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Thèse de doctorat de l’Institut Polytechnique de Paris
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Abstract

During the last decade, the need for computational power has increased due to the emergence
and fast evolution of fields such as data analysis or artificial intelligence. This tendency is also
reinforced by the growing number of services and end-user devices. Due to physical constraints,
the trend for new hardware has shifted from an increase in processor frequency to an increase
in the number of cores per machine.

This new paradigm requires software to adapt, making the ability to manage such a paral-
lelism the cornerstone of many parts of the software stack.

Directly concerned by this change, operating systems have evolved to include complex
rules each pertaining to different hardware configurations. However, more often than not,
resources management units are responsible for one specific resource and make a decision in
isolation. Moreover, because of the complexity and fast evolution rate of hardware, operating
systems, not designed to use a generic approach have trouble keeping up. Given the advance
of virtualization technology, we propose a new approach to resource management in complex
topologies using virtualization to add a small software layer dedicated to resources placement
in between the hardware and a standard operating system.

Similarly, in user space applications, parallelism is an important lever to attain high perfor-
mances, which is why high performance computing runtimes, such as MPI, are built to increase
parallelism in applications. The recent changes in modern architectures combined with fast
networks have made overlapping CPU-bound computation and network communication a key
part of parallel applications. While some degree of overlap might be attained manually, this is
often a complex and error prone procedure. Our proposal automatically transforms blocking
communications into nonblocking ones to increase the overlapping potential. To this end, we
use a separate communication thread responsible for handling communications and a memory
protection mechanism to track memory accesses in communication buffers. This guarantees
both progress for these communications and the largest window during which communication
and computation can be processed in parallel.
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Chapter 1

Introduction

Recently, the computation power and network throughput have reached unprecedented heights.
While this much needed power helps to develop new fields of research such as data analysis or
artificial intelligence, it also requires new techniques to fully exploit its potential.

This growth of computation power and network throughput has only been possible through
the use of complex internal hardware structures for the new machines supporting them. First
of all, with the increased frequency of the processor clocks, the rate at which instructions are
executed has far exceeded the rate at which the memory controller can answer queries. This led
to the introduction of smaller but faster memory banks, called caches, to decrease the visible
latency of memory requests. Moreover, as all the cores of the machine shared the bandwidth
of a unique memory controller, increasing the number of cores led to an overwhelming pressure
on the memory controller. As it became impossible to further extend machines featuring a
single memory controller, multiple memory controllers, distributed inside the machine, have
been added. Because the access time of a given CPU to a given memory location depends
on the proximity of the CPU and the memory controller owning this specific location, this
architecture is named Non-Uniform Memory Access (NUMA).

This new topology, made of an important pool of processing, memory and network re-
sources, requires to efficiently manage parallelism in order to leverage the full machine poten-
tial. In order to increase parallelism and simplify the use of NUMA architecture, this document
proposes an approach in two parts.

Commmama The first obstacle to parallelism is to overlap network communication with
computation. For this part, we focus on user space level with the MPI (Message Passing
Interface) runtime. MPI provides two types of communication primitives, blocking ones, which
are simple to use but cannot overlap communication with computation, and nonblocking ones
which are more complex to use but have some overlapping capabilities. This forces developers
to choose between the simplicity of blocking communications and the efficiency of nonblocking

1



2 CHAPTER 1. INTRODUCTION

communications.

In order to avoid trading simplicity for efficiency, we propose Commmama, which auto-
matically transforms blocking MPI primitives into nonblocking ones at runtime. Moreover, we
show that two main factors contribute to increasing the overlapping ratio. First, background
progress which guarantees communications are processed while computation is running. Sec-
ond, the size of the window during which both communication and computation can be run in
parallel. Commmama addresses both these factors.

Scalevisor The second obstacle to parallelism is the contention on shared hardware re-
sources. As explained above, the complexity of multicore machines has greatly increased to
answer the need for computational power. As core frequencies rose, the performance gap with
the memory controller has increased. This is commonly known as the memory wall. To avoid
modern processors being blocked by the memory subsystem, small but fast memory caches
have been added on the memory path to mask the latency of the slow main memory. Some
of these caches are shared among cores, making them a contented resource. Moreover, as the
number of cores per machine increases, so does the pressure on the memory subsystem. To
overcome this issue, NUMA architectures feature multiple memory controllers, each managing
a part of the machine’s memory. While the multiplicity of memory controllers helps dealing
with the contention on a given memory controller, it introduces another issue, the congestion
on the network linking the different parts of the machine. This congestion is aggravated by the
caches synchronization protocol which also uses this same internal network. Finally, each new
addition to the already complex machine topology forces the overlying software to take into
account the changes. Current operating systems already incorporate different resource man-
agement policies trying to deal with the different topologies, including NUMA architectures.
However, modifying and maintaining efficient heuristics in code bases with millions of lines of
code is a very difficult task.

In order to mask the complexity of the hardware while managing memory efficiently, the
second part of our approach is a multicore resource management driver that uses virtualization
technology, Scalevisor. Scalevisor is a small layer placed between the hardware and the oper-
ating system, which masks the real topology of the machine and exposes a simpler abstract
topology for the overlying operating system. Virtualization technology thus allows Scalevisor
to manage resources below the operating system transparently. Moreover, as Scalevisor tends
to remain simple, focusing only on resource management, implementing or extending policies
should be easier than changing kernel code.

This document is divided in multiple chapters. Chapter 2 describes the challenges of
multicore architectures and more specifically of NUMA architectures. Chapter 3 describes the
design and implementation of Commmama. Chapter 4 presents the design and implementation
of Scalevisor. Chapter 5 concludes this document and presents future work. These chapters
are organized as follows.
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Background and motivation

Chapter 2 addresses the challenges of resources management on multicore machines. First,
this chapter describes the internals of multicore machines, and more specifically of NUMA
machines, in detail. This entails explaining the hardware mechanisms responsible for the
performance issues from which multicore architectures suffer. Because Scalevisor masks the
hardware topology to the overlying operating system, these mechanisms need to be under-
stood in order to be correctly dissimulated. Second, we present a commonly used technique
to manage memory: paging. This technique is important for both Commmama and Scalevisor
as it is used in both cases to manage resources, either with the user space interface in Com-
mmama, or by directly programming the hardware in Scalevisor. We present specifics of the
x86 hardware mechanism that impact implementation of both Commmama and Scalevisor.
Finally, this chapter describes solutions proposed in related work to solve the challenges of
multicore architectures. We show that the main factors leading to non optimal performances
are hardware resource contention and the increased latency of memory accesses, due to wrong
memory placement.

Commmama, motivation and design

Chapter 3 presents a specific aspect of resource management: overlapping network communi-
cation with CPU-bound communication in the scope of the MPI user space runtime. First, this
chapter describes the semantics of MPI communication primitives. The chapter then shows
that two key factors influence how well primitives can overlap communication with computa-
tion, background progress and the duration during which the overlapping can occur. Studies
targeted at improving either of these factors are presented. The chapter then introduces
Commmama, which transforms blocking communications into nonblocking ones at runtime to
improve the overlapping window while providing efficient background progress. Second, this
chapter details the internal design of Commmama, composed of three different layers, the in-
terception layer, offload layer, and protection layer. We present how each of these layers works.
Finally, we present an evaluation of Commmama for communication with different message
sizes and computation time. This final section shows that Commmama is able to overlap
almost all the communication with computation when enough computation time is provided.
This leads to a speedup of up to 73% for medium sized messages.

A multicore resource management driver

Chapter 4 presents Scalevisor, our approach to resource management using virtualization tech-
niques. First, it presents virtualization techniques, both software and hardware assisted to
emulate parts of the machine behavior. This section details the issues related to virtualization
in general. It also presents studies related to the impact of virtualization on performances in
general and on NUMA architectures in particular. Second, this chapter describes the design
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of Scalevisor. The chapter shows how Scalevisor uses virtualization techniques to abstract the
machine topology and to mask complex hardware resources, such as CPU caches, but also
the distributed nature of NUMA architectures. The section then details the implementation
of Scalevisor. The implementation of Scalevisor is incomplete. Scalevisor is able to boot a
complete Linux operating system on an Intel machine, but, because of a lack of time, we have
not implemented the interface to access hard drives. For this reason, we don’t have evalua-
tions that highlight the performance impact of Scalevisor. Instead, the chapter discusses our
finding regarding the implementation of a new operating system, and especially reflects on the
difficulty to create a new system given the complexity of current hardware without a full-time
dedicated team.

Conclusion and future work

Chapter 5 concludes this thesis. It sums up the different contributions and teachings about
managing resources to increase parallelism on complex topologies for both Commmama at the
user space level and Scalevisor, at the hypervisor level. This chapter then discusses future
work on both proposals. For Commmama, the main axis of evolution should be decreasing
the overhead of the protection mechanism, with a secondary axis being the evaluation of MPI
collective primitives and larger applications. For Scalevisor, the first task should be to finish
the implementation of necessary parts of the system, and furthermore, developing and studying
resource management heuristics.



Chapter 2

Background and motivation

As presented in chapter 1, both Commmama and Scalevisor aim to improve resource manage-
ment. Commmama increases the parallelism of network communication and CPU computation
using memory management techniques (paging and memory protection). Scalevisor uses virtu-
alization techniques, among which virtualized paging to manage resources below the operating
system, while exposing an abstract topology. In both cases, understanding how memory and
paging work is important. In the case of Scalevisor, masking the topology requires an even
better understanding of specifics of the hardware and the related issues.

This chapter thus addresses the challenge of managing resources in machines exhibiting
complex topologies, known as NUMA architectures: as multicore architectures are composed
of an important number of computation units, reaching good parallelism is important to fully
exploit a machine potential. However, the distributed topology of NUMA machines induces
new performance issues. We show that topology awareness is key in avoiding these issues and
favoring scalability.

First, in order to better understand the aforementioned challenges, this chapter presents the
architectural details of multicore machines in general and the specificities of NUMA machines
in particular. We describe the hardware mechanism and protocols responsible for smooth
operation of the architecture and the associated issues.

Then, we explain how operating systems and applications in the user space can leverage
this hardware to manage memory through a commonly used data structure, the page table,
and associated mechanisms.

Finally, we present solutions proposed in related work to increase efficiency of operating
systems and applications on such architectures. We show that the main factors leading to
non optimal performances are the contention of hardware resources or the increased latency of
access, both due to wrong memory placement.

5



6 CHAPTER 2. BACKGROUND AND MOTIVATION

2.1 An overview of multicore architectures

Previously, Moore’s law, which implied a doubling of the number of transistors per processing
unit every two years, had the direct consequence of raising the frequency of processors. As
evidenced by the number of transistors in recent processors, Moore’s law is still valid as of
today, but due to physical constraints, such as thermal dissipation, these transistors cannot
contribute to the frequency factor as much as they used to. Since the introduction of IBM’s
POWER4 processor in 2001, the increasing number of transistors serves the different purpose
of adding more computing nodes in a single chip, marking the debut of a change in paradigm
for computer software, from sequential to parallel programs.

At its core, a computer is composed of three different hardware units, a processing unit
or CPU, some memory accessed using a memory controller and some I/O devices accessed
through an I/O controller. These three components communicate with one another using the
system bus.

This layout was later extended to use multiple CPUs on the system bus to increase the
computational power in ways that were unattainable by simply increasing the core frequency.
This architecture, composed of multiple CPUs, a memory controller and an I/O controller is
commonly known as Symmetric Multiprocessing (SMP) and was already in service decades ago
in mainframes.

MemoryI/O

Bus

CPU

Cache

CPU

Cache

CPU

Cache

Figure 2.1: SMP architecture

2.1.1 SMP architectures

In SMP architectures, represented in Figure 2.1, the cost of accessing a memory location is
the same for all processors as they are all connected through the single bus to the memory
controller.

A standard multicore processor is composed of several computation units called cores,
capable of executing multiple instructions at the same time. These cores are packed into a
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single chip package, generally referred to as CPU or processor, which, when connected to a
system bus featuring a memory controller and an I/O controller, acts as an SMP system.

To fully leverage the power of an SMP machine, the different processors must be used in
parallel which in turn implies the need for the software run on such an architecture to leverage
parallelism. As with many parallel systems, performance limitations lie in shared states and
synchronization. For SMP machine, whether built from a multicore CPU or multiple processor,
there are multiple hardware parts which are shared or need synchronization.

The first of these shared devices is the memory controller. In an SMP system, all the
processing units are running in parallel and interact with the memory controller simultane-
ously. With the evolution of processor frequency, most modern multicores are now executing
instruction at a very fast pace compared to the latency at which the memory controller can
respond. This effect, commonly called memory wall pushes multicore CPUs to include fast
memory, used as a cache, inside the CPU package to mask the latency of the main memory.

In modern CPUs, there are multiple such caches organized as a hierarchy with smaller
and faster memory being used first, while bigger, slower caches are used when previous caches
did not contain the wanted memory. Current hierarchies of caches generally contain three
different levels of caches. The first one on the path to main memory called L1, is composed of
two separate caches, one for data fetches called L1d and one for instruction fetches called L1i.
These L1 caches are per core and thus replicated for each core of a CPU package. The next
cache level, L2 is also private to each core, the Last Level Cache (LLC), L3 is the biggest cache
and shared by all the cores of the CPU package. Common sizes for these caches are respectively
32 KB each for L1i and L1d, between 256 KB (laptop) and 1024 KB (high performance server)
for the L2 cache. Because it is shared by all the cores, the size of the L3 cache varies more,
with approximately 2 MB per core for modern CPUs, leading to 4 MB on a laptop computer
and around 20 MB for server class CPUs. Figure 2.2 shows an example hierarchy of caches on
a dual-core processor with three cache levels.

CPU 0

L1i (32kB)

L1d (32kB)

L2 (256kB)

L3 (4096kB)
(Last Level Cache)

CPU 1

L1i (32kB)

L1d (32kB)

L2 (256kB)

Memory
(8GB)

CPU Package

Figure 2.2: Example cache hierarchy

The first level of cache is separated into two distinct caches, L1i and L1d, for two reasons.
First, separating caches multiplies the throughput allowing instruction fetches and data fetches
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to be independent. Second, separating the caches allows to specialize their behaviors. In the
case of the instruction cache, it allows to encode the cache content differently than random
data.

While these caches may participate in increasing the overall performances by masking most
of the latency of instruction and data fetches compared to the main memory, caches private to
core must be synchronized in order to present a correct, uniform view of the sequence of load
and stores on all cores. Different procedures have been developed to keep processor reads and
writes consistent with the states of the different caches and main memory.

Cache coherency protocols for SMP architectures Caches are said to be coherent if all
loads and stores of all cores to a given memory location appear to execute in a total order that
respects the program order. In order to guarantee the sequential consistency of the memory,
two properties must be satisfied.

First, write propagation, if a processor P1 reads from a shared memory location X after
a write by another processor P2 to the same memory location X, P1 must read the value
written by P2 and not the old value. Second, serialization, if two values A and B are written
to location X in this order from two different processors, no processor may read B then A.

To ensure caches are coherent in an SMP system, multiple protocols have been designed,
starting with the MSI protocol and its derivatives, such as the MESI and MOESI protocols.
In these protocols, the blocks of data, called cache lines, which reside in a cache are tagged
with a state. These states represent the state of the memory in regards to both the state of
the memory (modified or not) and the state of the same location across the different caches
(exclusive or shared). The protocol names are derived from the names of the different possible
states of a memory location in the cache, M stands for Modified, S for Shared, I for Invalid, E
for Exclusive and O for Owned.

The original MSI protocol operates as a reader-writer lock (single writer, multiple readers).
The Modified state represents exclusive ownership as a writer, the Shared state represents
shared ownership as a reader while Invalid means neither reader nor writer. Traditionally
with reader-writer locks, acquiring the lock to write means no reader currently holds the lock.
For cache coherency protocol, transitioning to the Modified state forces all other caches to
forgo their Shared state and invalidate the location. Alternatively, when a cache requests to
load a location, if another cache holds this location in the Modified state, meaning the value
stored in memory is not up to date, the modified value is first committed to main memory
transitioning both caches to the Shared state.

While this protocol is theoretically correct, it is not optimal in regard to the number of bus
messages. When a cache is the only one to contain the value for a given location and writes to
this location, it must broadcast a message on the bus to force other caches to invalidate their
entries, which could be avoided in this case. To solve this issue and avoid unneeded messages
on the bus, the MESI protocol was introduced by Papamarcos et al. [43]. According to Intel’s
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Software Developer Manual [28, chap. 11.4], the MESI protocol is still in use in current Intel
processors.

The MESI protocol contains an additional state, Exclusive which means a value at a given
location is valid but not present in any other caches. When a memory location is read by the
core and tagged as Invalid, the core broadcasts a message on the bus to request the value, if
at least one other cache contains the wanted value they both transition to the Shared state.
This is true for both the MSI and MESI protocols, but in the MESI protocol, if all responses
are negative, the requester cache loads the value from memory and transition to the Exclusive
state. Once in this state, any write to the same location causes a transition to the Modified
state without the need to issue a message on the bus invalidating this location for other caches.

When using the MESI protocol, in case of a load request directly followed by a write, if
the requesting core is the only one using the data it saves one bus message. This is especially
important on sequential parts of an application as only one core will access and modify a given
location at a time, resulting in improved performances over the MSI protocol.

The MESI protocol can be implemented using two core-side requests and three bus-side
requests. Core-side requests, for cache transactions initiated by the core are PrRd to get access
to the value of a cache line and PrWr to write a value to a cache line. Bus-side requests are
BusRd to get the value of a cache line (emitted after a read miss), BusRdX to get ownership
of a cache line for writing or notify of a write (emitted after a write miss), Flush to commit a
block to main memory, generally in response to a BusRd or BusRdX request. A complete state
transition diagram presenting the interaction of these different messages and the evolution of
a cache line state in response is presented in Figure 2.3.

M E S IPrRd/-
PrWr/-

PrWr/BusRdX

PrRd/BusRd(S)

PrRd/BusRd(E)

BusRd/Flush BusRdX/Flush

BusRd/-

PrRd/- PrRd/-

PrWr/BusRdX

PrWr/-

BusRd/Flush

BusRdX/Flush

Core initiated
In response to bus

Transitions:

Figure 2.3: MESI State diagram

The issue with MSI and less importantly in MESI is the repeated use of the system bus to
convey different cache protocol messages and data.

A standard implementation of a cache coherency protocol such as MESI operates using two
types of communications as mentioned previously, local to core (core to cache) and through the
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bus linking the different cores and the main memory. The two local operations are a request
from the core either to read from the cache, or write to the cache. Depending on the state of
the cache location targeted by these operation, the core may need to issue messages on the
bus to either request the wanted value, or request the value and notify it intends to modify
it, or inform other components of a modification of an already cached value. Because of the
distributed nature of the caches and the wanted coherency property, all these messages are
broadcast on the bus and decrease the available bandwidth for other operations.

Moreover, when a memory location is frequently used by multiple cores, it is still flushed
to the main memory store1 which is shared by all cores.

The SMP architecture, while providing more processing power with parallelism is limited
by the strain it incurs on the shared components, the system bus, and both the memory and
I/O controllers. This architecture is thus viable for a reasonable number of cores but cannot
scale efficiently.

2.1.2 Non Uniform Memory Access architectures

The cache hierarchy of SMP architectures does reduce the amount of requests reaching the
memory controller. However, when there is an important number of cores and amount of shared
data, the SMP model with its unique shared memory controller does not scale well. In order to
reduce the load on the memory controller, a new layout featuring multiple memory controllers
distributed in different nodes is used, Non Uniform Memory Access (NUMA) architectures.
These architectures feature multiple memory controllers distributed among the cores, which
alleviates the pressure on a given controller and allows for better memory performances.

As represented in Figure 2.4, this kind of machines is composed of different nodes, each with
its own memory region and cores which are connected with an inter-socket network called an
interconnect. The topology of the communication network varies from one machine to another.
Common topologies for NUMA machines comprising four sockets are either ring (all sockets
have two peers) or crossbar (complete graph). For machines comprised of eight sockets, there
are more variations, commonly, no more than two hops from any given socket are necessary to
reach any other socket.

While having completely separate memory controllers, NUMA machines still provide a
global address space in which every memory zone in the system is accessible by other hardware
with its unique physical address.

Given this new topology, NUMA machines have two different kinds of memory accesses,
local ones, when the targeted memory is managed by the controller located on the same node
as the CPU and remote ones, when a CPU is accessing another node’s memory.

By adding more memory controllers, NUMA machines can make use of more cores without
overloading the memory subsystem as SMP would. However, the distributed topology exhibits

1This can be the LLC when it is inclusive, which is the case for most L3 caches in Intel processors.
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Figure 2.4: NUMA architecture

different kinds of performance issues. On one hand, memory accesses through the interconnect
are slower than local ones, making locality of memory accesses important, on the other hand,
the interconnect has a limited bandwidth which can lead to congestion in the event too many
distant accesses would occur.

Moreover, as explained in Section 2.1.1, for performance reasons, modern CPUs have a
cache hierarchy used to reduce the number of memory accesses reaching the high latency main
memory. This cache hierarchy is also present in NUMA architectures and creates two subtypes
of NUMA machines, the ones in which the cache coherency is local to a given node and the
ones for which cache coherency is ensured between nodes. The latter are called cache coherent
NUMA or ccNUMA.

While non-cache-coherent NUMA machines have some use cases, the lack of a global cache
coherence breaks the usual shared memory abstraction, making these suffer from a lack of
programmability as described in Yunheung Paek et al. [42]. Thus, most currently used NUMA
machines are cache coherent and according to Martin et al. [35] this is not going to change in the
foreseeable future for mainstream machines. They argue there still is some design space to make
cache coherent hardware scale, but more importantly, forcing software to explicitly manage
coherence would simply shift the complexity of cache coherency protocols from hardware to
software.

However, while cache-coherency is very important to ease programming of such machines,
it comes with its drawbacks as well. Using the MESI cache protocol for NUMA machines would
force communications between the cache controllers of different nodes, which was already an
expensive solution for SMP machines with a far smaller number of cores. To avoid overloading
the interconnect network with cache protocol messages, multiple modifications to the cache
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coherency system are made.

Cache coherency for NUMA machines Independently of the protocol used, cache co-
herency implementations can be realized using messages directly broadcast on the bus as
explained earlier but the resulting traffic on the interconnect network would scale propor-
tionally with the number of cores in the system. This approach called bus snooping is thus
inappropriate for large NUMA machines which can contain hundreds of cores.

In snoop-based implementations of the cache coherency protocol, the LLC is responsible
for broadcasting the relevant messages on the system bus. In directory-based implementations,
the so called directory maintains the information of the state of cache lines and which nodes,
if any, are sharing that line. This system avoids the need to broadcast the coherency protocol
messages on the bus, allowing a given requester cache to directly target the right cache through
the use of the directory.

The directory system can be implemented using multiple possible methods, for example
using a different component, acting as the bookkeeper or with each cache tracking the potential
other copies of a given memory address using a range of bits co-located with the state tag in
the cache line metadata.

