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General Introduction

Semiconductor manufacturing systems, as other manufacturing systems, transform raw ma-
terials into finished products. The first primary raw material used in semiconductor manu-
facturing was germanium. The germanium is now replaced by silicon due to its abundance,
its resistance to very high temperatures, etc. The finished product is made up of different
types of electronic devices depending on the technology used. These devices include resistors,
diodes, transistors, integrated circuits, etc.

Semiconductor devices are the foundation of the electronics industries. From small busi-
nesses to large businesses such as the automotive, telecommunications and aerospace indus-
tries, semiconductors are ubiquitous. The growth in semiconductor manufacturing in recent
years is mainly due to the growth in demand for smart phones, cloud computing and other
high-level electronic devices. The world is now talking about Industry 4.0, autonomous
driving, Artificial Intelligence, the Internet of Things, etc. These emerging technologies will
continue to maintain the growth and impact of semiconductor manufacturing in our daily
lives. In addition to operating in a rapidly growing market, semiconductor manufacturing
presents major challenges which probably makes it the most complex industry. Products
are produced on the basis of hundreds of complex operations and they spend on average two
to three months in the system. The main concern of semiconductor companies is how to
stay competitive in this growing market. Hence, they must find new and robust strategies
to produce efficiently and stay competitive.

High-level decisions in an industry such as strategic and tactical decisions not only deter-
mine the industry’s strategies for finished products, but also define how the industry must
stay competitive in the market as well as in its Supply Chain. The operational decision level
allows the industry to achieve its objectives. Indeed, at this level of decision, the manu-
facturing of products is materialized. In semiconductor manufacturing and other complex
systems, the effective management of the operational decision level remains the basis for
achieving short, medium and long-term objectives, thus enabling the company to remain
competitive and viable in a growing market. This thesis is based at the operational decision
level, in particular global (i.e, factory-wide) scheduling decisions. The structure of the thesis
consists of six chapters described below.

Chapter 1 presents the industrial and scientific context in which this thesis takes place as
well as the motivations and main objectives of the thesis. We describe the main components
of the semiconductor manufacturing system as well as the main manufacturing processes. We
briefly present the different decision levels in semiconductor manufacturing. Next, related
work on consistency between decision levels in semiconductor manufacturing is reviewed,
followed by related work on Work-In-Process and cycle time management strategies. Finally,
related work on simulation in semiconductor manufacturing is reviewed.

Chapter 2 presents the new global scheduling approach that we propose to solve the
problem under study as well as the way in which this approach is evaluated. The global
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scheduling approach is a mechanism we propose to steer scheduling decisions at work-center
(group of machines with same capabilities) level. It adopts two views of the operational
decision level:

– The global level (factory level), which uses the global information (Work-In-Process
in the whole factory, lot releases, cycle time targets, aggregate resource capacity, etc.)
and provides objectives to the local level,

– The local level (work-center level), which uses local information (waiting times of lots,
processing times, lots currently in queues, etc.). It receives objectives from the global
level and tracks these objectives using dispatching rules or scheduling algorithms in
each work-center.

The principle that guides our approach consists in the determination of production targets
(objectives) at the global level that should be followed at local level and updated regularly.
Production targets are quantities to complete for each product in each operation and each
period on a scheduling horizon. The main levers of our approach are global scheduling strate-
gies, implemented in global scheduling models. Global scheduling models determine produc-
tion targets to optimize different objectives. The main parameters of the global scheduling
approach include the scheduling horizon, the length of each period in the scheduling horizon
and the time at which the global scheduling model is applied (triggering horizon). These
parameters are required for the evaluation of the global scheduling approach. The chapter
ends by describing the simulation environment in which the approach is evaluated.

Chapter 3 presents the single objective and multi-objective global scheduling strategies
for balancing the Work-In-Process and maximizing the throughput. The chapter begins by
introducing the concept of balancing coefficients. Balancing coefficients are percentages of
the Work-In-Process of each product that should remain in the system at the end of each
period on a scheduling horizon. Different ways of determining the balancing coefficients are
discussed on the basis of the release scheme, the estimated throughput and Little’s law. Next,
the chapter discusses the single-objective global scheduling strategy called Work-In-Process
balancing control which tries to ensure that the Work-In-Process is properly distributed
throughout the whole factory. This strategy aims to control the flow of products to minimize
the output variability on cycle times and throughput and to speed up products. Like all
the global scheduling strategies discussed in this thesis, this strategy is implemented using
a Linear Programming model. The strategy is enforced with a Work-In-Process balancing
penalty in the objective function and smoothing constraints. The chapter also discusses a
multi-objective global scheduling strategy. This strategy aims to maximize throughput and
minimize the output variability on cycle times and throughput. The multi-objective global
scheduling strategy is solved using an ε-constraint approach.

In Chapter 4, global scheduling strategies for minimizing and controlling cycle times are
discussed. Two different global scheduling strategies are compared for cycle time minimiza-
tion, the push strategy and the time at operation strategy. The global scheduling strategy
for controlling cycle times manages the Work-In-Process to minimize the tardiness (positive
gap) on given cycle time targets of products. After grouping the operations of products
in subsequences (blocks of operations), cycle times are then controlled through three main
parameters:

– The cycle time target of each block, which is derived from the cycle time target of the
product,
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– The classes of release dates, which are aggregations of release dates of quantities of
product released in the factory and,

– The temporal tracing of the Work-In-Process, i.e., the management of the Work-In-
Process based on the time the Work-In-Process have already spent in the factory.

Two methods for determining cycle time targets of blocks are considered, a naive method
and a simulation-based method.

Chapter 5 presents multi-objective global scheduling strategies for controlling cycle times.
These strategies aim to minimize the positive and negative gaps from the cycle time targets.
The Work-In-Process is not only managed according to the tardiness, but also according to
the earliness on the cycle time targets of blocks. Different combinations of penalty costs on
the tardiness and earliness are tested and compared.

We conclude the manuscript with Chapter 6 where general conclusions and short-term
and long-term perspectives on the global scheduling approach are given.
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Chapter 1

Industrial and Scientific Context

1.1 Indroduction

 

Figure 1.1: Semiconductor row material "Wafer" (source: Flickr, Rob Bulmahn,
http://www.flickr.com/photos/ (CC License))

Electronic devices surround us whether in our homes or our workplaces such as radio,
telephones, television, computers, advanced medical diagnostic equipment and other high-
tech devices. These devices include many electronic components, such as diodes, resistors
and transistors. The way these components are manufactured and assembled so that we can
have the electronic devices we use daily is the foundation of the semiconductor manufacturing
industry.

The factors underlying the main economic challenges facing the semiconductor industry
are generally based on increased costs and investment in research and development (R&D).
This is due to the increased costs of upgrading existing manufacturing plants and new con-
struction to effectively meet market expectations. Other significant costs in the manufacture
of semiconductors are the costs of the machines used for processing jobs, that are extremely
expensive, some of them up to the US$ 40 million, and are therefore scarce resources (Mönch
et al. (2012)). Equipment costs alone account for more than 70% of the total indirect cost
(May and Spanos (2006)).

Aside from economic challenges, semiconductor manufacturing processes are probably
the most complex manufacturing processes (Mönch et al. (2012)). In addition to certain



CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT

common characteristics that can be found in most manufacturing contexts, the manufacture
of semiconductors includes characteristics that make production very complex, such as re-
entrant flows induced mainly by scarce and expensive resources, hundreds of operations for
each product leading to very long cycle times, different types of scheduling problems, etc.

Section 1.2 introduces the industrial context. In Section 1.3, the scientific context is
presented. Section 1.4 presents the motivation and main objectives of the thesis. Finally,
Section 1.5 concludes and positions the thesis according to the scientific context.

1.2 Industrial Context

We describe the main parts of the semiconductor manufacturing system as well as the main
manufacturing process in Section 1.2.1. Next, we briefly present in Section 1.2.2 different
levels of decisions in semiconductor manufacturing.

1.2.1 Semiconductor Manufacturing Processes: An Overview

The process of manufacturing Integrated Circuits can be summarized in two main parts.
The first part, semiconductor wafer fabrication (wafer fab) or front-end, corresponds to the
long and complex process of manufacturing silicon chips on silicon wafers. The second part,
back-end, corresponds to the cutting and packaging of the chips and the final tests. The
manufacturing process of an integrated circuit is summarized on Figure 1.2

15.06.20

www.mines-stetienne.fr 1

Mines Saint-Étienne, 200 years of excellence
2

Wafer chipBack-End

Raw wafers

Grouped in lots

of 25 wafers

Final wafers

Oxidation / 

Depot / 

Diffusion

Planarization

Photo-

lithography Etch

Implantation

Front-End (fab)Silicon Ingot

Figure 1.2: Operations in the manufacturing process of integrated circuits (adapted
from Mönch et al. (2012))

The manufacturing process in the semiconductor industries begins with the preparation
of the raw material. The raw material comes from the silicon ingot extracted from the
sand. The silicon ingot is first purified before being cut using specific diameters and finally
polished. This thin disk obtained is called a wafer on which several integrated circuits are
produced, see figure 1.1. Note that this polished wafer is initially non-conductive. It will
only be semiconductor when other substances and operations are applied to it. Integrated
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1.2. INDUSTRIAL CONTEXT

circuits are known as a semiconductor chip. The manufacturing process of the wafer is done
outside the manufacturing process of integrated circuits.

Once the wafer is ready to be used as a raw material, many operations are required to
produce an integrated circuit. These operations are manufactured on different machines
grouped in different work-centers. The main operations include:

– Oxidation, in this process, a thin layer composed of various materials is deposited on
the wafer. This forms an oxide layer whose role is to protect the surface of the wafer
against impurities.

– Photolithography, once the wafer is provided with a protective layer on its surface,
the circuit design is transferred to the wafer. This task is accomplished by exposing the
patterned mask to light. This mask also called reticle is an important auxiliary resource
used during photolithography operations in addition to photolithography machines.

– Etching, after a photolithography operation, the etching process is used on the wafer
to remove unnecessary materials in order to keep only the desired circuit patterns.

– Deposition, it consists of depositing different materials on the surface of the wafer.
The operation can be applied to different stages of the manufacturing process of the
integrated circuit. The additional material on the wafer can act as an insulating layer
between the conductive layers or as a new layer which can be used for a new junction.

– Chemical/mechanical planarization, the topography of the wafer surface is changed
each time processes such as etching, deposition or oxidation is used. This leads to an
uneven surface. Chemical Mechanical Planarization (CMP) is used to flatten the sur-
face of the wafer. This is done before adding each new layer. The objective is to
reduce the differences in thickness and avoid the accumulation of an uneven topology
over several layers.

– Ion Implantation, this operation consists in implanting ions and other impurities
in the crystal structure of the semiconductor material. The goal is to modify its
conductivity to allow the flow of electricity through silicon and make transistors.

– Diffusion, this operation consists of a series of atomic movements of the dopant and
impurities in the crystal structure of the semiconductor material. Diffusion and ion
implantation complement each other. The former can be used for a deep junction and
the latter for a shallow junction.

In addition to the processes that ensure that the electronic elements are well connected,
there are other important additional operations such as metrology and inspection. These
processes are generally applied at critical points in the manufacturing process. The objective
is essentially to ensure the quality of the integrated circuit produced. The manufacturing
process of an integrated circuit ends at the back-end area, which can be geographically
located at the same place or at a different area from the front end area. In the back-end,
important operations are carried out before the product is sent to the end customers. These
operations are called packaging and packaging testing. Some of the objectives of the back-
end area are to test the inter-terminal connection and to provide protection to the integrated
circuit against external factors. To learn more about semiconductor manufacturing processes,
see Mönch et al. (2012) and May and Spanos (2006).
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1.2.2 Management Decision Levels in Semiconductor Manufactur-
ing

Management decisions in an industry are structured according to their scope and their
impact on the industry objectives. They are divided into three main categories. (1) Long-
term decisions that affect the entire industry belong to the highest level of management.
(2) The intermediate level of management consists of decisions based on the use of the
resources made available by the highest level of management decisions. Finally, (3) decisions
at the lowest level, where production operations are carried out, affect daily operations. All
these decisions, whatever the level at which they are situated, directly or indirectly concern
the functions of management, direction, supply, planning, organization, staffing, production,
control, etc. In semiconductor manufacturing, the decisions at these three levels are described
below:

– Strategic decisions, generally define the overall strategy of the company. They
are generally based on the markets to be covered, the decisions on the supply chains
to integrate, the decisions to buy production capacity, the location of factories, etc.
These decisions are made over several years. They guarantee the sustainability of the
business and the competitiveness of the business in the market. In the semiconductor
manufacturing industry, the design of different technologies, the choice of products and
the combination of products to be manufactured, as well as the resources necessary to
acquire in order to achieve the objectives of the company are studied at the strategic
level.

– Tactical decisions, give a global vision in the medium term of what the company is
capable of producing. After important strategic decisions that give the company the
necessary physical resources and a long-term vision, tactical decisions focus on how to
use these resources to meet the demand in the market. Tactical decisions span a horizon
ranging from weeks to a year. In semiconductor manufacturing, tactical decisions are
usually planning decisions. With the given customer demand and production capacity,
tactical decisions determine the order release and the level of production to be achieved
for a given period (usually a week or a month). Planning at the tactical level also
relates to maintenance planning. Maintenance planning ensures that the health of
the machine is maintained and avoids sudden stops of the machine during production,
which could constitute a loss of capacity. Machine qualification decisions are also made
at the tactical level ( Johnzén et al. (2011) and Perraudat et al. (2019)). Qualifying
a machine means certifying its ability to process an operation. The objective is to
guarantee the quality and performance requirements, but also the flexibility of the
production system.

– Operational decisions are concerned with the production of finished products that
meet the specification of customers. These decisions are said to be short term because
they are applied over a short horizon of a few hours up to a few days. Due to their
short execution time, they are the most detailed of all decisions. In semiconductor
manufacturing, scheduling decisions, i.e., determining the allocation of products to
machines and the production sequence of products on each machine is one of the main
decisions at the operational level. In addition to the scheduling decisions, the oper-
ational level is concerned with the machine requalification decisions, the Automated
Material Handling System (AMHS) decisions and the measurement decisions, which
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ensure the quality and yield of the production system. The operational level consists
of optimizing the main Key Performance Indicators that drive the company in order
to achieve its long-term objectives.

In order to ensure the consistency of the decisions taken at the three decision levels
(strategic, tactical and operational), different approaches are proposed in the literature
to integrate or simply to ensure the communication between these decision levels.
Some studies on the integration of decision levels can be found in (Dauzère-Péres and
Lasserre (2012) and Dauzère-Pérès and Lasserre (2002)). Other approaches that ensure
communication between the tactical and operational decisions levels are discussed in
Section 1.3.
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Figure 1.3: The two views of the operational decision level (adapted from Sadeghi (2017))

This thesis is based on management decisions at the operational level. Given the com-
plexity of the manufacturing process of integrated circuits, the operational level is structured
into two sub-levels, see Figure 1.3. (1) A global level, defining global objectives using global
information of the factory such as the order release, resource capacity, Work-In-Process of the
factory, etc. (2) A local level centered on scheduling decisions based on local information at
the level of each work-center such as waiting times, processing times, machine queue lengths,
etc. The global level determines the global management strategies for all work-centers, while
the local level, at the scope of each work-center follows the global strategies as constraints
to satisfy in order to optimize the KPIs of the whole plant.

1.3 Scientific Context: Literature Review

This section provides a review of the literature with a focus on three main axes which are
the pillars of this thesis:
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– Consistency between decision levels, section 1.3.1. This section reviews different ap-
proaches used in semiconductor manufacturing to ensure consistency between different
decision levels. Different works are discussed on hierarchical approaches, iterative ap-
proaches, production targets management-based approaches and priorities-based ap-
proaches.

– Work-In-Process and cycle time management, section 1.3.2. This section presents dif-
ferent strategies for Work-In-Process and cycle time management used in the literature.
These strategies aim to optimize KPIs such as cycle times, throughput and variability.

– Simulation in semiconductor manufacturing, section 1.3.3. This section reviews the
literature on simulation in semiconductor manufacturing. In this thesis, our proposed
approach is evaluated with a simulation model.

1.3.1 Consistency between Decisions Levels

As mentioned in Section 1.2.2, the management of production decisions is generally grouped
according to the time horizon on which they are applied: Long-term (strategic), medium-
term (tactical) and short-term (operational). This decomposition simplifies the decision
process. Decisions made at a higher level become constraints to be satisfied or targets to be
reached at lower levels. However, decisions at different levels are often made independently,
which can lead to inconsistent or unfeasible decisions (Dauzère-Péres and Lasserre (2012),
Dauzère-Pérès and Lasserre (2002)). Consistency in semiconductor manufacturing ensures
that global decisions defined at the factory level are followed locally. It can be studied
at different levels of decision. This section reviews the studies that deal with consistency
between the tactical and operational decision levels, and those based only on the consistency
of decisions at the operational decision level.

In the literature, hierarchical and iterative approaches are used to ensure the consistency
between the tactical and operational decision levels. They create a kind of communica-
tion tunnel in which the two levels of decisions exchange information. While priority and
production targets management are used to ensure consistency at the operational decisions
level.

Hierarchical approaches

In hierarchical approaches, information is exchanged only once. These approaches use an
upper layer model (tactical level) which determines daily or weekly targets and a lower
layer model (operational level) which aims to reach these targets. Targets are used as input
to the lower layer model after being sliced into a very short detailed plan of three or six
hours. Consistency is then ensured by additional constraints in the lower layer model in
order to coordinate short-term actions to achieve the production objectives provided by the
higher level model. Hwang and Chang (2003) suggest a two-level hierarchical production-
scheduling model. The two levels of the hierarchy consist of a midterm scheduler and a
short-term scheduler. These two schedulers are aimed to achieve coordination between the
fab-wide objectives and the local shop-floor operations and they are modeled as Integer
Programming models. Liao et al. (1996), propose an Integer Programming model which
optimizes the daily scheduling operations at work-centers in a semiconductor manufacturing
system. With a given daily production target, the model breaks these daily production
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targets into a production schedule in a time scale (of one to three hours) over a day which
then serves as guideline to coordinate dispatching decisions.

In addition to Integer Programming models, other modeling approaches such as flow
model and Discrete-Event Simulation are used to model the higher or lower level of the
hierarchy. Tsakalis et al. (1997) address the problem of controlling re-entrant semiconduc-
tor fabrication lines by providing a two-level hierarchical modeling of production flow con-
trol. At the highest level, desired per-week yields are determined on the basis of economic
factors. These target yields are converted to desire per shift yields. Then, a lower level
controller ensures that the appropriate decisions are made at the lower level so that the
desired per-shift yields are achieved. The high-level model is based on a flow model over a
long planning/scheduling horizon. The lower level is modeled as a nonlinear, discrete-time,
discrete variable and dynamic system. El Adl et al. (1996) propose a hierarchical model for a
semiconductor manufacturing system. The higher decision level provides long term decisions
(tactical decisions) and is supported by a linear flow model. It involves setting realistic ob-
jectives for the lower decision level. The latter is represented by a control mechanism which
guarantees that these objectives are achieved.

The number of layers in the hierarchy is not limited to two layers as indicated in Vargas-
Villamil et al. (2003). In their study, a three-level hierarchical approach for inventory control
and production optimization of semiconductor manufacturing is discussed. Two upper layers
are formed. The first layer provides aggregated global parameters for the second layer, which
is an optimization model in charge of production planning. The latter, in turn, provides
inputs for a distributed control policy implemented in a Discrete-Event Simulation at the
lower level, with the goal of tracking the target determined by the optimization layer.

Iterative approaches

In iterative approaches, the information is shared between the higher level model and the
lower level model in each iteration. The iterative process is stopped when the plan provided
by the higher level model is feasible at lower level model.

In some approaches, decisions are based on the release quantities (starting quantities)
determined in the higher level model. The release quantities are then evaluated in a lower
level model often represented by a simulation model. In most cases, the higher level model
is formulated as an Integer Programming model or a Linear Programming model. Hung
and Leachman (1996), propose an automated production planning model for semiconductor
manufacturing system. An iterative Linear Programming model is coupled to a Discrete-
Event simulation model. The optimization model provides release quantities schedules to
the simulation model. Flow time statistics are collected in each iteration and are used to
improve the optimization model for an updated plan. The process continues until the plan
provided by the optimization model is feasible in simulation. Kim et al. (2001) suggest almost
the same modeling as in Hung and Leachman (1996) for planning release quantities. The
difference lies on the additional data used to improve the updated plan in the optimization
model.

In other approaches, decisions are based on quantities to produce for each product in a
defined period of time at the higher level model. The feasibility of the resulting production
plan is then assessed at the lower level by a simulation model in an iterative scheme. Bang
and Kim (2010) address a production planning and scheduling problem in a semiconductor
wafer manufacturing facility. The production plan is determined using an Integer Linear
Programming model at the aggregate level. This plan is then evaluated in an iterative
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scheme by a Discrete-Event Simulation model in which a priority-based rule is implemented.
The objective is to guarantee feasible and relevant production plans. Kim and Lee (2016)
investigate an iterative approach, which integrates production planning and scheduling in a
flexible manufacturing system. To ensure the synchronization of production planning and
scheduling decisions, the manufacturing lead-time, the number of setup events, and the
available Work-In-Process level are updated via an iterative simulation and optimization
approach.

Our approach differs from classical hierarchical and iterative approaches in the literature,
which deal with the integration and communication between tactical and operational decision
levels. Higher level models are usually based on demand and resource capacity while, the
approach proposed in this manuscript deals only with the operational level. Instead of
demand as global information, our approach uses the lot release quantities, cycle time targets,
resource capacity, Work-In-Process, etc.

Priority management approaches

Priority management approaches go beyond the communication framework between the tacti-
cal decision level and operational decision level. In these approaches, the operational decision
level is structured into two sub-levels: A global level based on global information (factory
level) and a local level based on local information (work-center level). Bureau, Dauzère-
Pérès, Yugma, Vermariën and Maria (2007) develop a Work-In-Process framework to meet
the need for consistency at the operational decision level. In the same spirit, in Bureau,
Dauzère-Pérès, Yugma and Vermarien (2007), an approach for simulating consistent global
and local scheduling decisions is developed. The main idea is to speed up or to slow down
flows according to priorities. Priorities are used at the global level as a global management
strategy and are dynamically updated at the local level. The same strategy has been de-
scribed in Vialletelle and France (2006). For the same purpose of using priorities as main
parameters for global management, Sadeghi et al. (2016) address a flexible multi-method
simulation model for semiconductor manufacturing to control the Work-In-Process and to
satisfy time constraints, i.e., to ensure that the maximum time between two operations
(consecutive or not) is respected.

Priorities can embed several elements such as customer emergency or customer prefer-
ences. They are also discussed at the highest level. Thus, managing them at the local level
does not seem to be the best way to ensure consistency at the operational decision level.
Changing too often the priorities of the Work-In-Process at the local level by speeding up late
products or by slowing down early products may cause the priorities to lose their relevance
defined at the highest level.

The proposed approach in this thesis enforces consistency at the operational decision
level by switching from setting priorities to setting production targets. Production targets
are quantities to complete for each product at each operation in each period on a scheduling
horizon. An Adapted rules is required to ensure that These production targets are followed
at the local level.

Production targets management-based approaches

Small number of studies in the literature use optimization methods with production tar-
gets at the operational level. For a noticeable exception, Govind et al. (2008) propose a
study on an integrated operation management approach which includes a module to deter-
mine production targets based on a Linear Programming model. However, the approach is
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only focused on one work-center (photolithography area). The optimization model was not
provided, the scheduling horizon is about one week and the decisions in work-centers are
rescheduled in less than five minutes.

Studies in the literature that use production targets at the operational level are essentially
empirical or based on numerical calculations. Wu et al. (1998) study a daily production
target setting system for wafer fabrication. The determination of production targets uses an
algorithm based on numerical calculation. In the same spirit, in Kao and Chang (2018), no
optimization model is proposed, but numerical calculations provide the production targets.
Furthermore, this approach is short-sighted because it is at the machine level instead of
being at the fab level. To correct this short-sighted effect, they approximate the variations
induced by production targets with a Bernoulli trial model. These variations are included
in the computation of production targets for the correction iteration.

Our global scheduling approach differs from the previous studies in the literature which
use numerical computations to determine production targets. Our approach uses optimiza-
tion models to determine production targets, which broaden the scope of the parameters to
be used and offer the possibility to include several Work-In-Process management strategies in
single-objective optimization models or in multi-objective optimization models. These global
scheduling strategies are novel policies used to optimize different objectives. They innovate
in the use of novel Work-In-Process management techniques such as the use of balancing
coefficients to optimize output variability on cycle times and throughput, see Chapter 3,
or in the use of temporal tracing of Work-In-Process to control cycle times, see Chapter 4.
Finally, our global scheduling approach is designed and evaluated using a generic multi-
method simulation model, where the exchange/communication between the simulation and
the global scheduling model is clearly defined.

1.3.2 Management of Work-In-Process and Cycle Times in Semi-
conductor Manufacturing

This section presents a review of previous works in the literature related to the global schedul-
ing strategies proposed in this thesis. These strategies are mainly based on the management
of the Work-In-Process in order to optimize and control Key Performance Indicators (KPIs)
such as cycle time, throughput and output variability on cycle times and throughput. Previ-
ous studies on Work-In-Process management in semiconductor manufacturing are presented
followed by the review of the literature on cycle time management in semiconductor manu-
facturing.

Work-In-Process management in semiconductor manufacturing

In several manufacturing systems, a Kanban control system or its simplified version, the
constant Work-In-Process (CONWIP), among the methods in practice that populate the
strategies for Work-In-Process balancing (Spearman et al. (1990)). The principle of the
Kanban production control system lies on the limitation of the Work-In-Process in the pro-
duction line. It uses cards to control the number of products in the factory. Each product
released in the factory seizes a card. If all cards are taken, a newly entering product has to
wait until a previous product gets out of the factory and releases its card. The CONWIP
works in the same manner, but controls the line using a single set of cards (Kalisch et al.
(2008)).
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The Work-In-Process (WIP) corresponds to the products already in the fab but not yet
completed. Balancing the Work-In-Process is of great importance because it allows a good
capacity utilization by ensuring that products are properly distributed in the fab. It also
ensures that all products steadily move forward to the completion of their operations. An
overview of advanced scheduling and dispatching policies for Work-In-Process management
for a Make-to-Order wafer fabrication is provided in Sturm et al. (1999).

It is difficult to improve KPIs such as cycle time, throughput, and on-time delivery
without a thorough management of the Work-In-Process. Work-In-Process balancing control
(ensuring that Work-In-Process is properly distributed throughout the whole manufacturing
system) is considered as an efficient method to improve KPIs (Lee and Lee (2003)). In
semiconductor manufacturing, strategies to avoid unbalanced Work-In-Process have been
studied in different ways:

– Work-In-Process balancing and control strategies based on the operation view point
see Dabbas and Fowler (2003); Li et al. (1996); Leachman et al. (2002); Fordyce et al.
(1992); Bureau, Dauzère-Pérès, Yugma, Vermariën and Maria (2007). Priorities and
scheduling policies are used to balance Work-In-Process on the different operations
of products. In Bureau, Dauzère-Pérès, Yugma, Vermariën and Maria (2007), differ-
ent blocks of operations (sub-sequences of operations) are created. Work-In-Process
targets are defined for each block and the balancing is achieved by minimizing the de-
viation between the current Work-In-Process and the defined Work-In-Process target
in each block. In Leachman et al. (2002), different methodologies and algorithms are
proposed for Short Cycle Time and Low Inventory Management (SLIM). A continuous-
time target output schedule or continuous-time target cycle times are translated into
target profiles of Work-In-Process through the sequence of operations for each product.
Instead of individual lots, operations are considered as the main scheduling object in
SLIM. Fordyce et al. (1992) propose a daily output planning by using Work-In-Process
targets for each operation of a product. The goal is to provide quantities of lots that
should be processed in each operation at a given period in order to meet immediate
demands or to anticipate future demands.

– Work-In-Process balancing strategies based on the work-center view point, see Zhou
and Rose (2010); Chung and Jang (2009); Lee and Lee (2003); Miyashita et al. (2004);
Chien and Hu (2006). Work-In-Process targets are defined for each work-center, gen-
erally bottleneck work-centers. The balancing is achieved by minimizing the deviation
between the current Work-In-Process and the defined Work-In-Process target.

Using both the operation and work-center view points, Work-In-Process control is ei-
ther performed by using targets and/or priorities. Chung and Jang (2009) study a Work-
In-Process balancing procedure using production targets for throughput maximization in
semiconductor manufacturing. The balancing is achieved by sending detailed target produc-
tion quantities to bottleneck work-centers. These targets are transformed from production
quantities sent from production planning. The same control is implemented in Lee and Lee
(2003). Besides production quantities, targets are also based on the Work-In-Process or
on the cycle time. The idea is to divide every route (sequence of operations for one prod-
uct) in blocks which correspond to a logical separation that allows intermediate controls on
products during manufacturing. Work-In-Process targets or cycle time targets are estimated
for each block, see Lee et al. (2008); Bureau, Dauzère-Pérès, Yugma, Vermariën and Maria
(2007). The objective is then to ensure that the difference between the current Work-In-
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Process (resp. current cycle time) and the Work-In-Process target (resp. cycle time target)
is minimized for each block.

The critical point with Work-In-Process balancing strategies that use Work-In-Process
targets/levels is the determination of these Work-In-Process targets/levels. Various strate-
gies have been used in the literature in semiconductor manufacturing to determine Work-
In-Process targets/levels. Some of these strategies are based on simulation, see Potti et al.
(1994); Miyashita et al. (2004), artificial neural network and/or queuing network, see Lin
and Lee (2001); Liu et al. (2006); Lin et al. (2009). Since the exact estimation of the Work-
In-Process target/level for each operation or each block is always difficult to perform Lee
et al. (2002), dispatching rules can be used to balance the Work-In-Process in the factory.
Zhou and Rose (2011) propose a new composite of dispatching rules which combines the
Operation Due Date rule, the Shortest Processing Time rule and the Least Work at Next
Queue rule (LWNQ) to consider several objectives simultaneously. The LWNQ is a simple
workload control rule which looks at WIP balance with the viewpoint of machines. Among
the waiting lots, it provides the highest priority to the lot that is to be processed by the
next machine with least remaining production hours. Wang et al. (2007) propose a com-
pound priority dispatching rule that takes into account both Work-In-Process management
and wafer start lot control. It is shown in their study that the compound priority dispatch-
ing rule can reduce the mean total queue time by 50% and increase the throughput rate by
20% compared with the First-In-First-Out (FIFO) and Shortest Remaining Processing Time
(SRPT) dispatching rules. In the same spirit, Zhou and Rose (2019) propose a global fab
dispatching scheme, which switches from the use of Work-In-Process targets to the use of a
workload indicator, whose role is to measure the pull request of work-centers. They conclude
that significant improvement is made when dispatching rules based on a workload indicator
are used instead of dispatching rules based on Work-In-Process targets.

Besides these methods which use a route subdivision in blocks, another approach based
on a so-called Work-In-Process Control Table is discussed in Zhou and Rose (2010). In
this approach, each upstream work-center maintains a Work-In-Process control table, which
contains the current Work-In-Process information of the downstream work-centers such as
the Work-In-Process target, the current Work-In-Process and the difference between the
Work-In-Process target and the current Work-In-Process. This Work-In-Process control
table is regularly updated and allows the upstream work-centers to optimally supply lots to
the downstream work-centers. Those targets are estimated either based on historical data
or by simulation.

Work-In-Process balancing strategies can also use priorities to speed up or slow down
lots in blocks of operations to smooth the workload in different blocks (Bureau, Dauzère-
Pérès, Yugma, Vermariën and Maria (2007)). Depending on the due date and workload
information, a priority matrix table can also be used to assign lot priorities to manage the
Work-In-Process. The objective is to balance the overall workload of the manufacturing
system. Zhou and Rose (2012) provide a priority matrix to control the flow of lots in the
system and a Work-In-Process calibration method whose purpose is to recover the Work-In-
Process balance due to an event such as an unpredictable machine failure.

The global scheduling approach proposed in this thesis for Work-In-Process balancing
differs from strategies in the literature which use production targets, see Chung and Jang
(2009) for instance. Our approach does not just focus on bottleneck work-centers, but
also takes into account the interaction between work-centers, thus preventing the short-
sightedness of independent scheduling decisions. Instead of imposing Work-In-Process tar-
gets/levels at the local level, our approach provides production targets for each product to

OCTOBER 2020 EMSE-CMP Page 15



CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXT

be completed at each operation and at each period over a scheduling horizon. Production
targets are determined on the basis of global information (fab level) such as lots release
quantities, resource capacity, Work-In-Process in the factory, cycle time targets, etc.

Cycle time management in semiconductor manufacturing

Cycle times include processing times, as well as transportation times and the time lots
spend waiting in queues. The cycle time is one of the important Key Performance Indica-
tors (KPIs) in semiconductor manufacturing as it impacts several other metrics and KPIs
such as throughput, yield and on-time delivery. Controlling cycle times reduces wafers risk
contamination, yield loss and the inventory that should be maintained (Lu et al. (1994)).

In the semiconductor manufacturing literature, several studies focus on the understand-
ing of cycle time and the way it can be improved. Bonal et al. (2001) provide a statistical
method for cycle time management. The objective of the study is to ensure a quick detection
of changes on operation processes that can affect the stability of the cycle time. Pierce and
Yost (1995) study cycle time metrics for wafer fabrication in a research and development
environment. In Sivakumar (2000), a discrete event simulation model for a semiconductor
back-end manufacturing system is proposed to analyze the effect of controllable input param-
eters on cycle time distribution and other output variables. In the same spirit, a simulation
model is provided in Qi et al. (2002) to study the effect of some variables such as job arrival
distribution, batch size, downtime pattern and input control on mean cycle time and average
Work-In-Process. Chien et al. (2005) study how a learning curve approach can be used to
determine empirical rules for cycle time improvement. Strategies based on the analysis of
different problems related to cycle time by using data from the manufacturing execution
system are studied in Robinson and Chance (2000) and Ab Rahim et al. (2012). Kramer
(1989) studies the improvement of cycle time with a focus on the breaking of the product
cycle time into elements common to specific tools. The paper argues that the improvement
of the cycle time of each element leads to the improvement of the overall cycle time. For
more studies on the understanding of cycle time and the way it can be improved, see Nemoto
et al. (2000), Brown et al. (1999) and Domaschke et al. (1998).

