

Développement de la DGT-organique pour l'échantillonnage intégratif passif de micropolluants organiques, dont les ionisables, dans les eaux

Bertille Bonnaud

► To cite this version:

Bertille Bonnaud. Développement de la DGT-organique pour l'échantillonnage intégratif passif de micropolluants organiques, dont les ionisables, dans les eaux. Chimie organique. Université de Lyon, 2020. Français. NNT: 2020LYSE1097. tel-03358118

HAL Id: tel-03358118 https://theses.hal.science/tel-03358118v1

Submitted on 29 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

N°d'ordre NNT : 2020LYSE1097

THESE de DOCTORAT DE L'UNIVERSITE DE LYON

opérée au sein de l'Université Claude Bernard Lyon 1

ÉCOLE DOCTORALE DE CHIMIE

Soutenue publiquement le 04 juin 2020, par :

Bertille Bonnaud

Développement de la DGT-organique pour l'échantillonnage intégratif passif de micropolluants organiques, dont les ionisables, dans les eaux

Devant le jury composé de :

M. Gilles Guibaud	Professeur, Université de Limoges	Rapporteur
Mme. Hélène Fénet	Professeure, Université de Montpellier	Rapportrice
Mme. Adèle Bressy	Chargée de recherche, École des Ponts ParisTech	Examinatrice
M. Jean-Marc Chovelon	Professeur, Université Lyon 1	Examinateur
M. Nicolas Estoppey	Maître Assistant, Université de Lausanne	Examinateur
Mme. Catherine Gonzalez	Professeure, IMT Mines Alès	Examinatrice
Mme. Cécile Miège	Directrice de recherche, INRAE Lyon	Directrice de thèse
M. Nicolas Mazzella	Ingénieur de recherche, INRAE Bordeaux	Directeur de thèse

Remerciements

Je remercie tout d'abord Éric Rochard et Gilles Pinay pour m'avoir permis d'effectuer ma thèse à INRAE au sein des équipes EABX et RiverLy.

Je remercie vivement Nicolas Mazzella et Cécile Miège, , co-directeur et co-directrice de cette thèse, de m'avoir fait confiance et de m'avoir accompagnée tout au long de ce travail. Nicolas, merci pour ton soutien scientifique, tes idées lumineuses mais également pour ta patience face à mes nombreuses questions. Cécile, merci de m'avoir soutenue dans les moments les plus difficiles et d'avoir tout fait pour me pousser à voir le côté positif de mes résultats. Merci pour votre patience, vos nombreux conseils et vos encouragements, surtout pendant ces derniers longs mois de rédaction. Sans vous, cette thèse ne serait pas ce qu'elle est.

Je remercie les membres du jury : Hélène Fénet et Gilles Guibaud d'avoir accepté d'être les rapporteurs de cette thèse. Je remercie également Adèle Bressy, Jean-Marc Chovelon, Nicolas Estoppey et Catherine Gonzalez d'avoir accepté d'examiner cette thèse.

Un immense merci aux membres de mon comité de pilotage, Angel Belles, Aymeric Dabrin, Vincent Fauvelle, Chrystelle Margoum, Jérôme Randon et Emmanuelle Uher, pour vos nombreuses idées, pour les discussions scientifiques et pour votre soutien.

A Bordeaux, je remercie l'unité EABX et plus particulièrement l'équipe Ecovea pour leur soutien et leur bonne humeur. Je remercie Aurélie, Brigitte et Mélissa pour leur aide sur les manipulations. Un immense merci à Aurélie, pour ton aide sur la LC, sans toi j'y aurais sans doute mis le feu. Merci de m'avoir appris à la gérer (presque) toute seule et d'avoir été là, même à distance, pour les situations de crises. Je tiens également à remercier particulièrement Marie, David et Sébastien pour leur grande aide sur R. Sans vous, je n'aurais pas réussi à faire tout ça. Merci de m'avoir fait connaitre les packages « magiques » et d'avoir rendu mes script plus jolis (oui, c'est important pour moi).

À Lyon, je remercie toute l'unité RiverLy et plus particulièrement l'équipe du LAMA pour leur accueil chaleureux pendant mes plus ou moins grandes périodes sur Lyon. Merci à tous pour votre aide. Je remercie tout particulièrement Amandine pour toutes les analyses hormones et pharmaceutiques. Merci d'avoir été aussi efficace, toujours dans la bonne humeur malgré la tonne d'échantillons et les problèmes d'analyse. Je remercie également Pierre, pour son gros travail sur la calibration. Sans toi, cette manipulation n'aurait pas été la même. Merci pour ta ténacité et ta motivation.

Merci à tous pour votre présence et votre bonne humeur, au laboratoire comme sur le terrain. Merci également à toutes les personnes qui m'ont accompagnée administrativement (déménagement ou pas déménagement ?). Merci pour les moments de détente, les gâteaux et chocolats, les jeux de sociétés, les mots fléchés, les pliages (« ce n'est ni fait ni à faire »), les pauses thés (au soleil) et tous les autres moments que j'ai tant apprécié passer à vos côtés. Merci à tous d'avoir toujours été là pour moi, cette thèse n'aurait pas été la même sans vous. Je voudrais remercier particulièrement l'équipe « Caves » : Marion, Betty, Léa, Léna, Mathieu, Thibault, Julie, Hamidou, Vincent, Caroline, Mélanie, Guillaume et tous ceux qui nous ont accompagnés. Merci pour tous ces bons moments avec vous autour d'une bière (ou de plusieurs... Et de saucisson, d'olives et de cacahuètes) ou d'une raclette (tous les mois, même en pleine canicule – cette tradition me manque déjà, à quand la prochaine ?). Merci d'avoir mis tant de bonne humeur dans ma vie pendant ces trois ans. Un grand merci à Betty et Marion, les blondasses qui ont éclairé mes deux premières années de thèse. Merci mes biquettes-licornes-pailletées pour le soutien sans faille, les fous rires, les soirées pyjama, les vacances. Merci à Léa d'avoir été ma Penny et ma Pétale. Merci de m'avoir changé les idées aussi souvent et d'avoir toujours été là pour moi. Merci de m'avoir remise au sport, tu es la meilleure coach que je puisse avoir. Merci d'avoir mis tant d'amour et de gentillesse dans ma vie (mais tu sais déjà tout le bien que je pense de toi). Merci à tous pour votre présence quoiqu'il arrive.

Enfin, je tiens à remercier tous ceux et toutes celles hors INRAE, qui m'ont soutenue pendant ces trois ans de thèse. Un grand merci au crew « Sinleuhlâffaurhé », pour les weekends aux quatre coins de la France, ça m'a fait un bien fou. Merci d'être toujours à mes côtés après tant d'années (non, on ne comptera pas) et pour votre soutien. Je remercie tout spécialement les lyonnaises de m'avoir toujours très bien accueillie chez vous et d'avoir céder à mes envies de gyozas. Merci pour votre soutien sur les derniers mois. Je remercie également les gros et les grosses pour toutes ces soirées parisiennes (entre autres), les franciliens et les suisses pour les moments passés ensemble.

Je tenais également à remercier Jean-Baptiste, Christine et Caroline de m'avoir accueillie (quasiment tous les week-end) et soutenue pendant ces trois années. Je remercie vivement ma famille et en particulier mes parents, Laure et Christian, mes deux poussins, Choch et Mette, et mes grands-parents d'avoir été là pour moi tout au long de cette thèse. Merci de m'avoir encouragée et d'avoir toujours cru en moi. Vous avez été d'un grand (ou plutôt d'un immense) soutien.

Enfin, merci Félix. Merci d'avoir été là pour moi du début à la fin, merci de m'avoir rassurée (« ça va aller ») et d'avoir tout fait pour rendre ces trois ans (et quelques mois) plus facile. Merci d'avoir été le meilleur partenaire de confinement qu'on puisse avoir en fin de rédaction de thèse. Promis promis.

Résumé

La technique de l'échantillonnage intégratif passif (PS) a été développée dans le but de permettre une meilleure quantification des niveaux de contamination des micropolluants dans les milieux environnementaux. En effet, ces derniers permettent entre autre d'obtenir des concentrations pondérées sur le temps. Le POCIS (Polar Organic Chemical Integrative Sampler) est le PS le plus utilisé aujourd'hui, en particulier pour les composés hydrophiles. Il présente cependant certaines limitations concernant les composés ioniques et reste sensible aux conditions environnementales telles que la vitesse du courant et la température. Comme alternative au POCIS, la technique DGT (diffusive gradient in thin film) a été adaptée pour l'échantillonnage des contaminants organiques (o-DGT). Comme décrit dans cette thèse, de nombreux travaux ont montré que cette technique conviendrait davantage à l'échantillonnage de nombreux composés organiques, y compris les composés ionisables et très polaires. L'objectif de cette thèse était de développer un o-DGT permettant d'échantillonner un grand nombre de composés organiques comprenant des pesticides, hormones et des résidus pharmaceutiques.

Dans le cadre de cette thèse, les coefficients de diffusion ont été déterminés pour 117 composés organiques à l'aide de deux méthodes : la méthode en cellule de diffusion et la méthode par empilement de gel. Deux gels diffusifs (i.e. agarose et polyacrylamide) ont pu être comparés. Il a été montré que les coefficients de diffusion sont plus faibles à travers le gel polyacrylamide. Les deux méthodes de détermination des coefficients de diffusion ont pu être également comparées. Les coefficients de diffusion obtenus à l'aide de la méthode en cellule de diffusion sont plus faibles que ceux déterminés par empilement de gels pour les deux types de gel diffusif. Cela s'explique par la présence d'une couche limite de diffusion dans l'eau non négligeable en cellule de diffusion, modifiant ainsi le transfert de masse des composés. Afin de d'étudier l'accumulation des composés étudiés dans les dispositif complet o-DGT, deux calibrations ont été effectuées : sur le terrain et en conditions contrôlées en laboratoire. Comparé au POCIS, si les taux d'échantillonnage sont plus faibles avec les o-DGT du fait de la surface d'exposition plus faible mais également de la présence du terme lié à la résistance au transfert de masse à travers le gel, la technique o-DGT permet d'allonger la phase linéaire de la cinétique d'accumulation. Cet allongement permettrait désormais l'échantillonnage des composés qui atteignent trop rapidement le

régime d'équilibre avec le POCIS. Cependant, cet allongement de la phase linéaire provoque également un allongement des retards à l'accumulation, en particulier pour les hormones, dans le cas des o-DGT composés de gel polyacrylamide. Il n'est alors plus possible dans ce cas de déterminer les constantes cinétiques et donc les concentrations dans les milieux aquatiques. Il a donc été montré que le o-DGT composés de gel agarose était plus adapté à l'échantillonnage de la grande majorité des composés étudiés.

Mots-clefs : échantillonnage passif, o-DGT, POCIS, composés organiques, coefficients de diffusion, taux d'échantillonnage, cinétiques d'échange.

Abstract

Passive sampling strategies were developed to improve quantification of micropollutant contamination levels in environment. Actually, these techniques allow obtaining time weighted concentrations. Today, POCIS (Polar Organic Chemical Integrative Sampler) is the most widely used for the passive sampling of hydrophilic compounds. However, its efficiency appears limited for ionic compounds and the sampling rates are sensitive to environmental conditions (mainly hydrodynamics and temperature), leading to a likely bias on concentration determination. The Diffusive Gradients in Thin films (DGT) technique, recently adapted for organic compounds (o-DGT), is an alternative to POCIS due to presence of diffusive gel which controls mass transfer coefficient. As described in this Ph.D thesis, numerous works have showed this technique as suitable for sampling of many polar organic chemicals, including ionizable compounds.

The objective of this thesis was to develop an o-DGT adapted to the sampling of a large number of organic compounds including pesticides, hormones and pharmaceuticals. Then, diffusion coefficients were determined for 117 organic compounds using two methods: the diffusion cell method and the gel stacking method. Two diffusive gels (*i.e.* agarose and polyacrylamide) were compared. We showed that diffusion coefficients were lower through the polyacrylamide gel than through agarose gel. The two methods for determining the diffusion coefficients were compared. The diffusion coefficients obtained using the diffusion cell method (for both diffusive gels) are lower than those determined by gel stacking. It can be explained by the presence of a non-negligible diffusion water-boundary layer in the diffusion cell, which modifies the mass transfer of compounds. In order to study the accumulation of the compounds studied in the o-DGT, two calibrations were performed with the whole DGT device: in the field and under controlled laboratory conditions. Compared to POCIS, the sampling rates were lower for o-DGT: this is explained by a lower exposure surface area and the higher resistance to mass transfer through the gel.

But the use of o-DGT technique makes the linear phase of the accumulation kinetics longer than that of POCIS. In addition, this work has shown that the lag-phase observed for some compounds (i.e. hormones) was longer using o-DGT_{PA} than using o-DGT_{AG}. In light of

these results, o-DGT_{AG} was more suitable for sampling most of the studied compounds and for determination of their concentrations in aquatic environments.

Keywords: passive sampling, o-DGT, POCIS, organic compounds, POCIS, diffusion coefficients, sampling rates, kinetic exchanges.

REMERCIE	2MENTS1
RESUME	5
ABSTRACT	
TABLE DES	S MATIERES 11
ABREVIATI	IONS
LISTE DES	FIGURES
LISTE DES	TABLEAUX25
INTRODUC	CTION
Chapitre	I. ÉTAT DE L'ART
I.1. Géné	ralités
I.1.1.	Les composés étudiés
I.1.2.	Echantillonnage passif
I.2. La teo	chnique DGT55
I.2.1.	Dispositif
I.2.2.	Théorie
I.3. Adap	tation du DGT aux composés organiques58
I.3.1.	Membrane
I.3.2.	Gel diffusif
I.3.3.	Résine
I.4. Déter	mination des coefficients de diffusion
I.4.1.	Méthodes pour mesurer les coefficients de diffusions
I.4.2.	Coefficients de diffusion
I.5. Cinét	ique d'accumulation du o-DGT106
I.6. Influe	ence des conditions physico-chimiques du milieu d'exposition108

I.6.1.	Influence du pH 109
I.6.2.	Influence de la force ionique113
I.6.3.	Influence de la matière organique et du carbone organique dissous116
I.7. Hydro	odynamisme et influence de la couche limite de diffusion
I.7.1.	Effet de l'hydrodynamisme118
I.7.2.	Epaisseur du gel diffusif et de la couche limite de diffusion119
I.8. Limit	es de détection
I.9. Appli	cation sur le terrain124
I.9.1.	Type de milieu d'exposition124
I.9.2.	Comparaison avec l'échantillonnage ponctuel125
I.9.3.	Comparaison avec d'autres PS 125
I.10. Synt	hèse et objectifs
Chapitre	II. MATERIEL ET METHODES
II.1. Maté	ériel utilisé
II.1.1.	Matières actives utilisées
II.1.2.	Appareils et consommables utilisés
II.2. Prép	aration des solutions utilisées138
II.2.1.	Solutions des composés étudiés138
II.2.2.	Solutions d'étalons internes et de traceurs
II.3. Prot	ocole de préparation des PS139
II.3.1.	Préparation des dispositifs o-DGT139
II.3.2.	Préparation des POCIS utilisés sur le terrain141
II.4. Prés	entation des expérimentations141
II.4.1.	Expériences préliminaires liées au o-DGT141
II.4.2.	Détermination des coefficients de diffusion144

II.5. Prépa	aration des échantillons avant analyse	147
II.5.1.	Dispositif o-DGT	147
II.5.2.	Dispositif POCIS	148
II.5.3.	Dilutions des extraits de PS	150
II.5.4.	Les échantillons d'eau	
II.5.5.	Mélanges analytiques finaux	152
II.6. Anal	yses chromatographiques	152
II.7. Trait	ement des résultats	155
II.7.1.	Généralités	155
II.7.2.	Sélection des modèles d'accumulation dans le cas des calibrations	155
CHAPITRE	III. CALIBRATION TERRAIN DU POCIS ET DU O-DGT PO	UR DES
PESTICIDES	S POLAIRES	161
III.1. Ava	nt-propos	163
III.2. Fréc	quence de quantification	164
III.3. Con	centrations mesurées par échantillonnage actif	169
III.4. Cine	étiques d'accumulation dans les échantillonneurs passifs	170
III.4.1.	Sélection du modèle cinétique utilisé	
III.4.2.	Synthèse	172
III.5. Cor passifs	nstantes cinétiques d'accumulation et d'élimination dans les échantil	lonneurs 176
III.5.1.		
	Constantes de partage, constantes cinétique d'accumulation et d'élie 177	mination
III.5.2.	Constantes de partage, constantes cinétique d'accumulation et d'élie 177 Taux d'échantillonnage et coefficient de transfert de masse global .	mination 177
III.5.2. III.5.3.	Constantes de partage, constantes cinétique d'accumulation et d'élie 177 Taux d'échantillonnage et coefficient de transfert de masse global . Temps de demi-atteinte de l'équilibre	mination 177 179

CHAPITRE	IV. COMPARAISON DE DEUX METHODES DE DETERMINATION DES
COEFFICIE	NTS DE DIFFUSION
IV.1. Ava	nt-propos
IV.2. Ar	ticle « Determination of diffusion coefficients through agarose and
polyacryla	mide gels for 112 pesticides, hormones and pharmaceutical compounds for
passive sa	mpling by organic Diffusive Gradients in Thin films (o-DGT) »
IV.2.1.	Introduction188
IV.2.2.	Experimental section
IV.2.3.	Results and discussion194
IV.2.4.	Conclusion and perspectives
IV.3. Synt	hèse
CHAPITRE	V. CALIBRATION EN LABORATOIRE DES O-DGT ET DES POCIS
V.1. Avan	t-propos
V.2. Expé	riences préliminaires : rendements d'extraction et choix de la membrane 212
V.2.1.	Détermination des rendements d'extraction
V.2.2.	Choix de la membrane
V.3. Suivi	des paramètres physico-chimiques et de la concentration des composés dans
l'eau	
V.3.1.	Paramètres physico-chimiques et température
V.3.2.	Concentration des composés dans l'eau 224
V.4. Sélec	tion du modèle d'accumulation228
V.4.1.	Sélection du modèle dans le cas des o-DGT
V.4.2.	Sélection du modèle dans les cas du POCIS _{HLB} 232
V.4.3.	Comparaison des modèles cinétiques des deux types de PS236
V.5. Cons	tantes cinétiques mesurées236
V.5.1.	Constantes cinétiques de partage

V.5.2.	Constantes cinétiques d'accumulation et d'élimination	.239
V.5.3.	Temps de demi-atteinte de l'équilibre (t _{1/2})	.239
V.5.4.	Taux d'échantillonnage (Rs) et coefficient de transfert de masse global	241
V.5.5.	Coefficients de diffusion	250
V.6. Synth	nèse et perspectives	254
Synthese	ET PERSPECTIVES	257
BIBLIOGRA	PHIE	265
ANNEXES .		281
Annexes of	lu Chapitre I	.283
Annexes of	lu Chapitre II	296
Annexes of	lu Chapitre IV	309
Annexes o	lu Chapitre V	350

Abréviations

La liste ci-dessous présente les significations des différentes abréviations (hors abréviations des composés) utilisées dans ce manuscrit de thèse.

ACNAcétonitrile
ACAcétate de cellulose
AGAgarose
AINSAnti-inflammatoires non stéroïdiens
CODCarbone organique dissous
DBLCouche limite de diffusion (diffusive bonoudary layer
DCEDirective cadre sur l'eau
DGTDiffusive gradient in thin-film
ECMEster de cellulose mélangées
EI-ASolution d'étalons internes dédiée à l'analyse des pesticides anioniques
EI-HSolution d'étalons internes dédiée à l'analyse des hormones
EI-MUSolution d'étalons internes dédiée à l'analyse des composés pharmaceutiques
EI-NSolution d'étalons internes dédiée à l'analyse des pesticides neutres
EUPEau ultra pure
GF/FFiltre en fibre de verre (Glass microfiber filter)
HAPHydrocarbures aromatiques polycycliques
HPLCChromatographie en phase liquide à haute performance (High Performance
Liquid Chromatography)
LD _i Limites de détection instrumentales
LD _{o-DGT} Limites de détections liés à l'outil o-DGT
LDPEPolyéthylène basse densité (Low density polyethylene)
LQLimites de quantification
MeOHMethanol
MESMatière en suspension
MIPPolymère à empreinte moléculaire (Molecularly impreted polymer)
MODMatière organique dissoute
MPCMateriaux poreux carbonés
MPCMatériau poreux carboné
NCNitrate de cellulose
NQENorme de qualité environnementale
o-DGTDGT organique
o-DGT _{AG} o-DGT composé d'un gel diffusif AG
o-DGT _{PA} o-DGT composé d'un gel diffusif PA
PAPolyacrylamide
PCMembrane polycarbonate nucleopore track-etched

PC1Membrane polycarbonate cyclopore track-etched
PC2Membrane polycarbonate nucleopore
PCEProduits de soin corporels ou d'entretien
PESPolyethersulfone
POCISPolar organic chemicals integrative sampler
POCIS _{HLB} POCIS composé de phace réceptrice Oasis HLB
POCIS _{MAX} POCIS composé de phace réceptrice Oasis MAX
PPPolypropylène
PPHPolyprolylène hydrophobe
PRCComposé de référence et de performance (Performance Reference Compound)
PSÉchantillonneur passif (Passive sampler)
PTFEPolytétrafluoroéthylène
PVCPolychlorure de vinyle
PVDFPolyvinyldenefluoride
SIInformations supplémentaire (Supplementary information)
SPEExtraction sur phase solide
SPMDSemi-permeable membrane device
STEUStation de traitement des eaux usées
TE-ASolution de traceurs d'extraction dédiée aux pesticides anioniques
TEMED Tétraméthyléthylènediamine
TE-NSolution de traceurs d'extraction dédiée aux pesticides neutres
TI-HSolution de traceurs d'injection dédiée à l'analyse des hormones
TI-MUSolution de traceurs d'injection dédiée à l'analyse des composés
pharmaceutiques
TWAC Concentration moyenne pondérée sur le temps (Time-weighted average
concentration)
UEUnion Européenne
UHPLC Chromatographie en phase liquide à ultra haute performance (Ultra High
Performance Liquid Chromatography)

Liste des figures

Figure I.1 : Cinétique d'accumulation des composés dans un échantillonneur passif 50
Figure I.2 : Différents compartiments d'un échantillonneur passif (PS) et leur résistance aux
transferts de masse associés (d'après Seethapathy et al., (2008))52
Figure I.3: Domaine d'application des principaux échantillonneurs passifs
Figure I.4 : Schéma du Polar Organic Chemicals Integrative Sampler (POCIS) 55
Figure I.5: Schéma d'un dispositif Diffusive gradient in thin-films (DGT)
Figure I.6: Schéma d'une cellule de diffusion91
Figure I.7 : Masse accumulée dans le milieu récepteur en fonction du temps91
Figure I.8 : Schéma de la méthode empilement de gel
Figure I.9: Concentration dans le gel en fonction de sa distance au gel dopé pour trois durées de contact
Figure I.10: Comparaison des méthodes de détermination des coefficients de diffusion100
Figure I.11 : Coefficients de diffusion normalisés à 25°C trouvés dans la littérature pour un même composé, toutes méthodes confondues
Figure I.12 : Coefficients de diffusion de la littérature en fonction du log K _{OW} et de la masse molaire
Figure I.13 : Coefficients de diffusion calculés à partir de la loi d'Archie en fonction des coefficients de diffusion expérimentaux
Figure I.14: Masse accumulée en fonction de l'épaisseur du gel diffusif lorsque la DBL est négligeable ou non
Figure II.1 : Schéma du système de calibration utilisé en laboratoire
Figure II.2 : Gradient d'élution utilisés pour les différentes méthodes analytiques 154
Figure II.5 : Arbre de décision appliqué lors du choix du modèle cinétique156
Figure II.3 : (A) Facteur de concentration en fonction du temps et (B) intervalle de confiance autour de l'ordonnée à l'origine dans trois cas : (a) l'ordonnée à l'origine passe

par zéro, (b) un phénomène d'accumulation rapide en début d'exposition est observé
(« burst phase ») et (c) un phénomène de retard à l'accumulation est observé (« lag phase »).
Figure II.4 : Facteur de concentration (FC) en fonction du temps et (B) résidus normalisés associés à la régression non linéaire en fonction des valeurs ajustées
Figure III.1 : Fréquence de quantification dans les POCIS et dans les échantillons d'eau « automatique » sur chaque durée d'exposition et sur la durée totale de la calibration 165
Figure III.2 : Les différentes phases réceptrices utilisées lors de la calibration terrain : Oasis [®] HLB et Oasis [®] MAX
Figure III.3 : Fréquence de quantification dans les o-DGT sur chaque durée d'exposition et sur la durée totale de la calibration
Figure III.4 : Concentrations mesurées dans tous les prélèvements d'eau par échantillonnage automatique (log ₂ , ng.L ⁻¹)
Figure III.5 : (A) Résidus du modèle linéaire pour le metolachlore (MTC) avec le o -DGT _{PA} et le tébuconazole (TBZ) avec le o -DGT _{AG} . (B) Facteur de concentration en fonction du temps pour ces mêmes composés
Figure III.6 : Classeement des composés en fonction du modèle cinétique d'accumulation utilisé pour chaque PS
Figure III.7 : Facteur de concentration de pesticides dans le o-DGT _{AG} en fonction du temps Les lignes pleines représentent la régression associée au modèle choisit (LM : linéaire, NLS : non linéaire). Les droites en pointillées représentent les droites de régression du ou des modèles testés non validés (p.value : modèle linéaire non significatif ; p-value < 0,05) 174
Figure III.8 : Facteur de concentration de quatre pesticides dans le o-DGT _{PA} en fonction du temps
Figure III.9 : Facteur de concentration de 12 pesticides dans le POCIS _{HLB} en fonction du temps
Figure III.10 : Facteur de concentration de pesticides dans le POCIS _{MAX} en fonction du temps

Figure V.6 : Ratios entre les coefficients de diffusion avec et ceux sans membrane (nylon et
PES aux deux tailles de pores) dans le cas du gel d'agarose
Figure V.7: Concentration dans l'eau de quatre composés types suivant un comportement différent sur toute la durée de l'expérimentation (J-1 à J27) : la clindamycon (CLINDA), le dienestrol (DES), le flurtamone (FLM) et le iodosulfuron (ISF)
Figure V.8 : Variation de la concentration en composé dans l'eau dopée entre J0 et J27 (%) en fonction du log de Dow à pH 7,4
Figure V.9 : Périodes d'exposition des PS et points de mesures de la concentration dans l'eau utilisés pour le calcul du facteur de concentration. Les périodes d'exposition des PS sont représentées en orange. Les points de mesures de la concentration dans l'eau liés à chaque PS sont représentés par les traits noirs
Figure V.10 : Facteur de concentration en fonctions du temps pour la sulcotrione (SCT) et le methomyl (MTY) dans le cas du o -DGT _{PA} 230
Figure V.11 : (A) Facteur de concentration (FC) en fonction de temps de la flecaïnide avec le o-DGT _{PA} et (B) les résidus associés à la régression non linéaire
Figure V.12 : (A) Facteur de concentration en fonction du temps de l'acétochlore, (B) Résidus associés à la régression linéaire avec J10 et (C) Résidus associés à la régression linéaire sans J10
Figure V.13 : Facteur de concentration dans les POCIS en fonction du temps pour cinq composés organiques pour lesquels : (A) l'accumulation suit un modèle non linéaire ; (B) l'accumulation suit un modèle linéaire
Figure V.14 : Détails Classement des composés en fonction de leur modèle cinétique d'accumulation
Figure V.15 : Comparaison des constantes de partage (<i>KSW</i>) obtenues avec les différents types d'échantillonneur passif
Figure V.16 : Comparaison des temps de demi-atteinte de l'équilibre $(t_{1/2})$ des POCIS avec
les (A) $t_{1/2}$ des o-DGT _{AG} ou (B) $t_{1/2}$ des o-DGT _{PA}
Figure V.17 : Taux d'échantillonnage (mL.j ⁻¹) pour 96 composés (présentés par ordre alphabétique) obtenus avec le o-DGT _{AG}

Figure V.18 : Taux d'échantillonnage (RS ; mL.j-1) obtenus pour 73 composés (présentés
par ordre alphabétique) avec le o-DGT _{PA}
Figure V.19 : Facteur de concentration en fonction du temps pour la dexamethasone et
l'estrone avec le o -DGT _{AG} et pour la dropirenone avec le o -DGT _{PA} 245
Figure V.20 : Taux d'échantillonnage (mL.j-1) obtenus avec les POCIS lors de la calibration
Figure V.21 : Taux d'échantillonnage (mL.j-1) déterminés à INRAE lors de précédentes
calibration comparés à ceux déterminés lors de cette calibration pour 46 composés (classés
dans l'ordre alphabétique)
Figure V.22 : Comparaison des coefficients globaux de transfert de masse des pesticides et
pharmaceutiques (log ₂) obtenus avec le POCIS et avec soit le o-DGT $_{AG}$ (A), soit le o-
DGT _{PA} (B)
Figure V.23 : Coefficients de diffusion obtenus lors de la calibration (D_{calib}) avec le o-
DGT_{AG} (n=72) et le o- DGT_{PA} (n=66)
Figure V.24 : Comparaison des coefficients de diffusion obtenus par calibration avec ceux
obtenus en cellule de diffusion et empilement de gel. La droite pleine représente y = x et
les doites en pointillés représentent l'erreur à 30 %
Figure V.25 : Épaisseur de la couche limite de diffusion (DBL) déterminée pour les
pesticides (Pest.) et les pharmaceutiques (Pharm.)
Figure VI.1 : Facteur de concentration (FC) en fonction du temps pour trois composés et
les régressions associées

Liste des tableaux

Tableau I.1 :Liste des composés étudiés, abbréviation et paramètres physico-chimiques
(Chemicalize)
Tableau I.2 : Composants des o-DGT choisis dans la littérature
Tableau I.3 : Membranes testées dans la littérature et protocoles utilisés pour déterminer
l'accumulation des composés dans ces dernières
Tableau I.4 : Gels testés dans la littérature et protocoles utilisés pour déterminer
l'accumulation des composés dans ces derniers
Tableau I.5 : Phase réceptrices testées dans la littérature
Tableau I.6 : Protocoles et rendements d'élution
Tableau I.7 : Protocoles utilisés pour déterminer l'accumulation des composés dans les
résines (gel + phase réceptrice) ou phases réceptrices seules
Tableau I.8 : Flux d'accumulation et accumulation maximale avec les résines seules et avec
les o-DGT
Tableau I.9 : Accumulation dans les résines (phase réceptrice + gel) ou dans les phases
réceptrices seules
Tableau I.10 : Protocole de détermination de la capacité maximale des résines et capacité
maximale déterminée
Tableau I.11 : Conditions d'obtention des coefficients de diffusion présents dans la
littérature
Tableau I.12 : Protcoles de détermination des cinétiques d'accumulation au sein du o-DGT
Tableau I.13 : Protocoles utilisés pour déterminer l'effet du pH et résumé des effets observés
Tableau I.14 : Protocoles utilisés pour déterminer l'effet de la force ionique et résumé des
effets observés

Tableau I.15 : Protocoles utilisés pour tester l'effet de la présence de matière organique
dissoute et de carbone organique dissous117
Tableau I.16 : Protocoles pour déterminer l'épaisseur de la DBL
Tableau I.17: Limites de détection associées à l'outil o-DGT (LD _{DGT}) dans la littérature
Tableau II.1 : Consommables utilisés au cours des expérimentations
Tableau II.2 : Appareils utilisés au cours des expérimentations
Tableau II.3: Caractéristiques chromatographiques des méthodes analytiques153
Tableau II.4: Paramètres de source électrospray pour l'analyse des hormones et des
pharmaceutiques
Tableau II.5: Paramètres de source électrospray pour l'analyse des pesticides154
Tableau III.1 : Constantes cinétiques obtenues pour chaque type de PS lors de la calibration
sur le Trec
Tableau V.1 : Température pH, conductivité et force ionique mesurés pendant la calibration

Introduction

Un des enjeux environnementaux actuels est le suivi des micropolluants dans les milieux aquatiques. Ces micropolluants sont des composés chimiques le plus souvent synthétisés par l'Homme utilisés à des fins industrielles, agricoles et/ou domestiques. Parmi ces micropolluants se trouvent les pesticides, les composés pharmaceutiques, les hormones, les conservateurs, les filtres ultraviolets, les retardateurs de flamme ou encore les hydrocarbures aromatiques polycycliques (HAP). De par leur utilisation, un grand nombre de ces micropolluants peuvent se retrouver dans les différents compartiments de l'environnement par divers processus. Dans le cas des milieux aquatiques, la contamination est due, entre autre, aux rejets de station de traitement des eaux usées (STEU) dans lesquels les micropolluants d'origine domestique et industrielle ne sont pas totalement éliminés. Une fois dans le milieu aquatique, ils sont susceptibles d'avoir des effets toxiques sur les organismes aquatiques même à faible dose. Dans le but de préserver les milieux aquatiques, la Directive Cadre sur l'Eau (DCE) oblige les états membres de l'Union Européenne (UE) à assurer le « bon état biologique et chimique des eaux » d'ici 2015 (Directive 2000/60/CE, 2000) repoussé à 2027. Une liste de substances chimiques prioritaires « parmi celles qui présentent un risque significatif pour ou via l'environnement aquatique » est alors dressée. Aujourd'hui, cette liste recense 45 substances prioritaires parmi lesquelles se trouvent de nombreux micropolluants organiques dont principalement des pesticides (Directive 2013/39/UE, 2013). Des normes de qualités environnementales (NQE) correspondant aux concentrations dans les eaux de surface à ne pas dépasser sont fixées pour ces 45 substances (Directive 2013/39/UE, 2013). En parallèle, une liste de vigilance relative aux substances susceptibles de présenter un risque significatif pour l'environnement aquatique a été établie en 2015 (Décision d'exécution (UE) 2015/495, 2015) et réactualisée en 2018 ((Décision d'exécution (UE) 2018/840, 2018). Elle comprend aujourd'hui 15 substances dont des pharmaceutiques et des hormones. En France, une liste complémentaire de substances pertinentes a été établie en 2010 et complétée en 2015 (Arrêté français, 2015). Cette liste comprend des micropolluants organiques dont des pesticides, pharmaceutiques et hormones. Ces substances, qu'elles soient classées prioritaires ou non, font alors l'objet d'un suivi de leur concentration dans les milieux aquatiques et de leur risque associé.

L'échantillonnage des micropolluants est une problématique importante lors de la détermination de leur concentration. La méthode la plus utilisée pour le suivi des

concentrations en polluants dans les milieux aquatiques est l'échantillonnage ponctuel, impliquant le prélèvement d'un volume d'eau à échantillonner à un temps donné. Cependant, ce mode d'échantillonnage présente certaines limites. Tout d'abord, la concentration des micropolluants dans les milieux aquatiques est dépendante de leurs sources (agricoles, domestiques, industrielles) qui conditionnent leurs types de rejet dans les milieux aquatiques. Par exemple, dans le cas d'un usage agricole, les rejets sont diffus et peuvent varier en fonction de la saison ou de l'hydrologie. Pour les composés d'usage domestique (pharmaceutiques, composés présents dans les produits de soin corporels ou d'entretien (PCE)), les rejets dépendent des STEU et peuvent être ponctuels ou continus. Les eaux usées peuvent également entrer directement dans le milieu aquatique sans traitement lors d'épisodes pluvieux importants menant à des surcharges du réseau. Les concentrations peuvent donc varier de quelques µg.L-1 à quelques ng.L-1 sur des périodes de temps plus ou moins longues. L'échantillonnage ponctuel ne permet alors pas toujours une représentativité temporelle suffisante de la qualité des milieux aquatiques, les pics de pollution pouvant passer inaperçus. De plus, les micropolluants peuvent également se trouver à l'état d'ultra-traces (< ng.L-1) dans le milieu et être donc difficilement quantifiables. Afin de pallier ces différentes limites, il existe la solution d'augmenter le nombre de mesures en mettant en place des échantillonneurs automatiques afin d'obtenir des données plus représentatives dans le temps ou d'augmenter le volume échantillonné afin de pré-concentrer les échantillons. Cependant, ces solutions restent très coûteuses à mettre en œuvre (Ort et al., 2010).

Des techniques ont été mises au point dans le but d'améliorer l'échantillonnage et donc la détermination du niveau de contamination des milieux aquatiques. L'une de ces techniques est celle de l'échantillonnage passif développée dès les années 1990. Cette technique est très prometteuse pour une large palette de micropolluants, dont certains sont considérés comme prioritaires d'un point de vue réglementaire. Un échantillonneur passif est un outil capable d'accumuler les composés présents dans un milieu dans lequel il est disposé pendant un temps défini. Cette technique d'échantillonnage passif a plusieurs avantages. D'une part, l'échantillonnage sur une durée plus ou moins longue (quelques jours à plusieurs mois) permet d'obtenir une meilleure représentativité temporelle par la détermination de la concentration en micropolluants moyenne sur la durée d'exposition (TWAC pour time-

weighted average concentration). D'autre part, l'échantillonnage passif permet l'extraction du polluant in situ ce qui limite ainsi les problèmes de conservation des échantillons. Enfin, un échantillonnage passif permet de pré-concentrer in situ le polluant afin de pouvoir évaluer la concentration de polluants à l'état de traces (Mazzella et al., 2011). Cependant, ces échantillonneurs passifs sont sensibles aux conditions environnementales comme par exemple la vitesse du courant, la température ou encore le pH. Les constantes cinétiques utilisées pour la détermination des concentrations dans le milieu environnemental, comme le taux d'échantillonnage Rs, peuvent alors être différentes de celles déterminés en amont en laboratoire, menant ainsi à un biais lors de la détermination des concentrations (Harman et al., 2012; Morin et al., 2012).

L'échantillonnage des composés hydrophobes est aujourd'hui très développé mais de nombreuses incertitudes existent encore pour l'échantillonnage des composés hydrophiles. Par exemple, le POCIS (Polar Organic Chemical Integrative Sampler) reste inadapté pour l'échantillonnage des contaminants organiques ionisables comme les herbicides acides ou les bétabloquants. En effet, la pré-concentration de ces composés ioniques est compliquée notamment par rapport au choix de la phase réceptrice. Dans le cas du POCIS composé de phase Oasis® MAX des phénomènes de compétition avec les ions présents naturellement dans l'environnement comme les chlorures ou les acides humiques peuvent être observés (Fauvelle et al., 2012). Dans le cas du POCIS commercial composé de phase Oasis® HLB, une accumulation biphasique a été observée pour certains composés ioniques (Bäuerlein et al., 2012; Morin et al., 2013). De plus, un phénomène d'accumulation rapide en début d'exposition (« burst effect ») a été observé pour les composés anioniques, dû au mouillage initial de la phase réceptrice (Fauvelle et al., 2014; Morin et al., 2013). En parallèle, un phénomène de retard à l'accumulation (« lag phase ») est parfois observé pour les composés les plus hydrophobes (log Kow > 4). Ces différents phénomènes peuvent rendre les modèles cinétiques inapplicables dans ce cas de figure, et ainsi délicate toute estimation de concentrations pondérées dans le temps.

Etant donné les limitations relevées à ce jour, une alternative au POCIS consiste à adapter, aux composés organiques, la technique du DGT (Diffusive Gradient in Thin film), initialement développée pour les métaux sous forme labile (Davison and Zhang, 1994). Cette technique, appelée o-DGT, a été développée assez récemment (Chen et al., 2012) et
a montré de bons résultats pour l'échantillonnage de nombreux composés dont des composés ioniques comme des pesticides ou des résidus pharmaceutiques.

L'objectif de cette thèse est de développer un échantillonneur passif de type o-DGT capable d'échantillonner de nombreux composés couvrant une large gamme de propriété physicochimique. Ainsi, des composés hydrophobes à très hydrophiles, neutres ou ioniques ont été étudiés. Une majorité de ces composés n'ont jamais étudiés dans le cadre du o-DGT. Cette thèse s'articulera en quatre chapitres.

Le **Chapitre I** présente un état de l'art lié à cette thèse, en décrivant les composés étudiés puis la technique de l'échantillonnage passif. Enfin, la technique o-DGT sera détaillée.

Le **Chapitre II** présente le matériel utilisé lors des expérimentations liées à cette thèse. Les différents protocoles des expérimentations effectuées sont exposés ainsi que l'ensemble des méthodes analytiques utilisées.

Le **Chapitre III** porte sur une manipulation de calibration d'outil o-DGT effectuée sur le terrain. Dans ce chapitre, les premiers résultats obtenus à INRAE concernant la technique o-DGT sont exposés.

Le **Chapitre IV** est consacré à l'étude des coefficients de diffusion à travers les deux gels (agarose et polyacrymamide). Deux méthodes de détermination de ces coefficients de diffusion sont comparées (cellule de diffusion et empilement de gel). Les résultats sont présentés sous la forme d'un article scientifique soumis dans le journal scientifique « Chemosphere ».

Le **Chapitre V** porte sur une manipulation de calibration effectuée en laboratoire. Cette calibration a permis de déterminer les cinétiques d'accumulation et les taux d'échantillonnages liés au o-DGT, puis de les comparer à ceux obtenus à l'aide du POCIS.

Enfin, une conclusion générale et les perspectives sont présentées dans une dernière partie.

Chapitre I. État de l'art

I.1. Généralités

I.1.1. Les composés étudiés

Ce travail de thèse porte sur trois familles de micropolluants présents dans les milieux aquatiques et présentant un risque potentiel pour l'environnement : les pesticides, les composés pharmaceutiques et les hormones.

I.1.1.1. Description des familles étudiées

Les pesticides

Les pesticides sont utilisés principalement en agriculture pour protéger les plantes des organismes nuisibles ou lutter contre les végétaux envahissants non désirés. Ils sont également utilisés en milieu urbain pour l'entretien des espaces verts publics et privés ou encore pour lutter contre les parasites liés aux humains ou aux animaux. Ils sont divisés en plusieurs catégories en fonction leurs propriétés dont les plus importants sont les herbicides, les fongicides et les insecticides.

Les herbicides sont utilisés dans le but de stopper le développement des végétaux. Dans cette thèse, 33 herbicides sont étudiés, eux même répartis dans 11 familles chimiques. Les modes d'actions de ces composés sont nombreux et dépendent de la famille du composé (Gasquez, 2015). Les herbicides issus des familles des diazines, des triazines, des pyridazinones, des benzonitriles ou encore des phenylurées sont des composés inhibiteurs de la photosynthèse. Les aryloxyacides ainsi que les acides benzoïques sont des composés ayant un effet sur la croissance des plantes alors que les sulfonylurées et les tricétones inhibent la production d'enzymes permettant respectivement la biosynthèse ou la décomposition d'acides aminés. Enfin, les chloroacétanilides et les furanones bloquent la biosynthèse des caroténoïdes, pigments ayant un rôle dans la photosynthèse et dans la protection contre les UV. Sept métabolites d'herbicides sont également étudiés dans cette thèse.

Les fongicides sont des molécules permettant l'élimination ou la limitation du développement des champignons parasitaires sur les végétaux. Dans cette thèse, neuf fongicides appartenant à six familles chimiques différentes sont étudiés. Ces composés ont

plusieurs modes d'action en fonction de la famille du composé. Les triazoles, les morpholines et les spiracétalamines agissent sur la biosynthèse des lipides comme par exemple l'ergosterol, principal constituant des membranes cellulaires des champignons. Les carbamates agissent sur la division cellulaire et les strobilurines interagissent quant à eux sur la respiration (Debieu, 2017). Les insecticides ont la propriété des tuer les insectes, larves et/ou œufs. Dans ce travail de thèse, nous nous intéresserons à six insecticides présents dans trois familles chimiques. Ces derniers bloquent la transmission synaptique et impactent alors le système nerveux : les organochlorés, les carbamates et les néonicotinoïdes (Siegwart, 2017).

Les produits pharmaceutiques

Les produits pharmaceutiques sont des composés utilisés dans le but d'avoir un effet bénéfique sur la santé d'un animal ou d'un être humain. Comme les pesticides, ils sont divisés en plusieurs catégories en fonction de leurs propriétés et mode d'action. Parmi ces catégories, se trouvent les antibiotiques, les bétabloquants, les anxiolytiques, les antiinflammatoires non stéroïdiens (AINS), ou encore les hypolipémiants.

Les antibiotiques permettent de stopper la croissance ou de détruire des bactéries spécifiques. Les modes d'actions de chacune de ses catégories sont nombreux et dépendent de la famille du composé. Cette thèse porte sur dix antibiotiques appartenant à des familles chimiques différentes : les macrolides et lincosamides, qui inhibent la synthèse protéique et les (fluoro)quinolones, sulfamides, diaminopyrimidines et nitroimidazole qui inhibent la synthèse des acides nucléiques.

Les bêtabloquants sont utilisés dans le but de traiter entre autre les insuffisances cardiaques. Certains d'entre eux peuvent également traiter l'hypertension, le glaucome ou encore les migraines. Ils bloquent l'action de l'adrénaline, hormone augmentant le rythme cardiaque, et par conséquent la pression artérielle, en se fixant sur ses récepteurs. Cinq d'entre eux sont étudiés dans cette thèse.

Les anxiolytiques permettent de soulager l'anxiété en agissant sur l'acide gammaaminobutyrique, un neurotransmetteur. Seule la famille des benzodiazepines est représentée dans cette thèse avec quatre composés considérés comme psychotropes. Les AINS sont des composés aux propriétés antalgiques, antipyrétiques et antiinflammatoires. Ils inhibent les cyclo-oxygénases, enzymes responsables de la formation de substances impliquées dans l'inflammation ou encore la protection de la membrane de l'estomac. Plusieurs familles appartiennent à ce large groupe d'AINS mais seulement trois composés de la famille des acides arylacétiques sont représentés dans cette thèse.

Les hypolypémiants sont utilisés pour diminuer le taux de lipides (cholestérols et triglycérides) dans le sang. Il existe deux familles principales : les statines et les fibrates. Seule la famille des fibrates est représentée dans cette thèse avec quatre composés. Ils inhibent la synthèse des triglycérides en stimulant la production d'enzymes impliquées dans le catabolisme hépatique des acides gras. Ils peuvent également augmenter la lipolyse des triglycérides en stimulant l'expression de la lipoprotéine lipase (Duriez, 2003).

D'autres composés pharmaceutiques n'entrant pas dans ces catégories ont été étudiés : un antalgique, un diurétique, deux anticonvulsifs soignant l'épilepsie, un antihypertenseur, deux broncholidatateurs, trois antidépresseurs, un antidiabétique et un anticancéreux utilisé dans le traitement du cancer du sein et de l'ovaire et de certains cancers du poumon.

Les hormones

Les hormones stéroïdiennes sont des dérivés naturels du cholestérol. Elles sont divisées en plusieurs familles : les androgènes, les œstrogènes, les progestatifs et les glucocorticoïdes. Les androgènes et les œstrogènes sont produits par les organes sexuels féminins et masculins. Les androgènes stimulent et contrôlent le développement et le maintien des caractères mâles. Ils sont précurseurs des œstrogènes qui un rôle important dans la reproduction et pourrait avoir un rôle au niveau du système nerveux central (Cersosimo and Benarroch, 2015). Les progestatifs ont une action lutéomimétique (qui permet entre autre le maintien de la grossesse) et inhibent la production d'hormones stéroïdiennes sexuelles (anti-estrogènes, anti-androgènes, anti-gonadotropes). Comme les œstrogènes, les progestatifs peuvent avoir une action sur le système nerveux central (Laurent, 1996). La progestérone est le seul progestatif naturel. Les glucocorticoïdes jouent un rôle dans la régulation dans l'organisme comme le métabolisme des glucides et protéines. Ils ont également des propriétés anti-inflammatoire et peuvent agir sur les défenses immunitaires.

Ces quatre familles sont représentées dans cette thèse avec l'étude de 20 hormones dont 3 androgènes, 8 œstrogènes, 3 glucocorticoïdes et 6 progestatifs.

I.1.1.2. Source et devenir

Concernant les pesticides, la France est classée au deuxième rang européen concernant les quantités de substances actives vendues (Ministère de l'Ecologie du Développement durable et de l'énergie, 2015) qui correspondaient en 2015 à près de 68 000 tonnes. Ces substances actives sont majoritairement utilisées dans le milieu de l'agriculture avec 92 % des substances actives vendues en 2015 (Dubois et al., 2017). En effet, la majorité des surfaces de grandes cultures ont subi au moins un traitement herbicide (96 % en 2011). Les traitements fongicides et insecticides sont moins généralisés avec, en 2011, respectivement 64 et 34 % de la surface des grandes cultures (Agreste, 2015; SoES, 2015). Par leur utilisation, les pesticides peuvent se retrouver dans les milieux aquatiques par plusieurs processus. Après épandage des pesticides sur les cultures, ils se retrouvent dans les milieux aquatiques soit en retombant dans les eaux de pluies après volatilisation soit par ruissellement ou lessivage à partir des sols.

Les pharmaceutiques et les hormones peuvent se retrouver dans l'environnement par plusieurs voies. La source principale de ces composés est leur excrétion suite à une utilisation humaine. Après excrétion, ces composés (inchangés ou métabolisés) se retrouvent dans les eaux de station d'épuration où ils ne sont pas totalement dégradés et rejetés dans les milieux aquatiques. Les stations d'élevage aquacoles provoquent également une contamination du milieu aquatique, les composés utilisés pour l'élevage des poissons étant directement rejetés dans le milieu aquatique.

En parallèle, l'épandage des fumiers des élevages sur les cultures peuvent amener ces composés et leur métabolites dans les eaux par ruissellement ou encore lessivage (Bocaly, 2010).

I.1.1.3. Propriétés physico-chimiques des composés étudiés

Les composés étudiés ont été choisis afin de couvrir une large gamme de propriétés physico-chimiques. Par ailleurs, les composés choisis étaient déjà intégrés aux techniques analytiques disponibles au sein des laboratoires INRAE Bordeaux et INRAE Lyon. Au

final, 60 pesticides, 20 hormones et 45 composés pharmaceutiques ont été étudiés. Certaines de leurs propriétés physico-chimiques sont résumées dans le Tableau I.1. La masse molaire des composés étudiés est comprise entre 129 et 749 g.mol⁻¹. Le log Dow des composés étudiés, prenant en compte le log Kow (hydrophobie) et le pKa (ionisation), est compris entre -3,6 et 5,2 à pH 7,4. Les insecticides et les fongicides étudiés se trouvent tous sous leur forme neutre à pH 7 alors que les herbicides et les métabolites étudiés sont, en fonction du composé, sous forme anionique ou neutre. La majorité des pesticides sont hydrophiles (log Kow < 2) à moyennement hydrophiles (log Kow < 3) et seulement 15 sont hydrophobes (log Kow > 4) à moyennement hydrophobes (log Kow > 3). Les hormones sous leur forme neutre à pH 7 et sont majoritairement hydrophobes à moyennement hydrophobes. Les composés pharmaceutiques étudiés dans cette thèse sont majoritairement hydrophiles à moyennement hydrophiles. Ils se trouvent sous leur forme neutre, anionique à pH 7.

Groupe	Composé	Abréviation	N°CAS	Masse Molaire (g.mol ⁻¹)	Volume de Van der Walls (A ³)	Log K _{OW}	Log D _{ow} à pH 7,4	Ionisation à pH 7
Hormone	Alpha estradiol	aE2	57-91-0	272,4	269,8	3,75	3,74	Neutre
Hormone	Alpha éthinylestradiol	EE2	57-63-6	296,4	291,6	3,9	3,9	Neutre
Hormone	Androstènedione	ANDRO	63-05-8	286,4	286,9	3,93	3,93	Neutre
Hormone	Androstérone	ANDROSTER	53-41-8	290,2	301,1	3,75	3,77	Neutre
Hormone	Beta estradiol	bE2	50-28-2	272,4	269,9	3,75	3,74	Neutre
Hormone	Cortisol	CORT.OH	50-23-7	362,5	347,2	1,28	1,28	Neutre
Hormone	Cortisone	CORT	53-06-5	360,4	341,1	1,66	1,66	Neutre
Hormone	Dexaméthasone	DEXA	50-02-2	392,5	362,1	1,68	1,68	Neutre
Hormone	Diénestrol	DES	56-53-1	268,4	263,7	5,19	4,8	Neutre
Hormone	Diéthylstilbestrol	DIES	84-17-03	266,3	256,6	4,83	5,17	Neutre
Hormone	Drospirénone	DROSPI	67392-87-4	366,5	346,4	3,37	3,37	Neutre
Hormone	Epi téstosterone	EPI-TESTO	481-30-1	288,4	293,4	3,37	3,37	Neutre
Hormone	Estriol	E3	50-27-1	288,4	278,4	2,67	2,67	Neutre
Hormone	Estrone	E1	53-16-7	270,4	263,1	4,31	4,31	Neutre
Hormone	Lévonorgestrel	LEVO	797-63-7	312,5	315,0	3,66	3,66	Neutre
Hormone	Médroxyprogestérone	MEDROX	520-85-4	344,2	347,2	3,69	3,69	Neutre
Hormone	Mégestrol acétate	MEG.AC	595-33-5	384,5	376,5	3,72	3,72	Neutre
Hormone	Noréthindrone	NORE	68-22-4	298,4	297,8	3,22	3,22	Neutre
Hormone	Progestérone	PROG	57-83-0	314,5	321,0	4,15	4,15	Neutre
Hormone	Testostérone	TESTO	58-22-0	288,4	293,3	3,37	3,37	Neutre
Pesticide	Acétochlore ESA	ATC.ESA	187022-11-3	315,4	286,1	2,16	-0,21	Anionique
Pesticide	Acétochlore OA	ATC.OA	194992-44-4	265,3	252,4	2,93	-0,53	Anionique
Pesticide	Acétochlore	ATC	34256-82-1	269,8	255,6	3,5	3,5	Neutre
Pesticide	Alachlore	ALC	15972-60-8	269,8	255,7	3,59	3,59	Neutre
Pesticide	Atrazine	ATZ	1912-24-9	215,7	190,9	2,2	2,2	Neutre

Tableau I.1 :Liste des composés étudiés, abbréviation et paramètres physico-chimiques (Chemicalize)

Groupe	Composé	Abréviation	N°CAS	Masse Molaire (g.mol ⁻¹)	Volume de Van der Walls (A ³)	Log K _{OW}	Log Dow à pH 7,4	Ionisation à pH 7
Pesticide	Azoxystrobine	AZS	131860-33-8	403,4	347,4	4,22	4,22	Neutre
Pesticide	Bentazone	BTZ	25057-89-0	240,3	200,4	0,76	-0,19	Anionique
Pesticide	Carbaryl	CBY	63-25-2	201,2	181,9	2,46	2,46	Neutre
Pesticide	Carbendazime	CBZ	10605-21-7	191,2	161,4	1,8	1,8	Neutre
Pesticide	Carbofuran	CBF	1563-66-2	221,3	204,0	2,05	2,05	Neutre
Pesticide	Chlorsulfuron	CSF	64902-72-3	357,8	275,1	2,62	1,56	Anionique
Pesticide	Chlortoluron	CTL	15545-48-9	212,7	189,9	2,44	2,44	Neutre
Pesticide	Cyproconazole	CYPRO	94361-06-5	291,8	258,8	2,85	2,85	Neutre
Pesticide	Acide 2,4- dichlorophenoxyacétique	DPA	94-75-7	221,0	163,7	2,5	-0,99	Anionique
Pesticide	1-(3,4-dichlorophényl)- 3-méthyl-urée	DCPMU	3567-62-2	219,1	169,2	2,31	2,31	Neutre
Pesticide	1-(3,4-dichlorophényl)- urée	DCPU	2327-02-8	205,0	151,8	2,09	2,09	Neutre
Pesticide	Déséthyl-atrazine	DEA	6190-65-4	187,6	156,6	1,54	1,54	Neutre
Pesticide	Déséthyl-terbuthylazine	DET	30125-63-4	201,7	173,8	1,82	1,82	Neutre
Pesticide	Déisopropyl-atrazine	DIA	1007-28-9	173,6	139,5	1,12	1,12	Neutre
Pesticide	Dicamba	DCB	1918-00-9	221,0	164,0	2,68	-0,83	Anionique
Pesticide	Dichlorprop	DCP	120-36-5	235,1	180,7	3,07	-0,41	Anionique
Pesticide	Diclofop	DCF	40843-25-2	327,2	260,4	4,57	1,09	Anionique
Pesticide	Dimétachlore	DTC	50563-36-5	255,7	239,3	2,59	2,59	Neutre
Pesticide	Diméthénamide	DTM	87674-68-8	275,8	246,9	2,92	2,92	Neutre
Pesticide	Diméthoate	DMO	60-51-5	229,2	184,5	0,34	0,34	Neutre
Pesticide	Dimétomorph	DMM	110488-70-5	387,9	342,4	3,28	3,28	Neutre
Pesticide	Diuron	DIU	330-54-1	233,1	187,1	2,53	2,53	Neutre
Pesticide	Epoxyconazole	EPOX	133855-98-8	329,8	266,3	3,74	3,74	Neutre
Pesticide	Fénoprop	FNP	93-72-1	269,5	194,8	3,67	0,17	Anionique

Groupe	Composé	Abréviation	N°CAS	Masse Molaire (g.mol ⁻¹)	Volume de Van der Walls (A ³)	Log K _{OW}	Log Dow à pH 7,4	Ionisation à pH 7
Pesticide	Flurtamone	FLM	96525-23-4	333,3	272,5	4,64	4,64	Neutre
Pesticide	Flusilazole	FLZ	85509-19-9	315,4	268,3	4,68	4,68	Neutre
Pesticide	Hexazinone	HEXA	51235-04-2	252,3	239,8	1,37	1,37	Neutre
Pesticide	Imidaclopride	IMI	105827-78-9	255,7	199,2	0,87	0,78	Neutre
Pesticide	Iodosulfuron	ISF	185119-76-0	493,2	330,8	3	1,93	Anionique
Pesticide	Ioxynil	IXI	1689-83-4	370,4	156,0	3,38	1,76	Anionique
Pesticide	1-(4-isopropylphenyl)-3- methyl-urée	IPPMU	34123-57-4	192,3	192,3	2,35	2,35	Neutre
Pesticide	1-(4-isopropylphenyl)-3- urée	IPPU	56046-17-4	178,2	174,8	2,12	2,12	Neutre
Pesticide	Irgarol	IRG	28159-98-0	253,4	235,3	2,99	2,91	Neutre
Pesticide	Isoproturon	IPU	34123-59-6	206,3	210,2	2,57	2,57	Neutre
Pesticide	Kresoxim méthyl	K.MET	143390-89-0	313,4	289,0	4,34	4,34	Neutre
Pesticide	Linuron	LINU	330-55-2	249,1	195,9	2,68	2,68	Neutre
Pesticide	Acide 2-méthyl-4- chlorophénoxyacétique	МСРА	94-74-6	200,6	166,6	2,41	-1	Anionique
Pesticide	Mécoprop	MCP	93-65-2	214,6	183,7	2,98	-0,41	Anionique
Pesticide	Mésotrione	MST	104206-82-8	339,3	272,7	1,09	0,65	Cationique
Pesticide	Métazachlore	MTZ	67129-08-2	277,8	246,0	2,98	2,98	Neutre
Pesticide	Méthomyl	MTY	16752-77-5	162,2	142,6	0,72	0,72	Neutre
Pesticide	Métolachlore ESA	MTC.ESA	171118-09-5	329,4	303,4	2,11	-0,26	Anionique
Pesticide	Métolachlore OA	MTC.OA	152019-73-3	279,3	269,6	2,88	-0,57	Anionique
Pesticide	Métolachlore	MTC	67129-08-2	283,8	272,8	3,45	3,45	Neutre
Pesticide	Métoxuron	MTX	19937-59-8	228,7	199,1	1,77	1,77	Neutre
Pesticide	Metsulfuron	MSF	79510-48-8	367,3	288,7	1,52	-3,02	Anionique
Pesticide	Nicosulfuron	NSF	111991-09-4	410,4	335,8	0,78	-0,15	Anionique
Pesticide	Norflurazon	NFZ	27314-13-2	303,7	226,6	2,42	2,42	Neutre

Groupe	Composé	Abréviation	N°CAS	Masse Molaire (g.mol ⁻¹)	Volume de Van der Walls (A ³)	Log K _{OW}	Log Dow à pH 7,4	Ionisation à pH 7
Pesticide	Norflurazon desmethyl	NFZD	112748-69-3	289,6	209,1	1,98	1,98	Neutre
Pesticide	Pirimicarbe	PIRI	23103-98-2	238,4	228,0	1,8	1,8	Neutre
Pesticide	Simazine	SMZ	122-34-9	201,7	173,7	1,78	1,78	Neutre
Pesticide	Spiroxamine	SPIRO	118134-30-8	297,5	326,7	4,38	2,45	Cationique
Pesticide	Sulcotrione	SCT	99105-77-8	328,8	263,4	1,75	1,21	Anionique
Pesticide	Tébuconazole	TBZ	107534-96-3	307,8	287,9	3,69	3,69	Neutre
Pesticide	Terbuthylazine	TYZ	5915-41-3	229,7	208,1	2,48	2,48	Neutre
Composé pharmaceutique	Acébutolol	ACE	37517-30-9	336,4	331,9	1,53	-0,6	Cationique
Composé pharmaceutique	Acétaminophène	PARA	103-90-2	151,2	138,1	0,91	0,9	Neutre
Composé pharmaceutique	Acétylsulfamethoxazole	ACSMX	21312-10-7	295,3	241,3	0,86	-0,97	Anionique
Composé pharmaceutique	Alprazolam	APZ	28981-97-7	308,8	257,3	3,02	3,02	Neutre
Composé pharmaceutique	Amisulpride	AMS	53583-79-2	354,5	329,1	1,08	0,2	Neutre
Composé pharmaceutique	Amitriptyline	AMI	50-48-6	277,4	282,8	4,81	2,48	Cationique
Composé pharmaceutique	Aténolol	ATE	29122-68-7	266,3	261,3	0,43	-1,8	Cationique
Composé pharmaceutique	Azithromycine	AZI	83905-01-5	749,0	757,6	2,44	-1,23	Cationique
Composé pharmaceutique	Bézafibrate	BEZA	41859-67-0	361,8	319,7	3,99	0,74	Anionique
Composé pharmaceutique	Carbamazépine	CARBA	298-46-4	236,3	210,2	2,77	2,77	Neutre
Composé pharmaceutique	Carbamazépine epoxide	CARBAEP	36507-30-9	252,3	215,0	1,97	1,97	Neutre
Composé pharmaceutique	Celiprolol	CEL	56980-93-9	379,5	379,1	1,5	-0,8	Cationique
Composé pharmaceutique	Ciprofloxacine	CIPRO	85721-33-1	331,3	282,8	-0,85	-0,85	Neutre
Composé pharmaceutique	Clarithromycine	CLARI	81103-11-9	747,7	744,5	3,24	2,22	Cationique
Composé pharmaceutique	Clindamycine	CLINDA	18323-44-9	425,0	389,8	1,04	0,65	Cationique
Composé pharmaceutique	Cyclophosphamide	CYCLOP	50-18-0	261,1	209,2	0,1	0,1	Neutre
Composé pharmaceutique	Diazépam	DIAZ	439-14-5	284,7	242,9	3,08	3,08	Neutre
Composé pharmaceutique	Diclofénac	DICLO	15307-86-5	296,1	236,9	4,26	1,1	Anionique
Composé pharmaceutique	Erythromycin	ERY	114-07-8	733,9	727,5	2,6	1,57	Cationique

Groupe	Composé	Abréviation	N°CAS	Masse Molaire (g.mol ⁻¹)	Volume de Van der Walls (A ³)	Log K _{ow}	Log D _{ow} à pH 7,4	Ionisation à pH 7
Composé pharmaceutique	Fénofibrate	FENO	49562-28-9	360,8	325,4	5,28	5,28	Neutre
Composé pharmaceutique	Acide fénofibrique	ACFENO	42017-89-0	318,8	325,4	5,28	0,9	Anionique
Composé pharmaceutique	Flécainide	FCD	54143-55-4	414,3	331,9	11,65	0,99	Cationique
Composé pharmaceutique	Fluoxétine	FLUOX	54910-89-3	309,3	274,2	4,17	1,83	Cationique
Composé pharmaceutique	Furosémide	FURO	54-31-9	330,7	252,0	1,75	-1,25	Anionique
Composé pharmaceutique	Gemfibrozil	GEM	25812-30-0	250,3	255,2	4,39	1,51	Anionique
Composé pharmaceutique	Irbesartan	IRB	138402-11-6	428,5	394,3	5,39	4,23	Cationique
Composé pharmaceutique	Kétoprofène	KETO	22071-15-4	254,3	233,7	3,61	0,39	Anionique
Composé pharmaceutique	Lamotrigine	LAM	84057-84-1	256,1	189,6	1,93	1,91	Neutre
Composé pharmaceutique	Metformine	METFOR	657-24-9	129,2	123,4	-1,36	-3,66	Cationique
Composé pharmaceutique	Métoprolol	MET	37350-58-6	267,4	274,3	1,76	-0,47	Cationique
Composé pharmaceutique	Métronidazole	METRO	443-48-1	171,2	144,2	-0,46	-0,46	Neutre
Composé pharmaceutique	Naproxène	NAPROX	22204-53-1	230,3	213,1	2,99	-0,05	Anionique
Composé pharmaceutique	Acide niflumique	NIF	4394-00-7	282,2	219,6	3,21	1,41	Anionique
Composé pharmaceutique	Nordiazépam	NDZ	1088-11-5	270,7	225,4	3,21	3,21	Neutre
Composé pharmaceutique	Norfloxacine	NORFLO	70458-96-7	319,3	277,5	-0,96	-0,96	Neutre
Composé pharmaceutique	Norfluoxétine	NFLUOX	83891-03-6	295,3	256,5	3,74	1,46	Cationique
Composé pharmaceutique	Ofloxacine	OFLO	82419-36-1	361,4	309,9	0,51	-0,47	Anionique
Composé pharmaceutique	Oxazepam	OXA	604-75-1	286,7	233,4	2,92	2,92	Neutre
Composé pharmaceutique	Propanolol	PROP	525-66-6	259,3	257,6	2,58	0,36	Cationique
Composé pharmaceutique	Salbutamol	SALBU	35763-26-9	239,3	239,2	0,34	-1,32	Cationique
Composé pharmaceutique	Sotalol	SOT	3930-20-9	272,4	252,4	-0,4	-2,12	Cationique
Composé pharmaceutique	Sulfaméthoxazole	SMX	723-46-6	253,3	204,6	0,79	0,00	Anionique
Composé pharmaceutique	Théophylline	THEO	55-58-9	180,2	146,7	-0,77	-0,89	Neutre
Composé pharmaceutique	Triméthoprime	TRIM	738-70-5	290,3	261,3	1,28	1,1	Cationique
Composé pharmaceutique	Venlafaxine	VFX	93413-69-5	277,4	289,3	2,74	1,22	Cationique

I.1.2. Echantillonnage passif

I.1.2.1. Théorie

Régime d'accumulation

L'échantillonnage passif est basé sur le flux des composés présents dans le milieu échantillonné vers une phase réceptrice (Huckins et al.,1990). Ce flux est dû à la différence de potentiel chimique propre à chaque composé entre le milieu échantillonné et la phase réceptrice de l'échantillonneur intégratif passif (PS). Il est plus ou moins rapide et cesse quand l'équilibre chimique apparait entre les deux phases ou quand on stoppe l'exposition. Après le déploiement de l'échantillonneur passif, un échange cinétique du premier ordre (Figure I.1) a lieu entre le milieu et l'échantillonneur passif et peut être modélisé suivant

l'Équation I-1.

$$FC = \frac{C_s}{C_w} = \frac{k_u}{k_e} \times (1 - e^{-k_e t})$$
Équation I-1

où k_u est la constante d'accumulation (L.g⁻¹.j⁻¹) et k_e la constante d'élimination (j⁻¹), C_w la concentration dans l'eau (µg.L⁻¹) et C_s la concentration dans l'échantillonneur (µg.g⁻¹) et FC est le facteur de concentration (L.g⁻¹).

Cette cinétique est découpée en trois régimes : le régime intégratif, le régime curvilinéaire et enfin le régime d'équilibre Figure I.1.

Durant le régime d'équilibre, la concentration dans le PS reste stable, l'équilibre thermodynamique ayant été atteint. L'Équation I-1 peut alors s'écrire suivant l'Équation I-2.

$$FC = \frac{C_s}{C_w} = \frac{k_u}{k_e} = K_{SW}$$
 Équation I-2

où K_{SW} est le constante de partage (L.g⁻¹)

Lors du régime intégratif, l'accumulation des composés s'effectue de façon linéaire avec le temps en suivant la première loi de Fick. Ce régime prend fin au bout d'un temps noté $t_{1/2}$ qui peut se calculer suivant l'Équation I-3.

$$t_{1/2} = \frac{\ln 2}{k_e}$$
 Équation I-3

Durant le régime linéaire, le PS est considéré comme un puit sans fond, c'est-à-dire que celui-ci accumule les composés alors que la désorption est négligeable. L'Équation I-1 peut alors s'écrire suivant l'Équation I-4

$$FC = \frac{C_s}{C_w} = k_u \times t \qquad \qquad \acute{Equation I-4}$$

Figure I.1 : Cinétique d'accumulation des composés dans un échantillonneur passif. Le régime intégratif correspond à la partie bleue, le régime à l'équilibre correspond à la partie jaune et le régime curvilinéaire n'est pas coloré.

Diffusion du milieu échantillonné vers la phase réceptrice

La diffusion des micropolluants du milieu échantillonné vers la phase réceptrice du PS s'effectue à travers différents « milieux », incluant les différents compartiments du PS et la couche limite de diffusion qui correspond à l'interface eau/PS. Cette diffusion (D) est liée au coefficient global de transfert de masse k_o (cm.j⁻¹). La résistance au transfert de masse global ($1/k_o$) est la somme de la résistance au transfert de masse d'un compartiment à un autre. Par exemple, pour un PS comprenant deux compartiments A et B en plus de la phase réceptrice (voir Figure I.2), la résistance au transfert de masse global s'écrit suivant l'Équation I-5

$$\frac{1}{k_o} = \frac{1}{k_w} + \frac{1}{k_A K_{AW}} + \frac{1}{k_B K_{BA}} + \frac{1}{k_S K_S}$$
 Équation I-5

avec k_w le coefficient de transfert de masse dans l'eau (cm.s⁻¹), k_A et k_B les coefficients de transfert de masse respectifs dans les compartiments A et B (cm.s⁻¹), K_{AW} le constante de partage entre l'eau et le compartiment A à l'équilibre (L.g⁻¹), K_{BA} le constante de partage entre le compartiment A et le compartiment B à l'équilibre (L.g⁻¹), k_S le coefficient de transfert de masse dans la phase réceptrice (cm.s⁻¹) et K_S le constante de partage entre le compartiment B et la phase réceptrice à l'équilibre (L.g⁻¹). Toutefois, lorsque le régime stationnaire est atteint, alors K_S correspond à l'équilibre entre la colonne d'eau échantillonnée et l'adsorbant de la phase réceptrice, et on le note ainsi plus généralement K_{SW} .

La résistance au transfert de masse peut également s'écrire à partir de l'épaisseur de chaque compartiment et du coefficient de diffusion à travers de chaque compartiment, en plus des constantes d'équilibre respectives, selon l'Équation I-6.

$$\frac{1}{k_o} = \frac{\delta}{D_w} + \frac{\delta_A}{D_A K_{AW}} + \frac{\delta_B}{D_B K_{BA}} + \frac{\delta_S}{D_S K_{SW}}$$
 Équation I-6

où D_w le coefficient de diffusion dans l'eau (cm².s⁻¹), δ l'épaisseur de la couche limite de diffusion (cm), D_A et D_B le coefficient de diffusion dans les compartiments A et B respectivement (cm².s⁻¹), δ_A et δ_B l'épaisseur effective des compartiments A et B (cm), D_S le coefficient de diffusion dans la phase réceptrice (cm².s⁻¹) et δ_S l'épaisseur de la couche limite entre l'eau interstitielle et l'adsorbant de la phase réceptrice (cm).

Figure I.2 : Différents compartiments d'un échantillonneur passif (PS) et leur résistance aux transferts de masse associés (d'après Seethapathy et al., (2008)).

Taux d'échantillonnage et influence des paramètres environnementaux

Le taux d'échantillonnage correspond au volume d'eau épuré par unité de temps. Il se détermine à partir de la constante cinétique d'accumulation k_u ou à partir du coefficient de transfert de masse global k_o suivant l'Équation I-7

$$R_s = M_{phase} \times k_u = A \times k_o$$
 Équation I-7

Avec M_{phase} la masse de phase réceptrice (g) et A l'aire de la surface exposée (cm²).

Les constantes nécessaires à la détermination de la concentration dans l'eau sont propre à chaque composé et sont déterminées en laboratoire lors de calibration.

Le taux d'échantillonnage R_s dépend également de différents facteurs environnementaux comme la vitesse du courant, la température, le pH, la turbulence, la salinité, les matières en suspension (MES) et l'encrassement biologique (colonisation de la surface de l'échantillonneur passif par des micro-organismes) (Vrana et al., 2005). Le R_s déterminé en laboratoire peut donc être différent de celui sur le terrain ce qui peut mener à un biais sur la détermination de la concentration dans l'eau.

Afin de compenser ces effets environnementaux, il est possible d'utiliser des composés de référence et de performances (PRC). Ces derniers sont placés dans l'échantillonneur passif

à une concentration connue avant l'exposition et sont éliminés de façon continue par l'échantillonneur. Cette technique se base sur des échanges isotropes, c'est-à-dire que la perte des PRC se ferait de la même façon que l'accumulation des composés cibles, selon les conditions environnementales. La désorption des PRC se fait donc suivant une cinétique d'ordre 1 et la constante d'élimination *in situ* $k_{e; in situ}$ peut donc se calculer à l'aide de l'Équation I-8.

$$k_{e; in situ} = -\frac{\ln(C_S/C_{S_0})}{t}$$
Équation I-8

Avec C_s la concentration dans l'échantillonneur à la fin de l'exposition, C_{s_0} la concentration dans l'échantillonneur avant exposition des PS, t le temps d'exposition.

Le taux d'échantillonnage peut alors être corrigé à partir de l'Équation I-9.

$$R_{S; in situ} = R_{S; lab} \times \frac{k_{e; in situ}}{k_{e; lab}}$$
Équation I-9

Avec $R_{S;in\,situ}$ le taux d'échantillonnage propre au terrain, $R_{S;\,lab}$ le taux d'échantillonnage déterminé en laboratoire et $k_{e;\,lab}$ la constante d'élimination déterminée en laboratoire.

Pour utiliser cette approche, les PRC doivent avoir une structure similaire aux composés étudiés et ne doivent pas être présents dans l'environnement. Ce sont donc souvent des composés deutérés ou marqués au carbone 13.

I.1.2.2. Différents types d'échantillonneurs passifs

Il existe un grand nombre d'échantillonneurs passifs permettant d'échantillonner diverses familles de polluants organiques. Les domaines d'application de certains de ces dispositifs, par rapport à la polarité des substances organiques peuvent être définis et sont illustrés sur la Figure I.3. Les composés hydrophobes peuvent être échantillonnés avec les membranes semi-perméables (SPMD), les membranes polyéthylène basse densité (LDPE) ou en silicone (SR). Le chemcatcher permet l'échantillonnage des composés hydrophiles mais également de composés hydrophobes, couvrant une partie du domaine d'application du SPMD. Enfin, les composés les plus hydrophiles peuvent être échantillonnés par les POCIS en fonction de la membrane utilisée (Vrana et al., 2006).

Figure I.3: Domaine d'application des principaux échantillonneurs passifs

I.1.2.3. Échantillonnage passif des composés organiques hydrophiles : le POCIS

Développé au début des années 2000, le POCIS est utilisé pour les composés organiques hydrophiles comme les pesticides, les hormones, les alkylphénols ou encore les résidus pharmaceutiques (Mazzella et al., 2007; Morin et al., 2012).

Le POCIS est composé d'une phase réceptrice placée entre deux membranes filtrantes le tout maintenu par deux anneaux en inox (voir Figure I.4). Les membranes sont choisies afin d'interagir le moins possible avec les composés alors que la phase réceptrice doit être adaptée aux composés ciblés. Par exemple, le POCIS commercial utilisé dans le cas des pharmaceutiques est composé de deux membranes polyéthersulfone (PES) et d'une phase Oasis[®] HLB. Le POCIS commercial utilisé pour les pesticides est également composé de membranes PES mais la phase réceptrice est une phase triphasique composée de l'isolute ENV+, d'ambersorb 1500 et de BioBeads SX-3 (Desgranges, 2015). La configuration commerciale POCIS-pharmaceutiques est également adaptée à l'échantillonnage des pesticides (Mazzella et al., 2007).

Dans le cas des composés anioniques, le POCIS reste aujourd'hui problématique. En effet, le POCIS-HLB utilisé pour les pesticides neutres et les pharmaceutiques reste assez inadapté pour l'échantillonnage des contaminants organiques ionisables comme les herbicides acides ou les bétabloquants (Fauvelle et al., 2014; Morin, 2013). Les temps de demi-vie et la constante d'équilibre entre l'échantillonneur et l'eau sont très bas, ce qui implique un équilibre cinétique atteint au bout de quelque jours (Harman et al., 2011; Mazzella et al., 2007). Afin de surmonter ces limitations, il est possible de modifier la phase réceptrice tout en conservant la configuration du POCIS, avec par exemple les POCIS-like équipés de résines échangeuses d'ions (Fauvelle et al., 2012; Kaserzon et al., 2014; Li et al., 2011). Le taux d'échantillonnage est augmenté mais il reste des incertitudes par rapport aux phénomènes de compétition avec les ions présents naturellement dans l'environnement comme les chlorures ou les acides humiques (Bäuerlein et al., 2012). De plus, la correction par les PRC n'est pas toujours adaptée. En effet, il a été démontré que la cinétique de désorption des PRC pouvait être biphasique, ce qui ne permet pas de corriger les taux d'échantillonnage de façon précise (Fauvelle et al., 2014). De plus, les Rs de tous les composés sont généralement corrigés à partir de la désorption d'un PRC qui n'est pas forcément représentatif de tous les composés étudiés.

Figure I.4 : Schéma du Polar Organic Chemicals Integrative Sampler (POCIS)

Une alternative au POCIS consiste à adapter la technique de la DGT (Diffusive Gradient in Thin film), initialement développée pour les métaux sous forme labile (Davison and Zhang, 1994; Zhang and Davison, 1995), aux composés organiques.

I.2. La technique DGT

I.2.1. Dispositif

Le dispositif o-DGT est composé d'un support en polytétrafluoroéthylène (PTFE) sur lequel sont disposées une résine et une couche de diffusion constituée d'un gel et/ou d'une membrane microporeuse (voir Figure I.5). La résine est généralement composée d'une phase réceptrice spécifique des composés que l'on souhaite analyser en suspension dans un gel. Elle doit agir comme un puit sans fond afin que la diffusion soit constante du milieu à l'échantillonneur. La particularité de l'échantillonneur passif o-DGT est l'intégration d'un gel diffusif qui permet de contrôler la diffusion des composés. La membrane est la première « couche » rencontrée par les composés. Elle a un rôle protecteur vis-à-vis du dispositif afin d'éviter l'altération du gel diffusif et ainsi la modification de la diffusion des composés étudiés. De plus, elle ne doit pas accumuler les composés étudiés afin de ne pas influencer leur diffusion vers la résine. La diffusion des composés ne serait alors plus contrôlée seulement par le gel diffusif ce qui mènerait donc à un biais dans la détermination des concentrations (Challis et al., 2016a).

Figure I.5: Schéma d'un dispositif Diffusive gradient in thin-films (DGT)

I.2.2. Théorie

Dans le cas de la technique DGT, les composés diffusent à travers deux compartiments avant d'être accumulés dans la résine : la couche diffusive propre à l'outil comprenant un gel et/ou une membrane et la couche limite de diffusion (DBL pour diffusive boundary layer), correspondant à l'interface eau/DGT.

Le flux des composés F (µg.cm⁻².s⁻¹) à travers la couche diffusive vers la résine est déterminé grâce à l'Équation I-10. Cette équation est valable sous plusieurs hypothèses : la couche diffusive n'interagit pas avec les composés étudiés ; la concentration à l'interface entre la résine et la couche diffusive du o-DGT est négligeable ; un régime stationnaire est rapidement atteint avec la résine et celle-ci n'est pas saturée ; la diffusion latérale est négligeable (Guibal et al., 2019).

$$F = DC_w/(\Delta + \delta)$$
Équation I-10

Équation I-11

avec *D* le coefficient de diffusion des composés à travers la couche diffusive (cm².s⁻¹), C_w leur concentration dans l'eau (µg.L⁻¹), Δ l'épaisseur de la couche diffusive propre au o-DGT (gel diffusif et/ou membrane) (cm) et δ l'épaisseur de la DBL (cm). En utilisant la définition du flux, l'Équation I-10 peut être simplifiée par l'Équation I-11.

$$M = DC_w t A / (\Delta + \delta)$$

avec *M* la masse accumulée des composés dans l'échantillonneur passif (ng), *t* le temps d'exposition (s) et *A* l'aire de la surface exposée (cm²). La concentration dans le milieu peut alors se déterminer en fonction de la masse accumulée dans le o-DGT grâce à l'Équation I-12.

$$C_w = M(\Delta + \delta)/DtA$$
 Équation I-12

Le temps d'exposition, l'aire de la surface exposée et l'épaisseur de la couche de diffusion sont des paramètres connus. La masse accumulée doit être déterminée après exposition par élution et analyse par des techniques chromatographiques. Le coefficient de diffusion, propre à chaque composé et à chaque couche diffusive, doit quant à lui être déterminé en laboratoire.

La DBL influence la diffusion et le transfert de masse des composés, son épaisseur est dépendante des conditions hydrodynamiques du milieu. Plus la vitesse du courant est élevée, plus l'épaisseur de la DBL est faible. Le principal avantage de la technique DGT par rapport aux autres PS est que l'impact des conditions hydrodynamiques dans le milieu d'exposition peut être négligé grâce à la présence du gel de diffusion d'une épaisseur supérieure à celle de la DBL. Ainsi, si la vitesse de courant est supérieure ou égale à 2 cm.s⁻¹, l'épaisseur de la DBL est nettement inférieure à celle du gel diffusif et peut être négligée (Gimpel et al., 2001). Dans ce cas, l'étape limitante de l'échantillonnage est alors la diffusion à travers le gel diffusif seulement. Dans ce cas-là, le terme δ n'est plus considéré et l'Équation I-13 peut être utilisée.

$$C_w = M\Delta/DtA$$
 Équation I-13

Le taux d'échantillonnage R_s (mL.s⁻¹) peut être calculé à partir du coefficient de diffusion suivant l'Équation I-14. La concentration dans l'eau peut alors se calculer à partir de l'Équation I-15.

$$R_s = DA/\Delta$$
$$C_w = M/R_s t$$

Équation I-14 Équation I-15

I.3. Adaptation du DGT aux composés organiques

La technique de la o-DGT, utilisée dans un premier temps pour l'échantillonnage des antibiotiques (Chen et al., 2012, 2013) apparaissait en novembre 2019 dans une quarantaine de publications. Parmi ces articles, la majorité d'entre eux sont consacrés au test de configuration et de performance de o-DGT adapté aux composés d'intérêt en laboratoire et in situ. Deux articles sont consacrés au suivi du niveau de contamination des composés organiques dans des milieux aquatiques tels que des rivières, lacs ou STEU) (Challis et al., 2018a; Chen et al., 2013). Des articles sont consacrés au suivi de la désorption de composés organiques des sols et sédiments vers les eaux interstitielles (Chen et al., 2014, 2015a; Cole et al., 2018; D'Angelo and Martin, 2018; D'Angelo and Starnes, 2016; Guan et al., 2017; Li et al., 2019; Lin et al., 2018; Sidhu et al., 2019; Weng et al., 2019). Les incertitudes sur les concentrations déterminées par o-DGT (Belles et al., 2018), les effets des conditions physico-chimiques comme l'hydrodynamique (Buzier et al., 2019) et le pH (Stroski et al. 2018) ont été étudiés plus particulièrement dans des articles dédiés. Enfin, cette technique a été abordée dans deux synthèses bibliographiques, une consacrée à la technique o-DGT (Guibal et al., 2019) et l'autre traitant de l'échantillonnage passif des composés organiques, incluant les POCIS et les Chemcatcher (Gong et al., 2018).

Aujourd'hui, de nombreux composés ont été étudiés avec cette technique dont majoritairement des pharmaceutiques et des pesticides. Des composés présents dans les produits d'entretien et de soin corporel (PCE) comprenant des conservateurs (les parabènes), antioxydants et désinfectants ainsi que des retardateurs de flamme, phénols, HAP, drogues illicites et hormones sont également étudiés (voir Tableau I.2). Dans le cas des composés organiques, chaque composant de l'outil peut être optimisé afin de favoriser leur échantillonnage. Ainsi, la membrane, la phase réceptrice et le gel de diffusion choisis en fonction des composés étudiés sont répertoriés dans le Tableau I.2 et discutés dans les parties suivantes.

Tableau I.2 : Composants des o-DGT choisis dans la littérature

:	: J: / . NT 4	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1 ++ ,.1. '.	12 1 1 1 12	1 1.00 .0
n.1.	: non inaique ; INA :	: non applicable ; * :	epaisseur au gei et ae u	i membrane ; ™ : utilisation a	i une membrane a la place a un ;	gel alffusif.
	1 /	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 0	/	1 6	<u>, ,, ,</u>

		Membrane	6	Gel		Re	ésine			
Composés étudiés	Туре	Taille pores (µm)	Epaisseur (mm)	Туре	Epais- seur (mm)	Gel	Phase réceptrice	Epais- seur (mm)	Masse : volume (%)	Référence
Pharmaceutiques et pesticides (n=5)	Aucune	NA	NA	AG	0,75	AG	HLB	0,5	10	(Amato et al., 2018)
Pesticides, retardateurs de flamme, PCE (n=16)	Aucune	NA	NA	AG	1,2	AG	Strata-X	0,7	10	(Belles et al., 2017)
Pesticides, retardateurs de flamme, PCE (n=22)	Aucune	NA	NA	AG	2	AG	Strata-X	0 à 2,2	0,5 à 10	(Belles et al., 2018)
Pharmaceutiques (n=10)	Aucune	NA	NA	AG	0,16 - 0,84	AG	HLB	0,75	7	(Buzier et al., 2019)
Hormones, pesticides, pharmaceutiques (n=34)	Aucune	NA	NA	AG	1	AG	HLB	0,75	7	(Challis et al., 2016a)
Pesticides, pharmaceutiques (n=30)	Aucune	NA	NA	AG	1	AG	HLB	0,75	7	(Challis et al., 2018b)
Pesticides, pharmaceutiques (n=34)	Aucune	NA	NA	AG	1	AG	HLB	0,75	7	(Challis et al., 2018a)
Pharmaceutiques (n=1)	PES	n.i.	n.i.	AG	0,8	AG	XAD-18	0,5	20	(Chen et al., 2012)
Pharmaceutiques (n=37)	PES	n.i.	0,14	AG	0,8	AG	XAD-18	0,5	20	(Chen et al., 2013)
Pharmaceutiques (n=4)	PES	n.i.	0,14	AG	0,8	AG	XAD-18	0,5	20	(Chen et al., 2014)
Pharmaceutiques (n=41)	PES	n.i.	0,14	AG	0,8	AG	XAD-18	0,5	20	(Chen et al., 2015b)
Pharmaceutiques (n=4)	PES	n.i.	n.i.	AG	0,8	AG	HLB	0,5	20	(Chen et al., 2015a)
Conservateurs, antioxydants, désinfectants (n=12)	PC	0,2	n.i.	AG	0,8	AG	HLB	0,5	20	(Chen et al., 2017)
Pharmaceutiques, alkylphénols, bisphénols (n=18)	PC	0,2	0,01	AG	0,35-2	AG	HLB	0,4	20	(Chen et al., 2018)

		Membrane		G	fel		Ré	esine		
Composés étudiés	Туре	Taille pores (µm)	Epaisseur (mm)	Туре	Epais- seur (mm)	Gel	Phase réceptrice	Epais- seur (mm)	Masse : volume (%)	Référence
Organostann.i.ques (n=5)	MCE	0,45	0,15	AG	0,5	PA	C8	0,5	n.i.	(Cole et al., 2018)
Pharmaceutiques (n=1)	Nylon	0,45	0,17	AG	0,8	AG	XAD-18	0,5	20	(D'Angelo and Starnes, 2016)
Pharmaceutiques (n=1)	Nylon	0,45	n.i.	AG	0,8	AG	XAD-18	0,5	20	(D'Angelo and Martin, 2018)
4-chlorophénol (n=1)	Nylon	0,22	0,45	NA	NA	PA	MIP	n.i.	26	(Dong et al., 2014)
Pesticides (n=2)	PES	0,45	n.i.	PA	0,8	PA	TiO2	n.i.	10	(Fauvelle et al., 2015)
Bisphénols (n=1)	PVDF	0,45	n.i.	AG	0,6	PA	MIP	0,5	22,5	(Feng et al., 2019)
Bisphénols (n=3)	PTFE	0,45	0,11	AG	0,77	AG	СА	0,5	n.i.	(Guan et al., 2017)
Perfluoroalkyles (n=2)	PES	0,45	0,13	AG	0,75	AG	XAD-18	0,5	20	(Guan et al., 2018)
Pesticides (n=4)	Aucune	NA	NA	PA	0,77	PA	HLB	0,5	3	(Guibal et al., 2017)
Pharmaceutiques (n=3)	PES	n.i.	0,14	AG	0,8	AG	XAD-18	0,5	20	(Guo et al., 2017a)
Hormones (n=5)	PVDF	0,45	n.i.	AG	0,75	AG	XAD-18	0,5	n.i.	(Guo et al., 2017b)
Hormones (n=1)	PVDF	0,45	0,17	AG	0,75	AG	XAD-18	0,5	n.i.	(Guo et al., 2019)
Pesticides (n=7)	Aucune	NA	NA	PA	0,9	AG	Sepra-ZT	0,75	n.i.	(Hageman et al., 2019)
Pesticides (n=1)	PC	0,45	0,01	AG	1	PA	HLB	0,25	40	(Li et al., 2019)
Pesticides (n=1)	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	n.i.	(Lin et al., 2018)
Divers (n=192)	PES	0,1	0,132- 0,145	AG	0,8	PT FE	SBD-RPS	0,5	10	(Mechelke et al., 2019)
Pharmaceutiques (n=20)	PES	0,45	0,13	AG	0,8	PA	PCM	0,5	3	(Ren et al., 2018)

		Membrane		G	el		Ré	sine		
Composés étudiés	Туре	Taille pores (µm)	Epaisseur (mm)	Туре	Epais- seur (mm)	Gel	Phase réceptrice	Epais- seur (mm)	Masse : volume (%)	Référence
Pharmaceutiques (n=2)	Nylon	0,45	n.i.	AG	0,8	AG	XAD-18	0,5	20	(Sidhu et al., 2019)
Pharmaceutiques, Pesticides (n=30)	Aucune	NA	NA	РА	0,75	AG	Sepra-ZT	0,75	7,8	(Stroski et al., 2018)
PCE, Perfluoroalkyles (n=23)	NA	NA	NA	AG- NYL	1	AG	HLB	1	5	(Urik and Vrana, 2019)
Désinfectants (n=3)	GFF	0,7	0,2	AG	1	NA	Polymère de cyclodextrine	0,5	n.i.	(Wei et al., 2019)
Pesticides (n=1)	PES	0,45	NA	РА	0,91*	PA	TiO2	n.i.	n.i.	(Weng et al., 2019)
Pharmaceutiques (n=20)	PES	0,45	0,14	AG	0,8	AG	XDA-1	0,5	10	(Xie et al., 2018a)
Bisphénols, hormones, pesticides (n=6)	Aucune	NA	NA	AG	0,8	AG	XDA-1	0,5	10	(Xie et al., 2018b)
N.i.trophénols (n=3)	N.i.troc ellulose	0,45	0,12	Nylon **	0,16	PA	Charbon actif	2	1	(You et al., 2019a)
Tétracyclines (n=3)	PES	0,1	0,165	NA	NA	PA	NanoZnO	2	0,25	(You et al., 2019b)
Pharmaceutiques (n=2)	PES	n.i.	0,14	AG	0,8	AG	XAD-18	0,5	n.i.	(Zhang et al., 2018)
N.i.trochlorobenzene (n=4)	GHP	0,45	0,14	AG	0,8	AG	HLB	0,8	6,9	(Zhang et al., 2019)
Bisphénols (n=3)	PTFE	0,45	n.i.	AG	0,75	AG	Charbon actif	0,5	1	(Zheng et al., 2015)
Retardateurs de flammes, organophosphorés (n=6)	PTFE	0,45	n.i.	AG	0,75	AG	HLB	0,5	20	(Zou et al., 2018)

I.3.1. Membrane

La membrane est ajoutée au dispositif afin de le protéger lors d'exposition sur le terrain et doit donc interagir le moins possible avec les composés étudiés. L'accumulation des composés d'intérêts dans les membranes est étudiée dans 17 publications. Parmi les membranes testées, se trouvent des membranes PES, polycarbonate, nylon, cellulose ou encore PTFE. Les protocoles utilisés afin de quantifier l'accumulation dans les membranes sont décrits dans le Tableau I.3. Rapidement, les membranes seules ou des o-DGT sont placées dans de l'eau dopée (0,0043-100 µg.L⁻¹) pendant 6 à 24 h. La quantité accumulée dans les membranes est alors déduite de la quantité perdue dans l'eau dopée (Chen et al. 2012; Chen et al. 2017; 2018; Guo et al. 2017; Xie et al. 2018; Zhang et al. 2018; Zheng et al. 2015) ou après extraction des membranes (Challis et al., 2016a). Dans le Tableau I.3, l'accumulation est décrite avec le pourcentage de la quantité initiale présente dans l'eau dopée dans les membranes. Dans le cas où une membrane est choisie pour être placée sur le dispositif, cette dernière est celle qui accumule le moins les composés étudiés.

