-model which produces via
homogenization the macro-model. This theory-driven approach is, in our opinion,
very powerful: we do not look at random microstructures hoping to find one which
is good for our purposes, rather having in mind the theory we want to obtain, build
the needed microstructure to conform to the theoretical predictions.

At the time the pantographic structures were proposed as metmaterials, second
gradient models were already present in the literature. As we already remarked in
the chapter about mechanical metamaterials, we can refer to the elastica studied by
Euler, Bernoulli and Navier as the very first example of second gradient model: so,
it is necessary to go (at least) back to the beginning of the eighteenth century to find
the roots of second gradient theories. The model proposed by Euler is a 1D model. It
was after almost one century that the first (incomplete) second gradient 2D and 3D
model attributed to the Cosserat brothers [31] were proposed, although it is notable
that the origins of 3D higher gradient - and even peridynamic - models can be traced
back at least to Piola [32]. We call a material an incomplete second gradient material
if its deformation energy depends only on ∇u and ∇ω(u), where ω(u) is the skew-
symmetric part of the gradient ∇u of the displacement, ω(u)= ∇u−ε(u) with ε(u)
the symmetric part of ∇u. It is possible to encounter complete 2D and 3D second
gradient models in the description of capillarity or also in the theory of damage and
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plasticity (because of the well-posedness of mathematical problems related to second
gradient models).

The simplest second gradient continuum model is the 1D planar beam studied
by Casal in [33, 34] and quoted by Germain in [19]. We can write its (quadratic)
deformation energy as

E(u, v) =
α

2

ˆ L

0

(
(u′′)

2 − 2βu′′v′′ + (v′′)
2
)
dx (1.1)

where u and v are, respectively, the axial and transversal components of the displace-
ment and α and β some parameters with α > 0 and |β| < 1. The usual energetic
term due to elongation, proportional to the square of the first derivative of the ax-
ial displacement (u′)2, is not present in this formulation. From a phenomenological
point of view this means that we have a material with a very particular behaviour,
that is, it can be stretched without expending any energy. This is one of the most
remarkable ways to characterize the pantographic microstructure. Indeed, during
the research involved in the development of pantographic fabrics, the objective was
to find a microstructure which could be stretched at zero energy (a so-called floppy
mode).

As a generalization of the simple example proposed by Casal, it can be considered
a material with the following elastic energy

E(u) =

ˆ
Ω

A∇∇u · ∇∇u (1.2)

which is a pure second gradient energy, i.e. it is not involving at all the first gradient
of the displacement field. This material is in general subject to a volumic force
f and to a generalized boundary force (traction, double forces...) F . We remark
that, indeed, when considering a similar material, the mechanical interactions with
external world which are involved are not only traction forces but also generalized
ones (like, for example, double forces). If we set σ = 2A∇∇u for semplicity (σ is a
third order tensor) then we can write the variational formulation as

∀v,
ˆ

Ω

σ · ∇∇v −
ˆ

Ω

f · v −
ˆ
∂Ω

F · v = 0 (1.3)

Through successive integrations by parts we get the boundary conditions in sec-
ond gradient theories

div (div(σ))− f = 0 on Ω (1.4)

−divs(σ · n)//− div(σ) · n = F on ∂Ω (1.5)

(σ · n) · n = 0 on ∂Ω (1.6)
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Figure 1.2: Basic module of a pantographic structure and its stretched configuration.

These boundary conditions are not interpretable on the basis of the standard Cauchy
Continuum Mechanics, and clearly new mechanical interactions arise in higher order
theories (we refer to [25] for more details).

The pantographic structure, see its basic module in Fig. 1.2, has been first
introduced in the field of homogenized generalized media in [13,35].

For obtaining the corresponding homogenised macro-model it is necessary to con-
sider a structure composed by n pantographic modules and to study its behaviour
when n tends to infinity.

Figure 1.3: Pantographic microstructure of a 1D planar beam.

Some formal asymptotic expansion procedures, are systematically used in [13,35]
for determining the effective properties of periodic structures consisting of welded lin-
ear elastic bars. Remarkably, for the case when the bending and torsion stiffnesses
of isotropic homogeneous elastic bars are lower than the extensional one, interesting
macro-models are obtained. In finding macro-models for micro-architectured meta-
materials there is usually a complex estimate that needs to be established, that is, is
the energy associated to second gradient of displacements negligible with respect to
first gradient energy? For a long time it was believed that second gradient emergies
were always negligible [18]. This belief was proven to be ungrounded at the dawn of
modern continuum mechanics by Gabrio Piola [32,36]. However the results by Piola
have been ignored for a long time in the orthodox Cauchy-Truesdell school.
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Figure 1.4: Reference configuration (a) and deformed configuration (b) of a panto-
graphic beam. The deformed configuration (b) represents a so-called floppy mode.

In order to make clear that synthesizing second gradient metamaterials with
non-negligible second gradient energy is not only possible, but can be addressed
mathematiclly, it has been proven that [13,37]

i. pantographic micro-structures allow for the synthesis of Casal-type beams (see
deformation energy in Eq. (1.1));

ii. using two families of pantographic substructures it is possible to synthesize
second gradient plates: i.e plates whose deformation energy depends on second
gradients of in-plane displacements1;

iii. in presence of pefect pivots the macro deformation energy of short beam pan-
tographic structures does not include at all first gradient terms and that in
pantographic fabrics one can observe so called “floppy-modes”: i.e. homoge-
neous local deformations corresponding to vanishing deformation energy (see
alos the remark below);

iv. the mathematical treatment of second gradient linearized elastic continua (syn-
thesized as described in this Chapter) requires the introduction of anisotropic
Sobolev spaces [?, 38].

Remark In so called long-fibers pantographic metamaterials (see Fig. 1.4) there is
only a 1-parameter family of floppy modes while in short-fibers pantographic meta-
materials (see Fig. 1.5) there are ∞3 floppy modes.

We underline here that we did not find the pantographic micro-structures via a

1In classical plate theory the second gradients of transverse displacements only appear in the
deformation energy.
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data-driven procedure, or some trial and error. Instead, being guided by classi-
cal mechanics, we built some mechansims whose degrees of freedom would produce
“floppy modes” at micro-level in the designed and desired metamaterials. Adding
some extra contraints (i.e. considering the boundary conditions needed for second
gradient continua, see [13,25,37], one “blocks” macro floppy modes but leaves them
active at local (micro) level. We therefore obtain theory-driven synthesis of second
gradient materials.

Figure 1.5: Reference configuration (a) and deformed configurations (b) of a panto-
graphic 2D structure. The deformed configurations (b) represent some of the floppy
modes.

As a second example of synthesis of higher gradient materials, in [13] it is shown
how, by considering a modified (Warren-type) pantographic structure as micro-
model, it is possible to obtain a third gradient planar beam model (Fig. 1.6) as
homogenized macro-model. An interesting difference between the two models is
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that the pantographic beam does not store any energy when undergoing uniform
extension, while the Warren-type pantographic beam undergoes a floppy-mode when
undergoing uniform flexure.

Figure 1.6: Warren-type pantographic microstructure, producing as homogenized
model a third gradient planar beam model.

1.2.2 Pipkin’s higher gradient plate modeling systems with
inextensible fibers

The model we have previously presented is a linear model (see the energy reported in
Eq. 1.1). We now descibe the generalization to the non-linear case. The effort in that
direction are based upon work by Pipkin et al. [39–46] on inextensible fibers. Taking
inspiration from the work of Pipkin et al, 2D continua composed by two orthogonal
families of inextensible fibers has been studied in [47], which was further extended
and applied to pantographic lattices in [12, 48]. The concept of a continuum model
regarded as composed by fibers needs further explanations. Let us consider a 2D
continuum with a rectangular domain Ω ⊂ R2 as reference shape. The sides of the
rectangle are in a ratio of 1:3 (so chosen since some remarkable features arise if we
consider structures whose sides ratio is at least 1:3 because, as we will describe in
the Chapter dedicated to experimental methods). To invesigate the planar motions
of this continuum, we introduce a suitably regular function χ : Ω → R2 (we call
it “macro-placement”) which associates the reference positions to the current ones

(X1, X2)
χ7→ (x1, x2).

An orthogonal frame of reference (O, ξ1, ξ2), whose axis ξ1 and ξ2 are oriented
along the inextensible fibers in the reference configuration, is introduced. Accord-
ingly, we have the following non-dimensional coordinates

ξ1 :=
1

l
(X1 −X2) +

1

2
, ξ2 :=

1

l
(X1 +X2) +

1

2
. (1.7)

A graphical explanation of the introduced quantities is given in Fig. 1.7. The Carte-
sian frame (O, ξ1, ξ2) is chosen so that the members of its associated basis, namely
the ordered couple of vectors (D1, D2), are oriented, in the reference configuration,
as the two families of fibers. The inextensibility constraint can be introduced by
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considering that a curve γ is inextensible for a placement χ if, for every part γ1 of
γ, χ(γ1) has the same length as γ1. The presence of this “inextensibility constraint”
allows us to discuss of inextensible fibers.

Figure 1.7: The inextensible fiber configuration and relative Lagrangian coordinates.

By definition, d1 and d2 are considered to be the transformed vectors in the cur-
rent configuration, of the vectors D1 and D2, respectively, i.e. dα = FDα, α = 1, 2,
where F = ∇χ. From their definition, which needs that χ is at least locally contin-
uously differentiable, it follows that the vectors dα are tangent to the fibers in the
current frame. Moreover, the inextensibility constraint implies that ‖d1(ξ1, ξ2)‖ =
‖d2(ξ1, ξ2)‖ = 1 for all (ξ1, ξ2). It can be shown (see Rivlin [49] for a formal demon-
stration) that, if we restrict our analysis on a open simply linearly connected set ∆
of Ω, where χ is twice continuously differentiable the inextensibility of fibers allows
the following representation formula

χ∆(ξ1, ξ2) = χ∆
1 (ξ1) + χ∆

2 (ξ2) (1.8)

Moreover, if we denote with µ∆
1 (ξ1) and ν∆

1 (ξ1) the projections of χ∆
1 (ξ1) on D1 and

D2, respectively, and ν∆
2 (ξ2) and µ∆

2 (ξ2) the projections of χ∆
2 (ξ1) on D1 and D2,
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respectively, then

χ∆
1 (ξ1) = µ∆

1 (ξ1)D1 + ν∆
1 (ξ1)D2 and χ∆

2 (ξ2) = ν∆
2 (ξ2)D1 + µ∆

2 (ξ2)D2 (1.9)

As we have already noted, the constraint of inextensibility can be expressed imposing
that the norm of d1 and d2 is equal to one. Therefore, we can introduce two quantities
ϑ∆

1 (ξ1) and ϑ∆
2 (ξ2) such that

d∆
1 = cosϑ1(ξ1)D1 + sinϑ1(ξ1)D2 and d∆

2 = sinϑ2(ξ2)D1 + cosϑ2(ξ2)D2 (1.10)

We can now study the Pipkin continuum by considering some boundary conditions.
In a standard bias extension test2 we fix the left short side of the rectangle (denoted
by Σ1) and we impose a non-vanishing displacement u0 on the right short side (de-
noted by Σ2). Because of fiber inextensibility, the boundary conditions on Σ1 and
Σ2 can be used to determine directly the placement field in the interior of Ω [47], i.e.
on the regions ∆00 and ∆33 of Fig. 1.8. The determination of the function χ in the
other regions then follows in a straightforward manner.

Figure 1.8: Domain pattern induced by the boundary conditions.

Due to the fiber inextensibility we can also estabilish a relation between the
functions µ∆

i and ν∆
i

‖F ·D1‖2 = 1⇒
(
µ∆

1,1

)2
+
(
ν∆

1,1

)2
= 1⇒ ν∆

1,1 = ±
√

1−
(
µ∆

1,1

)2
(1.11)

‖F ·D2‖2 = 1⇒
(
µ∆

2,2

)2
+
(
ν∆

2,2

)2
= 1⇒ ν∆

2,2 = ±
√

1−
(
µ∆

2,2

)2
(1.12)

Hence, the admissible placements in the Pipkin’s plate are only determined by the
globally continuous and piecewise twice continuously differentiable fields µ1(ξ1) and
µ2(ξ2). Eqs. (1.10)-(1.12) allow us to restrict our study to the ordinary differential
equations

dµα(ξα)

dξα
= cosϑα(ξ), α = 1, 2 (1.13)

2It should be clear now that the BIAS extension test plays a central role in the study of de-
formable fabrics.
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In fiber-inextensible 2D Pipkin continua it is customary to introduce the shear
deformation γ as a strain measure, defined as the scalar product of the fiber direc-
tions in the deformed configuration. Recalling the inextensibility assumption and
Eq. (1.10), the shear deformation γ reads as

γ(ξ1, ξ2) := d1 · d2 = cos
(π

2
− ϑ1(ξ1)− ϑ2(ξ2)

)
= sin (ϑ1(ξ1) + ϑ2(ξ2)) (1.14)

Further, the following kinematic constraint should be enforced

−π
2
< ϑ1 + ϑ2 <

π

2
( =⇒ −1 < γ < 1) (1.15)

if the case ϑ1 + ϑ2 = ±π
2
, which stands for overlapping fibers, is to be avoided. Now

that the fields ϑ1(ξ1) and ϑ2(ξ2) uniquely describe admissible placements, the strain

energy density W

(
ϑ1, ϑ2,

dϑ1

ξ1

,
dϑ2

ξ2

)
may be introduced. We postulate that W has

the following form

W

(
ϑ1, ϑ2,

dϑ1

ξ1

,
dϑ2

ξ2

)
= αg(f(γ)) + βg(‖∇f(γ)‖) (1.16)

with g(x) = 1
2
x2. Different functions f have been studied [12,48], among which:

S f(γ) = γ

Q f(γ) = arcsin γ

T f(γ) = tan(arcsin γ)

The two cases (α = 1, β = 0) and (α = 0, β = 1) are referred to as pure first
gradient energy (1g) and pure second gradient energy (2g), respectively. Numerical
results [50–54] show that the equilibrium configurations obtained by considering sec-
ond gradient energies are substantially different if compared to the ones obtained
with the first gradient approach (see Fig. 1.9). An experimental validation is needed
to decide which model produces the best representation of reality.
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Figure 1.9: Deformed equilibrium configurations and resultant (normal) forces on
the short side for a BIAS extension test for the first gradient 1gT (a) and second
gradient 2gT (b) models.
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1.3 Three scales, three models: micro, meso and

macro models for non-linear 2D pantographic

sheets

Using the theoretical framework we have discussed as our basis, we can now consider
the non-linear 2D second gradient continuum model of a pantographic lattice with
extensible fibers. Clearly we can approach the problem from different points of
view. We note that we have introduced the necessary concepts needed to develop a
micro model and its homogenized second gradient macro model. We also are able to
find homogenization procedure to connect the two different scales. Finally, a third
approach has been proposed to model a particular class of pantographic structures
(when the fibers of the same family are not too close one to the other).

Figure 1.10: Different REVs for different scales imply different models: (a) Second
Gradient Continuum model; (b) Beam Theory; (c) standard Cauchy Continuum
Mechanics; (d) Quantum Mechanics.

It is therefore, important at this juncture to review how the modelling process
relates with reality. Via a process of design and subsequent manufacturing (we will
address this in the Chapter about experimental methods), it is possible to obtain
real samples which are ultimately 3D objects composed by fibers with a non zero
cross section area and which are posed in two parallel planes. Remember that in the
models we refer to all the fibers of one plane as a “family” of fibers. The fibers of any
plane are all parallel one to the other and the two planes are separated by cylinders
(or the pivots) which connect the fibers of one family to the ones of the second family.
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Reality plays a fundamental role in the definition of the Representative Elementary
Volume (REV). As it can be observed in Fig. 1.10, at different scales we need
different models for properly describing the phenomena. So, for example, we can use
a homogenized continuum model if we regard the structure as a plate (Fig. 1.10.a)
but we will have to introduce a beam model to describe it if the chosen REV is the
one depicted in Fig. 1.10.b or we will clearly use the standard Cauchy continuum
model in the description of a little part of a fiber (Fig. 1.10.c) and we likely have to
use some atomistic method if our REV only contains few atoms.

Clearly, the real sample is not a 2D continuum, but it will be modelled in the
sequel as it was. Obviously, when the fibers are too far one with respect to the other
(see Fig. 1.11.a) we can think that the continuum model is no more appliable and
for this specific case a “meso” model which describes the structure as composed by
coninuous fibers (so it is not continuous in the sense of a 2D plate, but only in the
description of fibers) has been developed.

Figure 1.11: Three pantographic structures which differ for the density of fibers.

Current research is directed toward the investigation of the validity limits of the
second gradient continuum model. First evidences show that it is in a good agreement
with experimental measurements also for structures not at all dense (in the sense of
distribution of fibers) as the one in Fig. 1.11.a. We will show in the following, after
the presentation of the three models, a very preliminary result along this research
path.
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1.3.1 Discrete Hencky-type model

In the spirit of the multiscale procedures, a discrete approach can be considered for
modeling pantographic structures [35,55,56]. In the previously presented models we
had an inextensibility constraint for the fibers composing the structure. Here, to
obtain a better agreement with experimental evidences [12,35] extension of fibers is
accounted for by modeling the fibers as composed by material particles connected
by extensional springs. Moreover, for describing at the micro level the bending of
fibers, we introduce rotational springs at each node of the lattice.

Figure 1.12: Graphical representation of the discrete Hencky-type model of a panto-
graphic sheet (in detail the three rotational springs are pointed out).

Let us consider a Lagrangian Cartesian orthonormal coordinate system with its
associated basis of unit vectors (D1, D2) representing the fibers directions in the ref-
erence configuration. In this configuration the lattice body points have the following
positions

Pi,j = (iε, jε), i = 0, 1, ..., N and j = 0, 1, ...,M (1.17)

where ε is the distance between two adjacent body points, and N and M are the
numbers of points along the fibers directions (see Fig. 1.12). In the current configu-
rations, we denote the positions of the body points (whose position in the reference
configuration is labeled by Pi,j) with pi,j. The body points at the nodes Pi,j are con-
nected by extensional springs along the two directions (Fig. 1.12). These extensional
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springs, characterized by the rigidities k1
i,j and k2

i,j for the two directions, provide
energetic terms depending on the distances between adjacent contiguous points in
the current configuration, i.e. the distance ‖pi,j+1 − pi,j‖ for the fibers which are
oriented along D1 in the reference configuration, and on the distance ‖pi+1,j − pi,j‖
for the fibers oriented D2 in the reference configuration. Further energetic terms
are provided by rotational springs which are positioned at each node. For a good
representation of bending and shear of the structure, we have to consider three rota-
tional springs, characterized by the rigidities b1

i,j and b2
i,j (bending of fibers) and b3

i,j

(torsion of pivots), at each node. Their deformation energies depend, respectively,
on the angles:

1. ϑ1
i,j between the vectors pi−1,j − pi,j and pi+1,j − pi,j,

2. ϑ2
i,j between the vectors pi,j−1 − pi,j and pi,j+1 − pi,j,

3. ϑ3
i,j between the vectors pi,j+1 − pi,j and pi+1,j − pi,j.

We then postulate the following strain energy for the microscopic Lagrangian discrete
system

U({pi,j}) =
∑
j

∑
i

k1
i,j

2
(‖pi+1,j − pi,j‖ − ε)2 +

∑
j

∑
i

b1
i,j(cosϑ1

i,j + 1)+

+
∑
j

∑
i

k2
i,j

2
(‖pi,j+1 − pi,j‖ − ε)2 +

∑
j

∑
i

b2
i,j(cosϑ2

i,j + 1)+ (1.18)

+
∑
j

∑
i

b3
i,j

2

∣∣∣ϑ3
i,j −

π

2

∣∣∣ξ
where ξ is a parameter that is equal to 2 for a generic linear case. In [55, 56], the
above described discrete model made of extensional and rotational (i.e. torsional)
springs is solved at each iteration by energy minimization.

As a numerical application of the described model, we show Figs. 1.13 and 1.14.
In Fig. 1.13 the deformed shape of a pantographic structure is shown resulting from
a BIAS extension test simulation using the discrete energy in Eq. (1.18). In the
same manner, in Fig. 1.14 we show the deformed shape of a pantographic structure
resulting from a shear test simulation.
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Figure 1.13: BIAS extension test numerical simulation of a pantographic structure
described by the discrete Hencky-type model: reference configuration (in gray) and
current shape.

Figure 1.14: Shear-extension test numerical simulation of a pantographic structure
described by the discrete Hencky-type model: reference configuration (in gray) and
current shape.
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1.3.2 Euler-Bernoulli non-linear beam theory meso-model

As we remarked, a homogenized model cannot be properly (exactly) used to describe
all the details of structures as the one in Fig. 1.15 (even if we already hinted that
the error in some sense in rather small). To expose certain additional details for this
kind of structures one can consider so-called “meso-models”, which is an intermediate
model between the discrete and the homogenized ones. This model, along with an
example of its numerical application, was first presented in [4]. In this case, the fibers
of the pantographic structure are modeled as non-linear Euler-Bernoulli beams.

Figure 1.15: Specimen in the reference configuration.

This model, which we discuss here briefly, allows to describe structures composed
by two families of fibers (which are not very close one to the other, see Fig. 1.15)
interconnected by some cylinders (the real pivots) whose torsion and flexion are a
priori non negligible. Pivots are modelled by adding in every interconnection a
torsional spring (accounting for the shear of the pantographic structure at a macro
level) and, possibly, an extensional spring (allowing for the sliding of a fiber with
respect to the corresponding one in the other family, i.e. the fiber in the other family
connected to it by the pivot, see Fig. 1.16). Each fiber element of length Li (Li is the
distance between two adjacent pivots in the current configuration) is then modeled
as an Euler-Bernoulli beam, endowed with a stretching energy W i

s and a bending
energy W i

b . The total number of fiber elements is denoted with M.
The deformation energy, which by a numerical minimization makes possible to

determine equilibrium configurations, is defined as follows: for a single fiber element
i of length Li we have an elastic energy depending quadratically on axial strain
(stretching energy)

Ws =
M∑
i=1

1

2

ˆ Li

0

EAε2 dx (1.19)
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Figure 1.16: Reference configuration of the pantographic structure and representa-
tion of the pivot mechanisms.

and curvature (bending energy)

Wb =
M∑
i=1

1

2

ˆ Li

0

EIκ2 dx (1.20)

By referring to Fig. 1.17.a, a pivot torsion energy term can be written as follows

Wp =

Np∑
i=1

1

2
kp

(π
2
−∆αi

)2

(1.21)

where ∆αi represents the change of the angle between two intersecting fibers in
the deformed configuration with respect to the reference configuration. In [4] an
additional energetic term is considered that allows us to describe the (possible) sliding
of fibers in correspondence of interconnecting pivots. We will explore this possibility
in the last Chapter about experimentas and analysis of damage.

The total potential energy is thus given as

W = Ws +Wb +Wp (1.22)

By now considering the minimum of potential energy

δW = 0 (1.23)
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Figure 1.17: Representation of pivot energetic terms.

we can obtain the equilibrium configurations. It is evident that the presented problem
cannot be solved analytically. The Ritz approach is employed in [?] to solve this
problem, and consists in discretizing the energy (1.22) and minimizing it, after having
introduced some shape functions for the displacement. For all the details we refer the
reader directly to the article. In Fig.1.18, the superposition between the calculated
deformed shapes and the measured ones are shown.
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Figure 1.18: Comparison between experimental (gray) and numerical (blue) shapes
of the pantographic structure. They differ for the imposed displacement: (a) 0.014m,
(b) 0.037m, (c) 0.048m, (d) 0.054m.

1.3.3 Second gradient homogenized model

We now present the central point in the field of the pantographic metamaterial
which is the 2D continuum macro-model obtained via homogenization of discrete
Hencky-type micro-model presented in a previous section. Expanding in truncated
Taylor series the kinematic map as it is explained in [35], we can compute the micro-
placement field of material particles at the nodes of the referential lattice by us-
ing the values, in such nodes, of a regular macro-placement and its first gradient.
Such a map determines a unique micro-motion once a macro-motion is given. The
micro-macro transition is obtained by equating the micro-strain energy with the
macroscopic counterpart, thus obtaining a macroscopic Lagrangian surface density
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of strain energy in terms of the constitutive coefficients appearing in the postulated
expression of the micro-strain energy. Numerical simulations with both discrete
and homogenized models show that the homogenized model is representative of the
microscopic response [55, 56]. Following the notation introduced above, we now
consider a 2D continuum whose reference shape is given by a rectangular domain
Ω = [0, Nε] × [0,Mε] ⊂ R2. Very often, it is assumed that N = 3M , which, as we
have already remarked, is the standard relation between the width and height of a
fabric specimen for experimental and numerical tests. If we want to study only pla-
nar motions, then the current shape of the rectangle Ω is mathematically described
by regular macro-placement χ : Ω → R2. Following the so-called Piola’s Ansatz,
it is chosen that pi,j = χ(Pi,j) ∀i = 1, ..., N, ∀j = 1, ...,M . Assuming that χ(·)
is at least twice differentiable at Pi,j, the following second order approximations are
obtained

‖pi+1,j − pi,j‖ = ‖χ(Pi+1,j)− χ(Pi,j)‖ w ε‖F (Pi,j)D1 +
ε

2
∇F (Pi,j)|D1 ⊗D1‖

(1.24)

‖pi,j+1 − pi,j‖ = ‖χ(Pi,j+1)− χ(Pi,j)‖ w ε‖F (Pi,j)D2 +
ε

2
∇F (Pi,j)|D2 ⊗D2‖

(1.25)

where we have denoted with F the deformation gradient ∇χ. Further details can
be found in [35, 55, 56]. In Eq.(1.24)-(1.25) it is presented the ε-truncated Taylor
expansion of the first and the third addends in Eq. (1.18) (extensional terms).
Letting ε → 0 one finally recovers the homogenized terms. To homogenize the
bending and torsional energetic terms, it is necessary to rewrite the three angles ϑαi,j
(α = 1, 2) and ϑ3

i,j as functions of the macro-placement χ. Specifically, we express
the cosinus of these angles in terms of χ. Using analogous Taylor expansions as those
in Equation (1.25), neglecting o(ε2) terms, and writing all quantities in terms of the
displacement χ, the strain energy of the micro-model becomes

U({pi,j}) =
∑
j

∑
i

∑
α

kαi,j
2
ε2(‖F (Pi,j)Dα +

ε

2
∇F (Pi,j)|Dα ⊗Dα‖ − 1)2

+
∑
j

∑
i

∑
α

bαi,j

[
‖∇F (Pi,j)|Dα ⊗Dα‖2

‖Fi,jDα‖2
−
(
F (Pi,j)Dα · ∇F (Pi,j)|Dα ⊗Dα

‖Fi,jDα‖2

)2
]
ε2

2

+
∑
j

∑
i

b3
i,j

2

∣∣∣∣arccos

(
F (Pi,j)D1 · F (Pi,j)D2

‖F (Pi,j)D1‖ · ‖F (Pi,j)D2‖

)
− π

2

∣∣∣∣ξ ,
(1.26)
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Rescaling the rigidities as

kαi,j = Kα
e ; bαi,j = Kα

b ; b3
i,j = Kpε

2 (1.27)

and letting ε→ 0, the strain energy of the macroscopic system reduces to

U(χ(·)) =

ˆ
Ω

∑
α

Kα
e

2
‖FDα − 1‖2dS+

+

ˆ
Ω

∑
α

Kα
b

2

[
‖∇F |Dα ⊗Dα‖2

‖FDα‖2
−
(
FDα · ∇F |Dα ⊗Dα

‖FDα‖2

)2
]

dS+

+

ˆ
Ω

Kp

2

∣∣∣∣arccos

(
FD1 · FD2

‖FD1‖ · ‖FD2‖

)
− π

2

∣∣∣∣ξ dS.