The relationship between cycle time and other KPIs or parameters has also been inves-
tigated. A study based on the relationship between cycle time and yield in semiconductor
wafer fabrication can be found in Wein (1992). Tirkel et al. (2009) investigate the relation-
ship between cycle time and yield as affected by in-line metrology inspections of production
lots. In Fronckowiak et al. (1996), a discrete event simulation model is used to study the
impact of job priorities on cycle time. This study shows the significant impact of hot lots on
cycle times. Leachman and Ding (2010) provide analytic formulas to quantify the revenue
losses due to excursions not detected until end-of-line testing as a function of manufacturing
cycle times, excursion probabilities and kill rates.

The cycle time main challenges in semiconductor manufacturing are still based on how
it can be predicted/estimated, controlled and reduced:

– Cycle time prevision and estimation are studied with the purpose to control and plan
customer orders in tactical decisions, and further to manage some production factors
such as the level of input, the level of Work-in-Process in order to improve KPIs such
as on-time delivery, throughput and yield. Different approaches are used for cycle
time prediction and estimation: (1) Big data analytic (Wang and Zhang (2016)), (2)
Statistical methods, which include techniques such as probability distribution-based
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method and regression based method (Tai et al. (2012)), (3) Artificial intelligent tech-
niques based on domain knowledge, machine learning and data mining (Tirkel (2011),
Hassoun (2013)), Neural Networks (Chien et al. (2012)), and selective Bayesian classi-
fier based on a selection of minimal, most discriminative key-factor set for cycle time
prediction (Meidan et al. (2011)), (4) Simulation for cycle time prediction (Chung
and Huang (2002)), (5) Queueing model adapted for semiconductor manufacturing
(Akhavan-Tabatabaei et al. (2009)).

– Cycle time reduction refers to the strategy of decreasing the time a product spends
in the factory from its release to its last operation. Shorter cycle times drive a better
on-time delivery, help to decrease Work-In-Process and ensure good production quality
(higher yield), Meyersdorf and Yang (1997). Several strategies have been studied, es-
sentially based on the management of factors that influence the cycle time. Variability
is considered as one of the cycle time killers, see (Robinson et al. (2002)). In Majorana
and Iuliano (1997), a study on the management of variability is provided for cycle time
improvement. Chen (2013) provides a three-step procedure for cycle time reduction:
Identification of controllable factors that influence the product cycle time, investiga-
tion of the relationship between the controllable factors and product cycle time and
finally, based on this relationship, actions should be planned to shorten the product
cycle time.
Other factors that influence cycle times have been used as a lever for cycle time reduc-
tion such as batch size (Babbs and Gaskins (2007)), lot size (Zarifoglu et al. (2012),
Eberts et al. (2015), Wang and Wang (2007)), Work-In-process management (Chien
and Hu (2006)), queue time management (Sada et al. (2001)) and priority manage-
ment (Schmidt (2007)). Equipment management, essentially the study on preventive
maintenance segregation, is proposed in Rozen and Byrne (2016) with the goal to
determine the optimum preventive maintenance policy that results in reduced fabrica-
tion cycle times. Leachman et al. (2002) provide a set of methodologies and scheduling
applications for managing cycle times in semiconductor manufacturing called SLIM
(Short cycle time and Low Inventory Manufacturing).
The minimization of mean, variance and standard deviation of cycle times is also widely
studied. Scheduling policies are one of the levers used for mean and variance cycle time
reduction in semiconductor manufacturing (Mittler and Schoemig (1999), Lu et al.
(1994)). For more information about the minimization of mean and variance of cycle
times, see Yoon and Lee (2000), Lu et al. (1993) and Mittler et al. (1995).

Due to the complexity of semiconductor manufacturing, some of the research in semicon-
ductor manufacturing focus on the reduction of cycle times based on the activity of some
machines. This is the case for the studies proposed in Swe et al. (2006) for cycle time reduc-
tion on cluster tools and in Brown et al. (1998) for the test area. Other works focus on a
unique work-center of the factory. For illustration, see the studies proposed in Akcalt et al.
(2001) and van der Eerden et al. (2006) for cycle time reduction in the photolithography
area or Butterbaugh (2004) in batch cleaning.

In our global scheduling approach for cycle time control (see Chapter 4), cycle times are
managed by controlling the competition of products on shared resources using the production
targets determined by a global scheduling optimization model. In previous approaches in
the literature, the release dates of products were not considered in the control of the Work-
In-Process. Our global scheduling approach innovates by using both the release dates and
the temporal tracing of the Work-In-Process in the global scheduling model. Temporally
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tracing the Work-In-Process is critical to differentiate quantities of the same product and at
the same processing stage, but released at different times in the factory.

1.3.3 Simulation in Semiconductor Manufacturing

Production systems transform input materials into final products to be delivered to cus-
tomers. Customers can be enterprises (Business-to-Business) or final consumers (Business-
to-Consumer). The transformation process usually follows a sequence of operations from the
inputs materials to the final products.

Modeling and simulation are critical for complex systems such as semiconductor manu-
facturing systems. The poor understanding of the key dependencies, weaknesses, and bot-
tlenecks in such complex systems can lead to poor decision-making. To tackle these issues,
simulation is one of the most powerful tools available to decision makers responsible for the
design and operations of complex processes and systems. It makes possible the study, anal-
ysis, and evaluation of different situations and behaviors of a complex system which would
not be otherwise possible to apprehend (Shannon (1998)).

Even though the need of modeling and simulation becomes extremely important, chal-
lenges still need to be addressed, such as the reducing of problem solving cycles, the de-
velopment of real-time simulation-based problem-solving capability and the need for true
plug-and-play interoperability of simulations and supporting software. For more informa-
tion about the key challenges in modeling and simulation of a complex manufacturing system,
the readers are invited to check Fowler and Rose (2004).

The problem of standardization is also another challenge in simulation. Two simulation
experts might create quite different simulation models of the same production system, even
when using the same language. One of the challenges in simulation is to provide a standard
modeling and a framework for implementation. This problem is discussed in Ehm et al.
(2009). A general review on simulation for manufacturing systems can be found in Negahban
and Smith (2014).

Modeling usually comes before simulation, to obtain an abstraction of the system or an
abstraction of the components of the system which should be simulated. The output of the
modeling procedure is the models which can be mathematical models, physical, or logical
representations of a system, entities, phenomenons, or processes. Simulation represents the
system process function which is under study to predict a future state/behavior of the system.

As simulation is used in this thesis to evaluate our approach, this section outlines an
overview of the literature on simulation in semiconductor manufacturing. The goal is to
highlight the existing approaches as well as research gaps. We propose to classify the liter-
ature using three criteria: The Scope of the Simulation, The Simulation Methods, and The
Simulation Problem Type.

1.3.3.1 The Scope of the Simulation

The first and most complex production stage in semiconductor manufacturing is the front-
end, where a series of process steps (operations) are processed on wafers. Simulation in semi-
conductor manufacturing is studied using different views. A simulation of the whole front-end
fabrication process is studied in Kiba et al. (2009), Arisha and Young (2005), Collins et al.
(2001), Fronckowiak et al. (1996) and Kuhl and Laubisch (2004).

To study a particular problem in manufacturing systems, researchers can sometimes use
a simplified simulation model which represents essential objects in order to decrease the
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complexity and the model development time. El-Khouly et al. (2009) discuss a simplified
simulation model with six processing steps and five machines in three work-centers. The
purpose is to evaluate the effect of different dispatching rules and lot release policies on
some performance measurements such as the mean and standard deviation of cycle times.

Due to the complexity of the front-end stage, simulation studies are also conducted
on a particular work-center. Akçali et al. (2000) propose a simulation model of a wafer
fabrication facility in order to examine the effects of different loading and dispatching policies
for diffusion operations. In Mack (2005), the most popular and useful examples of lithography
simulators in a manufacturing environment are reviewed.

For the matter of re-usability and complexity simplification, generic simulation models
now have some attention in the literature on semiconductor manufacturing. Papers which
discuss generic simulation models can be found in Sadeghi et al. (2016), Arisha et al. (2004),
Kim et al. (2009) and Mackulak et al. (1998).

One of the challenges in semiconductor manufacturing is the modeling of complex process
tools, such as cluster tools, that need to be simulated. A cluster tool is an integrated,
environmentally isolated, wafer-manufacturing system consisting of processing chambers,
internal robots to transport wafers, and load locks where the wafer-to-cassette exchange
takes place. LeBaron and Pool (1994) address the simulation of cluster tools in order to
accurately predict their performance. Simulation in the back-end stage in semiconductor
manufacturing is not widely studied in the literature. Some discussion on simulation for
semiconductor packaging, testing, and scheduling in back-end can be found in:

– Wang et al. (2017), they propose a simulation model for packaging facility in semicon-
ductor manufacturing. Several strategies are discussed to enhance sustainability of a
factory. Instead of observing the continuous application of a factory using a simulation
model in the long term, this study identified short-term evidence to estimate the sus-
tainability of a factory simulation model. They conclude that the sustainability of a
factory simulation model can only be confirmed if the model is still applicable several
years after it is built.

– Lin and Chen (2015), they propose a simulation optimization approach for a hybrid
flow-shop scheduling problem in a real-world semiconductor back-end assembly facil-
ity. Their approach includes a simulation model for performance evaluation and an
optimization strategy with application of a genetic algorithm. They argue that their
approach aids in assigning orders optimally to the proper production line and machine
types while achieving minimal flow time.

– Werner et al. (2006), they suggest a simulation-based scheduling system for a semi-
conductor back-end facility. The goal is to develop a Discrete Event Simulation-based
approach for the complete back-end, which is suitable for the case of changing bottle-
necks and different line scenarios. The study focuses on optimizing the process flow
and calculating the exact release dates for lots.

1.3.3.2 The Simulation Methods

To our knowledge, in the literature, three simulation methods are discussed:

– System Dynamics (SD) which is a method for studying dynamic systems. The approach
provides an aggregate level of the systems by emphasizing feedback mechanisms and
their endogenous nature.
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– Discrete Event (DE) modeling in which the main modeling idea is to consider the
system as a sequence of operations being performed across entities. The notion of
queue line is very well modeled with this method.

– Agent-Based (AB) modeling is the more recent modeling method suitable for modeling
the individual behavior of objects of a system and their interactions.

For more details about the three simulation methods, see Borshchev (2013) and Barbosa
and Azevedo (2017).

Most of the papers in semiconductor manufacturing discuss simulation models with Dis-
crete Event simulation. It seems that only few papers combining the Discrete Event and the
Agent-Based simulation can be found in the literature on semiconductor manufacturing, see
Sadeghi et al. (2016) for a noticeable exception.

In general, multi-method simulation models combining different simulation modeling
methods are getting more attention from researchers. The readers are invited to see Barbosa
and Azevedo (2017).

1.3.3.3 Simulation Problem Type

Simulation in semiconductor manufacturing is studied for different purposes. The most
common encountered problems in the literature are related to the operation control decisions,
performance of Automated Material Handling Systems, evaluation of production planning,
tool performance (LeBaron and Pool (1994)) and strategic decisions related to the factory
(Shikalgar et al. (2002)).

Operation control decisions

Various operation controls are executed in a wafer fabrication facility. Simulation models
help to assess the effect of different dispatching policies on some key performance indicators
such as cycle time, number of wafers produced and on-time delivery (Akçali et al. (2000), El-
Khouly et al. (2009), Freitag and Hildebrandt (2016), Kuhl and Laubisch (2004)). Dispatch-
ing rules and rework strategies are considered in the set of major operational decisions that
affect fab productivity. In several papers, these issues are independently studied. Kuhl and
Laubisch (2004) showed that the interrelationship between dispatching rules and rework
strategies has a significant effect on the productivity of the Fab.

Other examples of operations control decisions analyzed using simulation in semiconduc-
tor manufacturing include Work-In-Progress management (Collins et al. (2001) and Kohn
et al. (2009)), lot releases, mask scheduling and batch scheduling (Kim et al. (1998)), produc-
tion scheduling (Jeong et al. (2006)), consistency between global flow decisions (Fab level)
and local flow decisions (work-center level) (Sadeghi et al. (2016)), scheduling evaluation
in semiconductor back-end manufacturing (Lin and Chen (2015)), effect of job priorities
on cycle times (Fronckowiak et al. (1996)) and effect of the mix of products used on cy-
cle times (Chang (2016)). A discussion of general simulation applications in semiconductor
manufacturing can be found in Koo et al. (2016).

Performance of Automated Material Handling Systems (AMHS)

Managing Automated Material Handling Systems (AMHS) is very difficult to study without
simulation modeling. These problems include the minimization of the average lot-delivery
time, the changes when adding or removing stations, the management of incidents, i.e.,
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the breakdown of vehicles on the rail, which can block the mobility of other vehicles and
consequently affect the fab productivity, etc.

Most AMHS simulation models assume that the logic of the production processes is given
and the AMHS management decisions are made based on this assumption. In Kong (2007),
a two-step simulation method for an Automated Material Handling System in semiconductor
manufacturing is provided combining a production simulation model and an AMHS simu-
lation model. The objective of the production simulation is to predict the throughput and
estimate the capability of the AMHS. After applying the production simulation model, the
AMHS simulation model is used to estimate the number of vehicles required and predict
delivery times.

In general, machine dispatching rules and vehicle dispatching rules are studied indepen-
dently. In Christopher et al. (2005), it is shown how the interaction of both machine dis-
patching rules and vehicle dispatching rules have a significant effect on the fab productivity.
For more information on AMHS challenges, see Cardarelli and Pelagagge (1995), Jimenez
et al. (2002), Ndiaye et al. (2016a), Ndiaye et al. (2016b) and Ben-Salem et al. (2016).

Evaluation of production planning

In semiconductor manufacturing, hybrid simulation-analytic methods are popular to evaluate
production planning approaches, which after corresponds to optimization models used at a
higher level (medium/tactical decision levels) and evaluated by a simulation model, which
acts as the shop floor. After the simulation is completed, statistics are collected that can
be used to improve the optimization model for updated planning. The process continues
when the plan provided by the optimization model is feasible in simulation. For a review of
simulation-optimization methods in semiconductor manufacturing, see Ghasemi et al. (2018).

Here is a non-exhaustive list of papers which investigate hybrid simulation-analytic meth-
ods for production planning evaluation: Byrne and Bakir (1999), Irdem et al. (2010), Bang
and Kim (2010), Liu et al. (2011), Hung and Leachman (1996), Hung and Leachman (1996)).
A general taxonomy/discussion on hybrid simulation-analytic methods can be found in
(Figueira and Almada-Lobo (2014), Shanthikumar and Sargent (1983) and Hsieh (2002).

1.3.3.4 Gap Analysis

Previous sections reviewed articles related to the application of simulation in semiconductor
manufacturing. We observe that several articles do not provide the structure of simulation
model and the conceptual model. We found two noticeable exceptions. The first one is
Mueller et al. (2007). In this study, the authors discuss the automatic generation of a
simulation model based on an object-oriented Petri net data structure. The second exception
is Lin and Long (2011), where the development of a multi-agent distributed platform for
semiconductor manufacturing is addressed.

Only few papers discuss the validation and verification of simulation models, see Nayani
and Mollaghasemi (1998), Kong (2007) and Chance et al. (1996). Various verification and
validation methods of simulation models can be found in Sargent (2013). Based on the
future challenges of simulation stated in Ehm et al. (2009), few papers discuss the matter of
simulation framework, see Mönch et al. (2003) for a noticeable exception. In their paper,
the authors provide a simulation framework for the performance assessment of shop-floor
control systems.

For the implementation of simulation models, a dedicated software is likely to be preferred
than a programming language (C, C++, Java, etc.). Popular simulation software programs
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include AutoSched AP, ARENA, AnyLogic and AutoMod. For additional software programs
used for implementing simulation models, see Shannon (1998).

The simulation model used in this thesis is based on the operation control decisions. It
is a generic multi-method model, which combines Discrete Event (DE) and Agent-Based
(AB) simulation initially developed in Sadeghi et al. (2016) using the AnyLogic software and
improved in this thesis. A conceptual model is provided which allows the model to be verified.
The validation of the simulation model is done on industrial data. In addition, an innovation
is brought in this thesis compared with previous studies on simulation in the literature, where
the interface of exchange/communication has not yet been well defined when simulation is
used with mathematical optimization models. In this thesis, the exchange/communication
interface is provided and its functioning is clearly defined.

1.4 Motivation and Main Objectives of the Thesis

In a wafer manufacturing plant, different products are produced on different machines which
are grouped in different work-centers (machines with the same capabilities). Each work-
center includes specific process characteristics such as batch processing, parallel processing,
and auxiliary resources. These features increase the complexity of scheduling decisions. In
addition to the re-entrant flow characteristic of semiconductor manufacturing, scheduling
decisions become very difficult to apply for the entire factory. To cope with this complexity,
the commonly used approaches for scheduling decisions in work-centers are as follows:

1. Real-time scheduling using dispatching rules, i.e., every time a resource is available,
a decision based on certain rules is made to process the next product. A review on
dispatching rules can be found in Varadarajan and Sarin (2006) and Sarin et al. (2011).

2. Optimized scheduling algorithms dedicated to a work-center, for instance, scheduling
on parallel machines with auxiliary resources in the photolithography work-center,
see Bitar et al. (2016) or on batch machines in the diffusion work-center (Yugma et al.
(2012), Jung et al. (2014) and Knopp et al. (2017)).

A general literature survey on scheduling in semiconductor manufacturing can be found in
Mönch et al. (2011). The main disadvantage of these approaches is that they are shortsighted.
Independent scheduling decisions in each work-center are limited by the information available
within the perimeter of the work-center. Work-centers interact when products move from one
work-center to another, but this interaction is not considered in individual decisions of each
work-center. For example, an upstream work-center can send quantities of a given product to
a downstream work-center in a short period of time, which has a limited number of machines
qualified to process this product. With a global vision of the system, an unbalanced flow can
be observed which can deteriorate global key performance indicators even if the decisions
taken locally in the work-center are optimized.

Another motivation of this thesis is that strategies based on the definition of production
targets already exist in semiconductor manufacturing plants. For the whole factory (fab),
production targets are determined not by relying on optimization methods, but on the basis
of the experience of managers as shown in Figure 1.4 or using numerical and empirical cal-
culations, see Kao and Chang (2018), Wu et al. (1998) and Govind and Fronckowiak (2003).
In Kao et al. (2014) a study comparing different dispatching rules and an approach based
on production targets shows that the approach based on production targets outperforms one
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Figure 1.4: Optimization method to determine production targets

that only uses dispatching rules in terms of line balancing and cycle time performance with
both high and low variability. In addition, it is shown in Chang (1999) that a right setting
of targets leads to an increase of more than 20% of daily moves (number of wafers leaving an
operation) and a decrease of 8% of the Work-In-Process. Although the results published in
these previous studies have shown that the use of production targets at the work-center level
allows a good management of Work-In-Process and contributes to improve KPIs, they are
still shortsighted and empirical. They do not consider the interaction between work-centers
and production targets are not determined using optimization methods.

The aim of this thesis is to propose a global scheduling approach and to validate it on
industrial data by simulation. The main objective of the approach is to determine the right
production targets using optimization methods. The proposed global scheduling approach
widens the scope of the parameters used and includes several strategies (global scheduling
strategies) defined according to the objectives to be optimized. These strategies are imple-
mented as mathematical optimization models (global scheduling models) and they consider
the interaction that exists between work-centers using global information such as lot release
quantities, cycle time targets of products, resource capacities and the Work-In-Process of
the factory.

Our global scheduling approach is evaluated using a generic multi-method data driven
simulation model, initially developed in Sadeghi et al. (2016) and extended and improved
in this thesis. The global scheduling models are called regularly in the simulation, which
represents the factory. In a rolling horizon scheme, the current state of the simulation is
collected to feed the global scheduling models. The latter determine production targets,
which are used in the simulation as guidelines to local scheduling decisions.
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1.5 Conclusions

This chapter presented the industrial and scientific context and the main motivation of this
thesis. We described the main parts of semiconductor manufacturing systems as well as
the main manufacturing processes. The manufacturing complexity of integrated circuits is
presented as well as some main operations. Next, we briefly introduced the different levels
of decision making in semiconductor manufacturing. The operational level is at the heart
of this thesis, in particular global scheduling decisions in semiconductor manufacturing.
An operational decision level structure based on two views was provided. It follows the
same structure of two management levels at operational level as in Bureau, Dauzère-Pérès,
Yugma and Vermarien (2007). In this structure, the top level view (factory level) is used as
the steering mechanism for the bottom level (work-center level). However, instead of setting
priorities as global strategies as in Bureau, Dauzère-Pérès, Yugma and Vermarien (2007), our
approach sets production targets. Related works in the literature are reviewed and finally,
the motivation and the main objectives of the thesis were provided.
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Chapter 2

Global Scheduling Approach

2.1 Introduction

The global scheduling approach which is proposed in this thesis adopts two views of the
operational decision level as in Bureau, Dauzère-Pérès, Yugma and Vermarien (2007): The
global level (factory level) and the local level (work-center level). The global level uses
the global information (Work-In-Process in the whole fab, lot releases, cycle time targets,
resource capacity, etc.), while the local level uses local information (waiting times of lots,
processing times, lots currently in queues, etc.). The global level aims to determine produc-
tion targets which are regularly updated in a rolling horizon and should be followed at the
work-center level. Different strategies can be implemented in the global scheduling approach
depending on criteria to be optimized such as cycle times and throughput. In this thesis,
these strategies are based on Work-In-Process management techniques and are modeled us-
ing global scheduling models written as Linear Programs. The approach includes two key
points:

– The determination of production targets, i.e., quantities of each product to be com-
pleted in each operation and each period on a scheduling horizon. These production
targets should be followed at work-center level and updated regularly in order to inte-
grate the evolution of the factory,

– Strategies depending on criteria to optimize. These strategies are implemented through
mathematical programming models (global scheduling models)

2.2 Framework of the Global Scheduling Approach

The front end area in semiconductor manufacturing is generally managed locally at the
work-center level with dispatching rules or dedicated scheduling algorithms. This is done
independently in each work-center as discussed in Chapter 1.

Local management has certain drawbacks such as a short-sighted view and may create
an unbalanced Work-In-Process in the factory. To deal with this problem, global scheduling
management is required. In general, priorities are used as global strategies at the global level
to steer dispatching or scheduling decisions at the local level. The disadvantage of priority-
based management includes dynamically defining and managing priorities. The issue is that
priorities can contain several elements such as the importance of the customers. Priorities
are also defined at a higher decision level (tactical level). Thus, a priority-based management
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approach used as a global scheduling strategy does not seem to be a good approach to drive
scheduling decisions at local level, because priorities might lose their relevance when they
are often changed at the local level. In addition to priorities, global management is also
carried out using production targets which serve as guidelines for scheduling decisions at
work-center level. However, as discussed in Chapter 1, the determination of production
targets is generally based on the experience of production managers or on the basis of simple
calculations.

The global scheduling approach proposed in this thesis uses optimization methods to
widen the scope of the parameters that are considered and to offer the possibility of using
different strategies integrated in mathematical models for the management of the Work-In-
Process. The goal is to determine the production targets to optimize different criteria. The
framework in Figure 2.1 summarizes the global scheduling approach and how it is evaluated.
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Figure 2.1: Framework of the global scheduling approach

The global scheduling approach includes three main parts:

– Global scheduling strategies (1). In this thesis, a strategy is a Work-In-Process man-
agement policy which can be based on the operations of products, different resources,
etc. with the objective to optimize one or more criteria. The strategies we defined aim
to minimize the variability of the throughput of finished products, to maximize the
throughput and minimize the cycle times, and to control the cycle times. They are
based on techniques of Work-In-Process management as detailed in Section 2.2.1.
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– Global scheduling models (2). They implement the global scheduling strategies as
Linear Programming models, where objective functions represent the way strategies
are conducted and constraints bound the action of the strategies.

– Production targets (3), i.e., quantities to complete for each product in each opera-
tion at each period on a scheduling horizon. For all strategies the production targets
are outputs of the global scheduling models. Thus, by sending the quantities to be
completed at the work-center level, the global scheduling approach is able to optimize
different criteria.

The evaluation of the global scheduling approach (6) is carried out using a generic multi-
method simulation model which represents the local scheduling level (4). To evaluate the
approach, various parameters are required such as the scheduling horizon, the length or
duration of each period in the scheduling horizon and the horizon within which the global
scheduling strategy is applied, called the triggering horizon in this thesis (5). These param-
eters are described in Section 2.2.2 and the evaluation of the global scheduling approach is
detailed in Section 2.3.

2.2.1 Different Global Scheduling Strategies

Global scheduling strategies are driven by the criteria to optimize. They are implemented
as Linear Programming models (global scheduling models) and use global information from
the factory such as the Work-In-process, release dates, cycle time targets, resource capacity,
etc.

Resource	capacity
Product	mix	
Product	flows	
Cycle	time	targets
Work-In-Process
Lot	releases	etc.

Criteria		to	optimize

Global	scheduling	models

Global	scheduling	strategies

WIP	management	techniques			

Production	
targets

Global	information

Figure 2.2: Global Scheduling Strategies

As shown in Figure 2.2, global scheduling models implement global scheduling strategies,
which are based on Work-In-Process management techniques. Global scheduling strategies
aim to determine production targets that should be followed at local level using simple
dispatching rules or dedicated scheduling algorithms. The objectives which drive the different
global scheduling strategies used in this thesis are described as follows:
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– Minimization of the variability of cycle times and throughput. This objective is
optimized using strategies that determine the percentage of Work-In-Process that each
product should maintain at the end of each period over a scheduling horizon. This
percentage is called the balancing coefficient.

– Maximization of throughput. The optimization of this objective is made possible
by the use of a pull strategy. The pull strategy ensures that the more advanced are
the products in the factory, the highest their priority.

– Minimization of cycle times. The Work-In-Process management strategy used to
optimize this objective is essentially focused on minimizing the product waiting times.
The strategy ensures that products that are waiting in an operation are processed
before those that have arrived later.

– Control of cycle times. The associated Work-In-process management strategy is
based on the grouping of product operations into subsequences of operations (blocks
of operations) to facilitate the control of the time each product spends through each
block. Each block has a target cycle time based on the given cycle time target of the
product. The aim is to minimize the tardiness and/or the earliness at products in each
block in order to meet the product cycle time targets.

2.2.2 Parameters and Decisions

In the global scheduling approach, a Linear Programming model is solved regularly in a
rolling horizon setting. Thus, it is crucial to define the key parameters for the global schedul-
ing approach (see Figure 2.3): (1) The duration of each period, (2) the scheduling horizon
(number of periods in the horizon) and (3) The number of periods (called triggering horizon
in this thesis) before solving again the Linear Programming model. The triggering horizon is

Triggering	
horizon

Time

Time

Scheduling	horizon

Triggering	
horizon

Scheduling	horizon

Figure 2.3: Scheduling horizon and triggering horizon in global scheduling strategy approach

important because the global scheduling model does not consider the detailed characteristics
of the work-centers. Therefore, the model must be regularly solved to update the decisions
by taking into account the events that occurred before the triggering horizon. The trig-
gering horizon should not be too small to avoid changing decisions too often, or too long
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not to ignore some critical events. The scheduling horizon is important since it is used to
predict the future behavior of the system affected by the scheduling decisions. A sufficiently
long scheduling horizon helps the global scheduling model to mitigate the end of the hori-
zon effects. The triggering horizon and the scheduling horizon, but also the duration of
each period, strongly depend on the problem and can be determined through computational
experiments.

2.3 Evaluation of the Approach using a Simulation Model

Simulation is a widely accepted approach for the design and analysis of manufacturing sys-
tems. It can model non-linear and stochastic problems and allow the examination of the
likely behavior of a proposed manufacturing system under selected conditions. Through
simulation analysis, many details and constraints can be considered in the evaluation of a
manufacturing system. Different computational experiments can be performed with a sim-
ulation model. These experiments can be the prediction of the effect of mix changes, the
extraction of relevant information, etc. The application of new strategies to control the man-
ufacturing system may require additional experiments to analyze KPIs such as cycle times,
throughput and output variability on cycle times and throughput.

In semiconductor manufacturing, a front-end manufacturing facility, also called wafer
fab, usually processes many products. Each product has a processing route, which contains
a sequence of hundreds of operations. Products of the same type are grouped in a lot (a
lot contains at most 25 wafers). A typical fab includes several hundred machines, which
are grouped in work-centers. Each work-center is dedicated to a specific type of operations.
Based on the characteristics of frond-end manufacturing facilities, a generic data-driven sim-
ulation model for complex semiconductor manufacturing facilities was initially developed in
Sadeghi et al. (2016) with the aim to study the consistency between global flow management
objectives/decisions (fab level) and local scheduling/dispatching objectives/decisions (work-
center level). This simulation model is being improved in order to take into account new
parameters such as the warm-up time (the time when the factory is loading), the mechanism
at local level to control objectives sent from the global level, and the strategies of the global
scheduling approach. The aim is to ensure that global objectives defined at the fab level
are followed at the local level. Details on the exchange/communication interface between
the global scheduling approach, which represents the global level, and the simulation model,
which represents the local level, is given in Section 2.3.2. The simulation model is used to
evaluate the different global scheduling strategies proposed in this thesis.

Section 2.3.1 presents the structure of the data-driven simulation model, input parame-
ters, objectives and Key Performances Indicators to evaluate the performance of the man-
ufacturing system. Section 2.3.2 presents the exchange/communication interface between
the simulation model and the global scheduling approach. Finally, Section 2.3.3 presents
the design of the computational experiments used to evaluate the performance of the global
scheduling approach.

2.3.1 Simulation Model

The conceptual model of the simulation model is presented in Figure 2.5. From the meta-
model (first panel of Figure 2.5), the data model and the model structure of the Factory
are derived. The simulation model is a multi-method model, which combines Discrete Event
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Figure 2.4: Panoramic view of simulation model

(DE) and Agent-Based (AB) simulation methods in order to combine the benefits from
both modeling approaches, in particular the notion of queues in Discrete-Event simulation
and the flexibility, behavior, and communication of agents in Agent-Based Simulation. The
different types of behavior or processes in each entity (agent) are designed with DE simulation
modeling. For instance, since lots of different products at different operations compete for
the same machines, the notion of queue in front of machines is needed. Therefore, queues
are designed with DE simulation where each work-center (group of machines with same
capabilities) is modeled as an agent. To complete its production process in the fab, every
lot (also modeled as an agent) needs to interact with other agents via different rules in such
a way that all interactions generate the overall system behavior, see Sadeghi et al. (2016).
The Agent-Based simulation model is used to ensure these interactions. The main types of
agents are the lots and work-centers. Secondary agents are non-physical components such as
operations and routes. The interaction and behavior of agents are taken into account in the
production logic implementation. Input data (work-centers, routes, additional operational
parameters, etc.) are supported by an Excel file format.

In the production logic (last panel of Figure 2.5), after releasing a lot in the system, a
route identification (Route ID) is associated with the lot depending on the lot type. In the
next stage, the first operation is requested and allocated to a qualified work-center. As an
operation can be treated in different work-centers, the work-center with the smallest queue
is selected. The process continues as in the previous stage until the last operation of the
route is completed. Then, the lot exits the system.
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Figure 2.5: Conceptual model of simulation model

System performance evaluation

To analyze the system performance, qualitative evaluations such as good, fair, adequate, and
poor are vague and difficult to use in any meaningful way. Instead, quantitative performance
measures are preferable. The process of choosing appropriate manufacturing performance
measures is difficult due to the complexity of these systems. To be successful, production
systems must deliver the products with the desired functions, aesthetics, and high-quality
to the customers at the right time. To do so, several performance measures exist, such as
cycle time, Work-In-Process inventory, throughput, productivity, and service levels. In the
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following, we provide an overview of the most commonly used performance and productivity
evaluation metrics in the semiconductor industry. The goal is to understand both the impact
of the different metrics and the relationship between them.

The selection of input parameters depends on the current status of the fab under study
and the use of the simulation model. For instance, parameters such as the warm-up time
(the time when the factory is loading) should be taken into account since we assume that we
are not working with a new factory. The simulation model is related to operational control,
and the main input parameters are:

– The number of lots started in the system per week,

– The total number of lots to produce, this parameter depends on the simulation horizon
(the longer the simulation horizon, the larger the total number of lots to produce),

– The number of products in the mix,

– The warm-up time or initial Work-In-Process, and

– The priority of each product.

In order to compare the factory expected and actual realizations, theoretical parameters
based on historical data can be used as auxiliary parameters. When considering operational
decisions in the simulation model, common auxiliary parameters are the theoretical cycle
time of each product, the theoretical throughput, and the theoretical yield. The simulation
model is designed based on an objective that drives the modeling. The objective is mainly
evaluated via defined Key performance Indicators (KPIs) which outline the achievement of
the objective. Thus, Key Performance Indicators are decided at the highest level and support
the overall long-term strategic objectives of the factory and they are in turn supported by
metrics at local level as shown on 2.6.

Business	Goals

Objectives

Metrics

Support

Support

Figure 2.6: Objectives and Metrics

The main objectives to optimize at the operational level are:

– The average and the standard deviation of cycle times,

– The throughput, i.e., the number of wafers produced,

– The output variability on cycle times and throughput,
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– The on-time delivery,

– The yield percentage

In general, the metrics that support these objectives are:

– The number of moves (productivity),

– The average Work-In-Process in the system for each product,

– The machine utilization, and

– The Work-In-Process balancing.

The main objectives optimized in this thesis to analyze the effectiveness of the global schedul-
ing approach are the output variability on cycle times and throughput, the throughput (num-
ber of completed wafers), and the cycle times. Other objectives are being defined depending
on the strategy to follow, such as speed up products to minimize their cycle times, balancing
the Work-In-Process to satisfy estimated throughput or satisfying cycle time targets, etc.

2.3.2 Exchange/Communication Interface between Simulation Model
and Global Scheduling Approach

The input/output exchange/communication implements the communication strategy be-
tween the aggregate global scheduling model and the simulation model. Since the sim-
ulation model considers a granularity (process unit is one lot) that is different from the
granularity of the global scheduling model which process quantities, this section describes
the exchange/communication allowing the simulation and optimization models to feed each
other with input/output data, see Figure 2.7.

Generic		Simulation	Model

Control	
mechanism	of

production	targets

Factory Complete	run	of	the	global	
scheduling		model		

Aggregated	
data

Production
targets

Global	Scheduling	Model

Figure 2.7: Exchange of information between the global scheduling model and the simulation
model

The global scheduling model implements the global scheduling strategy, which guides
scheduling decisions at the work-center level in the factory (represented by the simulation
model) by providing objectives in terms of production targets, i.e., product quantities to
complete for each operation and at each period on a scheduling horizon. As the global
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scheduling optimization model is actually embedded in the code of the simulation model,
the interface of the exchange/communication is of great importance and should be clearly
defined.

There is a significant number of papers in the literature where simulation and optimiza-
tion are combined in semiconductor manufacturing. However, it seems that there is no paper
that discusses the interface of the exchange/communication between optimization and sim-
ulation. A review of simulation optimization methods with application in semiconductor
operational problems can be found in Ghasemi et al. (2018).

