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Résumé

Le XXIème siècle étant le siècle du passage au tout numérique, les médias digitaux
jouent maintenant un rôle de plus en plus important dans la vie de tous les jours. De
la même manière, les logiciels sophistiqués de retouche d’images se sont démocratisés
et permettent aujourd’hui de diffuser facilement des images falsifiées. Ceci pose un
problème sociétal puisqu’il s’agit de savoir si ce que l’on voit a été manipulé. Cette
thèse s’inscrit dans le cadre de la criminalistique des images numériques. Deux
problèmes importants sont abordés : l’identification de l’origine d’une image et la
détection d’informations cachées dans une image. Ces travaux s’inscrivent dans le
cadre de la théorie de la décision statistique et proposent la construction de dé-
tecteurs permettant de respecter une contrainte sur la probabilité de fausse alarme.
Afin d’atteindre une performance de détection élevée, il est proposé d’exploiter les
propriétés des images naturelles en modélisant les principales étapes de la chaîne
d’acquisition d’un appareil photographique. La méthodologie, tout au long de ce
manuscrit, consiste à étudier le détecteur optimal donné par le test du rapport de
vraisemblance dans le contexte idéal où tous les paramètres du modèle sont con-
nus. Lorsque des paramètres du modèle sont inconnus, ces derniers sont estimés
afin de construire le test du rapport de vraisemblance généralisé dont les perfor-
mances statistiques sont analytiquement établies. De nombreuses expérimentations
sur des images simulées et réelles permettent de souligner la pertinence de l’approche
proposée.

Abstract

The twenty-first century witnesses the digital revolution that allows digital media
to become ubiquitous. They play a more and more important role in our every-
day life. Similarly, sophisticated image editing software has been more accessible,
resulting in the fact that falsified images are appearing with a growing frequency
and sophistication. The credibility and trustworthiness of digital images have been
eroded. To restore the trust to digital images, the field of digital image forensics was
born. This thesis is part of the field of digital image forensics. Two important prob-
lems are addressed: image origin identification and hidden data detection. These
problems are cast into the framework of hypothesis testing theory. The approach
proposes to design a statistical test that allows us to guarantee a prescribed false
alarm probability. In order to achieve a high detection performance, it is proposed
to exploit statistical properties of natural images by modeling the main steps of
image processing pipeline of a digital camera. The methodology throughout this
manuscript consists of studying an optimal test given by the Likelihood Ratio Test
in the ideal context where all model parameters are known in advance. When the
model parameters are unknown, a method is proposed for parameter estimation in
order to design a Generalized Likelihood Ratio Test whose statistical performances
are analytically established. Numerical experiments on simulated and real images
highlight the relevance of the proposed approach.
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images generated using ã = 0.1, b̃ = 2, γ = 2.2. . . . . . . . . . . . . 117

7.2 Estimated parameters (α, β) at frequency (8, 8) of natural JPEG im-
ages issued from Canon Ixus 70 and Nikon D200 camera models. . . 119

7.3 Estimated parameters (c̃, d̃) at frequency (8, 8) of natural JPEG im-
ages issued from different camera models in Dresden database. . . . . 120

7.4 Detection performance of proposed tests on simulated vectors with
1024 coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.5 Detection performance of proposed tests on simulated vectors with
4096 coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



List of Figures xv

7.6 Detection performance of proposed GLRTs for 1024 coefficients at
frequency (8, 8) extracted randomly from simulated images with dif-
ferent quality factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.7 Detection performance of proposed tests for different number of co-
efficients at frequency (8, 8) of natural JPEG images taken by Canon
Ixus 70 and Nikon D200 camera models. . . . . . . . . . . . . . . . 127

7.8 Detection performance of the GLRT δ̃?dct for 4096 coefficients at dif-
ferent frequencies of natural JPEG images taken by Canon Ixus 70
and Nikon D200 camera models. . . . . . . . . . . . . . . . . . . . . 128

7.9 Comparison between the theoretical false alarm probability (FAP)
and the empirical FAP, plotted as a function of decision threshold τ ,
of the proposed tests at the frequency (8,8) of natural images. . . . . 129

8.1 Detection performance on non-clipped simulated images for embed-
ding rate R = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2 Detection performance on clipped simulated images for embedding
rate R = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.3 Detection performance on real clipped images for embedding rate
R = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.4 Detection performance on real clipped images for embedding rate
R = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.5 Detection performance on real clipped images for embedding rate
R = 0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.6 Detection performance on 12-bit images taken by Canon 400D with
ISO 100 from BOSS database for embedding rate R = 0.05. . . . . . 153