(1.28)

The homogenized energy in Eq. (1.28) can be used to perform numerical simulations:
in Fig. 1.19, numerical simulations of the BIAS extension test and shear test are
shown. Such homogenization process can be used as an argument for supporting
that the description of pantographic fabric at a certain macro-level requires the use
of second gradient continua.
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Figure 1.19: BIAS extension test (a) and shear test (b) of a pantographic lattice. In
the right images the “fibers” directions are explained.

Astounding power of the second gradient homogenized model As a pre-
liminary conclusion of this Chapter we show the astounding simulations in Fig. 1.20.
In this figure, which inspired the analysis in [57], two comparisons between numer-
ical simulations performed with two different models in the same BIAS extension
test are shown. We have already described the results in Fig. 1.20.a: obtained by
using a model which consider the fibers composing the pantographic fabrics modeled
as non-linear Euler-Bernoulli beams. We have remarked that this particular “meso”
model has been used in the case of pantographic structures which are composed by
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very few fibers. In that case, in fact, the hypothesis of continuum (an effective 2D
continuum) is not well-suited and we are obliged, at least in principle, to use a model
which is intermediate between the discrete and the continuum ones.

Figure 1.20: Comparison between simulation performed by using the “meso” non-
linear Euler-Bernoulli beam theory-based model (a) and the homogenized second
gradient model (b).

Let us consider Fig. 1.20.b. The simulation presented in that figure has been
performed by minimizing the second gradient energy reported in Eq. (1.28, modified
by an additional term which takes into account the possibility that the fibers of the
two families slide one with respect to the other in correspondence of their intercon-
necting pivots. This additional term has been considered for the first time in [5]. The
consequence of including this additional term will be further discussed in the final
Chapter of this thesis about experimental methods in pantographic structures and
their damage/fracture behavior based upon the results obtained in [5]. We remark
that in [4], which has been presented above, an analogous additional term can be
recognized. However, it is remarkable and surprising that a continuum homogenized
model is capable of replicating results in the case of a specimen with so few fibers.
Clearly, the inclusion of second gradient terms enriches the model sufficiently to cap-
ture phenomena that is otherwise not modelled based upon the standard Cauchy
theory.
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1.4 Conclusion

The Pantographic Metamaterial represents a class of metamaterials precisely defined
by its microstructure. In this Chapter we have limited our attention to 1D and 2D
pantographic metamaterials. The extension to the synthesis of such 3D constructs is
quite feasible regardless of the theoretical and technological challenges. In the third
and fourth Chapters, it will be shown how to model a 3D pantographic-inspired
material, by means of a completely different homogenisation framework.

A fundamental characteristic of the Pantographic Metamaterial, which is also a
motivation for dedicating a whole chapter to this metamaterial, is the fact that it
represents an archetype of theory-driven design. We have widely remarked that at
the genesis of pantographic structures was in response to a very simple question. Can
we concieve and realize a material system whose energy consists of a purely second
gradient type? At the level of a micro-structure, as we have shown, it is necessary
to consider a structure which exhibits, locally, a wider class of floppy modes than
just rigid motions. This is the rationale that first stimulated us to concieve an
ideal pantograph. In an strict adherence to the spirit of the theory-driven research
approach nothing has been randomly explored. We have shown here how the answer
to basic posed question originating in the theory was developed and, further, how
this development lead to the many theoretical predictions found through numerical
computations. To validate the followed approach, an essential aspect is to devise
methods for experimentally demonstrating the predictions. In the next Chapter of
this thesis, some experimental observations and their relation with the modelling will
be treated in detail.

The following Chapters (3 and 4) are devoted to answer to a fundamental ques-
tion: is it possible to conceive a composite material whose essential features are
inspired to the ones of the pantographic structures? This apparently simple ques-
tion will need a whole change of perspective to be answered. In fact, as it will be
clear in the fourth Chapter, a fiber-reinforced composite material, whose fibers are
arranged in a pantographic-inspired network, can be designed and studied by means
of homogenization methods typically used in the framework of composite materials
which are heterogeneous at the micro-scale and homogeneous at a macroscopic scale
(this was also a main feature in pantographic metamaterials). These methods have
been rarely used to describe materials as unusual as pantographic structures, where
the second (or higher) gradient energetic terms are substantial. For this reason, it
was very challenging to properly model this composite metamaterial. In this thesis
we have approached the problem in simplified way: no second gradient effects are
taken into account (at the current state of the research, but this represents the main
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Figure 1.21: The three different deformation zones in the pantographic structure
during an extension test: no deformation (blue), shear at macro level and relative
rotation at micro level (red) and shear with a different angle (green). The bending
of fibers is concentrated in the interface zones.

perspective of this work). Simplifications and approximations are justified by first
very promising results obtained thanks to the determination of the Green operators
related to the specific considered fiber network embedded in a softer matrix. As it
will be shown, by means of these operators it is possible to properly describe the de-
formation evolution and to compare it to the one relative to a simplified pantographic
structure.

As it has been remarked in the Introduction of this thesis, the global deformation
of a pantographic structure can be considered as composed by localized different
behaviors. In Fig. 1.21, three behavior-zones can be observed: (i) the blue ones,
where the angle between the fibers is unchanged along the deformation; (ii) the red
one, where only relative rotation between the fibers is observed; (iii) the green ones,
where again only relative rotation between the fibers is observed, but a different angle
with repect to the one of the red zone (these two angles are, for instance, related by
means of suitable geometrical relations). If, then, only relative rotations between the
fibers are considered (as it will be done in the fourth Chapter) the three behavior-
zones can be properly modelled. The only information that, at the current state of
the research, is not present consists in the description of the interfaces between the
different zones: on these interfaces, in fact, the bending of fibers is concentred and,
as it is now clear after the topic discussed along the present Chapter, the bending is
the one responsible for the second gradient energetic term.
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Chapter 2

From experimental evidences to a
new theoretical modeling

2.1 Introduction

In this Chapter, we present some relevant experimental results which aimed the
search for homogenization procedures different from the ones introduced in the pre-
vious Chapter. Specifically, experimental tests were performed on 3D multi-layer
pantographic networks (see, for instance, Fig.2.1).

Experiments are integral to the development of physical theories. They serve the
critical role of verifying and validating the principles and assumptions that form the
basis of theoretical developments. The predictive ability of a physical theory must
be tested against experiments to establish its applicability and credibility.

Figure 2.1: Example of multi-layer pantographic network.
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The sample presented in Fig. 2.1 has the same basic geometry of the panto-
graphic structures described in the previous Chapter, but it consists in an assembly
of different layers of fibers, which are alternately misoriented. The array of fibers
are, also in this case, interconnected by means of cylinders, which we will call again
pivots.

Figure 2.2: Definition of the two sides of the multi-layer pantographic network: (b)
lateral side and (c) face.

The interest in this structure lies in the fact that it can be modelled both by
means of the second gradient continuum model presented in the previous Chap-
ter, both by using a completely different homogenization framework, typically used
for composite materials. This pantographic network represents, then, the perfect
joint-point between the pantographic metamaterial and the pantographic-inspired
composite material. In the following we will refer to two different sides of the panto-
graphic 3D network. By referring to Fig. 2.2, we will call lateral side of the structure
the part shown in the left-up corner and face the part in the right-up corner.

This Chapter can be considered as motivational for the next two, which deal with
the methods of homogenization through the Green operators. In fact, the models
presented in these Chapters have been adopted as a consequence of the experimental
observations we present here.
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2.2 Experimental measurements

Figure 2.3:

BIAS extension tests have been performed on different samples of 3D pantographic
structures as the one in Fig. 2.1. Here we present results of two of the tests. The
only difference between the two samples is the height of the pivots hp (specifically, we
have hp = 2mm, 3mm, while the other, common, geometrical features are reported
in Tab. 2.1). In Fig. 2.3, it is shown the lateral side of the samples for hp = 3mm
(a) and hp = 2mm (b).

rp a b nf nl
0.5mm 0.9mm 1.7mm 20 9

Table 2.1: Common geometrical parameters of the tested samples.

A fundamental result, which is shown in Fig. 2.4, consists in the fact that the
average reaction force measured during the BIAS extension test decreases when the
pivot’s height increases. This can be easily explained by introducing a new degree
of freedom for pivots. Until now pivots can only rotate, exhibiting some torsional
stiffness or without any effort, if they are perfect. To correctly describe the phe-
nomenology shown in Fig. 2.4, it is necessary to introduce an additional type of
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pivot deformation: a shear deformation. In fact, if the height of the pivot is suffi-
ciently large (or, more precisely, if the ratio hp/(2rp) between the height and radius
of the pivot is sufficiently greater than 1), then the displacement imposed at the
edges of the pantographic structure will induce locally a shear deformation in the
pivot1.

Figure 2.4: Force-displacement experimental curves: it is observed that the average
reaction force decreases when the pivot’s height increases.

This new possibility of deformation allows the pantographic structure to stretch
with less variation of the angle between the fibers, resulting in a lower overall energy
compared to the case in which the shear deformation of the pivots is not present
(if the ratio hp/(2rp) is less than or equal to 1). In fact, as it has been shown in
the first Chapter, most of the deformation energy of the pantographic structure is
concentrated in the pivots and is due to their torsion.

The phenomenological ansatz we have introduced to explain the difference be-
tween the reaction force plots is amply demonstrated by the observation of the de-
formation in the lateral part of the pantographic network.

1This phenomenological explanation will be discussed and extended in the last Chapter of this
thesis.
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In Fig. 2.5, it is shown the side of the structure with hp = 3mm. In Fig. 2.5a
we show the reference configuration, while the current, deformed, configuration is
presented in Fig. 2.5b.

Figure 2.5: Side of the structure with hp = 3mm. Reference (a) and current (b)
configurations. In (b) it is clearly visible that, due to the shear of the pivots, the
overall width of the lateral side of the structure has decreased during the deformation.

The shear deformation of the pivots is therefore highly visible. This proves that
the deformation mechanism we postulated to account for the decrease in the reaction
force at a hp increase is well founded.

A second observation can be carried out by observing Fig. 2.5. In fact, in (b) it is
clearly visible that, due to the shear of the pivots, the overall width of the lateral side
of the structure has decreased during the deformation. This effect will be strongly
taken into account in Chapter 4, when it will be modelled the pantographic-inspired
material by means of Green operators.

In the next section, we present some results obtained by using the Digital Image
Correlation technique.
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2.3 Digital Image Correlation Analyses

Digital Image Correlation (DIC for short, see [58,59]) can be used to quantify evolu-
tion of displacement field at prescribed resolution of a deformed specimen. Recently,
this technique has been applied to extract the displacement fields as the panto-
graphic structure is deformed in the experimental tests [2,60]. For the pantographic
structures, displacement fields can be derived at macroscopic and mesoscopic scales.
These displacement fields can then be compared with those predicted via numerical
simulations. By this comparison it is possible to validate the considered constitutive
model.

2.3.1 Principle of Digital Image Correlation

DIC is based upon the analysis of digital images of surfaces at different stages of de-
formation in experiments, with an aim to obtain a precise estimation of the deforma-
tions. One of the limits of DIC comes from its ill-posedness. Generally, only limited
information is available from gray level images. For this reason, it is not possible to
measure displacement fluctuations beyond certain spatial resolution. Consequently,
it is necessary to find a compromise between the uncertainty level and the spatial
resolution [61]. Unrefined descriptions of displacement fields based on discretizations
coarser than the scale of pixels are usually required. Additional information is nec-
essary to achieve finer resolutions. For example, it is possible to consider continuous
displacement fields and decompose them on convenient kinematic bases (e.g., finite
element shape functions). The calculation time is increased in this global approach,
but the uncertainties can be reduced [61].

Global DIC

The registration of two gray level images in the reference (f) and deformed (g)
configurations is based on the conservation of gray levels

f (x) = g (x+ u (x)) (2.1)

where u is the (unknown) displacement field to be measured and x the position of
pixels. The sought displacement field minimizes the sum of squared differences Φ2

c

over the region of interest (ROI)

Φ2
c =

∑
ROI

ϕ2
c(x) (2.2)
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where ϕc defines the gray level residuals ϕc(x) = f(x)− g(x+ u(x)) that are com-
puted at each pixel position x of the ROI. The minimization of Φ2

c is a nonlinear and
ill-posed problem. This is the reason for considering a weak formulation in which
the displacement field is expressed over a chosen kinematic basis

u(x) =
∑
n

unψn(x) (2.3)

where ψn are vector fields and un the associated degrees of freedom, which are
gathered in the column vector u. Thus the measurement problem consists in the
minimization of Φ2

c with respect to the unknown vector u. This problem is nonlinear
and to obtain a solution Newton’s iterative scheme can be implemented.

In the following analyses, the vector fields correspond to the shape functions of
3-noded triangular elements (i.e., T3 elements). Consequently, the unknown degrees
of freedom are the nodal displacements of the T3 elements.

Regularized DIC

The previous approach can be penalized when the image contrast is not sufficient to
achieve low spatial resolutions. This is, for instance, the case in the analyses reported
hereafter. Regularization techniques can then be selected [62]. They consist of adding
to the global correlation functional Φ2

c penalty terms. In the following, a first penalty,
which is based on the local equilibrium gap, is added for the inner nodes of the finite
element mesh and those belonging to the free edges

Φ2
m = {u}>[K]>[K]{u} (2.4)

where [K] is the rectangular stiffness matrix restricted to the considered nodes. For
the other edges, a similar penalization is considered

Φ2
b = {u}>[L]>[L]{u} (2.5)

where [L] is a second operator acting on the nodal displacements of the boundaries
that are not traction-free [62].

The global residual to minimize then consists of the weighted sum of the previous
three functionals (i.e., Φ2

c ,Φ
2
m and Φ2

b). Because the dimensions of the first functional
is different from the other two, they need to be made dimensionless. It follows that
the penalization weights acting on Φ2

m and Φ2
b are proportional to a regularization

length raised to the power 4 [62]. The larger the regularization length, the more
weight is put on the penalty terms. This penalization acts as a low-pass mechanical
filter, namely, all high frequency components of the displacement field that are not
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mechanically admissible are filtered out. Similarly, for low-contrast areas mechanical
regularization provides the displacement interpolation. Examples of results obtained
via DIC analyses in the field of pantographic structures are reported in Appendix A.

2.3.2 DIC analyses

For the experimental tests for which we have shown the displacement force curves in
the previous section, we present here some measurements of displacement and strain
fields by means of the DIC techniques above described.

In Fig. 2.6 the experimental apparatus used to acquire the images analyzed by
DIC is shown. As it can be observed, we used two fixed cameras for aquiring the
pictures of the face and of the lateral side of the pantographic 3D network. It has
to be remarked that the specimen, for the properties of large deformations typical of
pantographic structures, so, due to the fact that the cameras are fixed, part of the
structure which is aquired in the first images will not be in the last images. For this
reason, only a small part of the pictures can be analysed by means of DIC.

Figure 2.6: Experimental apparatus used to acquire the images analyzed by DIC.

In Fig. 2.7 the reference and deformed configurations of the face of the panto-
graphic multi-layer network, for which the DIC analyses are shown in the following,

52



are presented. As it is remarked in Appendix A, different mesh can be adopted for
performing the analyses. In Figs. 2.8-2.9 two possibilities are shown.

Figure 2.7: Reference configuration (a) and three deformed configurations (b,c,d) of
the face of the pantographic multi-layer network. The DIC analyses will be shown
for the (b,c,d) pictures.

In Fig. 2.8 a macroscopic mesh for the face of the pantographic network is
shown. The density of the finite elements can be changed to obtain resultsmore or
less detailed.

Figure 2.8: Macroscopic mesh for the face of the pantographic network.

In Fig. 2.9 an adapted mesoscopic mesh for the lateral side of the pantographic
network is shown. In this case a macroscopic mesh would not be useful to obtain
correct results.
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Figure 2.9: Adapted mesh for the lateral side of the pantographic network.

Using the mesh shown in Fig. 2.8, the displacement and strain fields have been
measured on the pictures of the face of the pantographic network. The results are
shown for three of the images (see Fig. 2.7 b,c,d).

Figure 2.10: Longitudinal (left) and transverse (right) displacement fields measured
for the image of Fig. 2.7 b. The fields are shown on the reference configuration.
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Figure 2.11: Longitudinal (left), transverse (center) and shear (right) strain fields
measured for Fig. 2.7 b. The fields are shown on the reference configuration.

Figure 2.12: Longitudinal (left) and transverse (right) displacement fields measured
for the image of Fig. 2.7 c. The fields are shown on the reference configuration.
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Figure 2.13: Longitudinal (left), transverse (center) and shear (right) strain fields
measured for Fig. 2.7 c. The fields are shown on the reference configuration.

Figure 2.14: Longitudinal (left) and transverse (right) displacement fields measured
for the image of Fig. 2.7 d. The fields are shown on the reference configuration.
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Figure 2.15: Longitudinal (left), transverse (center) and shear (right) strain fields
measured for Fig. 2.7 d. The fields are shown on the reference configuration.

Figs. from 2.7 to 2.15 show the measured displacement and strain fields. In Fig.
2.16 the gray level residual fields are finally shown. More details about the analyses
here and above presented can be found in Appendix A.

Figure 2.16: Gray level residual fields measured for Fig. 2.7 b,c,d. The fields are
shown on the reference configuration.
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2.4 Conclusion

In this Chapter we have presented some experimental data and their analysis by
means of DIC techniques. The experimental tests presented here have been the
basic motivation for the theoretical analyses that follow in the next Chapters. Some
of the fundamental ideas presented in Chapter 4 were derived from the observation
of the phenomenology of the pantographic multi-layer network.

From this point of view, this Chapter constitutes the ideal link between the
previous one, concerning the pantographic metamaterial, and the following two, con-
cerning the modelling of a pantographic-inspired composite material.

Experimental evidence will be taken up in the last Chapter of this thesis, where
the emerging and causes of damage and fracture in the pantographic metamaterial
will be analyzed.
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Chapter 3

Mean Green operators
homogenization technique for
deformable fiber networks
embedded in a compliant matrix

The discussions presented in this Chapter are based on the articles [63, 64].

3.1 Introduction

Particular attention is paid in this Chapter to those composite structures in which the
domains that are embedded in a homogeneous matrix can be considered as infinite
fibers of a same second phase, as exemplified in Fig. 3.1. This is, in fact, the first
step to model the pantographic-inspired composite.

Figure 3.1: Some (dimensionless) examples of 1-directional (1D) fiber bundles and
of 2D and 3D fiber networks
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They are assumed to be arranged such as to make either a one-directional bundle
or interpenetrated ones along several directions of space, so realizing various sorts of
lattice network in 1, 2 or 3 dimensions, the modeling of which, in terms of effective
property estimate, is still highly challenging, owing to the phase continuity [65–68].
Whether it be random or periodically ordered, a one-directional bundle of infinite
fibers makes the composite medium bi-continuous in the fiber direction and phase co-
continuity is ensured in all fiber directions of multi-directional such networks which
are through-sample spanning. Such networked fiber structures can be found in vary
many different materials the matrix phase of which can have different (elasto-visco-
plastic) behavior type, including possible damage, and most cases the fiber phase
combines both stretching and bending straining modes at least in some ranges of
deformation [69–72].

Here, this first step in the investigation of effective property estimates for matrices
reinforced with fiber-networks will be restricted to purely elastic regime and bending
mode analyses are delayed to subsequent works.

Now, when in heterogeneous structures of the general (inclusion or fiber) reinforced-
matrix type the embedded domains are too dense in the matrix, the interactions
between these domains cannot be disregarded in the estimation of some effective
properties. The considered network-reinforced matrices suffer the specific difficulty
that in addition to classical pair interaction effects between elements, changes in the
network structure can be important, what is likely to further affect the interactions
in return. For example, thanks to a compliant matrix and also depending on var-
ious possible interconnections between elements (from simple contacts to physical
links), the network elements can significantly change their orientations and their
inter-distances under straining, so deserving to currently account for the interaction
changes.

How much pair interactions in clusters of inclusions or fibers affect the overall ma-
terial behavior remains an open question. The fact that only the nearest neighbors
to an inclusion are in practice considered to significantly matter has been pointed as
excessively simplifying, even when no long range order exists [73]. For embedded do-
mains that become aligned and get close to each other when the embedding matrix is
soft enough to suffer a large deformation, interactions may become of non negligible
effect even if the embedded domains are initially in quite dilute concentration. In
some circumstances, when for example the interactions between domains increase in
certain directions and oppositely decrease and vanish in other ones, it is certainly
important to account for the current evolution of the interactions in estimating ef-
fective properties of composites and meta-materials. These interactions are not that
easy to estimate. They can be accounted for either in some average or statistical
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way or in fully deterministic manner, from the calculation of the interaction Eshelby
tensors or related operators [74, 75] between all element pairs in a pattern, when
there is some particular organization of the elements.

In many homogenization frameworks, the main role to estimate effective prop-
erties of heterogeneous structures of the reinforced matrix type is carried by the
Eshelby tensors [76] which characterize the shapes of characteristic domains in an
infinite medium. These domains can be either inclusions representative of the em-
bedded phases (inhomogeneities) or also domains which represent a particular spatial
distribution or organization symmetry of the embedded phases. Widely used, Es-
helby tensors are non-uniform except for ellipsoidal domains or symmetries and no
interactions. When a domain V does not represent a single inclusion but a pattern
of them, the interaction Eshelby tensors between all element pairs constituting the
pattern are also needed to fully obtain the global tensor for V [77]. While the in-
terior Eshelby tensor of a V domain (say EV (r) , r ∈ V ) is not easily at hand
for a general V shape even in the simplest cases of a matrix with isotropic proper-
ties, the interaction tensor between domain pairs is generally much harder to access,
even with computational help. In order to estimate effective properties of reinforced
matrices, it is often enough to consider, rather than the entire tensor field EV (r)

over V , a mean tensor form, say EV , which can be computed in a simpler way: this
mean global tensor comprises the appropriately weighted sum of all the mean interior
tensors for the pattern elements and of all the mean pair interaction tensors between
the elements.

The product EV (r) : C−1 between the Eshelby tensor and the compliance (in-
verse stiffness) tensor C−1of the matrix in which V is embedded defines the so-
called modified Green operator integral, derived from the Green tensor, to be de-
noted tV (r) [78–80]. Again, if a mean global operator can be considered, then we

have that EV : C−1 = tV . The knowledge of tV (r) is quite equivalent to the knowl-
edge of EV (r) with several advantages of the former on the latter as super-symmetry
and positive definiteness [75, 81, 82] among others, some of which showing up when
making use of the Radon transform (RT) method and inversion (IRT) formula [83]
as the dissociation of geometry and property contributions which results in easier
calculations.

We here use for short the terms “interior”, “pair interaction” and “global interac-
tion” operator, to name respectively, the mean (or uniform when so) modified Green
operator integral representative of an embedded domain in a matrix, the mean in-
teraction operator integral between any two such embedded domains and the whole
mean interaction operator integral within a pattern of several domains.

In this context, mean operators of large, infinite-like, patterns, as those obtained
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in earlier already cited works for spheres, spheroids or finite cylinder alignments are
here shown of major interest. It will be specified which finite part of infinite patterns
contributes to the global interaction, owing to an influence distance above which ele-
ment interactions become negligible. On the contrary to a domain that represents a
spatial distribution of inclusions or of patterns within which the element arrangement
will somehow also evolve with their spatial distribution, this influence (or interaction
cut-off) distance defines (unless changes in the matrix symmetry properties) a size
and shape invariant influence zone around any element, and circumscribes a finite
varying part of the infinite pattern. This limited influence zone conversely allows the
use of the mean operator of infinite patterns as soon as the element number is large
enough.

The present Chapter aims at being a preliminary examination of inter-penetrated
fiber bundles with the goal of arriving, in the next Chapter, at describing the
pantographic-inspired composite material. It will be pointed that the concept of
infinite patterns suffering element interactions over a finite and invariant influence
zone has specific interest for continuous fiber networks in which by definition a fi-
nite pattern cannot be specified while an interaction domain of finite size can be
introduced.