Analyzing the system under study before setting up the exchange/communication inter-
face is crucial. Indeed, it is difficult to define the interface for the exchange/communication
without deciding whether the combination of the global scheduling model and the simulation
model should be a System or a System Of Systems (SOS). The difference between a System
and a System Of Systems (SOS) lies essentially in its components. A System Of Systems is
a System. However, the components of a SOS act as autonomous systems (Boardman and
Sauser (2006)). Based on this autonomous property of an SOS, we consider in this thesis
that the combination of the simulation model and the global scheduling model is an SOS.
The simulation model can be executed correctly without the global scheduling model and
the latter can work independently outside the simulation model. For more details on SOS,
see Boardman and Sauser (2006) and Gorod et al. (2008).

The interface of the exchange/communication ensures the analysis of the primary cor-
rectness function of the global scheduling model. It also ensures that each part of the SOS,
the simulation model and the global scheduling optimization model can operate indepen-
dently. In this thesis, the simulation model is used to evaluate the global scheduling model.
The simulation-based optimization framework and the connectivity interface which links the
simulation model and the global scheduling model are discussed below.

Simulation-based optimization framework

Figure 2.8 describes the components of the simulation-based optimization framework.

Metamodel

Model structure

Data

Optimization model

Parameters

Data

Connectivity

Coordination

Interoperability

Simulation Global optimization
strategy

Parameters

Input/Output data sharing and 
aggregation 

Figure 2.8: Simulation-based Optimization Framework

The simulation-based optimization framework includes both systems that form the SOS
(the simulation model and the global scheduling optimization model) and the interface of
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the exchange/communication (connectivity interface).
The simulation model in the framework has the following elements:

– A meta-model (see the first panel of Figure 2.5), which describes the entities involved
in the simulation model (fab, product, lot, route, machine, operations, etc.) and their
relationships,

– Parameters, that represent different adjustable characteristics of the simulation model
such as started lots per week, total number of lots to produce, warm-up time, priority
of each product, etc.,

– A model structure, which specifies the interactions of entities in the production logic
(see the last panel of Figure 2.5).

The global scheduling model includes the following elements:

– A Linear Programming model that materializes global scheduling strategies. It includes
an objective function, constraints and variables,

– Parameters associated with the global scheduling strategies such as the scheduling
horizon, the duration of the period in the scheduling horizon and the triggering horizon.

The interface of exchange/communication

The interface of exchange/communication (connectivity interface) includes the following el-
ements:

1. Coordination represents the way both systems are synchronized in an SOS environment.
The main mechanism used in this thesis to make the coordination efficient is based
on the running order. The SOS begins with the run of the simulation model on
the triggering horizon. Next, the global scheduling optimization model is called in
a rolling horizon by a simulation trigger event. After collecting dynamic parameters
from the current status of the simulation model, such as current Work-In-Process levels
in work-centers, and static parameters, such as future releases and aggregate resource
capacities, the global scheduling model is solved to determine production targets. In
the meantime, the simulation model is paused. When the optimization is completed
the production targets Yglp for product g in operation l and period p determined by the
global scheduling model is then imposed as constraints at the work-center level in
terms of production quantities of each product to complete at each operation in each
period. Then, the simulation model resumes and tracks these production quantities.

2. Interoperability corresponds to the way the simulation model and the optimization
model cooperate in order to achieve the objective of the SOS, i.e., the optimization
of different objectives. The simulation aims at satisfying the objectives sent by the
global scheduling optimization model in terms of production targets. A mechanism
based on a controller variable is used, which indicates whether the production target
of a particular product is reached at a given operation in each period. In addition, the
interoperability ensures that the future product releases collected as static parameters
are properly synchronized with the product release scheme in the simulation. Finally,
the interoperability guarantees that, in the simulation model, the representation of
the parameters of the global scheduling optimization model (the scheduling horizon,
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the triggering horizon and the duration of each period in the scheduling horizon) are
transformed from periods units to simulation time units.

3. Input/output sharing data and aggregation represent the way static and dynamic data
are collected and aggregated. For example, machines are grouped in work-centers (each
work-center includes machines with the same capabilities), the sum of the capacities
of the machines in the work-centers are aggregated as individual capacity of the work-
center, quantities of lots at each operation are used in the global scheduling model
instead of individual lots, etc.

The connectivity interface that links the simulation model and the global scheduling
model is presented on Figure 2.9.

Data Event

Trigerring Event Interoperability
Event 

Data sharing and
aggregation Interoperability

1

2

3

Coordination

Figure 2.9: Connectivity interface linking the simulation model and the global scheduling
model

In the simulation model, three dynamic events are in charge of the communication be-
tween the simulation model and the global scheduling optimization model:

– The interoperability event, which ensures that the production targets, defined by the
global scheduling optimization model, are followed in the simulation model using the
controller variables which track production quantities in each period in the triggering
horizon,

– The data event, which collects all static and dynamic parameters needed by the global
scheduling model and ensures that data is aggregated properly,

– The triggering event, which calls the global scheduling model and collects its output.
It is used to assess the accuracy of the outputs of the global scheduling model before
their use in the simulation model.

As shown on Figure 2.9, these three events trigger each other cyclically. Before the first
call of the optimization model, the Interoperability Event counts the number of periods to
ensure that the simulation model is paused at the end of the triggering horizon. Next, it
triggers the Data Event to collect static and dynamic parameters from the current state of
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the simulation model and aggregates this data. Then, the Data Event calls the Triggering
Event, which in turn calls the global scheduling model. After the global scheduling model
is solved, the Triggering Event triggers the Interoperability Event to ensure that production
targets are followed in the simulation model. The Interoperability Event again starts to count
the number of periods before the next call of the global scheduling model and so on. This
iterative procedure continues until the end of the simulation horizon.

2.3.3 Design of Computational Experiments

The simulation model starts by creating the required agents such as the routes of products,
product operations, work-centers, etc. These agents are then fed with data from Excel files
(data related to the fab such as work-centers, number of machines in each work-center, pro-
cessing times, etc). Finally, parameters of the simulation model and of the global scheduling
model are initialized, and lots of products are generated following the product release scheme.

The interoperability provides the controller variables, which are set up to indicate whether
each production target Yglp for product g at an operation l in period p is reached.

Resource

Resource

112312245 3

1212312334

Production Targets
2

3

3

Case 1

Case 2

Production Target reached

Production horizon

Figure 2.10: Mechanism to track production targets

In some situations, depending on the status of the queue of the resource and the pro-
duction targets, short cycle times will not always lead to high throughput. A product can
have high throughput with long cycle times or short cycle times with low throughput. This
is due to the fact that, if a product reaches its production target, then its production is
temporally stopped in order to track the production targets of other products. A lot of a
stopped product can only be produced when all products reach their respective targets or
when it is the only one in the queue of a resource. For illustration, assume processing times
of one time unit on resources looking at Figure 2.10, the red product has an average cycle
time of 5.8 time units with a throughput of five lots in Case 1. While in Case 2, the same
product has a cycle time of 2.6 time units with a throughput of three lots.

Numerical experiments have been conducted using two industrial data sets associated to
two different factories. Five product families are considered for the first industrial data set
and ten product families grouped in two different instances for the second industrial data
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set. The industrial data set of the first factory includes 449 machines in 203 work-centers,
and products have between 352 and 622 operations in their routes. The industrial data set
of the second factory includes 570 machines in 329 work-centers, and products have between
104 and 315 operations in their routes. In both data sets, products are continuously released
in the system in a uniform scheme. The global scheduling model and the data driven generic
multi-method simulation model are implemented using the AnyLogic software (version 8.4)
which interacts with the standard solver IBM ILOG CPLEX (version 12.6). Experiments are
performed on a computer with Windows 10 as operating system, a processor Intel(R)Xeon(R)
CPUE3-1240v5, 2*3.50 GHz and 32 Go of RAM.

As we are not working with a new factory, six months of warm-up time (time to load the
factory) are used. Figure 2.11 presents how the warm-up time was determined based on the
outputs of each factory, i.e., products that get out of the system each month were collected
in the simulation model for eighteen months. Figure 2.11 shows that the steady state of
each factory is reached before the sixth month. The first six months of warm-up time are
excluded when collecting statistical data.
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Figure 2.11: Determination of warm-up time based on factory outputs

The period duration in the global scheduling model corresponds to one shift (eight hours),
and the global scheduling model is called in the simulation model every three periods (trigger-
ing horizon of twenty four hours), i.e., more than 300 times in total. The scheduling horizon
in the global scheduling model is fixed to thirty-three days (792 hours). The simulation hori-
zon is fixed to eighteen months except in Chapters 4 and 5, where the simulation horizon is
twelve months. This is because of the lack of memory during simulation, essentially when
the simulation model is coupled with the global scheduling models.

2.4 Conclusions

This chapter describes a global scheduling approach to steer local scheduling decisions at
work-center level. The approach adopts two views of the operational decision level: The
global level (factory level) and the local level (work-center level). The approach includes
three key points:

1. Production targets that should be followed at work-center level and updated regularly
to take into account the evolution of the factory and the objectives to optimize,

2. Strategies based on the objectives to optimize, that are implemented through mathe-
matical programming models (global scheduling models) and,
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3. Required parameters for the evaluation of the approach. These parameters include
the scheduling horizon (number of period in the horizon), the duration of each period
in the scheduling horizon and the number of periods before solving again the global
scheduling model (called triggering horizon).

The approach ensures that several objectives can be optimized by only sending production
targets to the work-center level. These production targets are determined using different
global scheduling strategies. The approach is suitable for semiconductor manufacturing, but
can be used for any other complex manufacturing system. A multi-method generic simulation
model is used to evaluate the approach.
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Chapter 3

Work-In-Process Balancing Control and
Throughput Maximization

3.1 Introduction

This chapter presents new strategies for managing Work-In-Process in complex industrial
systems, particularly in semiconductor manufacturing. Work-In-Process corresponds to the
products already in the factory, but not yet completed. It is certainly difficult to improve
Key Performance Indicators (KPIs) such as cycle times, throughput, variability of cycle
times and throughput, and on-time delivery without a thorough management of the Work-In-
Process. Work-In-Process balancing control, i.e., ensuring that Work-In-Process is properly
distributed throughout the whole factory is considered as an efficient method to improve
KPIs ( Lee and Lee (2003)). Balancing the Work-In-Process allows a good use of production
capacity and ensures a good distribution of products in the factory. It also guarantees that
all products progress regularly towards the end of their operations.

Work-In-Process control is performed to optimize one or more objectives at a time. The
main objective of this chapter is to optimize the output variability on cycle times and
throughput of completed products and their throughput. Secondary concerns are the ac-
celeration of products for better cycle times as well as the satisfaction of throughput and
cycle time targets. Throughput is known as one of the important KPIs in semiconductor
manufacturing, because a high throughput often leads to a factory achieving high revenues
(Chung and Jang (2009)). Minimizing the output variability on cycle times and throughput
(ensuring that all products are advancing at a regular pace) prevents some non-prioritized
products from slowing others. A common example is of a high percentage of hot lots which
can substantially increase the average cycle time and/or inventory costs of all other lots
(Ehteshami et al. (1992)). It seems that there are not many studies on the output vari-
ability on cycle times and throughput in the literature on semiconductor manufacturing.
For a noticeable exception, see Chen et al. (2010). In their study, they propose an ap-
proach to minimize the output variability not on finished products, but on the deviation
between actual production and desired customer demand. For more details about variability
in semiconductor manufacturing, see Li et al. (1996), Schoemig (1999) and Dequeant et al.
(2016).

In the literature on semiconductor manufacturing, single objective problems are widely
studied, but in practice, problems often appear with multiple contradictory objectives. For
example, minimizing the output variability on cycle times and throughput can, in certain
situations, imply a reduction in throughput. This is due to the slowing of the products with
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short cycle times which can otherwise contribute to the increase in total throughput of the
factory. Numerical results in Section 3.3, show that when the output variability on cycle
times and throughput is optimized alone, some products do not reach 100% satisfaction of
their estimated throughput, but with a multi-objective approach, with both the optimization
of the output variability on cycle times and throughput and the optimization of throughput,
almost all products reach 100% satisfaction of their estimated throughput with an acceptable
compromise on the variability compared to the results when only the output variability on
cycle times and throughput is optimized. The trade-offs are a maximum difference of 3.3
and 0.1 variability on cycle times respectively for industrial instances one and two presented
in Section 3.3. These compromises are acceptable compared with the results when only sim-
ulation is used without the global scheduling approach which presents a maximum difference
of 10.1 and 0.8 variability on cycle times respectively for industrial instances one and two.
The output variability on cycle times and throughput is analyzed using the InterQuartile
Range (IQR), which is a robust measure of variability. It indicates the central dispersion of
50% of the values in the data set and is calculated based on the median.

To our knowledge, minimizing the output variability on cycle times and throughput
and maximizing throughput have never been studied together. The strategies used in this
chapter balance the minimization of the output variability on cycle times and throughput
and the maximization of throughput. The single objective strategy aiming at minimizing the
output variability on cycle time and throughput of completed products is performed by using
balancing coefficients, i.e., the percentage of Work-In-Process for each product that should
remain at the end of each period over a scheduling horizon. These balancing coefficients
define the flow of each product in the factory. A small balancing coefficient for a product
means that the product should significantly contribute to the total throughput of the factory.
The multi-objective strategy is formulated using the ε-constraint approach.

Section 3.2 presents the Work-In-Process balancing control to minimize the output vari-
ability on cycle times and throughput and provides an analysis of the satisfaction of through-
put and cycle times. The study in this section was presented at the Winter Simulation
Conference 2019 (WSC 2019), see Barhebwa-Mushamuka et al. (2019b). In Section 3.3, the
multi-objective optimization for Work-In-Process balancing and throughput maximization
is formulated using an ε-constraint approach and its adjusted version. The study in this sec-
tion was presented at the International Conference on Automation Science and Engineering
(IEEE CASE 2019), see Barhebwa-Mushamuka et al. (2019a).

3.2 Work-In-Process Balancing Control

This section addresses the problem of Work-In-Process balancing control in semiconductor
manufacturing systems. The Work-In-Process balancing strategy is proposed to minimize the
output variability on cycle times and throughput. Balancing coefficients are used as leverage
to speed up a product while controlling the impact of this acceleration on other products.
In addition, the strategy through the balancing coefficients guides the Work-In-Process in
order to satisfy the given throughput and cycle time targets. Work-In-Process is controlled
so that each product progresses in the factory according to its balancing coefficients.
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3.2.1 Controlling Work-In-Process using Balancing Coefficients

The objective of the Work-In-Process balancing strategy is to provide a flow scheme for each
product. This is achieved through the use of balancing coefficients which are the percentage
of Work-In-Process for each product that should remain at the end of each period over a
scheduling horizon. The global scheduling model will determines production targets so that
the products advance in the factory according to their defined balancing coefficients. As
shown on Figure 3.1, the optimization model controls the Work-In-Process to such an extent
that, at the end of each period, no product should have a Work-In-Process greater than a
given percentage δg of the total current Work-In-Process in the factory. Products with small
balancing coefficients are expected to make a large contribution to the overall throughput of
the factory.

Global	scheduling
strategy	(LP)

ON

Variables:
(Yglp)
Local	level
constraints

Parameters:
Real	time
information
(CTime)

Operation	1 Operation	2 Operation	n...
Current	Time
(CTime)

CTime	+	P

Production
process	line

WIP	of	each	product	should	not	be
larger	than	the	percentage	of	its	
balancing	coefficient	on	the	total	WIP	

WIP	Smoothing	area

Figure 3.1: Work-In-Process balancing control strategy

Determination of Balancing Coefficients

Balancing coefficients are product-oriented with the objective to control the production
flow of each product. Generally, it is difficult to quantify and to manage the impact that
an acceleration of one product can have on other products in the mix, see Sadeghi et al.
(2016). The balancing coefficients provide not only the way each product should flow in the
factory, but they also control the acceleration of products, i.e., a product can be accelerated
without drastically deteriorating the cycle times or the throughput of the other products.
The balancing coefficients must be determined so as to avoid unrealistic Work-In-Process.
For instance, by asking a particular product to keep more Work-In-Process than it has in the
factory. Or to force a product with the largest Work-In-Process to remain with the lowest
Work-In-Process of the factory, i.e., to ask for production rates which cannot be reached by
the factory. Several methods can be used to determine the balancing coefficients. Without
being exhaustive, these methods are based on:

1. The way products are started in the factory (release scheme). In semiconductor man-
ufacturing, the manufacturing process of a product goes beyond a hundred operations.
Products take weeks to complete all operations before leaving the factory. Therefore,
the balancing coefficients based on release scheme are determined in such a way that,
products with short intervals between consecutive release dates in the system remain
with large Work-In-Process. And products with a long interval between consecutive
release dates remain with less Work-In-Process. Balancing coefficients determined on
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the basis of release scheme provide a better reduction of the variability of the finished
products. This is due to the fact that products with a short interval between consec-
utive release dates and products with short cycle times will not always be prioritized.
To determine properly the balancing coefficients, simulation experiments can be used
to observe the contribution to Work-In-Process of each product according to its release
dates.

2. The estimated throughput (Ŝg). Let us define the estimated throughput as the quan-
tity of products released into the system after the warm-up time (time to load the
factory) up to the end of the simulation horizon minus the maximum cycle time of
all products. This implies that the estimated throughput should be completed before
the end of the simulation horizon. In our computational experiments, we considered
a maximum cycle time of all products equal to three months. In the same way as the
estimated throughput, the balancing coefficient is based on the demand for products
or the throughput provided by historical data or simulation. Let δg be the balancing
coefficient of product g and Cg the contribution of each product g in the total estimated
throughput as shown in equation 3.1.

Cg =
Ŝg∑

g∈G
Ŝg

(3.1)

Then, the balancing coefficient δg of each product g is computed as:

δg =
1− Cg∑

g∈G
1− Cg

(3.2)

The balancing coefficients computed in (3.2) guarantee that the estimated throughput
is reached for each product. If some products do not reach 100% of the estimated
throughput, the balancing coefficients are updated using algorithm 3.1. The algorithm
determines the percentages to decrease on the balancing coefficients of products that do
not reach 100% of the estimated throughput and propagates the decreased percentages
on the balancing coefficients of products that exceed 100%. Steps (1) - (9) define the
parameters and the variables used in the algorithm, while step(10) initializes the sum
of the percentages higher than 100%. Steps (11) and (12) compute the percentages
above target for all the products which have exceeded their estimated throughput
and determine the remaining percentages to reach 100% for products that have not
met their estimated throughput. The computation of percentages to update balancing
coefficients is provided on steps (13) to (20). Steps (21) - (28) update balancing
coefficients for all the products.

This algorithm reduces the balancing coefficients of products that have not reached
100% satisfaction of the estimated throughput. The goal is to speed up these prod-
ucts while increasing the balancing coefficients of products that have exceeded 100%
satisfaction of the estimated throughput to slow them down.
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Algorithm 3.1 Updating balancing coefficients
1: G, Set of all products
2: GO, Set of products that over-satisfy the estimated throughput, GO ⊂ G
3: GU , Set of products that under-satisfy the estimated throughput, GU ⊂ G
4: Balancing_Cg, Balancing coefficient of product g
5: Above_Tg, Perecentage above 100% for product g
6: Remaining_Tg, Percentage remaining to reach 100% of achievement for product g
7: Percentage_Ag, Percentage of the achieved throughput for product g
8: Update_Qgg′, Quantity to update balancing coefficient of product g

based on the remaining percentage to reach 100% of achievement for product g′

9: sum_Above ∀ g ∈ GO, sum of percentage above 100% for all products
10: sum_Above ← 0
11: Above_Tg ∀ g ∈ GO ← Percentage_Ag - 100
12: Remaining_Tg ∀ g ∈ GU ← 100 - Percentage_Ag
13: for all g ∈ GO do
14: sum_Above ← sum_Above + Above_Tg
15: end for
16: for all g′ ∈ GU do
17: for all g ∈ GO do
18: Update_Qgg′ ← (Above_Tg ÷ sum_Above) Remaining_Tg′

19: end for
20: end for
21: for all g ∈ GU do
22: Balancing_Cg ← Balancing_Cg - Remaining_Tg
23: end for
24: for all g′ ∈ GU do
25: for all g ∈ GO do
26: Balancing_Cg ← Balancing_Cg + Update_Qgg′

27: end for
28: end for

The drawback of the balancing coefficients computed in equation 3.2 is that they are
only focusing on satisfying the estimated throughput without integrating the product
cycle times.

3. Little’s law, so that the throughput and the cycle times are taken into account in the
computation of the balancing coefficients. Little’s law states that the Work-In-Process
is equal to the Throughput (T) multiplied by Cycle Time (CT). Assume that Tg is the
throughput of product g and CTg, the cycle time of product g provided by historical
data or simulation. Then, the balancing coefficient of each product g is computed as
using (3.3):

δg =
Tg CTg∑

g∈G
Tg CTg

(3.3)

δg is the contribution of product g in the total Work-In-Process of the factory. The
balancing coefficients computed in (3.3) guarantee that both the throughput and the
cycle time of each product are reached.
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Deciding on how the balancing coefficients are computed essentially depends on the ex-
pected objective of the factory, i.e., satisfying cycle times, satisfying demands or the esti-
mated throughput, minimizing the output variability on cycle times and throughput, etc.
Table 3.1 defines different parameters and decision variables that will be used throughout
this chapter in the global scheduling models.

Parameters:
G Set of products,
K Set of work-centers,
Lg Set of operations in route of product g,
LK(k) Set of operations and products that must be processed

in work-center k, i.e (g, l) ∈ LK(k) means that operation l
in route of product g must be processed in work-center k,

P Number of periods in planning horizon,
IWgl Initial Work-In-Process at operation l of product g,
Rgp Release quantity of product g in period p,
αgl Unit process time for product g at operation l of product g,
Ckp Capacity of work-center k in period p,
µ Balancing penalty,
δg Balancing coefficient of product g,
qglp Unit Work-In-Process cost at operation l of product g in period p.
Decision variables:
Yglp Quantity of product g completing operation l in period p,
Wglp Work-In-Process of product g at operation l at the end of period p,
Xglp Quantity of product g arriving at operation l in period p,
Zgp Maximum Work-In-Process deviation of product g in period p.

Table 3.1: Notations
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Global Scheduling Model Without Work-In-Process Balancing Control

The global scheduling model without Work-In-Process balancing control is described in this
section. The strategy implemented in the objective function consists in minimizing the
Work-In-Progress remaining for product g at operation l during period p. Let P control

NoWIP be
the Linear program that models the global scheduling strategy without Work-In-Process
balancing control.

Min
∑
g∈G

∑
l∈Lg

P∑
p=1

Wglp (3.4)

Subject to :

Xglp = Yg(l−1)p ∀g ∈ G, ∀l ∈ Lg, l ≥ 2, ∀p (3.5)

Wg11 = IWg1 + Rg1 − Yg11 ∀g ∈ G (3.6)

Wgl1 = IWgl − Ygl1 ∀g ∈ G, ∀l ∈ Lg, l ≥ 2 (3.7)

Wg1p = Wg1(p−1) + Rgp − Yg1p ∀g ∈ G, p = 2, . . ., P (3.8)

Wglp = Wgl(p−1) + Xglp − Yglp ∀g ∈ G, ∀l ≥ 2, p = 2, ..., P (3.9)∑
(g,l)∈LK(k)

αgl Yglp ≤ Ckp ∀k ∈ K, p = 1, . . ., P (3.10)

Wglp, Yglp, Xglp ≥ 0 ∀g ∈ G, ∀l ∈ Lg, p = 1, . . ., P (3.11)

The objective function (3.4) ensures that the Work-In-Process at each operation at the
end of each period is minimized. Constraints (3.5) tie consecutive operations. Constraints
(3.6)-(3.9) are flow constraints linking the Work-In-Process of each product at each operation
in each period with the quantity completed in period p (Y variables) and the quantity arriving
in period p (X variables). Constraints (3.10) are aggregate resource capacity constraints.

Global Scheduling Model With Work-In-Process Balancing Control

We are now including Work-In-Process balancing control in the global scheduling model.
In the new objective function in (3.12), the total deviation of the Work-In-Process of each
product is minimized. The penalty µ controls the Work-In-Process balancing strategy, by
penalizing the maximal deviation on the Work-In-Process of each product. The maximum
balancing deviation Zgp of product g in period p ensures the feasibility of the solution if some
products can be completed while others are still in the factory.

Min
∑
g∈G

∑
l∈Lg

P∑
p=1

Wglp + µ
∑
g∈G

P∑
p=1

Zgp (3.12)

The Linear programming model denoted P control
WIP corresponds to Constraints (3.5)-(3.11),

Constraints (3.13)-(3.15) and the objective function (3.12). P control
WIP implements the global

scheduling strategy with Work-In-Process balancing control. Constraints (3.13) and (3.14)
balance the Work-In-Process between products depending on the balancing coefficients δg.
They ensure that the Work-In-Process in route g at the end of each period cannot be larger
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than a percentage of the current total Work-In-Process in the factory. The balancing coeffi-
cient δg can be set to its trivial lower bound, 100% divided by the number of products if all
products have the same demand, or can be set according to the percentage of each product
in the set of products considered. In our computational experiments, δg is computed based
on the release scheme of product in the factory, the estimated throughput and the Little’s
law.

∑
l∈Lg

Wglp ≤ δg
∑
g′∈G

∑
l∈Lg′

Wg′lp + Zgp ∀g ∈ G, ∀p (3.13)

Zgp ≤ (1 − δg)
∑
g′∈G

∑
l∈Lg′

Wg′lp ∀g ∈ G, ∀p (3.14)

Zgp ≥ 0 ∀g ∈ G, p = 1, . . ., P (3.15)

3.2.2 Computational Experiments

Computational results are provided in this section to analyze the performance of the Work-
In-Process balancing strategy and its impact on cycle times and throughput. Numerous tests
have been conducted on industrial data. The instances include 570 machines in 329 work
centers, which are shared between operations of various types of products. Products have
between 104 and 315 operations in their routes. Five products are considered and lots are
continuously released in the factory in a uniform scheme, i.e., one lot for each product every
280 minutes, 360 minutes, 480 minutes, 480 minutes and 480 minutes for products 1, 2, 3,
4 and 5, respectively. As the ideal situation is to have Zgp = 0, a sufficiently high penalty
is necessary so that Zgp tends to zero. The balancing penalty µ is fixed to 60,000, which is
large enough to penalize Zgp.

In the computational experiments carried out in this thesis, when the simulation model
is run without the global scheduling model, the FIFO (First-In-First-Out) rule is the only
dispatching rule used in the simulation. When the simulation model is run with the global
scheduling model, an additional rule to the FIFO rule, called Production Target Dispatching
Rule (PTDR), is used to track the production targets. PTDR first allows the processing
of quantities of products that do not meet their production targets. This means that, if
product g reaches its target quantity, then its production is temporarily stopped to reach
the targets of other products. The production of product g only resumes when all products
have reached their respective targets or when product g is the only one in the queue of a
resource.

In the computational experiments discussed in this section, the performance of the global
scheduling approach with and without balancing control on the output variability of cycle
times and throughput are compared. The global scheduling approach uses balancing coef-
ficients that are determined based on the release scheme of products in the factory. Next,
numerical results on the use of the balancing coefficients to speed up products are discussed.
Finally, the satisfaction of the estimated throughput and cycle times is studied. Here, the de-
termination of balancing coefficients are based on the estimated throughput, the throughput
from simulation and Little’s law.
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Comparing Global Scheduling Approach With and Without Balancing Control

This section presents results and analysis of the Work-In-Process management based on
the balancing coefficients. Table 3.2 shows the remaining Work-In-Process in the global

Remaining Work-In-Process in global scheduling model
Products 75th call 85th call 95thcall

WIP Percentage WIP Percentage WIP Percentage

1 103 14.8% 125 16.0% 151 16.5%
2 118 17.0% 136 17.4% 162 17.7%
3 249 35.8% 273 34.9% 361 39.4%
4 218 31.4% 195 24.9% 178 19.4%
5 7 1.0% 53 6.8% 64 7.0%
Total 695 100% 782 100% 916 100%

Table 3.2: Global scheduling model without Work-In-Process balancing, remaining WIP

scheduling model for each product at the 75th, 85th and 95th calls of the global scheduling
model without Work-In-Process balancing control. Table 3.3 shows the remaining Work-In-
Process in the global scheduling model for each product at the 75th, 85th and 95th calls of
the global scheduling model when using Work-In-Process balancing control. In Table 3.2,
Work-In-process is not controlled by the balancing coefficients. However, in Table 3.3, the
Work-In-Process of each product is much better controlled. The flow of products depends
on its associated balancing coefficients. Note that the smaller the balancing coefficient of

Remaining Work-In-Process in global scheduling model
Products δg 75th call 85th call 95thcall

WIP Percentage WIP Percentage WIP Percentage

1 45% 268 30.0% 295 31.0% 340 34.5%
2 16% 181 20.3% 196 20.6% 183 18.5%
3 13% 147 16.5% 160 16.8% 165 16.7%
4 13% 150 16.8% 150 15.8% 149 15.1%
5 13% 147 16.5% 150 15.8% 149 15.1%
Total 100% 893 100% 951 100% 986 100%

Table 3.3: Global scheduling model with Work-In-Process balancing, remaining WIP

a product, the higher the speed of the product’s flow. But, in some particular cases, it can
be difficult to slow down a product with a very small number of operations or to speed up a
product with a large number of operations. Table 3.3 shows the flows of Products 3, 4 and
5 at almost the same rate based on their balancing coefficients.

Throughout this chapter, the Percentage Throughput Achieved for each product is cal-
culated on the basis of the estimated throughput Ŝg. The output variability is evaluated
using the InterQuartile Range (IQR) measure.
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Products
1 2 3 4 5

Average Cycle Time (days) 63.0 63.2 64.5 50.9 50.6
Release Quantities 1,852 1,441 1,081 1,081 1,081
Throughput 1,398 1,097 816 868 870
Percentage Throughput Achieved 98.4% 99.3% 98.4% 104.7% 104.9%
Product variability IQR (Cycle Time) 25.2 22.9 23.9 19.6 19.8
Overall variability IQR (Cycle Time) 13.1

Table 3.4: Simulation without global scheduling approach.

Products
1 2 3 4 5

Average Cycle Time (days) 52.5 53.9 79.8 30.5 65.9
Release Quantities 1,852 1,441 1,081 1,081 1,081
Throughput 1,474 1,157 749 1050 803
Percentage Throughput Achieved 103.8% 104.7% 90.3% 126.6% 96.9%
Product variability IQR (Cycle Time) 20.0 15.4 33.7 4.9 25.1
Overall variability IQR (Cycle Time) 31.3

Table 3.5: Global scheduling approach without Work-In-Process balancing control

Products
1 2 3 4 5

Balancing coefficients δg 45% 16% 13% 13% 13%
Average Cycle Time (days) 65.1 54.4 53.4 49.9 51.8
Release Quantities 1,852 1,441 1,081 1,081 1,081
Throughput 1,380 1,142 858 884 855
Percentage Throughput Achieved 97.2% 103.3% 103.4% 106.6% 103.1%
Product variability IQR (Cycle Time) 23.3 21.9 19.4 18.5 20.2
Overall variability IQR (Cycle Time) 8.9

Table 3.6: Global scheduling approach with Work-In-Process balancing control
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The comparison of the results in Tables 3.6 and 3.5 shows the benefit on the output
variability of using balancing coefficients to control Work-In-process. The results of the sim-
ulation model coupled with the global scheduling model with (Table 3.6) and without (Table
3.5) Work-In-Process balancing control are provided as well as the results of the simulation
model only, i.e., without the global scheduling approach (Table 3.4). The global scheduling
approach using the Work-In-Process balancing control leads to the best output variability.
This is demonstrated by the product cycle time variability (variability between cycle times
of completed quantities of each product), see Figure 3.2 and the overall variability (vari-
ability between products in terms of average cycle times), see Tables 3.4, 3.5 and 3.6. The
overall variability (equal to 13.1) when the simulation is used without the global scheduling
approach significantly increases (equal to 31.3) with the global scheduling approach with no
WIP balancing control (model P control

NoWIP ). However, when there is a WIP balancing control
in the global scheduling model (model P control

WIP ), the overall variability significantly decreases
(equal to 8.9).
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Figure 3.2: Product InterQuartile Ranges (Cycle Times).

Speeding up Products using Balancing Coefficients

To speed up a product, its balancing coefficient should be set to a small value. A small
value of the balancing coefficient indicates that the product should have a small remaining
Work-In-Process in the fab at the end of the scheduling horizon in the global scheduling
model. Tables 3.7 and 3.8 show the remaining Work-In-Process for each product at the
75th , 85th and 95th calls of the global scheduling model for different values of the balancing
coefficients. In Table 3.7, Products 1 and 2 are accelerated by changing their balancing
coefficients respectively from 45% to 10% for Product 1 and from 16% to 15% for Product
2. In Table 3.8, Products 2 and 3 are accelerated by changing their balancing coefficients
respectively from 15% to 14% for Product 2 and from 25% to 14% for Product 3. The
impact of the Work-In-Process balancing strategy on the final results is shown in Table 3.9
as well as in Table 3.10 after imposing production targets from the global scheduling model
as constraints in the simulation model.
A product can be accelerated using its Work-In-Process balancing coefficient as shown

in Table 3.9, and the contribution of each product on the overall throughput follows the
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Remaining Work-In-Process in global scheduling model
Products δg 75th call 85th call 95thcall

WIP Percentage WIP Percentage WIP Percentage

1 10% 149 12.5% 153 12.8% 158 12.8%
2 15% 185 15.5% 188 15.6% 192 15.5%
3 25% 309 25.9% 314 26% 320 25.9%
4 25% 272 22.9% 275 22.8% 280 22.7%
5 25% 279 23.4% 278 23.0% 284 23.0%
Total 100% 1194 100% 1208 100% 1234 100%

Table 3.7: Speeding up Products 1 and 2.