I.3.1.1. Accumulation dans les membranes

La membrane PES est la membrane qui a été le plus étudiée dans le cadre de la technique o-DGT. Cette membrane, utilisée avec le POCIS, a l'avantage d'être efficace pour limiter l'encrassement biologique (Uher et al., 2012). Elle présente cependant l'inconvénient d'accumuler les composés modérément polaires. Dans l'étude de Challis et al. (2016a), l'accumulation de pesticides et pharmaceutiques pour lequel le log $K_{ow} > 2$ a été observée. Pour certains des composés les plus hydrophobes (log $K_{ow} > 4$) comme par exemple la fluoxetine, le diazinon, le beta estradiol ou encore l'estrone, la quantité accumulée dans la membrane PES est équivalente ou supérieure à celle retrouvée dans la résine (Challis et al., 2016a). Une accumulation quasi-totale (> 95 %) a également été constatée dans d'autres études (voir Tableau I.3) pour de nombreux composés hydrophobes (log K_{ow} compris entre 2 et 4,66) comprenant des pharmaceutiques, pesticides, hormones, bisphénols, parabènes, nitrobenzène et alkylphénols (Chen et al., 2017, 2018; D'Angelo and Starnes, 2016; Xie et al., 2018b; Zhang et al., 2019; Zheng et al., 2015). Malgré des log K_{ow} élevés (> 5), certains composés ne sont pas ou peu accumulés comme deux perfluoroalkyles (< 5 %) et un bisphénol (< 15 %) (Feng et al., 2019; Guan et al., 2018). Les composés dont le log K_{ow} est inférieur à 2 ne sont généralement pas accumulés dans la membrane PES (< 5 %). C'est le cas de pharmaceutiques dont les log K_{ow} sont compris entre -2,6 et 1,85 (Chen et al., 2012; You et al., 2019b; Zhang et al., 2018) et des drogues illicites (log K_{ow} compris entre 0,68 et 2,18) étudiés par Guo et al. (2017a).

La membrane PTFE a été testée dans 4 études. La membrane PTFE accumule moins de 20 % de la quantité des pharmaceutiques (Zhang et al., 2018) et près de 40 % de la quantité de drogues illicites (Guo et al., 2017a) (log K_{ow} compris entre 0,68 et 2,18). Une accumulation de près de 40 % de perturbateurs endocriniens comprenant des pesticides, hormones et bisphénols a été observée par Xie et al. (2018a) (log K_{ow} compris entre 2,61 et 4,14). Les bisphénols étudiés par Zheng et al. (2015) et Feng et al. (2019) ne sont pas accumulés dans la membrane PTFE (< 3 %) (log K_{ow} < 3). De même les nitrobenzènes (log K_{ow} < 3) sont peu accumulés (1-11 %) (Zhang et al., 2019).

La membrane nylon a été étudiée dans 8 publications pour l'échantillonnage de nombreux composés organiques. Cette dernière n'accumule pas ou peu les nitrophénols (log Kow < 2 ; accumulation < 4 %) (You et al., 2019a). L'accumulation de ces composés est inférieure à 20 % pour les pharmaceutiques (D'Angelo and Starnes, 2016; Zhang et al., 2018), les drogues illicites (Guo et al., 2017a) et les nitrobenzènes (Zhang et al., 2019). Les bisphénols sont accumulés dans la membrane nylon (> 40 %) (Zheng et al., 2015) contrairement au tetrabisphénol A (\approx 10 %) (Feng et al., 2019). Les pesticides sont accumulés entre 10 et 40 % (Li et al., 2019).

Les membranes cellulose utilisées dans la littérature sont de trois types : les membranes en nitrate de cellulose (NC ; 3 publications), en acétate de cellulose (AC ; 1 publication) et en esters de cellulose mélangées (ECM ; AC et NC ; 6 publications). La membrane NC accumule 40 à 80 % de la quantité de trois parabènes, deux alkylphénols et le triclosan (Chen et al., 2017) 20 à 60 % des hormones et des bisphénols (Chen et al., 2018) et 95 % de la quantité en ciprofloxacine (D'Angelo and Starnes, 2016). L'accumulation de la ciprofloxacine et des nitrobenzène dans la membrane ECM est élevée (> 75 %) (D'Angelo and Starnes, 2016; Zhang et al., 2019) alors qu'elle est moins élevée pour les bisphénols, drogues illicites et pharmaceutiques (respectivement 30-60 %, 20-40 % et 5-30 %) (Guo et al., 2017a; Zhang et al., 2018; Zheng et al., 2015). L'accumulation des pesticides dans les

membranes ECM et AE est respectivement comprise entre 50 et 100 % et entre 10 et 80 % (Li et al., 2019).

Différentes membranes en polycarbonates ont été testées (Chen et al., 2017, 2018): nucleopore track-etched (PC), cyclopore track-etched (PC1) et nucleopore (PC2). L'accumulation des hormones, alkylphénols et bisphénols dans les membranes PC1 et PC2 est respectivement d'environ 20 et 10 % (Chen et al., 2018). L'accumulation des conservateurs, antioxydants et désinfectants est équivalente dans la membrane PC1 (environ 12 %) mais est plus importante dans la PC2 (34 %) (Chen et al., 2017). La membrane PC n'accumule que très peu les composés étudiés par Chen et al. (2017, 2018) (< 5 %). Cette dernière a également été testée pour l'échantillonnage des pesticides et montre une accumulation < 15 % (Li et al., 2019). La membrane PC2 accumule 21 % de la quantité en ciprofloxacine (D'Angelo and Starnes, 2016).

Certaines membranes ne sont que peu testées et utilisées dans le cadre de la technique o-DGT. C'est le cas de la membrane en polyvinyldenefluoride (PVDF) qui n'a pas montré d'accumulation des hormones (Guo et al., 2017b) et du tetrabisphénol A (< 10 %) (Feng et al., 2019). Deux publications s'intéressent à la membrane en polypropylène hydrophobe (PPH) pour laquelle l'accumulation des nitrobenzène et des pesticides est inférieure à 20 % (Li et al., 2019; Zhang et al., 2019). Enfin, le filtre GF/F n'accumule pas le triclosan, triclocarban et methyl-triclosan (< 4 %) (Wei et al., 2019).

Certains travaux n'étudient pas l'accumulation des composés dans les membranes utilisées. La membrane PES a été utilisée pour l'échantillonnage de 49 antibiotiques possédant des log Kow inférieurs à 2 excepté pour 7 d'entre eux (novobiocin, monensin, roxithromycin, erythromycin, clarithromycin, azithromycin et salinomycin) (Chen et al., 2013, 2015a; Ren et al., 2018; Xie et al., 2018a).

I.3.1.2. Les membranes sélectionnées

Au final, la membrane PES a été choisie pour l'échantillonnage de nombreux composés organiques (Mechelke et al., 2019) dont des pharmaceutiques et plus particulièrement d'antibiotiques (Chen et al., 2012, 2013, 2014, 2015b; Ren et al., 2018; Xie et al., 2018a; Zhang et al., 2018), des pesticides (Fauvelle et al., 2015; Weng et al., 2019), des perfuloralkyls (Guan et al., 2018) ou encore des drogues illicites(Guo et al., 2017a) (voir Tableau I.2). La

membrane PES a été choisie en tant que couche diffusive seule pour l'échantillonnage de tétracyclines (You et al., 2019b). La membrane en nylon est utilisée pour l'échantillonnage de pharmaceutiques (D'Angelo and Martin, 2018; D'Angelo and Starnes, 2016; Sidhu et al., 2019) et en tant que couche diffusive (sans gel) pour l'échantillonnage du 4-chlorophénol (Dong et al., 2014). Une membrane polycarbonate est utilisée pour l'échantillonnage pharmaceutiques, conservateurs divers (parabènes, composés organochlorés...), bisphénols et alkylphénols (Chen et al., 2015a, 2017, 2018). Pour l'échantillonnage de bisphénols et retardateurs de flamme, une membrane PTFE est utilisée (Guan et al., 2018; Zheng et al., 2015; Zou et al., 2018). La membrane PVDF est utilisée pour l'échantillonnage d'hormones et de bisphénols (Feng et al., 2019; Guo et al., 2017b, 2019). Les membranes GF/F, PPH, ECM et NC permettent l'échantillonnage de désinfectants, nitrobenzène, organostanniques et nitrophénols respectivement (Cole et al., 2018; Wei et al., 2019; You et al., 2019b; Zhang et al., 2019).

Afin de s'affranchir de la potentielle accumulation des composés étudiés, certaines études utilisent la DGT sans membrane (Amato et al., 2018; Belles et al., 2017, 2018; Buzier et al., 2019; Challis et al., 2016a, 2018a; Guibal et al., 2017; Hageman et al., 2019; Stroski et al., 2018; Xie et al., 2018b). Challis et al. (2016a) n'observe pas d'effet de la présence du biofilm sur le gel diffusif après la mise en place sur le terrain. Belles et al. (2017) utilisent une grille en aluminium posée au-dessus de la DGT pour protéger le gel diffusif.

Tableau I.3 : Membranes testées dans la littérature et protocoles utilisés pour déterminer l'accumulation des composés dans ces dernières

n.i. : non indiqué ; * : membrane choisie ; ** : lecture graphique

Composés étudiés	Membrane testée	Taille des pores (µm)	Exposition	Conc (µg.L ⁻¹)	Durée exposition	Matrice	рН	Accumulation (%)	Référence	
Hormones, pesticides, pharmaceutiques (n=34)	PES	0,1	o-DGT	2	8 jours	5 mM KNO3	5.5	Dépend des composés étudiés	(Challis et al., 2016a)	
Pharmaceutiques (n=1)	PES*	NA	Membrane	100	6 h	n.i.	n.i.	Non significatif	(Chen et al., 2012)	
	NC	0,2	Membrane	100	24 h	n.i.	n.i.	≈ 50		
Conservateurs,	PC1	0,2	Membrane	100	24 h	n.i.	n.i.	0,34		
antioxydants,	PC2	0,015	Membrane	100	24 h	n.i.	n.i.	0,12	(Chen et al., 2017)	
désinfectants (n=12)	PC*	0,2	Membrane	100	24 h	n.i.	n.i.	< 5		
	PES	0,45	Membrane	100	24 h	n.i.	n.i.	≈ 100		
	NC	0,2	Membrane	100	24 h	n.i.	n.i.	≈ 40		
Pharmaceutiques, alkyl phenols, bisphénols	PC1	0,2	Membrane	100	24 h	n.i.	n.i.	≈ 20		
	PC2	0,015	Membrane	100	24 h	n.i.	n.i.	≈ 10	(Chen et al., 2018)	
(n=18)	PC*	0,2	Membrane	100	24 h	n.i.	n.i.	< 5		
	PES	0,45	Membrane	100	24 h	n.i.	n.i.	≈ 100		
	PES	0,45	Membrane	100	2 h	n.i.	n.i.	79		
	NC	0,45	Membrane	100	2 h	n.i.	n.i.	95		
Pharmaceutiques (n=1)	ECM	0,45	Membrane	100	2 h	n.i.	n.i.	89	(D'Angelo and	
	PC	0,45	Membrane	100	2 h	n.i.	n.i.	21	Starnes, 2016)	
	Nylon*	0,45	Membrane	100	2 h	n.i.	n.i.	5		
	PES	0,45	Membrane	n.i.	n.i.	n.i.	n.i.	≈ 15		
	Nylon	0,45	Membrane	n.i.	n.i.	n.i.	n.i.	≈ 10		
Bisphenols (n=1)	PVDF*	0,45	Membrane	n.i.	n.i.	n.i.	n.i.	< 10	(Feng et al., 2019)	
_	PTFE	0,45	Membrane	n.i.	n.i.	n.i.	n.i.	< 5		
Perfluoroalkyles (n=2)	PES	0,45	Membrane	50	24 h	n.i.	n.i.	< 5	(Guan et al., 2018)	
	ECM	0,45	Membrane	20	12 h	n.i.	n.i.	20-40		
Pharmaceutiques (n=3)	Nylon	0,45	Membrane	20	12 h	n.i.	n.i.	≈ 5	(Guo et al., 2017a)	

Composés étudiés	Membrane testée	Taille des pores (µm)	Exposition	Conc (µg.L ⁻¹)	Durée exposition	Matrice	pН	Accumulation (%)	Référence
	PES*	0,45	Membrane	20	12 h	n.i.	n.i.	< 3	
	PTFE	0,45	Membrane	20	12 h	n.i.	n.i.	< 40	
Hormones (n=5)	PVDF	0,45	Membrane	0,0043	48 h	EUP	7	< 0	(Guo et al., 2017b)
	PES	0,45	Membrane	50	20 h	n.i.	n.i.	> 50	
	Nylon	0,45	Membrane	50	20 h	n.i.	n.i.	10-40**	
Destinides (n-1)	PC*	0,45	Membrane	50	20 h	n.i.	n.i.	< 15	(T; at al 2010)
Pesticides (II-1)	AC	0,45	Membrane	50	20 h	n.i.	n.i.	10-80**	(Li et al., 2019)
	ECM	0,45	Membrane	50	20 h	n.i.	n.i.	50-100**	
	PPH	0,45	Membrane	50	20 h	n.i.	n.i.	5-20**	
Désinfectants (n=3)	GFF	0,45	Membrane	10-20	3 j	n.i.	n.i.	< 4	(Wei et al., 2019)
Bisphénols, hormones, pesticides (n=6)	PES	0,45	Membrane	100	12 h	Eau de mer artificielle	n.i.	20-80	$(\mathbf{W}_{i}, \mathbf{z}, \mathbf{z}) = (0, 0, 0)$
Bisphénols, hormones, pesticides (n=6)	PTFE	0,45	Membrane	100	12 h	Eau de mer artificielle	n.i.	< 40	- (Ale et al., 2018b)
Nitrophénols (n=3)	Nylon	0,1	Membrane	200-5000	24 h	n.i.	5	< 4	(You et al., 2019a)
Tétracyclines (n=3)	PES	0,1	Membrane	200-1000	24 h	n.i.	n.i.	< 4	(You et al., 2019b)
	ECM	0,45	Membrane	20	12 h	n.i.	n.i.	5-40	
D_{1}	Nylon	0,45	Membrane	20	12 h	n.i.	n.i.	< 15	(71,,, .1, .2010)
Pharmaceutiques (n-2)	PES*	0,45	Membrane	20	12 h	n.i.	n.i.	< 5	(Znang et al., 2018)
	PTFE	0,45	Membrane	20	12 h	n.i.	n.i.	> 20	
	PES	0,45	Membrane	500	18 h	n.i.	n.i.	> 98	
	MCE	0,45	Membrane	500	18 h	n.i.	n.i.	75-90	
Nitrochlorobenzene	PTFE	0,45	Membrane	500	18 h	n.i.	n.i.	1-11	(Zhang et al., 2019)
(11-4)	PPH*	0,45	Membrane	500	18 h	n.i.	n.i.	1-6	
	Nylon	0,45	Membrane	500	18 h	n.i.	n.i.	5-14	
	ECM	0,45	Membrane	100	6 h	n.i.	n.i.	30-60*	
Bisphénols (n=3)	Nylon	0,45	Membrane	100	6 h	n.i.	n.i.	> 40	
	PES	0,45	Membrane	100	6 h	n.i.	n.i.	> 95	(Zheng et al., 2015)
	PTFE*	0,45	Membrane	100	6 h	n.i.	n.i.	< 3	

I.3.2. Gel diffusif

I.3.2.1. Accumulation dans le gel

Le gel diffusif doit présenter une rétention minimale des composés afin de permettre leur diffusion du milieu échantillonné vers la résine. L'accumulation des composés dans les gels diffusifs a été étudiée dans 15 publications. Les protocoles utilisés afin de quantifier l'accumulation dans les gels sont décrits dans le Tableau I.4. Rapidement, le gel diffusif testé est placé dans de l'eau dopée (0,043-100 µg.L⁻¹) pendant 6 h à 3 jours. L'accumulation dans le gel diffusif est alors déduite de la quantité perdue dans l'eau dopée.

Le gel AG n'accumule pas ou peu (< 5 %) de nombreux composés organiques comprenant des pharmaceutiques, hormones, bisphénols ou encore pesticides (Challis et al., 2016a; Chen et al., 2012, 2017, 2018; Feng et al., 2019; Guan et al., 2018; Guo et al., 2017a, 2017b; Wei et al., 2019; Zhang et al., 2019, 2018; Zheng et al., 2015). L'accumulation d'antibiotiques et de pesticides étudiés par Xie et al. (2018a) et Li et al. (2019) est légèrement supérieure mais suffisamment faible pour ne pas interférer avec la diffusion des composés étudiés. L'accumulation des pesticides anioniques étudiés par Guibal et al. (2017) dans le gel AG est d'environ 15 %. Le gel PA a été étudié et comparé au gel AG dans 5 publications. Le gel PA n'accumule pas ou très peu les composés organiques étudiés (< 5 %) comprenant des parabènes, hormones et bisphénols (Chen et al., 2017, 2018; Guibal et al., 2017). Le sulfamethoxazole est cependant accumulé dans le gel PA (Chen et al., 2012).

I.3.2.2. Les gels sélectionnés

Les gels sélectionnés sont indiqués dans le Tableau I.2. Le gel d'agarose est majoritairement utilisé pour l'échantillonnage de nombreux composés organiques comprenant des pharmaceutiques, pesticides, bisphénols, parabènes ou retardateurs de flammes. Le gel polyacrylamide est quant à lui utilisé dans cinq études pour l'échantillonnage de pharmaceutiques et de pesticides. Aucun gel diffusif n'est utilisé dans quatre publications malgré l'appellation « o-DGT » (Dong et al., 2014; You et al., 2019b, 2019a). Ces trois publications ont cependant été étudiées par la suite. Tableau I.4 : Gels testés dans la littérature et protocoles utilisés pour déterminer l'accumulation des composés dans ces derniers.

n.i. : non indiqué

Composés	Gel testé	Exposition	Conc. (µg/L)	Durée exposition	Matrice	pН	Absorption (%)	Référence
Hormones, pesticides, pharmaceutiques (n=34)	AG	Gel	n.i.	n.i.	n.i.	n.i.	Non	(Challis et al., 2016a)
$\mathbf{p}_{\mathbf{k}}$	AG	Gel	100	6 h	n.i.	n.i.	Non significatif	(Character 1, 2012)
Pharmaceutiques (n-1)	PA	Gel	100	6 h	n.i.	n.i.	Oui	(Chen et al., 2012)
Conservateurs, antioxydants,	AG	Gel	100	24 h	n.i.	n.i.	1,5	(Chan at al. 2017)
désinfectants (n=12)	PA	Gel	100	24 h	n.i.	n.i.	Non significatif	(Chen et al., 2017)
Pharmaceutiques, alkyl phenols,	AG	Gel	100	24 h	n.i.	n.i.	1,5	(Chap at al. 2018)
bisphénols (n=18)	PA	Gel	100	24 h	n.i.	n.i.	Non significatif	(Cheff et al., 2010)
Bisphenols (n=1)	AG	Gel	n.i.	n.i.	n.i.	n.i.	≈ 3	(Feng et al., 2019)
Perfluoroalkyles (n=2)	AG	Gel	n.i.	n.i.	n.i.	n.i.	< 4,6	(Guan et al., 2018)
Pesticides (n=4)	AG	Gel	10	4 h	n.i.	n.i.	≈ 15	(Guibal et al., 2017)
Pesticides (n=4)	PA	Gel	10	4 h	n.i.	n.i.	≈ 5	
Pharmaceutiques (n=3)	AG	Gel	20	12 h	n.i.	n.i.	< 3	(Guo et al., 2017a)
Hormones (n=5)	AG	Gel	0,0043	48 h	EUP	7	< 5	(Guo et al., 2017b)
Destinides (n=0)	AG	Gel	50	20 h	n.i.	n.i.	< 10	$(\mathbf{I}; \mathbf{at} \mathbf{a} \mathbf{l} 2010)$
Pesticides (II-9)	PA	Gel	50	20 h	n.i.	n.i.	< 10	(Li et al., 2019)
Désinfectants (n=3)	AG	Gel	10-20	3 jours	n.i.	n.i.	< 4	(Wei et al., 2019)
Bisphénols, hormones, pesticides (n=6)	AG	Gel	100	12 h	Eau de mer artificielle	n.i.	< 10	(Xie et al., 2018b)
Pharmaceutiques (n=2)	AG	Gel	20	12 h	n.i.	n.i.	< 3	(Zhang et al., 2018)
Nitrochlorobenzène (n=4)	AG	Gel	1-5	18 h	n.i.	n.i.	2,6-6,1	(Zhang et al., 2019)
Retardateurs de flammes, organophosphorés (n=6)	AG	Gel	100	6 h	n.i.	n.i.	< 3	(Zou et al., 2018)
I.3.3. Résine

La résine est généralement composée d'un gel et d'une phase réceptrice. Le gel utilisé est le même que celui utilisé en tant que gel diffusif excepté dans 6 publications (Cole et al., 2018; Dong et al., 2014; Ren et al., 2018; Stroski et al., 2018; You et al., 2019b, 2019a). Les phases réceptrices testées et leur nature sont listées dans le Tableau I.5. Les phases réceptrices sont choisies en fonction de leur affinité avec les composés étudiés. Pour cela, l'accumulation des composés dans les phases réceptrices ou dans les résines, le rendement d'élution et la capacité maximale des phases réceptrices ou résine sont étudiés. Ces paramètres sont décrits dans les parties suivantes.

Tableau I.5 : Phase réceptrices testées dans la littératuren.i. : non indiqué

Phase réceptrice testée	Composition	Référence		
C18	Silice greffée – Diméthyl octadécyl silane	(Cole et al., 2018)		
C8	Silice greffée – Diméthyl octyl silane	(Cole et al., 2018)		
CAD-40	n.i.	(Xie et al., 2018a)		
CDP	n.i.	(Wei et al., 2019)		
Charbon actif	Carbone graphite poreux	(Zhang et al., 2018; Zheng et al., 2015)		
D296	n.i.	(Xie et al., 2018a)		
HSAC	n.i.	(You et al., 2019a)		
LX1180	n.i.	(Xie et al., 2018a)		
LX4027	n.i.	(Xie et al., 2018a)		
Oasis® MCX	Copolymère de divinylbenzène N- vinylpyrrolidone avec des groupements sulfonates greffés	(Zhang et al., 2018)		
NKA-9	Polystyrène réticulé polaire	(Xie et al., 2018a)		
Oasis® HLB (Hydrophilic Lipophilic Balance)	Copolymère de divinylbenzène N- vinylpyrrolidone	(Chen et al., 2017, 2018; Guibal et al., 2017; Li et al., 2019; Urik and Vrana, 2019; Zhang et al., 2019, 2018; Zou et al., 2018, 2018)		
Oasis® MAX (Mode mixte échangeuse d'anions forts)	Copolymère de divinylbenzène N- vinylpyrrolidone avec des groupements d'ammonium quaternaire greffés	(Guibal et al., 2017)		
Polymère à empreinte moléculaire (MIP)	NA	(Dong et al., 2014; Feng et al., 2019)		
Sepra ZT	polymère Pyrrolidone modified styrenedivinylbenzene	(Stroski et al., 2018)		
Strata-X	Copolymère de styrene-divinylbenzene	(Belles et al., 2017)		
SXLA	n.i.	(Chen et al., 2017, 2018)		

Phase réceptrice testée	Composition	Référence		
Titane (TiO ₂)	NA	(Fauvelle et al., 2015; Weng et al., 2019)		
XAD-18	Polymère amberlite	(Chen et al., 2012, 2017, 2018; D'Angelo and Starnes, 2016; Guan et al., 2017; Guo et al., 2017a, 2017b; Li et al., 2019; Xie et al., 2018a; Zhang et al., 2018, 2018)		
XDA	n.i.	(Xie et al., 2018b)		
XDA-1	n.i.	(Xie et al., 2018a)		
XDA-600	n.i.	(Xie et al., 2018a)		

I.3.3.1. Élution et rendement d'élution

Le rendement d'élution se détermine en comparant la quantité perdue dans l'eau dopée à la quantité récupérée après élution de la résine. Plusieurs protocoles d'élutions peuvent être testés afin d'obtenir le meilleur rendement (nature du ou des solvants, proportion, temps d'élution...). Les différents protocoles et rendement d'élution des composés étudiés sont indiqués dans le Tableau I.6.

De manière générale, les protocoles d'élution choisis permettent des rendements d'élutions supérieurs à 75 %. Par exemple, l'élution de la phase Oasis® HLB permet d'obtenir des rendements d'élution des 7 conservateurs et 1 métabolite, 2 anti-oxydants et 3 désinfectants étudiés compris entre 65 et 124 % (Chen et al., 2017). Les rendements d'élution d'hormones, alkyl-phénols et bisphénols sont compris entre 72 et 112 % avec la phase Oasis® HLB (Chen et al., 2018). Les rendements d'élution de la phase réceptrice Oasis® HLB sont supérieurs à 95 % pour les huit retardateurs de flammes étudiés par Zou et al. (2018) et sont compris entre 81 et 101 % pour les pesticides étudiés par Amato et al. (2018). Dans le cas des pesticides anioniques étudiés par Guibal et al. (2017), les rendements d'élution sont plus élevés avec la phase Oasis[®] HLB (95 – 97 %) qu'avec la phase Oasis[®] MAX (46 - 86 %). Les deux pharmaceutiques étudiés par Zhang et al. (2018) sont élués respectivement à 70 et 100 % des phases Oasis HLB® et XAD-18. Parmis les quatre élutions de la phase réceptrice charbon actif testées, l'élution choisie parmet une récupération des bisphénols entre 34 et 95 % en fonction des composés Zheng et al. (2015). Dans le cas de la phase XAD-18, les rendements d'élution de drogues illicites sont supérieurs à 95 % (Guo et al., 2017a) et les rendements d'élution d'hormones, alkyl-phénols et bisphénols sont compris entre 72 et 111 % (Chen et al., 2018). Les rendements d'élutions de la phase en materiaux poreux carbonés (MPC) des 6 antibiotiques étudiés par Ren et al. (2018) sont supérieurs à 97 % Les rendements d'élution de la phase XDA-1 sont compris entre 67 et 115 % pour les antibiotiques (Xie et al., 2018a) alors qu'ils sont supérieurs à 90 % dans le cas des hormones, pesticides et bisphénols (Xie et al., 2018b). Les rendements d'élution de la phase Sepra ZT de 31 pesticides et pharmaceutiques sont supérieurs à 95 % (Stroski et al., 2018).

Tableau I.6 : Protocoles et rendements d'élution

n.i. : non indiqué ; en italique : lecture graphique

Phase réceptrice	Gel	Solvants	Volumes	Informations supplémentaires	Temps	Rendement (%)	Méthode sélectionnée	Référence	
HLB	AG	DCM/Hexane 50/50	3 mL	Vortex puis ultrasons	$2 \times 3 \min$	81-101 %		(Amato et al., 2018)	
Strata-X	AG	DCM	$2 \times 20 \text{ mL}$	-	2×24 h	92-100 %		(Belles et al., 2017)	
HLB	AG	MeOH	$3 \times 3 \text{ mL}$	Ultrasons	$2 \times 2 \min$	74-100 %		(Challis et al., 2016a)	
XAD	AG	MeOH	$2 \times 5 \text{ mL}$	Ultrasons	20 min	97%		(Chen et al., 2012)	
HLB	NA	ACN	5 mL	Ultrasons	15 min	≈ 60-120 %			
HLB	NA	ACN	$2 \times 5 \text{ mL}$	Ultrasons	2 × 15 min	≈ 60-120 %		(Chap at al. 2017)	
HLB	NA	ACN	5 mL	Ultrasons	30 min	≈ 60-120 %	×	(Cheff et al., 2017)	
HLB	NA	ACN	$2 \times 5 \text{ mL}$	Ultrasons	2×30 min	≈ 60-120 %			
HLB	AG	ACN	5 mL	Ultrasons	30 min	72 -112 %	×		
HLB	AG	ACN	5 mL	Ultrasons	15 min	≈ 60-90 %			
HLB	AG	ACN	$2 \times 5 \text{ mL}$	Ultrasons	2 × 15 min	≈ 70-100 %		(Chap at al. 2019)	
HLB	AG	ACN	$2 \times 5 \text{ mL}$	Ultrasons	2×30 min	≈ 80-110 %		(Cheff et al., 2016)	
SXLA	AG	ACN	5 mL	Ultrasons	30 min	70-107 %	×		
XAD18	AG	ACN	5 mL	Ultrasons	30 min	73-111 %	×		
C8	РА	Acide acétique méthanolique 13 M	20 mL	Agitation (240 rpm)	24 h	66-105 %		(Coloret al 2018)	
C8/C18 50/50	PA	Acide acétique méthanolique 13 M	20 mL	Agitation (240 rpm)	24 h	64-118 %		(Cole et al., 2018)	
XAD 18	AG	ACN / HCL 0,15 M	10 mL	Ultrasons	30 min	> 95 %		(D'Angelo and Starnes, 2016)	
MIP	PA	EtOh	5 mL	Contact	12 h	101%		(Dong et al., 2014)	

Phase réceptrice	Gel	Solvants	Volumes	Informations supplémentaires	Temps	Rendement (%)	Méthode sélectionnée	Référence
TiO2	РА	NaOH 1 M	1 mL	Contact	24 h	69-86 %		(Fauvelle et al., 2015)
MIP	PA	ACN	5 mL	Agitation	24 h	82%	×	,
MIP	PA	МеОН	5 mL	Agitation	24 h	56%		
MIP	PA	MeOH/ Acide acétique (90/10)	5 mL	Agitation	24 h	78%		(Feng et al., 2019)
MIP	РА	ACN/Acide acétique (90/10)	5 mL	Agitation	24 h	70%		
XAD-18	AG	MeOH	10 mL	Contact	24 h	95-104 %	×	$(C_{\text{upp}} \text{ at al} 2018)$
XAD-18	AG	MeOH	$2 \times 5 \text{ mL}$	Ultrasons	20 min	100-105 %		(Guaii et al., 2018)
HLB	PA	MeOH/EtOAc 50/50	5 mL	-	1 - 48 h	95-97 %	×	
HLB	PA	MeOH/HCOOH 1 M 90/10	5 mL	-	1 - 48 h	n.i.		
HLB	PA	MeOH/NaOH 1 M 70/30	5 mL	-	1 - 48 h	n.i.		
MAX	РА	MeOH/HCOOH 1 M 90/10	5 mL	-	1 - 48 h	46-86 %	×	(Guidal et al., 2017)
MAX	PA	MeOH/EtOAc 50/50	5 mL	-	1 - 48 h	n.i.		
MAX	PA	MeOH/NaOH 1 M 70/30	5 mL	-	1 - 48 h	n.i.		
XAD	AG	MeOH	10 mL	-	24 h	96-98 %	×	
XAD	AG	MeOH - 5 % NH3	10 mL	-	24 h	64-90 %		$(C_{\rm HO} {\rm st} {\rm sl} 2017 {\rm s})$
XAD	AG	ACN	10 mL	-	24 h	92-100 %		(Guo et al., 2017a)
XAD	AG	Ethyl acetate	10 mL	-	24 h	5-22 %		
XAD-18	AG	Acétone/n-hexane	NA	ASE	NA	≈ 100 %		(Guo et al., 2017b)
HLB	PA	МеОН	5 mL	Ultrasons	30 min	98-104%		$(\mathbf{I}; \mathbf{at} \mathbf{a} \mathbf{l}, 2010)$
XAD-18	PA	МеОН	5 mL	Ultrasons	30 min	93-99%		(L1 et al., 2019)
n.i.	n.i.	МеОН	n.i.	-	n.i.	n.i.		(Lin et al., 2018)
SBD-RPS disk	NA	Acétone puis MeOH	6 mL	Agitation	30 min	n.i.		(Mechelke et al., 2019)

Phase réceptrice	Gel	Solvants	Volumes	Informations supplémentaires	Temps	Rendement (%)	Méthode sélectionnée	Référence
SDB-RPS	AG	Acétone puis MeOH	6 mL	Agitation	30 min	n.i.		(Mechelke et al., 2019)
PCM	PA	MeOH/AcOH 90/10	$2 \times 5 \text{ mL}$	-	NA	97-106 %		(Ren et al., 2018)
Sepra ZT	AG	MeOH	$3 \times 3 \text{ mL}$	Ultrasons	$3 \times 2 \min$	97-100 %		(Stroski et al., 2018)
HLB	AG	MeOH	$2 \times 10 \text{ mL}$	Contact	2×24 h	12-136 %		(Urik and Vrana
HLB	AG- NYL	МеОН	$2 \times 10 \text{ mL}$	-	Nuit	72-136 %		2019)
CDPM	NA	МеОН	$20 \text{ mL} \times 3$	Ultrasons	$30 \min \times 3$	92-112%		(Wei et al., 2019)
TiO2	PA	NaOH 1 M	1 mL	-	24 h	80%		(Weng et al., 2019)
XDA	AG	МеОН 0,1 % НСООН	$2 \times 5 \text{ mL}$	Ultrasons	2×30 min	67-115 %		(Xie et al., 2018a)
XDA	AG	MeOH	2 × 3,5 mL	Ultrasons	2×20 min	> 90 %		(Xie et al., 2018b)
HSAC	PA	NaOH 1 M	10 mL	Ultrasons	2 h	88-97 %	×	(You at al 2010a)
HSAC	PA	NaOH 1 M	10 mL	-	2 h	42-85 %		(100 et al., 2019a)
nanoZnO	PA	HCl 0.01 M	n.i.	-	2 h	100%		(You et al., 2019b)
Charbon actif	AG	MeOH	10 mL	-	24 h	25-80 %		
Charbon actif	AG	MeOH - 5 % NH3	10 mL	-	24 h	0-80 %		
Charbon actif	AG	ACN	10 mL	-	24 h	55-60 %		
Charbon actif	AG	ACN - 5 % NH3	10 mL	-	24 h	20-80 %		
MCX	AG	MeOH	10 mL	-	24 h	5-20 %		
MCX	AG	MeOH - 5 % NH3	10 mL	-	24 h	45-90 %		(Thang et al 2018)
MCX	AG	ACN	10 mL	-	24 h	20-70 %		(Zitalig et al., 2010)
MCX	AG	ACN - 5 % NH3	10 mL	-	24 h	70-90 %		
OASIS HLB	AG	MeOH	10 mL	-	24 h	10-90 %		
OASIS HLB	AG	MeOH - 5 % NH3	10 mL	-	24 h	5-100 %		
OASIS HLB	AG	ACN	10 mL	-	24 h	75-90 %		
OASIS HLB	AG	ACN - 5 % NH3	10 mL	-	24 h	70-110 %		

Phase réceptrice	Gel	Solvants	Volumes	Informations supplémentaires	Temps	Rendement (%)	Méthode sélectionnée	Référence
XAD-18	AG	ACN - 5 % NH3	10 mL	-	24 h	70-90 %	×	
XAD-18	AG	MeOH	10 mL	-	24 h	10-90 %		
XAD-18	AG	MeOH - 5 % NH3	10 mL	-	24 h	5-90 %		
XAD-18	AG	ACN	10 mL	-	24 h	70-90 %		
HLB	AG	MeOH	5 mL	Ultrasons	15 min	7-20 %		
HLB	AG	Toluène	5 mL	Ultrasons	15 min	65-70 %		
HLB	AG	Toluène	5 mL	Ultrasons	30 min	$\approx 90 \%$		
HLB	AG	Toluène	$2 \times 5 \text{ mL}$	Ultrasons	2 × 15 min	≈ <i>85 %</i>		(Zhang et al., 2019)
HLB	AG	Toluène	$2 \times 5 \text{ mL}$	Ultrasons	2 × 30 min	90-110 %	×	
HLB	AG	Toluène	$3 \times 5 \text{ mL}$	Ultrasons	3×60 min	≈ 100 %		
Charbon actif	AG	MeOH	10 mL	-	24 h	34-95 %		
Charbon actif	AG	MeOH/NaOH 1 M 70/30	10 mL	-	24 h	52-62 %		
Charbon actif	AG	MeOH/NaOH 0,5 M 70/30	10 mL	-	24 h	46-61 %		(Zheng et al., 2015)
Charbon actif	AG	MeOH/NaOH 1 M 90/10	10 mL		24 h	44-65 %		
HLB	AG	MeOH	10 mL	Ultrasons	30 min	92-109 %		(Zou et al., 2018)

I.3.3.2. Accumulation des composés

L'accumulation des composés dans la résine et/ou phase réceptrice seule est étudiée suivant deux critères : la vitesse d'accumulation et l'affinité des composés avec la résine et/ou phase réceptrice. La cinétique d'accumulation, permettant de déterminer ces deux critères, a été étudiée dans 13 publications. L'affinité des composés avec la résine est également déterminée seule dans 13 publications. Les différents protocoles sont détaillés dans le Tableau I.7. Brèvement, les résines et/ou phases réceptrices seules ont été a été placées dans de l'eau dopée (20-2000 μ g.L⁻¹) pendant différentes durées (30 s à 96 h) dans le cadre de l'étude de la cinétique ou pendant un temps donné (1 heure à 15 jours) pour l'étude de l'affinité seulement. L'accumulation est alors déterminée en fonction de la quantité perdue dans l'eau dopée ou après élution des résines.

Cinétique d'accumulation dans la résine

L'accumulation des composés étudiés dans la résine est rapide en début d'exposition avec une phase linéaire avant de ralentir jusqu'à l'obtention d'un plateau qui correspond à l'accumulation maximale dans la résine dans toutes les publications. Les informations obtenues avec les cinétiques sont détaillées dans le Tableau I.8. La durée de la phase d'accumulation linéaire, lorsqu'elle est précisée, est comprise entre 20 minutes et 4 heures. L'accumulation des composés par la résine est maximale au bout d'1 à 3 h excepté dans les études de Li et al. (2019) (respectivement 12 h et 24 h pour les résines XAD-18 et Oasis HLB) et de Feng et al. (2019) (6h pour la résine MIP). Lors de la phase linéaire, le flux d'accumulation peut être déterminé. Il est généralement inférieur à 5 ng.cm⁻².s⁻¹ excepté dans les études de Feng et al. (2019) (41 ng.cm⁻².s⁻¹) et Zhang et al. (2019) (environ 16 ng.cm-2.s-1). Tous les flux d'accumulation dans les résines sont supérieurs à ceux dans les o-DGT excepté dans une étude (Zhang et al., 2018). Afin de respecter la condition que la concentration à l'interface du gel et de la résine est nulle, l'accumulation dans la résine doit être rapide et donc inférieure à celle observée pour l'outil o-DGT complet. Deux études n'indiquent ni le pourcentage accumulé ni le flux d'accumulation (Chen et al., 2017, 2018). Cependant, la cinétique permet de déterminer les résines accumulant le plus rapidement les composés. Ainsi, Chen et al. (2017, 2018) ont montré que l'accumulation des composés étudiés est plus lente avec la phase Strata-X qu'avec les phases HLB et XAD-18. Les phases Oasis[®] HLB et XAD-18 seraient alors les plus indiquées pour l'échantillonnage de conservateurs (et métabolite), antioxydants, désinfectants (Chen et al., 2017), bisphénols, alkylphénols et hormones (Chen et al., 2018).

Affinité avec les composés

Les détails concernant l'accumulation des composés sont décrits dans le Tableau I.8 et dans le Tableau I.9. En règle générale, l'accumulation des composés dans la résine est décrite par le pourcentage de la quantité piégée par la résine ou la phase réceptrice par rapport à la quantité présente initialement dans l'eau. Cette accumulation n'est pas liée à la capacité maximale de la résine mais montre seulement l'affinité des composés avec la résine ou la phase réceptrice. La phase XDA-1 permet une accumulation des antibiotiques étudiés supérieure à 90 % excepté pour deux sulfonamides (sulfadiazine et sulfamethoxazole - 72 et 85 %) (Xie et al., 2018a) et une accumulation supérieure à 95 % des pesticides, hormones et bisphénols (Xie et al., 2018b). La phase réceptrice XAD-18 permet une accumulation quasi-totale (80-100 %) du sulfaméthoxazole (Chen et al., 2012), d'hormones (Guo et al., 2017b), de perfluoroalkyles (Guan et al., 2018) et de deux pharmaceutiques (Zhang et al., 2018). La phase réceptrice PCM permet l'accumulation importante (92 %) d'antibiotiques (Ren et al., 2018). L'accumulation de deux pharmaceutiques est supérieure à 80 % dans les phases absorbantes MCX (Zhang et al., 2018). La phase en charbon actif permet une accumulation quasi-totale (80-95 %) de bisphénols (Zheng et al., 2015) et pharmaceutiques (Zhang et al., 2018). La phase Oasis[®] HLB permet une accumulation importante de retardateurs de flamme (> 80 %) (Zou et al., 2018) mais une accumulation relativement faible de deux pharmaceutiques (53-77 %) (Zhang et al., 2018). Les coefficients de distribution entre l'eau et la phase réceptrice (K_s) de pesticides, retardateurs de flamme, perfluoroalkyles, pharmaceutiques et PCE ont été déterminés dans deux études (Belles et al., 2017; Urik and Vrana, 2019). Ce dernier est compris entre 3 et 6 dans les deux études.

Les propriétés physico-chimiques des phases absorbantes et des composés conditionnent l'accumulation. Les deux pesticides anioniques, le bentazone et le mécoprop sont par exemple plus accumulés dans la phase Oasis[®] MAX (> 94%) que dans la phase Oasis[®] HLB (> 80 %). Cette différence peut s'expliquer par la présence du groupe ammonium ce qui rend la résine chargée positivement (Guibal et al., 2017). Dans le cas de l'échantillonnage d'antibiotiques, huit phases absorbantes ont été testées : une phase échangeuse d'ions (D296), une phase polaire (NKA-9), une phase modérément polaire (CAD40), et 5 phases non polaires (XDA-1, XAD-18, LX4027, LX1180, XDA-600) (Xie et al., 2018a). Les phases non polaires accumulent plus les antibiotiques testés que les phase échangeuses d'ions ou polaires ce qui indique que les interactions hydrophobes jouent un rôle prépondérant dans l'accumulation (Xie et al., 2018a). La surface spécifique des résines non polaires est corrélée avec la masse accumulée d'antibiotiques (Xie et al., 2018a). De la même façon, l'accumulation dans la XAD-18 de trois drogues illicites est corrélée avec leur log Kow (Guo et al., 2017b).

Urik et al. (2019) ont comparé l'accumulation de composés organiques comprenant des perfluoroalkyles, PCE et pharmaceutiques dans la phase Oasis[®] HLB seule ou mélangée à du gel d'agarose afin de mettre en évidence les différences liées à l'ajout de gel. Les coefficients de distribution entre l'eau et la phase réceptrice sont similaires avec ou sans gel. Les plus grandes différences entre les coefficients de ditribution sont observées pour les composés les plus hydrophobes ce qui indique que le gel réduit la quantité de site actifs non polaires sur la phase réceptrice.

Paramètre testé	Exposition	Phase réceptrice	Gel	Durée d'exposition	Conc. (µg.L ⁻¹)	Matrice	pН	Référence
Accumulation	Résine	C8	PA	48 h	0,5 à 5	0,1 M NaCl	4	(Cole et al., 2018)
Accumulation	Résine	C8	PA	48 h	2	0,01 à 1 M NaCl	8	(Cole et al., 2018)
Accumulation	Résine	C8	PA	48 h	2	Eau de mer filtrée	8	(Cole et al., 2018)
Accumulation	Résine	C8	PA	48 h	2	0,01 M NaCl	4 à 9	(Cole et al., 2018)
Accumulation	Résine	C8/C18 50/50	PA	48 h	0,5 à 5	0,1 M NaCl	4	(Cole et al., 2018)
Accumulation	Résine	C8/C18 50/50	PA	48 h	2	0,01 à 1 M NaCl	8	(Cole et al., 2018)
Accumulation	Résine	C8/C18 50/50	PA	48 h	2	Eau de mer filtrée	8	(Cole et al., 2018)
Accumulation	Résine	C8/C18 50/50	РА	48 h	2	0,01 M NaCl	4 à 9	(Cole et al., 2018)
Accumulation	Résine	CAD-40	AG	12 h	10 à 200	0,7 M Eau de mer artificielle	7,9	(Xie et al., 2018a)
Cinétique	Résine	CDP	NA	10 min -36 h	100 à 400	n.i.	n.i.	(Wei et al., 2019)
Cinétique	Résine	Charbon actif	AG	30 s – 24 h	100	0,01 M NaCl	n.i.	(Zheng et al., 2015)
Accumulation	Résine	Charbon actif	AG	12 h	20	n.i.	n.i.	(Zhang et al., 2018)
Accumulation	Résine	D296	AG	12 h	10 à 200	0,7 M Eau de mer artificielle	7,9	(Xie et al., 2018a)
Accumulation	Résine	HLB	PA	12 h	50 à 250	0,01 M NaNO3	n.i.	(Guibal et al., 2017)
Accumulation	Résine	HLB	AG	7 jours	0,004 à 0,4	EUP	5,8	(Urik and Vrana, 2019)
Accumulation	Phase réceptrice	HLB	NA	7 jours	0,004 à 0,4	EUP	5,8	(Urik and Vrana, 2019)
Accumulation	Résine	HLB	AG	12 h	20	n.i.	n.i.	(Zhang et al., 2018)
Accumulation	Résine	HLB	AG	60 min	20	0,01 M NaCl	n.i.	(Zou et al., 2018)

Tableau I.7 : Protocoles utilisés pour déterminer l'accumulation des composés dans les résines (gel + phase réceptrice) ou phases réceptrices seules

n.i. : non indiqué

Paramètre testé	Exposition	Phase réceptrice	Gel	Durée d'exposition	Conc. (µg.L ⁻¹)	Matrice	pH	Référence
Cinétique	Résine	HLB	AG	Jusqu'à 24 h	200	0,01 M NaCl	6,8	(Chen et al., 2017)
Cinétique	Résine	HLB	AG	Jusqu'à 24 h	200	0,01 M	6,8	(Chen et al., 2018)
Cinétique	Résine	HLB	PA	5 min à 33 h	200	0,01 M NaCl	n.i.	(Li et al., 2019)
Cinétique	Résine	HLB	AG	5 à 12 h	1000	0,01 M NaCl	6,4	(Zhang et al., 2019)
Cinétique	Résine	HLB	AG	30 s à 24 h	100	n.i.	n.i.	(Zou et al., 2018)
Accumulation	Résine	HSAC	PA	24 h	10000	NA	5	(You et al., 2019a)
Accumulation	Résine	LX1180	AG	12 h	10 à 200	0,7 M Eau de mer artificielle	7,9	(Xie et al., 2018a)
Accumulation	Résine	LX4027	AG	12 h	10 à 200	0,7 M Eau de mer artificielle	7,9	(Xie et al., 2018a)
Accumulation	Résine	MAX	PA	12 h	50 à 250	0,01 M NaNO3	n.i.	(Guibal et al., 2017)
Accumulation	Résine	MCX	AG	12 h	20	n.i.	n.i.	(Zhang et al., 2018)
Accumulation	Résine	NKA-9	AG	12 h	10 à 200	0,7 M Eau de mer artificielle	7,9	(Xie et al., 2018a)
Cinétique	Résine	PCM	PA	Jusqu'à 6 h	100	n.i.	n.i.	(Ren et al., 2018)
Accumulation	Résine	MIP	PA	24 h	200 à 2000	n.i.	6	(Dong et al., 2014)
Cinétique	Résine	MIP	PA	Jusqu'à 18 h	2000	n.i.	n.i.	(Feng et al., 2019)
Accumulation	Phase réceptrice	Strata-X	NA	15 jours	40 à 50000	n.i.	n.i.	(Belles et al., 2017)
Cinétique	Résine	SXLA	AG	Jusqu'à 24 h	200	0,01 M NaCl	6,8	(Chen et al., 2017)
Cinétique	Résine	SXLA	AG	Jusqu'à 24 h	200	0,01 M	6,8	(Chen et al., 2018)
Accumulation	Résine	TiO2	PA	24 h	1	n.i.	n.i.	(Fauvelle et al., 2015)
Accumulation	Résine	XAD-18	NA	n.i.	n.i.	EUP	6	(Chen et al., 2012)

Paramètre testé	Exposition	Phase réceptrice	Gel	Durée d'exposition	Conc. (µg.L ⁻¹)	Matrice	pН	Référence
Accumulation	Résine	XAD-18	AG	24 h	100 à 10000	n.i.	n.i.	(D'Angelo and Starnes, 2016)
Accumulation	Résine	XAD-18	AG	48 h	2 à 64	EUP	7	(Guo et al., 2017b)
Accumulation	Résine	XAD-18	AG	12 h	10 à 200	0,7 M Eau de mer artificielle	7,9	(Xie et al., 2018a)
Accumulation	Résine	XAD-18	AG	12 h	20	n.i.	n.i.	(Zhang et al., 2018)
Cinétique	Résine	XAD-18	AG	Jusqu'à 24 h	200	0,01 M NaCl	6,8	(Chen et al., 2017)
Cinétique	Résine	XAD-18	AG	Jusqu'à 24 h	200	0,01 M	6,8	(Chen et al., 2018)
Cinétique	Résine	XAD-18	AG	1 min à 24 h	50	0,01 M NaCl	n.i.	(Guan et al., 2018)
Cinétique	Résine	XAD-18	AG	30 s à 24 h	20	0,01 M NaCl	n.i.	(Guo et al., 2017a)
Cinétique	Résine	XAD-18	PA	5 min à 33 h	200	0,01 M NaCl	n.i.	(Li et al., 2019)
Cinétique	Résine	XAD-18	AG	Jusqu'à 24 h	20	n.i.	n.i.	(Zhang et al., 2018)
Cinétique	Résine	XDA	AG	5 min à 24 h	100	n.i.	n.i.	(Xie et al., 2018b)
Accumulation	Résine	XDA-1	AG	12 h	10 à 200	0,7 M Eau de mer artificielle	7,9	(Xie et al., 2018a)
Accumulation	Résine	XDA-600	AG	12 h	10 à 200	0,7 M Eau de mer artificielle	7,9	(Xie et al., 2018a)

Phase réceptrice	Gel	Durée accumulation linéaire	Flux résine seule (ng.cm ⁻² .min ⁻¹)*	Flux o-DGT (ng.cm ⁻² .min ⁻¹)*	Accumulation maximale	Durée atteinte plateau	Référence
MIP	РА	4 h	41,4	3,6	> 95 %	6h	(Feng et al., 2019)
XAD-18	AG	20 min	2,86-3,65	0,30-0,35	95%	30-60 min	(Guan et al., 2018)
XAD-18	AG	n.i.	1,03-1,75	Plus lent que résine	≈ 90 %	60 min	(Guo et al., 2017a)
HLB	PA	n.i.	n.i.	n.i.	≈ 100 %	24 h	(Li et al., 2019)
XAD-18	PA	2 h	n.i.	n.i.	≈ 100 %	12 h	(Li et al., 2019)
РСМ	PA	n.i.	0,53-1,21*	0,0057-0,014*	60-100 %	180 min	(Ren et al., 2018)
CDP	NA	n.i.	1,2-27,1	0,35-1,70	n.i.	n.i.	(Wei et al., 2019)
XDA	AG	20 min	n.i.	n.i.	95%	100 min	(Xie et al., 2018b)
XAD-18	AG	n.i.	0,93-1,46	1,13-1,70	≈ 90 %	180 min	(Zhang et al., 2018)
HLB	AG	30 min	16,1 – 16,5	4,9 – 5,7	> 97 %	120 min	(Zhang et al., 2019)
CA	AG	30 min	1,94-5,52	0,25-0,41	95%	60 min	(Zheng et al., 2015)
HLB	AG	30 min	1,55-2,42	0,66-1,02	> 80 %	60 min	(Zou et al., 2018)

n.i. : non indiqué ; * : les valeurs notées d'un astérisque sont en ng.cm⁻¹.min⁻¹

Composés	Exposition	Phase réceptrice	Gel	Accumulation	Référence	
Pesticides, retardateurs de flamme, PCE (n=16)	Phase réceptrice	Strata-X	NA	log Ks = 3,0 à 6,5	(Belles et al., 2017)	
Pharmaceutiques (n=1)	Résine	XAD-18	NA	97 ± 2 %	(Chen et al., 2012)	
Pharmaceutiques (n=1)	Résine	XAD-18	AG	90 %	(D'Angelo and Starnes, 2016)	
Pesticides (n=2)	Résine	TiO2	РА	≈ 100 %	(Fauvelle et al., 2015)	
$\mathbf{D}_{\text{opticidas}}(\mathbf{n}=4)$	Résine	HLB	РА	80-94 %	$(C_{\rm wibal at al}, 2017)$	
Pesticides (n=4)	Résine	MAX	РА	> 94 %	(Guidai et al., 2017)	
Hormones (n=5)	Résine	XAD-18	AG	≈ 100 %	(Guo et al., 2017b)	
PCE Dorfbuorcellydes ($z=22$)	Résine	HLB	AG	log Ks = 3,73 à 5,67	(I will and Vrana 2010)	
PCE, Perhuoroaikyles (II–25)	Phase réceptrice	HLB	NA	log Ks = 3,18 à 5,47	(Ufik and Vrana, 2019)	
Pharmaceutiques (n=20)	Résine	XDA-1	AG	72 - 100 %	(Xie et al., 2018a)	
Nitrophénols (n=3)	Résine	HSAC	РА	< 98 %	(You et al., 2019a)	
	Résine	XAD-18	AG	> 80 %		
Dharman continues (n-2)	Résine	HLB	AG	53 - 77 %	$(\mathbf{Z}_{hangestal}, 2_{019})$	
Phamhaceutiques (n=2)	Résine	MCX	AG	> 80 %	(Zhang et al., 2016)	
	Résine	Charbon actif	AG	> 80 %		
Retardateurs de flammes, organophosphorés (n=6)	Résine	HLB	AG	> 80 %	(Zou et al., 2018)	

Tableau I.9 : Accumulation dans les résines (phase réceptrice + gel) ou dans les phases réceptrices seules

I.3.3.3. Capacité maximale

La capacité maximale des résines peut être évaluée afin de déterminer un temps d'exposition maximum. Les protocoles utilisés afin de quantifier la capacité maximale sont décrits dans le Tableau I.10. Brièvement, les résines ou o-DGT sont exposés à des concentrations croissantes (jusqu'à 1000 mg.L⁻¹) en général pendant 24 h ou pendant différentes durées à une concentration fixe. La masse accumulée dans la résine est tracée en fonction de la concentration d'exposition ou du temps. L'apparition d'un plateau permet alors de déterminer la quantité maximale accumulée. Dans certaines études, la capacité observée est divisée par deux, en prenant en compte que seule la moitié de la résine est disponible pour les composés étudiés (Chen et al., 2012; Li et al., 2019; Zhang et al., 2018) ou les effets de compétition possibles sur le terrain (Guo et al., 2017a). La quantité de phase réceptrice par résine est indiquée lorsqu'elle est connue.

La masse accumulée dans la résine peut augmenter linéairement avec la concentration ou le temps sans l'apparition d'un plateau ce qui indique que la capacité maximale de la résine n'a pas été atteinte (Challis et al., 2016a; Chen et al., 2012; Feng et al., 2019; Guan et al., 2018; Guibal et al., 2017; Guo et al., 2017b; Li et al., 2019; Wei et al., 2019; Zou et al., 2018). La capacité indiquée est alors la capacité observée pour la concentration maximale d'exposition (voir Tableau I.10). La capacité de la résine XAD-18 est supérieure à 180 µg pour environ 49 mg de phase réceptrice (humidifiée avec du MeOH) pour l'accumulation du sulfaméthoxazole et de perfluoroalkyles pour une concentration d'exposition de 50 mg.L-1 (Chen et al., 2012; Guan et al., 2018). La capacité de la résine MIP est équivalente (172 µg pour 55 mg de phase réceptrice) pour les bisphénols pour une concentration d'exposition de 20 mg.L⁻¹ (Feng et al., 2019). La capacité de la résine HLB est inférieure à 26 µg pour des concentrations d'expositions inférieures à 2 mg.L-1 en pesticides anioniques et retardateurs de flamme (Guibal et al., 2017; Zou et al., 2018). Dans le cas des pesticides anioniques, cette faible capacité peut s'expliquer par la masse de phase réceptrice inférieure à 10 mg (Guibal et al., 2017) mais ce n'est pas le cas des retardateurs de flamme (50 mg environ) (Zou et al., 2018). Pour une concentration d'exposition de 10 mg.L-1, la capacité en pesticides de la résine HLB est comprise entre 16 et 44 µg (Li et al., 2019).

L'apparition d'un plateau est observée dans 13 publications. La concentration pour laquelle un plateau est atteint est comprise entre 1 et 10 mg.L-1 dans le cas d'exposition de o-DGT. La durée avant lequel le plateau est atteint n'est déterminé que dans les publications dans lesquelles les auteurs font varier la durée d'exposition et non la concentration (voir Tableau I.10). Lorsque c'est la concentration qui varie, la durée d'exposition en est général de 24h. Elle est équivalente dans le cas de l'exposition de résine composés de XAD-18 dans deux études (7-10 mg.L-1) (Li et al., 2019; Zhang et al., 2018) mais elle est supérieure dans le cas d'exposition de résines MIP, HSAC et nanoZnO (400-500 mg.L-1) dans trois études (Dong et al., 2014; You et al., 2019b, 2019a). La capacité maximale en pharmaceutique dans les résines est inférieure lors de l'exposition de l'outil o-DGT complet (respectivement 80 à 118 µg et 15 à 60 µg pour 1,2 mg de phase réceptrice environ) (Ren et al., 2018). La capacité maximale observée lors de l'exposition de o-DGT est comprise etre 0,2 et 370 µg/résine pour des masses de phase réceptrice comprises entre 1 et 50 mg environ (voir Tableau I.10). Pour l'exposition de résine seule, la capacité maximale en tétracyclines et nitrophénols est supérieure (entre 1 et 5 mg/résine pour moins de 10 mg de phase réceptrice) (You et al., 2019b, 2019a). La capacité en pharmaceutiques de la résine XAD-18 est équivalente à celle observée dans les résines lors de l'exposition de o-DGT (40 µg) (Zhang et al., 2018).

Dans le cas où la capacité maximale a été atteinte, une durée d'exposition maximale peut être déterminée à partir d'un taux d'échantillonnage moyen et des concentrations environnementales moyennes. Dans le cadre de l'échantillonnage de pesticides et pharmaceutiques, la résine HLB serait saturée pour une durée d'exposition supérieure à 100 jours (Challis et al., 2016a). Pour une concentration dans le milieu de 100 µg.L-1, bien supérieure à la réalité, le résine XAD-18 serait saturée après 5,7 mois pour l'échantillonnage du SMX (Chen et al., 2012) et après 3 mois pour l'échantillonnage de bisphénols (Zheng et al., 2015). Cependant, sur le terrain, la compétition avec d'autres composés ou l'encrassement biologique amènerait à diminuer cette durée d'exposition (1 mois maximum). En prenant la capacité maximale observée, la concentration maximale dans le milieu peut être calculée pour un temps donné et comparée aux concentrations environnementales généralement observées. Si la capacité maximale de la résine était atteinte après deux semaines d'exposition, les concentrations des composés organiques étudiés par Chen et al. (2017, 2018) seraient comprise entre 44 et 1096 µg.L-1 ce qui est supérieur à ce qui est réellement observé sur le terrain (10 µg.L-1). Les autres études ayant fait ce genre de démarche déterminent toujours des concentrations bien supérieures à celles observées sur le terrain (Chen et al., 2012; Wei et al., 2019; Zhang et al., 2019). Dans les milieux aquatiques, pour des durées d'exposition de deux semaines, les résines utilisées sont donc loin de leur capacité maximale, ce qui valide l'utilisation de ces dernières.

Tableau I.10 : Protocole de détermination de la capacité maximale des résines et capacité maximale déterminée

Exposition	Phase réceptrice	Gel	Conc. (mg.L ⁻¹)	Matrice	pН	Durée d'exposition	Tempé- rature	Capacité maximale atteinte	Conc. max (mg.L ⁻¹)	Capacité (µg.résine ⁻¹)	Référence
DCT			0.002	5 mM	5.5	25 :01#5	21 25 °C	Oui	NΙΛ	0,25 - 0,35	(Challis et al.,
DG1	пцр	лG	0,002	KNO3	5,5	25 jours	21-25 C	Non	INA	0,43 - 0,93	2016a)
Résine	XAD-18	AG	Jusqu'à 50	0,01 M NaCl	n.i.	10 h	22 °C	Non	NA	180	(Chen et al., 2012)
DGT	HLB XAD18 SXLA	AG	Jusqu'à 10	n.i.	6 et 8	24 h	20 °C	Oui	2	11-11	(Chen et al., 2017)
DGT	HLB XAD18 SXLA	AG	Jusqu'à 10	n.i.	6 et 8	24 h	20 °C	Oui	1-2	18 - 142	(Chen et al., 2018)
Résine	MIP	PA	50 à 1000	n.i.	5	24 h	n.i.	Oui	500	31,5**	(Dong et al., 2014)
DGT	TiO2	PA	1	EUP	6,5	6 jours	20 °C	Oui	NA	2,4 - 2,7	(Fauvelle et al., 2015)
Résine	MIP	PA	0,5 à 20	n.i.	6,0	24 h	n.i.	Non	NA	172	(Feng et al., 2019)
DGT	XAD-18	AG	0 ,1 à 50	0.01 M NaCl	n.i.	10 h	n.i.	Non	NA	196 - 246	(Guan et al., 2018)
Résine	HLB	DA	0.9	0,01 M		2.40 h		Non	NIA	9-17	(Guibal et al.,
	MAX	1 11	0,7	NaNO ₃	11.1.	2-40 11	11.1.	11011	1 N/ 1	18 - 142 31,5** 2,4 - 2,7 172 196 - 246 9-17 12-17 25	2017)
DGT	XAD-18	AG	0,02 à 25	0,01 M NaCl	n.i.	12 h	20 °C	Oui	10	25	(Guo et al., 2017a)
Résine	XAD-18	AG	2.10 ⁻⁶ à 64.10 ⁻⁶	EUP	7	48 h	23 °C	Non	NA	NA	(Guo et al., 2017b)

n.i. : non indiqué ; * : calculé à partir d'une valeur en µg.cm⁻² en prenant une aire de 3,14 cm² ; ** : valeur en mg.g-1

Résine	HLB	PA	1 à 10	0,01 M NaCl	n.i.	21 h	n.i.	Non	NA	16 - 44	(Li et al., 2019)
Résine	XAD-18	DA	1 à 10	0,01 M	ni	21 h	ni	Oui	7	n.i.	(Li et al.,
Resilie	-10	1 1 1	1 4 10	NaCl	11.1.	21 11	11.1.	Non	NA	n.i.	2019)
DGT	РСМ	PA	0 ,2 à 20	0,01 M NaCl	n.i.	12 h	n.i.	Oui	3-10	15 - 60	(Ren et al., 2018)
Résine	РСМ	PA	50	n.i.	n.i.	24 h	n.i.	n.i.	n.i.	80,2 - 118,1	(Ren et al., 2018)
DGT	CDPM	NA	0,05 à 4,0	n.i.	n.i.	36 h	n.i.	Non	NA	12,1 - 125	(Wei et al., 2019)
Résine	HSAC	PA	100 à 600	n.i.	5	24 h	25 °C	Oui	400	1104 - 1289	(You et al., 2019a)
Résine	NanoZnO	PA	100 à 700	0,01 M NaCl	5	24 h	25 °C	Oui	500	3210 - 4620	(You et al., 2019b)
Résine	XAD-18	AG	0,02 à 20	0,01 M NaCl	n.i.	12 h	20 °C	Oui	10	40	(Zhang et al., 2018)
DGT	HLB	AG	0 ,1 à 100	0,01 M NaCl	6,7	18 h	25 °C	Oui	30	119 - 370*	(Zhang et al., 2019)
DGT	Charbon actif	AG	0 ,1 à 60	0,01 M NaCl	n.i.	12 h	n.i.	Oui	20-30	140 - 192	(Zheng et al., 2015)
Résine	HLB	AG	0,02 à 1,8	0,01 M NaCl	n.i.	24 h	NA	Non	NA	12-26	(Zou et al., 2018)

I.3.3.4. Les phases réceptrices sélectionnées

Les phases réceptrices choisies sont indiquées dans le Tableau I.2. Les phases Oasis[®] HLB et XAD-18 sont les deux phases réceptrices les plus utilisées. La phase Oasis[®] HLB est utilisée pour l'échantillonnage de 34 pharmaceutiques (Challis et al., 2016a), de pesticides (Amato et al., 2018; Guibal et al., 2017), de retardateurs de flamme (Zou et al., 2018), de conservateurs (et métabolite), antioxydants et désinfectants (Chen et al., 2017). La phase XAD-18 est utilisée pour l'échantillonnage de pharmaceutiques (Zhang et al., 2018), plus particulièrement d'antibiotiques (Chen et al., 2012, 2013, 2015b), ainsi que de deux drogues illicites (Guo et al., 2017a).

Pour l'échantillonnage des sept conservateurs et un métabolite, deux antioxydants et trois désinfectants, la phase Oasis[®] HLB est privilégiée (Chen et al., 2017) alors que Chen et al. (2018) indique que les phases XAD-18 et Oasis[®] HLB sont utilisables pour l'échantillonnage des bisphénols, alkylphénols et hormones.

Parmi les autres phases réceptrices utilisées, la phase Strata-X permet l'échantillonnage de pesticides (Belles et al., 2017) et la résine titane permet plus spécifiquement l'accumulation du glyphosate et de son métabolite l'AMPA (Fauvelle et al., 2015; Weng et al., 2019). La phase Sepra ZT permet l'échantillonnage de pesticides et pharmaceutiques (Hageman et al., 2019; Stroski et al., 2018). Un polymère à empreinte moléculaire (MIP) permet l'échantillonnage d'un phénol (Dong et al., 2014). Pour l'échantillonnage de bisphénols et nitrophénols des phases réceptrices en charbon actif sont utilisées (Guan et al., 2017; You et al., 2019a; Zheng et al., 2015). La phase XDA-1 est utilisée pour l'échantillonnage d'antibiotiques dans l'eau de mer (Xie2018a, Xie2018b).

I.4. Détermination des coefficients de diffusion

I.4.1. Méthodes pour mesurer les coefficients de diffusions

La détermination du coefficient de diffusion propre à chaque composé est une étape nécessaire à la détermination de la concentration dans l'eau. Dans la littérature, trois méthodes sont utilisées pour mesurer ce coefficient de diffusion : la méthode en cellule de diffusion, la méthode d'empilement de gel et enfin la calibration. Les conditions d'obtention des coefficients de diffusion présents dans la littérature sont indiquées dans le Tableau I.11.

I.4.1.1. Méthode en cellule de diffusion

La méthode en cellule de diffusion, décrite par Zhang et Davison (1999) est la méthode la plus utilisée aujourd'hui (23 publications). La cellule de diffusion est divisée en deux compartiments : un compartiment donneur, dopé en molécules d'intérêt $(0,2 - 500 \text{ mg.L}^{-1})$, représentant la masse d'eau à échantillonner et un compartiment récepteur représentant la résine (voir Figure I.6). Une plaque sépare les deux milieux avec une fenêtre où se trouve un gel et/ou une membrane. Les composés diffusent alors du compartiment donneur vers le compartiment récepteur.

Le coefficient de diffusion se calcule ensuite à partir de l'augmentation de la masse en fonction du temps (pente α) (représenté sur la Figure I.7) à partir de l'Équation I-16.

$$D = \frac{\alpha \times \Delta}{C_d \times A}$$
Équation I-16

avec Δ , l'épaisseur du gel de diffusion et/ou de la membrane (cm), C_d , la concentration dans le milieu donneur (µg.L⁻¹) et A, la surface de la fenêtre d'exposition (cm²).

Figure I.6: Schéma d'une cellule de diffusion Les composés d'intérêt sont représentés par les étoiles orange

Figure I.7 : Masse accumulée dans le milieu récepteur en fonction du temps

Cette méthode est assez représentative de l'outil o-DGT. Cependant, l'adsorption éventuelle des composés sur les parois de la cellule de diffusion peut mener à des biais sur la détermination des coefficients de diffusion.

I.4.1.2. Méthode empilement de gels

La méthode d'empilement de gels, déjà utilisée pour les membranes en silicone (Rusina et al., 2010a), a récemment été utilisée pour déterminer les coefficients de diffusion dans le gel dans deux publications (Amato et al., 2018; Belles et al., 2017). Elle consiste à superposer un gel dopé sur ou sous plusieurs gels non dopés pendant un temps donné (voir Figure I.8). Les composés étudiés diffusent du gel dopé aux gels non dopés. À la fin du contact, la concentration dans chaque gel en fonction de la distance par rapport au gel dopé (représenté Figure I.9) permet de déterminer le coefficient de diffusion. Dans la littérature, deux méthodes de calcul des coefficients de diffusion sont décrites. La première, utilise un modèle décrit par Crank (1975) (Équation I-17) (Belles et al., 2017).

$$C(x,t) = C_0 \left(\frac{h}{l} + \frac{2}{\pi} \sum_{n=1}^{inf} \frac{1}{n} \sin\left(\frac{n\pi h}{l}\right) \exp\left(-\frac{Dn^2 \pi^2 t}{l^2}\right) \cos\left(\frac{n\pi x}{l}\right) \right) \qquad \text{Équation I-17}$$

Avec C(x, t) la concentration (ng.mL⁻¹) à la distance x (cm) du haut de la pile à l'instant t (s); C_0 la concentration initiale dans le gel dopé (ng.mL⁻¹); D le coefficient de diffusion (cm².s⁻¹); h la hauteur totale de la pile de gel (cm); l l'épaisseur du gel dopé (cm); t le temps de contact (s) et enfin n l'indice de sommation.

La deuxième méthode de calcul (Équation I-18) utilise une approximation de la seconde loi de Fick dans des conditions particulières comme par exemple celle où les composés d'intérêt sont distribués de façon homogène sur la section d'aire de surface constante (Amato et al., 2018).

$$C(x,t) = \frac{M}{A\sqrt{4\pi Dt}}e^{-\left(\frac{x^2}{4Dt}\right)}$$
Équation I-18

avec C(x, t) la concentration (ng.mL⁻¹) à la distance x (cm) du haut de la pile à l'instant t (s), M la masse dans chaque gel (ng), D le coefficient de diffusion (cm².s⁻¹), A l'aire de la surface exposée (cm²).

La méthode empilement de gel est facile à mettre en œuvre et reste la plus rapide pour déterminer les coefficients de diffusion. Cependant, l'effet de la présence de l'eau et d'une possible DBL n'est pas pris en compte. De plus, si une membrane est utilisée, il n'est pas possible de déterminer des coefficients de diffusion en présence de celle-ci pour représenter la diffusion à travers la couche diffusive complète, le dispositif ne le permettant pas.

Figure I.8 : Schéma de la méthode empilement de gel Les composés d'intérêt sont représentés par les étoiles orange

Figure I.9: Concentration dans le gel en fonction de sa distance au gel dopé pour trois durées de contact Avec t1 : durée de contact la plus courte et t3 : la plus longue

I.4.1.3. Calibration

La méthode de la calibration, utilisée dans 9 publications, consiste à exposer des o-DGT dans une eau dopée (0,02-1 mg.L⁻¹) et de déterminer la masse accumulée à intervalle de temps régulier. Cette méthode est plus longue que les deux précédentes mais a l'avantage de donner les coefficients de diffusion de l'outil complet. Cette méthode est également utilisée pour d'autres PS comme les POCIS.

Le coefficient de diffusion se calcule, comme dans le cas de la méthode en cellule de diffusion, à partir de la pente de la masse accumulée dans le o-DGT en fonction de temps (α) (représenté Figure I.7) à partir de l'Équation I-16. Cette méthode est la plus représentative de la réalité, les coefficients de diffusion étant mesurés avec l'outil complet.

Tableau I.11 : Conditions d'obtention des coefficients de diffusion présents dans la littérature

NA : non applicable ; n.i. : non indiqué

Composés étudiés	Méthode	Gel	Membrane	Conc. (µg.L ⁻¹)	Matrice	pН	Temp. (°C)	Référence
Pharmaceutiques et pesticides (n=5)	Cellule de diffusion	AG	Aucune	n.i.	Eau de rivière artificielle	n.i.	15	(Amato et al., 2018)
	Empilement de gel	AG	NA	n.i.	n.i.	n.i.	15	-
Pesticides, retardateurs de flamme, PCE (n=16)	Empilement de gel	AG	NA	n.i.	n.i.	n.i.	20	(Belles et al., 2017)
	Cellule de diffusion	AG	Aucune	200	5 mM KNO3	5,5-6,5	5	
Hormones, pesticides, pharmaceutiques (n=33)	Cellule de diffusion	AG	Aucune	200	5 mM KNO3	5,5-6,5	13	(Challis et al., 2016a)
	Cellule de diffusion	AG	Aucune	200	5 mM KNO3	5,5-6,5	23	
Pharmaceutiques (n=1)	Cellule de diffusion	AG	Aucune	2000	0,01 M NaCl	n.i.	20	(Chen et al., 2012)
Pharmaceutiques (n=37)	Cellule de diffusion	AG	Aucune	n.i.	0,02 M NaCl	6,5	25	(Chen et al., 2013)
Pharmaceutiques (n=4)	Cellule de diffusion	AG	Aucune	3000	0,01 M NaCl	6,8	25	(Chen et al., 2017)
Pharmaceutiques, alkyl phenols, bisphénols (n=8)	Cellule de diffusion	AG	Aucune	3000	0,01 M NaCl	6,8	25	(Chen et al., 2018)
Organotins (n=5)	Calibration	AG	MCE	50	0.7 M	8,1	20	(Cole et al., 2018)
Pharmaceutiques (n=1)	Cellule de diffusion	AG	Nylon	50000	EUP	n.i.	23	(D'Angelo and Starnes, 2016)

Composés étudiés	Méthode	Gel	Membrane	Conc. (µg.L ⁻¹)	Matrice	pH	Temp. (°C)	Référence
4-chlorophénol (n=1)	Cellule de diffusion	NA	Nylon	20000	n.i.	n.i.	NA	(Dong et al., 2014)
Destinidas (n=2)	Cellule de diffusion	РА	PES	300	EUP	6,8	22	(Fauvelle et
resucides (11–2)	Cellule de diffusion	AG	PES	300	EUP	6,8	22	al., 2015)
Bisphenols (n=1)	Cellule de diffusion	AG	PVDF	4000	0,01 M NaCl	6	25	(Feng et al., 2019)
	Calibration	AG	PES	50	0,01 M NaCl	n.i.	25	(Guan et al., 2018)
Perfluoroalkyles (n=2)	Cellule de diffusion	AG	Aucune	2000	0,01 M NaCl	n.i.	25	
	Calibration - o- DGT _{HLB}	РА	PES	1000	0,01 M NaNO3	5	20	(Guibal et al., 2017)
Pesticides (n=4)	Calibration - o- DGT _{MAX}	РА	PES	1000	0,01 M NaNO3	5	20	
	Cellule de diffusion	РА	Aucune	1000	0,01 M NaNO3	5	20	
Pharmaceutiques (n=3)	Cellule de diffusion	AG	Aucune	2000	0,01 M NaCl	n.i.	22	(Guo et al., 2017a)
Hormones (n=5)	Calibration	AG	PVDF	0,016	EUP	7	23	(Guo et al., 2017b)
Pesticides (n=9)	Cellule de diffusion	AG	Aucune	1000	0,01 M NaCl	n.i.	21.5	(Li et al., 2019)
Pharmaceutiques (n=20)	Cellule de diffusion	AG	PES	5000	0,01 M NaCl	n.i.	25	(Ren et al., 2018)
Pharmaceutiques, Pesticides (n=30)	Cellule de diffusion	РА	Aucune	5	KNO3	5	23	(Stroski et al., 2018)

Composés étudiés	Méthode	Gel	Membrane	Conc. (µg.L ⁻¹)	Matrice	pН	Temp. (°C)	Référence
Désinfectants (n=3)	Cellule de diffusion	AG	Aucune	700	0,01 M NaCl	n.i.	25	(Wei et al., 2019)
Pharmaceutiques (n=20)	Calibration	AG	PES	50	Eau de mer artificielle	n.i.	25	(Xie et al., 2018a)
Bisphénols, hormones, pesticides (n=6)	Calibration	AG	Aucune	50	Eau de mer artificielle	n.i.	NA	(Xie et al., 2018b)
Nitrophénols (n=3)	Cellule de diffusion	NA	Nylon	5.10 ⁵	0,01 M NaNO3	5	25	(You et al., 2019a)
Tétracyclines (n=3)	Cellule de diffusion	NA	PES	n.i.	n.i.	n.i.	25	(You et al., 2019b)
Pharmaceutiques (n=2)	Cellule de diffusion	AG	Aucune	2000	0,01 M NaCl	n.i.	22	(Zhang et al., 2018)
	Calibration	AG	GFA	100	0,01 M NaCl	6,9	25	(Zhang et al.,
Nitrochlorobenzene (n=4)	Cellule de diffusion	AG	Aucune	10000	0,01 M NaCl	n.i.	25	2019)
	Calibration	AG	PTFE	100	n.i.	n.i.	25	(Zheng et al.,
Bisphénols (n=3)	Cellule de diffusion	AG	Aucune	2000	0,01 M ; 0,1 M	7;4	25	2015)
Retardateurs de flammes,	Calibration	AG	Aucune	20	0,01 M NaCl	n.i.	NA	(Zou et al.,
organophosphorés (n=6)	Cellule de diffusion	AG	Aucune	1000	0,01 M NaCl	5,91	22.1	2018)

I.4.2. Coefficients de diffusion

I.4.2.1. Coefficients de diffusion dans la littérature

Les coefficients de diffusion ont été déterminés dans 28 publications. Au total, 281 coefficients de diffusion ont été mesurés, couvrant 155 composés dont majoritairement des pharmaceutiques. Ils ont été déterminés à des températures comprises entre 15 et 25 °C.

Effet de la température

Il a été montré que les coefficients de diffusion sont influencés par la température (Belles et al., 2017; Fauvelle et al., 2015; Zhang and Davison, 1995). Il est cependant possible de les recalculer à une température donnée à partir de la relation de Stokes-Einstein (Zhang and Davison, 1995) ou de la loi d'Arrhenius (Belles et al., 2017).

La méthode à partir de la relation de Stokes-Einstein est la plus utilisée. Selon cette dernière, le coefficient de diffusion se détermine à partir de la température, du rayon de la particule r, de la viscosité η et de la constante de Boltzmann, k (voir Équation I-19). En éliminant les termes constants, on obtient l'égalité correspondant à l'Équation I-20 qui montre que la dépendance des coefficients de diffusion à la température est liée la viscosité de l'eau η . La dépendance de la viscosité à la température, définie suivant l'Équation I-21 par Zhang et Davison (1995), permet le calcul de D à une température donnée (T) à partir du coefficient de diffusion déterminé à 25°C (D_{298K}) suivant l'Équation I-22.

$$D = \frac{kT}{6\pi r \eta}$$

$$\frac{D_1 T_1}{\eta_1} = \frac{D_2 T_2}{\eta_2}$$

$$\log \frac{\eta_{25}}{\eta_T} = \frac{1,37023(T-25)+0,000836(T-25)^2}{109+T}$$
Équation I-21

$$\log D_T = \frac{1,37023(T-25)+0,000836(T-25)^2}{109+T} + \log \frac{D_{298K}(273+T)}{298} \qquad \acute{Equation I-22}$$

La deuxième méthode à partir de de la loi d'Arrhenius (Équation I-23), utilisée seulement par Belles et al. (2017, 2018), permet de recalculer les D_1 à une température donnée T_1 à partir d'un D_2 déterminé expérimentalement à une autre température T_2 (voir Équation I-24).

$$D = A \times \exp\left(\frac{-E_a}{RT}\right)$$

$$\frac{D_1}{D_2} = \exp\left(-\frac{E_a}{R}\left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right)$$

$$\acute{Equation I-24}$$

avec E_a l'énergie d'activation correspondant à l'amplitude de la diffusion par rapport à la température (kJ.mol⁻¹), R la constante universelle des gaz parfaits (kJ.mol⁻¹.K⁻¹)

Quatre études ont comparé les coefficients de diffusion de composés organiques mesurés expérimentalement à des températures données aux coefficients de diffusion calculés à partir du coefficient de diffusion à 25 °C (Challis et al., 2016a; Chen et al., 2012, 2017, 2018). Les coefficients de diffusion de 6 conservateurs (parabènes, organochlorés...) (Chen et al., 2017), 1 bisphénol, 4 hormones (Chen et al., 2018) et un pharmaceutiques (Chen et al., 2012) pour des températures comprises entre 1 et 35 °C à l'aide de l'Équation I-22. Ces derniers ont été comparés à ceux mesurés expérimentalement à 15, 20 et/ou 23 °C. L'erreur entre les deux valeurs est inférieure à 10 %. De la même façon, les coefficients de diffusion de 33 pesticides et pharmaceutiques mesurés à 5 et 13°C ont été comparés à ceux calculés (Challis et al., 2016a). L'erreur entre les deux valeurs est en moyenne inférieure à 20 % avec respectivement 5 et 6 composés pour lesquels l'erreur est supérieure à 30 % à 5°C et 13°C. L'erreur supérieure à 10 % peut s'expliquer par le fait que les coefficients de diffusion ont été déterminés à partir de coefficients de diffusion mesurés à 23°C et non à 25°C. Ces résultats montrent que la correction par la température dans le cadre des composés organiques permet de calculer avec précision des coefficients de diffusion aux températures observées dans le milieu.

Valeurs

Les coefficients de diffusion corrigés sont répertoriés en Annexe I.1. Les coefficients de diffusion sont compris entre 0,58 et 8,71.10⁻⁶ cm².sec⁻¹ (valeur de médiane à 3,90.10⁻⁶ cm².sec⁻¹). Sur tous les coefficients de diffusion présents dans la littérature, la majorité a été déterminée à l'aide de la méthode en cellule de diffusion (201 contre seulement 55 par calibration et 21 par la méthode empilement de gel).

Lorsque l'erreur sur des D est précisée, les coefficients de variations ont été déterminés. Ils sont compris entre 1 et 46 % (médiane = 5 %). L'erreur n'est pas précisée pour 140 des 281 coefficients de diffusion trouvés dans la littérature. Belles et al. (2018) ont déterminé l'incertitude liée à chaque terme de l'Équation I-12 et de l'Équation I-24. Au final, l'incertitude sur la concentration déterminée est de l'ordre de 23 % à 8°C.

I.4.2.2. Variabilité des coefficients de diffusion en fonction de la méthode de mesure

Les *D* mesurés par la méthode en cellule de diffusion ont été comparés aux *D* mesurés par les deux autres méthodes (*i.e.* empilement de gel et calibration) pour 22 composés dont des pesticides, bisphénols ou encore retardateurs de flammes (Amato et al., 2018; Guan et al., 2018; Guibal et al., 2017; Zhang et al., 2019; Zheng et al., 2015; Zou et al., 2018). Sur ces 22 composés, 4 ont été étudiés avec le gel polyacrylamide (Guibal et al., 2017) et 18 avec le gel d'agarose. Les coefficients de diffusion sont comparés sur la Figure I.10.

Les coefficients de diffusion de 19 composés ont été déterminés à l'aide de la méthode en cellule de diffusion et de la méthode calibration (Guan et al., 2018; Guibal et al., 2017; Zhang et al., 2019; Zheng et al., 2015; Zou et al., 2018). La calibration ayant été effectuée avec deux types de o-DGT dans l'étude de Guibal et al. (2017), 23 coefficients de diffusion ont été comparés. La différence entre les coefficients de diffusion est inférieure à 30 % (médiane à 4 %) quel que soit le gel étudié excepté pour le chlorsulfuron (56 %) et le mecoprop (32 %) dans le cas de la o-DGT_{HLB} et le chlorsulfuron (36 %) dans le cas du o-DGT_{MAX} Guibal et al. (2017). De manière générale, la différence entre les deux méthodes est inférieure avec le gel AG par rapport au gel PA (médiane à 2 et 27 % respectivement). Les coefficients de diffusion d'un pharmaceutique et de deux pesticides obtenus par cellule de diffusion ét par empilement de gel ont été comparés (Amato et al., 2018). Les coefficients de diffusion déterminés par empilement de gel sont inférieurs à ceux obtenus par cellule de diffusion (différence comprise entre 22 et 43 %).

La méthode en cellule de diffusion et la calibration semblent donner des coefficients de diffusion similaires notamment dans le cas du gel d'agarose, les coefficients de variation des coefficients de diffusion dans la littérature étant compris entre 1 et 46 % (médiane à 4 %). La méthode d'empilement de gel et en cellule de diffusion donne des coefficients de

diffusion plus éloignés. Cependant, seulement trois coefficients de diffusion ont été comparés.

Figure I.10: Comparaison des méthodes de détermination des coefficients de diffusion La droite en tirets représente y=x; les droites en pointillés représentent l'erreur à 30 %

I.4.2.3. Variabilité des coefficients de diffusion en fonction des articles

Le coefficient de diffusion à travers le gel d'agarose a été déterminé dans plusieurs études pour 33 composés dont majoritairement des pharmaceutiques (Amato et al., 2018; Belles et al., 2017; Challis et al., 2016a; Chen et al., 2012, 2013, 2017, 2018; D'Angelo and Martin, 2018; Guo et al., 2017b; Li et al., 2019; Ren et al., 2018; Wei et al., 2019; Xie et al., 2018a, 2018b; Zheng et al., 2015; Zou et al., 2018). Ces coefficients de diffusion ont été comparés, toutes méthodes confondues, et sont représentés en Figure I.11. Les coefficients de variation liés à l'ensemble des valeurs de D obtenues pour un composé donné, quelle que soit la méthode, sont compris entre 0,3 et 46 %.

Afin de déterminer l'erreur la plus importante entre les coefficients de diffusion trouvés dans la littérature, les coefficients de diffusion minimum et maximum pour un même composé ont été comparés. L'erreur entre le *D* minimum et le *D* maximum est comprise entre 0,5 et 60 % (médiane = 23 %). Ils sont similaires (différence inférieure à 30 %) pour 21 composés sur 33. L'erreur est supérieure à 50 % pour seulement 3 composés. Le premier est la clarithromycine avec un coefficient de diffusion déterminé en cellule de diffusion sans membrane par Challis et al. (2016a) de 3,31.10⁻⁶ cm².s⁻¹ contre 1,32.10⁻⁶ cm².s⁻¹ dans le cas

d'une détermination avec la méthode de calibration avec membrane PES (Xie et al., 2018a). Si ce dernier a été déterminé dans l'eau de mer, il reste semblable à celui déterminé dans de l'eau d'une force ionique plus faible (0,01 M) en cellule de diffusion avec membrane PES (1,95.10⁻⁶ cm².s⁻¹) (Chen et al., 2013). Le coefficient de diffusion serait alors influencé par la présence de la membrane PES. Il semblerait ainsi nécessaire de prendre en compte la présence d'une membrane ou non lors de la détermination des coefficients de diffusion. Cependant, dans le cas de la ciprofloxacine, le coefficient de diffusion maximum a été déterminé en cellule de diffusion en présence d'une membrane PES (2,75.10-6 cm².s-1) (Chen et al., 2013). Ce dernier est éloigné de deux autres coefficients de diffusion déterminés à l'aide de la même méthode avec et sans membrane (respectivement 1,55.10-6 cm².s⁻¹ contre 1,16.10⁻⁶ cm².s⁻¹) (D'Angelo and Martin, 2018; Ren et al., 2018). Les coefficients de diffusion minimum et maximum de l'enrofloxacin ont été déterminés avec une membrane PES en cellule de diffusion à la même force ionique (1,41.10⁻⁶ cm².s⁻¹ (Ren et al., 2018) contre 2,96.10⁻⁶ cm².s⁻¹ (Chen et al., 2013). Ce dernier étant semblable à celui déterminé par Xie et al. (2018a) à l'aide d'une calibration (2,62.10-6 cm².s⁻¹). Pour ces deux derniers composés, il est difficile d'expliquer les différences observées entre les coefficients de diffusion.

🔶 Calibration 🔶 Cellule de diffusion 🔶 Empilement de gel

Figure I.11 : Coefficients de diffusion normalisés à 25°C trouvés dans la littérature pour un même composé, toutes méthodes confondues.

L'erreur sur les coefficients de diffusion est représentée lorsqu'elle est indiquée dans les publications. Il y a 1 à 3 valeurs pour 1 même substance et la même méthode dans la littérature.

I.4.2.4. Les taux d'échantillonnage et coefficient global de transfert de masse

Certains auteurs ne déterminent pas de coefficient de diffusion mais déterminent directement le taux d'échantillonnage R_s. Ces deux paramètres sont liés suivant l'Équation I-14. Les taux d'échantillonnage ont donc été déterminés pour 223 composés dont majoritairement des pharmaceutiques. Ils ont été calculés à partir des coefficients de diffusion déterminés expérimentalement ou modélisés(n=97) (Challis et al., 2016a; Chen et al., 2013, 2018; Fauvelle et al., 2015; Guan et al., 2018; Li et al., 2019; Xie et al., 2018b). ou déterminés à partir de la masse accumulée en fonction du temps lors de calibration (n=348) (Challis et al., 2016a; Fauvelle et al., 2015; Guibal et al., 2017; Mechelke et al., 2019; Stroski et al., 2018; Urik and Vrana, 2019; Wei et al., 2019). Les taux d'échantillonnages trouvés dans la littérature (n=445), toutes méthodes confondues sont compris entre 0,28 et 125 mL.jour⁻¹. La médiane de ces taux d'échantillonnages est égale à 15,45 mL.jour⁻¹, soit plus de dix fois moins que ceux habituellement mesurés pour les POCIS (200 mL.jour⁻¹).

Afin de faciliter la comparaison avec les autres PS, certaines études déterminent les coefficients globaux de transfert de masse k_o sont calculés à partir du taux d'échantillonnage R_s et de l'aire de la surface exposée A (voir Équation I-26).

$$k_o = R_S/A$$
 Équation I-25

Ainsi, les taux d'échantillonnages recalculés par rapport à l'aire de la surface exposée sont compris entre 0,08 et 39 mL.j⁻¹.cm⁻² (médiane = 5 mL.j⁻¹.cm⁻²). Ces taux d'échantillonnage sont comparables à ceux observés pour le POCIS pour une surface exposée de 45,8 cm² et du ChemCatcher pour une surface exposée de 15,9 cm² (Chen et al., 2018; Guibal et al., 2017). Par exemple, pour le bisphénol A, les taux d'échantillonnages recalculés par rapport à la surface d'exposition sont en moyenne égaux à 4,15, 6,78 et 4,23 mL.jour⁻¹.cm⁻² respectivement pour le o-DGT, le POCIS et le Chemcatcher. Les taux d'échantillonnage recalculés par rapport à l'aire de la surface exposée seraient donc alors équivalents avec et sans gel diffusif et ne dépendraient donc que de l'aire de la surface exposée.

I.4.2.5. Relation avec les paramètres physico-chimiques et modélisation

Relations étudiées dans la littérature

Des études montrent que le coefficient de diffusion peut être influencé par l'hydrophilie des composés. Ainsi, une relation entre le log K_{OW} et le coefficient de diffusion de 6 retardateurs de flamme ayant des structures similaire a été trouvée ($R^2 = 0,98$) (Zheng et al., 2015). Une corrélation positive a également été trouvée entre les coefficients de diffusion d'hormones, pesticides et bisphénol et leur log K_{OW} (Xie et al., 2018b).

Mechelke et al. (2019) étudient le lien entre le taux d'échantillonnage et le log D_{OW} prenant en compte le log K_{OW} et l'ionisation du composé. Avec les 100 composés organiques étudiés, aucune corrélation n'est observée entre le taux d'échantillonnage et le log D_{OW} à pH 8,3 quel que soit le PS. Cependant, en séparant les composés organiques par ionisation (neutre, anionique, cationique, zwitterionique), une meilleure corrélation est observée pour les composés neutres ($R^2 = 0,44$) dans le cas du PS composé d'une membrane PES, gel de diffusion et résine HLB.

Une corrélation négative a été observée entre la masse molaire et le coefficient de diffusion dans deux publications (Xie et al., 2018a, 2018b). La masse molaire peut également être liée au coefficient de diffusion à partir de la loi d'Archie (voir Équation I-26).

$$D = D_w \varepsilon^m = \frac{3.3 \times 10^{-5} \varepsilon^m}{\sqrt[3]{M_w}}$$
 Équation I-26

avec ε la porosité, *m* l'exposant d'Archie, M_w la masse molaire, D_w le coefficient de diffusion dans l'eau. Alors que *m* est compris entre 1,5 et 2,5, Challis et al.(2016a) et Chen et al. (2013) fixent m = 2 et $\varepsilon = 0,98$ dans le cas du gel d'agarose.

Les coefficients de diffusion peuvent ainsi être estimés à partir de la masse molaire. Dans le cas de pesticides, de pharmaceutiques et d'hormones, les coefficients de diffusion calculés à partir de la loi d'Archie sont plus élevés que les coefficients de diffusion déterminés expérimentalement (Challis et al., 2016a; Guo et al., 2017b). Chen et al. (2013) observent une relation linéaire entre les coefficients de diffusion obtenus expérimentalement grâce à la méthode en cellule de diffusion et ceux calculés à partir de la loi d'Archie. Ainsi, le coefficient de diffusion est lié à la masse molaire et peut être déduit à partir de l'Équation I-27.

$$D = \frac{8.1 \times 10^{-5} \varepsilon^m}{\sqrt[3]{M_w}} - 7.3 \times 10^{-6}$$
Équation I-27

Relations

Les coefficients de diffusion trouvés dans la littérature ont été comparés à la masse molaire et au log K_{OW} dans la Figure I.12. Si le coefficient de diffusion semble être négativement corrélé avec la masse molaire dans le cas du gel AG ($R^2 = 0,40$; p-value = 6,2.10⁻²⁶), ce n'est pas le cas du gel PA. Aucune corrélation n'est observée dans le cas du log K_{OW}.

Figure I.12 : Coefficients de diffusion de la littérature en fonction du log Kow et de la masse molaire

Les coefficients de diffusion à travers de gel AG des composés étudiés dans la littérature ont été calculés à partir de la masse molaire grâce à la loi d'Archie et comparés aux coefficients de diffusion expérimentaux (n=216) (voir Figure I.13) ($R^2 = 0,52$;

p-value = 1,1.10⁻³⁵). La loi d'Archie estime correctement la majorité des coefficients de diffusion (différence < 30 % ; n = 135). Elle surestime 76 coefficients de diffusion et sousestime 5 coefficients de diffusion. Les coefficients mesurés ont une gamme de valeurs plus étendue que ceux déterminés à l'aide de la loi d'Archie. La relation entre les *D* calculés et les *D* mesurés n'est pas la même que celle utilisée par Chen et al. (2013) (voir Équation I-27). À partir des coefficients de la régression, la relation entre le coefficient de diffusion et la masse molaire a été déterminée (voir Équation I-28).