Intel machines use their own form of directory-based protocol for their NUMA servers.
Recent hardware from the manufacturer has been using a Network-on-Chip design, in which
cores, caches and memory controller are linked via a specific on-chip network. The interconnect
network then connects chips. Two iterations of this network have been in use in modern
servers, QuickPath Interconnect (QPI) before 2017 and UltraPath Interconnect (UPI) with
the introduction of the new Skylake Scalable (Skylake-SP) microarchitecture.

For Intel’s platform, the part responsible for handling the interface between private caches
(L1 and L2) and the LLC is called the caching agent. This caching agent is thus responsible
for starting caches transactions, as well as sending and receiving the bus messages generated
by these transactions. There is one caching agent per core.

The caching agent communicates with the private cache levels through a basic snoop-based
cache coherency protocol which is local to the core. For outgoing communications, all caching
agents are linked using a ring topology to the QuickPath Interconnect and communicate using
a directory-based approach with a home agent as represented in Figure 2.5.

There is one home agent per memory controller, each responsible for its range of memory
addresses. When a cache miss occurs in the caching agent of a given core, the caching agent
sends a request to the home agent responsible for the wanted memory location. This home
agent then uses the information of its directory to send a snoop request only to the caching
agents of the cores which may have a cached copy of the wanted memory. One of the agents2

with a copy of the data sends a copy to the requester caching agent and an acknowledgment to

2The one with the F (Forward) state from the MESIF protocol explained below.
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Figure 2.5: Intel Xeon E5 ring architecture (Intel documentation [27, chap. 1.1])

the home agent. The home agent concludes the transaction. These four steps are illustrated
in Figure 2.6.

As the number of message increases with the number of caching agent involved, avoiding to
broadcast these messages reduces the consumption of the already limited interconnect band-
width. This methods thus reduces interconnect bandwidth consumption in exchange for an
increased latency of cache coherency transactions.

In addition to the directory information used by the home agent which is an implementation
of directory-based cache coherency, Intel’s cache agents also use a modified version of the MESI
protocol, called MESIF, initially proposed by Goodman et al. [22], [23]. The MESIF protocol
introduces an additional specialized form of the Shared state, the Forward state which is a
read-only (cache line has not been modified) state attributed to at most one cache agent for
a given cache line. It designates the given cache agent as the primary responder for requests
concerning the given cache line. This additional state allows direct cache-to-cache transfers,
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Figure 2.6: Intel’s directory-based coherency example

thus avoiding either the home agent having to fetch data from the slow main memory or all
peers in the Shared state responding at the same time. The Forward state is given to a cache
agent after a read miss, either by the previous Forward owner responding to the request or
because no cache agent currently has the Forward state for given cache line.

However, even with the multiple enhancements brought by the QPI network and cache
coherency system, the increase in the number of cores per CPU in the Skylake-SP microarchi-
tecture forced a new on-chip network to be designed as well as a new interconnect network.

The new Skylake Scalable CPU aims to further increase the number of cores per CPU
leading to NUMA machines with even higher number of cores. The new UltraPath Interconnect
developed for Skylake-SP machines has several improvements over its QuickPath Interconnect
predecessor, among these an updated cache coherency protocol, and is integrated more tightly
in the new Skylake-SP chips due to different modifications of the socket internal topology.

First, the network topology has been changed from a ring in old Xeon processors to a
mesh in new Skylake-SPs reducing the number of hops from a given caching agent to another.
This aims to improve the performances by decreasing latency of the cache coherency system.
Moreover, the home agent previously located between the on-chip network and the memory
controller is now fused with the caching agent at a rate of one per core to further increase
scalability. This new architecture is represented in Figure 2.7. Each home agent has a cache
for directory lookup used when performing a cache coherence transaction.

The new mesh topology and the distributed Caching-Home Agent (CHA) greatly improve
sockets performances for cache coherency transactions and memory loads. However, our ex-
periments show that NUMA effects, while reduced are still present, thus increasing the latency
of memory accesses over the interconnect network.

The still existing limitations of NUMA architectures Our experiments are run on a
quad socket Skylake Scalable Platform machine with four Xeon Gold 6130 processors.
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Figure 2.7: Intel Xeon Scalable family mesh architecture (Intel documentation [26])

These processors are organized as follows. The CPU package (the whole processor con-
tainer) is composed of one die which is a single continuous piece of silicon. This die features a
number of cores, in our case 16 cores in the only die, physical cores expose two logical cores
due to Intel’s Hyper-threading.

Our experiments consist in measuring the time of a read operation done by a reading core
r of a memory location which is allocated by an allocator core a for different couples (r, a).
Figure 2.8 shows the results as a heat map, for all core combinations on the left and only one
die on the right.

On the left, featuring all the processors, the figure shows a latency around 220 cycles for
node local reads and around 350 cycles for non-local reads. This still represents a 59% increase
for distant loads.
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Figure 2.8: Latency (CPU cycles), for the Skylake Scalable machine (left) and one die (right)

Moreover, while previous explanations about the cache coherency mechanism and architec-
ture of modern Intel servers are not identical to the mechanism used in machines manufactured
by AMD, the global theory can be transposed. The same experiments run on a dual socket
AMD EPYC server shows similar results as shown on Figure 2.9.

Figure 2.9: Latency (CPU cycles), for the AMD EPYC machine (left) and one die (right)

AMD EPYC processors contain four distinct dies per physical package, each containing
multiple cores grouped by Compute clusters (two by die). Each compute cluster contains 4
cores and a shared last level cache. Once again, memory accesses inside a die are between 180
and 200 cycles, but due to the hierarchical nature of the AMD machine, we observe NUMA
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effects in two different types of accesses. The first NUMA effect is visible between a die local
access, at around 200 cycles, and a socket-local access on another die, at around 300 cycles.
The second NUMA effect can be seen when accessing memory of another socket, with up to
600 cycles.

These measurements show that the placement of memory even in modern NUMA architec-
tures is very important to avoid degrading the performances of running software. As forcing
the software to manage memory placement using only physical memory would be limiting, the
hardware supplies a number of facilities to ease the task of memory management as well as
different mechanisms to increase efficiency.

2.2 Memory management in the operating system

There are multiple possible techniques that can be used in order to manage memory. Common
techniques which are supported by hardware include memory segmentation and paging. Seg-
mentation uses a segment base, and an offset to represent linear addresses, this technique was
in use in early x86 processors and still exists in modern processors in compatibility modes such
as real mode, protected mode in order to keep some backward compatibility with old software.
While segmentation is not available anymore in 64-bit mode for modern x86 64 processors,
its simplicity and efficiency lead to its consideration as an alternative to paging by Taebe et
al. [52].

Paging memory is the most common technique existing at the moment in modern computers
and has many advantages. This mechanism and its implementation are developed in the next
subsection.

2.2.1 Paging and the page table structure

The paging mechanism allows the operating system to use an abstract view of the memory.
This is done by using a translation mechanism to resolve memory addresses in executed code,
called virtual addresses as physical addresses which are direct identifiers for real memory zones.

The paging mechanism is beneficial in a number of ways as it allows virtual memory
addresses to exist independently of the resident storage on which are located the real data.

One of the most important feature of virtual memory is to isolate different memory spaces.
This is used to isolate the memory of processes from one another, but also to isolate the
memory from the processes and the kernel. The memory of processes is separated by only
mapping physical memory of a process in the virtual space of its owner. The kernel memory
is separated from the rest using a different mechanism provided by the hardware. Memory
pages can be marked available for kernel only or for everyone. This distinction allows to isolate
the memory of the kernel from the rest of the system. These two distinct memory spaces are
commonly called kernel space and user space (or userland).



18 CHAPTER 2. BACKGROUND AND MOTIVATION

Virtual memory is also at the base of the swap system in which some data are offloaded to
another storage type, mostly hard drive, to alleviate the strain on RAM. When some memory
is accessed rarely, the content of the corresponding pages is written to disk and the physical
memory used to store them is made available for other use. When the virtual addresses of such
memory are accessed, the access is detected by the operating system which in turns loads the
content back from disk transparently.

By the same token, virtual memory can be used to reserve memory without any resident
storage, processes can thus allocate more virtual memory than physically available memory
in a given machine. This mechanism, called memory overcommitment is commonly used by
operating systems and virtualization systems when processes or virtual machine are requesting
more memory than they need to maximize the number of such processes or virtual machines
on a given hardware unit. In the case where the full amount of requested memory would
be required by the processes, the system can use swap to fulfill requests albeit with worse
performances.

Additionally to the above system mechanisms, paging is can also be used to share phys-
ical memory between processes (shared memory segments), to optimize process creation by
duplicating the pages of a parent process on the first write, or to optimize file access with
on-demand paging.

The page table structure In modern computers, the translation mechanism is done by
specialized hardware, called the Memory Management Unit (MMU) which is now a part of the
CPU. The MMU uses an in-memory structure to store the different mappings between physical
and virtual address space. This structure is called a page table.

The format of a page table is hardware dependent as it is determined by the MMU which
expects a specific layout. Modern x86 CPUs use a multi-level page table (four level in current
hardware, five in upcoming Intel processors) which takes the form of an n-ary tree, more
precisely a tree of arity 512 for x86 processors. The root of the tree, which is needed as the
staring point for traversals, is available to the MMU through a CPU register called cr3 in
which the system needs to write the physical address of the page table root.

As presented by Figure 2.10, this tree structure is traversed by splitting a requested virtual
address in five part (for a four level paging structure). The first 12 bits represent the offset in
the 4 KB page, the four next parts (9 bits each) represent an offset in the levels of the page
table tree structure. The Page Map Level 4 (PML4) entry at the offset given by the bit 39-47
of the virtual address contains the address to a Page Directory Pointer Table (PDPT). The
pointer at the offset given by bits 30-38 of the virtual address gives access to the Page Directory
(PD) and the rest of the bits to the Page Table (PT) level and finally the index inside the PT
level which contains the physical address of the four kilobyte page corresponding to the given
virtual address. The offset in the page is obtained by adding the 12 least significant bits to
this four kilobytes aligned physical page address (12 last bits are null).
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Figure 2.10: Translation mechanism (Intel documentation [28, chap. 4.5])

As the entries of each level in the page table nodes are physical addresses of page frames in
physical memory, these addresses are four kilobytes aligned, meaning the twelve least significant
bits of such an address must be zero. The page table mechanism can thus use these bits to
store some metadata about the pointed memory. The format of a last level page table entry
is given in Table 2.1.

Access rights and page fault Some metadata stored in the least significant bits of the
page table entries are related to access rights, these are the bits “Present (P)”, “Read/write
(R/W)”, “User/Supervisor (U/S)”. When an access occurs to a virtual address belonging to a
given page frame, the page table entry describing this page frame is loaded by the MMU while
traversing the page table. If the combination of bits P, R/W or U/S does not allow the access,
the processor emits a “page fault” exception.
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63 XD If IA32 EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the
4-KByte page controlled by this entry); otherwise, reserved (must be 0)

62:59 PKEY Protection key; if CR4.PKE = 1, determines the protection key of the page; ignored otherwise

58:52 Ignored

51:M MBZ Reserved (must be 0)

(M-1):12 Address Physical address of the 4-KByte page referenced by this entry

11:9 Ignored

8 G Global; if CR4.PGE = 1, determines whether the translation is global; ignored otherwise

7 PAT Indirectly determines the memory type used to access the 4-KByte page referenced by this
entry

6 D Dirty; indicates whether software has written to the 4-KByte page referenced by this entry

5 A Accessed; indicates whether software has accessed the 4-KByte page referenced by this entry

4 PCD Page-level cache disable; indirectly determines the memory type used to access the 4-KByte
page referenced by this entry

3 PWT Page-level write-through; indirectly determines the memory type used to access the 4-KByte
page referenced by this entry

2 U/S User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by
this entry

1 R/W Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry

0 P Present; must be 1 to map a 4-KByte page

Table 2.1: Format of a last level page table entry

This exception can (and must) be intercepted by the operating system in order to correct
the situation before continuing the execution of the faulting context. This mechanism is at the
foundation of the multiple use cases of paging.

The operating system can give a process an address range with a bit P set to zero to load
data only when an access to the given page frame would cause a page fault, this is called lazy
mapping and is used by the swap and memory overcommitment mechanisms mentioned before,
but also lazy file access for file with an arbitrary big size.

Similarly, copy-on-write (COW) semantics for memory are obtained by giving a range of
addresses without write access. While accessible for read accesses, the memory will cause a
page fault to be emitted when an attempted write operation occurs, thus giving the system
the opportunity to copy the content of the faulting page frame to another location in physical
memory, updating the page table mapping to point to this new location and continue the
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execution. From there, the write operation will occur in the new location, effectively modifying
a copy of the old read-only data. Copy-on-write is used in the fork system call to avoid copying
all the parent process data to the offspring process while unneeded.

Finally, the U/S bit is used to differentiate between user-accessible pages and kernel-only
pages when running a process in user mode and is the base of kernel and process memory
isolation, and thus, of the userland concept mentioned earlier.

Extending access rights for user page: protection keys While the three bits described
above are used to determine access rights for an access regarding a given page frame, changing
the permissions for a large number of pages is costly as it forces to change the permission
bits of each page. To avoid this overhead, another mechanism called protection keys has been
introduced for processors Intel Skylake and newer.

This mechanism assigns a key to any number of pages, thus creating a group of pages all
tagged with given key. The permissions of this group of pages are then determined by the
permissions affected to the key. Therefore, when using this mechanism, there is no further
need to modify the page table after setting the key for all the wanted pages.

Protection keys use the aforementioned PKEY zone in a page table entry to store a number
between 0 and 15 as well as a new 32-bit CPU register called “Protection Key Right for User
access (PKRU)”.

When the protection key system is enabled, any access to a memory range causes the
protection key system to be checked. The key stored in the page table entry PKEY slot is
retrieved and used as an offset in the PKRU register. For 0 ≤ key ≤ 15, the bit PKRU[2×key]
controls the access right and PKRU[2× key + 1] controls the write right to the memory zone
with PKEY set to key.

Modifying the PKRU register is done using the two RDPKRU and WRPKRU instructions to
respectively read or write to the register. Setting the bit PKRU[2 × key] disables all data
accesses to the memory location, this does not include instruction fetches, setting bit PKRU[2×
key + 1] disables write accesses to the memory location.

Such a system may seem redundant with the already existing permissions enforced by the
P and R/W bits, but has multiple advantages. Firstly, as mentioned earlier, after setting the
PKEY value of the page only the PKRU register needs to be modified. Secondly, while clearing
bit P leads to a page being totally inaccessible even for instructions fetches, setting bit P and a
PKEY with all accesses disabled results in an execute-only mapping, such permissions cannot
be achieved with only the legacy permission bits.

The Translation Look-aside Buffer and paging structure caches As shown, the pag-
ing mechanism adds multiple convenient behaviors, allowing for techniques like swap or on-
demand loading of frames to be used. At the same time it inevitably adds some overhead due
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to the translation process. In order to reduce this overhead, modern MMUs possess caching
capabilities through the use of the Translation Look-aside Buffer (TLB).

The TLB stores individual translation information by associating the page number to the
physical address of the associated page in the page table. The page number is the part of the
virtual address which is used in the page table to identify a given page frame and thus depends
on the size of the page. It is composed respectively of bits 47:12, 47:21, or 47:30 for pages
of respectively four kilobytes, two megabytes or one gigabyte. Other important information
is cached with this page number to physical address mapping, such as the permission for the
page represented by the logical-AND of the R/W flags of all the page table entries leading to
the page frame, the logical-AND of the U/S flags of these same pages and the PKEY field if
the protection key feature is enabled.

The CPU can also cache translation information about the top three levels of paging struc-
ture, PML4 entries, PDPT entries and PD entries. Such that in trying to translate an address,
if the TLB does not contain a corresponding cached translation for the page number, the CPU
will search for cached information in the PDE cache, if none is found, search in the PDPT
cache, and finally in the PML4 cache. If the TLB contains the cached translation, the CPU
uses it, else it finishes the translation using the page table in memory from the last level
obtained from the paging structure cache.

Because the cached information may become false at some point when mappings are
changed in the page table, cached information must be invalidated. Different actions nat-
urally invalidate translation caches, this includes loading a new page table root in the cr3

register (MOV instruction with cr3 as a target), a context transition between guest and host
when using virtualization extensions. The INVLPG instruction is used to manually invalidate
translations with a finer grain.

However, invalidating the whole TLB at every context transition when scheduling another
process is costly. To avoid this cost, especially when switching between the same processes
multiple times, hardware manufacturers added a feature called Process-Context Identifiers
(PCIDs) which are used to tag a given entry in the translation caches with the process identifier
allowing invalidation to target a smaller portion of the TLB.

When PCIDs are enabled, switching page tables when scheduling another process does not
force an invalidation of the whole TLB. An instruction, INVPCID was introduced to allow finer
grained control over which entries of the TLB are invalidated, for example invalidating all the
entries tagged with a given PCID.

The TLB and paging-structure caches are important additions to current MMUs as they
speed up the translation process by avoiding a complete traversal of the page table tree for
each virtual address translation and are used not only for data accesses but also for instruction
fetches and prefetches in case of speculative execution.

The multiple benefits of paging, such as isolation or memory reservation, make the paging
a preeminent part of current memory management systems. This is reinforced by the TLB
cache which decreases the overhead of paging translation and thus of paging in general.
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2.2.2 Paging and memory management in user space

While the page table structure is maintained by the kernel, its benefits are also available in
user space both indirectly: isolation of kernel and user space, isolation between processes; and
directly, through the use of different system calls.

The paging mechanism is activated per CPU and so is activated for both the kernel and
user space. Depending on the kernel model, the page table could be common for all execution
contexts, but using a different page table enforces some isolation between processes being
executed in user space.

The Linux kernel uses a different page table for each process in user space, with several
consequences. On one hand, the memory spaces of processes are separated, forbidding access
for a process to the memory of another. On another hand, Linux allows mappings to be reused
across different processes in order to create shared memory segments.

This ability is important to avoid a change of page table when switching to kernel mode,
as each process needs the kernel to be mapped in its address space for system calls. The kernel
uses a clever trick to avoid having to change every process page table when modifying kernel
mappings by reserving one top level entry in the PML4 for kernel usage when a process page
table is instantiated. This top level entry is the same for every process allowing the kernel
to change mappings in subsequent entries without having to modify the page table of each
process.

Moreover, using copy-on-write semantics described previously, shared library containing
mutable data can be shared without inducing a big memory footprint as the memory is shared
until a mutable part is modified in which case copy-on-write is used to copy only the modified
page frame.

Creating a mapping mmap is the most preeminent system call for user space memory low
level management. It enables the programmer to create a new mapping between virtual and
physical memory space. Depending on the parameters (MAP_ANONYMOUS or not) the phys-
ical memory is either empty memory or file backed memory. In case the memory is file-
backed, this system call exhibits the different advantages mentioned in Section 2.2.2. Using
the MAP_PRIVATE option creates a copy-on-write mapping. As mmap mappings are page table
mappings, they only manipulate virtual memory, backing physical memory is only allocated
when needed (first access).

Changing access rights mprotect is a primitive used to modify permissions on a given
memory mapping previously obtained by using mmap. As explained in Section 2.2.1, the
page table entries contain permission bits determining which types of access are allowed for a
given zone of memory. The mprotect system call defines several boolean flags among which
PROT_NONE, PROT_READ, PROT_WRITE and PROT_EXEC which can be combined to define if a page
can be read, written or executed.
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While these flags are defined by the POSIX standard and thus used in the Linux system
call, their presence in the system call interface does not imply every combination is actually
supported by the underlying hardware.

The bits from an x86 page table entry used to determine access rights are bit “Present
(P)”, “Read/write (R/W)”, “User/Supervisor (U/S)”, from Table 2.1. Because the bit U/S
is always activated for page meant to be accessed in user space, bits P and R/W are the only
ones used to determine permissions. However, as putting the present bit to 0 causes a page
fault when trying to access the page either by reading or writing, this means no combination of
bits can fulfill a PROT_WRITE only permission set. This is summed up in Table 2.2. Moreover,
x86 processors have a bit to disable execution on a given page but for the same reasons as
above, the PROT_EXEC flag is equivalent to the PROT_READ flag in Linux.

Table 2.2: Correspondence between x86 page table bits and mprotect flags

mprotect flags Page table bits

PROT_NONE ¬P
PROT_READ P | ¬R/W
PROT_WRITE not possible

PROT_READ | PROT_WRITE P |R/W

Working with protection keys In kernel version starting from 4.9, the protection key
feature introduced by Intel is also available in user space memory management through the
pkey_alloc, pkey_free, and pkey_mprotect system calls and the pkey_set utility function.
The protection key mechanism allows a developer to further restrict accesses to a memory zone
by disabling write or all kinds of accesses (read and write) to the given zone.

This is done by first using pkey_alloc to allocate a protection key with the right set of per-
missions, either PKEY_DISABLE_ACCESS or PKEY_DISABLE_WRITE, and then use pkey_mprotect
to atomically change both regular protection flags available to mprotect and set a protection
key to the given memory range.

Thanks to this interface, the advantages of protection keys described previously are avail-
able in user space, it is thus possible to create an execute-only mapping by combining the
PROT_EXEC (equivalent to PROT_READ) flag with a protection key allocated with
PKEY_DISABLE_ACCESS. This method also reduces the cost of changing permissions on pages,
as it requires neither changing all the permission bits as explained before nor switching to
kernel space as the RDPKRU and WRPKRU instructions are available in user space and usable
through the wrapper pkey_set. Only the initial setup of the PKEY using pkey_alloc and
pkey_mprotect is switching to kernel space.
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To summarize, this section presents the hardware mechanisms and tools built on them which
are commonly used to manage memory, either in kernel space or user space. As explained,
changing mappings have a cost, both directly, and indirectly by forcing the TLB cache to be
flushed. Therefore their efficiency relies on the ability of the system to properly use them.

2.3 State of the art: resources management and NUMA

Resources management is a vast subject, which has been studied since the inception of com-
puter science. With new topologies being born, new problems and new solutions are discussed.
SMP architectures and even more so NUMA architectures both provide shared memory and
use parallelism as a mean to increase performances. Thus, contention of shared resources,
either hardware or software, is the main cause of performance degradation.

The effect of different resource management schemes on the performances of NUMA ar-
chitectures, either in user space or inside the operating system has been extensively studied
and is an ongoing work. Among the different solutions proposed to manage multicore architec-
tures, some solutions try to enhance application performances by proposing better user space
resource management, others consider a more global approach by modifying the operating sys-
tem or even replacing it. This section is organized as follows. Section 2.3.1 presents user space
related solutions, Section 2.3.2 introduces runtimes or kernel modifications, and Section 2.3.3
describes new operating system designs built to tackle multicore architectures.

2.3.1 User space solutions

User space solutions include several techniques, from scalable memory allocation to specific pro-
filer for NUMA architectures. All these solutions share the common characteristic of managing
memory in multicore systems. They proceed using different methods, either aware of topology
or not, to maximize performances by reducing contention on shared hardware resources or data
structures. Works described below are summed up in Table 2.3.