3.2 Mean Green operator and effective properties

of a planar alignment of fibers

The access to interaction estimates between the elements of such fiber networks
imposes to solve analytically the interaction problem between two infinite parallel
fibers with at first a circular cross section, a basic case which surprisingly was not
present in explicit form in the literature so far, to the authors knowledge, even for
cylinders of same cross section radius, and although the single cylindrical inclusion
case has been already treated [84,85]. It is noteworthy that from the RT/IRT method,
this one-cylinder problem is solved (the cylinder operator is obtained) in simple
manner and with no calculations.

We start by solving the two-cylinder basic problem (the mean global cylinder
pair operator), after which the exact analytical solution for the mean global Green
operator of n-planar alignments of parallel infinite cylinders (up to infinite fiber
number) is presented, in a quite simple derivation from the pair interaction. The
operator solution for infinite one-directional bundles of parallel infinite cylinders
is then obtained and shown to allowing applications for embedded structures of
interpenetrated bundles in terms of effective properties.
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Finally, in order to show how, with these available mean operators for infinite
patterns, one can describe quite simply effective properties for the sorts of deformable
fiber networks we are concerned with and how one can follow the effective property
evolutions resulting from deformation of the fiber arrangement, a homogenization
framework is necessary. Among the simplest homogenization frameworks which are
likely to be used for such property estimates, we will use of the framework of Ponte-
Castaneda and Willis (PC-W) [75], a type of mean field approximation which has
also been shown to apply for patterns. While the validity of these homogenization
frameworks is generally considered restricted to dilute inhomogeneity concentrations
since the interactions are not, or not sufficiently, accounted for, the application to
patterns allows the account of the interactions interior to the pattern, such that only
the interaction between patterns remains to be improved for large concentrations. If
when the larger is the representative pattern the lower is the disregarded interaction
part, the use of infinite-like patterns with all interior pair interactions possibly ac-
counted for at any concentration of the elements is expected to substantially correct,
if not suppress, these restrictions. It will be shown that the PC-W estimate form re-
mains relevant at the limit of infinite representative patterns when the representative
spatial distribution symmetry is taken to be the one of the interaction domain.

3.2.1 Introduction of the Green operator and of the Radon
transform

Consider an infinite homogeneous elastic medium described by its elastic moduli
tensor Cijkl. We describe the displacement field u (r) due to a punctual force f (r′)
applied to a different point of the medium, where u = (u1, u2, u3) and similarly for
r,r′, as

ui (r) = Gij (r, r′) fj (r′) (3.1)

The Green strain tensor Gij (r, r′) in Eq. (3.1) is defined from the stress equi-
librium relation σij,j (r) = (Cijkl(r)uk,l (r))

,j
= 0 such that, with Cijkl (r) = Cijkl +

δCijkl (r)
CijklGkh,lj (r, r′) + δ (r, r′) δih = 0 (3.2)

in which the double derivative of the Green tensor Gij (r, r′) is called the modified
Green operator

Γklhj (r, r′) =
∂2Gkh (r, r′)

∂xl∂xj
(3.3)

We next consider a bounded domain V into the medium. Integrating the operator
Γpqjn (r, r′) over this domain, formally yields the so-called modified Green operator
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integral

tVpqjn (r) =

ˆ
V

Γpqjn (r, r′) dr′ (3.4)

An explicit calculus of the mean value of tV (r) over V starts by Fourier trans-
forming Eq. (3.2) making use of the Fourier transform for the Green tensor Ĝpj (k) =´
Gpj (r) eik·r dr. The Fourier transform of Eq. (3.2) is then

CmnpqĜpj (k) kqkn = δmj (3.5)

Introducing spherical coordinates (k, ϑ, ϕ) in the Fourier basis further yields

CmnpqωqωnĜpj = δmj = MmpĜpj (3.6)

where ω = (sinϑ cosϕ , sinϑ sinϕ , cosϑ ) and a new tensor Mmp is defined by con-
traction. Finally, introducing the elementary operator tepqjn (ω) = M−1

pj ωqωn , one
arrives at

tVpqjn (r) =
1

8π3

ˆ
V

(ˆ
Ω

tepqjn (ω)

ˆ ∞
k=0

k2e
−ik·

(
r−r′

)
dk dω

)
dr′ (3.7)

This last equation can be simply rearranged by permuting the V and Ω integrals
and by introducing a weight function ψ (ω, r) such as to finally write

tVpqjn (r) =

ˆ
Ω

tepqjn (ω)ψ (ω, r) dω (3.8)

where

ψ (ω, r) =
1

8π3
ξV (ω, r) , ξV (ω, r) =

ˆ
V

(ˆ ∞
k=0

k2e
−ik·

(
r−r′

)
dk dω

)
dr′ (3.9)

Eq. (3.8) is the inverse Radon transform (IRT) form of tVpqjn (r). In Eq. (3.9) it
has been defined the weight function ψ (ω, r), in which all the geometrical informa-
tion of the considered embedded inclusion pattern is contained. The powerfulness
of this IRT transform is to separate the concerned operator in two parts: while the
tepqjn (ω) operators are only material property orientation-dependent (for each mate-
rial property case, a table of them can be calculated once and for all), the weight
function ψ(ω, r) of a specific inclusion or pattern V is valid regardless of the proper-
ties of the embedding matrix, whether them be isotropic or not and whether them be
elastic or else. Although both operator parts are at analytical hand for quite many
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cases, the integral resolution in Eq. (3.8) can remain quite complicated especially
for general property anisotropy.

The main problem from now amounts to well characterize ψ (ω, r) in order to
describe the pattern or network organization in the matrix of the composite of con-
cern. Using the Radon inversion formula in its fully geometrical form, the function
ψV (ω,r) can be written

ψV (ω, r) = −
ˆ
V

δ′′ (ω · (r − r′))
8π2

dr′

= −
ˆ z′=D+

V (ω)

z′=D−V (ω)

(ˆ
sV (z′,ω)

sV (z′, ω)

)
δ′′(z − z′, ω)

8π2
dz′

= − s̃
′′
V (z, ω)

8π2
(3.10)

where sV (z ,ω) is the planar section area of V through r and of ω-normal, by the
plane of equation z = ω·r . Then, s̃V

′′(z ,ω) = ∂2

∂z2
sV (z ,ω) is the second z -derivative

of sV (z ,ω), indicated by the tilde to be understood as a regularized form of it. Next
setting dr = dsV (z ,ω) dz as having set dr′ = dsV (z ′,ω) dz′ in Eq. (3.2), the mean
value of this weight (or shape) function over V reads, ∀ω ∈ Ω

ψV (ω) = − 1

8 π2v

ˆ D+
V (ω)

D−V (ω)

s̃V
′′(z , ω) sV (z , ω) dz =

1

8 π2v

ˆ D+
V (ω)

D−V (ω)

(s̃V
′(z , ω))

2
dz

(3.11)
The interval

[
D−V (ω), D+

V(ω)
]

= 2DV (ω) corresponds to the breadth of V in
the ω direction (i.e. the distance between the two opposite tangent planes to V ,
of ω-normal), which characterizes the support function of V when strictly convex
(DV (ω) = maxr∈V (ω · r)), or more generally, in particular when V is a pattern of
inclusions, of the convex hull of V.

It is noteworthy that Eq. (3.9) formally holds whether r is an interior or an
exterior point to V, with the difference that the boundary of V always contributes
at exterior points when it only contributes at interior points when V is not a simply
connected convex body. So it is as well for the Green operator given by Eq. (3.8).

Thus a similar discussion can be considered in the case of a pair of inclusions and
from it to any inclusion number n in a pattern up to infinite sets which can be seen
as multiply connected (non convex) inclusions V. At any interior point r of such a
V pattern of n (possibly infinite) Vi inclusion number, the weight function and the
related Green operator comprises the interior term from V i when r is interior to Vi
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and all the exterior contributions from the other Vj domains (j 6= i). At exterior
points to V both the weight function and the Green operator assemble the n exterior
contributions from all the Vj domains which constitute V. As far as the mean Green
interior operator (mGO) of a general V pattern is of concern here, the mean weight
function for an (up to infinite) number of inclusions then reads from Eq. (3.10)

ψ̄V (ω) =
1

8π2v

ˆ D+
V (ω)

D−V (ω)

(
n∑
i=1

s̃′Vi(z, ω)

)(
n∑
j=1

s̃′Vj(z, ω)

)
dz (3.12)

ψ̄V (ω) =
n∑
i=1

vi
v
ψ̄Vi(ω) +

n∑
i=1

n∑
j=1

vi + vj
v

ψ̄Vi,Vj(ω) (3.13)

From comparing Eq.(3.12) with Eq. (3.11), it is immediate to see that

ψV i(ω) =

ˆ D+
Vi (ω)

D−Vi (ω)

(s̃Vi
′(z , ω))

8 π2vi

2

dz (3.14)

ψV i,V j(ω) =

ˆ inf(D+
Vi (ω),D+

Vj (ω))

sup(D−Vi (ω),D−Vj (ω))

s̃Vi
′(z , ω)s̃Vj

′(z , ω)

8 π2 (v i + vj )
dz (3.15)

The pattern mGO follows as

tV =
n∑

i=1

vi

v
tVi +

n∑
i=1

n∑
j=i+1

(
vi + vj

v

)
tVi,Vj , with v =

n∑
i=1

vi (3.16)

Infinite series in Eqs (3.16) formally provide the mean weight function and the
related mGO for infinite inclusion patterns. The first (simple sum) term corresponds
to the interior parts from the individual pattern elements and reduces to a single
term when all elements are identical. The second (double sum) term represents the
global interaction part in the pattern mGO. Only the interaction term depends on
the element inter-distances.

3.2.2 Application to single and pairs of ellipsoids

For ellipsoids V0, which include the infinite cylinders with elliptic or circular cross sec-
tion at limit (together with zero-thickness platelets at the other extreme), the interior

uniform weight function takes the simple form (where z = ω ·r and
[
−Dell

V (ω),Dell
V (ω)

]
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is the breadth of V0 in the ω-normal direction)

ψell
V0(ω) =

(
− 1

8π2

)
∂2

∂z2

(
3 v

4 Dell
V0(ω)

(
1−

(
z

Dell
V0(ω)

)2
))

=

(
3

4 π

)2(
v

3 Dell
V0(ω)3

)
(3.17)

Accordingly, the mean pair interaction operator tV1,V2
V =

´
Ω
ψV1,V2

V (ω)tP(ω)dω
between two general inclusions, V1 and V2, is the cross part of the global interior mean
operator tV for the domain V = V1

⋃
V2 (V1

⋂
V2 = ∅), of volume V = V1 + V2 and

reads

tV =
1

v

∑
i=1,2

∑
j=1,2

ˆ
Vi

ˆ
Vj

Γ(r− r′)dr′dr =
v1

v
tV1 +

v2

v
tV2 + tV1,V2

V (3.18)

For V1 and V2 congruent to a same V0 shape one has for the interior opera-
tor parts, similarly to the weight function parts v1

v
tV1 + v2

v
tV2= tV0. We now on

specialize to pairs of spheroids.

In contrast with previously considered axially symmetric inclusion pairs and pat-
terns with regard to the x3 axis (θ=0), we here consider two congruent spheroids
V1, V2, of x2-oriented symmetry axis (see Fig. 3.2)), say (θ=π/2, ϕ=π/2) and lying
in plane x2− x3. The calculations, according to the IRT method, for the mean pair
interaction weight function and operator between two parallel identical spheroids at
the limit of 2 infinite cylinders, are reported in Appendix B.
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Figure 3.2: Pair of x2-oriented parallel identical prolate (infinite-like) spheroids V1,
V2 in plane x2 − x3 and section areas by the plane of equation z = ω·r.

All calculations done, one thus obtains for ζ → ∞ the needed independent two
functions

I1,0
2cyl∞ = C2 =

3∑
i(m,n)=1

ζ∞I1,0
i(m,n) = −ρ0

2

10
(3.19)

I2,0
2cyl∞ = C4 =

3∑
i(m,n)=1

ζ∞I2,0
i(m,n) = −ρ0

2

20
− 9ρ0

4

280
(3.20)

from which the three other involved trigonometric functions result as S2 = −I1,0
2cyl∞,

S2C2 = I1,0
2cyl∞ − I

2,0
2cyl∞, S4 = I2,0

2cyl∞ − 2I1,0
2cyl∞. These 5 functions yield the terms of

the mean pair interaction operator for the x2-oriented cylinders reported in Tab 3.1,
using the two constant A = − 1

2µ(1−v)
and B = 1

µ
for isotropic elastic-like matrices

of shear modulus µ and Poisson ratio ν (or the single one B = 1
D

for dielectric-like
ones, with dielectric modulus D). The first column of Tab. 3.1 reports the interior
operator for an x2-oriented fiber of elliptic cross sections having their two axes along
the x1 and x3 axes. The coefficient η is the stretch in direction x3. Infinite (resp.
null) aspect ratio η yields the laminate operator with normal x1 (resp. x3). The
interior operator of the single infinite x2-oriented cylindrical fiber (η=1) is retrieved
from using the first of the three elements of the integral in Eq. (B1.3b), taking
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θmin(ϕ)=0 (resp. xmax(ϕ)=1), for all ϕ values, as the min (resp. max) integration
bound, say ρ0=1, what gives 1/2 and 3/8 for p=1 and p=2 respectively. Then, the
different terms of the global operator for the cylinder pair fully result from Tab. 3.1
for the x2-oriented cylinders from adding the interior (for η=1) and the interaction
operator, and then for any orientation using the appropriate rotation matrix. The
sphere and sphere pair terms are also reported for comparison. Here, as the limit
case when ζ = 1, they simply correspond to the θ or x integrals, with the ϕ-integrals

simply multiplying the θ-integral results by a factor 2
π

´ π/2
0

cos2q φdφ, q=0,1,2).

The dimensionless non zero terms of the elasticity mean global (interior plus in-
teraction) pair operator for parallel identical cylinders (say multiplied by the shear
modulus µ) are plotted in Fig. 3.3 as a function of the normalized distance L/R and
for Poisson coefficient of 0.3 and 0.5 (limit incompressible case). At large enough dis-
tance L, the interaction part vanishes and the global operator reduces to the interior
one. The influence or cut-off interaction distance is typically ten times the cylinder
radius, with no significant effect of Poisson ratio in the range v ∈ (0.3 − 0.5). Note
that as defined in Table 1, the operators are, from left to right, for an elliptic cylinder
that flattens normally to x3 (resp. x1) axis with increasing (resp. decreasing) η, for
a circular x2-cylinder pair that lays in the x2-x3 plane and for a sphere pair aligned
along the x3 axis. From Eq. (3.6), the terms of the pair interaction operator obeys
the polynomial decomposition in ρ0

tcyl,cyl
ρ0 = v0ρ0

2 + w0ρ0
4 (3.21)

while for the sphere pair case it was of the form tsph,sph
ρ0 = v0ρ0

3 + w0ρ0
5 (with

different tensors v0,w0). As for spheres, the w0 part is only present for elastic-like
material properties, in which case certain (ijkl) components (when v0ijkl and w0ijkl

have opposite signs) of the interaction operator can exhibit an optimum for ρ0∗ < 1
which depends on the Poisson ratio through the A/B coefficient ratio. The next
section examines patterns of parallel infinite cylindrical fibers and gives their global
mean operator in exact analytical form as well.
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Table 3.1: Interior operator of η-elliptic x2-cylinder (col.1) and sphere (col.4); Mean
pair interaction operator for 2 circular x2-cylinder (col. 2 and 3) and spheres (col.
5) aligned along x3.
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Figure 3.3: Global (interior plus interaction) operator for an alignment of parallel
infinite x2-cylinders in plane of normal x1.

3.2.3 Planar alignments of C-fibers and of SQ-beams and
their interaction mGOs

As far as the matrix phase is considered to have isotropic elastic-like properties, all
the non-vanishing components of the mGO for any inclusion pattern depend on two
independent trigonometric functions only and can therefore be written in terms of
two functions. Thanks to these simplifying characteristics, a first case of infinite
pattern (say coaxial alignments of non necessarily all size-identical oblate spheroids
including spheres) was explicated in [86], in the case of isotropic matrix properties,
and prolate spheroids being treatable identically. The case of aligned coaxial fiinite
cylinders with same radius was next treated in [87, 88] still for isotropic (elastic-like
or dielectric-like) matrix properties.

In the case of inclusion patterns made of parallel fibers in a plane, these two
functions can be written as C2(x) and C4(x) say, with x standing for a normalized
characteristic element inter-distance (isotropic dielectric-like properties only call for
the C2(x) function). Furthermore, these two functions share into an x -independent
part (C(2), C(4)) which corresponds to the interior mGO term and into a global in-
teraction part, the rest of it, between all the pattern element pairs. This rest is the
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Table 3.2: Non zero interior mGO terms for x2-oriented generic fibers, C-fiber, SQ-
beams and x2-x1 laminate in isotropic media (B = 1/µ,A = −B/2(1 − v) ), S(2) =
1− C(2),(S(2)C(2)) = C(2) − C(4),S(4) = 1− 2C(2) + C(4).

x-dependent part of the mGO.

Now on, the reported work strictly specializes to 3D structures made from piling
FPAs of n infinite parallel fibers of same cross section shape and size and equally
inter-distant, with n being large enough to be taken as infinite. The mGOs for such
FPAs in isotropic elastic-like matrices were previously solved in exact analytical form
in [85] for beams with rectangular cross sections and for cylinders in [63], the related
effective properties for both FPA types being also explicated. Here, the exact mGO
solution for cylindrical fibers (to be denoted C-fibers) will be recalled for comparison
with an accurately approximate analytical mGO form for infinitely many parallel
beams of same square cross section (now on denoted SQ-beams), which is here newly
introduced for being used (fiber cross sections in pantographic structures are more
likely rectangular than circular and square is a good compromise) and in easier way
than the exact one.

The interior parts of the C2 and C4 functions for the SQ-beam case read simply
C

(2)
SQB = 1

2
and C

(4)
SQB = 6−π

8
. The C2 interior function equals the C-fiber one, C

(2)
CFib =

1
2
and the C4 one does not differ much from C

(4)
CFib = 3

8
. The resulting six non zero

components of the interior mGO of x2-oriented infinite fibers are reported in Tab.
3.2 in generic form and for the circular and square cross sections here of concern.
The uniform interior GO of laminates with x3 normal is also recalled.

In [63] it has been shown that the global mGO for a planar n-alignment of parallel
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C2(x) C4(x)
Q −0.1 −0.05
S 0. −0.0321

Table 3.3: Coefficients of Ci(x) functions for C-fiber infinite PAs in Eq. (3.25).

infinite identical cylinders can be written as

tncylρ0
=

1

n

(
ntcyl + 2

n−1∑
i=1

(n− i)tcyl−cylρi

)
= tcyl + 2

n−1∑
i=1

(n− i)
n

(v0

i2
ρ2

0 +
w0

i4
ρ4

0

)
= tcyl + 2

(
σ

(n)
2 v0ρ

2
0 + σ

(n)
4 w0ρ

4
0

)
= tcyl +

(
v

(n)
0 ρ2

0 +w
(n)
0 ρ4

0

)
(3.22)

That is, while the interior part of the mGO is invariant, the interaction operator
for n elements is directly obtained from the pair interaction operator, with two
multipliers 2σ(2)(n) and 2σ(4)(n) respectively applying on the functions C2(x) and
C4(x) (the x variable in the functions C j(x ) stands for ρ0 = R/L in Eqs. (3.19)-
(3.20).

For n = 2, i = 1, 2σ(2)2 = 2σ
(2)
4 = 1 and t2cylρ0

= tcyl + (v0ρ
2
0 +w0ρ

4
0), where

the v0 = v
(2)
0 andw0 = w

(2)
0 tensorial notations represent the coefficients of the

different non zero terms of the operator. For n → ∞, the limit for the infinite
series, Σ (q) = limn→∞ σ

(n)
q = limn→∞

∑n−1
i=1

(n−i)
n

(
1
iq

)
is the Riemann Zeta function

Z (q) = limn→∞
∑n−1

i=1

(
1
iq

)
, which is finite, ∀q > 1. At the limit of an infinite

alignment of parallel cylinders one obtains with Z (2)=π2/6, Z (4)=π4/90

t∞cylρ0
= tcyl +

(
v

(∞)
0 ρ2

0 +w
(∞)
0 ρ4

0

)
= tcyl + 2

(
Z(2)v0ρ

2
0 + Z(4)w0ρ

4
0

)
(3.23)

with the particular (not always the maximal) values when all the cylinders are
at contact

t∞cylρ0=1 = tcyl + 2 (Z(2)v0 + Z(4)w0) (3.24)

More synthetically, the functions C2(x) and C4(x) for the interaction part of
the mGO for infinite FPAs of C-fibers can be written, with x = ρ0 and the Qi,
Si coefficient values given in Tab. 3.3, as the polynomial form

Ci (x) =Qix
2 + Six

4, i = 2, 4 (3.25)
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In Fig. 3.4, it is shown the behavior of the C2(x) and C4(x) functions for the
interaction part of the mGO for FPAs of C-fibers, according to Eqs. (3.25). The vari-
ations of the global mGO non zero terms with the C-fiber inter distance (1/x=L/R)
according to Eq. (3.24) are plotted in Fig. 3.5(left) from [63] for a Poisson ratio of
0.5. When the fiber inter-distance increases, the global mGO reduces to its interior
part. At fiber contact, the mGO interaction part is optimal, but terms can either be
positive or negative.

Figure 3.4: The (left) C2(x) (red) and C4(x) (blue) mGO interaction function parts
for C- fibers; (right)log/log plot.
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Figure 3.5: Variation with fiber inter-distance 1/x of the global mGO terms for an
infinite FPA of x2-parallel infinite (left) C-fibers in plane of normal x1 from [63] and
of (right) SQ-beams of square cross section in plane of normal x3 (indices 1 and 3
are to be inverted), from [85].

The Fig.3.5(right) reports from [85], the corresponding global mGO non zero
term variations for SQ-beams with the normalized inter-distance (1/x) 1. As for
the cylinder alignments, this Figure shows that the influence zone for all the pair
interactions between SQ-beams in an infinite PA is also ten to twenty times the beam
width, depending on the wished precision. These variations of the mGO interaction
part in the global mGO for SQ-beams were obtained from using the exact although
complicated solution reported in the cited reference, not to be repeated here. From
a graphical analysis of the numerical plots reported in Fig. 3.4 (from that exact
solution for the mGO interaction part of infinite SQ-beam PAs) a simplified form of
easier use is shown to write from two functions Ci(x) (i=1,2) which can be expressed
as

Ci (x) = x2
(
Rix

−2 +Qix
−1 + Si

) 1

1 + αi (x−3 − 1)
(3.26)

1 Indices 1 and 3 are inverted since the alignment is of normal x1 for C-fibers and of normal x3
for SQ-beams.
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C2(x) C4(x)
R 0.786 0.162
Q −1.330 −0.376
S 1.043 0.656
α 0.162 0.049

Table 3.4: Coefficients of Ci(x) functions for SQ-beams infinite PAs in Eq. (15a).

where the involved coefficients are reported in Tab. 3.4 for the two functions C2(x)
and C4(x).

For the reason that in pantographic structures the fiber inter distance is generally
at most of the order of ten times the fiber dimension, it is here possible to consider
a shortened form of Eq. (3.26), without the α-correction (which mostly corrects the
long-range behavior), say the rank-2 polynomial form

Ci (x) ' x2
(
Rix

−2 +Qix
−1 + Si

)
= Ri +Qix+ Six

2 (3.27)

Figure 3.6: The (left), approximate C2(x) (red dashes and symbol “+” for numerics)
and C4(x) (blue dashes and symbol “*” for numerics) mGO interaction function
parts for squared beams; (right) log/log plot.

The Tab. 3.5 reports the generic form of the interaction mGO t
int(8Align(0))

CM
for a

planar alignment of x2-oriented fibers in the plane of normal x3.
The corresponding global mGO t

8Align(0)

CM for an infinite (C- or SQ-) fiber planar

alignment (FPA) is the sum of the interaction part t
int(∞Align(0))

CM
from Tab. 3.4

and of the corresponding interior one t
Genfiber,x2

CM from Table 1, both specializing as
explicated for C-fibers or SQ-beams.
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t
int(∞Align(0))

CM
A(C4 −
2C2) −
BC2

A(C2 −
C4)

AC4 +
BC2

(
B
4

)
C2 A(C2 −

C4)
−
(
B
4

)
C2

Table 3.5: Generic non zero interaction mGO terms for a planar alignment of x2-
oriented fibers in the

x1 − x2 plane in isotropic media (B = 1/µA = −B/2(1− v) ), with
S2 = −C2,(S2C2) = C2 − C4,S4 = −2C2 + C4.

3.2.4 Effective Properties of the planar alignment of C-fibers
and of SQ-beams

As far as one considers a homogeneous medium embedding one (or more) phase(s)
under the form of inclusions or inclusion patterns, in random manner, using the
mean field two-point statistics approximation from [75] allows to estimating effective
properties accounting for each phase volume fraction, properties and representative
domain shape as well as for some global anisotropy of the spatial distribution symme-
try of these phases. Considering elastic (or other kind of, e.g. dielectric) properties,
this here so-called PC-W estimate, for n included phases in matrix with properties
CM , takes the generic form

C
nVi/SDist
effPCW = CM −

( n∑
i=1

(
fi

((
CM −Ci

)−1 − tVi
CM

))−1
)−1

+ tSDist
CM

−1

(3.28)

In Eq. (3.28), tVi
CM

is the mean operator of the representative domain Vi for

phase i (a single inclusion of phase i, or a finite pattern of them) having Ci prop-
erties and fi volume fraction, and tSDist

CM
is the operator representing some common

spatial distribution for all the Vi domains in the matrix. This spatial distribution
needing be formally ellipsoidal to obtain Eq. (16a), this tSDist

CM
operator is uniform2.