Figure I.13 : Coefficients de diffusion calculés à partir de la loi d'Archie en fonction des coefficients de diffusion expérimentaux

La ligne grise en tiret représente y=x; les lignes en pointillés représentent la limite de l'erreur à 30 %; la ligne en tiret noir représente la droite de régression linéaire
I.5. Cinétique d'accumulation du o-DGT

Des calibrations sont effectuées dans certaines publications dans le but de déterminer des coefficients de diffusion, la capacité maximale d'un o-DGT (voir partie I.3.3) ou d'évaluer la performance de ce dernier. Les différents protocoles utilisés sont décrits dans le Tableau I.12. Pour cela, des o-DGT sont déployés dans un milieu dopé (5-100 µg.L⁻¹) pendant différentes durées (5 min à 25 jours). Les résines des o-DGT sont ensuite éluées afin de déterminer la masse accumulée en fonction du temps.

Dans la majorité des études, la masse accumulée augmente linéairement en fonction du temps pour tous les composés étudiés pendant toute la durée de la calibration (Chen et al., 2012, 2017, 2018; Dong et al., 2014; Fauvelle et al., 2015; Feng et al., 2019; Guan et al., 2018; Guibal et al., 2017; Guo et al., 2017a; Ren et al., 2018; Xie et al., 2018a, 2018b; You et al., 2019b, 2019a; Zhang et al., 2019, 2018; Zheng et al., 2015; Zou et al., 2018). Dans trois études, certains des composés étudiés suivent une cinétique d'ordre 1 avec l'atteinte d'un plateau (Challis et al., 2016a; Stroski et al., 2018). Un plateau est également atteint pour l'échantillonnage d'organostanniques au bout de 96 h ce qui peut s'expliquer par de l'absorption anisotropique sur la phase C8 (Cole et al., 2018). Dans le cas de l'échantillonnage du sol, l'accumulation de bisphénols et antibiotiques n'est rapidement plus linéaire, ce qui est expliqué par une concentration dans l'eau interstitielle du sol qui n'est pas constante au cours du temps (pas de réapprovisionnement au cours de l'expérimentation) (Chen et al., 2014; Guan et al., 2017).

L'accumulation expérimentale de tous les composés étudiés est proche de celle déterminée théoriquement à partir de la concentration dans l'eau et des coefficients de diffusion déterminés en laboratoire dans sept publications (Dong et al., 2014; Fauvelle et al., 2015; Feng et al., 2019; Guan et al., 2018; You et al., 2019b, 2019a; Zheng et al., 2015). Des différences sont observées entre les différentes phases réceptrices avec une accumulation expérimentale qui correspond à l'accumulation théorique pour les o-DGT_{HLB} au contraire des o-DGT_{SXLA} et o-DGT_{XAD-18} (Chen et al., 2017, 2018). L'accumulation dans les o-DGT_{HLB} et o-DGT_{XAD-18} suit l'accumulation théorique pour la majorité des composés, excepté pour respectivement 1 et 3 composés (Li et al., 2019). Cette différence pourrait s'expliquer par des taux d'accumulation différents dans les résines ou de de la compétition entre les composés.

Les constantes de partage entre l'eau et le o-DGT (K_{SW}) et les temps de demi-vie ($t_{1/2}$) de perfluoroalkys et conservateurs ont été déterminés à l'aide d'une calibration (Urik and Vrana, 2019). Les K_{SW} de ces composés sont compris entre 3,18 et 5,47 L.kg⁻¹ et les $t_{1/2}$ sont compris entre 2 et 885 jours. Au total, trois composés ont des $t_{1/2}$ inférieurs à deux semaines (1, 7 et 9 jours pour les triclosan, triclocarban et l'acide perfluoropentanoïque) ce qui n'est pas idéal pour une utilisation sur le terrain dans la phase linéaire de l'accumulation.

L'intégration des changements de concentrations par le o-DGT a été étudiée dans l'étude de Belles et al. (2017). L'accumulation des composés est proportionnelle à la concentration dans l'eau tout au long de la concentration. Le o-DGT permettrait donc d'intégrer les pics de contaminations.

Méthode	Durées	Conc. (µg.L-1)	Matrices	Sels	pН	Références
Calibration	10 jours	1 à 5	Eau	n.i.	n.i.	(Belles et al., 2017)
Calcul	n.i.	n.i.	Eau	n.i.	n.i.	(Belles et al., 2017)
Calibration	5 min à 24 h	0 , 8 à 50	Eau	n.i.	n.i.	(Belles et al., 2017)
Calibration	Jusqu'à 48 h	10	Eau	0,01 M NaCl	n.i.	(Chen et al., 2012)
Calibration	Jusqu'à 5 jours	50	Eau	0,01 M NaCl	6,8	(Chen et al., 2017)
Calibration	Jusqu'à 20 h	60	Eau	0,01 M NaCl	6,8	(Chen et al., 2018)
Calibration	0-96 h	50		0,7 M NaCl	8,1	(Cole et al., 2018)
Calibration-Sol	2 à 480 h	n.i.	Sol	n.i.	n.i.	(Guan et al., 2017)
Calibration	4 à 132 h	50	Eau	0,01 M NaCl	6,5	(Guan et al., 2018)
Calibration	12 à 96 h	20	Eau	0,01 M NaCl	7	(Guo et al., 2017a)
Calibration -XAD 18	Jusqu'à 84 h	10	Eau	0,01 M NaCl	6,9	(Li et al., 2019)
Calibration - HLB	Jusqu'à 84 h	10	Eau	0,01 M NaCl	6,9	(Li et al., 2019)
Calibration	Jusqu'à 60 h	10	Eau	0,01 M NaCl	n.i.	(Ren et al., 2018)
Calibration	2 à 25 jours	5	Eau	5 mM KNO3	5	(Stroski et al., 2018)
Calibration	12 h	50	Eau de mer	n.i.	n.i.	(Xie et al., 2018a)

Tableau I.12 : Protcoles de détermination des cinétiques d'accumulation au sein du o-DGT

Méthode	Durées	Conc. (µg.L-1)	Matrices	Sels	pН	Références
			synthétiq ue			
Calibration	15 jours	50	Eau	n.i.	n.i.	(Xie et al., 2018b)
Calibration	24 à 120 h	200	Eau	0,01 M NaNO3	5	(You et al., 2019a)
Calibration	24 à 120 h	500	Eau	0,01 M NaNO3	5	(You et al., 2019b)
Calibration	12 à 20 h	20	Eau	0,01 M NaCl	7	(Zhang et al., 2018)
Calibration	1 à 5 jours	100	Eau	0,01 M NaCl	6,5	(Zhang et al., 2019)
Batch	12 à 168 h	40	Eau	0,01 M NaCl	6	(Zheng et al., 2015)
Calibration	3 à 168 h	20	Eau	0,01 M NaCl	n.i.	(Zou et al., 2018)
Calibration	3 à 25 jours	2	Eau	0,005 M KNO3	n.i.	(Challis et al., 2016a)
Calibration	5 à 481 h	2,5	Eau	Sol	n.i.	(Chen et al., 2014)
Calibration	0,14 à 6 jours	50	Eau	EUP	6,5	(Fauvelle et al., 2015)
Calibration	0,14 à 6 jours	50	Eau de rivière synthétiq ue	n.i.	7,4	(Fauvelle et al., 2015)
Calibration	16 à 48 h	1000	Eau	n.i.	5	(Dong et al., 2014)
Calibration	4 à 12 h	520	Eau	n.i.	n.i.	(Feng et al., 2019)
Calibration	2 à 40 h	900	Eau	n.i.	n.i.	(Guibal et al., 2017)
Calibration	2 à 16 jours	0,05 à 2	Eau du robinet	n.i.	n.i.	(Urik and Vrana, 2019)

I.6. Influence des conditions physico-chimiques du milieu d'exposition

Les conditions physico-chimiques d'un milieu, telles que le pH, la force ionique, la présence de matière organique, peuvent impacter l'accumulation des composés étudiés dans le PS menant ainsi à des biais lors de la détermination de la TWAC. L'effet des conditions physico-chimiques sur l'accumulation des composés étudiés doit être déterminé afin de définir la performance de l'outil dans les différentes conditions physico-chimiques étudiées.

Dans le cas du o-DGT, deux étapes peuvent être impactées : la diffusion des composés à travers le gel diffusif et/ou l'accumulation dans la phase réceptrice. Elles peuvent être testées respectivement en cellule de diffusion et en exposant la phase réceptrice à différentes

conditions physico-chimiques. Afin de définir l'effet des conditions physico-chimiques sur l'outil entier, les o-DGT étudiés sont exposés dans un milieu dopé à une concentration donnée en composés étudiés sous plusieurs conditions physico-chimiques. D'une part, la concentration du milieu est calculée à partir de la masse accumulée dans l'outil et des coefficients de diffusion préalablement déterminés en laboratoire. D'autre part, la concentration du milieu est mesurée directement dans le milieu d'exposition. La comparaison des concentrations calculées et mesurées permet d'apprécier l'effet des différentes conditions physico-chimiques.

I.6.1. Influence du pH

L'effet du pH sur l'accumulation des composés a été étudié dans de nombreuses études. Ces dernières et les protocoles utilisés afin de définir l'effet du pH sont répertoriés dans le Tableau I.13. La principale explication de l'effet du pH sur l'accumulation des composés dans l'échantillonneur passif est le changement de forme des composés en fonction de leur pKa et du pH étudié. Les propriétés de la phase réceptrice peuvent également être modifiées. Ces changements sont responsables de différents effets et mènent alors à un biais sur la détermination de la concentration dans le milieu.

I.6.1.1. Effet sur la diffusion à travers le gel

La diffusion des composés à travers le gel peut être modifiée en fonction de la forme des composés (neutre ou ionisée). C'est par exemple le cas d'antibiotiques à travers le gel AG (Xie et al., 2018a). La concentration du sulfadimethoxine est sous-estimée à des valeurs de pH faibles. Cette sous-estimation peut s'expliquer par l'apparition de charges positives et négatives qui entrainent la création d'interactions intermoléculaires et ainsi mener à une agrégation des molécules entrainant ainsi la diminution du coefficient de diffusion (Lead et al., 2003). Au contraire, pour trois quinolones, la concentration est surestimée à des valeurs de pH faibles. L'apparition de charges positives provoquent une attraction des composés par le gel d'agarose possédant des charges négatives et ainsi conduire à une augmentation des coefficients de diffusion (Xie et al., 2018a).

Malgré l'absence d'effet significatif sur les mesures par o-DGT de 6 retardateurs de flamme à différents pH étudiés, la variabilité de la concentration déterminée par o-DGT augmente à chaque extrémité de la gamme de pH étudiés (Zou et al., 2018). Cette variabilité est en partie expliquée par un changement de forme des composés étudiés provoquant une modification de leur diffusion à travers le gel diffusif.

D'autres composés sont peu impactés par le pH avec une sous-estimation de la concentration non significative. C'est le cas du methcathinone à des valeurs de pH neutre et basique et du triclosan à pH élevé, ce qui peut s'expliquer par le changement de forme de ces deux composés à ces pH par rapport aux autres pH étudiés (Chen et al., 2017; Zhang et al., 2018). De la même façon, une surestimation de la concentration non significative en chlorsulfuron à des pH compris entre 4,0 et 8,0 est également observée avec des DGT constituées des phases absorbantes HLB ou MAX (Guibal et al., 2017).

I.6.1.2. Effet sur l'accumulation dans la résine

La modification de l'accumulation des composés dans la résine due au changement de forme des composés a été observés dans cinq publications (Chen et al., 2012; Dong et al., 2014; Stroski et al., 2018; You et al., 2019b, 2019a). Ainsi, la quantité accumulée du 4chlorophénol et de trois sulfonamides (sulfamethoxazole, sulfachloropyridiazones et sulfisoxazole) est moins importante à pH élevé menant ainsi à une sous-estimation de la concentration. Cela peut s'expliquer par le fait que ces composés se trouvent sous leur forme ionique à pH élevé par rapport à des pH plus faibles où ils se trouvent sous leur forme neutre. Les espèces neutres se lient sur les phases absorbantes étudiées (MIP, Oasis® HLB et Sepra[™] ZT et XAD18) par des interactions hydrophobes. À des valeurs de pH élevés, les composés ionisés s'accumulent moins dans les phases absorbantes à cause des liaisons hydrogènes avec les phases absorbantes et/ou l'apparition de répulsions électrostatiques (Chen et al., 2012; Dong et al., 2014; Stroski et al., 2018). De la même façon, les tétracyclines et les nitrophénols peuvent être sous leurs formes ionisées ou sous leur forme neutre en fonction du pH et de leur pKa. Les phases réceptrices utilisées étant chargées négativement, des répulsions électrostatiques ont lieu entre les composés sous forme anionique (You et al., 2019b, 2019a). L'augmentation de la variabilité de la concentration de six retardateurs de flamme déterminée par o-DGT à chaque extrémité de la gamme de pH étudiés (3,1-9,5) peut également s'expliquer en partie par la modification de leur accumulation dans la phase réceptrice (Zou et al., 2018).

La modification de l'accumulation des composés dans la résine due au changement des propriétés de la phase réceptrice et donc son affinité avec les composés a été observé dans une étude (Guibal et al., 2017). La sous-estimation de la concentration du BTZ et du mecoprop par o-DGT_{HLB} et du ioxynil par o-DGT_{MAX} est observée à pH 7 et pH 8. Le pKa de ces composés étant inférieur à 4, cette sous-estimation ne peut pas être due à un changement de conformation des composés. Cet effet avait déjà été observée auparavant pour les composés ioniques sur les phases Oasis[®] MAX et Oasis[®] HLB (Li et al., 2011). Les phases en charbon actif et oxyde de zinc deviennent chargée négativement respectivement à un pH de 7 et 9 ce qui provoque l'apparition de répulsions électrostatiques avec les composés sous forme anioniques (You et al., 2019b, 2019a). La sous-estimation de pesticides à un pH neutre a été observée avec un o-DGT_{XAD-18}, ce qui peut s'expliquer par une accumulation moins efficace de ces composés dans la résine.

I.6.1.3. Pas d'effets du pH

Si le pH peut mener à des changements de forme des composés et ainsi impacter leur diffusion à travers le gel et/ou leur accumulation dans la phase réceptrice, ce n'est pas une généralité. Sur les gammes de pH testées, le changement de forme n'a ainsi pas d'impact sur la diffusion et l'accumulation d'antibiotiques couvrant une large gamme de pKa (Ren et al., 2018; Xie et al., 2018a). De la même façon, aucun effet significatif du pH n'a été observé pour des conservateurs (parabènes, organochlorés...), pesticides, pharmaceutiques et retardateur de flamme dont les pKa sont compris dans les gammes de pH testées (Chen et al., 2017; Fauvelle et al., 2015; Feng et al., 2019; Guo et al., 2017a; Li et al., 2019; Weng et al., 2019; Zhang et al., 2018). Les propriétés des phases réceptrices utilisés peuvent également être modifiée sans que cela n'impacte l'accumulation des composés. C'est le cas de la phase PCM dont le point isoélectrique est égal à 6,9. Ses capacités d'accumulation peuvent donc changer en fonction du pH mais cela n'a pas d'incidence sur l'accumulation des antibiotiques dans la gamme de pH testée (Ren et al., 2018). Dans le cas du o-DGT_{MAX}, le pH n'a pas d'effet sur l'accumulation du bentazone et du mecoprop alors que dans le cas du o-DGT_{HLB} le pH n'a pas d'effet sur l'accumulation de l'ioxynil (Guibal et al., 2017). La concentration en chlorsulfuron est sous-estimée à tous les pH testés mais aucune variation n'est observée entre le différents pH (Guibal et al., 2017).

Certains composés ne subissent pas ou peu de changement de forme dans les gammes de pH évaluées (voir Tableau I.13). Ainsi, les pH testés n'ont pas d'influence sur la diffusion et l'accumulation de nombreux composés organiques incluant des bisphénols, hormones, perfluroalkyls, nitrobenzènes et des pesticides (Chen et al., 2018; Guan et al., 2018; Guo et al., 2017b; Xie et al., 2018b; Zhang et al., 2019; Zheng et al., 2015). Ayant des pKa éloignés des valeurs testées, ces composés sont principalement présents sous leur forme neutre. Si la fraction ionique peut augmenter à des pH proches des pKa (Chen et al., 2018), leurs propriétés d'accumulation et leurs coefficients de diffusion ne changent pas (Zheng et al., 2015).

Stroski et al (2018) ont étudié de façon plus approfondie l'effet pH sur l'accumulation de pharmaceutiques, pesticides et hormones dans les o-DGT. Ainsi, afin de déterminer l'effet du pH sur l'accumulation dans la phase réceptrice, l'extraction sur phase solide des phases réceptrices Oasis[®] HLB et SepraTM ZT préalablement dopés a été effectuée à différents pH. L'accumulation des composés est équivalente au deux pH étudiés ce qui montre que la capacité de la phase réceptrice reste la même. Cependant, le fait que la phase réceptrice est mélangée à du gel peut alors jouer un rôle dans l'accumulation (site actifs, porosité...).

Tableau I.13 : Protocoles utilisés pour déterminer l'effet du pH et résumé des effets observés

n.i. : non indiqué. Les familles et le nombre de composés associées à chaque référence sont indiquées dans le Tableau I.2.

Methode	Gamme de pH testée	Conc. (µg.L ⁻¹)	Durée	Matrice	Effet	pka dans la gamme de pH testés	Référence
Exposition DGT	4 à 11,0	20	12 h	n.i.	Non	Oui	(Zhang et al., 2018)
Exposition DGT	4 à 9,0	20	12 h		Non	Oui	(Guo et al., 2017a)
Exposition DGT	3,1 à 9,5	20	24 h	0,01 M NaCl	Non	Non	(Zou et al., 2018)
Exposition DGT	5 à 9,0	10	12 h	0,01 M NaCl	Non	Oui	(Chen et al., 2012)
Exposition DGT	4,2 à 8,4	50	12 h	0,01 M NaCl	Non	Oui	(Ren et al., 2018)
Exposition DGT	4,8 à 8,9	50	8h	0,7 M eau de mer	Oui	Oui	(Xie et al., 2018a)
Exposition DGT	3,5 à 9,5	100	20	NA	Non	Oui	(Chen et al., 2017)
Exposition DGT	7,0 à 9,0	50	16	0,7 M NaCl	Non	Non	(Xie et al., 2018b)
Exposition DGT	4,0 à 8,0	100	24 h	0,01 M NaNO3	Non	Non	(Guibal et al., 2017)

Methode	Gamme de pH testée	Conc. (µg.L ⁻¹)	Durée	Matrice	Effet	pka dans la gamme de pH testés	Référence
Exposition DGT	5 à 8	10,0- 20,0	12 h	0,01 M NaCl	Non	Non	(Zheng et al., 2015)
Exposition DGT	3 à 8	1000	16-48 h	0,01 M NaCl	Oui	Oui	(Dong et al., 2014)
SPE	5 à 8,5	250	NA	NA	Oui	Oui	(Stroski et al., 2018)
Exposition DGT	8,5	5	1-6 jours	NA	Oui	Oui	(Stroski et al., 2018)
Calibration	5 à 8,5	5	2-20 jours	NA	Oui	Oui	(Stroski et al., 2018)
Exposition DGT	3,5 à 9,5	100	20 h	NA	Non	Non	(Chen et al., 2018)
Cellule de diffusion	5 à 8,5	300	200 min	EUP	Non	Oui	(Fauvelle et al., 2015)
Exposition DGT	5 à 8	0,016	4 h	NA	Non	Non	(Guo et al., 2017b)
Exposition DGT	4 à 8	50	12 h	0.01 M NaCl	Non	NA	(Guan et al., 2018)
Exposition DGT	4 à 9	50	n.i.	0.01 M NaCl	Non	Oui	(Weng et al., 2019)
Exposition DGT	3 à 8	200	120	0.01 M NaNO3	Oui	Oui	(You et al., 2019a)
Exposition DGT	3 à 10	500	120	0.01 M NaCl	Oui	Oui	(You et al., 2019b)
Diffusion cell	4 à 8	n.i.	n.i.	0.01 M NaCl	Non	Oui	(Feng et al., 2019)
Exposition DGT	4,5 à 8,5	520	24 h	0.01 M NaCl	Non	Oui	(Feng et al., 2019)
Exposition DGT-HLB	4,7 à 8,2	10	17.8 h	0.01 M NaCl	Non	Oui	(Li et al., 2019)
Exposition DGT- XAD18	4,7 à 8,2	10	17.8 h	0.01 M NaCl	Oui	Oui	(Li et al., 2019)
Exposition DGT	3 à 9	100	24 h	0.01 M NaCl	Non	Non	(Zhang et al., 2019)

I.6.2. Influence de la force ionique

La force ionique du milieu peut avoir un effet sur l'échantillonnage des composés en réduisant leur solubilité ou en réduisant les répulsions électrostatiques en raison de l'écran protecteur de la charge de surface (Guibal et al., 2019). Comme dans le cas du pH, la force ionique peut avoir un effet sur la diffusion à travers le gel et/ou sur l'accumulation dans la résine (Chen et al., 2012). À ce jour, l'effet de différentes forces ioniques comprises entre 0,0001 et 3 M a été étudié dans 21 publications (voir Tableau I.14).

Tableau I.14 : Protocoles utilisés pour déterminer l'effet de la force ionique et résumé des effets observésn.i. : non indiqué. Les familles et le nombre de composés associées à chaque référence sont indiquées dans le TableauI.2.

Methode	Valeurs	Conc. (µg.L-1)	Durée	pН	Effet	Référence
Exposition DGT	0,001 à 0,5 M NaCl	20	12 h	n.i.	Haute FI	(Zhang et al., 2018)
Exposition DGT	0,001 à 0,5 M NaCl	20	12 h	n.i.	Haute FI	(Guo et al., 2019)
Exposition DGT	0,0001 à 0,5 M NaCl	20	24 h	n.i.	Haute FI	(Zou et al., 2018)
Exposition DGT	0,01 à 0,5 M NaCl	10	12 h	6,5	Haute FI	(Chen et al., 2012)
Exposition DGT	1 à 500 mM NaCl	50	12 h	6,2	Haute FI	(Ren et al., 2018)
Exposition DGT	0,01 à 0,8 M NaCl	50	8 h	8	Basse FI	(Xie et al., 2018a)
Exposition DGT	0,001 à 0,5 M NaCl	100	20 h	NA	Haute FI	(Chen et al., 2017)
Exposition DGT	0,4 à 0,8 M NaCl	50	16 h	8	Pas d'effet	(Xie et al., 2018b)
Exposition DGT	0,01 à 1 M NaNO3	100	24 h	5	Pas d'effet	(Guibal et al., 2017)
Exposition DGT	0,001 à 0,5 M NaCl	10 à 20	12 h	6	Pas d'effet	(Zheng et al., 2015)
Exposition DGT	0,0001 à 0,7 M NaCl	1000	16 à 48 h	5	Haute FI	Dong et al., 2014a)
Exposition DGT	0,001 à 0.5 M NaCl	100	20 h	NA	Haute FI	(Chen et al., 2018)
Exposition DGT	0,001 à 0,5 M NaCl	0,016	4 h	7	Pas d'effet	(Guo et al., 2017b)
Exposition DGT	0,0001 à 0,5 M NaCl	50	12 h	6,5	Basse FI	(Guan et al., 2018)
Exposition DGT	0,155 à 3 pNaCl	200	120	5	Haute FI	(You et al., 2019a)
Exposition DGT	0,155 à 3 pNaCl	500	120	5	Haute FI	(You et al., 2019b)
Diffusion cell	0,005 à 0,5 M NaCl	n.i.	n.i.	6	Haute FI	(Feng et al., 2019)
Exposition DGT	0,0001 à 0,5 M NaCl	520	24 h	6,2	Pas d'effet	(Feng et al., 2019)
Exposition DGT-HLB	0,01 à 0,5 M NaCl	10	17,8 h	6,9	Pas d'effet	(Li et al., 2019)
Exposition DGT-MAX	0,01 à 0,5 M NaCl	10	17,8 h	6,9	Haute FI	(Li et al., 2019)
Exposition DGT	EUP à 0,01 M NaCl	10 à 20	25	n.i.	Pas d'effet	(Wei et al., 2019)
Exposition DGT	0,001 à 0,5 M NaCl	100	24 h	6,5	Pas d'effet	(Zhang et al., 2019)

Certains composés sont significativement impactés à des forces ioniques élevées, contrairement à des faibles forces ioniques. Dans la majorité des publications, une sousestimation de la concentration de certains des composés étudiés est observée à la force ionique testée la plus élevée (Chen et al., 2017, 2018; Feng et al., 2019; Guibal et al., 2017; Guo et al., 2017a; Li et al., 2019; Ren et al., 2018; Zhang et al., 2018). Par exemple, si la force ionique n'a pas d'impact entre 0,001 et 0,1 M sur la détermination de la concentration de cinq perturbateurs endocriniens (quatre hormones et un bisphénol (Chen et al., 2018), de deux drogues illicites (Guo et al., 2017a), de quatre pharmaceutiques (Ren et al., 2018), une sous-estimation de leur concentration est observée à une force ionique plus élevée (0,5 M). Cette sous-estimation de la concentration peut s'expliquer par la diminution de l'accumulation dans la phase réceptrice qui peut être due au changement des propriétés physico-chimiques des composés étudiés comme par exemple une diminution de leur caractère hydrophile avec l'augmentation de la force ionique (Chen et al., 2012; Guo et al., 2017a; Zhang et al., 2018). D'autre part, cet effet peut s'expliquer par une compétition avec d'autres ions majeurs comme le Cl- (Chen et al., 2017, 2018) ou par la modification de la densité de charge et ainsi la diffusion des composés (Zou et al., 2018). Une surestimation de la concentration peut également être observée à des forces ioniques plus élevées. La concentration en ioxynil est surestimée avec le o-DGT_{MAX} aux forces ioniques de 0,1 et 1 M (Guibal et al., 2017). De la même façon, une surestimation de la concentration en 4chlorophénol est observée pour une force ionique de 1 M (Dong et al., 2014). Cette surestimation est due à l'augmentation de la fraction neutre à une force ionique élevée et donc à l'augmentation de l'accumulation des composés dans la phase réceptrice (Dong et al., 2014).

Au contraire, dans le cas de l'étude de Xie et al. (2018a), si les forces ioniques élevées (0,5 et 0,8 M) n'ont pas d'impact sur la détermination de la concentration de 20 antibiotiques, une sous-estimation de la concentration est cependant observée pour des forces ioniques faibles pour 5 sulfonamides, 2 quionolones et 2 chloramphenicols et une surestimation est observée pour 3 macrolides. L'utilisation de coefficient de diffusion déterminé dans un milieu d'une force ionique de 0,7 M peut expliquer le biais observé. En effet, ces derniers dépendent de la charge des composés étudiés. Les charges négatives du gel d'agarose provoquent une attraction des composés cationiques et une répulsion des composés

anioniques, ce qui peut mener à une modification du coefficient de diffusion (Wang et al., 2016). Les 9 composés pour lesquels une sous-estimation est observée possèdent des charges négatives, ce qui provoque une diminution du coefficient de diffusion alors que les trois composés pour lesquels la concentration est surestimée possèdent des charges positives, ce qui provoque une augmentation du coefficient de diffusion (Xie et al., 2018a).

Certains composés ne sont pas impactés par la force ionique, qu'elle soit élevée ou faible (différence < 20 %). C'est par exemple le cas de conservateurs (parabènes, organochlorés), bisphénols, hormones et nitrochlorobenzènes qui ne subissent aucun effet entre 0,001 et 0,5 M (Chen et al., 2017; Guo et al., 2017b; Zhang et al., 2019; Zheng et al., 2015). De la même façon, aucun effet n'a été observé pour six perturbateurs endocriniens dont des pesticides, hormones et bisphénols entre 0,4 et 0,8 M (Xie et al., 2018b). La force ionique n'a pas non plus d'effet sur l'accumulation de bisphénols entre 0,01 et 0,5 M (Feng et al., 2019) et sur l'accumulation des pesticides 0,001 et 1 M que ce soit avec le o-DGT_{MAX} ou de le o-DGT_{HLB} (Guibal et al., 2017; Li et al., 2019). Wei et al. (2019) ont montré que le taux d'échantillonnage de conservateurs (organochlorés) était le même dans l'EUP et pour une force ionique de 0,01 M.

I.6.3. Influence de la matière organique et du carbone organique dissous

La matière organique présente dans le milieu peut avoir un effet sur la quantification par o-DGT. En effet, les composés étudiés peuvent se lier à la matière organique menant ainsi à une modification de leur diffusion à travers le gel. De plus, les composés de la matière organique peuvent entrer en compétition avec les composés étudiés pour se lier à la phase accumulatrice. L'effet de la présence de matière organique dissoute à différentes concentrations sur la quantification des composés a été étudié dans 10 publications. Ces dernières et les protocoles utilisés sont listés dans le Tableau I.15.

Une sous-estimation de la concentration en triclosan a lieu avec l'augmentation de la concentration en matière organique (Chen et al., 2017). Cela peut s'expliquer par le fait que la matière organique se lie avec les composés relativement hydrophobes, ce qui est le cas du triclosan (log $K_{ow} = 4,66$). Ce composé peut alors diffuser plus difficilement à travers le gel, contrairement aux 5 autres composés étudiés pour lesquels aucun effet de la matière organique dissoute (MOD) n'est observé (logKow de 2 à 3,3) (Chen et al., 2017). De la

même façon, une sous-estimation de la concentration est observée à une concentration en matière organique élevée (20 mg.L⁻¹). Cela s'explique par des interactions électrostatiques et liaisons hydrogènes qui amènent à la l'adsorption des composés étudiés sur la matière organique (Feng et al., 2019).

La présence de matière organique n'a pas d'effet sur l'accumulation de nombreux composés organiques. C'est par exemple le cas d'hormones et bisphénols dans trois types de o-DGT (HLB, XAD18 et Strata-X) (Chen et al., 2018) , de retardateurs de flamme dans o-DGT_{HLB} (Zou et al., 2018) et de pesticides (Li et al., 2019) entre 0 et 20 mg.L⁻¹.

Dans le cas de l'analyse du 4-chlorophénol, des o-DGT ont été exposés dans de l'eau de rivière filtrée afin d'étudier l'effet du carbone organique dissous (COD) (Dong et al., 2014). Plus la concentration en COD est élevée, plus la concentration est sous-estimée. Cela s'explique par le fait que le 4-CP se lie au COD par des liaisons non covalentes (interactions electrostatiques) et n'est alors pas accumulé par o-DGT. La concentration obtenue au moyen du o-DGT est donc celle du 4-chlorophénol sous sa forme libre (Dong et al., 2014).

Tableau I.15 : Protocoles utilisés pour tester l'effet de la présence de matière organique dissoute et de carbone organique dissous

Méthode	Paramètre testé	Valeurs	Conc. (µg.L-1)	Durée	Matrice	pН	Référence
Exposition DGT	MOD	0 - 20	20	24 h	0,01 M NaCl	NA	(Zou et al., 2018)
Exposition DGT	COD	8,8-36,5	n.i.	16-48 h	Eau de rivière filtrée	NA	Dong et al., 2014a)
Exposition DGT	MOD	0 - 20	100	20 h	NA	NA	(Chen et al., 2017)
Exposition DGT	MOD	0 - 20	100	20 h	NA	NA	(Chen et al., 2018)
Calibration	MOD	0-30.0	0.016	4 h	NA	7	(Guo et al., 2017b)
Calibration	MOD	0-20	50	12 h	0.01 M NaCl	6	(Guan et al., 2018)
Calibration	MOD	5-50	500	120 h	0.01 M NaCl	5	(You et al., 2019b)
Calibration	MOD	5-20	1000	24 h	0.01 M NaCl	6.2	(Feng et al., 2019)
Calibration HLB	MOD	0-20	10	16 h	0.01 M NaCl	6.9	(Li et al., 2019)

n.i. : non indiqué. Les familles et le nombre de composés associées à chaque référence sont indiquées dans le Tableau 1.2.

Méthode	Paramètre testé	Valeurs	Conc. (µg.L ⁻¹)	Durée	Matrice	pН	Référence
Calibration	MOD	0-10	0-10	1-9 jours	EUP	n.i.	(Wei et al., 2019)
Calibration	MOD	0-10	0-10	1-9 jours	0.01 M NaCl	n.i.	(Wei et al., 2019)
Calibration	MOD	0-20	100	24 h	0.01 M NaCl	6.7	(Zhang et al., 2019)

I.7. Hydrodynamisme et influence de la couche limite de diffusion

I.7.1. Effet de l'hydrodynamisme

L'effet de la vitesse du courant a été étudié dans 7 publications (Belles et al., 2017; Buzier et al., 2019; Chen et al., 2012; Fauvelle et al., 2015; Guibal et al., 2017; Mechelke et al., 2019; Zhang et al., 2019). Pour cela, plusieurs méthodes ont été utilisées. Dans certaines études, l'effet de la vitesse du courant sur les coefficients de diffusion ou les taux d'échantillonnage a été déterminé. Dans d'autres études, la concentration déterminée par o-DGT a été comparée à la concentration mesurée dans le milieu, comme pour l'étude de l'effet du pH, de la force ionique ou de la matière organique.

Concernant l'effet sur les coefficients de diffusion, il a été montré qu'un gel de diffusion d'une largeur de 0,8 mm était suffisant pour ignorer les variations hydrodynamiques lors de l'échantillonnage du glyphosate et de son métabolite l'AMPA. En effet, les coefficients de diffusion du glyphosate et de l'AMPA ne sont pas significativement différents sous agitation ou non (Fauvelle et al., 2015).

Le taux d'échantillonnage, lié au coefficient de diffusion, n'est pas affecté pour des vitesses comprises entre 20 et 150 cm.s⁻¹ (Belles et al., 2017). Cependant, lorsque le milieu n'est pas agité, les taux d'échantillonnage des composés organiques sont inférieurs à ceux obtenus en milieu agité (Mechelke et al., 2019).

L'effet de la vitesse du courant est étudié à l'aide de la comparaison entre la concentration déterminée par o-DGT et la concentration mesurée dans le milieu dans quatre études. Ainsi, avec le o-DGT, la concentration en pharmaceutique et nitrochlorobenzène est sous-estimée en milieu statique (Chen et al., 2012; Zhang et al., 2019) alors que les autres agitations testées n'influent pas l'accumulation des composés. La différence entre la concentration réelle et

mesurée augmente lorsque le courant décroit pour atteindre une différence comprise entre 28 et 70 % sous des conditions statiques (Buzier et al., 2019). L'effet de l'agitation diffère donc selon les composés. De même, pour deux des pesticides (ioxynil et bentazone) aucun effet significatif n'est observé alors que l'accumulation du chlorsulfuron décroit significativement avec une agitation moindre (Guibal et al., 2017).

Lors du calcul de la concentration dans l'eau à partir de la masse accumulée dans le o-DGT, l'hypothèse que l'épaisseur du gel diffusif est suffisante pour négliger l'épaisseur de la DBL est effectuée (voir Équation I-12 et Équation I-13). Cela revient donc à négliger les effets de la vitesse du courant. Cependant, dans la littérature, il a été montré que l'épaisseur du gel diffusif n'est pas toujours suffisante pour ignorer la largeur de la DBL. Il est donc nécessaire de la prendre en compte sous des conditions statiques. Plusieurs épaisseurs de gel diffusif ont été testées, permettant ainsi la détermination de l'épaisseur de la DBL.

I.7.2. Epaisseur du gel diffusif et de la couche limite de diffusion

L'épaisseur du gel diffusif a été testée dans plusieurs publications. Ces dernières et les protocoles utilisés sont listés dans le Tableau I.16. Rapidement, des o-DGT avec des épaisseurs de gel diffusif allant de 0,5 à 2 mm sont exposés dans un milieu dopé en composés d'intérêt ou sur le terrain. La masse accumulée dans les o-DGT en fonction de l'épaisseur du gel diffusif est déterminée. L'épaisseur de la DBL peut alors être déterminée à partir de la pente et de l'intersection de la droite de l'inverse de la masse accumulée en fonction de la largeur du gel diffusif, considérant le coefficient de diffusion constant à l'aide d'un réarrangement de l'Équation I-12 (voir Équation I-29).

$$\frac{1}{M} = \frac{\Delta}{DC_w At} + \frac{\delta}{DC_w At}$$
 Équation I-29

avec C_w la concentration dans l'eau (µg.L-1), Δ l'épaisseur de la couche diffusive propre au o-DGT (gel diffusif et/ou membrane) (cm), δ l'épaisseur de la DBL (cm), M la masse accumulée des composés dans l'échantillonneur passif (ng), t le temps d'exposition (s) et A l'aire de la surface exposée (cm²).

Dans toutes les publications indiquées dans le Tableau I.16, la masse accumulée dans les o-DGT est inversement proportionnelle à l'épaisseur du gel de diffusion. Un exemple est représenté Figure I.14. Cette relation confirme la robustesse de la théorie o-DGT et donc que l'outil peut être utilisé pour une exposition dans l'eau (Guo et al., 2017a; Li et al., 2019; Zou et al., 2018). Lorsque la droite passe par zéro, l'hypothèse que la DBL peut être ignorée est validée et la concentration dans le milieu peut se calculer à l'aide de l'Équation I-13. Cependant, le fait que la droite ne passe pas par zéro peut s'expliquer par une résistance au transfert de masse supplémentaire liée à l'existence d'une DBL statique (Belles et al., 2018). La concentration dans le milieu peut se calculer à l'aide de l'Équation I-12. L'épaisseur de la DBL peut alors être calculée dans le but de déterminer au mieux la concentration dans l'eau.

Figure I.14: Masse accumulée en fonction de l'épaisseur du gel diffusif lorsque la DBL est négligeable ou non.

L'effet de l'épaisseur du gel diffusif sur la masse accumulée a été déterminée au laboratoire (Guo et al., 2017b, 2019) mais également sur le terrain, en STEU ou dans l'eau de mer (Chen et al., 2013, 2017; Guo et al., 2017b, 2019; Ren et al., 2018).

Certaines études montrent que la DBL peut être ignorée, les droites obtenues pour les composés étudiés passant par l'origine (Guo et al., 2017a; Li et al., 2019; Zhang et al., 2018; Zheng et al., 2015; Zou et al., 2018). Dans le Tableau I.16, lorsque la DBL peut être ignorée, l'épaisseur de celle-ci est considérée comme égale à zéro. Dans d'autres études, la droite ne passe pas par l'origine et l'épaisseur de la DBL est alors calculée. Ainsi, elle est estimée à 0,22 mm pour une vitesse de courant de 2,4 cm.sec⁻¹ (Challis et al., 2016a). Cette valeur se rapproche de celle observée dans la plupart des publications (voir Tableau I.16) mais peut différer en fonction de l'hydrodynamique du milieu. En effet, le DBL mesurée dans un effluent de STEU (0,25 mm en moyenne) est supérieure à celle mesurée dans l'influent (0,07 mm) où le débit est plus fort (Chen et al., 2017). De la même façon, l'épaisseur de la DBL

mesurée dans la mer est plus faible (0,14 mm) que celle mesurée dans un effluent de STEU due à l'agitation plus importante (Ren et al., 2018). Au contraire, l'épaisseur de la DBL augmente jusqu'à 0,75 mm d'épaisseur dans des conditions statiques (Challis et al., 2016a).

En considérant que la couche diffusive a une épaisseur de 1 mm, si la DBL n'est pas prise en compte l'erreur sur la concentration serait d'environ 20 %, erreur acceptable considérant la détermination de concentration environnementale (Challis et al., 2016a; Chen et al., 2018). Cette erreur est faible par rapport à l'erreur liée à cette DBL pour d'autres PS comme les POCIS et les Chemcatcher (environ 70 % de sous-estimation) (Chen et al., 2017, 2018). Challis et al. (2016a) proposent cependant d'inclure dans le calcul de concentration une épaisseur de la DBL moyenne d'environ 0,20 mm alors que Chen et al. (2017, 2018)utilisent les DBL calculées afin de déterminer de façon plus précise les concentrations en composés d'intérêt dans les influents et effluents de STEU. Dans le cas de l'étude de Belles et al. (2018), la prise en compte de la DBL augmente l'épaisseur de la couche diffusive de 18 % et ainsi la concentration d'un même facteur.

Tableau I.16 : Protocoles pour déterminer l'épaisseur de la DBL

•			· /				
n.1.	non	ındı	aue		mov	movenne	
			1	/			/

Épaisseurs gel de diffusion (mm)	Conc. (µg.L-1)	Durée	Matrice	pН	δ (mm)	Référence
0,5 - 1,75 mm	20	12 h	0,01 M NaCl	7	n.i.	(Zhang et al., 2018)
0,5 - 1,75 mm	20	12 h	0,01 M NaCl	7	Peut être ignorée, passe par zéro.	(Guo et al., 2017a)
0,5 - 1,75 mm	20	24 h	0,01 M NaCl	n.i.	n.i.	(Zou et al., 2018)
0,25 - 1	10	17 h	0,01 M NaCl	6,8	n.i.	(Chen et al., 2012)
0,5 - 1,4	n.i.	NA	STEU	n.i.	$0,24 \pm 0,01$	(Ren et al., 2018)
0,5 - 1,4	n.i.	NA	Eau de mer	n.i.	$0,14 \pm 0,04$	(Ren et al., 2018)
0,5 - 1,3	n.i.	10 j	Field	7,7	0,23	(Chen et al., 2013)
0,35 - 2	n.i.	8 j	STEU effluent	n.i.	0,05-0,09 (moy = 0,07)	(Chen et al., 2017)
0,35 - 2	n.i.	8 j	STEU Influent	n.i.	0,20-0,29 (moy = 0,25)	(Chen et al., 2017)
0,35 - 2	n.i.	8 j	STEU Influent	n.i.	0,21-0,29 (moy = 0,24)	(Chen et al., 2018)
0,35 - 2	n.i.	8 j	STEU effluent	n.i.	0,06-0,11(moy = 0,08)	(Chen et al., 2018)
0,5 - 1,75	40 - 100	12 h	0,01 M NaCl	6		(Zheng et al., 2015)
0,5 - 1	0,016	4 h	n.i.	7	0,21	(Guo et al., 2017b)
0,05 - 0,1	n.i.	6 h	Field	n.i.	0,22	(Guo et al., 2017b)
0 - 1,29	n.i.	24 h	Sol	n.i.	n.i.	(Guan et al., 2017)
0,5 - 1,5	10	15 h	0,01 M NaCl	6,9	Peut être ignorée, passe par zéro.	(Li et al., 2019)
0,25 - 1	0,016	4 h	n.i.	n.i.	$0,19 \pm 0,06$	(Guo et al., 2019)
0,25 - 1	0,016	6 h	Effluent STEU	n.i.	$0,22 \pm 0,05$ $0,23 \pm 0,03$	(Guo et al., 2019)
0,25 - 1	0,016	14 j	Port	n.i.	$0,10 \pm 0,04$	(Guo et al., 2019)
0,5-1,5	2,5	8 j	5 mM KNO3 (courant)	n.i.	0,03-0,5 (moy = 0,22)	(Challis et al., 2016a)
0,5-1,5	2,5	10 j	5 mM KNO3 (statique)	n.i.	0,41-1,33 (moy = 0,78)	(Challis et al., 2016a)

I.8. Limites de détection

Les limites de détection liées à l'outil o-DGT (LD₀-DGT) peuvent être déterminées à partir de la masse accumulée détectable la plus faible déduite à partir des limites de détection instrumentales (LD_i) (avec ratio signal/bruit de 3) ou des limites de quantification (LQ) (avec ratio signal/bruit de 10). Ainsi, à partir de l'Équation I-13, la LD_{DGT} est calculée pour un temps d'exposition donné, une largeur de gel diffusif donnée et du coefficient de diffusion à une température donnée. Les valeurs utilisées pour le calcul et les LD₀-DGT sont répertoriées dans le Tableau I.17. L'aire de la surface exposée utilisée est de 3,14 cm², excepté dans la publication de Belles et al. (2017) (78 cm²).

Les LD_{0-DGT} sont généralement de l'ordre du ng.L-¹. Dans les mêmes conditions, elles diminuent avec la durée d'exposition (Chen et al., 2018; Cole et al., 2018; Wei et al., 2019) excepté dans une publication (Feng et al., 2019). De manière générale, les valeurs de LD_{DGT} trouvées sont basses et inférieures aux concentrations observées sur le terrain (Xie et al., 2018a) ce qui indique que l'outil o-DGT développé a une sensibilité suffisante pour l'échantillonnage des composés étudiés dans les différentes matrices environnementales.

A partir de	Temps d'exposition	Temp (°C)	Δ (mm)	D (× 10-6 cm ² .s ⁻¹)	LD _{DGT} (ng,L ⁻¹)	Référence
LD	1 jour	NA	0,92	4,7	$0,026 \pm 0,003$	(Guo et al., 2017b)
LD	7 jours	10	n.i.	3,4 à 5,8	1,78 à 10,36	(Chen et al., 2018)
LD	14 jours	10	n.i.	3,4 à 5,8	0,89 à 5,1	(Chen et al., 2018)
LQ	1 jour	NA	n.i.	7,7 à 8,6	0,012 à 0,015	(Guo et al., 2017a)
LQ	168 h	25	0,8	4,4 à 5,8	2 à 12	(Zheng et al., 2015)
LD	7 jours	NA	n.i.	4,9 à 7,1	0,0121 à 0,0217	(Wei et al., 2019)
LD	10 jours	NA	n.i.	4,9 à 7,1	0,0125 à 0,00583	(Wei et al., 2019)
LD	30 jours	NA	n.i.	4,9 à 7,1	0,00417 à 0,00194	(Wei et al., 2019)
LQ	30 jours	25	0,8	4,4 à 5,1	0,31 à 0,95	(Guan et al., 2018)
LQ	8 h	25	0,8	1,3 à 5,6	1 à 14	(Xie et al., 2018a)
LQ	3 jours	25	n.i.	3,8 à 5,2	0,1 à 5,14	(Xie et al., 2018b)
LD	2 jours	NA	n.i.	4,8 à 10	2,7 à 12,1	(Cole et al., 2018)
LD	7 jours	NA	n.i.	4,8 à 10	0,8 à 3,5	(Cole et al., 2018)
LD	14 jours	NA	n.i.	4,8 à 10	0,4 à 1,7	(Cole et al., 2018)
LD	21 jours	NA	n.i.	4,8 à 10	0,3 à 1,2	(Cole et al., 2018)
LD	28 jours	NA	n.i.	4,8 à 10	0,9 à 0,9	(Cole et al., 2018)
LQ	1 jour	n.i.	n.i.	2,2	56,29	(Feng et al., 2019)
LQ	3 jours	n.i.	n.i.	2,2	131,35	(Feng et al., 2019

Tableau I.17: Limites de détection associées à l'outil o-DGT (LD_{DGT}) dans la littérature

A partir de	Temps d'exposition	Temp (°C)	Δ (mm)	D (× 10 ⁻⁶ cm ² .s ⁻¹)	LD _{DGT} (ng,L-1)	Référence
LQ	7 jours	n.i.	n.i.	2,2	394,1	(Feng et al., 2019
LD	1 jour	25	n.i.	5,3 à 6,6	30 à 190	(Li et al., 2019)
LD	7 jours	25	n.i.	5,3 à 6,6	480 à 2730	(Li et al., 2019)
LQ	7 jours	25	0,80	7 à 7,7	1,46 à 2,84	(Zhang et al., 2019)
LQ	1 jour	NA	1.2	2,9 à 5,8	3	(Belles et al., 2017)

I.9. Application sur le terrain

I.9.1. Type de milieu d'exposition

Le premier déploiement terrain de o-DGT, d'une durée de 14 jours, a été effectué par Chen et al. (2012) pour déterminer la concentration de trois antibiotiques (le sulfaméthoxazole, la sulfaméthazine et la triméthoprime) dans une rivière au Royaume-Uni. Par la suite, le déploiement de o-DGT dans les eaux douces pendant différentes durée (3 à 40 jours) a été fait en Chine pour l'échantillonnage de pharmaceutiques (Zhang et al., 2018), de drogues illicites (Guo et al., 2017a), de bisphénols (Zheng et al., 2015), en France pour la détermination de la concentration des pesticides anioniques (Guibal et al., 2017) et au Canada pour l'échantillonnage de pesticides et pharmaceutiques (Challis et al., 2016a; Stroski et al., 2018). Toutes les études ont été menées en milieu urbanisé, excepté pour l'échantillonnage de pesticides anioniques en milieu agricole (Guibal et al., 2017). D'autre part, trois études ont déployé des o-DGT dans des eaux côtières en milieu urbain en Chine pour l'échantillonnage d'antibiotiques pendant 7 jours (Ren et al., 2018) ou 8 heures (Xie et al., 2018a) et pour l'échantillonnage de bisphénol, pesticides et hormones pendant 3 jours (Xie et al., 2018b). Enfin, des o-DGT ont été déployés dans les influents et les effluents de STEU. En Chine, des o-DGT ont été déployés pendant différentes durées (10 à 33 jours) pour déterminer la concentration de retardateurs de flamme (Zou et al., 2018), d'antibiotiques (Chen et al., 2013, 2015b; Ren et al., 2018) et de bisphénols (Guan et al., 2018). Au Canada, l'échantillonnage de pesticides et pharmaceutiques a été effectué dans les STEU pendant 21 jours (Challis et al., 2016a; Stroski et al., 2018). Enfin, des o-DGT ont été déployés en STEU pendant 4 à 28 jours au Royaume-Uni pour l'échantillonnage de conservateurs, antioxydant et désinfectants (Chen et al., 2017), d'antibiotiques (Chen et al., 2015b) ainsi que d'hormones, alkylphénol et bisphénol (Chen et al., 2018).

La technique o-DGT s'est également montrée efficace pour le suivi de la concentration des composés organiques et plus particulièrement des cinétiques de désorption des bisphénols ou de pharmaceutiques dans les sols, sédiments et bio-solides (Cole et al., 2018; D'Angelo and Martin, 2018; D'Angelo and Starnes, 2016; Guan et al., 2017; Li et al., 2019; Mechelke et al., 2019; Sidhu et al., 2019).

I.9.2. Comparaison avec l'échantillonnage ponctuel

La comparaison des concentrations obtenues par échantillonnage ponctuel et passif est effectuée dans la majorité des études. Les mesures entre l'échantillonnage passif et l'échantillonnage ponctuel sont concordantes pour la majorité des composés étudiés (Belles et al., 2017; Challis et al., 2016a; Chen et al., 2013; Guo et al., 2017a, 2017b; Ren et al., 2018; Xie et al., 2018a, 2018b; Zhang et al., 2018; Zheng et al., 2015; Zou et al., 2018). Dans certains cas, les mesures ponctuel/passif ne sont pas cohérentes (Chen et al., 2017, 2018; Xie et al., 2018a, 2018b). Cette différence peut s'expliquer par la présence de pics de contamination qui ne sont pas mesurés par l'échantillonnage ponctuel, la concentration moyenne est alors sous-estimée (Xie et al., 2018a, 2018b). Elle peut également être due à des effets de rejets périodiques, de marée créant des modifications des concentrations dans le milieu échantillonné (Xie et al., 2018b). La variabilité temporelle de la concentration n'est alors pas prise en compte avec l'échantillonnage ponctuel (Xie et al., 2018a, 2018b). Dans l'étude de Chen et al. (2017), la concentration déterminée par o-DGT est proche de celle déterminée avec les échantillonneurs automatiques pour une période de 7 jours contrairement à celle déterminée par échantillonnage ponctuel. Cette différence s'explique par le manque de représentativité temporelle de l'échantillonnage ponctuel. Cette différence entre l'échantillonnage ponctuel et l'échantillonnage par o-DGT et l'échantillonnage automatique est également observée dans l'étude de Chen et al. (2018).

I.9.3. Comparaison avec d'autres PS

Guibal et al. (2017) ont comparé les concentrations mesurées par o-DGT et par POCIS. Le bentazone et la mesotrione ont tous deux été détectés par les échantillonneurs passifs mais les concentrations sont significativement différentes. Les concentrations détectées par les o-DGT sont respectivement 2,3 et 3,4 moins élevées. Dans l'étude de Challis et al (2016a), le nombre de pharmaceutiques et pesticides détectés avec le o-DGT est semblable au nombre de composés détectés par POCIS. Cette observation est également faite dans l'étude de Challis et al (2018a) malgré une variabilité plus importante dans le cadre du o-DGT, qui peut d'expliquer par le schéma de déploiement. Cependant, dans une autre étude, les pesticides sont moins détectés avec o-DGT qu'avec le POCIS, ce qui s'explique par le taux d'échantillonnage moins élevé (Hageman et al., 2019).

I.10. Synthèse et objectifs

La technique o-DGT semble être une bonne alternative à l'utilisation du POCIS pour l'échantillonnage passif des composés organiques. Ce dispositif comprend : une résine, généralement composée d'une phase réceptrice, adaptée aux composés étudiés, mélangée à un gel ; un gel diffusif, contrôlant la diffusion des composés du milieu étudié vers la résine ; enfin, une membrane dont le rôle principal est la protection de l'outil. La diffusion des composés s'effectue du milieu à échantillonner vers la phase réceptrice suivant la première loi de Fick.

En novembre 2019, 38 articles traitant de la technique o-DGT ont été publiés. La majorité de ces articles sont dédiés au test de configurations et de performances de o-DGT adaptés aux composés étudiés. La technique o-DGT a été testée en grande majorité pour l'échantillonnage de résidus pharmaceutiques.

Les composants des o-DGT ont été choisis et adaptés en fonction des composés étudiés. Dans le cas des membranes utilisées, la membrane PES d'une taille de pores de 0,45 µm, est la plus utilisée aujourd'hui. Cependant, cette dernière a montré l'accumulation de certains composés, plus particulièrement les plus hydrophobes. D'autres membranes sont utilisées comme les membranes PTFE, nitrate de cellulose ou les membranes polycarbonates. Toutes ces membranes accumulent certains composés, il semble donc nécessaire d'étudier l'accumulation des composés étudiés avant la mise en place d'une nouvelle configuration o-DGT. Certaines études utilisent les o-DGT sans membrane pour s'affranchir de la possible accumulation des composés. Cependant, cela peut mener à une dégradation du gel diffusif lors de son exposition in situ et donc à un changement de la diffusion des composés. Aujourd'hui, seule une étude met en avant ce problème d'altération

du gel diffusif, et plus particulièrement du gel d'agarose (Stroski et al., 2018), sans pour autant proposer de nouvelles solutions. Aussi, à notre connaissance, aucune étude n'a testé la diffusion avec des membranes de tailles de pore plus élevées, ce qui pourrait permettre la protection du gel diffusif sur le terrain tout en diminuant l'accumulation des composés étudiés. De plus, l'effet de la présence de la membrane sur la diffusion des composés n'a pas encore été testé à ce jour sur les composés organiques.

Concernant le gel diffusif, le gel d'agarose est le plus utilisé aujourd'hui. L'autre gel testé en seconde intention est le gel polyacrylamide. Le choix du gel se porte en grande partie sur l'accumulation des composés dans ces derniers, le gel choisi est alors celui accumulant le moins les composés. Les coefficients de diffusion à travers ces deux gels ont été déterminés et comparés seulement dans une publication (Fauvelle et al., 2015). Certaines études n'utilisent pas de gels diffusifs mais seulement une membrane. La diffusion des composés du milieu étudié vers la phase réceptrice n'est alors plus contrôlée par un gel diffusif d'une épaisseur supérieure à celle de la DBL. Les effets de l'hydrodynamique devraient alors être équivalents à ceux observés dans le cas du POCIS et le terme o-DGT n'est alors adapté.

Les résines sont généralement composées d'une phase réceptrice et de gel. Le premier critère de choix de la résine est son affinité avec les composés étudiés. Les résines choisies accumulent en règle générale plus de 80 % de la quantité en composés initialement présente dans l'eau dopée dans laquelle elles sont plongées. Cette accumulation est rapide et suit une cinétique d'ordre 1 avec une accumulation linéaire sur des temps inférieurs à 4 h. Le flux d'accumulation dans les résines seules est supérieur à celui observé pour les o-DGT complets. D'autre part, la capacité maximale des résines a été déterminée quand celle-ci a été atteinte. À partir de la capacité maximale, une concentration théorique du milieu d'exposition peut être estimée pour une durée donnée (typiquement 7 à 14 jours). Ces concentrations théoriques sont généralement très supérieures à celles observées dans le milieu environnemental, de l'ordre de dizaines de ng.L⁻¹ à quelques µg.L⁻¹, ce qui montre que les o-DGT constitués de ces résines sont adaptés aux études sur le terrain.

Les limites de détection liées à l'outil sont très variables en fonction des études mais sont le plus souvent de l'ordre du ng.L⁻¹. Ces limites de détection sont en général inférieures aux concentrations observées sur le terrain ce qui indique que le o-DGT est assez performant pour aider à la détermination de la concentration dans les milieux environnementaux. Les coefficients de diffusion de nombreux composés ont été déterminés dans la littérature à l'aide de trois méthodes : la méthode « en cellule de diffusion », la méthode « empilement de gel » et la méthode « calibration ». Lorsque l'erreur sur les coefficients de diffusion est précisée, cette dernière est généralement inférieure à 50 %. Seulement six études comparent les différentes méthodes. La méthode « empilement de gel », plus récemment utilisée, n'est comparée que pour trois composés. Elle offre cependant de bonnes possibilités, notamment sur sa facilité de mise en œuvre et sa rapidité d'exécution. Les taux d'échantillonnage peuvent être calculés à partir des coefficients de diffusion ou déterminés expérimentalement lors de calibrations. Ils sont environ égaux à 10 mL.jour-1. Ces derniers, normalisés avec l'aire de la surface exposée sont similaires à ceux observés avec les POCIS et les Chemcatcher.

Par ailleurs, il est difficile d'établir un lien clair entre les coefficients de diffusion trouvés dans la littérature et un seul paramètre physico-chimique. Les coefficients de diffusion peuvent cependant être estimés à partir de la loi d'Archie lié à la masse molaire. La relation trouvée entre les coefficients de diffusion modélisés et expérimentaux est différente de celle observée dans la littérature (Chen et al., 2013). Cependant, il est important de rappeler que ces coefficients de diffusion proviennent de différents jeux de données, ces derniers ayant été déterminés à l'aide de méthodes et conditions différentes. Les coefficients de la régression changent donc en fonction du nombre et du type de données considérées. Cette relation est empirique et resterait donc à améliorer. De plus, les coefficients de diffusion ont été déterminés avec ou sans membrane, celle-ci pouvant dès lors influencer les coefficients de diffusion. De la même façon, les gels utilisés ont pu être préparés de façon différente ou peuvent provenir de différents fournisseurs. Aujourd'hui, une seule étude a étudié un important jeu de données de taux d'échantillonnage obtenus dans une même étude et les a comparés au log Dow (Mechelke et al., 2019). En parallèle, en utilisant les coefficients de diffusion provenant de la littérature, Liu et al. (2020) ont développé un modèle QSPR (Quantitative Structure-Property Relationship) liant les coefficients de diffusion à la polarisabilité moléculaire, le potentiel chimique et l'indice d'électrophilicité global.

Les cinétiques d'accumulation des composés dans les o-DGT ont été également étudiées. Dans la majorité des travaux, l'accumulation des composés est linéaire pendant toute la durée de l'expérimentation. Certaines études observent une accumulation des composés suivant une cinétique d'ordre 1 avec l'apparition d'un plateau. Seulement une étude a déterminé les constantes généralement renseignées dans le cadre de l'échantillonnage passif $(K_{SW}, t_{1/2}...)$ (Urik and Vrana, 2019). Aujourd'hui, aucune étude n'a comparé la cinétique et les constantes associées des o-DGT et des POCIS, PS le plus utilisé pour les composés modérément hydrophiles, dans les mêmes conditions ; malgré la comparaison de leur habilité à déterminer la concentration à différentes vitesses de courant (Buzier et al., 2019).

Enfin, les conditions physico-chimiques peuvent avoir une influence sur l'échantillonnage des composés organiques avec l'o-DGT par modification de la diffusion des composés à travers la couche diffusive et/ou l'accumulation dans les résines. Les conditions physicochimiques les plus étudiées sont le pH, la force ionique et la concentration de la matière organique dissoute. Les effets dépendent des composés, des gels et des résines étudiées. Par exemple, la diffusion et la rétention des composés ioniques sont impactés par le pH alors que les composés neutres sont non affectés par ce paramètre. L'effet de l'hydrodynamisme a été abordé dans plusieurs études. Théoriquement, l'épaisseur du gel diffusif est suffisante pour ignorer la présence de la DBL dans des milieux suffisamment agités. De nombreuses études ont montré que la concentration était déterminée avec précision à différentes vitesses de courant. Cependant, dans des conditions statiques, l'épaisseur du gel diffusif n'est, en général, plus suffisante pour permettre d'ignorer l'épaisseur de la DBL. Cette dernière a été déterminée en laboratoire ou in situ à l'aide de o-DGT composé de gel diffusif d'épaisseur différente. L'épaisseur de la DBL est d'environ 0,2 mm en moyenne et l'ignorer mènerait alors à des erreurs d'environ 20 % lors de la détermination de la concentration. En milieu statique, la DBL peut atteindre près de 1,5 mm, ce qui change considérablement les concentrations estimées, du fait de constantes D obtenues auparavant pour des couches limites bien plus faibles.

Des applications sur le terrain ont été effectuées dans de nombreux types de milieux environnementaux : en eau douce (rivière, lac), en eau salée (milieu côtier), en STEU (influent et effluent) et enfin dans les sols et sédiment (eau interstitielle). Cette technique a été comparée à l'échantillonnage ponctuel, à l'échantillonnage automatique et à d'autres types de PS comme les POCIS. Les résultats dépendent des composés et des types de milieux échantillonnés. La technique o-DGT n'est que très peu utilisé sur le terrain autrement que pour de la validation de l'outil et de l'étude de la performance de ce dernier en milieu environnemental. En effet, aujourd'hui, seulement deux articles sont consacrés au suivi du niveau de contamination des composés organiques dans des milieux aquatiques tels que des rivières, lacs ou STEU à l'aide de la technique o-DGT.

Cette thèse a ainsi pour objectif de répondre à plusieurs verrous décrits dans la synthèse cidessus. L'effet de la présence de la membrane sur les coefficients de diffusion sera étudié avec des membranes selon deux tailles de pores différentes (0,45 et 5 µm). Les gels diffusifs utilisés aujourd'hui, polyacrylamide et agarose, seront comparés pour un grand nombre de composés (hormones, pesticides et résidus pharmaceutiques) ayant des propriétés physicochimiques très diverses. Ces coefficients de diffusion seront comparés aux propriétés physico-chimiques des composés étudiés afin d'essayer de trouver des corrélations entre ces derniers. De plus, les trois méthodes de détermination des coefficients de diffusion seront testées afin de mettre en évidence les erreurs liées à chacune d'entre elles et la variabilité des coefficients de diffusion, puis des taux d'échantillonnages ainsi obtenus. La calibration permettra en outre de déterminer les coefficients liés aux cinétiques d'accumulation, de désorption ainsi que les temps de demi-atteinte de l'équilibre des composés étudiés. Ces coefficients seront comparés à ceux déterminés pour le POCIS dans les mêmes conditions, celui-ci demeurant le dispositif de « référence » à ce jour, pour des substances hydrophiles.

Chapitre II. Matériel et méthodes

II.1. Matériel utilisé

II.1.1. Matières actives utilisées

Les matières actives (en poudre ou en solution) des composés étudiés et de leur étalon interne associés sont d'une pureté supérieure à 95 % et sont obtenus chez plusieurs fournisseurs indiqués en Annexe II. 1.

II.1.2. Appareils et consommables utilisés

II.1.2.1. Au cours des expérimentations

Les différents consommables et appareils utilisés au cours des expérimentations sont listés respectivement dans les Tableau II.1 et Tableau II.2. Les solvants utilisés à Bordeaux sont de qualité HPLC (Biosolve, Dieuze, France) et ceux utilisés à Lyon sont de qualité UHPLC (Biosolve, Dieuze, France). L'eau-ultra pure utilisée à Bordeaux est produite par un système Synergy UV (Merck Milipore, Molsheim, États-Unis) et celle utilisée à Lyon est produite par un système « MilliQ advantage A10 » (Merck Milipore, Molsheim, États-Unis). L'azote est produit par un système AirFlux.

Tableau	II.1 :	Consommables	utilisés	au cour	s des	expérimentations	
	~				~		

Consommable	Caractéristiques	Fournisseur
Cartouche SPE Chromabond HRX	Hydrophobic polystyrene- divinylbenzene copolymere, 60 mg, 3 mL, 85 μm	Macherey-Nagel (Allemagne)
Cartouche SPE Oasis® HLB	Divinylbenzene N-vinyl- pyrrolidone, 150 mg, 60 µm	Waters (États-Unis)
Cartouche SPE vide	Polypropylène, 3 mL	Supelco - Sigma-Aldrich (États-Unis)
Filtre GFF	Diamètre 25 mm, taille de pores 0,45 μm	GE Life Sciences - Whatmann (Royaume-Uni)
Filtre seringue PTFE	Ministart SRP 25 — 0,2 µm	Sartorius (Allemagne)
Frittés	Polyethylene, porosité 20 µm	Supelco - Sigma-Aldrich (États-Unis)

Ville	Appareil	Modèle	Fabriquant
Bordeaux	Agitateur magnétique chauffant	RH basic	IKA (Allemagne)
Bordeaux	Agitateurs magnétiques	94360	Heidolph (Allemagne)
Bordeaux	Bain à ultrason	USC THD	VWR (États-Unis)
Bordeaux	Balance	NewClassic MS	Mettler Toledo (États-Unis)
Bordeaux	Chromatographie ionique	COMPACT 881 IC Pro	Methrom (Suisse)
Bordeaux	Évaporateur automatisé	Speedvac concentrator SAVANT SPD121P	Thermo Fisher Scientific (États-Unis)
Bordeaux	Évaporateur rotatif	Hei-Vap Value	Heidolph (Allemagne)
Bordeaux	Module d'extraction	Visiprep SPE	Supelco - Sigma-Aldrich (États-Unis)
Lyon	pH-mètre et conductimètre	Inolab multi 720 et Inolab pH level 1	WTW GmbH (Allemagne)
Bordeaux	pH-mètre et conductimètre	Seven Excellence Multiparameter	Mettler Toledo (États-Unis)
Lyon	Pompes péristaltiques	Ismatec model Ecoline VC-MS/CA8-6	Thermo Fisher Scientific (États-Unis)
Bordeaux	Table d'agitation	Orbitron	InforsHT (Suisse)
Bordeaux	Agitateurs multi-postes	Variomag Multipoint	Thermo Fisher Scientific (États-Unis)
Lyon Bordeaux	Mesure de la température	TG-4100	Tinytag – Gemini Data Loggers (Royaume-Uni)

Tableau II.2 : Appareils utilisés au cours des expérimentations

II.1.2.2. Pour l'analyse

Les pesticides neutres et anioniques ont été analysés à l'aide d'une chaine HPLC Dionex Ultimate 3000 (Thermo Fisher Scientific, Villebon-sur-Yvette, France) couplée à un spectromètre de masse en tandem API 2000 (Sciex, Villebon-sur-Yvette, France). La séparation chromatographique des pesticides neutres a été réalisée à l'aide d'une colonne Gemini-NX C18 (110 × 2 mm, 3 μ m ; Phenomenex, Le Pecq, France) ainsi qu'une précolonne Gemini-NX (4 × 2 mm ; Phenomenex, Le Pecq, France). La séparation chromatographique des pesticides anioniques est quant à elle effectuée sur une colonne Macherey-Nagel zwitterionic Nucleodur HILIC (125 mm × 2 mm, 3 μ m). Les hormones et les pharmaceutiques ont été analysés à l'aide d'une chaine Acquity H Class couplée à un spectromètre de masse en tandem XECO TQ-XS tandem (Waters, Guyancourt, France). La séparation chromatographique des composés pharmaceutiques a été réalisée à l'aide d'une colonne d'une colonne C18 HSS T3 (2,1 × 100 mm, 1,8 μ m ; Waters, Guyancourt, France) et celle des hormones a été réalisée à l'aide d'une colonne C18 BEH $(2,1 \times 100 \text{ mm}, 1,8 \text{ }\mu\text{m}; \text{Waters, Guyancourt, France})$. L'acétate d'ammonium (C₂H₇NO₂) et le fluorure d'ammonium (NH₄F) utilisés pour les phases mobiles ont été achetés chez Thermo Fisher Scientific (Villebon-sur-Yvette, France) et Sigma Aldrich (Schnelldorf, Allemagne) respectivement.

II.1.2.3. Consommables utilisés pour la préparation des PS

Consommable utilisés pour la préparation des o-DGT

Les supports o-DGT ont été achetés chez DGT Research (Lancaster, Royaume-Uni). Trois membranes (*i.e.* en nylon, polyethersulfone et cellulose) à deux tailles de pores différentes (*i.e.* 0,45 μ m et 5 μ m) de 2,5 cm de diamètre ont été testées lors du développement de la technique o-DGT. Les membranes en polyethersulfone (PES) 0,45 μ m ont été achetées chez Pall (États-Unis) et ont une épaisseur de 150 μ m. Les membranes PES 5 μ m (Supor 5000) ont été achetées chez Pall (États-Unis) sous forme de feuille et coupées au laboratoire. Dans la suite de cette thèse, une épaisseur de 133,4 μ m (correspondant à la moyenne entre l'épaisseur minimum et le maximum indiquée par le fournisseur – respectivement 88,9 et 177,8 μ m) sera utilisée. Les membranes nylon 0,45 μ m (Nylaflo) ont également été achetées chez Pall (États-Unis) et ont une épaisseur de 150 μ m. Les membranes nylon 5 μ m, d'une épaisseur de 100 μ m, ont été achetées chez Fisher Scientific (France). Enfin, les membranes cellulose d'une épaisseur comprise entre 105 et 140 μ m ont été achetées chez Whatmann (Royaume-Uni).

Deux types de gel ont été testés lors du développement de la technique o-DGT : le gel d'agarose 1,5 % (AG) et le gel polyacrylamide (PA). Les gels AG ont été préparés à partir de poudre d'AG achetée chez Alfa Aesar (Thermo Fisher Scientific, États-Unis). Les gels polyacrylamide sont préparés à partir d'une solution 19:1 d'acrylamide 40 % achetée chez BioRad (Etats-Unis), de tétraméthyléthylènediamine (TEMED) (Alfa Aesar - Thermo Fisher Scientific, États-Unis) et de persulfate d'ammonium (Chem Lab ; Belgique).

La phase Oasis[®] HLB a été utilisée pour la fabrication des résines. Cette phase est conditionnée sous forme de cartouche en polypropylène d'une contenance de 6 g (taille de particules 30 µm, surface spécifique 810 m².g⁻¹, divinylbenzène N-vinyl-pyrrolidone, Waters, France).

Consommable utilisés pour la préparation des o-DGT

Les POCIS utilisés lors de la calibration en laboratoire sont des POCIS de type « pharmaceutique » (Exposmeter, Tavellsjö, Suède). Ils sont composés d'une phase réceptrice Oasis[®] HLB et de deux membranes PES 0,1 µm.

Les POCIS utilisés lors de l'expérience de calibration sur le terrain sont fabriqués au laboratoire. Les membranes utilisées pour les POCIS sont des membranes PES de 90 mm de diamètre et d'une taille de pores de 0,1 mm (PALL, France). La phase Oasis[®] HLB est la même que celle utilisée pour les o-DGT (voir ci-dessus). La phase Oasis[®] MAX utilisée lors de l'expérience de calibration sur le terrain est conditionnée dans une cartouche en polypropylène de 500 mg (taille de particules 30 µm, surface spécifique 810 m².g⁻¹, Waters, France).

II.2. Préparation des solutions utilisées

II.2.1. Solutions des composés étudiés

Des solutions à 200 mg.L⁻¹ sont préparées à partir des matières actives des composés étudiés et conservées au congélateur maximum 6 mois. À partir de ces solutions, les solutions intermédiaires de chaque groupe de composés (pharmaceutiques, hormones, pesticides anioniques et pesticides neutres) à 5 mg.L⁻¹ sont préparées. Ces dernières sont utilisées pour chaque expérimentation, excepté la calibration. Afin de préparer les eaux dopées, les solutions intermédiaires à 5 mg.L⁻¹ sont évaporées sous azote et reprises dans de l'EUP ou solution de NaCl 10⁻² M.

II.2.2. Solutions d'étalons internes et de traceurs

Étalons internes

Les solutions d'étalons internes de chaque groupe de composés contiennent les composés deutérés associés aux composés indiqués en Annexe II. 1. Celle des pesticides neutres notée EI-N et celle des pesticides anioniques notée EI-A ont une concentration de 1 mg.L⁻¹ et sont préparées dans l'acétonitrile (ACN). La solution d'étalons internes des pharmaceutiques notée EI-MU à 200 µg.L⁻¹ est préparée dans de l'ACN. La solution

contenant les étalons internes des hormones, notée EI-H, a une concentration de 1 mg. L⁻¹ et est préparée dans le méthanol (MeOH).

Des solutions supplémentaires contenant des « traceurs » sont préparées. Ces dernières peuvent permettent de suivre la stabilité des composés pendant l'envoi des échantillons entre INRAE à Lyon et INRAE à Bordeaux.

La solution notée TE-A permet le suivi de l'extraction des composés anioniques. Elle est composée de dicamba-d3 à 1 mg.L⁻¹. La solution TE-N permet de suivre l'extraction des pesticides neutres et est composée de trois composés deutérés à 10 mg.L⁻¹ (prométryne d6, simazine d5 et monuron d6).

Enfin, dans le cadre de l'analyse des composés pharmaceutiques et des hormones, une solution de traceur d'injection, permettant de suivre l'analyse, est utilisée. La solution utilisée pour l'analyse des hormones, noté TI-H, est composé de diuron-d6 à 14,29 µg.L⁻¹ dans du MeOH. La solution utilisée pour l'analyse des composés pharmaceutiques, noté TI-MU, est composé de diuron-d6 à 100 µg.L⁻¹ dans de l'ACN.

II.3. Protocole de préparation des PS

II.3.1. Préparation des dispositifs o-DGT

II.3.1.1. Préparation des gels diffusifs

Les gels diffusifs AG sont fabriqués à partir de poudre d'agarose mélangée à de l'eau ultrapure chauffée entre 80 et 90°C. Le mélange est mis à agiter et est chauffé au bain marie jusqu'à dissolution complète de la poudre d'AG. Le mélange devient alors transparent. Ce dernier est coulé entre deux plaques de verres chauffées préalablement à l'étuve à 70°C pendant 20 min. Elles sont séparées par deux écarteurs en téflon de 0,5 mm d'épaisseur afin d'obtenir des gels de 1 mm d'épaisseur.

Les gels polyacrylamide sont préparés à partir d'une solution 19:1 d'acrylamide 40 %, d'EUP ; de TEMED et de persulfate d'ammonium. Le mélange est ensuite coulé entre deux plaques de verres séparées par deux écarteurs en téflon de 0,5 mm d'épaisseur pour obtenir une épaisseur finale de 1 mm. Les plaques de gel sont ensuite laissées à température ambiante jusqu'à polymérisation. Après polymérisation du gel, les plaques de gel sont rincées à l'EUP plusieurs fois puis coupées en disque de 25 mm de diamètre. Pendant le rinçage, les deux types de gels ne semblent pas gonfler. Après découpage, les gels diffusifs sont stockés dans l'EUP au réfrigérateur (4°C) jusqu'à utilisation. Les gels ont été fabriqués au fur et à mesure et n'ont pas été stockés plus de 3 mois avant utilisation.

II.3.1.2. Préparation des résines

La phase Oasis[®] HLB est tout d'abord nettoyée *via* la percolation de 50 mL de MeOH puis séchée sous flux d'azote.

Un volume de 12 mL de gel AG ou PA encore sous forme liquide est mélangé à 2 g de phase Oasis[®] HLB. Le mélange est ensuite déposé sur une plaque de verre placée à l'horizontal puis une deuxième plaque de verre est posée sur la première avec séparation par un écarteur de 0,5 mm. Dans le cas des résines AG, les plaques de verres sont préalablement chauffées à l'étuve (70°C, 20 minutes). Les plaques de gels sont laissées à température ambiante le temps de la polymérisation. Une fois polymérisées, les plaques de gel sont rincées à l'eau ultra pure plusieurs fois sur une période de 4h au moins puis coupées en disque de 25 mm de diamètre. Au final, les résines comprennent environ 40 mg de phase Oasis[®] HLB. Ces derniers sont stockés dans l'eau ultra pure au réfrigérateur jusqu'à utilisation. Comme dans le cas des gels diffusifs, les résines ont été fabriquées au fur et à mesure et n'ont pas été stockées plus de 3 mois avant utilisation.

II.3.1.3. Montage des dispositifs o-DGT

Pour la calibration sur le terrain, les o-DGT sont composés de 200 mg de phase Oasis[®] HLB préalablement dopée avec deux composés deutérés (DIA-d5, dicamba-d3, 400 ng.g⁻¹). La phase est recouverte d'un gel diffusif AG ou PA (0,78 mm d'épaisseur, 25 mm de diamètre) acheté chez DGT Research Ltd (Royaume-Uni) et d'un filtre PES (taille de pores de 0,45 µm, diamètre de 25 mm, Sartorius corp., France).

Pour la calibration en laboratoire, deux types d'o-DGT sont utilisés. Le dispositif o-DGT_{AG} est préparé par superposition d'une résine composée de phase Oasis[®] HLB et d'AG, d'un gel diffusif d'AG et enfin d'une membrane PES d'une taille de pore de 5 μ m. Les dispositif o-DGT_{PA} est quant à lui composé d'une résine composée de phase Oasis[®] HLB et de PA

et d'un gel diffusif PA. Dans les deux cas, la résine est placée de façon à ce que la phase Oasis[®] HLB soit disposée vers le gel diffusif. Les résines font 0,5 mm d'épaisseur et les gels diffusifs font 1 mm d'épaisseur. Les o-DGT ainsi préparés sont conservés à 4°C jusqu'à exposition.

II.3.2. Préparation des POCIS utilisés sur le terrain

La phase Oasis[®] HLB, conditionnée dans des cartouches d'une contenance de 6 g, est nettoyée par percolation de 50 mL de MeOH. De la même façon, la phase Oasis[®] MAX, conditionnée dans des cartouches d'une contenance de 500 mg, est nettoyée par percolation de 5 mL de MeOH. Les cartouches sont ensuite séchées sous flux d'azote. Les POCIS sont assemblés au laboratoire avant exposition. Ils sont composés de deux membranes PES et d'environ 200 mg de phase. Le dispositif est maintenu par deux anneaux en acier inoxydable ainsi que 3 vis et écrous.

II.4. Présentation des expérimentations

II.4.1. Expériences préliminaires liées au o-DGT

II.4.1.1. Calibration sur le terrain

Des POCIS_{HLB}, POCIS_{MAX}, des o-DGT_{AG} et des o-DGT_{PA} ont été exposés sur le terrain entre le 15 mai et le 11 juin 2013. Les PS ont été récupérés après 1, 2, 7, 13 et 27 jours d'exposition. Les deux premiers jours d'exposition, des échantillons ponctuels ont été prélevés. En parallèle, des échantillons d'eau prélevés à l'aide d'un préleveur automatique (échantillonnage automatique horaire – moyen 24 h) ont été analysés chaque semaine. Après exposition, les échantillons ont été stockés à 4°C et extrait dans les 48 h suivants les protocoles décrits en partie II.5.

Les expositions sur le terrain ont été effectuées dans la rivière nommée Le Trec dont le bassin versant est principalement occupé par des zones agricoles. Cette rivière, située dans le Lot-et-Garonne, à proximité de Marmande, est un affluent de la Garonne. Lors de la manipulation « calibration » effectuée sur le terrain, la température était de 15 °C \pm 2, le pH de 8,2 \pm 0,1, l'oxygène dissous de 9,8 \pm 1,4 mg L⁻¹ et la conductivité 729 \pm 50 µS cm⁻¹. La
matière organique en suspension était comprise entre 5 et 50 mg L⁻¹ et le carbone organique dissous était de 5,4 \pm 0,1 mg L⁻¹.

II.4.1.2. Protection par la membrane

Dans un premier temps, la protection du gel diffusif et de la résine par les membranes a été testée. Pour cela, des o-DGT composés seulement d'un gel diffusif (AG ou PA) et d'une membrane (PES, nylon ou cellulose ; taille de pores 0,45 µm ou 5 µm) ou seulement d'un gel diffusif (AG) ont été placées sur le terrain pendant deux semaines. Chaque association de gel diffusif et de membranes ont été testées. Après exposition et démontage des o-DGT, les gels ont été séchés à l'étuve pendant 24 h et pesés. La masse obtenue a été comparée à la masse de gels non exposés afin de déterminer la masse perdue pendant l'exposition. Les résultats sont présentés dans la partie V.2.2.1.

II.4.1.3. Accumulation des composés dans la membrane

L'accumulation des composés étudiés dans les différentes membranes a été déterminée uniquement pour les pesticides anioniques et neutres. Pour cela, les membranes ont été placées dans de l'EUP dopée à 100 µg.L⁻¹ pendant 24h sous agitation. Des échantillons d'eau ont été prélevés avant et après exposition des membranes. Ils ont été préparés et analysés comme indiqués dans la partie II.5.4. La quantité accumulée dans la membrane a été considérée comme égale à la quantité perdue dans l'EUP dopée. En parallèle, un témoin d'EUP dopée a été effectué afin de vérifier si les pertes de masses observées sont bien dues à l'accumulation dans les membranes et non à de l'adsorption sur les bouteilles en verre, de l'évaporation ou encore de la dégradation. Les résultats sont présentés dans la partie V.2.2.2.

II.4.1.4. Détermination du protocole et des rendements d'élution

Afin de définir le meilleur protocole pour éluer les résines, deux protocoles ont été testés sur les pesticides. Pour chacun des tests, cinq résines ont été préalablement dopées en étant plongées dans de l'eau dopée en composés d'intérêt (100 µg.L⁻¹). Les résines ont ensuite été extraites suivant les deux protocoles décrits ci-dessous.

Le premier protocole testé consiste en deux extractions successives dans 2,5 mL de MeOH pendant 10 minutes aux ultrasons puis une extraction dans 5 mL de MeOH pendant 10

minutes aux ultrasons également. Entre chaque extraction, les résines sont rincées à l'aide de $3 \times 500 \,\mu\text{L}$ de MeOH. L'éluat ainsi formé est filtré à l'aide de filtres seringues PTFE 0,2 μ m. Après évaporation à sec sous azote, l'éluat est ensuite repris dans 1 mL d'ACN et dilué. Les rendements d'élution de cette méthode n'étant pas complètement satisfaisant (< 70 % dans la majorité des cas), le choix a été fait d'augmenter la durée d'élution.

Le deuxième protocole testé consiste en l'extraction des résines dans 5 mL de MeOH sous agitation pendant 24 h dans des bouteilles de 15 mL ambrées. Deux extractions successives dans 2,5 mL de MeOH pendant 10 minutes aux ultrasons sont ensuite effectuées. Entre chaque extraction, les résines sont rincées à l'aide de $3 \times 500 \mu$ L de MeOH. L'éluat ainsi formé, d'un volume de 10 mL, est ensuite filtré à l'aide d'un filtre-seringue 0,2 µm en PTFE, évaporé à sec sous azote et repris à sec dans 1 mL d'ACN. L'éluat peut ensuite être conservé au congélateur à -18°C jusqu'à dilution et préparation des échantillons pour analyse.

Lors de chacun des tests, des blancs « bouteilles » ont été effectué afin de vérifier qu'il n'y a pas de perte durant la manipulation due à l'adsorption des composés sur les parois de la bouteille. La perte dans la bouteille a été déterminée à l'aide de l'Équation II-1.

$$Perte = (C_{t0} - C_{tf})/C_{t0} \times 100 \qquad \acute{Equation II-1}$$

avec C_{t0} la concentration (µg.L-1) de l'eau dopée mesurée en début de manipulation (n=5) et C_{tf} , la concentration (µg.L-1) dans les blancs « bouteilles » en fin de manipulation (n=2). Lorsqu'il n'y a pas de perte dans les blancs « bouteilles », il est possible de déterminer le rendement d'élution. Ce dernier se calcule à partir de la quantité perdue dans l'eau dopée (quantité moyenne avant exposition des résines par rapport à quantité dans la bouteille associée à la résine à la fin de l'exposition des résines) et de la quantité accumulée dans les résines (voir Équation II-2).

$$Rdt = M_{résine} / (M_{ED-t0} - M_{ED-tf}) \times 100$$
 Équation II-2

avec *Rdt* le rendement d'élution, $M_{résine}$ la quantité accumulée dans les résines (ng), M_{ED-t0} la quantité présente dans l'eau dopée avant exposition des résines (n=5) et M_{ED-tf} la quantité présente dans l'eau dopée après exposition des résines (n=3).

II.4.2. Détermination des coefficients de diffusion

II.4.2.1. Méthode en cellule de diffusion

Les coefficients de diffusion ont été déterminés en cellule de diffusion dans l'EUP puis dans une solution de NaCl 10-2 M. Au cours de cette thèse, une cellule de diffusion en polychlorure de vinyle (PVC) a été utilisée. Cette dernière est divisée en deux compartiments contenant 320 mL du milieu étudié (EUP ou NaCl 10-2 M) chacun : un compartiment donneur, dopé à 100 µg.L-1 et un compartiment récepteur non dopé (voir Figure I.6). Une plaque sépare les deux milieux avec une fenêtre de 1,77 cm² où se trouve la couche diffusive composée d'un gel et/ou d'une membrane. Plusieurs couches diffusives ont été testées : le gel AG seul ou avec une membrane nylon ou PES aux deux tailles de pores (i.e. 0,45 et 5 µm) et le gel PA seul. La diffusion des composés à travers le gel et la membrane du milieu « donneur » vers le milieu « récepteur » a alors été étudiée. Pour cela, des prélèvements de 2 mL par groupe de composés (pesticides neutres, pesticides anioniques, hormones et pharmaceutiques) ont été effectués pendant 3 jours à 0, 24, 32, 48, 56 et 72 h dans le milieu récepteur. Afin de préserver le même volume dans les deux compartiments, les mêmes prélèvements ont été effectués dans le compartiment donneur. Cependant, seuls 100 µL d'échantillons ont été gardés à 0, 48 et 72 h afin de suivre la perte des composés dans le milieu donneur. Les échantillons d'eau ont ensuite été préparés comme expliqué dans la partie 3.3 et conservés au congélateur jusqu'à analyse. La manipulation a été réalisée en deux fois, d'abord pour les pesticides puis pour les pharmaceutiques et les hormones. Le coefficient de diffusion de chaque composé peut alors se calculer à l'aide de l'Équation I-16 à partir de la pente de la masse dans le compartiment récepteur en fonction du temps. Afin d'homogénéiser les coefficients de diffusion obtenus pour chaque groupe de molécules et les comparer avec ceux de la littérature ces derniers ont été recalculés pour une température de 25°C selon l'Équation I-22. Dans le cas où la perte dans le milieu donneur est supérieure à 30 %, les coefficients de diffusion ne sont pas considérés comme fiables. En effet, cette perte, due à l'adsorption des composés sur les parois de la cellule de diffusion utilisée, empêche de suivre l'accumulation dans le milieu récepteur de façon précise.

II.4.2.2. Méthode par empilement de gel

La méthode d'empilement de gel consiste à empiler un gel dopé avec les molécules d'intérêt au-dessus de plusieurs gels non dopés afin de suivre la diffusion des composés du gel dopé au gel non dopé (voir Figure I.8).

L'épaisseur des gels AG et PA utilisés étaient de 1 mm. Pour le dopage, 15 gels AG et PA ont été plongés dans l'EUP dopée à $300 \mu g/L$ pendant 20 minutes. Un gel dopé a été ensuite placé sur des piles de 5 gels non dopés. Après 30 minutes de contact, les gels sont séparés et élués comme détaillé en partie II.5.1.1. Les concentrations obtenues ont permis de déterminer les coefficients de diffusion à l'aide de l'Équation II-3.

$$C_{x} = \frac{Q}{\sqrt{\pi Dt}} \times exp\left(\frac{-x^{2}}{4Dt}\right) = C_{0} \times exp\left(\frac{-x^{2}}{4Dt}\right)$$
Équation II-3

avec C_x (ng.L⁻¹) la concentration dans le gel à la distance x (cm) du gel dopé (pour lequel x = 0), C_0 la concentration dans le gel dopé au temps t (s) et D le coefficient de diffusion (cm².s⁻¹). Comme dans le cas des coefficients de diffusion en cellule de diffusion, ceux déterminés par empilement de gel ont été recalculés pour une température de 25°C selon l'Équation I-22.

II.4.2.3. Calibration en laboratoire

Le but de la calibration est de déterminer les coefficients de diffusion du o-DGT complet (membrane, gel diffusif et résine) pour les différents composés étudiés et ainsi déterminer le taux d'échantillonnage associé au dispositif. Cela permet également la comparaison avec les coefficients de diffusion préalablement établies en cellule de diffusion ou empilement de gels. En parallèle des o-DGT, des POCIS ont également été exposés afin de comparer les deux types d'échantillonneurs passifs et leur taux d'échantillonnage.

Les deux types de o-DGT (*i.e.* o-DGT_{AG} et o-DGT_{PA}) sont exposés pendant 1, 2, 4, 7, 14, 21 et 28 jours en duplicat pour chaque groupe de composés. Les POCIS sont exposés sur les mêmes durées que les o-DGT mais également sur des périodes plus courtes (1h, 3h, 6h, 12h). La durée de la manipulation totale est de 28 jours.

Le système de calibration utilisé à INRAE Lyon est schématisé en Figure II.1. Il est composé de deux aquariums de 50 L contenant de l'eau du robinet dopée initialement à 5 µg.L⁻¹. Afin de maintenir la concentration constante, un taux de renouvellement en continu du milieu a été fixé à 15 % par jour du volume total d'eau. Le suivi de la concentration dans l'eau est présenté dans le Chapitre V. Pour cela, l'eau du robinet est acheminée grâce à une pompe péristaltique (débit de 15 L.j⁻¹) vers une chambre de mélange où a lieu le dopage à l'aide d'un pousse seringue réglé à un débit de 0,8 mL.j⁻¹ d'une solution de dopage à 50 mg.L⁻¹. L'eau dopée est ensuite acheminée vers les aquariums à l'aide de pompe péristaltiques. L'homogénéisation des aquariums est effectués grâces à des pompes immergées (débit de 15 L.j⁻¹) qui alimentent des rampes de diffusion en verre munies de plusieurs trous devant lesquels sont placés les PS. L'eau des aquariums est évacuée grâce à une surverse et traitée à l'aide d'une colonne contenant du charbon actif. La température des aquariums est maintenue à 20 °C grâce à un bac thermostaté dans lequel se trouvent les aquariums.

Figure II.1 : Schéma du système de calibration utilisé en laboratoire

Les paramètres physico-chimiques sont suivis tout au long de la calibration dans chacun des aquariums.

Après exposition, les o-DGT sont élués immédiatement à Lyon. Après élution, les extraits sont congelés puis envoyés à Bordeaux pour la préparation des échantillons avant analyse. Les POCIS dédiés à l'analyse des pharmaceutiques et des hormones sont conservés au congélateur jusqu'à élution et préparation des échantillons. Les POCIS dédiés à l'analyse des pesticides sont envoyés à Bordeaux pour élution et préparation des échantillons. Les protocoles d'élution et de préparation des échantillons sont détaillés dans la partie II.5.

Les facteurs de concentration liés à chaque outil ont été déterminés à partir de la concentration dans les PS et de la concentration dans l'eau. Ainsi, les cinétiques d'accumulation de chaque composé lié aux différents PS ont pu être déterminés. Les constantes cinétiques liées aux différents PS ont ensuite été calculées et comparées comme par exemple les taux d'échantillonnage. Les coefficients de diffusion déterminés à partir des taux d'échantillonnage suivant l'Équation I-14 ont été comparés aux coefficients de diffusion déterminés à l'aide des deux autres méthodes.

II.5. Préparation des échantillons avant analyse

La préparation des échantillons pour l'analyse a été effectuée à Bordeaux excepté pour les échantillons POCIS de la calibration en laboratoire dédiés à l'analyse des pharmaceutiques et des hormones. Dans la suite de cette partie, les différentes étapes de préparation des échantillons avant analyse sont détaillées.

II.5.1. Dispositif o-DGT

II.5.1.1. Élution des gels diffusifs et préparation des échantillons

Les gels diffusifs AG ont été élués dans 2 × 5 mL de MeOH pendant 10 minutes aux ultrasons. L'élution des gels diffusifs PA a été effectuée de la même manière mais dans un mélange MeOH/EUP 75/25 (v/v). L'extrait obtenu a ensuite été évaporé à sec à l'aide d'un évaporateur automatisé. Dans le cas de l'analyse des pesticides neutres, des pesticides anioniques et des hormones, les solutions d'étalons internes respectives (EI-N, EI-A et EI-H) sont ajoutées avant évaporation. Après évaporation, les échantillons dédiés à l'analyse des pesticides neutres et anioniques et des hormones sont repris dans les mélanges analytiques indiqués en partie II.5.5. Les échantillons dédiés à l'analyse des composés pharmaceutiques sont repris dans un mélange de solution d'étalon interne (EI-MU) et d'EUP afin d'obtenir le mélange analytique final comme indiqué en partie II.5.5.

II.5.1.2. Élution des résines

Toutes les résines ont été éluées dans les 24 h suivant la récupération.

Pour les expérimentations en laboratoire

Plusieurs protocoles d'élution ont été testés afin d'obtenir les meilleurs rendements d'élution pour le plus grand nombre de composés (voir Partie II.4.1.4). Le protocole sélectionné consiste en l'extraction des résines dans 5 mL de MeOH sous agitation pendant 24 h dans des bouteilles de 15 mL ambrées. Deux extractions successives dans 2,5 mL de MeOH pendant 10 minutes aux ultrasons sont ensuite effectuées. Entre chaque extraction, les résines sont rincées à l'aide de 3 × 500 µL de MeOH. L'éluat ainsi formé, d'un volume de 10 mL, est ensuite filtré à l'aide d'un filtre-seringue 0,2 µm en PTFE, évaporé à sec sous azote et repris à sec dans 1 mL d'ACN. L'éluat peut ensuite être conservés au congélateur à -18°C jusqu'à dilution et préparation des échantillons pour analyse. Ils sont conservés au congélateur (pour une durée maximum de 1 mois lors de cette expérimentation) jusqu'à préparation des échantillons comme indiqué dans la partie II.5.3.

Pour la calibration terrain.

La phase Oasis[®] HLB des o-DGT exposés sur le terrain est transférée à l'aide de 5 mL d'EUP dans une cartouche SPE en polypropylène vide munie de deux frittés, préalablement tarée. Les cartouches sont ensuite séchées sous flux d'azote pendant 30 minutes et pesées pour déterminer la masse exacte de phase récupérée. Les cartouches sont conservées au congélateur jusqu'à élution. L'élution est effectuée avec 5 mL de MeOH, suivi de 5 mL d'un mélange MeOH/acétate d'éthyle 50/50 (v/v). Les extraits sont ensuite évaporés sous flux d'azote et repris avec 1 mL d'ACN. Ils sont conservés au congélateur jusqu'à préparation des échantillons comme indiqué dans la partie II.5.3.