8.7 Detection performance on 5000 images from BOSS database for em-
bedding rate R = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.8 Empirical false-alarm probability from real images of BOSS database
plotted as a function of decision threshold, compared with theoretical
FAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.1 Detection performance of the test δ?jst based on the proposed model
with embedding rate R = 0.05 on the simulated images and real images.167

9.2 Detection performance of the test δ?jst based on the quantized Lapla-
cian, quantized GG, quantized GΓ, and proposed model on the BOSS-
Base with embedding rate R = 0.05. . . . . . . . . . . . . . . . . . . 170

9.3 Detection performance of the test δ?jst based on the quantized Lapla-
cian, quantized GG, quantized GΓ, and proposed model on the subset
of 1000 images from the BOSSBase with embedding rate R = 0.05. . 171

9.4 Comparison between the proposed test δ?jst, ZMH-Sym detector, ZP
detector, WS detector and quantized Laplacian-based test. . . . . . . 172

9.5 Mean absolute error for all estimators. . . . . . . . . . . . . . . . . . 172
9.6 Mean absolute error for proposed ML estimator, standard WS esti-

mator and improved WS estimator. . . . . . . . . . . . . . . . . . . . 173



xvi List of Figures

9.7 Comparison between the proposed test δ?jst, standard WS detector
and improved WS detector. . . . . . . . . . . . . . . . . . . . . . . . 174



List of Tables

4.1 Parameter estimation on synthetic images . . . . . . . . . . . . . . . 63
4.2 PSNR of the extended LLMMSE filter . . . . . . . . . . . . . . . . . 64
4.3 χ2 test statistics of Laplacian, GG, GΓ, and proposed model for the

first 9 quantized coefficients of 3 testing standard images. . . . . . . 71

5.1 Camera Model Used in Experiments (the symbol * indicates our own
camera) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Detection performance of the proposed detector. . . . . . . . . . . . 93
5.3 Detection performance of PRNU-based detector for ISO 200. . . . . 93

6.1 Camera Model Used in Experiments . . . . . . . . . . . . . . . . . . 112
6.2 Performance of proposed detector . . . . . . . . . . . . . . . . . . . . 112
6.3 Performance of SVM-based detector (the symbol * represents values

smaller than 2%) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4 Performance of PRNU-based detector . . . . . . . . . . . . . . . . . 113

7.1 Camera Model Used in Experiments . . . . . . . . . . . . . . . . . . 129
7.2 Detection performance of proposed detector δ̃?dct (the symbol * rep-

resents values smaller than 2%) . . . . . . . . . . . . . . . . . . . . . 130
7.3 Detection performance of SVM-based detector . . . . . . . . . . . . 130
7.4 Detection performance of PRNU-based detector . . . . . . . . . . . 131
7.5 Detection performance of proposed detector δ?dct . . . . . . . . . . . 131
7.6 Detection performance of proposed detector δ̃?dct on 4 camera models

of BOSS database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10.1 List of proposed statistical tests. . . . . . . . . . . . . . . . . . . . . 177





List of Abbreviations

Acronym What (it) Stands For
AC Alternating Current.
AUMP Asymptotically Uniformly Most Powerful.
AWGN Additive White Gaussian Noise.
cdf cumulative distribution function.
CCD Charge-Coupled Device.
CFA Color Filter Array.
CLT Central Limit Theorem.
CMOS Complementary Metal-Oxide Semiconductor.
CRF Camera Response Function.
DC Direct Current.
DCT Discrete Cosine Transform.
DSC Digital Still Camera.
DSLR Digital Single Lens Reflex.
EXIF Exchangeable Image File.
GG Generalized Gaussian.
GLR Generalized Likelihood Ratio.
GLRT Generalized Likelihood Ratio Test.
GOF goodness-of-fit.
GΓ Generalized Gamma.
IDCT Inverse Discrete Cosine Transform.
i.i.d independent and identically distributed.
JPEG Join Photographic Expert Group.
KS Kolmogorov-Smirnov.
LSB Least Significant Bit.
LR Likelihood Ratio.
LRT Likelihood Ratio Test.
LS Least Squares.
mAE Median Absolute Error.
MAE Mean Absolute Error.
MGF Moment-Generating Function
ML Maximum Likelihood.
MM Method of Moments.
MP Most Powerful.
MSE Mean Squared Error.
NP Neyman-Pearson.
PCE Peak to Correlation Energy.
pdf probability density function.
PRNU Photo-Response Non-Uniformity.
RLE Run-Length Encoding.



xx List of Tables

ROC Receiver Operating Characteristic.
R/T Rounding and Truncation.
SPA Sample Pair Analysis.
SPN Sensor Pattern Noise.
SVM Support Vector Machine.
TIFF Tagged Image File Format.
UMP Uniformly Most Powerful.
WLS Weighted Least Squares.
WS Weighted Stego-image.
ZMH Zero Message Hypothesis.
ZP Zhang and Ping.