Table 2.3: Related work on NUMA: user space solutions

Proposal Issue(s) Approach(es)

Hoard false sharing (cache contention) load balancing

Streamflow lock contention + TLB contention load balancing + lockless

MemProf locality + interconnect contention monitoring

NAPS
locality + interconnect contention

+ lock contention
load balancing + lockless
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Hoard: A Scalable Memory Allocator for Multithreaded Applications As explained
in Section 2.1.1 and 2.1.2, processor caches carry at the same time an important increase
in terms of memory access latency but also introduce different issues related to the cache
coherency mechanism. False sharing is the name given to one such issue that arises when
different processors are accessing data from two different locations that are close and thus
share a cache line. As cache controllers load and store data at the granularity of a cache
line, when two different processors write to different data in the same cache line they force
each other to invalidate the cache line even though there is no logical reason to do so, greatly
degrading performances.

Berger et al. [4], propose Hoard, a memory allocator which avoids false sharing when
possible.

The root causes of false sharing situations are numerous, those studied in their proposal
are classified in three categories. Program induced, when the program creates a false sharing
situation not related to the allocator, such as giving away memory to another processor. Ac-
tively induced by the allocator when the allocator is the cause of the false sharing situation
such as satisfying requests from different processors using part of the same cache line. Finally,
passively induced when the program is the cause of the false sharing situation but the allocator
does not solve the issue when it could. This happens when a processor P1 gives some of its
memory to another processor P2, this memory is freed by P2, and the allocator reuses this
freed memory to satisfy allocation requests from P2. In this case, the memory should have
been reclaimed by the core which initially allocated the memory for P1.

Hoard uses per processor heaps and a global heap. Each heap owns different superblocks
which are allocated by requesting virtual memory from the operating system (using mmap).
When multiple threads allocate memory simultaneously, they allocate from different
superblocks, avoiding actively induced false sharing. Deallocated blocks are always returned
to their original superblock, avoiding passively-induced false sharing.

Moreover, Berger et al. improves multiprocessor scalability by bounding the blowup of
their allocator, which they define for a given allocator as “its worst-case memory consumption
divided by the ideal worst-case memory consumption for a serial memory allocator”. They
prove that Hoard worst case memory consumption does not grow with the memory required
by the program.

However, Hoard does not solve contention due to synchronization between processors ac-
cessing the same heap. Berger et al. consider that an application with a bad access pattern
is itself not scalable, they consider the producer-consumer pattern to be the worst acceptable
scenario. They evaluate Hoard behavior for this pattern to a twofold slowdown.

To sum up, Hoard is a memory allocator designed to tackle false sharing, a type of cache
contention, by balancing allocation across the different cores.
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Scalable Locality-Conscious Multithreaded Memory Allocation – Streamflow Sim-
ilarly to several thread-safe memory allocators, including Hoard, Streamflow, proposed by
Schneider et al. [48], uses thread-private heaps to manage memory in order to reduce con-
tention between threads.

In order to increase scalibility while reducing cache and paging related bottlenecks, their
primary contribution is to decouple local operations from their remote counterpart. This
enables local operations for their allocator to be synchronization-free, avoiding both lock con-
tention and the latency of atomic instructions. The remote deallocation mechanism uses a
lock-free list in which freed blocks are pushed, letting the local thread reclaim these blocks
when needed, without disrupting local operations.

Moreover, as explained in Section 2.2.1, the page table traversal can constitute a bottleneck
when accessing memory as it contains multiple levels and is the reason why a cache for page
table translation, the TLB, was introduced. However, the TLB, as any other type of cache,
suffers from cache-related issues such as cache pollution when numerous different pages are
accessed. To avoid TLB pollution by diminishing the number of stored TLB entries, Streamflow
uses huge pages as the backing memory for their thread-local allocators. Finally, as recent
CPUs often implement cache prefetching, the contiguous nature of these large allocations
takes advantage of the larger private CPU caches.

In the continuity of Streamflow, Marotta et al. [34] focus on the improvement of the scali-
bility of the back-end allocator. While Streamflow uses hugepages in a centralized fashion in
the back-end for contiguous allocation, Marotta et al. tackle the issue of the back-end scalabilty
through a lockless approach.

The memory allocation strategy presented above tries to increase scalability by avoiding
TLB pollution (page cache contention) and reducing lock contention through balancing memory
accesses across cores and using a lockless approach.

MemProf: A Memory Profiler for NUMA Multicore Systems Works presented
above often favor locality as a mean to avoid concurrent accesses to allocators themselves,
and thus contention, by balancing allocation requests. However, while favoring locality at allo-
cation time solves part of the problem, good memory placement during the whole application
life is key to satisfying performances.

In order to improve memory placement during the whole application life, Lachaize et al. [31]
propose to apply small scale application-level optimizations to the source code. In order to
detect the patterns of memory accesses and threads interactions, they introduce MemProf,
a profiler targeted at detecting these patterns on NUMA architectures. It consists of an
user library and a kernel module which allows the profiler to monitor memory accesses using
Instruction-Based Sampling, a hardware feature from the processor.

They consider three different classes of access patterns that can negatively impact perfor-
mances on NUMA machines. First, remote usage of a memory location previously allocated
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on another node, which is solved either by changing the original allocation node or if the lat-
ter cannot be determined statically, migrating the memory at runtime. The second pattern
consists of alternate, non-concurrent remote accesses to a memory location by two different
nodes, which can be solved either by collocating both accessing threads on the node owning
the memory or if applicable, migrating the thread over time on the node owning the memory.
Third, concurrent remote accesses to the same location can be treated either by collocating
threads on the owning node or by duplicating the object and synchronizing the copies over
time (this is recommended solely for read-only or mostly-read objects). Finally, when too much
locality causes the memory controller to be saturated, the authors suggest to balance the most
used objects over several nodes.

To conclude, Lachaize et al. propose to reduce the overhead of NUMA architectures by
increasing locality and reducing interconnect contention through a profiler using monitoring
to detect bad access patterns.

A Study of the Scalability of Stop-the-world Garbage Collectors on Multicores –
NAPS As Lachaize et al. suggest, the lack of NUMA-awareness in applications is the cause
of severe performance bottlenecks. Gidra et al. [20] focus on garbage collectors as an example
of such applications. They present and evaluate different approaches to alleviate the load on
memory controllers and increase memory locality.

The algorithm of Parallel Scavenge, the garbage collector of OpenJDK7, classifies objects
according to their age, into three different categories, young generation composed of newly
created objects, old generation representing long-lived objects and permanent generation con-
taining the Java classes.

Regularly, the garbage collector stops the program execution and collects the memory in
order to free objects unreachable by the application. When an object from the young generation
survives the first collection it is moved to a transition space, after a new collection, all surviving
objects from the transition space are promoted to the old generation space.

Gidra et al. introduce a garbage collector called NAPS, which implements different policies.
The first approach presented, called Interleaved Spaces allocates the pages for the different
memory spaces using a round robin policy, which reduces imbalance. The second approach
Fragmented spaces divides the spaces in multiple fragments each physically belonging to a
given node. Under this policy a thread allocates only from a fragment belonging to the node
on which it executes. This improves locality as a thread tends to access recently allocated
objects and thread migration is rare. However, this second approach can increase imbalance
when a specific thread allocates objects for others. The last approach Segregated space uses
the memory layout of fragmented space but additionally forbids access to remote objects for
all garbage collector threads. This forces perfect memory locality at the cost of exchanging
messages between nodes.

The evaluation shows that balancing memory accesses among the nodes greatly increases
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performances by reducing the strain on a given memory controller. The evaluation also shows
that improving locality becomes important when reaching a certain number of cores, to avoid
saturating the interconnect network.

Gidra et al. also tackle the issue of lock contention. The garbage collector of OpenJDK7
uses locks to synchronize accesses to internal data structures. In NAPS, the lock contention
is removed either by changing these data structures for lock-free alternatives or changing the
synchronization mechanism to remove locks.

A second study of Gidra et al. [21] on garbage collection with a different design increases
memory locality not only for newly allocated objects (young generation) but also older objects,
further improving performances on NUMA architectures.

NAPS increases the performances of the garbage collection for Java by increasing locality,
reducing interconnect contention and removing lock contention through a combination of two
techniques: balancing memory accesses and lockless synchronization.

2.3.2 Runtimes and kernel policies

While careful resources placement for a given program improves performances for one use
case, it is a complex task as evidenced by the need for specific tools such as MemProf [31].
Another approach to better handle NUMA architectures is through runtimes or generic policies
integrated in the operating system.

Works presented thereafter tackles NUMA related issues such as locality, or contention
using different techniques, without directly modifying applications. These approaches are
summed up in Table 2.4 and described in more details below.

Table 2.4: Related work on NUMA: runtime and kernel approaches

Proposal Issue(s) Approach(es)

MCTOP locality + code portability monitoring + generic policies

Carrefour
Carrefour-LP

contention (memory + interconnect) monitoring + load balancing

AsymSched interconnect contention monitoring + load balancing

Abstracting Multi-Core Topologies with MCTOP While applications-specific opti-
mizations can lead to improved performances on NUMA architectures as shown above, these
modifications are too often linked to a specific topology or operating system specific topology
discovery. Chatzopoulos et al. [10] propose a library which allows developers to define resources
placement for their application in a portable manner, using an inferred topology.

MCTOP defines an abstraction of multicore topology using generic concepts, they thus
define hw context, which is a hardware thread if the machine supports hardware multithreading
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(SMT) or a core, hwc group which can be a core (group of hardware thread) or a group of core,
node a memory node, socket which contains a hwc group with additional information about
memory nodes and interconnect which represents the connection between sockets and include
information such as the communication latencies.

Using these abstractions, MCTOP infers the topology of ccNUMA machines using latency
measurements. They proceed as follows, first they collect hw context to hw context latency
measurements, then group components together depending on both the communication latency
between each other and the communication latencies to other groups. Finally, they assign roles
to the components, thus creating a multicore representation.

Chatzopoulos et al. propose multiple standard policies built on top of their deduced topolo-
gies, such as “Topology-Aware Work Stealing”, “Topology-Aware Reduction Trees” (which can
be used to implement MapReduce paradigm) or “Educated Backoffs”.

For portability reasons, this abstraction avoids the operating system representation of the
topology. It uses monitoring techniques to determine the topology and apply generic policies
to increase both locality and code portability.

Traffic Management: A Holistic Approach to Memory Placement on NUMA Sys-
tems – Carrefour Unlike MCTOP, Dashti et al. [13] propose to introduce a new placement
algorithm, called Carrefour in the Linux kernel.

Carrefour specifically targets congestion on the memory controller and interconnect net-
work. It operates using four mechanisms. Page collocation relocates a physical page close to
the thread accessing it, which is efficient when the memory is accessed by a single thread or
collocated threads. Page interleaving balances some pages among the different nodes. Page
replication consists in replicating the memory on different nodes and keeping it synchronized
with a coherency protocol. Finally, Thread clustering collocates threads sharing some memory.

In order to decide which mechanism is adapted to a given situation, Carrefour first gathers
information about memory and cache accesses using hardware instruction sampling. Using this
information, Carrefour takes two decisions. First whether or not it generates enough memory
traffic to justify the use of Carrefour. Second, if this application would benefit from page repli-
cation, interleaving or collocation, multiple mechanisms can be enabled for a given application.
Finally, when a page is sufficiently accessed during the application lifetime, Carrefour decides
for this given page which of the globally enabled mechanisms is the most appropriate.

Considering that memory bandwidth is more susceptible to cause performances issues in
newer NUMA architectures than remote accesses latency, this approach from Dashti et al.
addresses the congestion of both the memory controllers and the interconnect.

A followup work by Gaud et al. [19] extends the original Carrefour algorithm to large pages.
As large pages are known to reduce both the overhead of paging translation and TLB miss
rate, they are used in different memory management mechanisms as testified by Schneider et
al. [48]. However, Gaud et al. [19] reveal that they may also increase the imbalance in the
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distribution of memory controller requests and reduce accesses locality, the two main factors
of performances on NUMA architectures.

In their work, they identify two new issues related to large pages and NUMA. First, large
pages cause the number of pages susceptible to be migrated to decrease. In some cases, this can
even lead to fewer very accessed large pages than NUMA nodes, making balancing impossible.
Second, as the size of individual pages grows, they are more susceptible to contain individual
blocks of data used by different threads. They refer to this problem as page-level false sharing
because of the similarity with the false sharing problem in cache lines.

To correct these issues, the extension of the Carrefour algorithm, called Carrefour-LP
combines two different approaches, the reactive approach which monitors large pages and
splits them into normal sized pages before applying the standard Carrefour algorithm, and the
conservative approach which, to the contrary, merges small pages into large ones when better
performances are expected. These decisions are based on the same performance counters
(instruction sampling) than the original Carrefour algorithm.

Both Carrefour and Carrefour-LP use monitoring to detect memory access patterns and
balance the load across NUMA nodes. This approach aims to reduce the contention on the
memory controller and interconnect network.

Thread and Memory Placement on NUMA Systems: Asymmetry matters – Asym-
Sched The different heuristics presented above try to solve performance issues on NUMA
architectures by collocating, or conversely, spreading the resources on different nodes depend-
ing on the access patterns. However, the nature of the connection between these nodes can
play an important role in deciding of the resources placement.

Dasthi et al. [13] consider that the congestion on the interconnect is more important than
the latency of remote accesses. Similarly, Lepers et al. [32] study the impact of the interconnect
asymmetry on placement decisions.

In particular, they show that it is best to prioritize the path with the maximal bandwidth
rather than with the minimal number of hops. They propose an algorithm to place threads
and memory such that the most intensive CPU-to-CPU or CPU-to-memory communications
occur on a link with the best possible bandwidth.

Similarly to Carrefour, their placement algorithm, AsymSched uses hardware counters to
gather information. However, the lack of CPU-to-CPU or CPU-to-RAM counters, makes the
number of accesses from a given CPU to a node, which encompasses both of the preceding
cases, the only available metric.

Because of the lack of specific CPU-to-CPU and CPU-to-RAM counters, they consider that
any CPU with a high recorded level of access to a given node might be communicating with
any CPU on the accessed node. Moreover, they cannot determine the access patterns of a CPU
accessing its local node, and thus consider it might be communicating with all the CPUs of its
local node. Using the gathered information, AsymSched computes the possible placements and
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chooses the configuration that both maximizes the overall communication bandwidth across
all applications and minimizes the number of page migrations.

This work adds a third criterion, the asymmetry in bandwidth of the interconnect, to the
usual two criteria which characterize performances on a NUMA machine, the congestion of the
interconnect and memory controllers on one hand, the latency of remote accesses on another
hand.

2.3.3 Operating system solutions

With different approaches ranging from per application optimizations to OS-level scheduling
and placement policies, proposals described before all use a standard operating system, not
one specifically designed to manage NUMA architectures. Works presented thereafter all share
the common idea that current operating systems are not correctly managing large multicores.
Therefore, they propose entirely new operating system designs. Table 2.5 sums up the studied
proposals.

Table 2.5: Related work on NUMA: New operating system designs

Proposal Issue(s) Approach(es)

Corey OS-level structures contention
avoid sharing

(processes decide what is shared)

The Multikernel OS-level structures contention
message passing

(one kernel per core)

fos contention + portability
message passing

(processes and OS do not share cores)

Corey: An Operating System for Many Cores Because classic operating systems share
data structures across the whole machine, they introduce an overhead which cannot be removed
using only user space mechanisms or OS-level resources placement. To solve this issue, Boyd-
Wickizer et al. [6] propose a new operating system design to avoid the bottleneck of shared
OS-level data structures.

This work is guided by the principle that applications should control sharing of operating
system data structures and propose three abstractions demonstrating this principle. Address
ranges allow applications to control which parts of the address space are private per core
and which are shared, Kernel cores allow applications to dedicate cores to run specific kernel
functions and Shares control which kernel object identifiers are visible to other cores.

Address ranges control how virtual memory mapping are shared by cores. As each processor
usually contains its own page table pointer and corresponding structures, sharing and updating
said structures for all cores has a cost, which address ranges aim to control. A core with a non-
shared address range can update it without requiring synchronization or TLB shootdowns. A
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shared address range will incur the cost of synchronization. Kernel cores allow an application to
dedicate a core to kernel functionalities such as networking, reducing the contention for driver
data structures and related synchronization mechanisms. Finally, Shares allow applications to
keep some common kernel identifiers such as process identifier or file descriptors private.

Because typical kernel structures are shared and rely on expensive mechanisms such as
cache-coherency, avoiding implicit sharing is one method to greatly increase performances on
multicore architectures.

The Multikernel: A new OS architecture for scalable multicore systems In the
same manner as Corey, Baumann et al. [3] propose a new kernel design reducing implicit
sharing of kernel data structures. Their proposed design, the multikernel, treats the machine
as a network of independent cores and uses message passing for inter-core communication. To
demonstrate the new multikernel design, they produce an implementation called Barrelfish.

This design relies on three main principles, all inter-core communication are explicit, OS
structure is independent of hardware and OS state is replicated, not shared.

For the same reasons as Corey, using explicit communications and replicated states avoids
the cost of synchronization when updating shared data structures. It also favors locality of
accesses to kernel structures. The distributed architecture of the multikernel simplifies the
reasoning of programmers by making the kernel structure modular but also makes it easier to
preserve OS structure while hardware evolves.

Factored Operating Systems (fos): The Case for a Scalable Operating System for
Multicores While the multikernel design does not use shared memory directly, the message
passing mechanism, used to explicitly communicate between cores, still uses some form of
shared memory. In contrast, Wentzlaff et al. [59] propose an operating system design which
does not rely on shared memory or cache coherence, Factored Operating System (fos).

Considering that future machines will feature a very important number of cores (hundreds),
fos proposes to exploit this specificity by using a client/server architecture for both the oper-
ating system and applications. Similarly to the multikernel design, servers communicate only
via message passing, which is delegated to hardware.

The goal of fos is to leverage standard Internet servers optimizations such as caching,
replication or spatial distribution. To this end, the operating system functionalities themselves
are split into different services which are distributed on several cores. The components of fos
architectures are the following. A thin microkernel which provides the communication API and
acts as a name server to contact other cores. This microkernel executes on every core. An OS
layer, which provides standard operating systems services such as resources management (cores,
memory), I/O functions (file system, networking). These OS functionalities are implemented
as servers. They run on top of the common microkernel and are distributed across the machine.
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Distributing applications and OS services on different cores avoids implicitly sharing per
core resources such as data caches or TLB, leading to improved performances. Moreover,
avoiding shared memory nullifies the impact of cache coherency on performances and as with
the multikernel, eases to preserve the new design while hardware evolves.

2.4 Conclusion

This chapter presents different multicore architectures and more specifically the NUMA ar-
chitecture. Nowadays, NUMA architecture has become the most common architecture for
servers, with hundreds of cores distributed in multiple nodes. While the high density of re-
sources, both compute or memory, allows very important computation power, this can be done
only by correctly managing the complex topology, caches, memory controller, interconnect
network.

In this chapter, we presented NUMA machines, their components and how resources place-
ment is the main cause of performance degradation. Then we explained how to modify re-
sources placement through the use of memory management techniques, both in kernel space,
with the page table, and in user space with tools derived from the kernel page table. Finally,
we presented some solutions proposed in related work to remedy aforementioned performance-
degrading patterns. These solutions can be classified into three categories: first, user space
solutions which target a specific application or class of applications; second, runtimes and
changes to the kernel placement policy, more generic approaches; third, complete redesigns of
the operating system layer.

The first part of our approach to resources placement falls in the second category, runtimes
solutions. As increasing parallelism is important to better leverage these new architectures, our
approach, Commmama uses memory management techniques to overlap communication with
computation in the Message Passing Interface (MPI) runtime used by many high performance
computing applications.

The second part, Scalevisor, falls between the second and the third categories as it proposes
to use virtualization techniques to manage resources in a layer below the operating system.
Scalevisor avoids the hassle of modifying the code of legacy operating systems while proposing
a new design to memory management in complex architectures.
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Commmama, motivation and design

With the evolution of computer architectures, especially the growing number of cores and fast
networks, one of the keys to performance improvement is maximizing parallelism by correctly
managing compute, memory, and network resources. At the user space level with message
passing in applications, this means focusing on the ability to overlap network communications
with CPU-bound computation. This chapter thus addresses the challenge of maximizing the
parallelism in applications using both computation and network.

MPI is a widely used library for HPC applications. It offers a message-based interface
to communicate between nodes, with either two nodes involved (point-to-point operations) or
more than two nodes (collective operations). The MPI specification features an important
number of communication primitives, each offering different semantics. These semantics range
from blocking senders and receivers until the communication is completed to letting the senders
and receivers overlap communication with computation. The data provided by the application
to the MPI runtime cannot be modified until the communication is completed. In blocking
communications, this is transparent to the user as blocking communications block until the
communication is completed. However, for nonblocking communication, the application must
not modify the communication buffers containing the data of an ongoing communication.

Implementing an application that efficiently uses the nonblocking primitives is complex. As
nonblocking primitives do not block until the communication is completed, the application can
overlap communication with computation while the nonblocking communication is underway.
However, the application must track which buffers are involved in ongoing communications and
explicitly wait for these communications to end if they need to access said buffers. Choosing
the right point in the program to wait for the completion of an operation may be difficult
when nested functions may access the memory or not. This difficulty leads developers to
take a pessimistic approach in which the communication completion is awaited earlier than
necessary, thus losing some overlapping potential. In the worst scenario, the developer will
use blocking communication to ensure the program correctness, thus trading efficiency for

35
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simplicity of design.

In order to improve the performance of MPI applications we propose Commmama. Comm-
mama automatically transforms blocking primitives into nonblocking ones at runtime. To this
end, Commmama uses a separate communication thread responsible for communications and
a memory protection mechanism to track memory accesses in communication buffers. This
allows communications transformed by Commmama to progress in parallel until their data are
needed.

This chapter is organized as follows. In a first part, in order to better understand the
challenges of overlapping communication with computation, this chapter details the different
types of communications available in MPI and their characteristics. We show there are two key
factors needed to improve parallelism. First, background progress which guarantees commu-
nications are processed while computation is running. Second, the size of the window during
which computation and communication can be run in parallel.

In a second part, we present our proposal, Commmama, which transforms blocking com-
munications primitives into nonblocking ones to increase the potential for communication and
computation overlap. Commmama guarantees both progress for these communications and the
largest window during which communication and computation can be processed in parallel.
Commmama combines both the simplicity of blocking communications and the efficiency of
nonblocking ones to provide an efficient and hassle-free approach to MPI application design,
thus avoiding the aforementioned trade-off between efficiency and simplicity of design.

Finally, we present an evaluation of Commmama and show that it increases parallelism by
overlapping communication with computation. Our results show that when there is enough
computation to overlap the communication phase, the whole communication is done in the
background. In contrast, when there is not enough computation, we show that our approach
still performs well, with little overhead compared to a standalone MPI runtime.

3.1 Background and motivation

Message Passing Interface (MPI) [37] is a specification designed to establish a standard for
message passing libraries used in high performance applications. This specification is imple-
mented by different open-source libraries such as OpenMPI [41] or MPICH [38]. Because of its
efficiency and stability, it is used by many projects involving distributed applications or high
performance computing.