II.5.2. Dispositif POCIS

Pour les expérimentations en laboratoire.

Après exposition, les POCIS sont nettoyés à l'EUP et stockés au congélateur à INRAE Lyon.

Les POCIS destinés à l'analyse des pesticides sont envoyés à Bordeaux et démontés juste après réception. La phase Oasis[®] HLB est transférée à l'aide de 5 mL d'EUP dans une cartouche SPE en polypropylène vide préalablement tarée. Les cartouches sont ensuite séchées sous flux d'azote pendant 30 minutes et pesées pour déterminer la masse exacte de phase récupérée. Les cartouches sont conservées au congélateur jusqu'à élution. L'élution des POCIS est effectuée avec 3 mL de MeOH suivi de 3 mL d'un mélange MeOH/acétate d'éthyle 75/25 (v/v). Les extraits sont ensuite évaporés sous flux d'azote et repris dans 1 mL d'ACN. Les extraits sont conservés au congélateur jusqu'à préparation des échantillons comme indiqué dans la partie II.5.3.

Les POCIS destinés à l'analyse des hormones et des pharmaceutiques sont démontés et la phase Oasis[®] HLB est transférée à l'aide de 10 mL d'EUP dans une cartouche SPE en verre vide préalablement tarée sont déposés sur la phase afin de vérifier si l'étape d'extraction s'est bien déroulée. Les cartouches sont ensuite séchées et pesées pour déterminer la masse exacte de phase récupérée. L'élution des POCIS est effectuée avec 10 mL de MeOH suivi de 10 mL d'un mélange MeOH/dichlorométhane (DCM) 50/50 (v/v), puis de 10 mL de DCM. Les cartouches sont séchées à l'aide d'une pompe à vide.

Afin de procéder à une purification des extraits obtenus, ces derniers sont passés sur une cartouche OASIS Prime HLB 6cc 200 mg. Ils sont ensuite séparés en deux afin d'avoir un extrait pour les hormones d'un côté et pour les pharmaceutiques de l'autre. Les extraits ainsi séparés sont évaporés sous flux d'azote à 30 °C (Turbovap). Les extraits dédiés à l'analyse des hormones sont repris dans 500 μ L d'une solution de diuron-d6 à 10 μ g/L dans EUP/MeOH 50/50 (v/v). Les extraits dédiés à l'analyse des pharmaceutiques sont repris dans 500 μ L d'une solution de diuron-d6 à 10 μ g/L dans for μ L d'une solution diuron-d6 à 10 μ g/L dans cau/ACN 95/5 (v/v). La solution de diuron de servant de traceur injection. Les extraits sont conservés au congélateur jusqu'à préparation des échantillons comme indiqué dans la partie II.5.3.

Pour la calibration terrain.

Après exposition, les POCIS sont nettoyés à l'EUP et stockés à 4°C. Ils sont élués dans les 24 h suivant la récupération. Les POCIS sont démontés et la phase est transférée à l'aide de 5 mL d'EUP dans une cartouche SPE en PP vide munie de deux frittés préalablement tarée. Les cartouches sont ensuite séchées sous flux d'azote pendant 30 minutes et pesées pour déterminer la masse exacte de phase récupérée. L'élution de la phase Oasis[®] HLB est effectué avec 5 mL de MeOH suivi de 5 mL d'un mélange MeOH/acétate d'éthyle 50/50 (v/v). L'élution de la phase Oasis[®] MAX est effectué avec d'un mélange MeOH/acétate d'éthyle 50/50 (v/v) et 5 mL d'un mélange MeOH/acétate formique 90/10 (v/v, pH=1,15).

Après élution, les extraits sont évaporés sous azote et repris dans 1 mL d'ACN. Ils sont conservés au congélateur jusqu'à préparation des échantillons comme indiqué en partie II.5.3.

II.5.3. Dilutions des extraits de PS

Après congélation, les extraits obtenus sont dilués afin d'être analysés. Dans le cas de l'analyse des pesticides neutres, des hormones et des pharmaceutiques, le volume d'extrait déterminé en fonction de la dilution effectuée ainsi que les mélanges d'étalons internes associés (EI-N, EI-H et EI-MU) sont évaporés à sec sous azote. Les échantillons dédiés à l'analyse des pesticides neutres sont ensuite repris dans le mélange analytique comme indiqué en partie II.5.5. Les échantillons dédiés à l'analyse des hormones et des composés pharmaceutiques sont repris dans un mélange de solution de traceur d'injection (respectivement TI-H et TI-P) et d'EUP afin d'obtenir les mélanges analytiques indiqués en partie II.5.5. Dans le cas de l'analyse des pesticides anioniques, le volume d'extrait déterminé en fonction de la dilution effectuée, la solution d'étalon interne (EI-A) ainsi qu'un volume d'ACN et d'EUP sont ajoutés afin d'obtenir le mélange analytique final indiqué en partie II.5.5.

Pour la calibration, dans le cas de l'analyse des hormones et des pharmaceutiques, les extraits de POCIS sont dilués dans les mélanges analytiques indiqués en partie II.5.5.

II.5.4. Les échantillons d'eau

Pour les expérimentations en laboratoire

Pour les manipulations en cellule de diffusion, des prélèvements d'eau sont effectués dans le milieu donneur et dans le milieu récepteur. Dans le cas du milieu récepteur, les échantillons d'eau prélevés, d'un volume de 4 mL, sont évaporés à l'aide d'un évaporateur automatisé (Speedvac, 60° C, P = 133,32 Pa). Les solutions d'étalons internes associées aux pesticides neutres (EI-N), aux pesticides anioniques (EI-A) et aux hormones (EI-H) sont ajoutées aux échantillons avant évaporation. Après évaporation, les échantillons sont repris dans les mélanges analytiques respectifs indiqués en partie II.5.5 pour un volume final de 500 µL. Les échantillons dédiés à l'analyse des pharmaceutiques sont repris dans un mélange de solution d'étalon interne (EI-MU) et d'EUP afin d'obtenir les mélanges analytiques final

indiqués en partie II.5.5. Dans le cas du milieu donneur, les échantillons d'eau prélevés, d'un volume de 100 μ L, sont dilués à l'aide des solutions d'étalon interne, de solvant et d'EUP, afin d'obtenir les mélanges analytiques final indiqués en partie II.5.5 pour un volume final de 1 mL. Les échantillons peuvent alors être conservés à -18°C jusqu'à l'étape d'analyse.

Dans le cas de la calibration en laboratoire, les échantillons dédiés à l'analyse des pesticides sont préparés comme lors de la manipulation en cellule de diffusion. Un volume de 2 mL est évaporé pour obtenir 1 mL des mélanges analytiques finaux. Les échantillons dédiés à l'analyse des hormones et des pharmaceutiques sont analysés par injection directe. Les solutions d'étalons internes (respectivement EI-H et EI-MU) et les solutions de traceur d'injection (respectivement TI-H et TI-P) sont ajoutés aux échantillons d'eau afin d'obtenir les mélanges analytiques final indiqués en partie II.5.5.

Pour la calibration terrain

Lors de la calibration terrain, seuls les pesticides ont été analysés. Les échantillons d'eau (500 mL à 1 L) sont filtrés sur filtres GF/F puis extraits sur phase solide (SPE). Pour ce faire, quatre étapes doivent être effectuées : le conditionnement de la cartouche, le chargement de l'échantillon sur la cartouche, le rinçage et enfin l'élution afin de récupérer les composés d'intérêts.

L'extraction des pesticides anioniques est réalisée, selon le protocole développé par Fauvelle et al. (2014), sur des cartouches SPE Oasis[®] HLB (Waters) préalablement conditionnées avec 3 mL de MeOH, puis 3 mL d'EUP. Les échantillons d'eau (200 mL) sont acidifiés à pH 5 avec un mélange EUP/acide formique 90/10 (v/v). Un volume de 100 μ L de la solution de traceurs TE-A est ajouté afin de vérifier le bon déroulement de l'étape d'extraction. Après chargement de l'échantillon (10 mL.min⁻¹), les cartouches sont rincées avec 1,5 mL of EUP/MeOH 70/30 (v/v) et séchées sous flux d'azote. Les cartouches peuvent alors être conservées au congélateur (-18°C) jusqu'à l'étape d'élution. L'élution est réalisée avec 5 mL de MeOH. Après élution, 60 μ L d'une solution d'étalons internes (EI-A) sont ajoutés à l'extrait. L'extrait est ensuite évaporé sous azote et repris dans 3 mL d'un mélange ACN/EUP 95/5 (v/v). Les extraits peuvent alors être conservés au congélateur (-18°C) jusqu'à analyse. L'extraction des pesticides neutres est réalisée selon le protocole développé par Lissalde et al. (2011). L'extraction est réalisée sur des cartouches Chromabond HRX (Macherey-Nagel) préalablement conditionnées avec 5 mL de MeOH, puis 5 mL d'EUP. Les échantillons d'eau sont ajustés à pH 7 à l'aide d'acide chlorydrique à 0,1 M (HCl). Un volume de 10 µL de la solution de traceurs TE-N est ajouté à l'extrait afin de vérifier que l'extraction s'est bien déroulée. L'extrait est ensuite chargé sur la cartouche. Les cartouches sont rincées à l'aide d'un mélange EUP/méthanol 85/15 (v/v) et séchées sous flux d'azote. L'élution des cartouches est effectuée avec 3 mL de MeOH, puis 3 mL d'un mélange MeOH/Acetate d'éthyle 75/25 (v/v). Après élution, 10 µL d'une solution d'étalons internes (EI-N) sont ajoutés à l'extrait. L'extrait est ensuite évaporé sous azote et repris dans 1 mL d'un mélange ACN/EUP 10/90 (v/v). Les extraits peuvent alors être conservés au congélateur (-18°C) jusqu'à analyse.

II.5.5. Mélanges analytiques finaux

Les mélanges finaux pour l'analyse des composés sont les mêmes quel que soit le type d'échantillons. Ainsi, les échantillons dédiés à l'analyse des pesticides neutres et anioniques sont repris respectivement dans un mélange EUP/ACN 90/10 (v/v) et dans un mélange EUP/ACN 5/95 (v/v). Les échantillons dédiés à l'analyse des hormones sont repris dans un mélange MeOH/EUP 65/35 (v/v) et ceux dédiés à l'analyse des pharmaceutiques sont repris dans un mélange ACN/EUP 95/5 (v/v). Les échantillons peuvent alors être conservés à -18°C jusqu'à l'étape d'analyse. Les mélanges d'étalons internes sont ajoutés de façon à obtenir des concentrations finales de 20 µg.L⁻¹ pour les pesticides anioniques et les hormones et de 10 µg.L⁻¹ pour les composés pharmaceutiques et les hormones.

II.6. Analyses chromatographiques

Les échantillons obtenus lors de cette thèse ont été analysés avec différentes méthodes analytiques en fonction des composés. Ainsi, 2 méthodes analytiques ont été utilisées à INRAE Bordeaux pour l'analyse des pesticides anioniques et neutres. De la même façon, deux méthodes analytiques ont été utilisées pour les hormones et les pharmaceutiques à INRAE Lyon. Ces méthodes reposent toutes sur le principe de la chromatographie liquide couplée à la spectrométrie de masse. Les spectromètres de masse sont équipés d'une source d'ionisation par électrospray (ESI) et fonctionnent en mode d'ionisation positive (ESI +) ou en mode d'ionisation négative (ESI -) (voir Annexe II. 2). Les caractéristiques de chromatographie sont décrites respectivement dans le Tableau II.3. Les paramètres de spectrométrie de masse sont décrites dans le Tableau II.4 et le Tableau II.5. Les gradients d'élution de chaque groupe de composés sont présentés dans la Figure II.2 et les transitions sont indiquées en Annexe II. 2.

	Pesticides neutres	Pesticides anioniques	Composés pharmaceutiques	Hormones
Éluant A	ACN	ACN	ACN	MeOH
Éluant B	Tampon C ₂ H ₇ NO ₂ (5 mM)	Tampon C ₂ H ₇ NO ₂ (200 mM)	EUP	Tampon NH ₄ F (0,2 mM)
Éluant C	-	MeOH	-	-
Débit	400 µL/min	$200 \ \mu L/min$	500 µL/min	300 µL/min
Température colonne	40°C	25°C	30°C	30°C
Température passeur d'échantillons	10°C	10°C	4°C	4°C
Volume injecté	50 µL	5 µL	20 µL	20 µL

Tableau II.3: Caractéristiques chromatographiques des méthodes analytiques

Tableau II.4: Paramètres de source électrospray pour l'analyse des hormones et des pharmaceutiques

Ionisation	ESI +	ESI -	
Tension de capillaire	3 kV	-2,5 kV	
Température source	150 °C	150 °C	
Modes d'acquisition	MRM/RADAR	MRM/RADAR	
Pression gaz de collision (Ar)	3,5.10 ⁻³ mbar	3,5.10 ⁻³ mbar	
Température sonde	600 °C	600 °C	
Débit cone gaz (N ₂)	150 L.H ⁻¹	150 L.H ⁻¹	
Débit gaz désolvatation (N ₂)	1200 L.H ⁻¹	1200 L.H ⁻¹	

Ionisation	ESI +	ESI -	
Tension de capillaire	5.5 kV	-4.5 kV	
Température source	450 °C	450 °C	
Modes d'acquisition	Scheduled MRM	Scheduled MRM	
Gaz de collision	3 psi	3 psi	
Pression du gaz rideau	30 psi	30 psi	
Gaz nebuliseur	45 psi	20 psi	
Gaz Chauffage	75 psi	75 psi	

Tableau II.5: Paramètres de source électrospray pour l'analyse des pesticides

Figure II.2 : Gradient d'élution utilisés pour les différentes méthodes analytiques

La quantification des échantillons a été effectuée par étalonnage interne. Cette technique repose sur l'ajout de composés deutérés, proche des composés étudiés, dans les échantillons analysés. Ces ajouts permettent de s'affranchir des variations analytiques (perte de signal...) à l'aide du rapport d'aire des composés analysés et des composés deutérés. Les gammes de linéarité des pesticides sont comprises entre 0 et 100 µg.L⁻¹ (8 points) et celles des hormones et des pharmaceutiques sont comprises entre 0,01 et 50 µg.L⁻¹ (12 points). Lors de l'analyse de composés, des contrôles qualités (0,5 et 25 µg.L⁻¹ pour les pesticides et 0,5 et 10 µg.L⁻¹ pour les hormones et les pharmaceutiques) ainsi que des blancs analytiques (0 µg.L⁻¹) sont analysés tous les 10 échantillons afin de suivre le bon déroulement de l'analyse.

II.7. Traitement des résultats

II.7.1. Généralités

Après analyse des échantillons et retraitement des chromatogrammes obtenus, chaque résultat a été validé. Les résultats ont ensuite été triés selon 3 niveaux de confiance :

- Aucun problème d'analyse : les rendements des étalons internes et des contrôles qualités sont compris entre 70 et 130 %.
- Certains problèmes ont été observés : les rendements des étalons internes et/ou les contrôles qualités sont compris entre 50 et 70 % ou entre 130 et 150 %. L'étalon utilisé n'est pas le même que celui initialement associé au composé étudié.
- Problème d'analyse : mauvais rendement des étalons internes et/ou des contrôles qualités (< 50 % ou > 150 %) ou gammes non validées (moins de 5 points).

Pour toutes les expérimentations effectuées, les concentrations inférieures au premier point de gamme ont été considérées comme égales à zéro. Le traitement des données a été effectué sous le logiciel R (R Core Team, 2019) exclusivement. Les packages « dplyr » (Wickham et al., 2019), « tidyr » (Wickham and Henry, 2019), « tidyverse » (Wickham, 2017), « purrr » (Henry and Wickham, 2019), « stringer » (Wickham, 2019a) « forcarts » (Wickham, 2019b) et « broom » (Robinson and Hayes, 2019) ont été utilisés pour la manipulation des bases de données. Les packages « ggplot2 » (Wickham, 2016), « gridExtra » (Auguie, 2017), « cowplot » (Wilke, 2019), « scales » (Wickham, 2018) et « nlstools » (Baty et al., 2015), « extrafont » (Winston, 2014), « egg » (Auguie, 2019) et « lubridate » (Grolemund and Wickham, 2011) ont été utilisés pour les représentations graphiques de cette thèse. Lors de la comparaison de données, ces dernières ont été considérées similaires lorsque le ratio entre ces deux valeurs étaient compris entre 0,7 et 1,3 en considérant que l'erreur liée à la manipulation et à l'analyse peut atteindre 30 %.

II.7.2. Sélection des modèles d'accumulation dans le cas des calibrations

Comme présenté dans la partie I.1.2.1, l'accumulation des composés dans les PS s'effectue suivant une cinétique d'ordre 1. En fonction du composé, du PS et de la durée d'exposition, l'accumulation peut être soit non linéaire et décrite par l'Équation I-1, soit considérées comme linéaire sur la durée considérée, et décrite par l'Équation I-4. L'accumulation des composés dans les PS est étudiée à partir des courbes du facteur de concentration, correspondant au rapport entre la concentration dans l'eau et la concentration dans le PS, en fonction du temps. Le modèle d'accumulation cinétique (linéaire ou non linéaire) correspondant à l'accumulation des composés est choisi suivant plusieurs critères décrits dans cette partie (voir Figure II.3), puis les constantes cinétiques associées sont déterminées.

Figure II.3 : Arbre de décision appliqué lors du choix du modèle cinétique

Modèle cinétique d'accumulation non linéaire d'ordre 1

Le modèle d'accumulation non linéaire décrit par l'Équation I-1 est tout d'abord testé en première intention, puisqu'il s'agit de la cinétique d'ordre 1 applicable à tout PS. Dans un premier temps, la régression non linéaire est effectuée sans la contrainte de passer par l'origine. En effet, afin de correspondre à l'Équation I-1, l'intervalle de confiance autour de l'ordonnée à l'origine doit contenir zéro (voir Figure II.4.a). Dans le cas contraire, cela permet de mettre en évidence une phase d'accumulation rapide en début d'exposition (« burst phase » ; origine significativement supérieure à 0 ; Figure II.4.b) ou à l'inverse une possible phase de latence (origine négative ; voir Figure II.4.c)

Figure II.4 : (A) Facteur de concentration en fonction du temps et (B) intervalle de confiance autour de l'ordonnée à l'origine dans trois cas : (a) l'ordonnée à l'origine passe par zéro, (b) un phénomène d'accumulation rapide en début d'exposition est observé (« burst phase ») et (c) un phénomène de retard à l'accumulation est observé (« lag phase »). La ligne pleine représente sur (A), la régression non linéaire et sur (B), l'intervalle de confiance autour de l'ordonnée à l'origine

Dans certains cas, le modèle non linéaire ne peut pas être ajusté à l'accumulation des composés, le point d'inflexion de la courbe n'ayant pas été atteint au cours des 27 jours d'étalonnage. De ceci découle souvent un k_e qui tend vers 0, la constante K_{sw} ne pouvant

être ainsi estimée faute de convergence lors de la régression non-linéaire. De tels composés sont donc écartés dans un premier temps.

Lorsque l'intervalle de confiance de l'ordonnée à l'origine passe par zéro, la régression non linéaire est ensuite effectuée avec la contrainte de passer par l'origine.

Afin de valider l'utilisation du modèle non linéaire, les résidus normalisés du modèle non linéaire sont étudiés à l'aide de deux critères : leur valeur et le profil de la courbe des résidus normalisés en fonction des valeurs ajustées. Les valeurs des résidus normalisés doivent être comprises entre -2 et 2 pour être comprises dans l'intervalle de confiance 95 % et entre -3 et 3 pour être comprises dans l'intervalle de confiance 99 %. Au-delà de l'intervalle à 99 %, les résidus sont alors considérés comme aberrants et, les valeurs associées sont alors retirées du jeu de donnée. Le profil de la courbe des résidus normalisés en fonction des valeurs ajustées est ensuite étudié (voir Figure II.5). Afin de valider l'utilisation du modèle, les résidus normalisés doivent être répartis autour de l'axe y = 0 comme présenté sur la Figure II.5.B.

Figure II.5 : Facteur de concentration (FC) en fonction du temps et (B) résidus normalisés associés à la régression non linéaire en fonction des valeurs ajustées.

Sur (A), la droite pleine représente la régression non linéaire et sur (B), la droite en pointillés correspond à y = 0.

Lorsque l'utilisation du modèle non linéaire est validée, les constantes cinétiques sont alors déterminées $(k_u, k_e, K_{sw}, R_s, t_{1/2})$. Dans le cas où le $t_{1/2}$ est supérieur à 21 jours, la phase linéaire d'accumulation des composés est celle prédominante dans la durée classique d'usage des PS (rarement supérieure à 21 j), le pallier n'est pas atteint. Pour ces composés, le choix est fait d'utiliser le modèle linéaire, décrit par l'Équation I-4, sur la durée d'exposition inférieure au $t_{1/2}$ pour déterminer les constantes cinétiques.

Modèle cinétique d'accumulation linéaire

Le modèle linéaire décrit par l'Équation I-4 a été testé pour tous les composés pour lesquels le modèle non linéaire n'a pas été validé et/ou n'a pas convergé lors de la régression (généralement après avoir observé un $t_{1/2} > 21$ jours). Comme dans le cas du modèle non linéaire, la régression linéaire a, dans un premier temps, été tracée sans forçage par zéro. Les composés pour lesquels l'intervalle de confiance autour de l'ordonnée à l'origine ne contient pas 0 ont été écartés.

Lorsque l'ordonnée à l'origine passe par zéro, la régression linéaire est effectuée avec la contrainte de passer par l'origine.

Dans le but de de valider l'utilisation du modèle linéaire, les résidus normalisés sont étudiés à l'aide de deux critères : leur valeur et le profil des résidus normalisés en fonction des valeurs ajustées. Comme dans le cas du modèle non linéaire, les valeurs des résidus doivent être compris entre -3 et 3 et les résidus normalisés en fonction des valeurs ajustées doivent être répartis autour de l'axe y=0.

Dans le cas où le modèle linéaire est validé, les constantes cinétiques liées à celui-ci sont alors déterminées (k_u et R_s).

Chapitre III. Calibration terrain du POCIS et du o-DGT pour des pesticides polaires

III.1. Avant-propos

Actuellement, les échantillonneurs intégratif passif (PS) les plus utilisés pour les composés organiques polaires sont les POCIS (Alvarez et al., 2004; Berho et al., 2017; Fauvelle et al., 2012; Harman et al., 2012). Ces derniers présentent cependant plusieurs limitations. En effet, la détermination de la concentration dans l'eau est effectuée à partir de constantes cinétiques préalablement déterminées en laboratoire, dans des conditions contrôlées. Ces constantes cinétiques, comme le taux d'échantillonnage (Rs), sont dépendantes des conditions environnementales (vitesse du courant, température...) (Harman et al., 2012). Celles fixées en laboratoire lors de l'étape de calibration ne sont pas nécessairement représentatives des conditions observées sur le terrain, ce qui peut biaiser le calcul a posteriori de la concentration (Harman et al., 2012). De plus, les POCIS dans leur configuration initiale (membrane PES 0,1 µm, phase réceptrice Oasis HLB, POCIS_{HLB}) ne sont pas toujours adaptés pour l'échantillonnage des composés ioniques (Fauvelle et al., 2012, 2014). En effet, il a été montré que ces derniers possédaient généralement un temps de demi-atteinte de l'équilibre inférieur $(t_{1/2})$ à 14 jours, ce qui peut poser problème lors de l'exposition sur le terrain, les POCIS devant être utilisés dans le régime linéaire d'accumulation pour qu'ils soient intégratifs (*i.e.*, temps d'exposition $< t_{1/2}$) (Morin et al., 2013; Vrana et al., 2005). De plus, un phénomène d'accumulation rapide nommé « burst effect » a été observé pour les composés anioniques et certains composés neutres ayant un $\log K_{OW} < 3$, ce qui engendre une cinétique d'accumulation biphasique de ces composés (Fauvelle et al., 2014; Morin et al., 2013). Comme alternative au POCIS, la technique o-DGT a été adaptée pour l'échantillonnage des composés organiques, dont les composés ioniques (Guibal et al., 2019). Cette dernière permet de diminuer l'effet de l'hydrodynamique sur le taux d'échantillonnage grâce à la présence d'un gel diffusif d'une épaisseur supérieure à celle de la DBL, dans le cas où la vitesse du courant est supérieure ou égale à 2 cm.s⁻¹ (Gimpel et al., 2001). De plus, l'utilisation de la technique o-DGT a montré des résultats quantitatifs pour l'échantillonnage des herbicides organiques ioniques (Guibal et al., 2017).

Lors d'une précédente étude menée en 2013 à INRAE Bordeaux, deux types de o-DGT ont été testés et comparés au POCIS conventionnel (POCIS_{HLB}) et au POCIS développé

pour les acides organiques (POCIS_{MAX}) (Fauvelle et al., 2012). La configuration détaillée des échantillonneurs est décrite dans la partie II.3.1.3. Brièvement, les o-DGT sont composés d'une phase réceptrice Oasis[®] HLB, d'un gel diffusif d'agarose (o-DGT_{AG}) ou polyacrylamide (o-DGT_{PA}) et d'une membrane PES (taille de pores 0,45 μ m). La comparaison des 4 outils s'est faite à travers une calibration in situ dans un cours d'eau très impacté par l'agriculture (voir partie II.4.1.1). Par conséquent, seuls les 60 pesticides (neutres et acides) sont présentés dans ce chapitre.

III.2. Fréquence de quantification

La fréquence de quantification des composés recherchés dans les prélèvements d'eau par échantillonnage automatique et dans les quatre types de PS étudiés (POCIS_{HLB}, POCIS_{MAX}, o-DGT_{AG} et o-DGT_{PA}) permet d'effectuer une première évaluation des performances de chaque outil. Parmi les 60 pesticides analysés (listés dans le Tableau I.1), 29 ont été détectés par au moins un type d'échantillonnage (passif et/ou automatique). Seuls ces pesticides seront étudiés dans cette partie.

Figure III.1 : Fréquence de quantification dans les POCIS et dans les échantillons d'eau « automatique » sur chaque durée d'exposition et sur la durée totale de la calibration

Dans les prélèvements d'eau par échantillonnage automatique, 17 pesticides et 5 métabolites ont été détectés sur les 29 composés étudiés (voir Figure III.1). Après 27 jours d'exposition, respectivement 27 et 28 composés sont détectés avec le POCIS_{HLB} et le POCIS_{MAX} (voir Figure III.1). En général, les composés anioniques sont plus fréquemment détectés avec le POCIS_{MAX} qu'avec le POCIS_{HLB} comme c'est le cas de la bentazone par exemple. L'utilisation du POCIS_{MAX} a permis la détection de trois pesticides anioniques non détectés avec le POCIS_{HLB} (*i.e.* MST, DCB et MCPA), certainement à cause du fait que les composés anioniques ont une plus faible affinité avec la phase Oasis® HLB que les composés neutres (Mazzella et al., 2007). La présence de sites d'interaction coulombienne sur la phase Oasis MAX (amines quaternaires, échange d'anion fort) permet l'augmentation de l'accumulation des composés anioniques (voir Figure III.2). Seul deux composés anioniques, les métabolites ESA, sont détectés plus souvent avec le POCIS_{HLB} qu'avec le POCIS_{MAX}, ce qui s'explique par les faibles taux d'élution observés (< 15%) pour ces deux composés à partir de l'adsorbant Oasis MAX (Fauvelle et al., 2012). Les POCIS_{HLB} et les POCIS_{MAX} permettent la quantification de six composés non détectés dans les prélèvements d'eau par échantillonnage automatique, incluant deux composés faisant partie de la liste des substances prioritaires mise en place par l'UE dans le cadre de la DCE (i.e. diuron et simazine).

Figure III.2 : Les différentes phases réceptrices utilisées lors de la calibration terrain : Oasis[®] HLB et Oasis[®] MAX

L'utilisation des o-DGT incluant un gel PA (o-DGT_{PA}) permet la détection de 17 composés, alors que 26 composés sont détectés avec les o-DGT incluant un gel AG (o-DGT_{AG}) (voir Figure III.3). Du fait que les deux types de o-DGT possèdent la même phase réceptrice et la même membrane, la différence de sélectivité observée ne pourrait donc a priori s'expliquer que par des coefficients de diffusion plus faibles à travers le gel PA et par

conséquent une masse accumulée plus faible dans la phase réceptrice (Stroski et al., 2018) ou par une résistance au transfert de masse entre le gel PA et la phase réceptrice plus élevée. Dans le cas du o-DGT, le nombre de composés détectés est très inférieur à celui observés pour les POCIS. Ceci s'explique par un taux d'échantillonnage plus faible du fait d'une plus petite surface d'exposition du o-DGT (3,1 cm² contre environ 45 cm² pour le POCIS) et/ou par une résistance au transfert de masse plus élevée du fait de la présence d'un gel. La majorité des composés mesurés par les o-DGT sont détectés après 14 jours d'exposition seulement. L'accroissement de la durée d'exposition de 14 à 27 jours permet d'augmenter significativement le nombre de composés détectés, avec respectivement 13 et 8 composés détectés avec les o-DGT_{AG} et o-DGT_{PA} au bout de 14 jours d'exposition, et 26 et 17 composés détectés après 27 jours d'exposition.

Figure III.3 : Fréquence de quantification dans les o-DGT sur chaque durée d'exposition et sur la durée totale de la calibration

III.3. Concentrations mesurées par échantillonnage actif

Les concentrations moyennes dans les prélèvements issus du préleveur automatique sont inférieures à 100 ng.L⁻¹ pour la majorité des composés (voir Figure III.4). Trois pesticides (carbofuran, MCPA and diméthomorphe) ont été détectés à des niveaux de concentration inférieurs à 10 ng.L⁻¹, alors que la concentration en MTC était supérieure à 1 µg.L⁻¹. Le coefficient de variation a été déterminé pour les composés dont la concentration a été quantifiée plus d'une fois pendant la calibration. Ce dernier est supérieur à 30 % pour 11 composés sur 17, ce qui est attendu du fait de la variabilité temporelle de la concentration en micropolluants dans l'environnement. La concentration dans l'eau des composés anioniques (à l'exception du MCPA) après 27 jours d'exposition est en moyenne trois fois plus élevée que celle observée sur les autres temps d'exposition. Cela peut d'expliquer par un pic de contamination qui aurait eu lieu pendant les deux dernières semaines d'exposition. Au vu de ces variations de niveaux de contamination, des facteurs de concentration ont été déterminés en normalisant les concentrations dans les échantillonneurs passifs avec les concentrations dans l'eau (échantillonnage automatique) associées à chaque temps d'exposition et non la concentration moyenne.

Figure III.4 : Concentrations mesurées dans tous les prélèvements d'eau par échantillonnage automatique (log₂, ng.L⁻¹).

III.4. Cinétiques d'accumulation dans les échantillonneurs passifs

Les facteurs de concentration ont été calculés lorsque que les concentrations dans l'échantillonneur passif et dans le prélèvement d'eau par échantillonnage automatique ont pu être mesurées simultanément. La cinétique d'accumulation des composés dans les différents PS est étudiée à partir des courbes du facteur de concentration en fonction du temps comme indiqué en partie II.7.2 (voir Figure II.3). Lorsque les facteurs de concentrations ont été déterminés pour moins de trois temps d'exposition, les composés n'ont pas été étudiés dans les parties ci-dessous, faute de pouvoir tracer la cinétique d'accumulation correspondante. Au final, la cinétique d'accumulation des composés a été déterminé pour respectivement 12 et 13 composés avec le POCIS_{HLB} et le POCIS_{MAX} et sur 8 et 4 composés avec le o-DGT_{AG} et le o-DGT_{PA}.

III.4.1. Sélection du modèle cinétique utilisé

Le modèle non linéaire a été appliqué sur seulement 7 et 5 composés pour les POCIS_{HLB} et POCIS_{MAX}, respectivement. Il n'a pas été possible d'ajuster ce modèle sur les autres composés. Sur le critère de l'ordonnée à l'origine, parmi les quatre PS étudiés, seule la déséthylatrazine dans le cas du POCIS_{MAX} a été écartée, la condition que l'intervalle de confiance doit contenir zéro n'est pas vérifiée. La régression non linéaire est ensuite effectuée avec la contrainte de passer par l'origine pour les 11 autres composés étudiés ici. Les résidus normalisés sont étudiés. Dans le cas de notre jeu de données, aucune donnée n'a été retirée, les résidus étant tous compris entre -3 et 3 et les résidus normalisés sont répartis autour de l'axe y=0 pour tous les composés. L'utilisation du modèle non linéaire ainsi validée, les constantes cinétiques liées au modèle d'accumulation non linéaire sont déterminées (R_s , k_u , k_e , K_{sw} et $t_{1/2}$). Dans le cas où le $t_{1/2}$ est supérieur à 21 jours, il n'est pas cohérent de valider la non-linéarité de l'accumulation de ces composés. Trois composés sont ainsi écartés : l'atrazine avec le POCIS_{MAX} ($t_{1/2} = 27$ j) et le métolachlore avec les deux types de POCIS ($t_{1/2} = 43$ et $t_{1/2} = 148$ j pour le POCIS_{HLB} et le POCIS_{MAX}, respectivement). Pour ces derniers, le modèle linéaire sera par la suite testé sur la durée d'exposition inférieure à leur $t_{1/2}$.

Le modèle linéaire est par la suite testé sur les composés pour lesquels le modèle non linéaire n'a pas pu être ajusté ou n'a pas été validé (8 et 4 composés pour les o-DGT_{AG} et o-DGT_{PA},

respectivement et 7 et 10 composés pour les POCIS_{HLB} et POCIS_{MAX}, respectivement). Comme dans le cas du modèle non linéaire, la régression linéaire a été effectuée avec la contrainte de passer par l'origine dans un premier temps. Sur le critère de l'ordonnée à l'origine, deux composés ont été écartés : la DEA dans le cas du POCIS_{MAX} et le métolachlore OA dans le cas des deux types de POCIS. La régression linéaire est ensuite effectuée avec la contrainte de passer par zéro pour les autres composés. Les résidus du modèle linéaire sont ensuite étudiés. Dans un premier temps, les valeurs associées aux résidus normalisés dont la valeur n'est pas comprise entre -3 et 3 sont retirées du jeu de données. C'est le cas de la valeur associée au point d'échantillonnage J7 dans le cas du POCIS_{MAX} pour le bentazone et la flurtamone. Ces deux composés sont alors retirés du jeu de donnés, les facteurs de concentrations de ces deux composés étant validés pour moins de trois temps d'exposition. L'allure de la courbe des résidus normalisés en fonction des valeurs ajustés est ensuite étudié. Dans les cas des o-DGT, il est difficile de conclure dans le cas où il n'y a que trois ou quatre points. La p-value (F-test) du modèle est alors étudiée afin de compléter l'étude des résidus. Lorsque celle-ci est supérieure à 0,05, le modèle utilisé n'est pas significatif. C'est le cas du tébuconazole dans le cas du o-DGTAG et du métolachlore dans le cas du o-DGT_{PA} (voir Figure III.5). Ceci peut s'expliquer par le fait que le facteur de concentration déterminé après 13 jours d'exposition est relativement faible par rapport au facteur de concentration mesuré après 7 jours d'exposition (voir Figure III.5.B). Pour ces deux composés, le modèle linéaire n'est pas validé.

Figure III.5 : (A) Résidus du modèle linéaire pour le metolachlore (MTC) avec le o-DGT_{PA} et le téhuconazole (TBZ) avec le o-DGT_{AG}. (B) Facteur de concentration en fonction du temps pour ces mêmes composés. La droite pleine représente la régression linéaire.

III.4.2. Synthèse

Le choix du modèle utilisé (linéaire ou non linéaire) pour chaque type de PS est détaillé sur la Figure III.6. Au final, cinq et trois composés suivent une accumulation non linéaire avec le POCIS_{HLB} et le POCIS_{MAX}, respectivement. Un pesticide neutre (DTM) et un pesticide anionique (DPA) suivent une accumulation non linéaire quel que soit le type de POCIS utilisé. Les métabolites ESA ainsi que la DEA suivent une accumulation non linéaire avec le POCIS_{HLB} et le MST suit une accumulation non linéaire avec le POCIS_{MAX}. L'accumulation non linéaire du déséthylatrazine a déjà été observée lors de calibration en laboratoire à INRAE à Bordeaux (Bernard et al., 2019; Fauvelle et al., 2014; Mazzella et al., 2007). Cinq pesticides neutres suivent une accumulation linéaire avec les deux types de POCIS : l'atrazine, la carbendazim, le métolachlore, le pirimicarbe et le tébuconazole. De plus, la flurtamone et le MCPA suivent une accumulation linéaire avec le POCIS_{HLB} et le POCIS_{MAX} respectivement. Ces composés possèdent des log Kow compris entre 1,80 et 4,64. Le fait que les composés modérément hydrophiles suivent une accumulation linéaire dans le POCIS a déjà été observé dans d'autres études dans le cadre de calibration en laboratoire ou sur le terrain effectuées à INRAE (Bernard et al., 2019; Fauvelle et al., 2014; Mazzella et al., 2010). Dans le cas des o-DGT, sept et trois composés suivent une accumulation linéaire avec les o-DGT_{AG} et o-DGT_{PA}, respectivement.

Les graphiques du facteur de concentration en fonction du temps sont représentés sur les Figure III.7 à Figure III.10. Les constantes cinétiques ont été déterminées à partir des modèles utilisés et ont été décrites dans la partie III.5.

Figure III.6 : Classeement des composés en fonction du modèle cinétique d'accumulation utilisé pour chaque PS. * : composés pour lesquels le $t_{1/2}$ est supérieur à 21 j. Les composés neutres sont en bleu et les composés anioniques sont en orange.

Figure III.7 : Facteur de concentration de pesticides dans le o-DGT_{AG} en fonction du temps Les lignes pleines représentent la régression associée au modèle choisit (LM : linéaire, NLS : non linéaire). Les droites en pointillées représentent les droites de régression du ou des modèles testés non validés (p.value : modèle linéaire non significatif ; p-value < 0,05)

Figure III.8 : Facteur de concentration de quatre pesticides dans le o-DGT_{PA} en fonction du temps. Les lignes pleines représentent la régression associée au modèle choisit (LM : linéaire). Les droites en pointillées représentent les droites de régression du ou des modèles testés non validés (p.value : modèle non significatif ; p-value < 0,05))

Figure III.9 : Facteur de concentration de 12 pesticides dans le POCIS_{HLB} en fonction du temps Les lignes pleines représentent la régression associée au modèle choisit (LM : linéaire, NLS : non linéaire). Les droites en pointillées représentent les droites de régression du ou des modèles testés non validés (ORD : intervalle de confiance autour de l'origine ne contient pas zéro)

Temps (jours)

Figure III.10 : Facteur de concentration de pesticides dans le POCIS_{MAX} en fonction du temps

Les lignes pleines représentent la régression associée au modèle choisit (LM : linéaire, NLS : non linéaire). Les droites en pointillées représentent les droites de régression du ou des modèles testés non validés (ORD : intervalle de confiance autour de l'origine ne contient pas zéro, RES-VAL : résidus non compris entre -3 et 3, p.value : modèle non significatif ; p-value < 0,05)

III.5. Constantes cinétiques d'accumulation et d'élimination dans les échantillonneurs passifs

Les constantes cinétiques ont été déterminées quand un modèle a pu être validé. Les taux d'échantillonnage (R_S) ainsi que les constantes cinétiques d'accumulation (k_u) ont été déterminés pour tous les composés. En parallèle, les constantes cinétiques d'élimination

 (k_e) et le temps de demi-atteinte de l'équilibre $(t_{1/2})$ ont été déterminées pour les composés suivant une accumulation non linéaire. Ces dernières sont décrites dans les parties cidessous et répertoriées dans le Tableau III.1.

III.5.1. Constantes de partage, constantes cinétique d'accumulation et d'élimination

Les constantes cinétiques d'accumulation (k_u) sont comprises entre 0,12 et 4,12 L.g⁻¹.j⁻¹ (médiane = 0,81 L.g⁻¹.j⁻¹; n=11) avec le POCIS_{HLB} et entre 0,07 et 2,71 L.g⁻¹.j⁻¹ (médiane = 1,00 L.g⁻¹.j⁻¹; n=9) avec le POCIS_{MAX}. Dans le cas des o-DGT, les k_u sont plus faibles avec des valeurs comprises entre 0,01 et 0,05 L.g⁻¹.j⁻¹ (médiane = 0,03 L.g⁻¹.j⁻¹; n=7) avec le o-DGT_{AG} et entre 0,02 et 0,03 L.g⁻¹.j⁻¹ (médiane = 0,03 L.g⁻¹.j⁻¹; n=3) avec le o-DGT_{PA}. Ces k_u ont permis de déterminer les taux d'échantillonnage R_s , décrits et discutés dans la partie III.5.2.

Les constantes de partage (K_{SW}) et les constantes cinétiques d'élimination (k_e) ont été déterminées pour les composés suivant une accumulation non linéaire. Les K_{SW} sont compris entre 5 et 40 L.g⁻¹ (médiane = 17 L.g⁻¹; n=5) avec le POCIS_{HLB} et entre 11 et 43 L.g⁻¹ (médiane = 20 L.g⁻¹; n=3) avec le POCIS_{MAX}. Les k_e sont comprises entre 0,04 et 0,11 j⁻¹ (médiane = 0,05 j⁻¹; n=5) avec le POCIS_{HLB} et entre 0,06 et 0,10 j⁻¹ (médiane = 0,10 j⁻¹; n=3) avec le POCIS_{MAX}. Ces derniers n'ont pas pu être comparé avec les deux types de o-DGT, aucun composé ne suit une accumulation non linéaire. Les k_e seraient alors par conséquent plus faible que ceux observés avec les POCIS.

III.5.2. Taux d'échantillonnage et coefficient de transfert de masse global

Les taux d'échantillonnage observés avec le POCIS_{HLB} sont compris entre 24 et 844 mL.j⁻¹ (médiane = 162 mL.j⁻¹). Ils sont du même ordre de grandeur avec le POCIS_{MAX} avec des valeurs comprises entre 15 et 541 mL.j⁻¹ (médiane = 199 mL.j⁻¹). Ces taux d'échantillonnages sont représentés en Figure III.11. Les coefficients de variation de ces Rs sont en inférieurs à 50 % excepté pour le DPA, l'ATC.ESA, le MTC.ESA et la DEA dans le cas du POCIS_{HLB} (87-115 %). Le taux d'échantillonnage le plus faible correspond à la CBZ alors que le plus haut correspond au DTM pour les deux types de POCIS.
Les taux d'échantillonnage dans le cas de l'échantillonnage passif par o-DGT est inférieurs au POCIS avec des valeurs comprises entre 2 et 11 mL.j⁻¹ (médiane = 7 mL.j⁻¹) pour le o-DGT_{AG} et de 3 et 6 mL.j⁻¹ (médiane = 5 mL.j⁻¹) pour le o-DGT_{PA}. Ces taux d'échantillonnage sont inférieurs à ceux trouvés dans la littérature et déterminés en laboratoire pour les composés organiques dans le cadre de la technique o-DGT avec une médiane à 18 mL.j⁻¹ dans le cas des o-DGT composés de gel AG (n = 401) (Challis et al., 2016a; Chen et al., 2013, 2018; Guan et al., 2018; Li et al., 2019; Mechelke et al., 2019; Urik and Vrana, 2019; Wei et al., 2019; Xie et al., 2018b) et à 9 mL.jour⁻¹ dans le cas des o-DGT composés de gel PA (n=44) (Fauvelle et al., 2015; Guibal et al., 2017; Stroski et al., 2018).

Figure III.11 : Taux d'échantillonnage obtenus avec les deux types de o-DGT et les deux types de POCIS.

Le coefficient global de transfert de masse peut être déterminé à partir du taux d'échantillonnage et de la surface exposée des composés étudiés (voir Équation I-7). Ces derniers restent supérieurs dans le cas des POCIS avec des médianes égales à 15 cm.j⁻¹ et 18 cm.j⁻¹ pour le POCIS_{MAX} et le POCIS_{HLB} respectivement contre 2 cm.j⁻¹ dans le cas des deux types de o-DGT. Dans la littérature, les coefficients globaux de transfert de masse sont comparables entre les deux types d'échantillonneurs (Chen et al., 2018; Guibal et al., 2017). Cependant, la surface d'exposition utilisée dans la littérature pour le calcul des coefficients globaux de transfert de masse pour le POCIS est de 45 cm² (Chen et al., 2018; Guibal et al., 2018) contre 11 cm² dans cette étude (Fauvelle et al., 2014). Cette dernière

correspond à la surface d'exposition réelle de la phase réceptrice pour des POCIS placés verticalement (surface de membrane de 45,8 cm², 200 mg de phase) (Fauvelle et al., 2014). En effet, lorsque le POCIS est positionné verticalement, la phase adsorbante des POCIS sédimente entre les membranes, ce qui réduit la surface d'échange effective. Cette différence peut alors s'expliquer par la résistance au transfert de masse associée au gel d'une épaisseur supérieure à celle de la membrane PES.

III.5.3. Temps de demi-atteinte de l'équilibre

Les temps de demi-atteinte de l'équilibre $(t_{1/2})$ ont été déterminés pour les composés suivant une accumulation non linéaire ainsi que pour ceux dont le $t_{1/2}$ est supérieur à 21 j et pour lesquels le modèle linéaire a été utilisé. Les $t_{1/2}$ sont compris entre 6 et 42 jours (médiane = 16 j, n=7) avec le POCIS_{HLB} et entre 7 et 147 jours (médiane = 9 jours, n=4) avec le POCIS_{MAX}. Les $t_{1/2}$ obtenus avec les deux types de POCIS ont été comparés seulement pour trois composés. Dans le cas du métolachlore, les $t_{1/2}$ sont supérieurs à 21 j et est plus important dans le cas du POCIS_{MAX}. Le $t_{1/2}$ est également plus élevé avec le POCIS_{MAX} pour le diméthanamide (11 *vs* 7 j pour le POCIS_{HLB}). Les $t_{1/2}$ sont équivalents pour le pesticide anionique DPA. Dans le cas des o-DGT, tous les composés suivent une accumulation linéaire sur la durée de la calibration. Les $t_{1/2}$ sont supérieurs à la durée de la calibration (27 jours). L'utilisation de ces PS permet d'allonger la durée de la phase linéaire comme par exemple dans le cas de l'acétochlore ESA. Ce composé suit une cinétique d'accumulation non linéaire ($t_{1/2} = 14$ j) avec le POCIS_{HLB} alors que l'accumulation est linéaire tout au long de la calibration avec les deux types de o-DGT. C'est également le cas de la déséthylatrazine et du métolachlore ESA. Tableau III.1 : Constantes cinétiques obtenues pour chaque type de PS lors de la calibration sur le Trec.

Les noms des composés sont précisés dans le Tableau I.1. Le modèle linéaire est indiqué par LM et le modèle non linéaire est indiqué par NLS. NA : non applicable

PS	Composé	Modèle	R ²	p-value	R _S (mL.j ⁻¹)	k_u (L.g ⁻¹ .j ⁻¹)	k _e (j ⁻¹)	<i>K_{SW}</i> (L.g ⁻¹)	t _{1/2} (j)
o-DGT _{AG}	ATC.ESA	LM	0,97	1,40.10-3	10,8 ± 0,9 (9 %)	0,05 ± 0,005 (9 %)	NA	NA	NA
	CBZ	LM	0,98	8,11.10-3	1,9 ± 0,2 (9 %)	0,01 ± 0,001 (9 %)	NA	NA	NA
	DEA	LM	0,99	1,78.10-4	9,8 ± 0,4 (4 %)	0,05 ± 0,002 (4 %)	NA	NA	NA
	MTC	LM	0,92	1,58.10-3	6,2 ± 0,8 (13 %)	0,03 ± 0,004 (13 %)	NA	NA	NA
	MTC.ESA	LM	0,94	1,99.10-2	10,5 ± 1,5 (14 %)	0,05 ± 0,01 (14 %)	NA	NA	NA
	MTC.OA	LM	0,88	1,18.10-2	7,1 ± 1,3 (18 %)	0,04 ± 0,01 (18 %)	NA	NA	NA
	PIRI	LM	0,89	3,80.10-2	5,4 ± 1,1 (20 %)	0,03 ± 0,01 (20 %)	NA	NA	NA
o-DGT _{PA}	ATC.ESA	LM	1	1,23.10-3	3,4 ± 0,1 (4 %)	0,02 ± 0,001 (4 %)	NA	NA	NA
	DEA	LM	0,97	1,09.10-2	6,4 ± 0,7 (11 %)	0,03 ± 0 (11 %)	NA	NA	NA
	MTC.OA	LM	0,86	4,94.10-2	5 ± 1,2 (23 %)	0,03 ± 0,004 (23 %)	NA	NA	NA
POCIS _{HLB}	ATC.ESA	NLS	NA	NA	162,1 ± 166,9 (103 %)	0,81 ± 0,83 (103 %)	0,05 ± 0,04 (75 %)	16,9 ± 6,3 (38 %)	14
	ATZ	LM	0,99	2,97.10-4	193,5 ± 9,9 (5 %)	0,97 ± 0,05 (5 %)	NA	NA	27
	CBZ	LM	0,96	1,29.10-2	23,7 ± 2,7 (11 %)	0,12 ± 0,01 (11 %)	NA	NA	NA
	DEA	NLS	NA	NA	122 ± 140,7 (115 %)	0,61 ± 0,7 (115 %)	0,04 ± 0,03 (62 %)	14,1 ± 4,7 (33 %)	16
	DPA	NLS	NA	NA	102,6 ± 89,7 (87 %)	0,51 ± 0,45 (87 %)	0,11 ± 0,05 (43 %)	4,8 ± 0,7 (14 %)	6
	DTM	NLS	NA	NA	844,3 ± 265,2 (31 %)	4,22 ± 1,33 (31 %)	0,1 ± 0,13 (126 %)	40,4 ± 16,6 (41 %)	7
	FLM	LM	0,99	4,13.10-3	142,5 ± 9,2 (6 %)	0,71 ± 0,05 (6 %)	NA	NA	NA
	MTC	LM	0,99	3,87.10-5	222,3 ± 11,2 (5 %)	1,11 ± 0,06 (5 %)	NA	NA	43
	MTC.ESA	NLS	NA	NA	170,9 ± 193,2 (113 %)	0,85 ± 0,97 (113 %)	0,04 ± 0,04 (85 %)	20,5 ± 9,5 (46 %)	17
	PIRI	LM	0,97	1,01.10-2	138,6 ± 14,1 (10 %)	0,69 ± 0,07 (10 %)	NA	NA	NA
	TBZ	LM	0,99	3,55.10-4	199,7 ± 10,9 (5 %)	1 ± 0,05 (5 %)	NA	NA	NA

Chapitre III. Calibration terrain du POCIS et du o-DGT pour des pesticides polaires

PS	Composé	Modèle	R ²	p-value	R _S (mL.j ⁻¹)	k_u (L.g ⁻¹ .j ⁻¹)	<i>k</i> _e (j ⁻¹)	<i>K_{SW}</i> (L.g ⁻¹)	t _{1/2} (j)
POCIS _{MAX}	ATZ	LM	0,98	6,93.10-4	176 ± 12 (7 %)	0,88 ± 0,06 (7 %)	NA	NA	NA
	CBZ	LM	0,95	1,53.10-2	14,9 ± 1,9 (13 %)	0,07 ± 0,01 (13 %)	NA	NA	NA
	DPA	NLS	NA	NA	404,8 ± 105,2 (26 %)	2,02 ± 0,53 (26 %)	0,1 ± 0,05 (50 %)	20,4 ± 3,3 (16 %)	7
	DTM	NLS	NA	NA	541,4 ± 204,7 (38 %)	2,71 ± 1,02 (38 %)	0,06 ± 0,06 (96 %)	43,2 ± 15,2 (35 %)	11
	МСРА	LM	0,97	9,25.10-3	143,2 ± 13,9 (10 %)	0,72 ± 0,07 (10 %)	NA	NA	NA
	MST	NLS	NA	NA	217,8 ± 65,5 (30 %)	1,09 ± 0,33 (30 %)	0,1 ± 0,03 (31 %)	11,4 ± 1,1 (10 %)	7
	MTC	LM	1	1,64.10-6	199,2 ± 4,6 (2 %)	1 ± 0,02 (2 %)	NA	NA	148
	PIRI	LM	1	3,65.10-4	130,1 ± 2,5 (2 %)	0,65 ± 0,01 (2 %)	NA	NA	NA
	TBZ	LM	0,99	4,78.10-4	218,6 ± 13,2 (6 %)	1,09 ± 0,07 (6 %)	NA	NA	NA

III.6. Synthèse et conclusion

Lors de cette calibration terrain, les POCIS et les o-DGT ont pu être comparés. L'utilisation des o-DGT permet d'allonger la phase linéaire de la cinétique d'accumulation. En effet, trois et deux pesticides, avec le o-DGT_{AG} et le o-DGT_{PA} respectivement, suivent une accumulation linéaire alors que l'accumulation dans le POCIS_{HLB} de ces mêmes composés est non linéaire. Les taux d'échantillonnage sont plus faibles dans le cas des o-DGT du fait, en partie, de la surface d'exposition plus faible. Cette différence peut également s'expliquer par un coefficient de transfert de masse global plus faible, lié à la présence du terme lié à la résistance au transfert de masse à travers le gel. Par conséquent, les temps de demi-atteinte de l'équilibre sont plus élevés, ce qui est en accord avec ce qui est observé sur les cinétiques d'accumulation des composés.

La technique o-DGT est donc prometteuse pour l'échantillonnage de composés organiques dans les milieux aquatiques en alternative au POCIS, notamment pour les composés qui atteignent rapidement le régime d'équilibre avec ce dernier. Afin d'optimiser l'outil o-DGT étudié auparavant au laboratoire INRAE, il apparait nécessaire d'effectuer des expérimentations complémentaires.

En effet, il a été démontré que la membrane PES d'une taille de pores de 0,45 μ m, utilisée ici, pouvait accumuler les composés ayant un log K_{OW} supérieur à 2 (Challis et al., 2016a), ce qui n'a pas été vérifié dans le cadre de cette calibration. La diffusion des composés du milieu échantillonné à la phase réceptrice peut alors être ralenti ou bien subir une phase de latence (retard à l'échantillonnage). Ainsi, l'accumulation des composés étudiés et l'effet de la présence de la membrane sur les coefficients de diffusion doivent donc être étudiés pour les différentes membranes testées dans cette thèse.

De plus, il a été montré dans ce chapitre que l'utilisation du gel diffusif AG par rapport au gel PA permet de détecter plus de composés et d'obtenir des facteurs de concentration plus élevés. Ceci pourrait s'expliquer par des coefficients de diffusion plus faibles à travers le gel PA qu'avec le gel AG et donc une résistance au transfert de masse plus importante. Cela pourrait être dû à une taille de pores plus faible (Stroski et al., 2018) ou encore à une tortuosité plus importante, porosité plus faible ou une affinité importante des composés

avec la matrice PA. Afin de confirmer cette hypothèse et dans le but d'utiliser la technique o-DGT pour l'estimation des concentrations en composés étudiés dans les milieux aquatiques continentaux, les coefficients de diffusion doivent être déterminés en laboratoire dans des conditions contrôlées. La technique o-DGT n'a été testée que pour des pesticides lors de cette première étude à INRAE, et il a depuis été montré dans la littérature que ce dispositif était applicable à un grand nombre de composés organiques dont les composés pharmaceutiques et les hormones(Challis et al., 2016a; Chen et al., 2013; Ren et al., 2018; Xie et al., 2018b). Les laboratoires INRAE à Lyon et à Bordeaux ayant la capacité d'analyser les produits pharmaceutiques et les hormones en plus des pesticides, l'intérêt est alors de développer la technique o-DGT permettant d'être le plus exhaustif possible en termes de contaminants échantillonnés.

Chapitre IV. Comparaison de deux méthodes de détermination des coefficients de diffusion

IV.1. Avant-propos

Comme vu précédemment, la technique o-DGT semble être une bonne alternative à l'utilisation du POCIS pour l'échantillonnage passif des composés organiques. L'avantage principal de cette technique est la présence d'un gel diffusif. En effet, ce dernier contrôle la diffusion des composés du milieu échantillonné vers la phase réceptrice tant que son épaisseur est suffisamment importante par rapport à celle de la couche limite de diffusion (DBL). Dans ce cas, la DBL peut être négligée et l'étape limitante de l'échantillonnage est alors la diffusion à travers le gel diffusif seulement. Les coefficients de diffusion à travers le gel, propre à chaque composé, doivent donc être déterminés en laboratoire en amont. Pour cela, la technique la plus utilisée aujourd'hui est la méthode en cellule de diffusion, décrite par Zhang et Davison (1999). Cette dernière présente cependant l'inconvénient d'une adsorption éventuelle des composés sur les parois de la cellule ce qui peut ensuite mener à des biais lors de la détermination des coefficients de diffusion. Récemment, la méthode d'empilement de gels a été utilisée comme alternative pour la détermination des coefficients de diffusion. Cette méthode reste encore très peu utilisée et il n'y avait pas le recul nécessaire, dans la littérature, afin de conclure quant à sa précision.

Dans ce chapitre, les coefficients de diffusion à travers le gel d'agarose (AG) et le gel polyacrylamide (PA) ont été déterminés à l'aide des méthodes en cellule de diffusion et par empilement de gels. Les deux méthodes ont ainsi pu être comparées et discutées. Les relations entre les propriétés physico-chimiques et les coefficients de diffusion ainsi obtenus ont également été étudiées.

Ce chapitre est présenté sous la forme d'un article scientifique qui a été soumis dans Chemosphere. Cet article, intitulé « Determination of diffusion coefficients through agarose and polyacrylamide gels for 112 pesticides, hormones and pharmaceutical compounds for passive sampling by organic Diffusive Gradients in Thin films (o-DGT) » a été écrit en collaboration avec Cécile Miège, Amandine Daval, Vincent Fauvelle et Nicolas Mazzella. Les informations supplémentaires (SI) de cet article sont présentés en annexe.

IV.2. Article « Determination of diffusion coefficients through agarose and polyacrylamide gels for 112 pesticides, hormones and pharmaceutical compounds for passive sampling by organic Diffusive Gradients in Thin films (o-DGT) »

IV.2.1. Introduction

Passive samplers (PS) have been developed to improve water quality monitoring. Contrary to grab sampling, the interests of PS are to extract and pre-concentrate pollutants in situ and to improve temporal representativeness with determination of time-weighted average concentration (TWAC). The most used PS for moderately hydrophilic organic compounds like pharmaceuticals, pesticides and hormones is the Polar Organic Chemicals Integrative Sampler (POCIS) (Vrana et al., 2005). However, environmental conditions, mainly hydrodynamics and temperature, may influence sampling rates (i.e. volume of water cleared per unit of time) and therefore the determination of TWA concentrations. In order to factor in these effects, it is possible to achieve calibration to determine sampling rates under various experimental conditions representative of real environmental conditions. However, these strategies are time-consuming and not satisfying knowing that real conditions may vary during one exposure period in any given aquatic environment. An alternative is to use PRC (Performance and Reference Compounds) (Miège et al., 2015). These compounds are added into a passive sampler receiving phase prior to deployment allowing an in situ correction of sampling rates under the hypothesis of isotropic exchanges, as for hydrophobic compounds in monophasic polymers (e.g. silicone rubber, low density polyethylene) (Rusina et al., 2010b). However, the accumulation mechanisms of hydrophilic substances into adsorption-based PS, such as POCIS, are mostly characterized by anisotropic exchanges and remain not fully understood (Fauvelle et al., 2014). Consequently, the use of the PRC approach is still questionable. Because of the uncertainty in applying laboratory-based sampling rates to in situ field measurements, these PS only allow for semi-quantitative information to be gathered at this stage (Miège et al., 2015).

An alternative to POCIS is the Diffusive Gradients in Thin films (DGT) technique. DGT was initially developed for inorganic contaminants (Davison and Zhang, 1994) and has been more recently adapted for organic compounds (Chen et al., 2012). The interest of this specific PS is the use of a diffusive gel layer controlling compound uptake and allowing the

effect of hydrodynamic conditions to be ignored as long as the gel's thickness is larger than the diffusive boundary layer (DBL) (Davison and Zhang, 1994). Consequently, the diffusional characteristic of compounds (*i.e.* diffusion coefficients, D) is a key parameter needed to determine the TWA concentration. For measurement of organic compounds, the diffusion layer is typically comprised of an agarose gel (AG) (Amato et al., 2018; Belles et al., 2017, 2018; Buzier et al., 2019; Challis et al., 2016a, 2018a; Chen et al., 2012, 2013, 2014, 2015a, 2015b, 2017, 2018; Cole et al., 2018; D'Angelo and Martin, 2018; D'Angelo and Starnes, 2016; Feng et al., 2019; Guan et al., 2017, 2018; Guo et al., 2017a, 2017b; Li et al., 2019; Mechelke et al., 2019; Ren et al., 2018; Sidhu et al., 2019; Wei et al., 2019; Xie et al., 2018a, 2018b; Zhang et al., 2019, 2018; Zheng et al., 2015); and few additional authors studied a polyacrylamide (PA) gel (Fauvelle et al., 2015; Guibal et al., 2017; Hageman et al., 2019; Stroski et al., 2018; Weng et al., 2019) or a membrane as the diffusion layer (Dong et al., 2014; You et al., 2019b, 2019a). Nowadays, by combining all the literature on o-DGT, diffusion coefficients through AG gel and PA gel have been determined, for 142 and 37 organic compounds, respectively, among which pharmaceuticals and particularly antibiotics are the most studied. They were mostly determined using a diffusion cell, according to Zhang and Davison (1999), which consists in measuring the diffusion of compounds through a diffusive layer from a source compartment to a receiving compartment. This method presents some issues for D determination of compounds susceptible to adsorption. Actually, cell material has to be adapted, especially to the most hydrophobic compounds. Recent studies determined D using the slice stacking method for 21 compounds (Amato et al., 2018; Belles et al., 2017). This method consists in measuring the diffusion from one gel spiked with target contaminants to other gels vertically from top to bottom. Diffusion coefficients determined by the slice stacking method were compared to those determined by the diffusion cell method in only one study, for 3 organic compounds (Amato et al., 2018). The necessary background to conclude on the accuracy of D determined with this new method remains to be established.

In this study, we investigated D through two different diffusive layers (*i.e.* AG gel and PA gel) for 112 compounds including 59 pesticides, 33 pharmaceuticals and 20 hormones. Among these 112 substances, D for 85 compounds including 44 pesticides, 17 pharmaceuticals and 15 hormones have never been reported in the literature, to the best of

our knowledge. All these compounds have a large range of physicochemical properties (molar mass ranging from 129 to 749 g.mol⁻¹ and log Dow at pH 7.4 ranging from -3.66 to 5.28) and various ionization forms. Diffusion coefficients through AG and PA were compared and discussed in order to choose the best diffusive gel for our studied compounds. The two methods of *D* determination, *i.e.* the diffusion cell method and the slice stacking method, were compared and discussed. Finally, *D* obtained in this study were compared with those previously reported in literature. Moreover, relationships between some physicochemical properties of compounds and *D* were tested and discussed, which has never been done on such a large dataset produced by a single study.

IV.2.2. Experimental section

IV.2.2.1. Chemicals

Polyacrylamide 19:1 Bis Acrylamide was purchased from BioRad (Mitry-Mory, France). Tetramethylethylenediamine (TEMED) and agarose powder were purchased from Sigma-Aldrich (Saint-Quentin Fallavier, France). Ammonium persulfate was purchased from Alfa Aesar (Thermo Fisher Scientific, Villebon-sur-Yvette, France). Ultrapure water (UPW) was produced by a Synergy UV system from Millipore (Billerica, MA, USA). Methanol (MeOH) and acetonitrile (ACN) (HPLC Grade) were purchased from Biosolve (Dieuze, France). The 112 studied compounds, as well as their physicochemical properties, are reported in the supplementary information (SI) (Table S1). Suppliers and purity of analytical standards and internal standards are described in Table S2 and Table S3. Briefly, pesticides and their associated internal standards were purchased from Dr. Ehrenstorfer GmbH (Augsburg, Germany) (purity > 96%). Hormones were obtained from Sigma Aldrich (Schnelldorf, Germany), from LGC Standards (Luckenwalde, Germany) and from CliniSciences (Nanterre, France) (purity > 96%). Internal standards associated to hormones were purchased from CIL (Sainte-Foy-la-Grande, France), AlsaChim (Illkirch-Graffenstaden, France) and Santa Cruz (Heidelberg, Germany) (purity > 95%). Pharmaceuticals were obtained from CIL (Sainte-Foy-la-Grande, France), Sigma Aldrich (Saint-Quentin Fallavier, France) VWR (Fontenay-sous-Bois, France) and CIL (Sainte-Foy-la-Grande, France) (purity > 95%). Internal standards of pharmaceuticals were obtained from CIL (Sainte-Foyla-Grande, France) (purity > 98%). Studied compound stock solutions were prepared at 200 mg L⁻¹ in ACN or MeOH which was used to prepare a solution at 5 mg L⁻¹. Internal standard solutions were also prepared in ACN or MeOH at 1 mg L⁻¹ for pesticides and at 200 and 400 μ g L⁻¹. All working solutions were stored at -18°C for six months at the longest.

IV.2.2.2. Gel preparation

AG diffusive gels (1.5% AG) were prepared by placing appropriate amount of AG in preheated UPW (between 80 and 90°C). The solution was covered and stirred in a hot water bath until dissolution (solution became transparent). The mixture AG/UPW was cast between two preheated glass plates separated by 1 mm PTFE spacers and left to cool until gelling at room temperature. PA diffusive gels were prepared using appropriate volume of BIO RAD 19:1 acrylamide solution 40%, TEMED and persulfate ammonium. After mixing, the mixture was immediately cast between two glass plates separated by 1 mm PTFE spacers and left for 20 minutes until gelling at room temperature. Both gels were hydrated in UPW for at least 24 h (UPW was changed 2 times). For both gels, we obtained 1 mm thickness gel plate, this last one does not swell during hydration. Diffusive gels of 2.5 cm diameter were cut-out. Gels were stocked in UPW at 4°C before use.

IV.2.2.3. Determination of diffusion coefficient

Diffusion cell method

A diffusion cell comparable to the one described by Zhang and Davison (1999) was used to determine *D*. Two 0.38 L polyvinylchloride (PVC) compartments were separated by a 1.77 cm² opening window containing 1 mm thickness diffusive gel. The source compartment was filled with NaCl 10⁻² M spiked with target compounds at 100 µg L⁻¹, whereas the receiving compartment was filled with NaCl 10⁻² M. Each compartment of diffusion was stirred using a magnetic bar rotating at a maximum speed of 300 rpm. The concentration in the receiving compartment was measured at different times over the course of 3 days (24 h, 32 h, 48 h, 56 h and 72 h). The concentration in the source compartment was measured at the beginning and the end of the exposure in order to control for possible losses. Sampling rates R_s (mL.d⁻¹) were calculated using equation (1) and equation (2). Based on equations (1) and (2) and considering DBL thickness as negligible, we calculate *D* using equation (3).

$$R_S = \frac{\alpha}{C_0} \tag{1}$$

$$D = R_S \times \frac{\Delta + \delta}{A} \tag{2}$$

$$D_{cell} = \frac{\alpha \times \Delta}{C_0 \times A} \tag{3}$$

where α is the slope of the mass in receiving compartment as a function of time (s), Δ is the diffusive gel thickness (cm), δ is the DBL thickness (cm), A is the surface area of the opening window (cm²) and C_0 is the source compartment concentration (µg L⁻¹). The standard deviation (SD) of D was calculated from the SD of α . The number of values used for determining α ranged between 10 and 12.

Slice stacking method

This method was recently adapted from Rusina et al. (2010b) by Belles et al. (2017) and Amato and al. (2018). AG and PA gel disks were spiked by immersion in water fortified with the target compounds for 20 min. A part of gel disks were used as quality controls and concentrations were measured (a triplicate for each gel). The other part of gel disks was put on a stack of 5 unexposed gel disks (a triplicate for each gel and each group of compounds). After 30 min of contact, each stack was disassembled and extracted separately with MeOH for AG gel and with MeOH/UPW 75/25 (v/v) for PA gel. The concentration in each gel disk was determined, allowing the calculation of D_{stack} using equation (4),

$$C(x,t) = \frac{Q}{\sqrt{4\pi D_{stack}t}} \times \exp\left(-\frac{x^2}{4D_{stack}t}\right) = C(0,t) \times \exp\left(-\frac{x^2}{4D_{stack}t}\right)$$
(4)

where Q is the quantity of deposited atoms per unit area, x is the distance from the spiked gel, t is the exposure time. D_{stack} was determined from the slope of $\ln(C(x, t))$ as a function of x^2 and the SD of D_{stack} was calculated from the SD of the slope. The number of values used for determining α ranged between 6 and 12.

Data processing

All data processing was performed with R software (R Core Team, 2019) using the packages "dplyr" (Wickham et al., 2019), "tidyr" (Wickham and Henry, 2019), "tidyverse" (Wickham, 2017), "purr" (Henry and Wickham, 2019) and "broom" (Robinson and Hayes, 2019). The

graphical representations and their regression models were performed using the packages "ggplot2" (Wickham, 2016). PCA was performed using the package "FactoMineR" (Le et al., 2008).

All *D* values were recalculated at 25 $^{\circ}$ C (equation 5).

$$\log D_T = \frac{1,37023(T-25)+0,00836(T-25)^2}{(109+T)} + \log \frac{D_{298K}(273+T)}{298}$$
(5)

IV.2.2.4. Analytical methods

Pesticides were analyzed with a Dionex Ultimate 3000 HPLC (Thermo Fisher Scientific, Villebon-sur-Yvette, France). An API 2000 tandem mass spectrometer (Sciex, Villebonsur-Yvette, France) was used for detection. Chromatographic separation of anionic pesticides was performed on a Macherey-Nagel zwitterionic Nucleodur HILIC 3 µm, 100 Å, 125 mm x 2 mm while neutral pesticides were separated with a Gemini-NX C18 (3 µm, 100×2 mm) with a SecurityGuard cartridge Gemini-NX C18 (4 × 2.0 mm) (Phenomenex, Le Pecq, France). Pharmaceuticals and hormones were analyzed using an Acquity H Class coupled XECO TQ-XS tandem mass spectrometer (Waters, United States). Chromatographic separation of pharmaceuticals was performed by a C18 HSS T3 column $(1.8 \,\mu\text{m}, 2.1 \times 100 \,\text{mm})$ (Waters, United States) while a C18 BEH $(1.8 \,\mu\text{m}, 2.1 \times 100 \,\text{mm})$ column was used for hormone separation. Internal calibration was performed by a linear curve from 0 to 100 µg L⁻¹ for pesticides and from 0.01 to 50 µg L⁻¹ for pharmaceuticals and hormones. The accuracy of analysis was ensured by quality controls (0.5 and 25 μ g L⁻¹ for pesticides and from 0.5 and 10 µg L⁻¹ for hormones and pharmaceuticals) and analytical blanks positioned every 10 samples. All mass parameters, elution gradients and chromatographic conditions are described in SI (from

Table S4 to Table S11).

IV.2.3. Results and discussion

IV.2.3.1. Diffusion coefficients

Diffusion cell method

This method was used in order to determine D_{cell} (according to equation 3) for the 112 studied compounds through AG and/or PA (i.e. 33 pharmaceuticals, 59 pesticides and 20 hormones), as presented in Table S12. Dcell were not assessed or were assessed with high uncertainty for 32 and 37 compounds, through AG and PA, respectively because of i) analytical problems for 8 and 6 compounds through AG and PA, respectively (see mention "analytical" in Table S12); ii) adsorption on cell compartments during experimentation for 24 and 21 compounds through AG and PA respectively, with loss in source compartment > 30% and accumulation in receiving compartments not observed (see mention "loss" in Table S12); iii) unsatisfying linearity on the diffusion curve ($R^2 < 0.8$, n < 5) for 5 and 10 compounds through AG and PA, respectively (see italics in Table S12). For these last compounds, D_{cell} reported in Table S12 should be considered with caution because of higher uncertainty on their value; they were excluded in Figure IV.1. Finally, 75 D_{cell} values, reported in Table S12 and presented in Figure IV.1, were reliably determined through AG and PA. D_{cell} through AG gel ranged from 1.32 to 7.07 × 10⁻⁶ cm² s⁻¹. Generally, D of hormones were lower than D of pesticides and pharmaceuticals with a median value of 2.59 \times 10⁻⁶ cm² s⁻¹, while D_{cell} of pharmaceuticals were relatively high with a median value at $5.31 \times 10^{-6} \text{ cm}^2 \text{ s}^{-1}$. D_{cell} through PA gel were in the same order of magnitude with values ranging from 0.62 to 4.11×10^{-6} cm² s⁻¹. The difference between the three groups of compounds was low with a median value of 1.7, 1.9 and 2.2×10^{-6} cm² s⁻¹ for hormones, pesticides and pharmaceuticals, respectively. Relative standard deviations (RSD) on the 75 reliable D_{cell} ranged from 1 to 15% (median = 6%) with AG and from 1 to 16% (median = 6%) with PA.

 D_{cell} obtained in this part were compared to those found in literature. This was possible for 22 and 13 compounds for AG and PA, respectively (see Figure S1 and Table S13). D_{cell} determined in this study were partially lower to those found in literature. Actually, ratios between D_{cell} through AG obtained in this part and those reported in literature and measured by diffusion cell were ranging from 0.4 to 1.8 (median = 1.1). Considering that

RSD due to chemical analyses (by chromatographic techniques) can reach 30 %, *D* determined in that study and in literature were similar (ratio between 0.7 and 1.3) in 17 cases over 35. In addition, mean of D_{cell} through AG determined in that study and in literature were significantly similar (Wilcoxon test, p-value = 0.17). Ratios between D_{cell} (our data and values from the literature) through PA were ranging from 0.3 to 1.2 (median = 0.57) (see Figure S1). D_{cell} determined in that study were similar to those in literature (difference < 30 %) in 6 cases on 13. Mean of D_{cell} through PA were significantly different when comparing our values with literature values (Wilcoxon test, p-value = 1.2×10^{-3}).

Differences between D_{cell} could be explained by different hydrodynamic conditions between the experiments. This may have an effect on the DBL thickness and consequently on D_{cell} measurement. However, hydrodynamic conditions were barely specified in literature for diffusion cell experiment and DBL thickness is generally neglected in D_{cell} calculation (see equation (3)). Consequently, D_{cell} cannot be easily compared if hydrodynamic conditions are not known. Differences between D_{cell} may also be explained by the various configurations (*i.e.* diffusion cell using gel with or without a membrane). The material (*i.e.* different type of AG gel with various gel properties such as pore size) also influences the diffusion coefficient. Moreover, the mode of storage of diffusive gels (e.g. in UPW or NaCl 10⁻² M) may also influence the measured D_{cell} values. Therefore, these information should to be available to facilitate the comparison of published D_{cell} .

Slice stacking method

This method was also used in order to determine D_{stack} (according to equation 4) for the 112 studied compounds through AG and/or PA (33 pharmaceuticals, 59 pesticides and 20 hormones), as presented in Table S12. D_{stack} were assessed with high uncertainty for 3 and 2 compounds for AG and PA, respectively because of unsatisfying linearity on the diffusion curve (R² < 0.8, n < 5). Finally, 109 and 110 reliable D_{stack} were obtained through AG and PA, respectively (reported in Table S12 and presented in Figure IV.1). D_{stack} through AG gel ranged from 4.21 to 9.81 × 10⁻⁶ cm² s⁻¹, while they were lower through PA gel with values ranging from 2.85 to 6.51 × 10⁻⁶ cm² s⁻¹. D_{stack} were quite similar between the three groups of compounds (pesticides, hormones and pharmaceuticals) in each gel type with medians around 6.5 × 10⁻⁶ cm² s⁻¹ and 4 × 10⁻⁶ cm² s⁻¹ through AG and PA gels,

respectively. RSD on D_{stack} were similar to those found with the diffusion cell method. Thus, they ranged from 2 to 20% (median = 5%) for AG and from 2 to 19 (median = 5%) for PA.

These D_{stack} were compared to those found in literature obtained with the same method. This was possible only for 7 compounds diffusing through AG. To our knowledge, none D_{stack} through PA were previously measured by slice stacking method. D_{stack} determined in that study and in literature were similar (difference < 30 %) for 2 compounds. Ratios between our data and D_{stack} found in literature determined by slice stacking method were ranging from 0.9 to 1.9 (median = 1.5) (see Figure S1 and Table S13), and mean of D_{stack} were significantly different (Wilcoxon test, p-value = 2.2×10^{-4}). As for diffusion cell method, differences between D_{stack} measured in this study and those found in the literature may also be explained by the difference between the mode of storage of diffusive gels or by the difference of material (for polyacrylamide gel, bis-crossed linked gel in this study vs agarose crossed linked gel in literature). Moreover, D_{stack} can be calculated from two different formula (Amato et al., 2018; Belles et al., 2017), this may partially explain the gap observed. However, formula used in this study was the same of that used by Amato et al. (2018) and was further validated in this study (good residual distribution, $R^2 > 0.9$, p-value < 0.05). In addition, RSD of D_{stack} determined by Belles et al. were ranged from 26 to 58 % while those determined by Amato et al. and in this study were lower than 20 %.

Figure IV.1 : Diffusion coefficients of hormones (horm.), pesticides (pest.) and pharmaceuticals (pharm.) through agarose (AG) and polyacrylamide (PA) gels determined by the diffusion cell method and the slice stacking method.

IV.2.3.2. Comparison of agarose and polyacrylamide diffusive gels

In order to compare the two diffusive gels, we kept compounds for which *D* were determined through both gels (*i.e.* 65 compounds for the diffusion cell method and 107 compounds for the slice stacking method) (Figure IV.2). Generally, *D* measured through AG were higher than through PA (Wilcoxon test, p-value $< 2.2 \times 10^{-16}$ for slice stacking method and p-value = 5.0×10^{-15} for diffusion cell method). With the slice stacking method, D_{stack} were higher through AG than through PA for 88 compounds, while they were similar for 19 compounds (difference < 30%). Using the diffusion cell method, D_{cell} through AG and PA were similar (difference < 30%) for 5 compounds only. D_{cell} were higher in AG gel for 60 compounds (mainly pesticides). The fact that *D* are generally lower

through PA than through AG gel is in agreement with the results reported in the literature (Stroski et al., 2018). This difference may be due to pore sizes that are larger in AG, rendering them more favorable to diffusion (Scally et al., 2006).

Figure IV.2 : Diffusion coefficients (**D**) through polyacrylamide (PA) as a function of **D** through agarose (AG). The dark line represents $D_{PA}=D_{AG}$ while dashed lines represent variation of 30% between the two methods. Diffusion coefficients of pesticides (triangle), pharmaceuticals (square) and hormones (round) determined by the diffusion cell method are represented in pink, while those determined by the slice stacking method) are represented in orange.

IV.2.3.3. Comparison of diffusion cell and slice stacking methods

In order to compare the two methods, we kept compounds for which *D* were reliably determined with both methods (*i.e.* 73 compounds for AG and PA gel) (see Figure S2). Generally, *D* determined by the diffusion cell method were lower than those determined by the slice stacking method (Wilcoxon test, p-value $< 2 \times 10^{-16}$ for AG and for PA). Median values were 4.0×10^{-6} cm²s⁻¹ for the diffusion cell method and 6.4×10^{-6} cm²s⁻¹ for the slice stacking method through AG, and 2.1×10^{-6} cm²s⁻¹ for the diffusion cell method and 4.2×10^{-6} cm²s⁻¹ for the slice stacking method through AG, and 2.1×10^{-6} cm²s⁻¹ for the diffusion cell method and 4.2×10^{-6} cm²s⁻¹ for the slice stacking method through AG, and PA. *D* were similar between the two methods for 22 and 10 compounds through AG and PA, respectively. In the literature, only

one study compared both methods for 3 organic compounds (carbamazepine, isoproturon and diuron) (Amato et al., 2018). Contrary to our results, they concluded that D_{cell} through AG gel were higher than D_{stack} (relative differences ranging from 21 to 42 %). This observation was unexpected since a likely DBL may occur in diffusion cell experiments only, thus probably reducing the D_{cell} estimates in comparison to D_{stack} . They also concluded that their D_{stack} were more relevant because they were more in agreement with values from the literature (Challis et al., 2016a; Chen et al., 2012).

Since there is always a water boundary layer present in aqueous environments, diffusioncell D may provide a more accurate "effective" D value when the DBL mass transfer resistance remains comparable. For this purpose, we suggest to use the sampling rates obtained during our diffusion-cell experiments and our D_{stack} values to get an estimate of the DBL thickness. The overall resistance to mass transfer is the sum of the resistances through the DBL and the gel. It also inversely proportional to the Rs and the total exposure area A. Considering equation (6), it is possible to determine DBL thickness when the sampling rate is known. In the case of diffusion-cell method, with same hydrodynamic conditions occurring at both sid**es** of the gel, there are two DBL and equation (6) becomes equation (7) (Booij et al., 2017).

$$\frac{1}{k_0} = \frac{1}{R_s/A} = \frac{1}{k_w} + \frac{1}{k_g K_{gw}}$$
(6)

$$\frac{1}{k_0} = \frac{1}{R_S/A} = \frac{2}{k_w} + \frac{1}{k_g K_{gw}}$$
(7)

With K_{gw} the partition coefficient between gel and water, k_w and k_g (cm d⁻¹) the mass transfer coefficients through the DBL and diffusive gel, respectively. With the assumption of $K_{gw} \approx 1$, equation (7) becomes equation (8).

$$\frac{1}{R_S/A} = \frac{2\delta}{D_w} + \frac{\Delta}{D_g} \tag{8}$$

Considering D_{stack} corresponds to D through gel only (D_g) , DBL thickness in diffusion cell was calculated from equation (8), using sampling rates determined with equation (1) and D in water calculated by using Hayduk Laudie equation (Tucker and Nelken, 1990) (see equation (9)).

$$D_w = \frac{1.326 \times 10^{-4}}{\eta^{1.14} V^{0.589}} \tag{9}$$

where η is the water viscosity and *V* is the molar volume.

In the case of AG, mean of DBL thickness was equal to 0.4 mm (RSD = 67 %, see Table S14) which are in the high part of DBL thickness range found by Challis et al. (2016a) for same gel in stirred condition (0.03 to 0.5 mm – mean = 0.22 mm). This high RSD on DBL could be explained by the error on D_w estimation (0.2 log unit) (Belles et al., 2017). In the case of PA, mean of DBL thickness was equal to 0.9 mm (RSD = 61 %, see Table S14) which is higher in comparison to values reported in literature, nevertheless it remains lower than values reported for quiescent conditions in several papers (up to 1.5 mm for both metals and organic chemicals). This suggests that our lower D values are partly explained by a slightly larger DBL thickness by comparison with D_{cell} values previously reported in literature. This DBL thickness explains partly differences between our D_{cell} and D_{cell} found in literature. Consequently, DBL thickness does not seem negligible.

Thus, in order to estimate correctly D_{cell} from R_S or slope, it is necessary to estimate DBL thickness and use equation (2).

In order to check equation (8), sampling rates were calculated from equation (6) using minimal and maximal DBL thickness determined by Challis et al. (2016a) in stirred conditions (0.03 and 0.5 mm, respectively). R_S so calculated were compared to experimental R_S obtained from the slope of the mass accumulated in o-DGT vs time from the calibration experiment (Challis et al., 2016a). Generally, experimental R_S were situated in the range of the lowest and the highest R_S calculated from minimal and maximal thickness (see Figure IV.3 and Table S15). For example, in the case of carbamazepine, calculated R_S were ranging from 11.2 to 18.3 mL d⁻¹ while R_S determined by Challis et al. was equal at 14.6 mL d⁻¹.

Figure IV.3 : Sampling rates calculated (circle) using minimal (in green) and maximal (in red) DBL thickness determined by Challis et al. (2016a) compared to sampling rates determined by calibration method (square, blue) by Challis et al. (2016a).

Therefore, D_{stack} allows good determination of R_s and is a reference value that can be adjusted to in-situ conditions by applying the appropriate DBL thickness. Concerning the practical aspects of *D* measurements, some compounds cannot be studied by the diffusion cell method because of adsorption losses with the material used (PVC in our case). It is to be noted that the slice stacking method allows faster determination of *D* than the diffusion cell method, with exposure time lower than one hour.

IV.2.3.4. Relationship between compound physicochemical properties

In this study, *D* were reliably measured for 112 compounds (Table S11) which cover a large range of physicochemical properties. In this section, relationships between *D* and 4 physicochemical properties are explored and discussed for each gel and method: log Dow (at pH 7.4) (ranging from -3.7 to 5.3), molecular masses (ranging from 129.2 to 749.0 g mol⁻¹), Van der Walls volume (ranging from 123 to 757 Å³) and polar surface area (ranging from 3 to 194 Å²) (Table S1). At pH close to 7, 67 compounds are in their neutral form, while 45 are in their ionic form (29 anionic compounds and 16 cationic compounds).

First, principal component analyses (PCA) were performed in order to consider the 4 physico-chemical parameters together. In the case of PA gel, PCA were performed on the 4 physico-chemical properties for 110 and 78 compounds with the slice stacking method and the diffusion cell method, respectively. Using both methods, D seemed to be anti-

correlated with log D_{OW} (see Figure IV.4 and S3). However, linear relationship and polynomial relationship between *D* and log D_{OW} were poor ($R^2 < 0.2$). This negative correlation was only observed for AG gel with the slice stacking method (PCA performed with 109 compounds) and surprisingly not with the diffusion cell method (PCA performed with 75 compounds) (Figure IV.4 and S3).

PCA were also performed among each ionization group (neutral, anionic and cationic) (see Figure S4 and Figure S5). Negative correlations between log D_{OW} and D observed for all compounds in the case of PA gel, were also observed for neutral compounds using both methods and for cationic compounds using diffusion cell method. In the case of PA gel, linear relationships between D_{cell} of neutral compounds and log D_{OW} were poor (0.3 < R² < 0.4). For cationic compounds, relationship was stronger between D_{cell} and log D_{OW} (R² = 0.59, n=14).

In the case of AG gel, log D_{OW} tented to be negatively correlated to D_{cell} of cationic and neutral compounds and surprisingly, positively correlated to D_{stack} of cationic compounds determined by slice stacking method but linear relationships were poor ($\mathbb{R}^2 < 0.3$).

PCA were also performed for each compound family (pharmaceuticals, hormones and pesticides) (see Figure S6 and Figure S7). Using the diffusion cell method with AG, *D* were negatively correlated with log D_{OW} only for pesticides and hormones. In addition, *D* of hormones tented to be correlated with the surface polar area. Among hormones, linear relationships were strong between D_{cell} through AG and polar surface area and log Dow (R² = 0.80 and R² = 0.71, respectively). These linear relationships were lower for PA gel (R² = 0.51 and R² = 0.48).

These relations were not observed for D_{stack} (see Figure S6). In the case of PA, D_{cell} and D_{stack} of pharmaceuticals and pesticides were negatively correlated to log D_{OW} but linear relationships were poor ($\mathbb{R}^2 < 0.3$).

Figure IV.4: PCA - Diffusion coefficients determined by the slice stacking method through polyacrylamide (PA) and agarose (AG)

In literature, D can be modelled using Archie's law (Challis et al., 2016a; Chen et al., 2013). This assumes a relationship between D and the molecular mass, as shown in equation (9), hereafter:

$$D = D_w \varepsilon^m = 3.3 \times 10^{-5} \varepsilon^m / \sqrt[3]{M} \tag{9}$$

with M the molecular mass, ε the porosity of the porous medium (0.98) and m the Archie's law exponent ranging from 1.5 to 2.5 in porous medium. Here, a value of 2 was used in agreement with Chen et al. (2013).

For our molecules of interest, *D* were calculated using Archie's Law and compared to those measured by the diffusion cell (n=75 through AG and PA) and by the slice stacking methods (n=109 and n=110, through AG and PA respectively) (see Figure IV.5).

Considering the diffusion cell method, the modelled *D* were higher (difference > 30%) than those measured in this study for 13 and 61 compounds for PA and AG, respectively. A slight overestimation of *D* through AG using Archie's law had already been noticed by Challis et al. for 34 compounds (pesticides, hormones and pharmaceuticals, molecular mass were ranging from 206 to 837) with a relative difference of 27% (Challis et al., 2016a). Considering the slice stacking method, measured *D* are closer to modelled *D* with a good estimation (difference < 30%) for 78 compounds through PA and for 80 compounds through AG. The match between modelled *D* and measured *D*, better by the slice stacking method than by the diffusion cell method can be explained by the fact that Archie's law does not take into account the influence of the DBL occurring with the cell method. Overall, the range of *D* measured by us (from 0.60 to 9.81 10^{-6} cm² sec⁻¹ for AG and from 0.62 to 6.51 10^{-6} cm² sec⁻¹ for PA) is much larger than the modelled one (from 3.5 to 6.3 10^{-6} cm² sec⁻¹), illustrating the poor relationship between *D* and M. This much larger range of measured *D* can be explained by a likely influence of physicochemical properties other than *M*.

Figure IV.5 : Modelled diffusion coefficient as a function of measured diffusion coefficients through agarose (AG) and polyacrylamide (PA) determined by the diffusion cell method (in pink) and by the slice stacking method (in orange) for hormones (circle), pesticides (triangle) and pharmaceuticals (square).

Finally, if some tendencies between D and physicochemical parameters exist among some groups of compounds, depending on the gel and the measurement method used, D of our compounds of interest cannot be explained nor predicted by a unique physicochemical property. Consequently, multiple linear regressions were tested using 4 studied physicochemical properties. However, multiple linear regressions on all compounds were poor ($R^2 < 0.3$). At this stage and with the wide range of chemicals evaluated in this work, the use of a unique correlation with a single or several parameters seems unlikely, and models based on the molecular mass seem limited for predicting D values. Consequently, it is still necessary to use D measured experimentally in the laboratory.

IV.2.4. Conclusion and perspectives

D were measured for 112 organic compounds through two diffusive gels (AG and PA) using two methods. We showed that *D* through AG were higher than those through PA for the majority of the studied compounds. We also showed that *D* obtained by the slice stacking method tended to be higher than those determined by the diffusion cell method. This second observation can be explained by the occurrence of a DBL in the diffusion cell method that could influence overall compound mass transfer, and then *D* estimates. In most articles, the DBL thickness is not estimated and therefore neglected with diffusion cell method, which can lead to a significant bias. Consequently, the use of R_S is more adequate to determine water concentration, for a given bulk flow velocity. Slice stacking method is a good alternative to diffusion cell while that last one could not be suitable for all the organic compounds (adsorption on cell). Moreover, slice stacking method allows to observe differences between diffusive gels.

Lastly, relationships (PCA) between D and 4 physicochemical properties (molecular mass, log DOW at pH 7.4, Van der Walls volume and polar surface area) were investigated. There were no clear either linear or polynomial correlations between D and the physico-chemical properties tested separately for each compound, and whatever the measurement method used. Other properties, as molecular descriptors whose molecular polarizability (Liu et al., 2020) could be explored provided that values, still missing in the literature, are calculated for our set of substances.

IV.3. Synthèse

Dans ce chapitre, les coefficients de diffusion ont été déterminés pour 117 composés à travers les gels diffusifs AG et PA à l'aide de deux méthodes : la méthode en cellule de diffusion et la méthode par empilement de gel.

Dans un premier temps, les deux gels diffusifs ont été comparés. Les coefficients de diffusion sont plus élevés à travers le gel AG que le gel PA. Ceci est en accord avec les observations effectuées auparavant lors de la calibration sur le terrain (voir Chapitre III) et avec ce qui avait été montré dans la littérature (Stroski et al., 2018). Cette différence peut s'expliquer par une taille des pores plus faible dans le cas du gel PA (Scally et al., 2006).

Dans un deuxième temps, les deux méthodes de détermination des coefficients de diffusion ont été comparées. Les coefficients de diffusion obtenus en cellule de diffusion (D_{cell}) sont inférieurs à ceux obtenus par empilement de gel (D_{stack}) quel que soit le gel diffusif utilisé. Cette différence s'explique par une épaisseur de couche limite de diffusion non négligeable dans le cas de la méthode en cellule de diffusion malgré l'agitation. Le gel diffusif n'est plus le seul à contrôler le transfert de masse des composés et ce dernier dépend alors du transfert de masse à travers la DBL, en plus du gel diffusif. Les coefficients de diffusion obtenus en cellule de diffusion sont alors sous-estimés lorsque la DBL n'est pas prise en compte dans les calculs. Au contraire, les D_{stack} sont plus représentatifs de la diffusion dans le gel uniquement étant donné qu'aucune DBL n'intervient. A partir de ces D_{stack}, l'épaisseur de la couche limite de diffusion a pu être déterminée. Cette dernière est supérieure dans le cas du gel PA a par rapport au gel AG. Cela peut s'expliquer par le fait que les manipulations en cellule n'ont pas été effectuée au même moment ce qui induit des agitations différentes entre les deux gels. Dans la littérature, l'épaisseur de la DBL est négligée lors de la détermination des coefficients de diffusion, ce qui peut mener à des biais lors de la détermination de la concentration. Par conséquent, il serait plus judicieux d'utiliser les taux d'échantillonnage lors de la détermination de la concentration en micropolluants dans les milieux aquatiques.

Les coefficients de diffusion ont été comparés à quatre propriétés physico-chimiques : la masse molaire, le volume de Van der Walls, la surface polaire et le log D_{OW} à pH 7,4. Il a été montré que malgré certaines tendances, il n'est pas possible de prédire les coefficients de diffusion des composés étudiés à partir d'un seul de ces paramètres physico-chimiques.

Chapitre V. Calibration en laboratoire des o-DGT et des POCIS

V.1. Avant-propos

La calibration est souvent une étape essentielle à la mise en œuvre d'échantillonneur passif. Elle permet de déterminer les constantes cinétiques d'accumulation permettant par la suite de calculer la concentration moyenne sur la durée d'exposition dans l'eau. Des calibrations en laboratoire ont déjà été effectuées sur le POCIS_{HLB} pour une partie des composés étudiés dans cette thèse (Fauvelle, 2012; Morin, 2013; Poulier, 2014). Si un grand nombre de composés suit une accumulation linéaire ou curvilinéaire, certaines exceptions sont observées, expliquées par les phénomènes décrits ci-après. Il a été montré que le temps de demi atteinte de l'équilibre $(t_{1/2})$ des composés ioniques étaient souvent bien inférieurs à ceux observés pour les composés neutres et majoritairement inférieurs à 14 jours (Morin et al., 2013) ; ce qui peut être problématique sachant que les PS doivent être placés sur le terrain un temps inférieur à celui de leur $t_{1/2}$. De plus, un phénomène de retard à l'accumulation (« lag phase ») peut être observé, le plus généralement pour des composés neutres hydrophobes, comme les hormones (Morin et al., 2013). Au contraire, une accumulation rapide en début d'exposition menant à une accumulation biphasique (« burst effect ») a été observée pour les composés anioniques (Fauvelle et al., 2014; Morin et al., 2013) et moins généralement pour les composés neutres avec un log Kow < 3 (Morin et al., 2013). Ce phénomène peut être en partie dû à l'humidification initiale de la membrane et/ou de la phase adsorbante, ce qui augmenterait les taux d'accumulation (Mazzella et al., 2007).