Glossary of Notations

Notation Definition

α0 False alarm probability.
β(δ) Power of the test δ.
χ2
K Chi square distribution with K degree of freedom.
γ Gamma factor.
δ Statistical test.
η Noise.
κ Quantization step in the spatial domain.
µ Expectation.
ν Bit-depth.
σ Standard deviation.
τ Decision threshold.
ξ Number of collected electrons, which is modeled by Poisson distribu-

tion.
ϕ 2-D normalized wavelet scaling function.
φ Probability density function of a standard Gaussian random variable.
∆ Quantization step in the DCT domain.
Λ Likelihood Ratio.
Φ Cumulative distribution function of a standard Gaussian random vari-

able.
Θ Parameter space.

Cov Covariance.
E Mathematical expectation.
P[E] Probability that an event E occurs.
R Set of real numbers.
Var Variance.
Z Set of integer numbers.

B(n, p) Binomial distribution where n is the number of experiments and p is
the success probability of each experiment.

D Denoising filter.
G(α, β) Gamma distribution with shape parameter α and scale parameter β.
H0, H1 Null hypothesis and alternative hypothesis.
I Set of pixel indices.
Kα0 Class of tests whose false alarm probability is upper-bounded by α0.
L Log-likelihood function.
N (µ, σ2) Gaussian distribution with mean µ and variance σ2.



xxii List of Tables

P(λ) Poisson distribution with mean λ and variance λ.
Q∆ Quantization with step ∆.
S Source of digital images.
U [a, b] Uniform distribution on the interval [a, b].
Z Set of possible pixel values.
ZN Image space.

C Cover-image that is used for data hiding.
D Quantized DCT coefficients.
F Fisher information.
HDM Linear filter for demosaicing.
I Unquantized DCT coefficients.
Idn Identity matrix of size n× n.
K PRNU.
M Secret message to be embedded.
PCFA CFA pattern.
S Stego-image that contains hidden data.
Z Natural image.

(a, b) Parameters of heteroscedastic noise model.
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Chapter 1

General Introduction

1.1 General Context and Problem Description

Traditionally, images are considered as trustworthy since as they are known as being
captured through analog acquisition devices to depict the real-world happenings.
This traditional trustworthiness is built on remarkable difficulties of image content
modification. Indeed, modifying the content of a film-based photo requires special
skills, yet time-consuming and costly, through dark room tricks. Therefore, this
modification is of limited extent.

In the past decades, we have witnessed the evolution of digital imaging technol-
ogy with a dramatic improvement of digital images’ quality. This improvement is not
only due to advances in semiconductor fabrication technology that makes it possible
to reduce the pixel size in an image sensor and thus raises the total number of pixels,
but also advances in image processing technology that allows to reduce noise intro-
duced in a camera and enhance details of the physical scene. The digital revolution
largely replace their analog counterparts to enable ease of digital content creation
and processing at affordable cost and in mass scale. Nowadays, digital still cameras
(DSCs) are taking over a major segment of the consumer photography marketplace.
Only at the very high end (large format, professional cameras with interchangeable
and highly adjustable lenses) and very low end (inexpensive automated snapshot
cameras) are traditional film cameras holding their own. Besides, the development
of communication and networking infrastructure allows digital content to be more
accessible. One of the greatest advantage of digital images acquired by DSCs is the
ease of transmission over communication networks, which film cameras are difficult
to enable.

Unfortunately, this path of technological evolution may provide means for ma-
licious purposes. Digital images can be easily edited, altered or falsified because
of a large availability of low-cost image editing tools. Consequently, falsified pho-
tographs are appearing with a growing frequency and sophistication. The credibility
and trustworthiness of digital images have been eroded. This is more crucial when
falsified images that were utilized as evidence in a courtroom could mislead the
judgement and lead to either imprisonment for the innocent or freedom for the
guilty. In general, the falsification of digital images may result in important conse-
quences in terms of political, economic, and social issues.

One example of falsification that causes political issues is given in Figure 1.1.
In the left corner image, President G.W. Bush and a young child are both reading
from America: A Patriotic Primer by Lynne Cheney. But if we look closely, it
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(a) Forged image. (b) Original image.