Remaining Work-In-Process in global scheduling model
Products δg 75th call 85th call 95thcall

WIP Percentage WIP Percentage WIP Percentage

1 32% 373 32.0% 382 32.0% 388 32.3%
2 14% 163 14.0% 167 14.0% 170 14.1%
3 14% 163 14.0% 167 14.0% 170 14.1%
4 20% 233 20.0% 239 20.0% 242 20.1%
5 20% 233 20.0% 239 20.0% 232 19.3%
Total 100% 737 100% 872 100% 890 100%

Table 3.8: Speeding up Products 2 and 3

Products
1 2 3 4 5

Balancing coefficients δg 10% 15% 25% 25% 25%
Average Cycle Time (days) 52.4 54.4 76.9 51.0 50.5
Release Quantities 1,852 1,441 1,081 1,081 1,081
Throughput 1,475 1,153 760 867 870
Percentage Throughput Achieved 103.8% 104.3% 91.7% 104.5% 104.9%
Weighted Total Average Cycle Time 55.9
Total Throughput 5,125

Table 3.9: Impact of balancing coefficients on cycle time and throughput, speeding up prod-
ucts 1 and 2
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balancing coefficients. In comparison with the results presented in Table 3.6, Table 3.9
shows the acceleration of Products 1 and 2 due to their small Work-In-Process balancing
coefficients while other products are slowed down to an acceptable level. Table 3.10 shows
how Products 2 and 3 are accelerated while other products are slowed down due to their
larger balancing coefficients. Compared to the results in Table 3.9, Product 2 reaches 105.3%
of achieved throughput and Product 3 reaches 107.2% of achieved throughput, while Product
1 is slowed down with a change of its balancing coefficient from 10% to 32% but reaches
102.9% of achieved throughput. Note also that there is a limit on the acceleration of a

Products
1 2 3 4 5

Balancing coefficients δg 32% 14% 14% 20% 20%
Average Cycle Time (days) 55.9 53.8 47.3 54.2 53.9
Release Quantities 1,852 1,441 1,081 1,081 1,081
Throughput 1,462 1,164 889 856 854
Percentage Throughput Achieved 102.9% 105.3% 107.2% 103.2% 103.0%
Weighted Total Average Cycle Time 53.3
Total Throughput 5,229

Table 3.10: Impact of balancing coefficients on cycle time and throughput, speeding up
products 2 and 3

product, which is due to the fact that the product is very slow (long process times) or has
more operations. Slowing down a product is also limited because the product is very fast
(short process times) or has fewer operations. This is illustrated on Product 1 where, even
with a balancing coefficient δg = 32%, a throughput of 102.9% is still achieved with a cycle
time of 55.9 days.

Throughput and Cycle Time Satisfaction using Balancing Coefficients

These experiments analyze the satisfaction of a given throughput and the satisfaction of the
cycle time targets. In general, the throughput and cycle times are provided by historical data
or simulation. The estimated throughput for each product is then converted into balancing
coefficients, which are used in the global scheduling model. Table 3.11 presents the Work-
In-Process balancing coefficients for each product. The results in Tables 3.12 and 3.13 are
based on the balancing coefficients computed using the estimated throughput. Table 3.12

Products 1 2 3 4 5
Estimated throughput (lots) 1420 1105 829 829 829
Balancing coefficients 18% 19% 21% 21% 21%

Table 3.11: Estimated throughput and balancing coefficients

presents the results of the satisfaction of the throughput using the balancing coefficients. The
throughput achieved for each product reaches 100% except product 3 as shown in Table 3.12.
To reach 100% satisfaction of throughput for product 3, balancing coefficients are updated
using Algorithm 3.1. To reach 100% of estimated throughput, product 3 needs an additional
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Products
1 2 3 4 5

Balancing coefficients δg 18% 19% 21% 21% 21%
Average Cycle Time (days) 53.6 57.0 70.4 54.5 53.6
Release Quantities 1,852 1,441 1,081 1,081 1,081
Throughput 1,463 1,131 790 856 853
Percentage Throughput Achieved 103.0% 102.3% 95.3% 103.2% 102.8%

Table 3.12: Throughput satisfaction using balancing coefficients

4.7% on throughput. The sum of the percentages greater than 100% for products which
have exceeded their estimated throughput (products 1, 2, 4 and 5) is calculated. Then,
the contribution of each of these products to this calculated sum is determined. These
contributions provide the percentages on how the 4.7% to be reduced to the balancing
coefficient of product 3 (the percentage remaining for product 3 to reach 100% satisfaction
of the throughput achieved) will be added to the balancing coefficients of products 1, 2, 4
and 5. The balancing coefficients are updated as indicated in the head of Table 3.13. All the
products reach at least 100% of the throughput achieved, but the cycle times for products 4
and 5 are greatly increased compared to the cycle times of the simulation model without the
global scheduling approach presented in Table 3.4. Table 3.14 presents the Work-In-Process

Products
1 2 3 4 5

Balancing coefficients δg 19.24% 19.96% 16.30% 22.33% 22.16%
Average Cycle Time (days) 55.5 60.3 57.2 62.2 62.0
Release Quantities 1,852 1,441 1,081 1,081 1,081
Throughput 1,445 1,111 848 829 830
Percentage Throughput Achieved 101.7% 100.5% 102.2% 100.0% 100.1%

Table 3.13: Throughput satisfaction after adjusting balancing coefficients

balancing coefficients calculated based on the Little’s law. Using Little’s law, the goal is to
take into account in the calculation of the balancing coefficients, not only the throughput
but also the cycle times of the products. Table 3.15 shows that the throughput and the cycle

Products 1 2 3 4 5
Average Cycle Times (days) 63.0 63.2 64.5 50.9 50.6
Throughput (lots) 1398 1097 816 868 870
Balancing coefficients 29.5% 23.2% 17.6% 14.8% 14.8%

Table 3.14: Balancing coefficients computed based on Little’s law

times are satisfied. The cycle times of products 4 and 5 are better managed compared with
the results in Table 3.13. In addition, the cycle time and the throughput for all products
are improved compared with the results in Table 3.14 of the simulation model without the
global scheduling approach. Moreover, the cycle time of product 3 is the largest observed
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Products
1 2 3 4 5

Balancing coefficients δg 29.5% 23.2% 17.6% 14.8% 14.8%
Average Cycle Time (days) 55.8 52.2 58.9 48.9 48.3
Release Quantities 1,852 1,441 1,081 1,081 1,081
Throughput 1,451 1,144 841 879 881
Percentage Throughput Achieved 103.8% 104.3% 103.1% 101.3% 101.3%

Table 3.15: Throughput and cycle time satisfaction

cycle time as shown in Table 3.15. In order to improve the cycle time of product 3, we
compute the new balancing coefficients as shown in Table 3.16. The cycle time of product
3 is decreased by 15% and its throughput is increased by 3.4%. The throughput and cycle
time of other products in Table 3.15 are not changed. As shown in Table 3.16, with the
new computed balancing coefficients, reducing the cycle time of product 3 deteriorates in
an acceptable rate the cycle times of other products. This is due to the effect of resource
sharing.

Products 1 2 3 4 5
Average Cycle Times (days) 55.8 52.2 50.0 48.9 48.3
Throughput (lots) 1451 1144 870 879 881
Balancing coefficients 30.0% 22.1% 16.1% 15.9% 15.7%

Table 3.16: Balancing coefficients computed based on Little’s law, reduction of cycle time of
product 3

Products
1 2 3 4 5

Balancing coefficients δg 30.0% 22.1% 16.1% 15.9% 15.7%
Average Cycle Time (days) 56.3 54.8 54.7 50.9 50.3
Release Quantities 1,852 1,441 1,081 1,081 1,081
Throughput 1,447 1,160 853 866 870
Percentage Throughput Achieved 99.7% 101.4% 98.0% 98.5% 98.8%

Table 3.17: Improving throughput and cycle time of Product 3

Compared with the results in Table 3.15, Table 3.17 shows a decrease of 7.1% and an in-
crease of 1.4% respectively for the cycle time and the throughput of product 3. The maximal
deterioration for other products are of 4.9% and 1.4% respectively on the cycle times and the
throughput. The cycle times and the throughput of all the products are further improved
compared with the results of the simulation model without global scheduling strategy (see
Table 3.14).
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3.3 Multi-objective Optimization for Work-In-Process Bal-
ancing and Throughput Maximization

Most of the problems we face in real life often multi-objective. However, in mathematical
optimization, these problems are not always easy to solve because the objectives considered
can be in contradiction with each other. In multi-objective optimization, the goal is no
longer to find the optimal solution to each objective, but rather to find compromise solutions.
In most cases, and to reduce the complexity of multi-objective problems, the tendency is
to transform these problems into single-objective problems. Several approaches have been
studied in the literature of multi-objective optimization, depending on whether it is possible
to significantly quantify and compare the value of one objective with respect to another
or not. If this comparison can take place, the method such that the use of the weighted
sum which combines multiple objectives into a single objective can be applied. When it
is difficult to compare significantly and quantitatively the value of different objectives, a
lexicographic approach for example can be applied ( Rentmeesters et al. (1996)). Other
approaches have been widely studied in the literature such as goal programming approach,
desirability functions, ε-constraint, etc. Each approach has advantages and drawbacks and
the choice largely depends on the problem which one needs to study. The choice can also
be based on the compromises between objectives. For more details about multi-objective
approaches, see T’kindt and Billaut (2006), Deb (2001) and Ehrgott (2005).

In this section, a multi-objective optimization strategy for global fab scheduling is for-
mulated using an ε-constraint approach and its adjusted version. Before presenting the
multi-objective model and the ε-constraint approach, we present the lexicographic approach
especially since it structures the ε-constraint approach.

3.3.1 Lexicographic approach

In the lexicographic approach, the concept of preference is crucial and must be defined before
the resolution. The objectives must be ranked according to their importance or significance.
Then, single-objective problems are successively solved starting with the most important
objective. After the first iteration, the problem is solved for the second most important
objective, by adding a constraint specifying that the first objective must be equal to its
optimal value. The procedure continues as shown in (3.16). For more details see (Marler
and Arora (2004))

min
x∈X

Fi(x) (3.16)

Subject to :

Fj(x) ≤ F ∗j , j = 1, 2, ..., i− 1,

Where, i is a function’s position in the ordering sequence, and F ∗j is the optimal objective
function of the jth objective function, found in the jth iteration. Recall that a multi-objective
problem studied in this section the first objective consists of maximizing the throughput
(number of produced wafers) using productivity (outputs of operations). This is achieved
using a Work-In-Process management technique based on pull strategy. The second objective
consists of minimizing the output variability. This is achieved using balancing penalty in
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the objective function and smoothing constraints. Maximizing throughput is considered the
most important objective, hence it will be optimized first.

A lexicographic approach is not appropriate for our problem because maximizing produc-
tivity does not necessarily mean maximizing the total throughput of the factory. Maximum
productivity can be achieved with low throughput. This is because the number of operations
in the route is not the same for each product. In a lexicographic approach, the second stage,
which consists in minimizing the output variability on cycle times with the throughput con-
strained by a maximum productivity, may not lead to the highest total throughput of the
factory. Since the maximum total throughput of the factory is obtained with a particular
combination of the throughput of the products, an ε-constraint approach seems to be more
relevant for our problem. When solving the second objective, which minimizes the output
variability of completed products, instead of setting the first objective at the maximum pro-
ductivity, an ε-constraint approach reduces productivity if necessary to find combinations
of throughput of products that lead to the highest total throughput of the factory while
minimizing the output variability on cycle times and throughput.

The multi-objective global scheduling strategy, as well its implementation as a mathemat-
ical programming model, is presented in Section 3.3.2. Section 3.3.3 presents the ε-constraint
approach and its adjusted version. Finally, in Section 3.3.4, computational results and an
analysis are provided.

3.3.2 Multi-objective Global Scheduling Model

The multi-objective global scheduling strategy is described in this section. Different strate-
gies are implemented in the objective function. A pull strategy is considered for maximiz-
ing the outputs of operations, objective function f1 (production quantities of each product
completing an operation in a period), and a Work-In-Process balancing control strategy to
minimize the output variability on cycle times and throughput, objective function f2.

f1 = Max
∑
g∈G

∑
l∈Lg

P∑
p=1

qglp Yglp (3.17)

f2 = Min
∑
g∈G

∑
l∈Lg

P∑
p=1

Wglp + µ
∑
g∈G

Zg (3.18)

Subject to :

Xglp = Yg(l−1)p ∀g ∈ G, ∀l ∈ Lg, l ≥ 2, ∀p (3.19)

Wg11 = IWg1 + Rg1 − Yg11 ∀g ∈ G (3.20)

Wgl1 = IWgl − Ygl1 ∀g ∈ G, ∀l ∈ Lg, l ≥ 2 (3.21)

Wg1p = Wg1(p−1) + Rgp − Yg1p ∀g ∈ G, p = 2, . . ., P (3.22)

Wglp = Wgl(p−1) + Xglp − Yglp ∀g ∈ G, ∀l ≥ 2, p = 2, ..., P (3.23)∑
l∈Lg

Wglp ≤ δg
∑
g′∈G

∑
l∈Lg′

Wg′lp + Zg ∀g ∈ G, ∀p (3.24)

Zg ≤ (1 − δg)
∑
g′∈G

∑
l∈Lg′

Wg′lp ∀g ∈ G, ∀p (3.25)
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∑
(g,l)∈LK(k)

αgl Yglp ≤ Ckp ∀k ∈ K, p = 1, . . ., P (3.26)

Wglp, Yglp, Xglp, Zg ≥ 0 ∀g ∈ G, ∀l ∈ Lg, p = 1, . . ., P (3.27)

Constraints (3.19) tie consecutive operations. Constraints (3.20)-(3.23) are flow con-
straints linking the Work-In-Process of each product at each operation in each period with
the quantity completed in period p (Y variables) and the quantity arriving in period p (X
variables). Constraints (3.24) and (3.25) ensure that the Work-In-Process of product g at
each period cannot be larger than δg% of the current total Work-In-Process in the factory.
In our computational experiments, δg is set up to its trivial lower bound, 100% divided by
the number of products if all products have the same production quantity. Else, δg depends
on the percentage of the quantity of each product in the set of products considered or on
the release scheme. Constraints (3.26) are resource capacity constraints. Let us now discuss
the objective functions f1 and f2. Objective function f1 (3.17) maximizes the throughput
by maximizing productivity. Let LB be the number of operations starting from the last
operation and going backwards to the minimum number of operations from which products
are pulled out of the factory to ensure that they are leaving the factory as soon as possible,
i.e.,

LB = min
g∈G
|Lg|,

Also, let UB be the maximum number of operations in the routes of all products, i.e.

UB = max
g∈G
|Lg|,

UB is decreased backward on the operations of each product as shown in Figure 3.3. The
goal is to ensure that products become more important as they are moving in the factory.
Quantities of product that are in the end of their production are produced as fast as possible
to increase the total throughput of the factory. This describes the pull strategy used in
Objective function f1 to speed up products in their LB last operations, see Figure 3.3. This
strategy ensures that products with short cycle times and/or products with fewer operations
leave the factory as quickly as possible. The larger LB, the broader the possibility to pull a
large amount of Work-In-Process, i.e., to speed up the outputs.

Operation	1 Operation	2 Operation	n-3 Operation	n-2 Operation	n-1 Operation	n...

LB

qglp=	UBqglp	=	UB	-	1qglp	=	UB	-	2qglp	=	1 qglp	=	1 qglp	=	1

Figure 3.3: Pull strategy on LB last operations

Objective function f2 (3.18) minimizes the total deviation of the Work-In-Process of
each product by using a Work-In-Process balancing control strategy. It also ensures that the
Work-In-Process at each operation at the end of each period is minimized. The parameter µb

controls the balancing strategy, by penalizing the maximal deviation on the Work-In-Process
for each product. The maximum balancing deviation Zg of product g ensures the feasibility
of the solution if some products can be completed while others are still in the factory.
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3.3.3 ε-constraint approach

The ε-constraint approach is widely used in the literature to solve problems with multiple
objectives. It considers the minimization/maximization of one objective function while set-
ting other objective functions in constraints, see Haimes (1971). In Miettinen (1999), it is
demonstrated that, if the solution to the ε-constraint approach exists, it is always a weakly
Pareto optimal solution. A solution s is weakly Pareto optimal if there is no other solution m
such that f (m) < f (s) in minimization. By solving problems for different values of ε, a set
of weakly Pareto optimal solutions is determined (see Miettinen (1999)). The methodology
used in this section includes two main stages using the ε-constraint approach.

1. In the first stage, problem (M1) which consists of objective function f1 in (3.17) subject
to Constraints (3.19) - (3.27), maximizes the throughput by maximizing the produc-
tivity. Assume that f ∗1 is the optimal objective value of (M1). f ∗1 is not necessarily
the optimal overall throughput because all products share the same resources and
the maximum throughput is obtained with a particular combination of percentages of
throughputs for the products.

2. In the second stage, problem (M2), which consists of objective function f2 in (3.18)
subject to Constraints (3.19) - (3.27) and (3.28) below, is solved for different values of
ε. This stage deteriorates f ∗1 by some ε in order to find a solution that minimizes the
Work-In-Process variability while maintaining a high productivity.

∑
g∈G

∑
l∈Lg

P∑
p=1

qglp Yglp ≥ f ∗1 − ε (3.28)

Besides the advantage that it can be used either for convex objective spaces or non-
convex objective spaces, one of the disadvantages of the ε-constraint approach is that the
search space depends on the chosen values for ε, see Deb (2001). In our case, when ε becomes
too large, the constraint on objective f1 can easily be satisfied with a productivity that does
not corresponds to the highest throughput.

To solve this problem, an adjusted version of the ε-constraint approach is proposed. The
idea is to keep the information on the maximization of throughput in the objective function
f2. This is achieved by penalizing the objective function f1 with λ, which is a value that can
be chosen as small as possible. In this thesis we use λ = 0.01.

The same methodology used in the ε-constraint approach is applied in the adjusted
version of ε-constraint approach, but the objective function f2 in the second stage becomes:

f2 = Min
∑
g∈G

∑
l∈Lg

P∑
p=1

λ

(
Wglp

λ
− qglp Yglp

)
+ µ

∑
g∈G

Zg (3.29)

The throughput maximization included in objective function f2 in (3.29) leads the search
towards good throughput solutions without deteriorating too much the productivity while
minimizing the output variability.
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3.3.4 Computational Experiments

This section analyzes the results of the global multi-objective scheduling model coupled
with the generic simulation model (with FIFO dispatching rules) for different values of ε.
Recall that the value of ε is not a percentage of the overall throughput, but a percentage
of the objective function f ∗1 of problem (M1) which maximizes productivity. Numerical
experiments have been conducted on two industrial instances associated to two different
factories presented in chapter 2 section 2.3.3. As in section 3.2.2, the output variability is
evaluated using InterQuartile Range (IQR) and the balancing penalty µ is fixed to 60,000
which is large enough to penalize the WIP deviation.

ε-constraint approach: first instance

The results presented in Tables 3.18, 3.19, 3.20, 3.21 and 3.22 are based on the first factory
instance. For different values of ε shown in the first column, Columns (2) to (6) present per-
centages of the achieved throughput for each product. In Column (7), the total throughput
of the factory is given and Column (8), shows the output variability on cycle times computed
using IQR. Five products are considered, lots are continuously released in the factory in a

Products Total Cycle time
ε 1 2 3 4 5 Throughput IQR

10% 102.6% 97.7% 99.9% 97.8% 95.7% 9,715 11.6
11% 102.0% 94.8% 99.7% 97.9% 95.2% 9,639 10.9
12% 103.7% 96.7% 99.8% 97.2% 95.8% 9,706 11.6
13% 104.2% 99.4% 98.1% 97.1% 97.5% 9,767 8.1
14% 101.6% 99.3% 101.4% 96.9% 94.5% 9,716 10.9
15% 102.8% 99.4% 101.8% 97.6% 94.4% 9,762 10.2
16% 102.6% 97.7% 101.2% 96.8% 96.0% 9,731 11.0
17% 104.9% 98.7% 99.8% 96.3% 97.2% 9,779 10.0
18% 102.6% 98.7% 101.7% 95.6% 97.8% 9,768 11.5
19% 101.1% 101.1% 100.8% 95.2% 97.3% 9,749 11.4
20% 101.9% 101.6% 99.3% 96.7% 95.6% 9,741 11.0
21% 104.3% 98.3% 102.5% 96.3% 95.5% 9,775 10.4
22% 99.9% 102.7% 102.8% 95.8% 99.0% 9,843 11.3
23% 101.6% 101.8% 100.9% 94.2% 94.9% 9,705 10.5
24% 102.2% 97.8% 99.9% 95.3% 97.7% 9,700 11.1
25% 99.6% 100.2% 100.8% 97.2% 96.2% 9,720 10.8
26% 104.8% 96.4% 103.5% 94.8% 97.9% 9,783 11.5
27% 101.3% 101.0% 103.1% 98.2% 100.0% 9,910 7.2
28% 101.2% 103.5% 102.7% 96.8% 98.4% 9,889 10.7
29% 103.0% 99.0% 102.9% 97.3% 97.0% 9,817 10.5
30% 104.4% 99.0% 100.8% 95.8% 98.2% 9,804 10.7

Table 3.18: Throughput and variability for different values of ε, ε-constraint approach, in-
stance 1

uniform scheme, i.e., five lots (1 lot for each product) are released every 202 minutes. The
balancing coefficient δg is fixed to 20% for all products. Decision makers may choose ε =
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27%, which increases the throughput percentages for all products and leads to the largest
overall throughput. Tables 3.19, 3.20 and 3.21 help to compare the case with ε = 27% to
the cases when the linear programming model is solved using Objective function f2 only and
when the simulation model is only run with the FIFO dispatching rules, i.e., without the
global scheduling approach. The results for ε = 27% dominate in terms of total through-
put (9,910) and weighted average cycle time. Moreover, and probably more interesting, the
average cycle time and the average throughput are much better balanced between products
for ε = 27%.

Products
Indicators 1 2 3 4 5
Average Cycle Time (days) 57.1 62.8 56.8 62.4 65.5
Release Quantities 2,566 2,566 2,566 2,566 2,566
Throughput 1993 1988 2,029 1,932 1,968
Percentage Achieved of Throughput 101.3% 101.0% 103.1% 98.2% 100.0%

Weighted Average Cycle Time 60.0
Total Throughput 9,910

Table 3.19: Multi-objective global scheduling approach with ε = 27%

Products
Indicators 1 2 3 4 5
Average Cycle Time (days) 59.0 63.2 57.0 65.1 65.0
Release Quantities 2,566 2,566 2,566 2,566 2,566
Throughput 2,058 1,914 1,946 1,901 1,915
Percentage Achieved of Throughput 104.6% 97.3% 98.9% 96.6% 97.3%

Weighted Average Cycle Time 61.1
Total Throughput 9,734

Table 3.20: Global scheduling approach with Objective function f2 only

Products
Indicators 1 2 3 4 5
Average Cycle Time (days) 54.3 66.0 50.9 73.3 59.7
Release Quantities 2,566 2,566 2,566 2,566 2,566
Throughput 2,030 1,914 2,060 1,846 1,980
Percentage Achieved of Throughput 103.2% 97.3% 104.7% 93.8% 100.6%

Weighted Average Cycle Time 60.6
Total Throughput 9,830

Table 3.21: Simulation (FIFO dispatching rules) without global scheduling approach

Table 3.22 provides the measure of the mix product variability on the cycle time using
the InterQuartile Range (IQR). Table 3.22 shows that the simulation model without the
global scheduling approach, where only the FIFO dispatching rules are used, leads to the
highest output variability on the cycle time.
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Indicators Simulation Global scheduling Multi-objective
only approach only with f2 with ε = 27%

IQR (Cycle Time) 17.1 7.0 7.2

Table 3.22: Variability measure on average cycle time based on IQR

ε-constraint: second instance

Tables 3.23, 3.24, 3.25, 3.26, and 3.27 present the results on the second instance.

Products Total Cycle time
ε 1 2 3 4 5 Throughput IQR

10% 97.8% 105.0% 102.4% 108.2% 102.8% 5,151 12.5
11% 97.9% 104.8% 104.3% 105.0% 103.8% 5,147 12.8
12% 97.9% 105.1% 104.4% 105.0% 104.5% 5,156 12.9
13% 98.3% 104.8% 103.3% 103.9% 105.5% 5,149 12.8
14% 97.4% 105.1% 103.8% 105.0% 104.5% 5,144 12.6
15% 97.5% 104.7% 103.8% 104.3% 105.6% 5,145 12.8
16% 96.5% 104.7% 104.3% 105.5% 104.2% 5,132 12.6
17% 97.2% 104.7% 104.3% 104.5% 105.0% 5,138 12.7
18% 97.6% 105.0% 104.2% 105.0% 104.1% 5,145 12.4
19% 97.9% 105.3% 102.0% 108.9% 103.0% 5,151 12.9
20% 101.9% 105.2% 100.7% 111.5% 101.3% 5,211 12.7
21% 98.2% 105.2% 100.9% 113.1% 99.7% 5,160 16.9
22% 97.1% 105.4% 100.8% 112.9% 99.7% 5,143 16.8
23% 101.7% 105.7% 101.2% 112.9% 99.6% 5,214 14.7
24% 101.1% 105.2% 99.7% 112.9% 100.7% 5,197 13.5
25% 100.3% 105.7% 100.2% 112.7% 100.8% 5,195 14.8
26% 100.1% 105.4% 100.6% 112.7% 100.0% 5,185 12.6
27% 98.5% 105.0% 100.7% 113.2% 100.1% 5,165 15.9
28% 101.9% 105.7% 99.0% 113.5% 100.9% 5,214 17.6
29% 98.3% 105.2% 100,6% 111.8% 101.2% 5,159 15.7
30% 98.0% 104.7% 100.3% 112.5% 100.7% 5,151 14.6

Table 3.23: Throughput and variability for different values of ε, ε-constraint approach, in-
stance 2

Five products are considered, lots are continuously released in the factory in a uniform
scheme, i.e., 1 lot is released every 280 minutes, 360 minutes, 480 minutes, 480 minutes and
480 minutes for products 1, 2, 3, 4 and 5 respectively. The balancing coefficients are fixed to
45%, 16%, 13%, 13% and 13% for products 1, 2, 3, 4 and 5 respectively. Several values of ε
lead to good results as shown in Table 3.23. The choice depends essentially on the priorities
of products and the importance of the variability and the total throughput. However, ε =
20% seems to be the best choice for decision makers as it increases the throughput for all
products and ensures a good overall throughput. Tables 3.24, 3.25, and 3.26 help to compare
the case with ε = 20% to the cases when the model is solved with Objective function f2 only
and when the simulation model is run with the FIFO dispatching rules, i.e., without the

Page 62 EMSE-CMP BARHEBWA MUSHAMUKA



3.3. MULTI-OBJECTIVE OPTIMIZATION FOR WORK-IN-PROCESS BALANCING
AND THROUGHPUT MAXIMIZATION

global scheduling model. The results for ε = 20% dominate in terms of overall throughput
and total weighted average cycle time. Again, and importantly, the average cycle time and
the average throughput are much better balanced between products for ε = 20%.

Products
Indicators 1 2 3 4 5
Average. Cycle Time (days) 61.4 53.8 58.0 40.2 56.5
Release Quantities 1,852 1,441 1,081 1,081 1,081
Throughput 1,448 1,163 835 925 840
Percentage Achieved of Throughput 101.9% 105.2% 100.7% 111.5% 101.3%

Weighted Average Cycle Time 54.6
Total Throughput 5,211

Table 3.24: Multi-objective global scheduling approach with ε = 20%

Products
Indicators 1 2 3 4 5
Average Cycle Time (days) 70.0 49.5 49.0 53.0 53.3
Release Quantities 1,852 1,441 1,081 1,081 1,081
Throughput 1,382 1,170 865 870 868
Percentage Achieved Throughput 97.3% 105.8% 104.3% 104.9% 104.7%
Weighted Average. Cycle Time 56.2

Total Throughput 5,155

Table 3.25: Global scheduling approach with Objective function f2 only

Table 3.27 provides the measure of the output variability on the cycle time using the

Products
Indicators 1 2 3 4 5
Average Cycle Time (days) 63.0 63.2 64.5 50.9 50.6
Release Quantities 1,852 1,441 1,081 1,081 1,081
Throughput 1,398 1,097 816 868 870
Percentage Achieved Throughput 98.4% 99.3% 98.4% 104.7% 104.9%
Weighted Average Cycle Time 59.1

Total Throughput 5,049

Table 3.26: Simulation (FIFO dispatching rules) without global scheduling approach

IQR. It shows again, although less significantly than for the first industrial instance, that
the simulation model without the global scheduling approach leads to the highest output
variability on the cycle times.
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Indicators Simulation Global scheduling approach only ε = 20%
only with f2

IQR(Cycle Time) 13.1 12.3 12.7

Table 3.27: Variability measure on average cycle time based on IQR

Adjusted ε-constraint approach: first instance

Table 3.28, shows the results on the first industrial instance when the adjusted version of ε-
constraint approach is used. The same instance characteristics are used as in section 3.3.4. In

Products Total Cycle time
ε 1 2 3 4 5 Throughput IQR

10% 112.3% 99.3% 97.9% 99.5% 87.6% 9,769 15.2
11% 110.0% 100.1% 95.6% 98.5% 90.3% 9,727 11.2
12% 109.2% 96.2% 98.6% 99.6% 91.2% 9,735 13.5
13% 108.3% 99.6% 96.5% 97.7% 92.9% 9,740 13.2
14% 110.2% 100.4% 95.3% 98.7% 91.1% 9,755 13.9
15% 108.5% 99.2% 98.9% 98.1% 91.8% 9,770 12.5
16% 109.3% 101.8% 97.8% 98.3% 90.5% 9,793 13.1
17% 113.9% 97.4% 99.3% 101.5% 89.1% 9,861 15.5
18% 109.7% 99.0% 95.0% 97.6% 92.2% 9,708 11.6
19% 113.6% 95.2% 100.4% 100.0% 88.3% 9,788 15.2
20% 114.1% 95.4% 96.6% 99.8% 87.5% 9,705 14.6
21% 112.9% 100.4% 94.3% 99.7% 87.2% 9,730 15.6
22% 110.4% 97.5% 99.4% 98.5% 89.5% 9,744 13.8
23% 111.5% 97.7% 97.4% 98.9% 91.4% 9,771 12.7
24% 113.0% 97.6% 97.7% 99.8% 88.9% 9,781 12.2
25% 107.6% 102.6% 98.7% 98.1% 89.2% 9,761 13.2
26% 110.6% 97.8% 97.4% 99.6% 89.9% 9,743 15.8
27% 110.3% 101.5% 98.3% 99.2% 87.7% 9,778 14.2
28% 110.4% 100.1% 100.8% 100.1% 100.0% 10,061 10.3
29% 114.0% 95.2% 98.0% 99.7% 89.7% 9,784 16.6
30% 111.8% 95.9% 101.9% 99.3% 88.3% 9,784 16.6

Table 3.28: Throughput and variability for different values of ε, adjusted ε-constraint ap-
proach, instance 1

Table 3.18, only 9 values of ε (out of 21) lead to a total throughput above the total throughput
provided when the global scheduling approach is only used with objective function f2 which
minimizes the output variability. In Table 3.28, 16 values of ε (out of 21) lead to a total
throughput higher than the one of the global scheduling approach when only the objective
function f2 is used. Another interesting aspect is that, in Table 3.18, not all products reach
a throughput percentage greater or equal to 100%, but, in Table 3.28, all the products reach
a throughput percentage greater than or equal to 100%. In addition, Table 3.28 presents the
highest total throughput and at almost the same level of productivity deterioration (almost
the same value of ε) as in Table 3.18.
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Adjusted ε-constraint approach: second instance

This section presents and analyzes results in Table 3.29 based on the second industrial
instance when the adjusted version of ε-constraint approach is used. The same instance

Products Total Cycle time
ε 1 2 3 4 5 Throughput IQR

10% 98.7% 101.5% 102.0% 110.4% 101.6% 5,166 15.1
11% 98.2% 105.1% 102.8% 104.0% 106.9% 5,156 12.4
12% 98.9% 104.6% 101.1% 104.9% 107.7% 5,161 12.7
13% 98.7% 104.9% 100.8% 102.4% 110.4% 5,160 14.4
14% 98.7% 105.1% 101.3% 102.0% 110.2% 5,163 13.2
15% 98.4% 104.8% 101.4% 102.9% 109.5% 5,158 13.6
16% 101.1% 104.7% 102.3% 102.9% 108.2% 5,191 12.4
17% 98.7% 105.0% 101.6% 102.3% 109.4% 5,159 12.5
18% 99.6% 105.1% 101.9% 102.6% 109.0% 5,176 12.6
19% 98.7% 104.9% 97.8% 106.7% 109.5% 5,165 16.6
20% 98.9% 105.1% 99.6% 108.4% 105.5% 5,166 15.4
21% 98.7% 104.9% 100.1% 109.4% 104.2% 5,161 13.3
22% 98.8% 104.8% 102.6% 105.9% 105.2% 5,162 12.5
23% 98.5% 105.0% 103.6% 105.5% 104.6% 5,155 12.3
24% 98.6% 104.7% 100.7% 108.6% 104.3% 5,157 14.7
25% 99.0% 104.7% 100.2% 107.5% 106.1% 5,165 12.8
26% 98.6% 104.9% 100.6% 108.3% 104.8% 5,160 13.5
27% 97.3% 105.2% 107.3% 102.9% 103.1% 5,143 8.2
28% 96.5% 105.2% 107.0% 103.6% 102.8% 5,131 9.5
29% 97.0% 105.7% 107,4% 102.8% 103.9% 5,149 8.5
30% 96.0% 104.9% 107.1% 103.1% 103.1% 5,120 10.9

Table 3.29: Throughput and variability for different values of ε, instance 2 adjusted ε-
constraint approach

characteristics are used as in section 3.3.4. In Table 3.18, only 12 values of ε (out of 21) lead
to a total throughput greater than the total throughput of the global scheduling approach
when only the objective function f2 is used. In Table 3.29, 16 values of ε (out of 21) lead
to a total throughput higher than the one of the global scheduling approach when only the
objective function f2 is used. In addition, the results that increase the throughput for all
the products are reached earlier at ε = 16% compared to Table 3.18, ε = 20%.

The numerical results show in Figure 3.4 that the adjusted ε-constraint approach provides
great compromises in terms of throughput and loss of the productivity.

The adjusted ε-constraint approach also increases the largest throughput by 1.5% for the
first instance with almost the same deterioration in productivity. At ε = 17%, the throughput
is larger than the throughput with the global scheduling approach and only objective function
f2 (with an additional throughput of 31 lots) and when the simulation runs without the
global scheduling approach (with an additional throughput of 127 lots) and with a variability
on cycle times (IQR = 15.5), which remains lower than the one of the simulation model
without the global scheduling approach (IQR = 17.1). In the second industrial instance, the
deterioration of the productivity is reduced to 16% with the adjusted version of ε-constraint
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Figure 3.4: Comparing ε-constraint and Adjusted ε-constraint approaches on total through-
put

approach for its largest throughput instead of 20% with the ε-constraint approach. However,
this improvement comes with a cost. The ε-constraint approach outperforms its adjusted
version in terms of output variability on cycle times. The choice of the ε-constraint approach
or its adjusted version essentially depends on the level of importance that decision makers
give to the output variability, productivity and throughput. To summarize all the results, the
ε-constraint approach opens the solutions space to interesting results in terms of variability,
while its adjusted version opens the solutions space to very interesting results in terms of
throughput.