La technique o-DGT a été développée dans le but de permettre l'échantillonnage des composés organiques, y compris les composés ioniques, pour lesquels le $t_{1/2}$ est trop faible par rapport à la durée d'exposition observée en générale (14 jours), pour lesquels des phénomènes d'accumulation biphasique sont observés. Dans le cas des o-DGT, l'étape de calibration n'est pas indispensable. En effet, les coefficients de diffusion à travers la couche diffusive (gel et/ou membrane) des composés et les taux d'échantillonnage peuvent être déterminés grâce à d'autres méthodes comme celle en cellule de diffusion. Cependant, ces méthodes ne permettent pas d'accéder aux cinétiques d'accumulation et aux taux d'échantillonnage de l'outil complet. Une calibration a donc été effectuée afin de déterminer les taux d'échantillonnages et ainsi les coefficients de diffusion des o-DGT testés. Ces coefficients de diffusion ont été comparés à ceux déterminés en cellule de diffusion et par

empilement de gel. Par ailleurs, des POCIS_{HLB} ont également été exposés dans le but de comparer les deux types de PS.

V.2. Expériences préliminaires : rendements d'extraction et choix de la membrane

En amont de la calibration, plusieurs expérimentations ont été effectuées. Les rendements d'extraction des résines ont été déterminés afin de les appliquer lors de la détermination de la masse accumulée par les o-DGT. En parallèle, plusieurs membranes ont été testées avec différentes tailles de pores afin de définir la plus adaptée pour l'échantillonnage des composés étudiés.

V.2.1. Détermination des rendements d'extraction

Après accumulation dans la résine, les composés étudiés doivent être extraits de la résine pour permettre l'analyse chromatographique. Il est alors nécessaire de déterminer les rendements d'extraction pour permettre de corriger la masse accumulée dans la résine. Afin de définir le meilleur protocole pour l'extraction des composés, deux protocoles ont été testés sur les pesticides anioniques et les pesticides neutres décrits dans la partie II.4.1.4. Seuls les rendements d'extraction du protocole choisi sont présentés dans cette partie. Brièvement, le protocole d'extraction choisi consiste en une extraction dans 5 mL de MeOH sous agitation pendant 24 h dans des bouteilles de 15 mL ambrées suivi de deux extractions successives dans 2,5 mL de MeoH pendant 10 minutes aux ultrasons. Afin de définir les rendements d'extraction, cinq réplicats et des témoins « eau dopée » ont été mis en œuvre comme décrit dans la partie II.4.1.4. Les résultats ont été validés à partir de leur niveau de confiance comme indiqué dans la partie II.7 (1 : pas de problème d'analyse, 2 : incertitudes sur les résultats obtenus, 3 : résultats non validés).

La perte dans le témoin eau dopée a été déterminée en fonction des concentrations en début et fin d'expérimentation. Aucune perte (supérieure à 30 %) n'a été observée dans le témoin eau dopée excepté pour deux pharmaceutiques, la norfluoxétine et la clarithromycine (respectivement 33 et 31 %). Par conséquent, dans la suite de cette partie, la concentration dans l'eau prise en compte sera donc la moyenne de la concentration déterminée au temps initial de la manipulation (n=5). Les rendements d'extraction des o-DGT ont été déterminés pour 112 composés. Ils sont répertoriés en Annexe V.1 et représentés dans la Figure V.1. Les rendements sont compris entre 70 et 130 % pour 76 composés avec la résine AG et 87 composés avec la résine PA. Ils sont inférieurs à 70 % pour 36 composés avec la résine AG et 25 composés avec la résine PA.

Figure V.1 : Rendements d'extraction des résines AG et PA

Les coefficients de variation des rendements d'extraction apparaissent en Annexe V.1. Ils sont compris entre 2 et 62 %. Les composés pour lesquels le coefficient de variation des rendements d'extraction est supérieur à 30 % sont exclusivement des pharmaceutiques (14 composés) dans le cas de la résine AG et majoritairement des pharmaceutiques (14 sur 19 composés) dans le cas de la résine PA. De la même façon, les composés cationiques possèdent majoritairement des coefficients de variation supérieurs à 30 % (11 et 10 composés sur 18 respectivement pour les résines AG et PA). Les deux composés pour lesquels le coefficient de variation est supérieur à 50 % (furosémide et carbaryl) possèdent des rendements d'extraction inférieurs à 50 %. Cette plus grande incertitude peut s'expliquer par des incertitudes analytiques (niveau de confiance 2 ; voir partie II.7).

V.2.2. Choix de la membrane

La membrane placée sur le dispositif o-DGT doit respecter deux critères principaux. D'une part, elle doit permettre la protection du dispositif et donc du gel diffusif et de la résine lorsque celui-ci est placé sur le terrain. D'autre part, elle doit interagir le moins possible avec les composés afin de ne pas interférer sur la diffusion des composés du milieu échantillonné à la résine. Cette dernière condition a été étudiée de deux façons dans le cadre de cette
thèse : l'accumulation des composés étudiés dans les différentes membranes testées (voir partie V.2.2.2 ci-dessous) et l'effet de la présence des membranes sur la diffusion des composés (voir partie V.2.2.3 ci-dessous). Il a déjà été montré par ailleurs que les composés pouvaient être accumulés dans les membranes (voir partie I.3.1.1). C'est par exemple le cas des membranes PES d'une taille de pores de 0,45 µm qui accumulent les composés hydrophobes. Cependant, à notre connaissance, l'effet de l'augmentation de la taille de pore sur l'accumulation n'a pas été étudié. De manière plus générale, l'effet de la présence et de la nature de la membrane sur les coefficients de diffusion n'est quasiment pas renseigné dans le cas des composés organiques.

V.2.2.1. Protection sur le terrain

La protection du gel diffusif par les membranes a été testée sur le terrain suivant le protocole décrit dans la partie II.4.1.2. Les pertes de masse des gels diffusifs sur le terrain en présence ou non de membrane sont représentées en Figure V.2. Après deux semaines d'exposition, le gel d'agarose non protégé d'une membrane a totalement disparu. En présence des membranes cellulose avec des tailles de pores 0,45 µm et 5 µm, les pertes de masses du gel d'agarose sont respectivement de 36 % et 40 %. La présence des membranes nylon induit quant à elle une perte de masse du gel d'agarose de 18 % et 31 %, avec des tailles de pores respectivement de 0,45 µm et 5 µm. Les membrane PES permettent de minimiser la perte de masse du gel d'agarose avec une diminution de 7 % et de 4 % respectivement avec des tailles de pores de 0,45 µm et de 5 µm. La perte de masse observée semble donc dépendre essentiellement du type de membrane utilisée et non de la taille de pores. La perte de masse est plus importante dans le cas des membranes cellulose, ce qui peut s'expliquer par le fait que la membrane cellulose est probablement dégradée sur le terrain (Alvarez et al., 2004). Dans le cas du gel d'agarose, les membranes sont donc efficaces pour protéger le gel diffusif sur le terrain. Cependant, même en présence d'une membrane, le gel d'agarose devient très friable après une exposition sur le terrain et il est très difficile de récupérer la résine et donc la phase réceptrice sans perte, ce qui mène à des biais lors de la détermination de la masse accumulée. Au contraire, le gel polyacrylamide ne subit aucune perte de masse sur le terrain et pourrait donc être utilisé sans membrane. Cela s'explique par le fait que ce dernier est toxique et ne subit donc aucune perte par biodégradation, contrairement au gel d'agarose.

La dégradation du gel d'agarose sur le terrain, lorsque celui-ci n'était pas protégé d'une membrane, avait déjà été observée auparavant, sans pour autant que celui-ci ne disparaisse complètement (Stroski et al., 2018). En comparaison, le gel polyacrylamide n'avait pas subi de dégradation (Stroski et al., 2018). Cette expérimentation vient compléter ce qui avait été observé dans la littérature quant à l'utilisation des gels diffusifs sans membrane.

Figure V.2 : Pertes de masse des gels diffusifs après deux semaines d'exposition sur le terrain en présence ou non de membranes

V.2.2.2. Accumulation dans les membranes

L'accumulation des composés étudiés dans les différentes membranes a été déterminée uniquement pour les pesticides à l'aide du protocole décrit en partie II.4.1.3. Rapidement, l'accumulation dans les membranes a été déterminée à partir de la quantité perdue dans l'eau dopée où celles-ci ont été plongées pendant 24 h. Les pertes dans le témoin eau dopée (sans membrane), déterminées en fonction des concentrations en début et fin d'expérimentation sont comprises entre -30 et 30 % pour tous les composés, excepté pour le diméthoate (augmentation de la concentration de 50 %), ce qui est négligeable compte tenu de l'incertitude analytique évaluée à 30%. La perte de masse observée dans l'eau dopée avec membrane est donc considérée comme la masse accumulée dans les membranes.

Pourcentage de masse accumulée dans les membranes

Le pourcentage de la masse restante par rapport à la masse initialement présente dans l'eau dopée, permet de calculer la masse accumulée dans les membranes, représentée en Figure V.3. Dans le cas de trois composés, la masse initialement présente dans l'eau en début d'expérimentation est plus faible que celle mesurée après exposition des membranes cellulose 0,45 μ m (sulcotrione, mésotrione et nicosulfuron). Ces résultats n'ont pas pu être expliqués. Les pesticides neutres sont, en général, plus accumulés que les pesticides anioniques, quelle que soit la membrane et la taille des pores. Le nombre de composés accumulés diminue avec l'augmentation de la taille des pores quelle que soit la membrane testée. Les membranes d'une taille de pores de 5 μ m semblent donc les plus adaptées à l'échantillonnage de ces composés. Parmi les membranes d'une taille de pores de 5 μ m semblent donc les plus adaptées se membranes nylon et PES accumulent moins de composés sur 58). La membrane cellulose accumulant un trop grand nombre de composés, elle ne sera pas étudiée dans les parties suivantes.

Figure V.3: Pourcentage de la masse accumulée en pesticides dans les membranes par rapport à la masse initialement présente dans l'eau dopée

Les traits en pointillés représentent l'intervalle de 30 %.

Influence des propriétés physico-chimiques

Dans le but détudier l'influence des propriétés physico-chimiques des composés, l'accumulation dans les membranes a été comparée à la masse molaire, au volume de Van der Walls, à la surface polaire, au log Kow et au log Dow à pH 7,4 des composés étudiés. Pour cela, les trois composés sujets à une augmentation entre le début et la fin de l'exposition des membranes ont été retirés du jeu de données pour la membrane cellulose 0,45 µm (sulcotrione, mésotrione et nicosulfuron).

L'accumulation des composés dans les six membranes testées augmente avec le log D_{OW} (voir Figure V.4.A). De même, l'accumulation des composés dans les membranes PES 0,45 μ m et nylon 0,45 μ m augmente avec le log Kow (voir Figure V.4.B). Dans le cas de la membrane PES 0,45 μ m, cette augmentaion de l'accumulation avait déjà été observée pour des composés ayant un log Kow supérieur à 2 (Challis et al., 2016a; Chen et al., 2017, 2018;

D'Angelo and Starnes, 2016; Xie et al., 2018b; Zhang et al., 2019; Zheng et al., 2015). Alors que l'augmentaion de l'accumulation dans les membranes nylon 0,45 μ m en fonction du log Kow ou du log Dow n'a jamais été mise en évidence dans la litérature (Feng et al., 2019; Guo et al., 2017a; Li et al., 2019; Zhang et al., 2019, 2018). Cette augmentation de l'accumulation des composés avec le log K_{OW} des composés n'est pas observée pour les membranes nylon et PES 5 μ m, ni les membranes cellulose 0,45 μ m et 5 μ m (voir Figure V.4.B). Concernant les membranes cellulose, la littérature confirme que l'accumulation des composés étudiés (majoritairement hydrophobes) n'est que peu lié au log K_{OW} (Chen et al., 2017, 2018; Zhang et al., 2019; Zheng et al., 2015).

L'accumulation des composés dans les membranes diminue avec la surface polaire (voir Annexe V.2.A), ce qui est en accord avec le fait que surface polaire et log Dow sont positivement corrélés. Aucune tendance n'est observée dans le cas de la masse molaire et du volume de Van der Walls (voir Annexe V.2.B et Annexe V.2.C).

Figure V.4 : Accumulation dans les trois types de membrane aux deux tailles de pores en fonction du log $D_{OW}(A)$ ou du log Kow (B) des composés

V.2.2.3. Effet des membranes sur le coefficient de diffusion

Des mesures de diffusion à travers les gels diffusifs ont dans un premier temps été déterminés à l'aide de la méthode en cellule de diffusion dans de l'EUP, supposant un effet nul de la force ionique. Des comportements différents ont été observés en fonction de l'ionisation des composés et du gel diffusif étudié. Ces mesures de D, non représentatives des D dans l'eau naturelle ou du robinet, sont utilisées pour l'étude de l'influence des membranes sur la diffusion des composés. On admet ici que le caractère ionisable ou non des composés, même en l'absence de force ionique, n'induit pas de modification des éventuelles interactions qui pourraient avoir lieu avec les différentes membranes testées.

Coefficients de diffusion dans l'EUP en présence des membranes

L'effet de la présence des membranes sur la diffusion des composés a été testé seulement dans le cas du gel d'agarose ; le gel polyacrylamide pouvant être utilisé sans membrane sur le terrain (voir partie V.2.2.1). Les membranes testées en cellule de diffusion sont les membranes nylon et PES aux deux tailles de pores (0,45 μ m et 0,5 μ m).

Lors de cette expérimentation, 111 composés ont été analysés. Les coefficients de diffusion ayant été déterminés en cellule de diffusion en PVC, de nombreux composés ont subi une adsorption sur les parois de la cellule. Ainsi, une perte (*i.e.* masse perdue dans le compartiment donneur supérieure à 30 %) a été observée pour respectivement 31 et 44 composés avec les membranes nylon 0,45 µm et 5 µm et pour 26 et 46 composés dans le cas des membranes PES 0,45 µm et 5 µm. Le coefficient de diffusion déterminés en présence des membranes nylon 0,45 µm et 5 µm n'ont pas été validés pour cause d'incertitudes quant à l'analyse (niveau de confiance 3, voir partie Mat et Met) pour 11 et 15 composés respectivement. Pour les mêmes raisons, les coefficients de diffusion respectifs de 8 et 11 composés n'ont pas été validés en présence des membranes PES 0,45 µm et 5 µm. Les coefficients de diffusion déterminés à partir de pentes dont le coefficient de détermination était inférieur à 0,8 n'ont pas été validés. Au final, les coefficients de diffusion ont été validés pour 70 et 56 composés dans le cas des membranes nylon 0,45 µm et 5 µm et pour 72 et 49 composés dans le cas des membranes PES 0,45 µm et 5 µm. Ces derniers sont indiqués dans l'Annexe V.3. et sont représentés sur la Figure V.5.

Figure V.5: Coefficients de diffusion (D) obtenus à travers le gel d'agarose et les différentes membranes testées avec la méthode en cellule de diffusion

Comme dans le cas de la diffusion des composés à travers le gel d'agarose seul (voir introduction de cette partie), des comportements différents ont été observés en fonction de l'ionisation des composés. En présence d'une membrane nylon de taille de pores 0,45 μ m, les médianes des coefficients de diffusion des composés anioniques (n=15), cationiques (n=11) et neutres (n=38) sont respectivement de 5,19.10⁻⁷, 1,01.10⁻⁵ et 4,15.10⁻⁶ cm².sec⁻¹. La même tendance est observée avec la membrane nylon de taille de pore de 5 μ m. Les médianes des coefficients de diffusion des composés neutres (n=38), anioniques (n=15) et cationiques (n=9) sont respectivement de 4,15.10⁻⁶, 5,13.10⁻⁷ et 7,48.10⁻⁶ cm².sec⁻¹. En présence des membranes PES, comme dans le cas des membranes nylon, les coefficients de diffusion des composés anioniques sont plus faibles que ceux des composés neutres et cationiques. Avec une taille de pores de 0,45 μ m, la médiane des coefficients de diffusion des composés anioniques (n=22) est égale à 8,72.10⁻⁷ cm².sec⁻¹ pour les composés cationiques (n=8) et 3,18.10⁻⁶ cm².sec⁻¹ pour

les composés neutres (n=42). Dans le cas de la membrane PES 5 μ m, la médiane des coefficients de diffusion des composés anioniques (n=13) est égale à 1,44.10⁻⁶ contre 1,40.10⁻⁵ cm².sec⁻¹ pour les composés cationiques (n=8) et 3,78.10⁻⁶ cm².sec⁻¹ pour les composés neutres (n=28). En conclusion, quelle que soit la membrane utilisée, les mêmes tendances sont observées avec des coefficients de diffusion des composés cationiques plus élevés que ceux des composés anioniques et neutres.

Comparaison des coefficients de diffusion avec et sans membrane

Afin de chiffrer l'effet des membranes sur les coefficients de diffusion, nous avons déterminé le rapport des coefficients de diffusion déterminés en présence et en absence de membrane. Les ratios entre les coefficients de diffusion avec et sans membrane ont été étudiés et sont représentés en Figure V.6.

Dans le cas de la membrane nylon 0,45 μ m, les ratios de 64 composés ont été calculés et discutés. Les coefficients de diffusion de 36 composés sont similaires (ratios compris entre 0,7 et 1,3). En présence de membrane, les coefficients de diffusion de 8 composés sont supérieurs à ceux déterminés sans membrane alors qu'ils sont inférieurs pour 20 composés. Les coefficients de diffusion de 51 composés ont été comparés dans le cas de la membrane nylon 5 μ m. Un groupe de 23 composés présentent des coefficients de diffusion similaires avec ou sans membrane alors qu'ils sont supérieurs en présence de membrane pour 26 composés. Les coefficients de diffusion de 66 et 43 composés ont été comparés pour les membranes PES de taille de pores respectivement de 0,45 μ m et 5 μ m. Dans les deux cas, une majorité des composés ont des coefficients de diffusion similaires avec et sans membrane (respectivement 46 et 24 pour les tailles de pores 0,45 μ m et 5 μ m). Au vu des ces résultats, les membranes ne semblent pas impacter la diffusion d'une grande partie des composés étudiés.

Afin de comparer les deux types de membranes et les deux tailles de pores, seuls les composés pour lesquels les coefficients de diffusion ont été déterminés avec les deux membranes aux deux tailles de pores et aussi sans membrane ont été gardés (n=40). Par exemple, la comparaison n'a été effectuée que sur quatre hormones dans le cas des membranes nylon du fait de la perte par adsorption. Pour les deux membranes, que ce soit PES ou nylon, les membranes avec des tailles de pores de 0,45 µm, influencent peu les

coefficients de diffusion pour 30 et 23 composés (i.e. coefficients de diffusion similaires avec et sans membrane) ; et pour 22 et 20 composés avec des tailles de pores de 5 μ m. Les membranes PES ont une influence sur les coefficients de diffusion pour un moins grand nombre de composés que les membranes nylon (10 versus 17 à 0,45 μ m, et 18 versus 20 à 5 μ m).

Figure V.6 : Ratios entre les coefficients de diffusion avec et ceux sans membrane (nylon et PES aux deux tailles de pores) dans le cas du gel d'agarose Les lignes en pointillés grises représentent les bornes 0,7 et 1,3

V.2.2.4. Conclusion

Au vu des résultats obtenus, une membrane PES 5 μ m a été choisie pour l'échantillonnage des pesticides, pharmaceutiques et hormones à l'aide de la technique de la o-DGT. C'est un bon compromis entre l'accumulation des composés, la protection du gel sur le terrain et l'effet sur les coefficients de diffusion.

V.3. Suivi des paramètres physico-chimiques et de la concentration des composés dans l'eau

V.3.1. Paramètres physico-chimiques et température

Des paramètres physico-chimiques de l'eau dopée ont été mesurés tout au long de la calibration. Le pH et la conductivité ont été mesurés à l'aide d'un pH-mètre et d'un conductimètre respectivement. La température des aquariums a été relevée toutes les 10

minutes tout au long de la calibration à l'aide d'un enregistreur de température TinyTag. La force ionique a été déterminée après 0, 8, 13, 20 et 28 jours d'exposition dans chacun des aquariums, à partir de la concentration en anions (HCO₃⁻, Cl⁻, SO₄²⁻, NO₂⁻, NO₃⁻ et PO₄³⁻) et en cations (Na⁺, K⁺, Mg²⁺, Ca²⁺ et NH₄⁺) déterminée par chromatographie ionique. Les paramètres physico-chimiques et la température ainsi mesurés sont indiqués dans le Tableau V.1. La vitesse de courant d'eau du dispositif utilisé est estimée à environ 10 cm.s⁻¹ (Morin, 2013).

	Température (°C)	pH	Conductivité (µS.cm ⁻¹)	Force ionique (M)
Nombre de mesure	4104	44	44	10
Valeur mesurée	$20,8 \pm 0,4$	$8,2 \pm 0,1$	$369,5 \pm 12,1$	$(1,1\pm0,03).10^{-2}$
Coefficient de variation	2 %	1 %	3 %	2 %

Tableau V.1 : Température pH, conductivité et force ionique mesurés pendant la calibration

V.3.2. Concentration des composés dans l'eau

La concentration des composés dans l'eau a été déterminée un jour avant l'exposition des PS (J-1), au début de l'exposition des PS (J0) et après 1, 2, 6, 9, 13, 16, 20, 23 et 27 jours d'exposition. Elle a été validée pour 112 composés. Ce suivi a permis de contrôler la stabilité au cours du temps de la concentration des composés dans l'eau tout au long de l'expérimentation.

Un exemple de la variation de la concentration dans l'eau au cours du temps est représenté sur la Figure V.7 pour 4 composés ayant des comportements différents. Généralement, une diminution progressive de la concentration dans l'eau est observée pendant les 6 premiers jours d'exposition des PS. Une légère augmentation suivie d'une stabilisation jusqu'à la fin de la calibration sont ensuite observés pour la majorité des composés. Cette diminution au début de l'exposition est plus ou moins importante en fonction des composés, comme présenté sur la Figure V.7. Si la diminution peut être relativement faible pour des composés comme le iodosulfuron, d'autres composés comme le diénestrol subissent une diminution plus rapide entre la veille de la mise en place des PS (J-1) et le deuxième jour d'exposition (J2). Cette diminution rapide en début d'exposition est en lien avec le log Dow et concerne les composés possédant les log Dow les plus élevés.

Figure V.7: Concentration dans l'eau de quatre composés types suivant un comportement différent sur toute la durée de l'expérimentation (J-1 à J27) : la clindamycon (CLINDA), le dienestrol (DES), le flurtamone (FLM) et le iodosulfuron (ISF).

La ligne grise représente la concentration moyenne sur la durée d'exposition des PS (J0 à J27).

La variation de concentration entre le début et la fin de la période d'exposition des PS a été déterminée pour chaque composé. Elles sont reportées en Annexe V.4 et représentées sur la Figure V.8 en fonction du log D_{OW} (à pH 7,4). Une diminution entre J0 et J27 supérieure à 30 % est observée pour 37 composés indiqués en italique et soulignés en Annexe V.4. La diminution de la concentration est plus importante pour les composés dont le log D_{OW} (à pH 7,4) est supérieur à 3. Cette diminution a lieu sur les premiers jours de l'expérimentation. Il aurait sans doute été nécessaire de laisser le dispositif s'équilibrer un à deux jours supplémentaires afin d'obtenir une concentration stable sur toute la durée de l'exposition des PS.

Figure V.8 : Variation de la concentration en composé dans l'eau dopée entre J0 et J27 (%) en fonction du log de Dow à pH 7,4.

Les droites en pointillées représentent des variations de 30 % et – 30%

La concentration dans l'eau, reportée en Annexe V.4, est comprise entre 0,12 et 16 µg.L-1 (médiane = $3,6 \mu g.L^{-1}$). La concentration est inférieure à celle attendue ($5 \mu g.L^{-1}$; différence supérieure à 30 %) pour 53 composés. Pour six d'entre eux (norfluoxétine, fénofibrate, spiroxamine, acide 2,4-dichlorophénoxyacétique, diéthylstibestrol et metsulfuron), la concentration mesurée est inférieure à 1 µg.L-1. Dans le cas du fénofibrate, de la spiroxamine et du diéthylstibestrol, une diminution de près de 90 % de la concentration entre J-1 et J0 est observée (valeurs non présentées en Annexe V.4). Parmi ces composés, le fénofibrate est connu pour se dégrader dans les conditions de l'expérimentation (Morin et al., 2013). De plus, le fénofibrate et le diéthylstilbéstrol possèdent des log Kow supérieurs à 5 et peuvent donc avoir tendance à s'adsorber sur les différentes parties du dispositifs Dans le du (tuyaux et/ou aquariums). cas metsulfuron et de l'acide 2,4-dichlorophénoxyacétique, la diminution observée entre J0 et J27 est inférieure à 30 %. Et dans le cas de la norfluoxétine, la perte est de 32 %. La faible concentration de ces composés pourrait s'expliquer par un temps de demi-vie faible, probablement inférieur au taux de renouvellement journalier de l'eau. Ceci induit souvent une concentration plus basse qu'attendu mais finalement assez stable lorsque le système a atteint un état stationnaire (Mazzella et al., 2014). La concentration est élevée par rapport à la concentration attendue pour quatre composés (concentrations comprises entre 6,6 et 15,7 µg.L-1). Plus particulièrement, la concentration en simazine est plus de trois fois supérieure à celle attendue. N'ayant pas trouvé d'explication pour cet écart, les résultats pour cette substance n'ont pas été utilisés par la suite.

Au vu des résultats obtenus, il est difficile d'utiliser la moyenne de la concentration, sur la durée totale de la calibration, concernant les composés ayant eu une perte importante durant les six premiers jours de la calibration. Afin de traiter tous les résultats à l'aide de la même méthode, la concentration de l'eau utilisée par la suite est la concentration moyenne pondérée en fonction de la période d'exposition du PS (voir Figure V.9). Par exemple, pour les pesticides, les PS correspondant à une exposition d'une heure (H1) sont associés à la concentration mesurée le jour où ils ont été exposés. De la même façon, les PS correspondant à une exposition de 12 h (H12) sont associés à la moyenne des concentrations mesurées pour les dates encadrant cette exposition. Sur des durées plus longues, comme les PS correspondent à une exposition de 27 jours, la concentration dans l'eau utilisée est dans ce cas la concentration moyennée sur toute la durée d'exposition (de J0 à J27 par exemple).

Figure V.9 : Périodes d'exposition des PS et points de mesures de la concentration dans l'eau utilisés pour le calcul du facteur de concentration. Les périodes d'exposition des PS sont représentées en orange. Les points de mesures de la concentration dans l'eau liés à chaque PS sont représentés par les traits noirs.

V.4. Sélection du modèle d'accumulation

L'accumulation des composés dans les PS s'effectue suivant une cinétique d'ordre 1 (voir partie I.1.2.1). Le facteur de concentration, correspondant au rapport entre la concentration dans le PS et la concentration dans l'eau, a été déterminé lorsque ces deux données ont été validées et a été tracé en fonction du temps. L'accumulation des composés dans les deux types de PS est étudiée à partir des courbes du facteur de concentration en fonction du temps comme indiqué en partie II.7.2 (voir Figure II.3).

V.4.1. Sélection du modèle dans le cas des o-DGT

L'accumulation des composés dans les o-DGT est étudiée à partir des courbes du facteur de concentration en fonction du temps. Pour certains composés, le facteur de concentration n'augmente pas au cours du temps et reste très faible (< inférieur à 1). C'est le cas du dicamba et de la metformine avec les deux types de o-DGT ainsi que pour l'érythromycine, la clarithromycine, l'acétaminophène, le métronidazole, et l'amisulpride avec le o-DGT_{PA} uniquement. Ces composés associés à ces o-DGT n'ont donc pas été traités par la suite. Les composés pour lesquels le facteur de concentration a été déterminé sur moins de 3 temps d'exposition ont également été écartés car peu fiables. C'est le cas de l'érythromycine, la clarithromycine, et l'amisulpride avec le o-DGTAG. Dans le cas des composés pharmaceutiques, certains échantillons de o-DGT n'ont pas été pris en compte. En effet, ces derniers aboutissent à des valeurs de facteur de concentration systématiquement trop faibles ou trop élevées par rapport aux autres échantillons (valeurs aberrantes). C'est le cas d'un réplicat de chacun des deux types de o-DGT correspondant à 21 jours d'exposition. Les échantillons correspondant à 10 jours d'exposition ont également été retirés du jeu de données. Au final, l'accumulation de 97 et 95 composés a été étudiée avec les o-DGTAG et les o-DGT_{PA}, respectivement.

Modèle cinétique d'accumulation non linéaire d'ordre 1

Le modèle d'accumulation non linéaire décrit par Équation I-1 est tout d'abord testé sur 26 et 10 composés dans le cas des o-DGT_{AG} et o-DGT_{PA}, respectivement. Le modèle non linéaire n'a pas pu être ajusté pour les autres composés, le point d'inflexion de la courbe n'ayant pas été atteint au cours des 27 jours d'exposition.

Dans un premier temps, l'intervalle de confiance autour de l'ordonnée à l'origine a été étudié. Au final, seule la sulcotrione dans le cas du o-DGT_{PA} a été écartée sur ce critère, l'intervalle de confiance autour de l'origine ne contenant pas zéro. Le modèle linéaire est testé par la suite sur ce composé.

L'ordonnée à l'origine passant par zéro pour respectivement 26 et 9 composés avec le o- DGT_{AG} et le o- DGT_{PA} , la régression non linéaire est ensuite effectuée avec la contrainte de passer par l'origine. Les résidus normalisés de cette dernière ont ensuite été étudiés. Dans le cas des deux types o-DGT, aucune valeur n'a été retirée du jeu de données selon ce

critère. En effet, toutes les valeurs des résidus normalisés sont comprises entre -3 et 3 et, les résidus normalisés en fonction des valeurs ajustés sont autour de l'axe y = 0 pour tous les composés.

Les constantes cinétiques liées au modèle d'accumulation non linéaires sont alors déterminées (k_u , k_e , K_{sw} , R_s , $t_{1/2}$). Les composés pour lesquels le $t_{1/2}$ est supérieur à 21 jours sont écartés et les constantes cinétiques sont déterminées à partir du modèle linéaire sur la durée d'exposition inférieure au $t_{1/2}$. Cela concerne 3 et 4 composés dans le cas du o-DGT_{AG} et du o-DGT_{PA}, respectivement ($t_{1/2}$ compris entre 21 et 36 jours).

Modèle cinétique d'accumulation linéaire

Le modèle linéaire a été testé pour tous les composés pour lesquels le modèle non linéaire n'a pas été validé et/ou n'a pas convergé lors de la régression (généralement après avoir observé un $t_{1/2} > 21$ jours). Sur le critère de l'ordonnée à l'origine, six composés avec le o-DGT_{PA} sont écartés. Dans tous les cas, l'ordonnée à l'origine est supérieure à zéro (voir Figure V.10), ce qui pourrait s'expliquer par un phénomène d'accumulation rapide en début d'exposition (« burst phase »). Pour la majorité d'entre eux (excepté le méthomyl), l'accumulation dans le o-DGT est assez aléatoire, comme par exemple la sulcotrione sur la Figure V.10.

Figure V.10 : Facteur de concentration en fonctions du temps pour la sulcotrione (SCT) et le methomyl (MTY) dans le cas du o-DGT_{PA}.

La ligne pleine représente la régression linéaire associée.

L'ordonnée à l'origine n'étant pas significativement différente de zéro pour 74 et 84 composés dans le cas du o-DGT_{AG} et du o-DGT_{PA} respectivement, la régression linéaire

est ensuite effectuée avec la contrainte de passer par l'origine, ceci afin d'avoir une estimation plus robuste des constantes cinétiques. En étudiant les résidus normalisés de cette régression, aucune valeur obtenue avec deux types o-DGT n'a été retirée du jeu de données, les résidus étant compris entre -3 et 3. L'étude de l'allure de la courbe des résidus normalisés en fonction des valeurs ajustés a amené à écarter 2 et 18 composés avec le o-DGT_{AG} et le o-DGT_{PA}, respectivement. En effet, les résidus suivent une tendance similaire à celle observé pour le flécaïnide avec le o-DGT_{PA} (voir Figure V.11). Cette tendance peut s'expliquer par un phénomène de retard à l'accumulation, le facteur de concentration étant équivalent les dix premiers jours d'exposition. Dans ce cas de figure, aucun modèle cinétique, qu'il soit décrit pas une régression linéaire ou non, ne peut alors être ajusté.

Figure V.11 : (A) Facteur de concentration (FC) en fonction de temps de la flecaïnide avec le o-DGT_{PA} et (B) les résidus associés à la régression non linéaire.

Sur (A), la ligne pleine représente la régression linéaire et sur (B), la ligne en pointillé représente y = 0

Synthèse

Au final, 23 et 5 composés suivent une accumulation non linéaire avec le o-DGT_{AG} et le o-DGT_{PA}, respectivement alors que 72 et 76 composés, dans le cas du o-DGT_{AG} et du o-DGT_{PA} respectivement, suivent une accumulation linéaire. (voir Figure V.14). Les graphiques des facteurs de concentration en fonction du temps associés au modèle choisi ont été tracés et sont représentés en Annexe V.5 et en Annexe V.6.

V.4.2. Sélection du modèle dans les cas du POCIS_{HLB}

L'accumulation de 109 composés dans les $POCIS_{HLB}$ est étudiée à partir des courbes du facteur de concentration en fonction du temps. Le modèle d'accumulation adéquat pour chaque composé est testé et validé à l'aide de plusieurs paramètres comme indiqué en partie II.7.2 (voir Figure II.3).

Modèle cinétique d'accumulation non linéaire d'ordre 1

Le modèle non linéaire ne peut pas être ajusté à l'accumulation de 32 composés dans les POCIS, le point d'inflexion de la courbe n'ayant pas été atteint. Ces composés sont donc écartés dans un premier temps, le modèle linéaire sera ensuite testé. Au final, le modèle non linéaire est appliqué pour 75 composés.

Aucun composé n'est écarté sur le critère de l'ordonnée à l'origine. La régression non linéaire est alors effectuée avec la contrainte de passer par l'origine. Aucun composé n'est écarté sur l'étude des résidus (valeurs et allure de la courbe). Les constantes cinétiques sont alors déterminées. Après étude des $t_{1/2}$, le modèle non linéaire n'est pas validé pour le pirimicarbe ($t_{1/2} = 22$ j).

Modèle cinétique d'accumulation linéaire

Le modèle linéaire a ensuite été testé pour les composés pour lesquels le modèle non linéaire n'a pas été validé (n = 35). Dans un premier temps, dicamba et la metformin ont été écartés sur le critère de l'ordonnée à l'origine. L'ordonnée à l'origine de ces deux composés est positive ce qui pourrait s'expliquer par un phénomène d'accumulation rapide en début d'exposition. Cependant, l'incertitude sur l'accumulation de ces deux composés est importante avec des facteurs de concentration faibles (< 1 L.g⁻¹).

La régression linéaire est ensuite effectuée avec la contrainte de passer par l'origine pour les 33 composés restants. À partir des valeurs des résidus, plusieurs valeurs de facteur de concentration ont été retirées du jeu de données. C'est par exemple le cas de la valeur associée à J10 dans le cas de l'acétochlore (voir Figure V.12). De même, les valeurs associées à J10 ont été retirées pour cinq autre composés (IPPMU, médroxyprogestérone, tébuconazole, clarithromycine et érythromycine) avec des résidus standardisés supérieurs à 3. Les valeurs associées à J21 et à J14 ont été retirées dans le cas du linuron. Aucun composé n'a été écarté à partir du critère des courbes des résidus normalisés en fonction des valeurs ajustées.

Figure V.12 : (A) Facteur de concentration en fonction du temps de l'acétochlore, (B) Résidus associés à la régression linéaire avec J10 et (C) Résidus associés à la régression linéaire sans J10. Sur (A) la droite en pointillé représentant la régression linéaire sans prise en compte de l'échantillon J10 et celle en trait plein représente la régression linéaire avec prise en compte de l'échantillon J10.

Synthèse

Au final, 33 composés suivent une accumulation linéaire et 74 composés suivent une accumulation non linéaire. Aucun modèle cinétique n'a pu être appliqué sur deux composés (voir Figure V.14). Les graphiques des facteurs de concentration en fonction du temps associés au modèle choisi ont été tracés et sont représentés en Annexe V.6. Des exemples sont représentés sur la Figure V.13.

Figure V.13 : Facteur de concentration dans les POCIS en fonction du temps pour cinq composés organiques pour lesquels : (A) l'accumulation suit un modèle non linéaire ; (B) l'accumulation suit un modèle linéaire. Les lignes pleines représentent les régression linéaire ou non linéaire

POCIS (n=109)	o-DGT _{AG} (n=101)	o-DGT _{PA} (n=101)	
Modèle linéaire (n=33)	Modèle linéaire (n=72)	Modèle linéaire (n=66)	
Hormones : DES - MEDROX Pesticides : ATC - ATZ - AZS - CTL - CYPRO - DCPMU - DET - DIU - DMM - DTC - DTM - EPOX - FLM - FLZ - IPPMU - IPPU - IPU - IRG - LINU - MTC - MTX - MTZ - NFZ - PIRI* - TBZ - TYZ Pharmaceutiques : AMS - CLARI - ERY - FENO - OFLO	Hormones : aE2 - ANDRO - ANDROSTER* - bE2 - CORT - CORT.OH - DES - DEXA - DIES - DROSPI - E1 - E3 - EE2 - EPI-TESTO - LEVO - MEDROX - MEG.AC - NORE - PROG - TESTO Pesticides : ALC - ATC* - ATZ - CBF - CBZ - CTL - CYPRO - DEA - DIA - DIU - DMM - DMO - DPA - DTC - DTM - EPOX - EI M - EI Z - HEXA - DM - IPPU - IPU -	Hormones : ANDRO - ANDROSTER - CORT - CORT.OH - DEXA - E3 - EPI-TESTO - NORE - TESTO Pesticides : ALC - ATC - ATZ - CBF - CBZ - CYPRO - DCF - DCP - DEA - DET - DIA - DIU - DMM - DMO - DPA - DTC - DTM - EPOX - FLM - FLZ - FNP - HEXA - IPPMU* - IPPU* - IRG - ISF - IXI - MCP - MSF - MTC - MTC FSA - MTC OA - MTX* - MTZ - NFZ* - PRI -	
Modèle non linéaire (n=74)	IRG - MCP - MTC - MTX - MTY - MTZ - NFZ - PIRI -	SPIRO - TBZ - TYZ	
Temps de demi atteinte de l'équilibre < 14 j Hormones : aE2 - bE2 - CORT - CORT.OH - DEXA - DIES - DROSPI - E1 - E3 - EE2 - EPI-TESTO - LEVO - MEG.AC - NORE - PROG - TESTO	TBZ - TYZ Pharmaceutiques : ACE - ACFENO - BEZA - CARBA - CARBAEP* - CEL - CLINDA - CYCLOP - DICLO - FCD - FENO - FURO - GEM - KETO - LAM - MET - NAPROX - NIF - PROP - SOT	Pharmaceutiques : ACFENO - ACSMX - ATE - BEZA - CARBAEP - CYCLOP - DICLO - FENO - FURO - GEM - KETO - LAM - NAPROX - NIF - SMX - SOT - THEO - TRIM	
Pesticides : ATC.OA - BTZ - CBF - DCP - DEA - DIA - DMO - DPA - ENP - IMI - ISE - IXI - MCP - MCPA - MSE -		Modèle non linéaire (n=5)	
MST - MTC.ESA - MTC.OA - MTY - NSF - SCT - SPIRO	Modèle non linéaire (n=22)	Temps de demi atteinte de l'équilibre < 14 j Pesticides : IMI - MST Temps de demi atteinte de l'équilibre > 14 j Pesticides : BTZ - CTL - IPU	
Pharmaceutiques : ACE - ACFENO - ACSMX - APZ - ATE - BEZA - CARBA - CARBAEP - CEL - CLINDA - CYCLOP - DIAZ - DICLO - FCD - FURO - GEM - KETO - LAM - MET - METRO - NAPROX - NDZ - NIF - PARA - PROP - SALBU - SMX - SOT - THEO - TRIM	Temps de demi atteinte de l'équilibre < 14 j Pesticides : ATC.OA - BTZ - DCP - FNP - MCPA - MSF - MST - MTC.OA - NSF - SCT - SPIRO Pharmaceutiques : ACSMX - METRO - PARA - SMX - THEO		
Temps de demi atteinte de l'équilibre > 14 i	Tenno de demi etteinte de Réquilibre > 14 i	Aucun modèle applicable (n=24)	
Hormones : ANDRO - ANDROSTER - DIES Pesticides : ALC - CBZ - DCF - HEXA	Pesticides : DCF - ISF - IXI - MTC.ESA Pharmaceutiques : ATE - TRIM	Hormones : aE2 - bE2 - DES - DIES - DROSPI - E1 - EE2 - LEVO - MEDROX - MEG.AC - PROG Pesticides : ATC.OA - MCPA - MTY - NSF - SCT	
Aucun modèle applicable (n=2)	Aucun modèle applicable (n=2)	Pharmaceutiques : ACE - CARBA - CEL - CLINDA - FCD - MET - PROP Pas ou peu d'accumulation (n=6)	
Pesticides : DCB	Pesticides : DET - IPPMU		
Pharmaceutiques : METFOR	Pas ou peu d'accumulation (n=5)		
	Pesticides : DCB Pharmaceutiques : AMS - CLARI - ERY - METFOR	Pharmaceutiques : AMS - CLARI - ERY - METFOR - METRO	

Figure V.14 : Détails Classement des composés en fonction de leur modèle cinétique d'accumulation

* : composés pour lesquels un début de phase non linéaire est observé mais dont le t1/2 est supérieur à 21 j, donc classés dans le groupe des modèles linéaires. Les composés en bleu sont des composés neutres, les composés en verts sont des composés anioniques et ceux en orange sont des composés cationiques.

V.4.3. Comparaison des modèles cinétiques des deux types de PS

Les modèles cinétiques d'accumulation de 94 composés ont été comparés entre le POCIS et le o-DGT_{AG} (voir Figure V.14). Pour 46 composés, la cinétique d'accumulation est la même quel que soit le PS utilisé. Cependant, l'utilisation du o-DGT_{AG} permet d'avoir une accumulation linéaire sur toute la durée de la calibration pour 48 composés suivant une accumulation non linéaire avec le POCIS. Ces résultats sont cohérents avec le fait que la présence du gel diffusif dans le cas des o-DGT doit permettre de retarder l'atteinte de l'équilibre lors de l'accumulation des composés.

De la même façon, dans le cas du o-DGT_{PA}, les cinétiques d'accumulation de 71 composés ont été comparées à celles obtenues avec le POCIS. L'utilisation du o-DGT_{PA} permet d'avoir une cinétique d'accumulation linéaire sur toute la durée de la calibration pour 44 composés suivant une cinétique d'accumulation non linéaire avec le POCIS. C'est le cas pour la majorité des composés anioniques. Pour 25 composés, la cinétique d'accumulation est la même quel que soit le PS utilisé. Étonnement, deux composés suivant une cinétique dans le cas du o-DGT_{PA} alors qu'ils suivaient une cinétique d'accumulation linéaire avec le POCIS (chlortoluron et isoproturon). Pour ces deux composés, si l'accumulation est linéaire avec le POCIS, elle devrait également l'être avec les deux types de o-DGT, l'accumulation étant plus lente en présence d'un gel diffusif. Une incertitude existe donc sur ces deux composés. En effet, l'échantillon J28 semble sousestimé ce qui mène à la validation du modèle non linéaire dans le cas du o-DGT_{PA}.

V.5. Constantes cinétiques mesurées

Dans le cas où l'accumulation des composés est linéaire tout au long de l'exposition, seuls la constante cinétique d'accumulation (k_u) et le taux d'échantillonnage (R_S) ont été déterminés. Lorsque l'accumulation est non linéaire (ralentissement de l'accumulation et apparition d'un plateau), le temps de demi-atteinte de l'équilibre $(t_{1/2})$, la constante cinétique d'élimination (k_e) et la constante de partage (K_{SW}) ont également été déterminés.

Les constantes cinétiques obtenues avec les deux types de o-DGT sont répertoriées en Annexe V.8 et en Annexe V.9. Les constantes cinétiques obtenues avec les POCIS sont répertoriées en Annexe V.10. Toutes les constantes cinétiques sont détaillées et comparées dans les parties ci-après.

V.5.1. Constantes cinétiques de partage

V.5.1.1. Constantes de partage déterminés pour les différents types de PS

Les constantes de partage (K_{SW}) déterminées avec les o-DGT sont représentées en Annexe V.11. Elles sont comprises entre 0,97 et 22,55.10³ L.kg⁻¹ (médiane = 5,27.10³ L.kg⁻¹, n=22) pour le o-DGT_{AG}, avec des coefficients de variation compris entre 4 et 62 %. Dans le cas du o-DGT_{PA}, les K_{SW} sont comprises entre 0,95 et 6,07.10³ L.kg⁻¹ (médiane = 5,13.10³ L.kg⁻¹, n=5) et leur coefficient de variation sont compris entre 10 et 27 %. Dans la littérature, les K_{SW} ont été déterminées dans seulement une étude portant sur les alkyphénols et pour des o-DGT composés de gel diffusif d'AG uniquement. Ces derniers sont globalement supérieurs à ceux déterminées avec nos composés dans cette thèse (n=23 ; 1,51.10³ L.kg⁻¹ et 295.10³ L.kg⁻¹; médiane = 35.10³ L.kg⁻¹) (Urik and Vrana, 2019).

Dans le cas des POCIS, les constantes de partage sont représentées en Annexe V.12. Elles sont comprises entre 1 et 86.10³ L.kg⁻¹ et leur coefficient de variation sont compris entre 3 et 31 %.

V.5.1.2. Comparaison des échantillonneurs passifs

Les différents types de PS étudiés dans cette thèse sont composés de la même phase réceptrice (OASIS[®] HLB). De plus, il a été montré dans la littérature que les constantes de partage de la phase OASIS[®] HLB sont similaires lorsque cette dernière est libre ou mélangée à du gel (Urik and Vrana, 2019). Ainsi, les constantes de partage devraient être équivalentes quel que soit le type de PS utilisé. Les K_{SW} sont comparées pour 23 composés et sont représentées sur la Figure V.15.

Figure V.15 : Comparaison des constantes de partage (K_{SW}) obtenues avec les différents types d'échantillonneur passif

Ces derniers sont similaires pour la majorité des composés (n=17). Cependant, les K_{SW} sont différents pour six composés. Dans le cas de l'ISF et de l'IXI avec le o-DGT_{AG} et de l'IMI avec le o-DGT_{PA}, les K_{SW} sont inférieurs à ceux obtenus avec le POCIS. Pour ces trois composés, dans les o-DGT, les concentrations dans l'échantillon J28 semblent sousestimées, ce qui entraine une accumulation d'allure non linéaire sur toute la durée de l'exposition alors qu'elle semble linéaire les 21 premiers jours de l'exposition. Dans le cas de la TRIM, les K_{SW} obtenus avec le o-DGT_{AG} sont également inférieurs à ceux obtenus avec le POCIS. L'incertitude sur le K_{SW} dans le cas du o-DGT_{AG} est de 62 %. La différence peut alors s'expliquer par un mauvais ajustement du modèle cinétique. Dans le cas de la SPIRO, la faible valeur de K_{SW} obtenue avec le o-DGT_{AG} peut s'expliquer par la forte incertitude sur les échantillons exposés plus de 14 jours. Au contraire, le K_{SW} du MCPA dans le cas du o-DGT_{AG} est supérieur à celui déterminé avec le POCIS.

Pour ces composés, une incertitude existe, quant au modèle cinétique déterminé et aux constantes qui en découlent. Ils sont indiqués en italique dans les Annexe V.8 et l'Annexe V.9. Ils sont retirés du jeu de données pour la suite de ce chapitre.

V.5.2. Constantes cinétiques d'accumulation et d'élimination

Les constantes cinétiques d'élimination k_e déterminées avec les deux types de o-DGT sont représentées en Annexe V.13. Elles sont comprises entre 0,04 et 0,27 j⁻¹ (médiane = 0,09 j⁻¹, n=17) avec le o-DGT_{AG} et entre 0,04 et 0,18 j⁻¹ (médiane = 0,04 j⁻¹, n=4) avec le o-DGT_{PA}. Les coefficients de variation des k_e sont supérieurs à ceux observés sur les constantes de partage avec des valeurs comprises entre 12 et 44 % pour le o-DGT_{AG} et entre 27 et 45 % pour le o-DGT_{PA}. Les constantes cinétique d'accumulation (k_u), représentées en Annexe V.14 et en Annexe V.15, sont comprises entre 0,03 et 1,05 L.j⁻¹.g⁻¹ (médiane = 0,25 L.j⁻¹.g⁻¹, n=89) dans le cas du o-DGT_{AG} et entre 0,02 et 0,31 L.j⁻¹.g⁻¹ (médiane = 0,12 L.j⁻¹.g⁻¹, n=70) dans le cas du o-DGT_{PA}. Les coefficients de variation des k_u sont compris entre 1 et 51 % pour le o-DGT_{PA}.

Les constantes cinétique d'élimination k_e dans les POCIS sont représentées en Annexe V.16 et sont comprises entre 0,04 et 1,31 j⁻¹ (médiane = 0,10 j⁻¹, n=68). Les coefficients de variation des k_e sont compris entre 12 et 50 %. Les constantes cinétique d'accumulation k_u dans les POCIS sont représentées en Annexe V.17 et sont comprises entre 0,06 et 4,3 L.j⁻¹.g⁻¹ (médiane = 0,77, n=101). Les coefficients de variation des k_u sont compris entre 2 et 59 %. Ces derniers sont supérieurs pour les composés suivant une accumulation non linéaire, comme dans le cas des o-DGT.

V.5.3. Temps de demi-atteinte de l'équilibre (t_{1/2})

Les temps de demi-atteinte de l'équilibre $(t_{1/2})$ ont pu être déterminés lorsque le modèle cinétique d'accumulation non linéaire a pu être ajusté. Parmi ces composés, se trouvent les composés dont le $t_{1/2}$ est supérieur à 21 j et pour lesquels le modèle linéaire a finalement été sélectionné compte tenu que l'application de ces échantillonneurs sur le terrain ne dépasse que rarement 21 j. Au final, le $t_{1/2}$ a été déterminé pour 20 et 8 composés avec le o-DGT_{AG} et avec le o-DGT_{PA}, respectivement et pour 68 composés avec le POCIS.

V.5.3.1. Temps de demi-atteinte de l'équilibre obtenus avec les différents PS

Les $t_{1/2}$ obtenus sont compris entre 3 et 36 jours (médiane = 8 jours) avec le o-DGT_{AG} et entre 4 et 27 jours (médiane = 20 jours) avec le o-DGT_{PA}. Ces $t_{1/2}$ sont représentés en Annexe V.18. La majorité des $t_{1/2}$ sont inférieurs à 14 jours avec le o-DGT_{AG} (14 composés sur 20) alors qu'ils sont supérieurs à 14 jours pour la majorité des composés avec le o-DGT_{PA} (7 sur 8 composés). Les $t_{1/2}$ obtenus par o-DGT_{AG} dans la littérature pour des composés perfluoroalkyles et des produits de soin corporels sont supérieurs à ceux observés dans cette étude (Urik and Vrana, 2019) (médiane pour les composés perfluoroalkyles = 221 jours ;médiane pour les produits de soin corporels = 29 jours).

Les temps de demi-atteinte de l'équilibre $(t_{1/2})$ avec les POCIS sont compris entre 0,5 et 20 jours (médiane = 7 jours) et sont représentés en Annexe V.19. Les $t_{1/2}$ des composés cationiques (n=10 ; médiane = 8 jours) et des composés neutres (n=67, médiane = 9 jours) sont supérieurs à ceux des composés anioniques (n=24 ; médiane = 4 jours). Les composés pour lesquels le $t_{1/2}$ est supérieur à 14 jours (n=7) sont majoritairement des composés neutres. Seul un composé ionique (diclofop) possède un $t_{1/2}$ supérieur à 14 jours ($t_{1/2}$ = 17 jours).

V.5.3.2. Comparaison des $t_{1/2}$ des PS

Le nombre de composés suivant une accumulation non linéaire dans le cas des deux types de PS étant relativement faible, les $t_{1/2}$ ont été comparés pour seulement 17 et 2 composés dans le cas du o-DGT_{AG} et du o-DGT_{PA} respectivement. Le $t_{1/2}$ est supérieur avec les o-DGT qu'avec les POCIS pour la grande majorité des composés (voir Figure V.16). L'utilisation de la technique o-DGT permet donc l'augmentation de la durée de la phase linéaire. Cependant, cela induit également une augmentation du retard à l'accumulation, ce qui pose problème lors de la détermination des constantes cinétiques comme dans le cas des hormones (voir partie V.5.4.1).

Figure V.16 : Comparaison des temps de demi-atteinte de l'équilibre $(t_{1/2})$ des POCIS avec les (A) $t_{1/2}$ des o-DGT_{AG} ou (B) $t_{1/2}$ des o-DGT_{PA}.

La ligne noire représente y=x alors que les lignes en pointillés représentent l'erreur à 30 % entre y et x

V.5.4. Taux d'échantillonnage (Rs) et coefficient de transfert de masse global

V.5.4.1. Taux d'échantillonnage obtenus pour les deux types de o-DGT

Les taux d'échantillonnage R_S obtenus avec le o-DGT_{AG}, représentés en Figure V.17 sont compris entre 1,2 et 42,8 mL.j⁻¹ (médiane = 10,4 mL.j⁻¹, n=89) et ceux obtenus avec le o-DGT_{PA}, représentés dans la Figure V.18, sont compris entre 0,9 et 12,7 mL.j⁻¹ (médiane = 5,1 mL.j⁻¹, n=70).

Figure V.17 : Taux d'échantillonnage (mL.j¹) pour 96 composés (présentés par ordre alphabétique) obtenus avec le o-DGT_{AG}

Figure V.18 : Taux d'échantillonnage (R_s ; mLj^1) obtenus pour 73 composés (présentés par ordre alphabétique) avec le o-DGT_{PA}

Dans le cas du o-DGT_{AG}, les R_S des composés anioniques (n = 23 ; médiane = 15 mL.j⁻¹) sont supérieurs à ceux des composés neutres (n = 59; médiane = 9 mL.j⁻¹) et des composés cationiques (n = 7; médiane = 6 mL.j⁻¹). Dans le cas du o-DGT_{PA}, les R_S des composés neutres sont légèrement supérieurs (n = 44; médiane = 5 mL.j⁻¹) à ceux des composés anioniques (n = 22; médiane = 3 mL.j⁻¹) et cationiques (n = 4; médiane = 3 mL.j⁻¹). Avec les deux types de o-DGT, les Rs des hormones sont inférieurs à ceux des pharmaceutiques et des pesticides. Cela peut s'expliquer en partie par un léger retard à l'accumulation (« lag phase ») d'un à trois jours bien que l'intervalle de confiance de l'ordonnée à l'origine contienne zéro. Ces faibles valeurs de R_S déterminées pour les hormones par rapport aux pharmaceutiques et pesticides n'ont pas été observées par ailleurs dans la littérature (Challis et al., 2016a; Stroski et al., 2018). Ce retard à l'accumulation peut s'expliquer soit une résistance au transfert de masse non négligeable entre le gel et la phase adsorbante, soit par une résistance au transfert de masse importante entre la membrane et le gel diffusif. Les coefficients de diffusion des hormones déterminés en cellule de diffusion avec et sans membrane sont cependant similaires (ratios entre les D compris entre 0,7 et 1,3 excepté pour l'estriol dans le cas des deux membranes nylon) (voir partie V.2.2.3). De plus, dans le cas des o-DGT_{PA}, l'accumulation de la majorité des hormones suit une tendance qui peut s'expliquer par un phénomène de retard à l'accumulation (voir Figure V.19). Les o-DGT_{PA} n'étant pas composés d'une membrane, la résistance au transfert de masse entre la membrane et le gel diffusif ne semble donc pas à l'origine de ce retard à l'accumulation. Il serait alors dû à une résistance non négligeable au transfert de masse entre le gel et la phase adsorbante.

Figure V.19 : Facteur de concentration en fonction du temps pour la dexamethasone et l'estrone avec le o-DGT_{AG} et pour la dropirenone avec le o-DGT_{PA}

V.5.4.2. Taux d'échantillonnage obtenus pour le POCIS

Les taux d'échantillonnages R_s sont compris entre 11,3 et 858 mL.j⁻¹ (médiane = 153 mL.j⁻¹, n=101). La valeur maximale est liée à la clindamycine, ce qui peut être dû à des incertitudes quant à l'analyse (niveau de confiance 2 pour les concentrations dans le POCIS, voir partie II.7.1) ou à un mauvais ajustement du modèle cinétique. Les R_s sont représentés en Figure V.20. Les coefficients de variation des R_s sont compris entre 2 et 59 %. Sur un total de 101 R_s , 14 d'entre eux possèdent des coefficients de variation supérieurs à 30 % dont trois supérieurs à 50 %. Ces derniers sont la clindamycine, le diéthylstilbestrol et le gemfibrozil, ce qui peut s'expliquer par un mauvais ajustement du modèle cinétique. Les R_s des composés neutres (n = 67 ; médiane = 145 mL.j⁻¹) sont inférieurs à ceux des composés anioniques (n = 24 ; médiane = 221 mL.j⁻¹) et cationiques (n = 10 ; médiane = 211 mL.j⁻¹).

Ces R_s ont été comparés à ceux déterminés lors de précédentes calibrations effectuées à INRAE à Bordeaux et INRAE à Lyon (Fauvelle et al., 2014; Lissalde et al., 2011; Morin et al., 2013; Poulier et al., 2015). Les R_s déterminés dans cette thèse sont du même ordre de grandeur que ceux déterminés lors de précédentes calibration (voir Figure V.21). La différence plus importante avec les R_s déterminés par Gaëlle Poulier (2014) peut s'expliquer par une vitesse de courant plus faible lors de la manipulation.

Figure V.20 : Taux d'échantillonnage (mLj⁻¹) obtenus avec les POCIS lors de la calibration

Figure V.21 : Taux d'échantillonnage $(mL.j^{-1})$ déterminés à INRAE lors de précédentes calibration comparés à ceux déterminés lors de cette calibration pour 46 composés (classés dans l'ordre alphabétique)

V.5.4.3. Comparaison des taux d'échantillonnage des différents PS

Afin de comparer les taux d'échantillonnage (R_S), seuls les composés pour lesquels les taux d'échantillonnages ont été déterminés pour le POCIS et au moins l'un des deux o-DGT ont été gardés. Dans cette partie, les hormones ont été retirées du jeu de données, ces composés présentent un retard à l'accumulation d'un à trois jours menant à une sousestimation des R_S avec les o-DGT.

Au final, les R_s obtenus avec le o-DGT_{AG} et le o-DGT_{PA} ont pu être comparés à ceux obtenus avec le POCIS pour 68 et 57 composés, respectivement. Les R_s des o-DGT (médiane = 11 mL.j⁻¹ dans le cas du o-DGT_{AG} et médiane = 5 mL.j⁻¹ dans le cas du o-DGT_{PA}) sont inférieurs à ceux observés avec le POCIS (médiane > 150 mL.j⁻¹) du fait de leur surface d'exposition plus faible et de leur épaisseur de couche diffusive plus élevée, du fait de la présence d'un gel.

V.5.4.4. Comparaison des coefficients globaux de transfert de masse des différents échantillonneurs passifs

Les R_S ont été normalisés par la surface d'exposition afin de comparer le coefficient global de transfert de masse (k_o) (voir Équation I-7). Ces derniers sont plus élevés avec le POCIS qu'avec les deux types de o-DGT avec une médiane autour de 15 cm.j⁻¹ contre 2 cm.j⁻¹ pour le o-DGT_{PA} et 4 cm.j⁻¹ pour le o-DGT_{AG}. Dans la littérature, les coefficients globaux de transfert de masse sont comparables entre le POCIS et les o-DGT testées (surface exposée du POCIS de 45,8 cm²) (Chen et al., 2018; Guibal et al., 2017). Pour cette calibration, la valeur de surface utilisée pour le calcul des coefficients globaux de transfert de masse est d'environ 11 cm², cette dernière correspondant à la surface d'exposition réelle de la phase réceptrice pour des POCIS (surface de membrane de 45,8 cm², 200 mg de phase) (Fauvelle et al., 2014). En effet, la phase adsorbante des POCIS sédimente entre les membranes lorsque le POCIS est positionné verticalement, réduisant ainsi la surface d'échange effective.

Figure V.22 : Comparaison des coefficients globaux de transfert de masse des pesticides et pharmaceutiques (log_2) obtenus avec le POCIS et avec soit le o-DGT_{AG} (A), soit le o-DGT_{PA} (B)

La différence observée entre les coefficients globaux de transfert de masse (k_o) peut alors s'expliquer par la présence du gel diffusif et donc d'un terme lié à la résistance au transfert de masse lié au gel. En effet, les coefficients de transfert de masse globaux des composés pour les o-DGT sont déterminés suivant l'Équation V-1.

$$1/k_0 = 1/k_w + 1/k_m K_{MW} + 1/k_g K_{GM} + 1/k_s K_{SG}$$
 Équation V-1

avec k_0 le coefficient de transfert de masse global, k_w , le transfert de masse lié à la couche limite de diffusion, k_m , le coefficient de transfert de masse dans la membrane, k_g , le coefficient de transfert de masse dans le gel diffusif, k_s , le coefficient de transfert de masse dans la phase réceptrice, K_{MW} , la constante d'équilibre entre la membrane et l'eau, K_{GM} , la constante d'équilibre entre le gel et la membrane et K_{SG} , la constante d'équilibre entre le gel et la phase réceptrice.

Ce dernier terme est généralement négligeable. Cependant, un retard à l'accumulation (lag phase) observable, comme dans le cas des hormones avec les deux types de o-DGT peut s'expliquer par ce terme, les o-DGT_{PA} ne possédant pas de membrane. La contribution de la résistance entre le gel et la phase réceptrice n'étant pas connue directement, les hormones n'ont pas été étudiées dans cette partie.

En négligeant aussi le terme lié à la résistance entre le gel et la phase réceptrice et considérant K_{MW} et $K_{GM} = 1$, soit le cas où les composés ne sont transportés que par les pores remplis d'eau de la membrane et du gel diffusif, alors le terme $k_m K_{MW}$ peut être estimé à partir des équations de transport de masse en milieux poreux. Le coefficient global de transfert de
masse peut alors s'écrire suivant l'Équation V-2 pour le o-DGT_{AG} et suivant l'Équation V-3 pour le o-DGT_{PA}, ce dernier ne possédant pas de membrane.

$$1/k_{o} = \delta/D_{w} + \tau^{2}\Delta_{m}/D_{w}\varphi + \Delta/D_{g}$$

$$1/k_{o} = \delta/D_{w} + \Delta/D_{g}$$
Équation V-3

Avec δ , l'épaisseur de la couche limite de diffusion, Δ l'épaisseur du gel diffusif, Δ_m l'épaisseur de la membrane, D_w , le coefficient de diffusion des composés dans l'eau, D_g le coefficient de diffusion des composés à travers le gel diffusif, τ la tortuosité, φ la porosité de la membrane et D_w le coefficient de diffusion des composés dans l'eau.

Dans le cas des POCIS, le terme lié au gel disparait. Le coefficient de transfert de masse global peut alors se déterminer suivant l'Équation V-4.

$$1/k_0 = \delta/D_w + \tau^2 \Delta_m/D_w \varphi \qquad \qquad \acute{Equation V-4}$$

Comme vu précédemment, dans le chapitre dédié à la détermination des constantes de diffusion dans les gels uniquement, l'épaisseur de la couche limite de diffusion ne peut pas être ignorée (voir Chapitre IV). Cette dernière a pu être déterminée dans le cas des o-DGT. La calibration des POCIS ayant été effectuée au même moment, l'épaisseur de la DBL utilisée est la même que celle déterminée pour les o-DGT.

V.5.5. Coefficients de diffusion

V.5.5.1. Coefficients de diffusion déterminés par calibration

Les coefficients de diffusion ont été déterminés à partir des taux d'échantillonnage (voir Équation I-14) déterminés à partir du modèle linéaire afin de respecter la première loi de Fick. Pour cela, l'épaisseur de la couche limite de diffusion a, dans un premier temps, été considérée comme négligeable par rapport à l'épaisseur du gel diffusif afin de les comparer à ceux déterminé à l'aide des méthodes en cellule de diffusion et par empilement de gel.

Ces derniers sont répertoriés en Annexe V.20. Dans le cas du o-DGT_{AG}, les coefficients de diffusion sont compris entre 5,0.10⁻⁷ et 1,8.10⁻⁵ cm².s⁻¹ (médiane = 3,6.10⁻⁶ cm².s⁻¹; n = 72). L'amplitude des coefficients de diffusion obtenus avec le o-DGT_{PA} s'étend entre 4,2.10⁻⁷ et 6,0.10⁻⁶ cm².s⁻¹ (médiane = 2,3.10⁻⁶ cm².s⁻¹; n = 66).

Figure V.23 : Coefficients de diffusion obtenus lors de la calibration (D_{calib}) avec le o-DGT_{AG} (n=72) et le o-DGT_{PA} (n=66)

Dans le cas des o-DGT_{AG}, les coefficients de diffusion des composés cationiques (médiane = 2,4.10⁻⁶ cm².s⁻¹; n = 6) sont légèrement inférieurs à ceux des composés anioniques (médiane = 5,1.10⁻⁶ cm².s⁻¹; n = 10) et neutres (médiane = 3,6.10⁻⁶ cm².s⁻¹; n = 56). La même tendance est observée dans le cas des o-DGT_{PA}. Les coefficients de diffusion des composés cationiques sont inférieurs (médiane = 1,2.10⁻⁶ cm².s⁻¹; n = 4) à ceux observés pour les composés anioniques (médiane = 1,5.10⁻⁶ cm².s⁻¹; n = 20) et neutres (médiane = 2,5.10⁻⁶ cm².s⁻¹; n = 42). Les coefficients de diffusion des hormones sont inférieurs à ceux observés pour les composés pharmaceutiques et les pesticides avec les deux types de o-DGT. Cette tendance s'explique par les faibles valeurs de Rs observées pour les hormones (voir partie V.5.4.1).

V.5.5.2. Comparaison avec les coefficients de diffusion obtenus par les méthodes en cellule de diffusion et par empilement de gels

Les coefficients de diffusion issus de la calibration ont ensuite été comparés à ceux obtenus à l'aide des méthodes en cellule de diffusion et par empilement de gel. Dans cette partie, les hormones n'ont pas été traitées au vu de l'incertitude sur les coefficients de diffusion déterminés lors de la calibration.

Les coefficients de diffusion déterminés en cellule de diffusion (D_{cell}) , à travers les gels AG et PA, ont été comparés à respectivement 33 et 42 coefficients de diffusion déterminés lors de la calibration (D_{calib}) . Les coefficients de diffusion déterminés par empilement de gel

 (D_{stack}) , à travers les gels AG et PA, ont été comparés à respectivement 48 et 55 D_{calib} . Ces coefficients de diffusion sont représentés Figure V.24.

o-DGT avec gel AG

Figure V.24 : Comparaison des coefficients de diffusion obtenus par calibration avec ceux obtenus en cellule de diffusion et empilement de gel. La droite pleine représente y = x et les doites en pointillés représentent l'erreur à 30 %.

Les D_{calib} obtenus avec les o-DGT_{PA} sont inférieurs aux D_{stack} pour la majorité des composés (n=44) et sont similaires (différence < 30 %) pour seulement 11 composés. Au contraire, les D_{calib} sont supérieurs aux D_{cell} pour la majorité des composés (n=24) et sont similaires (différence < 30 %) pour seulement 9 composés.

Les D_{calib} obtenus avec les o-DGT_{AG} sont inférieurs aux D_{stack} pour 21 composés et sont similaires (différence < 30 %) pour 25 composés. Ils sont supérieurs aux D_{stack} pour seulement 2 composés. Les D_{calib} obtenus avec les o-DGT_{AG} sont supérieurs aux D_{cell} pour 14 composés. Ils sont inférieurs aux D_{cell} pour 10 composés et sont similaires (différence < 30 %) pour 9 composés

Les D_{stack} correspondent aux coefficients de diffusion dans le gel seulement. A la différence, dans le cas des méthodes de calibration et en cellule de diffusion, la présence d'une couche limite d'une épaisseur non négligeable par rapport à celle du gel diffusif peut ralentir le transfert de masse global des composés du milieu dopé à la résine. Comme vu précédemment dans le Chapitre IV, il est possible de déterminer l'épaisseur de la couche limite de diffusion à partir des Équation V-2 et Équation V-3 pour le o-DGT_{AG} et le o-DGT_{PA}, respectivement. Pour cela, le coefficient de diffusion dans l'eau D_w est calculé à partir de l'équation de Hayduk-Laudie (Tucker and Nelken, 1990). En absence de données pour la tortuosité τ et pour la porosité de la membrane φ , Booij et al. (2017) considère les valeurs de 1 pour la tortuosité et de 0,7 pour la porosité comme satisfaisantes.

L'épaisseur de la DBL calculée pour les pesticides et les pharmaceutiques est représentée en Figure V.25. La médiane de l'épaisseur de la DBL dans le cas des o-DGT_{AG} est de 0,15 mm et 0,31 mm pour les pesticides et les pharmaceutiques, respectivement. Dans le cas des o-DGT_{PA}, l'épaisseur de la DBL est supérieure pour chacun des groupes de composés avec des médianes de 1,19 mm et de 3,57 mm pour les pesticides et les pharmaceutiques, respectivement.

La différence observée entre les pesticides et les pharmaceutiques peut s'expliquer par une résistance entre le gel et la phase réceptrice non négligeable et plus élevée pour les composés pharmaceutiques par rapport aux pesticides. Ainsi, les o-DGT_{PA} semble adaptées que les o-DGT_{AG} pour de nombreux composés étudiés.

Figure V.25 : Épaisseur de la couche limite de diffusion (DBL) déterminée pour les pesticides (Pest.) et les pharmaceutiques (Pharm.)

V.6. Synthèse et perspectives

Dans ce chapitre, les rendements d'extraction des deux résines (AG et PA) ont tout d'abord été détaillés. Dans un second temps, il a été montré que les membranes d'une taille de pores de 5 µm permettent la protection du gel diffusif sur le terrain tout en accumulant moins les composés que les membranes d'une taille de pores de 0,45 µm. De manière général, les coefficients de diffusion ne sont que peu impactés par la présence de la membrane, comme cela avait déjà été montré dans le cas des métaux. Au final, il a été montré que la membrane PES d'une taille de pore 5 µm est la plus adaptée pour l'échantillonnage des composés ciblés. Elle a donc été utilisée dans le cas où le gel diffusif est un gel d'agarose, pour protéger ce dernier qui est facilement dégradable sur le terrain.

Lors de la calibration, il a été montré que les o-DGT permettent, quel que soit le gel diffusif utilisé, de ralentir l'accumulation des composés, étirant ainsi la durée de la phase d'accumulation linéaire. Cela permet donc d'utiliser ces PS pour des composés avec lesquels il était impossible d'utiliser les POCIS du fait de $t_{1/2}$ trop court (< 4 j). Cependant, le léger retard à l'accumulation observé avec les POCIS pour certains composés est lui aussi allongé, comme c'est le cas pour les hormones, en particulier avec le o-DGT_{AG}. Cette dernière peut être due à une résistance au transfert de masse entre le gel et la phase réceptrice non négligeable. Ainsi, les o-DGT_{PA} pour l'échantillonnage de ces composés n'est pas adaptée. De plus, les taux d'échantillonnage sont largement diminués avec la présence du gel diffusif. Afin de palier à ce problème, la solution serait alors d'augmenter la surface d'exposition comme cela a été fait par ailleurs dans la littérature (Belles et al., 2017; Mechelke et al., 2019; Urik and Vrana, 2019).

Synthèse et perspectives

Les échantillonneurs passifs sont de plus en plus étudiés dans le but de permettre le bon suivi de la concentration des composés organiques dans les milieux aquatiques. Le POCIS est celui le plus utilisé aujourd'hui pour les composés organiques hydrophiles. Cependant, ce dernier présente certaines limitations et plus particulièrement pour l'échantillonnage des composés ionisables. En alternative au POCIS, la technique o-DGT a été développée plus récemment pour l'échantillonnage des composés organiques. Cette technique avait des résultats prometteurs dans la littérature. Ce travail de thèse a, dans un premier temps, permis de recenser, à partir d'une étude approfondie de la littérature, les différentes adaptations du o-DGT pour un grand nombre de composés organiques dont des composés ionisables (voir Chapitre I). Les premières expérimentations effectuées à INRAE en 2013 ont également montré que l'utilisation de la technique o-DGT permettrait d'allonger la durée de l'accumulation linéaire pour des pesticides (voir Chapitre III). Au vu de ces premiers résultats et dans le but de développer un échantillonneur passif adapté au plus grand nombre de composés organiques, une technique o-DGT a été développée pour de nombreuses substances comprenant des composés pharmaceutiques, des pesticides et des hormones ayant des propriétés physico-chimiques diverses. Pour cela, plusieurs tâches ont été réalisées lors de cette thèse.

Dans un premier temps, les coefficients de diffusion des composés étudiés ont été déterminés à travers les deux gels de diffusion considérés (*i.e.* agarose et polyacrylamide). Les trois méthodes de détermination de ces derniers ont été comparées : la méthode en cellule de diffusion, la méthode par empilement de gel et la méthode par calibration. Les coefficients de 117 composés organiques ont été ainsi obtenus. Il a été montré que les coefficients de diffusion à travers le gel AG sont plus élevés qu'à travers le gel PA, quelle que soit la méthode utilisée, ce qui peut s'expliquer par une taille des pores plus faible dans le cas du gel PA (Scally et al., 2006). Par comparaison, les coefficients de diffusion obtenus en cellule de diffusion (D_{cell}) sont inférieurs à ceux obtenus par empilement de gel (D_{stack}), quel que soit le gel diffusif utilisé. Cette différence s'explique par une épaisseur de couche limite de diffusion non négligeable dans le cas de la méthode en cellule de diffusion malgré l'agitation. La condition comme quoi le gel diffusif serait le seul à contrôler le transfert de masse des composés n'est alors plus validée et, dans ce cas, le coefficient de transfert de masse global dépendrait également du coefficient de transfert de masse à travers la DBL.

Au contraire, les D_{stack} sont représentatifs de la diffusion dans le gel uniquement. À partir de l'écart observé entre les Dcell et les Dstack, l'épaisseur de la couche limite de diffusion a pu être déterminée. Dans la littérature, l'épaisseur de la DBL est négligée lors de la détermination des coefficients de diffusion, ce qui peut mener à un biais lors de la détermination de l'estimation de ces constantes. Il apparaitrait donc nécessaire de renseigner a minima l'agitation du milieu lors de ce type d'expérimentation, voire recalculer l'épaisseur de la couche limite afin d'avoir une mesure plus juste des constantes D_{cell} . Autrement, il serait plus judicieux d'utiliser les taux d'échantillonnage lors de la détermination de la concentration en micropolluants dans les milieux aquatiques, puisque ce paramètre est établi pour une vitesse de courant donné, et varie avec celui-ci, contrairement à une constante de diffusion qui n'est affectée que par la température dans l'absolu. Par ailleurs, cette thèse a permis de montrer que malgré certaines tendances, il n'est pas encore possible de prédire les coefficients de diffusion de tous les composés étudiés à partir des paramètre physico-chimiques suivants considérés un par un : la masse molaire, le volume de Van der Walls, la surface polaire et le log Dow à pH 7,4. Dans la littérature, un modèle QSPR liant les coefficients de diffusion à la polarisabilité moléculaire, le potentiel chimique et l'indice d'électrophilicité global a été développé (Liu et al., 2020). Il serait alors intéressant de tester le lien entre les coefficients de diffusion déterminés dans cette thèse et ces paramètres physico-chimiques. De manière générale, les liens entre les coefficients de diffusion et un plus grand nombre de paramètres physico-chimiques ainsi que les propriétés des différents gels devront être étudiés afin de d'essayer déterminer un modèle permettant de prédire au mieux ces derniers.

En parallèle, plusieurs membranes (PES, nylon et cellulose) à deux tailles de pores différentes (0,45 et 5 μ m) ont été testées afin de définir la plus adaptée pour l'échantillonnage des composés étudiés. Il a été montré dans cette thèse que la présence d'une membrane permet de protéger le gel d'agarose sur le terrain contre une éventuelle dégradation. Au contraire, la présence d'une membrane n'est pas nécessaire pour le gel polyacrylamide, ce dernier ne subissant pas de dégradation sur le terrain. L'étude de l'accumulation des pesticides dans les membranes étudiées a montré qu'en augmentant la taille des pores, la rétention des composés dans ce compartiment diminuait. La membrane cellulose est la membrane la moins adaptée car cette dernière accumule le plus les composés

étudiés. Cette dernière a donc été écartée. L'effet de la présence de membrane sur la diffusion des composés a également été étudiée. Les coefficients de diffusion sont similaires avec et sans membrane pour la majorité des composés. Au final, la membrane PES d'une taille de pore de 5 µm a été sélectionnée pour la protection du gel d'agarose sur le terrain.

Enfin, lors de la calibration en laboratoire des deux types de o-DGT et des POCIS, les cinétiques d'accumulation des composés étudiés ont été étudiées. Les composés ont ainsi été séparés en trois groupes : les composés suivant une accumulation linéaire tout au long de la calibration, les composés suivant une accumulation non linéaire avec atteinte d'un plateau et ceux dont il n'a pas été possible de déterminer la cinétique d'accumulation. Les cinétiques d'accumulation obtenues pour les trois types de PS sont répertoriées dans la Figure V.14 et ont été comparées. Il a ainsi été mis en évidence que de nombreux composés suivant une accumulation non linéaire avec le POCIS, suivent une accumulation linéaire avec le ODGT sur toute la durée de la calibration (voir Figure VI.1).

Figure VI.1 : Facteur de concentration (FC) en fonction du temps pour trois composés et les régressions associées

Les constantes cinétiques d'accumulation, de désorption ainsi que les temps de demiatteinte de l'équilibre et les taux d'échantillonnage des composés étudiés ont été déterminées pour les trois types de PS. Ces constantes cinétiques ont été comparées à celles obtenues avec le POCIS dans les mêmes conditions, celui-ci demeurant le dispositif de « référence » à ce jour pour des substances hydrophiles. Les taux d'échantillonnage ont été déterminés respectivement pour 107, 94 et 71 composés avec les POCIS, o-DGT_{AG} et o-DGT_{PA}. Ces taux d'échantillonnage sont très inférieurs avec les o-DGT, comparé aux POCIS (avec des valeurs inférieures à 10 ml.j⁻¹ *vs* 150 mL.j⁻¹). Cette différence s'explique en partie par l'aire de la surface exposée moins importante avec les o-DGT (3,14 cm² *vs* 11 cm²) mais aussi par la résistance au transfert de masse plus élevée du fait de la présence du gel diffusif. L'aire de la surface peut être augmentée afin d'augmenter le taux d'échantillonnage comme cela a été fait par ailleurs dans la littérature (Mechelke et al., 2019; Urik et Vrana, 2019). Il est important de noter que les extraits de POCIS nécessitent souvent une dilution ou une étape de purification afin de s'affranchir des effets matrices ce qui affecte donc les limites de quantification (Fauvelle, 2012). Au contraire, les extraits de o-DGT sont généralement suffisamment « propre » pour une injection directe. Au final, les limites de quantification des o-DGT et des POCIS sont donc souvent similaires et ce, malgré la différence de taux d'échantillonnage. En accord avec ce qui a été observé sur les cinétiques d'accumulation, les temps de demi-atteinte de l'équilibre sont plus élevés avec les o-DGT. La technique o-DGT permet donc d'allonger la phase linéaire de la cinétique d'accumulation. Cela permettrait désormais l'échantillonnage des composés qui atteignent rapidement le régime d'équilibre avec le POCIS. Cependant, cet allongement de la phase linéaire provoque également un allongement des retards à l'accumulation, en particulier pour les hormones. Ce retard à l'accumulation a été observé plus particulièrement dans le cas des o-DGT_{PA}, qui ne comportent pas de membranes. La résistance de transfert de masse entre le gel et la phase réceptrice serait alors plus importante avec le gel PA. Cependant, cette dernière n'a pas été déterminée directement lors de cette thèse et serait à étudier lors de prochaines expérimentations afin de confirmer cette supposition. Ces retards à l'accumulation peuvent poser problème, notamment si les concentrations dans le milieu varient très vite (comme par exemple des pics de contamination d'une durée inférieure au temps de latence). En effet, dans ce cas, il est possible d'avoir un échantillonnage de cette contamination plus ou moins partiel, et donc de sous-estimer ou d'ignorer cette dernière. Ces retards à l'accumulation, plus important dans le cas des o-DGT_{PA} pourrait donc limiter l'applicabilité de la o-DGT.

De manière générale, la technique o-DGT est une bonne alternative à l'utilisation des POCIS. En effet, la durée de la phase linéaire est augmentée tout en diminuant l'effet de l'hydrodynamique du milieu (Buzier et al., 2019). Le o-DGT_{AG} paraît le plus adapté à l'échantillonnage de la grande majorité des composés étudiés, en particulier des hormones. La membrane est alors nécessaire dans le cas du o-DGT_{AG} ce qui n'a pas ou peu d'impact sur le transfert de masse des composés. À partir de ces observations, il sera nécessaire par

la suite d'effectuer de nouvelles expérimentations notamment sur les phénomènes de retards à l'accumulation observés pour certains composés. Pour ce faire, l'intégration des pics de contamination par les o-DGT serait à étudier par la suite, comme cela a déjà été fait pour les POCIS (Bernard et al., 2018), en exposant les o-DGT à des concentrations plus élevées pendant des brefs laps de temps lors d'une calibration. Pour les différents types d'échantillonneurs passifs utilisés dans cette thèse, il est nécessaire d'indiquer tous les paramètres des calibrations, notamment la vitesse du courant, dans le but d'obtenir des constantes cinétiques et taux d'échantillonnage plus fiables, puis une estimation convenable des constantes de diffusion.

Bibliographie

Agreste (2015). Pratique culturale.

Alvarez, D.A., Petty, J.D., Huckins, J.N., Jones-Lepp, T.L., Getting, D.T., Goddard, J.P., and Manahan, S.E. (2004). Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ. Toxicol. Chem. *23*, 1640.

Amato, E.D., Covaci, A., Town, R.M., Hereijgers, J., Bellekens, B., Giacometti, V., Breugelmans, T., Weyn, M., Dardenne, F., Bervoets, L., et al. (2018). A novel active-passive sampling approach for measuring time-averaged concentrations of pollutants in water. Chemosphere 209, 363–372.

Auguie, B. (2017). gridExtra: Miscellaneous Functions for "Grid" Graphics}.

Auguie, B. (2019). egg: Extensions for "ggplot2": Custom Geom, Custom Themes, Plot Alignment, Labelled Panels, Symmetric Scales, and Fixed Panel Size.

Baty, F., Ritz, C., Charles, S., Brutsche, M., Flandrois, J.-P., and Delignette-Muller, M.-L. (2015). A Toolbox for Nonlinear Regression in {R}: The Package {nlstools}. J. Stat. Softw. 66, 1–21.

Bäuerlein, P.S., Mansell, J.E., ter Laak, T.L., and de Voogt, P. (2012). Sorption Behavior of Charged and Neutral Polar Organic Compounds on Solid Phase Extraction Materials: Which Functional Group Governs Sorption? Environ. Sci. Technol. *46*, 954–961.

Belles, A., Alary, C., Aminot, Y., Readman, J.W., and Franke, C. (2017). Calibration and response of an agarose gel based passive sampler to record short pulses of aquatic organic pollutants. Talanta *165*, 1–9.

Belles, A., Alary, C., Laguerre, N., and Franke, C. (2018). Analyzing the uncertainty of diffusive gel-based passive samplers as tools for evaluating the averaged contamination of surface water by organic pollutants. Environ. Sci. Pollut. Res. 25, 20231–20240.

Berho, C., Claude, B., Coisy, E., Togola, A., Bayoudh, S., Morin, P., and Amalric, L. (2017). Laboratory calibration of a POCIS-like sampler based on molecularly imprinted polymers for glyphosate and AMPA sampling in water. Anal. Bioanal. Chem. *409*, 2029–2035.

Bernard, M., Boutry, S., Tapie, N., Budzinski, H., and Mazzella, N. (2018). Lab-scale investigation of the ability of Polar Organic Chemical Integrative Sampler to catch short pesticide contamination peaks. Environ. Sci. Pollut. Res.

Bernard, M., Boutry, S., Lissalde, S., Guibaud, G., Saüt, M., Rebillard, J.P., and Mazzella, N. (2019). Combination of passive and grab sampling strategies improves the assessment of pesticide occurrence and contamination levels in a large-scale watershed. Sci. Total Environ. *651*, 684–695.

Bocaly, M. (2010). Impacts des substances pharmaceutiques sur l'eau et les milieux aquatiques. 39.

Booij, K., Maarsen, N.L., Theeuwen, M., and van Bommel, R. (2017). A method to account for the effect of hydrodynamics on polar organic compound uptake by passive samplers: Accounting for hydrodynamics in passive sampling. Environ. Toxicol. Chem. *36*, 1517–1524.

Buzier, R., Guibal, R., Lissalde, S., and Guibaud, G. (2019). Limitation of flow effect on passive sampling accuracy using POCIS with the PRC approach or o-DGT: A pilot-scale evaluation for pharmaceutical compounds. Chemosphere 222, 628–636.

Cersosimo, M.G., and Benarroch, E.E. (2015). Estrogen actions in the nervous system. Neurology 85, 263.

Challis, J.K., Hanson, M.L., and Wong, C.S. (2016a). Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants. Anal. Chem. *88*, 10583–10591.

Challis, J.K., Hanson, M.L., and Wong, C.S. (2016b). Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants. Anal. Chem. *88*, 10583–10591.

Challis, J.K., Stroski, K.M., Luong, K.H., Hanson, M.L., and Wong, C.S. (2018a). Field Evaluation and in Situ Stress Testing of the Organic-Diffusive Gradients in Thin-Films Passive Sampler. Environ. Sci. Technol. *52*, 12573–12582.

Challis, J.K., Hanson, M.L., and Wong, C.S. (2018b). Pharmaceuticals and pesticides archived on polar passive sampling devices can be stable for up to 6 years: Storage of polar organic contaminants on passive samplers. Environ. Toxicol. Chem. *37*, 762–767.

Chen, C.-E., Zhang, H., and Jones, K.C. (2012). A novel passive water sampler for in situ sampling of antibiotics. J. Environ. Monit. *14*, 1523.

Chen, C.-E., Zhang, H., Ying, G.-G., and Jones, K.C. (2013). Evidence and Recommendations to Support the Use of a Novel Passive Water Sampler to Quantify Antibiotics in Wastewaters. Environ. Sci. Technol. *47*, 13587–13593.

Chen, C.-E., Jones, K.C., Ying, G.-G., and Zhang, H. (2014). Desorption Kinetics of Sulfonamide and Trimethoprim Antibiotics in Soils Assessed with Diffusive Gradients in Thin-Films. Environ. Sci. Technol. *48*, 5530–5536.

Chen, C.-E., Chen, W., Ying, G.-G., Jones, K.C., and Zhang, H. (2015a). In situ measurement of solution concentrations and fluxes of sulfonamides and trimethoprim antibiotics in soils using o-DGT. Talanta *132*, 902–908.

Chen, C.-E., Zhang, H., Ying, G.-G., Zhou, L.-J., and Jones, K.C. (2015b). Passive sampling: A cost-effective method for understanding antibiotic fate, behaviour and impact. Environ. Int. *85*, 284–291.

Chen, W., Li, Y., Chen, C.-E., Sweetman, A.J., Zhang, H., and Jones, K.C. (2017). DGT Passive Sampling for Quantitative in Situ Measurements of Compounds from Household and Personal Care Products in Waters. Environ. Sci. Technol. *51*, 13274–13281.

Chen, W., Pan, S., Cheng, H., Sweetman, A.J., Zhang, H., and Jones, K.C. (2018). Diffusive gradients in thin-films (DGT) for in situ sampling of selected endocrine disrupting chemicals (EDCs) in waters. Water Res. *137*, 211–219.

Cole, R.F., Mills, G.A., Hale, M.S., Parker, R., Bolam, T., Teasdale, P.R., Bennett, W.W., and Fones, G.R. (2018). Development and evaluation of a new diffusive gradients in thin-films technique for measuring organotin compounds in coastal sediment pore water. Talanta *178*, 670–678.

Crank, J. (1975). The mathematics of diffusion (Clarendon Press - Oxford University Press).

D'Angelo, E., and Martin, A. (2018). Tetracycline desorption kinetics in municipal biosolids and poultry litter amendments determined by diffusive gradients in thin films (DGT). Chemosphere 209, 232–239.

D'Angelo, E., and Starnes, D. (2016). Desorption kinetics of ciprofloxacin in municipal biosolids determined by diffusion gradient in thin films. Chemosphere *164*, 215–224.

Davison, W., and Zhang, H. (1994). In situ speciation measurements of trace components in natural waters using thin-film gels. Nature *367*, 546–548.

Debieu, D. (2017). Modes d'action et classification des fongicides agricoles.

Desgranges, N. (2015). Développement d'échantillonneurs passifs de type POCIS pour l'évaluation de la contamination en pesticides des eaux de bassins versants languedociens. 362.

Dong, J., Fan, H., Sui, D., Li, L., and Sun, T. (2014). Sampling 4-chlorophenol in water by DGT technique with molecularly imprinted polymer as binding agent and nylon membrane as diffusive layer. Anal. Chim. Acta 822, 69–77.

Dubois, A., Parisse, S., and SOeS (2017). Pesticides : évolution des ventes, des usages et de la présence dans les cours d'eau depuis 2009. 4.

Duriez, P. (2003). Mécanismes d'action des statines et des fibrates. Thérapie 58, 5-14.

Fauvelle, V. (2012). Evaluation de la contamination en pesticides des tributaires du bassin d'Arcachon et développement d'un échantillonneur passif spécifique des herbicides anioniques. Université Bordeaux 1.

Fauvelle, V., Mazzella, N., Delmas, F., Madarassou, K., Eon, M., and Budzinski, H. (2012).Use of Mixed-Mode Ion Exchange Sorbent for the Passive Sampling of Organic Acids by PolarOrganic Chemical Integrative Sampler (POCIS). Environ. Sci. Technol. *46*, 13344–13353.

Fauvelle, V., Mazzella, N., Belles, A., Moreira, A., Allan, I.J., and Budzinski, H. (2014). Optimization of the polar organic chemical integrative sampler for the sampling of acidic and polar herbicides. Anal. Bioanal. Chem. *406*, 3191–3199.

Fauvelle, V., Nhu-Trang, T.T., Feret, T., Madarassou, K., Randon, J., and Mazzella, N. (2015). Evaluation of Titanium Dioxide as a Binding Phase for the Passive Sampling of Glyphosate and Aminomethyl Phosphonic Acid in an Aquatic Environment. Anal. Chem. *87*, 6004–6009.

Feng, Z., Wang, Y., Yang, L., and Sun, T. (2019). Coupling mesoporous imprinted polymer based DGT passive samplers and HPLC: A new tool for in-situ selective measurement of low concentration tetrabromobisphenol A in freshwaters. Sci. Total Environ. *685*, 442–450.

Gasquez, J. (2015). Herbicides agricoles : modes d'action et devenir - Annexe 1.

Gimpel, J., Zhang, H., Hutchinson, W., and Davison, W. (2001). Effect of solution composition, flow and deployment time on the measurement of trace metals by the diffusive gradient in thin films technique. Anal. Chim. Acta *448*, 93–103.

Gong, X., Li, K., Wu, C., Wang, L., and Sun, H. (2018). Passive sampling for monitoring polar organic pollutants in water by three typical samplers. Trends Environ. Anal. Chem. *17*, 23–33.

Grolemund, G., and Wickham, H. (2011). Dates and Times Made Easy with {lubridate}. J. Stat. Softw. *40*, 1–25.

Guan, D.-X., Zheng, J.-L., Luo, J., Zhang, H., Davison, W., and Ma, L.Q. (2017). A diffusive gradients in thin-films technique for the assessment of bisphenols desorption from soils. J. Hazard. Mater. *331*, 321–328.

Guan, D.-X., Li, Y.-Q., Yu, N.-Y., Yu, G.-H., Wei, S., Zhang, H., Davison, W., Cui, X.-Y., Ma, L.Q., and Luo, J. (2018). In situ measurement of perfluoroalkyl substances in aquatic systems using diffusive gradients in thin-films technique. Water Res. *144*, 162–171.

Guibal, R., Buzier, R., Charriau, A., Lissalde, S., and Guibaud, G. (2017). Passive sampling of anionic pesticides using the Diffusive Gradients in Thin films technique (DGT). Anal. Chim. Acta *966*, 1–10.

Guibal, R., Buzier, R., Lissalde, S., and Guibaud, G. (2019). Adaptation of diffusive gradients in thin films technique to sample organic pollutants in the environment: An overview of o-DGT passive samplers. Sci. Total Environ. *693*, 133537.

Guo, C., Zhang, T., Hou, S., Lv, J., Zhang, Y., Wu, F., Hua, Z., Meng, W., Zhang, H., and Xu, J. (2017a). Investigation and Application of a New Passive Sampling Technique for in Situ Monitoring of Illicit Drugs in Waste Waters and Rivers. Environ. Sci. Technol. *51*, 9101–9108.

Guo, W., Van Langenhove, K., Denison, M.S., Baeyens, W., Elskens, M., and Gao, Y. (2017b). Estrogenic Activity Measurements in Water Using Diffusive Gradients in Thin-Film Coupled with an Estrogen Bioassay. Anal. Chem. *89*, 13357–13364.