Figure 1.1: Example of falsification.

appears that President Bush is holding his book upside down. An unknown hoaxer
has horizontally and vertically flipped the image on the back of the book in Bush’s
hands. This photo of George Bush holding a picture book the wrong way up during
a visit to a school delighted some opponents of the Republican president, and helped
foster his buffoonish image. But press photos from the event in 2002 revealed that
Mr Bush had been holding the book correctly, i.e. hoaxers had simply used photo
editing software to rotate the cover. The original version of the photo (right corner)
was taken in the Summer of 2002 while Bush was visiting George Sanchez Charter
School in Houston. It was distributed by the Associated Press. By comparing the
forged photo and original photo, it can be noted that a dark blue spot is close to the
spine of Bush’s book, but this same spot in the girl’s copy is near the left-hand edge
of the book. This forensic clue can be considered as evidence of forgery. However in
most of the cases, the forgery is not as easy to detect. The human eyes can hardly
differentiate a genuine scene from a deliberately forged scene. Overall, the digital
revolution has raised a number of information security challenges.

To restore the trust to digital images, the field of digital image forensics was
born. Because of importance of information security in many domains, digital image
forensics has attracted a great attention from academic researchers, law enforcement,
security, and intelligence agencies. Conducting forensic analysis is a difficult mission
since forensic analysts need to answer several questions before stating that digital
content is authentic:

1. What is the true origin of this content? How was it generated? By whom was
it taken?

2. Is the image still depicting the captured original scene? Has its content been
altered in some way? How has it been processed?

The first question involves the problem of image origin identification. Source
information of digital images represents useful forensic clues because knowing the
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source device that captures the inspected image can facilitate verification or tracing
of device owner as well as the camera taker. This situation is as identical as bullet
scratches allowing forensic analysts to match a bullet to a particular barrel or gun
and trace the gun owner.1 Besides, knowing device model or brand information can
help forensic analysts know more about characteristics of acquisition devices, which
leads to a potential improvement of detecting the underlying forgeries that could
be performed in the inspected image. Another issue is to determine what imaging
mechanism has been used to generate the inspected image (e.g. scanners, cell-phone
cameras, or computer graphics) before assuming that the inspected image is taken
by a digital camera, which can significantly narrow down the search range for the
next step of the investigation.

The second problem is image content integrity. An image has to be proven
authentic and its content has not be forged before it can be used as forensic clues
or as evidence in a legal context. Determining whether an image is forged, which
manipulation has been performed on the image, or which region of the image has
been altered are fundamental tasks.

Beside some basic manipulations such as adding, splicing, and removal, the
image can be also manipulated by embedding a message into image content directly.
The message remains secret such that it is only known by the sender and receiver
and an adversary does not recognize its existence visually. This concept is called
steganography, which is a discipline of the field of information hiding. However, the
concept of steganography has been misused for illegal activities. Detecting existence
of secret messages and revealing their content are also the tasks of forensic analysts.
This task is called steganalysis.

The field of digital image forensics, including steganalysis, is part of an effort to
counter cyber-attacks, which is nowadays one of strategy priorities for defence and
national security in most countries.

1.2 Outline of the Thesis

The main goal of this thesis is to address information security challenges in the field
of digital image forensics. In particular, the problems of image origin identification
and hidden data detection are studied. The thesis is structured in four main parts.
Apart from the first part providing an overview on the field of digital image forensics
and statistical image modeling, the rest of the thesis involves many contributions.
All the work presented in this thesis is illustrated in Figure 1.2.

Part II establishes a profound statistical modeling of natural images by analyz-
ing the image processing pipeline of a digital camera, as well as proposes efficient
algorithms for estimation of model parameters from a single image. Typically, the
image processing pipeline is composed of three main stages: RAW image acquisition,

1Evidently, tracing an imaging device owner is more difficult as average users have rights to buy
a camera easily in a market with millions of cameras while the use of guns is banned or controlled
in many countries and a gun user has to register his identities.
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Figure 1.2: Structure of the work presented in this thesis.