This distribution symmetry operator can also be seen as the operator of the repre-
sentative (ellipsoidal) elementary matrix volume VM containing the pattern Vi. This
latter interpretation fixes a concentration limit for the validity of the PC-W estimate,
related to the minimal reference volume size capable of containing the representative
pattern of the embedded phases, in the sense of an (ellipsoidal) envelop of this pat-
tern. When the domains Vi are single inclusions, the PC-W estimate statistically

2 Spatial distributions of inclusions are unlikely ellipsoidal and are unlikely multimodal at non
dilute concentrations (Franciosi and Lebail, 2004).
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accounts for a part of their interactions through their spatial distribution, but the
larger are the chosen representative patterns Vi, the more the pair interactions can
be accounted for precisely at the pattern scale. As far as the considered patterns are
finite sets, the estimate still regards the pair interactions between any two patterns
through their spatial distribution. Interactions between pairs of infinite patterns
become a marginal contribution to effective property estimates when the element
interactions in the pattern are accounted for. Thus, Eq. (3.28) will be enough in the
following for the purpose of using infinite patterns to represent the embedded phase,
and especially the two-phase form of it which simplifies to

C
V/SDist
effPCW = CM − fV

(((
CM −CV

)−1 − tV
CM

)
+ fV t

SDist
CM

)−1

(3.29)

In Eq. (3.29), the single included phase has volume fraction fV = 1 − fM and
properties CV , a representative inclusion or pattern V with mean global Green oper-
ator tV

CM
, and these patterns are spatially distributed according to some (ellipsoidal)

symmetry represented by the operator tSDist
CM

. Assuming statistical homogeneity of
the individual elements, regardless of the pattern, fV must also be the inclusion
concentration in the pattern, say the volume fraction of V in its elementary matrix
volume VM (a difference would represent some inclusion clustering in the patterns,
the statistical homogeneity assumption applying at the pattern distribution scale).
When such a composite is deformed, both the characteristic embedded inclusion pat-
tern and their spatial distribution evolve. In the particular case of infinite inclusion
patterns it was shown in [63] that when the pattern evolution is well accounted for,
its distribution symmetry can be kept constant (and determined by the influence
zone symmetry around each fiber element) as far as the symmetry and anisotropy
characteristics of the embedding matrix do not change.

3.3 Application to effective property estimates of

a soft matrix reinforced by a fibre network

We exemplify simple cases of a matrix embedding fiber bundles or networks where
planar alignments can be identified such as to make use of the global fiber pattern
operators obtained in the previous sections for determining effective property esti-
mates. As far as one considers a homogeneous medium embedding one, or several
other, phase(s) under the form of inclusions or inclusion patterns, in random man-
ner, using the mean field PC-W [75] two-point statistics approximation allows to
estimating effective properties in accounting for each phase volume fraction, prop-
erties and representative domain shape as well as for some global anisotropy of the
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spatial distribution symmetry of these phases. Considering elastic-like or dielectric-
like properties, this here on called “PC-W” estimate, for n included phases in matrix
with properties CM , takes the generic form

C
nV i/SDist
effPCW = CM −

( n∑
i=1

(
fi

((
CM − C i

)−1 − tV iCM

))−1
)−1

+ tSDist.CM

−1

(3.30)

In Eq. (3.30), tV iCM in the mean operator of the representative domain Vi for phase
i (a single inclusion of phase i, or a finite pattern of them) having C i properties and
fi volume fraction and tSDist.CM is the (formally ellipsoidal) operator representing some
common spatial distribution for all the Vi domains in the matrix. This distribution
symmetry operator can also be seen as the operator of the representative (ellipsoidal)
elementary matrix volume VM containing the pattern Vi. This latter understanding
fixes a concentration limit for the validity of the PC-W estimate, related to the
minimal reference volume size capable of containing the representative patterns of
the embedded phases, in the sense of an (ellipsoidal) envelop of these patterns. When
the domains Vi are single inclusions, the PC-W estimate statistically accounts for
a part of their interactions through their spatial distribution, but the larger are the
chosen representative patterns Vi, the more the pair interactions can be accounted
for precisely at the pattern scale. As far as the considered patterns are finite sets,
the estimate still regards the pair interactions between any two patterns through
their spatial distribution. Eq. (3.30) will be enough for the following discussion
purpose about the use of infinite patterns, and especially the two-phase form of it
which simplifies to

C
V/SDist
effPCW = CM − fV

(((
CM − C V

)−1 − tVCM

)
+ fV tSDist.CM

)−1

(3.31)

In Eq. (3.31), the single included phase has volume fraction fV = 1 − fM and
properties C V , a representative inclusion or pattern V with mean global operator
tVCM , and these patterns are spatially distributed according to some (ellipsoidal)
symmetry represented by the operator tSDist.CM . Assuming statistical homogeneity of
the individual elements, regardless of the pattern, fV must also be the inclusion
concentration in the pattern, say the volume fraction of V in its elementary matrix
volume VM (a difference would represent some inclusion clustering in the patterns,
the statistical homogeneity assumption applying at the pattern distribution scale).

Now, when a composite comprises a compliant matrix and a stiffer embedded
phase, the inclusion arrangement inside the representative pattern is expected to
evolve (changes of the inclusion shape being considered as negligible in comparison),

79



with an effect on the element interactions. The description of such evolutions can be
simplified when global operators for typical large (infinite-like) inclusion patterns are
available in closed form, as those for aligned spheres and spheroids [86], for coaxial
finite cylinders [88] and for planar arrays of infinite fibers (this present work) to
which we here pay special attention. In what follows we assume the individual fibers
to not deform (they remain straight and of fixed circular cross section) and to remain
parallel when so initially in the directional bundle or array they belong to. That is
we disregard all possible bending, flexion and torsion modes for the fibers or for their
arrays, to which a separate analysis needs and will be dedicated. We furthermore
disregard any interface de-cohesion between the fibers and the embedding matrix
which is assumed compliant enough for so doing.

3.3.1 Description of 1D fiber-reinforced matrices from infi-
nite planar arrays of fibers

A one-directional bundle of parallel fibers can be described in different manners, as
exemplified in Fig. 3.7, by cross section views of normal ωi = (θi, φi). On the left
side example, the fibers are taken as randomly distributed in isotropic manner (no
spatial arrangement is accounted for if any) with ignored specific pair interactions
what means a validity restriction to dilute enough concentrations. The represen-
tative volume element is a cylinder embedding a single fiber and straining such a
material amounts to modify the spatial fiber distribution from isotropic to elliptic
according to the stretch or compression direction. In the central description, a reg-
ularly enough arrangement of the fibers which are aligned and with nearly equal
inter-distances in parallel planes is taken into account with using a finite pattern
representative of the major interactions between neighboring fibers in the pattern.
Pair interactions between patterns are only accounted for through their spatial dis-
tribution what holds for dilute enough pattern concentrations even when taking as
large patterns as possible. Taking a nearly 2D-isotropic initial pattern, a 2D isotropic
initial matrix domain can be attributed to the pattern and any transversally applied
deformation will transform both the pattern and its dedicated matrix domain from
2D isotropic to elliptic, according to the stretch or compression direction. In the
third right hand side example of Figure 3.7, the pattern is assumed being infinite
but only a finite part of it contributes to the interaction estimate (due to the finite
interaction or influence distance), which is the part interior to the invariant (here
2D isotropic) influence zone, as obtained from calculating the interactions in any
equivalent direction normal to the fiber orientation. In contrast with the two pre-
vious cases, the pattern of interest is evolving within the matrix reference domain
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which remains constant, the influence zone, defined by the interaction cut-off relative
length, approximately ten to twenty times the fiber radius as here estimated.

For the second and third estimates, the fiber concentration limit is given by the
attained arrangement under deformation at which fibers become in contact. Since
they cannot overlap each other, further evolutions will depend of the fiber rearrange-
ment possibilities what is not in the present scope. For cylinders of same radius,
the compact piling corresponds to a concentration fmax = π/2

√
3 ≈ 0, 906. This

concentration limit is further decreased when the fibers are not in hexagonal piling,
as described next.

If the fibers can be assumed regularly enough arranged such as to appear aligned
and with nearly equal inter-distances in parallel planes, these planes are characterized
by an ωj-oriented normal around the ωi fiber axis. Thus, such fiber arrangements
around any selected fiber can be fully represented by an appropriately weighted
average 〈.〉ωj over a set of orientations ωj around the ωi axis of the layer operators

t
∞Fib(ωi,ωj ,ρ0)

CM , what provides a global bundle operator t
∞Fib〈ωi,ρ0i〉ωj
CM . This can be

simplified in only considering the 3 densest planar arrays of fibers. As is shown on Fig.
3.7 right, for any finite pattern with size smaller than the cut-off interaction distance,
a part of the element interactions would be lost (the white elements) and the more
in the directions where the elements become closer to each other and for which the
number of interacting fibers increase. Conversely, new (grey) elements enter the cut-
off interaction distance, deserving being accounted for. Also, the main densest planar
arrays do not necessarily remain the initial ones, as visible in Fig.3.7c right where the
vertical array (dotted parallel lines) becomes denser than the horizontal one. The
use of the global operators for large enough (infinite-like) planar alignments allows
to considering as representative volume the one defined by the cut-off interaction
distance itself (2D isotropic in the cylindrical fiber case) and with accounting for
all the elements being currently inside this volume, as indicated by the same dotted
circle in Fig. 3.7a,b,c, right, within which the number of fibers varies in anisotropic
manner. Making use of the operators for the infinite planar arrays is beneficial to
follow these evolutions, the key parameter being then the inter-distances between the
elements of each of the densest planar alignments, together with the orientation of the
selected set of densest alignments. The global operator for such an infinite bundle,

t
∞Fib〈ωi,ρ0i〉ωj
CM say, can be obtained from appropriately summing all the constitutive

infinite planar alignments around their common fiber direction.

Using the PC-W estimate with considering nearly 1D infinite fiber bundles or-
ganized according to the 2D isotropic influence zone yield effective properties of the
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form

C
∞Fib〈ωi,ρ0i〉ωj
effPCW = CM − fF

((
CM − CF

)−1 − t
∞Fib〈ωi,ρ0i〉ωj
CM

+ fF tSDist.CM

)−1

(3.32)

It is without loss of generality and not even much loss of precision that the global

bundle operator t
∞Fib〈ωi,ρ0i〉ωj
CM can be in general simplified with only considering in

the sum, the three layer orientations that correspond to the elementary triangular
patterns of near-neighboring fiber triplets, say to the three major (indicated) possi-
bilities of considering the structure as a piling of planarly fiber-reinforced layers, gen-
erally having three different inter-distances Lj = R/ρj. The (simply equally weighted
since the three elements of the pattern have equal volume fractions in it) average
of these three main planar pattern operators describing the bundle arrangement is

likely sufficient to provide a quite simple close approximation for t
∞Fib〈ωi,ρ0i〉ωj
CM , owing

to the simple operator form for planar arrays. When the composite is strained in
homogeneous enough manner, the variation of this characteristic triplet of currently
densest fiber arrays allows quite easily to varying the pattern operators according
to the composite response, in varying the three main layering orientations together
with varying accordingly the fiber inter-distance in these layers. All the interactions
in the influence zone are always automatically accounted for with using the evolving
infinite planar operators.

Figure 3.7: 2D isotropic (a) and horizontally (b) or vertically (c) strained elementary
volume of 1D fiber-reinforced matrix using a RVE comprising, from left to right :
a single fiber, a finite fiber pattern and the finite part of an infinite fiber pattern
contained in a (2D isotropic) influence zone.

The pattern evolution can be simplified in considering the 3-element pattern of
Fig. 3.8, from which simple geometry provides all the necessary evolution parameters
from initial equilateral symmetric arrangement to flattened one along x3 axis: the
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alignment of normal x1 keeps the ϕ angle to 0 while for the two other ones, κ0 evolves
from ±2π/3 to ±

(
(π/2) + tan−1(1/η

√
3)
)
. The fiber inter-distances respectively

vary as HKη
HK1

= 1√
η

and AHη
AH1

= AKη
AK1

=
√

3η2+1
4η

. The matrix is considered as almost

incompressible and the area of the elliptic disk is assumed to remain constant (πR2 =
πab = πb2η = πa2/η) where a = OA and b is the second ellipse semi-axis. If the

fiber (radius r) concentration when η=1 (IH1 = L1) is f = 0.5πr2

L1
2
√

3
= 0.5πL1

2ρ2

L1
2
√

3
=

πρ2

2
√

3
= fmaxρ0

2 ≤ fmax, it decreases for η>1 since IHη = Lη = L1/
√
η provides the

new first contact limit. The fiber volume fraction at this contact corresponds to
ρη = r/Lη =

√
η (r/L1) = ρ

√
η the limit is at ρη = 1, thus ρ2 = ρ2

η/η = 1/η say

flim = π
2
√

3

ρ2η
η

= fmax/η (it decreases similarly for η<1, what corresponds to the case

(b) situations in Fig. 3.7, orthogonal to the here treated case (c)).

Figure 3.8: The 3-element cylinder pattern deformation under compression of x3 axis
for quasi incompressible matrix and related 3 main infinite alignments (dashed lines)
representing the pattern.

3.3.2 Estimates of effective properties of 1D fiber-reinforced
matrices

Based on the three structure descriptions shown in Fig. 3.7 for a 1D fiber bundle with
some spatial arrangement of the fibers, we compare the corresponding estimates of
effective properties, using the generic Eq. (3.32) for the three of them, in the case of
a matrix straining that corresponds to the cases (c) in Fig. 3.7 (vertical compressive
mode):
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i. For the representative volume with a single fiber in elliptic description with
aspect ratio η>1 (Fig. 3.7, left), the distribution operator is given in Tab. 3.1
column 1, which also gives the cylindrical fiber operator when taking η=1;

ii. For the middle case of Fig. 3.7, the same η-elliptic fiber operator describes the
finite pattern distribution, while the pattern mean operator is the sum of the
pair interaction operators in the pattern. We assume the pattern to have the
same “elliptic” symmetry (η) as the distribution operator, taken to correspond
with planes, the normal of which are at angles kappa as defined in Fig. 3.8
. This pattern, when reduced to its minimum, is the triangular set of main
(densest) fiber planar alignments (dashed lines in Figure 6) specified by the
3 inter-distances and the 3 plane orientations (in equal weights for the three
interactions given by the 3 volume fractions of 1/3 for each fiber in the minimal
pattern of three fibers). Although this pattern should be finite and delimited
by an elliptic contour, each of the three constitutive main alignments can be
considered made of n elements, with n ranging from 2 to any value that makes
the distance between the central fiber and a most distant nth one larger than
the cut-off interaction distance, even in the case the n fibers are at contact!
According to the here estimated distance, n should be larger than the ten to
twenty critical number of fibers, ncritic say. In this latter case (n > ncritic), the
interaction terms can be taken as being those of the infinite alignment. We
report the data obtained for the two extreme assumptions (n=2 and n “infinite”
for n > ncritic ).

iii. For the third right hand side case on Fig. 3.7, the invariant 2D isotropic
distribution is represented by the cylinder operator while the operator for the
infinite bundle with elliptic symmetry is described from considering the three
planar alignments with same normal orientations κ as in the middle case). We
only consider the case of an infinite fiber number n in the three main alignments,
the difference with the previous estimates is that the spatial distribution of
these infinite patterns is taken represented by the invariant (here 2D isotropic)
influence zone for interactions.

For the isotropic matrix, the only elastic property of interest is the Poisson ratio
vM , while only the relative elastic stiffness moduli of the fibres CF/µM are needed,
µM being the matrix shear modulus. Although CF can be taken of general anisotropy,
we here consider isotropically incompressible elastic fibers for sake of simplicity (vF =
0.499) and since the matrix is assumed highly compliant in comparison to the fibers,
one consideres µF = 50µM . We arbitrarily choose vM = 0.49 for keeping a nearly
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incompressible matrix. This also allows to only presenting and discussing the effective
shear moduli variations from one estimate to another.

The results that suffice to illustrate the here addressed point are plotted in Figs.
3.9-3.10 (further analyses are let out of the present scope). The Fig. 3.9 only ensures
that all four estimates coincide at η = 1, what is due to the known fact that the
global mean interaction part in highly symmetric (as 3D or 2D isotropic) patterns
simply vanishes.

Figure 3.9: Effective shear properties for a 1D bundle of isotropic and incompressible
fibers in a compliant isotropic nearly incompressible matrix from the four estimates.

For each of these four (yet three types of) estimates, four elliptic anisotropies
η = 1.5, 2, 2.5, 3 have been compared, in addition to the reference 2D isotropic state
for η = 1. For an increasing η value, the concentration range of validity decreases as
specified in what precedes. This range is the same for all four estimates, including the
first one as well, as far as the request of all fibers being of same radius is applying.
Conversely, for each specific fiber concentration f , the allowed range of stretch η
varies, in reducing with increasing f . The Figs. 3.10 a,b,c represent the evolution
with the stretch η of the 3 shear moduli for the examined fiber bundle according to
the four descriptions previously presented, at three different fiber concentrations of
40%, 60% and 80%. The plotted η range decreases with increasing f but it is kept
larger than the allowed one to show the evolutions beyond the limit. Fig. 3.10a is
characteristic of the moduli variations at low and moderate concentrations 0 < f <
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50%. The moduli evolve without becoming unreasonable. All results are close to
the Reuss lower bound, as expected for hard inclusions in a soft matrix. For higher
concentrations (Figs. 3.10b and c) the range of allowed stretch decreases drastically
and the moduli become to diverge more rapidly, with some of them possibly violating
either Reuss or Voigt bound, although the latter one is much higher, not plotted (but
values are given in the Figures). It clearly appears for all reported concentrations
that:

i. considering, in a varying pattern spatial distribution (reference matrix volume),
a shape-varying finite pattern of three fibers instead of a single fiber pattern,
the moduli estimates go faster towards the bounds of the validity range, and
so it is as well in reinforcing the three-fiber pattern as a three infinite planar
alignments (say in substituting the three-fiber pattern operator with the three-
alignment pattern operator);

ii. considering the three-alignments infinite pattern in a “constant” (shape-invariant)
reference domain (defined on the interaction cut-off distance between the fibers)
goes oppositely compared to the estimates from the single fiber pattern op-
erator; there is much less divergence in this case than in the other ones at
increasing fiber concentrations, what has the result of suppressing or delaying
the violation of the extremal Voigt and Reuss bounds for an extended formal
validity range for this estimate.
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Figure 3.10: Evolution with a stretch η >1 of the 3 effective shear moduli at 40% (a),
60% (b) and 80% (c) fiber volume fraction from the four compared estimates (single
fiber, 3-elements and n>ncritic -elements in η -elliptic distribution are represented
by black dots, triangles and crosses, the infinite pattern in a fixed influence zone by
white dots on a bold line).

It is noteworthy that all pair interactions could be accounted for and that most of
them are in this infinite pattern description of the fiber arrangement such that in that
respect we have a mean field estimate which is no more a dilute approximation. As
the arrangement is described, the fiber concentration limit is given by the impossible
overlapping of any two fibers. If the composite structure can deform further and
if the fiber arrangement evolution can still be described from planar alignments,
the modelling can be pursued with the appropriate representative (infinite and fully
interacting) pattern.

In the extreme case when the fibers are dense in a single set of parallel planes (of
normal ωj) and with large enough distances between the planes to neglect transverse
interactions, the structure can be treated as a laminate structure made of fiber-
reinforced layers of matrix with distribution symmetry represented by the platelet
operator t

pωj
CM (from Tab. 3.1, column 1, with η = 0 or infinite according to the

laminate normal orientation x1 or x3 respectively). A property estimate from the
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PC-W framework for such a laminate structure reads

C
∞Fib(ωi,ωj ,ρ0i)
effPCW = CM − fF

((
CM − CF

)−1 − t
∞Fib(ωi,ωj ,ρ0i)

CM
+ fF t

pωj
CM

)−1

(3.33)

using the single t
∞Fib(ωi,ωj ,ρ0i)

CM operator for the infinite planar pattern of fibers and for
the distribution, the laminate operator t

pωj
CM of same normal (from Tab. 3.1, column

1 with appropriate η value and rotated orientation).

3.4 Conclusion

In order to estimating effective properties of compliant matrices reinforced with de-
formable fiber networks, we have first analytically derived global (interior plus inter-
action parts) mean Green operators for large, and up to infinite, planar alignments
of parallel cylindrical fibers of infinite length in isotropic matrices, the also solved
case of rectangular beams being to be presented separately. The mean pair inter-
action operator between two infinite parallel cylinders is the first obtained and here
presented original result, from which the mean interaction operator for infinite pla-
nar alignments of parallel identical cylinder (with equal inter distances) appears of
very simple closed form (thanks to the used Radon Transform and inverse trans-
form method). This interaction operator for infinite planar alignments of cylinders
is similar to the interaction operator for infinite alignments of equally distant iden-
tical spheres, from the general sphere pair operator, as reported in a previous work.
Owing to the infinite nature of the fibers and to the co-continuity they ensure with
the matrix in the fiber directions, the operator for infinite planar alignments opens
on specific interest for network-reinforced matrices.

It has been shown that the influence distance between two fibers, that is the
fiber neighbourhood within which interactions matter in a global pattern operator,
is typically one order of magnitude (ten to twenty times) larger than the fiber cross
section radius. This allows to making use of the infinite alignment operator for
any planar fiber array larger than ten to twenty fibers (depending on the wished
accuracy). The inter-distance between the fibers is the key parameter that modifies
the number of fibers in this fixed influence zone, the 2D shape of which is assigned
by the fiber cross section shape and by the symmetry properties of the matrix.

It has been then shown how these operators for planar alignments provide op-
erators for one-directional fiber bundles (averaging a finite operator set for coaxial
dense planar alignments) that can be quite easily used in simple homogenization
frameworks for effective property estimates of directionally fiber reinforced matri-
ces. The use, as representative element, of an infinite pattern which accounts for
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all (if necessary) or for the major pair interactions between the inclusions extends
the validity range of the used mean field estimates from the literature farther than
the usually restrictive dilute and no interaction approximation they suffer. A key
interest is also the possibility to quite easily follow the effective property changes
related to the deformation of such fiber networks when embedded in a soft matrix.

It is finally shown how extension to determining, from the obtained effective
properties for 1D bundles, the effective properties for a matrix reinforced with inter-
penetrated multi-directional fiber networks is possible, thanks to the building of
global mean operator for the whole network and to the use of laminate system and
fiber system schemes. The case of networks with interconnected fibers, as in partic-
ular typical pantographic-like beam structures of increasing interest, is the topic of
the next Chapter.

89



90



Chapter 4

A Green operator-based elastic
modeling for two-phase
pantographic-inspired
bi-continuous materials

This Chapter is based on [64].

4.1 Introduction

In this Chapter, still restricting our attention to the homogeneous behavior range
of these structures, the concern is to determine effective elastic-like properties for
two-phase materials that comprise an isotropic compliant matrix and a 3D fiber
pantographic-inspired network co-continuous with the embedding matrix. This as-
semblage is a new type of bi-continuous composites or composites with interpenetrat-
ing phases. An example of such a new structure in that family is shown in Fig. 4.1,
drawing at left and additive manufacturing (AM) realization at right1, for the case
when the fiber network symmetry is orthogonal, what may in general correspond to
a reference undeformed situation (the embedding matrix is made invisible on all the
Figures to come).

1 By courtesy of Prof. T. Lekszycki, Warsaw University of Technology.
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Figure 4.1: Drawing (left) and AM realization (right) of a multilayer pantographic-
inspired 3D fiber network (to be embedded in a matrix not visible on the figure.

The Fig. 4.1 anticipates on the fact that, in the main here examined structure,
one of the 3 (initially orthogonal) fiber families is treated differently from the two
other ones, as seen in the following. In the general case when all three fiber directions
play similar roles, the idealized current structure for such a 3D network when allowed
to substantially deform homogeneously thanks to the mechanical characteristics of
the fiber interconnections is the one of a triclinic lattice as shown in Fig. 4.2. This
triclinic lattice can be seen as basically made of three inter-penetrated and inter-
connected assemblages of parallel fibers under the forms of either 1D fiber bundles
or fiber planar alignments (FPAs), with 1D bundles being also possibly seen as
assemblages of coaxial FPAs.

The fiber-like elements can be either rods or beams and the connections between
fibers of different orientations are symbolized on the Fig. 4.2 by hinges which hide the
details of the operating mechanism for deforming the network, only the geometrical
and related stiffness descriptors of which need be specified for constitutive equation
formulations.

The deformation of the general triclinic network of Fig. 4.2 type, with elements
assumed to remain straight in the average (to be commented later on), will typically
be characterized by the evolutions of 3 element inter distances in 3 complementary
families of FPAs and of 3 angles between the orientations of the elements in these
different FPAs. Only considering here fiber-like elements which are either of circular
or of square cross sections, we reduce the examined situations to cases when the
FPA assemblages are alternated (...L-R-L-R...) layers in one (x-y say) plane, with
in-plane 2ϑ-misoriented u- and v- identical (rod or beam) elements.
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Figure 4.2: A triclinic lattice made of inter-penetrated and interconnected planar
alignments or 1D fiber bundles.

The inter connecting hinges are taken to be aligned along a third family of w-
oriented fiber-like elements of the 3D network which may be inclined on the z normal
to the x-y plane. From a structure symmetry assumption, the element inter-distance
is kept identical for the two FPA families parallel to the x-y plane and the FPAs are
assumed to remain planar and parallel (neither out-of-plane twist nor flexion of the
FPAs). Thus, the unit pantographic-like constitutive domain of the structure is a
L-R (or R-L) pair of contiguous FPAs, as exemplified in Fig.4.3 in the orthogonal
reference case, with a layer inter distance not necessarily equal to the in-layer fiber
inter distance.

Although these features are disregarded in a first step, it is worthy to keep from
now in mind for the final discussion, that variations of the 2ϑ misorientation an-
gle between successive(L,R,L,...) parallel FPAs can also be related to torsion and
bending (inclination) along the third interconnecting element family, related to some
torsion and bending aptitude for these swiveling interconnections.
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Figure 4.3: Representation of a double fiber planar alignment, constituting the typ-
ical pantographic-inspired bi-layer (no interconnections are visible).