Guo, W., Van Langenhove, K., Vandermarken, T., Denison, M.S., Elskens, M., Baeyens, W., and Gao, Y. (2019). In situ measurement of estrogenic activity in various aquatic systems using organic diffusive gradients in thin-film coupled with ERE-CALUX bioassay. Environ. Int. *127*, 13–20.

Hageman, K.J., Aebig, C.H.F., Luong, K.H., Kaserzon, S.L., Wong, C.S., Reeks, T., Greenwood, M., Macaulay, S., and Matthaei, C.D. (2019). Current-use pesticides in New Zealand streams: Comparing results from grab samples and three types of passive samplers. Environ. Pollut. *254*, 112973.

Harman, C., Allan, I.J., and Bäuerlein, P.S. (2011). The Challenge of Exposure Correction for Polar Passive Samplers—The PRC and the POCIS. Environ. Sci. Technol. *45*, 9120–9121.

Harman, C., Allan, I.J., and Vermeirssen, E.L.M. (2012). Calibration and use of the polar organic chemical integrative sampler-a critical review. Environ. Toxicol. Chem. *31*, 2724–2738.

Henry, L., and Wickham, H. (2019). purrr: Functional Programming Tools.

Huckins, J.N., Tubergen, M.W., and Manuweera, G.K. (1990). Semipermeable membrane devices containing model liped: a new approach to monitorig the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere *20*, 533–552.

Kaserzon, S.L., Hawker, D.W., Kennedy, K., Bartkow, M., Carter, S., Booij, K., and Mueller, J.F. (2014). Characterisation and comparison of the uptake of ionizable and polar pesticides, pharmaceuticals and personal care products by POCIS and Chemcatchers. Env. Sci Process. Impacts *16*, 2517–2526.

Laurent, M.C. (1996). Extrait des Mises à jour en Gynécologie et Obstétrique.

Le, S., Josse, J., and Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. *15*, 1–18.

Lead, J.R., Starchev, K., and Wilkinson, K.J. (2003). Diffusion Coefficients of Humic Substances in Agarose Gel and in Water. Environ. Sci. Technol. *37*, 482–487.

Li, H., Helm, P.A., Paterson, G., and Metcalfe, C.D. (2011). The effects of dissolved organic matter and pH on sampling rates for polar organic chemical integrative samplers (POCIS). Chemosphere *83*, 271–280.

Li, Y., Chen, C.-E.L., Chen, W., Chen, J., Cai, X., Jones, K.C., and Zhang, H. (2019). Development of a Passive Sampling Technique for Measuring Pesticides in Waters and Soils. J. Agric. Food Chem. *67*, 6397–6406.

Lin, Z., Zhen, Z., Chen, C., Li, Y., Luo, C., Zhong, L., Hu, H., Li, J., Zhang, Y., Liang, Y., et al. (2018). Rhizospheric effects on atrazine speciation and degradation in laterite soils of Pennisetum alopecuroides (L.) Spreng. Environ. Sci. Pollut. Res. 25, 12407–12418.

Lissalde, S., Mazzella, N., Fauvelle, V., Delmas, F., Mazellier, P., and Legube, B. (2011). Liquid chromatography coupled with tandem mass spectrometry method for thirty-three pesticides in natural water and comparison of performance between classical solid phase extraction and passive sampling approaches. J. Chromatogr. A *1218*, 1492–1502.

Liu, S., Jin, L., Yu, H., Lv, L., Chen, C.-E., and Ying, G.-G. (2020). Understanding and predicting the diffusivity of organic chemicals for diffusive gradients in thin-films using a QSPR model. Sci. Total Environ. *706*, 135691.

Mazzella, N., Dubernet, J.F., and Delmas, F. (2007). Determination of kinetic and equilibrium regimes in the operation of polar organic chemical integrative samplers. Application to the passive sampling of the polar herbicides in aquatic environments. J. Chromatogr. A *1154*, 42–51.

Mazzella, N., Lissalde, S., Moreira, S., Delmas, F., Mazellier, P., and Huckins, J.N. (2010). Evaluation of the use of performance reference compounds in an oasis-HLB adsorbent based passive sampler for improving water concentration estimates of polar herbicides in freshwater. Environ. Sci. Technol. Mazzella, N., Coquery, M., Miège, C., Berho, C., Ghestem, J.-P., Togola, A., Gonzalez, J.-L., Tixier, C., and Lardy-Fontan, S. (2011). Applicabilité des échantillonneurs passifs dans le cadre de la DCE (Aqua-Ref).

Mazzella, N., Berho, C., Fauvelle, V., Morin, N., Togola, A., and Miège, C. (2014). Etalonnage des échantillonneurs passifs du type POCIS pour des pesticides polaires. Essai d'intercomparaisonet recommandations pour l'harmonisation des données d'étalonnage. (Aquaref-Irstea).

Mechelke, J., Vermeirssen, E.L.M., and Hollender, J. (2019). Passive sampling of organic contaminants across the water-sediment interface of an urban stream. Water Res. *165*, 114966.

Miège, C., Mazzella, N., Allan, I., Dulio, V., Smedes, F., Tixier, C., Vermeirssen, E., Brant, J., O'Toole, S., Budzinski, H., et al. (2015). Position paper on passive sampling techniques for the monitoring of contaminants in the aquatic environment – Achievements to date and perspectives. Trends Environ. Anal. Chem. *8*, 20–26.

Ministère de l'Ecologie du Développement durable et de l'énergie (2015). PLAN ECOPHYTO II.

Morin, N.A.O. (2013). Évaluation du POCIS (Polar Organic Chemical Integrative Sampler) : Domaines d'application et performances pour 56 micropolluants organiques. Université Claude Bernard Lyon 1.

Morin, N., Miège, C., Coquery, M., and Randon, J. (2012). Chemical calibration, performance, validation and applications of the polar organic chemical integrative sampler (POCIS) in aquatic environments. TrAC Trends Anal. Chem. *36*, 144–175.

Morin, N., Camilleri, J., Cren-Olivé, C., Coquery, M., and Miège, C. (2013). Determination of uptake kinetics and sampling rates for 56 organic micropollutants using "pharmaceutical" POCIS. Talanta *109*, 61–73.

Ort, C., Lawrence, M.G., Reungoat, J., and Mueller, J.F. (2010). Sampling for PPCPs in Wastewater Systems: Comparison of Different Sampling Modes and Optimization Strategies. Environ. Sci. Technol. *44*, 6289–6296.

Philibert, J. (1985). Diffusion et Transport de Matière dans les Solides.

Poulier, G. (2014). Etude de l'échantillonnage intégratif passif pour l'évaluation réglementaire de la qualité des miliex aquatiques : application à la contamination en pesticides et en éléments traces métalliques des bassins versants du Trec et de l'Auvézère. Université de Limoges.

Poulier, G., Lissalde, S., Charriau, A., Buzier, R., Cleries, K., Delmas, F., Mazzella, N., and Guibaud, G. (2015). Estimates of pesticide concentrations and fluxes in two rivers of an extensive French multi-agricultural watershed: application of the passive sampling strategy. Environ. Sci. Pollut. Res. *22*, 8044–8057.

R Core Team (2019). R: A Language and Environment for Statistical Computing (Vienne, Autriche: R Foundation for Statistical Computing).

Ren, S., Tao, J., Tan, F., Cui, Y., Li, X., Chen, J., He, X., and Wang, Y. (2018). Diffusive gradients in thin films based on MOF-derived porous carbon binding gel for in-situ measurement of antibiotics in waters. Sci. Total Environ. *645*, 482–490.

Robinson, D., and Hayes, A. (2019). broom: Convert Statistical Analysis Objects into Tidy Tibbles.

Rusina, T.P., Smedes, F., and Klanova, J. (2010a). Diffusion coefficients of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in polydimethylsiloxane and low-density polyethylene polymers. J. Appl. Polym. Sci. NA-NA.

Rusina, T.P., Smedes, F., Koblizkova, M., and Klanova, J. (2010b). Calibration of Silicone Rubber Passive Samplers: Experimental and Modeled Relations between Sampling Rate and Compound Properties. Environ. Sci. Technol. *44*, 362–367.

Scally, S., Davison, W., and Zhang, H. (2006). Diffusion coefficients of metals and metal complexes in hydrogels used in diffusive gradients in thin films. Anal. Chim. Acta *558*, 222–229.

Seethapathy, S., Górecki, T., and Li, X. (2008). Passive sampling in environmental analysis. J. Chromatogr. A *1184*, 234–253.

Sidhu, H., D'Angelo, E., and O'Connor, G. (2019). Retention-release of ciprofloxacin and azithromycin in biosolids and biosolids-amended soils. Sci. Total Environ. *650*, 173–183.

Siegwart, M. (2017). Mode d'action des insecticides.

SoES (2015). L'essentiel sur les pesticides.

Stroski, K.M., Challis, J.K., and Wong, C.S. (2018). The influence of pH on sampler uptake for an improved configuration of the organic-diffusive gradients in thin films passive sampler. Anal. Chim. Acta *1018*, 45–53.

Tucker, W.A., and Nelken, L.H. (1990). Diffusion coefficients in air and water. Handb. Chem. Prop. Estim. Methods Environ. Behav. Org. Compd. Am. Chem. Soc. Wash. DC 1990 P 17 1-17 25 7 Tab 28 Ref.

Uher, E., Zhang, H., Santos, S., Tusseau-Vuillemin, M.-H., and Gourlay-Francé, C. (2012). Impact of Biofouling on Diffusive Gradient in Thin Film Measurements in Water. Anal. Chem. *84*, 3111–3118.

Urik, J., and Vrana, B. (2019). An improved design of a passive sampler for polar organic compounds based on diffusion in agarose hydrogel. Environ. Sci. Pollut. Res. *26*, 15273–15284.

Vrana, B., Allan, I.J., Greenwood, R., Mills, G.A., Dominiak, E., Svensson, K., Knutsson, J., and Morrison, G. (2005). Passive sampling techniques for monitoring pollutants in water. TrAC
Trends Anal. Chem. 24, 845–868.

Vrana, B., Mills, G.A., Dominiak, E., and Greenwood, R. (2006). Calibration of the Chemcatcher passive sampler for the monitoring of priority organic pollutants in water. Environ. Pollut. *142*, 333–343.

Wang, Y., Ding, S., Gong, M., Xu, S., Xu, W., and Zhang, C. (2016). Diffusion characteristics of agarose hydrogel used in diffusive gradients in thin films for measurements of cations and anions. Anal. Chim. Acta *945*, 47–56.

Wei, M., Yang, X., Watson, P., Yang, F., and Liu, H. (2019). A cyclodextrin polymer membrane-based passive sampler for measuring triclocarban, triclosan and methyl triclosan in rivers. Sci. Total Environ. *648*, 109–115.

Weng, Z., Rose, M.T., Tavakkoli, E., Van Zwieten, L., Styles, G., Bennett, W., and Lombi, E. (2019). Assessing plant-available glyphosate in contrasting soils by diffusive gradient in thin-films technique (DGT). Sci. Total Environ. *646*, 735–744.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York).

Wickham, H. (2017). tidyverse: Easily Install and Load the "Tidyverse."

Wickham, H. (2018). scales: Scale Functions for Visualization.

Wickham, H. (2019a). stringr: Simple, Consistent Wrappers for Common String Operations.

Wickham, H. (2019b). forcats: Tools for Working with Categorical Variables (Factors).

Wickham, H., and Henry, L. (2019). tidyr: Easily Tidy Data with "spread()" and "gather()" Functions.

Wickham, H., François, R., Henry, L., and Müller, K. (2019). dplyr: A Grammar of Data Manipulation.

Wilke, C.O. (2019). cowplot: Streamlined Plot Theme and Plot Annotations for "ggplot2."

Winston, C. (2014). extrafont: Tools for using fonts.

Xie, H., Chen, J., Chen, Q., Chen, C.-E.L., Du, J., Tan, F., and Zhou, C. (2018a). Development and evaluation of diffusive gradients in thin films technique for measuring antibiotics in seawater. Sci. Total Environ. *618*, 1605–1612.

Xie, H., Chen, Q., Chen, J., Chen, C.-E.L., and Du, J. (2018b). Investigation and application of diffusive gradients in thin-films technique for measuring endocrine disrupting chemicals in seawaters. Chemosphere 200, 351–357.

You, N., Li, J.-Y., Fan, H.-T., and Shen, H. (2019a). In-situ sampling of nitrophenols in industrial wastewaters using diffusive gradients in thin films based on lignocellulose-derived activated carbons. J. Adv. Res. *15*, 77–86.

You, N., Yao, H., Wang, Y., Fan, H.-T., Wang, C.-S., and Sun, T. (2019b). Development and evaluation of diffusive gradients in thin films based on nano-sized zinc oxide particles for the in situ sampling of tetracyclines in pig breeding wastewater. Sci. Total Environ. *651*, 1653–1660.

Zhang, H., and Davison, W. (1995). Performance characterisics of Diffusion Gradients in Thin film for the in situ measurement of trace metals in aqueous solution. Anal. Chem. 67.

Zhang, H., and Davison, W. (1999). Diffusional characteristics of hydrogels used in DGT and DET techniques. Anal. Chim. Acta *398*, 329–340.

Zhang, D., Zhu, Y., Xie, X., Han, C., Zhang, H., Zhou, L., Li, M., Xu, G., Jiang, L., and Li, A. (2019). Application of diffusive gradients in thin-films for in-situ monitoring of nitrochlorobenzene compounds in aquatic environments. Water Res. *157*, 292–300.

Zhang, Y., Zhang, T., Guo, C., Hou, S., Hua, Z., Lv, J., Zhang, Y., and Xu, J. (2018). Development and application of the diffusive gradients in thin films technique for simultaneous measurement of methcathinone and ephedrine in surface river water. Sci. Total Environ. *618*, 284–290.

Zheng, J.-L., Guan, D.-X., Luo, J., Zhang, H., Davison, W., Cui, X.-Y., Wang, L.-H., and Ma, L.Q. (2015). Activated Charcoal Based Diffusive Gradients in Thin Films for in Situ Monitoring of Bisphenols in Waters. Anal. Chem. *87*, 801–807.

Zou, Y.-T., Fang, Z., Li, Y., Wang, R., Zhang, H., Jones, K.C., Cui, X.-Y., Shi, X.-Y., Yin, D., Li, C., et al. (2018). Novel Method for *in Situ* Monitoring of Organophosphorus Flame Retardants in Waters. Anal. Chem. *90*, 10016–10023.

(2000). Directive 2000/60/CE du parlement européen et du conseil du 23 octobre 2000 établissant un cadre pour une politique communautaire dans le domaine de l'eau.

(2013). Directive 2013/39/UE du parlement européen et du conseil du 12 août 2013 modifiant les directives 2000/60/CE et 2008/105/CE en ce qui concerne les substances prioritaires pour la politique dans le domaine de l'eau.

(2015a). Décision d'exécution (UE) 2015/495 de la comission - du 20 mars 2015 - établissant une liste de vigilance relative aux substances soumises à surveillance à l'échelle de l'Union dans le domaine de la politique de l'eau en vertu de la directive 2008/ 105/ CE du Parlement européen et du Conseil.

(2015b). Arrêté du 7 août 2015 modifiant l'arrêté du 25 janvier 2010 établissant le programme de surveillance de l'état des eaux en application de l'article R. 212-22 du code de l'environnement.

(2018). Décision d'exécution (UE) 2018/840 de la comission - du 5 juin 2018 - établissant une liste de vigilance relative aux substances soumises à surveillance à l'échelle de l'Union dans le domaine de la politique de l'eau en vertu de la directive 2008/105/CE du Parlement européen et du Conseil et abrogeant la décision d'exécution (UE) 2015/495 de la Commission.

Annexes

Annexes du Chapitre I

Liste des annexes du Chapitre I

Annexe I.	1:	Coefficients	de	diffusion	trouvés	dans	la	littérature	et	propriétés	physico-
chimiques	ass	ociées				•••••	•••••		••••		

Composé	n° CAS	Groupe	Mw	log Kow	D (× 10 ⁻⁶ cm ² .s ⁻¹)	Référence
1-chloro-2,4-dinitrobenzene	97-00-7	Synthèse	202,55	2,17 7,19 ± 0,21		(Zhang et al., 2019)
1-chloro-2,4-dinitrobenzene	97-00-7	Synthèse	202,55	2,17	$7,01 \pm 0,36$	(Zhang et al., 2019)
1-chloro-2-nitrobenzene	88-73-3	Synthèse	157,55	2,24	7,49 ± 0,21	(Zhang et al., 2019)
1-chloro-2-nitrobenzene	88-73-3	Synthèse	157,55	2,24	$7,56 \pm 0,37$	(Zhang et al., 2019)
1-chloro-3-nitrobenzene	121-73-3	Synthèse	157,55	2,46	$7,2 \pm 0,12$	(Zhang et al., 2019)
1-chloro-3-nitrobenzene	121-73-3	Synthèse	157,55	2,46	$7,27 \pm 0,37$	(Zhang et al., 2019)
1-chloro-4-nitrobenzene	100-00-5	Synthèse	157,55	2,39	$7,44 \pm 0,15$	(Zhang et al., 2019)
1-chloro-4-nitrobenzene	100-00-5	Synthèse	157,55	2,39	7,69 ± 0,39	(Zhang et al., 2019)
2,4-dichlorophenoxyacetic.acid	94-75-7	Pesticides	221,03	2,5	4,77 ± 0,22	(Challis et al., 2016)
2,4-dichlorophenoxyacetic.acid	94-75-7	Pesticides	221,03	2,5	3,88 ± 0,13	(Stroski et al., 2018)
2,4-dinitrophenol	51-28-5	Synthèse	184,11	1,55	$1,2 \pm 0,08$	(You et al., 2019a)
4-Chlorophenol	106-48-9	Synthèse	128,56	2,27	$0,83 \pm 0,04$	(Dong et al., 2014)
4-hydroxybenzoic.acid	99-96-7	Conservateurs	138,12	1,39	7,3	(Chen et al., 2017)
4-tert-octylphenol	140-66-9	Divers	206,33	5,28	4,34	(Chen et al., 2018)
Acetochlor	34256-82-1	Pesticides	269,77	4,14	4,32	(Xie et al., 2018b)
Alpha.ethynylestradiol	57-63-6	Hormones	296,41	4,12	3,33	(Challis et al., 2016)
Alpha.ethynylestradiol	57-63-6	Hormones	296,41	4,12	3,4	(Chen et al., 2018)
Alpha.ethynylestradiol	57-63-6	Hormones	296,41	4,12	$3,53 \pm 0,96$	(Stroski et al., 2018)
Alpha.ethynylestradiol	57-63-6	Hormones	296,41	3,67	4,1	(Xie et al., 2018b)
Aminomethylphosphonic.acid	1066-51-9	Pesticides	111,04	NA	4,02 ± 0,29	(Fauvelle et al., 2015)
Amphetamine	300-62-9	Drogues illicites	135,21	1,81	$7,72 \pm 0,18$	(Guo et al., 2017a)
Atenolol	29122-68-7	Pharmaceutiques	266,34	0,43	3,85 ± 0,16	(Challis et al., 2016)
Atenolol	29122-68-7	Pharmaceutiques	266,34	0,43	2,86 ± 0,1	(Stroski et al., 2018)

Annexe I.1 : Coefficients de diffusion trouvés dans la littérature et propriétés physico-chimiques associées

Composé	n° CAS	Groupe	Mw	log Kow	D (× 10 ⁻⁶ cm ² .s ⁻¹)	Référence	
Atrazine	1912-24-9	Pesticides	215,68	2,6	4,57	(Belles et al., 2017)	
Atrazine	1912-24-9	Pesticides	215,68	2,61	3,73 ± 0,15	(Challis et al., 2016)	
Atrazine	1912-24-9	Pesticides	215,69	2,61	5,67	(Li et al., 2019)	
Atrazine	1912-24-9	Pesticides	215,68	2,61	3,13 ± 0,11	(Stroski et al., 2018)	
Atrazine	1912-24-9	Pesticides	215,68	2,61	4,95	(Xie et al., 2018b)	
Azithromycin	83905-01-5	Pharmaceutiques	748,5	2,44	1,32	(Xie et al., 2018a)	
Balofloxacin	127294-70-6	Pharmaceutiques	389,42	0,99	$1,55 \pm 0,01$	(Ren et al., 2018)	
Bentazone	25057-89-0	Pesticides	240,28	-0,46	5,17 ± 0,11	(Guibal et al., 2017)	
Bentazone	25057-89-0	Pesticides	240,28	-0,46	4,14 ± 0,46	(Guibal et al., 2017)	
Bentazone	25057-89-0	Pesticides	240,28	-0,46	4,94 ± 0,57	(Guibal et al., 2017)	
Benzophenone	119-61-9	Divers	182,22	3,4	3,63	(Belles et al., 2017)	
Benzylparaben	94-18-8	Conservateurs	228,25	3,7	4,97	(Chen et al., 2017)	
Beta.estradiol	50-28-2	Hormones	272,39	3,94	3,13	(Challis et al., 2016)	
Beta.estradiol	50-28-2	Hormones	272,39	3,94	3,58	(Chen et al., 2018)	
Beta.estradiol	50-28-2	Hormones	272,4	3,94	$4,66 \pm 0,37$	(Guo et al., 2017b)	
Beta.estradiol	50-28-2	Hormones	272,39	3,94	2,97 ± 0,38	(Stroski et al., 2018)	
Beta.estradiol	50-28-2	Hormones	272,38	4,01	3,75	(Xie et al., 2018b)	
Bisphenol.A	80-05-7	Divers	228,29	3,64	4,8	(Chen et al., 2018)	
Bisphenol.A	80-05-7	Divers	228,29	3,64	5,21	(Xie et al., 2018b)	
Bisphenol.A	80-05-7	Divers	228,29	3,64	$5,03 \pm 0,28$	(Zheng et al., 2015)	
Bisphenol.A	80-05-7	Divers	228,29	3,64	4,78 ± 0,15	(Zheng et al., 2015)	
Bisphenol.B	77-40-7	Divers	242,31	4,13	4,44 ± 0,18	(Zheng et al., 2015)	
Bisphenol.B	77-40-7	Divers	242,31	4,13	4,66 ± 0,21	(Zheng et al., 2015)	
Bisphenol.F	620-92-8	Divers	200,23	3,06	5,64 ± 0,25	(Zheng et al., 2015)	
Composé	n° CAS	Groupe	Mw	log Kow	D (× 10 ⁻⁶ cm ² .s ⁻¹)	Référence	
--------------------------	-------------	-----------------	--------	---------	---	------------------------	
Bisphenol.F	620-92-8	Divers	200,23	3,06	$5,75 \pm 0,17$	(Zheng et al., 2015)	
Butylated.hydroxyanisole	1948-33-0	Conservateurs	180,24	3,5	4,25	(Chen et al., 2017)	
Butylated.hydroxytoluene	128-37-0	Conservateurs	220,35	5,03	3,67	(Chen et al., 2017)	
Butylparaben	94-26-8	Conservateurs	194,23	3,47	5,61	(Chen et al., 2017)	
Carbadox	6804-07-5 m	Pharmaceutiques	262,2	-1,37	3,79	(Chen et al., 2013)	
Carbamazepine	298-46-4	Pharmaceutiques	236,27	2,45	5,21	(Amato et al., 2018)	
Carbamazepine	298-46-4	Pharmaceutiques	236,27	2,45	$3,65 \pm 0,17$	(Amato et al., 2018)	
Carbamazepine	298-46-4	Pharmaceutiques	236,27	2,45	$5,01 \pm 0,26$	(Challis et al., 2016)	
Carbamazepine	298-46-4	Pharmaceutiques	236,27	2,45	4,12 ± 0,21	(Stroski et al., 2018)	
Chloramphenicol	56-75-7	Pharmaceutiques	323,1	0,88	4,57	(Xie et al., 2018a)	
Chloridazon	1698-60-8	Pesticides	221,65	1,14	6,58	(Li et al., 2019)	
Chlorotetracycline	57-62-5	Pharmaceutiques	478,88	NA	$1,94 \pm 0,07$	(You et al., 2019b)	
Chlorpyrifos	2921-88-2	Pesticides	350,57	4,78	3,42 ± 0,17	(Challis et al., 2016)	
Chlorpyrifos	2921-88-2	Pesticides	350,57	4,78	$1,36 \pm 0,08$	(Stroski et al., 2018)	
Chlorsulfuron	64902-72-3	Pesticides	357,77	-0,99	4,83 ± 0,46	(Guibal et al., 2017)	
Chlorsulfuron	64902-72-3	Pesticides	357,77	-0,99	3,1 ± 0,34	(Guibal et al., 2017)	
Chlorsulfuron	64902-72-3	Pesticides	357,77	-0,99	$3,56 \pm 0,46$	(Guibal et al., 2017)	
Ciprofloxacin	85721-33-1	Pharmaceutiques	331,3	0,4	2,75	(Chen et al., 2013)	
Ciprofloxacin	85721-33-1	Pharmaceutiques	331,3	0,4	1,16	(Dangelo et al., 2019)	
Ciprofloxacin	85721-33-1	Pharmaceutiques	331,34	0,28	$1,55 \pm 0,06$	(Ren et al., 2018)	
Ciprofloxacin	85721-33-1	Pharmaceutiques	331,3	0,4	2,5	(Xie et al., 2018a)	
Clarithromycin	81103-11-9	Pharmaceutiques	748	3,16	3,31 ± 0,15	(Challis et al., 2016)	
Clarithromycin	81103-11-9	Pharmaceutiques	748	3,16	1,95	(Chen et al., 2013)	
Clarithromycin	81103-11-9	Pharmaceutiques	748	3,16	1,32	(Xie et al., 2018a)	

Composé	n° CAS	Groupe	Mw	log Kow	D (× 10 ⁻⁶ cm ² .s ⁻¹)	Référence
Clofibric.acid	882-09-7	Pharmaceutiques	214,65	2,9	4,28 ± 0,18	(Challis et al., 2016)
Clofibric.acid	882-09-7	Pharmaceutiques	214,65	2,9	3,43 ± 0,14	(Stroski et al., 2018)
Clomazone	81777-89-1	Pesticides	239,7	2,5	5,66	(Li et al., 2019)
Clothianidin	210880-92-5	Pesticides	249,67	0,88	4,22 ± 0,32	(Challis et al., 2016)
Clothianidin	210880-92-5	Pesticides	249,67	0,88	3,35 ± 0,17	(Stroski et al., 2018)
Desethyl-atrazine	6190-65-4	Pesticides	187,63	1,5	4,57	(Belles et al., 2017)
Diazinon	333-41-5	Pesticides	304,34	4,19	3,8 ± 0,2	(Challis et al., 2016)
Diazinon	333-41-5	Pesticides	304,34	4,19	$2,23 \pm 0,08$	(Stroski et al., 2018)
Dibutlytin	1002-53-5	Organostanniques	232,94	2,19	5,38 ± 2,45	(Cole et al., 2018)
Diclofenac	15307-86-5	Pharmaceutiques	296,15	4,51	4,44 ± 0,25	(Challis et al., 2016)
Diclofenac	15307-86-5	Pharmaceutiques	296,15	4,51	$3,53 \pm 0,14$	(Stroski et al., 2018)
Diethylstilbestrol	56-53-1	Hormones	268,36	5,64	4,83	(Chen et al., 2018)
Difloxacin	98106-17-3	Pharmaceutiques	399,4	0,89	3,2	(Chen et al., 2013)
Diflufenican	83164-33-4	Pesticides	394,3	5,11	3,63	(Belles et al., 2017)
Diphenyltin	1011-95-6	Organostanniques	274,94	2,05	$6,55 \pm 0,97$	(Cole et al., 2018)
Diuron	330-54-1	Pesticides	233,09	2,85	5,32	(Amato et al., 2018)
Diuron	330-54-1	Pesticides	233,09	2,85	$4,37 \pm 0,03$	(Amato et al., 2018)
Enrofloxacin	93106-60-6	Pharmaceutiques	359,4	1,1	2,96	(Chen et al., 2013)
Enrofloxacin	93106-60-6	Pharmaceutiques	359,09	0,7	$1,41 \pm 0,07$	(Ren et al., 2018)
Enrofloxacin	93106-60-6	Pharmaceutiques	359,4	1,1	3,48 ± 0,58	(Stroski et al., 2018)
Enrofloxacin	93106-60-6	Pharmaceutiques	359,4	1,1	2,62	(Xie et al., 2018a)
Ephedrine	299-42-3	Pharmaceutiques	165,24	0,68	6,62	(Zhang et al., 2018)
Erythromycin	114-07-8	Pharmaceutiques	733,9	3,06	1,76	(Challis et al., 2016)
Erythromycin-H2O	23893-13-2	Pharmaceutiques	715,9	NA	1,85	(Chen et al., 2013)

Composé	n° CAS	Groupe	Mw	log Kow	D (× 10 ⁻⁶ cm ² .s ⁻¹)	Référence
Erythromycin-H2O	23893-13-2	Pharmaceutiques	733,9	3,06	1,44	(Xie et al., 2018a)
Estriol	50-27-1	Hormones	288,39	2,81	4,59	(Chen et al., 2018)
Estriol	50-27-1	Hormones	288,38	2,45	5	(Xie et al., 2018b)
Estrone	53-16-7	Hormones	270,37	3,43	3,83 ± 0,49	(Challis et al., 2016)
Estrone	53-16-7	Hormones	270,37	3,43	4,8	(Chen et al., 2018)
Estrone	53-16-7	Hormones	270,37	3,43	3,43 ± 0,14	(Stroski et al., 2018)
Ethofumesate	26225-79-6	Pesticides	286,35	2,7	5,31	(Li et al., 2019)
Fenoprofen	29679-58-1	Pharmaceutiques	242,27	3,65	4,13 ± 0,97	(Challis et al., 2016)
Fenoprofen	29679-58-1	Pharmaceutiques	242,27	3,65	$3,05 \pm 0,4$	(Stroski et al., 2018)
Fleroxacin	79660-72-3	Pharmaceutiques	369,34	0,24	1,03	(Chen et al., 2013)
Fleroxacin	79660-72-3	Pharmaceutiques	369,34	0,24	$1,86 \pm 0,1$	(Ren et al., 2018)
Florfenicol	72231-34-2	Pharmaceutiques	358,2	-0,04	4,61	(Xie et al., 2018a)
Fluometuron	2164-17-2	Pesticides	232,21	2,42	6,38	(Li et al., 2019)
Fluoranthene	206-44-0	Divers	202,56	4,28	3,45 ± 0,52	(Amato et al., 2018)
Fluoxetine	54910-89-3	Pharmaceutiques	309,33	4,17	4,38 ± 0,25	(Challis et al., 2016)
Fluoxetine	54910-89-3	Pharmaceutiques	309,33	4,17	3,01 ± 0,22	(Stroski et al., 2018)
Galaxolide	1222-05-5	Parfums	258,4	4,8	3,63	(Belles et al., 2017)
Gatifloxacin	112811-59-3	Pharmaceutiques	375,39	0,5	$2,35 \pm 0,08$	(Ren et al., 2018)
Gemfibrozil	25812-30-0	Pharmaceutiques	250,33	4,39	$3,58 \pm 0,16$	(Challis et al., 2016)
Gemfibrozil	25812-30-0	Pharmaceutiques	250,33	4,39	$2,65 \pm 0,13$	(Stroski et al., 2018)
Glyphosate	1071-83-6	Pesticides	169,07	NA	3,39 ± 0,4	(Fauvelle et al., 2015)
Heptylparaben	1085-12-7	Conservateurs	236,31	4,94	4,83	(Chen et al., 2017)
Ibuprofen	15687-27-1	Pharmaceutiques	206,28	3,84	4,07 ± 0,48	(Challis et al., 2016)
Ibuprofen	15687-27-1	Pharmaceutiques	206,28	3,84	3,13 ± 0,27	(Stroski et al., 2018)

Composé	n° CAS	Groupe		log Kow	D (× 10 ⁻⁶ cm ² .s ⁻¹)	Référence
Imidaclopride	105827-78-9	Pesticides	255,66	0,87	4,59 ± 0,51	(Challis et al., 2016)
Ioxynil	1689-83-4	Pesticides	370,42	2,2	5,97 ± 0,57	(Guibal et al., 2017)
Ioxynil	1689-83-4	Pesticides	370,42	2,2	5,29 ± 0,57	(Guibal et al., 2017)
Ioxynil	1689-83-4	Pesticides	370,42	2,2	$6,89 \pm 0,8$	(Guibal et al., 2017)
Irgarol	28159-98-0	Pesticides	253,37	3,9	3,63	(Belles et al., 2017)
Isopropylparaben	4191-73-5	Conservateurs	180,2	2,91	5,91	(Chen et al., 2017)
Isoproturon	34123-59-6	Pesticides	206,29	2,5	5	(Amato et al., 2018)
Isoproturon	34123-59-7	Pesticides	206,29	2,5	$3,74 \pm 0,11$	(Amato et al., 2018)
Ketamine	6740-88-1	Drogues illicites	237,72	2,18	8,13 ± 0,12	(Guo et al., 2017a)
Ketoprofen	22071-15-4	Pharmaceutiques	254,28	3,61	3,31 ± 0,32	(Challis et al., 2016)
Ketoprofen	22071-15-4	Pharmaceutiques	254,28	3,61	$2,74 \pm 0,25$	(Stroski et al., 2018)
Leucomycin	1392-21-8	Pharmaceutiques	771	NA	1,43	(Chen et al., 2013)
Lilial	80-54-6	Parfums	204,31	3,9	3,63	(Belles et al., 2017)
Lincomycin	154-21-2	Pharmaceutiques	406,5	0,56	3,1	(Chen et al., 2013)
Lincomycin	154-21-2	Pharmaceutiques	406,5	0,56	3,07	(Xie et al., 2018a)
Linuron	330-55-2	Pesticides	249,1	3,2	5,65	(Li et al., 2019)
Lomefloxacin	98079-51-7	Pharmaceutiques	351,3	-0,3	3,07	(Chen et al., 2013)
Lomefloxacin	98079-51-7	Pharmaceutiques	351,35	-0,3	$1,93 \pm 0,2$	(Ren et al., 2018)
Mecoprop	93-65-2	Pesticides	214,65	-0,19	$5,74 \pm 0,46$	(Guibal et al., 2017)
Mecoprop	93-65-2	Pesticides	214,65	-0,19	4,37 ± 0,46	(Guibal et al., 2017)
Mecoprop	93-65-2	Pesticides	214,65	-0,19	4,48 ± 0,57	(Guibal et al., 2017)
Metazachlore	51218-45-2	Pesticides	277,75	2,7	4,57	(Belles et al., 2017)
Methamphetamine	537-46-2	Drogues illicites	149,23	2,07	8,55 ± 0,14	(Guo et al., 2017a)
Methcathinone	5650-44-2	Pharmaceutiques	163,22	1,85	7,6	(Zhang et al., 2018)

Composé	n° CAS	Groupe	Mw	log Kow	D (× 10 ⁻⁶ cm ² .s ⁻¹)	Référence
Methylparaben	99-76-3	Conservateurs	152,15	2	6,85	(Chen et al., 2017)
Methyl-triclosan	01/01/4640	Conservateurs	303,6	5,13	4,87	(Wei et al., 2019)
Metolachlore	67129-08-2	Pesticides	277,75	2,98	4,57	(Belles et al., 2017)
Metoprolol	37350-58-6	Pharmaceutiques	267,37	1,76	4,38 ± 0,42	(Challis et al., 2016)
Metoprolol	37350-58-6	Pharmaceutiques	267,37	1,76	$2,7 \pm 0,13$	(Stroski et al., 2018)
Monensin	17090-79-8	Pharmaceutiques	670,9	2,75	0,58	(Chen et al., 2013)
Monobutlytine	78763-54-9	Organostanniques	175,82	0,84	$10,01 \pm 3,22$	(Cole et al., 2018)
Moxifloxacin	151096-09-2	Pharmaceutiques	401,43	0,95	1,43 ± 0,29	(Ren et al., 2018)
Naproxen	22204-53-1	Pharmaceutiques	230,3	2,99	4,37 ± 0,3	(Challis et al., 2016)
Naproxen	22204-53-1	Pharmaceutiques	230,3	2,99	3,41 ± 0,24	(Stroski et al., 2018)
Nonylphenol	84852-15-3	Divers	220,36	5,77	4,13	(Chen et al., 2018)
Norfloxacin	70458-96-7	Pharmaceutiques	319,3	-1,03	2,46	(Chen et al., 2013)
Norfloxacin	70458-96-7	Pharmaceutiques	319,3	-1,3	2,66	(Xie et al., 2018a)
Novobiocin	303-81-1	Pharmaceutiques	612,6	2,45	0,8	(Chen et al., 2013)
Octicizer	1241-94-7	Plastifiants	362,4	6,3	3,63	(Belles et al., 2017)
Ofloxacin	82419-36-1	Pharmaceutiques	361,3	0,36	2,24	(Chen et al., 2013)
Ofloxacin	82419-36-1	Pharmaceutiques	361,37	-2	$1,68 \pm 0,18$	(Ren et al., 2018)
Ofloxacin	82419-36-1	Pharmaceutiques	361,3	0,36	2,04	(Xie et al., 2018a)
Oleandomycin	3922-90-5	Pharmaceutiques	687,9	1,69	1,66	(Chen et al., 2013)
o-nitrophenol	88-75-5	Synthèse	139,11	1,61	$2,02 \pm 0,13$	(You et al., 2019a)
Ormetoprim	6981-18-6	Pharmaceutiques	274,3	1,23	3,94	(Chen et al., 2013)
Ortho-phenylphenol	90-43-7	Conservateurs	170,21	3,28	5,18	(Chen et al., 2017)
Oxytetracycline	79-57-2	Pharmaceutiques	540,43	-2,73	$1,29 \pm 0,05$	(You et al., 2019b)
Paroxetine	61869-08-7	Pharmaceutiques	329,37	3,15	4,6 ± 0,2	(Challis et al., 2016)

Composé	n° CAS	Groupe		log Kow	D (× 10 ⁻⁶ cm ² .s ⁻¹)	Référence	
Paroxetine	61869-08-7	Pharmaceutiques	329,37	3,15	4,31 ± 0,3	(Stroski et al., 2018)	
Pefloxacin	70458-92-3	Pharmaceutiques	333,4	0,27	1,92	(Chen et al., 2013)	
Per?uorooctane.sulfonate	1763-23-1	Surfactant	500,13	5,34	5,08	(Guan et al., 2018)	
Per?uorooctane.sulfonate	1763-23-1	Surfactant	500,13	5,34	4,71	(Guan et al., 2018)	
Per?uorooctanoic.acid	335-67-1	Surfactant	414,07	5,11	4,37	(Guan et al., 2018)	
Per?uorooctanoic.acid	335-67-1	Surfactant	414,07	5,11	4,58	(Guan et al., 2018)	
Pirimicarb	23103-98-2	Pesticides	238,29	1,7	5,7	(Li et al., 2019)	
p-nitrophenol	100-02-7	Synthèse	139,11	1,61	$1,39 \pm 0,09$	(You et al., 2019a)	
Propanolol	525-66-6	Pharmaceutiques	259,35	2,58	4,46 ± 0,3	(Challis et al., 2016)	
Propanolol	525-66-6	Pharmaceutiques	259,35	2,58	3,14 ± 0,15	(Stroski et al., 2018)	
Propazine	139-40-2	Pesticides	229,71	2,9	3,63	(Belles et al., 2017)	
Propylparaben	94-13-3	Conservateurs	180,2	2,98	5,92	(Chen et al., 2017)	
Pyrimethanil	53112-28-0	Pesticides	199,26	2,84	5,73	(Li et al., 2019)	
Roxithromycin	80214-83-1	Pharmaceutiques	837	2,75	$2,43 \pm 0,13$	(Challis et al., 2016)	
Roxithromycin	80214-83-1	Pharmaceutiques	837	2,75	1,49	(Chen et al., 2013)	
Salinomycin	53003-10-4	Pharmaceutiques	751	8,53	0,61	(Chen et al., 2013)	
Sarafloxacin	98105-99-8	Pharmaceutiques	385,36	1,07	$1,75 \pm 0,28$	(Ren et al., 2018)	
Simazine	122-34-9	Pesticides	201,66	2,2	5,76	(Belles et al., 2017)	
Sparfloxacin	110871-86-8	Pharmaceutiques	392,4	0,12	$2,04 \pm 0,03$	(Ren et al., 2018)	
Sulfacetamide	144-80-9	Pharmaceutiques	214,2	-0,96	4,76	(Chen et al., 2013)	
Sulfacetamide	144-80-9	Pharmaceutiques	214,24	-0,96	4,6 ± 0,36	(Ren et al., 2018)	
Sulfachloropyridazine	80-32-0	Pharmaceutiques	284,7	0,31	4,9 ± 0,21	(Challis et al., 2016)	
Sulfachloropyridazine	80-32-0	Pharmaceutiques	284,7	0,31	3,59	(Chen et al., 2013)	
Sulfachloropyridazine	80-32-0	Pharmaceutiques	284,7	0,31	3,37 ± 0,13	(Stroski et al., 2018)	

Composé	n° CAS	Groupe	Mw	log Kow	D (× 10 ⁻⁶ cm ² .s ⁻¹)	Référence
Sulfachloropyridazine	80-32-0	Pharmaceutiques	284,7	0,31	4,63	(Xie et al., 2018a)
Sulfadiazine	68-35-9	Pharmaceutiques	250,3	-0,09	4,23	(Chen et al., 2013)
Sulfadiazine	68-35-9	Pharmaceutiques	250,28	-0,09	4,2 ± 0,49	(Ren et al., 2018)
Sulfadiazine	68-35-9	Pharmaceutiques	250,3	-0,09	4,41	(Xie et al., 2018a)
Sulfadimethoxine	122-11-2	Pharmaceutiques	310,3	1,4	3,81 ± 0,17	(Challis et al., 2016)
Sulfadimethoxine	122-11-2	Pharmaceutiques	310,3	1,4	3,84	(Chen et al., 2013)
Sulfadimethoxine	122-11-2	Pharmaceutiques	310,3	1,4	3,36 ± 0,12	(Stroski et al., 2018)
Sulfadimethoxine	122-11-2	Pharmaceutiques	310,1	1,4	4,3	(Xie et al., 2018a)
Sulfadimidine	57-68-1	Pharmaceutiques	278,33	0,89	3,68 ± 0,27	(Ren et al., 2018)
Sulfadoxine	2447-57-6	Pharmaceutiques	Pharmaceutiques 310,3 0,7 3,8		3,85	(Chen et al., 2013)
Sulfadoxine	2447-57-6	Pharmaceutiques	310,33	0,7	3,93 ± 0,27	(Ren et al., 2018)
Sulfaguanidine	57-67-0	Pharmaceutiques	214,2	-1,22	4,51	(Chen et al., 2013)
Sulfamerazine	127-79-7	Pharmaceutiques	264,3	0,14	3,79	(Chen et al., 2013)
Sulfamerazine	127-79-7	Pharmaceutiques	264,3	0,14	$3,95 \pm 0,27$	(Ren et al., 2018)
Sulfameter	651-06-9	Pharmaceutiques	280,3	0,41	4,01	(Chen et al., 2013)
Sulfamethazine	57-68-1	Pharmaceutiques	278,3	0,8	$4,04 \pm 0,17$	(Challis et al., 2016)
Sulfamethazine	57-68-1	Pharmaceutiques	278,3	0,8	4,01	(Chen et al., 2013)
Sulfamethazine	57-68-1	Pharmaceutiques	278,3	0,8	3,19 ± 0,11	(Stroski et al., 2018)
Sulfamethazine	57-68-1	Pharmaceutiques	278,3	0,8	2,9	(Xie et al., 2018a)
Sulfamethoxazole	723-46-6	Pharmaceutiques	253,28	0,89	4,65 ± 0,31	(Challis et al., 2016)
Sulfamethoxazole	723-46-6	Pharmaceutiques	253,3	0,89	3,93	(Chen et al., 2012)
Sulfamethoxazole	723-46-6	Pharmaceutiques	253,3	0,89	5,1	(Chen et al., 2013)
Sulfamethoxazole	723-46-6	Pharmaceutiques	253,28	0,89	4,59 ± 0,16	(Ren et al., 2018)
Sulfamethoxazole	723-46-6	Pharmaceutiques	253,28	0,89	$3,23 \pm 0,17$	(Stroski et al., 2018)

Composé	n° CAS	Groupe	Mw	log Kow	D (× 10 ⁻⁶ cm ² .s ⁻¹)	Référence	
Sulfamethoxazole	723-46-6	Pharmaceutiques	253,3	0,89	4,72	(Xie et al., 2018a)	
Sulfamethoxypyridazine	80-53-3	Pharmaceutiques	280,3	0,32	4,43 ± 0,3	(Ren et al., 2018)	
Sulfamonomethoxine	1220-83-3	Pharmaceutiques	280,3	0,7	4,08	(Chen et al., 2013)	
Sulfamonomethoxine	1220-83-3	Pharmaceutiques	280,1	0,7	4,06	(Xie et al., 2018a)	
Sulfanilamide	63-74-1	Pharmaceutiques	172,2	-0,62	6,24	(Chen et al., 2013)	
Sulfapyridine	144-83-2	Pharmaceutiques	249,3	0,35	4,19 ± 0,18	(Challis et al., 2016)	
Sulfapyridine	144-83-2	Pharmaceutiques	249,3	0,35	4,75	(Chen et al., 2013)	
Sulfapyridine	144-83-2	Pharmaceutiques	249,29	0,35	4,75 ± 0,37	(Ren et al., 2018)	
Sulfapyridine	144-83-2	Pharmaceutiques	249,3	0,35	3,6 ± 0,12	(Stroski et al., 2018)	
Sulfapyridine	144-83-2	Pharmaceutiques	249,3	0,35	4,65	(Xie et al., 2018a)	
Sulfaquinoxaline	59-40-5	Pharmaceutiques	300,4	1,68	3,5	(Chen et al., 2013)	
Sulfathiazole	72-14-0	Pharmaceutiques	255,3	0,05	4,61	(Chen et al., 2013)	
Sulfathiazole	72-14-0	Pharmaceutiques	255,32	0,05	4,68 ± 0,32	(Ren et al., 2018)	
Sulfathiazole	72-14-0	Pharmaceutiques	279,3	0,05	3,83	(Xie et al., 2018a)	
Sulfisoxazol	127-69-5	Pharmaceutiques	267,3	1,01	3,66 ± 0,29	(Challis et al., 2016)	
Sulfisoxazol	127-69-5	Pharmaceutiques	267,3	1,01	3,79	(Chen et al., 2013)	
Sulfisoxazol	127-69-5	Pharmaceutiques	267,3	1,01	2 ± 0,11	(Stroski et al., 2018)	
Tetrabromobisphenol.A	79-94-7	Retardateurs de flamme	543,9	7,12	2,18	(Feng et al., 2019)	
Tetracycline	60-54-8	Pharmaceutiques	444,4	-2,57	$1,37 \pm 0,06$	(You et al., 2019b)	
Thiabendazole	148-79-8	Pesticides	201,25	2,47	6,17	(Li et al., 2019)	
Thiamethoxam	153719-23-4	Pesticides	291,71	1,07	4,17 ± 0,23	(Challis et al., 2016)	
Thiamethoxam	153719-23-4	Pesticides	291,71	1,07	3,45 ± 0,2	(Stroski et al., 2018)	
Thiamphenicol	15318-45-3	Pharmaceutiques	355	0,33	5,56	(Xie et al., 2018a)	
Tonalid	21145-77-7	Parfums	258,31	5,3	2,88	(Belles et al., 2017)	

Composé	n° CAS	Groupe	Mw	log Kow	D (× 10 ⁻⁶ cm ² .s ⁻¹)	Référence
Tributyltin	688-73-3	Organostanniques	290,06	3,53	8,61 ± 0,83	(Cole et al., 2018)
Triclocarban	101-20-2	Conservateurs	315,59	4,9	3,36	(Chen et al., 2017)
Triclocarban	101-20-2	Conservateurs	315,59	4,9	5,83	(Wei et al., 2019)
Triclosan	3380-34-5	Conservateurs	289,55	4,66	3,63	(Chen et al., 2017)
Triclosan	3380-34-5	Conservateurs	289,55	4,66	7,08	(Wei et al., 2019)
Trifluralin	1582-09-8	Pesticides	335,28	4,6	3,32 ± 0,63	(Amato et al., 2018)
Trimethoprim	738-70-5	Pharmaceutiques	290,3	0,91	4,02 ± 0,24	(Challis et al., 2016)
Trimethoprim	738-70-5	Pharmaceutiques	290,3	0,91	3,79	(Chen et al., 2013)
Trimethoprim	738-70-5	Pharmaceutiques	290,32	0,91	2,64 ± 0,11	(Ren et al., 2018)
Trimethoprim	738-70-5	Pharmaceutiques	290,3	0,91	$3,07 \pm 0,12$	(Stroski et al., 2018)
Trimethoprim	738-70-5	Pharmaceutiques	290,3	0,91	2,86	(Xie et al., 2018a)
Triphenyltin	892-20-6	Organostanniques	350,03	4,31	4,85 ± 1,04	(Cole et al., 2018)
Tris(1,3-dichloro-2-propyl).phosphate	13674-87-8	Retardateurs de flamme	430,9	3,8	5,53	(Zou et al., 2018)
Tris(1,3-dichloro-2-propyl).phosphate	13674-87-8	Retardateurs de flamme	430,9	3,8	4,63	(Zou et al., 2018)
Tris(2-butoxyethyl).phosphate	78-51-3	Retardateurs de flamme	398,5	3,65	4,96	(Zou et al., 2018)
Tris(2-butoxyethyl).phosphate	78-51-3	Retardateurs de flamme	398,5	3,65	4,06	(Zou et al., 2018)
Tris(2-chloroethyl).phosphate	115-96-8	Retardateurs de flamme	285,5	1,44	6,36	(Zou et al., 2018)
Tris(2-chloroethyl).phosphate	115-96-8	Retardateurs de flamme	285,5	1,44	6,37	(Zou et al., 2018)
Tris(2-chloroisopropyl).phosphate	13674-84-5	Retardateurs de flamme	327,6	2,59	6,02	(Zou et al., 2018)
Tris(2-chloroisopropyl).phosphate	13674-84-5	Retardateurs de flamme	327,6	2,59	5,34	(Zou et al., 2018)
Tris(isobutyl).phosphate	126-71-6	Retardateurs de flamme	266,32	3	2,88	(Belles et al., 2017)
Tris(n-butyl).phosphate	126-73-8	Retardateurs de flamme	266,32	3,7	2,88	(Belles et al., 2017)
Tris(n-butyl).phosphate	126-73-8	Retardateurs de flamme	266,3	4	5,4	(Zou et al., 2018)
Tris(n-butyl).phosphate	126-73-8	Retardateurs de flamme	266,3	4	5,32	(Zou et al., 2018)

Composé	n° CAS	Groupe	Mw	log Kow	D (× 10 ⁻⁶ cm ² .s ⁻¹)	Référence
Tris(n-propyl).phosphate	513-08-6	Retardateurs de flamme	224,2	2,67	5,99	(Zou et al., 2018)
Tris(n-propyl).phosphate	513-08-6	Retardateurs de flamme	224,2	2,67	5,82	(Zou et al., 2018)
Tris(phenyl).phosphate	115-86-6	Retardateurs de flamme	326,28	4,6	2,88	(Belles et al., 2017)
Tylosin	1401-69-0	Pharmaceutiques	916,1	1,63	1,09	(Chen et al., 2013)

Annexes du Chapitre II

Liste des annexes du Chapitre II

Annexe II. 1 : Fournisseurs et puretés des standards analytiques utilisés	297
Annexe II. 2 : Paramètres de détection des composés étudiés	302

Groupe	Abréviation	Fournisseur	Pureté	Abréviation	Fournisseur	Pureté	Pureté isotopique
Hormones	aE2	Sigma Aldrich	99,38	aE2 D2	CDN Isotopes	99	98,9
Hormones	ANDRO	Sigma Aldrich	98,2	ANDROSTEN D7	AlsaChim	95,1	70,5
Hormones	ANDROSTER	Sigma Aldrich	100	ANDROSTEN D7	AlsaChim	95,1	70,5
Hormones	bE2	Sigma Aldrich	98	bE2 D2	CDN Isotopes	99	98,4
Hormones	CORT	Sigma Aldrich	99	CORT D7	SANTA CRUZ	98,8	n.i.
Hormones	CORT.OH	Sigma Aldrich	98,7	CORTOH D4	CDN Isotopes	98,5	98,4
Hormones	DES	Sigma Aldrich	96	DIEN D6	AlsaChim	97,3	76
Hormones	DEXA	Sigma Aldrich	99	DEXA D4	CDN Isotopes	98,2	97,6
Hormones	DIES	Sigma Aldrich	100	DIES D8	CDN Isotopes	99	99,6
Hormones	DROSPI	Sigma Aldrich	99,9	DROSPI D4	AlsaChim	100	98
Hormones	E1	LGC	96,1	E1 D4	CDN Isotopes	99	99
Hormones	E3	Sigma Aldrich	100	E3 D2	CDN Isotopes	98,3	98,9
Hormones	EE2	Sigma Aldrich	99,4	EE2 D4	CDN Isotopes	98,8	98,9
Hormones	EPI-TESTO	Sigma Aldrich	99	EPITESTO D5	CDN Isotopes	99	98
Hormones	LEVO	CliniSciences	100	LEVO D6	CDN Isotopes	99	99,4
Hormones	MEDROX	Sigma Aldrich	n.i.	LEVO D6	CDN Isotopes	99	99,4
Hormones	MEG.AC	Sigma Aldrich	99,4	13C MEGAC D3	AlsaChim	98,7	99,6% en ¹³ C 99,7% en D3
Hormones	NORE	Sigma Aldrich	99,6	NORE D6	CDN Isotopes	98,2	99,7
Hormones	PROG	Sigma Aldrich	100	PROG D9	CDN Isotopes	99	99,7
Hormones	TESTO	Sigma Aldrich	99,7	TESTO D4	AlsaChim	100	98
Pesticides	ALC	Ehrenstorfer	99,9	MTC D6	Ehrenstorfer	99,3	98,7
Pesticides	ATC	Ehrenstorfer	99	MTC D6	Ehrenstorfer	99,3	98,7
Pesticides	ATC.ESA	Ehrenstorfer	95,4	BTZ D6	Ehrenstorfer	99,4	99,8
Pesticides	ATC.OA	Ehrenstorfer	95,8	BTZ D6	Ehrenstorfer	99,4	99,8

Annexe II. 1 : Fournisseurs et puretés des standards analytiques utilisés.

Groupe	Abréviation	Fournisseur	Pureté	Abréviation	Fournisseur	Pureté	Pureté isotopique
Pesticides	ATZ	Ehrenstorfer	99,4	ATZ D5	Ehrenstorfer	99,5	99
Pesticides	AZS	Ehrenstorfer	99,23	ATZ D5	Ehrenstorfer	99,5	99
Pesticides	BTZ	Ehrenstorfer	99	BTZ D6	Ehrenstorfer	Ehrenstorfer 99,4	
Pesticides	CBF	Ehrenstorfer	98,5	CBF D3	Ehrenstorfer	99,4	99,8
Pesticides	CBY	Ehrenstorfer	99,99	PIRI D6	Ehrenstorfer	99,4	99,7
Pesticides	CBZ	Ehrenstorfer	98,69	MTY D3	Ehrenstorfer	96,1	98
Pesticides	CSF	Ehrenstorfer	99,15	MSF D3	Ehrenstorfer	n.i.	n.i.
Pesticides	CTL	Ehrenstorfer	98,9	DIU D6	Ehrenstorfer	99,4	99,9
Pesticides	CYPRO	Ehrenstorfer	98,56	TBZ D6	Ehrenstorfer	97	97,5
Pesticides	DCA	CIL Cluzeau	99,3	ATZ D5	Ehrenstorfer	99,5	99
Pesticides	DCB	Ehrenstorfer	98,7	MCPA d3	Ehrenstorfer 93,2		98
Pesticides	DCF	Ehrenstorfer	98,83	MCPA d3	Ehrenstorfer 93,2		98
Pesticides	DCP	Ehrenstorfer	98,6	MCPA d3	Ehrenstorfer 93,2		98
Pesticides	DCPMU	Ehrenstorfer	99,68	DIU D6	Ehrenstorfer	99,4	99,9
Pesticides	DCPU	Ehrenstorfer	98,5	DIU D6	Ehrenstorfer	99,4	99,9
Pesticides	DEA	Ehrenstorfer	99,1	DEA D6	Ehrenstorfer	97,4	99,7
Pesticides	DET	Ehrenstorfer	99,5	ATZ D5	Ehrenstorfer	99,5	99
Pesticides	DIA	Ehrenstorfer	98,9	DEA D6	Ehrenstorfer	97,4	99,7
Pesticides	DIU	Ehrenstorfer	98,8	DIU D6	Ehrenstorfer	99,4	99,9
Pesticides	DMM	Ehrenstorfer	99,78	ATZ D5	Ehrenstorfer	99,5	99
Pesticides	DMO	Ehrenstorfer	99,37	MTY D3	Ehrenstorfer	96,1	98
Pesticides	DPA	Ehrenstorfer	98	MCPA d3	Ehrenstorfer	93,2	98
Pesticides	DTC	Ehrenstorfer	98	MTC D6	Ehrenstorfer	99,3	98,7
Pesticides	DTM	Ehrenstorfer	99,95	MTC D6	Ehrenstorfer	99,3	98,7
Pesticides	EPOX	Ehrenstorfer	99,99	TBZ D6	Ehrenstorfer	97	97,5
Pesticides	FLM	Ehrenstorfer	99,5	MTC D6	Ehrenstorfer	99,3	98,7
Pesticides	FLZ	Ehrenstorfer	98	TBZ D6	Ehrenstorfer	97	97,5
Pesticides	FNP	Ehrenstorfer	98,88	MCPA d3	Ehrenstorfer	93,2	98

Groupe	Abréviation	Fournisseur	Pureté	Abréviation	Fournisseur	Pureté	Pureté isotopique
Pesticides	HEXA	Ehrenstorfer	97,74	ATZ D5	Ehrenstorfer	99,5	99
Pesticides	IMI	Ehrenstorfer	99,82	DEA D6	Ehrenstorfer 97,4		99,7
Pesticides	IPPMU	Ehrenstorfer	98,5	DIU D6	Ehrenstorfer	99,4	99,9
Pesticides	IPPU	Ehrenstorfer	99	DIU D6	Ehrenstorfer	99,4	99,9
Pesticides	IPU	Ehrenstorfer	99	DIU D6	Ehrenstorfer	99,4	99,9
Pesticides	IRG	Ehrenstorfer	99	ATZ D5	Ehrenstorfer	99,5	99
Pesticides	ISF	Ehrenstorfer	96,2	MSF D3	Ehrenstorfer	n.i.	n.i.
Pesticides	IXI	Ehrenstorfer	99,68	BTZ D6	Ehrenstorfer	99,4	99,8
Pesticides	K.MET	Ehrenstorfer	97,36	TBZ D6	Ehrenstorfer	97	97,5
Pesticides	LINU	Ehrenstorfer	99	DIU D6	Ehrenstorfer	99,4	99,9
Pesticides	МСР	Ehrenstorfer	98,7	MCPA d3	Ehrenstorfer	93,2	98
Pesticides	МСРА	Ehrenstorfer	99,11	MCPA d3	Ehrenstorfer	93,2	98
Pesticides	MSF	Ehrenstorfer	99,5	MSF D3	Ehrenstorfer	n.i.	n.i.
Pesticides	MST	Ehrenstorfer	98,61	MSF D3	Ehrenstorfer	n.i.	n.i.
Pesticides	MTC	Ehrenstorfer	98,58	MTC D6	Ehrenstorfer	99,3	98,7
Pesticides	MTC.ESA	Ehrenstorfer	95,7	BTZ D6	Ehrenstorfer	99,4	99,8
Pesticides	MTC.OA	Ehrenstorfer	99	BTZ D6	Ehrenstorfer	99,4	99,8
Pesticides	MTX	Ehrenstorfer	98	DIU D6	Ehrenstorfer	99,4	99,9
Pesticides	MTY	Ehrenstorfer	99,9	MTY D3	Ehrenstorfer	96,1	98
Pesticides	MTZ	Ehrenstorfer	98,02	MTC D6	Ehrenstorfer	99,3	98,7
Pesticides	NFZ	Ehrenstorfer	97,93	DIU D6	Ehrenstorfer	99,4	99,9
Pesticides	NFZD	Ehrenstorfer	99	DIU D6	Ehrenstorfer	99,4	99,9
Pesticides	NSF	Ehrenstorfer	98,4	MSF D3	Ehrenstorfer	n.i.	n.i.
Pesticides	PIRI	Ehrenstorfer	99,6	PIRI D6	Ehrenstorfer	99,4	99,7
Pesticides	SCT	Ehrenstorfer	99,62	MSF D3	Ehrenstorfer	n.i.	n.i.
Pesticides	SMZ	Ehrenstorfer	98	ATZ D5	Ehrenstorfer	99,5	99
Pesticides	SPIRO	Ehrenstorfer	98,4	TBZ D6	Ehrenstorfer	97	97,5
Pesticides	TBZ	Ehrenstorfer	99,34	TBZ D6	Ehrenstorfer	97	97,5

Groupe	Abréviation	Fournisseur	Pureté	Abréviation	Fournisseur	Pureté	Pureté isotopique
Pesticides	TYZ	Ehrenstorfer	98,69	ATZ D5	Ehrenstorfer	99,5	99
Pharmaceutiques	ACE	Sigma Aldrich	100.0	ACE D7	CDN Isotopes	99	99,8
Pharmaceutiques	ACFENO	Cayman	100.0	ACFENO D6	CDN Isotopes 98,5		98,8
Pharmaceutiques	ACSMX	Ehrenstorfer	99,53	SMX D4	CDN Isotopes	99	98,9
Pharmaceutiques	AMI	Sigma Aldrich	n.i.	AMI D6	CDN Isotopes	99	98
Pharmaceutiques	AMS	Cayman	98	SMX D4	CDN Isotopes	99	98,9
Pharmaceutiques	APZ	Sigma Aldrich	n.i.	CARBA D10	CDN Isotopes	99	99,5
Pharmaceutiques	ATE	Sigma Aldrich	98,8	ATE D7	CDN Isotopes	98	99,8
Pharmaceutiques	AZI	Sigma Aldrich	96,9	CLARI D3	CDN Isotopes	98	98,8
Pharmaceutiques	BEZA	Sigma Aldrich	99,3	NAPROX D3	CDN Isotopes	99	99
Pharmaceutiques	CARBA	Sigma Aldrich	99,9	CARBA D10	CDN Isotopes	99	99,5
Pharmaceutiques	CARBAEP	Sigma Aldrich	99,3	SMX D4	CDN Isotopes	99	98,9
Pharmaceutiques	CEL	Cayman	99,4	SMX D4	CDN Isotopes	99	98,9
Pharmaceutiques	CIPRO	CIL	n.i.	CLARI D3	CDN Isotopes	98	98,8
Pharmaceutiques	CLARI	Ehrenstorfer	98,5	CLARI D3	CDN Isotopes	98	98,8
Pharmaceutiques	CLINDA	VWR	98,6	SMX D4	CDN Isotopes	99	98,9
Pharmaceutiques	CYCLOP	Sigma Aldrich	100.0	SMX D4	CDN Isotopes	99	98,9
Pharmaceutiques	DIAZ	Sigma Aldrich	n.i.	KETO D3	CDN Isotopes	99	99,7
Pharmaceutiques	DICLO	Sigma Aldrich	99,9	DICLO D4	CDN Isotopes	99	98,1
Pharmaceutiques	ERY	Ehrenstorfer	97.0	CLARI D3	CDN Isotopes	98	98,8
Pharmaceutiques	FCD	VWR	99,1	SMX D4	CDN Isotopes	99	98,9
Pharmaceutiques	FENO	Ehrenstorfer	99,9	FENO D6	CDN Isotopes	98,9	99,1
Pharmaceutiques	FLUOX	Sigma Aldrich	n.i.	FLUOX D5	CDN Isotopes	99	99,6
Pharmaceutiques	FURO	Ehrenstorfer	99,05	GEM D6	CDN Isotopes	99	99,7
Pharmaceutiques	GEM	Ehrenstorfer	99.0	GEM D6	CDN Isotopes	99	99,7
Pharmaceutiques	IRB	Cayman	98,8	SMX D4	CDN Isotopes	99	98,9
Pharmaceutiques	KETO	Ehrenstorfer	99.0	KETO D3	CDN Isotopes	99	99,7
Pharmaceutiques	LAM	Sigma Aldrich	99,8	ATE D7	CDN Isotopes	98	99,8

Groupe	Abréviation	Fournisseur	Pureté	Abréviation	Fournisseur	Pureté	Pureté isotopique
Pharmaceutiques	MET	Ehrenstorfer	99,5	MET D7	CDN Isotopes	99	99,8
Pharmaceutiques	METFOR	Sigma Aldrich	99,8	PARA D3	CDN Isotopes	99	99,2
Pharmaceutiques	METRO	Ehrenstorfer	99,8	SOT D7	CDN Isotopes	99	99,8
Pharmaceutiques	NAPROX	Ehrenstorfer	99,5	NAPROX D3	CDN Isotopes	99	99
Pharmaceutiques	NDZ	Sigma Aldrich	n.i.	CARBA D10	CDN Isotopes	99	99,5
Pharmaceutiques	NFLUOX	CIL	n.i.	FLUOX D5	CDN Isotopes	99	99,6
Pharmaceutiques	NIF	Sigma Aldrich	100	ATE D7	CDN Isotopes	98	99,8
Pharmaceutiques	NORFLO	Sigma Aldrich	99,7	NORFLO D5	CDN Isotopes	99	99,6
Pharmaceutiques	OFLO	Ehrenstorfer	95,71	OFLO D5	Sigma Aldrich	99,2	99,5
Pharmaceutiques	OXA	Sigma Aldrich	n.i.	CARBA D10	CDN Isotopes	99	99,5
Pharmaceutiques	PARA	Sigma Aldrich	99,8	PARA D3	CDN Isotopes	99	99,2
Pharmaceutiques	PROP	Ehrenstorfer	99,3	PROP D7	CDN Isotopes	99	98
Pharmaceutiques	SALBU	Sigma Aldrich	100.0	SALBU D3	CDN Isotopes	98,3	99
Pharmaceutiques	SMX	Sigma Aldrich	99,6	SMX D4	CDN Isotopes	99	98,9
Pharmaceutiques	SOT	Ehrenstorfer	98,5	SOT D7	CDN Isotopes	99	99,8
Pharmaceutiques	THEO	Sigma Aldrich	99,9	SMX D4	CDN Isotopes	99	98,9
Pharmaceutiques	TRIM	Ehrenstorfer	99,1	SMX D4	CDN Isotopes	99	98,9
Pharmaceutiques	VFX	Sigma Aldrich	99	ATE D7	CDN Isotopes	98	99,8

Groupe	Composés	Ion parent	Ion fils	Tension du cône (V)	Energie de collision (V)	Ionisation
		271	145	10	42	FOI
Homones	aE2	271	239	10	42	ESI-
T.T.		287	97	22	20	TOT.
Homones	ANDRO	287	109	22	22	ESI+
T.T.		291	255	15	12	TOT.
Homones	ANDROSTER	291	273	15	10	ESI+
T.T.	1.50	271	145	10	42	TOT
Homones	bE2	271	183	10	42	ESI-
	000	361	121	38	30	TOT.
Homones	CORT	361	163	38	20	ESI+
	CODECU	363	91	24	50	TOT
Homones	CORT.OH	363	121	24	22	ESI+
Homones	DES	267	107	2	20	ESI+
		393	147	2	26	ESI+
Homones	DEXA	393	355	2	12	
T.T.	DUDO	267	273	45	31	ESI-
Homones	DIES	267	251	45	28	
		367	91	2	50	TOT
Homones	DROSPI	367	97	2	26	ESI+
		271	133	20	22	TOT
Homones	E1	271	253	20	12	ESI+
	E a	271	133	16	24	TOL
Homones	E3	271	253	16	10	ESI+
		295	145	60	37	TOT
Homones	EE2	295	159	60	33	ESI-
		289	97	2	24	TOT
Homones	EPI-TESTO	289	109	2	24	ESI+
		313	91	2	38	
Homones	LEVO	313	109	2	26	ESI+
		345	97	2	24	
Homones	MEDROX	345	123	2	26	ESI+
		385	267	2	16	
Homones	MEG.AC	385	325	2	14	ESI+

Annexe II. 2 : Paramètres de détection des composés étudiés

Groupe	Composés	Ion parent	Ion fils	Tension du cône (V)	Energie de collision (V)	Ionisation
	NODE	299	91	2	42	TOT.
Homones	NORE	299	109	2	28	ESI+
TT	DDOC	315	97	18	20	TOL
Homones	PROG	315	109	18	24	ESI+
TT		289	97	20	22	TOL
Homones	IESIO	289	109	20	22	ESI+
D		270	238	20	30	
Pesticides	ALC	270	162	20	30	ESI +
D		270	224	25	20	
Pesticides	AIC	270	148	25	20	ESI +
N		314	121	31	28	ESI -
Pesticides	ATC.ESA	314	80	31	56	
D		264	146	26	12	
Pesticides	ATC.OA	264	144	26	35	ESI -
D		216	174	25	25	ESI +
Pesticides	AIZ	216	104	25	25	
D		404	372	46	21	ESI +
Pesticides	AZS	404	329	46	41	
N	DITIO	239	132	30	35	TIGT
Pesticides	BIZ	239	175	30	23	ESI -
D		222	123	41	31	
Pesticides	CBF	222	165	41	17	ESI +
N	CDV	202	145	41	15	
Pesticides	СВУ	202	127	41	39	ESI +
N		192	160	26	27	
Pesticides	CBZ	192	105	26	53	ESI +
		356	139	20	46	
Pesticides	CSF	356	107	20	74	ESI -
		213	72	30	35	
Pesticides	CTL	213	46	30	35	ESI +
		292	70	36	33	
Pesticides	CYPRO	292	125	36	39	ESI +
		219	175	20	6	
Pesticides	DCB	219	145	20	6	ESI -

Groupe	Composés	Ion parent	Ion fils	Tension du cône (V)	Energie de collision (V)	Ionisation
D	DOE	325	253	20	20	TIGT
Pesticides	DCF	325	71	20	25	ESI -
	DCD	233	161	20	14	DOL
Pesticides	DCP	233	125	20	36	ESI -
	DCDMU	219	127	30	40	
Pesticides	DCPMU	219	162	30	40	ESI +
D	DCDU	205	127	30	40	ECL 1
Pesticides	DCPU	205	162	30	40	ESI +
D	DEA	188	146	30	25	ECL 1
Pesticides	DEA	188	104	30	25	ESI +
D	DET	202	146	30	25	ESI +
Pesticides	DEI	202	104	30	25	
D .: 1	DIA	174	104	30	35	ESI +
Pesticides	DIA	174	132	30	35	
D	DIL	233	72	30	40	ESI +
Pesticides	DIU	233	46	30	40	
D	DIG	388	165	26	41	ESI +
Pesticides		388	301	26	29	
D	DMO	230	125	41	29	ECL 1
Pesticides	DMO	230	199	41	13	ESI +
	DDA	219	161	20	20	TOT
Pesticides	DPA	219	125	20	34	ESI -
D .: 1	DTC	256	224	36	21	
Pesticides	DIC	256	147	36	35	ESI +
D	DTM	276	244	46	21	ECL 1
Pesticides	DIM	276	167	46	31	ESI +
D	EDOX	330	121	51	25	ECL 1
Pesticides	EPOX	330	101	51	65	ESI +
D .: 1	FIN	334	247	88	37	
Pesticides	FLM	334	178	88	53	E21 +
Dest	EI 7	316	247	86	25	ECT -
Pesticides	FLZ	316	165	86	35	E91 +
D		269	197	20	18	TOT
Pesticides	FNP	269	161	20	40	ESI -

Groupe	Composés	Ion parent	Ion fils	Tension du cône (V)	Energie de collision (V)	Ionisation
D 1		253	171	21	21	
Pesticides	HEXA	253	71	21	49	ESI +
D	Da	256	175	56	31	
Pesticides	11/11	256	209	56	21	ESI +
D		193	94	30	30	ECL
Pesticides	ПРРМО	193	151	30	30	ESI +
Destidue		179	137	30	30	EST 1
Pesticides	ПРРО	179	94	30	30	E51 +
Destinidas	IDU	207	72	25	35	TEL
Pesucides	IPU	207	165	25	35	E-51 +
Destidat	IDC	254	198	30	30	ESI +
Pesticides	IKG	254	91	30	30	
Destinidas	ISE	506	139	20	50	
Pesticides	15F	506	308	20	40	E3I -
Destidat	IVI	370	127	20	60	ESI -
Pesticides	171	370	215	20	30	
Destidat		314	116	86	21	ESI +
Pesticides	K.ME1	314	206	86	13	
Destidat		249	160	30	30	EST 1
Pesticides	LINU	249	182	30	30	E51 +
Destidue	MCD	213	141	20	20	ECI
Pesticides	MCP	213	71	20	20	E3I -
Destidat	MCDA	199	141	20	20	ECI
Pesticides	МСРА	199	155	20	10	E3I -
۲	MCE	380	139	20	20	ECI
Pesticides	MSF	380	214	20	10	E51 -
Destidue	MCT	338	291	10	15	ECI
Pesticides	M51	338	212	10	40	E51 -
۲	MTC	284	252	20	30	ECL
Pesticides	MIC	284	176	20	30	ESI +
		328	80	35	65	Det
Pesticides	MIC.ESA	328	121	35	30	ESI -
D		278	206	20	12	TOT
Pesticides	MIC.OA	278	174	20	20	E5I -

Groupe	Composés	Ion parent	Ion fils	Tension du cône (V)	Energie de collision (V)	Ionisation
		229	72	30	40	
Pesticides	MTX	229	46	30	40	ESI +
D		163	88	21	13	
Pesticides	MTY	163	106	21	13	ESI +
D		278	134	30	30	
Pesticides	MIZ	278	210	30	30	ESI +
	NEZ	304	284	111	31	
Pesticides	NFZ	304	160	111	41	ESI +
D	NEE	409	154	20	30	TOT
Pesticides	NSF	409	227	20	18	ESI -
D	DIDI	239	72	21	35	ESI +
Pesticides	PIRI	239	182	21	21	
D (1	SCT	327	291	20	20	ESI -
Pesticides	501	327	212	20	40	
D	01/7	202	132	30	30	ESI +
Pesticides	SMZ	202	124	30	30	
D	CDUDO	298	144	56	27	ESI +
Pesticides	SPIRO	298	100	56	43	
D (1		308	70	91	41	ECL 1
Pesticides	IBZ	308	125	91	47	ESI +
D (1	7577	230	174	30	25	ECL 1
Pesticides		230	146	30	25	ESI +
Dhannaarti	ACE	337	74	14	28	TEL
Pharmaceutiques	ACE	337	116	14	20	E31+
Dhamaa	ACEENIO	319	139	25	34	TEL
Pharmaceutiques	ACFENO	319	233	25	15	E51+
	ACONT	296	65	20	38	ECL
Pharmaceutiques	ACSMX	296	134	25	24	E51+
		278	91	10	22	ECL
Pharmaceutiques	AMI	278	105	10	23	E51+
		267	74	12	25	ECL
Pnarmaceutiques	AIE	267	145	12	22	E21+
	A /77 T	750	158	30	40	
Pharmaceutiques	AZI	750	592	30	30	ESI+

Groupe	Composés	Ion parent	Ion fils	Tension du cône (V)	Energie de collision (V)	Ionisation
DI ·	DEZA	362	139	10	24	TOL
Pharmaceutiques	BEZA	362	316	10	12	ESI+
	CADDA	237	179	38	34	TOL
Pharmaceutiques	CARBA	237	194	38	20	ESI+
	CADDAED	253	167	10	36	TOL
Pharmaceutiques	CARBAEP	253	180	10	32	ESI+
	CLADI	749	83	30	50	TOL
Pharmaceutiques	CLARI	749	158	30	30	ESI+
		425	126	8	26	TOL
Pharmaceutiques	CLINDA	425	126	8	26	ESI+
	CVCL OD	261	106	6	16	ESI+
Pharmaceutiques	CYCLOP	261	140	6	22	
	DICLO	296	214	24	30	- EST
Pharmaceutiques	DICLO	296	250	24	14	ESI+
	EDV	735	83	20	50	ESI+
Pharmaceutiques	ERY	735	158	20	30	
		361	121	20	28	_
Pharmaceutiques	FENO	361	139	20	30	ESI+
		361	233	20	16	
	FLUOY	310	44	4	10	TOL
Pharmaceutiques	FLUOX	310	148	4	8	ESI+
	EUDO	329	78	20	30	TOT
Pharmaceutiques	FURO	329	205	20	24	ESI-
		249	121	33	10	TOI
Pharmaceutiques	GEM	249	127	33	10	ESI-
		255	77	20	36	TICK
Pharmaceutiques	KETO	255	105	20	20	ESI+
		268	74	40	20	
Pharmaceutiques	MET	268	116	40	15	ESI+
		130	60	15	10	
Pharmaceutiques	METFOR	130	71	15	16	ESI+
		172	82	20	22	
Pharmaceutiques	METRO	172	128	20	14	ESI+
Pharmaceutiques	NAPROX	231	170	22	35	ESI+

Groupe	Composés	Ion parent	Ion fils	Tension du cône (V)	Energie de collision (V)	Ionisation
Pharmaceutiques	NFLUOX	296	134	20	6	ESI+
		320	233	40	25	
Pharmaceutiques	NORFLO	320	276	40	20	ESI+
		362	261	25	30	
Pharmaceutiques	OFLO	362	318	25	20	ESI+
		152	65	20	30	ESI+
Pharmaceutiques	PARA	152	93	20	25	
		152	110	20	15	
Pharmaceutiques	PROP	260	116	2	16	ESI+
		240	121	35	30	-
		240	148	35	20	
Pharmaceutiques	SALBU	240	166	35	12	ESI+
		240	222	35	12	
		254	92	28	30	TOT :
Pharmaceutiques	SMX	254	156	28	16	ESI+
		273	133	8	26	TOT :
Pharmaceutiques	SOT	273	213	8	18	ESI+
		181	42	45	30	TOTA
Pharmaceutiques	THEO	181	124	45	17	ESI+
		291	123	16	26	
Pharmaceutiques	TRIM	291	230	16	22	ESI+

Annexes du Chapitre IV

Liste des annexes du Chapitre IV

Table S1: Physicochemical properties of studied compounds 311
Table S2: Suppliers and purity of studied compounds 317
Table S3: Suppliers and purity of internal standards
Table S4:Autosampler and column temperature and injected sample volume
Table S5: Mobile phase and flow rate used for UHPLC-MS/MS analysis of hormones. 321
Table S6: Mobile phase and flow rate used for UHPLC-MS/MS analysis of pharmaceuticals. 322
Table S7: Mobile phase and flow rate used for HPLC-MS/MS analysis of neutral pesticides.
Table S8: Mobile phase and flow rate used for HPLC-MS/MS analysis of anionic pesticides.
Table S9: Mass spectrometric conditions of pharmaceuticals and hormones
Table S10: Mass spectrometric conditions of pesticides 323
Table S11: Mass parameters of studied compounds and internal standard associated 324
Table S12: Diffusion coefficients (D) determined in this study by diffusion cell or slice stacking methods (recalculated at T=25°C) for 117 organic compounds, through agarose (AG) or polyacrylamide (PA)
Table S13: Diffusion coefficients (D) determined in this study compared to those found in
literature (recalculated at T=25°C) through agarose (AG) or polyacrylamide (PA).D were
determined by diffusion cell method (cell), slice stacking method (stack) or calibration
(calib)
Table S14 : Sampling rates and DBL thickness obtained with diffusion cell method 339
Table S15 : Sampling rates determined using DBL thickness determined by Challis et al.
(2010a) compare to mose determined by Chains et al. by cambration method

Figure S1 : Rations between D found in literature and those determined in this study 344
Figure S2 : Diffusion coefficients (D) determined by diffusion cell method in function of D determined by slice stacking method
Figure S3 : PCA – Diffusion coefficients through agarose (AG) and polyacrylamide (PA) determined by diffusion cell method (cell)
Figure S4 : PCA – Diffusion coefficients through agarose of neutral, anionic and cationic compounds determined by slice stacking method (stack) and diffusion cell method (cell)
Figure S5 : PCA – Diffusion coefficients through polyacrylamide of neutral, anionic and cationic compounds determined by slice stacking method (stack) and diffusion cell method (cell)
Figure S6 : PCA – Diffusion coefficients of hormones, pesticides and pharmaceuticals through agarose gel determined by slice stacking method (stack) and diffusion cell method (cell)
Figure S7 : PCA – Diffusion coefficients of hormones, pesticides and pharmaceuticals through polyacrylamide determined by slice stacking method (stack) and diffusion cell method (cell)

Table S1: Physicochemical properties of studied compounds

Group	Compound	Abbreviation	N° CAS	Molecular mass (g mol-1)	Van der Walls volum (A ³)	Polar surface area (A ²)	Log D _{ow} at pH 7.4	Ionisation at pH 7
Hormones	Alpha estradiol	aE2	57-91-0	272.4	269.8	40.5	3.7	Neutral
Hormones	Alpha ethynylestradiol	EE2	57-63-6	296.4	291.6	40.5	3.9	Neutral
Hormones	Androstenedione	ANDRO	63-05-8	286.4	286.9	34.1	3.9	Neutral
Hormones	Androsterone	ANDROSTER	53-41-8	290.2	301.1	37.3	3.8	Neutral
Hormones	Beta estradiol	bE2	50-28-2	272.4	269.9	40.5	3.7	Neutral
Hormones	Cortisol	CORT.OH	50-23-7	362.5	347.2	94.8	1.3	Neutral
Hormones	Cortisone	CORT	53-06-5	360.4	341.1	91.7	1.7	Neutral
Hormones	Dexamethasone	DEXA	50-02-2	392.5	362.1	94.8	1.7	Neutral
Hormones	Dienestrol	DES	56-53-1	268.4	263.7	40.5	4.8	Neutral
Hormones	Diethylstilbestrol	DIES	84-17-03	266.3	256.6	40.5	5.2	Neutral
Hormones	Drospirenone	DROSPI	67392-87-4	366.5	346.4	43.4	3.4	Neutral
Hormones	Epi testosterone	EPI-TESTO	481-30-1	288.4	293.4	37.3	3.4	Neutral
Hormones	Estriol	E3	50-27-1	288.4	278.4	60.7	2.7	Neutral
Hormones	Estrone	E1	53-16-7	270.4	263.1	37.3	4.3	Neutral
Hormones	Levonorgestrel	LEVO	797-63-7	312.5	315.0	37.3	3.7	Neutral
Hormones	Medroxyprogesterone	MEDROX	520-85-4	344.2	347.2	54.4	3.7	Neutral
Hormones	Megestrol acetate	MEG.AC	595-33-5	384.5	376.5	60.4	3.7	Neutral
Hormones	Norethindrone	NORE	68-22-4	298.4	297.8	37.3	3.2	Neutral
Hormones	Progesterone	PROG	57-83-0	314.5	321.0	34.1	4.2	Neutral
Hormones	Testosterone	TESTO	58-22-0	288.4	293.3	37.3	3.4	Neutral
Pesticides	1-(3,4-dichlorophenyl)-3-methyl-urea	DCPMU	3567-62-2	219.1	169.2	41.1	2.3	Neutral
Pesticides	1-(3,4-dichlorophenyl)-urea	DCPU	2327-02-8	205.0	151.8	55.1	2.1	Neutral

Group	Compound	Abbreviation	N° CAS	Molecular mass (g mol-1)	Van der Walls volum (A ³)	Polar surface area (A ²)	Log D _{ow} at pH 7.4	Ionisation at pH 7
Pesticides	1-(4-isopropylphenyl)-3-methyl-urea	IPPMU	34123-57-4	192.3	192.3	41.1	2.4	Neutral
Pesticides	1-(4-isopropylphenyl)-3-urea	IPPU	56046-17-4	178.2	174.8	55.1	2.1	Neutral
Pesticides	2,4-dichlorophenoxyacetic acid	DPA	94-75-7	221.0	163.7	46.5	-1.0	Anionic
Pesticides	2-methyl-4-chlorophenoxyacetic acid	МСРА	94-74-6	200.6	166.6	46.5	-1.0	Anionic
Pesticides	Acetochlor	ATC	34256-82-1	269.8	255.6	29.5	3.5	Neutral
Pesticides	Acetochlor ESA	ATC.ESA	187022-11- 3	315.4	286.1	83.9	-0.2	Anionic
Pesticides	Acetochlor OA	ATC.OA	194992-44- 4	265.3	252.4	66.8	-0.5	Anionic
Pesticides	Alachlor	ALC	15972-60-8	269.8	255.7	29.5	3.6	Neutral
Pesticides	Atrazine	ATZ	1912-24-9	215.7	190.9	62.7	2.2	Neutral
Pesticides	Azoxystrobin	AZS	131860-33- 8	403.4	347.4	103.6	4.2	Neutral
Pesticides	Bentazone	BTZ	25057-89-0	240.3	200.4	66.5	-0.2	Anionic
Pesticides	Carbaryl	СВҮ	63-25-2	201.2	181.9	38.3	2.5	Neutral
Pesticides	Carbendazim	CBZ	10605-21-7	191.2	161.4	67.0	1.8	Neutral
Pesticides	Carbofuran	CBF	1563-66-2	221.3	204.0	47.6	2.1	Neutral
Pesticides	Chlorsulfuron	CSF	64902-72-3	357.8	275.1	123.2	1.6	Anionic
Pesticides	Chlortoluron	CTL	15545-48-9	212.7	189.9	59.2	2.4	Neutral
Pesticides	Cyproconazole	CYPRO	94361-06-5	291.8	258.8	50.9	2.9	Neutral
Pesticides	Deisopropyl-atrazine	DIA	1007-28-9	173.6	139.5	76.7	1.1	Neutral
Pesticides	Desethyl-atrazine	DEA	6190-65-4	187.6	156.6	76.7	1.5	Neutral
Pesticides	Desethyl-terbuthylazine	DET	30125-63-4	201.7	173.8	76.7	1.8	Neutral
Pesticides	Dicamba	DCB	1918-00-9	221.0	164.0	46.5	-0.8	Anionic

Group	Compound	Abbreviation	N° CAS	Molecular mass (g mol-1)	Van der Walls volum (A ³)	Polar surface area (A ²)	Log Dow at pH 7.4	Ionisation at pH 7
Pesticides	Dichlorprop	DCP	120-36-5	235.1	180.7	46.5	-0.4	Anionic
Pesticides	Diclofop	DCF	40843-25-2	327.2	260.4	55.8	1.1	Anionic
Pesticides	Dimetachlor	DTC	50563-36-5	255.7	239.3	29.5	2.6	Neutral
Pesticides	Dimethenamid	DTM	87674-68-8	275.8	246.9	29.5	2.9	Neutral
Pesticides	Dimethoate	DMO	60-51-5	229.2	184.5	47.6	0.3	Neutral
Pesticides	Dimetomorph	DMM	110488-70- 5	387.9	342.4	48.0	3.3	Neutral
Pesticides	Diuron	DIU	330-54-1	233.1	187.1	32.3	2.5	Neutral
Pesticides	Epoxyconazole	EPOX	133855-98- 8	329.8	266.3	43.2	3.7	Neutral
Pesticides	Fenoprop	FNP	93-72-1	269.5	194.8	46.5	0.2	Anionic
Pesticides	Flurtamone	FLM	96525-23-4	333.3	272.5	38.3	4.6	Neutral
Pesticides	Flusilazole	FLZ	85509-19-9	315.4	268.3	30.7	4.7	Neutral
Pesticides	Hexazinone	HEXA	51235-04-2	252.3	239.8	56.2	1.4	Neutral
Pesticides	Imidaclopride	IMI	105827-78- 9	255.7	199.2	83.7	0.8	Neutral
Pesticides	Iodosulfuron	ISF	185119-76- 0	493.2	330.8	149.5	1.9	Anionic
Pesticides	Ioxynil	IXI	1689-83-4	370.4	156.0	44.0	1.8	Anionic
Pesticides	Irgarol	IRG	28159-98-0	253.4	235.3	62.7	2.9	Neutral
Pesticides	Isoproturon	IPU	34123-59-6	206.3	210.2	32.3	2.6	Neutral
Pesticides	Kresoxim methyl	K.MET	143390-89- 0	313.4	289.0	57.1	4.3	Neutral
Pesticides	Linuron	LINU	330-55-2	249.1	195.9	41.6	2.7	Neutral

Group	Compound	Abbreviation	Nº CAS	Molecular mass (g mol-1)	Van der Walls volum (A ³)	Polar surface area (A ²)	Log D _{ow} at pH 7.4	Ionisation at pH 7
Pesticides	Mecoprop	МСР	93-65-2	214.6	183.7	46.5	-0.4	Anionic
Pesticides	Mesotrione	MST	104206-82- 8	339.3	272.7	128.5	0.7	Anionic
Pesticides	Metazachlor	MTZ	67129-08-2	277.8	246.0	38.1	3.0	Neutral
Pesticides	Methomyl	MTY	16752-77-5	162.2	142.6	50.7	0.7	Neutral
Pesticides	Metolachlor	MTC	67129-08-2	283.8	272.8	29.5	3.5	Neutral
Pesticides	Metolachlor ESA	MTC.ESA	171118-09- 5	329.4	303.4	83.9	-0.3	Anionic
Pesticides	Metolachlor OA	MTC.OA	152019-73- 3	279.3	269.6	66.8	-0.6	Anionic
Pesticides	Metoxuron	MTX	19937-59-8	228.7	199.1	41.6	1.8	Neutral
Pesticides	Metsulfuron	MSF	79510-48-8	367.3	288.7	160.5	-3.0	Anionic
Pesticides	Nicosulfuron	NSF	111991-09- 4	410.4	335.8	152.7	-0.2	Anionic
Pesticides	Norflurazon	NFZ	27314-13-2	303.7	226.6	44.7	2.4	Neutral
Pesticides	Pirimicarb	PIRI	23103-98-2	238.4	228.0	58.6	1.8	Neutral
Pesticides	Simazine	SMZ	122-34-9	201.7	173.7	62.7	1.8	Neutral
Pesticides	Spiroxamine	SPIRO	118134-30- 8	297.5	326.7	21.7	2.5	Cationic
Pesticides	Sulcotrione	SCT	99105-77-8	328.8	263.4	85.4	1.2	Cationic
Pesticides	Tebuconazole	TBZ	107534-96- 3	307.8	287.9	50.9	3.7	Neutral
Pesticides	Terbuthylazine	TYZ	5915-41-3	229.7	208.1	62.7	2.5	Neutral
Pharmaceuticals	Acebutolol	ACE	37517-30-9	336.4	331.9	87.7	-0.6	Cationic
Pharmaceuticals	Acetaminophen	PARA	103-90-2	151.2	138.1	49.3	0.9	Neutral

Group	Compound	Abbreviation	N° CAS	Molecular mass (g mol-1)	Van der Walls volum (A ³)	Polar surface area (A ²)	Log D _{ow} at pH 7.4	Ionisation at pH 7
Pharmaceuticals	Acetylsulfamethoxazole	ACSMX	21312-10-7	295.3	241.3	101.3	-1.0	Anionic
Pharmaceuticals	Amitriptyline	AMI	50-48-6	277.4	282.8	3.2	2.5	Cationic
Pharmaceuticals	Atenolol	ATE	29122-68-7	266.3	261.3	84.6	-1.8	Cationic
Pharmaceuticals	Azithromycin	AZI	83905-01-5	749.0	757.6	180.1	-1.2	Cationic
Pharmaceuticals	Bezafibrate	BEZA	41859-67-0	361.8	319.7	75.6	0.7	Anionic
Pharmaceuticals	Carbamazepine	CARBA	298-46-4	236.3	210.2	46.3	2.8	Neutral
Pharmaceuticals	Carbamazepine epoxide	CARBAEP	36507-30-9	252.3	215.0	58.9	2.0	Neutral
Pharmaceuticals	Clarithromycin	CLARI	81103-11-9	747.7	744.5	182.9	2.2	Cationic
Pharmaceuticals	Clindamycin	CLINDA	18323-44-9	425.0	389.8	102.3	0.7	Cationic
Pharmaceuticals	Cyclophosphamide	CYCLOP	50-18-0	261.1	209.2	41.6	0.1	Neutral
Pharmaceuticals	Diclofenac	DICLO	15307-86-5	296.1	236.9	49.3	1.1	Anionic
Pharmaceuticals	Erythromycin	ERY	114-07-8	733.9	727.5	193.9	1.6	Cationic
Pharmaceuticals	Fenofibrate	FENO	49562-28-9	360.8	325.4	52.6	5.3	Neutral
Pharmaceuticals	Fenofibric acid	ACFENO	42017-89-0	318.8	325.4	52.6	0.9	Anionic
Pharmaceuticals	Fluoxetine	FLUOX	54910-89-3	309.3	274.2	21.3	1.8	Cationic
Pharmaceuticals	Furosemide	FURO	54-31-9	330.7	252.0	122.6	-1.3	Anionic
Pharmaceuticals	Gemfibrozil	GEM	25812-30-0	250.3	255.2	46.5	1.5	Anionic
Pharmaceuticals	Ketoprofen	KETO	22071-15-4	254.3	233.7	54.4	0.4	Anionic
Pharmaceuticals	Metformin	METFOR	657-24-9	129.2	123.4	91.5	-3.7	Cationic
Pharmaceuticals	Metoprolol	MET	37350-58-6	267.4	274.3	50.7	-0.5	Cationic
Pharmaceuticals	Metronidazole	METRO	443-48-1	171.2	144.2	81.2	-0.5	Neutral
Pharmaceuticals	Naproxen	NAPROX	22204-53-1	230.3	213.1	46.5	-0.1	Anionic
Pharmaceuticals	Norfloxacin	NORFLO	70458-96-7	319.3	277.5	72.9	-1.0	Neutral

Group	Compound	Abbreviation	N° CAS	Molecular mass (g mol-1)	Van der Walls volum (A ³)	Polar surface area (A ²)	Log Dow at pH 7.4	Ionisation at pH 7
Pharmaceuticals	Norfluoxetine	NFLUOX	83891-03-6	295.3	256.5	35.3	1.5	Cationic
Pharmaceuticals	Ofloxacin	OFLO	82419-36-1	361.4	309.9	73.3	-0.5	Anionic
Pharmaceuticals	Propanolol	PROP	525-66-6	259.3	257.6	41.2	0.4	Cationic
Pharmaceuticals	Salbutamol	SALBU	35763-26-9	239.3	239.2	72.7	-1.3	Cationic
Pharmaceuticals	Sotalol	SOT	3930-20-9	272.4	252.4	78.4	-2.1	Cationic
Pharmaceuticals	Sulfamethoxazole	SMX	723-46-6	253.3	204.6	98.2	0.0	Anionic
Pharmaceuticals	Theophylline	THEO	55-58-9	180.2	146.7	69.3	-0.9	Neutral
Pharmaceuticals	Trimethoprim	TRIM	738-70-5	290.3	261.3	105.5	1.1	Neutral

Group	Compound	Supliers	Purity (%)
Hormones	aE2	Sigma Aldrich	99.4
Hormones	ANDRO	Sigma Aldrich	98.2
Hormones	ANDROSTER	Sigma Aldrich	100.0
Hormones	bE2	Sigma Aldrich	98.0
Hormones	CORT	Sigma Aldrich	99.0
Hormones	CORT.OH	Sigma Aldrich	98.7
Hormones	DES	Sigma Aldrich	96.0
Hormones	DEXA	Sigma Aldrich	99.0
Hormones	DIES	Sigma Aldrich	100.0
Hormones	DROSPI	Sigma Aldrich	99.9
Hormones	E1	LGC	96.1
Hormones	E3	Sigma Aldrich	100.0
Hormones	EE2	Sigma Aldrich	99.4
Hormones	EPI-TESTO	Sigma Aldrich	99.0
Hormones	LEVO	CliniSciences	100.0
Hormones	MEDROX	Sigma Aldrich	n.i.
Hormones	MEG.AC	Sigma Aldrich	99.4
Hormones	NORE	Sigma Aldrich	99.6
Hormones	PROG	Sigma Aldrich	100.0
Hormones	TESTO	Sigma Aldrich	99.7
Pesticides	ALC	CIL	99.9
Pesticides	ATC	CIL	99.0
Pesticides	ATC.ESA	CIL	95.4
Pesticides	ATC.OA	CIL	95.8
Pesticides	ATZ	CIL	99.4
Pesticides	AZS	CIL	99.2
Pesticides	BTZ	CIL	99.0
Pesticides	CBF	CIL	98.5
Pesticides	CBY	CIL	100.0
Pesticides	CBZ	CIL	98.7
Pesticides	CSF	CIL	99.2
Pesticides	CTL	CIL	98.9
Pesticides	CYPRO	CIL	98.6
Pesticides	DCB	CIL	98.7
Pesticides	DCF	CIL	98.8
Pesticides	DCP	CIL	98.6
Pesticides	DCPMU	CIL	99.7
Pesticides	DCPU	CIL	98.5

Table S2: Suppliers and purity of studied compounds

Group	Compound	Supliers	Purity (%)
Pesticides	DEA	CIL	99.1
Pesticides	DET	CIL	99.5
Pesticides	DIA	CIL	98.9
Pesticides	DIU	CIL	98.8
Pesticides	DMM	CIL	99.8
Pesticides	DMO	CIL	99.4
Pesticides	DPA	CIL	98.0
Pesticides	DTC	CIL	98.0
Pesticides	DTM	CIL	100.0
Pesticides	EPOX	CIL	100.0
Pesticides	FLM	CIL	99.5
Pesticides	FLZ	CIL	98.0
Pesticides	FNP	CIL	98.9
Pesticides	HEXA	CIL	97.7
Pesticides	IMI	CIL	99.8
Pesticides	IPPMU	CIL	98.5
Pesticides	IPPU	CIL	99.0
Pesticides	IPU	CIL	99.0
Pesticides	IRG	CIL	99.0
Pesticides	ISF	CIL	96.2
Pesticides	IXI	CIL	99.7
Pesticides	K.MET	CIL	97.4
Pesticides	LINU	CIL	99.0
Pesticides	МСР	CIL	98.7
Pesticides	МСРА	CIL	99.1
Pesticides	MSF	CIL	99.5
Pesticides	MST	CIL	98.6
Pesticides	MTC	CIL	98.6
Pesticides	MTC.ESA	CIL	95.7
Pesticides	MTC.OA	CIL	99.0
Pesticides	MTX	CIL	98.0
Pesticides	MTY	CIL	99.9
Pesticides	MTZ	CIL	98.0
Pesticides	NFZ	CIL	97.9
Pesticides	NSF	CIL	98.4
Pesticides	PIRI	CIL	99.6
Pesticides	SCT	CIL	99.6
Pesticides	SMZ	CIL	98.0
Pesticides	SPIRO	CIL	98.4
Pesticides	TBZ	CIL	99.3

Group	Compound	Supliers	Purity (%)
Pesticides	TYZ	CIL	98.7
Pharmaceutiques	ACE	Sigma Aldrich	100.0
Pharmaceutiques	ACFENO	VWR	100.0
Pharmaceutiques	ACSMX	CIL	99.5
Pharmaceutiques	AMI	Sigma Aldrich	n.i.
Pharmaceutiques	ATE	Sigma Aldrich	98.8
Pharmaceutiques	AZI	Sigma Aldrich	96.9
Pharmaceutiques	BEZA	Sigma Aldrich	99.3
Pharmaceutiques	CARBA	Sigma Aldrich	99.9
Pharmaceutiques	CARBAEP	Sigma Aldrich	99.3
Pharmaceutiques	CLARI	CIL	98.5
Pharmaceutiques	CLINDA	VWR	98.6
Pharmaceutiques	CYCLOP	Sigma Aldrich	100.0
Pharmaceutiques	DICLO	Sigma Aldrich	99.9
Pharmaceutiques	ERY	CIL	97.0
Pharmaceutiques	FENO	CIL	99.9
Pharmaceutiques	FLUOX	Sigma Aldrich	n.i.
Pharmaceutiques	FURO	CIL	99.1
Pharmaceutiques	GEM	CIL	99.0
Pharmaceutiques	KETO	CIL	99.0
Pharmaceutiques	MET	CIL	99.5
Pharmaceutiques	METFOR	Sigma Aldrich	99.8
Pharmaceutiques	METRO	CIL	99.8
Pharmaceutiques	NAPROX	CIL	99.5
Pharmaceutiques	NFLUOX	CIL	n.i.
Pharmaceutiques	NORFLO	Sigma Aldrich	99.7
Pharmaceutiques	OFLO	CIL	95.7
Pharmaceutiques	PARA	Sigma Aldrich	99.8
Pharmaceutiques	PROP	CIL	99.3
Pharmaceutiques	SALBU	Sigma Aldrich	100.0
Pharmaceutiques	SMX	Sigma Aldrich	99.6
Pharmaceutiques	SOT	CIL	98.5
Pharmaceutiques	THEO	Sigma Aldrich	99.9
Pharmaceutiques	TRIM	CIL	99.1

Table S3: Suppliers and purity of internal standards

Internal standard associated	Suppliers	Purity	Isotopic purity
13C MEG.AC D3	AlsaChim	98.7	99,6% en 13C 99,7% en D3
ACE D7	CIL	99	99.8
ACFENO D6	CIL	98.5	98.8
aE2 D2	CIL	99	98.9
AMI D6	CIL	99	98
ANDROSTEN D7	AlsaChim	95.1	70.5
ATE D7	CIL	98	99.8
ATZ D5	CIL	99.5	99
bE2 D2	CIL	99	98.4
BTZ D6	CIL	99.4	99.8
CARBA D10	CIL	99	99.5
CBF D3	CIL	99.4	99.8
CLARI D3	CIL	98	98.8
CORT D7	SANTA CRUZ	98.8	NA
CORTOH D4	CIL	98.5	98.4
DEA D6	CIL	97.4	99.7
DEXA D4	CIL	98.2	97.6
DICLO D4	CIL	99	98.1
DIEN D6	AlsaChim	97.3	76
DIES D8	CIL	99	99.6
DIU D6	CIL	99.4	99.9
DROSPI D4	AlsaChim	100	98
E1 D4	CIL	99	99
E3 D2	CIL	98.3	98.9
EE2 D4	CIL	98.8	98.9
EPITESTO D5	CIL	99	98
FENO D6	CIL	98.9	99.1
FLUOX D5	CIL	99	99.6
GEM D6	CIL	99	99.7
KETO D3	CIL	99	99.7
LEVO D6	CIL	99	99.4
MCPA d3	CIL	93.2	98
MET D7	CIL	99	99.8
MSF D3	CIL	n.i.	n.i.
MTC D6	CIL	99.3	98.7
MTY D3	CIL	96.1	98

Internal standard associated	Suppliers	Purity	Isotopic purity
NAPROX D3	CIL	99	99
NORE D6	CIL	98.2	99.7
NORFLO D5	CIL	99	99.6
OFLO D5	Sigma Aldrich	99.2	99.5
PARA D3	CIL	99	99.2
PIRI D6	CIL	99.4	99.7
PROG D9	CIL	99	99.7
PROP D7	CIL	99	98
SALBU D3	CIL	98.3	99
SMX D4	CIL	99	98.9
SOT D7	CIL	99	99.8
TBZ D6	CIL	97	97.5
TESTO D4	AlsaChim	100	98

Table S4: Autosampler and column temperature and injected sample volume

	Hormones	Pharmaceuticals	Neutral pesticides	Anionic pesticides
Autosampler temperature	4 °C	4 °C	10 °C	10 °C
Column temperature	40 °C	30 °C	40 °C	25 °C
Injected sample volume	20 µL	10 µL	50 µL	5 μL

Table S5: Mobile phase and flow rate used for UHPLC-MS/MS analysis of hormones.