post-acquisition enhancement, and JPEG compression that employs Discrete Cosine
Transform (DCT). Therefore, the statistical image modeling in Part II is performed
both in the spatial domain and the DCT domain. By modeling the photo-counting
and read-out processes, a RAW image can be accurately characterized by the het-
eroscedastic noise model in which the RAW pixel is normally distributed and its
variance is linearly dependent on its expectation. This model is more relevant than
the Additive White Gaussian Noise (AWGN) model widely used in image process-
ing since the latter ignores the contribution of Poisson noise in the RAW image
acquisition stage. The RAW image then undergoes post-acquisition processes in
order to provide a high-quality full-color image, referred to as TIFF image. There-
fore, to study image statistics in a TIFF image, it is proposed to start from the
heteroscedastic noise model and take into account non-linear effect of gamma cor-
rection, resulting in a generalized noise model. This latter involves a non-linear
relation between pixel’s expectation and variance. This generalized noise model has
not been proposed yet in the literature. Overall, the study of noise statistics in the
spatial domain indicates the non-stationarity of noise in a natural image, i.e. pixel’s
variance is dependent on the expectation rather than being constant in the whole
image. Besides, pixels’ expectations, namely the image content, are also heteroge-
neous. Apart from studying image statistics in the spatial domain, it is proposed to
study DCT coefficient statistics. Modeling the distribution of DCT coefficients is
not a trivial task due to heterogeneity in the natural image and complexity of image
statistics. It is worth noting that most of existing models of DCT coefficients, which
are only verified by conducting the goodness-of-fit test with empirical data, are given
without a mathematical justification. Instead, this thesis provides a mathematical
framework of modeling the statistical distribution of DCT coefficients by relying on
the double stochastic model that combines the statistics of DCT coefficients in a
block whose variance is constant with the variability of block variance in a natural
image. The proposed model of DCT coefficients outperforms the others including
the Laplacian, Generalized Gaussian, and Generalized Gamma model. Numerical
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results on simulated database and real image database highlight the relevance of the
proposed models and the accuracy of the proposed estimation algorithms.

The solid foundation established in Part II emphasizes several aspects of inter-
est for application in digital image forensics. Relying on a more relevant image
model and an accurate estimation of model parameters, the detector is expected
to achieve better detection performance. Part III addresses the problem of image
origin identification within the framework of hypothesis testing theory. More partic-
ularly, it involves designing a statistical test for camera model identification based
on a parametric image model to meet the optimality bi-criteria: the warranting of
a prescribed false alarm probability and the maximization of the correct detection
probability. Camera model identification based on the heteroscedastic noise model,
generalized noise model, and DCT coefficients is respectively presented in Chapter
5, Chapter 6, and Chapter 7. The model parameters are proposed to be exploited
as unique fingerprint for camera model identification. In general, the procedure in
those chapters is similar. The procedure starts from formally stating the problem
of camera model identification into hypothesis testing framework. According to
Neyman-Pearson lemma, the most powerful test for the decision problem is given
by the Likelihood Ratio Test (LRT). The statistical performance of the LRT can be
analytically established. Moreover, the LRT can meet the two required criteria of
optimality. However, this test is only of theoretical interest because it is based on
an assumption that all model parameters are known in advance. This assumption
is hardly met in practice. To deal with the difficulty of unknown parameters, a
Generalized Likelihood Ratio Test (GLRT) is proposed. The GLRT is designed by
replacing unknown parameters by their Maximum Likelihood (ML) estimates in the
Likelihood Ratio. Consequently, the detection performance of the GLRT strongly
depends on the accuracy of employed image model and parameter estimation. It is
shown in Chapter 5, 6, and 7 that the proposed GLRTs can warrant a prescribed
false alarm probability while ensuring a high detection performance. Moreover, the
efficiency of the proposed GLRTs is highlighted when applying on a large image
database.

The problem of hidden data detection is addressed in Part IV. This problem
is also formulated into hypothesis testing framework. The main idea is to rely
on an accurate image model to detect small changes in statistical properties of a
cover image due to message embedding. The formulation in the hypothesis testing
framework allows us to design a test that can meet two above criteria of optimality.
Chapter 8 addresses the steganalysis of Least Significant Bit (LSB) replacement
technique in RAW images. More especially, the phenomenon of clipping is studied
and taken into account in the design of the statistical test. This phenomenon is
due to to limited dynamic range of the imaging system. The impact of the clipping
phenomenon on the detection performance of steganalysis methods has not been
studied yet in the literature. The approach proposed in Chapter 8 is based on the
heteroscedastic noise model instead of the AWGN model. Besides, the approach
proposes to exploit the state-of-the-art denoising method to improve the estimation
of pixels’ expectation and variance. The detection performance of the proposed
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GLRTs on non-clipped images and clipped images is studied. It is shown that
the proposed GLRTs can warrant a prescribed false alarm probability and achieve
a high detection performance while other detectors fail in practice, especially the
Asymptotically Uniformly Most Powerful (AUMP) test. Next, Chapter 9 addresses
the steganalysis of Jsteg algorithm. It should be noted that Jsteg algorithm is a
variant of LSB replacement technique. Instead of embedding message bits in the
spatial domain, Jsteg algorithm utilizes the LSB of quantized DCT coefficients and
embeds message bits in the DCT domain. The goal of Chapter 9 is to exploit the
state-of-the-art model of quantized DCT coefficients in Chapter 4 to design a LRT
for the steganalysis of Jsteg algorithm. For the practical use, unknown parameters
of the DCT coefficient model are replaced by their ML estimates in the Likelihood
Ratio. Experiments on simulated database and real image database show a very
small loss of power of the proposed test. Furthermore, the proposed test outperforms
other existing detectors. Another contributions in Chapter 9 are that a Maximum
Likelihood estimator for embedding rate is proposed using the proposed model of
DCT coefficients as well as the improvement of the existing Weighted Stego-image
estimator by modifying the technique of calculation of weights.