We here mainly consider the in-plane (x-y) homogeneous extension of a matrix
reinforced by such a network, the overall in-plane behavior of 2D pantographic struc-
tures during extension or shear being known to be in first approximation piece-wise
homogeneous extension, each homogeneous domain possibly supporting additionally
a specific body rotation with regard to the main axis, as illustrated in Fig.4.4 (where
identically colored fibers are those belonging to a same - L or R - FPA in any con-
tiguous pair ): apart of the end domains (as NMP, RTU in Fig.4.4) which in first
approximation do not deform, each sub-domain lattice straining corresponds to an
equal and opposite variation of angles (u,x) and (v,x) (resp. y), Fig.4.2, which are
related to an evolution of a same element inter-distance in the two FPA families. A
homogeneous shear x/y (or y/x) on such sub-domains also corresponds to a simi-
lar extension (as the central pantograph part PQRS in Fig.4.4), with the extension
direction being additionally in-plane rotated (from z to z’). Lateral domains also
deform by combining extension and rotation. Simple angular relations are collected
in Appendix C. It is also noteworthy that specific end conditions for clamping the
fiber layers when applying axial extension on the structure can suppress the end and
lateral sub-domains and yield an overall homogeneous extension.
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Figure 4.4: Scheme of axial extension (left) or transverse shear (right) for a 2D
pantographic bilayer structure (central), with piece-wise homogeneous extension-like
deformation of sub-domains PQRS, MPQ=SRU, NPS=QRT, with rotations. Fiber
colors indicate L or R planar alignments (PAs). Interconnecting pivots are normal
to the FPAs.

The exemplified configuration keeps the through-layers connecting third fiber
bundle normal to the FPAs. This corresponds to the one-placement-field assumption
frequently used for the strength of the layer interconnections [35], while inclinable
interconnections would correspond to a two-placement-field assumption as discussed
in [5] and more generally to a currently triclinic supporting lattice as the one of
Fig.4.2.

As is also observed on the simple 2D views of Fig.4.4, the homogeneously de-
formed sub-domains are in-plane connected along boundaries where second gradient
effects are localized, the nature of which is related to a local bending of the aligned
fibers. These singularities are disregarded in the present work.

Since the piece-wise homogeneously deformed network of concern is embedded
in a matrix which is also assumed to deform piece-wise homogeneously (with ho-
mogeneous sub-domains of the two phases being coincident), the overall (effective)
behavior of such a composite structure can be approached, as far as attention is
paid to homogeneous applied deformation (that is at the scale of the homogeneously
deforming sub-domains in first approximation), in using homogenization frameworks
applicable to reinforced matrices, with the two phase co-continuity deserving some
particular considerations [89–91].

The embedded network being considered as substantially deformable, its repre-
sentative pattern, although taken to remain piece-wise homogeneous, is expected to
not remain invariant along any deformation path and so it is as well then for the
effective elastic properties of the structure in each such domain.
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If one further disregards the damage features possibly related to debonding be-
tween the fibers and the matrix, as well as to the matrix or fiber fracture, the major
issue to estimate the current effective properties of such structures from a homoge-
nization procedure is to well enough describe the reinforcing networked pattern in
terms of its mean Green operator (mGO) and in the present case to have an expres-
sion of easy use to follow at the best the expected variations of this operator with
the pattern structure evolution under homogeneous deformation.

In the case when the fibers are cylinders, global mGOs for fiber planar alignments
(FPAs) of n (up to infinite) parallel, identical and equally distant, ones (C-fibers) as
exemplified in Fig. 4.5 have been calculated in [63], for all fiber inter distance values
from infinity to contact, with all fiber pair interaction accounted for in the FPAs, for
the case of matrices which are at least isotropic around the fiber direction.

Figure 4.5: Representation of a planar alignment of C-fibers.

These mGOs for FPAs of C-fibers were shown to have a simple expression, with
application examples given for estimate variations of effective stiffness properties of
1D fiber bundles when compressed or extended transversally with regard to the fiber
direction.

For FPAs of parallel beams with various polygonal, and in particular rectangu-
lar (including square), cross sections, the mGOs were calculated in [85]2, for any
inter distance as well, the exact form of which being not reducible to a simple one.
An accurate approximation of easier use will be here given for the case of square
cross sections (SQ-beams) which is close to the most frequently chosen shapes when
elaborating pantographic-like networks from 3D printing [12].

As for all inclusion patterns, the mGOs of FPAs share into a main term and
a global pair-interactions contribution. On the geometrical ground, the main term
only depends on the element shape and the interaction part depends on the inter-
distance between the elements in the pattern, that is between the parallel elements

2 From a newly introduced ”decomposition method” derived from the Radon transform frame-
work.
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in the FPAs3. In having considered FPAs up to an infinite number of elements
in the cited references, it was shown that the critical inter distance above which
a fiber or a beam can be considered as isolated was typically (depending on the
wished precision) ten to twenty times the C-fiber radius or the SQ-beam side. This
length defines the influence zone around any element out of which the rest of the
alignment does not contribute much to the interaction and thus to the pattern mGO.
This limited influence zone conversely allows the use of the mGO of infinite patterns
as soon as the element number is large enough. The knowledge of this mGO for
infinite PAs of C-fibers or SQ-beams was thus the very first necessary information
to attempt performing the homogenization-based estimate of effective properties for
the two-phase pantographic-inspired structure here of concern.

The second necessary information for the network deformation to be pantographic-
inspired is to well enough describe the behavior of the through-layer interconnections
for they rule the in-layer behavior under straining. Hence, this amounts in the one
hand to well accounting for the through-layer stiffness of the FPA assemblage and
on the other hand to describe the in-plane relations between the fiber network exten-
sion, the fiber inter-distances in the FPAs, the misorientations between the alternated
FPAs, and the volume fraction changes for the fiber network in the matrix.

The chosen description must represent the specific characteristics which are car-
ried by the inter-connections between the elements of the piled FPAs in the assem-
blage, called pivots at the scale of each two consecutive L-R or R-L layer pairs as
exemplified in Fig. 4.1, and which constitute the fiber-like pivot arrays possibly
described, in the average, as a 1D fiber bundle going through and somehow inter-
connecting the layers.

4.2 Homogeneous pantographic-inspired 3D archi-

tecture of two-phase composite

Making use of the mGO of an infinite FPA of either C-fibers or SQ-beams with
any inter-distance value between elements, we can model a simple layered composite
material whose representative inclusion pattern basically consists in such two parallel
FPAs with fibers oriented along two 2ϑ-misoriented directions, initially orthogonal
(2ϑ = 90◦) and possibly evolving with an applied strain on the structure, together
with other geometrical characteristic of the FPA assemblage, as in particular the

3 Interactions between not parallel fibers are localized “around” the shortest distance between
the two fibers. They are disregarded in the modeling for sake of simplifying, but their effect will be
estimated from computational simulations.
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fiber inter-distance in the fiber layers. The resulting network made from such a
“pantographic-inspired” layering as representative reinforcement patterns can finally
be embedded in a softer matrix phase with the specific characteristic for such a
composite that both matrix and fiber network phases are co-continuous.

Provided that the mGO for an infinite planar alignment of fibers is known for any
fiber inter-distance in it, a classical procedure to perform a homogenization-based
modeling of such a composite structure is similar to the one for a laminate structure
with alternated layers [67,74,92]. Owing to the heterogeneous structure of the layers,
this procedure would here be a two-level homogenization route. Effective properties
of laminated structures have an exact solution from the used homogenization method
when the phase properties (the layers) are exactly known, otherwise it is also an
estimate. Grossly speaking, effective properties of a laminate elastic structure are
close to the Reuss lower bound for the properties normal to the layers while they
attain the upper bound within the layers plane [93, 94]. As shown in the following,
the difference between the effective properties of two-phase laminates and the Voigt
upper bound, which only concerns the properties normal to the layers, results from
cross coupling terms between the layers.

But these terms do not represent any bundle-like stiffness through-layer (pos-
sibly inclination-dependent) contribution to the overall stiffness of the composite
corresponding to the 3D networks here of concern, since the layers will not remain
connected if the embedding matrix has vanishing stiffness.

In the particular present case of layers only differing by an in-plane orientation,
the layer properties normally to the layers remain uniform (Voigt and Reuss bounds
coincide on them) and they directly yield the effective properties of the structure in
that direction.

A relevant modeling alternative (allowed by the fact that the embedded phase
is co-continuous with the matrix) consists in constructing a global mGO for a pan-
tographic (L-R or R-L) bi layer from an arithmetic averaging of those of the two
fiber alignments rotated by angles of ±ϑ (initially equal to ±45◦ prior to any applied
straining).

This simpler scheme does not, by construction, exhibit any through-layer cross
coupling terms as those showing up in the laminate scheme. But since the layers have
uniform properties normally to the layer plane, the arithmetic average (say the Voigt
bound) is still given by the layer normal properties, as is the harmonic average (Reuss
bound) as well since both bounds coincide with regard to that normal direction.

Consequently, both these two modeling procedures identically give Voigt effective
properties within the layers and uniform ones normally to them, say normally to the
fiber alignments that reinforce the highly compliant matrix in the fiber planes only.
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But none of these fiber layer assemblage descriptions accounts for more transversal
stiffness than the matrix-due one without additionally introducing in the structure
a specific description of through-layer interconnections.

As commented in the beginning, through-layer interconnections of the pantograph
pivot type can be mimicked by a sort of third 1D w-oriented fiber bundle going
through the layers, corresponding to the interconnecting pivot arrays which are more
or less fiber-like aligned in the average, even if their arrays can become inclined and
even if they are expected to twist or/and bend alternately between layer pairs as
commented and illustrated later on. Of course, such through-layer interconnections
between the fibers of each neighboring two layers in the ...L-R-L-R... piling will
also have determinant in-plane effects on the behavior and evolution of the structure
under external loading or straining.

Accounting for these in-plane effects consists in considering the geometric con-
straints implied by such interconnections on these structural behavior and evolution.
This description of in-plane effects of the through layer interconnections is a funda-
mental point in the here proposed description: the interconnection mechanics rules
the structure deformation (extension or shear) in simultaneously modifying the rela-
tive angles 2ϑ of the alternated layers and the in-layers fiber inter-distance (say the
in-layer FPA compactness as defined by the ratio R

d
for C-fibers of radius R or a

d
for

SQ-beams of side a), which in turns also prescribe the strengthening (torsion-like and
bending-like) contributions to be accounted for according to the layer interconnection
strength and characteristics.

Note that owing to a generally non zero inter distance (h) between successive
layers in a pile, the alternated FPAs could be considered as separated by some fiber-
free matrix layers through which only the layer (1D fiber bundle-like) interconnectors
would cross. For sake of keeping simplicity in the description no third layer type is
added into the laminate description and these variable densities of the fiber layers
in the composite will be accounted for in varying the matrix volume fraction that
embeds each of the two ±ϑ fiber layer families, through the expression of the mean
fiber density within the structure as described in the last part of this section.

It is noteworthy that this way to account for the layer inter distances in terms of
fiber volume fraction in the structure does not represent any fiber pair interaction
from layer to layer which are disregarded here on the argument that interactions
between misoriented FPAS are expectedly low compared with cumulated interactions
between parallel fibers in FPAs. This is questionable in situations when the fiber
in-layer inter distance is large while the layer piling is dense, that is essentially
at the beginning of a deformation process applied to the structure. Comparisons
with numerical simulations will show that the neglect of these FPA interactions is

99



reasonable.
Hence, prior to considering additional through-layer inter-connections and prior

to describing the in-plane features of a pantographic-like deformation mode, the two
here considered procedures to formulate first effective properties for piled FPAs in a
matrix start as follows:

1. considering first the composite as constituted by two misoriented FPA-reinforced
matrix layers, each one having its effective properties calculated first from the
mGO of its C-fiber or SQ-beam FPAs and secondly applying the homogeniza-
tion procedure for calculating the effective properties of the equivalent homo-
geneous materials to this biphasic laminate material;

2. determining first, from the knowledge of the mGOs for FPAs of C-fibers or SQ-
beams, the mGO of the pantographic-inspired fiber bi-layer assemblage taken as
the representative pattern of the fiber networked phase and then using directly
this newly built operator in the derivation of the composite effective properties.

Presentation of both procedure foundations show that they coincide for the de-
scription of the pantographic-inspired (P-I) composites here of concern. The com-
mon additional steps of introducing through-layer inter connections and in-layer
pantographic-like geometrical descriptors are presented next.

4.2.1 Effective properties of P-I composites from a two-layer
FPA-based laminate scheme

In the laminate-based description, we still consider a compliant matrix with stiffness
tensor CM embedding, according to various networked configurations, a single fiber
phase with stiffness tensor CFand volume fraction fF . A simple laminate struc-
ture (homogeneous layers of each) of these two phases with ωj-oriented normal has
effective stiffness estimate that reads from specializing Eq. (3.27)

C
Lam(ωj)
eff = CM − fF

((
CM −CF

)−1 − tpωj
CM

+ fF t
pωj

CM

)−1

(4.1)

with t
pωj
CM the laminate operator referring to the matrix phase M . This is exemplified

in Fig. 4.6 for the x3 axis as ωj orientation with tpx3
CM given in Tab. 3.1 last line.

All phases playing equivalent roles in laminate structures, Eq. 4.1 is equivalent to
referring to phase F as the matrix, fM = 1− fF , as

C
Lam(ωj)
eff = CF − fM

((
CF −CM

)−1 − tpωj
CF

+ fMt
pωj

CF

)−1

(4.2)
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Figure 4.6: An elementary two-phase laminate structure (layers are not necessarily
of same thickness, only the phase volume fraction matters in Eqs. (4.1)-(4.2).

In Eqs. (4.1)-(4.2), the laminate operator appears in two separate parts, accord-
ing to the PC-W estimate: the negative full occurrence stands for the layers taken as
embedded domains and the positive fractional one stands for the shape (the symme-
try) of the spatial distribution of these layer-like inclusions. Both these shapes are
here homothetic (and thus have the same operator) since distributing spatially infi-
nite parallel layers can only be done according to such a layered arrangement. Also,
Eqs. (4.1)-(4.2) identifiy to the two Hashin-Shtrikman bounds [95] for the phases M
and F which only coincide for this case of a 1D laminated structure of the phases (all
other relevant, necessarily in-between, estimates also coincide). The symmetric form
that clearly shows this identity for laminates, discussed first in [68] to the authors
knowledge, reads

C
Lam(ωj)
eff = 〈C〉+

(
{C} −CM

)
: t

pωj
{C} :

(
{C} −CF

)
= 〈C〉 − fMfF

(
CF −CM

)
: t

pωj
{C} :

(
CF −CM

)
(4.3)

with 〈C〉 = fFC
F + fMC

M (the Voigt average) and {C} = fMC
F + fFC

M . The
key property of this symmetric form, which is at the origin of the laminate (or
platelet) system scheme of homogenization for composites with co-continuous phases,
is the reference third phase of properties {C} which acts as a reference matrix of
infinitesimal volume fraction embedding both phases F and M and in which the
laminate operator is defined.

For a bi-layered laminate structure based on associating two ±θ-rotated beam
alignments in the plane of normal x1, each layer family will have effective properties
obtained after rotation as

C
∞RB(θ), x1
effPCW = Rip(θ)Rjq(θ)Rkr(θ)Rls(θ)C

∞RB(0), x1
effPCW (4.4)
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where R (θ) =

 1 0 0
0 cosθ −sinθ
0 sinθ cosθ

. Using these stiffness tensors for both

constitutive layer families of the laminate structure, the effective properties of the
pantographic-inspired composite can be written according to Eq. (4.3)

C
Lam(±θ), x1
effLS =

〈
C
∞RB(±θ), x1
effPCW

〉
−f+θf−θ

(
∆C

∞RB(±θ), x1
effPCW

)
: tp, x1{

C
∞RB(±θ), x1
effPCW

} :
(

∆C
∞RB(±θ), x1
effPCW

)
(4.5)

with 〈
C
∞RB(±θ), x1
effPCW

〉
f+θ/f−θ

= f+θC
∞RB(+θ), x1
effPCW + f−θC

∞RB(−θ), x1
effPCW (4.6)

∆C
∞RB(±θ), x1
effPCW = ±(C

∞RB(+θ), x1
effPCW −C∞RB(−θ), x1

effPCW ) (4.7){
C
∞RB(±θ), x1
effPCW

}
f+θ/f−θ

= f−θC
∞RB(+θ), x1
effPCW + f+θC

∞RB(−θ), x1
effPCW (4.8)

Since
〈
C
∞RB(±θ), x1
effPCW

〉
f+θ/f−θ

is nothing else than the Voigt estimate (arithmetic

average) for this bi-layered structure as defined, the deviation of the laminate esti-

mate C
Lam(±θ), x1
effLS from the Voigt upper bound is fully carried by the second part

in Eq. (4.5). This second part is only non-zero for terms related to the non-zero
terms of the laminate operator tp, x1{

C
∞RB(±θ), x1
effPCW

}defined on the reference medium with

properties
{
C
∞RB(±θ), x1
effPCW

}
f+θ/f−θ

. Note that equal fractions of both layer types yield{
C
∞RB(±θ),x1
effPCW

}
f±θ=0.5

=
〈

C
∞RB(±θ),x1
effPCW

〉
f±θ=0.5

, that is the stiffness tensor of the ref-

erence matrix phase equals the Voigt stiffness estimate for the two-phase structure,
and that the layers are not orthotropic in a same frame unless 2θ = 90◦, yielding
non zero skew symmetric parts. Writing C

∞RB(±θ),x1
X = CO(θ) ± CSS(θ) to separate

the symmetric (orthotropic O) and the skew-symmetric SS parts in these oppositely
rotated tensors, the latter ones cancel each other by ±θ symmetry such that while{

C
∞RB(±θ),x1
effPCW

}
0.5/0.5

=
〈

C
∞RB(±θ),x1
effPCW

〉
0.5/0.5

= CO(θ) keeps orthotropic symmetry, one

has∆C
∞RB(±θ),x1
effPCW = ±2CSS(θ) in Eq. (20b) where the sign of ∆C

∞RB(±θ),x1
effPCW does not

matter for only square terms of it appear in the formula of Eq. ((4.5).
It is not in the present scope to further examine the specificities of such structures,

yet it is not complicated to verify, with the help of details given in [64], that owing to
the property uniformity of the R and L layers with regard to their normal direction
the laminate normal properties remain the common normal properties of both R,L
layer types.
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4.2.2 Effective properties of P-I composites from a mGO for
a two-layer FPA pattern

In the stiffness averaging procedure, the construction of a global mGO for the
pantographic-inspired 3D structure consists in:

1. rotating the planar alignment mGO with generic form given in Tab. 3.2 at the
two opposite angles of ±θ (from at most a 2θ = 90◦ misorientation to a non
zero minimal value depending on the distance between fiber interconnections);

2. calculating the network mGO tPant
CM

from averaging those of the two misoriented
FPAs and using it for estimating effective properties.

This network mGO will stand for the operator tV
CM

in Eq. (16b) which will then
provide an estimate for the effective stiffness properties of the composite, the relevant
distribution operator tSDist

CM
for such FPA pile ups being unambiguously the operator

of a laminate (plate) operator, given last line of Tab. 3.1 and to be appropriately
rotated.

The mGOs of the ±θ rotated FPAs around the transverse direction x1 is of the
form

t
∞Align(±θ)
CM

= Rip(±θ)Rjq(±θ)Rkr(±θ)Rls(±θ)t∞Align(0)

CM
(4.9)

where R (±θ) has been given and t
∞Align(0)

CM
is given as the sum of the interaction part

from Table 4 and of the interior part from Tab. 3.1, specializing the generic form for
C-fibers and SQ-beams in using the appropriate Ci(x) functions as explained.

This averaging description finally just amounts to writing the mGO of the pantographic-
inspired embedded network as the arithmetic mean of the two mGOs of the ±θ
rotated FPAs

tPant
CM

=
〈
t∞Align
CM

〉
+θ,−θ

=
1

2

(
t
∞Align(+θ)

CM
+ t
∞Align(−θ)
CM

)
(4.10)

As each FPA mGO, their mean value in Eq. (4.10) also varies with the fiber inter
distance (d).

According to this scheme, after having obtained tPant
CM

, the effective properties of
the composite can be simply evaluated by using Eq. (4.7) as

C
Pant/P late
effPCW = CM − ffib

(((
CM −Cfib

)−1 − tPant
CM

)
+ ffibt

Plate
CM

)−1

(4.11)
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In similar manner, for the individual FPAs taken as the representative pattern of
a two-phase (aligned fiber + matrix) composite, effective properties are still obtained
from Eq. (4.7) as

C
∞Align(0)/P late
effPCW = CM − ffib

(((
CM −Cfib

)−1 − t∞Align(0)

CM

)
+ ffibt

Plate
CM

)−1

(4.12)

The related effective properties for the rotated FPAs are obtained as the rotated
operators

C
∞Align(±θ)/P late
effPCW = Rip(±θ)Rjq(±θ)Rkr(±θ)Rls(±θ)C∞Align(0)/P late

effPCW (4.13)

or they can be directly obtained in applying Eq. (4.7) with using the rotated FPA
operator as

C
∞Align(±θ)/P late
effPCW = CM − ffib

(((
CM −Cfib

)−1 − t∞Align(±θ)
CM

)
+ ffibt

Plate
CM

)−1

(4.14)
The next section presents, for both descriptions, the chosen simple method for

the introduction of through-layer interconnections in this structure.

4.2.3 The through-layer inter connection description from a
1D bundle of fiber-like pivot arrays

Seeing the pivot arrays that connect the fiber layers as being in the average a one
directional (1D) fiber bundle, possibly ω-inclined with regard to the normal to the
FPAs, we first consider this reinforcement of the matrix, which identically applies
to both descriptions previously presented and keeps the validity of all presented
equations provided a change of the reference matrix phase CM to account for the
characteristic in concern. Introducing the ω-oriented bundle in the matrix as shown
in Fig. 4.7 simply amounts to solving the previous equations with effective properties
for the bundle-reinforced matrix writing

C
M(wB)
eff = CM − fPivots

(((
CM −CPivots

)−1 − twBundle
CM

)
+ fPivotst

wBundle
CM

)−1

(4.15)
In Eq. (4.15), twBundle

CM
stands for the mGO of a 1D bundle of parallel fibers

with direction w, going through the FPAs, CPivots is the pivot property tensor and
fPivots the density of pivots in a fiber layer. All these three quantities are expectedly
evolving under extension-like of the structure.
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Figure 4.7: Reinforcing the matrix by an w-oriented fiber 1D bundle prior to embed-
ding the FPA layers in it.

Basically, the pivot density is given by the cross section area ratio of a pivot
and of a PQRS current zone according to Fig. 4.4. The CPivots properties are not
necessarily those of the fiber material and whether or not they initially (undeformed
state) are, they are likely to be modified by the deformation into some effective
properties as will be discussed in the next chapter.

A quite accurate form of the twBundle
CM

mGO for such a fiber bundle has been
obtained in [63] from also averaging the mGOs of a minimal set (typically 4) of FPAs
with same fiber direction (coaxial FPAs). The shape evolution of the bundle is carried
by the angular changes of the FPA orientations around their common fiber bundle.
It is noteworthy that if any orientation change happens during deformation of this
through-layers ω-oriented link between the planar alignments, it can be accounted
for provided that the evolution law for this orientation from initial x1 one is specified.

For a simplified first study of the effects of such through layer inter-connections
on the structure behavior, one can resort to the interior Green operator of a single
fiber oriented along ω (as given in Table 1 for cylindrical ones), that is one can
disregard the interactions between the bundle elements as well as its shape changes
and take twBundle

CM
= twCyl

CM
.

One next examines the in-layer characteristics that must be accounted for in
relation to the type of through layer interconnections which are considered.
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4.2.4 Geometric descriptors of the constraints on the in-
plane pantographic-like deformation

One here describes the in-plane geometrical descriptors for the behavior under exten-
sion of that pantographic-inspired two-phase bi-continuous composite structure type
which are due to such existing inter connections. As for the chosen description of the
through-layer interconnections, the description we use for these in-plane geometri-
cal descriptors is compatible with the two examined and compared (laminate-based
and mGO averaging) procedures for estimating the properties of the composite of
concern.

We consider, as drawn in Fig. 4.8(right), according to the micrographs of Fig.
4.8(left) a pair of (φ1, φ2) oppositely oriented beam layers with regard to the hori-
zontal axis, with all beams of same rectangular cross section area a · b, where b is
the height and a the in-layer width, such that b=a for SQ-beams (this discussion
is valid also in case of cylindrical fibers with cross section area πr2 and radius r).
Along each beam, regularly spaced attachments (the pivots) inter-connect at inter
distance L the successive two (or more, above and below) alternated layers. The
beams are considered as undeformable such that a, b and L are kept constant. The
details of the pivot geometry are at first disregarded and their height (h)- which
is the inter-distance between the layers - is just supposed to allow beam rotations
without affecting the structure, although behavior differences are highly expectable
whether (h) is small (dense layer piling) or large (distant layers).

Figure 4.8: Micrograph (left) and one-cell schematic (right) of current (top) and
maximal (bottom) extension shape for a bi-layered interconnected beam network
element.
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Thus, as viewed along the normal to the layers (top view), the four interconnecting
pivots of an elementary representative domain are firstly reduced to points (Fig. 4.8),
as the PQRS set from Fig. 4.4, such that we a priori disregard possible deformation
of the pivots as bending (distortion from straight cylinders) or inclination with regard
to the z normal to x-y layers (say the w orientation is kept parallel to z). In ideal
symmetric and homogeneous extension along a line going through P and R (a priori
neglecting also beam distortions at the pivot level as well as between pivots along
beams), the main current characteristic of the elementary representative cell PQRS
is that the two diagonal segments PR and QS remain orthogonal, with L1 = L2 = L
and φ1 = −φ2 = θ (for notation consistency with previous sections). If the two
beam layer types are initially orthogonal, the decrease of ±θ ranges from ±π

4
to

±θ∗. In terms of beam misorientations, the current length of the network is given
by PR = 2Lcosθ , from

√
2L and the current structure extension is

α =
PR− PR0

PR0

=
√

2cosθ − 1 (4.16)

The current area of the PQRS “cell” is APQRS = 1
2
PR · QS = 2L2cosθ sinθ =

L2sin2θ . Similarly, the area of the commonly ”free” interspace pqrs between the
fibers of successive layers is given by Apqrs = 1

2
pr · qs = (L− λ)2sin2θ , where

λ = a/sin2θ is the side length of the beam superposition area and is equal to a
initially.