The MPI specification consists in a set of primitives and semantics which must be respected
by any given implementation. MPI focuses on message passing and thus is not designed for
any particular data transfer medium. Among the different implementations, multiple transport
layers are supported, such as shared memory, Ethernet or InfiniBand, making MPI a useful
tool in many different environments.
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This section is organized as follows. Section 3.1.1 presents the MPI specification, the dif-
ferent types of communications available and their semantics. Section 3.1.2 explains why some
primitives can overlap communication with computation and some cannot. It then presents
related work which aims to ensure background progress or maximize the overlapping ratio.
Section 3.1.3 presents how our approach combines the simplicity of blocking primitives and
the overlapping capability of nonblocking primitives.

3.1.1 MPI primitives and semantics

The MPI specification defines several primitives tailored for different use cases. MPI primitives
can be divided in two main categories, blocking ones and nonblocking ones, based on their
behavior. This section details these primitives and their semantics.

Blocking and nonblocking communications According to the MPI specification, an op-
eration completes when the user can reuse resources specified as input parameters for this
operation, this includes input communication buffers. When the communication completes,
output parameters of the functions have been updated, including any output communication
buffers. A buffer can be used by a primitive as both input and output.

A blocking communication does not return until the operation completes, therefore, until
the message data are either stored by the MPI runtime or transmitted through the transport
layer. In contrast, when using a nonblocking communication, the communication buffer must
not be used before a waiting primitive, such as MPI_Wait, has been called. More precisely, the
buffer cannot be written to, in case of ongoing send operations, or accessed in case of ongoing
receive operations before the communication has completed.

In order for blocking communications to be able to return while the receiver is not ready
to receive yet, the data contained into the buffer and the metadata of the operation must be
stored somewhere. How data are stored is not specified in the standard and actually differs
between implementations and transport layers. In most cases, the data is either copied in a
system buffer or simply sent through the transport layer.

Synchronous and asynchronous communications While the blocking or nonblocking
property of a communication primitive depends on whether the communication buffers can
be reused or not when the primitive returns, the synchronous or asynchronous property of a
primitive depends on whether senders and receivers must synchronize.

A synchronous communication completes only if a matching receive is posted and the
receive operation has started receiving the data. In other words, a synchronous communication
forces synchronization with the other nodes taking part in the communication. In contrast,
an asynchronous communication primitive offers no additional information on the state of the
other nodes and may or may not synchronize with them.
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The synchronicity property of an MPI primitive is independent from its blocking or non-
blocking behavior. MPI primitive can thus belong to any combination of blocking or nonblock-
ing and synchronous or asynchronous.

For example, in a synchronous, nonblocking send operation, the sender returns immedi-
ately after starting the communication, the buffer cannot be reused before a call to a waiting
primitive, which will synchronize with the receiver. The waiting primitive will complete only
after the receiver has started to receive. In contrast, in an asynchronous, blocking send, the
sender returns after the buffer has been copied in system buffers by the MPI runtime, the
buffer can then be reused but the receiver node may not have executed the receive primitive
yet.

Illustration: the MPI_Send function family The MPI_Send function family illustrates the
different properties of blocking, synchronicity or lack thereof.

There are multiple variants of the “send” function: the standard MPI_Send, MPI_Bsend,
MPI_Ssend and MPI_Rsend and their nonblocking counterparts. The distinction between these
four functions depends on two concepts, the message buffering or lack thereof and the syn-
chronous or asynchronous component of the primitive. The characteristics of the different
blocking send primitives are summed up in Table 3.1, more details on each primitives follow.

Table 3.1: Blocking send modes

Synchronous Buffered

MPI_Send No Implementation dependent (for small message)

MPI_Bsend No Yes

MPI_Ssend Yes Irrelevant

MPI_Rsend No Implementation dependent (for small message)

As explained earlier, message buffering is the act of copying the data contained in the
communication buffer to an alternate buffer in which the data will stay until the communication
is completed. This allows the communication buffer to be reused by the application while the
communication proceeds.

MPI_Send also called “standard mode” send is the basic send primitive, for performance
reasons, most MPI libraries implements buffering for small messages when using the standard
mode MPI_Send primitive. The primitive may thus choose either to synchronize with the
receiver or to buffer the message depending on its size.

MPI_Bsend is similar to MPI_Send except that if the matching receive has not been posted
MPI_Bsend must copy the message in MPI internal buffers and return, whereas MPI_Send can
wait for the matching receive and avoid buffering.

MPI_Ssend is a synchronous communication primitive, it can return only after a matching
receive has been posted, it never needs to copy the message content to MPI internal buffers as
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it can directly initiate the sending operation after the matching receive is detected.

MPI_Rsend has the same semantics as a MPI_Send except that it informs the runtime that
a matching receive has been posted already.

As nonblocking primitives only notify the MPI runtime that a communication starts, all
these primitives return immediately, this is the case for example of MPI_Isend, and even
MPI_Issend. However, the send-complete operation, ensured by a call to a waiting primitive,
has the same semantics as its respective blocking version, presented in Table 3.1. For example,
a MPI_Wait following a MPI_Issend is synchronous, and must wait for the matching receive
to be posted. In all cases, MPI semantics specify that when the communication is completed,
whether because the message has been buffered or not, the communication buffer is free to be
modified by the application.

Point-to-point and collective communication primitives The MPI specification pro-
vides point-to-point primitives and collective primitives. A point-to-point primitive involves
exactly two processes: a sender and a receiver. A collective primitive involves more than two
processes.

These primitives represent different communication patterns, such as one sending to all
(MPI_Bcast), all sending to all (MPI_Alltoall), or all sending to one (MPI_Gather) and their
respective nonblocking versions, added in the third edition of the specification, MPI_Ibcast,
MPI_Ialltoall and MPI_Igather.

In contrast to the point-to-point primitives above, collective communications have no syn-
chronous versions, the only synchronous collective primitive is MPI_Barrier, other collective
operations are not required to synchronize the processes inside of the communication group.

3.1.2 Overlapping communication with computation

While message buffering allows blocking communication primitives to overlap communication
with computation to a certain degree, it also produces an overhead due to copying the commu-
nication data to an internal buffer. This becomes costlier when message size increases, hence
the compromise used in multiple MPI implementations to buffer MPI_Send data only for small
message sizes. The difference between blocking and nonblocking communications thus resides
in the ability for nonblocking communications to be overlapped with computation.

To honor a send request, the runtime has two main options. First it can send the full data
and let the receiving process buffer the data until a matching receive is posted. This first option
is known as eager. Second, it can send only a protocol message indicating a send operation is
posted and wait for the receiving side to respond when a matching receive is posted. In this
second option, called rendez-vous, a handshake occurs before the data are sent, allowing the
data to be received by the other process directly in the user provided communication buffer.
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Figure 3.1 depicts such communications. The brown bar represents the location of the data
(horizontal axis) through time (vertical axis). Thus a long brown bar means data stay a long
time in a given memory zone, either user memory or internal MPI runtime memory.

For example, in the eager communication on the left, the data evolves as follow. At the
beginning, data are stored in user memory, then during the call to MPI_Send they are copied
to a buffer owned by the MPI runtime. The MPI runtime then proceeds to send the data
through the network, which are received by the other process and buffered. The data are now
stored in a buffer owned by the MPI runtime of the second process. When the second process
calls the MPI_Recv primitive, the data are copied to the receive buffer of the user.

For rendez-vous, on the right, the data are stored in the user buffer until the handshake
has occurred, when the matching receive has been posted. Data are then sent directly to the
receiving user buffer during the end of the MPI_Recv primitive.

Eager Rendez-vous

Time

Memory location

MPI_Send

MPI_Recv

Data

User
MPI

runtime
MPI

runtime User

MPI_Send
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Data movement
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Figure 3.1: Comparison of eager and rendez-vous for blocking communications

With the eager protocol, the sender does not have to wait for the receiver to be ready to
receive this particular message. In other terms, there is no need for synchronization between
the sender and the receiver. While this can improve performances, it forces the MPI runtime
on the receiver side to allocate sufficient buffer space to contain all the in-flight messages.
Moreover, when the receiver calls the matching receive primitive, it still needs to copy the
content of the already received message from the temporary buffer to the final application
buffer. This protocol is thus not profitable for bigger message size.
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In contrast, for the rendez-vous protocol, the sender only sends the message metadata
(source and destination among others) to the receiver and waits for an acknowledgment before
sending the data. This acknowledgment is sent back by the receiver when it enters the receiving
primitive which in turns forces a synchronization between the two processes runtimes. This
protocol directly writes the data into the application buffer given to the respective receiving
primitive thus avoiding a copy and the need for internal buffer space.

For blocking communications using the eager protocol, the send primitive returns immedi-
ately after the data are copied. The application can thus continue its computation. Therefore,
the communication is overlapped with computation except for the time taken to copy data to
MPI internal buffers. In contrast, this is not possible due to the synchronizing nature of the
rendez-vous protocol.

Nonblocking communication and progress In order to improve performances, nonblock-
ing primitives were designed to help overlapping communication with computation.

Nonblocking primitives are composed of two parts, the “start” primitive (MPI_Isend for
example) and the completion primitive (MPI_Wait for example). As the nonblocking version of
the primitive only registers the intent to do a send or receive operation, it returns immediately,
without waiting for the communication to complete. The theoretical overlapping window
extends from the start of communication to the completion primitive call.

For eager protocol, data can be pushed into the distant runtime buffer between the call
to the MPI_Isend primitive and the call to the waiting primitive. This data transfer does not
require a corresponding receive to be posted. When the call to the receive-complete occurs,
either because the call is blocking or because of a waiting primitive, the runtime buffer is copied
to the local buffer. When supported by the communication controller, the sending or receiving
procedure can thus take place concurrently and the program can continue its execution until
the communication result is needed, at which point it calls a waiting primitive. This allows
communication to be overlapped with computation.

For the rendez-vous protocol, this does not work in most of the cases because the MPI
runtime shares the thread with the application. In details, for the rendez-vous protocol, the
application needs to interact with the MPI runtime twice, a first time for the handshake and a
second time for exchanging the data. This issue appears for nonblocking communications, even
if the communication controller supports sending data in the background. If the MPI_Isend

starts the handshake, when it receives the answer from the receiving process, the MPI runtime
from the sender side will not be able to do any message matching while the sender runs
computation, because the shared thread is busy. Thus, most of the time the acknowledgment
from the sender is seen during the waiting primitive and all the data transfer occurs there.
These two cases are represented in Figure 3.2

To avoid this issue, it is possible to force the application to enter the MPI runtime, giving
the latter the opportunity to get the acknowledgment and start the data transfer. This can be
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Figure 3.2: Comparison of eager and rendez-vous for nonblocking communications

achieved by calling the MPI_Probe primitive to help the MPI runtime get CPU time. While
this basic solution can help overlapping communication with computation in some simple cases,
it becomes overly complicated when the algorithm is not composed of simple loops. Further-
more, while this solves the latency issue caused by some process waiting for the handshake
to terminate, depending on the type of transport layer, some of the copy operation will steal
CPU time from application. In order to correctly process the rendez-vous acknowledgment
and avoid stealing CPU time from the application, a background progress thread is necessary.

Ensuring background progress for communications In order to better overlap commu-
nication with computation, a number of techniques have been developed to ensure the progress
of the ongoing communication. This is the case of Denis et al. [14] and Trahay et al. [54] which
use threads to increase asynchronous progress by running communications in separate tasks.
This avoids the issue mentioned above of stealing CPU time from the compute thread.

Vaidyanathan et al. [57], probably the closest approach to ours, delegate MPI nonblocking
calls to a standalone thread. This approach reduces the CPU time consumed to perform the
MPI calls in the application thread, and ensures the progression of offloaded communications.
However, this does not increase the overlapping ratio, which directly depends on the waiting
primitive placement in the application code.
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Similarly, Min Si et al. [49] present an asynchronous progress system using processes in
place of threads and is targeted at many-core architectures.

Didelot et al. [15] propose a different approach, with no added parallel execution unit,
which uses idle cycles created by imbalance in computation time to improve progression.

Works presented here focus on making communication progress, most of the time using a
separate execution context to process communications.

Maximizing the overlapping ratio While ensuring background progress of the commu-
nications is an important part in maximizing the efficiency of communication overlapping,
ensuring an important overlapping ratio is also of the utmost importance.

Maximizing the ratio of communication overlapped with computation is the best method to
leverage background progress and thus maximize performance. To this end, some approaches
use compile time techniques to evaluate the best position for nonblocking primitives and specif-
ically MPI_Wait calls to maximize the overlapping portion of communication and computation.

This is the case of Martin et al. [36] which use source to source translation to remodel
the code. They use compiler pragmas to divide the code into three types of regions: send,
receive and compute. This allows some communication to be overlapped with computation
by running communication and compute regions in parallel on different cores. However, the
compute region still needs to start with a waiting primitive (in most cases MPI_Waitall) which
in turn seems too coarse grained to attain a satisfying overlap ratio in complex cases.

Fishgold et al. [16] propose a finer grained, automated technique which detects patterns
presenting an opportunity for transformation by parsing the source code and then modifies it.
This approach focuses on finding compute loops filling parts of communication buffers at each
iteration and modifying them to send these parts when ready. While this technique covers a
large portion of MPI applications, especially High Performance Computing related ones, our
approach works for a broader field of application. Moreover, they focus on MPI_Alltoall

collective while our work does not target a specific communication primitive.

A similar approach from Guo et al. [25] uses static code analysis to replace blocking com-
munications by nonblocking communications in loop based computations thus overlapping
communication step i with computation step i+ 1. This approach uses compile time analysis,
compute loops, and does the communication progression using MPI_Test primitives inserted in
the loop body, which gives the MPI runtime some CPU time to make the loop communications
progress. This approach is closely related to that of Murthy et al. [39].

Another attempt to increase the overlap of communication and computation is presented
by Anthony Danalis et al. [12]. They describe an algorithm used to optimize the overlap
window at compile time by replacing blocking primitives with nonblocking ones and placing
the waiting primitive as far as possible to increase performances. However, unlike previous
work they make the assumption that the compiler is aware of MPI semantics. While this
allows for an even better increase in the overlap window, this makes the work of compiler
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developers and MPI developers more complicated, which is not the case in our approach as
it operates transparently. Nguyen et al. [40] propose a similar solution which uses clang to
perform modifications.

The method presented by Saillard et al. [47] uses code instrumentation and offline analysis
to determine code fragments where overlapping capabilities are not fully exploited. After the
instrumented run has terminated, their tool uses the trace files to perform optimizations.

While the field of background progress for MPI primitives has been extensively studied
with approaches using either compile-time or run-time techniques, all these proposals focus
on the standard way of producing overlapped communications and computation: nonblocking
primitives.

3.1.3 Commmama: blocking simplicity, nonblocking efficiency

As described in Section 3.1.2, the application can overlap some communication with compu-
tation using nonblocking primitives. Two key factors increase the efficiency of nonblocking
communications. First, a progress engine transforms a potential overlapped communication
into an effectively overlapped communication. Second, the size of the temporal window during
which overlapping communication and computation occurs directly determines the amount of
overlapped communication. However, using nonblocking primitive adds a degree of complexity
in comparison to simple blocking primitives.

All nonblocking primitives must be completed using one of the waiting primitives, called on
a request object which represents the ongoing communication. The code thus becomes more
complex because of both needs to call the waiting primitive and to manage the different request
objects. This is illustrated by comparing Listing 3.1 demonstrating a contrived example of a
blocking MPI_Send usage and Listing 3.2, a nonblocking version of the same example.

1 void write_function(int* buffer , ...) {

2 int* result = do_long_computation ();

3 memcpy(buffer , result , ...);

4 }

5
6 void example(int* buffer) {

7 MPI_Send(buffer , ...);

8 read_only_function(buffer , ...);

9 write_function(buffer , ...);

10 }

Listing 3.1: Simple example using blocking communication

Moreover, the placement of the MPI_Wait primitive in Listing 3.2, while allowing to over-
lap the send operation with the read_only_function execution, is nonetheless not optimal.
If the write_function starts with some computation sequence not writing directly into the
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1 void write_function(int* buffer , ...) {

2 int* result = do_long_computation ();

3 memcpy(buffer , result , ...);

4 }

5
6 void example(int* buffer) {

7 MPI_Request handle;

8 MPI_Isend(buffer , ..., &handle );

9 read_only_function(buffer , ...);

10 MPI_Wait (&handle , ...);

11 write_function(buffer , ...);

12 }

Listing 3.2: Overlapping using nonblocking communication

communication buffer, the waiting primitive could be placed further in the execution sequence,
after this computation, to provide a higher degree of overlapping and thus better overall per-
formances.

While this contrived example easily demonstrates the misplacement of the waiting primi-
tive, in a complex program containing deep nested functions or callbacks, placing the waiting
primitive in its optimal place is close to impossible. Because statically placing the waiting
primitive is difficult, and because blocking communications are easier to handle in general, we
propose a method to transparently overlap blocking communication with computation.

In order to benefit from both the simplicity of blocking communications and the overlapping
capabilities of nonblocking communications, we developed Commmama, an overlapping library
and progress engine which automatically transforms blocking communications into nonblocking
ones at runtime and manages the memory used for communication buffers to enforce the MPI
specification semantics.

Commmama offloads communications to another thread, acting as an intermediary between
the application and the MPI runtime. The offload thread is responsible for starting commu-
nications and ensuring background progress. This reduces tasks executed on the critical path
for the computation thread to a minimum, maximizing the time dedicated to computation.
In case the communication uses the eager protocol, the offload thread avoids the application
thread having to wait for the data to be copied in the MPI runtime internal buffers. This is
shown in Figure 3.3 on the left. When the MPI runtime switches to the rendez-vous protocol,
the offload thread avoids the computation thread to be blocked while waiting for the handshake
to complete (blocking case) or for the whole data transfer to occur in the waiting primitive
(nonblocking case). This is illustrated on the right part of Figure 3.3.

Our proposal thus performs well on eager protocol but above all provides an important
improvement on rendez-vous protocol by ensuring communications progress while the main
thread continues to run computation until communication results are needed. Moreover, Com-
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Figure 3.3: Comparison of eager and rendez-vous with Commmama

mmama does not need to introduce any modification in the application code such as adding
calls to MPI_Probe because it directly replaces blocking calls with our custom versions. In
order to increase efficiency while still enforcing the MPI specification, Commmama protects
the communication buffer provided by the application. Commmama can thus detect any ac-
cess which would otherwise ignore MPI semantics. When such an access occurs, Commmama
forces the application thread to wait until the communication operation has completed accord-
ing to MPI. The specifics of Commmama design and operation principles are described in the
following section.

3.2 Our overlapping infrastructure: Commmama

In order to transform blocking communications into nonblocking ones, but still enforce the
MPI specification, Commmama must guarantee the integrity of communication buffers. More-
over, to avoid the need to modify the user code, our proposal automatically replaces original
MPI primitives with our custom ones. Finally, Commmama ensures ongoing communication
progress to increase efficiency of communications overlapped with computation. These three
features are the core of the project and thus direct its design.

Commmama is composed of three different layers. The interception layer, which intercepts
and transforms standard blocking primitives into multiple calls to other layers of our library.
The protection layer which manages memory for communication buffers and enforces MPI
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semantics when an otherwise incorrect memory access would occur. The progress layer which
is responsible for communications and offloads communications to a standalone thread.

These different layers and their interactions are represented on Figure 3.4 and detailed in
the following sections.

Application MPI_Send

Interception transform code

message
queue

MPI runtime

ProgressMPI_Isend end_of_comm_handler

Protectionunprotect
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Figure 3.4: Commmama’s architecture

3.2.1 The interception layer

The first step toward overlapping blocking communication with computation is to replace the
base primitives of the MPI library by our custom versions. There are already multiple MPI
libraries implementing the MPI specification, some of which are well-known and tested.

We chose to avoid modifying directly any MPI runtime to be compatible with any imple-
mentation and to avoid maintaining a forked version. Therefore, Commmama uses a shared
library which replaces needed MPI functions by custom versions.

Our interception library first stores all the existing MPI library functions into dedicated
function pointers and then declares functions with their original names. This library is then
loaded before the real MPI library using LD PRELOAD, effectively renaming MPI library
symbols and replacing them with ours. To ease the use of this shared library, we provide an
executable managing this configuration and using the interception library becomes as simple
as mpirun mpi_interceptor [args].

On top of being easy to use, this method allows a developer to use the library on any
software without requiring any modification of the application code or recompilation. It is
thus easy to benefit from the full efficiency of Commmama on existing software.

Moreover, using LD PRELOAD gives our library complete control over all the MPI primi-
tives, not only communication primitives. Among these, two are of specific interest:
MPI_Alloc_Mem and MPI_Free_Mem. According to the MPI specification, these two primi-
tives exist to allocate special memory which is dedicated to message-passing operations and
could make such operations faster. In Commmama, we leverage these two functions to let
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the user explicitly allocate specific memory for the use of our protection layer, as detailed in
Section 3.2.3.

3.2.2 The offloading system

The offloading subsystem provides asynchronous progress for MPI communications. It consists
of a standalone thread which is spawned when the MPI runtime is initialized (one thread per
MPI process) and a lock-free FIFO queue in which are registered requests to be treated by the
offloading thread.

The lock-free queue allows for multiple concurrent producers to enqueue new request which
makes the offloading system designed to support multi-threaded calls, such as MPI+X work-
loads.

The offloading thread polls the queue for any new request to treat, if none are currently wait-
ing, the thread performs calls to the MPI runtime to make pending communications progress.
When a request completes according to the MPI runtime, the offloading thread invokes a
callback function to which it passes the request metadata.

Metadata are stored in custom structures which are divided in two parts, a generic header
part, common to all functions and a function specific part which contains the parameters
needed for the function call. For efficiency reason, the header size has been reduced as much
as possible, containing only an enum value denoting the type of the request, the underlying
MPI_Request, the underlying MPI_Status, and a data pointer. Due to this division, extending
the existing pool of available functions is easily done by adding a new structure.

Moreover, even if these structures are small in size, memory allocations on the critical
path when calling communication primitives would decrease performances. To this end, the
offloading system maintains a pool of preallocated metadata structures in ring buffers. This
pool supports two different allocation policies. With the strict policy, asking the pool to
provide a metadata structure when the ring buffer is empty results in an allocation error.
With the relaxed policy, an allocation that cannot be fulfilled by the ring buffer will return a
newly allocated structure using the system memory allocator. Metadata structures are freed
by putting them back in the ring buffer.

Once again, the ring buffer structure supports multiple simultaneous enqueue and dequeue
operations, thus allowing multi-threaded workloads.

The offloading library proposes functions with the same prototype than the MPI standard
nonblocking functions for ease of use. These functions are proxy which fill the correspond-
ing metadata structure and enqueue the structure in the message queue as represented in
Figure 3.5.

After emptying the queue and thus starting the new communications, the offload thread
must ensure ongoing communications are progressing. All real MPI runtime function used
by the offloading thread are nonblocking, the progress can thus easily be done using a non-
blocking test function for all ongoing communications at once, MPI_Testsome. Because the
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MPI_Testsome function tries to complete all the ongoing communications, faster or smaller
communications can finish as soon as possible, independently of their starting order.