Time (min)	Flow (µL/min)	(%) UPW + 0.2 mM NH ₄ F	% MeOH
0	300	95	35
1.5	300	95	35
3	300	55	45
10	300	37	63
11	300	0	100
12	300	0	100
12.1	300	65	35
15	300	65	35
Time (min)	Flow (µL/min)	% UPW	% ACN
------------	------------------	-------	-------
0	500	98	2
2	500	98	2
18	500	1	99
19	500	1	99
19.5	500	98	2
23	500	98	2

Table S6: Mobile phase and flow rate used for UHPLC-MS/MS analysis of pharmaceuticals.

Table S7: Mobile phase and flow rate used for HPLC-MS/MS analysis of neutral pesticides.

Time (min)	Flow (µL/min)	% UPW + 5 mM ammonium acetate	% ACN
0	400	90	10
1	400	90	10
4	400	70	30
8	400	60	40
9.5	400	20	80
10.5	400	20	80
11	400	90	10
15	400	90	10

Table S8: Mobile phase and flow rate used for HPLC-MS/MS analysis of anionic pesticides.

Time (min)	Flow (µL/min)	% UPW + 200 mM ammonium acetate	% ACN	% MeOH
0	200	5	95	0
4	200	5	95	0
5	200	5	0	95
6	200	5	95	0
10	200	5	95	0

Ionisation	ESI +	ESI -		
Capillary voltage	3 kV	-2.5 kV		
Source temprature	150 °C	150 °C		
Acquisition mode	MRM/RADAR	MRM/RADAR		
Collision gas pressure (Ar)	3.5.10-3 mbar	3.5.10-3 mbar		
Sonde temperature	600 °C	600 °C		
Gas cone flow (N ₂)	150L/Hr	150L/Hr		
Desolvatation gas flow (N ₂)	1200L/Hr	1200L/Hr		

Table S9: Mass spectrometric conditions of pharmaceuticals and hormones

Table S10: Mass spectrometric conditions of pesticides

Ionisation	ESI +	ESI -		
Capillary voltage	5.5 kv	-4.5 kv		
Source temperature	450 °C	450 °C		
Acquisition mode	Scheduled MRM			
Collision gas pressure	3 psi	3 psi		
Curtain gas pressure	30 psi	30 psi		
Nebulizer gas pressure	45 psi	20 psi		
Heater gas pressure	75 psi	75 psi		

Group	Compound	Precursor ion	Product ion	Cone voltage (V)	Collision energy (V)	Ionisation	Associated deuterated compound	
I I a un a un a a	-E2	271	145	10	42	TOL	-E2 D2	
Homones	aEZ	271	239	10	42	E31-	aEZ DZ	
Llomonos		287	97	22	20	EST 1	ANDROSTEN	
Fiomones	ANDRO	287	109	22	22	E917	D7	
Homonos	ANDROSTER	291	255	15	12	ESIT	ANDROSTEN	
Homones	ANDROSTER	291	273	15	10		D7	
Homonos	bE2	271	145	10	42	ECI	5E2 D2	
Fiomones	DEZ	271	183	10	42	E31-		
Homonos	COPT	361	121	38	30	ESIT	COPT D7	
Tiomones	CORI	361	163	38	20		CORTD7	
Homonos	COPTOH	363	91	24	50	ECIT		
riomones	CORT.OH	363	121	24	22		CORTON D4	
Homones	DES	267	107	2	20	ESI+	DIEN D6	
Llomonos	DEXA	393	147	2	26	EST 1	DEVA D4	
Fiomones		393	355	2	12	E917		
Llomones	DIES	267	273	45	31	TCI	DIES DO	
Fiomones	DIES	267	251	45	28	E31-	DIES Do	
Homonos	DROSDI	367	91	2	50	ECI+		
riomones	DROSPI	367	97	2	26		DRO3F1 D4	
Llomones	E1	271	133	20	22	ECI I	E1 D4	
Fiomones	EI	271	253	20	12	E917	E1 D4	
Llomones	Γ2	271	133	16	24	ECI I	E2 D2	
Fiomones	EJ	271	253	16	10	E917	$E_{J}D_{Z}$	
Homonos	EE2	295	145	60	37	ESI		
Tiomones		295	159	60	33	1:51-	EE2 D4	
Homones	EPI TESTO	289	97	2	24	ESI+	EDITESTO D5	
Tiomones		289	109	2	24		EFITESTO D5	
Homonos	LEVO	313	91	2	38	ECI+		
riomones	LEVO	313	109	2	26		LEVO DO	
Llomones	MEDROY	345	97	2	24	ECI I		
Fiomones	MEDROA	345	123	2	26	E917		
Llomones	MECAC	385	267	2	16	ECI I	13C MEG.AC	
Fiomones	MEG.AC	385	325	2	14	E917	D3	
	NORE	299	91	2	42	TOL	NODED	
nomones	NUKE	299	109	2	28	E91+	NORE D6	
I I	PROC	315	97	18	20	EGT -		
Homones	PROG	315	109	18	24	E21+	PKOG D9	

Table S11: Mass parameters of studied compounds and internal standard associated

Group	Compound	Precursor ion	Product ion	Cone voltage (V)	Collision energy (V)	Ionisation	Associated deuterated compound	
	TESTO	289	97	20	22	ECI I	TECTO D4	
Homones	TESTO	289	109	20	22	ESIT	1E510 D4	
Destinidas		270	238	20	30	EST 1	MTC DG	
Pesticides	ALC	270	162	20	30	E91 +	MIC Do	
Destinidas	ATC	270	224	25	20	EST 1	MTC D6	
Pesticides	AIC	270	148	25	20	E91 +	MIC Do	
Destisides		314	121	31	28	ECI		
Pesticides	AIC.ESA	314	80	31	56	E31 -	BIZ D6	
Destisides		264	146	26	12	ECI		
Pesticides	AIC.OA	264	144	26	35	E31 -	BIZ D6	
Destisides	۸/۳/7	216	174	25	25	EST 1	4T7 D5	
Pesticides	AIZ	216	104	25	25	ESI +	ATZ D5	
D	170	404	372	46	21			
Pesticides	AZS	404	329	46	41	ESI +	ATZ D5	
D (* 1	ΡΤΖ	239	132	30	35	Det		
Pesticides	BIZ	239	175	30	23	E51 -		
D	CDE	222	123	41	31		CDE D2	
Pesticides	CBF	222	165	41	17	ESI +		
D	CDV	202	145	41	15			
Pesticides	CBA	202	127	41	39	ESI +	PIRI D6	
D	CD/7	192	160	26	27		MTV D2	
Pesticides	CBZ	192	105	26	53	ESI +	M1Y D3	
D	COL	356	139	20	46	TO	MCE D2	
Pesticides	CSF	356	107	20	74	ESI -	MSF D3	
D	CTI	213	72	30	35		DUUDY	
Pesticides	CIL	213	46	30	35	ESI +	DIU D6	
D	CV/DDO	292	70	36	33			
Pesticides	CYPRO	292	125	36	39	ESI +	IBZ D6	
D	DCD	219	175	20	6	DOI		
Pesticides	DCB	219	145	20	6	ESI -	MCPA d3	
D	DCE	325	253	20	20	DOI		
Pesticides	DCF	325	71	20	25	ESI -	MCPA d3	
D 1	DOD	233	161	20	14	DOT		
Pesticides	DCP	233	125	20	36	ESI -	MCPA d3	
D	DODITI	219	127	30	40	TOT :	DIUDY	
Pesticides	DCPMU	219	162	30	40	ESI +	DIU D6	
D	DODU	205	127	30	40	DOL :		
Pesticides	DCPU	205	162	30	40	ESI +	DIU D6	

Group	Compound	Precursor ion	Product ion	Cone voltage (V)	Collision energy (V)	Ionisation	Associated deuterated compound	
D (1	DEA	188	146	30	25	ECI I		
Pesticides	DEA	188	104	30	25	ESI +	DEA Do	
Destidas	DET	202	146	30	25	EST 1	177 D5	
Pesticides	DEI	202	104	30	25	E31 +	AIZ D5	
Destidas	DIA	174	104	30	35	EST 1		
Pesticides	DIA	174	132	30	35	E31 +	DEA Do	
D (1	DIU	233	72	30	40	ECI I	DUUD	
Pesticides	DIU	233	46	30	40	ESI +	DIU Do	
D .: 1	DIAL	388	165	26	41			
Pesticides	DMM	388	301	26	29	ESI +	ATZ D5	
D (* 1	DMO	230	125	41	29	ECI I	MTV D2	
Pesticides	DMO	230	199	41	13	ESI +	MTY D3	
D	DDA	219	161	20	20	TO	MCPA d3	
Pesticides	DPA	219	125	20	34	ESI -		
D	DITC	256	224	36	21			
Pesticides	DIC	256	147	36	35	ESI +		
D1		276	244	46	21	DOL 1		
Pesticides	DIM	276	167	46	31	ESI +		
D1	EDON	330	121	51	25	DOL 1		
Pesticides	EPOX	330	101	51	65	ESI +	1 DZ D0	
D	FLM	334	247	88	37		MTC DC	
Pesticides	FLM	334	178	88	53	ESI +	MTC D6	
D		316	247	86	25			
Pesticides	FLZ	316	165	86	35	ESI +	TBZ D6	
D		269	197	20	18	DOL		
Pesticides	FNP	269	161	20	40	ESI -	MCPA d3	
D1		253	171	21	21	DOL 1		
Pesticides	HEXA	253	71	21	49	ESI +	ATZ D5	
D1	Da	256	175	56	31	DOL 1		
Pesticides	IMI	256	209	56	21	ESI +	DEA D6	
D · · · I		193	94	30	30	TOT	DUID (
Pesticides	IPPMU	193	151	30	30	ESI +	DIU D6	
D		179	137	30	30	TOT		
Pesticides	IPPU	179	94	30	30	ESI +	DIU D6	
		207	72	25	35	7.07		
Pesticides	IPU	207	165	25	35	ESI +	DIU D6	
		254	198	30	30			
Pesticides	IRG	254	91	30	30	ESI +	ATZ D5	

Group	Compound	Precursor ion	Product ion	Cone voltage (V)	Collision energy (V)	Ionisation	Associated deuterated compound	
Destinidas	ISE	506	139	20	50	ESI	MSE D2	
resucides	151	506	308	20	40		MSI D3	
Posticidos	IVI	370	127	20	60	ESI	BTZ D6	
resucides		370	215	20	30	E31 -	DIZ D0	
Posticidos	K MET	314	116	86	21	ESI +		
resucides	IX.IVIL51	314	206	86	13		IDZ D0	
Destinidas		249	160	30	30	ESI +		
resticides	LINU	249	182	30	30		DIU D6	
Destinidas	MCD	213	141	20	20	ESI	MCDA 42	
Pesticides	MCP	213	71	20	20	E31 -	MCPA d3	
Destidas	MCDA	199	141	20	20	ECI	MCDA 12	
Pesticides	МСРА	199	155	20	10	E31 -	MCPA d3	
D (* 1	MSF	380	139	20	20	ECI		
Pesticides		380	214	20	10	E51 -	MSF D3	
D (* 1	мет	338	291	10	15	ECI	MSF D3	
Pesticides	MST	338	212	10	40	E51 -		
D	MTC	284	252	20	30		MTC D(
Pesticides	MIC	284	176	20	30	ESI +	MIC D6	
D		328	80	35	65	Det		
Pesticides	MIC.ESA	328	121	35	30	ESI -	BIZ D6	
D .: 1		278	206	20	12	DOI	PT'7 D4	
Pesticides	MIC.OA	278	174	20	20	ESI -	B1Z D6	
D		229	72	30	40		DIU D6	
Pesticides	MIX	229	46	30	40	ESI +		
D	N/TS7	163	88	21	13		MTV D2	
Pesticides	MIY	163	106	21	13	ESI +	MIY D3	
D .: 1	A (TT/7	278	134	30	30	DOL 1		
Pesticides	MIZ	278	210	30	30	ESI +	MTC D6	
D · · 1		304	284	111	31	DOL 1	DUD	
Pesticides	NFZ	304	160	111	41	ESI +	DIU D6	
D · · · 1	NICE	409	154	20	30	DOL		
Pesticides	NSF	409	227	20	18	ESI -	MSF D3	
D	DIDI	239	72	21	35	DOI :		
Pesticides	PIRI	239	182	21	21	ESI +	PIRI D6	
D	0.077	327	291	20	20	DOT		
Pesticides	SCT	327	212	20	40	ESI -	MSF D3	
D		202	132	30	30	TOT		
Pesticides	SMZ	202	124	30	30	ESI +	ATZ D5	

Group	Compound	Precursor ion	Product ion	Cone voltage (V)	Collision energy (V)	Ionisation	Associated deuterated compound	
Destinidas	SDIRO	298	144	56	27	EST 1		
Pesticides	SPIKO	298	100	56	43	E31 +	I DZ D0	
Destinidas	TP7	308	70	91	41	ESI +		
resticides	TDZ	308	125	91	47		IDZ D0	
Destinidas	TVZ	230	174	30	25	ESI +	ATZ D5	
resticides	112	230	146	30	25		AIZ D5	
Dharmacouticala	ACE	337	74	14	28	ESIT	ACE D7	
Pharmaceuticais	ACE	337	116	14	20	ESI+	ACE D7	
D1	ACEENIO	319	139	25	34	TOL	ACEENIO DO	
Pharmaceuticais	ACFENO	319	233	25	15	ESI+	MCFENO Do	
Dhammaaautiaala	ACSMY	296	65	20	38	TCL	SMY D4	
Pharmaceuticais	ACSMA	296	134	25	24	ESI+	SMX D4	
D1	A N 4 T	278	91	10	22	TOL		
Pharmaceuticais	AMI	278	105	10	23	ESI+	AMI D6	
		267	74	12	25	ECI I	ATE D7	
Pharmaceuticals	AIE	267	145	12	22	ESI+		
Pharmaceuticals	A 77 I	750	158	30	40	TOL		
	AZI	750	592	30	30	ESI+	CLARI D3	
	DEZA	362	139	10	24	TOL	NADDOV D2	
Pharmaceuticals	BEZA	362	316	10	12	ESI+		
DI	CADDA	237	179	38	34	ECI I	CARBA D10	
Pharmaceuticals	CAKBA	237	194	38	20	ESI+		
Dlamara	CADDAED	253	167	10	36	TOL		
Pharmaceuticals	CARBAEP	253	180	10	32	ESI+	SMX D4	
D1	CLADI	749	83	30	50	TOL		
Pharmaceuticais	CLARI	749	158	30	30	ESI+	CLARI D3	
DI		425	126	8	26	ECI I	CMV D4	
Pharmaceuticals	CLINDA	425	126	8	26	ESI+	SMX D4	
DI	CVCL OD	261	106	6	16	ECI I	CMV D4	
Pharmaceuticals	CYCLOP	261	140	6	22	ESI+	SMX D4	
	DICLO	296	214	24	30	TOL		
Pharmaceuticals	DICLO	296	250	24	14	ESI+	DICLO D4	
	FDV	735	83	20	50	TOL		
Pharmaceuticals	ERY	735	158	20	30	ESI+	CLARI D3	
		361	121	20	28			
Pharmaceuticals	FENO	361	139	20	30	ESI+	FENO D6	
		361	233	20	16			
Pharmaceuticals	FLUOX	310	44	4	10	ESI+	FLUOX D5	

Group	Compound	Precursor ion	Product ion	Cone voltage (V)	Collision energy (V)	Ionisation	Associated deuterated compound	
		310	148	4	8			
Dlagana	ELIDO	329	78	20	30	ESI	CEM D(
Pharmaceuticais	FURO	329	205	20	24	E31-	GEM D0	
Dhammaaantiaala	CEM	249	121	33	10	TSI	CEMD	
Pharmaceuticais	GEM	249	127	33	10	E31-	GEM D6	
Dharmacouticals	KETO	255	77	20	36	ESIT	KETO D3	
Filamaceuticais	KEIÜ	255	105	20	20	E:017	KEIO D5	
Dharmacouticala	MET	268	74	40	20	ESIT		
Filamaceuticais	INIT? I	268	116	40	15	E:017	MET D7	
Dhamaaantiaala	METEOD	130	60	15	10	ECI I		
Pharmaceuticais	MEIFOR	130	71	15	16	E317	PAKA D3	
Dlama	METRO	172	82	20	22	ECI I	SOT D7	
Pharmaceuticals	MEIKO	172	128	20	14	ESI+	501 D/	
Pharmaceuticals	NAPROX	231	170	22	35	ESI+	NAPROX D3	
Pharmaceuticals	NFLUOX	296	134	20	6	ESI+	FLUOX D5	
	NODELO	320	233	40	25	ECL	NODELODI	
Pharmaceuticais	NORTEO	320	276	40	20	E21+	NORFLO D5	
Dlama	OFLO	362	261	25	30	ECI I	OFLO D5	
Pharmaceuticals		362	318	25	20	ESI+		
		152	65	20	30		PARA D3	
Pharmaceuticals	PARA	152	93	20	25	ESI+		
		152	110	20	15			
Pharmaceuticals	PROP	260	116	2	16	ESI+	PROP D7	
		240	121	35	30			
Dlasmassissi		240	148	35	20	TEL	CALDU D2	
Pharmaceuticals	SALBU	240	166	35	12	ESI+	SALBU D5	
		240	222	35	12			
	CM XX	254	92	28	30	ECL	CMV D4	
Pharmaceuticals	SMX	254	156	28	16	ESI+	SMX D4	
Dhamma	COT	273	133	8	26	TEL	SOT D7	
Pharmaceuticals	501	273	213	8	18	E21+	501 D7	
DI	THEO	181	42	45	30	ECT.	CMV D4	
Pharmaceuticals	THEO	181	124	45	17	E21+	SMX D4	
DI		291	123	16	26			
Pharmaceuticals	1 KIM	291	230	16	22	E21+	SMX D4	

			AG					РА					
Group	Compound	Diffusion ce	ll me	thod	Slice stacking	g met	hod	Diffusion cel	l me	thod	Slice stacking method		thod
		D	n	R ²	D	n	R ²	D	n	R ²	D	n	R ²
Hormones	aE2	2.88 ± 0.33	12	0.88	6.41 ± 0.36	12	0.97	loss			3.43 ± 0.14	9	0.99
Hormones	ANDRO	2.01 ± 0.18	12	0.93	7.08 ± 0.39	12	0.97	1.54 ± 0.08	12	0.97	3.77 ± 0.15	12	0.98
Hormones	ANDROSTER	1.92 ± 0.79	12	0.37	6.03 ± 0.36	12	0.96	0.6 ± 0.28	12	0.32	3.16 ± 0.19	9	0.98
Hormones	bE2	1.43 ± 0.38	12	0.59	6.54 ± 0.27	12	0.98	analyti	cal		3.29 ± 0.18	9	0.98
Hormones	CORT	4.01 ± 0.23	12	0.97	6.14 ± 0.38	12	0.96	2.12 ± 0.08	12	0.99	3.45 ± 0.14	12	0.98
Hormones	CORT.OH	3.77 ± 0.15	12	0.98	6.69 ± 0.36	12	0.97	1.95 ± 0.06	12	0.99	3.66 ± 0.13	11	0.99
Hormones	DES	loss			7.07 ± 0.29	12	0.98	loss		3.91 ± 0.11	11	0.99	
Hormones	DEXA	4.27 ± 0.25	12	0.97	6.4 ± 0.33	12	0.97	2.11 ± 0.07	12	0.99	3.73 ± 0.16	11	0.98
Hormones	DIES	loss		6.58 ± 0.28	12	0.98	loss		3.35 ± 0.15	11	0.98		
Hormones	DROSPI	loss			6.44 ± 0.56	12	0.93	1.12 ± 0.08	12	0.95	3.26 ± 0.23	9	0.97
Hormones	E1	2.51 ± 0.25	12	0.91	7.02 ± 0.28	12	0.98	loss			3.3 ± 0.22	9	0.97
Hormones	E3	3.9 ± 0.25	12	0.96	5.89 ± 0.33	12	0.97	2.18 ± 0.18	12	0.94	3.52 ± 0.15	12	0.98
Hormones	EE2	analyti	cal		5.97 ± 0.49	12	0.94	analytical			3.61 ± 0.34	7	0.96
Hormones	EPI-TESTO	2.33 ± 0.17	12	0.95	6.65 ± 0.41	12	0.96	1.5 ± 0.08	12	0.97	3.66 ± 0.21	12	0.97
Hormones	LEVO	2 ± 0.2	12	0.91	6.34 ± 0.26	12	0.98	loss			2.85 ± 0.15	9	0.98
Hormones	MEDROX	loss			6.33 ± 0.4	12	0.96	loss			3.77 ± 0.24	10	0.97
Hormones	MEG.AC	loss			6.96 ± 0.49	12	0.95	loss			3.77 ± 0.26	11	0.96
Hormones	NORE	2.53 ± 0.19	12	0.95	7.64 ± 0.53	12	0.95	1.43 ± 0.07	12	0.98	4.27 ± 0.24	12	0.97
Hormones	PROG	loss			6.88 ± 0.27	12	0.98	loss	loss		3.73 ± 0.15	11	0.99
Hormones	TESTO	2.59 ± 0.16	12	0.97	6.8 ± 0.35	12	0.97	1.7 ± 0.07	12	0.98	3.43 ± 0.13	12	0.99
Pesticides	ALC	loss			5.94 ± 0.47	10	0.95	loss	12	NA	3.54 ± 0.38	9	0.93

Table S12: Diffusion coefficients (D) determined in this study by diffusion cell or slice stacking methods (recalculated at $T=25^{\circ}C$) for 117 organic compounds, through agarose (AG) or polyacrylamide (PA).

		AG				РА							
Group	Compound	Diffusion cel	l me	thod	Slice stacking	met	hod	Diffusion cel	1 me	thod	Slice stacking	g met	thod
		D	n	R ²	D	n	R ²	D	n	R ²	D	n	R ²
Pesticides	ATC	analyti	analytical		6.53 ± 0.48	10	0.96	analytical			3.89 ± 0.35	9	0.95
Pesticides	ATC.ESA	4.07 ± 0.17	12	0.98	5.71 ± 0.17	12	0.99	1.95 ± 0.13	11	0.96	4.5 ± 0.55	11	0.88
Pesticides	ATC.OA	4.04 ± 0.16	12	0.98	5.42 ± 0.19	12	0.99	1.88 ± 0.12	11	0.96	4.26 ± 0.7	10	0.82
Pesticides	ATZ	loss			5.64 ± 0.27	12	0.98	1.54 ± 0.1	12	0.96	4.33 ± 0.14	12	0.99
Pesticides	AZS	loss			4.21 ± 0.33	9	0.96	0.97 ± 0.19	12	0.72	3.22 ± 0.32	9	0.93
Pesticides	BTZ	4.75 ± 0.23	12	0.98	6.42 ± 0.2	12	0.99	2.71 ± 0.13	11	0.98	4.74 ± 0.47	12	0.91
Pesticides	CBF	3.29 ± 0.25	12	0.95	5.81 ± 0.3	12	0.97	2.3 ± 0.17	12	0.95	4.7 ± 0.15	12	0.99
Pesticides	CBY	3.76 ± 0.36	12	0.92	16.39 ± 14.84	7	0.2	3.25 ± 0.51	12	0.8	4.47 ± 0.24	12	0.97
Pesticides	CBZ	2.75 ± 0.39	12	0.84	7.47 ± 0.45	11	0.97	1.64 ± 0.13	12	0.94	4.18 ± 0.16	12	0.99
Pesticides	CSF	3.6 ± 0.35	12	0.91	5.58 ± 0.18	12	0.99	2.06 ± 0.28	11	0.86	2.92 ± 0.48	9	0.84
Pesticides	CTL	analyti	cal		6.21 ± 0.36	12	0.97	2.03 ± 0.1	12	0.98	4.57 ± 0.18	12	0.99
Pesticides	CYPRO	loss			5.64 ± 0.23	12	0.98	1.15 ± 0.27	12	0.65	3.9 ± 0.15	12	0.99
Pesticides	DCB	<i>3.68</i> ± <i>0.64</i>	12	0.77	5.86 ± 0.21	12	0.99	loss			4.84 ± 0.45	12	0.92
Pesticides	DCF	3.08 ± 0.17	12	0.97	5.32 ± 0.14	12	0.99	loss			3.84 ± 0.64	10	0.82
Pesticides	DCP	1.74 ± 0.4	12	0.65	6.18 ± 0.15	12	0.99	0.57 ± 0.23	11	0.41	4.66 ± 0.46	12	0.91
Pesticides	DCPMU	analyti	cal		6.73 ± 0.47	12	0.95	1.61 ± 0.27	12	0.79	3.83 ± 0.21	10	0.98
Pesticides	DCPU	analyti	cal		6.55 ± 0.67	10	0.92	analyti	cal		3.41 ± 0.41	9	0.91
Pesticides	DEA	3.3 ± 0.38	12	0.88	6.96 ± 0.56	10	0.95	2.51 ± 0.14	12	0.97	4.81 ± 0.18	12	0.99
Pesticides	DET	3.42 ± 0.41	12	0.88	7.08 ± 0.91	9	0.9	1.39 ± 0.15	12	0.9	4.49 ± 0.37	9	0.95
Pesticides	DIA	3.59 ± 0.45	12	0.87	6.23 ± 0.41	10	0.97	2.44 ± 0.15	12	0.96	4.22 ± 0.16	12	0.99
Pesticides	DIU	2.63 ± 0.27	12	0.9	6.41 ± 0.45	11	0.96	1.7 ± 0.16	12	0.92	3.87 ± 0.11	12	0.99
Pesticides	DMM	loss			5.17 ± 0.29	10	0.98	1.23 ± 0.17	12	0.84	3.71 ± 0.21	11	0.97
Pesticides	DMO	2.88 ± 0.33	12	0.88	8.08 ± 0.37	12	0.98	1.75 ± 0.07	12	0.98	4.82 ± 0.18	12	0.99

		AG					РА						
Group	Compound	Diffusion cel	ll me	thod	Slice stacking	g met	hod	Diffusion cel	l me	thod	Slice stackin	g me	thod
		D	n	R ²	D	n	R ²	D	n	R ²	D	n	R ²
Pesticides	DPA	4.09 ± 0.28	12	0.96	6.53 ± 0.18	12	0.99	2.22 ± 0.36	11	0.81	4.82 ± 0.48	12	0.91
Pesticides	DTC	2.99 ± 0.42	12	0.83	6.33 ± 0.37	12	0.97	1.67 ± 0.13	12	0.94	4.29 ± 0.16	12	0.99
Pesticides	DTM	loss			6.2 ± 0.39	11	0.97	loss		3.59 ± 0.16	12	0.98	
Pesticides	EPOX	loss			5.61 ± 0.61	9	0.92	loss			3.99 ± 0.15	11	0.99
Pesticides	FLM	loss			6.19 ± 0.72	9	0.91	0.48 ± 0.12	12	0.61	4.73 ± 0.31	11	0.96
Pesticides	FLZ	loss			6.27 ± 0.39	12	0.96	loss			4.18 ± 0.22	12	0.97
Pesticides	FNP	3.91 ± 0.38	12	0.91	6.1 ± 0.19	12	0.99	2.07 ± 0.16	11	0.95	4.17 ± 0.62	10	0.85
Pesticides	HEXA	3.32 ± 0.27	12	0.94	5.14 ± 0.36	9	0.97	1.88 ± 0.17	12	0.92	4.3 ± 0.17	12	0.98
Pesticides	IMI	3.76 ± 0.2	12	0.97	7.41 ± 0.42	12	0.97	4.11 ± 0.31	12	0.95	5.25 ± 0.24	12	0.98
Pesticides	IPPMU	3.02 ± 0.3	12	0.91	6.23 ± 0.32	12	0.97	1.92 ± 0.12	12	0.96	4.36 ± 0.14	12	0.99
Pesticides	IPPU	3.35 ± 0.6	12	0.76	6.21 ± 0.24	12	0.98	2.32 ± 0.12	12	0.97	4.18 ± 0.12	12	0.99
Pesticides	IPU	2.89 ± 0.28	12	0.92	5.96 ± 0.27	12	0.98	2.02 ± 0.09	12	0.98	4.43 ± 0.14	12	0.99
Pesticides	IRG	loss			5.88 ± 0.43	11	0.95	loss			4.17 ± 0.17	12	0.98
Pesticides	ISF	3.04 ± 0.18	12	0.97	5.54 ± 0.28	11	0.98	1.77 ± 0.15	11	0.94	2.46 ± 0.62	7	0.76
Pesticides	IXI	4.85 ± 0.28	12	0.97	7.03 ± 0.25	12	0.99	loss			3.92 ± 0.35	12	0.92
Pesticides	K.MET	loss			6.8 ± 1.33	8	0.81	loss			3.84 ± 0.47	10	0.89
Pesticides	LINU	1.97 ± 0.29	12	0.83	6.61 ± 0.54	12	0.94	1.16 ± 0.14	12	0.87	4.01 ± 0.19	12	0.98
Pesticides	МСР	3.79 ± 0.35	12	0.92	6.71 ± 0.22	12	0.99	loss			5.64 ± 0.61	12	0.89
Pesticides	МСРА	4.32 ± 0.21	12	0.98	6.46 ± 0.17	12	0.99	2.62 ± 0.27	11	0.92	4.86 ± 0.47	12	0.91
Pesticides	MSF	3.41 ± 0.19	12	0.97	5.28 ± 0.15	12	0.99	1.61 ± 0.1	11	0.96	4.4 ± 0.76	10	0.81
Pesticides	MST	3.87 ± 0.23	12	0.97	6.43 ± 0.2	12	0.99	1.99 ± 0.13	11	0.97	5.15 ± 0.59	12	0.88
Pesticides	MTC	loss			6.22 ± 0.34	11	0.97	0.62 ± 0.1	12	0.81	4.58 ± 0.24	12	0.97
Pesticides	MTC.ESA	3.91 ± 0.14	12	0.99	5.75 ± 0.17	12	0.99	2.01 ± 0.19	11	0.93	4.51 ± 0.48	12	0.9

		AG					РА						
Group	Compound	Diffusion cel	l me	thod	Slice stacking	g met	hod	Diffusion cel	1 me	thod	Slice stacking	g met	hod
		D	n	R ²	D	n	R ²	D	n	R ²	D	n	R ²
Pesticides	MTC.OA	3.64 ± 0.18	12	0.98	5.59 ± 0.17	12	0.99	1.27 ± 0.31	11	0.65	4.71 ± 0.51	12	0.89
Pesticides	MTX	3.59 ± 0.42	12	0.88	5.89 ± 0.25	12	0.98	2.02 ± 0.1	12	0.98	3.99 ± 0.12	12	0.99
Pesticides	MTY	4.56 ± 0.35	12	0.94	6.55 ± 0.32	12	0.98	2.69 ± 0.09	12	0.99	5.44 ± 0.18	12	0.99
Pesticides	MTZ	loss			6.22 ± 0.37	12	0.97	1.46 ± 0.18	12	0.87	4.84 ± 0.25	12	0.97
Pesticides	NFZ	2.16 ± 0.22	12	0.9	6.07 ± 0.25	12	0.98	1.96 ± 0.15	12	0.94	3.81 ± 0.13	12	0.99
Pesticides	NSF	3.45 ± 0.17	12	0.98	4.99 ± 0.22	10	0.98	1.41 ± 0.14	11	0.92	3.58 ± 0.74	8	0.79
Pesticides	PIRI	2.95 ± 0.37	12	0.86	5.55 ± 0.22	12	0.98	1.65 ± 0.18	12	0.89	4.09 ± 0.13	12	0.99
Pesticides	SCT	3.78 ± 0.23	12	0.96	8.5 ± 0.47	12	0.97	1.89 ± 0.11	11	0.97	5.88 ± 0.71	12	0.87
Pesticides	SMZ	3.55 ± 0.33	12	0.92	5.42 ± 0.32	10	0.97	1.84 ± 0.08	12	0.98	4.07 ± 0.16	12	0.99
Pesticides	SPIRO	analyti	cal		<i>3.9</i> ± <i>2.68</i>	6	0.35	0.36 ± 0.27	12	0.15	4.89 ± 0.94	7	0.85
Pesticides	TBZ	loss			5.96 ± 0.33	12	0.97	loss			4.28 ± 0.21	12	0.98
Pesticides	TYZ	loss			5.36 ± 0.39	9	0.96	0.68 ± 0.11	12	0.78	3.73 ± 0.25	9	0.97
Pharmaceuticals	ACE	5.05 ± 0.36	12	0.95	4.67 ± 0.15	12	0.99	2.12 ± 0.1	12	0.98	3.24 ± 0.14	12	0.98
Pharmaceuticals	ACFENO	5.38 ± 0.38	12	0.95	6.85 ± 0.3	12	0.98	1.29 ± 0.03	12	0.99	3.48 ± 0.16	12	0.98
Pharmaceuticals	ACSMX	5.85 ± 0.31	12	0.97	6.82 ± 0.18	12	0.99	2.88 ± 0.2	12	0.95	3.85 ± 0.14	12	0.99
Pharmaceuticals	AMI	loss			6.99 ± 0.55	12	0.94	0.98 ± 0.14	12	0.84	4.2 ± 0.14	12	0.99
Pharmaceuticals	ATE	5.98 ± 0.52	12	0.93	4.96 ± 0.14	12	0.99	3.3 ± 0.33	12	0.91	3.8 ± 0.11	12	0.99
Pharmaceuticals	AZI	2.74 ± 0.37	12	0.84	8.04 ± 1.31	9	0.84	2.02 ± 0.22	12	0.89	6.51 ± 0.78	11	0.89
Pharmaceuticals	BEZA	6.43 ± 0.21	12	0.99	6.86 ± 0.32	12	0.98	1.63 ± 0.06	12	0.99	3.56 ± 0.19	10	0.98
Pharmaceuticals	CARBA	5.88 ± 0.28	12	0.98	7.02 ± 0.19	12	0.99	3.26 ± 0.1	12	0.99	3.73 ± 0.1	12	0.99
Pharmaceuticals	CARBAEP	5.98 ± 0.35	12	0.97	6.91 ± 0.17	12	0.99	3.24 ± 0.18	12	0.97	3.9 ± 0.1	12	0.99
Pharmaceuticals	CLARI	2.95 ± 0.11	12	0.99	4.96 ± 0.33	12	0.96	1.11 ± 0.03	12	0.99	4.01 ± 0.27	12	0.96
Pharmaceuticals	CLINDA	4.54 ± 0.24	12	0.97	4.36 ± 0.08	12	1	1.9 ± 0.07	12	0.99	3.44 ± 0.14	12	0.98

		AG			РА								
Group	Compound	Diffusion cel	ll me	thod	Slice stacking	g met	hod	Diffusion cel	l me	thod	Slice stacking	g me	thod
		D	n	R ²	D	n	R ²	D	n	R ²	D	n	R ²
Pharmaceuticals	CYCLOP	5.23 ± 0.17	12	0.99	7.09 ± 0.14	12	1	2.74 ± 0.17	12	0.96	4.97 ± 0.11	12	1.00
Pharmaceuticals	DICLO	5.03 ± 0.25	12	0.98	7.18 ± 0.27	12	0.99	analyti	cal		3.8 ± 0.14	12	0.99
Pharmaceuticals	ERY	2.96 ± 0.14	12	0.98	4.72 ± 0.21	12	0.98	1.15 ± 0.05	12	0.98	3.92 ± 0.25	12	0.96
Pharmaceuticals	FENO	loss			7.35 ± 0.77	12	0.9	loss		3.96 ± 0.7	10	0.80	
Pharmaceuticals	FLUOX	loss			8.19 ± 0.84	12	0.91	1.36 ± 0.09	12	0.96	4.95 ± 0.3	12	0.96
Pharmaceuticals	FURO	analyti	cal		7.5 ± 0.52	12	0.95	analyti	cal		3.26 ± 0.05	9	1.00
Pharmaceuticals	GEM	4.14 ± 0.3	12	0.95	6.8 ± 0.27	12	0.98	loss			4.49 ± 0.21	12	0.98
Pharmaceuticals	KETO	5.54 ± 0.17	12	0.99	7.01 ± 0.23	12	0.99	2.13 ± 0.09	12	0.98	4.26 ± 0.14	12	0.99
Pharmaceuticals	MET	1.67 ± 0.02	10	1	4.83 ± 0.14	12	0.99	0.81 ± 0.01	10	1	3.92 ± 0.11	12	0.99
Pharmaceuticals	METFOR	6.27 ± 0.63	12	0.91	6.27 ± 0.39	12	0.96	3.52 ± 0.39	12	0.89	5.42 ± 0.16	12	0.99
Pharmaceuticals	METRO	5.97 ± 0.26	12	0.98	8.4 ± 0.13	12	1	3.31 ± 0.07	12	1	5.73 ± 0.16	12	0.99
Pharmaceuticals	NAPROX	7.07 ± 0.4	12	0.97	7.03 ± 0.27	12	0.99	1.87 ± 0.08	12	0.98	3.92 ± 0.12	12	0.99
Pharmaceuticals	NFLUOX	analyti	cal		7.65 ± 0.85	12	0.89	1.61 ± 0.07	12	0.98	5.86 ± 0.36	9	0.97
Pharmaceuticals	NORFLO	1.32 ± 0.18	12	0.84	6.47 ± 1.19	11	0.77	1.63 ± 0.25	12	0.81	6.34 ± 0.47	9	0.96
Pharmaceuticals	OFLO	2.87 ± 0.27	12	0.92	4.7 ± 0.15	12	0.99	2.86 ± 0.33	12	0.88	5.79 ± 0.51	9	0.95
Pharmaceuticals	PARA	6.42 ± 0.11	12	1	9.81 ± 0.45	12	0.98	3.79 ± 0.1	12	0.99	4.97 ± 0.18	12	0.99
Pharmaceuticals	PROP	3.35 ± 0.15	12	0.98	5.09 ± 0.12	12	0.99	2.69 ± 0.11	12	0.98	3.6 ± 0.12	12	0.99
Pharmaceuticals	SALBU	3.57 ± 0.06	10	1	4.99 ± 0.18	12	0.99	1.73 ± 0.01	10	1	3.76 ± 0.11	12	0.99
Pharmaceuticals	SMX	5.87 ± 0.28	12	0.98	7.2 ± 0.13	12	1	2.99 ± 0.12	12	0.98	4.3 ± 0.15	12	0.99
Pharmaceuticals	SOT	5.48 ± 0.21	12	0.99	5.09 ± 0.1	12	1	2.77 ± 0.09	12	0.99	3.89 ± 0.11	12	0.99
Pharmaceuticals	THEO	6.49 ± 0.29	12	0.98	8.78 ± 0.25	12	0.99	3.72 ± 0.09	12	0.99	5.13 ± 0.13	12	0.99
Pharmaceuticals	TRIM	4.85 ± 0.26	12	0.97	4.59 ± 0.08	12	1	2.27 ± 0.08	12	0.99	3.52 ± 0.12	12	0.99

analytical: analytical problem; loss: loss by adsorption in diffusion cell; in italic: no linear

Table S13: Diffusion coefficients (D) determined in this study compared to those found in literature (recalculated at $T=25^{\circ}C$) through agarose (AG) or polyacrylamide (PA).D were determined by diffusion cell method (cell), slice stacking method (stack) or calibration (calib)

Gel	Group	Compound	Measured D		Literature D				
		bE2	6.54 ± 0.27	(stack)	3.13	(cell)	Challis et al., 2016		
					3.58	(cell)	Chen et al., 2018		
					3.42	(cell)	Chen et al., 2018		
					3.78	(cell)	Chen et al., 2018		
					4.66 ± 0.37	(calib)	Guo et al., 2017b		
					3.75	(calib)	Xie et al., 2018b		
		DIES	6.58 ± 0.28	(stack)	4.83	(cell)	Chen et al., 2018		
		E1	7.02 ± 0.28	(stack)	3.83 ± 0.49	(cell)	Challis et al., 2016		
			2.51 ± 0.25	(cell)	4.8	(cell)	Chen et al., 2018		
	Houndard				5.29	(cell)	Chen et al., 2018		
	Hormones				5	(cell)	Chen et al., 2018		
		E3	5.89 ± 0.33	(stack)	4.59	(cell)	Chen et al., 2018		
			3.9 ± 0.25	(cell)	4.57	(cell)	Chen et al., 2018		
					4.4	(cell)	Chen et al., 2018		
					5	(calib)	Xie et al., 2018b		
		EE2	5.97 ± 0.49	(stack)	3.33	(cell)	Challis et al., 2016		
AG					3.4	(cell)	Chen et al., 2018		
					3.57	(cell)	Chen et al., 2018		
					3.75	(cell)	Chen et al., 2018		
					4.1	(calib)	Xie et al., 2018b		
		ATC	6.53 ± 0.48	(stack)	4.32	(calib)	Xie et al., 2018b		
		ATZ	5.64 ± 0.27	(stack)	4.57	(stack)	Belles et al., 2017		
					3.73 ± 0.15	(cell)	Challis et al., 2016		
					5.67	(cell)	Li et al., 2019		
					4.95	(calib)	Xie et al., 2018b		
	Destisiles	DEA	6.96 ± 0.56	(stack)	4.57	(stack)	Belles et al., 2017		
	Pesticides		3.3 ± 0.38	(cell)					
		DIU	6.41 ± 0.45	(stack)	5.32	(cell)	Amato et al., 2018		
			2.63 ± 0.27	(cell)	4.37 ± 0.03	(stack)	Amato et al., 2018		
		DPA	6.53 ± 0.18	(stack)	4.77 ± 0.22	(cell)	Challis et al., 2016		
			4.09 ± 0.28	(cell)					
		IMI	7.41 ± 0.42	(stack)	4.59 ± 0.51	(cell)	Challis et al., 2016		

Gel	Group	Compound	Measured D			Literat	ure D
			3.76 ± 0.2	(cell)			
		IPU	5.96 ± 0.27	(stack)	5	(cell)	Amato et al., 2018
			2.89 ± 0.28	(cell)	3.74 ± 0.11	(stack)	Amato et al., 2018
		IRG	5.88 ± 0.43	(stack)	3.63	(stack)	Belles et al., 2017
		LINU	6.61 ± 0.54	(stack)	5.65	(cell)	Li et al., 2019
			1.97 ± 0.29	(cell)			
		PIRI	5.55 ± 0.22	(stack)	5.7	(cell)	Li et al., 2019
			2.95 ± 0.37	(cell)			
		SMZ	5.42 ± 0.32	(stack)	5.76	(stack)	Belles et al., 2017
			3.55 ± 0.33	(cell)			
		ATE	4.96 ± 0.14	(stack)	3.85 ± 0.16	(cell)	Challis et al., 2016
			5.98 ± 0.52	(cell)			
		AZI	8.04 ± 1.31	(stack)	1.32	(calib)	Xie et al., 2018a
			2.74 ± 0.37	(cell)			
		CARBA	7.02 ± 0.19	(stack)	5.21	(cell)	Amato et al., 2018
			5.88 ± 0.28	(cell)	3.65 ± 0.17	(stack)	Amato et al., 2018
					5.01 ± 0.26	(cell)	Challis et al., 2016
		CLARI	4.96 ± 0.33	(stack)	3.31 ± 0.15	(cell)	Challis et al., 2016
			2.95 ± 0.11	(cell)	1.95	(cell)	Chen et al., 2013
					1.32	(calib)	Xie et al., 2018a
		DICLO	7.18 ± 0.27	(stack)	4.44 ± 0.25	(cell)	Challis et al., 2016
			5.03 ± 0.25	(cell)			
	Dharmacouticals	ERY	4.72 ± 0.21	(stack)	1.76	(cell)	Challis et al., 2016
	Thannaccuucais		2.96 ± 0.14	(cell)			
		FLUOX	8.19 ± 0.84	(stack)	4.38 ± 0.25	(cell)	Challis et al., 2016
		GEM	6.8 ± 0.27	(stack)	3.58 ± 0.16	(cell)	Challis et al., 2016
			4.14 ± 0.3	(cell)			
		KETO	7.01 ± 0.23	(stack)	3.31 ± 0.32	(cell)	Challis et al., 2016
			5.54 ± 0.17	(cell)			
		MET	4.83 ± 0.14	(stack)	4.38 ± 0.42	(cell)	Challis et al., 2016
			1.67 ± 0.02	(cell)			
		NAPROX	7.03 ± 0.27	(stack)	4.37 ± 0.3	(cell)	Challis et al., 2016
			7.07 ± 0.4	(cell)			
		NORFLO	1.32 ± 0.18	(cell)	2.46	(cell)	Chen et al., 2013
			1.32 ± 0.18	(cell)	2.66	(calib)	Xie et al., 2018a
		OFLO	4.7 ± 0.15	(stack)	2.24	(cell)	Chen et al., 2013

Gel	Group	Compound	Measured D			Literatu	are D
			2.87 ± 0.27	(cell)	1.68 ± 0.18	(cell)	Ren et al., 2018
					2.04	(calib)	Xie et al., 2018a
		PROP	5.09 ± 0.12	(stack)	4.46 ± 0.3	(cell)	Challis et al., 2016
			3.35 ± 0.15	(cell)			
		SMX	7.2 ± 0.13	(stack)	4.65 ± 0.31	(cell)	Challis et al., 2016
			5.87 ± 0.28	(cell)	3.93	(cell)	Chen et al., 2012
					5.1	(cell)	Chen et al., 2013
					4.59 ± 0.16	(cell)	Ren et al., 2018
					4.72	(calib)	Xie et al., 2018a
		TRIM	4.59 ± 0.08	(stack)	4.02 ± 0.24	(cell)	Challis et al., 2016
			4.85 ± 0.26	(cell)	3.79	(cell)	Chen et al., 2013
					2.64 ± 0.11	(cell)	Ren et al., 2018
					2.86	(calib)	Xie et al., 2018a
		bE2	3.29 ± 0.18	(stack)	2.97 ± 0.38	(cell)	Stroski et al., 2018
	Hormones	E1	3.3 ± 0.22	(stack)	3.43 ± 0.14	(cell)	Stroski et al., 2018
		EE2	3.61 ± 0.34	(stack)	3.53 ± 0.96	(cell)	Stroski et al., 2018
		ATZ	4.33 ± 0.14	(stack)	3.13 ± 0.11	(cell)	Stroski et al., 2018
			1.54 ± 0.1	(cell)			
		BTZ	4.74 ± 0.47	(stack)	5.17 ± 0.11	(cell)	Guibal et al., 2017
			2.71 ± 0.13	(cell)	4.14 ± 0.46	(calib)	Guibal et al., 2017
					4.94 ± 0.57	(calib)	Guibal et al., 2017
		CSF	2.92 ± 0.48	(stack)	4.83 ± 0.46	(cell)	Guibal et al., 2017
			2.06 ± 0.28	(cell)	3.1 ± 0.34	(calib)	Guibal et al., 2017
	Destinidas				3.56 ± 0.46	(calib)	Guibal et al., 2017
РА	Pesticides	DPA	4.82 ± 0.48	(stack)	3.88 ± 0.13	(cell)	Stroski et al., 2018
			2.22 ± 0.36	(cell)			
		IXI	3.92 ± 0.35	(stack)	5.97 ± 0.57	(cell)	Guibal et al., 2017
					5.29 ± 0.57	(calib)	Guibal et al., 2017
					6.89 ± 0.8	(calib)	Guibal et al., 2017
		MCP	5.64 ± 0.61	(stack)	5.74 ± 0.46	(cell)	Guibal et al., 2017
					4.37 ± 0.46	(calib)	Guibal et al., 2017
					4.48 ± 0.57	(calib)	Guibal et al., 2017
		ATE	3.8 ± 0.11	(stack)	2.86 ± 0.1	(cell)	Stroski et al., 2018
	Pharmacoutical		3.3 ± 0.33	(cell)			
	Pharmaceuticals	CARBA	3.73 ± 0.1	(stack)	4.12 ± 0.21	(cell)	Stroski et al., 2018
			3.26 ± 0.1	(cell)			

Gel	Group	Compound	Measure	ed D		Literatu	are D
		DICLO	3.8 ± 0.14	(stack)	3.53 ± 0.14	(cell)	Stroski et al., 2018
		FLUOX	4.95 ± 0.3	(stack)	3.01 ± 0.22	(cell)	Stroski et al., 2018
			1.36 ± 0.09	(cell)			
		GEM	4.49 ± 0.21	(stack)	2.65 ± 0.13	(cell)	Stroski et al., 2018
		KETO	4.26 ± 0.14	(stack)	2.74 ± 0.25	(cell)	Stroski et al., 2018
			2.13 ± 0.09	(cell)			
		MET	3.92 ± 0.11	(stack)	2.7 ± 0.13	(cell)	Stroski et al., 2018
			0.81 ± 0.01	(cell)			
		NAPROX	3.92 ± 0.12	(stack)	3.41 ± 0.24	(cell)	Stroski et al., 2018
			1.87 ± 0.08	(cell)			
		PROP	3.6 ± 0.12	(stack)	3.14 ± 0.15	(cell)	Stroski et al., 2018
			2.69 ± 0.11	(cell)			
		SMX	4.3 ± 0.15	(stack)	3.23 ± 0.17	(cell)	Stroski et al., 2018
			2.99 ± 0.12	(cell)			
		TRIM	3.52 ± 0.12	(stack)	3.07 ± 0.12	(cell)	Stroski et al., 2018
			2.27 ± 0.08	(cell)		. *	

Gel	Group	Compound	R _s (mL d ⁻¹)	DBL thickness (mm)
AG	Hormones	aE2	3.81 ± 0.44 (11%)	0,52
AG	Hormones	ANDRO	2.65 ± 0.23 (9%)	0,9
AG	Hormones	CORT	5.29 ± 0.3 (6%)	0,24
AG	Hormones	CORT.OH	4.97 ± 0.2 (4%)	0,3
AG	Hormones	DEXA	5.63 ± 0.33 (6%)	0,21
AG	Hormones	E1	3.32 ± 0.34 (10%)	0,69
AG	Hormones	E3	5.15 ± 0.32 (6%)	0,27
AG	Hormones	EPI-TESTO	3.08 ± 0.22 (7%)	0,71
AG	Hormones	LEVO	2.64 ± 0.26 (10%)	0,83
AG	Hormones	NORE	3.34 ± 0.25 (8%)	0,66
AG	Hormones	TESTO	3.42 ± 0.21 (6%)	0,61
AG	Pesticides	ATC.ESA	5.4 ± 0.22 (4%)	0,23
AG	Pesticides	ATC.OA	5.36 ± 0.21 (4%)	0,24
AG	Pesticides	BTZ	6.3 ± 0.31 (5%)	0,23
AG	Pesticides	CBF	4.37 ± 0.33 (8%)	0,45
AG	Pesticides	CBZ	3.66 ± 0.51 (14%)	0,82
AG	Pesticides	CSF	4.78 ± 0.46 (10%)	0,29
AG	Pesticides	DCF	4.08 ± 0.22 (5%)	0,39
AG	Pesticides	DEA	4.38 ± 0.51 (12%)	0,61
AG	Pesticides	DET	4.54 ± 0.54 (12%)	0,55
AG	Pesticides	DIA	4.76 ± 0.59 (12%)	0,51
AG	Pesticides	DIU	3.49 ± 0.36 (10%)	0,63
AG	Pesticides	DMO	3.82 ± 0.44 (11%)	0,81
AG	Pesticides	DPA	5.42 ± 0.37 (7%)	0,38
AG	Pesticides	DTC	3.97 ± 0.56 (14%)	0,53
AG	Pesticides	FNP	5.19 ± 0.51 (10%)	0,34
AG	Pesticides	HEXA	4.41 ± 0.35 (8%)	0,36
AG	Pesticides	IMI	5 ± 0.26 (5%)	0,44
AG	Pesticides	IPPMU	4.01 ± 0.4 (10%)	0,59
AG	Pesticides	IPU	3.84 ± 0.37 (10%)	0,61
AG	Pesticides	ISF	4.03 ± 0.24 (6%)	0,41
AG	Pesticides	IXI	6.44 ± 0.37 (6%)	0,28
AG	Pesticides	LINU	2.61 ± 0.38 (15%)	1,15
AG	Pesticides	МСР	5.03 ± 0.46 (9%)	0,43
AG	Pesticides	MCPA	5.73 ± 0.28 (5%)	0,33
AG	Pesticides	MSF	4.52 ± 0.25 (5%)	0,3
AG	Pesticides	MST	5.14 ± 0.31 (6%)	0,31
AG	Pesticides	MTC.ESA	5.19 ± 0.19 (4%)	0,25

Table S14 : Sampling rates and DBL thickness obtained with diffusion cell method

Gel	Group	Compound	R _s (mL d ⁻¹)	DBL thickness (mm)
AG	Pesticides	MTC.OA	4.82 ± 0.24 (5%)	0,31
AG	Pesticides	MTX	4.76 ± 0.55 (12%)	0,39
AG	Pesticides	MTY	6.05 ± 0.47 (8%)	0,33
AG	Pesticides	NFZ	2.87 ± 0.29 (10%)	0,91
AG	Pesticides	NSF	4.58 ± 0.23 (5%)	0,27
AG	Pesticides	PIRI	3.92 ± 0.49 (13%)	0,53
AG	Pesticides	SCT	5.02 ± 0.3 (6%)	0,42
AG	Pesticides	SMZ	4.71 ± 0.44 (9%)	0,41
AG	Pharmaceuticals	ACE	6.66 ± 0.47 (7%)	0,03
AG	Pharmaceuticals	ACFENO	7.1 ± 0.5 (7%)	0,15
AG	Pharmaceuticals	ACSMX	7.72 ± 0.41 (5%)	0,11
AG	Pharmaceuticals	ATE	7.89 ± 0.69 (9%)	-0,02
AG	Pharmaceuticals	AZI	3.61 ± 0.49 (14%)	0,35
AG	Pharmaceuticals	BEZA	8.49 ± 0.27 (3%)	0,06
AG	Pharmaceuticals	CARBA	7.76 ± 0.38 (5%)	0,14
AG	Pharmaceuticals	CARBAEP	7.89 ± 0.46 (6%)	0,12
AG	Pharmaceuticals	CLARI	3.89 ± 0.14 (4%)	0,24
AG	Pharmaceuticals	CLINDA	5.98 ± 0.32 (5%)	0,05
AG	Pharmaceuticals	CYCLOP	6.9 ± 0.23 (3%)	0,23
AG	Pharmaceuticals	DICLO	6.64 ± 0.32 (5%)	0,21
AG	Pharmaceuticals	ERY	3.9 ± 0.18 (5%)	0,23
AG	Pharmaceuticals	GEM	5.46 ± 0.4 (7%)	0,29
AG	Pharmaceuticals	KETO	7.31 ± 0.23 (3%)	0,16
AG	Pharmaceuticals	MET	2.21 ± 0.02 (1%)	1,07
AG	Pharmaceuticals	METFOR	8.27 ± 0.83 (10%)	0,08
AG	Pharmaceuticals	METRO	7.87 ± 0.34 (4%)	0,26
AG	Pharmaceuticals	NAPROX	9.33 ± 0.53 (6%)	0,05
AG	Pharmaceuticals	OFLO	3.79 ± 0.35 (9%)	0,4
AG	Pharmaceuticals	PARA	8.47 ± 0.14 (2%)	0,19
AG	Pharmaceuticals	PROP	4.42 ± 0.19 (4%)	0,35
AG	Pharmaceuticals	SALBU	4.71 ± 0.07 (2%)	0,29
AG	Pharmaceuticals	SMX	7.75 ± 0.37 (5%)	0,12
AG	Pharmaceuticals	SOT	7.23 ± 0.28 (4%)	0,03
AG	Pharmaceuticals	THEO	8.57 ± 0.38 (4%)	0,22
AG	Pharmaceuticals	TRIM	6.41 ± 0.34 (5%)	0,05
PA	Hormones	ANDRO	2.03 ± 0.11 (5%)	1,01
PA	Hormones	CORT	2.8 ± 0.11 (4%)	0,48
PA	Hormones	CORT.OH	2.58 ± 0.08 (3%)	0,6
PA	Hormones	DEXA	2.78 ± 0.09 (3%)	0,51

Gel	Group	Compound	R _s (mL d ⁻¹)	DBL thickness (mm)
PA	Hormones	DROSPI	1.48 ± 0.11 (8%)	1,33
PA	Hormones	E3	2.88 ± 0.23 (8%)	0,52
PA	Hormones	EPI-TESTO	1.98 ± 0.1 (5%)	1,02
PA	Hormones	NORE	1.88 ± 0.09 (5%)	1,17
PA	Hormones	TESTO	2.25 ± 0.09 (4%)	0,79
PA	Pesticides	ATC.ESA	2.56 ± 0.18 (7%)	0,81
PA	Pesticides	ATC.OA	2.47 ± 0.16 (7%)	0,92
PA	Pesticides	ATZ	2.03 ± 0.13 (6%)	1,39
PA	Pesticides	BTZ	3.57 ± 0.17 (5%)	0,58
PA	Pesticides	CBF	3.02 ± 0.22 (7%)	0,74
PA	Pesticides	CBZ	2.16 ± 0.18 (8%)	1,36
PA	Pesticides	CSF	2.72 ± 0.36 (13%)	0,46
PA	Pesticides	CTL	2.67 ± 0.13 (5%)	0,93
PA	Pesticides	DEA	3.3 ± 0.18 (5%)	0,76
PA	Pesticides	DET	1.83 ± 0.2 (11%)	1,72
PA	Pesticides	DIA	3.22 ± 0.2 (6%)	0,75
PA	Pesticides	DIU	2.23 ± 0.21 (9%)	0,95
PA	Pesticides	DMM	1.62 ± 0.22 (14%)	1,28
PA	Pesticides	DMO	2.3 ± 0.1 (4%)	1,34
PA	Pesticides	DPA	2.93 ± 0.47 (16%)	0,92
PA	Pesticides	DTC	2.2 ± 0.17 (8%)	1,07
PA	Pesticides	FNP	2.72 ± 0.21 (8%)	0,84
PA	Pesticides	HEXA	2.47 ± 0.23 (9%)	0,92
PA	Pesticides	IMI	5.41 ± 0.41 (8%)	0,24
PA	Pesticides	IPPMU	2.53 ± 0.16 (6%)	1,01
PA	Pesticides	IPPU	3.05 ± 0.16 (5%)	0,74
PA	Pesticides	IPU	2.65 ± 0.12 (4%)	0,93
PA	Pesticides	LINU	1.53 ± 0.19 (12%)	1,98
PA	Pesticides	МСРА	3.45 ± 0.35 (10%)	0,7
PA	Pesticides	MSF	2.12 ± 0.14 (6%)	1,01
PA	Pesticides	MST	2.62 ± 0.17 (6%)	0,86
PA	Pesticides	MTC	0.82 ± 0.13 (16%)	3,75
PA	Pesticides	MTC.ESA	2.65 ± 0.24 (9%)	0,75
PA	Pesticides	MTX	2.66 ± 0.13 (5%)	0,84
PA	Pesticides	MTY	3.54 ± 0.12 (3%)	0,81
PA	Pesticides	MTZ	1.92 ± 0.23 (12%)	1,3
PA	Pesticides	NFZ	2.58 ± 0.2 (8%)	0,81
PA	Pesticides	PIRI	2.18 ± 0.24 (11%)	1,16
PA	Pesticides	SCT	2.49 ± 0.15 (6%)	0,99

Gel	Group	Compound	R _s (mL d ⁻¹)	DBL thickness (mm)
PA	Pesticides	SMZ	2.41 ± 0.11 (4%)	1,14
PA	Pharmaceuticals	ACE	2.79 ± 0.14 (5%)	0,47
PA	Pharmaceuticals	ACFENO	1.7 ± 0.04 (2%)	1,32
PA	Pharmaceuticals	ACSMX	3.8 ± 0.26 (7%)	0,31
PA	Pharmaceuticals	AMI	1.3 ± 0.18 (14%)	1,95
PA	Pharmaceuticals	ATE	4.36 ± 0.43 (10%)	0,2
PA	Pharmaceuticals	AZI	2.67 ± 0.29 (11%)	0,48
PA	Pharmaceuticals	BEZA	2.15 ± 0.07 (3%)	0,8
PA	Pharmaceuticals	CARBA	4.3 ± 0.13 (3%)	0,22
PA	Pharmaceuticals	CARBAEP	4.28 ± 0.24 (6%)	0,25
PA	Pharmaceuticals	CLARI	1.46 ± 0.04 (3%)	1,02
PA	Pharmaceuticals	CLINDA	2.51 ± 0.1 (4%)	0,59
PA	Pharmaceuticals	CYCLOP	3.62 ± 0.23 (6%)	0,63
PA	Pharmaceuticals	ERY	1.52 ± 0.06 (4%)	0,96
PA	Pharmaceuticals	FLUOX	1.79 ± 0.11 (6%)	1,49
PA	Pharmaceuticals	KETO	2.81 ± 0.12 (4%)	0,73
PA	Pharmaceuticals	MET	1.07 ± 0.01 (1%)	2,59
PA	Pharmaceuticals	METFOR	4.65 ± 0.51 (11%)	0,48
PA	Pharmaceuticals	METRO	4.36 ± 0.1 (2%)	0,6
PA	Pharmaceuticals	NAPROX	2.47 ± 0.1 (4%)	0,86
PA	Pharmaceuticals	NFLUOX	2.12 ± 0.09 (4%)	1,24
PA	Pharmaceuticals	NORFLO	2.15 ± 0.33 (15%)	1,1
PA	Pharmaceuticals	OFLO	3.78 ± 0.44 (12%)	0,48
PA	Pharmaceuticals	PARA	5 ± 0.14 (3%)	0,25
PA	Pharmaceuticals	PROP	3.55 ± 0.15 (4%)	0,36
PA	Pharmaceuticals	SALBU	2.29 ± 0.02 (1%)	0,94
PA	Pharmaceuticals	SMX	3.94 ± 0.16 (4%)	0,33
PA	Pharmaceuticals	SOT	3.66 ± 0.11 (3%)	0,37
PA	Pharmaceuticals	THEO	4.91 ± 0.12 (3%)	0,4
PA	Pharmaceuticals	TRIM	2.99 ± 0.11 (4%)	0,52

Table S15 : Sampling rates determined using DBL thickness determined by Challis et al. (2016a) compare to those determined by Challis et al. by calibration method

	D . calibration	Calculated R _s		
Compound	(Challis et al., 2016a)	With minimal DBL thickness	With maximal DBL thickness	
DPA	10.9	17.1	11.4	
CARBA	14.6	18.3	11.2	
CLARI	11.9	12.7	6.8	
DICLO	9.7	18.6	11.0	
ERY	13.9	12.1	6.6	
E1	14.1	18.1	10.5	
GEM	12.3	17.6	10.3	
IMI	16.1	19.3	11.7	
KETO	13.0	18.2	10.9	
MET	8.8	12.7	8.5	
NAPROX	12.8	18.3	10.9	
PROP	13.6	13.4	8.9	
SMX	15.3	18.6	10.6	
TRIM	11.5	12.1	8.3	

Figure S1 : Rations between D found in literature and those determined in this study

Figure S2 : Diffusion coefficients (D) determined by diffusion cell method in function of D determined by slice stacking method.

The black line represents $D_{cell}=D_{stack}$ while dashed lines represent 30% of error between the two methods. Diffusion coefficients through agarose are represented in pink, while those through polyacrylamide are represented in blue.

Figure S3 : PCA – Diffusion coefficients through agarose (AG) and polyacrylamide (PA) determined by diffusion cell method (cell)

Figure S4 : PCA – Diffusion coefficients through agarose of neutral, anionic and cationic compounds determined by slice stacking method (stack) and diffusion cell method (cell)

Figure S5 : PCA – Diffusion coefficients through polyacrylamide of neutral, anionic and cationic compounds determined by slice stacking method (stack) and diffusion cell method (cell)

Figure S6 : PCA – Diffusion coefficients of hormones, pesticides and pharmaceuticals through agarose gel determined by slice stacking method (stack) and diffusion cell method (cell)

Figure S7 : PCA – Diffusion coefficients of hormones, pesticides and pharmaceuticals through polyacrylamide determined by slice stacking method (stack) and diffusion cell method (cell)

Annexes du Chapitre V

Liste des annexes du Chapitre IV

Annexe V.1 : Rendements d'extraction des résines AG et PA. Les rendements d'extractions
sont indiqués avec l'écart type et le coefficient de variation associé
Annexe V.2 : Accumulation dans les différentes membranes testées en fonction de (A) la
surface polaire, (B) de la masse molaire et (C) du volume de Van der Walls des composés
Annexe V.3 : Coefficients de diffusion validés à travers les gels et les différentes membranes
testées
Annexe V.4 : Perte et concentration dans l'eau dopée du système de calibration
Annexe V.5 : Facteur de concentration en fonction du temps et modèle cinétique associé
avec le o-DGT _{AG}
Annexe V.6 : Facteur de concentration en fonction du temps et modèle cinétique associé
avec le o-DGT _{PA}
Annexe V.7 : Facteur de concentration en fonction du temps et modèle cinétique associé
avec le POCIS
Annexe V.8 : Constantes cinétiques associées au modèle d'accumulation obtenu avec le o-
DGT _{AG}
Annexe V.9 : Constantes cinétiques associées au modèle d'accumulation obtenu avec le o-
DGT _{PA}
Annexe V.10 : Constantes cinétiques associées au modèle d'accumulation obtenu avec le
POCIS
Annexe V.11 : Constantes de partage K _{SW} obtenus avec les o-DGT 406
Annexe V.12 : Constantes de partage K _{SW} obtenus avec les POCIS
Annexe V.13 : Constantes cinétiques d'élimination ke obtenues avec les o-DGT 408
Annexe V.14 : Constantes cinétiques d'accumulation ku obtenues avec le o-DGTAG 409

Annexe V.15 : Constantes cinétiques d'accumulation k_u obtenues avec le o-DGT _{PA} 410
Annexe V.16 : Constantes cinétiques d'élimination ke obtenues avec le POCIS 411
Annexe V.17 : Constantes cinétiques d'accumulation k _u obtenues avec le POCIS412
Annexe V.18 : Temps de demi-atteinte de l'équilibre obtenus avec les deux types de o-DGT
Annexe V.19 : Temps de demi-atteinte de l'équilibre obtenus avec le POCIS 414
Annexe V.20 : Coefficients de diffusion (D) obtenus à partir des taux d'échantillonnage (R _S)
déterminés lors de la calibration

Groupe	Composés	Rendement - AG	Rendement - PA
Hormones	aE2	78 ± 3 (4 %)	85 ± 4 (5 %)
Hormones	ANDRO	78 ± 4 (5 %)	81 ± 4 (5 %)
Hormones	ANDROSTER	90 ± 6 (7 %)	93 ± 6 (6 %)
Hormones	bE2	79 ± 3 (4 %)	86 ± 4 (4 %)
Hormones	CORT	70 ± 5 (7 %)	81 ± 5 (6 %)
Hormones	CORT.OH	79 ± 4 (5 %)	85 ± 3 (4 %)
Hormones	DES	101 ± 7 (7 %)	122 ± 11 (9 %)
Hormones	DEXA	80 ± 3 (4 %)	85 ± 4 (4 %)
Hormones	DIES	85 ± 4 (5 %)	105 ± 5 (5 %)
Hormones	DROSPI	87 ± 6 (7 %)	93 ± 2 (2 %)
Hormones	E1	92 ± 6 (7 %)	99 ± 5 (5 %)
Hormones	E3	67 ± 4 (6 %)	78 ± 4 (5 %)
Hormones	EE2	80 ± 5 (6 %)	85 ± 4 (4 %)
Hormones	EPI-TESTO	91 ± 4 (5 %)	95 ± 5 (5 %)
Hormones	LEVO	86 ± 6 (7 %)	92 ± 4 (4 %)
Hormones	MEDROX	92 ± 6 (6 %)	99 ± 5 (5 %)
Hormones	MEG.AC	100 ± 6 (6 %)	103 ± 6 (6 %)
Hormones	NORE	81 ± 4 (5 %)	84 ± 3 (4 %)
Hormones	PROG	95 ± 7 (7 %)	101 ± 5 (5 %)
Hormones	TESTO	85 ± 4 (4 %)	89 ± 4 (4 %)
Pesticides	ALC	88 ± 14 (16 %)	83 ± 10 (12 %)
Pesticides	ATC	61 ± 8 (13 %)	61 ± 9 (14 %)
Pesticides	ATC.ESA	44 ± 9 (21 %)	39 ± 5 (12 %)
Pesticides	ATC.OA	80 ± 6 (8 %)	79 ± 4 (5 %)
Pesticides	ATZ	74 ± 4 (5 %)	78 ± 5 (6 %)
Pesticides	BTZ	87 ± 3 (3 %)	79 ± 2 (3 %)
Pesticides	CBF	38 ± 8 (20 %)	62 ± 10 (16 %)
Pesticides	CBY	24 ± 4 (17 %)	44 ± 23 (52 %)
Pesticides	CBZ	51 ± 4 (8 %)	64 ± 3 (5 %)
Pesticides	CSF	22 ± 3 (13 %)	22 ± 1 (5 %)
Pesticides	CTL	87 ± 8 (9 %)	92 ± 6 (7 %)
Pesticides	CYPRO	86 ± 10 (12 %)	82 ± 8 (9 %)
Pesticides	D.2.4	33 ± 26 (78 %)	52 ± 22 (41 %)
Pesticides	DCB	68 ± 13 (19 %)	94 ± 26 (28 %)
Pesticides	DCF	37 ± 25 (67 %)	60 ± 22 (37 %)
Pesticides	DCP	54 ± 20 (36 %)	66 ± 15 (22 %)
Pesticides	DCPMU	93 ± 14 (15 %)	88 ± 28 (31 %)
Pesticides	DEA	$73 \pm 8 (10 \%)$	72 ± 11 (15 %)

Annexe V.1 : Rendements d'extraction des résines AG et PA. Les rendements d'extractions sont indiqués avec l'écart type et le coefficient de variation associé.

Groupe	Composés	Rendement - AG	Rendement - PA
Pesticides	DET	69 ± 5 (7 %)	69 ± 3 (5 %)
Pesticides	DIA	79 ± 4 (5 %)	64 ± 6 (9 %)
Pesticides	DIU	70 ± 9 (13 %)	72 ± 7 (9 %)
Pesticides	DMM	74 ± 6 (8 %)	80 ± 3 (4 %)
Pesticides	DMO	51 ± 3 (5 %)	58 ± 6 (11 %)
Pesticides	DTC	73 ± 7 (10 %)	76 ± 7 (9 %)
Pesticides	DTM	58 ± 8 (13 %)	68 ± 8 (12 %)
Pesticides	EPOX	83 ± 8 (10 %)	83 ± 7 (9 %)
Pesticides	FLM	64 ± 7 (10 %)	65 ± 5 (8 %)
Pesticides	FLZ	87 ± 10 (11 %)	90 ± 8 (9 %)
Pesticides	FNP	58 ± 15 (25 %)	67 ± 15 (23 %)
Pesticides	HEXA	70 ± 5 (8 %)	73 ± 3 (4 %)
Pesticides	IMI	87 ± 9 (10 %)	79 ± 12 (15 %)
Pesticides	IPPMU	85 ± 15 (18 %)	83 ± 7 (9 %)
Pesticides	IPPU	91 ± 12 (13 %)	82 ± 10 (12 %)
Pesticides	IPU	78 ± 9 (11 %)	83 ± 5 (7 %)
Pesticides	IRG	68 ± 4 (6 %)	73 ± 2 (3 %)
Pesticides	ISF	85 ± 5 (5 %)	86 ± 4 (5 %)
Pesticides	IXI	89 ± 5 (6 %)	87 ± 4 (5 %)
Pesticides	МСР	49 ± 19 (39 %)	62 ± 18 (28 %)
Pesticides	МСРА	29 ± 23 (79 %)	49 ± 24 (50 %)
Pesticides	MSF	81 ± 4 (5 %)	78 ± 4 (6 %)
Pesticides	MST	82 ± 3 (4 %)	79 ± 5 (7 %)
Pesticides	MTC	79 ± 8 (11 %)	73 ± 9 (13 %)
Pesticides	MTC.ESA	85 ± 3 (4 %)	79 ± 2 (2 %)
Pesticides	MTC.OA	68 ± 4 (6 %)	76 ± 6 (8 %)
Pesticides	MTX	77 ± 7 (9 %)	81 ± 6 (7 %)
Pesticides	MTY	111 ± 6 (5 %)	101 ± 17 (17 %)
Pesticides	MTZ	77 ± 6 (8 %)	78 ± 4 (5 %)
Pesticides	NFZ	71 ± 10 (14 %)	83 ± 4 (5 %)
Pesticides	NSF	72 ± 10 (13 %)	75 ± 3 (3 %)
Pesticides	PIRI	77 ± 3 (4 %)	79 ± 7 (9 %)
Pesticides	SCT	73 ± 3 (5 %)	71 ± 3 (4 %)
Pesticides	SMZ	73 ± 6 (8 %)	75 ± 5 (6 %)
Pesticides	SPIRO	67 ± 10 (15 %)	72 ± 12 (17 %)
Pesticides	TBZ	73 ± 8 (10 %)	83 ± 4 (4 %)
Pesticides	TYZ	63 ± 3 (5 %)	69 ± 4 (6 %)
Pharmaceutiques	ACE	91 ± 33 (36 %)	94 ± 35 (37 %)
Pharmaceutiques	ACFENO	86 ± 45 (52 %)	83 ± 24 (28 %)
Pharmaceutiques	ACSMX	77 ± 20 (26 %)	83 ± 12 (15 %)

Groupe	Composés	Rendement - AG	Rendement - PA
Pharmaceutiques	AMI	83 ± 29 (35 %)	87 ± 20 (23 %)
Pharmaceutiques	AMS	88 ± 37 (42 %)	82 ± 24 (29 %)
Pharmaceutiques	ATE	81 ± 27 (34 %)	85 ± 25 (30 %)
Pharmaceutiques	BEZA	52 ± 19 (36 %)	69 ± 26 (38 %)
Pharmaceutiques	CARBA	104 ± 49 (47 %)	91 ± 19 (21 %)
Pharmaceutiques	CARBAEP	104 ± 52 (50 %)	87 ± 18 (21 %)
Pharmaceutiques	CEL	90 ± 34 (38 %)	89 ± 33 (37 %)
Pharmaceutiques	CLARI	100 ± 40 (40 %)	111 ± 44 (40 %)
Pharmaceutiques	CLINDA	99 ± 52 (53 %)	92 ± 32 (34 %)
Pharmaceutiques	CYCLOP	83 ± 24 (29 %)	84 ± 14 (16 %)
Pharmaceutiques	DICLO	78 ± 33 (43 %)	84 ± 24 (29 %)
Pharmaceutiques	ERY	109 ± 53 (49 %)	101 ± 41 (40 %)
Pharmaceutiques	FCD	93 ± 37 (40 %)	84 ± 30 (35 %)
Pharmaceutiques	FENO	105 ± 38 (36 %)	93 ± 16 (17 %)
Pharmaceutiques	FLUOX	63 ± 24 (38 %)	64 ± 20 (30 %)
Pharmaceutiques	FURO	25 ± 13 (53 %)	59 ± 19 (32 %)
Pharmaceutiques	GEM	50 ± 16 (33 %)	79 ± 25 (32 %)
Pharmaceutiques	IRB	124 ± 71 (57 %)	101 ± 36 (36 %)
Pharmaceutiques	KETO	53 ± 21 (39 %)	70 ± 19 (27 %)
Pharmaceutiques	LAM	86 ± 35 (40 %)	77 ± 19 (25 %)
Pharmaceutiques	MET	108 ± 54 (50 %)	89 ± 30 (33 %)
Pharmaceutiques	METFOR	45 ± 20 (45 %)	22 ± 2 (9 %)
Pharmaceutiques	METRO	94 ± 48 (51 %)	75 ± 6 (8 %)
Pharmaceutiques	NAPROX	41 ± 14 (34 %)	66 ± 20 (30 %)
Pharmaceutiques	NFLUOX	49 ± 13 (26 %)	49 ± 9 (19 %)
Pharmaceutiques	NIF	86 ± 37 (44 %)	84 ± 25 (30 %)
Pharmaceutiques	PARA	76 ± 40 (53 %)	77 ± 9 (12 %)
Pharmaceutiques	PROP	92 ± 37 (40 %)	79 ± 26 (32 %)
Pharmaceutiques	SALBU	77 ± 44 (58 %)	86 ± 29 (33 %)
Pharmaceutiques	SMX	78 ± 48 (61 %)	74 ± 12 (16 %)
Pharmaceutiques	SOT	75 ± 22 (29 %)	86 ± 24 (28 %)
Pharmaceutiques	THEO	74 ± 39 (52 %)	73 ± 7 (9 %)
Pharmaceutiques	TRIM	99 ± 42 (42 %)	84 ± 23 (27 %)
Pharmaceutiques	VFX	85 ± 32 (38 %)	87 ± 22 (26 %)

Annexe V.2 : Accumulation dans les différentes membranes testées en fonction de (A) la surface polaire, (B) de la masse molaire et (C) du volume de Van der Walls des composés

Membrane	Taille de pores	Groupe	Composé	Ionisation	D (× 10 ⁻⁶ cm ² .s ⁻¹)
NYLON	0,45 μm	Hormones	CORT	Neutre	2.6 ± 0.34 (13 %)
NYLON	0,45 μm	Hormones	CORT.OH	Neutre	2.69 ± 0.27 (10 %)
NYLON	0,45 μm	Hormones	DEXA	Neutre	2.5 ± 0.36 (14 %)
NYLON	0,45 μm	Pesticides	ATC.ESA	Anionique	0.54 ± 0.05 (9 %)
NYLON	0,45 μm	Pesticides	ATC.OA	Anionique	0.53 ± 0.05 (9 %)
NYLON	0,45 μm	Pesticides	ATZ	Neutre	3.04 ± 0.17 (6 %)
NYLON	0,45 μm	Pesticides	AZS	Neutre	2.03 ± 0.16 (8 %)
NYLON	0,45 μm	Pesticides	BTZ	Anionique	0.49 ± 0.03 (7 %)
NYLON	0,45 μm	Pesticides	CBF	Neutre	4.07 ± 0.22 (5 %)
NYLON	0,45 μm	Pesticides	CBZ	Neutre	6.25 ± 0.52 (8 %)
NYLON	0,45 μm	Pesticides	CSF	Anionique	0.47 ± 0.04 (9 %)
NYLON	0 , 45 μm	Pesticides	CTL	Neutre	3.98 ± 0.29 (7 %)
NYLON	0 , 45 μm	Pesticides	D.2.4	Anionique	0.51 ± 0.03 (5 %)
NYLON	0 , 45 μm	Pesticides	DCB	Anionique	0.54 ± 0.04 (8 %)
NYLON	0 , 45 μm	Pesticides	DCP	Anionique	0.45 ± 0.03 (7 %)
NYLON	0,45 µm	Pesticides	DCPU	Neutre	4.33 ± 0.61 (14 %)
NYLON	0,45 µm	Pesticides	DEA	Neutre	3.33 ± 0.26 (8 %)
NYLON	0,45 µm	Pesticides	DET	Neutre	4.58 ± 0.31 (7 %)
NYLON	0,45 µm	Pesticides	DIA	Neutre	4.91 ± 0.3 (6 %)
NYLON	0 , 45 μm	Pesticides	DIU	Neutre	2.9 ± 0.21 (7 %)
NYLON	0 , 45 μm	Pesticides	DMM	Neutre	2.64 ± 0.2 (8 %)
NYLON	0 , 45 μm	Pesticides	DMO	Neutre	4.85 ± 0.35 (7 %)
NYLON	0,45 µm	Pesticides	DTC	Neutre	2.79 ± 0.22 (8 %)
NYLON	0,45 µm	Pesticides	FLM	Neutre	2.1 ± 0.16 (8 %)
NYLON	0,45 µm	Pesticides	HEXA	Neutre	3.64 ± 0.2 (6 %)
NYLON	0 , 45 μm	Pesticides	IMI	Neutre	4.44 ± 0.16 (4 %)
NYLON	0,45 µm	Pesticides	IPPMU	Neutre	3.82 ± 0.18 (5 %)
NYLON	0 , 45 μm	Pesticides	IPPU	Neutre	4.22 ± 0.18 (4 %)
NYLON	0,45 µm	Pesticides	IPU	Neutre	3.45 ± 0.16 (5 %)
NYLON	0,45 µm	Pesticides	ISF	Anionique	0.37 ± 0.03 (8 %)
NYLON	0,45 µm	Pesticides	МСР	Anionique	0.44 ± 0.03 (8 %)
NYLON	0,45 µm	Pesticides	МСРА	Anionique	0.52 ± 0.03 (6 %)
NYLON	0,45 µm	Pesticides	MSF	Anionique	0.45 ± 0.04 (8 %)
NYLON	0 , 45 μm	Pesticides	MST	Anionique	0.45 ± 0.04 (9 %)
NYLON	0 , 45 μm	Pesticides	MTC	Neutre	2.72 ± 0.19 (7 %)
NYLON	0 , 45 μm	Pesticides	MTC.ESA	Anionique	0.54 ± 0.05 (9 %)
NYLON	0 , 45 μm	Pesticides	MTC.OA	Anionique	0.52 ± 0.05 (10 %)
NYLON	0 , 45 μm	Pesticides	MTX	Neutre	3.7 ± 0.2 (5 %)

Annexe V.3 : Coefficients de diffusion validés à travers les gels et les différentes membranes testées