1.3 Publications and Authors’ Contribution
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2.1 Introduction

The goal of this chapter is to provide an overview on the field of digital image
forensics. As described in Section 1.1, digital image forensics involve two key prob-
lems: image origin identification and image forgery detection. In general, there are
two approaches to address these problems. Active forensics aims to authenticate
image content by generating extrinsically security measures such as digital water-
marks [1–6] and digital signatures [7–10] and adding them to the image file. These
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security measures are referred to as extrinsic fingerprints. Although active forensics
can provide powerful tools to secure a digital camera and restore the credibility of
digital images, it is of limited extent due to many strict constraints in its proto-
cols. In order to solve these problems in their entirety, passive forensics has been
quickly evolved. In contrast to active forensics, passive forensics does not impose
any constraint and do not require any prior information including the original ref-
erence image. Forensic analysts have only the suspect image at their disposal and
must explore useful information from the image to gather forensic evidence, trace
the acquisition device and detect any act of manipulation. Passive forensics works
on an assumption that the image contains some internal traces left from the cam-
era. Every stage from real-world scene acquisition to image storage can provide
clues for forensic analysis. These internal traces are called intrinsic fingerprints.
Extrinsic and intrinsic fingerprints are two forms of digital fingerprints in digital
forensics, which are analogous to human fingerprints in criminal domain. Since pas-
sive forensics does not require neither any external security measures generated in
the digital camera, nor any prior information, it can authenticate an image in a
blind manner and can widely be applied to millions of images that circulate daily
on communication networks.

This thesis mainly addresses the problem of origin identification and integrity
based on passive approach. The chapter is organized as follows. Before discussing
active and passive forensics, it is vital to understand deeply the creation and charac-
teristics of digital images. Section 2.2 briefly introduces the typical image processing
pipeline of a digital camera, highlighting several aspects of potential interest for ap-
plications in digital image forensics. Section 2.3 analyzes passive methods proposed
for image origin identification. Section 2.4 briefly discusses passive methods for im-
age forgery detection. Next, Section 2.5 introduces the concept of steganography,
which is a type of image content manipulation, and presents prior-art methods for
detecting secret data embedded in digital images. Finally, Section 2.6 concludes the
chapter.

2.2 Image Processing Pipeline of a Digital Camera

This thesis only deals with DSCs and digital images acquired by them. By termi-
nology, a natural image means a digital image acquired by a DSC. Other sources
of digitized images such as scanners are not addressed in this thesis but a similar
methodology can be easily derived.

Image processing pipeline involves several steps from light capturing to image
storage performed in a digital camera [11]. After measuring light intensity at each
pixel, RAW image that contains exactly information recorded by the image sen-
sor goes through some typical post-acquisition processes, e.g. demosaicing, white-
balancing and gamma correction, to render a full-color high-quality image, referred
to as TIFF image. Image compression can be also performed for ease of storage
and transmission. The image processing pipeline of a digital camera is shown in
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Figure 2.1: Image processing pipeline of a digital camera.

Figure 2.1. It should be noted that the sequence of operations differs from manu-
facturer to manufacturer but basic operations remain similar. In general, the image
processing pipeline designed in a digital camera is complex, with trade-offs in the
use of buffer memory, computing operations, image quality and flexibility [12]. This
section only discusses some common image processing operations such as demosaic-
ing, white balancing, gamma correction and image compression. Other processing
operations, e.g. camera noise reduction and edge enhancement, are not included in
this discussion.

A full-color digital image consists of three primary color components: red, green,
and blue. These three color components are sufficient to represent millions of colors.
Formally, the full-color image of a DSC can be represented as a three-dimensional
matrix of size Nr × Nc × 3 where Nr and Nc are respectively the number of rows
and columns. Let c ∈ {R,G,B} denote a color channel where R, G and B stand
for respectively the red, green and blue color. Typically, the output image is coded
with ν bits and each pixel value is a natural integer. The set of possible pixel values
is denoted by Z = {0, 1, . . . , B} with B = 2ν − 1. Therefore, an arbitrary image
belongs to the finite image space ZN with N = Nr ×Nc × 3. In general, the image
space ZN is high dimensional because of a large number of pixels. To facilitate
discussions, let Z denote an image in RAW format and Z̃ denote an image in TIFF
or JPEG format. Each color component of the image Z is denoted by Zc and a pixel
of the color channel c at the location (m,n) is denoted by zc(m,n), 1 ≤ m ≤ Nr,
1 ≤ n ≤ Nc.