Finally, when a communication completes, the offload thread calls a callback to notify of
the completion. While this callback allows for a completion to be treated as an event, offloaded
requests can still be waited using the offload_MPI_Wait function, equivalent of the standard
MPI_Wait.

As a standalone library, this offloading subsystem only takes care of communication pro-
gression and can thus be used on its own to provide asynchronous progress to nonblocking
primitives. In addition to providing progress to nonblocking calls, the callback executed at the
end of communications let blocking communications benefit from the progress engine as well,
through the use of the protection mechanism.

3.2.3 The protection mechanism

The protection mechanism is responsible for enforcing the semantics of the MPI specification
on communication buffer accesses. It uses the interface provided by the offloading subsystem
to enable a memory protection mechanism on the communication buffer before offloading it
and disable it when the communication buffer can be accessed freely. This corresponds, for
classic nonblocking communications, to the end of the MPI_Wait function.

The protection framework provides two primitives respectively to enable and disable pro-
tection on a specific buffer. Both of these functions internally call the Posix mprotect function
which allows a program to restrict access to its own address space as explained in Section 2.2.2.
When an unwanted access occurs, the page fault occurring in the kernel is notified to the user
space program as a segmentation fault signal (SIGSEGV).

According to the Posix standard, the behavior of the mprotect system call is undefined
when called on a region of memory which was not obtained through a call to the mmap system
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call. For this reason, we intercept and replace the calls to MPI_Alloc_mem and MPI_Free_mem

by an allocating scheme using mmap.

While these two primitives take care of all the specifics, allowing the external interface to
stay simple, internally, the protection mechanism must handle a variety of cases.

Simple sending primitive The simplest case is a simple sending primitive, considering
that the program executing will not post simultaneously two send operations for which user
provided communication buffers share some memory frames.

For send operations, the communication buffer cannot be modified until the communication
completes. For blocking communication this is after the sending primitive returns, for non-
blocking communications this is after a call to a waiting primitive on the suitable MPI_Request.
Thus, when the original MPI_Send is called, it is replaced by a protection primitive which for-
bids write access by setting the permissions for the buffer as PROT_READ (read only).

Any write access following the change of permissions would result in a segmentation fault.
Our custom handler for the segmentation fault signal first checks whether the memory address
on which a bad access occurred is a zone managed by the protection mechanism. If the zone
is protected by Commmama, it calls a modifiable callback function (called access_handler

in the rest of the document). By default, this callback is set to automatically wait for the
offloaded communication to complete.

Whether a forbidden access occurs or not, when the communication is completed, the
offloading subsystem calls the callback function which in this case consists in changing the
permissions back to the original setting (which should most often than not be PROT_READ |
PROT_WRITE). The evolution of the memory state is represented in Figure 3.6. This figure
presents the different states of the memory depending on the events occurring in the program
execution. I is the initial state, F is the final state, P and W are intermediary states and stand
for “Protected” and “Waiting” respectively.

buffer

explicit call

event

protected
writeend_of_comm

end_of_comm 

I

PF

W

MPI_Send
page 1 page 2 page 3State

P
W

I
F

Figure 3.6: Evolution of the memory state through a simple send operation
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The communication buffer being read-only, the underlying MPI primitive can still access
the data and perform the send operation normally, while the specification required behavior is
enforced.

Simple receiving primitive However, as mentioned in Section 2.2.2, even if the Posix
API represents protection as an arbitrary combination of the three PROT_READ, PROT_WRITE
and PROT_EXEC flags, the x86 page table system cannot support a write-only setting.

As a write-only mapping is impossible to obtain using the x86 page table, receiving prim-
itives cannot be protected using the simple technique explained above. This concerns any
primitive which actually receives some data, thus including both the functions of the MPI_Recv
family and almost all collective primitives.

To solve this issue, the functions MPI_Alloc_mem and MPI_Free_mem, already used to allo-
cate memory through a call to mmap, have been modified to produce a double mapping. One of
these mappings is returned to the application which allocates the memory, the other is stored
for further use. We call the buffer returned to the application the “public” buffer or simply
the buffer and the buffer kept for internal use the “shadow” buffer.

When protecting communication buffers used for receive operations, the protection layer
changes the permissions of the public mapping of the given buffer to PROT_NONE and starts the
underlying communication using the shadow buffer whose permissions are unaltered. Setting
the permissions of the public buffer to PROT_NONE satisfies the specification by catching all
unwanted accesses during the communication. In the same manner, the shadow buffer allows
the real MPI primitive to perform correctly. The evolution of the memory state is the same as in
Figure 3.6 except for the access rights on the protected zone which are PROT_READ for the send
primitive and PROT_NONE for the receive primitive. Accesses for the underlying communication
are done through the shadow buffer.

Overlapping memory zones: serialization and merge While the previous mechanism
is sufficient for simple send and receive operations, more issues arise when the communication
buffer is shared between multiple communication primitives.

There are two different cases of communication buffer sharing. Firstly, because we trans-
form blocking communications into nonblocking ones, a buffer may be used successively for
different communications as illustrated by Listing 3.3.

In this example, the ring function receives a value from the previous peer of the commu-
nicator, prints it and sends it unmodified to the next peer. While printing the value forces
the receive operation to be completed because it reads the value val, when the loop passes
from one iteration to the next the sending operation is directly followed by the next receiving
operation.

In general, this case we call serialization happens when the range of memory of the two
communication buffers overlap at the byte level, as illustrated by the first case in Figure 3.7.
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1 void ring(int* val) {

2 for (int i = 0; i < nb_iter; i++) {

3 MPI_Recv(val , ..., rank - 1, ...);

4 printf("rank: %d, token: %d\n", rank , *val);

5 MPI_Send(val , ..., rank + 1, ...);

6 }

7 }

Listing 3.3: Shared communication buffer due to unblocked communication

To avoid issues in this case, we track the precise memory location (starting address and
length) which are involved in any ongoing communication. When a second operation tries
to protect a memory range used in another communication, it triggers a modifiable callback
(called re_protect_handler in the rest of the document). This function is currently set to
wait for the end of the ongoing communication before starting the new one.

The second case of communication buffers sharing is less straightforward. It occurs because
of the mprotect system call whose granularity cannot be smaller than a page frame. When a
program allocates a range of memory and uses it in multiple communications for which address
ranges are not overlapping, if these address ranges are not page aligned, a page frame may be
shared between two different communications. This is illustrated by the first case in Figure 3.7
and is referred by Gaud et al. [19] as page-level false sharing.

buffer 2

buffer 1

page 1 page 2 page 3

shared page
(no memory shared)

page 1 page 2 page 3

shared memory
(page is necessarily shared too)

Figure 3.7: The two types of shared memory between buffers

In this case, the two communication buffers do not share any memory at the byte level but
still share a page frame, making it impossible to choose two different sets of permissions for
the two different communication buffers. In order to solve this conflict, the protection layer
proceeds in three steps. First, it merges the two requests metadata structures by creating a
dummy third one which is linked to the two conflicting ones. Second, it makes this dummy
request the active one for the conflicting page frame. Finally, it changes the permissions for this
page frame to the intersection of the permissions of the first and second requests. The evolution
of the memory state for two requests involving a merge operation is illustrated in Figure 3.8.
As for Figure 3.6, I, F, P, and W respectively stand for “Initial”, “Final”, “Protected” and
“Waiting”. They are suffixed with the number of the request they refer to, P1 is a state in
which the memory of first primitive is “Protected”. For any states a and b, a1 + b2 refers to
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the combination of state a for the first primitive and state b for the second primitive.
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Figure 3.8: Evolution of the memory state during a merge procedure

When trying to access a memory zone in which a merged operation happened, the
access_handler will wait for all the linked ongoing communications, thus enforcing the
MPI specification. For all the zones belonging exclusively to one of the communications,
the access_handler will only wait for the necessary primitive. Removing the protection for
the given range will unlink the request metadata structure from the merged zone, essentially
turning it back to a normal zone. This method has the benefit of avoiding any superfluous
wait for non-shared page frames in case of an unauthorized access.

Collective communications While the different cases presented until now are focused on
point-to-point communication or use point-to-point communication examples, the protection
mechanism for collective communication primitives can be implemented using the same rea-
soning.

All collective communication primitives can be naively implemented using only point-to-
point send and receive primitives. Extending the protection mechanism to include collective
primitives can thus be done using a combination of the previous cases while still taking into
account the specific semantics of each communication primitive. The Listing 3.4 is an example
implementation of the MPI_Gather primitive using the protection mechanism.

For MPI_Gather, only the root of the operation will receive data, while all the other ranks
will only send data. This explains the disjunction between normal senders which only call
protect on the outgoing buffer and the root which protects both the outgoing buffer and the
incoming buffer.
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1 int MPI_Gather(const void* sendbuf , int sendcount , MPI_Datatype sendtype ,

2 void* recvbuf , int recvcount , MPI_Datatype recvtype ,

3 int root , MPI_Comm comm) {

4 const void* shadow_sendbuf = shadow_ptr(sendbuf );

5 void* shadow_recvbuf = shadow_ptr(recvbuf );

6
7 int stsize , rtsize;

8 MPI_Type_size(sendtype , &stsize );

9 MPI_Type_size(recvtype , &rtsize );

10
11 struct prot_req* send_prot =

12 protect(sendbuf , sendcount * stsize , PROT_READ );

13
14 /* mpii_infos contains info on the current call */

15 if (mpii_infos.rank == root) {

16 struct prot_req* recv_prot =

17 protect(recvbuf , recvcount * rtsize * mpii_infos.size , PROT_NONE)

18 link_pr(2, send_prot , recv_prot );

19 }

20
21 int ret = offload_MPI_Igather(shadow_sendbuf , sendcount , sendtype ,

22 shadow_recvbuf , recvcount , recvtype ,

23 root , comm , send_prot ->req);

24 return ret;

25 }

Listing 3.4: MPI_Gather implementation using protection API

In the case of the root, the semantic implies that only read operations are allowed in the
outgoing buffer while no accesses are allowed in the incoming buffer. This is correctly enforced
by the permissions PROT_READ and PROT_NONE respectively. To ensure that any unwanted access
to any buffer will trigger the access_handler and correctly wait until the communication is
completed, the two protection metadata structures are linked (using link_pr). This is similar
to the way merged memory regions are handled, but for the whole memory range of both
communication buffers.

Finally, the offloaded version of MPI_Igather is called using the shadow buffers for both
buffers, letting the underlying MPI primitive the freedom to read or modify buffers as needed.

The rest of the collective primitives are implemented using a similar method, by protecting
the needed memory ranges and linking protection metadata structures when needed.

All the different cases presented above are handled by the protection mechanism internally.
Using the protect, unprotect functions and occasionally linking multiple protection zones is
sufficient to transform most blocking point-to-point and collective primitives into nonblocking
ones.
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The combination of the protection mechanism and the offloading library guarantees two
important behaviors, every buffer on which memory protection is enabled during a call to a
communication primitive will see its protection disabled eventually and any unwanted access
to the memory will cause the application thread to wait as though a real call to MPI_Wait was
issued. Therefore, the period during which communication is overlapped with computation is
dynamically decided by the first forbidden access to the buffer, which in turns corresponds to
the optimal limit we can afford according to the MPI specification.

3.3 Evaluation of the overlapping potential

This section presents the results of our evaluation of Commmama. All the experiments are
done using the Grid’5000 [24] grimoire cluster. Nodes of this cluster consist of dual socket
8 core Intel Xeon E5-2630 v3 with 128 GB memory. These nodes are connected using 56
Gb/s Mellanox Technologies ConnectX-3 InfiniBand network adapters. We use GCC 8.3.0 and
OpenMPI 3.1.3 [17]. All the results presented thereafter are produced using this test bed by
running the mentioned benchmark 2000 times and taking a mean value.

This section is organized as follows. First we present an evaluation of the base overhead of
our method. This is done by comparing our approach with a standard MPI runtime, OpenMPI,
in the worst-case scenario (no computation, only communication). Then we present the results
for different message sizes and different computation times. We show that our approach has a
good overlap ratio, and even that when the computation time is sufficient, the communication
is completely overlapped. We compare to the OpenMPI runtime, and with a good ratio of
communication and computation Commmama reaches up to 73% speedup.

3.3.1 Base overhead analysis

In this section we compare our approach, Commmama, to a baseline version using only Open-
MPI. This aims to study the effect of our system on base performances. This is done using
a ping-pong microbenchmark with no computation to exhibit the overhead introduced by our
method.

Figure 3.9 represents the round-trip latency of messages of varying sizes, both axes are
represented using log scale. Depicted on this figure, the overhead incurred by Commmama is
linear until important message sizes where it becomes negligible. This is mostly due to the
cost of the protection subsystem and more specifically the linear cost of the mprotect system
call.

This overhead is indeed due to the modification of the page table structure during the
mprotect call used to enforce memory protection on the process address space. With the
growth of message size, the range of memory protected by the system call grows which in turns
increases in a linear fashion the number of page structures to modify. However, this overhead
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Figure 3.9: Round-trip latency with no compute

is not as important as to impact the capacity to overlap communication with computation as
demonstrated in the next subsection.

3.3.2 Overlap evaluation

To evaluate the quantity of overlapped communication provided by our design, we use a modi-
fied version of the ping-pong microbenchmark with added computation time between commu-
nication phases.

This benchmark executes as follows. Process rank 0 calls MPI_Send, computes for a given
time, writes one byte to the buffer then calls MPI_Recv, computes for a given time and reads
one byte from the buffer. Process rank 1 does the same but starting by MPI_Recv, followed by
the compute period and the read operation then MPI_Send, the compute period and the write
operation.

In this second benchmark the memory operation plays an important role as it ensures the
previous communication (either send or receive) is completed before continuing. This simulates
the first access to buffer data in the computation period following a communication.

The expected execution timelines are presented in Figure 3.10.

The results presented thereafter use this benchmark with a varying amount of computa-
tion time, respectively 2 × 200, 2 × 2000 and 2 × 20000 microseconds. The openmpi curve
represents the default OpenMPI behavior. The Commmama curve represents the behavior
of our approach on top of the same OpenMPI runtime. The optimal completion time curve
represents the theoretical optimum which is max(tcompute, tcomm), where tcompute is the total
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Figure 3.10: Expected execution timeline for microbenchmark

time of computation (i.e. the sum of both occurrences for a given process) and tcomm is the
time of completion of the communication for the default OpenMPI implementation taken from
Section 3.3.1.

Round-trip latencies in Figure 3.13, 3.11 and 3.12 all demonstrate two different behaviors.
Between 4 KB and a certain value called sthreshold below, Commmama remains very close of
the optimal completion time, while openmpi is equal to tcompute + tcomm. Finally, between
sthreshold and 64 MB, both openmpi and Commmama increase gradually, with Commmama
staying close to the optimal value.

The default OpenMPI implementation cannot overlap any communication with computa-
tion, resulting in an increased completion time. This is particularly visible when the com-
munication time and computation time are close. For example, on Figure 3.11 for 16 MB
message size, the raw measurement for openmpi gives a latency of 5419 µs which is close to
tcompute = 4000 µs for this experiment. The measured time for Figure 3.11 at 16 MB is 9404 µs,
almost exactly tcompute + tcomm.

On the contrary, Commmama performs well, showing a high overlapping capability. The
raw measurement for Commmama is 5446 µs at 16 MB on Figure 3.11, only 30 µs more
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Figure 3.11: Round-trip latency and speedup for tcompute = 4000 µs

than native openmpi. With 4000 µs computation time, Commmama overlaps communication
perfectly, with a measured time of 5440 µs. This second behavior persists until message size
attains sthreshold, the message size until which tcomm < tcompute, which for this example is for
message sizes between 8 MB and 16 MB.
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Figure 3.12: Round-trip latency and speedup for tcompute = 40000 µs

As for the second phase, when message size exceeds sthreshold, both openmpi and Comm-
mama round-trip latencies start increasing, with Commmama still being close to the optimal
completion time value which is now tcomm as exceeding sthreshold, tcomm has become the longest
task required for completion. This behavior is better seen in Figure 3.12 for message sizes big-
ger than 2 MB. On this part of the curve, openmpi completion time gradually increases until
reaching 65 ms while Commmama is close to tcompute with only 40.185 ms for 32 MB and
43.800 ms for 64 MB.

While our proposal is less efficient for small computation times because the window for
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overlapping communication and computation is smaller and thus closer to the potential over-
head of our approach, Figure 3.13 still demonstrates good results, especially the speedup
representation which reaches 10% for 128 KB and up to 42% for 512 KB.
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Figure 3.13: Round-trip latency and speedup for tcompute = 400 µs

Favoring communication and computation overlap, our approach can really shine when
there is enough computation to overlap communication with. As shown by the speedup plot
in Figure 3.11 in which speedup reaches 73% and is good in any case when tcompute is slightly
bigger than tcomm. For small communications, with a small compute time of 400 microseconds,
speedup attains 42%, with 4 milliseconds of compute time, speedup attains its best value for
medium-sized communications, 73% for 1 MB messages. After this point the speedup decreases
due to the compute time becoming insufficient to correctly overlap communication for bigger
messages. With 40 milliseconds of compute time, big communications are at their best with
up to 50% speedup.

3.4 Conclusion

This chapter presents the challenges of overlapping network communication with CPU-bound
communication in the scope of MPI. The MPI specification provides two types of primitives.
Blocking primitives, which are simple to use but cannot overlap communication with compu-
tation, and nonblocking ones, which are more complex to use but allow some communication
to be overlapped.

In this chapter we present the different types of primitives, their semantics, and explain
which of these primitives can overlap communication with computation. We show that two
key factors are important to reach efficient overlapping of communications, the window dur-
ing which communication and computation are overlapped and the presence of a background
progress mechanism. Works aiming to improve one of these factors are presented.
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We then introduce Commmama which transforms blocking communications into nonblock-
ing ones at runtime. Using this approach, Commmama combines the simplicity of blocking
communications and the efficiency of nonblocking communications while enforcing the MPI
specification. In order to enforce the MPI specification for communication primitives, Comm-
mama protects the memory used by the application to store data sent or received with MPI.
This allows to detect unwanted accesses and force the application to wait if needed. This is
described in detail in the section related to the internal architecture of Commmama and its
three layers: interception layer, offload layer, and protection layer. This architecture enables
Commmama to be used easily by developers. As an intermediate layer, Commmama can be
used without modifying legacy software and with most MPI runtimes.

Finally, this chapter presents an evaluation of Commmama’s ability to overlap communica-
tion with computation. This evaluation shows that Commmama is able to reach good speedup
(up to 73%) when computation time is sufficient to overlap communication.

To conclude, Commmama, increases network and CPU parallelism using memory protec-
tion as a layer between the MPI runtime and the application. In contrast to this user space
solution, Scalevisor, the second part of our approach, manages resources at a lower level, below
the operating system using virtualization techniques.



Chapter 4

A multicore resource management
driver

As explained in section 2.1, computer architectures have evolved through the years and con-
tinue to do so. Because taking into account the topology is necessary to use a machine full
potential, operating systems have to evolve and include complex rules each pertaining to dif-
ferent hardware configurations. Thus, each new topology creates its own specific needs in term
of scheduling, memory management and I/O management.

Resource management in modern operating systems is often treated by having a piece of
the system manage one specific resource. These subsystems are mostly isolated parts of the
operating system, like the scheduler or memory manager, which do not communicate to take
decisions about the optimal state of the system. More often that not, decisions are taken by
considering the distribution of other resources as fixed or even to really make a specific resource
static while having the other adjusted regularly.

While this method of resource management has been studied (some examples are presented
in section 2.3) and can provide good results in simple cases, with the added complexity of new
architectures and the multiplicity of applications, a new approach to resource management
treating the system as a whole is needed.

Current operating systems were not designed to use this global approach, moreover, to
accommodate the large number of applications, they include generic heuristics which are not
tailored to provide a sufficient gain in performance. Because of the size of the code base and
design of current operating systems, it seems impossible to implement new efficient policies
and maintain them in multiple systems for multiple hardware configurations.

Given the advance of virtualization technology, especially in the field of hardware virtual-
ization, we propose a new approach to resource management in complex topologies that uses
virtualization to add a small layer dedicated to resource placement in the usual software stack.
This intermediate layer, Scalevisor, placed between the hardware and the operating system,

61
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manages resources placement and simulates a flat topology for the overlying operating system.
This flat topology forces the overlying operating system to behave as if it were running on
a simple topology and thus ignore the real topology when managing resources. Figure 4.1
represents a software stack with Scalevisor integrated in between the real topology and the
operating system.
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Figure 4.1: Software stack including Scalevisor

While Scalevisor primary purpose is to act as a black-box resource management system
below the operating system, its design includes an hinting interface accessible to the guest and
applications through paravirtualization. This interface can be used by applications to describe
their operating patterns and thus make placement decisions more efficient.

The first step toward this multi-resources placement driver is to simulate an abstract mem-
ory and CPU topology using virtualization techniques. This chapter is organized as follows.
Section 4.1 presents both software and hardware virtualization techniques, and describes over-
head created by using such techniques. This section then presents related work on virtualization
and more specifically about the issues of using virtualization on NUMA architectures. Sec-
tion 4.2 presents Scalevisor, starting from its design and how to mask the underlying topology,
then describes Scalevisor internal structure and components. Finally, this section presents
the unrealized parts of the project due to a lack of time. While Scalevisor is able to boot a
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Linux system, some parts are not mature enough to evaluate heuristics. We thus conclude
with some reflections on the task of writing a new operating system given the complexity of
current hardware.

4.1 Background and motivation

Virtualization consists in providing virtual resources to an operating system, most of the time
in order to allow multiple systems to coexist on a single hardware unit. Virtual resources
are created using different methods, currently for performance reasons, a lot of virtualized
resources are created and managed using hardware-assisted techniques.

Real machine are mainly composed of compute units, memory and devices. In the same
way, these constitute the main components of a virtualized machine, thus, the parts that need
to be virtually duplicated in such a system are the CPUs, the page table responsible for memory
mapping, and the device drivers.

This section first describes currently available virtualization techniques, then presents re-
lated work. It is organized as follows. Sections 4.1.1 and 4.1.2 present software techniques and
hardware assisted techniques respectively. Section 4.1.3 details related work on virtualization,
first presenting generic virtualization issues, then specific problems arising from the use of
virtualization on NUMA architectures.

4.1.1 Software techniques

The concept of virtualization includes several notions but the property expected of a reliable
Virtual Machine Manager (VMM) are threefold. First, the virtual machine should be func-
tionally equivalent to the hardware machine as far as the guest operating system is concerned.
Secondly, the guest should be isolated from the rest of the system, either from other virtual
machines or the VMM itself. Finally, performances should be mostly equivalent to running
directly on the hardware when inside the virtual machine.

According to Popek et al. [44], “For any conventional third generation computer, a virtual
machine monitor may be constructed if the set of sensitive instructions for that computer is
a subset of the set of privileged instructions”. Sensitive instructions are divided in two cate-
gories, behavior sensitive instructions and control sensitive instructions. A behavior sensitive
instruction is one that depends on the state of the processor (for example being in user or sys-
tem mode, or the real memory location). A control sensitive instruction is one that modifies
the processor state (changing from user mode to system mode).