For the first industrial instance, result for ε = 28% provided by the adjusted ε-constraint
approach seems to be a good compromise for decision makers. It increases the throughput
for all the products and the overall throughput of the factory while maintaining an accept-
able output variability (IQR = 10.3). This variability is lower than that provided by the
simulation only (IQR = 17.1), where First-In-First-Out (FIFO) dispatching rules are used
without the global scheduling approach.

For the second industrial instance, the output variability is almost the same for both
approaches. If the objective is only to reach 100% of throughput achieved for each product,
the result for ε = 16% provided by the adjusted ε-constraint approach seems to be a good
compromise for decision makers as it does not much deteriorate productivity.

3.4 Conclusions and Perspectives

This chapter presents strategies for combining Work-In-Process balancing and throughput
maximization. The Work-In-Process balancing strategy is formulated as a Linear Program-
ming model (global scheduling model). It aims to control the flow of products in order to
minimize the output variability on cycle times and throughput, to speed up products and
ensure satisfaction of throughput and cycle times. To achieve these objectives, the strategy
is applied with smoothing constraints and a Work-In-Process balancing penalty in the ob-
jective function. Different methods based on the estimated throughput, Little’s law, and the
release quantities, etc. were used to determine the balancing coefficients.

The balancing coefficients calculated on the basis of Little’s law provide good results on
the satisfaction of cycle times and throughput, but they remain static on the horizon. These
balancing coefficients do not integrate dynamic information such as the time the Work-In-
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Process has already spent in the factory. Therefore, they are not robust enough to control
the product cycle times in case of factory disruption. The control of cycle times through
the entire production line using cycle time targets, release dates and temporal tracing of
Work-In-Process, i.e., management by the time the Work-In-Process has already spent in
the factory is provided in Chapter 4.

As the balancing coefficients remain static they only work well when the factory is in
a steady state, but this is rarely the case in practice, due to machine breakdowns, critical
preventative maintenance operations, etc. These balancing coefficients will not necessarily
give the expected results in these situations. Thus, to handle this drawback, techniques for
dynamically updating the balancing coefficients should be studied. This will ensure that the
balancing coefficients are adjusted according to the state of the factory at each time when
the global scheduling strategy is called.

Strategies to optimize the throughput and the output variability are formulated as a
multi-objective programming model using an ε-constraint approach. The ε-constraint ap-
proach has been adjusted so that information on the maximization of throughput is included
in the objective function, which minimizes the output variability. The goal is to determine
solutions that will maintain high productivity while minimizing the output variability. The
effectiveness of this strategy and the impact of the Work-In-Process balancing control have
been demonstrated by computational results on industrial data.

It may also be important to integrate new objective functions such as capacity utilization
in addition to the minimization of the output variability on cycle times and throughput and
the maximization of the throughput in the multi-objective global scheduling strategy. Other
approaches can also be studied such as goal programming or the desirability approaches
whose results can be compared with those provided by the ε-constraint approach and its
adjusted version.
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Chapter 4

Cycle Time Minimization and Cycle Time
Control

4.1 Introduction

Product	released	 Product	in	transportation
Product	awaiting

	processing Product	in	processing
Stock	of	finished

products

Product	cycle	time

Completed	product	
in	transportation

Start Finish

Figure 4.1: Cycle time of product

This chapter discusses different global scheduling strategies to minimize and control cycle
times. The cycle time includes the transportation times, the time spent waiting in the queues
of resources and the processing times, see Figure 4.1. In scheduling decisions, most of the
criteria are derived from the product completion times, which are the main information for
calculating cycle times, see Mati et al. (2011). Cycle time is one of the important key
performance indicators in semiconductor manufacturing. The minimization and control of
cycle times have an impact on several other metrics and key performance indicators such
as throughput, yield, on-time delivery, etc. Short cycle times also help to reduce wafer risk
contamination, yield loss and the inventory that should be maintained (Lu et al. (1994)).

To minimize cycle times, two strategies are proposed and compared:

1. A push strategy, where products are pushed forward to their last operations by using
high Work-In-Process holding costs on the first operations of products.

2. A time at operation strategy, where quantities of Work-In-Process that arrived at differ-
ent times in an operation are penalized differently, in order to prioritize the processing
of Work-In-Process quantities that have spent more time in the operation.
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The results of the simulation model without the global scheduling approach are compared
to the results of the push strategy and the time at operation strategy. The computational
results show that the time at operation strategy outperforms the push strategy, respectively
the simulation without the global scheduling approach, with a decrease of 9 days, respectively
4.7 days, on the average cycle time and an increase of 781 lots, respectively 355 lots, for the
throughput. The cycle times for all products with the time at operation strategy are lower
than the cycle times of products when the simulation is used without the global scheduling
approach. In addition, the average cycle time and the throughput are much better balanced
between products for the time at operation strategy.

To control the cycle times, the principal levers used in this chapter are the product release
dates, the cycle time targets of products used as inputs parameters and the temporal tracing
of the Work-In-Process, i.e., the management of the Work-In-Process based on the time the
Work-In-Process have already spent in the factory. Product operations in the route of each
product are grouped in subsequences (blocks of operations), each subsequence with a cycle
time target derived from the product’s total cycle time target. The goal is to ensure that the
time that quantities of products spend in each subsequence of operations is better controlled
to minimize the deviation between the observed cycle time and the product cycle time target.
Naive and simulation-based methods are proposed and compared using 12 and 50 blocks of
operations. Results show that the simulation-based method outperforms the naive method.
In addition, cycle times are better controlled when a large number of blocks of operations
are used (50 blocks of operations in our experiments).

Section 4.2 presents a comparison between a push strategy and a time at operation
strategy to minimize cycle times. In section 4.3, a novel global scheduling strategy to control
cycle times is presented with a focus on the temporal tracing of the Work-In-process to better
manage the cycle time of each product.

4.2 Cycle Time Minimization

Cycle time covers the life of a product in a factory, combining the value-added and non-
value-added processes. Many parameters influence cycle times in semiconductor manufac-
turing. Robinson et al. (2002) provide some key factors such as equipment availability, uti-
lization, product mix, variability, hot lots, re-entrant flows, etc. Since products share the
same resources at multiples stages of their processes in semiconductor manufacturing, regu-
lating the competition between products on the different shared resources is critical, in this
work, this is done by providing production targets that ensures that the waiting time of
products in each operation is not preventing cycle time targets to be reached.

4.2.1 Push Strategy versus Time at Operation Strategy

To minimize cycle times, the push strategy and the time at operation strategy are oriented
towards the management of the Work-In-Process on at the operations of each product. These
strategies are described below.

– The Push strategy, which consists of placing costs in decreasing order from the first
operation to the last operation allowing products to advance as quickly as possible
towards their last operations. Assume that UB is the maximum number of operations
in the product mix. UB is decreased forward on the set of operations of each product,
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to ensure that products are pushed forward toward their last operations. Figure 4.2
presents the Push strategy.

Operation	1 Operation		2 Operation	n-1 Operation	n...

wglp	=	UB ...wglp	=	UB	-	1 wglp	=	UB	-	k

Figure 4.2: Push strategy

Table 4.1 presents the parameters and decision variables used in the global scheduling
models for the push strategy and the time at operation strategy.

Parameters:
G Set of products,
K Set of work-centers,
Lg Set of operations in route of product g,
LK(k) Set of operations and products that must be processed in work-center k,

i.e (g, l) ∈ LK(k) means that operation l in route of product g
must be processed in work-center k,

P Number of periods in planning horizon,
IWgl Initial WIP at operation l of product g,
Rgp Release quantity of product g in period p,
αgl Unit process time at operation l of product g,
Ckp Capacity of work-center k in period p,
wglp Unit WIP holding cost at operation l of product in route g in period p.
Decision variables:
Xglp Quantity of product g arriving in operation l in period p,
Yglp Quantity of product g completing operation l in period p,
Zglp WIP of product g at operation l at the end of period p,
Zglpt WIP of product g at operation l at the end of period p that arrived

in period t (t ≤ p and
p∑

t=1

Zglpt = Zglp).

Table 4.1: Notations

Below, the Linear Program that models the global scheduling Push strategy is written.

Min
∑
g∈G

∑
l∈Lg

P∑
p=1

wglpZglp (4.1)

Subject to :

Xglp = Yg(l−1)p ∀g ∈ G, ∀l ∈ Lg, l ≥ 2, ∀p (4.2)

Zg11 = IWg1 +Rg1 − Yg11 ∀g ∈ G (4.3)

Zgl1 = IWgl − Ygl1 ∀g ∈ G, ∀l ∈ Lg, l ≥ 2 (4.4)
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Zg1p = Zg1(p−1) +Rgp − Yg1p ∀g ∈ G, p = 2, . . ., P (4.5)

Zglp = Zgl(p−1) +Xglp − Yglp ∀g ∈ G, ∀l ≥ 2, p = 2, ..., P (4.6)∑
(g,l)∈LK(k)

αglYglp ≤ Ckp ∀k ∈ K, p = 1, . . ., P (4.7)

Zglp, Yglp, Xglp ≥ 0 ∀g ∈ G, ∀l ∈ Lg, p = 1, . . ., P (4.8)

The objective function (4.1) ensures that the Work-In-Process is moving forward to
the last operations. The costs wglp are chosen in such a way that wglp ≤ wgl−1p ∀g ∈
G, ∀l ∈ Lg, p = 1, . . ., P . Constraints (4.2) tie consecutive operations. Constraints
(4.3)-(4.6) are flow constraints linking the Work-In-Process of each product at each
operation in each period with the quantity completed in period p (Y variables) and
the quantity arriving in period p (X variables). Constraints (4.7) are resource capacity
constraints.

The downside of the Push strategy is that, when production targets are determined,
products with a large number of operations are prioritized. This is because the larger
the number of operations, the higher the cost for holding Work-In-Process.

Let us consider two products, product P1 with 5 operations and product P2 with 3
operations. Assume again that product P1 in operations 1 and 2 shares the same
resource R with product P2 in all its operations. Resource R has a limited capacity.
The unit holding cost for the Work-In-Process is given in Figure 4.3.

Holding	cost	=	5 Holding	cost	=	4 Holding	cost	=	3 Holding	cost	=	2 Holding	cost	=	1

Holding	cost	=	3 Holding	cost	=	2 Holding	cost	=	1

Product	1

Product	2

Operation	1 Operation	2 Operation	3 Operation	4 Operation	5

Figure 4.3: Push strategy drawback illustration.

If there is not enough products P1 to fill the capacity of resource R, then both products
P1 and P2 will be processed. As product P1 has a larger priority based on its unit hold-
ing cost, if there is enough product P1 to fill the capacity of resource R, then product
P2 will not be produced. The time at operation strategy is designed to overcome this
drawback.

– The time at operation strategy ensures that the Work-In-Process of product g arriving
in period p at operation l and which remains at the end of period p does not have the
same holding cost β as the Work-In-Process that arrived at period t < p at operation
l. Figure 4.4 presents the time at operation strategy.

Numerical results in Section 4.2.2 show that the time at operation strategy reduces the
average cycle time compared to the Push strategy by 15% and increases the overall through-
put of the factory by 8%. However, this strategy does not take into account the product
release dates and therefore not the past temporal trace of the Work-In-Process. Product
release dates are considered in Section 4.3, which deals with the problem of controlling cycle
times. The Linear Program that models the time at operation global scheduling strategy is

Page 72 EMSE-CMP BARHEBWA MUSHAMUKA



4.2. CYCLE TIME MINIMIZATION
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Figure 4.4: Time at operation strategy

written bellow:

Min
∑
g∈G

∑
l∈Lg

H∑
p=1

p∑
t=1

[(p+ 1)− t]Zglpt (4.9)

Subject to :

Xglp = Yg(l−1)p ∀g ∈ G, ∀l ∈ Lg, l ≥ 2, ∀p (4.10)

Zg111 = IWg1 +Rg1 − Yg11 ∀g ∈ G (4.11)

Zgl11 = IWgl − Ygl1 ∀g ∈ G, ∀l ∈ Lg, l ≥ 2 (4.12)
p∑

t=1

Zg1pt ≥
p−1∑
t=1

Zg1(p−1)t +Rgp − Yg1p ∀g ∈ G, p = 2, . . ., H (4.13)

p∑
t=1

Zglpt ≥
p−1∑
t=1

Zgl(p−1)t +Xglp − Yglp ∀g ∈ G, ∀l ∈ Lg, l ≥ 2, p = 2, . . ., H (4.14)

m∑
t=1

Zglpt ≥
m∑
t=1

Zgl(p−1)t−Yglp ∀g ∈ G, ∀l ∈ Lg, l ≥ 2, p = 2, . . ., H, m ≤ p−1 (4.15)

∑
(g,l)∈LK(k)

αglYglp ≤ Ckp ∀k ∈ K, p = 1, . . ., H (4.16)

Zglpt, Yglp, Xglp ≥ 0 ∀g ∈ G, ∀l ∈ Lg, p = 1, . . ., H, t ≤ p (4.17)

The objective function (4.9) ensures that the Work-In-Process is pushed forward to the last
operations by taking into account how long a products remain in operations. The holding cost
of the Work-In-Process is increasing with the number of periods it remains in an operation.
The objective function ensures that the Work-In-Process arriving in period p in an operation
and still remain at the end of p does not have the same holding cost as the Work-In-Process
which arrived in period t < p in the operation.

Constraints (4.10) tie consecutive operations. Constraints (4.11) model the first operation
in the first period upon which initial Work-In-Process and release quantities must be con-
sidered. Constraints (4.12) model the Work-In-Process for the remaining operations in the
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first period based on the completed quantity (Y variables) in the first period and the initial
Work-In-Process. Constraints (4.13) for the first operation in which the release must be con-
sidered and based on the completed quantity (Y variables) in the first operation, represent
the flow of the Work-In-Process from period t to period p(t ≤ p). Constraints (4.14)-(4.15)
compute the Work-In-Process which remains in each of the remaining operation and its flow
from period t to period p (t ≤ p) with the quantity completed in period p (Y variables)
and the quantity arriving in period p (X variables). Constraints (4.16) are resource capacity
constraints.

4.2.2 Computational Experiments

Numerous tests have been conducted on industrial instance with 449 machines in 203 work-
centers, which are shared between operations of various types of products. Products have
between 352 and 622 operations in their routes. Five products are considered and the release
scheme is one lot for each product every 205 minutes.

The global scheduling models which implement the push strategy and the time at opera-
tion strategy are coupled with the generic simulation model. The First-In First-Out (FIFO)
rule is used as dispatching rule when the simulation runs without the global scheduling
approach. This FIFO rule is supplemented with the Production Target Dispatching Rule
(PTDR) when the global scheduling approach is used. Recall that the production target
dispatching rule ensures that production targets of products are followed in the simulation
model.

Tables 4.2, 4.3 and 4.4 present the numerical results obtained with respectively simulation
without global scheduling strategy, simulation coupled with global scheduling push strategy
(model of push strategy) and simulation coupled with the global scheduling time at operation
(model of time at operation strategy).

Products
Indicators 1 2 3 4 5
Average Cycle Time (days) 44.2 53.3 41.1 85.4 59.7
Release Quantities 2,529 2,529 2,529 2,529 2529
Throughput 2,099 2,009 2,125 1,715 1,954
Percentage Achieved Throughput 108.2% 103.6% 109.6% 88.4% 100.8%
Weighted Total Average Cycle Time 55.6

Total Throughput 9,902

Table 4.2: Results of simulation model without global scheduling strategy

Compared to Table 4.2, the results in Table 4.3 show that the throughput of product 3 is
significantly reduced by 9.7% and the cycle time increases by 39.9%. The same can be said
for product 5 with respectively a decrease of 20.3% and an increase of 36.8% respectively
on the throughput and the cycle time. This is because products 3 and 5 have a relatively
small number of operations (352 and 415 respectively) and because they compete the same
resources than products 1 and 2. Products 1 and 2 have a larger number of operations
(501 and 440 respectively), and are thus prioritized by the push strategy. The throughput
of products 1 and 2 increase both by 4.8%, and their cycle times decrease respectively by
24.0% and 2.6%. This explain the drawback of the push strategy explained in Section 4.2.1.
Product 4 has the largest number of operations (622 operations) and, based on the results
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in Tables 4.2, 4.3 and 4.4, is not competing for the same resources than the other products.
This is why the cycle times of product 4 do not change much from Table 4.2 to Table 4.3.

Products
Indicators 1 2 3 4 5
Average Cycle Time (days) 33.6 51.9 57.5 86.5 81.7
Release Quantities 2,529 2,529 2,529 2,529 2529
Throughput 2,200 2,106 1,919 1694 1557
Percentage Achieved Throughput 113.5% 108.6% 99.0% 87.4% 80.3%
Weighted Total Average Cycle Time 59.9

Total Throughput 9,476

Table 4.3: Results of simulation model with push strategy

We can observe that, in Table 4.4, the throughput of all products is larger than in
Table 4.2. In addition, the total throughput is larger with a lower total average cycle time
compared to Tables 4.2 and 4.3. This is because the time at operation strategy manages
the Work-In-Process so that product quantities that arrived at different times in the queue
of an operation are penalized differently. The Work-In-Process that has been waiting the
most is prioritized and not the entire Work-In-Process of a single product. Thus, the Work-
In-Process of all products might remain at the end of each periods in the global scheduling
model.

Products
Indicators 1 2 3 4 5
Average Cycle Time (days) 43.8 44.6 34.4 79.1 58.7
Release Quantities 2,529 2,529 2,529 2,529 2529
Throughput 2,125 2,132 2,232 1,792 1976
Percentage Achieved Throughput 109.6% 110.0% 115.1% 92.4% 101.9%
Weighted Total Average Cycle Time 50.9

Total Throughput 10,257

Table 4.4: Results of simulation model with time at operation strategy

4.3 Cycle Time Control

4.3.1 Introduction and Motivation

Controlling cycle time implies rigorous management of the Work-In-Process in the factory.
This management requires having static information such as the cycle time target for each
product and the release dates (times when product quantities are released in the factory). In
addition, dynamic information is necessary such as the stage of production of each product
and the time products have already spent in the factory since their release dates. To our
knowledge, cycle time control has never been studied in the literature of semiconductor
manufacturing. Cycle times are generally observed in the end of production. Even when it
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comes to minimizing cycle times, it is difficult to quantify the extent to which cycle times
are minimized. Cycle times are generally outputs of the factory and it seems that they are
not often used as inputs parameters, especially in global scheduling models.

This section presents a novel global scheduling strategy to control cycle times in large,
complex manufacturing systems consisting of multiple work-centers by using cycle time tar-
gets of products as input parameters to the global scheduling model. One of the main
innovations of the proposed strategy is that it is based on the use of the temporal tracing
of the Work-In-Process. This temporal tracing of Work-In-Process is critical to differentiate
lots of the same product and at the same processing stage, but released at different times
in the factory. In previous strategies, the release dates of products in the Work-In-Process
were not considered. This strategy innovates by using both the release dates and the tem-
poral tracing of the Work-In-Process in the global scheduling model. The control of cycle
times is managed by controlling the competition of products on the shared resources using
production targets.

Section 4.3.2 presents the way the historical trace of the Work-In-Process is used in the
global scheduling model. In Section 4.3.3, the management of product cycle time targets is
presented before its use in the global scheduling model. Finally, in Section 4.3.4, computa-
tional experiments and analysis of two different approaches ( Naive and Simulation-based)
are presented and discussed.

4.3.2 Temporal Tracing of the Work-In-Process

A first originality of this strategy is that the WIP is temporarily traced in the global schedul-
ing model. As shown in Figure 4.5, instead of having just one parameter IWgl for the initial
Work-In-Process in operation l of product g, parameter IWglr is used for the initial WIP in
operation l of product g released at period −r in the past, where IWgl =

∑R
r=1 IWglr and R

is the number of release periods that must be considered in the past.
The variables modeling the Work-In-Process of product g at operation l at the end

of period p are also considering the release period. More precisely, ZP
glpr corresponds to

the quantity of product g at operation l released in period −r in the past, and ZF
glpr to

the quantity of product g at operation l to be released in period r in the future. The
optimization model that aims at satisfying given product cycle time targets is formalized in
Section 4.3.4. A temporal tracing of the WIP is required to know which products in the WIP
should actually be processed in a period. Indeed, if the information on the release periods
of products is not available, it is impossible to know the time already spent in the factory
by products in the global scheduling model, and thus to ensure the satisfaction of cycle time
targets.

When considering Figure 4.5, products in IWglr should be processed before products in
IWglr′ if r > r′ since products in IWglr have been released earlier. To our knowledge, no
optimization models in the literature explicitly consider the temporal tracing of the Work-
In-Process.

The approach for controlling cycle times starts by building blocks of operations, i.e.,
subsequences of operations of the products as in Bureau, Dauzère-Pérès, Yugma, Vermariën
and Maria (2007). The goal is then to control the cycle times of products by controlling
the completion times of products in blocks, which are determined from their release dates.
Hence, another important aspect of our approach is to establish a cycle time target for each
block of operations (expressed as a parameter Tgl for operation l of product g), which is
derived from the cycle time target of the product. The objective in the global scheduling
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Figure 4.5: Operations with historical trace of initial WIP

model is to prioritize products in a block that are behind their cycle time targets.

4.3.3 Product Cycle Time Targets and Blocks of Operations

To control the cycle time of a product, its cycle time target is distributed over product
operations. The number of operations is divided into blocks of operations in such a way that
the last operation in the last block of operations should end at the cycle time target of the
product. Blocks are defined using two different methods:

– A naive method, where operations of a product is divided into blocks (subsequence
of operations) with the same number of operations in each block, and the cycle time
target is the same in each block. Figure 4.6 illustrates the process of defining blocks
of operations. For a product with a cycle time target of 40 days and 5 blocks, blocks
of 8 operations are defined in such a way that operations in the first block should end
at 20% of the cycle time target of the product, operations in the second block should
end at 40% of the cycle time target of the product, etc..

– A method based on simulation (simulation-based method), where the operations of a
product are divided into blocks (subsequence of operations) with the same number of
operations, but with different cycle time targets. The time duration or the cycle time
target of a block is determined based on the time each product spends in that block in
the simulation. After the warm-up time (times to load the factory), products are traced
in the simulation, and the times they spent in each block are collected. These times
provide the percentage of the cycle time target of a product in each block, and are used
to determine the cycle time target of each block. Based on the example in Figure 4.7,
for a product with a cycle time target of 40 days and 5 blocks of operations, if the
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					Block1

20%

Cycle	time	targets

Blocks	of	operations
				Block2 				Block3 					Block4 					Block5
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Figure 4.6: Example of the definition of cycle time targets for blocks with the naive method

information collected from the simulation indicates that the product spent on average
2 days, 14 days, 4 days, 16 days and 4 days in blocks 1, 2, 3, 4 and 5 respectively,
then operations in the first block should end at 5% of the cycle time target of the
product, operations in the second block should end at 40% of the cycle time target of
the product, etc.

					Block1

5% 35% 10% 40% 10%

Cycle	time	targets

Blocks	of		operations
				Block2 				Block3 					Block4 					Block5

Figure 4.7: Example of definition of cycle time targets for blocks with the simulation-based
method

All cycle time targets of blocks are converted into a number of periods and are used in
the optimization model. Our computational experiments are conducted and compared with
respectively 12 blocks and 50 blocks of operations.

4.3.4 Global Scheduling: Linear Programming Model

Table 4.5 presents the parameters and decisions variables used in the optimization model.
The global scheduling optimization model which implements the strategy for cycle time

control is formalized below.
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Parameters:
G Set of products,
K Set of work-centers,
Lg Set of operations in route of product g,
LK(k) Set of operations and products that must be processed in work-center k,

i.e (g, l) ∈ LK(k) means that operation l in route of product g
must be processed in work-center k,

R Number of release classes considered in the past,
H Number of periods in the planning horizon,
Tgl Cycle time target of operation l of product g,

which is derived from the cycle time target of the block of the operation,
each operation l of product g in that block should be completed at period Tgl,

Qgp Release quantity of product g in period p,
IWglr Initial WIP in operation l of product g released in period −r,
αgl Unit process time for product g at operation l of product g,
Ckp Capacity of work-center k in period p.
Decision variables:
XP

glpr Quantity of product g released at period −r in the past,
completing operation l in period p, where r = 1, . . . , R,

XF
glpr Quantity of product g to be released at period r,

completing operation l in period p, where r = 1, . . . , p,
Yglp Total quantity of products in route g to complete in operation l in period p,

i.e. the production target,
ZP

glpr WIP of product g at operation l at the end of period p
released at period −r in the past, where r = 1, . . . , R,

ZF
glpr WIP of product g at operation l at the end of period p

to be released at period r, where r = 1, . . . , p.

Table 4.5: Notations
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Min
∑
g∈G

∑
l∈Lg

H∑
p=1

(
R∑

r=1

max(0, p+ r − Tgl)ZP
glpr +

p∑
r=1

max(0, p− r − Tgl)ZF
glpr

)
(4.18)

Subject to :

ZP
g11r = IWg1r −XP

g11r ∀g ∈ G, r = 1, . . . , R (4.19)

ZF
g111 = Qg1 −XF

g111 ∀g ∈ G (4.20)

ZP
gl1r = IWglr +XP

g(l−1)1r −XP
gl1r ∀g ∈ G, ∀l ∈ Lg, l ≥ 2, r = 1, . . . , R (4.21)

ZF
gl11 = XF

g(l−1)11 −XF
gl11 ∀g ∈ G, ∀l ∈ Lg, l ≥ 2 (4.22)

ZP
g1pr = ZP

g1(p−1)r −XP
g1pr ∀g ∈ G, p = 2, . . . , H, r = 1, . . . , R (4.23)

ZF
g1pr = ZF

g1(p−1)r −XF
g1pr ∀g ∈ G, p = 2, . . . , H, r = 1, . . . , p− 1 (4.24)

ZF
g1pp = Qgp −XF

g1pp ∀g ∈ G, p = 2, . . . , H (4.25)

ZP
glpr = ZP

gl(p−1)r+X
P
g(l−1)pr−XP

glpr ∀g ∈ G, ∀l ∈ Lg, l ≥ 2, p = 2, . . . , H, r = 1, . . . , R

(4.26)

ZF
glpr = ZF

gl(p−1)r+X
F
g(l−1)pr−XF

glpr ∀g ∈ G, ∀l ∈ Lg, l ≥ 2, p = 2, . . . , H, r = 1, . . . , p−1
(4.27)

ZF
glpp = XF

g(l−1)pp −XF
glpp ∀g ∈ G, ∀l ∈ Lg, l ≥ 2, p = 2, . . . , H (4.28)

R∑
r=1

XP
glpr +

p∑
r=1

XF
glpr = Yglp ∀g ∈ G, ∀l ∈ Lg, p = 1, . . . , H (4.29)

∑
g∈G

∑
l∈Lg ; (g,l)∈LK(k)

αglYglp ≤ Ckp ∀k ∈ K, p = 1, . . . , H (4.30)

ZP
glpr, X

P
glpr ≥ 0 ∀g ∈ G, ∀l ∈ L(g), p = 1, . . . , H, r = 1, . . . , R (4.31)

ZF
glpr, X

F
glpr ≥ 0 ∀g ∈ G, ∀l ∈ L(g), p = 1, . . . , H, r = 1, . . . , H (4.32)

Yglp ≥ 0 ∀g ∈ G, ∀l ∈ L(g), p = 1, . . . , H (4.33)

The objective function (4.18) aims at satisfying the cycle time target of operations in
blocks, by prioritizing the reduction of the Work-In-Process at operations with products that
are late the most. The lateness is equal to max(0, p+ r − Tgl) for products released in past
periods (r = 1, . . . , R) and to max(0, p − r − Tgl) for products released in future periods
(r = 1, . . . , p, for p = 1, . . . , H). Hence, late products are pushed forward to their following
operations. Constraints (4.19) and (4.20), resp. Constraints (4.21) and (4.22), determine
the remaining Work-In-Process at the end of the first period in the first operation of each
product, resp. in the following operations of each product. Constraints (4.19) and (4.21)
correspond to the WIP for products released in past periods, while Constraints (4.20) and
(4.22) correspond to the WIP for products released in the first period. Constraints (4.23),
(4.24) and (4.25), resp. Constraints (4.26), (4.27) and (4.28), determine the remaining WIP
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in the first operation, resp. in each operation except the first one, of each product at the
end of each period except the first one. Constraints (4.23) and (4.26) correspond to the WIP
for products released in past periods, while Constraints (4.24), (4.25), (4.27) and (4.28)
correspond to the Work-In-Process for products released in previous periods in the horizon
except the first one. Constraints (4.29) ensure that Yglp, the total quantity of product g
that completes operation l in period p, is equal to the sum of the quantities of product g
released in past periods and of the quantities of product g released in previous periods in the
horizon. Constraints (4.30) model the resource capacity constraints. Finally, Constraints
(4.31) through (4.33) are the non-negativity constraints.

Note that the initial Work-In-Process of products released in the past (considered in
Constraints (4.19) and (4.21)), the products released before p (considered in Constraints
(4.20) and (4.25)) or the WIP in previous periods (considered in Constraints (4.23), (4.24),
(4.26) and (4.27)) are not considered in Constraints (4.22) and (4.28), since the products
released in p are only entering through the first operation in Constraints (4.25).

4.3.5 Aggregating into Classes of Release Periods

As shown in the previous section, past release periods of each product are considered in
the global scheduling model to ensure the temporal tracing of the Work-In-Process and to
control the product cycle times. However, because cycle times are very long in semiconductor
manufacturing, up to 3 months, the number R of release periods considered in the past can
be very large, leading to a very large number of variables XP

glpr and ZP
glpr in the linear

programming model. This is why, instead of modeling each release period in the past and
to make the model tractable, we aggregate past periods into N classes of A consecutive past
periods, where R = AN .

N should be chosen not too large (too few past periods in each class), to avoid having
a very large scheduling model, and not too small (too many past periods in each class), to
avoid having in the same class products released at very different periods. There are several
ways to build classes of past periods, where the extreme cases correspond either to using
each period as a class (N = R) or to using a single class (N = 1). In the linear programming
model, R is replaced by N , and the objective function (4.18) needs to be adjusted accordingly
as follows:

Min
∑
g∈G

∑
l∈Lg

H∑
p=1

(
N∑
r=1

max(0, p+ (r)A− Tgl)ZP
glpr +

p∑
r=1

max(0, p− r − Tgl)ZF
glpr

)
(4.34)

In the computational experiments of Section 4.3.6, 12 (N = 12) classes of 7 days (A = 7)
are used, i.e., 84 days, which is much larger than the average cycle time of most products in
our experiments. Hence, products in the factory and released in the past week are aggregated
into the first release class, products in the factory and released two weeks ago are aggregated
into the second release class, etc.

4.3.6 Computational Experiments

Industrial data were used for the experiments below from a factory with about 600 machines
distributed in about 300 work-centers. Two instances with 5 products each are used:

OCTOBER 2020 EMSE-CMP Page 81



CHAPTER 4. CYCLE TIME MINIMIZATION AND CYCLE TIME CONTROL

1. The first instance includes products numbered 1 through 5, which have between 104
and 315 operations. One unit of product is released every 280 minutes, 360 minutes,
480 minutes, 480 minutes and 480 minutes for products 1, 2, 3, 4 and 5, respectively.

2. The second instance includes products numbered 6 through 10, which have between 153
and 221 operations. One unit of product is released every 460 minutes, 460 minutes,
480 minutes, 480 minutes and 480 minutes for products 6, 7, 8, 9 and 10, respectively.

To avoid starting with an empty factory, six months of warm-up time are used, which
are excluded when collecting statistical data. The simulation is then run for 6 months after
the warm-up time.

4.3.6.1 Without Global Scheduling Model

This section presents the results obtained with the simulation model without the global
scheduling model, i.e. where only First-In-First-Out dispatching rules are used. Table 4.6
shows the results for the first instance. For each product, the average cycle time, the release
quantities and the completed quantities (throughput), both in number of products, are
given. Note that the release quantities correspond to the number of products released after
the warm-up period, and the completed quantities are equal to the number of products
completed among the release quantities and that are used to compute the average cycle
time. As expected, the average cycle time of a product usually decreases when the number
of completed products increases.

The average cycle time of products 1, 2 and 3 are rather close, with a value of about 50
days, while products 4 and 5 are faster with a value of about 40 days.

Products
1 2 3 4 5

Average Cycle Times (days) 48.9 50.3 51.1 40.1 39.8
Release Quantities 926 721 541 541 541
Completed Quantities 617 479 356 394 394

Table 4.6: Simulation without global scheduling approach, instance 1

Table 4.7 shows the results for the second instance. The average cycle time of Products
6 and 9 are the fastest, with a value of about 32 days, while Products 7, 8 and 10 are slower,
in particular product 10 with a value of about 78 days.

Products
6 7 8 9 10

Average Cycle Times (days) 31.8 59.1 46.1 32.2 77.7
Release Quantities 563 563 541 541 541
Completed Quantities 441 341 374 423 265

Table 4.7: Simulation without global scheduling approach, instance 2

In the experiments presented in sections 4.3.6.2 and 4.3.6.3, the average cycle times in
Tables 4.6 and 4.7 will be used as initial cycle time targets in the global scheduling model.
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4.3.6.2 Naive Method to Determine Cycle Time Targets of Blocks

Instance 1

Products
1 2 3 4 5

Cycle Time Targets (days) 48.0 50.0 51.0 40.0 39.0
Average Cycle Times (days) 42.7 40.8 49.2 36.8 43.1
Cycle Time Gaps -11.0% -18.4% -3.5% -8.0% 10.5%
Release Quantities 926 721 541 541 541
Completed Quantities 703 546 373 411 388

Table 4.8: Naive method, Simulation with global scheduling approach, instance 1 with 12
blocks of operations

Table 4.8, resp. Table 4.9, shows the results for instance 1 obtained when the global
scheduling approach is applied, i.e., when the simulation model is coupled with the global
scheduling model, with 12 blocks of operations, resp. 50 blocks of operations. The first row
provides the cycle time targets, defined with the results obtained in Section 4.3.6.1, which
are used to derive the cycle time targets of blocks with the naive method. The second row
presents the average cycle time obtained with the global scheduling approach, and the third
row the gaps between the cycle time targets and the average cycle time. The last two rows
provide the release quantities and the completed quantities, both in number of products.