Consequently, the inter-distance (d) between any two parallel beams varies with
θ as

d = (L− λ)sin2θ = Lsin2θ − a (4.17)

When beams are at contact (Fig. 4.8(right)), Apqrs = 0 and λ = L such that
d = 0 and the minimal misorientation is θ∗ = 1

2
sin−1 a

L
. The maximal extension

follows as

α∗ =
√

2cosθ∗ − 1 =
√

2cos

(
1

2
sin−1 a

L

)
− 1 (4.18)

The limit for the extension when a/L goes to 0 is
√

2− 1 ≈ 41, 42% and it is still
41% when a/L ≈ 0, 15 and 40% when a/L ≈ 0, 28.

As for the in-plane inter distance (d) between fibers, the inter distance between
layers is zero for layers at contact, in which case the inter connecting pivots have a
zero height (h). For a general (h) value, an elementary volume element is VPQRS =
(h+ b)APQRS = (h + b)L2sin2θ . For compact layers (h=0), the void part equals
twice the interlayer spacing along a segment L

Vvoid(h=0)= Vvoidmin = 2 (Ld) (
b

2
) = bL(Lsin2θ − a) (4.19)
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and for (h) being general

Vvoid(h) = V
voidmin

+ hL2sin2θ = (b+ h)L2sin2θ − bLa (4.20)

Thus, the void volume fraction, which also is the embedding matrix volume frac-
tion, reads

fvoid(h) =
(b+ h)L2sin2θ − bLa

(h+ b)L2sin2θ
= 1− ba

(h+ b)Lsin2θ
(4.21)

with fvoid(h=0) = 1− a
Lsin2θ

= L−λ
L

= 1− a(L−λ)
Ld

.
The fiber volume fraction which appears in Eqs. (4.11)-(4.12) conversely has the

form

ffib(h) =

(
b

h+ b

)
a

Lsin2θ
=

(
b

h+ b

)
ffib(0) (4.22)

It is noteworthy that in the cases when the pivots between fiber layer are allowed
to bend, there is no more equivalency between the pivot height and the layer inter-
distance unless initially (no extension yet): if the bending angle κ is the one given
by the pivot orientation (ω) and the normal (z) to the fiber layers, say κ= (ω, z),
the layer inter distance will decrease, possibly down to a null value if that bending
can drive the fiber layers to contact. The relation of this bending angle κ to the
misorientation angle θ is another geometric descriptor. This bending influence can
be also simply examined from considering different values of the layer inter distance
(h), as is done next.

In the case of SQ-beams (as for rectangular beams with same height b), the planar
alignments at maximal extension become compact laminate layers what corresponds
to Fig. 4.7, with two alternated layer types of all same thickness, and with minimal
misorientation 2θ∗ .

The above described geometric changes for a pantographic-inspired beam or fiber
structure explicates the in-plane links between the structure extension, the layer
misorientation, the in-plane fiber inter-distances (d) and the fiber layer inter distance
(h).

It is noteworthy that any description taking into account the inter distance (h)
between fiber layers (FPAs) potentially allows to also account for torsion of the pivots,
the torsion being in first approximation simply given by the ratio 2θ/h, for the layer
inter distance (h) also is the pivot height as long as no bending has occurred. This
torsion amount is also connected to the inter distance (d) between the fibers of a layer
through the θ angle current value. This torsion can be further related to a torsional
stress contribution provided the knowledge of a torsion stiffness modulus for the
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pivots which will depend on the pivot structure in real materials. But it can also enter
the characteristics of the 1D bundle introduced in the P-I fiber network description,
through a variation of stiffness moduli (and especially of the shear modulus) related
to the pivot torsion. One can for example consider a stiffness increase (in pure
elastic regime without neither plasticity nor damage) with torsion, as µB(θ)/µB =
χ(θ − π

4
) ≥ 1, with a function χ that may be determined from experimental and/or

numerical data. In comparison, the pivot bending effect which is the decrease of the
fiber layer (FPAs) inter distance (h) can be more easily considered in the modeling,
via the variation law for the fiber volume fraction as explained next on.

The various relations synthesized in Eqs. (4.16)-(4.22), here called geometric de-
scriptors, are pantographic-inspired in the sense that, as described, the interconnec-
tions between the fiber layers (FPAs) correspond to typical behavior of pantographic
structures as for example examined in [4, 96] among other ones. These relations
correspond to the assumption of fixed pivot type, already pointed to correspond to
a one-placement-field description as discussed in [5]. Other types of pivots (or fiber
layer interconnections) could be considered, in which case other relations would hold
between the same geometric descriptors, in place or in addition to the here presented
ones. When the elements of the 1D fiber bundle that goes through the FPAs are
allowed to become w-inclined in the extension direction with regard to the normal of
the FPA plane, in the pointed necessary alternated manner at the scale of successive
FPA pairs (to be illustrated in section 4), this corresponds as said already to the
two-placement fields assumption examined in (Spagnuolo et al., 2017), yet with no
global inclination of the pivot arrays, in the average.

The next Section first exemplifies analytical results from the proposed extension
modeling and validating with numerical comparisons of the variation of the overall
Young and shear moduli follow. At last, comparisons with numerically obtained typ-
ical force-displacement curves of 2D pantographs, where the so called pivot strength
effects have a variable - from high to low - contribution, establish that the proposed
analytical model can integrate these observed effects via several of the explicitly in-
troduced geometric descriptors and, when not enough (namely in case of high pivot
strength effects), via a possibly pivot-strength-induced variation of the matrix stiff-
ness itself with the FPA misorientation increase. A typical fitting variation law for
the matrix shear modulus with the misorientation angle is extracted, as example,
from the performed comparisons.
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4.3 Effective property evolution and force-displacement

relation of stretched P-I composite

The here exemplified analytical data result from the use of the averaging procedure
description for the pantographic-like bi-layers taken as the representative element of
the matrix-embedded P-I fiber network with SQ-beams that we previously charac-
terized in the details. The modified matrix property form in Eq. (4.15) is used to
account for the trans-layer effective or apparent stiffness of the P-I composite struc-
ture, which results from the fiber bundle-like pivot arrays that physically ensures the
FPA interconnections and preserves a non vanishing transverse stiffness of the P-I
composite.

A first consequence of the alternated R-L-R... FPA layering in the considered
P-I fiber network is the presence of alternated torsions on successive pivots along
each array. Although not easily evidenced, neither on numerical nor on experimental
experiments (pivots need be marked along their axis to follow that torsion which
can be stiff or not depending on the pivot type), this alternated behavior is obvious
as can be inferred from looking at Fig. 4.1 and imagining a stretch of it in the
here considered extension symmetry conditions. On the contrary, there is a less
obvious behavior of the pivots for the same reason of alternated layering, which finds
immediate experimental evidence (to be exemplified in the following): the pivot
arrays do not strictly remain straightly normal to the fibers layers (the FPAs) but
are alternately bent between successive R-L and L-R layer pairs such as to remain
straightly normal to the layers in the average.

These pretty much homogeneous trans layer effects (the pivot distribution re-
mains discretely homogeneous together during homogeneous extension of the matrix
embedded P-I fiber network) are always present in pantographs, in complement to
and independently from the more heterogeneous in-layer features which are localized
at the interconnections between homogeneous zones and that we here disregard. Both
these two (torsion-due and bending-due) through-layer features that also result from
the in-plane deformation are likely to impact the effective stiffness of the bundle-like
pivot array and in turn the overall P-I composite behavior. What means that consid-
ering some relevant evolution form for both the effective stiffness and the geometry
of this bundle-like pivot array is a possible way to indirectly account for these impor-
tant characteristics of the P-I composite structure type, that we here called globally
the pivot strength effects. Both identified effects involve the layer inter distance (h)
which enters the proposed P-I composite descriptions from the expression given to
the mean volume fraction of the fiber phase in the previous section.
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4.3.1 Modulus evolutions and force-displacement plot for
the pantographic-inspired structure

We here consider two isotropic and nearly incompressible phases having relative shear
moduli of 1 (matrix) and 50 (fibres) with respective Poisson ratio of 0.49 and 0.499.
The fiber-like bundle that represent the pivot array is considered to a priori have
the same moduli as the fibers, with considering a possible torsion-due increase of the
pivot shear modulus. The initial fiber inter distance (d) is taken equal to 20 times
the fiber width a.

From using the relations between the so-called geometric descriptors, giving suc-
cessive extensions e = ∆L/L0 of the representative cell (PQRS ) of the structure,
allows two calculations:

i. on the one hand, determining the misorientation angles ±θ(e) and from them
the fiber inter distance d(e) in the layers, that is the two necessary terms
allowing to determine effective elastic properties Ceff (e,h) according to the
averaging description we have presented before, given a few different values for
the h/a layer relative inter distance. This calculation provides the effective
axial Young modulus for the extended structure Y(e,h) as well as all other
effective moduli;

ii. on the other hand, the axial strain in the PQRS cell is obtained using a loga-
rithmic strain ε(e) = Ln(1 + e), from which an axial stress σ(e, h) is calculated
as Y (e, h) · ε(e), which stands for a tensile force per unit cross section area of
the structure, say

FS0=1(e, h) = σ (e, h) = Y (e, h) · Ln(1 + e) (4.23)

This force identifies the pantograph behavior to the homogeneous extension of
its central zone as simplified in Fig. 4.4 left (or right, up to a body rotation), what
is realizable provided appropriate loading boundary conditions. The Fig. 4.9 shows
the so estimated axial Young modulus variation with angle 2θ at different values of
h/a from 0 (layers at contact) to 10 (distant).
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Figure 4.9: Variation (left) of axial Young modulus versus 2θ for different, from
contact (0) to distant (10), h/a values without matrix reinforcing bundle and (right)
a zoom of the left side.

The Fig. 4.10 similarly reports the same axial Young modulus evolution with
the additional effect of through-layer fiber bundle reinforcement, according to Eq.
4.15. The bundle is simplified to a single cylindrical fiber to represent a pivot array
and the current volume fraction of fibers in the bundle (or pivots in the bilayers) is
taken as a2/(L2sinθcosθ ) . The pivot elastic properties are those of the fibers and
no additional (torsion-like or bending-like) effect is considered. Since in this example
the a/d ratio is taken equal to 1/20, the initial low fraction of 25.10−4 increases to
a/d=5.10−2 at compact contact. There is no noticeable difference, as expected, on
the axial Young modulus.

Figure 4.10: Variation (left) of axial Young modulus versus 2? for different, from
contact (0) to distant (10), h/a values, with matrix reinforcing bundle and (right) a
zoom of the left side.

The Figs. 4.11-4.12 show the corresponding maximal (i.e. at contact h=0 inter
distance) variations with 2θ , with and without bundle effect, of the other effective
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elastic moduli, which are much less evolving, in extension, than the axial Young
modulus, but with a more pronounced effect especially on the two other (normal and
transverse) Young moduli, while none of the 3 shear moduli (along and around the
bundle fiber direction) appears affected, as expected as well.

Figure 4.11: Compared evolutions without and with bundle effect at h=0 (layer
contact) of the normal (left) and the transverse (right) Young modulus with layer
misorientation angle 2θ.

Figure 4.12: Compared evolutions without and with bundle effect at h=0 (layer
contact) of the lateral x1 − x3 (top, left), the x1 − x2 facial (top, right) and the
in-plane x2 − x3 (bottom) shear modulus with layer misorientation angle 2θ.
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The related axial force (per cross section area unit) evolutions, obtained as ex-
plained in the beginning of that section from using that axial Young modulus ana-
lytical estimate, have the form plotted on Fig. 4.13 (respectively versus the 2θ layer
angle, left, and versus the normalized extension ∆L/∆Lmax, right), without and with
bundle effect at h=0, without appearing noticeable differences. The extension nor-
malization for the analytical curves uses the maximal extension that corresponds to
fiber contact in the FPAs. The force-displacement curves of Fig. 4.13 right have the
well known qualitative form of the force-displacement curves of 2D pantograph prior
entering into any plastic or damaged stage. The final sharp increase corresponds to
the start of the elastic behavior of the nearly aligned and fully compact FPA families
at minimal misorientation angle θ.

The next subsection reports some comparisons with numerical validating results.

Figure 4.13: Axial force evolution for h=0 (layer contact) versus (left) the 2θ layer
misorientation angle and (right) the normalized ∆L/∆Lmax structure extension, with-
out and with bundle stiffness contribution.

4.3.2 Compared numerical and analytical elastic modulus
evolutions during extension

Comparisons with numerical simulations are performed from using the cell shown in
Fig. 4.14, in which the layer (relative) inter-distance (h/a) is explicitly present. The
two-phase elastic moduli are the same as for the analytical calculations. There are
physically no pivot inter connectors in the cell.
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Figure 4.14: Initial (left) and x-extended (right) periodic cell for numerical estimates
of effective modulus evolutions.

The fiber initial inter distance (d) in the layers is taken to be 20 times the beam
side length and the relative layer inter distance h/a is varied from contact (0) to
distant as in the analytical estimates. In order to remain close to the procedure
used for the analytical estimate changes with a change of the layer misorientation
angle (that is with various extension steps and no distorsion of the structure), the
cell structure has been step-wise extended in changing that misorientation angle and
on each successive cell with extended structure, 6 elementary loads are applied to
determine the 3 Young moduli and the 3 shear ones. So doing, the cell remains
homogeneously deformed at each extension step and not internal stresses are stored.

The first performed calculations are for the variation of the effective axial Young
modulus with respect to the layer relative inter distance, from close to distant. These
variations are reported in Fig. 4.15 as a function of the FPA misorientation angle
2θ for different values of the FPA h/a relative inter distance. The corresponding
analytical estimates are also plotted for comparison. It is seen that both calculations
pretty well correspond for the different h/a values (0, 1, 3) which cover the range of
typical ratios in pantographs.

The Figs. 4.16-4.17 similarly report the numerically calculated other (Young and
shear) moduli using the same cell, for the case h=0 only. These plots show how the
tendencies well corresponds with the analytical estimates which are also reported.

The final step of this work consists in examining possible additional description,
in the proposed analytical modeling, of torsion-like and bending-like strengthening
effects on the total force-displacement curve from the pivot arrays, as is the case
during in-plane extension of 2D pantographs, that we call for short pivot strength
effects.
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Figure 4.15: Compared (left) numerical and analytical axial Young modulus esti-
mated evolutions with FPA misorientation angle 2θ at different (h/a) values and
(right) a zoom of the left side.

Figure 4.16: Compared numerical and analytical simulations of estimated evolutions
with layer misorientation angle 2θ of the normal (left) and the transverse (right)
Young modulus at h=0.
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Figure 4.17: Compared numerical and analytical simulations of estimated evolutions
with layer misorientation angle 2θ of the lateral x1− x3 (top, left), the x1− x2 facial
(top, right) and the in-plane x2 − x3 (bottom) shear modulus at h=0.

4.3.3 Compared numerical and analytical force-extension curves
with pivot strength effects

We compare a typical numerical force-displacement curve of a 2D pantographic struc-
ture, which is homogeneously in-plane stretched thanks to appropriately prescribed
boundary conditions that suppress the heterogeneous second gradient effects, to the
force-displacement curves obtained from the presented analytical modeling which is
pivot strength free as built.

The boundary descriptions for these comparative numerical simulations are de-
fined such that the whole 2D pantographic structure is homogeneously strained as
the central zone. So doing, compared with the pure extension that is described
in the proposed analytical homogenization-based model, the numerical one is only
complemented with a discretely homogeneous pivot strength field coming from the
specific torsion or/and bending features. Depending on this pivot strength, the dif-
ference between the total force-displacement curve of the pantographic structure and
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its pure extension part can be either dominant or minor. This section stresses the
two following results:

i. it is possible to pretty well match an analytically obtained F/∆L curve from
the proposed modeling, as the one shown in Fig. 4.13, characterized by a
low matrix to fibers stiffness ratio and which is pivot strength free as built,
in adjusting appropriately the pivot strength part in the total pantographic
structure F/∆L extension curve;

ii. it is conversely possible to pretty well match a numerical pantographic structure
F/∆L curve with low or moderate pivot strength contribution in accounting
in the model for either a torsion-due stiffness increase of the bundle-like pivot
arrays or for a bending-due decrease of the fiber layer inter distance (h), or for
both effects; when these two effects (of limited influence) prove insufficient (say
in case of high pivot strength contribution), a good match is accessible with
assuming the matrix stiffness to increase according to some fiber misorienta-
tion dependency, the form of which can be deduced from the analytical versus
numerical comparisons. These 3 influences are exemplified.

Numerically matching the analytical pivot strength free reference curve

Fig. 4.18 reports in full lines the force-displacement curve from the analytical model-
ing that corresponds to the case (h = 0, µM = 1) plotted in Fig. 4.13 right, together
with two numerical curves that correspond to a 2D pantograph under in-plane exten-
sion, the parameters of which are collected in Tab. 4.1. We call the stiffest of these
two curves, the reference numerical simulation curve (the torsion modulus of which
is denoted ref in Tab. 4.1) and the second one, which is the numerical adjustment
on the analytical curve is called the low torsion numerical simulation curve (`T in
Tab. 4.1). The pretty good adjustment is here obtained from reducing the torsion
modulus by a factor 3 from the value of the reference numerical curve

For other µM values in the analytical curve, the necessary variation on the pan-
tograph torsion modulus for matching the numerical and analytical curves are to be
adjusted accordingly. For one discussion point to come next on, it is worth to stress
here that adjusting analytical curves obtained with a smaller µM matrix modulus
(keeping same h value) would be reasonably well obtained in decreasing similarly
further the pantograph torsion modulus in the numerical simulation, such that a no
torsion strength limit in the pantograph extension numerical simulation expectedly
calls for a vanishing matrix stiffness in the proposed analytical modeling.

118



a A ke = EA krefp

10−3m a2 149.9 N 1225 · 10−5N m−1

hp rp ` k
(lT )
p

10−3m 5 · 10−4m 25 · 10−3 m−1 428 · 10−5N m−1

Table 4.1: Data for the plots of the force-displacement numerical curves in Fig. 4.18.
hp, rp are the pivot heigth and radius, ` is the inverse of the interdistance ` between

pivots and kp =
µπr4p
2hp

`
2

(Spagnuolo et al., 2017).

Figure 4.18: Matching the analytical force-displacement curve for h=0 and µM (full
line) in lowering the torsion modulus from the 2D pantographic structure (upper
crosses) numerical reference curve to the low torsion one.

Analytically matching the numerical reference curve with adding pivot
strength effects

Considering first the pivot strength effects to be purely torsional, a first possible in-
put in the proposed modeling is on the pivot effective stiffness that explicitly appears
in the description given to the bundle-like pivot array that reinforces the embedding
matrix according to Eq. (4.15). A pivot stiffness increase can be accounted for in
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giving some evolution for in particular their shear modulus with the misorientation
angle between fiber layers. A qualitative evidence that alternated torsion of succes-
sive pivots along fiber-like arrays is unavoidable, although hard to observed either
experimentally or numerically, can be inferred from imagining the extension of the
multi-layered P-I structures exemplified in Fig. 4.1. In order to check this effect, we
have considered an evolution law of the bundle shear stiffness, under the simple form

µB(θ/h) = µB

(
1 + c

(∣∣∣π
4
− θ
∣∣∣ b

h+ b

)N)
(4.24)

where c and the exponent N remain as adjustable coefficients, while the absolute
value results from assumed equal stiffness increase whether the θ angle decreases or
increases from the unstressed π/4 position.

In order to examine a bending interpretation of the pivot strength effects, a
simple possibility to introduce it in the analytical modeling is to consider that the
main pivot bending effect is to reduce the distance (h) between FPA layers, with at
the most, layers reaching contact if bending goes to its geometrical limit (without
damage). This alternated bending of pivots along fiber-like arrays has established
existence as exemplified on Fig. 4.19 (left), from some performed experiments not
to be commented in the present scope. It is also observable that the assumption
of this (not totally regular) alternated bending to be null in the average over the
layers is reasonable in gross approximation and sufficient for a schematic description
as shown in Fig. 4.19 (right). The bending is assumed to remain in the plane
made by the extension direction and the pivot array initial orientation normal to the
FPA layers (the drawing plane) although each fiber-like pivot array connect fibers
which are alternately ±θ misoriented on each side of it. The bending angle can be
estimated from the projections of the FPA layers in that bending plane as defined
and drawn. A pivot bending of (mean) angle ±κ= (±w, z), with ±w and z being
the pivot (alternated) direction and FPA normal respectively, changes the FPA inter
distance as h′′ (w, z)′ = (h + b) · cos(κ) − b. The limit bending angle κlim at layer
contact (h=0) may be restricted by some minimal hmin value corresponding to a
κmax angle lower than κlim, in which case h′′(κmax) = (h+ b) · cos(κmax)− b = hmin
and κmax= arcos

(
hmin+b
h+b

)
. Note that in comparison with the possibly significant

decrease of h if approaching or reaching contact (hmin = 0, κmax=κlim), the pivot
bending contribution to the structure extension is a negligible axial translation of
the left-oriented FPAs with regard to the right-oriented ones (h+ b) · sin(κmax). The
introduction in the modeling of this pivot bending effect on (h) can then pass by
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Eq.(4.22) to increase faster the fiber volume fraction as

ffib(h,κ) =

(
b

h”(κ)
+ b

)
a

Lsin2θ
=

(
b

h”(κ) + b

)
ffib(0) (4.25)

Figure 4.19: A lateral (left) view of a stretched multilayered pantographic structure
showing alternated pivot bending along arrays and (right) a schematic description
with (top) current and (bottom) limit positions (the intermediate third layer in the
drawings is the extended position of the upper one, the lower layer being kept as
fixed reference).

The use of Eq. (4.25) needs to determine or fix an evolution of κ/κmax in terms
of θ/θmax or of any related geometric descriptor as defined. For the present pur-
pose, only variations of F/∆L curve with different constant h/a values have been
compared.

These two effects are exemplified in Fig. 4.20(left) for the pivot stiffness (shear
modulus) variation according to Eq. (4.24) and in Fig. 4.20(right) for the bending
stiffness effect from changing the (kept constant) value of the layer inter distance
(h/a), without using Eq. (4.25). It is noteworthy regarding the pivot height changes
due to bending, a division by two may be likely thus the transition amounts from10
to 5 or from 1 to 0.5 which are exemplified in Fig. 4.20(right).
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Figure 4.20: Amplitude and shape changes of the analytical force-displacement curve
from (left) increasing the pivot shear modulus according to Eq. (4.24) (several sets
of c,N parameters) and (right) decreasing the h/a inter distance.

From these Figures, where both the reference numerical curve and the low torsion
one are plotted, the amount of variation allowed for a force-displacement curve by
these two effects, either alone or together, both on the amplitude and on the shape of
the curve of pantographs only appears convenient to adjust weak or moderate pivot
strength effects.

On the contrary, when the contribution of pivot strength effects to the total
curve is dominant, as is the case for the numerical reference curve in Figs. 4.18-4.20,
these two effects are not sufficient. In which case, a last possibility to indirectly
consider a pivot-due effect of torsion-type in the proposed analytical modeling is
through a dependency of the matrix stiffness with the misorientation angle between
the fiber layers. The Fig. 4.21(left) reports again the reference numerical curve
with a set of analytical ones for different phase contrasts µM/µF , starting from
µM = 0.02µF (the contrast with µM = 1 used in most of the previous plots) to end
with µM = 0.98µF . Collecting the intersections of these analytical curves with the
reference numerical one yield a µM/µF versus displacement ∆L/Lmax relation which
in turn yields the µM/µF versus 2θ angle variation law plotted in Fig. 4.21(right).
Using in the modeling a close analytical expression (as the dotted curve) will quite
well restitute analytically the reference numerical curve.
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Figure 4.21: Amplitude and shape variations (left) of the analytical force-
displacement curve for different values of µM and (right) the resulting µM(θ) variation
law that allows analytical matching with the reference numerical plot.

4.4 Conclusion

In this Chapter we have presented a description for two phase bi-continuous com-
posites made of a 3D continuous fiber network embedded in a compliant matrix, the
main characteristic of which is to obey a pantographic-inspired behavior due to the
pantographic-like nature of the fiber arrangements and interconnection characteris-
tics. This description which is based on considering the fiber network as an alternated
piling of fiber planar alignments (FPAs) of cylindrical or square cross section allows
to propose a homogenization-based model for the elastic behavior of such a composite
structure, thanks to mean Green operators (mGOs) made available in previous works
by authors and co-workers for such FPAs. Homogenization-based modeling amounts
to estimating the effective (here elastic or elastic-like but also other) properties of
a composite structure in accounting as precisely as possible for this structure, such
as to be capable to follow the evolutions of these properties during the deformation
of the structure and to estimate the stress-related evolutions. The pantographic-
inspired characteristics of the structure are defined from geometric descriptors which
link, in a 2D pantographic structure, on the one hand the fiber layer misorientation
change to their network extension and to the fiber inter-distances in each constitu-
tive layer, what also modifies the fiber network volume fraction in a representative
volume element of the composite. On the other hand, that same fiber layer mis-
orientation is linked to the strengthening behavior of the pivots that inter-connect
the fiber layers which constitutes a more or less important contribution to the total
force-displacement curve.
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From comparisons with numerical estimates of the evolutions of the effective
elastic moduli obtained for such a structure, it is shown that the proposed description
which has the advantage of being analytical provides satisfying estimates of the
effective Young and shear modulus variations when such a composite is submitted,
at least piece wisely, to in-plane axial homogeneous extension.