Sensitive instructions need to be privileged to allow the VMM to catch any attempt from
the guest software either to change the real state of the hardware to an unwanted state for
control sensitive instructions or to react differently because of virtualization in the case of
behavior sensitive instructions. This implies that to correctly virtualize the CPU behavior,
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sensitive instructions must be intercepted and emulated by the VMM when executed by the
guest operating system.

As detailed in Robin et al. [46], seventeen sensitive instructions in the x86 Intel Pentium
CPU are not privileged, including PUSHF, POPF, some variations of CALL, JMP or RET. To
overcome this issue, the guest code must not be executed directly on the hardware CPU but
rather emulated, using binary translation to create an alternate version of the code and run
this version on the CPU. This approach is the main software technique used to virtualize CPU
as explained by Bugnion et al. [8], but unfortunately, introduces obvious performance issues
when compared to real hardware execution.

While emulating the CPU behavior is necessary to virtualize a system, emulating the
behavior of sensitive instructions is not enough to correctly isolate the guest system from the
host, the guest must also execute in an independent memory space. Most modern operating
systems use paging as their memory abstraction, this mechanism is explained in section 2.2.1.
Hence, the guest operating system already uses its own page table to translate from guest
virtual addresses to guest physical addresses as it would in a native environment. When guest
code is executed and memory accesses occur the hardware MMU will translate using the page
table currently loaded in the cr3 register. For the page table to actually translate to the good
machine address, the VMM must provide an alternate page table which contains mapping
from the guest virtual space directly to machine addresses. This alternate page table is called
a shadow page table as the VMM is responsible from transforming the mappings created by
the guest in its page table to meaningful mappings when the code is executed.

The issue with such a technique is the recurring need for the VMM to modify the page
table. To this end, the guest page table structures are marked read-only by the host which
incurs a strong performance penalty forcing a context switch every time the guest page table
is modified.

Guest page table Host page table Shadow page table

Guest virtual
address space

Guest physical /
Host virtual 

address space

Host physical
address space

Figure 4.2: Shadow Page table

Finally, while the management of some devices can be left to the guest operating system,
this is impossible when they are also needed by the host operating system and thus need to be
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shared. Emulating devices is done differently depending on the type of device. For example,
when the communication medium with the device are memory mapped I/O (MMIO), the
VMM needs to create a read-only mapping in place of the device real I/O zone to generate a
page fault when the device is used and take action depending of the guest input. This kind of
emulation is expansive because it causes the VMM to regain control at each interaction with
the device and cannot be avoided in general.

While different techniques either for CPU, memory or device emulation exists and allows
a real software virtualization hypervisor to be achieved, each of them is quite costly in term of
performance, and when combined can incur significant overhead.

4.1.2 Hardware techniques

As virtualization became ubiquitous, the need for faster, safer, virtualization techniques was
tackled by introducing hardware features directly targeted at system virtualization.

The two big manufacturers of x86 64 CPUs, Intel and AMD both have added some hardware
virtualization capabilities to their CPUs. This new hardware was originally presented by
Intel [56] in 2005, and continues to evolve. Both Intel’s and AMD’s versions enhance the
common instruction set with virtualization related instructions and a virtual machine control
structure stored in memory. In Intel’s case the control structure is called Virtual Machine
Control data Structure (VMCS).

CPU virtualization: Intel VT-x and VMCS The VT-x extension adds the aforemen-
tioned VMCS control structure which occupies a four-kilobyte aligned memory page in physical
memory. The pointer to this memory zone is used to reference a given VMCS for any subse-
quent operation on this structure.

There is a direct correspondence between the concept of virtual CPU (vCPU) and the
VMCS structure which defines the behavior of a given vCPU. As such, it is possible and even
required to have multiple VMCS to emulate multiple vCPUs but at any given time, only one
VMCS can be the “current” VMCS for a given physical CPU (pCPU).

To interact with the virtualization capabilities and the VMCS, the Intel VT-x extension
provides a number of new instructions. The first set of instructions is used to change which
VMCS is the current one on the processor executing the instruction as well as make a VMCS
active for a given processor. This first set of instructions contains:

• VMCLEAR: Reset the VMCS to an inactive, not current, not launched state

• VMPTRLD: Make a VMCS current and active for a given processor

• VMLAUNCH: Make the current VMCS launched

• VMPTRST: Return the pointer to the current VMCS
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An “active” VMCS is one which is already attached to a given CPU, this means it can be
loaded again with VMPTRLD on the same processor but not on another. A “launched” VMCS
is one which is running guest code and cannot be launched again before being cleared. The
different states and transitions are represented in figure 4.3.

Figure 4.3: VMCS state machine (Intel documentation [28, chap. 24.1])

When a VMCS is successfully loaded in the processor using VMPTRLD, it can then be inter-
acted with using the second set of instructions:

• VMREAD: Read a field from the VMCS

• VMWRITE: Write some data in a given VMCS field

While the VMCS is a structure stored in memory, it cannot be read or written through
direct memory accesses for two different reasons. Firstly, the format of the VMCS is implemen-
tation specific and thus the real layout of the fields is not disclosed by the Intel documentation.
Secondly, a loaded VMCS is partly cached inside its related pCPU which means a direct mem-
ory access would neither make sure that the content of the processor cache was flushed back
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to memory in case of a read nor the current data in the processor cache was updated correctly
after a write.

When a VMCS is launched using the VMLAUNCH instruction it enters guest mode, called
VMX non-root mode for Intel in opposition to host mode which is called VMX root mode,
the context in which is executed the hypervisor or Virtual Machine Manager (VMM) code.
Entering VMX non-root mode is commonly called a VMEnter event while existing this mode
and thus going back to VMX root mode is called a VMExit. The VMCS contains numerous
configuration options, some of which can trigger a conditional VMExit, for example when a
privileged register is accessed or a privileged instruction is used. Two instructions of the new
VT-x extension interact with the VMCS when already launched:

• VMCALL: Trigger a VMExit (called by guest)

• VMRESUME: Return from a VMExit to VMX non-root mode (called by VMM)

The VMCALL instruction can be called when operating in VMX non-root mode to return
control to the VMM directly, this is called mostly for paravirtualization to let the guest com-
municate with the hypervisor in the same manner as a process in a standard operating system
would call a system call.

The VMCS and new instructions are the hardware mechanisms needed to virtualize the
computation component of a system, the CPU. This solution avoids the need for binary trans-
lation mentioned in section 4.1.1 and reduces the overhead of virtualization as shown in sec-
tion 4.1.3.

Second level page table: Intel EPT The shadow page table technique, while allowing a
VMM to emulate a second level paging system introduces overhead. Mirroring the physical
CPU page table to manage memory mappings, vCPUs obtained through the use of hardware
assisted virtualization, introduce a hardware solution to second level paging.

As explained in section 2.2.1, for physical CPUs, the page table physical memory location
is stored inside the specific cr3 register. This register has its own equivalent in the VMCS
called the Extended Page Table Pointer (EPTP). This pointer contains the address to a second
level page table used to emulate the behavior of the normal page table when in VMX non-root
(guest) mode.

This second level page table is called Extended Page Table on Intel processors and is used
to translate guest physical addresses, equivalent to host virtual addresses, to host physical
addresses which are real hardware addresses.

The EPT system acts in place of the shadow page table doing the translation and allows for
guest physical addresses translation to be isolated from the VMM page table. On top of this
virtualized paging system, the guest is free to use any memory management mechanism, either
segmentation which is common for compatibility reasons when booting, or paging with its own
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page table stored in the VMCS cr3 register and acting as normal when in VMX non-root
mode.

The EPT achieves an important performance gain by replacing the shadow page table in
which every page fault caused by the guest would require a VMExit followed by the VMM
actually doing the mapping, actualizing the shadow table and returning control to the guest.
Evaluation of Intel EPT in the VMware platform has shown up to 48% gains for MMU-intensive
benchmarks and up to 600% for MMU-intensive microbenchmarks [5].

However, this improvement is not free either, because of the nature of the page table system.
A classic page table uses bits of the virtual address to navigate in the different levels of tables
as explained in section 2.2.1. These tables are stored in physical memory and thus each level
down the tree is accessed by getting its physical address from the upper level. With second
level paging, the address stored in the guest page table is in fact a guest physical address which
needs to be translated through the EPT.

EPTP EPT PML4 EPT PD EPT PTEPT PDPT

Guest virtual

EPTP EPT PML4 EPT PD EPT PTEPT PDPT

EPTP EPT PML4 EPT PD EPT PTEPT PDPT

EPTP EPT PML4 EPT PD EPT PTEPT PDPT

EPTP EPT PML4 EPT PD EPT PTEPT PDPT

cr3

PML4

PDPT

PD

PT

TLB

Host Physical

Figure 4.4: Second level translation overhead

As shown in figure 4.4, because the address stored in the guest page table needs to be
translated using the EPT, translation from virtual (guest virtual) to real memory increases
from following 4 pointers in the native page table to a combined 24 pointers in the EPT and
guest page table.
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Behavior of the TLB when using second level translation Fortunately, the second
level translation system benefits from the TLB described in section 2.2.1 in the similar manner
as a regular MMU. When EPT is enabled, the TLB caches two kinds of information, guest-
physical mappings and combined mappings.

Guest-physical mappings are derived from the EPT paging structures, they include guest-
physical translation, mapping guest-physical addresses to memory frames, and guest-physical
paging-structure-cache entries, which link a part of the guest-physical address to an intermedi-
ate paging structures in the EPT. Combined mappings are derived from both the EPT paging
structures and the guest page table located in the cr3 register when EPT and paging are
both enabled. These combined mappings contain cached translations, mapping guest linear
addresses to physical addresses, and combined paging-structure-cache entries which link the
upper portion of the linear address to the physical address of the corresponding guest page
table paging structure.

When EPT and paging for the guest are enabled, combined mappings greatly increase the
efficiency of the translation process by giving a direct guest linear address to host physical
address translation. Moreover, the combined paging-structure-cache avoid going through the
EPT table to retrieve the host physical address of the guest paging structure reducing the
overhead described in figure 4.4, caused by using EPT and paging simultaneously.

As for non-virtualization behavior, when using virtualization extensions, the TLB must be
invalidated when mappings become invalid. In section 2.2.1, the context transition between
guest and host is mentioned as a reason of invalidation. While this is the case with the first
version of VT-x included in older CPUs, it resulted in poor performances because even when
using hardware virtualization, switching between VMX root and VMX non-root mode is quite
frequent.

To avoid this issue, in modern CPUs, a VPID feature similar to PCID was introduced.
When VPID support is activated, TLB entries are tagged using a 16-bit identifier stored
in the VMCS and operations that would invalidate the TLB caches will only do so for the
current VPID. VMX transitions no longer invalidate neither guest-physical mappings nor linear
mappings. Two instructions, INVVPID and INVEPT are used to invalidate TLB cached entries
at a fine grain, mirroring the behavior of INVLPG for the native page table.

The caching mechanism provided by the TLB is really important to offset the cost of
repeated translations through the combination of the EPT and guest page table. Combined
mappings, which directly map a guest virtual address to a host physical address allow a one
hop translation, on par with TLB performances in a native environment.

Managing devices using the IOMMU: Intel VT-d While the Intel EPT provides second
level translation for CPU memory accesses, the devices which are using memory to read or
write data are not concerned by this behavior. In order to provide the same advantages to
devices, a similar system named IOMMU is present in modern hardware.
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An important number of devices use memory mapped input/output (MMIO) to commu-
nicate with the rest of the system, either to share data or for configuration. In the context of
a native system, these devices simply access the physical memory, but in a virtualized envi-
ronment, the guest physical address space is already built on top of a translation mechanism,
the EPT. In this case, when the device tries to access memory, it needs to access the right
guest physical address (not a real physical one) and for isolation reasons, its access needs to
be limited to addresses accessible to the virtual machine.

The solution to this situation is to introduce a step of translation for memory accesses
initiated by devices, called DMA (Direct Memory Access) remapping. In Intel VT-d system,
this is done using a tree hierarchy to associate a translation structure similar to a page table
for each address of the PCI bus on which devices are connected. The root table contains
255 entries, each one referencing a bus ID, and each entry contains the location to a context
table with 255 entries corresponding to the 255 device addresses of a given bus. The IOMMU
thus associates for each unique PCI device address (bus number and device number) a set of
translation structures for the device. This tree hierarchy is depicted in figure 4.5

This answers the two previous needs, translation is done for a given device according
to the translation structure associated with its ID and as a device is only given access to
host physical addresses reachable through these paging structure, a device with non-present
or limited translation structures will not be able to access unwanted zone of the hardware
memory.

AMD-v, NPT, AMD-vi: different names same concepts As the second contender in
the x86 CPU world, AMD CPUs also contain virtualization enhancing hardware. While not
identical, these hardware features are very similar.

AMD-v, the VT-x equivalent, uses a similar structure in place of Intel’s VMCS, the VMCB.
In opposition to Intel’s approach using dedicated instructions to interact with the content of
the VMCS, the VMCB is a memory mapped structure accessible using classic memory accesses,
other functionalities are similar.

AMD CPUs also include a second level translation system, named Nested Page Table
(NPT) which is very similar to EPT, both being directly inspired by the standard x86 page
table structure.

Finally, AMD-vi is the name of AMD’s IOMMU, which while configured differently has
an identical purpose of allowing devices to interact with memory while using second level
translation.

Both software and hardware techniques presented previously are the cornerstone of virtual-
ization as they are needed to simulate an abstract memory and CPU topology for the guest
operating system. This abstract topology guarantees the isolation property and allows the
hypervisor to manage resources independently of the overlying guest operating system.
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Figure 4.5: Intel VT-d tree hierarchy (Intel documentation [29, chap. 3.4.3])

4.1.3 State of the art: Virtualization

Virtualization techniques presented in previous sections are used by the VMM to manage
resources. However, both software and hardware virtualization introduce some overhead which
can lead to bad performances, especially when wrongly used.

This section presents work related to virtualization in general and more specifically on the
interaction of virtualization and NUMA architectures.

Virtualization overhead and common issues

This section describes work related to common issues in virtualized environments, these include
virtualization of interrupts and the Lock Holder Preemption (LHP) or Lock Waiter Preemp-
tion (LWP) issues among others. The solution described in these studies use techniques that
can be classified in three categories. First, hardware assisted virtualization which leverages
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existing hardware mechanisms. Second, paravirtualization when isolation is relaxed to allow
interactions, in any direction, between the VMM and guest OS. Third, transparency when
isolation is relaxed because the VMM shares information with the guest OS. Approaches are
further detailed below, and summed up in table 4.1.

Table 4.1: Related work on virtualization

Proposal Issues Approach

Ganesan et al. [18] – –

DID IPI hardware assisted

Kilic et al. [30] IPI paravirtualization

vScale LHP paravirtualization

I-Spinlock LHP + LWP transparency

Empirical study of performance benefits of hardware assisted virtualization Ap-
plications or operating systems performances can suffer from virtualization as it introduces
its own overhead. However, as explained in section 4.1.2, some hardware mechanisms were
introduced in recent machines to decrease this overhead. Ganesan et al. [18] study the impact
of hardware assisted virtualization on performances.

Because the VMM has to conserve the control on hardware resources, it needs to remove
privileges from the guest operating system. Before hardware assisted virtualization was intro-
duced, CPU virtualization used software techniques such as binary translation. Ganesan et
al. evaluate the overhead of virtualization measuring three different metrics, CPU utilization,
throughput and execution time in three different execution contexts, native (no virtualization),
virtualization with no hardware assistance, and hardware assisted virtualization.

For CPU bound applications, they conclude that with only one vCPU and one instance of
the benchmark the overhead is similar for both software virtualization and hardware virtual-
ization with a 6% decrease in throughput. However, when scaling the number of vCPUs, they
conclude that software virtualization speedup is 0.73 compared to the native linear speedup
while virtualization speedup is 0.96, nearly linear.

For network bound applications, they measure the increase in CPU utilization and conclude
that while both types of virtualization increase CPU utilization, hardware assisted virtualiza-
tion is far superior with an increase of 18% compared to software virtualization at 110%. They
also show that with hardware assisted network virtualization (SR-IOV) throughput is near
native.

Finally, they measure the impact of the IOMMU on disk I/O performances, and show that
while software virtualization presents significant I/O contention due to disk accesses, hardware
assisted virtualization measured contention is near native, instead inducing an increase in CPU
utilization.
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While this work does not in itself address any issue, it shows that hardware assisted virtu-
alization really reduces the overhead of virtualization for CPU and memory but not so much
for I/Os. The overhead of I/O operations being partially due to the overhead of managing
interrupts in a virtualized context.

A Comprehensive Implementation and Evaluation of Direct Interrupt Delivery
– DID As demonstrated by Ganesan et al., the overhead introduced by virtualization has
been largely mitigated by hardware assisted virtualization except for I/Os. Tu et al. [55]
present a method, called DID, for reducing the cost of I/O virtualization by managing interrupt
delivery to the guest vCPUs without involving the VMM. They identify two challenges, directly
delivering interrupt to the guest OS and signal successful delivery to the controller hardware
without involving the hypervisor in both cases.

To this end, Tu et al. leverage the interrupt remapping capabilities of the IOMMU. They
send interrupts directly to the vCPU when its target VM is running else to the hypervisor
which will queue incoming interrupts and deliver them as virtual interrupts when the vCPU
is scheduled again. They also manage timer interrupts and migrate them from core to core
to follow the migration of vCPUs. To avoid the overhead of Local APIC emulation, they use
the hardware assisted virtualization feature known as APICv. By using both the IOMMU and
the APICv, they avoid two causes of VMExit, those caused by devices sending interrupts or
caused by CPU receiving interrupts targeted at their currently running vCPU.

Using this method, they reduce the latency of interrupt invocation from 14 µs to 2.9 µs,
on their Memcached benchmark, VMExit rate is reduced from 97 k per second to less than 1 k
per second.

Tu et al. tackle the issue of virtualizing inter-processor interrupts using hardware assisted
features added in newer generation of CPUs, reducing the number of VMExit and thus the
overhead of virtualization, especially I/O virtualization.

Overcoming Virtualization Overheads for Large-vCPU Virtual Machines As stud-
ied by Tu et al., interrupt virtualization is the cause of an important part of virtualization
overhead. Kilic et al. [30] tackle this issue in the specific setting of virtual machines with more
vCPUs than physically available cores.

Inter-processor Interrupts (IPIs) are a type of interrupt commonly used in operating sys-
tems to let a given CPU trigger the scheduling of some specific task on another CPU. For
example, IPIs are used in Linux to flush the TLB caches of others CPU when changing map-
pings (TLB shootdowns). However, while processing IPIs in a non-virtualized context is fast,
when running inside a VM, IPIs between vCPUs must be emulated which is slower. This
overhead scales with the number of vCPUs of a VM.

Kilic et al. also treat the issue of double scheduling, which arises because the VMM scheduler
and the guest OS scheduler are unaware of each other decisions and can thus lead to a vCPU
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migration canceling the scheduling choice of the guest OS for a thread.

In order to solve these issues, Kilic et al. propose a paravirtualization approach in two
steps. First, they dedicate a vCPU per thread, pinning the thread in the guest OS (using
paravirtualization), this solves the double scheduling issue as well as reduces the number of
IPIs used by the kernel to implement work stealing. Second, they replace IPIs used in TLB
shootdowns by a hypercall which instructs the VMM to flush the TLB in place of the guest
OS. Using these methods, they demonstrate that running a virtual machine with 255 vCPUs
on a machine comprising 6 pCPUs adds little to no overhead compared to running one vCPU
per pCPU.

In the specific case of virtual machines with an important ratio of vCPU per pCPU, the
virtualization of interrupts takes another dimension, Kilic et al. propose a paravirtualization
approach to reduce the number of such interrupts.

vScale: automatic and efficient processor scaling for SMP virtual machines To
protect critical sections with shared data in the code, operating systems use synchronization
primitives, such as spinlocks. A spinlock is a busy-waiting primitive, meaning the thread which
does not acquire the lock (the waiter) waits on a loop checking the lock state.

In a native Linux system, both the lock holder and waiter cannot be preempted to avoid
blocking the system. If the lock holder was preempted, it could not release the lock and
thus would make every waiting thread waste CPU cycles for a long duration. However, as
mentioned earlier, the VMM vCPU scheduler and the guest OS scheduler are unaware of each
other. Thus, in a virtualized environment, vCPUs can be preempted by the VMM scheduler
when holding the lock, this is known as the Lock Holder Preemption problem.

According to Cheng et al. [11], the Lock Holder Preemption issue is caused by the operating
system not knowing the real share of compute power it possesses. Because all virtual machines
on a server share the CPUs, and the number of vCPU of a given VM is fixed, this makes a
VM’s pCPU allocation dependent of the other VMs’ CPU consumption.

Cheng et al. thus propose to make the guest operating system use a varying number of
vCPUs which represent its real consumption. To the contrary of standard hypervisors changing
the time share of vCPUs to increase or decrease available compute time for a VM, they keep
constant time slices. They provide a kernel module to force the guest operating system to
reschedule threads when changing the number of vCPUs for a given VM, thus avoiding a
vCPU to be preempted while holding a lock.

The Lock Holder preemption issue is caused by the opacity introduced by virtualization.
Cheng et al. use paravirtualization to coordinate changes in the amount of computing power
available for a virtual machine with its guest scheduling.

The lock holder and the lock waiter preemption problems: nip them in the bud
using informed spinlocks (I-Spinlock) Spinlocks can be implemented using a number
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of methods. One of them, called ticket-lock consists of giving an always increasing value, the
“ticket” to the thread trying to acquire the lock and give the lock to the one holding the
smallest value. When the holder releases the lock, the current allowed value is bumped by one,
allowing the next in line to hold the lock.

While this implementation has the advantage of being fair, it can lead to a slight variation
of the Lock Holder Preemption problem discussed earlier. When a thread tries to acquire
the lock, this thread obtains a ticket. If this ticket does not hold the smallest value but
is preempted, all ticket holders with greater values will be forced to wait for this thread to
acquire and release the lock before getting their turns. This create a Lock Waiter Preemption
problem in which the previous lock holder has released the lock but the next in line blocks the
whole lock by being preempted.

Taebe et al. [50] propose an implementation of the spinlock called Informed Spinlock (I-
Spinlock) which only allows a thread to acquire a ticket if its time-to-preemption is sufficient to
wait for its turn, enter, and leave the critical section. In order to implement this solution, they
propose to share the remaining vCPU scheduling quantum with the guest operating system.
When trying to acquire the lock, a thread first compares the remaining time slice of its vCPU
with the time required to wait and execute the critical section.

This approach uses transparency to inform the guest operating system of the remaining
quantum for a given vCPU, avoiding spinlocks inside the guest to suffer from both Lock Holder
Preemption or Lock Waiter Preemption issues.

Studies presented before try to solve commonly seen issues in virtualized environment such
as virtualization of interrupts, or the lock holder/waiter problems, which are specific cases of
double scheduling. Presented solutions most of the time reduce the opacity between the hyper-
visor and the guest operating system, either by sharing some information or even introducing
some form of communication through paravirtualization.