Products
1 2 3 4 5

Cycle Time Targets (days) 48.0 50.0 51.0 40.0 39.0
Average Cycle Times (days) 39.3 43.7 39.8 42.5 41.0
Cycle Time Gaps -18.1% -12.6% -22.3% 6.0% 5.1%
Release Quantities 926 721 541 541 541
Completed Quantities 695 532 402 386 383

Table 4.9: Naive method, simulation with global scheduling approach, instance 1 with 50
blocks of operations

In Table 4.8, the average cycle time of products 1 to 4 are smaller than their cycle time
targets, but the average cycle time of product 5 is about 4 days larger than its cycle time
target. The results in Table 4.9 show that increasing the number of blocks to 50 helps to
improve the results since, although two products have an average cycle time which is larger
than their cycle time target, the largest difference is reduced to 2.5 days. However, the
negative cycle time gaps of some products are very large, up to -22.3% for product 3 with
50 blocks of operations, which is not wanted when other products have positive cycle time
gaps.

To reduce the average cycle time of product 5, its cycle time target has been reduced
to 15 days and the numerical results with the global scheduling approach and 12 blocks
of operations can be found in Table 4.10. Note that the cycle times targets of the other
products have not been changed. Table 4.10 shows that the average cycle times of products
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Products
1 2 3 4 5

Cycle Time Targets (days) 48.0 50.0 51.0 40.0 15.0
Average Cycle Times (days) 42.0 40.7 49.7 37.6 39.5
Cycle Time Gaps -12.5% -18.6% -2.5% -6.0% 163.3%
Release Quantities 926 721 541 541 541
Completed Quantities 698 546 364 408 404

Table 4.10: Naive method, simulation with global scheduling approach, instance 1 with 12
blocks of operations and reduction of cycle time target of product 5

1 to 4 are still smaller than their cycle time targets, and that the average cycle time of
product 5 is now very close to its cycle time target in Table 4.8 and smaller than its average
cycle time in Table 4.6. However, the cycle time target of product 5 had to be drastically
reduced to obtain this result.

Instance 2

Products
6 7 8 9 10

Cycle Time Targets (days) 31.0 59.0 46.0 32.0 77.0
Average Cycle Times (days) 44.0 54.5 37.5 26.0 61.8
Cycle Time Gaps 41.9% -7.6% -18.5% -18.7% -19.7%
Release Quantities 563 563 541 541 541
Completed Quantities 391 324 402 459 355

Table 4.11: Naive method, simulation with global scheduling approach, instance 2 with 12
blocks of operations

Table 4.11, resp. Table 4.12, shows the results for instance 2 obtained with the simulation
model coupled with the global scheduling model and with 12 blocks of operations, resp. 50
blocks of operations. The average cycle times of products 7 to 10 are smaller than their
cycle time targets, and significantly smaller for products 8, 9 and 10. However, the average
cycle time of product 6 is much larger (13 days) than its cycle time target. As for instance
1, increasing the number of blocks to 50 helps to reduce the maximum cycle time gaps, as
shown in Table 4.12 since, although two products have now an average cycle time which is
larger than their cycle time target, the largest difference is reduced to 7.5 days, which is still
quite large. Also as in for instance 1, the negative cycle time gaps of some products are very
large, up to -42.9% for product 10 with 50 blocks of operations.

Because of the re-entrant flows and shared resources, trying to satisfy the cycle times
of products 7 to 10 leads to a significant slowdown of product 6. Hence, and as in the
previous section, the cycle time target of product 6 is decreased to 15 days, while the cycle
time targets of the other products remain the same, and the global scheduling approach
with 12 blocks of operations is applied again. The associated numerical results are given in
Table 4.13. They show that the average cycle times of products 7 to 10 remain smaller than
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Products
6 7 8 9 10

Cycle Time Targets (days) 31.0 59.0 46.0 32.0 77.0
Average Cycle Times (days) 36.3 66.5 32.4 23.2 44.1
Cycle Time Gaps 17.1% 12.7% -13.6% -27.5% -42.9%
Release Quantities 563 563 541 541 541
Completed Quantities 427 301 416 450 409

Table 4.12: Naive method, simulation with global scheduling approach, instance 2 with 50
blocks of operations

Products
6 7 8 9 10

Cycle Time Targets (days) 15.0 59.0 46.0 32.0 77.0
Average Cycle Times (days) 42.4 55.2 37.9 26.7 62.3
Cycle Time Gaps 182.6% -6.4% -17.6% -16.6% -19.1%
Release Quantities 563 563 541 541 541
Completed Quantities 395 336 400 455 337

Table 4.13: Naive method, simulation with global scheduling approach, instance 2 with with
12 blocks of operations and reduction of cycle time target of product 6

their cycle time targets, and that the average cycle time of product 6 has only been slightly
reduced and remains much larger than its average cycle time in Table 4.6.

Reducing the cycle time of product 6

For the average cycle time of product 6 to reach the cycle time target of 31 days, the first
step is to understand how the flows of other products impact the flow of product 6. The
cycle time of product 6 can be decreased by slowing down other products, i.e., increasing
their cycle times targets. Four scenarios are thus considered as shown in Table 4.14, where
each of the four last products is alternatively slowed down by increasing its cycle time target
to 150 days, and the cycle time target of product 6 is set to 31 days again.

Products
6 7 8 9 10

Scenario 1 Cycle time targets (days) 31.0 150.0 46.0 32.0 61.0
Average Cycle Times (days) 35.3 100.7 46.8 25.2 49.3

Scenario 2 Cycle time targets (days) 31.0 59.0 150.0 32.0 61.0
Average cycle times (days) 42.2 52.5 56.2 26.2 56.0

Scenario 3 Cycle time targets (days) 31.0 59.0 46.0 150.0 61.0
Average cycle times (days) 34.3 46.0 37.1 70.1 49.7

Scenario 4 Cycle time targets (days) 31.0 59.0 46.0 32.0 150.0
Average cycle times (days) 39.5 47.7 35.2 26.4 109.5

Table 4.14: Impact of slowing down a single product on average cycle times of product 6
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Products
6 7 8 9 10

Cycle Time Targets (days) 31.0 59.0 46.0 250.0 61.0
Average Cycle Times (days) 26.5 43.6 36.5 86.9 48.5
Cycle Time Gaps -14.5% -26.1% -20.6% -65.2% -20.5%
Release Quantities 563 563 541 541 541
Completed Quantities 434 386 406 279 387

Table 4.15: Naive method, simulation with global scheduling approach, slowing down prod-
uct 9

The results in Table 4.14 show how the flow of each product impacts the cycle time of
product 6. Increasing the cycle time target of each product helps to reduce the average cycle
time of product 6 from its initial value or 44 days (see Table 4.11). However, the impact of
products 7 and 9 is more significant and rather close. This is because products 6, 7 and 9
are often competing for the same machines. Table 4.15 shows how the average cycle time of
product 6 can be further reduced by increasing even more the cycle time target of product
9 from 150 days to 250 days. The average cycle time of product 6 is now equal to 26.5 days,
i.e., it is finally lower than the cycle time target of 31 days.

Products
6 7 8 9 10

Scenario 5 Cycle time targets (days) 31.0 90.0 46.0 90.0 61.0
Average cycle times (days) 34.5 59.0 45.5 50.5 52.1

Scenario 6 Cycle time targets (days) 31.0 59.0 46.0 90.0 90.0
Average cycle times (days) 36.0 45.2 37.4 49.9 73.3

Scenario 7 Cycle time targets (days) 31.0 90.0 46.0 32.0 90.0
Average cycle times (days) 37.6 59.7 41.3 27.1 73.5

Scenario 8 Cycle time targets (days) 31.0 90.0 46.0 90.0 90.0
Average cycle times (days) 30.4 59.5 41.9 47.1 72.8

Table 4.16: Impact of slowing down multiple products on average cycle times of product 6

The issue with the results in Table 4.15 is that product 9 is significantly slowed down.
An alternative is to slow down multiple products simultaneously and less drastically than
in Tables 4.14 and 4.15. Four new scenarios are thus considered as shown in Table 4.16,
where two or three products are slowed down by increasing their cycle time target to 90
days, instead of 150 days in Table 4.14 and 250 days in Table 4.15. More precisely, the cycle
time targets of products 7 and 9 are increased in scenario 5, of products 9 and 10 in scenario
6, of products 7 and 10 in scenario 7 and of products 7, 9 and 10 in scenario 8. The cycle
time target of product 6 remains equal to 31 days.

The results in Table 4.16 show that the average cycle time of product 6 is always signifi-
cantly reduced from its initial value or 44 days (see Table 4.11) when the cycle time targets
of two products are reduced. However, it is when the cycle time targets of three products
are reduced (scenario 8) that the cycle time target of product 6 is finally satisfied.
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4.3.6.3 Simulation-based Method to Determine Cycle Time Targets of Blocks

The analysis conducted in Section 4.3.6.2 shows that the naive method to determine cycle
time targets of blocks is limited, and makes it difficult for the global scheduling approach to
ensure that the cycle times of some products are satisfied. The results in this section show
that the simulation-based method to determine cycle time targets of block helps to answer
these limits. Let us recall that, using the simulation-based method, blocks include the same
number of operations but have different cycle time targets.

Instance 1

Products
1 2 3 4 5

Cycle Time Targets (days) 48.0 50.0 51.0 40.0 39.0
Average Cycle Times (days) 48.3 40.3 51.6 40.1 42.5
Cycle Time Gaps 0.6% -19.4% 1.7% 0.3% 8.9%
Release Quantities 926 721 541 541 541
Completed Quantities 675 477 371 386 386

Table 4.17: Simulation-based method, simulation with global scheduling approach, instance
1 with 12 blocks of operations

Table 4.17, resp. Table 4.18, shows the results for instance 1 obtained with the simulation
model coupled with the global scheduling model with 12 blocks of operations, resp. 50 blocks
of operations. The same cycle time targets for products than in Section 4.3.6.2 are used. In
Table 4.17, most products have their average cycle times that are very close to their cycle
time targets, except for product 2 with an average cycle time which is 19.4% lower and
product 5 with an average cycle time which is 8.9% larger. Using 50 blocks of operations
leads to very good results as shown in Table 4.18, where all products have an average cycle
time which is lower than their cycle time target.

Products
1 2 3 4 5

Cycle Time Targets (days) 48.0 50.0 51.0 40.0 39.0
Average Cycle Times (days) 40.7 43.5 47.3 40.0 35.7
Cycle Time Gaps -15.2% -13.0% -7.3% 0.0% -8.5%
Release Quantities 926 721 541 541 541
Completed Quantities 705 524 377 389 405

Table 4.18: Simulation-based method, simulation with global scheduling approach, instance
1 with 50 blocks of operations

Through the use of optimized production targets and the simple controller variables used
in the simulation model, cycle times are under control, and are even all improved compared
to the simulation model without the global scheduling approach.
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Products
6 7 8 9 10

Cycle Time Targets (days) 31.0 59.0 46.0 32.0 77.0
Average Cycle Times (days) 34.5 60.2 37.9 34.7 73.7
Cycle Time Gaps 11.3% 2.0% -17.6% 8.4% -4.3%
Release Quantities 563 563 541 541 541
Completed Quantities 405 314 412 396 306

Table 4.19: Simulation-based method, simulation with global scheduling approach, instance
2 with 12 blocks of operations

Instance 2

Table 4.19, resp. Table 4.20, presents the results for instance 2 obtained with the global
scheduling approach with 12 blocks of operations, resp. 50 blocks of operations. The results
are worse than in instance 1 for 12 blocks of operations, with three products that have a
positive cycle time gap and a maximum cycle time gap of 11.3%. Again, the improvements
when using 50 blocks of operations are significant, as all products have an average cycle time
which is lower than the corresponding cycle time target as shown in Table 4.20.

Products
6 7 8 9 10

Cycle Time Targets (days) 31.0 59.0 46.0 32.0 77.0
Average Cycle Times (days) 25.0 57.3 40.0 30.1 77.0
Cycle Time Gaps -19.4% -2.9% -13.0% -5.9% 0.0%
Release Quantities 563 563 541 541 541
Completed Quantities 471 337 387 425 281

Table 4.20: Simulation-based method, simulation with global scheduling approach, instance
2 with 50 blocks of operations

Reducing the cycle time targets of products

This section aims at illustrating that our global scheduling approach helps to control cycle
times by reducing the cycle time targets of different products in instances 1 and 2. Because of
the quality of the results obtained in sections 4.3.6.3, 50 blocks of operations are considered
in the remaining experiments.

First, the cycle time target of product 3 in instance 1, whose average cycle time is equal
to 47.3 days in Table 4.18, is decreased from 51 days to 42 days. The results in Table 4.21
show that the average cycle time decreases from 47.3 to 43.3 days, only 3% above the target
cycle time, and the average cycle times of the other products remain under control since the
largest cycle time gap is equal to 3.7%.

The cycle time target of product 4 is decreased from 40 to 35 days in Table 4.22, and its
average cycle time decreases from 40.0 days in Table 4.18 to 32.3 days, again with a limited
impact on the satisfaction of other cycle time targets, since the largest cycle time gap is
equal to 2.8% for product 5.
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Products
1 2 3 4 5

Cycle Time Targets (days) 48.0 50.0 42.0 40.0 39.0
Average Cycle Times (days) 42.0 42.9 43.3 41.5 38.3
Cycle Time Gaps -7.9% -18.2% 3.0% 3.7% -1.8%
Release Quantities 926 721 541 541 541
Completed Quantities 676 524 383 391 403

Table 4.21: Simulation-based method, simulation with global scheduling approach, instance
1, reducing the cycle time target of product 3

Products
1 2 3 4 5

Cycle Time Targets (days) 48.0 50.0 51.0 35.0 39.0
Average Cycle Times (days) 41.0 43.8 50.6 32.3 40.1
Cycle Time Gaps -14.5% -12.40% -0.8% -7.7% 2.8%
Release Quantities 926 721 541 541 541
Completed Quantities 679 526 368 416 390

Table 4.22: Simulation-based method, simulation with global scheduling approach, instance
1, reducing the cycle time target of product 4

Products
6 7 8 9 10

Cycle Time Targets (days) 31.0 59.0 46.0 27.0 77.0
Average Cycle Times (days) 25.3 57.0 42.6 26.8 78.1
Cycle Time Gaps -18.4% -3.4% -7.4% -0.7% 1.4%
Release Quantities 563 563 541 541 541
Completed Quantities 472 359 378 423 273

Table 4.23: Simulation-based method, simulation with global scheduling approach, instance
2, reducing the cycle time target of product 9
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Considering now instance 2, the cycle time target of product 9 is decreased from 32 to 27
days in Table 4.23. The resulting average cycle time of product 9 decreases from 30.1 days
in Table 4.20 to 26.8 days, with a very small maximum cycle time gap of 1.4% for product
10.

Products
6 7 8 9 10

Cycle Time Targets (days) 31.0 59.0 46.0 32.0 70.0
Average Cycle Times (days) 27.1 61.3 46.2 31.6 70.0
Cycle Time Gaps -12.6% 3.9% 0.4% -1.3% 0.0%
Release Quantities 563 563 541 541 541
Completed Quantities 466 304 360 421 290

Table 4.24: Simulation-based method, simulation with global scheduling approach, instance
2, reducing the cycle time target of product 10

In the last experiment, the cycle time target of product 10 is decreased from 77 to 70
days. Table 4.24 shows that the average cycle time of product 10 exactly reaches its cycle
time target and, as importantly, the other products remain under control with a cycle time
gap always smaller than 3.9%.

Quadratic Tardiness in the Objective Function

In this experiment instead of using a linear cost on the tardiness in the objective function,
a quadratic cost is used in the objective function (4.35).

Min
∑
g∈G

∑
l∈Lg

H∑
p=1

(
N∑
r=1

max(0, p+ (r)A− Tgl)2ZP
glpr +

p∑
r=1

max(0, p− r − Tgl)2ZF
glpr

)
(4.35)

Compared with the results in Table 4.18, the maximum negative deviation is reduced by
0.6% for the first instance in Table 4.25. In Table 4.26, the maximum negative deviation for
the second instance is reduced by 6.4% compared to Table 4.20.

Products
1 2 3 4 5

Cycle Time Targets (days) 48.0 50.0 51.0 40.0 39.0
Average Cycle Times (days) 41.0 46.7 46.2 40.1 37.1
Cycle Time Gaps -14.6% -6.6% -9.4% 0.2% -5.1%
Release Quantities 926 721 541 541 541
Completed Quantities 697 528 376 387 412

Table 4.25: Simulation-based method, simulation with global scheduling approach, instance
1, quadratic cost on tardiness

Compared with the results in Tables 4.18 and 4.20 where a linear cost on the tardiness
is used in the objective function, the negative deviations decrease for products 1, 2 and
5 (Table 4.25) and for products 6 and 7 (Table 4.26) while they increase for product 3
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Products
6 7 8 9 10

Cycle Time Targets (days) 31.0 59.0 46.0 32.0 77
Average Cycle Times (days) 30.5 57.5 40.0 28.0 78.4
Cycle Time Gaps -1.6% -2.5% -13.0% -12.5% 1.8%
Release Quantities 563 563 541 541 541
Completed Quantities 450 365 387 449 267

Table 4.26: Simulation-based method, simulation with global scheduling approach, instance
2, quadratic cost on tardiness

(Table 4.25) and product 9 (Table 4.26). In addition, the positive deviations are observed
for product 4 (Table 4.25) and product 10 (Table 4.26). The problem of reducing positive
and negative deviations on cycle times are discussed in Chapter 5.

4.4 Conclusions and Perspectives

This chapter has proposed and studied different global scheduling strategies to minimize
and control cycle times. Two different strategies were compared for minimization of cycle
times, the push strategy and the time at operation strategy. The time at operation strategy
provides very good results in terms of cycle times and throughput compared with the results
of the push strategy. This is because the time at operation strategy manages better the
Work-In-Process. Different quantities of Work-In-Process that arrived at different times in
an operation are penalized differently in order to prioritize , the processing of the Work-In-
Process that has spent the most time in the operation.

Controlling cycle times is very challenging in complex manufacturing systems such as
semiconductor manufacturing. The aim of the strategy proposed in the second part of this
chapter is to ensure that the cycle time targets are met. The proposed global scheduling
model minimizes the gap between the observed cycle times and the cycle time targets of
products throughout their production. This is done by using the release dates of products
and the temporal tracing of the Work-In-Process . Two methods to determine cycle time
targets in blocks (subsequences of operations) of product routes are presented and compared.
Numerical results on industrial data show that the global scheduling strategy is effective in
steering the manufacturing factory to control the cycle times. This strategy opens a new
way of explicitly controlling cycle times in complex manufacturing systems that we hope
other researchers will exploit.

As future agenda, various directions of research may be explored. First, the investigation
on how to mix the cycle time control strategies with other strategies, such as those in
Chapter 3 in a multi-objective approach by combining, for example, the objective of satisfying
cycle times and that of minimizing the variability of cycle times. Other objectives can be
combined with the control of cycle times such as the level of throughput satisfaction. In
practice, for example, the demand for certain products increases while the demand of other
products decreases. Therefore, managers may need to increase and decrease the throughput
of products while maintaining the cycle time targets. In semiconductor manufacturing, it is
always difficult to achieve these two objectives since the increase in throughput of certain
products influences the cycle times of other products. The problem can be managed with
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multi-objective approaches by defining compromises on the level of throughput satisfaction
for certain products and the level of cycle time degradation for other products.
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Chapter 5

Multi-objective Optimization for Cycle
Time Control

5.1 Introduction

This chapter studies multi-objective strategies for cycle time control. The global scheduling
model of Chapter 4 only accelerates products that are behind the cycle time targets of their
blocks of operations. The aim is to minimize the positive gap between the observed cycle
times and the cycle time targets. However, significant negative gaps on cycle time targets
are observed for certain products. In this chapter, in addition to the tardiness, earliness
is minimized in the global scheduling model. The objective is to minimize the positive
and negative gaps between the observed cycle times and the cycle time targets. Different
objective functions are presented. Two multi-objective approaches are used, the first one is
using a weighted sum and the second one a lexicographic approach.

5.2 Weighted Sum Approach

5.2.1 Modeling

The weighted sum approach to solve multi-objective optimization problems was introduced
by Zadeh (1963), and is the most straightforward multi-objective approach. The idea is
to transform a multi-objective optimization problem into a single-objective optimization
problem, for which there are many solution methods. This is made possible by assigning a
weight wi to each objective function fi(x) with a weighted coefficient in order to minimize
the weighted sum of the objective functions:

Min
k∑

i=1

wifi(x) (5.1)

where wi ≥ 0 and should be strictly positive for at least one objective function, such
that

∑k
i=1 wi = 1 (Jaimes et al. (2009)). Although this approach is easy to implement,

it nevertheless presents many disadvantages such as the lack of efficiency in the search for
solutions enclosed in a concavity, the choice of weights, etc.

In this section, various objective functions are presented. These objective functions
combine the speed up of products that are behind (tardiness) their cycle time targets and
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the slow down of products that are ahead (earliness) their cycle time targets. These objectives
are presented below:

– In the first objective function (5.2), linear costs on both tardiness and earliness are
used. The goal is to speed up and slow down linearly quantities of products behind
and ahead their cycle time targets.

Min
∑
g∈G

∑
l∈Lg

H∑
p=1

(
R∑

r=1

(fP
1 − fP

2 )Z
P
glpr +

p∑
r=1

(fF
1 − fF

2 )Z
F
glpr

)
(5.2)

– In the second objective function (5.3), quadratic costs on tardiness and linear costs on
earliness are used. This aims to speed up quadratically quantities of products behind
their cycle time targets and to slow down linearly quantities of products ahead their
cycle time targets. As the crucial goal is to meet the cycle time targets of products,
with quadratic costs on tardiness, the objective function strongly penalizes the large
delays on cycle time targets while minimizing at the same time earliness.

Min
∑
g∈G

∑
l∈Lg

H∑
p=1

(
R∑

r=1

((fP
1 )

2 − fP
2 )Z

P
glpr +

p∑
r=1

((fF
1 )

2 − fF
2 )Z

F
glpr

)
(5.3)

– The third objective function (5.4) strongly penalizes both tardiness and earliness, so
that the cycle time targets of products are met with minimum positive and negative
deviations. Quadratic costs are used for both tardiness and earliness to speed up
quantities of products behind their cycle time targets and to slow down quantities of
products ahead their cycle time targets.

Min
∑
g∈G

∑
l∈Lg

H∑
p=1

(
R∑

r=1

((fP
1 )

2 + (fP
2 )

2)ZP
glpr +

p∑
r=1

((fF
1 )

2 + (fF
2 )

2)ZF
glpr)

)
(5.4)

Note that fP
1 = max (0, p + (r)A − Tgl) corresponds to the tardiness on the cycle time

target of blocks of product g in operation l released in period −r in the past, and fF
1 = max

(0, p− r−Tgl) corresponds to the tardiness on the cycle time target of blocks of product g in
operation l released in period r in the future. In the same way, fP

2 = min (0, p+ (r)A− Tgl)
corresponds to the earliness on the cycle time target of blocks of product g in operation l
released in period −r in the past, and fF

2 = min (0, p− r− Tgl) corresponds to the earliness
of product g in operation l released in period r in the future.

Note that the earliness is penalized positively in objective functions (5.2), (5.3) and
(5.4). Indeed, the larger the Work-In-Process Zglpr of product g at operation l at the end
of period p released in the past (period −r) or released in the future (period r), the larger
the earliness. If the earliness is negatively penalized, the optimization model will prioritize
the processing of products that are ahead and with short cycle times to increase Zglpr at
downstream operations. As some products are faster than others (because of their short
cycle times or their small number of operations), the processing of faster products will be
prioritized. However, the positive penalization of the earliness prevents the optimization
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model to keep large quantities of products ahead their cycle time targets. In addition, the
objective function is optimized when the quantities of products are on time.

Because of the quality of the results obtained in sections 4.3.6.3, 50 blocks of operations
are considered throughout the remaining experiments of this chapter. Objective function
(5.2), (5.3) and (5.4) are used with constraints (4.19 - 4.33) presented in section 4.3.4.

5.2.2 Computational Experiments and Analysis

This section uses the same instances and the experiment configuration as those used in Chap-
ter 4. Section 5.2.2.1 presents the numerical results on the first instance, while Section 5.2.2.2
presents the numerical results on the second instance. Finally, a general discussion on the
results is provided in Section 5.2.2.3.

5.2.2.1 Numerical results on instance 1

Tables 5.1 and 5.3 show that the cycle times are not under control when the tardiness and
earliness are penalized identically, either linearly or quadratically. In Table 5.1, the maximum
positive and negative gaps on cycle time targets are very high, respectively 38.7% and -54.1%.
The same observation can be made when looking at Table 5.3, where the maximum positive
and negative gaps on cycle time targets are, respectively 49.7% and -60.6%.

Products
1 2 3 4 5

Cycle Time Targets (days) 48.0 50.0 51.0 40.0 39.0
Average Cycle Times (days) 47.1 46.2 23.4 45.9 54.1
Cycle Time Gaps -1.8% -7.6% -54.1% 15.0% 38.7%

Table 5.1: Results based on objective function (5.2), instance 1

Table 5.2 presents results when the tardiness is penalized quadratically and the earliness
is penalized linearly. The cycle times are better managed compared with the results of
Tables 5.1 and 5.3. Compared with results when only the tardiness is linearly penalized
(objective function (4.18)), almost all the negative gaps on cycle time targets have increased,
except for product 5 where the negative gap is decreased by 3.4%. In addition, not all cycle
time targets are met, product 4 has small positive gap of 3%.

Products
1 2 3 4 5

Cycle Time Targets (days) 48.0 50.0 51.0 40.0 39.0
Average Cycle Times (days) 39.9 44.2 44.5 41.3 37.0
Cycle Time Gaps -16.8% -11.6% -12.7% 3% -5.1%

Table 5.2: Results based on objective function (5.3), instance 1

OCTOBER 2020 EMSE-CMP Page 95



CHAPTER 5. MULTI-OBJECTIVE OPTIMIZATION FOR CYCLE TIME CONTROL

Products
1 2 3 4 5

Cycle Time Targets (days) 48.0 50.0 51.0 40.0 39.0
Average Cycle Times (days) 52.2 46.9 20.1 55.4 58.4
Cycle Time Gaps 8.7% -6.2% -60.6% 39.0% 49.7%

Table 5.3: Results based on Objective function (5.4), instance 1

5.2.2.2 Numerical results on instance 2

As in the first instance, Tables 5.4 and 5.6 show that the cycle times are not under con-
trol when the tardiness and earliness are penalized identically, either linearly or quadrati-
cally. Compared with results when only the tardiness is linearly penalized (objective func-
tion (4.18)), in Table 5.4, the maximum negative gap is decreased by 5.2%. However, prod-
ucts 6 and 7 have positive gaps of respectively 1.2% and 5.7%. In Table 5.6, the maximum
negative gap is decreased by 3.8%, but there are positive gaps of 10.6% and 3.1% respectively
for products 6 and 9.

Products
6 7 8 9 10

Cycle Time Targets (days) 31.0 59.0 46.0 32.0 77
Average Cycle Times (days) 31.4 62.4 43.1 29.8 66.1
Cycle Time Gaps 1.2% 5.7% -6.3% -6.9% -14.2%

Table 5.4: Results based on objective function (5.2), instance 2

Table 5.5 presents results when the tardiness is penalized quadratically and the earliness
is penalized linearly. The cycle times are better managed in comparison to the results in
Tables 5.4 and 5.6. In addition, the results in Table 5.5 are better than the results when
only the tardiness is linearly penalized (objective function (4.18)). The maximum negative
gap is decreased by 5% and all the cycle time targets are satisfied.

Products
6 7 8 9 10

Cycle Time Targets (days) 31.0 59.0 46.0 32.0 77
Average Cycle Times (days) 31.0 58.0 44.1 27.4 74.0
Cycle Time Gaps 0.0% -1.7% -4.1% -14.4% -3.9%

Table 5.5: Results based on objective function (5.3), instance 2
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Products
6 7 8 9 10

Cycle Time Targets (days) 31.0 59.0 46.0 32.0 77
Average Cycle Times (days) 34.3 59.0 43.5 33.0 65.0
Cycle Time Gaps 10.6% 0.0% -5.4% 3.1% -15.6%

Table 5.6: Results based on objective function (5.4), instance 2

5.2.2.3 Discussion

In summary, the results of this section show that the cycle times are not better managed when
the tardiness and earliness are penalized in the same way in a single objective function, either
linearly or quadratically (objective functions (5.2) and (5.4)). This is due to the structure
of semiconductor manufacturing systems which include re-entrant flows and the competition
on the same resources between products at different stages of their routes . The speed up of
some products implies the slow down of other products. However, if a product can be ahead
of its cycle time target in block b but behind its cycle time target in block b+1, delaying the
product in block b can increase its delay in block b+1 which can cause a situation where
its late acceleration will not be sufficient to meet its cycle time target. The same goes for
products behind their cycle time targets in block b but ahead of their cycle time targets in
the next block b+1. Speeding up the products in block b can lead to the situation where
it is difficult to delay them so that they are close to their cycle time targets. Thus, some
products are earliers and other are later when the products are sped up and slowed down in
the same way in the single objective function.

Another reason is that, in the simulation, if all the production targets are met in period
p, the simulation model continues to produce according to the FIFO dispatching rules. This
is normal in practice if capacity is available. It can therefore happen, even if the global
scheduling model does not send production targets for a product that the dispatching rule
prioritizes this product in the queue line of the work-center if all production targets are met
and machines in the work-centers are available. This problem can be solved using more
sophisticated dispatching rules than FIFO at the local level.

The goal being to remain under or equal to the cycle time targets of the products, the
results Section 5.2.2.1 show also that, when the tardiness and the earliness are optimized in
the same objective function and when the former is more penalized than the latter, the cycle
time targets are better managed, see Tables 5.2 and 5.5 where the tardiness is quadratically
penalized and the earliness is linearly penalized (objective function (5.3)).

5.3 Lexicographic Approach

5.3.1 Modeling

The lexicographic approach is introduced in Chapter 3. In this section, the tardiness on cycle
time targets is penalized in the first stage of the lexicographic approach, while the earliness
on cycle time targets is penalized in the second stage. As the goal is to have the cycle
times of all the products under or equal to their cycle time targets, the objective function
which penalizes tardiness is considered as the most important objective. In this work, the
lexicographic approach aims to reduce the positive and negative gaps on cycle time targets.
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Objective function (5.5) corresponds to the first stage of the lexicographic approach when
linear penalty costs on tardiness are used, while objective function (5.6) corresponds to the
second stage when linear penalty costs on the earliness are used.

Min
∑
g∈G

∑
l∈Lg

H∑
p=1

(
R∑

r=1

fP
1 Z

P
glpr +

p∑
r=1

fF
1 Z

F
glpr

)
(5.5)
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F
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)
(5.6)

Objective function (5.7) corresponds to the first stage when quadratic penalty costs on
tardiness are used, while objective function (5.8) corresponds to the second stage when
quadratic penalty costs on earliness are used.
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Three different combinations of tardiness and earliness penalizations are used:

– Scenario 1. Tardiness is penalized linearly in the first stage and earliness is penalized
linearly in the second stage,

– Scenario 2. Tardiness is penalized quadratically in the first stage and earliness is
penalized linearly in the second stage,

– Scenario 3. Tardiness is penalized quadratically in the first stage and earliness is
penalized quadratically in the second stage

The two stages are solved using Constraints (4.19 - 4.33) introduced in chapter 4, Sec-
tion 4.3.4. However, the second stage has additional constraints. Let S∗ be the optimal
solution of the first stage. Constraints (5.9) are added when the tardiness is penalized lin-
early in the first stage, while Constraints (5.10) are added when the tardiness is penalized
quadratically in the first stage.

∑
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≤ S∗ (5.9)
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≤ S∗ (5.10)
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5.3.2 Computational Experiments and Analysis

This section uses the same instances and experiment configuration than those used in Chap-
ter 4. The numerical results based on different combinations of tardiness and earliness
penalization scenarios as presented in Section 5.3.1 are analyzed. Section 5.3.2.1 presents
numerical results based on the first instance, while Section 5.3.2.2 presents numerical results
based on the second instance.

5.3.2.1 Numerical Results on Instance 1

Table 5.7 presents the results obtained when tardiness and earliness are penalized linearly,
respectively in the first stage and second stage. Almost all cycle times are under their cycle
time targets except product 4 with a small positive gap of 3%. However, the maximum
negative gap on cycle times is still very high (-16.0%).

Products
1 2 3 4 5

Cycle Time Targets (days) 48.0 50.0 51.0 40.0 39.0
Average Cycle Times (days) 39.4 43.7 44.5 41.3 37.1
Cycle Time Gaps -16.8% -11.6% -12.7% 3% -5.1%

Table 5.7: Instance 1, linear penalty costs on tardiness in stage 1, linear penalty costs on
earliness in stage 2

Table 5.8 shows results when the tardiness is penalized quadratically in the first stage
while the earliness is penalized linearly in the second stage. All product cycle times are
under their cycle time targets. Compared to the results in Table 5.7, the positive gap of
product 4 reaches 0.0%. In addition, the maximum negative gap decreases from -16.8% in
the Table 5.7 to -15.2% in Table 5.8.

Products
1 2 3 4 5

Cycle Time Targets (days) 48.0 50.0 51.0 40.0 39.0
Average Cycle Times (days) 40.7 44.5 44.3 40.0 38.5
Cycle Time Gaps -15.2% -11.0% -13.1% 0.0% -1.3%

Table 5.8: Instance 1, quadratic penalty costs on tardiness in stage 1, linear penalty costs
on earliness in stage 2

Table 5.9 shows results when both the tardiness and the earliness are penalized quadrat-
ically in the first and second stages. Almost all product cycle times are under their cycle
time targets. The maximum negative gap decreases from -15.2% in Table 5.8 to -14.0% in
Table 5.9.
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Products
1 2 3 4 5

Cycle Time Targets (days) 48.0 50.0 51.0 40.0 39.0
Average Cycle Times (days) 41.1 46.0 44.4 40.0 37.2
Cycle Time Gaps -14.4% -8.0% -12.9% 0.0% -4.6%

Table 5.9: Instance 1, quadratic penalty costs on tardiness in stage 1, quadratic penalty
costs on earliness in stage 2

Changing cycle time targets, instance 1

In the following experiments, we modify the product cycle time targets. The goal is to
illustrate that our multi-objective global scheduling approach helps to control cycle times.
Table 5.10 presents results when the tardiness and earliness are penalized linearly in the
first and second stages. All product cycle time targets are satisfied with small negative
deviations, except for product 4 where a positive gap of 5.0% is observed. Compared to
Table 5.10, the results in Table 5.11 show that the maximum positive and negative gaps on
cycle time targets are decreased, respectively from 5.0% to 2.9% and from -4.2% to -3.1%
when the tardiness is penalized quadratically in the first stage and the earliness is penalized
linearly in the second stage .