2.2.1 RAW Image Formation

Typically, a digital camera includes an optical sub-system (e.g. lenses), an image
sensor and an electronic sub-system, which can be regarded as the eye, retina, and
brain in the human visual system. The optical sub-system allows to attenuate
effects of infrared rays and to provide an initial optic image. The image sensor
consists of a two-dimensional arrays of photodiodes (or pixels) fabricated on a silicon
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Figure 2.2: Sample color filter arrays.

wafer. Two common types of an image sensor are Charge-Coupled Device (CCD)
and Complementary Metal-Oxide Semiconductor (CMOS). Each pixel enables to
convert light energy to electrical energy. The output signals of the image sensor are
analog. These signals are then converted to digital signals by an analog-to-digital
(A/D) converter inside the camera. The RAW image is obtained at this stage.
Depending on the analog-to-digital circuit of the camera, the RAW image is recorded
with 12, 14 or even 16 bits. One key advantage is that the RAW image exactly
contains information recorded by the image sensor and it has not yet undergone
post-acquisition operations. This offers more flexibility for further adjustments.

Although the image sensor is sensitive to light intensity, it does not differentiate
light wavelength. Therefore, to record a color image, a Color Filter Array (CFA)
is overlaid on the image sensor. Each pixel records a limited range of wavelength,
corresponding to either red, green or blue. Some examples of CFA patterns are
shown in Figure 2.2. Among available CFA patterns, the Bayer pattern is the most
popular. It contains twice as many green as red or blue samples because the human
eye is more sensitive to green light than both red or blue light. The higher rate of
sampling for the green component enables to better capture the luminance compo-
nent of light and, thus, provides better image quality. There are few digital cameras
that allow to acquire a full-resolution information for all three color components
(e.g. Sigma SD9 or Polaroid x530 ). This is not only due to high production cost
but also due to the requirement of a perfect alignment of three color planes together.

Let Z represent the RAW image recorded by the image sensor. Because of
the CFA sampling, the RAW image Z is a single-channel image, namely that it is
represented as a two-dimensional matrix of size Nr × Nc. Each pixel value of the
RAW image Z corresponds to only one color channel. For subsequent processing
operations, each color component is extracted from the RAW image Z. A pixel of
each color component is given by

zc(m,n) =

{
z(m,n) if PCFA(m,n) = c

0 otherwise,
(2.1)

where PCFA is the CFA pattern.
The RAW image acquisition stage is not ideal due to the degradation introduced

by several noise sources. This stage involves two predominant random noise sources.
The first is the Poisson-distributed noise associated with the stochastic nature of
the photo-counting process (namely shot noise) and dark current generated by the
thermal energy in the absence of light. Dark current is also referred to as Fixed
Pattern Noise (FPN). While shot noise results from the quantum nature of light
and it can not be eliminated, dark current can be subtracted from the image [13].
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The second random noise sources account for all remaining electronic noises involved
in the acquisition chain, e.g. read-out noise, which can be modeled by a Gaussian
distribution with zero-mean. Apart from random noises, there is also a multiplicative
noise associated with the sensor pattern. This noise accounts for differences of pixels
response to the incident light due to imperfections during the manufacturing process
and inhomogeneity of silicon wafers. Therefore, this noise is referred to as Photo-
Response Non-Uniformity (PRNU). The PRNU, which is typically small compared
with the signal, is a deterministic component that is present in every image. FPN
and PRNU are two main components of Sensor Pattern Noise (SPN). The PRNU
is unique for each sensor, thus it can be further used for forensic analysis.