Virtualization on NUMA architectures

While virtualization inherently creates issues, combining a virtualized environment on top of a
NUMA architecture introduces different issues, closer to those detailed in section 2.1.2. Most
of the time, the studied problem arises either from contention on different resources, LLC,
memory controller, interconnect, or bad locality of accesses. Because of the opacity induced
by the virtualization layer, most approaches use a mix of performance counter monitoring
(getting information without cooperating with the guest) or paravirtualization (cooperating
with the guest). Related work detailed below are summed up in table 4.2. In table 4.2, with no
further indication, contention means contention for LLC, interconnect and memory controller,
PV stands for paravirtualization, “delegated” means that issues are delegated to the overlying
operating system and applications.
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Table 4.2: Related work on virtualization and NUMA

Proposal Issue(s) Managed Resource(s) Approach

AQL Sched LHP + contention (LLC) vCPU monitoring

Merlin contention vCPU + memory monitoring

BRM contention vCPU monitoring + PV

Liu et al. [33] contention + locality memory monitoring(PV)

vProbe contention vCPU monitoring

Xen+ contention + locality memory monitoring + PV

XPV delegated vCPU + memory PV

Application-specific quantum for multi-core platform scheduler – AQL Sched In
the same manner as the operating system scheduler, the VMM scheduler is responsible for
managing compute resources by scheduling vCPUs. According to Taebe et al. [51], an impor-
tant parameter of a scheduler is the quantum length, as a higher quantum length penalizes
latency-critical applications but favors memory intensive applications by reducing cache con-
tention. They thus claim that a fixed quantum length cannot benefit all applications and
propose a scheduling policy for hypervisors using variable quanta, depending of the needs of
the executed applications.

Their proposal, AQL Sched, assigns an application type to each vCPU, which can evolve
during its lifetime, and clusters vCPUs of the same type in a pool of pCPUs. They identify three
types of applications with different patterns and related issues. First, CPU-bound applications
which intensively use compute power and memory, these are susceptible to cache contention.
Second, I/O intensive applications, which generate intense I/O traffic. These applications
use interrupts to perform I/O requests and thus fail to use their CPU quantum while waiting.
Third, concurrent applications which are composed of multiple threads and need to synchronize
with one another, these are susceptible to the lock holder preemption issue mentioned before.

AQL Sched identifies the type of application among the aforementioned three using four
parameters, the number of I/O requests, the frequency at which they use spinlocks (detected
by intercepting the PAUSE instruction), the total number of LLC requests, and the number of
LLC misses among those requests.

Depending on the LLC miss metrics, AQL Sched determines which vCPUs are running
either cache friendly or cache trashing applications. The first step is to separate these two
types of applications by clustering the first on a pool of pCPU and the other on another
pool. Then, AQL Sched assigns quantum lengths to the vCPUs. CPU/memory intensive
types are given an important quantum length (90ms), vCPUs of the type “I/O intensive” or
“concurrent”, a small quantum length (1ms), finally, quantum agnostic trashing applications
are given a medium quantum (30ms).

Taebe et al. tackle the issue of contention by classifying vCPUs behaviors using monitoring,
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and segregating vCPUs into different pools of pCPUs. They also reduce occurrences of the
Lock Holder Preemption problem by changing the quantum of vCPUs depending on their
classification.

Merlin: Application- and Platform-aware Resource Allocation in Consolidated
Server Systems As virtualization overhead decreases, the trend in datacenter is to collo-
cate a maximum of services on a single machine using virtualization. In order to maximize
machine utilization, efficient workload consolidation has become an important part of hyper-
visors. Because machine architectures are more and more complex, a change in one resource
allocation can have an indirect effect on another type of resource. For example, changing the
compute or memory share may lead to an increase in cache usage.

In order to limit these issues, Tembey et al. [53], propose the Merlin resource allocator which
manages resources by taking all the different resource dimensions into account. Merlin seeks
the best possible resource allocation that also avoids hurting other applications performances
as a side effect.

Merlin groups set of applications in virtual platforms VPs and arbitrates VP resource shares
by allocating resources while minimizing the differences between performance degradation of
all applications. This leads to performance degradation being fairly shared between VPs.

They proceed in three steps, first, they evaluate the relative importance of each resource for
each VP. Some applications may suffer greatly from cache contention or rather from memory
contention. These metrics are evaluated from data provided by performance counters. Second,
Merlin allocates the initial resources for all applications taking into account their specific
needs. Third, using the performance counters, Merlin monitors the evolution of resource usage
of each VP. Finally, Merlin adjusts the resources placement by choosing the cheapest possible
reconfiguration method, among the following ones (from lowest resource consumption to highest
consumption): changing CPU time shares, migrating vCPUs inside a NUMA node, migrating
vCPUs from a NUMA node to another, migrating memory pages across nodes.

This proposal uses monitoring to evaluate pressure on different resource types and thus
reduce contention through balancing of vCPUs and memory.

Optimizing virtual machine scheduling in NUMA multicore systems – BRM As
described in section 2.1.2, resource management on NUMA machines must consider multiple
architectural specificities, such as cache coherency or memory location to avoid the increased
latency of remote accesses or congestion on the interconnect.

Because hypervisors have little information on the overlying operating system and appli-
cations, standard techniques described in section 2.3 are not applicable directly.

Instead Rao et al. [45] propose to characterize aforementioned problematic behaviors using
a metric based on the penalty incurred by accessing the “uncore” memory. This metric,
the uncore penalty, represents the number of stall cycles due to communicating on the network
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outside the core. This number is defined as the number of L2 misses multiplied by the cost of an
L2 miss, and represent the overhead due to a wrong memory placement forcing communication
outside of the core.

Rao et al. exploit this metric by proposing a Bias Random vCPU Migration (BRM) al-
gorithm to adjust the vCPU-to-core assignment. This algorithm is composed of three steps.
First, evaluate the uncore penalty using hardware performance counters. Second, identify can-
didate vCPUs for migration. This is achieved by modifying the guest operating system to
notify the hypervisor when a thread asks the kernel for a specific scheduling policy using the
sched_setaffinity system call. Third, migrate a vCPU, randomly choosing the destination
but with a bias toward the node which would minimize the uncore penalty.

The randomness in the migration decision statistically avoids simultaneously moving two
competing or communicating vCPUs, which would reproduce the same situation after migra-
tion but on different nodes.

To sum up, Rao et al. introduce a metric based on monitoring data to reduce contention
on the LLC, interconnect, and memory controller by balancing a subset of vCPUs. They use
paravirtualization to detect which vCPUs are susceptible to need a special scheduling policy.

Optimizing virtual machine consolidation performance on NUMA server architec-
ture for cloud workloads To enhance consolidation performances on modern machines,
correctly managing these machines architectures is essential. For this reason, Liu et al. [33]
study memory placement for NUMA architectures in virtualized cloud workloads. To this
end, they distinguish four sources of overhead, LLC contention, memory controller congestion,
interconnect congestion and remote memory access latency.

Their NUMA-aware memory management system estimates the memory access pattern
using three metrics obtained through performance counters, the rate of instruction execution
(IPC), the L3 cache hit rate and the L3 cache miss rate. These performance counters are
updated by the guest through paravirtualization. Using these three metrics, they quantify the
overhead relative to each of the four types. LLC contention is evaluated from the highest value
of LLC hit rate among vCPUs of a VM. Memory controller congestion is determined using both
cache hit rate and miss rate, as with a constant cache hit rate, cycles lost by cache misses are
directly linked to memory controller congestion. Interconnect congestion is computed using
the L3 cache miss rate of all the CPUs on a remote node. Finally, remote memory access
latency is computed using the IPC ratio between local and remote accesses.

Using the estimated behavior of each memory zone, they manage memory with two different
mechanisms, for allocations, the buddy allocator chooses nodes with the smallest overhead
(preferring local node). During execution, they associate their overhead metric with each entry
of the hypervisor second level page table. When a second level translation violation (equivalent
of page fault) occurs, if the overhead for faulting memory zone exceeds a predefined threshold,
it is exchanged with a page of another node with a lower estimated overhead.
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Liu et al. use paravirtualization to collect metrics. They include this information in their
hypervisor page table to reduce contention and locality when allocating pages for the guest
system.

vProbe: Scheduling Virtual Machines on NUMA Systems The management of
NUMA resources in virtualized environments is made more complex by the opacity intro-
duced by the virtualization layer. As mentioned, some approaches use a black-box approach
such as Rao et al. [45], others use paravirtualization such as Liu et al. [33].

However, according to Wu et al. [60], using only the uncore penalty metric, Rao et al.
treat all performance-degrading factors equally which prevent the ensuing optimization to be
precisely targeted at a specific factor. To solve this issue, and avoid breaking the isolation of
the virtualization layer as Liu et al. do, they propose vProbe a NUMA-aware vCPU scheduler.

Similarly to other proposals, vProbe uses hardware counters to gather information on the
running virtual machines, more specifically, about LLC accesses and the node containing the
higher number of pager regularly accessed by a given vCPU.

vProbe classify vCPUs into three categories depending upon their LLC access pattern,
akin to AQL Sched [51]. LLC trashing vCPUs (LLC-T) cause many LLC misses, LLC fitting
vCPUs (LLC-FI) intensively use the LLC but have a low LLC miss rate when there is no LLC
contention, LLC friendly vCPUs (LLC-FR) are not impacted much by the LLC. Using this
information, they introduce two different mechanisms to favor NUMA-friendly placement of
vCPUs.

First, the vCPU periodical partitioning mechanism periodically reassigns all the memory
intensive vCPUs (LLC-T and LLC-FI) to each node evenly, preferring their local nodes. This
mechanism repeatedly selects the node with the least amount of memory intensive vCPUs
assigned and adds an LLC-T vCPU, when no LLC-T remain, it does the same for LLC-FI
vCPUs. This intends to reduce shared resource contention while preserving locality.

Second, to avoid the default scheduler of the hypervisor reverting changes introduced by
the vCPU periodical partitioning algorithm, vProbe adds its own NUMA-aware load balancer.
When a pCPU is idle, it steals work from other pCPUs by checking their run-queues, starting
first by the pCPUs from the local node, preferably those with the highest workload. In order
to avoid disrupting the balance of LLC contention, the stolen vCPU is chosen with the smallest
LLC access footprint.

To conclude, vProbe reduces contention by favoring NUMA-friendly placement for vC-
PUs using different metrics. These metrics are obtained through monitoring using hardware
performance counters.

An interface to implement NUMA policies in the Xen hypervisor – Xen+ Multiple
studies focus on enhancing performances on NUMA architectures as detailed in section 2.3.
In particular some describe new heuristics to manage NUMA resources at the OS level such
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as Carrefour by Dashti et al. [13]. Moreover, previous research showed that, for virtualized
environments executing on NUMA architecture, the main issue is the coordination between
the hypervisor and the guest operating system.

In their work, Voron et al. [58] propose to reduce the overhead of virtualization on NUMA
architectures by implementing resource management policies already existing in native environ-
ments inside Xen [2]. Their implementation contains four different policies. First-touch, which
is the default memory allocation policy in Linux, allocates the backing memory of a virtual
mapping the first time it is accessed on the node containing the accessing thread. Round-4K
also part of Linux, allocates pages using a round-robin policy. Round-1G is the default policy
of the Xen hypervisor, it allocates blocks of one gigabyte using a round-robin policy if possi-
ble, if the memory must be fragmented, it falls back to smaller sizes. Carrefour is the policy
proposed by Dashti et al. and originally implemented in Linux. In Xen+, the policy can be
chosen by the guest using a hypercall.

Policies are implemented by moving memory using the hypervisor’s second level transla-
tion. When a page is allocated by the guest operating system, it signals the VMM using a
dedicated hypercall, allowing the VMM to correctly place the page according to the chosen
policy. Conversely, when a page is released by the guest operating system it signals the hy-
pervisor which in turn changes its own mappings. This last case allows detecting page being
reused after being released in particular for the first-touch policy.

Voron et al. implement different NUMA policies which can either reduce remote accesses or
balance accesses to reduce congestion of memory controllers. The policy is chosen by the guest
operating system through paravirtualization. The Carrefour policy, ported from the original
Linux implementation uses monitoring to determine placement.

When eXtended Para - Virtualization (XPV) Meets NUMA When the hypervisor
migrates vCPUs or memory, it changes the topology on which the virtual machine executes.
However, in classic hypervisors, due to the opacity between the hypervisor and virtual ma-
chine, guest operating systems cannot take this virtual topology into account when managing
resources.

Bui et al. [9] propose a new design to manage NUMA topologies in a virtualized con-
text, which dynamically informs the guest operating system of the virtual topology offered to
the virtual machine. This allows guest operating systems and NUMA-aware applications to
reconfigure their behavior depending on the underlying changes advertised by the hypervisor.

Their method, “eXtended Paravirtualization” (XPV), is based on a split-driver. The hy-
pervisor part of this driver is responsible for updating the NUMA topology presented to the
guest when modifying vCPU or memory placement. The guest part of the driver retrieves the
NUMA topology exposed by the other part and updates its internal structures and resource
placement according to the new topology. However, this method forces to modify the guest
kernel memory allocator and scheduler to take the information of the NUMA split-driver into
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account. A strictly increasing counter representing the version of the NUMA topology allows
to detect changes in the dynamic topology.

XPV uses paravirtualization to present the guest operating system and applications a
dynamic map of the NUMA topology, guests operating systems and applications are responsible
for using this information wisely.

Presented studies address the issues caused by virtualization, in general, and more specifi-
cally when running on NUMA machines. The opacity introduced by the virtualization layer is
often the cause of these issues, explaining why these methods often rely on monitoring to cir-
cumvent the isolation. Moreover, the advent of efficient hardware assistance for virtualization,
as described in section 4.1 reduces the cost of virtualization in general. While some propose
to use transparency to help the operating system or applications better manage the specifics
of the architecture, this often forces modification in the code of either the OS or both the OS
and applications.

4.2 A driver for NUMA architectures: Scalevisor

Studies described in section 4.1.3 show that monitoring is a good solution to avoid opacity
related issues when dealing with virtualization on NUMA architectures. However, our proposal
is not a hypervisor in the common sense as it uses virtualization techniques to extract the role
of managing resources from the operating system but does not pretend to guarantee any other
classic properties of hypervisors.

First of all, this limits the features which need to be implemented and thus makes Scalevisor
lightweight, in term of both the size of the code base and the execution behavior.

Second, as Scalevisor does not aim to support multiple guests, our only focus is on isolating
our only guest operating system from the hardware NUMA topology. We can give full access
to devices not used by our system. The opacity in our approach is reduced to presenting the
guest with a simpler topology.

This section first presents how this abstract topology is built, how it is used to manipulate
compute and memory resources underneath the guest operating system, and finally, describes
Scalevisor internal structures. We conclude with some teachings about our approach.

4.2.1 Presenting an abstract memory/CPU topology

By presenting an abstract topology to the overlying operating system, Scalevisor allows the
operating system resource management to stay the same regardless of the real hardware topol-
ogy.

Virtualization techniques are used to provide a simple, linear view of the memory to the
operating system and a pool of computation units, vCPUs. To this end, we first need to
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discover the topology of the real hardware. Multiple ACPI tables include information about
the architecture of the machine, the number of CPUs, the size of RAM and the distribution of
both of these in the different NUMA nodes.

Scalevisor uses these tables to determine the topology at boot time and reserve a part of
the resources necessary for its operational needs. The rest of the resources is used to fabricate
the abstract memory and CPU view given to the overlying operating system. As shown in
figure 4.6, this mechanism transforms the distributed topology of NUMA architecture into a
linear SMP-like architecture in which the guest physical memory and CPU pool are composed
of the multiple units of each NUMA nodes not used by Scalevisor.

Memory 1

CPU 1.1 CPU 1.2 CPU 1.3

Memory 2

CPU 2.1 CPU 2.2 CPU 2.3

vCPU 1 vCPU 2 vCPU 3 vCPU 4

Guest physical memory

translation table Scalevisor

Figure 4.6: Abstract topology

While generating this abstract topology is necessary for the overlying operating system
needs, its not sufficient to dissimulate the actual distribution of resources. Most operating
systems contain a topology discovery subsystem not unlike the one contained in Scalevisor,
and would thus either not function correctly if not given the needed ACPI tables or try to use
the real topology if access to the real tables was granted. This is solved by generating ACPI
tables which correspond to the abstract topology exposed to the guest system and removing
from the guest memory space any table which would hint at a NUMA architecture.

The actual creation of the guest physical space is done using the EPT mechanism (second
level address translation for Intel) available with modern CPU hardware virtualization. As
explained in section 4.1, this table allows guest physical addresses to be translated to host
physical addresses. The exposed CPUs are vCPUs controlled by the VMCS data structure
presented in the same section.
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4.2.2 Managing memory migration

The abstract topology is used by the operating system to allocate memory and schedule tasks.
As explained before the ideal abstract topology is one were the physical topology does not
play a role at all. To the opposite, our system needs to correctly manage memory placement
in order to reach better performances.

Scalevisor already uses the EPT to create this abstract topology and thus uses it to manage
memory migration.

In order to migrate the memory, the targeted page is marked read-only in the corresponding
EPT structure to forbid any write access, thus making it safe to copy it to the new location. If
a write access would occur during the migration process, it will cause a VMExit for the vCPU
intending to write, and the vCPU will be preempted until the migration process is over. When
the page is copied to the new memory location, the mapping in the EPT structure is changed
to match the new page location as shown in figure 4.7.

If an EPT violation occurs due to the page being marked read-only, the corresponding TLB
entry is invalidated decreasing performances, but as the mapping is changed, the TLB entry
will need to be invalided anyway. As explained later in section 4.2.3, if the hardware supports
VPIDs, others TLB caches are not modified by the VMExit do to an EPT violation.

These procedures are correct when migrating memory which is only used by CPUs. When
some memory is used to interact with the I/O subsystem, and more specifically when it is
the source or target of a DMA operation, migrating the page would make the current I/O
operation fail or the migrated data incomplete.

In current operating systems, avoiding this issue is done by keeping a list of ongoing I/O
operations, but when using the IOMMU to give control over some device to the guest operating
system, it becomes impossible to monitor I/O operations, thus making it probably impossible
to implement correct memory migration efficiently. In our prototype, we do not handle this
problem: if Scalevisor migrates a page while it is written by a device, the write performed by
the device is lost.

4.2.3 Managing CPU migration

Managing CPU migration is akin to scheduling thread except for the VMCS structure which
is located in memory and thus also benefits from memory locality. While the vCPU structure
and thus the execution context will move, from the operating system point of view, the OS
thread will still execute on the same CPU, allowing an execution context to be moved without
the overlying OS noticing. As explained in section 4.1.3, for classic virtualization purposes,
this opacity tends to diminish performances of virtual machines because of double scheduling.
However, by exposing a flat virtual topology, the operating system will have less reasons to
move threads around and thus double scheduling occurrences will remain uncommon.
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Figure 4.7: Migration using EPT mappings

Several operations are constitutive of migrating a vCPU. Firstly, the vCPU needs to be
stopped as a result of a VMExit. It is thus possible to use any cause of VMExit to reschedule
a vCPU on another physical CPU, but in order to have a reliable frequent source of VMExit,
a specific VMCS option named “VMX preemption timer” can be used. This option allows
the VMM to set a counter at a given value which will be decreased at a rate proportional to
that of the time stamp counter (TSC, counts the number of CPU cycles). When the counter
reaches zero, this will automatically cause a VMExit, thus allowing the VMM to perform
needed management operations regularly.

When the physical CPU on which the vCPU is currently running exits VMX non-root
mode, the VMM takes control and can either call VMRESUME if no changes are needed or choose
to migrate the vCPU by calling VMCLEAR on the current physical CPU and VMPTRLD on the
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destination CPU. The vCPU is then ready to be launched again using VMLAUNCH as represented
in figure 4.3.

While migrating vCPUs is needed to make better use of a given machine depending of its
architecture, it has performance implications.

Firstly, while VMX transitions do not force a TLB flush neither for guest-physical nor linear
mappings when VPID is enabled (see section 4.1), the TLB caches are per CPU caches and
thus not shared across different physical CPUs. This means whether VPIDs are supported and
enabled in VMCS or not, migrating a vCPU on a new physical CPU will make it run without
the new TLB caches containing the previously used mappings.

Secondly, the VMCS memory region is used to store data from the vCPU state, and even
though some of its content is cached directly in the physical CPU on which the VMCS operates,
the interaction between this memory region and the corresponding physical CPU must be
efficient. Thus, migrating the vCPU to another NUMA node can suffer from any of the
memory issues introduced in section 2.1.2, such as bad locality or causing congestion on the
interconnect. Moreover, migrating vCPUs frequently can cause these same issues and thus
greatly reduce performances for the guest operating system.

Finally, same as physical CPUs using interrupts to communicate with other hardware,
vCPUs need to be able to send and receive interrupts. When vCPUs are pinned on their
attributed physical CPU and never migrated, most interrupts can just be directly received
by the CPU without leaving VMX non-root mode and without VMM interaction. If vCPUs
are to be migrated, interrupts must be correctly directed to the target vCPU. This can be
achieved by making the VMM reprogram each interrupt attached to the previous physical
CPU which targets the migrated vCPU to be assigned to the destination CPU. However,
changing targets for multiple interrupts is neither atomic nor efficient, thus using interrupt
remapping capabilities of the IOMMU to perform dynamic interrupt migration is better as
described by Tu et al.

4.2.4 Scalevisor internals

Scalevisor can be divided in two main parts. First, an operating system part, as the project
needs to be able to boot on the target hardware. This includes the kernel which manages
the boot process, memory allocation and driver communication, as well as drivers needed to
interact with the minimum necessary hardware (timers, ACPI, IOMMU). The second part is
composed of the “resources driver” capabilities and requires a working set of virtualization
features and the vCPU scheduling and memory migration features. Figure 4.8 represents these
different parts of Scalevisor grouped into the four logical groups: kernel, drivers, virtualization
and scheduler.

Scalevisor’s kernel Although called minimal, because it contains only the minimum set of
functionalities to boot and run, the kernel is quite complex, as any operating system, even
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Figure 4.8: Software architecture of Scalevisor

minimalist, must deal with numerous hardware parts or behaviors.

Scalevisor is different from a classic hypervisor because it has been designed to manage
resources in NUMA architectures. In Scalevisor, the architecture is represented by a Domain
structure which encompasses all the information about a NUMA domain. This structure
contains the CPUs assigned to a domain, the memory regions which belong to the given
domain, and a number of methods which interact with the domain. Each domain has its own
memory pool composed of the free memory regions and its own local memory allocator.

The aforementioned CPU structure contains all the logic used to control the CPU, electing
a thread or executing a remote task using an Inter-Processor Interrupt as a trigger. It also
abstracts vendor specific functionalities.

Domains and CPUs are globally managed through a super structure called Machine which
contains most other non-NUMA related hardware, access to the console, and more importantly
drivers.