Comparisons with numerically obtained force-displacement curves of an axially
strained typical 2D pantograph have then shown that a quite good match is ob-
tained with an analytically obtained force-displacement curve (from the effective axial
Young modulus estimate) provided adjusting the pivot-strength-related contribution
in the pantographic numerical extension simulation. Converse simulations have also
shown that a quite good match of a numerical pantograph force-displacement curve
can be obtained from the analytical modeling with accounting for (i) a torsion-due
stiffness increase of the fiber-bundle like pivot arrays or/and (ii) a bending-due de-
crease of the fiber layers inter-distance or/and (iii), for high pivot strength effects,
with assuming the embedding matrix of the composite to have a fiber misorientation-
due stiffness increase during straining. These matching possibilities show that such
pantographic-inspired composites can also be to some extent pantograph-equivalent.
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Chapter 5

Damage analysis in pantographic
fabrics

Here we further discuss the issue of damage and failure in pantographic structures.
The ensuing discussions are based upon experimental data published [5, 6, 97].

5.1 Introduction

In this Chapter, we deal with some aspects concerning damage and rupture in panto-
graphic structures. The discussions presented below can easily be linked to the topics
discussed in the previous Chapter. In fact, in the previous Chapter it was suggested
that, by modifying the properties of the matrix, one can approach the description of
the onset of plasticity and damage in the pantographic-inspired composite material.

As we have already pointed out several times, there is a strong analogy, also
supported by the identification analyses between the two models presented above,
between the matrix of the pantographic-inspired composite and the pivots of the
pantographic structures.

In this final Chapter we show how most of the phenomenology of damage and
fracture in pantographic structures is attributable to the deterioration of pivots.

5.2 Mechanisms of rupture

Experimentally, three different mechanisms of rupture have been observed: one con-
cerning the fibers and two related to the pivots. The fiber rupture occurs when the
maximum elongation is reached related to the geometrical and material features of
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the fiber in a considered sample. On the other hand, the pivots can experience failure
depending on two different mechanisms: (i) the shear of the pivot and (ii) its torsion.
Needless to say, the failure occurs when reaching certain thresholds, in shear (i) or
torsion (ii) of the pivot. As a qualitative observation, it is possible to forecast which
of these last mechanisms will prevail by considering the shape ratio of the pivots:
for “slim” pivots it has been observed that the shear mechanism prevails, while for
“stubby” pivots the torsion mechanism plays the fundamental role.

In the following paragraphs we quantitatively analyze the aforementioned mech-
anisms.

5.2.1 Fiber elongation mechanism

From a quantitative viewpoint for characterizing rupture, the discrete quasi-static
Hencky spring model described in the previous Chapter can be modified by consider-
ing a simple irreversible rupture mechanism for the extensional springs as discussed
in [97]. An extensional spring fails if its deformation level exceeds a certain thresh-
old. Experimental data for a displacement-controlled bias extension test (Fig. 5.1)
are provided in [12]. The first fiber failure is observed at the corners of the specimen,
where the elongation of fibers attains its maximum, as also predicted by the second
gradient continuum model discussed in the first Chapter.

This predicted failure initiation has also been confirmed by means of a displacement-
controlled shear test [97] (see Fig. 5.2). It was also observed that in this case the
elongation of fibers attains its maximum at the corners ofthe specimen. We note
that in the proposed second gradient model, the assumed damage mechanism was
that of the fibers due to their elongation.

5.2.2 Pivot shear mechanism

In [5], a pivot damage mechanism due to shearing of pivots, i.e. fibers detaching due
to relative sliding in correspondence of pivots, is taken into account, allowing the
sliding between the two layers (families) of fibers. Thus, the non-linear homogenized
quasi-static model for the discrete system discussed in the first Chapter is modified
by introducing, in the spirit of mixture theory, two independent placement func-
tions χ1 and χ2 (the placement functions of body points belonging to horizontal and
vertical fibers, respectively) defined on the same reference domain and, accordingly,
considering the following nonlinear (elastic) strain energy to be minimized
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Figure 5.1: Force versus prescribed displacement for a bias extension test. (a) Sam-
ple before first beam breakage (i.e. breakdown onset); (b) upper-left corner beam
breakage; (c)-(f) further fiber breakages.

Figure 5.2: (a) Damage onset (λ = 0.976) of a shear test. (b) The broken fiber is in
black and it is pointed by the arrow.
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Figure 5.3: Experimental observation of the shear of pivots: (a) reference configu-
ration and (b) shear deformation. We are grateful to Dr. X. Pinelli (LMT, ENS
Paris-Saclay/CNRS/Université Paris-Saclay) for the photos.

where Kint (resistance to the relative sliding of the two layers) evolves following a
criterion based on thresholds for the relative distance δ = ‖χ1−χ2‖ between χ1 and
χ2. Depending on the geometrical features of the considered pantographic structure,
one can then predict a relative displacement between the fibers in the corner of the
rigid triangles near the short side of the structure or on the long sides of the sheet
(see Figs. 5.4-5.5).

One can then qualitatively forecast the development of fracture in the panto-
graphic sheet by allowing the beams to slide one respect to the other in correspon-
dence of the pivots as introduced in [5] and [4]. Indeed, the algorithm developed
in [4] is able to forecast the onset of fracture, by considering a mechanism based on
a threshold of the relative displacement (corresponding to the shear of the pivot, as
experimentally observed, see Fig. 5.3). We note that in this algorithm, the consid-
ered model is based on the non-linear Euler-Bernoulli beam theory and the pivots
are modelled as extensional springs whose elastic constant corresponds to the Kint

of the homogenised model.

In Fig. 5.6 it is possible to observe the relative displacement between beams as a
3D bar graph, plotted on the shape of the pantographic sheet. A noteworthy aspect
related to the introduction of the cubic factor in the sliding energetic term is the
breaking of symmetry in the plot of relative displacement seen in Fig. 5.6. From
the viewpoint of fracture initiation, it is clear from the figure that there are two
maxima which correspond to two precise pivots. One of them will undergo the first
rupture, due to a flexural/shear stress. This numerical prediction is validated in Fig.
5.7, where a well explicative sequence showing the load step when the first fracture
occurs is presented: the broken pivot is precisely the one predicted by the model.

A dissipation problem could be suitably adapted to the relative displacement
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Figure 5.4: Depending on the geometrical features of the considered pantographic
structure, one can predict a relative displacement between the fibers in the corner
of the rigid triangles near the short sided of the structure (a) or on the long sides of
the sheet (b).

Figure 5.5: Comparison between experimental emerging of the first rupture in an
aluminum pantographic structure (a) and numerical prevision (b) of the maximum
of the relative displacement between the fibers (relative displacement in colour scale).
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Figure 5.6: Plot of the relative displacement on the shape of the pantographic sheet
in the framework of the non-linear Euler-Bernoulli beam meso-model.

Figure 5.7: A well explicative sequence which shows the moment of the first fracture,
in the pivot forecasted by the model.

description. In this case, it should be needed a preliminary analysis on the friction
mechanisms, as the one presented in [99].
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5.2.3 Pivot torsion mechanism

Finally, we consider a rupture criterion based on the computation of the shear angle1

(see Fig. 5.8). One can relate the torsion of the pivots to the shear angle. For certain
specimen endowed with a particular set of geometrical parameters, the rupturing
evolution is controlled (and initiated) by excessive shear deformation (or torsion) of
the pivots. In the displacement-controlled shear test in Fig. 5.2, the shear attains
its maximum near the two internal vertices of the quasi-rigidly deforming triangles.

Figure 5.8: Plot of the shear angle. It is possible to use it for defining a rupture
criterion based on the pivot torsion.

5.3 Quasi-perfect pivots

Technological advances in the field of additive manufacturing have made it possible to
produce structures and objects with very complex geometry. Because of this peculiar
ability, 3D printing has greatly increased the realization and study of metamaterials,
i.e. materials that, with a microstructure decided a priori, exhibit exotic mechanical
properties. Recently some pantographic structures have been moulded in Polyamide
replacing the standard pivots (cylinders with no torsional stiffness) with perfect

1We refer here to the shear of the whole pantographic structure, different from the aforemen-
tioned shear of the pivot.
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Figure 5.9: CAD model of a pantographic structure with perfect-pivots (a). In (b)
the perfect pivots are shown.

pivots, which correspond to hinges (free rotations). Details of this study are given
in [60].

In this section, we present pantographic structures with perfect pivots made of
316L stainless steel. As will be explained below, pivots are not exactly perfect
pivots, as residual torsional stiffness is observed experimentally. The dimensions at
which the perfect pivot is printed are very close to the precision ensured by the
printing and at these levels also the size of the powder used for the printing is a
quantity that influences the result. Despite the apparent unsuccess of printing perfect
pivot metal structures, some properties of the specimens, which at first glance are
underestimated, can be observed. When comparing the measurements for a standard
pivot and a (nominal) perfect pivot specimen, there are considerable differences that
can only be ascribed to the different types of pivots. For this reason, they will
be referred to as quasi-perfect pivots. An extensive explanation of the process of
printing metal pantographic structures is given in [96].

Deformation energy of a pantographic sheet

In the first Chapter of this thesis, it has been illustrated how to reach a macro-
scopic model of second gradient continuum by means of a process of homogenization
(which actually consists in performing a procedure of identification of the energy of
macro-deformation, that is a macroscopic lagrangian density, in terms of constitutive
parameters appearing in the postulated expressions of the microdeformation energy)
of a postulated micromodel.
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5.3.1 The shear energy

The second integral in Eq. (5.1) can be interpreted as a shear deformation energetic
contribution at the macro level. At the micro level it may be associated with pivot
torsional energy. The form of this energy term depends on the angle between the
interconnected fibers by the pivot elevated to a certain power γ: this last parameter
can be obtained from experimental data fitting and in general it depends on the
type of material in which the structure is fabricated. As will be explained below, the
energy of shear can be modeled in other ways too. For example, a model that more
accurately captures phenomenology is due to Ogden [?, 100]. A version of Ogden
shear energy adapted to pantographic structures has been introduced in [?]

Ws(ϑ,J ) = Ks1

(1 +

(
ϑ

ϑ0

)2
)β

− 1


−Ks2(log(J − J0)− (log(1− J0)− J + 1) (5.2)

where ϑ is the angle between the fibers in correspondence of the interconnecting
pivot and J the module of its cosinus, while ϑ0 and J0 are the values of the angle
and of its cosinus in some particular points of the deformation history. These last
two parameters will be described with more precision in a future work. The two
constants Ksi (i = 1, 2) substitute the shear stiffness Ks of Eq. (5.1).

5.3.2 Experiments and numerical simulations: quasi-perfect
pivots (QPP)

Two specimens, one with standard pivots and one with quasi-perfect pivots, were
tested in a BIAS extension test. The two specimens’ shapes are, in the reference
configuration, rectangles of sides L1 = 30mm and L2 = 90mm. An image of the
QPP-sample (Quasi Perfect Pivot sample) can be observed in Fig. 5.10. Both the
specimens are made of 316L stainless steel. Since additive manufacturing does not
produce homogeneous but highly porous samples [101, 102], the mechanical charac-
teristics of the objects tested must be considered different (lower) than those of the
material of which they are made up. The specimens have been created by using the
SLM125HL set-up from SLM solutions. This machine is equipped with a 400W YAG
laser (YLR-400-WC) at a wavelength of 1070 nm. The scanning speed varies from
400 to 1500 mm/s, while the thickness of the powder layer lies in the range between
30 and 100 µm. The minimum diameter of the laser at the focal point is about 70 µm.
The powder employed is 316L stainless steel having spherical particles whose lowest
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Figure 5.10: QPP specimen (a) and details of the pivots (b,c).

Figure 5.11: Schematic description of a BIAS extension test. (a) A pantograhic
structure with no clamping deforms as a truss; (b) when the short sides are clamped,
the bending of the fibers is observed.

diameter is 37 µm (CILAS 920).The manufacturing of the part is preceded by the
proper positioning of the 3D geometry in the printing volume using the MAGICS-
Materialize Software.

BIAS extension test in pantographic structures

A BIAS extension test is simplest experimental test one can perform on pantographic
structures [37] (it is specifically called BIAS extension and not only extension, be-
cause it is performed along a biased direction respect to the fiber direction, see Fig.
5.11). This particular test is performed by tightening the short sides of the panto-
graphic structure to observe the effects of the second gradient. In fact, as it can be
seen in Fig. 5.11, if the short sides are not blocked, then, in theory, a zero strain
energy (a so-called floppy mode) should be measured: up to the point where all the
fibers become parallel the extension energy is zero (or negligible). If the short sides
are not tightened, the bending energy (second gradient) is also cancelled out. This
test was therefore specifically designed to observe the effect of the second gradient
in pantographic structures.
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Ke Kb Ks

EA\p EI\p Gπd4\(32hp2)

Table 5.1: Theoretical expressions for the stiffnesses. E is the Young modulus, G
the shear modulus, A the cross-section of the fibers, I the cross-sectional moment of
inertia. Finally, p is the interdistance between two pivots on the same fiber, d the
diameter and h the height of the pivot.

Figure 5.12: Comparison between the experimental measurements of reaction force
for a pantographic structure with quasi-perfect pivots (blue) and the numerical simu-
lation for a structure with perfect pivots (red, dot-dashed). The numerical simulation
is lower than the experimental measure.

The perfect pivots did not work at a first look

BIAS extension tests were performed for the specimen of Fig. 5.10. The reaction
force versus prescribed displacement was measured and plotted in Fig. 5.12. A first
remark must be done by observing Fig. 5.12: by comparing the measured reaction
force with the theoretically expected one (obtained via numerical simulation with the
prescription that the shear stiffness Ks is zero), it is evident that a substantial part
of the deformation energy (the area under the reaction force curve) is missing in the
numerical simulated case. In other words, we cannot pose the shear stiffness to zero
for the present sample and we cannot say that the pivots are perfect. The theoretical
expressions for the stiffnesses used in the umerical simulations are reported in Tab.
5.1.
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Figure 5.13: Comparison between the experimental measurements of reaction force
for a pantographic structure with standard pivots (blue) and a structure with quasi-
perfect pivots (red, dot-dashed).

Comparison with standard pivots

A second comparison must be done, with the experimental curve relative to a BIAS
extension test of a pantographic structure made of the same material (316L stain-
less steel) but with standard pivots (SP). The comparison of the force-displacement
curves for the two specimens is shown in Fig. 5.13.

An observation can be done immediately. If, on the one hand, it has been re-
marked that the reaction force measured for the specimen with perfect pivots is
significantly higher than that which should be observed if the pivots were really per-
fect, by comparing it with the curve for the standard pivot specimen, it is clear that
the measured force is much lower than in the standard case. In this sense one can
conclude that the perfect pivots are not perfect from the microscopic point of view,
but they are sufficiently perfect, we say quasi-perfect, from a global macroscopic
point of view. The QPP specimen has, infact, a total structural stiffness lower com-
pared to the SP specimen. If the difference between the two mechanical behaviors is
ascribed solely to the pivots, then it makes sense to examine the ratio between the
shear stiffnesses of the two specimens. Both the values are identified by using the
theoretical expressions in Tab. 5.1. We obtain

Ks(QPP )

Ks(SP )
= 0.1 (5.3)

We can therefore conclude that the manufacturing process of perfect pivots has been
partially successful, having produced pivots with torsional stiffness of an order of
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Figure 5.14: Comparison betwen the CAD model (a) of a perfect pivot and its
practical realisation (b) in 316L stainless steel via additive manufacturing.

magnitude lower than the case of standard pivots. The reason for the incomplete
success of the perfect pivots can be easily understood by observing Fig. 5.14 in which
the CAD design of a perfect pivot and its realization by additive manufacturing are
compared. The photo shows precisely the porosity that prevents the mechanism of
the perfect pivot from working properly. In the phase of fabrication, the specimens
were positioned orthogonally to the building platform even though a tilt angle of
45o would have been preferable for the realization of the pivots. Despite the sig-
nificant technological achievements represented by such manufacturing technologies,
the objects obtained are very sensitive to the location and the number of supports
whose inadequate positioning could result in widespread microstructural flaws. Fur-
thermore, the rough surfaces in Fig. 5.14b show porosity which can potentially be
suppressed by heat treatments such as Hot Isostatic Pressing (HIP), resulting in
almost-fully dense metallic alloys [103] (such post processing was not performed on
the samples).
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5.4 Conclusion

In this final Chapter we discussed some aspects concerning the damage and rup-
ture of pantographic structures. The qualitative and phenomenological analyses
presented represent yet another point of contact between pantographic metamaterial
and pantographic-inspired composite material. In fact, in the previous Chapter it
was suggested that the properties of the matrix, which plays a similar role to that
of pivots in pantographic structures, can be modified to describe phenomena such as
damage or rupture in pantographic-inspired composite.
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Conclusion

Collaboration and mutual exchange between different entities always leads to new
and unknown scenarios. The risk of failure when trying to connect distant back-
grounds is very high, but if one succeeds in obtaining a result then the originality
and innovation of the project are guaranteed.

This thesis is the result of the contact between two scientific fields which are
originally very distant: composites (and the relative homogenisation framework by
means of Green’s operators) and metamaterials (which imply the constant introduc-
tion of new models and generalised theories). The idea described above is obviously
very complex and presents several challenges forcing to face very hard mathematical
and technical problems. In this thesis work, we explained the first attempt to achieve
this very ambitious project.

The first chapter of this thesis is dedicated to the description of the pantographic
metamaterial. As we have pointed out many times, the presence of the microstruc-
ture makes it necessary to adopt a second gradient model to take into account all
its exotic effects. The deformation of the pantographic metamaterial is extremely
heterogeneous and it is possible to localize different zones with different deformation
behaviors: the description of the pantographic-inspired composite has been made
only for the homogeneous zones of the structure, not taking into account the inter-
face between these, where the flexion of the fibers is observed and therefore second
gradient contributions are necessary for the mathematical modeling.

In the second chapter we have presented some experimental data about the pan-
tographic structures that motivated the adoption of the homogenization framework
of the Green tensors to model the material of pantographic inspiration.

In chapters 3 and 4, the techniques of Green’s tensor homogenization framework
were applied to research into the actual properties of pantographic-inspired compos-
ite.

In the last chapter a phenomenological analysis of the damage has been ap-
proached. The discussion of the damage is linked to the deformation characteristics
of the interconnecting pivots: this allowed us to make some comparisons with the
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pantograph-inspired material, where the role of the pivots is played by the matrix.
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Appendix A

DIC applied to pantographic
structures

A.1 Application to a BIAS extension test

In the following, a BIAS extension test performed on a steel pantographic structure
is analyzed. In total, a series of 55 pictures will be analyzed for which no damage was
observed. Figure A.1 shows the picture of the initial configuration, and three loaded
configurations corresponding to the 17th, 34th and 51st studied steps. In the present
case, the pivots of the pantograph were marked in black, and a random pattern was
created by spraying black and white paint on the grips. The fact that the grips were
patterned helps the DIC code to converge even though very large displacement levels
occur during the experiment.
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(a) (b)

(c) (d)

Figure A.1: Gray level images of the pantograph in the reference configuration (a),
17th (b), 34th (c) and 51st (d) loading steps

Macro- and mesoscale analyses will be reported in the sequel. For macroscale
analyses, the rectangular region of interest was meshed with T3 elements indepen-
dently of the underlying mesostructure. Such discretizations may then be compared
with numerical simulations performed at the macroscale [2]. Four different mesh
densities were considered (Fig. A.2(a-d)). The characteristic mesh size, which is de-
fined as the square root of the average element surface, was equal to 28 pixels for
the first mesh, 13 pixels for the second one, 8 pixels for the third one, and 6 pixels
for the last. These four meshes will be utilized for convergence analyses of the DIC
results at the macroscale.
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(a) mesh 1 (b) mesh 2

(c) mesh 3 (d) mesh 4

(e) mesh 5 (f) mesh 6

Figure A.2: Finite element meshes overlaid with the gray level picture of the reference
configuration.

Two additional meshes were tailored to the pantograph mesostructure (Fig. A.2(e-
f)). Contrary to the polyamide pantograph for which simple morphological opera-
tions were performed in order to construct the mesoscale mesh from a mask [2], the
procedure was different herein. The starting point was the nominal geometry of the
pantograph, which would be used, say, in FE simulations. From this information, the
mesh was created with Gmsh [104] (Fig. A.3(a)) and a picture of the corresponding
mask (Fig. A.3(b)). A DIC analysis was run between the reference picture and the
mask to deform it so that the mesh can be backtracked onto the actual pantograph
surface. In such an analysis, an auxiliary (coarse) mesh was used (Fig. A.3(c)).
Once the DIC analysis converged, the original mesh was consistent with the actual
geometry of the pantograph (Fig. A.3(d)).
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(a) (b)

(c) (d)

Figure A.3: Illustration of the back-tracking procedure. Initial mesh (a) and cor-
responding mask (b). (c) Reference picture and mesh used to register the mask.
(d) Overlay of back-tracked mesh and reference picture.

This back-tracking procedure was applied to two meshes (Fig. A.3(e-f)). The
corresponding characteristic mesh size is equal to 3.7 and 3.6 pixels, respectively. It is
worth noting that such discretizations can only be considered thanks to regularization
techniques since the correlation length of the pantographic structure is of the order of
10 pixels. Only so-called direct calculations will be reported in which each considered
picture is registered with respect to the reference image. To speed-up convergence,
a first incremental analysis is run in which the reference configuration becomes the
deformed configuration of the previous analysis step. These first results are used
as initialization to the direct registrations. The regularization length was chosen
equal to 30 pixels. The convergence condition on the norm of the mean displacement
correction was set to 10−3 pixel, which is very low since the measured displacement
amplitudes will be significantly higher (i.e. more than 130 pixels in the longitudinal
directions, and ± 50 pixels in the transverse direction).

In global DIC, the registration quality is assessed with gray level residual fields,
which correspond to the pixel-wise gray level difference between the picture in the
reference configuration and the picture in the deformed configuration corrected by
the measured displacement. The quantity to be minimized is the L2-norm of the gray
level residuals over the region of interest [59]. The root mean square (RMS) level is
reported in Fig. A.4 for all six meshes considered herein. The first general tendency
is that the registration quality degrades as more steps are analyzed, thereby signaling
that the measured fields become very complex at the end of the experiment (Fig. A.1).
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Such type of observation was already made for the polyamide pantograph [2, 105].
Second, there is a significant difference between the first four meshes and the last
two. This proves that meshes tailored to the actual pantograph surface better capture
the kinematics of the test, even with the same regularization length as for coarser
meshes. Third, in both cases, a converged solution is obtained in terms of mesh
density with respect to the chosen regularization length. More precisely, meshes 3
and 4 at the macroscale, meshes 5 and 6 at the mesoscale have the same residual
levels. Consequently, there is no need to further refine the discretization with the
chosen regularization length.

Figure A.4: RMS gray level residual as functions of the picture number for the six
meshes shown in Fig. A.2.

In the following discussion, only two sets of results are reported, namely, those
of meshes 4 (at the macroscale) and 6 (and the mesoscale). Figure A.5 shows the
longitudinal and transverse displacements measured for the 17th picture. The trans-
verse displacement field ux shows a very important contraction, which is of the same
order of magnitude as the longitudinal motions uy. Since the width of the sample is
one third of its length, the transverse deformations are much more important than
the longitudinal component. This observation applies to both scales. In the present
case, both measurements have approximately the same quality in terms of overall
registration residuals (Fig. A.4).
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(a) (b)

(c) (d)

Figure A.5: Longitudinal (a-c) and transverse (b-d) displacement fields measured
with meshes 4 (a-b) and 6 (c-d) for the 14th picture. The fields are shown on the
deformed configuration.

In Fig. A.6 the same fields are shown for the 34th picture. The main features of
the transverse and longitudinal displacement fields are identical to the previous step,
yet with higher overall levels. The displacement ranges still are of the same order
of magnitude for the longitudinal and transverse displacements. Consequently the
central part of the sample is thinner. The deformed shapes are very close for both
meshes, which translates into the same levels of registration residuals (Fig. A.4).
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(a) (b)

(c) (d)

Figure A.6: Longitudinal (a-c) and transverse (b-d) displacement fields measured
with meshes 3 (a-b) and 4 (c-d) for the 34th picture. The fields are shown on the
deformed configuration.

One of the last steps is reported in Fig. A.7. In that case the gray level residuals
(Fig. A.4) are significantly higher for mesh 4 (at the macroscopic scale) in com-
parison with mesh 6 (at the mesoscopic scale). There is a clear difference in the
deformed shape whose width is lower for the mesoscopic analysis in comparison with
the macroscopic result. The highly deformed region has grown toward both ends of
the pantographic sheet, which can be understood by the fact that when struts touch
each other, the deformation mechanism moves away from these zones.
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(a) (b)

(c) (d)

Figure A.7: Longitudinal (a-c) and transverse (b-d) displacement fields measured
with meshes 3 (a-b) and 4 (c-d) for the 51th picture. The fields are shown on the
deformed configuration.

The results reported herein confirm that DIC analyses can be run on pantographic
structures at macroscopic scales [2, 105] and mesoscopic levels [2] with regularized
DIC on very fine meshes (i.e. down to 3.6 pixel elements). Important gains were
observed in terms of registration quality by moving from the macroscopic to the
mesoscopic scale (i.e. more than a factor of one and a half at the end of the picture
series). The final gray level residuals indicate that even more advanced approaches
should be followed. What is missing in the mesoscopic analysis is the special kine-
matics provided by the pivots.

A.2 Application to a shear test

Shear tests have also been reported for pantographic structures [97]. This second
example deals with 1,000 pictures with an 8-bit digitization and a definition of 1388×
1038 pixels. The physical size of one pixel is equal to 110 µm. The first part of the
experiment was monitored very finely, and then the acquisition rate was decreased
(Figure A.8(a)).
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(a) (b)

(c) (d)

Figure A.8: (a) Mean transverse displacement of the crosshead. The black symbols
depict the two states that are analyzed hereafter. (b) RMS gray level residuals for
the whole image sequence. Meshes at the macro- (c) and meso- (d) scales overlaid
on top of the image of the reference configuration.