Products
1 2 3 4 5

Cycle Time Targets (days) 38.0 44.0 43.0 42.0 38.0
Average Cycle Times (days) 36.4 42.9 41.6 41.2 39.9
Cycle Time Gaps -4.2% -2.5% -3.2% -2.0% 5.0%

Table 5.10: Instance 1 with linear penalty costs on tardiness in stage 1 and linear penalty
costs on earliness in stage 2, changing cycle time targets

Products
1 2 3 4 5

Cycle Time Targets (days) 38.0 44.0 43.0 42.0 38.0
Average Cycle Times (days) 36.8 43.1 43.0 41.0 39.1
Cycle Time Gaps -3.1% -2.0% -0.0% -2.4% 2.9%

Table 5.11: Instance 1 with quadratic penalty costs on tardiness in stage 1 and linear penalty
costs on earliness in stage 2, changing cycle time targets

Compared to Table 5.11, the results in Table 5.12 show that the maximum positive and
negative gaps of cycle times are decreased, respectively from 2.9% to 0.0% and from -3.1% to
-2.3% when the tardiness and earliness are penalized quadratically, respectively in the first
and second stages. The cycle times of all products are satisfied.

Let us compare the results in Table 5.12 with the results when the tardiness is penalized
quadratically in the global scheduling model using a single objective function. The results of
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Products
1 2 3 4 5

Cycle Time Targets (days) 38.0 44.0 43.0 42.0 38.0
Average Cycle Times (days) 37.1 43.8 43.0 41.4 38.0
Cycle Time Gaps -2.3% -0.4% -0.0% -1.4% 0.0%

Table 5.12: Instance 1 with quadratic penalty costs on tardiness on stage 1 and quadratic
penalty costs on earliness, changing cycle time targets

the multi-objective global scheduling model in Table 5.12 outperform the results of the single
objective global scheduling model because the cycle time targets of all products are satisfied.
In addition, in Table 5.12 the maximum negative gap on cycle time targets is -2.3%, which
is smaller than -3.6% in Table 5.13.

Products
1 2 3 4 5

Cycle Time Targets (days) 38.0 44.0 43.0 42.0 38.0
Average Cycle Times (days) 36.6 42.1 43.9 41.7 37.9
Cycle Time Gaps -3.6% -4.3% 2.1% -0.7% -0.3%

Table 5.13: Instance 1, quadratic penalty costs on tardiness in single objective function,
changing cycle time targets

5.3.2.2 Numerical Results on Instance 2

Table 5.14 presents results when the tardiness and earliness are penalized linearly, respec-
tively in the first and second stages. Almost all product cycle times are under their cycle
time targets except product 6 with a positive gap of 5.8%. However, the maximum negative
gap on cycle times is still very high (-11.8%).

Products
6 7 8 9 10

Cycle Time Targets (days) 31.0 59.0 46.0 32.0 77.0
Average Cycle Times (days) 32.8 58.6 42.7 28.2 77.0
Cycle Time Gaps 5.8% -0.7% -7.2% -11.8% 0.0%

Table 5.14: Instance 2, linear penalty costs on tardiness in stage 1, linear penalty costs on
earliness in stage 2

Table 5.15 shows results when the tardiness is penalized quadratically in the first stage
while the earliness is penalized linearly in the second stage. Almost all product cycle times
are under their cycle time targets except products 6 and 10 with positives gaps of 3.2%
and 1.9% respectively. Compared with the results in Table 5.14, the maximum positive and
negative gaps are smaller, respectively decreasing from 5.8% to 3.2% and from -11.8% to
-10.3%.
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Products
6 7 8 9 10

Cycle Time Targets (days) 31.0 59.0 46.0 32.0 77.0
Average Cycle Times (days) 32.0 58.3 43.2 28.7 78.5
Cycle Time Gaps 3.2% -1.2% -6.1% -10.3% 1.9%

Table 5.15: Instance 2, quadratic penalty costs on tardiness in stage 1, linear penalty costs
on earliness in stage 2

Table 5.16 shows results when the tardiness and earliness are penalized quadratically,
respectively in the first and second stages. All product cycle times are under their cycle
time targets. Compared with results in Table 5.15, the maximum positive and negative gaps
change, respectively, from 3.2% to 0.0% and from -10.3% to -9.0%.

Products
6 7 8 9 10

Cycle Time Targets (days) 31.0 59.0 46.0 32.0 77.0
Average Cycle Times (days) 31.0 58.3 43.7 29.1 77.0
Cycle Time Gaps 0.0% -1.2% -5.0% -9.0% 0.0%

Table 5.16: Instance 2, quadratic penalty costs on tardiness in stage 1, quadratic penalty
costs on earliness in stage 2

Changing cycle time targets on instance 2

As in Section 5.3.2.1, in the following experiments, we modify the product cycle time tar-
gets. Table 5.17 presents results when the tardiness and earliness are penalized linearly,
respectively in the first and second stages. The negative and positive gaps of cycle times are
-16.1% and 0.7% respectively.

Products
6 7 8 9 10

Cycle Time Targets (days) 35.0 62.0 48.0 28.0 75.0
Average Cycle Times (days) 32.7 61.7 43.9 23.5 75.5
Cycle Time Gaps -6.6% -0.5% -8.0% -16.1% 0.7%

Table 5.17: Instance 2 with linear penalty costs on tardiness in stage 1 and linear penalty
costs on earliness in stage 2, changing cycle time targets

Compared with the results in Table 5.17, Table 5.18 show that the maximum positive
and negative gaps of cycle times decrease, respectively from 0.7% to 0.5% and from -16.1%
to -6.3%.

Compared with the results in Table 5.18, the maximum positive and negative gaps of
cycle times in Table 5.19 decrease respectively, from 0.5% to 0.0% and from -6.3% to -5.4%.
The cycle times of all products are under their cycle time targets.
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Products
6 7 8 9 10

Cycle Time Targets (days) 35.0 62.0 48.0 28.0 75.0
Average Cycle Times (days) 32.8 59.5 45.6 26.9 75.4
Cycle Time Gaps -6.3% -4.0% -5.0% -3.9% 0.5%

Table 5.18: First stage: Quadratic penalty costs on tardiness, second stage: Linear penalty
costs on earliness, changing cycle time targets, instance 2

Products
6 7 8 9 10

Cycle Time Targets (days) 35.0 62.0 48.0 28.0 75.0
Average Cycle Times (days) 33.1 58.9 45.8 27.1 75.0
Cycle Time Gaps -5.4% -5.0% -4.6% -3.2% 0.0%

Table 5.19: Instance 2 with quadratic penalty costs on tardiness in stage 1 and quadratic
penalty costs on earliness in stage 2, changing cycle time targets

Let us compare the results in Table 5.19 with the results when the tardiness is penalized
quadratically in the global scheduling model using a single objective function. The results
of the multi-objective global scheduling model in Table 5.19 outperform the results of the
single objective global scheduling model in terms of positive and negative gaps on cycle
times. There are no positive gaps in Table 5.19 and the maximum negative gap is equal to
-5.4%, while, in Table 5.20, the cycle time targets of all products are not satisfied and the
maximum negative gaps is equal to -14.4%.

Products
6 7 8 9 10

Cycle Time Targets (days) 35.0 62.0 48.0 28.0 75.0
Average Cycle Times (days) 31.5 57.7 41.1 24.0 75.8
Cycle Time Gaps -10.0% -6.9% -14.4% -14.3% 1.1%

Table 5.20: Instance 2, quadratic penalty costs on tardiness in single objective function,
changing cycle time targets

5.4 Conclusions

This chapter has discussed multi-objective optimization strategies for cycle time control.
Penalty costs on tardiness and earliness are used in two different approaches. In the weighted
sum approach, the objective functions that penalize tardiness and earliness are combined in
the same objective function. A lexicographic approach is also proposed, where the objective
function that penalizes tardiness is considered as the most important objective, thus used in
the first stage, while the objective function that penalizes earliness is used in the second stage.
The results show that the lexicographic approach provides better results than weighted sum
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approach. The lexicographic approach allows not only the satisfaction of all product cycle
time targets, but it also reduces the negative and positive gaps on the cycle time targets.
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Chapter 6

General Conclusions and Perspectives

6.1 General Conclusions

Due to the complexity of semiconductor manufacturing, scheduling decisions are generally
managed by either simple dispatching rules or dedicated scheduling algorithms at each work-
center. However, this local management, which only considers local information at the level
of each work-center, does not take into account the interactions between the different work-
centers. This may lead to unbalanced flows in the factory. Some work-centers are more
congested than others, which implies a deterioration of some critical KPIs.

To effectively manage scheduling decisions, this thesis proposes a global scheduling ap-
proach based on a two-level structure of the operational decision level:

– The global level (factory level), on the basis of global information from the factory, opti-
mizes the Work-In-Process and provides production targets, i.e., production quantities
to complete for each product, at each operation and at each period on a scheduling
horizon and,

– The local level (work-center level), which manages the scheduling decisions using simple
dispatching rules (First-In-First-Out rule) and a Production Target Dispatching Rule
(PTDR), i.e., a mechanism to ensure that production targets received from the global
level are followed at the local level.

Production targets are the main mechanism for steering scheduling decisions at work-center
level. The main contributions of the thesis are based on the proposed approach, i.e., the
global scheduling approach and on its evaluation.

Global scheduling approach

The global scheduling approach includes the principle of the approach, i.e., the determination
of the production targets to be followed at work-center level and to be updated regularly, as
well as the strategies to follow (global scheduling strategies). These strategies are based on
Work-In-Process management techniques and are implemented through Linear Programming
models (global scheduling models). They aim to optimize different objectives such as:

– Output variability on cycle times and throughput. This objective ensures that all the
products move forward properly in their production stages. It prevents some products
from slowing down others when no particular product is prioritized. This objective
is optimized using a new Work-In-Process management strategy based on balancing
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coefficients, i.e., a defined percentage of the Work-In-Process on the total Work-In-
Process of the system that should remain in the system at the end of each period for
each product. The balancing coefficients define the flow rate with which the production
of each product should be carried out.

– Throughput (number of wafers produced). This objective is optimized together with
the output variability on cycle times and throughput in a multi-objective strategy.
The strategy implemented for the maximization of throughput is based on a Work-In-
Process management technique called pull technique. This strategy ensures that the
more products advance in their production route, the more important they become to
exit the system as quickly as possible and increase the number of wafers produced.

– Cycle time (total time product spends in the production system). First, the cycle
time is minimized with a strategy which consists in processing quantities of products
differently according to their arrival time in an operation. A product which arrives at
time t − 1 in an operation does not have the same holding cost as the product which
arrives at time t in the same operation. Second, cycle times are controlled to satisfy
pre-defined cycle time targets given as input parameters. Cycle time targets can be
determined by historical data or by simulation or defined by production managers.
A global scheduling strategy is implemented on the basis of three key variables: The
release dates, the temporal tracing of the Work-In-Process, and the cycle time targets.
To control the cycle time in the production line, the operations in a route are subdivided
into subsequences of operations (blocks of operations). Cycle time targets are assigned
to each block. The control of cycle times is carried out using single objective and
multi-objective optimization. In the single-objective optimization, the tardiness on
the cycle time targets of blocks is minimized. In the multi-objective optimization, we
first minimize the tardiness on the cycle time targets of blocks, and then we minimize
the earliness on the cycle time target of blocks.

The global scheduling approach also includes parameters (global scheduling parameters)
such as the scheduling horizon, the length of each period in the scheduling horizon and the
time when the global scheduling model is solved again (triggering horizon).

Evaluation of the global scheduling approach

The evaluation of the global scheduling approach is made possible by using a simulation
model representing the factory. The global scheduling strategy is called at each end of the
triggering horizon during the simulation and provides production targets to be completed.
A control variable mechanism for monitoring these production targets is implemented in the
simulation model. It ensures that a product g remains in the state of production as long
as its product target has not yet been reached. Once it production target is reached, the
production of product g is stopped, and will only resume if the production targets for all
other products are reached or if product g is alone in the queue of a resource.

The computational experiments carried out in this thesis were performed on industrial
data. The results obtained show that the production targets provided by the different global
scheduling strategies and sent to the local level optimize different objectives even when a
simple dispatching rule is used at the local level. The proposed approach and the results
obtained are promising and consistent. However, there are some features that need to be
further developed and explored, and which are discussed in Section 6.2.
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6.2 Perspectives

We classify the perspectives in two parts, the global scheduling approach in Section 6.2.1
and the evaluation of the approach in Section 6.2.2.

6.2.1 Global Scheduling Approach

In this section, the main perspectives are based on the global scheduling strategies used
to optimize various factory objectives and the parameters used to evaluate the approach.
Since the global scheduling model is called regularly, various parameters are required for its
evaluation. These parameters include the scheduling horizon, the triggering horizon (the
moment when the global scheduling strategy is regularly called) and the length of the period
in the scheduling horizon. It would be interesting to perform an in-depth study of the
impact of these parameters. The objective will be to determine if a single configuration of
these parameters is sufficient for all strategies or if a particular configuration is required for
each strategy. This task can be accomplished by performing additional experiments for each
global scheduling strategy.

Chapter 4 explained the major disadvantage of using static balancing coefficients through-
out the production horizon to control the Work-In-Process in the system. These balancing
coefficients may or may not give expected results if the system is in a disruption state, which
can be caused by machine breakdowns, discontinuous and non-uniform releases of products
in the system,etc. This may cause some products to slow down while others are accelerated.
The consequence is that some products will not respect the flow given by the balancing co-
efficients. To overcome this drawback, a dynamic determination of the balancing coefficients
is necessary. The balancing coefficients will be adjusted according to the release scheme and
the progress of each product in the system. This will allow a better control of the Work-In-
Process, especially when there are disruptions. Optimization or specific algorithms can be
used to dynamically determine balancing coefficients before each call of the global scheduling
model.

In chapters 5 and 6, strategies for controlling cycle times have been proposed. In the
short-term, it would be interesting to study new multi-objective optimization model with
other objective functions such as the minimization of the variability of cycle times, the
maximization of the number of moves and the use of production capacities, etc. Next, im-
plementing new multi-objective approaches such as goal programming or desirability func-
tions will helps to compare the numerical results obtained with those of the lexicographic
approach. Beyond parameters such as the release dates and the temporal tracing of the
Work-In-Process, the way the cycle time targets of products are distributed on the different
blocks of operations in the route influences the results of global scheduling strategies. In
this thesis, the cycle time targets of blocks of operations are static. Additional insights in
the control of cycle times can be obtained by using dynamic cycle time targets for blocks of
operations. This can be achieved by using dedicated algorithms. Another important aspect
to be addressed for cycle time control is the study of a particular allocation of the number of
blocks of operations for each product such that products with different number of operations
in their routes have different numbers of blocks of operations. In addition, in the same spirit
of cycle time control, release dates are among the important parameters used when modeling
the global scheduling strategy for cycle time control. In the present work, release dates are
aggregated into release classes on the basis of 21 periods (one week). It would be interesting
to extend the study of the aggregation of release dates in release classes by reducing the
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number of periods in each release class.
The fact that products share the same resources in semiconductor manufacturing in-

fluences the flow of each product and especially the cycle times. It may be interesting to
make a preliminary study on the product mix, like the one in Chang (2016). The result
of this study can be used as an additional parameter in the global scheduling model for
cycle time control. There are also other factors impacting the cycle times in semiconductor
manufacturing and which could be taken into account when modeling. Among these factors
we have for example, the time constraints which can be important to take into account when
allocating cycle time targets to the blocks of operations. Let us recall that a time constraint
corresponds to the maximum time allowed between two operations, which are consecutive
or not, to ensure yield and quality ( Lima et al. (2019) and Lima et al. (2020)).

6.2.2 Evaluation of the Global Scheduling Approach

Different perspectives are possible for the evaluation of the global scheduling approach with
the simulation model. The short-term and long-term perspectives are based on how the pro-
duction targets provided by the global scheduling strategies are followed at work-center level,
the environment and the configuration of the evaluation of the approach in the simulation
model. In the short term, we could study:

– The monitoring of production targets in a dependent scheme period after period. In
the experiments carried out in this thesis, the production targets are monitored inde-
pendently in each period, i.e., if there are still production targets at the end of period
p, these production targets are not taken into account in p + 1. The simulation only
tracks the production targets dedicated to a current period. It would be interesting to
experiment a monitoring of production targets, correlating multiple periods.

– The evaluation of the performance of the global scheduling approach using new dis-
patching rules or dedicated scheduling algorithms at each work-center such as the one
proposed in Tamssaouet (2019).

In the long term two perspectives are discussed below:

– The evaluation of the approach in a transient environment. For the computational
experiments carried out in this thesis, the simulation model was in a steady state. It
would be interesting to add disturbances such as machines breakdowns to create more
variability in the simulation without the global scheduling strategy. The objective
would be to observe if this variability is better controlled when the global scheduling
approach is used. In the same spirit, it would also be interesting to test the effec-
tiveness of the global scheduling approach by introducing engineering lots during the
simulation. The goal is to observe the impact on cycle times and variability of the
global scheduling approach coupled to the simulation model compared with the be-
havior of the simulation model without the global scheduling approach. Note that,
in semiconductor manufacturing, engineering lots are usually given higher priority in
the manufacturing process in order to improve the manufacturing process and/or to
facilitate the development of new products (Chang (2016)).

– The evaluation of the approach on several product families. In this thesis, the global
scheduling strategies are evaluated on a set of five product families. Adding more
product families can add complexity to solve the global scheduling models as this
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will require more memory space and computational time. Proposing new solution
approaches can help handling this complexity. These approaches can be a step-by-step
resolution on a limited number of periods, then set the values of the variables on these
periods and then solve again on the remaining periods. The complexity can also be
reduced by carrying out experiments to select representative operations in the route of
each product instead of optimizing the production on its entire route.

A study on product release policies would also be interesting to investigate. One of
the difficult parts of production planning is the release mechanism of products into the
factory (see Rezaie et al. (2009)). In our case, the product release mechanism is used as
input parameters. Studying different release policies will allow to understand their effects on
global scheduling strategies. A review on product release policies can be found in Li et al.
(2011).

In a global vision of the approach, the outputs of the global scheduling models can be
thought differently, instead of sending only production targets to be completed, the global
scheduling approach can reinforce the interactions between the different work-centers by
sending additional information. To do this, the global scheduling approach could share with
each work-center the upstream and downstream Work-In-Process information. This infor-
mation could then be used to build new dispatching rules at the local level. It would also be
interesting to extend the simulation model by adding, for example, cluster machines, batch-
ing machines and the transportation system. A library dedicated to Automated Material
Handling Systems (AMHS) is available in the latest version of the AnyLogic software.

Manufacturers are now talking about artificial intelligence, Internet of Things, cloud
computing and other sophisticated high-tech tools for better decision-making in industries.
It would be interesting to get real-time factory information in the simulation model, and
thus get a digital twin, when evaluating global scheduling strategies.

OCTOBER 2020 EMSE-CMP Page 109







List of Figures

1.1 Semiconductor row material "Wafer" (source: Flickr, Rob Bulmahn, http://www.flickr.com/photos/
(CC License)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Operations in the manufacturing process of integrated circuits (adapted fromMönch
et al. (2012)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The two views of the operational decision level (adapted from Sadeghi (2017)) 9
1.4 Optimization method to determine production targets . . . . . . . . . . . . . 23

2.1 Framework of the global scheduling approach . . . . . . . . . . . . . . . . . . 26
2.2 Global Scheduling Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Scheduling horizon and triggering horizon in global scheduling strategy approach 28
2.4 Panoramic view of simulation model . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Conceptual model of simulation model . . . . . . . . . . . . . . . . . . . . . 31
2.6 Objectives and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7 Exchange of information between the global scheduling model and the simu-

lation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 Simulation-based Optimization Framework . . . . . . . . . . . . . . . . . . . 34
2.9 Connectivity interface linking the simulation model and the global scheduling

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.10 Mechanism to track production targets . . . . . . . . . . . . . . . . . . . . . 37
2.11 Determination of warm-up time based on factory outputs . . . . . . . . . . . 38

3.1 Work-In-Process balancing control strategy . . . . . . . . . . . . . . . . . . . 43
3.2 Product InterQuartile Ranges (Cycle Times). . . . . . . . . . . . . . . . . . 51
3.3 Pull strategy on LB last operations . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 Comparing ε-constraint and Adjusted ε-constraint approaches on total through-

put . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Cycle time of product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Push strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Push strategy drawback illustration. . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Time at operation strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Operations with historical trace of initial WIP . . . . . . . . . . . . . . . . . 77
4.6 Example of the definition of cycle time targets for blocks with the naive method 78
4.7 Example of definition of cycle time targets for blocks with the simulation-

based method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78





List of Tables

3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Global scheduling model without Work-In-Process balancing, remaining WIP 49
3.3 Global scheduling model with Work-In-Process balancing, remaining WIP . . 49
3.4 Simulation without global scheduling approach. . . . . . . . . . . . . . . . . 50
3.5 Global scheduling approach without Work-In-Process balancing control . . . 50
3.6 Global scheduling approach with Work-In-Process balancing control . . . . . 50
3.7 Speeding up Products 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.8 Speeding up Products 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.9 Impact of balancing coefficients on cycle time and throughput, speeding up

products 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.10 Impact of balancing coefficients on cycle time and throughput, speeding up

products 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.11 Estimated throughput and balancing coefficients . . . . . . . . . . . . . . . . 53
3.12 Throughput satisfaction using balancing coefficients . . . . . . . . . . . . . . 54
3.13 Throughput satisfaction after adjusting balancing coefficients . . . . . . . . . 54
3.14 Balancing coefficients computed based on Little’s law . . . . . . . . . . . . . 54
3.15 Throughput and cycle time satisfaction . . . . . . . . . . . . . . . . . . . . . 55
3.16 Balancing coefficients computed based on Little’s law, reduction of cycle time

of product 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.17 Improving throughput and cycle time of Product 3 . . . . . . . . . . . . . . 55
3.18 Throughput and variability for different values of ε, ε-constraint approach,

instance 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.19 Multi-objective global scheduling approach with ε = 27% . . . . . . . . . . . 61
3.20 Global scheduling approach with Objective function f2 only . . . . . . . . . 61
3.21 Simulation (FIFO dispatching rules) without global scheduling approach . . 61
3.22 Variability measure on average cycle time based on IQR . . . . . . . . . . . 62
3.23 Throughput and variability for different values of ε, ε-constraint approach,

instance 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.24 Multi-objective global scheduling approach with ε = 20% . . . . . . . . . . . 63
3.25 Global scheduling approach with Objective function f2 only . . . . . . . . . 63
3.26 Simulation (FIFO dispatching rules) without global scheduling approach . . 63
3.27 Variability measure on average cycle time based on IQR . . . . . . . . . . . 64
3.28 Throughput and variability for different values of ε, adjusted ε-constraint ap-

proach, instance 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.29 Throughput and variability for different values of ε, instance 2 adjusted ε-

constraint approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



LIST OF TABLES

4.2 Results of simulation model without global scheduling strategy . . . . . . . . 74
4.3 Results of simulation model with push strategy . . . . . . . . . . . . . . . . 75
4.4 Results of simulation model with time at operation strategy . . . . . . . . . 75
4.5 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Simulation without global scheduling approach, instance 1 . . . . . . . . . . 82
4.7 Simulation without global scheduling approach, instance 2 . . . . . . . . . . 82
4.8 Naive method, Simulation with global scheduling approach, instance 1 with

12 blocks of operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.9 Naive method, simulation with global scheduling approach, instance 1 with

50 blocks of operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.10 Naive method, simulation with global scheduling approach, instance 1 with

12 blocks of operations and reduction of cycle time target of product 5 . . . 84
4.11 Naive method, simulation with global scheduling approach, instance 2 with

12 blocks of operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.12 Naive method, simulation with global scheduling approach, instance 2 with

50 blocks of operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.13 Naive method, simulation with global scheduling approach, instance 2 with

with 12 blocks of operations and reduction of cycle time target of product 6 85
4.14 Impact of slowing down a single product on average cycle times of product 6 85
4.15 Naive method, simulation with global scheduling approach, slowing down

product 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.16 Impact of slowing down multiple products on average cycle times of product 6 86
4.17 Simulation-based method, simulation with global scheduling approach, in-

stance 1 with 12 blocks of operations . . . . . . . . . . . . . . . . . . . . . . 87
4.18 Simulation-based method, simulation with global scheduling approach, in-

stance 1 with 50 blocks of operations . . . . . . . . . . . . . . . . . . . . . . 87
4.19 Simulation-based method, simulation with global scheduling approach, in-

stance 2 with 12 blocks of operations . . . . . . . . . . . . . . . . . . . . . . 88
4.20 Simulation-based method, simulation with global scheduling approach, in-

stance 2 with 50 blocks of operations . . . . . . . . . . . . . . . . . . . . . . 88
4.21 Simulation-based method, simulation with global scheduling approach, in-

stance 1, reducing the cycle time target of product 3 . . . . . . . . . . . . . 89
4.22 Simulation-based method, simulation with global scheduling approach, in-

stance 1, reducing the cycle time target of product 4 . . . . . . . . . . . . . 89
4.23 Simulation-based method, simulation with global scheduling approach, in-

stance 2, reducing the cycle time target of product 9 . . . . . . . . . . . . . 89
4.24 Simulation-based method, simulation with global scheduling approach, in-

stance 2, reducing the cycle time target of product 10 . . . . . . . . . . . . . 90
4.25 Simulation-based method, simulation with global scheduling approach, in-

stance 1, quadratic cost on tardiness . . . . . . . . . . . . . . . . . . . . . . 90
4.26 Simulation-based method, simulation with global scheduling approach, in-

stance 2, quadratic cost on tardiness . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Results based on objective function (5.2), instance 1 . . . . . . . . . . . . . . 95
5.2 Results based on objective function (5.3), instance 1 . . . . . . . . . . . . . . 95
5.3 Results based on Objective function (5.4), instance 1 . . . . . . . . . . . . . 96
5.4 Results based on objective function (5.2), instance 2 . . . . . . . . . . . . . . 96
5.5 Results based on objective function (5.3), instance 2 . . . . . . . . . . . . . . 96

Page x EMSE-CMP BARHEBWA MUSHAMUKA



LIST OF TABLES

5.6 Results based on objective function (5.4), instance 2 . . . . . . . . . . . . . . 97
5.7 Instance 1, linear penalty costs on tardiness in stage 1, linear penalty costs

on earliness in stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.8 Instance 1, quadratic penalty costs on tardiness in stage 1, linear penalty costs

on earliness in stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.9 Instance 1, quadratic penalty costs on tardiness in stage 1, quadratic penalty

costs on earliness in stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.10 Instance 1 with linear penalty costs on tardiness in stage 1 and linear penalty

costs on earliness in stage 2, changing cycle time targets . . . . . . . . . . . 100
5.11 Instance 1 with quadratic penalty costs on tardiness in stage 1 and linear

penalty costs on earliness in stage 2, changing cycle time targets . . . . . . . 100
5.12 Instance 1 with quadratic penalty costs on tardiness on stage 1 and quadratic

penalty costs on earliness, changing cycle time targets . . . . . . . . . . . . . 101
5.13 Instance 1, quadratic penalty costs on tardiness in single objective function,

changing cycle time targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.14 Instance 2, linear penalty costs on tardiness in stage 1, linear penalty costs

on earliness in stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.15 Instance 2, quadratic penalty costs on tardiness in stage 1, linear penalty costs

on earliness in stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.16 Instance 2, quadratic penalty costs on tardiness in stage 1, quadratic penalty

costs on earliness in stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.17 Instance 2 with linear penalty costs on tardiness in stage 1 and linear penalty

costs on earliness in stage 2, changing cycle time targets . . . . . . . . . . . 102
5.18 First stage: Quadratic penalty costs on tardiness, second stage: Linear penalty

costs on earliness, changing cycle time targets, instance 2 . . . . . . . . . . . 103
5.19 Instance 2 with quadratic penalty costs on tardiness in stage 1 and quadratic

penalty costs on earliness in stage 2, changing cycle time targets . . . . . . . 103
5.20 Instance 2, quadratic penalty costs on tardiness in single objective function,

changing cycle time targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

OCTOBER 2020 EMSE-CMP Page xi





Bibliography

Ab Rahim, S. R., Ahmad, I. and Chik, M. A. (2012). Technique to improve visibility for
cycle time improvement in semiconductor manufacturing, 2012 10th IEEE International
Conference on Semiconductor Electronics (ICSE), IEEE, pp. 627–630.

Akçali, E., Uzsoy, R., Hiscock, D. G., Moser, A. L. and Teyner, T. J. (2000). Alternative
loading and dispatching policies for furnace operations in semiconductor manufacturing:
a comparison by simulation, Proceedings of the 32nd conference on Winter simulation,
Society for Computer Simulation International, pp. 1428–1435.

Akcalt, E., Nemoto, K. and Uzsoy, R. (2001). Cycle-time improvements for photolithography
process in semiconductor manufacturing, IEEE Transactions on Semiconductor Manufac-
turing 14(1): 48–56.

Akhavan-Tabatabaei, R., Ding, S. and Shanthikumar, J. G. (2009). A method for cycle time
estimation of semiconductor manufacturing toolsets with correlations, Winter Simulation
Conference, pp. 1719–1729.

Arisha, A. and Young, P. (2005). Simulation in semiconductor manufacturing facilities.

Arisha, A., Young, P. and El Baradie, M. (2004). A simulation model to characterize
the photolithography process of a semiconductor wafer fabrication, Journal of materials
processing technology 155: 2071–2079.

Babbs, D. and Gaskins, R. (2007). Effectiveness of small batch size on cycle time reduction in
a conventional 300mm factory, 2007 IEEE/SEMI Advanced Semiconductor Manufacturing
Conference, IEEE, pp. 105–110.

Bang, J.-Y. and Kim, Y.-D. (2010). Hierarchical production planning for semiconductor
wafer fabrication based on linear programming and discrete-event simulation, IEEE Trans-
actions on Automation Science and Engineering 7(2): 326–336.

Barbosa, C. and Azevedo, A. (2017). Hybrid simulation for complex manufacturing value-
chain environments, Procedia Manufacturing 11: 1404–1412.

Barhebwa-Mushamuka, F., Dauzère-Pérès, S. and Yugma, C. (2019a). Multi-objective opti-
mization for work-in-process balancing and throughput maximization in global fab schedul-
ing, 2019 IEEE 15th International Conference on Automation Science and Engineering
(CASE), IEEE, pp. 697–702.

Barhebwa-Mushamuka, F., Dauzère-Pèrès, S. and Yugma, C. (2019b). Work-in-process bal-
ancing control in global fab scheduling for semiconductor manufacturing, 2019 Winter
Simulation Conference (WSC), IEEE, pp. 2257–2268.



BIBLIOGRAPHY

Ben-Salem, A., Yugma, C., Troncet, E. and Pinaton, J. (2016). Amhs design for reticles in
photolithography area of an existing wafer fab: Ie: Industrial engineering, Advanced Semi-
conductor Manufacturing Conference (ASMC), 2016 27th Annual SEMI, IEEE, pp. 110–
115.

Bitar, A., Dauzère-Pérès, S., Yugma, C. and Roussel, R. (2016). A memetic algorithm
to solve an unrelated parallel machine scheduling problem with auxiliary resources in
semiconductor manufacturing, Journal of Scheduling 19(4): 367–376.

Boardman, J. and Sauser, B. (2006). System of systems-the meaning of of, 2006 IEEE/SMC
International Conference on System of Systems Engineering, IEEE, pp. 6–pp.

Bonal, J., Fernandez, M., Maire-Richard, O., Aparicio, S., Oliva, R., Gonzalez, S. G. B.,
Rodriguez, L., Rosendo, M., Villacieros, J. and Becerro, J. (2001). A statistical approach
to cycle time management, 2001 IEEE/SEMI Advanced Semiconductor Manufacturing
Conference, IEEE, pp. 11–15.

Borshchev, A. (2013). The big book of simulation modeling: multimethod modeling with
AnyLogic 6, AnyLogic North America.

Brown, S., Domaschke, J. and Leibl, F. (1998). Cycle time reductions for test area bottle-
neck equipment, Proceedings of the Second Annual SEMI Test, Assembly, and Packaging
Automation and Integration Conference, pp. B1–B5.

Brown, S., Domaschke, J. and Leibl, F. (1999). No cost applications for assembly cycle
time reduction, International Conference on Semiconductor Manufacturing Operational
Modeling and Simulation, pp. 159–163.

Bureau, M., Dauzère-Pérès, S., Yugma, C. and Vermarien, L. (2007). An approach for simu-
lating consistent global and local scheduling, 2007 IEEE/SEMI Advanced Semiconductor
Manufacturing Conference, IEEE, pp. 96–99.

Bureau, M., Dauzère-Pérès, S., Yugma, C., Vermariën, L. and Maria, J.-B. (2007). Simu-
lation results and formalism for global-local scheduling in semiconductor manufacturing
facilities, Proceedings of the 39th conference on Winter simulation: 40 years! The best is
yet to come, IEEE Press, pp. 1768–1773.

Butterbaugh, J. W. (2004). Strategies for cycle time reduction in batch cleaning, 2004
IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, IEEE,
pp. 52–56.

Byrne, M. and Bakir, M. A. (1999). Production planning using a hybrid simulation–
analytical approach, International Journal of Production Economics 59(1-3): 305–311.

Cardarelli, E. and Pelagagge, P. M. (1995). Simulation tool for design and management
optimization of automated interbay material handling and storage systems for large wafer
fab, IEEE Transactions on Semiconductor Manufacturing 8(1): 44–49.

Chance, F., Robinson, J. and Fowler, J. W. (1996). Supporting manufacturing with simula-
tion: model design, development, and deployment, Proceedings of the 28th conference on
Winter simulation, IEEE Computer Society, pp. 114–121.

Page xiv EMSE-CMP BARHEBWA MUSHAMUKA



BIBLIOGRAPHY

Chang, K.-H. (2016). Risk-controlled product mix planning in semiconductor manufactur-
ing using simulation optimization, IEEE Transactions on Semiconductor Manufacturing
29(4): 411–418.

Chang, S.-C. (1999). Demand-driven, iterative capacity allocation and cycle time estimation
for re-entrant lines, Proceedings of the 38th IEEE Conference on Decision and Control
(Cat. No. 99CH36304), Vol. 3, IEEE, pp. 2270–2275.

Chen, M., Sarin, S. and Peake, A. (2010). Integrated lot sizing and dispatching in wafer
fabrication, Production Planning and Control 21(5): 485–495.

Chen, T. (2013). A systematic cycle time reduction procedure for enhancing the competitive-
ness and sustainability of a semiconductor manufacturer, Sustainability 5(11): 4637–4652.

Chien, C.-F., Hsiao, C.-W., Meng, C., Hong, K.-T. and Wang, S.-T. (2005). Cycle time pre-
diction and control based on production line status and manufacturing data mining, ISSM
2005, IEEE International Symposium on Semiconductor Manufacturing, 2005., IEEE,
pp. 327–330.