Membrane	Taille de pores	Groupe	Composé	Ionisation	D (× 10 ⁻⁶ cm ² .s ⁻¹)
NYLON	0 , 45 μm	Pesticides	MTY	Neutre	5.5 ± 0.19 (3 %)
NYLON	0 , 45 μm	Pesticides	NFZ	Neutre	3.39 ± 0.18 (5 %)
NYLON	0 , 45 μm	Pesticides	NSF	Anionique	0.75 ± 0.06 (8 %)
NYLON	0 , 45 μm	Pesticides	PIRI	Neutre	4.48 ± 0.4 (9 %)
NYLON	0 , 45 μm	Pesticides	SCT	Anionique	0.46 ± 0.07 (15 %)
NYLON	0 , 45 μm	Pesticides	SMZ	Neutre	3.34 ± 0.19 (6 %)
NYLON	0 , 45 μm	Pharmaceutiques	ACE	Cationique	10.17 ± 0.26 (3 %)
NYLON	0 , 45 μm	Pharmaceutiques	ACFENO	Anionique	0.43 ± 0.05 (10 %)
NYLON	0 , 45 μm	Pharmaceutiques	ACSMX	Anionique	1.82 ± 0.03 (2 %)
NYLON	0 , 45 μm	Pharmaceutiques	AMS	Neutre	8.33 ± 0.67 (8 %)
NYLON	0 , 45 μm	Pharmaceutiques	ATE	Cationique	11.44 ± 0.33 (3 %)
NYLON	0 , 45 μm	Pharmaceutiques	CARBA	Neutre	4.84 ± 0.11 (2 %)
NYLON	0 , 45 μm	Pharmaceutiques	CARBAEP	Neutre	4.67 ± 0.13 (3 %)
NYLON	0 , 45 μm	Pharmaceutiques	CIPRO	Neutre	6.03 ± 0.21 (4 %)
NYLON	0 , 45 μm	Pharmaceutiques	CLINDA	Cationique	6.39 ± 0.4 (6 %)
NYLON	0 , 45 μm	Pharmaceutiques	CYCLOP	Neutre	4.8 ± 0.11 (2 %)
NYLON	0 , 45 μm	Pharmaceutiques	ERY	Cationique	5.1 ± 0.26 (5 %)
NYLON	0 , 45 μm	Pharmaceutiques	IRB	Cationique	0.62 ± 0.05 (8 %)
NYLON	0 , 45 μm	Pharmaceutiques	KETO	Anionique	0.76 ± 0.06 (8 %)
NYLON	0 , 45 μm	Pharmaceutiques	LAM	Neutre	10.04 ± 0.68 (7 %)
NYLON	0 , 45 μm	Pharmaceutiques	MET	Cationique	10.59 ± 0.31 (3 %)
NYLON	0 , 45 μm	Pharmaceutiques	METFOR	Cationique	14.8 ± 0.97 (7 %)
NYLON	0 , 45 μm	Pharmaceutiques	METRO	Neutre	6.18 ± 0.1 (2 %)
NYLON	0 , 45 μm	Pharmaceutiques	NAPROX	Anionique	0.72 ± 0.07 (10 %)
NYLON	0 , 45 μm	Pharmaceutiques	NFLUOX	Cationique	3.86 ± 0.5 (13 %)
NYLON	0 , 45 μm	Pharmaceutiques	PARA	Neutre	5.81 ± 0.11 (2 %)
NYLON	0 , 45 μm	Pharmaceutiques	PROP	Neutre	9.13 ± 0.44 (5 %)
NYLON	0 , 45 μm	Pharmaceutiques	SALBU	Cationique	11.54 ± 0.26 (2 %)
NYLON	0 , 45 μm	Pharmaceutiques	SMX	Anionique	3.43 ± 0.05 (1 %)
NYLON	0 , 45 μm	Pharmaceutiques	SOT	Cationique	10.42 ± 0.39 (4 %)
NYLON	0 , 45 μm	Pharmaceutiques	THEO	Neutre	6.32 ± 0.14 (2 %)
NYLON	0 , 45 μm	Pharmaceutiques	TRIM	Cationique	9.5 ± 0.39 (4 %)
NYLON	5 µm	Hormones	CORT	Neutre	2.39 ± 0.26 (11 %)
NYLON	5 µm	Hormones	CORT.OH	Neutre	2.31 ± 0.19 (8 %)
NYLON	5 µm	Hormones	DEXA	Neutre	2.29 ± 0.28 (12 %)
NYLON	5 µm	Hormones	E3	Neutre	2.01 ± 0.27 (13 %)
NYLON	5 µm	Pesticides	ATC.ESA	Anionique	0.51 ± 0.03 (6 %)
NYLON	5 µm	Pesticides	ATC.OA	Anionique	0.51 ± 0.04 (7 %)
NYLON	5 µm	Pesticides	BTZ	Anionique	0.5 ± 0.03 (5 %)
Membrane	Taille de pores	Groupe	Composé	Ionisation	D (× 10-6 cm ² .s-1)
----------	-----------------	-----------------	---------	------------	---------------------------------
NYLON	5 µm	Pesticides	CBF	Neutre	2.76 ± 0.16 (6 %)
NYLON	5 µm	Pesticides	CBZ	Neutre	2.84 ± 0.3 (11 %)
NYLON	5 µm	Pesticides	CSF	Anionique	0.51 ± 0.05 (10 %)
NYLON	5 µm	Pesticides	CTL	Neutre	2.77 ± 0.18 (6 %)
NYLON	5 µm	Pesticides	DCB	Anionique	0.63 ± 0.04 (6 %)
NYLON	5 µm	Pesticides	DET	Neutre	3.62 ± 0.12 (3 %)
NYLON	5 µm	Pesticides	DIA	Neutre	4.07 ± 0.17 (4 %)
NYLON	5 µm	Pesticides	DMM	Neutre	1.63 ± 0.11 (7 %)
NYLON	5 µm	Pesticides	DMO	Neutre	3.53 ± 0.14 (4 %)
NYLON	5 µm	Pesticides	DTC	Neutre	1.92 ± 0.15 (8 %)
NYLON	5 µm	Pesticides	HEXA	Neutre	2.49 ± 0.14 (5 %)
NYLON	5 µm	Pesticides	IMI	Neutre	3.73 ± 0.14 (4 %)
NYLON	5 µm	Pesticides	IPPMU	Neutre	2.82 ± 0.19 (7 %)
NYLON	5 µm	Pesticides	IPPU	Neutre	2.86 ± 0.25 (9 %)
NYLON	5 µm	Pesticides	IPU	Neutre	2.57 ± 0.11 (4 %)
NYLON	5 µm	Pesticides	ISF	Anionique	0.41 ± 0.02 (5 %)
NYLON	5 µm	Pesticides	MSF	Anionique	0.49 ± 0.02 (5 %)
NYLON	5 µm	Pesticides	MST	Anionique	0.53 ± 0.03 (6 %)
NYLON	5 µm	Pesticides	MTC	Neutre	1.66 ± 0.12 (8 %)
NYLON	5 µm	Pesticides	MTC.ESA	Anionique	0.51 ± 0.04 (7 %)
NYLON	5 µm	Pesticides	MTC.OA	Anionique	0.48 ± 0.03 (7 %)
NYLON	5 µm	Pesticides	MTX	Neutre	3.13 ± 0.13 (4 %)
NYLON	5 µm	Pesticides	MTY	Neutre	4.33 ± 0.14 (3 %)
NYLON	5 µm	Pesticides	NFZ	Neutre	2.44 ± 0.13 (5 %)
NYLON	5 µm	Pesticides	NSF	Anionique	0.57 ± 0.03 (4 %)
NYLON	5 µm	Pesticides	PIRI	Neutre	2.29 ± 0.22 (10 %)
NYLON	5 µm	Pesticides	SCT	Anionique	0.5 ± 0.03 (6 %)
NYLON	5 µm	Pesticides	SMZ	Neutre	2.26 ± 0.18 (8 %)
NYLON	5 µm	Pharmaceutiques	ACE	Cationique	7.22 ± 0.17 (2 %)
NYLON	5 µm	Pharmaceutiques	ACSMX	Anionique	1.46 ± 0.06 (4 %)
NYLON	5 µm	Pharmaceutiques	ATE	Cationique	7.84 ± 0.26 (3 %)
NYLON	5 µm	Pharmaceutiques	CARBA	Neutre	3.76 ± 0.1 (3 %)
NYLON	5 µm	Pharmaceutiques	CARBAEP	Neutre	4.12 ± 0.13 (3 %)
NYLON	5 µm	Pharmaceutiques	CIPRO	Neutre	3.62 ± 0.46 (13 %)
NYLON	5 µm	Pharmaceutiques	CLINDA	Cationique	5.31 ± 0.26 (5 %)
NYLON	5 µm	Pharmaceutiques	CYCLOP	Neutre	4.08 ± 0.12 (3 %)
NYLON	5 µm	Pharmaceutiques	ERY	Cationique	3.7 ± 0.46 (12 %)
NYLON	5 µm	Pharmaceutiques	LAM	Neutre	6.14 ± 0.42 (7 %)
NYLON	5 µm	Pharmaceutiques	MET	Cationique	7.65 ± 0.18 (2 %)

Membrane	Taille de pores	Groupe	Composé	Ionisation	D (× 10 ⁻⁶ cm ² .s ⁻¹)
NYLON	5 µm	Pharmaceutiques	METFOR	Cationique	10.47 ± 1.15 (11 %)
NYLON	5 µm	Pharmaceutiques	METRO	Neutre	4.78 ± 0.18 (4 %)
NYLON	5 µm	Pharmaceutiques	NORFLO	Neutre	2.09 ± 0.3 (14 %)
NYLON	5 µm	Pharmaceutiques	OFLO	Anionique	3.9 ± 0.5 (13 %)
NYLON	5 µm	Pharmaceutiques	PARA	Neutre	4.77 ± 0.07 (2 %)
NYLON	5 µm	Pharmaceutiques	SALBU	Cationique	8.76 ± 0.27 (3 %)
NYLON	5 µm	Pharmaceutiques	SMX	Anionique	2.28 ± 0.17 (7 %)
NYLON	5 µm	Pharmaceutiques	SOT	Cationique	7.48 ± 0.23 (3 %)
NYLON	5 µm	Pharmaceutiques	THEO	Neutre	4.61 ± 0.18 (4 %)
NYLON	5 µm	Pharmaceutiques	TRIM	Cationique	6.5 ± 0.34 (5 %)
PES	0,45 μm	Hormones	CORT	Neutre	2.87 ± 0.31 (11 %)
PES	0,45 μm	Hormones	CORT.OH	Neutre	2.96 ± 0.27 (9 %)
PES	0,45 μm	Hormones	DEXA	Neutre	2.65 ± 0.32 (12 %)
PES	0,45 μm	Hormones	E3	Neutre	2.41 ± 0.24 (10 %)
PES	0,45 μm	Hormones	EPI-TESTO	Neutre	1.62 ± 0.18 (11 %)
PES	0,45 μm	Hormones	TESTO	Neutre	1.77 ± 0.24 (14 %)
PES	0,45 μm	Pesticides	ATC.ESA	Anionique	0.91 ± 0.06 (6 %)
PES	0,45 μm	Pesticides	ATC.OA	Anionique	0.94 ± 0.08 (8 %)
PES	0,45 μm	Pesticides	ATZ	Neutre	2.54 ± 0.14 (5 %)
PES	0,45 μm	Pesticides	AZS	Neutre	1.55 ± 0.17 (11 %)
PES	0,45 μm	Pesticides	BTZ	Anionique	0.91 ± 0.06 (7 %)
PES	0,45 μm	Pesticides	CBF	Neutre	3.49 ± 0.22 (6 %)
PES	0 , 45 μm	Pesticides	CBZ	Neutre	3.08 ± 0.47 (15 %)
PES	0 , 45 μm	Pesticides	CTL	Neutre	3.46 ± 0.22 (6 %)
PES	0 , 45 μm	Pesticides	D.2.4	Anionique	0.91 ± 0.05 (6 %)
PES	0,45 μm	Pesticides	DCB	Anionique	0.86 ± 0.11 (12 %)
PES	0,45 μm	Pesticides	DCP	Anionique	0.78 ± 0.09 (12 %)
PES	0,45 μm	Pesticides	DCPMU	Neutre	2.35 ± 0.17 (7 %)
PES	0,45 μm	Pesticides	DEA	Neutre	2.34 ± 0.27 (11 %)
PES	0,45 μm	Pesticides	DET	Neutre	3.8 ± 0.39 (10 %)
PES	0,45 μm	Pesticides	DIA	Neutre	3.76 ± 0.27 (7 %)
PES	0,45 μm	Pesticides	DIU	Neutre	2.31 ± 0.19 (8 %)
PES	0,45 μm	Pesticides	DMM	Neutre	2.2 ± 0.21 (9 %)
PES	0,45 μm	Pesticides	DMO	Neutre	3.75 ± 0.38 (10 %)
PES	0,45 μm	Pesticides	DTC	Neutre	2.87 ± 0.12 (4 %)
PES	0 , 45 μm	Pesticides	FLM	Neutre	1.62 ± 0.16 (10 %)
PES	0 , 45 μm	Pesticides	HEXA	Neutre	2.85 ± 0.33 (12 %)
PES	0 , 45 μm	Pesticides	IMI	Neutre	4.5 ± 0.2 (4 %)
PES	0 , 45 μm	Pesticides	IPPMU	Neutre	3.12 ± 0.16 (5 %)

Membrane	Taille de pores	Groupe	Composé	Ionisation	D (× 10-6 cm ² .s-1)
PES	0 , 45 μm	Pesticides	IPPU	Neutre	3.05 ± 0.25 (8 %)
PES	0 , 45 μm	Pesticides	IPU	Neutre	3.51 ± 0.18 (5 %)
PES	0 , 45 μm	Pesticides	ISF	Anionique	0.82 ± 0.09 (11 %)
PES	0 , 45 μm	Pesticides	IXI	Anionique	0.24 ± 0.02 (7 %)
PES	0 , 45 μm	Pesticides	МСР	Anionique	0.84 ± 0.09 (11 %)
PES	0 , 45 μm	Pesticides	MCPA	Anionique	0.94 ± 0.06 (7 %)
PES	0,45 μm	Pesticides	MSF	Anionique	0.86 ± 0.11 (13 %)
PES	0 , 45 μm	Pesticides	MST	Anionique	1.03 ± 0.14 (14 %)
PES	0,45 μm	Pesticides	MTC	Neutre	2.71 ± 0.31 (12 %)
PES	0 , 45 μm	Pesticides	MTC.ESA	Anionique	0.83 ± 0.05 (6 %)
PES	0 , 45 μm	Pesticides	MTC.OA	Anionique	0.96 ± 0.1 (11 %)
PES	0 , 45 μm	Pesticides	MTX	Neutre	3.11 ± 0.23 (7 %)
PES	0,45 μm	Pesticides	MTY	Neutre	4.57 ± 0.14 (3 %)
PES	0,45 μm	Pesticides	NFZ	Neutre	3.4 ± 0.23 (7 %)
PES	0,45 μm	Pesticides	NSF	Anionique	0.88 ± 0.09 (10 %)
PES	0 , 45 μm	Pesticides	PIRI	Neutre	3.24 ± 0.22 (7 %)
PES	0,45 μm	Pesticides	SMZ	Neutre	2.89 ± 0.18 (6 %)
PES	0,45 μm	Pharmaceutiques	ACE	Cationique	13.06 ± 0.36 (3 %)
PES	0 , 45 μm	Pharmaceutiques	ACFENO	Anionique	0.57 ± 0.07 (12 %)
PES	0,45 μm	Pharmaceutiques	ACSMX	Anionique	2.19 ± 0.06 (3 %)
PES	0,45 μm	Pharmaceutiques	AMS	Neutre	11.76 ± 0.91 (8 %)
PES	0,45 μm	Pharmaceutiques	ATE	Cationique	13.55 ± 0.45 (3 %)
PES	0 , 45 μm	Pharmaceutiques	BEZA	Anionique	0.78 ± 0.1 (12 %)
PES	0 , 45 μm	Pharmaceutiques	CARBA	Neutre	4.72 ± 0.06 (1 %)
PES	0 , 45 μm	Pharmaceutiques	CARBAEP	Neutre	4.99 ± 0.06 (1 %)
PES	0 , 45 μm	Pharmaceutiques	CIPRO	Neutre	6.92 ± 0.28 (4 %)
PES	0 , 45 μm	Pharmaceutiques	CLINDA	Cationique	7.67 ± 1.04 (14 %)
PES	0 , 45 μm	Pharmaceutiques	CYCLOP	Neutre	5.21 ± 0.1 (2 %)
PES	0 , 45 μm	Pharmaceutiques	ERY	Cationique	5.93 ± 0.42 (7 %)
PES	0 , 45 μm	Pharmaceutiques	KETO	Anionique	0.86 ± 0.09 (10 %)
PES	0 , 45 μm	Pharmaceutiques	LAM	Neutre	10.97 ± 1.23 (11 %)
PES	0 , 45 μm	Pharmaceutiques	MET	Cationique	13.04 ± 0.27 (2 %)
PES	0,45 μm	Pharmaceutiques	METRO	Neutre	6.17 ± 0.07 (1 %)
PES	0 , 45 μm	Pharmaceutiques	NAPROX	Anionique	0.87 ± 0.09 (10 %)
PES	0 , 45 μm	Pharmaceutiques	NORFLO	Neutre	4.32 ± 0.6 (14 %)
PES	0 , 45 μm	Pharmaceutiques	OFLO	Anionique	6.62 ± 0.84 (13 %)
PES	0 , 45 μm	Pharmaceutiques	PARA	Neutre	6.25 ± 0.12 (2 %)
PES	0 , 45 μm	Pharmaceutiques	PROP	Neutre	10.2 ± 0.48 (5 %)
PES	0,45 μm	Pharmaceutiques	SALBU	Cationique	13.88 ± 0.36 (3 %)

Membrane	Taille de pores	Groupe	Composé	Ionisation	D (× 10 ⁻⁶ cm ² .s ⁻¹)
PES	0 , 45 μm	Pharmaceutiques	SMX	Anionique	3.01 ± 0.06 (2 %)
PES	0,45 μm	Pharmaceutiques	SOT	Cationique	12.59 ± 0.22 (2 %)
PES	0,45 μm	Pharmaceutiques	THEO	Neutre	7.15 ± 0.28 (4 %)
PES	0 , 45 μm	Pharmaceutiques	TRIM	Cationique	12.89 ± 0.83 (6 %)
PES	5 µm	Hormones	CORT	Neutre	3.4 ± 0.39 (12 %)
PES	5 µm	Hormones	CORT.OH	Neutre	3.44 ± 0.33 (10 %)
PES	5 µm	Hormones	DEXA	Neutre	3.13 ± 0.42 (13 %)
PES	5 µm	Hormones	E3	Neutre	2.72 ± 0.38 (14 %)
PES	5 µm	Pesticides	ATC.ESA	Anionique	1.4 ± 0.14 (10 %)
PES	5 µm	Pesticides	ATC.OA	Anionique	1.43 ± 0.14 (10 %)
PES	5 µm	Pesticides	CBF	Neutre	3.05 ± 0.16 (5 %)
PES	5 µm	Pesticides	DCB	Anionique	1.33 ± 0.16 (12 %)
PES	5 µm	Pesticides	DET	Neutre	4.24 ± 0.26 (6 %)
PES	5 µm	Pesticides	DIA	Neutre	3.79 ± 0.24 (6 %)
PES	5 µm	Pesticides	DMM	Neutre	1.76 ± 0.23 (13 %)
PES	5 µm	Pesticides	DMO	Neutre	3.78 ± 0.16 (4 %)
PES	5 µm	Pesticides	DTC	Neutre	2.32 ± 0.19 (8 %)
PES	5 µm	Pesticides	IMI	Neutre	4.38 ± 0.43 (10 %)
PES	5 µm	Pesticides	IPPMU	Neutre	2.69 ± 0.25 (9 %)
PES	5 µm	Pesticides	IPPU	Neutre	2.83 ± 0.26 (9 %)
PES	5 µm	Pesticides	IPU	Neutre	2.78 ± 0.12 (4 %)
PES	5 µm	Pesticides	ISF	Anionique	1.1 ± 0.1 (9 %)
PES	5 µm	Pesticides	MSF	Anionique	1.28 ± 0.13 (10 %)
PES	5 µm	Pesticides	MST	Anionique	1.45 ± 0.15 (11 %)
PES	5 µm	Pesticides	MTC.ESA	Anionique	1.44 ± 0.17 (12 %)
PES	5 µm	Pesticides	MTX	Neutre	3.33 ± 0.12 (4 %)
PES	5 µm	Pesticides	MTY	Neutre	4.82 ± 0.17 (4 %)
PES	5 µm	Pesticides	NSF	Anionique	1.51 ± 0.17 (12 %)
PES	5 µm	Pesticides	PIRI	Neutre	2.74 ± 0.28 (10 %)
PES	5 µm	Pharmaceutiques	ACE	Cationique	13.53 ± 0.43 (3 %)
PES	5 µm	Pharmaceutiques	ACSMX	Anionique	1.33 ± 0.06 (4 %)
PES	5 µm	Pharmaceutiques	AMS	Neutre	10.64 ± 0.97 (9 %)
PES	5 µm	Pharmaceutiques	ATE	Cationique	16.7 ± 0.64 (4 %)
PES	5 µm	Pharmaceutiques	CARBA	Neutre	4.62 ± 0.14 (3 %)
PES	5 µm	Pharmaceutiques	CARBAEP	Neutre	5.05 ± 0.14 (3 %)
PES	5 µm	Pharmaceutiques	CIPRO	Neutre	5.3 ± 0.74 (14 %)
PES	5 µm	Pharmaceutiques	CLINDA	Cationique	9.08 ± 0.5 (5 %)
PES	5 µm	Pharmaceutiques	CYCLOP	Neutre	5.17 ± 0.14 (3 %)
PES	5 µm	Pharmaceutiques	FLUOX	Cationique	3.43 ± 0.45 (13 %)

Membrane	Taille de pores	Groupe	Composé	Ionisation	D (× 10-6 cm ² .s ⁻¹)
PES	5 µm	Pharmaceutiques	MET	Cationique	14.59 ± 0.39 (3 %)
PES	5 µm	Pharmaceutiques	METRO	Neutre	6.65 ± 0.12 (2 %)
PES	5 µm	Pharmaceutiques	NORFLO	Neutre	5.3 ± 0.51 (10 %)
PES	5 µm	Pharmaceutiques	OFLO	Anionique	7.59 ± 0.67 (9 %)
PES	5 µm	Pharmaceutiques	PARA	Neutre	6.54 ± 0.12 (2 %)
PES	5 µm	Pharmaceutiques	PROP	Neutre	10.83 ± 0.47 (4 %)
PES	5 µm	Pharmaceutiques	SALBU	Cationique	16.78 ± 0.54 (3 %)
PES	5 µm	Pharmaceutiques	SMX	Anionique	2.14 ± 0.14 (7 %)
PES	5 µm	Pharmaceutiques	SOT	Cationique	14.64 ± 0.28 (2 %)
PES	5 µm	Pharmaceutiques	THEO	Neutre	7.54 ± 0.32 (4 %)
PES	5 µm	Pharmaceutiques	TRIM	Cationique	11.07 ± 1.26 (11 %)

Groupe	Abréviation	Ionisation	Log D à pH 7,4	Perte de J0 à J27 (%)	Concentration dans l'eau	
Hormones	<u>aE2</u>	Neutre	3,74	<u>46</u>	4,67 ± 1,29 (n=30; CV=28 %)	
Hormones	<u>ANDRO</u>	Neutre	3,93	<u>76</u>	4,03 ± 1,59 (n=30; CV=40 %)	
Hormones	ANDROSTER	Neutre	3,77	<u>58</u>	3,03 ± 1,33 (n=30; CV=44 %)	
Hormones	<u>bE2</u>	Neutre	3,74	<u>51</u>	4,38 ± 1,56 (n=30; CV=36 %)	
Hormones	<u>CORT</u>	Neutre	1,66	<u>33</u>	5,94 ± 0,9 (n=30; CV=15 %)	
Hormones	<u>CORT.OH</u>	Neutre	1,28	<u>41</u>	4,16 ± 0,73 (n=30; CV=18 %)	
Hormones	<u>DES</u>	Neutre	4,8	<u>79</u>	1,38 ± 1,15 (n=30; CV=83 %)	
Hormones	<u>DEXA</u>	Neutre	1,68	<u>31</u>	5,77 ± 0,96 (n=30; CV=17 %)	
Hormones	DIES	Neutre	5,17	<u>81</u>	$0,87 \pm 0,84$ (n=30; CV=96 %)	
Hormones	<u>DROSPI</u>	Neutre	3,37	<u>57</u>	3,38 ± 1,22 (n=30; CV=36 %)	
Hormones	<u>E1</u>	Neutre	4,31	<u>35</u>	4,83 ± 0,92 (n=30; CV=19 %)	
Hormones	E3	Neutre	2,67	26	$5,25 \pm 0,78$ (n=30; CV=15%)	
Hormones	<u>EE2</u>	Neutre	3,9	<u>43</u>	4,56 ± 1,24 (n=30; CV=27 %)	
Hormones	<u>EPI-TESTO</u>	Neutre	3,37	<u>63</u>	4,06 ± 1,45 (n=30; CV=36 %)	
Hormones	<u>LEVO</u>	Neutre	3,66	<u>37</u>	$5,19 \pm 0,95$ (n=30; CV=18 %)	
Hormones	<u>MEDROX</u>	Neutre	3,69	<u>63</u>	3,65 ± 1,37 (n=30; CV=38 %)	
Hormones	MEG.AC	Neutre	3,72	<u>40</u>	$2,7 \pm 0,76$ (n=30; CV=28 %)	
Hormones	NORE	Neutre	3,22	<u>38</u>	5,64 ± 1,06 (n=30; CV=19 %)	
Hormones	<u>PROG</u>	Neutre	4,15	<u>88</u>	$1,59 \pm 1,4$ (n=30; CV=88 %)	
Hormones	<u>TESTO</u>	Neutre	3,37	<u>80</u>	3,57 ± 1,94 (n=30; CV=54 %)	
Pesticides	ALC	Neutre	3,59	12	3,26 ± 0,73 (n=30; CV=22 %)	
Pesticides	ATC	Neutre	3,5	-9	$3,33 \pm 0,77$ (n=30; CV=23 %)	
Pesticides	ATC.OA	Anionique	-0,53	6	$3,64 \pm 0,33$ (n=30; CV=9 %)	
Pesticides	ATZ	Neutre	2,2	-4	4,64 ± 0,69 (n=30; CV=15 %)	
Pesticides	AZS	Neutre	4,22	28	$3,43 \pm 0,69$ (n=30; CV=20%)	
Pesticides	BTZ	Anionique	-0,19	5	$3,83 \pm 0,49$ (n=30; CV=13%)	
Pesticides	<u>CBF</u>	Neutre	2,05	<u>35</u>	$2,83 \pm 0,72$ (n=30; CV=25 %)	
Pesticides	CBZ	Neutre	1,8	-7	$7,92 \pm 1,22$ (n=30; CV=15%)	
Pesticides	CTL	Neutre	2,44	0	$3,18 \pm 0,52$ (n=30; CV=16 %)	
Pesticides	CYPRO	Neutre	2,85	4	$3,39 \pm 0,49$ (n=30; CV=14%)	
Pesticides	D.2.4	Anionique	-0,99	-3	$0,87 \pm 0,12$ (n=30; CV=14%)	
Pesticides	DCB	Anionique	-0,83	-4	$3,64 \pm 0,41$ (n=30; CV=11 %)	
Pesticides	DCF	Anionique	1,09	8	$2,89 \pm 0,34$ (n=30; CV=12%)	
Pesticides	DCP	Anionique	-0,41	6	3,58 ± 0,33 (n=30; CV=9 %)	
Pesticides	DCPMU	Neutre	2,31	-16	$3,8 \pm 0,99$ (n=30; CV=26 %)	
Pesticides	DEA	Neutre	1,54	-11	$4,98 \pm 0,72$ (n=30; CV=14%)	
Pesticides	DET	Neutre	1,82	-7	$4,08 \pm 0,51$ (n=30; CV=12%)	
Pesticides	DIA	Neutre	1,12	-4	6,68 ± 0,68 (n=30; CV=10 %)	
Pesticides	DIU	Neutre	2,53	16	$3,74 \pm 0,75$ (n=30; CV=20 %)	
Pesticides	DMM	Neutre	3,28	21	3,38 ± 0,63 (n=30; CV=19 %)	

Annexe V.4 : Perte et concentration dans l'eau dopée du système de calibration

Pesticides	DMO	Neutre	0,34	4	4,28 ± 0,62	(n=30; CV=15 %)
Pesticides	DTC	Neutre	2,59	4	$4,58 \pm 0,66$	(n=30; CV=14 %)
Pesticides	DTM	Neutre	2,92	4	4,13 ± 0,68	(n=30; CV=16 %)
Pesticides	EPOX	Neutre	3,74	6	$3,53 \pm 0,64$	(n=30; CV=18 %)
Pesticides	FLM	Neutre	4,64	7	$3,85 \pm 0,57$	(n=30; CV=15 %)
Pesticides	FLZ	Neutre	4,68	17	$1,68 \pm 0,41$	(n=30; CV=24 %)
Pesticides	FNP	Anionique	0,17	5	$3,25 \pm 0,32$	(n=30; CV=10%)
Pesticides	HEXA	Neutre	1,37	-2	4,89 ± 0,65	(n=30; CV=13 %)
Pesticides	IMI	Neutre	0,78	8	4,06 ± 0,77	(n=30; CV=19%)
Pesticides	IPPMU	Neutre	2,35	16	$6,58 \pm 1,09$	(n=30; CV=17 %)
Pesticides	IPPU	Neutre	2,12	5	3,66 ± 0,61	(n=30; CV=17 %)
Pesticides	IPU	Neutre	2,57	11	$3,17 \pm 0,49$	(n=30; CV=15 %)
Pesticides	IRG	Neutre	2,91	7	3,18 ± 0,81	(n=30; CV=25 %)
Pesticides	ISF	Anionique	1,93	9	3,42 ± 0,42	(n=30; CV=12 %)
Pesticides	IXI	Anionique	1,76	11	3,44 ± 0,38	(n=30; CV=11 %)
Pesticides	<u>LINU</u>	Neutre	2,68	<u>49</u>	$2,12 \pm 0,8$	(n=30; CV=38 %)
Pesticides	МСР	Anionique	-0,41	-3	1,43 ± 0,29	(n=30; CV=21 %)
Pesticides	MCPA	Anionique	-1	-13	4,81 ± 0,72	(n=30; CV=15 %)
Pesticides	MSF	Anionique	-3,02	-34	$0,99 \pm 0,16$	(n=30; CV=17 %)
Pesticides	MST	Anionique	0,65	28	2,61 ± 0,53	(n=30; CV=20 %)
Pesticides	MTC	Neutre	3,45	4	$3,19 \pm 0,59$	(n=30; CV=18 %)
Pesticides	MTC.ESA	Anionique	-0,26	7	$4,69 \pm 0,56$	(n=30; CV=12%)
Pesticides	MTC.OA	Anionique	-0,57	0	$1,79 \pm 0,21$	(n=30; CV=12%)
Pesticides	MTX	Neutre	1,77	12	$3,65 \pm 0,56$	(n=30; CV=15 %)
Pesticides	MTY	Neutre	0,72	-26	6,33 ± 1,07	(n=30; CV=17 %)
Pesticides	MTZ	Neutre	2,98	4	4,29 ± 0,67	(n=30; CV=16 %)
Pesticides	NFZ	Neutre	2,42	10	3,3 ± 0,49	(n=30; CV=15 %)
Pesticides	NSF	Anionique	-0,15	<u>30</u>	$2,83 \pm 0,56$	(n=30; CV=20 %)
Pesticides	PIRI	Neutre	1,8	8	3,1 ± 0,47	(n=30; CV=15 %)
Pesticides	<u>SCT</u>	Anionique	1,21	<u>34</u>	3,77 ± 1,01	(n=30; CV=27 %)
Pesticides	SMZ	Neutre	1,78	-10	15,73 ± 2,11	(n=30; CV=13 %)
Pesticides	<u>SPIRO</u>	Cationique	2,45	<u>64</u>	$0,63 \pm 0,43$	(n=30; CV=68 %)
Pesticides	TBZ	Neutre	3,69	7	2,13 ± 0,42	(n=30; CV=20 %)
Pesticides	TYZ	Neutre	2,48	-3	$4,09 \pm 0,7$	(n=30; CV=17 %)
Pharmaceutiques	ACE	Cationique	-0,6	30	$3,33 \pm 0,56$	(n=30; CV=17 %)
Pharmaceutiques	ACFENO	Anionique	0,9	20	$3,67 \pm 0,53$	(n=30; CV=14 %)
Pharmaceutiques	ACSMX	Anionique	-0,97	20	3,84 ± 0,42	(n=30; CV=11 %)
Pharmaceutiques	AMS	Neutre	0,2	20	$4,34 \pm 0,73$	(n=20; CV=17 %)
Pharmaceutiques	APZ	Neutre	3,02	19	$2,58 \pm 0,4$	(n=30; CV=16 %)
Pharmaceutiques	ATE	Cationique	-1,8	16	3,46 ± 0,51	(n=30; CV=15 %)
Pharmaceutiques	<u>AZI</u>	Cationique	-1,23	<u>44</u>	6,35 ± 1,94	(n=20; CV=31 %)
Pharmaceutiques	BEZA	Anionique	0,74	26	3,62 ± 0,55	(n=30; CV=15 %)
Pharmaceutiques	CARBA	Neutre	2,77	29	3,63 ± 0,59	(n=30; CV=16 %)
Pharmaceutiques	CARBAEP	Neutre	1,97	19	3,62 ± 0,49	(n=30; CV=14%)

Pharmaceutiques	<u>CEL</u>	Cationique	-0,8	<u>37</u>	3,86 ± 0,68 (n=30; CV=18 %)
Pharmaceutiques	<u>CLARI</u>	Cationique	2,22	<u>62</u>	$1,17 \pm 0,62$ (n=20; CV=53 %)
Pharmaceutiques	<u>CLINDA</u>	Cationique	0,65	<u>57</u>	$1,77 \pm 0,79$ (n=30; CV=44 %)
Pharmaceutiques	CYCLOP	Neutre	0,1	27	$3,72 \pm 0,47$ (n=30; CV=12%)
Pharmaceutiques	DIAZ	Neutre	3,08	23	$2,4 \pm 0,41$ (n=30; CV=17 %)
Pharmaceutiques	DICLO	Anionique	1,1	26	3,46 ± 0,59 (n=30; CV=17 %)
Pharmaceutiques	<u>ERY</u>	Cationique	1,57	<u>64</u>	$1,18 \pm 0,62$ (n=20; CV=53 %)
Pharmaceutiques	<u>FCD</u>	Cationique	1,01	<u>34</u>	$3,27 \pm 0,67$ (n=30; CV=21 %)
Pharmaceutiques	FENO	Neutre	5,28	15	$0,34 \pm 0,12$ (n=30; CV=36 %)
Pharmaceutiques	<u>FURO</u>	Anionique	-1,25	<u>35</u>	$3,21 \pm 0,64$ (n=30; CV=20 %)
Pharmaceutiques	GEM	Anionique	1,51	20	$3,54 \pm 0,51$ (n=30; CV=14%)
Pharmaceutiques	KETO	Anionique	0,39	24	$3,59 \pm 0,46$ (n=30; CV=13 %)
Pharmaceutiques	LAM	Neutre	1,91	26	3,94 ± 0,52 (n=30; CV=13 %)
Pharmaceutiques	MET	Cationique	-0,47	29	3,51 ± 0,56 (n=30; CV=16 %)
Pharmaceutiques	<u>METFOR</u>	Cationique	-3,66	<u>52</u>	$2,49 \pm 0,69$ (n=30; CV=28 %)
Pharmaceutiques	METRO	Neutre	-0,46	11	$3,81 \pm 0,4$ (n=30; CV=10%)
Pharmaceutiques	NAPROX	Anionique	-0,05	25	$3,23 \pm 0,55$ (n=30; CV=17%)
Pharmaceutiques	NDZ	Neutre	3,21	20	$2,57 \pm 0,4$ (n=30; CV=16 %)
Pharmaceutiques	<u>NFLUOX</u>	Cationique	1,46	<u>32</u>	$0,12 \pm 0,02$ (n=20; CV=14%)
Pharmaceutiques	NIF	Anionique	1,41	26	$3,29 \pm 0,54$ (n=30; CV=17%)
Pharmaceutiques	OFLO	Anionique	-0,47	26	$2,06 \pm 0,4$ (n=20; CV=20%)
Pharmaceutiques	PARA	Neutre	0,9	<u>31</u>	$3,43 \pm 0,52$ (n=30; CV=15%)
Pharmaceutiques	<u>PROP</u>	Neutre	0,36	<u>53</u>	$2,61 \pm 0,9$ (n=30; CV=34 %)
Pharmaceutiques	<u>SALBU</u>	Cationique	-1,32	<u>43</u>	$2,71 \pm 0,66$ (n=30; CV=25 %)
Pharmaceutiques	SMX	Anionique	0	18	$3,84 \pm 0,46$ (n=30; CV=12%)
Pharmaceutiques	<u>SOT</u>	Cationique	-2,12	<u>42</u>	$2,97 \pm 0,74$ (n=30; CV=25 %)
Pharmaceutiques	THEO	Neutre	-0,89	15	3,97 ± 0,44 (n=30; CV=11 %)
Pharmaceutiques	TRIM	Cationique	1,1	14	$3,97 \pm 0,65$ (n=30; CV=16 %)

Annexe V.5 : Facteur de concentration en fonction du temps et modèle cinétique associé avec le o-DGT_{AG} Les lignes pleines représentent les régressions associées au modèle linéaire (LM) ou non linéiare (NLS). Les lignes en pointillées représentent les régressions testées et non validées avec les problèmes associés (ORD : intervalle de l'ordonnée à l'origine ne contenant pas zéro ; RES : résidus standaridisés non satisfaisants). Les noms complets des composés sont indiqués dans le Tableau I.1.

Temps (jours)

٠	Hormones	- Anionique
•	Pesticides	- Cationique
•	Pharmaceutiques	- Neutre

Annexe V.6 : Facteur de concentration en fonction du temps et modèle cinétique associé avec le o-DGT_{PA} Les lignes pleines représentent les régressions associées au modèle linéaire (LM) ou non linéaire (NLS). Les lignes en pointillées représentent les régressions testées et non validées avec les problèmes associés (ORD : intervalle de l'ordonnée à l'origine ne contenant pas zéro ; RES : résidus standardisés non satisfaisants). Les noms complets des composés sont indiqués dans le Tableau X.

Temps (jours)

•	Hormones	🔶 Anionique
•	Pesticides	- Cationique
•	Pharmaceutiques	- Neutre

Annexe V.7 : Facteur de concentration en fonction du temps et modèle cinétique associé avec le POCIS Les lignes pleines représentent les régressions associées au modèle linéaire (LM) ou non linéaire (NLS). Les lignes en pointillées représentent les régressions testées et non validées avec les problèmes associés (ORD : intervalle de l'ordonnée à l'origine ne contenant pas zéro ; RES : résidus standardisés non satisfaisants). Les noms complets des composés sont indiqués dans le Tableau X.

Temps (jours)

- Hormones
- Pesticides
- Pharmaceutiques
- Cationique

Anionique

iques 🔶 Neutre
Annexe V.8 : Constantes cinétiques associées au modèle d'accumulation obtenu avec le o-DGT_{AG}.

Les composés en rouge et en italique sont les composés pour lesquels le K_{SW} n'est pas similaire avec celui déterminé avec le POCIS. Des incertitudes existent donc sur le modèle choisit et les constantes cinétiques. * : le modèle LM n'a été ajusté que sur la durée $< t_{1/2}$. ** : $t_{1/2}$ obtenus avec le modèle NLS

Groupe	Composé	Modèle cinétique	R ²	p-value	k_u (L.g ⁻¹ .j ⁻¹)	R_{S} (mL.j ⁻¹)	K_{SW} (L.g ⁻¹)	k _e (j ⁻¹)	t _{1/2} (j)
Horm.	aE2	LM	0,95	5,01.10-6	0,06 ± 0,005 (8 %)	2,29 ± 0,18 (8 %)	NA	NA	NA
Horm.	ANDRO	LM	0,97	1,28.10-6	0,08 ± 0,006 (7 %)	3,43 ± 0,23 (7 %)	NA	NA	NA
Horm.	ANDROSTER	LM*	0,96	2,28.10-3	0,04 ± 0,004 (10 %)	1,48 ± 0,15 (10 %)	NA	NA	21,09**
Horm.	bE2	LM	0,95	3,91.10-6	0,04 ± 0,003 (8 %)	1,67 ± 0,13 (8 %)	NA	NA	NA
Horm.	CORT	LM	0,94	9,12.10-6	0,06 ± 0,005 (9 %)	2,5 ± 0,22 (9 %)	NA	NA	NA
Horm.	CORT.OH	LM	0,98	3,01.10-7	0,05 ± 0,003 (5 %)	2,25 ± 0,12 (5 %)	NA	NA	NA
Horm.	DES	LM	0,9	6,70.10-5	0,03 ± 0,004 (12 %)	1,4 ± 0,17 (12 %)	NA	NA	NA
Horm.	DEXA	LM	0,97	1,45.10-6	0,05 ± 0,004 (7 %)	2,23 ± 0,15 (7 %)	NA	NA	NA
Horm.	DIES	LM	0,91	3,64.10-5	0,04 ± 0,004 (11 %)	1,46 ± 0,16 (11 %)	NA	NA	NA
Horm.	DROSPI	LM	0,95	5,36.10-6	0,03 ± 0,003 (8 %)	1,38 ± 0,11 (8 %)	NA	NA	NA
Horm.	E1	LM	0,93	1,38.10-5	0,13 ± 0,012 (9 %)	5,27 ± 0,49 (9 %)	NA	NA	NA
Horm.	E3	LM	0,95	4,09.10-6	0,07 ± 0,005 (8 %)	2,78 ± 0,22 (8 %)	NA	NA	NA
Horm.	EE2	LM	0,94	7,54.10-6	0,05 ± 0,004 (9 %)	2,08 ± 0,18 (9 %)	NA	NA	NA
Horm.	EPI-TESTO	LM	0,96	3,10.10-6	0,05 ± 0,004 (7 %)	2,24 ± 0,17 (7 %)	NA	NA	NA
Horm.	LEVO	LM	0,95	3,93.10-6	0,05 ± 0,004 (8 %)	1,99 ± 0,15 (8 %)	NA	NA	NA
Horm.	MEDROX	LM	0,94	1,31.10-5	0,05 ± 0,005 (9 %)	2,06 ± 0,19 (9 %)	NA	NA	NA
Horm.	MEG.AC	LM	0,94	8,03.10-6	0,03 ± 0,003 (9 %)	1,21 ± 0,1 (9 %)	NA	NA	NA
Horm.	NORE	LM	0,97	1,20.10-6	0,06 ± 0,004 (7 %)	2,35 ± 0,15 (7 %)	NA	NA	NA
Horm.	PROG	LM	0,94	9,40.10-6	0,04 ± 0,003 (9 %)	1,55 ± 0,14 (9 %)	NA	NA	NA
Horm.	TESTO	LM	0,96	2,07.10-6	0,05 ± 0,003 (7 %)	1,86 ± 0,13 (7 %)	NA	NA	NA
Pest.	ALC	LM	0,97	4,74.10-7	0,21 ± 0,012 (6 %)	8,46 ± 0,48 (6 %)	NA	NA	NA
Pest.	ATC	LM*	0,99	1,59.10-7	0,28 ± 0,010 (4 %)	11,63 ± 0,43 (4 %)	NA	NA	36,05**
Pest.	ATC.OA	NLS	NA	NA	0,29 ± 0,061 (21 %)	12,01 ± 2,48 (21 %)	3,36 ± 0,29 (9 %)	0,09 ± 0,02 (19 %)	7,94

Groupe	Composé	Modèle cinétique	R ²	p-value	k_u (L.g ⁻¹ .j ⁻¹)	R _S (mL.j ⁻¹)	<i>K_{SW}</i> (L.g ⁻¹)	k _e (j ⁻¹)	t _{1/2} (j)
Pest.	ATZ	LM	0,98	2,08.10-7	0,26 ± 0,013 (5 %)	10,79 ± 0,54 (5 %)	NA	NA	NA
Pest.	BTZ	NLS	NA	NA	0,33 ± 0,055 (17 %)	13,69 ± 2,26 (17 %)	2,57 ± 0,15 (6 %)	0,13 ± 0,02 (15 %)	5,33
Pest.	CBF	LM	0,92	2,99.10-5	0,42 ± 0,045 (11 %)	17,36 ± 1,83 (11 %)	NA	NA	NA
Pest.	CBZ	LM	0,81	6,01.10-4	0,18 ± 0,030 (17 %)	7,2 ± 1,22 (17 %)	NA	NA	NA
Pest.	CTL	LM	0,99	6,99.10-8	0,3 ± 0,013 (4 %)	12,32 ± 0,53 (4 %)	NA	NA	NA
Pest.	CYPRO	LM	0,99	2,13.10-8	0,22 ± 0,008 (4 %)	9,12 ± 0,33 (4 %)	NA	NA	NA
Pest.	DCF	NLS	NA	NA	0,81 ± 0,226 (28 %)	33,3 ± 9,25 (28 %)	22,55 ± 3,49 (15 %)	0,04 ± 0,01 (23 %)	19,2
Pest.	DCP	NLS	NA	NA	0,54 ± 0,091 (17 %)	22,12 ± 3,71 (17 %)	5,29 ± 0,35 (7 %)	0,1 ± 0,02 (15 %)	6,78
Pest.	DEA	LM	0,97	5,46.10-7	0,26 ± 0,015 (6 %)	10,45 ± 0,61 (6 %)	NA	NA	NA
Pest.	DIA	LM	0,99	6,60.10-8	0,18 ± 0,008 (4 %)	7,37 ± 0,31 (4 %)	NA	NA	NA
Pest.	DIU	LM	0,99	6,48.10-9	0,27 ± 0,008 (3 %)	10,92 ± 0,33 (3 %)	NA	NA	NA
Pest.	DMM	LM	0,98	7,94.10-8	0,3 ± 0,013 (4 %)	12,39 ± 0,54 (4 %)	NA	NA	NA
Pest.	DMO	LM	0,95	5,89.10-6	0,36 ± 0,030 (8 %)	14,81 ± 1,22 (8 %)	NA	NA	NA
Pest.	DPA	LM	0,97	3,84.10-6	1,05 ± 0,066 (6 %)	42,76 ± 2,68 (6 %)	NA	NA	NA
Pest.	DTC	LM	0,97	1,00.10-6	0,27 ± 0,017 (6 %)	11,19 ± 0,71 (6 %)	NA	NA	NA
Pest.	DTM	LM	0,96	2,26.10-6	0,32 ± 0,023 (7 %)	13,11 ± 0,94 (7 %)	NA	NA	NA
Pest.	EPOX	LM	0,98	1,13.10-7	0,22 ± 0,010 (5 %)	9,19 ± 0,42 (5 %)	NA	NA	NA
Pest.	FLM	LM	0,96	1,49.10-6	0,27 ± 0,018 (7 %)	11,22 ± 0,75 (7 %)	NA	NA	NA
Pest.	FLZ	LM	0,99	3,51.10-8	0,23 ± 0,009 (4 %)	9,49 ± 0,37 (4 %)	NA	NA	NA
Pest.	FNP	NLS	NA	NA	0,46 ± 0,098 (21 %)	18,89 ± 4 (21 %)	7,9 ± 0,81 (10 %)	0,06 ± 0,01 (19 %)	11,86
Pest.	HEXA	LM	0,99	2,38.10-9	0,26 ± 0,007 (3 %)	10,81 ± 0,29 (3 %)	NA	NA	NA
Pest.	IMI	LM	0,93	1,91.10-5	0,27 ± 0,027 (10 %)	11,07 ± 1,09 (10 %)	NA	NA	NA
Pest.	IPPU	LM	0,99	2,08.10-8	0,27 ± 0,010 (4 %)	11,01 ± 0,4 (4 %)	NA	NA	NA
Pest.	IPU	LM	0,99	1,78.10-8	0,29 ± 0,010 (4 %)	12,03 ± 0,43 (4 %)	NA	NA	NA
Pest.	IRG	LM	0,97	5,12.10-7	0,33 ± 0,019 (6 %)	13,3 ± 0,77 (6 %)	NA	NA	NA
Pest.	ISF	NLS	NA	NA	0,26 ± 0,146 (56 %)	10,66 ± 5,98 (56 %)	5,78 ± 1,7 (29 %)	0,05 ± 0,02 (48 %)	15,36
Pest.	IXI	NLS	NA	NA	0,35 ± 0,116 (33 %)	14,29 ± 4,73 (33 %)	7,12 ± 1,2 (17 %)	0,05 ± 0,01 (28 %)	14,11
Pest.	МСР	LM	0,98	2,68.10-6	0,55 ± 0,033 (6 %)	22,59 ± 1,33 (6 %)	NA	NA	NA

Groupe	Composé	Modèle cinétique	R ²	p-value	k_u (L.g ⁻¹ .j ⁻¹)	R _S (mL.j ⁻¹)	<i>K_{SW}</i> (L.g ⁻¹)	k _e (j-1)	t _{1/2} (j)
Pest.	MCPA	NLS	NA	NA	0,56 ± 0,227 (41 %)	22,82 ± 9,29 (41 %)	7,97 ± 1,47 (18 %)	0,07 ± 0,03 (36 %)	9,91
Pest.	MSF	NLS	NA	NA	0,83 ± 0,373 (45 %)	33,89 ± 15,25 (45 %)	15,96 ± 3,61 (23 %)	0,05 ± 0,02 (39 %)	13,35
Pest.	MST	NLS	NA	NA	0,39 ± 0,093 (24 %)	15,78 ± 3,82 (24 %)	1,45 ± 0,1 (7 %)	0,27 ± 0,06 (23 %)	2,61
Pest.	MTC	LM	0,97	1,30.10-6	0,27 ± 0,018 (7 %)	11,05 ± 0,73 (7 %)	NA	NA	NA
Pest.	MTC.ESA	NLS	NA	NA	0,25 ± 0,080 (32 %)	10,2 ± 3,28 (32 %)	5,79 ± 0,99 (17 %)	$0,04 \pm 0,01 (27 \%)$	16,11
Pest.	MTC.OA	NLS	NA	NA	0,81 ± 0,151 (19 %)	33,18 ± 6,18 (19 %)	16,05 ± 1,51 (9 %)	0,05 ± 0,01 (16 %)	13,72
Pest.	MTX	LM	0,99	2,23.10-8	0,28 ± 0,010 (4 %)	11,36 ± 0,41 (4 %)	NA	NA	NA
Pest.	MTY	LM	1	1,78e-11	0,14 ± 0,002 (1 %)	5,84 ± 0,08 (1 %)	NA	NA	NA
Pest.	MTZ	LM	0,93	1,36.10-5	0,25 ± 0,023 (9 %)	10,17 ± 0,95 (9 %)	NA	NA	NA
Pest.	NFZ	LM	0,99	1,87.10-8	0,31 ± 0,011 (4 %)	12,86 ± 0,46 (4 %)	NA	NA	NA
Pest.	NSF	NLS	NA	NA	0,25 ± 0,040 (16 %)	10,26 ± 1,62 (16 %)	2,9 ± 0,19 (7 %)	0,09 ± 0,01 (14 %)	8,01
Pest.	PIRI	LM	0,98	4,25.10-7	0,29 ± 0,016 (6 %)	11,83 ± 0,66 (6 %)	NA	NA	NA
Pest.	SCT	NLS	NA	NA	0,35 ± 0,062 (18 %)	14,27 ± 2,52 (18 %)	1,8 ± 0,1 (6 %)	0,19 ± 0,03 (17 %)	3,57
Pest.	SPIRO	NLS	NA	NA	0,51 ± 0,169 (33 %)	21,01 ± 6,9 (33 %)	6,81 ± 1 (15 %)	0,08 ± 0,02 (29 %)	9,18
Pest.	TBZ	LM	0,97	7,93.10-7	0,35 ± 0,022 (6 %)	14,41 ± 0,88 (6 %)	NA	NA	NA
Pest.	TYZ	LM	0,98	2,06.10-7	0,27 ± 0,014 (5 %)	11,18 ± 0,56 (5 %)	NA	NA	NA
Pharm.	ACE	LM	0,94	5,31.10-5	0,11 ± 0,011 (10 %)	4,63 ± 0,46 (10 %)	NA	NA	NA
Pharm.	ACFENO	LM	0,95	2,16.10-5	0,36 ± 0,030 (8 %)	14,65 ± 1,23 (8 %)	NA	NA	NA
Pharm.	ACSMX	NLS	NA	NA	0,38 ± 0,137 (36 %)	15,59 ± 5,59 (36 %)	4,35 ± 0,63 (14 %)	0,09 ± 0,03 (33 %)	7,91
Pharm.	ATE	NLS	NA	NA	0,24 ± 0,123 (51 %)	9,8 ± 5,05 (51 %)	5,26 ± 1,41 (27 %)	$0,05 \pm 0,02 (44 \%)$	15,22
Pharm.	BEZA	LM	0,94	3,86.10-5	0,24 ± 0,023 (9 %)	9,94 ± 0,93 (9 %)	NA	NA	NA
Pharm.	CARBA	LM	0,95	2,39.10-5	0,17 ± 0,015 (9 %)	7,04 ± 0,6 (9 %)	NA	NA	NA
Pharm.	CARBAEP	LM*	0,99	8,16.10-7	0,3 ± 0,010 (3 %)	12,34 ± 0,42 (3 %)	NA	NA	26,87**
Pharm.	CEL	LM	0,97	3,86.10-6	0,16 ± 0,010 (6 %)	6,38 ± 0,4 (6 %)	NA	NA	NA
Pharm.	CLINDA	LM	0,85	7,55.10-4	0,17 ± 0,028 (16 %)	7,1 ± 1,13 (16 %)	NA	NA	NA
Pharm.	CYCLOP	LM	0,98	7,09.10-7	0,31 ± 0,015 (5 %)	12,63 ± 0,59 (5 %)	NA	NA	NA
Pharm.	DICLO	LM	0,92	1,24.10-4	0,18 ± 0,021 (11 %)	7,43 ± 0,85 (11 %)	NA	NA	NA
Pharm.	FCD	LM	0,9	1,97.10-4	0,12 ± 0,015 (12 %)	4,94 ± 0,61 (12 %)	NA	NA	NA

Groupe	Composé	Modèle cinétique	R ²	p-value	k_u (L.g ⁻¹ .j ⁻¹)	R _S (mL.j ⁻¹)	K_{SW} (L.g ⁻¹)	k _e (j-1)	t _{1/2} (j)
Pharm.	FENO	LM	0,96	1,35.10-5	0,08 ± 0,006 (8 %)	3,26 ± 0,25 (8 %)	NA	NA	NA
Pharm.	FURO	LM	0,95	1,89.10-5	0,47 ± 0,039 (8 %)	19,28 ± 1,59 (8 %)	NA	NA	NA
Pharm.	GEM	LM	0,95	1,36.10-4	0,26 ± 0,024 (10 %)	10,5 ± 1 (10 %)	NA	NA	NA
Pharm.	KETO	LM	0,94	3,71.10-5	0,28 ± 0,026 (9 %)	11,31 ± 1,05 (9 %)	NA	NA	NA
Pharm.	LAM	LM	0,93	6,61.10-5	0,19 ± 0,020 (10 %)	7,8 ± 0,8 (10 %)	NA	NA	NA
Pharm.	MET	LM	0,94	3,37.10-5	0,16 ± 0,015 (9 %)	6,7 ± 0,61 (9 %)	NA	NA	NA
Pharm.	METRO	NLS	NA	NA	0,18 ± 0,040 (22 %)	7,49 ± 1,63 (22 %)	0,97 ± 0,06 (7 %)	0,19 ± 0,04 (21 %)	3,69
Pharm.	NAPROX	LM	0,94	4,94.10-5	0,34 ± 0,033 (10 %)	13,76 ± 1,34 (10 %)	NA	NA	NA
Pharm.	NIF	LM	0,93	7,06.10-5	0,2 ± 0,021 (10 %)	8,34 ± 0,86 (10 %)	NA	NA	NA
Pharm.	PARA	NLS	NA	NA	0,26 ± 0,052 (20 %)	10,67 ± 2,12 (20 %)	1,09 ± 0,06 (6 %)	0,24 ± 0,05 (19 %)	2,9
Pharm.	PROP	LM	0,87	4,67.10-4	0,12 ± 0,017 (15 %)	4,8 ± 0,7 (15 %)	NA	NA	NA
Pharm.	SMX	NLS	NA	NA	0,39 ± 0,089 (23 %)	16,15 ± 3,64 (23 %)	3,46 ± 0,28 (8 %)	0,11 ± 0,02 (21 %)	6,08
Pharm.	SOT	LM	0,95	2,50.10-5	0,13 ± 0,011 (9 %)	5,41 ± 0,47 (9 %)	NA	NA	NA
Pharm.	THEO	NLS	NA	NA	0,21 ± 0,026 (12 %)	8,53 ± 1,06 (12 %)	1,52 ± 0,06 (4 %)	0,14 ± 0,02 (12 %)	5,03
Pharm.	TRIM	NLS	NA	NA	0,22 ± 0,249 (115 %)	8,84 ± 10,17 (115 %)	5,36 ± 3,34 (62 %)	0,04 ± 0,04 (97 %)	17,18

Annexe V.9 : Constantes cinétiques associées au modèle d'accumulation obtenu avec le o-DGT_{PA}.

Les composés en rouge et en italique sont les composés pour lesquels le K_{SW} n'est pas similaire avec celui déterminé avec le POCIS. Des incertitudes existent donc sur le modèle choisit et les constantes cinétiques. * : le modèle LM n'a été ajusté que sur la durée $< t_{1/2}$. ** : $t_{1/2}$ obtenus avec le modèle NLS

Groupe	Composé	Modèle cinétique	R ²	p-value	k_u (L.g ⁻¹ .j ⁻¹)	R _S (mL.j ⁻¹)	K _{SW} (L.g ⁻¹)	k _e (j-1)	t _{1/2} (j)
Horm.	ANDRO	LM	0,9	5,07.10-5	0,05 ± 0,006 (11 %)	2,03 ± 0,23 (11 %)	NA	NA	NA
Horm.	ANDROSTER	LM	0,97	1,20.10-6	0,02 ± 0,001 (7 %)	0,89 ± 0,06 (7 %)	NA	NA	NA
Horm.	CORT	LM	0,95	4,21.10-6	0,03 ± 0,002 (8 %)	1,2 ± 0,09 (8 %)	NA	NA	NA
Horm.	CORT.OH	LM	0,92	2,70.10-5	0,03 ± 0,003 (10 %)	1,19 ± 0,12 (10 %)	NA	NA	NA
Horm.	DEXA	LM	0,94	1,05.10-5	0,03 ± 0,003 (9 %)	1,19 ± 0,11 (9 %)	NA	NA	NA
Horm.	E3	LM	0,96	2,90.10-6	0,03 ± 0,003 (7 %)	1,4 ± 0,1 (7 %)	NA	NA	NA
Horm.	EPI-TESTO	LM	0,89	9,10.10-5	0,03 ± 0,004 (12 %)	1,2 ± 0,15 (12 %)	NA	NA	NA
Horm.	NORE	LM	0,87	1,55.10-4	0,03 ± 0,004 (14 %)	1,26 ± 0,17 (14 %)	NA	NA	NA
Horm.	TESTO	LM	0,9	5,91.10-5	0,03 ± 0,003 (12 %)	1,07 ± 0,13 (12 %)	NA	NA	NA
Pest.	ALC	LM	0,95	5,46.10-6	0,1 ± 0,008 (8 %)	4,1 ± 0,33 (8 %)	NA	NA	NA
Pest.	ATC	LM	0,98	1,18.10-7	0,11 ± 0,005 (5 %)	4,7 ± 0,22 (5 %)	NA	NA	NA
Pest.	ATZ	LM	1	1,25e-11	0,12 ± 0,002 (1 %)	4,97 ± 0,06 (1 %)	NA	NA	NA
Pest.	BTZ	NLS	NA	NA	0,13 ± 0,067 (52 %)	5,2 ± 2,73 (52 %)	2,64 ± 0,71 (27 %)	$0,05 \pm 0,02 (45 \%)$	14,4
Pest.	CBF	LM	0,94	1,13.10-5	0,14 ± 0,013 (9 %)	5,72 ± 0,52 (9 %)	NA	NA	NA
Pest.	CBZ	LM	0,84	3,35.10-4	0,13 ± 0,020 (15 %)	5,35 ± 0,82 (15 %)	NA	NA	NA
Pest.	CTL	NLS	NA	NA	0,22 ± 0,097 (44 %)	9,01 ± 3,98 (44 %)	5,85 ± 1,45 (25 %)	0,04 ± 0,01 (37 %)	18,41
Pest.	CYPRO	LM	0,99	2,45.10-9	0,12 ± 0,003 (3 %)	4,89 ± 0,13 (3 %)	NA	NA	NA
Pest.	DCF	LM	0,96	1,75.10-5	0,11 ± 0,009 (8 %)	4,62 ± 0,37 (8 %)	NA	NA	NA
Pest.	DCP	LM	0,95	1,92.10-5	0,08 ± 0,007 (8 %)	3,27 ± 0,27 (8 %)	NA	NA	NA
Pest.	DEA	LM	1	1,46e-10	0,15 ± 0,003 (2 %)	6,17 ± 0,11 (2 %)	NA	NA	NA
Pest.	DET	LM	1	2,02e-10	0,16 ± 0,003 (2 %)	6,53 ± 0,12 (2 %)	NA	NA	NA
Pest.	DIA	LM	0,99	1,42.10-8	0,14 ± 0,005 (3 %)	5,74 ± 0,2 (3 %)	NA	NA	NA
Pest.	DIU	LM	1	1,07.10-9	0,16 ± 0,004 (2 %)	6,66 ± 0,16 (2 %)	NA	NA	NA
Pest.	DMM	LM	0,98	1,54.10-7	$0,13 \pm 0,006 (5 \%)$	5,11 ± 0,25 (5 %)	NA	NA	NA

Pest.	DMO	LM	0,98	7,99.10-8	0,2 ± 0,009 (4 %)	8,01 ± 0,35 (4 %)	NA	NA	NA
Pest.	DPA	LM	0,95	2,59.10-5	0,31 ± 0,027 (9 %)	12,7 ± 1,1 (9 %)	NA	NA	NA
Pest.	DTC	LM	1	1,56.10-9	0,13 ± 0,003 (2 %)	5,28 ± 0,13 (2 %)	NA	NA	NA
Pest.	DTM	LM	0,97	8,51.10-7	0,13 ± 0,008 (6 %)	5,18 ± 0,32 (6 %)	NA	NA	NA
Pest.	EPOX	LM	1	1,89e-10	0,12 ± 0,002 (2 %)	4,82 ± 0,09 (2 %)	NA	NA	NA
Pest.	FLM	LM	0,99	7,57.10-9	0,13 ± 0,004 (3 %)	5,43 ± 0,17 (3 %)	NA	NA	NA
Pest.	FLZ	LM	1	7,60e-10	0,14 ± 0,003 (2 %)	5,64 ± 0,13 (2 %)	NA	NA	NA
Pest.	FNP	LM	0,97	3,32.10-6	0,11 ± 0,007 (6 %)	4,47 ± 0,27 (6 %)	NA	NA	NA
Pest.	HEXA	LM	0,99	3,49.10-9	0,13 ± 0,004 (3 %)	5,52 ± 0,15 (3 %)	NA	NA	NA
Pest.	IMI	NLS	NA	NA	0,35 ± 0,173 (50 %)	14,25 ± 7,08 (50 %)	6,07 ± 1,5 (25 %)	0,06 ± 0,02 (43 %)	12,08
Pest.	IPPMU	LM*	1	1,50.10-8	0,16 ± 0,004 (2 %)	6,55 ± 0,16 (2 %)	NA	NA	22,95**
Pest.	IPPU	LM*	1	1,93e-10	0,19 ± 0,002 (1 %)	7,76 ± 0,09 (1 %)	NA	NA	25,67**
Pest.	IPU	NLS	NA	NA	0,19 ± 0,088 (46 %)	7,89 ± 3,59 (46 %)	5,13 ± 1,31 (26 %)	0,04 ± 0,01 (38 %)	18,43
Pest.	IRG	LM	1	9,66e-12	0,16 ± 0,002 (1 %)	6,34 ± 0,08 (1 %)	NA	NA	NA
Pest.	ISF	LM	0,99	1,09.10-7	0,07 ± 0,003 (3 %)	3 ± 0,1 (3 %)	NA	NA	NA
Pest.	IXI	LM	0,99	<i>5,03.10-7</i>	0,15 ± 0,007 (4 %)	6,17 ± 0,27 (4 %)	NA	NA	NA
Pest.	МСР	LM	0,98	1,17.10-6	0,2 ± 0,010 (5 %)	8,19 ± 0,42 (5 %)	NA	NA	NA
Pest.	MSF	LM	0,99	5,23.10-7	0,23 ± 0,010 (4 %)	9,39 ± 0,42 (4 %)	NA	NA	NA
Pest.	MST	NLS	NA	NA	0,17 ± 0,049 (29 %)	6,92 ± 2,01 (29 %)	0,95 ± 0,09 (10 %)	0,18 ± 0,05 (27 %)	3,88
Pest.	MTC	LM	1	1,23.10-9	0,12 ± 0,003 (2 %)	5,05 ± 0,12 (2 %)	NA	NA	NA
Pest.	MTC.ESA	LM	0,98	9,34.10-7	0,08 ± 0,004 (5 %)	3,27 ± 0,16 (5 %)	NA	NA	NA
Pest.	MTC.OA	LM	0,99	2,76.10-7	0,21 ± 0,008 (4 %)	8,43 ± 0,34 (4 %)	NA	NA	NA
Pest.	MTX	LM*	1	1,38.10-9	0,16 ± 0,003 (2 %)	6,48 ± 0,11 (2 %)	NA	NA	27,31**
Pest.	MTZ	LM	0,99	7,40.10-9	0,14 ± 0,004 (3 %)	5,87 ± 0,18 (3 %)	NA	NA	NA
Pest.	NFZ	LM*	1	2,18.10-9	0,15 ± 0,003 (2 %)	6,3 ± 0,11 (2 %)	NA	NA	26,19**
Pest.	PIRI	LM	1	1,94e-10	0,13 ± 0,002 (2 %)	5,34 ± 0,1 (2 %)	NA	NA	NA
Pest.	SPIRO	LM	0,97	9,80.10-7	0,18 ± 0,011 (6 %)	7,25 ± 0,46 (6 %)	NA	NA	NA
Pest.	TBZ	LM	0,99	8,46.10-9	0,14 ± 0,005 (3 %)	5,82 ± 0,18 (3 %)	NA	NA	NA
Pest.	TYZ	LM	0,99	3,39.10-9	0,13 ± 0,004 (3 %)	5,3 ± 0,15 (3 %)	NA	NA	NA
Pharm.	ACFENO	LM	0,95	4,99.10-6	0,13 ± 0,010 (8 %)	5,14 ± 0,41 (8 %)	NA	NA	NA

Pharm.	ACSMX	LM	0,88	1,07.10-4	0,08 ± 0,010 (13 %)	3,14 ± 0,4 (13 %)	NA	NA	NA
Pharm.	ATE	LM	0,91	3,41.10-5	0,06 ± 0,007 (11 %)	2,53 ± 0,27 (11 %)	NA	NA	NA
Pharm.	BEZA	LM	0,97	1,32.10-6	0,06 ± 0,004 (7 %)	2,33 ± 0,15 (7 %)	NA	NA	NA
Pharm.	CARBAEP	LM	0,92	2,72.10-5	0,13 ± 0,013 (10 %)	5,12 ± 0,53 (10 %)	NA	NA	NA
Pharm.	CYCLOP	LM	0,94	8,16.10-6	0,15 ± 0,013 (9 %)	6,05 ± 0,52 (9 %)	NA	NA	NA
Pharm.	DICLO	LM	0,94	1,05.10-5	0,06 ± 0,005 (9 %)	2,37 ± 0,21 (9 %)	NA	NA	NA
Pharm.	FENO	LM	0,96	2,66.10-6	0,05 ± 0,003 (7 %)	1,84 ± 0,13 (7 %)	NA	NA	NA
Pharm.	FURO	LM	0,93	1,56.10-5	0,08 ± 0,008 (10 %)	3,29 ± 0,31 (10 %)	NA	NA	NA
Pharm.	GEM	LM	0,88	1,10.10-4	0,05 ± 0,006 (13 %)	2,01 ± 0,26 (13 %)	NA	NA	NA
Pharm.	KETO	LM	0,94	7,58.10-6	0,07 ± 0,006 (9 %)	2,73 ± 0,23 (9 %)	NA	NA	NA
Pharm.	LAM	LM	0,93	1,83.10-5	0,09 ± 0,009 (10 %)	3,79 ± 0,37 (10 %)	NA	NA	NA
Pharm.	NAPROX	LM	0,94	9,91.10-6	0,07 ± 0,006 (9 %)	2,83 ± 0,25 (9 %)	NA	NA	NA
Pharm.	NIF	LM	0,94	1,29.10-5	0,07 ± 0,006 (9 %)	2,69 ± 0,25 (9 %)	NA	NA	NA
Pharm.	SMX	LM	0,84	3,13.10-4	0,06 ± 0,009 (15 %)	2,29 ± 0,35 (15 %)	NA	NA	NA
Pharm.	SOT	LM	0,91	4,06.10-5	0,05 ± 0,006 (11 %)	2,11 ± 0,23 (11 %)	NA	NA	NA
Pharm.	THEO	LM	0,85	2,31.10-4	0,04 ± 0,006 (14 %)	1,76 ± 0,26 (14 %)	NA	NA	NA
Pharm.	TRIM	LM	0,92	2,39.10-5	0,07 ± 0,007 (10 %)	2,77 ± 0,28 (10 %)	NA	NA	NA

Annexe V.10 : Constantes cinétiques associées au modèle d'accumulation obtenu avec le POCIS

Les composés en rouge et en italique sont les composés pour lesquels le K_{SW} n'est pas similaire avec celui déterminé avec les o-DGT. Des incertitudes existent donc sur le modèle choisit et les constantes cinétiques. * : le modèle LM n'a été ajusté que sur la durée $< t_{1/2}$. ** : $t_{1/2}$ obtenus avec le modèle NLS

Groupe	Composé	Modèle cinétique	R ²	p-value	k_u (L.g ⁻¹ .j ⁻¹)	R _S (mL.j ⁻¹)	K _{SW} (L.g ⁻¹)	k _e (j-1)	t _{1/2} (j)
Horm.	aE2	NLS	NA	NA	0,53 ± 0,068 (13 %)	106 ± 13,67 (13 %)	1,97 ± 0,07 (3 %)	0,27 ± 0,03 (12 %)	2,57
Horm.	ANDRO	NLS	NA	NA	1,61 ± 0,405 (25 %)	322,01 ± 80,99 (25 %)	32,73 ± 4,3 (13 %)	$0,05 \pm 0,01 (21 \%)$	14,09
Horm.	ANDROSTER	NLS	NA	NA	0,87 ± 0,366 (42 %)	173,98 ± 73,13 (42 %)	23,36 ± 5,52 (24 %)	0,04 ± 0,01 (35 %)	18,61
Horm.	bE2	NLS	NA	NA	0,68 ± 0,095 (14 %)	136,71 ± 19,06 (14 %)	4,68 ± 0,22 (5 %)	0,15 ± 0,02 (13 %)	4,75
Horm.	CORT	NLS	NA	NA	0,78 ± 0,113 (15 %)	155,05 ± 22,52 (15 %)	12,59 ± 0,89 (7 %)	0,06 ± 0,01 (13 %)	11,25
Horm.	CORT.OH	NLS	NA	NA	0,68 ± 0,091 (13 %)	136,1 ± 18,2 (13 %)	12,11 ± 0,81 (7 %)	0,06 ± 0,01 (12 %)	12,34
Horm.	DES	LM	0,97	4,62.10-10	0,18 ± 0,009 (5 %)	35,81 ± 1,77 (5 %)	NA	NA	NA
Horm.	DEXA	NLS	NA	NA	0,87 ± 0,141 (16 %)	174,5 ± 28,18 (16 %)	9,25 ± 0,61 (7 %)	0,09 ± 0,01 (15 %)	7,35
Horm.	DIES	NLS	NA	NA	0,25 ± 0,137 (55 %)	49,85 ± 27,34 (55 %)	5,12 ± 1,47 (29 %)	0,05 ± 0,02 (47 %)	14,24
Horm.	DROSPI	NLS	NA	NA	0,66 ± 0,117 (18 %)	131,33 ± 23,37 (18 %)	9,46 ± 0,78 (8 %)	0,07 ± 0,01 (16 %)	9,99
Horm.	E1	NLS	NA	NA	$0,55 \pm 0,126 (23 \%)$	109,06 ± 25,28 (23 %)	4,52 ± 0,39 (9 %)	0,12 ± 0,03 (22 %)	5,74
Horm.	E3	NLS	NA	NA	0,45 ± 0,070 (16 %)	89,72 ± 14 (16 %)	8,59 ± 0,69 (8 %)	0,05 ± 0,01 (13 %)	13,27
Horm.	EE2	NLS	NA	NA	0,69 ± 0,185 (27 %)	137,42 ± 37,05 (27 %)	6,53 ± 0,69 (11 %)	0,11 ± 0,03 (25 %)	6,59
Horm.	EPI-TESTO	NLS	NA	NA	1,01 ± 0,187 (19 %)	201,25 ± 37,39 (19 %)	18,58 ± 1,75 (9 %)	0,05 ± 0,01 (16 %)	12,8
Horm.	LEVO	NLS	NA	NA	0,84 ± 0,196 (23 %)	167,85 ± 39,3 (23 %)	15,26 ± 1,8 (12 %)	0,05 ± 0,01 (20 %)	12,61
Horm.	MEDROX	LM	0,98	4, 77.10 ⁻¹⁰	0,54 ± 0,023 (4 %)	107,44 ± 4,61 (4 %)	NA	NA	NA
Horm.	MEG.AC	NLS	NA	NA	0,71 ± 0,163 (23 %)	141,82 ± 32,63 (23 %)	9,4 ± 0,97 (10 %)	0,08 ± 0,02 (21 %)	9,19
Horm.	NORE	NLS	NA	NA	0,9 ± 0,155 (17 %)	180,55 ± 31,07 (17 %)	12,37 ± 0,97 (8 %)	0,07 ± 0,01 (15 %)	9,5
Horm.	PROG	NLS	NA	NA	0,75 ± 0,140 (19 %)	150,37 ± 27,95 (19 %)	9,88 ± 0,82 (8 %)	0,08 ± 0,01 (17 %)	9,11
Horm.	TESTO	NLS	NA	NA	0,88 ± 0,150 (17 %)	175,8 ± 30,08 (17 %)	11,43 ± 0,87 (8 %)	0,08 ± 0,01 (15 %)	9,01
Pest.	ALC	NLS	NA	NA	0,9 ± 0,349 (39 %)	179,16 ± 69,72 (39 %)	25,11 ± 5,55 (22 %)	0,04 ± 0,01 (32 %)	19,43
Pest.	ATC	LM	0,99	1,01.10-11	0,77 ± 0,022 (3 %)	153,4 ± 4,45 (3 %)	NA	NA	NA
Pest.	ATC.OA	NLS	NA	NA	0,64 ± 0,174 (27 %)	127,22 ± 34,83 (27 %)	3,09 ± 0,25 (8 %)	0,21 ± 0,05 (26 %)	3,37
Pest.	ATZ	LM	0,98	4,36.10-11	0,55 ± 0,022 (4 %)	110,77 ± 4,39 (4 %)	NA	NA	NA

Groupe	Composé	Modèle cinétique	R ²	p-value	k_u (L.g ⁻¹ .j ⁻¹)	R _S (mL.j ⁻¹)	K _{SW} (L.g ⁻¹)	k _e (j-1)	t _{1/2} (j)
Pest.	AZS	LM	0,99	3,23.10-12	0,64 ± 0,016 (3 %)	127,41 ± 3,3 (3 %)	NA	NA	NA
Pest.	BTZ	NLS	NA	NA	0,58 ± 0,116 (20 %)	116,65 ± 23,18 (20 %)	2,76 ± 0,16 (6 %)	0,21 ± 0,04 (19 %)	3,27
Pest.	CBF	NLS	NA	NA	1,05 ± 0,354 (34 %)	209,39 ± 70,82 (34 %)	16,22 ± 2,61 (16 %)	0,06 ± 0,02 (30 %)	10,74
Pest.	CBZ	NLS	NA	NA	0,35 ± 0,093 (27 %)	70,15 ± 18,7 (27 %)	7,59 ± 1,08 (14 %)	0,05 ± 0,01 (23 %)	15,01
Pest.	CTL	LM	0,98	3,40.10-11	0,84 ± 0,033 (4 %)	168,61 ± 6,53 (4 %)	NA	NA	NA
Pest.	CYPRO	LM	0,98	1,90.10-10	0,72 ± 0,033 (5 %)	143,99 ± 6,54 (5 %)	NA	NA	NA
Pest.	DCF	NLS	NA	NA	1,07 ± 0,251 (23 %)	214,21 ± 50,18 (23 %)	25,54 ± 3,27 (13 %)	0,04 ± 0,01 (20 %)	16,53
Pest.	DCP	NLS	NA	NA	0,64 ± 0,176 (27 %)	128,69 ± 35,13 (27 %)	3,1 ± 0,25 (8 %)	0,21 ± 0,05 (26 %)	3,34
Pest.	DCPMU	LM	0,98	2,37.10-11	0,5 ± 0,019 (4 %)	100,95 ± 3,78 (4 %)	NA	NA	NA
Pest.	DEA	NLS	NA	NA	0,57 ± 0,157 (28 %)	113,44 ± 31,35 (28 %)	7,67 ± 0,96 (13 %)	0,07 ± 0,02 (25 %)	9,37
Pest.	DET	LM	0,98	3,48.10-11	0,53 ± 0,021 (4 %)	106,21 ± 4,12 (4 %)	NA	NA	NA
Pest.	DIA	NLS	NA	NA	0,4 ± 0,079 (20 %)	79,66 ± 15,71 (20 %)	3,5 ± 0,26 (7 %)	0,11 ± 0,02 (18 %)	6,09
Pest.	DIU	LM	0,99	1,84.10-13	0,7 ± 0,017 (2 %)	139,3 ± 3,34 (2 %)	NA	NA	NA
Pest.	DMM	LM	0,99	1,61.10-13	0,77 ± 0,018 (2 %)	153,94 ± 3,65 (2 %)	NA	NA	NA
Pest.	DMO	NLS	NA	NA	0,58 ± 0,155 (27 %)	115,95 ± 30,96 (27 %)	8,77 ± 1,11 (13 %)	0,07 ± 0,02 (24 %)	10,48
Pest.	DPA	NLS	NA	NA	2,17 ± 0,629 (29 %)	434,55 ± 125,7 (29 %)	9,37 ± 0,77 (8 %)	0,23 ± 0,06 (28 %)	2,99
Pest.	DTC	LM	0,98	1,45.10-10	0,65 ± 0,029 (4 %)	130,03 ± 5,76 (4 %)	NA	NA	NA
Pest.	DTM	LM	0,98	1,25.10-10	0,67 ± 0,029 (4 %)	134,67 ± 5,88 (4 %)	NA	NA	NA
Pest.	EPOX	LM	0,99	4,01.10-12	0,72 ± 0,023 (3 %)	143,41 ± 4,56 (3 %)	NA	NA	NA
Pest.	FLM	LM	0,99	2,97.10-12	0,52 ± 0,016 (3 %)	104,69 ± 3,24 (3 %)	NA	NA	NA
Pest.	FLZ	LM	0,99	6,48.10-11	0,68 ± 0,024 (4 %)	136,87 ± 4,8 (4 %)	NA	NA	NA
Pest.	FNP	NLS	NA	NA	0,91 ± 0,218 (24 %)	182,32 ± 43,63 (24 %)	7,14 ± 0,62 (9 %)	0,13 ± 0,03 (22 %)	5,43
Pest.	HEXA	NLS	NA	NA	0,69 ± 0,300 (43 %)	138,56 ± 60,02 (43 %)	19,45 ± 4,79 (25 %)	0,04 ± 0,01 (36 %)	19,46
Pest.	IMI	NLS	NA	NA	1,3 ± 0,359 (28 %)	259,16 ± 71,87 (28 %)	15,11 ± 1,79 (12 %)	0,09 ± 0,02 (25 %)	8,08
Pest.	IPPMU	LM	0,99	2,58.10-11	0,72 ± 0,023 (3 %)	144,54 ± 4,61 (3 %)	NA	NA	NA
Pest.	IPPU	LM	0,97	2,82.10-10	0,72 ± 0,034 (5 %)	144,78 ± 6,82 (5 %)	NA	NA	NA
Pest.	IPU	LM	0,98	4,87.10-11	0,75 ± 0,030 (4 %)	149,32 ± 5,98 (4 %)	NA	NA	NA
Pest.	IRG	LM	0,99	4,48.10-12	0,74 ± 0,024 (3 %)	147,14 ± 4,73 (3 %)	NA	NA	NA

Groupe	Composé	Modèle cinétique	R ²	p-value	k_u (L.g ⁻¹ .j ⁻¹)	R _S (mL.j ⁻¹)	<i>K_{SW}</i> (L.g ⁻¹)	k _e (j-1)	t _{1/2} (j)
Pest.	ISF	NLS	NA	NA	0,88 ± 0,242 (28 %)	175,53 ± 48,49 (28 %)	14,5 ± 1,95 (13 %)	0,06 ± 0,01 (24 %)	11,45
Pest.	IXI	NLS	NA	NA	1,1 ± 0,289 (26 %)	220,15 ± 57,84 (26 %)	16,97 ± 2,12 (13 %)	0,06 ± 0,01 (23 %)	10,69
Pest.	LINU	LM	1	3,91.10-12	0,86 ± 0,018 (2 %)	171,96 ± 3,6 (2 %)	NA	NA	NA
Pest.	MCP	NLS	NA	NA	1,46 ± 0,396 (27 %)	292,17 ± 79,21 (27 %)	7,64 ± 0,64 (8 %)	0,19 ± 0,05 (26 %)	3,62
Pest.	MCPA	NLS	NA	NA	0,36 ± 0,116 (32 %)	72,34 ± 23,22 (32 %)	1,4 ± 0,12 (9 %)	0,26 ± 0,08 (31 %)	2,69
Pest.	MSF	NLS	NA	NA	2,34 ± 0,487 (21 %)	467,07 ± 97,42 (21 %)	14,72 ± 1,02 (7 %)	0,16 ± 0,03 (20 %)	4,37
Pest.	MST	NLS	NA	NA	0,72 ± 0,264 (37 %)	144,48 ± 52,75 (37 %)	1,38 ± 0,12 (8 %)	0,52 ± 0,19 (36 %)	1,32
Pest.	MTC	LM	0,99	4,06.10-13	0,73 ± 0,019 (3 %)	146,52 ± 3,78 (3 %)	NA	NA	NA
Pest.	MTC.ESA	NLS	NA	NA	0,81 ± 0,180 (22 %)	162,65 ± 36,09 (22 %)	6,92 ± 0,57 (8 %)	0,12 ± 0,02 (21 %)	5,9
Pest.	MTC.OA	NLS	NA	NA	2,16 ± 0,593 (27 %)	431,59 ± 118,52 (27 %)	11,6 ± 0,99 (9 %)	0,19 ± 0,05 (26 %)	3,73
Pest.	MTX	LM	0,97	1,01.10-9	0,62 ± 0,033 (5 %)	123,49 ± 6,55 (5 %)	NA	NA	NA
Pest.	MTY	NLS	NA	NA	0,38 ± 0,075 (19 %)	76,9 ± 14,99 (19 %)	2,73 ± 0,19 (7 %)	0,14 ± 0,03 (18 %)	4,93
Pest.	MTZ	LM	0,98	9,10.10-11	0,59 ± 0,025 (4 %)	118,78 ± 5,04 (4 %)	NA	NA	NA
Pest.	NFZ	LM	0,99	2,35.10-12	0,76 ± 0,023 (3 %)	151,13 ± 4,58 (3 %)	NA	NA	NA
Pest.	NSF	NLS	NA	NA	0,56 ± 0,169 (30 %)	111,56 ± 33,85 (30 %)	2,62 ± 0,23 (9 %)	0,21 ± 0,06 (29 %)	3,26
Pest.	PIRI	LM*	0,97	3,47.10-9	0,7 ± 0,037 (5 %)	139,07 ± 7,3 (5 %)	NA	NA	21,99**
Pest.	SCT	NLS	NA	NA	0,49 ± 0,150 (31 %)	98,21 ± 30,06 (31 %)	1,31 ± 0,1 (8 %)	0,37 ± 0,11 (30 %)	1,85
Pest.	SPIRO	NLS	NA	NA	1,45 ± 0,455 (31 %)	290,58 ± 90,93 (31 %)	27,95 ± 4,49 (16 %)	0,05 ± 0,01 (27 %)	13,33
Pest.	TBZ	LM	1	3,20.10-13	1,17 ± 0,024 (2 %)	233,55 ± 4,79 (2 %)	NA	NA	NA
Pest.	TYZ	LM	0,99	7,42.10-12	0,64 ± 0,021 (3 %)	127,06 ± 4,28 (3 %)	NA	NA	NA
Pharm.	ACE	NLS	NA	NA	1,35 ± 0,304 (22 %)	270,2 ± 60,74 (22 %)	18,05 ± 1,83 (10 %)	0,07 ± 0,02 (20 %)	9,26
Pharm.	ACFENO	NLS	NA	NA	1,66 ± 0,300 (18 %)	332,95 ± 59,99 (18 %)	18,79 ± 1,43 (8 %)	0,09 ± 0,01 (16 %)	7,83
Pharm.	ACSMX	NLS	NA	NA	0,84 ± 0,241 (29 %)	167,79 ± 48,23 (29 %)	2,94 ± 0,23 (8 %)	0,29 ± 0,08 (28 %)	2,43
Pharm.	AMS	LM	0,98	1,57.10-5	0,86 ± 0,053 (6 %)	172,82 ± 10,59 (6 %)	NA	NA	NA
Pharm.	APZ	NLS	NA	NA	1,43 ± 0,302 (21 %)	285,35 ± 60,44 (21 %)	13,87 ± 1,16 (8 %)	0,1 ± 0,02 (19 %)	6,74
Pharm.	ATE	NLS	NA	NA	0,89 ± 0,267 (30 %)	177,19 ± 53,44 (30 %)	5,79 ± 0,59 (10 %)	0,15 ± 0,04 (28 %)	4,53
Pharm.	BEZA	NLS	NA	NA	1,27 ± 0,247 (19 %)	254,98 ± 49,41 (19 %)	16,13 ± 1,38 (9 %)	0,08 ± 0,01 (17 %)	8,77
Pharm.	CARBA	NLS	NA	NA	1,67 ± 0,316 (19 %)	333,47 ± 63,14 (19 %)	22,66 ± 1,95 (9 %)	0,07 ± 0,01 (17 %)	9,42

Groupe	Composé	Modèle cinétique	R ²	p-value	k_u (L.g ⁻¹ .j ⁻¹)	R _S (mL.j ⁻¹)	<i>K_{SW}</i> (L.g ⁻¹)	k _e (j-1)	t _{1/2} (j)
Pharm.	CARBAEP	NLS	NA	NA	1,55 ± 0,402 (26 %)	309,07 ± 80,35 (26 %)	22,25 ± 2,68 (12 %)	0,07 ± 0,02 (23 %)	9,98
Pharm.	CEL	NLS	NA	NA	1,22 ± 0,236 (19 %)	244,04 ± 47,18 (19 %)	13,39 ± 1,08 (8 %)	0,09 ± 0,02 (18 %)	7,61
Pharm.	CLARI	LM	0,9	2,34.10-3	0,58 ± 0,085 (15 %)	116,77 ± 16,97 (15 %)	NA	NA	NA
Pharm.	CLINDA	NLS	NA	NA	4,29 ± 2,516 (59 %)	858,41 ± 503,16 (59 %)	86,41 ± 26,36 (31 %)	0,05 ± 0,02 (50 %)	13,96
Pharm.	CYCLOP	NLS	NA	NA	1,4 ± 0,341 (24 %)	280,71 ± 68,27 (24 %)	15,88 ± 1,63 (10 %)	0,09 ± 0,02 (22 %)	7,84
Pharm.	DIAZ	NLS	NA	NA	1,53 ± 0,418 (27 %)	305,53 ± 83,62 (27 %)	8,93 ± 0,78 (9 %)	0,17 ± 0,04 (26 %)	4,05
Pharm.	DICLO	NLS	NA	NA	1,61 ± 0,544 (34 %)	321,39 ± 108,74 (34 %)	6,19 ± 0,57 (9 %)	0,26 ± 0,08 (33 %)	2,67
Pharm.	ERY	LM	0,89	2,91.10-3	$0,54 \pm 0,084 (15 \%)$	108,92 ± 16,79 (15 %)	NA	NA	NA
Pharm.	FCD	NLS	NA	NA	1,35 ± 0,427 (32 %)	270,3 ± 85,42 (32 %)	18,22 ± 2,61 (14 %)	0,07 ± 0,02 (28 %)	9,35
Pharm.	FENO	LM	0,88	1,45.10-6	0,06 ± 0,006 (11 %)	11,3 ± 1,21 (11 %)	NA	NA	NA
Pharm.	FURO	NLS	NA	NA	1,15 ± 0,260 (23 %)	229,6 ± 51,91 (23 %)	9,67 ± 0,82 (8 %)	0,12 ± 0,02 (21 %)	5,84
Pharm.	GEM	NLS	NA	NA	1,39 ± 0,708 (51 %)	278,09 ± 141,55 (51 %)	4,32 ± 0,57 (13 %)	0,32 ± 0,16 (49 %)	2,16
Pharm.	KETO	NLS	NA	NA	1,32 ± 0,277 (21 %)	264,56 ± 55,38 (21 %)	12,93 ± 1,07 (8 %)	0,1 ± 0,02 (19 %)	6,78
Pharm.	LAM	NLS	NA	NA	1,66 ± 0,311 (19 %)	332,24 ± 62,23 (19 %)	14,96 ± 1,07 (7 %)	0,11 ± 0,02 (17 %)	6,24
Pharm.	MET	NLS	NA	NA	1,36 ± 0,299 (22 %)	272,34 ± 59,77 (22 %)	18,65 ± 1,86 (10 %)	0,07 ± 0,01 (20 %)	9,49
Pharm.	METRO	NLS	NA	NA	1,24 ± 0,198 (16 %)	248,8 ± 39,52 (16 %)	1,2 ± 0,04 (3 %)	1,04 ± 0,16 (16 %)	0,67
Pharm.	NAPROX	NLS	NA	NA	1,54 ± 0,418 (27 %)	307,6 ± 83,59 (27 %)	10,57 ± 0,98 (9 %)	0,15 ± 0,04 (26 %)	4,76
Pharm.	NDZ	NLS	NA	NA	1,59 ± 0,418 (26 %)	318,53 ± 83,69 (26 %)	11,43 ± 1,05 (9 %)	0,14 ± 0,03 (25 %)	4,97
Pharm.	NIF	NLS	NA	NA	1,61 ± 0,394 (25 %)	321,5 ± 78,79 (25 %)	11,05 ± 0,93 (8 %)	0,15 ± 0,03 (23 %)	4,76
Pharm.	OFLO	LM	0,96	7,70.10-5	0,23 ± 0,019 (8 %)	45,5 ± 3,86 (8 %)	NA	NA	NA
Pharm.	PARA	NLS	NA	NA	1,33 ± 0,246 (19 %)	265,27 ± 49,27 (19 %)	1,01 ± 0,04 (4 %)	1,31 ± 0,24 (18 %)	0,53
Pharm.	PROP	NLS	NA	NA	1,95 ± 0,460 (24 %)	390,68 ± 91,95 (24 %)	19,49 ± 1,84 (9 %)	0,1 ± 0,02 (22 %)	6,92
Pharm.	SALBU	NLS	NA	NA	0,71 ± 0,187 (26 %)	142,34 ± 37,39 (26 %)	2,92 ± 0,22 (7 %)	0,24 ± 0,06 (25 %)	2,85
Pharm.	SMX	NLS	NA	NA	0,84 ± 0,257 (31 %)	167,5 ± 51,48 (31 %)	2,26 ± 0,17 (8 %)	0,37 ± 0,11 (30 %)	1,87
Pharm.	SOT	NLS	NA	NA	0,87 ± 0,260 (30 %)	173,19 ± 51,94 (30 %)	5,55 ± 0,55 (10 %)	0,16 ± 0,04 (28 %)	4,44
Pharm.	THEO	NLS	NA	NA	0,97 ± 0,207 (21 %)	194,68 ± 41,39 (21 %)	1,26 ± 0,06 (5 %)	0,77 ± 0,16 (21 %)	0,9
Pharm.	TRIM	NLS	NA	NA	$1,35 \pm 0,340 (25 \%)$	269,51 ± 68,04 (25 %)	18,01 ± 2,05 (11 %)	$0,07 \pm 0,02 (23 \%)$	9,27

Annexes

Annexe V.11 : Constantes de partage K_{SW} obtenus avec les o-DGT

Annexe V.12 : Constantes de partage K_{SW} obtenus avec les POCIS

Annexe V.13 : Constantes cinétiques d'élimination ke obtenues avec les o-DGT

Annexe V.14 : Constantes cinétiques d'accumulation ku obtenues avec le o-DGT_{AG}

Annexe V.15 : Constantes cinétiques d'accumulation k_n obtenues avec le o-DGT_{PA}

Annexe V.16 : Constantes cinétiques d'élimination ke obtenues avec le POCIS

Annexe V.17 : Constantes cinétiques d'accumulation k_u obtenues avec le POCIS

Annexe V.18 : Temps de demi-atteinte de l'équilibre obtenus avec les deux types de o-DGT

Annexe V.20: Coefficients de diffusion (D) obtenus à partir des taux d'échantillonnage (R_s) déterminés lors de la calibration

Groupe	Composé	D o-DGT _{AG} (×10 ⁻⁶ cm ² .s ¹)	D o-DGT _{PA} (×10 ⁻⁶ cm ² .s ¹)	
Hormone	aE2	0,95	NA	
Hormone	ANDRO	1,42	0,95	
Hormone	ANDROSTER	0,61	0,42	
Hormone	bE2	0,69	NA	
Hormone	CORT	1,04	0,57	
Hormone	CORT.OH	0,93	0,56	
Hormone	DES	0,58	NA	
Hormone	DEXA	0,92	0,56	
Hormone	DIES	0,6	NA	
Hormone	DROSPI	0,57	NA	
Hormone	E1	2,19	NA	
Hormone	E3	1,15	0,66	
Hormone	EE2	0,86	NA	
Hormone	EPI-TESTO	0,93	0,56	
Hormone	LEVO	0,83	NA	
Hormone	MEDROX	0,85	NA	
Hormone	MEG.AC	0,5	NA	
Hormone	NORE	0,97	0,59	
Hormone	PROG	0,64	NA	
Hormone	TESTO	0,77	0,5	
Pesticide	ALC	3,51	1,92	
Pesticide	ATC	4,82	2,21	
Pesticide	ATZ	4,47	2,33	
Pesticide	CBF	7,2	2,69	
Pesticide	CBZ	2,98	2,51	
Pesticide	CTL	5,1	NA	
Pesticide	CYPRO	3,78	2,3	
Pesticide	DCF	NA	2,17	
Pesticide	DCP	NA	1,54	
Pesticide	DEA	4,33	2,9	
Pesticide	DET	NA	3,07	
Pesticide	DIA	3,05	2,69	
Pesticide	DIU	4,52	3,13	
Pesticide	DMM	5,13	2,4	
Pesticide	DMO	6,14	3,76	
Pesticide	DPA	17,72	5,97	
Pesticide	DTC	4,64	2,48	
Pesticide	DTM	5,43	2,43	
Pesticide	EPOX	3,81	2,27	
Pesticide	FLM	4,65	2,55	
Pesticide	FLZ	3,93	2,65	
Pesticide	FNP	NA	2,1	

Groupe	Composé	$\begin{array}{c} \textbf{D o-DGT}_{AG} \\ \textbf{(\times10^{-6} cm^2.s^1)} \end{array}$	D o-DGT _{PA} (×10 ⁻⁶ cm ² .s ¹)
Pesticide	HEXA	4,48	2,59
Pesticide	IMI	4,59	NA
Pesticide	IPPMU	NA	3,08
Pesticide	IPPU	4,56	3,65
Pesticide	IPU	4,99	NA
Pesticide	IRG	5,51	2,98
Pesticide	ISF	NA	1,41
Pesticide	IXI	NA	2,9
Pesticide	МСР	9,36	3,85
Pesticide	MSF	NA	4,41
Pesticide	МТС	4,58	2,37
Pesticide	MTC.ESA	NA	1,54
Pesticide	MTC.OA	NA	3,96
Pesticide	MTX	4,71	3,05
Pesticide	MTY	2,42	NA
Pesticide	MTZ	4,21	2,76
Pesticide	NFZ	5,33	2,96
Pesticide	PIRI	4,9	2,51
Pesticide	SPIRO	NA	3,41
Pesticide	TBZ	5,97	2,73
Pesticide	TYZ	4,63	2,49
Pharmaceutique	ACE	1,92	NA
Pharmaceutique	ACFENO	6,07	2,41
Pharmaceutique	ACSMX	NA	1,48
Pharmaceutique	ATE	NA	1,19
Pharmaceutique	BEZA	4,12	1,09
Pharmaceutique	CARBA	2,92	NA
Pharmaceutique	CARBAEP	5,11	2,4
Pharmaceutique	CEL	2,64	NA
Pharmaceutique	CLINDA	2,94	NA
Pharmaceutique	CYCLOP	5,23	2,84
Pharmaceutique	DICLO	3,08	1,11
Pharmaceutique	FCD	2,05	NA
Pharmaceutique	FENO	1,35	0,87
Pharmaceutique	FURO	7,99	1,55
Pharmaceutique	GEM	4,35	0,94
Pharmaceutique	KETO	4,69	1,28
Pharmaceutique	LAM	3,23	1,78
Pharmaceutique	MET	2,78	NA
Pharmaceutique	NAPROX	5,7	1,33
Pharmaceutique	NIF	3,46	1,26
Pharmaceutique	PROP	1,99	NA
Pharmaceutique	SMX	NA	1,08
Pharmaceutique	SOT	2,24	0,99

Groupe	Composé	D o-DGT _{AG} (×10 ⁻⁶ cm ² .s ¹)	D o-DGT _{PA} (×10 ⁻⁶ cm ² .s ¹)
Pharmaceutique	THEO	NA	0,83
Pharmaceutique	TRIM	NA	1,3