In the following DIC analyses, the two scales of measurements are discussed. The
mesh at the macroscopic level encompasses the whole pantograph and a small part of
the grips (Figure A.8(c)). The mean characteristic mesh size was equal to 10 pixels.
Conversely, the mesh at the mesoscale only covers the external surface of the pan-
tograph (Figure A.8(d)). Its characteristic size was equal to 5 pixels on average. It
was backtracked by following the same procedure as in the BIAS test. In the present
case, the regularization length was equal to 75 pixels (i.e. higher than in the previous
case) since the regularization strategy was now applied to incremental displacements
(i.e. Hencky-type elasticity) and not to total displacements. When studying the gray
level residuals, there is a gradual degradation as the applied displacement increases.
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This trend shows that the selected kinematic bases and regularization strategy are
not able to fully describe the experiment. Contrary to the previous, there are clearer
differences between macroscopic and mesoscopic kinematic bases, namely, the former
leading to higher residuals than the latter.

Figure A.9 shows the displacement fields measured for the 545-th picture (Fig-
ure A.8(a)), which are overlaid on top of the picture in the deformed configuration.
Even though the gray level residuals were higher than those at the very early stages
of the experiment (Figure A.8(b)), the results are still reasonably consistent with the
underlying mesostructure. In terms of overall pattern, the mesoscopic and macro-
scopic fields are close.
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(a) (b)

(c) (d)

Figure A.9: Transverse (a-b) and longitudinal (c-d) displacement fields measured
with macro (a-c) and meso (b-d) meshes for the 545th picture. The fields are overlaid
on top of picture in the deformed configuration.

The gray level residual fields are reported in Figure A.10 for the two types of
discretizations. Significant differences are observed between the two fields. The
mesostructure appears in the residuals of the macroscopic calculations (Figure A.10(a)).
This observation proves that the macroscopic kinematics does not fully capture the
actual sample deformation. Conversely, the mesoscopic kinematics better describes
the underlying deformation process. As a consequence, the gray level residuals are
lower than those observed with the macroscopic mesh (Figure A.10(b)).
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(a) (b)

Figure A.10: Gray level residual fields with the macro (a) and meso (b) meshes
for the 545th picture. The fields are overlaid on top of picture in the deformed
configuration.

Green Lagrange strain fields are reported in Figure A.11 for both discretiza-
tions. It is interesting to note that even though elastic regularization was consid-
ered, some details of the mesostructure appear in the macroscopic fields associated
with the normal strain components (Figure A.11(a,c). The shear strain levels (Fig-
ure A.11(e) remain rather small in comparison with the normal strain amplitudes
(Figure A.11(a,c)). The mesoscopic mesh, which is more closely related to the under-
lying mesostructure, enables higher strain magnitudes to be measured in comparison
with the macroscopic discretization.
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(a) (b)

(c) (d)

(e) (f)

Figure A.11: Normal transverse (a-c), longitudinal (b-d) and shear (e-f) strain fields
measured with macro (a-c) and meso (b-d) meshes for the 545th picture. The fields
are overlaid on top of picture in the deformed configuration.153



One of the last step of the experiment (ie 965-th picture, see Figure A.8(a)) is
now analyzed. This configuration is significantly deformed and leads to a crosshead
displacement level greater than 60 % of the sample height. The displacement field
pattern is again similar for macroscopic (Figure A.12(a,c)) and mesoscopic analyses
(Figure A.12(b,d)).

(a) (b)

(c) (d)

Figure A.12: Longitudinal (a-c) and transverse (b-d) displacement fields measured
with meshes 3 (a-b) and 4 (c-d) for the 965th picture. The fields are shown on the
deformed configuration.

The gray level residual field corresponding to the macroscopic discretization (Fig-
ure A.13(a)) indicates that the kinematic description is too crude to properly cap-
ture local details. This phenomenon leads to overall levels that are about two times
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higher than the mesoscopic analysis (Figure A.8(b)). At the end of the analysis, the
mesoscopic mesh and corresponding discretization of the displacement field is more
trustworthy than the macroscopic mesh. Even though the mesoscopic mesh is better
suited, it still does not fully capture the actual deformation (Figure A.13(b)). An
even more detailed description is need (eg describing the local kinematics around
pivots).

(a) (b)

Figure A.13: Gray level residual fields with the macro (a) and meso (b) meshes
for the 965th picture. The fields are overlaid on top of picture in the deformed
configuration.

Green Lagrange strain fields are shown in Figure A.11 for the two different dis-
cretizations. Significant differences are observed in any of the reported fields, except
in the areas close to the grips where the pantograph does not deform too much.
It is worth noting that the strain levels are higher with the mesoscopic mesh in
comparison with the macroscopic discretization.
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(a) (b)

(c) (d)

(e) (f)

Figure A.14: Normal transverse (a-c), longitudinal (b-d) and shear (e-f) strain fields
measured with macro (a-c-e) and meso (b-d-f) meshes for the 965th picture. The
fields are overlaid on top of picture in the deformed configuration.156



Appendix B

The mean Green interaction
operator between two infinite
parallel cylinders.

Main calculation steps are in part A1, additional calculation details are given in parts
A2 and A3.

B.1 Integrals for two ellipsoids

For two ellipsoids V1, V2 (of volume v1 and v2 respectively), with centers I1,I2 at
distance ±Lfrom the frame origin O along the x3 axis, the weight function to be
calculated reads:

ψV1,V2
v (ω)=

´ zmax
(ω)

zmin
(ω)

2(sV1
′(z+ηω ,ω)sV2

′(z−ηω ,ω))
8π2v

dz=
P(1,2)

D1(ω)3D2(ω)3

(
z3

3
− η2

ωz
)zmax

(ω)

zmin
(ω)

(B1.1),

with P(1,2) = 9v1v2
16π2(v1+v2)

. s′Vi(z,ω) is the first z-derivative of the section area of Vi

by the plane of equation z = ω.r, D1(ω) is the breadth of Vi in direction ω = (θ, φ)
and ηω = L cos θ. The direction ω = (0, φ) corresponds ∀φ to the x3 axis around
which θ is counted and φ runs in the x1-x2 plane from 0 along direction x1. Taking
ηω positive corresponding to the half θ ∈ (0, π/2) domain, Eq. B1.1 yields, with{

zmin, zmax
}

= {η −D2,D1 − η} for 0 ≤ η ≤ (D1 + D2) /2 (the ω-dependencies are
here omitted for brevity) and with D1(ω) = D2(ω) = D0(ω) ∀ω when V1=V2=V0:

ψV1,V2
v (ω) =

P(1,2)

D1
3D2

3

(
D1

3

3
+ D2

3

3
− η (D1

2 + D2
2) + 4η3

3

)
, ∀φ (B1.2).

For spheroids of semi axes (a, c, a) with (c//x2), aspect ratio ζ = c/a > 1 and

volume v0 = 4πa3ζ/3 such that P(1,2) = P = 9v0
2

16π2(2v0)
= 3a3ζ

8π
, the breadths read
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D0(θ, φ) = a
√

1 + (ζ2 − 1) sin2 φ sin2 θ = a
√

1 + (λ2(φ)− 1) sin2 θ and the interior
and interaction weight functions:
ψζ−sph

x2 (θ, φ) = 1
4π

ζ

(1+(ζ2−1) sin2 φ sin2 θ)
3/2 = 1

4π
ζ

(1+(λ(φ)2−1) sin2 θ)
3/2 (B1.3a),

ψ2sphζ
x2(x1) (θ, φ) =

P

D0
6 (θ, φ)

(
2D0

3 (θ, φ)

3
− 2η(θ,φ)D0 (θ, φ)2 +

4η(θ,φ)
3

3

)

= ζ
4π

(
1

(1+(λ(φ)2−1) sin2 θ)
3/2 − 3 L cos θ

a(1+(λ(φ)2−1) sin2 θ)
2 + 2 L3 cos3 θ

a3(1+(λ(φ)2−1) sin2 θ)
3

)
(B1.3b).

Eq. B1.3b can be formally written:

ψ2sphζ
x2(x1) (θ, φ) = I0,0

2sphζ =
∑3

i(m,n)=1 F
0,0
i(m,n)(θ, φ) =

∑3
i(m,n)=1

ζ
4π
Ki(m,n)

cosm θ

(1+(λ(φ)2−1) sin2 θ)
n

(B1.4),
the three elements i(m,n) = 1, 2, 3 of which correspond to (m,n) = (0, 3/2), (1, 2), (3, 3)
and with the appropriate coefficients, Ki(m,n) = 1, −3L/a = −3/ρ0 and 2(L/a)3 =

2/ρ0
3 as appearing. For an isotropic reference matrix, the integrals to be calculated

belong to the set ([44,22]):

Ip,q2sphζ =
∑3

i(m,n)=1 I
p,q
i(m,n) =

∑3
i(m,n)=1

(´ 2π

φ=0
2
´ π/2
θ=θmin

F p,q
i(m,n)(θ, φ) sin θdθdφ

)
, p, q =

0, 1, 2 (B1.5),
where: F p,q

i(m,n)(θ, φ) = ζ
4π
Ki(m,n)

cosm θ

(1+(λ(φ)2−1) sin2 θ)
n cos2p θ cos2q φ (B1.6).

The value of θminwhich depends on φ corresponds with tan(θmin) = tan(θ(φ)min) =
1

λ(φ)

√
L2−a2
a2

. θmin = 0 when L = a (contact) for all φ angles. Then, with 1 +

tan2(θmin) = cos−2(θmin), it comes:

cos(θ(φ)min) =
√

λ2(φ)
(λ2(φ)−1)+(L2/a2)

= ρ0λ(φ)√
ρ02λ2(φ)+(1−ρ02)

= ρ(φ) ≤ ρ0 ≤ 1 (B1.7).

The case p, q = 0, 0 in Eqs B1.5,B1.6 corresponds to the integrals of the elements
of the mean pair interaction weight function itself in Eq. B1.1, for which we know

that they always fulfil together the null value
´ 2π

φ=0
2
´ π/2
θ=θmin

ψV1,V2
v (θ, φ) sin θdθdφ =∑3

i(m,n)=1

(´ 2π

φ=0
2
´ π/2
θ=θmin

F 0,0
i(m,n)(θ, φ) sin θdθdφ

)
= 0.

As will appear next on, for parallel infinite cylinders, only the cases p = 0, 1, 2 with
q = 0 suffice to obtain all the interaction operator terms, say nine double integrals
of the form:

Ip,0i(m,n) =

ˆ 2π

φ=0

2

ˆ π/2

θ=θmin

F p,0
i(m,n)(θ, φ) sin θdθdφ = 8

ˆ π/2

φ=0

ˆ π/2

θ=θmin

F p,0
i(m,n)(θ, φ) sin θdθdφ

= 8ζ
4π
Ki(m,n)

´ π/2
φ=0

´ π/2
θ=θmin

(
cosm θ

(1+(λ(φ)2−1) sin2 θ)
n cos2p θ

)
sin θdθdφ (B1.8).
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The variable and notation changes cos θ = x and λ(φ)2−1 = α(φ)−2 ≥ 0 (for prolate
spheroids) yield:

Ip,0i(m,n) =
2ζ

π
Ki(m,n)

ˆ π/2

φ=0

(
α(φ)2n

ˆ xmx

x=0

xm+2p(
1 + α(φ)2 − x2

)ndx

)
dφ =

2ζ

π
Ki(m,n)

ˆ π/2

φ=0

Gp,0
m,n(α(φ))dφ,

(B1.9) where xmx = xmax(φ) = cos(θ(φ)min) = ρ(φ). The calculation steps for the

nine x-integrals Gp,0
m,n(α(φ)) are given in part B.2. Also using xmx

2 = ρ02(1+α(φ)2)

ρ02+α(φ)2

and xmx2

1+α(φ)2−xmx2
= ρ02

α(φ)2
arrives at:

G0,0
0,3/2(α(φ)) = α(φ)2

1+α(φ)2
ρ0 (B1.10a),

G1,0
0,3/2(α(φ)) = α(φ)3

(
ρ0
α(φ)
− tan−1

(
ρ0
α(φ)

))
(B1.10b),

G2,0
0,3/2(α(φ)) =

(α(φ)3+α(φ)5)
2

(
ρ0α(φ)

ρ02+α(φ)2
+ 2 ρ0

α(φ)
− 3 tan−1

(
ρ0
α(φ)

))
(B1.10c),

G0,0
1,2(α(φ)) = α(φ)2

1+α(φ)2
ρ02

2
(B1.11a),

G0,0
3,3(α(φ)) = α(φ)2

1+α(φ)2
ρ04

4
(B1.11b),

G1,0
1,2(α(φ)) = α(φ)4

2

(
ρ02

α(φ)2
− ln

(
ρ02+α(φ)2

α(φ)2

))
(B1.12a),

G1,0
3,3(α(φ)) = α(φ)6

2

(
1
2
ρ04

α(φ)4
− ρ02

α(φ)2
+ ln

(
α(φ)2+ρ02

α(φ)2

))
(B1.12b),

G2,0
1,2(α(φ)) =

(α(φ)4+α(φ)6)
2

(
ρ02

α(φ)2
+ ρ02

ρ02+α(φ)2
− 2 ln

(
α(φ)2+ρ02

α(φ)2

))
(B1.13a),

G2,0
3,3(α(φ)) =

(α(φ)6+α(φ)8)
2

(
1
2
ρ04

α(φ)4
+ 3 ln

(
ρ02+α(φ)2

α(φ)2

)
− ρ02

ρ02+α(φ)2
− 2 ρ02

α(φ)2

)
(B1.13b).

Eqs B1.10-B1.13 also hold for more general ellipsoids than x2-oriented spheroids
(β = 1) , using λ(φ)2 − 1 = α(φ)−2 = (ζ2 − β2) sin2 φ + (β2 − 1) ≥ 0 in Eq. B1.3
and following ones. At the sphere pair limit (β = 1, ζ = 1), the φ integrals becomes
independent of θ and simply amounts to multiplying the functions Gp,0

m,n(α) by a
factor π/2in Eq. B1.9 with the value for α being its infinite limit. Taking the
α→∞ (or ᾱ→ 0) limits in Eqs B1.10-B1.13 well provides the sphere pair expected
values, as recalled in part B.2 (elliptic cross sections β 6= 1 yield a (β, 1, 1) spheroid
pair limit).
Back to the x2-oriented spheroids, the second φ integrations in Eq. B1.9 with using
the functions Gp,0

m,n(α(φ)) are solved using a second (φ to α) variable change from

α(φ)2 = 1
λ(φ)2−1

= sin−2(φ)
ζ2−1

, what yields
d(α(φ)2)

dφ
= −2 sin−3(φ)

ζ2−1
cos(φ) = −2α(φ)2

tan(φ)
such
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that dφ = − tan(φ)dα
α

with tan(φ) = ((ζ2 − 1)α2 − 1)
−1/2

. That finally arrives at dφ

= − ((ζ2 − 1)α2 − 1)
−1/2

(dα/α). The reference integral form becomes (the minus
sign on dφ vanishes when inverting the integration bounds on α):

Ip,0i(m,n)=
2ζ
π
Ki(m,n)

´ π/2
φ=0

Gp,0
m,n(α(φ))dφ=2ζ

π
Ki(m,n)

´∞
α=(ζ∞2−1)−1/2

Gp,0m,n(α)√
(ζ2−1)α2−1

dα
α

(B1.14a).

This complicated integral type simplifies for infinite cylindrical fibers ζ →∞ as:

ζ∞Ip,0i(m,n) =

2
π

K
i(m,n)

ζ∞√
ζ∞2−1

´∞
α=(ζ∞2−1)−1/2

Gp,0m,n(α)√
α2−(ζ∞2−1)−1

dα
α
→ 2

π
Ki(m,n)

´∞
α=0

Gp,0m,n(α)

α
dα
α

(B1.14b).

After some more manipulations summarized in part B.3, analytical solutions (either
from the direct α integration or in terms of its inverse ᾱ = 1/α, since

´∞
α=0

Gp,0
m,n(α) (dα/α2) =´∞

ᾱ=0
Gp,0
m,n(ᾱ)dᾱ), are obtained (infinite elliptic fibers, β 6= 1 and ζ →∞, here disre-

garded can be treated similarly).
The variable change from φ to α highlights why integrals of Eq. B1.9 with q = 1, 2

as Ip,qi(m,n) = (2ζ/π)Ki(m,n)

´ π/2
φ=0

Gp,q
m,n(α(φ)) cos2q (φ)dφ are equal to the corresponding

Ip,0i(m,n) integral when ζ → ∞: with using cos2q (φ) =
(

1− 1
(ζ2−1)α2

)q
, Eq. B1.14a

becomes:
ζ∞Ip,qi(m,n) = 2

π

K
i(m,n)

ζ∞√
ζ∞2−1

´∞
α=(ζ∞2−1)−1/2

Gp,0m,n(α)√
α2−(ζ∞2−1)−1

(
1− 1

(ζ∞2−1)α2

)q
dα
α

(B1.15).

When ζ →∞, this additional factor equals unity for any non zero α value and does
not affect the integral such that limζ→∞ I

p,q
i(m,n) = limζ→∞ I

p,0
i(m,n), q = 1, 2. For the

same reason, as is easily verified for the integrals that correspond to the terms of the
cylinder interior weight function and interior operator, which are known from direct

simple calculation, one has limζ→∞ (2ζ/π)Ki(m,n)

´ π/2
φ=0

Gp,q
m,n(α(φ)) sin2q (φ)dφ = 0.

B.2 The nine x-integrals Gp,0
m,n(α(φ))

Integrals with regard to x = cos θ. With n = 3/2, one obtains, taking u = x√
1+α2 :

1◦) G0,0
0,3/2(α) = α3

´ xmx
0

1

(1+α2−x2)3/2
dx = α3

1+α2

´ umx
0

1

(
√

1−u2)
3 du = α3

1+α2
umx√

1−umx2

= α3

1+α2

√
xmx2

1+α2−xmx2
= α3

1+α2
ρ0
α

= ρ0
α2

1+α2 ; Sphere limα→∞ = ρ0 (B2.1).

2◦)G1,0
0,3/2(α) = α3

´ xmx
0

1

(1+α2−x2)3/2
x2dx = α3

´ umx
0

1−(1−u2)
(1−u2)3/2

du = α3
(

umx√
1−umx2

− sin−1(umx)
)

= α3
(√

xmx2

1+α2−xmx2
− sin−1

(√
xmx2

1+α2

))
= α3

(
ρ0
α
− tan−1

(
ρ0
α

))
; Sphere limᾱ→0 = ρ03

3
(B2.2).
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In Eq. A2.2 we have used sin−1
(√

ρ02

ρ02+α2

)
= tan−1

(
ρ0
α

)
.

3◦) G2,0
0,3/2(α(φ)) = α3

´ xmx
0

1

(1+α2−x2)3/2
x4dx = α3 (1 + α2)

(´ umx
0

(1−u2)
2
+2u2−1

(1−u2)3/2
du

)
= α3

(
1 + α2

)(1

2

(
sin−1(umx) + umx

√
1− umx2

)
− 2 sin−1(umx) +

umx√
1− umx2

)

= α3
(
1 + α2

) 1

2

(√
xmx2

1 + α2

√
1− xmx2

1 + α2
+ 2

√
xmx2

1 + α2 − xmx2
− 3 sin−1

(√
xmx2

1 + α2

))
= (α3 + α5) 1

2

(
ρ0α

ρ02+α2 + 2ρ0
α
− 3 tan−1

(
ρ0
α

))
; Sphere limᾱ→0 = 0ρ0

3 + ρ05

5
(B2.3).

For the 6 remaining integrals (with n = 2 and n = 3), taking the variable change
z = x2

1+α2 yields:

4◦)G0,0
1,2(α(φ)) = α4

´ xmx
0

x
(1+α2−x2)2

dx = α4

2(1+α2)

´ zmx
0

(1− z)−2 dz = α4

2(1+α2)

(
(1− zmx)

−1 − 1
)

= α4

2(1+α2)

(
xmx2

1+α2−xmx2

)
= α4

2(1+α2)
ρ02

α2 = α2

2(1+α2)
ρ0

2 ; Sphere limα→∞ = ρ02

2
(B2.4).

5◦) G0,0
3,3(α(φ)) = α6

´ xmx
0

x3

(1+α2−x2)3
dx = α6

2(1+α2)

´ zmx
0

z
(1−z)3

dz

=
α6

2 (1 + α2)

(ˆ zmx

0

dz

(1− z)3 −
ˆ zmx

0

dz

(1− z)2

)
=

α6

2 (1 + α2)

(
1

2

(
(1− zmx)

−2 − 1
)
−
(
(1− zmx)

−1 − 1
))

= 1
2

(
xmx2

1+α2−xmx2

)2

= α6

2(1+α2)
1
2

(
ρ02

α2

)2

= α2

4(1+α2)
ρ0

4 ; Sphere limα→∞ = ρ04

4
(B2.5).

6◦)G1,0
1,2(α(φ)) = α4

´ xmx
0

x
(1+α2−x2)2

x2dx = α4

2

´ zmx
0

z
(1−z)2

dz = α4

2

(
zmx

1−zmx
+ ln (1− zmax)

)
= α4

2

(
xmx2

(1+α2)−xmx2
+ ln

(
(1+α2)−xmx2

1+α2

))
=α4

2

(
ρ02

α2 − ln
(
ρ02+α2

α2

))
;Sphere limᾱ→0 = ρ04

2
(B2.6)

7◦) G1,0
3,3(α(φ)) = α6

´ xmx
0

x3

(1+α2−x2)3
x2dx = α6

2

´ zmx
0

z2

(1−z)3
dz = α6

2

´ zmx
0

1−2(1−z)+(1−z)2

(1−z)3
dz

=
α6

2

(
zmx (2− zmx)

2 (1− zmx)
2 − 2

zmx
1− zmx

− ln (1− zmx)

)
=
α6

2

(
xmx

2 (3xmx − 2(1 + α2))

2 (1 + α2 − xmx2)2 − ln

(
1 + α2 − xmx

2

1 + α2

))
= α6

2

((
1
2
ρ04

α4

)
−
(

ln
(

α2

α2+ρ02

)
+ ρ02

α2

))
; Sphere limᾱ→0 = ρ06

6
(B2.7).

8◦) G2,0
1,2(α(φ)) = α4

´ xmx
0

x
(1+α2−x2)2

x4dx =
α4(1+α2)

2

´ zmx
0

1
(1−z)2

z2dz

=
α4 (1 + α2)

2

ˆ zmx

0

1− 2 (1− z) + (1− z)2

(1− z)2 dz =
α4 (1 + α2)

2

(
xmx

2

(1 + α2)− xmx2
+ 2 ln

(
(1 + α2)− xmx

2

1 + α2

)
+

xmx
2

1 + α2

)
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=
(α4+α6)

2

(
ρ02

α2 + ρ02

ρ02+α2 − 2 ln
(
α2+ρ02

α2

))
; Sphere limᾱ→0 = 0ρ0

4 + ρ06

3
(B2.8).

9◦) G2,0
3,3(α(φ)) = α6

´ xmx
0

x3

(1+α2−x2)3
x4dx =

α6(1+α2)
2

´ zmx
0

z3

(1−z)3
dz

=
α6 (1 + α2)

2

(
zmx (2− zmx)

2 (1− zmx)
2 − 3

zmx
1− zmx

− 3 ln (1− zmx)− zmx

)

=
α6 (1 + α2)

2

(
xmx

2 (5xmx
2 − 4(1 + α2))

2 ((1 + α2)− xmx2)2 − 3 ln
(
(1 + α2)− xmx

2
)
− (1 + α2)xmx

2

)
=

(α6 + α8)

2

(
1

2

ρ0
4

α4
+ 3 ln

(
ρ0

2 + α2

α2

)
− ρ0

2

ρ0
2 + α2

− 2
ρ0

2

α2

)
;Sphere lim

ᾱ→0
= 0ρ0

6+
ρ0

8

8

(B2.9)

B.3 Integrals with regard to α =
(
(ζ2 − 1)sin2φ

)−1/2

Integrals with regard to α =
(
(ζ2 − 1)sin2φ

)−1/2
, also using κ = α/ρ0, at limit .

1◦) ζ
∞
I0,0

0,3/2 = 2
π
K1(0,3/2)

´∞
α=0

G0,0
0,3/2

(α)

α
dα
α

= 2
π
(??)
´∞
α=0

(
α2

1+α2ρ0

)
dα
α2 = 2ρ0

π

´∞
0

(
1

1+α2

)
dα

= 2ρ0
π

π
2

= ρ0 ; Contact limρ0→1 = 1 (B3.1).

2◦) ζ∞I1,0
0,3/2 = 2

π
K1(0,3/2)

´∞
α=0

G1,0
0,3/2

(α)

α
dα
α

= 2
π
(??)
´∞
α=0

(
α3
(
ρ0
α
− tan−1

(
ρ0
α
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Appendix C

Angular relations for the
pantographic structure’s deformed
axial and transverse states

In the extension case, for a θ angle in the central zone given by the extension amount,
identically the strained four lateral zones correspond to a θ′ angle equal to 0.5(θ +
π/4). The in-plane bending angle of the two fiber families is simply β = π/4− θ.

In the shear case, corresponding to a D transverse displacement of point P with
regard to point R (and no extension), one has γ = D/(L

√
2) and the solid body rota-

tion is r=atan(γ). The θ angle for the central zone is given from cos θ =
√

(1 + γ2)/2

When γ or r is zero, there is no deformation and cos θ = 1/
√

2 = cos(π/4).
The two types of lateral zones correspond to an angle 0.5(θ+π/4) ± r and the two
in-plane bending angles for the fiber families are π/4− θ± r, that is in both case the
extension values with adding or substracting the rigid body rotation. A more gen-
eral in-plane deformation combining extension and shear can be analyzed similarly.
Pantographs with more zones than a single central one between two triangular ends
and four lateral parts can be schematized in similar yet more complicated manner.
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