Chien, C.-F., Hsu, C.-Y. and Hsiao, C.-W. (2012). Manufacturing intelligence to forecast and
reduce semiconductor cycle time, Journal of Intelligent Manufacturing 23(6): 2281–2294.

Chien, C.-F. and Hu, C.-H. (2006). Segmented wip control for cycle time reduction, 2006
IEEE International Symposium on Semiconductor Manufacturing, IEEE, pp. 265–268.

Christopher, J., Kuhl, M. E. and Hirschman, K. (2005). Simulation analysis of dispatching
rules for automated material handling systems and processing tools in semiconductor
fabs, Semiconductor Manufacturing, 2005. ISSM 2005, IEEE International Symposium
on, IEEE, pp. 84–87.

Chung, J. and Jang, J. (2009). A wip balancing procedure for throughput maximiza-
tion in semiconductor fabrication, IEEE Transactions on Semiconductor Manufacturing
22(3): 381–390.

Chung, S.-H. and Huang, H.-W. (2002). Cycle time estimation for wafer fab with engineering
lots, Iie Transactions 34(2): 105–118.

Collins, D. W., Lakshman, V. and Collins, L. (2001). Dynamic simulator for wip analysis
in semiconductor manufacturing, Semiconductor Manufacturing Symposium, 2001 IEEE
International, IEEE, pp. 71–74.

Dabbas, R. M. and Fowler, J. W. (2003). A new scheduling approach using combined
dispatching criteria in wafer fabs, IEEE Transactions on Semiconductor Manufacturing
16(3): 501–510.

Dauzère-Pérès, S. and Lasserre, J.-B. (2002). On the importance of sequencing decisions
in production planning and scheduling, International transactions in operational research
9(6): 779–793.

Dauzère-Péres, S. and Lasserre, J.-B. (2012). An integrated approach in production planning
and scheduling, Vol. 411, Springer Science & Business Media.

OCTOBER 2020 EMSE-CMP Page xv



BIBLIOGRAPHY

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms, Vol. 16, John
Wiley & Sons.

Dequeant, K., Vialletelle, P., Lemaire, P. and Espinouse, M.-L. (2016). A literature review
on variability in semiconductor manufacturing: the next forward leap to industry 4.0,
Proceedings of the 2016 Winter Simulation Conference, IEEE Press, pp. 2598–2609.

Domaschke, J., Brown, S., Robinson, J. and Leibl, F. (1998). Effective implementation of
cycle time reduction strategies for semiconductor back-end manufacturing, 1998 Winter
Simulation Conference. Proceedings, Vol. 2, IEEE, pp. 985–992.

Eberts, D., Keil, S., Peipp, F. and Lasch, R. (2015). Shortening of cycle time in semicon-
ductor manufacturing via meaningful lot sizes, 2015 26th Annual SEMI Advanced Semi-
conductor Manufacturing Conference (ASMC), IEEE, pp. 34–41.

Ehm, H., McGinnis, L. and Rose, O. (2009). Are simulation standards in our future?, Winter
Simulation Conference, Winter Simulation Conference, pp. 1695–1702.

Ehrgott, M. (2005). Multicriteria optimization, Vol. 491, Springer Science & Business Media.

Ehteshami, B., Petrakian, R. G. and Shabe, P. M. (1992). Trade-offs in cycle time manage-
ment: hot lots, IEEE Transactions on Semiconductor Manufacturing 5(2): 101–106.

El Adl, M., Rodriguez, A. A. and Tsakalis, K. S. (1996). Hierarchical modeling and con-
trol of re-entrant semiconductor manufacturing facilities, Decision and Control, 1996.,
Proceedings of the 35th IEEE Conference on, Vol. 2, IEEE, pp. 1736–1742.

El-Khouly, I. A., El-Kilany, K. S. and El-Sayed, A. E. (2009). Modelling and simulation of re-
entrant flow shop scheduling: An application in semiconductor manufacturing, Computers
& Industrial Engineering, 2009. CIE 2009. International Conference on, IEEE, pp. 211–
216.

Figueira, G. and Almada-Lobo, B. (2014). Hybrid simulation–optimization methods: A
taxonomy and discussion, Simulation Modelling Practice and Theory 46: 118–134.

Fordyce, K., Dalton, D., Gerard, B., Jesse, R. R., Sell, R. and Sullivan, G. G. (1992).
Daily output planning: Integrating operations research, artificial intelligence, and real-
time decision support with apl2, Expert Systems with Applications 5(3–4): 245–256.

Fowler, J. W. and Rose, O. (2004). Grand challenges in modeling and simulation of complex
manufacturing systems, Simulation 80(9): 469–476.

Freitag, M. and Hildebrandt, T. (2016). Automatic design of scheduling rules for complex
manufacturing systems by multi-objective simulation-based optimization, CIRP Annals
65(1): 433–436.

Fronckowiak, D., Peikert, A. and Nishinohara, K. (1996). Using discrete event simulation
to analyze the impact of job priorities on cycle time in semiconductor manufacturing,
Advanced Semiconductor Manufacturing Conference and Workshop, 1996. ASMC 96 Pro-
ceedings. IEEE/SEMI 1996, IEEE, pp. 151–155.

Page xvi EMSE-CMP BARHEBWA MUSHAMUKA



BIBLIOGRAPHY

Ghasemi, A., Heavey, C. and Laipple, G. (2018). A review of simulation-optimization meth-
ods with applications to semiconductor operational problems, 2018 Winter Simulation
Conference (WSC), IEEE, pp. 3672–3683.

Gorod, A., Sauser, B. and Boardman, J. (2008). System-of-systems engineering management:
A review of modern history and a path forward, IEEE Systems Journal 2(4): 484–499.

Govind, N., Bullock, E. W., He, L., Iyer, B., Krishna, M. and Lockwood, C. S. (2008).
Operations management in automated semiconductor manufacturing with integrated tar-
geting, near real-time scheduling, and dispatching, IEEE Transactions on Semiconductor
Manufacturing 21(3): 363–370.

Govind, N. and Fronckowiak, D. (2003). Setting performance targets in a 300 mm wafer
fabrication facility, Advanced Semiconductor Manufacturing Conference and Workshop,
2003 IEEEI/SEMI, IEEE, pp. 75–79.

Haimes, Y. (1971). On a bicriterion formulation of the problems of integrated system iden-
tification and system optimization, IEEE transactions on systems, man, and cybernetics
1(3): 296–297.

Hassoun, M. (2013). On improving the predictability of cycle time in an nvm fab by cor-
rect segmentation of the process, IEEE Transactions on Semiconductor Manufacturing
26(4): 613–618.

Hsieh, S.-J. T. (2002). Hybrid analytic and simulation models for assembly line design and
production planning, Simulation Modelling Practice and Theory 10(1-2): 87–108.

Hung, Y.-F. and Leachman, R. C. (1996). A production planning methodology for semicon-
ductor manufacturing based on iterative simulation and linear programming calculations,
IEEE Transactions on Semiconductor manufacturing 9(2): 257–269.

Hwang, T.-K. and Chang, S.-C. (2003). Design of a lagrangian relaxation-based hierarchical
production scheduling environment for semiconductor wafer fabrication, IEEE Transac-
tions on Robotics and Automation 19(4): 566–578.

Irdem, D. F., Kacar, N. B. and Uzsoy, R. (2010). An exploratory analysis of two iterative lin-
ear programmingÂ—simulation approaches for production planning, IEEE Transactions
on Semiconductor Manufacturing 23(3): 442–455.

Jaimes, A. L., Martınez, S. Z. and Coello, C. A. C. (2009). An introduction to multiobjective
optimization techniques, Optimization in Polymer Processing pp. 29–57.

Jeong, S. J., Lim, S. J. and Kim, K. S. (2006). Hybrid approach to production scheduling
using genetic algorithm and simulation, The International Journal of Advanced Manufac-
turing Technology 28(1-2): 129–136.

Jimenez, J., Kim, B., Fowler, J., Mackulak, G., Choung, Y. I. and Kim, D.-J. (2002). Mate-
rial handling: operational modeling and simulation of an inter-bay amhs in semiconductor
wafer fabrication, Proceedings of the 34th conference on Winter simulation: exploring new
frontiers, Winter Simulation Conference, pp. 1377–1382.

Johnzén, C., Dauzère-Pérès, S. and Vialletelle, P. (2011). Flexibility measures for qualifica-
tion management in wafer fabs, Production Planning and Control 22(1): 81–90.

OCTOBER 2020 EMSE-CMP Page xvii



BIBLIOGRAPHY

Jung, C., Pabst, D., Ham, M., Stehli, M. and Rothe, M. (2014). An effective problem
decomposition method for scheduling of diffusion processes based on mixed integer linear
programming, IEEE Transactions on Semiconductor Manufacturing 27(3): 357–363.

Kalisch, S., Ringel, R. and Weigang, J. (2008). Managing wip and cycle time with the help
of loop control, 2008 Winter Simulation Conference, IEEE, pp. 2298–2304.

Kao, Y.-T., Chang, C.-M. and Chang, S.-C. (2014). Do we still need daily production
target setting in fully automated fabs?, 2014 e-Manufacturing & Design Collaboration
Symposium (eMDC), IEEE, pp. 1–4.

Kao, Y.-T. and Chang, S.-C. (2018). Setting daily production targets with novel approxi-
mation of target tracking operations for semiconductor manufacturing, Journal of Manu-
facturing Systems 49: 107–120.

Kiba, J.-E., Lamiable, G., Dauzère-Pérès, S. and Yugma, C. (2009). Simulation of a full
300mm semiconductor manufacturing plant with material handling constraints, Simulation
Conference (WSC), Proceedings of the 2009 Winter, IEEE, pp. 1601–1609.

Kim, B.-I., Jeong, S., Shin, J., Koo, J., Chae, J. and Lee, S. (2009). A layout-and data-driven
generic simulation model for semiconductor fabs, IEEE Transactions on Semiconductor
Manufacturing 22(2): 225–231.

Kim, S. H. and Lee, Y. H. (2016). Synchronized production planning and scheduling in
semiconductor fabrication, Computers & Industrial Engineering 96: 72–85.

Kim, Y.-D., Dong-Ho, L., Jung-Ug, K. and Roh, H.-K. (1998). A simulation study on lot
release control, mask scheduling, and batch scheduling in semiconductor wafer fabrication
facilities, Journal of Manufacturing Systems 17(2): 107.

Kim, Y.-D., Kim, J.-G., Choi, B. and Kim, H.-U. (2001). Production scheduling in a semi-
conductor wafer fabrication facility producing multiple product types with distinct due
dates, IEEE Transactions on Robotics and Automation 17(5): 589–598.

Knopp, S., Dauzère-Pérès, S. and Yugma, C. (2017). A batch-oblivious approach for complex
job-shop scheduling problems, European Journal of Operational Research 263(1): 50–61.

Kohn, R., Noack, D., Mosinski, M., Zhou, Z. and Rose, O. (2009). Evaluation of model-
ing, simulation and optimization approaches for work flow management in semiconductor
manufacturing, Simulation Conference (WSC), Proceedings of the 2009 Winter, IEEE,
pp. 1592–1600.

Kong, S. H. (2007). Two-step simulation method for automatic material handling system of
semiconductor fab, Robotics and Computer-Integrated Manufacturing 23(4): 409–420.

Koo, P.-H., Park, M.-J. and Koh, S.-G. (2016). Simulation analysis of operational control
decisions in semiconductor wafer fabrication, Proc. ICAOR, p. 102.

Kramer, S. S. (1989). Total cycle time management by operational elements, IEEE/SEMI
International Semiconductor Manufacturing Science Symposium, IEEE, pp. 17–20.

Page xviii EMSE-CMP BARHEBWA MUSHAMUKA



BIBLIOGRAPHY

Kuhl, M. E. and Laubisch, G. R. (2004). A simulation study of dispatching rules and
rework strategies in semiconductor manufacturing, IEEE/SEMI advanced semiconductor
manufacturing conference, pp. 4–6.

Leachman, R. C. and Ding, S. (2010). Excursion yield loss and cycle time reduction in
semiconductor manufacturing, IEEE Transactions on Automation science and engineering
8(1): 112–117.

Leachman, R. C., Kang, J. and Lin, V. (2002). Slim: Short cycle time and low inventory in
manufacturing at samsung electronics, Interfaces 32(1): 61–77.

LeBaron, H. T. and Pool, M. (1994). The simulation of cluster tools: a new semiconduc-
tor manufacturing technology, Simulation Conference Proceedings, 1994. Winter, IEEE,
pp. 907–912.

Lee, B., Lee, Y., Yang, T. and Ignisio, J. (2008). A due-date based production control policy
using wip balance for implementation in semiconductor fabrications, International Journal
of Production Research 46(20): 5515–5529.

Lee, Y. H. and Lee, B. (2003). Push-pull production planning of the re-entrant process, The
International Journal of Advanced Manufacturing Technology 22(11-12): 922–931.

Lee, Y. H., Park, J. and Kim, S. (2002). Experimental study on input and bottleneck
scheduling for a semiconductor fabrication line, IIE transactions 34(2): 179–190.

Li, S., Tang, T. and Collins, D. W. (1996). Minimum inventory variability schedule with
applications in semiconductor fabrication, IEEE Transactions on Semiconductor Manu-
facturing 9(1): 145–149.

Li, Y., Jiang, Z., Li, N. and Li, C. (2011). A review on release policies in semiconductor
wafer fabrication system, Industrial Engineering and Management 16(6): 108–114.

Liao, D.-Y., Chang, S.-C., Pei, K.-W. and Chang, C.-M. (1996). Daily scheduling for r&d
semiconductor fabrication, IEEE transactions on Semiconductor Manufacturing 9(4): 550–
561.

Lima, A., Borodin, V., Dauzère-Pérès, S. and Vialletelle, P. (2019). Sampling-based release
control of multiple lots in time constraint tunnels, Computers in Industry 110: 3–11.

Lima, A., Borodin, V., Dauzère-Pérès, S. and Vialletelle, P. (2020). A sampling-based ap-
proach for managing lot release in time constraint tunnels in semiconductor manufacturing,
International Journal of Production Research pp. 1–25.

Lin, J. and Long, Q. (2011). Development of a multi-agent-based distributed simulation
platform for semiconductor manufacturing, Expert systems with applications 38(5): 5231–
5239.

Lin, J. T. and Chen, C.-M. (2015). Simulation optimization approach for hybrid flow shop
scheduling problem in semiconductor back-end manufacturing, Simulation Modelling Prac-
tice and Theory 51: 100–114.

Lin, Y.-H. and Lee, C.-E. (2001). A total standard wip estimation method for wafer fabri-
cation, European Journal of Operational Research 131(1): 78–94.

OCTOBER 2020 EMSE-CMP Page xix



BIBLIOGRAPHY

Lin, Y.-H., Shie, J.-R. and Tsai, C.-H. (2009). Using an artificial neural network prediction
model to optimize work-in-process inventory level for wafer fabrication, Expert Systems
with Applications 36(2): 3421–3427.

Liu, C.-M., Kuo, C.-J. and Chi, C.-Y. (2006). A dynamic method for optimal wip allo-
cation and control in a semiconductor manufacturing system, 2006 IEEE International
Symposium on Semiconductor Manufacturing, IEEE, pp. 61–65.

Liu, J., Li, C., Yang, F., Wan, H. and Uzsoy, R. (2011). Production planning for semicon-
ductor manufacturing via simulation optimization, Proceedings of the winter simulation
conference, Winter Simulation Conference, pp. 3617–3627.

Lu, S. C., Ramaswamy, D. and Kumar, P. (1994). Efficient scheduling policies to reduce mean
and variance of cycle-time in semiconductor manufacturing plants, IEEE Transactions on
Semiconductor Manufacturing 7(3): 374–388.

Lu, S., Ramaswamy, D. and Kumar, P. (1993). Scheduling semiconductor manufacturing
plants to reduce mean and variance of cycle-time, Proceedings. IEEE/SEMI Advanced
Semiconductor Manufacturing Conference and Workshop, IEEE, pp. 83–85.

Mack, C. A. (2005). Lithography simulation in semiconductor manufacturing, Advanced
Microlithography Technologies, Vol. 5645, International Society for Optics and Photonics,
pp. 63–84.

Mackulak, G. T., Lawrence, F. P. and Colvin, T. (1998). Effective simulation model reuse:
a case study for amhs modeling, Proceedings of the 30th conference on Winter simulation,
IEEE Computer Society Press, pp. 979–984.

Majorana, A. and Iuliano, G. (1997). Improving cycle time through managing variability
in a dram production line, 1997 IEEE International Symposium on Semiconductor Man-
ufacturing Conference Proceedings, IEEE, pp. A29–A32.

Marler, R. T. and Arora, J. S. (2004). Survey of multi-objective optimization methods for
engineering, Structural and multidisciplinary optimization 26(6): 369–395.

Mati, Y., Dauzère-Pérès, S. and Lahlou, C. (2011). A general approach for optimizing regular
criteria in the job-shop scheduling problem, European Journal of Operational Research
212(1): 33–42.

May, G. S. and Spanos, C. J. (2006). Fundamentals of semiconductor manufacturing and
process control, John Wiley & Sons.

Meidan, Y., Lerner, B., Rabinowitz, G. and Hassoun, M. (2011). Cycle-time key factor
identification and prediction in semiconductor manufacturing using machine learning and
data mining, IEEE Transactions on Semiconductor Manufacturing 24(2): 237–248.

Meyersdorf, D. and Yang, T. (1997). Cycle time reduction for semiconductor wafer fabrica-
tion facilities, 1997 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and
Workshop ASMC 97 Proceedings, IEEE, pp. 418–423.

Miettinen, K. (1999). Nonlinear multiobjective optimization, volume 12 of international
series in operations research and management science.

Page xx EMSE-CMP BARHEBWA MUSHAMUKA



BIBLIOGRAPHY

Mittler, M., Schoemig, A. and Gerlich, N. (1995). Reducing the variance of cycle times in
semiconductor manufacturing systems, In International Conference on Improving Manu-
facturing Performance in a Distributed Enterprise: Advanced Systems and Tools.

Mittler, M. and Schoemig, A. K. (1999). Comparison of dispatching rules for semiconductor
manufacturing using large facility models, WSC’99. 1999 Winter Simulation Conference
Proceedings.’Simulation-A Bridge to the Future’, Vol. 1, IEEE, pp. 709–713.

Miyashita, K., Okazaki, T. and Matsuo, H. (2004). Simulation-based advanced wip man-
agement and control in semiconductor manufacturing, Proceedings of the 2004 Winter
Simulation Conference, 2004., Vol. 2, IEEE, pp. 1943–1950.

Mönch, L., Fowler, J. W., Dauzère-Pérès, S., Mason, S. J. and Rose, O. (2011). A sur-
vey of problems, solution techniques, and future challenges in scheduling semiconductor
manufacturing operations, Journal of scheduling 14(6): 583–599.

Mönch, L., Fowler, J. W. and Mason, S. J. (2012). Production planning and control for semi-
conductor wafer fabrication facilities: modeling, analysis, and systems, Vol. 52, Springer
Science & Business Media.

Mönch, L., Rose, O. and Sturm, R. (2003). A simulation framework for the performance
assessment of shop-floor control systems, Simulation 79(3): 163–170.

Mueller, R., Alexopoulos, C. and McGinnis, L. F. (2007). Automatic generation of simulation
models for semiconductor manufacturing, Proceedings of the 39th conference on Winter
simulation: 40 years! The best is yet to come, IEEE Press, pp. 648–657.

Nayani, N. and Mollaghasemi, M. (1998). Validation and verification of the simulation
model of a photolithography process in semiconductor manufacturing, Proceedings of the
30th conference on Winter simulation, IEEE Computer Society Press, pp. 1017–1022.

Ndiaye, M. A., Dauzère-Pérès, S., Yugma, C., Rullière, L. and Lamiable, G. (2016a). Au-
tomated transportation of auxiliary resources in a semiconductor manufacturing facility,
Proceedings of the 2016 Winter Simulation Conference, IEEE Press, pp. 2587–2597.

Ndiaye, M. A., Dauzère-Pérès, S., Yugma, C., Rullière, L. and Lamiable, G. (2016b). Man-
agement of crisis situations in a large unified amhs of a semiconductor manufacturing
facility: Ie: Industrial engineering, Advanced Semiconductor Manufacturing Conference
(ASMC), 2016 27th Annual SEMI, IEEE, pp. 106–109.

Negahban, A. and Smith, J. S. (2014). Simulation for manufacturing system design and
operation: Literature review and analysis, Journal of Manufacturing Systems 33(2): 241–
261.

Nemoto, K., Akcali, E. and Uzsoy, R. M. (2000). Quantifying the benefits of cycle time
reduction in semiconductor wafer fabrication, IEEE Transactions on Electronics Packaging
Manufacturing 23(1): 39–47.

Perraudat, A., Dauzère-Pérès, S. and Vialletelle, P. (2019). Evaluating the impact of dy-
namic qualification management in semiconductor manufacturing, 2019 Winter Simulation
Conference (WSC), IEEE, pp. 2336–2347.

OCTOBER 2020 EMSE-CMP Page xxi



BIBLIOGRAPHY

Pierce, N. G. and Yost, A. (1995). Cycle time metrics for r&d semiconductor wafer fab-
rication, Proceedings of SEMI Advanced Semiconductor Manufacturing Conference and
Workshop, IEEE, pp. 105–110.

Potti, K., Bunch, T., Clark, C. and Wallers, K. (1994). Using simulation modeling to calcu-
late wip levels in semiconductor manufacturing, Proceedings of 1994 IEEE/SEMI Advanced
Semiconductor Manufacturing Conference and Workshop (ASMC), IEEE, p. 193.

Qi, C., Tang, T. K. and Sivakumar, A. L. (2002). Modeling methodology: simulation
based cause and effect analysis of cycle time and wip in semiconductor wafer fabrication,
Proceedings of the 34th conference on Winter simulation: exploring new frontiers, Winter
Simulation Conference, pp. 1423–1430.

Rentmeesters, M. J., Tsai, W. K. and Lin, K.-J. (1996). A theory of lexicographic multi-
criteria optimization, Proceedings of ICECCS’96: 2nd IEEE International Conference on
Engineering of Complex Computer Systems (held jointly with 6th CSESAW and 4th IEEE
RTAW), IEEE, pp. 76–79.

Rezaie, K., Eivazy, H. and Nazari-Shirkouhi, S. (2009). A novel release policy for hybrid
make-to-stock/make-to-order semiconductor manufacturing systems, 2009 Second inter-
national conference on developments in esystems engineering, IEEE, pp. 443–447.

Robinson, J. and Chance, F. (2000). Wafer fab cycle time management using mes data, Pro-
ceedings of the 2000 Modeling and Analysis for Semiconductor Manufacturing Conference
(MASM 2000), Tempe, AZ.

Robinson, J. K. et al. (2002). Understanding and improving wafer fab cycle times, Semicon-
ductor FabTech 17(April).

Rozen, K. and Byrne, N. M. (2016). Using simulation to improve semiconductor factory
cycle time by segregation of preventive maintenance activities, Proceedings of the 2016
Winter Simulation Conference, IEEE Press, pp. 2676–2684.

Sada, T., Yuen, R. A., Ichikawa, M., Yamada, M. and Kabata, K. (2001). Simple tool of
analysis for cycle time reduction, 2001 IEEE International Symposium on Semiconductor
Manufacturing. ISSM 2001. Conference Proceedings, IEEE, pp. 79–82.

Sadeghi, R. (2017). Consistency of global and local scheduling decisions in semiconductor
manufacturing, PhD thesis, Ecole des Mines de Saint-Etienne.

Sadeghi, R., Dauzere-Pérès, S. and Yugma, C. (2016). A multi-method simulation modelling
for semiconductor manufacturing, IFAC-PapersOnLine 49(12): 727–732.

Sargent, R. G. (2013). Verification and validation of simulation models, Journal of simulation
7(1): 12–24.

Sarin, S. C., Varadarajan, A. and Wang, L. (2011). A survey of dispatching rules for opera-
tional control in wafer fabrication, Production Planning and Control 22(1): 4–24.

Schmidt, K. (2007). Improving priority lot cycle times, 2007 IEEE/SEMI Advanced Semi-
conductor Manufacturing Conference, IEEE, pp. 117–121.

Page xxii EMSE-CMP BARHEBWA MUSHAMUKA



BIBLIOGRAPHY

Schoemig, A. K. (1999). On the corrupting influence of variability in semiconductor manu-
facturing, Proceedings of the 31st conference on Winter simulation: Simulation—a bridge
to the future-Volume 1, ACM, pp. 837–842.

Shannon, R. E. (1998). Introduction to the art and science of simulation, Proceedings of the
30th conference on Winter simulation, IEEE Computer Society Press, pp. 7–14.

Shanthikumar, J. G. and Sargent, R. G. (1983). A unifying view of hybrid simula-
tion/analytic models and modeling, Operations research 31(6): 1030–1052.

Shikalgar, S. T., Fronckowiak, D. and MacNair, E. A. (2002). 300 mm wafer fabrication line
simulation model, Simulation Conference, 2002. Proceedings of the Winter, Vol. 2, IEEE,
pp. 1365–1368.

Sivakumar, A. I. (2000). Simulation based cause and effect analysis of cycle time distribu-
tion in semiconductor backend, Proceedings of the 32nd conference on Winter simulation,
Society for Computer Simulation International, pp. 1464–1471.

Spearman, M. L., Woodruff, D. L. and Hopp, W. J. (1990). Conwip: a pull alternative to
kanban, The International Journal of Production Research 28(5): 879–894.

Sturm, R., Frauenhoffer, F., Dorner, J., Kirschenhofer, O. and Reisinger, T. (1999). Ad-
vanced wip control for make-to-order wafer fabrication, 10th Annual IEEE/SEMI. Ad-
vanced Semiconductor Manufacturing Conference and Workshop. ASMC 99 Proceedings
(Cat. No. 99CH36295), IEEE, pp. 31–36.

Swe, A. N., Gupta, A. K., Sivakumar, A. I. and Lendermann, P. (2006). Cycle time reduc-
tion at cluster tool in semiconductor wafer fabrication, 2006 8th Electronics Packaging
Technology Conference, IEEE, pp. 671–677.

Tai, Y., Pearn, W. and Lee, J. (2012). Cycle time estimation for semiconductor final test-
ing processes with weibull-distributed waiting time, International Journal of Production
Research 50(2): 581–592.

Tamssaouet, K. (2019). Ordonnancement multi-objectif d’ateliers complexes de type job-shop
: application à la fabrication de semiconducteurs, Theses, Université de Lyon.
URL: https://tel.archives-ouvertes.fr/tel-02884923

Tirkel, I. (2011). Cycle time prediction in wafer fabrication line by applying data mining
methods, 2011 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, IEEE,
pp. 1–5.

Tirkel, I., Reshef, N. and Rabinowitz, G. (2009). In-line inspection impact on cycle time and
yield, IEEE Transactions on Semiconductor Manufacturing 22(4): 491–498.

T’kindt, V. and Billaut, J.-C. (2006). Multicriteria scheduling: theory, models and algo-
rithms, Springer Science & Business Media.

Tsakalis, K. S., Flores-Godoy, J.-J. and Rodriguez, A. A. (1997). Hierarchical modeling and
control for re-entrant semiconductor fabrication lines: a mini-fab benchmark, Emerging
Technologies and Factory Automation Proceedings, 1997. ETFA’97., 1997 6th Interna-
tional Conference on, IEEE, pp. 508–513.

OCTOBER 2020 EMSE-CMP Page xxiii



BIBLIOGRAPHY

van der Eerden, J., Walbrick, W., Niesing, H., Saenger, T. and Schuurhuis, R. (2006). Litho
area cycle time reduction in an advanced 300mm semiconductor manufacturing line, The
17th Annual SEMI/IEEE ASMC 2006 Conference, IEEE, pp. 114–119.

Varadarajan, A. and Sarin, S. C. (2006). A survey of dispatching rules for operational control
in wafer fabrication, IFAC Proceedings Volumes 39(3): 715–726.

Vargas-Villamil, F. D., Rivera, D. E. and Kempf, K. G. (2003). A hierarchical approach
to production control of reentrant semiconductor manufacturing lines, IEEE Transactions
on control systems technology 11(4): 578–587.

Vialletelle, P. and France, G. (2006). An overview of an original wip management framework
at a high volume/high mix facility, IFAC Proceedings Volumes 39(3): 89–92.

Wang, C.-N. and Wang, C.-H. (2007). A simulated model for cycle time reduction by
acquiring optimal lot size in semiconductor manufacturing, The International Journal of
Advanced Manufacturing Technology 34(9-10): 1008–1015.

Wang, J. and Zhang, J. (2016). Big data analytics for forecasting cycle time in semiconductor
wafer fabrication system, International Journal of Production Research 54(23): 7231–7244.

Wang, Y.-C., Chen, T.-C. T. and Wang, L.-C. (2017). Simulating a semiconductor packaging
facility: Sustainable strategies and short-time evidences, Procedia Manufacturing 11: 787–
795.

Wang, Z., Wu, Q. and Qiao, F. (2007). A lot dispatching strategy integrating wip manage-
ment and wafer start control, IEEE Transactions on Automation Science and Engineering
4(4): 579–583.

Wein, L. M. (1992). On the relationship between yield and cycle time in semiconductor
wafer fabrication, IEEE transactions on semiconductor manufacturing 5(2): 156–158.

Werner, S., Horn, S., Weigert, G. and Jahnig, T. (2006). Simulation based scheduling system
in a semiconductor backend facility, Simulation Conference, 2006. WSC 06. Proceedings
of the Winter, IEEE, pp. 1741–1748.

Wu, G.-L., Wei, K., Tsai, C.-Y., Chang, S.-C., Wang, N.-J., Tsai, R.-L. and Liu, H.-P. (1998).
Tss: a daily production target setting system for fabs, 1998 Semiconductor Manufacturing
Technology Workshop (Cat. No. 98EX133), IEEE, pp. 86–98.

Yoon, H. J. and Lee, D. Y. (2000). A control method to reduce the standard deviation
of flow time in wafer fabrication, IEEE transactions on Semiconductor Manufacturing
13(3): 389–392.

Yugma, C., Dauzère-Pérès, S., Artigues, C., Derreumaux, A. and Sibille, O. (2012). A
batching and scheduling algorithm for the diffusion area in semiconductor manufacturing,
International Journal of Production Research 50(8): 2118–2132.

Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria, IEEE transactions
on Automatic Control 8(1): 59–60.

Page xxiv EMSE-CMP BARHEBWA MUSHAMUKA



BIBLIOGRAPHY

Zarifoglu, E., Hasenbein, J. J. and Kutanoglu, E. (2012). Lot size management in the semi-
conductor industry: Queueing analysis for cycle time optimization, IEEE Transactions on
Semiconductor Manufacturing 26(1): 92–99.

Zhou, Z. and Rose, O. (2010). A pull/push concept for toolgroup workload balance in wafer
fab, in B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan and E. Yucesan (eds), Pro-
ceedings of the 2010 Winter Simulation Conference, Institute of Electrical and Electronics
Engineers, Inc., Piscataway, New Jersey, pp. 2516–2522.

Zhou, Z. and Rose, O. (2011). A composite rule combining due date control and wip balance
in a wafer fab, in S. Jain, R. Creasey, J. Himmelspach, K. White and M. Fu (eds), Proceed-
ings of the 20011 Winter Simulation Conference, Institute of Electrical and Electronics
Engineers, Inc., Piscataway, New Jersey, pp. 2085–2092.

Zhou, Z. and Rose, O. (2012). Wip control and calibration in a wafer fab, in C. Laroque,
J. Himmelspach, R. Pasupathy, O. Rose and A. M. Uhrmacher (eds), Proceedings of the
2012 Winter Simulation Conference, Institute of Electrical and Electronics Engineers, Inc.,
Piscataway, New Jersey, pp. 2007–2018.

Zhou, Z. and Rose, O. (2019). A global wip oriented dispatching scheme: Work-center work-
load balance without relying on target wip, 2019 Winter Simulation Conference (WSC),
IEEE, pp. 2212–2223.

OCTOBER 2020 EMSE-CMP Page xxv



 

 

École Nationale Supérieure des Mines de Saint-Étienne 

 

NNT : 2020LYSEM020 

 

Félicien BARHEBWA - MUSHAMUKA 
 

Novel Optimization Approaches for Global fab Scheduling in Semiconductor 

Manufacturing 

Speciality: Industrial Engineering  

 

Keywords: Global scheduling, linear programming, Work-In-Process control, cycle time 

control, semiconductor manufacturing 

 

Abstract: 
In semiconductor manufacturing, microelectronic components require several hundred 

operations on several hundred machines grouped into different work centers. Each work 
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decisions at the work center level using production targets. These production targets are 
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period over a scheduling horizon. Different mathematical models called global scheduling 

models (linear programs) proposed in the thesis determine these quantities. These global 

scheduling models correspond to different global scheduling strategies of the factory such as 

minimizing variability, controlling cycle times, etc. The local scheduling level aims to 

achieve the objectives set by the global scheduling models, while optimizing its own criteria 

and respecting its constraints. The approach is validated by experiments based on a 
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Dans les usines de fabrication de semi-conducteurs, les composants micro-électroniques 

nécessitent plusieurs centaines d’opérations sur plusieurs centaines des machines regroupées 

en différents ateliers. Chaque atelier est spécialisé dans le traitement d’un type d’opérations, 

et ces dernières sont en général très différentes d’un atelier à l’autre. Ces caractéristiques, 

ainsi que les flux réentrants et les temps de cycle longs (de 6 à 8 semaines) complexifient 

grandement les décisions d’ordonnancement. Il est par conséquent très difficile de gérer de 

manière détaillée l’ensemble des décisions d’ordonnancement dans tous les ateliers d’une 

usine. Ainsi, cette thèse propose une approche d'ordonnancement global reposant sur une 

structure en deux niveaux du niveau opérationnel (niveau global et niveau local). Cette 

approche permet de piloter les décisions d’ordonnancement au niveau des ateliers en utilisant 

des objectifs de production. Ces objectifs de production sont exprimés comme des quantités 

de composants à réaliser à chaque opération et à chaque période sur un horizon 

d'ordonnancement. Ces quantités sont déterminées par différents modèles mathématiques 

d’ordonnancement global (programmes linéaires) proposés dans la thèse, qui correspondent à 

différentes stratégies d’ordonnancement global de l’usine comme la minimisation de la 

variabilité, le contrôle des temps de cycle, etc. Le niveau d’ordonnancement local vise à 

atteindre les objectifs fixés par l’ordonnancement global, tout en optimisant ses propres 

critères et en respectant ses contraintes. L’approche est validée par des expérimentations 

reposant sur un modèle de simulation et des données industrielles. 