For retro-compatibility needs, booting on a modern bare-metal machine means booting
in real mode (16-bit, segmentation memory management scheme) and switching to protected



4.2. A DRIVER FOR NUMA ARCHITECTURES: SCALEVISOR 87

mode then long mode. Page table and paging memory need to be set up during these steps,
more specifically when transitioning from protected mode to long mode as shown in figure 4.9.

Figure 4.9: Operating modes of x86 64 architecture (AMD documentation [1, chap. 1.3])

During the process of booting, the Machine super structure is progressively filled using
information from various sources while corresponding hardware is initialized.

At first, a fake domain is built using memory ranges given by the bootloader, this domain
and the Bootstrap Processor (BSP) are used by our Machine structure to discover the rest
of the topology. The number of CPUs and real memory ranges are then discovered using
ACPI tables, Multiple APIC Description Table (MADT) and System Resource Affinity Table
(SRAT) respectively, leading to a correct creation of Domain structures. This step concludes
the bootstrapping of our kernel which is now able to correctly allocate and map memory but
still uses the BSP as its sole processor. In order to wake up the other processor, called Auxiliary
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Processors (APs), we need to use Inter-Processor Interrupts (IPIs) which are managed through
the local APIC.

Device drivers The local APIC is the part of a core which is responsible for sending and
receiving interrupts for this given core. This piece of hardware must be configured before it can
be used for a variety of purposes, such as having a basic method of counting elapsed time, or
communicating with other processors. The booting process effectively starts on one processor,
the BSP, while the other processors, APs are woken up when receiving a specific interrupt sent
from the BSP local APIC.

The second part of Scalevisor, device drivers, includes this local APIC, but also the High
Precision Event Timer (HPET) which gives a more reliable and precise timer or the IOMMU
which is used latter by the virtualization subsystem. Currently when multiple IOMMUs are
present in a physical machine, the virtual machine cannot benefit from hardware assisted
interruption remapping. When using complex topologies in state of the art hardware, multiple
IOMMUs are often present and manage different devices. Once again, our IOMMU structure
abstracts the differences between Intel and AMD IOMMUs.

The initialization of the IOMMU device is done by reading a specific ACPI table, the DMA
Remapping Reporting table (DMAR) which indicates which hardware unit is located at which
physical address, and when multiple IOMMUs are present which devices is a given IOMMU
responsible for.

Virtualization For virtualization management, the architecture follows a design similar to
the kernel part. The Guest structure contains the memory ranges available for a given guest
and the related EPT mappings and IOMMU mappings. This structure is linked to one or more
vCPUs represented by a same-named structure.

The Vcpu structure contains all the hardware CPU virtualization related logic and abstracts
vendor specific configurations. For Intel vCPUs, this structure populates and controls the
VMCS by providing a set of higher level methods to access fields. It also enforces hardware
constraints by checking the global state of the VMCS is coherent with the vendor specification,
which currently represents 246 different constraints.

The Vcpu is responsible for managing the different VMExit conditions using a set of cas-
cading handlers, thus abstracting virtualization instructions such as VMRESUME, VMCLEAR or
VMLAUNCH.

This layer is responsible of creating the abstract topology presented in section 4.2.1. The
first step toward presenting a linear memory abstraction is to intercept the classic detection
features used by the guest operating system to determine the topology.

The main interface to detect features supported by the CPU is through a call to the CPUID

instruction, this instruction is thus intercepted and emulated using a Vcpu handler. Most of
the values are returned without being modified, but some settings need to be. For example to
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disable support for some instructions which cannot be directly executed because they modify
privileged state but cannot be emulated either. This is the case of the XSAVE instruction which
is shown as not available when queried through the CPUID interface.

When booting, the guest operating system tries to discover the memory topology by in-
teracting with the BIOS. These functions are accessed by setting some values inside the CPU
general registers and raising a software interrupt using the INT instruction. Multiple BIOS
functions exist [7] to discover the memory map, linked to interrupt number 15 and identified
by different values of the eax register, such as 0xe801, 0x88 or 0xe820.

The BIOS function bound to interrupt number 15 with eax = 0xe820, is the most common
and precise method of discovering memory. It returns a list of memory zones, in which zones
are described by their starting address, length and memory type (usable RAM, not usable,
ACPI memory).

In order to present the guest operating system with an abstract memory topology, Scale-
visor intercepts the interrupt number 15 and emulates the behavior of the BIOS for the e820
interrupt. If done correctly, other methods are not used by Linux to further confirm the results
obtained with the e820 method. Therefore, we only have to intercept the e820 method which
simplifies the implementation of our system.

Virtual scheduler The virtual scheduler is the part of Scalevisor which should control how
resources are allocated and managed for the guest operating system. Managing resources can
be seen as a three step process.

First, the scheduler accumulates data from the running guest operating system through
different sources such as Intel’s Precise Event Base Sampling (PEBS) for which Scalevisor has
an interface. This interface produces raw data about which memory address is actively used
by which CPU, or which memory address causes cache misses. The scheduler must then decide
whether a given resource should be migrated and where. Finally, it actually migrates the given
resource.

The memory migration system first allocates memory from the wanted domain correspond-
ing allocator and uses the Guest structure described earlier to replace EPT mappings for a
given memory range. As explained in section 4.2.2, the EPT mapping is changed to read-only
during the copy and in case a write operation occurs, the vCPU will be stopped until the end
of the procedure.

As for the vCPU migration, Scalevisor implements kernel-level threading, which allows a
vCPU to be started in a thread context. When a window occurs during which the vCPU is
stopped, the corresponding thread is then elected through an Inter Processor Interrupt (IPI)
on the target CPU and the vCPU structure naturally resumes executing the previous context
through a call to VMLAUNCH.

While the data collection of the first step and the mechanisms needed to migrate resources
in step three are implemented, the decision mechanism, mainly based on heuristics has not
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been implemented due to a lack of time.

4.2.5 Assessments

While heuristics haven’t been implemented due to a lack of time, this approach of a driver for
resource management is rich in findings. Scalevisor contains 20 k lines of code. It implements
a large working set of functionalities: system level memory management, system interrupts,
vCPU and VMCS structure, guest level memory management and masked topology. Scalevisor
is able to boot a Linux guest entirely, but some parts are not mature enough to run evaluations.

This is especially the case for devices such as the IOMMU, whose complicated specification
brought to light the impossibility for an individual or a small team to sufficiently master modern
hardware. Nowadays, modern computer hardware includes a lot more devices with each its own
quirks making development of a full operating system very complicated, even more in the case
of a hypervisor which must leverage additional functionalities and specific hardware to reach
satisfying performances. The complexity of hardware does not only affect devices, even CPUs
became quite complicated, Intel’s Software Developer’s Manual [28] contains approximately
five thousand pages of documentation and does not even include devices related information
such as the IOMMU documentation or ACPI specification.

In general, it revealed that implementing a complex system such as a hypervisor in the
constrained time of a PhD thesis is close to impossible, especially without a full team dedicated
to the project.

Future work may build upon the already working set of functionalities, using the existing
implementation to produce a viable test bed for experiments on heuristics.
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Conclusion and future work

Their important computation power has lead multicore architectures and NUMA in particular
to become ubiquitous in context where this power is required. Nowadays, High Performance
Computing applications, data analysis or artificial intelligence are all benefiting from these
new architectures which are frequently encountered in datacenters or experimental setups.
However, the NUMA architecture increases the computational power by making the internal
machine topology more complex, with multiple CPUs and memory controllers.

This thesis studies how to manage resources in order to increase parallelism in NUMA
architectures. This work focuses on two different approaches at two different levels in the
software stack.

First, increasing CPU and network parallelism through automatically overlapping com-
munication and computation in user space. This approach, Commmama, shows that using
memory protection can enforce the constraints of the MPI specification while still increasing
the parallelism by ensuring background progress for communications. Evaluation shows that,
without having to modify neither the application code nor the MPI runtime, Commmama
greatly increases the overlapping ratio between communication and computation. When the
application time is balanced between communication and computation phases, the speedup
obtained through this method reaches up to 73%.

Second, introducing an intermediate layer between the hardware and the operating system,
Scalevisor aims to manage the complex topology of the machine. To this end, Scalevisor uses
virtualization techniques to present an abstract topology to the overlying operating system.
This additional software layer aims to ease the creation of new resource management policies
by extracting architecture specific policies outside of the operating system. While the current
implementation of Scalevisor is incomplete, it includes most of the needed functionalities of
a standard operating system and implements enough of the virtualization features needed to
run a guest Linux system. Because it is not mature enough, this work lacks evaluation to
present the impact of Scalevisor on performances. However, working on Scalevisor revealed
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that implementing such a system using modern virtualization hardware is close to impossible,
in the time constraint of a PhD thesis. This reinforces our views that the complexity of current
and future hardware needs to be abstracted using an approach such as Scalevisor.

Future work

Both Commmama and Scalevisor need further study in order to provide their full potential.
This section presents three possible improvements for Commmama, one related to evaluating
the effect on other primitives, and two which focus on decreasing the overhead of the memory
protection layer. This section then follows with three possible improvements for Scalevisor,
finishing implementation of missing features, resource management heuristics, and an hinting
interface to better manage applications with unusual behaviors.

Commmama As far as Commmama is concerned, while the maximum overlapping ratio ob-
tained depends on the ratio of communication and computation in the application, we showed
that for balanced application, Commmama was able to almost completely overlap communi-
cation with computation. Thus, most of the refinement targets identifying and reducing the
causes of overhead in Commmama.

First, while our evaluation of point-to-point primitives with Commmama shows this ap-
proach is promising, Commmama supports collective primitives, which have not been evalu-
ated. Moreover, Commmama has not been evaluated yet with large scale applications. As
different applications produce different memory access patterns and communication patterns,
identifying these could provide clues for improving Commmama.

Second, Commmama current implementation uses the standard mprotect system call to
change memory access rights on user provided communication buffers. While the results using
this approach are satisfying, most of the overhead currently introduced by Commmama can be
attributed to this memory protection system call. As mentioned in Section 2.2.2, when sup-
ported by the machine and kernel, the protection keys feature is another mechanism available
to protect memory ranges. This mechanism could decrease the base overhead of Commmama’s
method. However, the number of protection keys and thus the number of possible different
permission sets is limited to 15. Modifying Commmama to dynamically use protection keys
or standard paging permissions could be a good trade-off between low overhead and broad
use-case support.

Third, Commmama uses MPI_Alloc_Mem and MPI_Free_Mem to provide buffers with double
mapping to the user application using the mmap system call. However, memory ranges obtained
through this mechanism are allocated with each call to MPI_Alloc_Mem and freed with each
call to MPI_Free_Mem. While this is not an issue if the user application reuses the reserved
memory for multiple communication, this could increase the overhead of our approach other-
wise. Introducing a better memory management scheme by reserving pages in advance would
prevent this issue for applications not carefully designed.
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Scalevisor While Scalevisor was not mature enough to provide a reliable testing environment
for evaluations, we think our experience with the complexity of hardware shows that this
approach is an interesting one to study.

First, completing the implementation of Scalevisor in its current state should be feasible.
Most of the needed features are already implemented, and the missing features, while still
complex to add, are few. Moreover, the code base of the project is still manageable for
individuals with approximately 20 kSLOC, whereas the code of modern operating systems
such as Linux, with more than 20 MSLOC, cannot be fully mastered by an individual. Missing
functionalities include some critical drivers (hard drive support for example) and some less
important features such as hardware assisted virtualization for some tasks (virtual interrupt
management for example).

Second, developing and studying resource management heuristics is at the heart of the
Scalevisor project. Some leads can be found in studies presented in both Section 2.3, focused
on NUMA architectures and Section 4.1.3, presenting issues linked to the use of virtualization.
As Scalevisor is neither a full-fledged hypervisor nor a standard operating system, it can be
expected to present some issues pertaining to hypervisors but not all.

Third, Scalevisor primary purpose is to act as a black-box resource management system
between the standard operating system and the hardware. However, we anticipate issues
with applications featuring very unusual access patterns. As presented by related work on
virtualization, paravirtualization is often a good solution to break the isolation of the hypervisor
and solve issues related to this isolation. Therefore, introducing an hinting interface using
paravirtualization would allow applications with unusual patterns to inform Scalevisor. Such
an interface is shown in Figure 4.1.
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Résumé en Français

Avec l’émergence et l’évolution rapide de domaines scientifiques tels que l’analyse de données
ou l’intelligence artificielle, les besoins en puissance de calcul ont fortement augmenté. Depuis
des années, en raison de contraintes physiques, l’augmentation de la puissance des processeurs
se fait au travers d’une augmentation du nombres de cœurs et non plus d’une augmentation
de la fréquence.

Cette augmentation de la puissance de calcul et du débit réseau a été rendue possible grâce
à l’utilisation de machines dotées d’architectures matérielles complexes. Les améliorations de
la fréquence du processeur ont créé une différence importante entre la vitesse d’exécution des
instructions et celle à laquelle la mémoire peut répondre aux requêtes de données. Pour réduire
cette différence, les processeurs modernes incorporent de petites zones mémoires très rapides
appellées des caches. Ces caches permettent de réduire la latence des accès à la mémoire.
De plus, le nombre de requêtes en mémoire augmentant avec le nombre de processeurs, la
pression occasionnée sur le contrôleur mémoire est devenue trop importante pour des machines
dotées d’un grand nombre de cœurs. Afin de pallier le manque de bande passante, plusieurs
contrôleurs permettant de gérer la mémoire ont été ajoutés, distribués à l’intérieur d’une seule
machine. Cette nature distribuée entrâıne une différence de latence selon les positions relatives
du processeur qui accède à la mémoire et de la zone de mémoire acccédée par celui-ci. Ces
architectures sont appellées Mémoire à Accès Non-Uniforme (NUMA).

Ce nouveau paradigme nécessite une évolution du logiciel afin de pouvoir développer toute
la puissance de ces machines, faisant ainsi du parallélisme une pierre angulaire de la pile
logicielle. Ce document propose une approche en deux parties.

Commmama Le premier obstacle à une augmentation du parallélisme est de recouvrir la
communication réseau avec le calcul. Pour cette partie, nous nous sommes concentrés sur le
niveau utilisateur dans le cadre de l’environnement d’exécution MPI (Message Passing Inter-
face). MPI propose deux types de communications, les communications bloquantes et non-
bloquantes. Les communications bloquantes sont simples d’utilisation pour le développeur
mais ne peuvent pas recouvrir les communications avec du calcul, à l’inverse, les communica-
tions non-bloquantes sont plus complexes mais permettent de recouvrir une certaine quantité
de communication.
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Dans le but de combiner la simplicité et l’efficacité, nous proposons Commmama qui
transforme automatiquement les communications MPI bloquantes en communications non-
bloquantes au cours de l’exécution. Nous montrons ainsi que deux principaux facteurs con-
tribuent à l’augmentation du recouvrement. Premièrement le progrès en arrière plan, qui
garantie que les communications ont lieu pendant que s’effectue le calcul. Deuxièmement, la
taille de la fenêtre temporelle pendant laquelle la communication et le calcul peuvent avoir lieu
en parallèle.

Pour s’assurer de la conformité à la spécification MPI lorsque les communications blo-
quantes sont transformées en communications non-bloquantes, Commmama doit garantir que
les buffers de communications ne sont pas accédés de façon incorrecte pendant la durée
de la communication. Commmama est composé de trois couches différentes. La couche
d’interception remplace les primitives bloquantes par des primitives non-bloquantes, évitant
ainsi au développeur de modifier le code. La couche de protection protège la mémoire des
buffers de communications à l’aide de la primitive système mprotect au début de la commu-
nication et retire cette protection lors de la fin de la communication. Cette couche permet
d’intercepter les accès incorrects lorsque la communication est en cours. Enfin, la couche de
progrès effectue la communication dans un fil d’exécution séparé, permettant ainsi au calcul
de s’effectuer en parallèle.

Nous avons évalué Commmama en comparant deux exécutions, l’une utilisant unique-
ment OpenMPI, l’autre utilisant Commmama au-dessus de OpenMPI. Les résultats confirment
qu’OpenMPI ne parvient pas à recouvrir correctement la communication avec du calcul, avec
un temps de calcul supérieur au temps de communication, Commmama au-dessus d’OpenMPI
effectue quasiment la totalité de la communication en parallèle avec le calcul, résultant en une
accélération de l’exécution du programme de 73%.

Scalevisor Bien que le recouvrement de la communication avec du calcul permet d’augmenter
le parallélisme, la contention sur des ressources matérielles partagées diminue également la ca-
pacité du logiciel à exploiter les performances de la machine.

Comme expliqué précédemment, la complexité des machines multicoœurs a grandement
augmenté pour répondre au besoin de puissance de calcul. Cependant, cette complexité des
architectures NUMA crée d’autres problèmes dont peuvent souffrir les machines si le logiciel
gère de façon incorrecte les ressources. La présence de plusieurs contrôleurs mémoire peut
causer un encombrement du réseau interne reliant les différentes parties de la machine. Cet
encombrement est aggravé par les caches qui utilisent eux-mêmes ce réseau interne pour que
les données stockées dans ces caches soient cohérentes.

Pour masquer la complexité du matériel et gérer la mémoire efficacement, la deuxième
partie de notre approche utilise des techniques de virtualisation pour gérer les ressources de
façon transparente. Scalevisor est une couche légère placée entre le matériel et le système
d’exploitation. Cette couche permet de présenter une topologie matérielle simple au système
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d’exploitation tout en gérant les ressources en tenant compte de la véritable topologie.
Scalevisor utilise les techniques de virtualisation matérielle récentes pour gérer les ressources.

Le deuxième niveau de pagination, EPT, fourni par les processeurs Intel récents permet de
migrer la mémoire simplement et de façon transparente d’un emplacement mémoire à un
autre. De même, la virtualisation matérielle des processeurs permet de migrer les vCPUs.
Pour faciliter l’intégration de nouvelles politiques de placement, Scalevisor est composé de
quatre modules. Premièrement, une partie noyau, responsable du démarrage et du fonction-
nement propre de Scalevisor. Deuxièmement, une partie virtualisation contenant les primitives
nécessaires à l’utilisation de la virtualisation matérielle et permettant la gestion du système
invité. Troisièmement, une partie pilotes, contenant les pilotes essentiels, en particulier la ges-
tion de la communication inter-processeurs. Finalement, une partie ordonnanceur, contenant
les politiques de gestion des ressources.
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Résumé : Avec l’émergence et l’évolution rapide de do-
maines scientifiques tels que l’analyse de données ou l’in-
telligence artificielle, les besoins en puissance de calcul
ont fortement augmenté. Depuis des années, en raison
de contraintes physiques, l’augmentation de la puissance
des processeurs se fait au travers d’une augmentation du
nombres de cœurs et non plus d’une augmentation de la
fréquence.
Ce nouveau paradigme nécessite une évolution du logiciel
afin de pouvoir développer toute la puissance de ces ma-
chines, faisant ainsi du parallélisme une pierre angulaire de
la pile logicielle.
Les systèmes d’exploitation, directement concernés,
doivent inclure différentes règles permettant la bonne ges-
tion de différents types de machines. Cependant, la gestion
de ressources est souvent divisée en différentes unités
responsables chacune d’une ressource spécifique, qui
prennent des décisions sans vision globale du système.
De plus, en raison de la complexité et de l’évolution rapide
du matériel, les systèmes d’exploitation ont de plus en plus
de difficultés à tenir compte des variations subtiles entre
deux machines. L’important développement de la technolo-
gie de virtualisation nous permet de proposer une nouvelle

approche pour la gestion de ressources qui utilise la virtua-
lisation pour ajouter une couche de gestion des ressources
dédiée entre la machine et le système d’exploitation habi-
tuel.
Au même titre que les systèmes d’exploitation, les appli-
cations doivent exécuter une partie de leur code en pa-
rallèle pour obtenir des performances élevées. C’est le cas
en particulier pour les environnements d’exécution tels que
MPI qui ont pour but d’aider à la parallélisation d’applica-
tions. Avec les architectures matérielles modernes dotées
de réseaux rapides, le recouvrement de la communica-
tion réseau avec du calcul est devenu partie intégrante du
parallélisme applicatif. Une certaine quantité de recouvre-
ment peut être obtenue manuellement mais cela reste une
procédure complexe. Notre approche propose de transfor-
mer automatiquement les communications bloquantes en
communications non bloquantes, augmentant ainsi le po-
tentiel de recouvrement. Pour cela, nous utilisons un thread
séparé pour les communications et contrôlons les accès à
la mémoire des communications. Nous garantissons ainsi
la progression des communications et une meilleure pa-
rallélisation de celles-ci et des calculs.
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Abstract : During the last decade, the need for compu-
tational power has increased due to the emergence and
fast evolution of fields such as data analysis or artificial in-
telligence. This tendency is also reinforced by the growing
number of services and end-user devices. Due to physical
constraints, the trend for new hardware has shifted from an
increase in processor frequency to an increase in the num-
ber of cores per machine.
This new paradigm requires software to adapt, making the
ability to manage such a parallelism the cornerstone of
many parts of the software stack.
Directly concerned by this change, operating systems have
evolved to include complex rules each pertaining to different
hardware configurations. However, more often than not, re-
sources management units are responsible for one specific
resource and make a decision in isolation. Moreover, be-
cause of the complexity and fast evolution rate of hardware,
operating systems, not designed to use a generic approach
have trouble keeping up. Given the advance of virtualization
technology, we propose a new approach to resource ma-

nagement in complex topologies using virtualization to add
a small software layer dedicated to resources placement in
between the hardware and a standard operating system.
Similarly, in user space applications, parallelism is an im-
portant lever to attain high performances, which is why high
performance computing runtimes, such as MPI, are built
to increase parallelism in applications. The recent changes
in modern architectures combined with fast networks have
made overlapping CPU-bound computation and network
communication a key part of parallel applications. While
some degree of overlap might be attained manually, this is
often a complex and error prone procedure. Our proposal
automatically transforms blocking communications into non-
blocking ones to increase the overlapping potential. To this
end, we use a separate communication thread responsible
for handling communications and a memory protection me-
chanism to track memory accesses in communication buf-
fers. This guarantees both progress for these communica-
tions and the largest window during which communication
and computation can be processed in parallel.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Background and motivation
	An overview of multicore architectures
	SMP architectures
	Non Uniform Memory Access architectures

	Memory management in the operating system
	Paging and the page table structure
	Paging and memory management in user space

	State of the art: resources management and NUMA
	User space solutions
	Runtimes and kernel policies
	Operating system solutions

	Conclusion

	Commmama, motivation and design
	Background and motivation
	MPI primitives and semantics
	Overlapping communication with computation
	Commmama: blocking simplicity, nonblocking efficiency

	Our overlapping infrastructure: Commmama
	The interception layer
	The offloading system
	The protection mechanism

	Evaluation of the overlapping potential
	Base overhead analysis
	Overlap evaluation

	Conclusion

	A multicore resource management driver
	Background and motivation
	Software techniques
	Hardware techniques
	State of the art: Virtualization

	A driver for NUMA architectures: Scalevisor
	Presenting an abstract memory/CPU topology
	Managing memory migration
	Managing CPU migration
	Scalevisor internals
	Assessments


	Conclusion and future work
	Bibliography