2.2.2 Post-Acquisition Processing

Although the use of the CFA allows to reduce the cost of the camera, this requires to
estimate the missing color values at each pixel location in order to render a full-color
image. It means that all the zero values in the sub-images need to be interpolated.
This estimation process is commonly referred to as CFA demosaicing or CFA inter-
polation [14]. Technically, demosaicing algorithms estimate a missing pixel value by
using its neighborhood information. The performance of CFA demosaicing affects
greatly the image quality. Demosaicing algorithms can be generally classified into
two categories: non-adaptive and adaptive algorithms. Non-adaptive algorithms
apply the same interpolation technique for all pixels. The nearest neighborhood, bi-
linear, bicubic, and smooth hue interpolations are typical examples in this category.
For example, the bilinear interpolation can be written as a linear filtering

ZcDM = Hc
DM ~ Zc, (2.2)

where ~ denotes the two-dimensional convolution, ZcDM stands for the demosaiced
image of the color channel c, and Hc

DM is the linear filter for the color channel c

HG
DM =

1

4

0 1 0

1 4 1

0 1 0

 , HR
DM = HB

DM =
1

4

1 2 1

2 4 2

1 2 1

 . (2.3)

Although non-adaptive algorithms can provide satisfactory results in smooth regions
of an image, they usually fail in textured regions and edges. Therefore, adaptive
algorithms, which are more computationally intensive, employ edge information or
inter-channel correlation to find an appropriate set of coefficients to minimize the
overall interpolation error. Because the CFA interpolation commonly estimates a
missing pixel value using its neighbors, it thus creates a correlation between adja-
cent pixels. This spatial correlation may be amplified during subsequent processing
stages.

Furthermore, to improve the visual quality, the RAW image needs to go through
another processing step, e.g. white balancing [11]. In fact, an object may appear
different in color when it is illuminated under different light sources. This is due to
the color temperature difference of the light sources, which causes the shift of the



16 Chapter 2. Overview on Digital Image Forensics

reflection spectrum of the object from the true color. In other words, when a white
object is illuminated under a light source with low color temperature, the reflection
become reddish. On the other hand, a light source with high color temperature can
cause the white object to become bluish. The human visual system can recognize
the white color of the white object under different light sources. This phenomenon
is called color constancy. However, the digital camera does not have such luxury of
millions of year of evolution as human visual system. Therefore, the white balance
adjustment is implemented in the digital camera to compensate this illumination
imbalance so that a captured white object is rendered white in the image. Basically,
white balance adjustment is performed by multiplying pixels in each color channel
by a different gain factor. For instance, one classical white balancing algorithm is
the Gray World assuming that the average value of three color channels will average
to a common gray value

zR
DM = zG

DM = zB
DM, (2.4)

where zcDM denotes the average intensity of the demosaiced image ZcDM

zcDM =
1

Nr ·Nc

Nr∑
m=1

Nc∑
n=1

zcDM(m,n). (2.5)

In this algorithm, the green channel is fixed because human eye is more sensitive to
this channel (i.e. gG

WB = 1). The gain factor for other color channels is given by

gR
WB =

zG
DM

zR
DM

, and gB
WB =

zG
DM

zB
DM

, (2.6)

where gcWB denotes the gain factor of the color channel c for white balance adjust-
ment. Therefore, the white-balanced image ZcWB is simply given by

ZcWB = gcWB · ZcDM. (2.7)

Other white-balancing algorithms may be also designed using different gain factors.
Actually, the white balance adjustment is a difficult task due to estimation or selec-
tion of appropriate gain factors to correct for illumination imbalance. In this task,
the prior knowledge of light sources is critical so that the camera knows to select
appropriate gain factors. Therefore, some typical light sources such as daylight, in-
candescent or fluorescent are stored in the camera. The white balance can be done
automatically in the camera. Some expensive cameras employ preprogrammed or
manual white balance for adapting to illumination conditions correctly.

Generally, the pixel intensity is still linear with respect to scene intensity before
gamma correction [11, 12]. However, most displays have non-linear characteristics.
The transfer function of these devices can be fairly approximated by a simple power
function that relates the luminance L to voltage V

L = V γ . (2.8)
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Figure 2.3: JPEG compression chain.

Typically, γ = 2.2. To compensate this effect and render the luminance into a
perceptually uniform domain, the gamma correction is done in the image processing
pipeline. Gamma correction is roughly the inverse of Equation (2.8), applying to
each input pixel value

zcGM(m,n) =
(
zcWB(m,n)

) 1
γ . (2.9)

After going through all post-acquisition processes, a full-color high-quality image,
referred to as TIFF image, is rendered. For the sake of simplicity, let Z̃TIFF denote
the final full-color TIFF image.

2.2.3 Image Compression

The TIFF format does not make ease of storage or transmission. Therefore, most
digital cameras commonly apply lossy compression algorithms to reduce the image
data size. Lossy compression algorithms allow to discard information that is not
visually significant. Therefore, lossy compression algorithms are irreversible when
the image reconstructed from the compressed image data is not as identical as the
original image. Moreover, the use of a lossy compression algorithm is a balancing act
between storage size and image quality. An image which is compressed with a high
compression factor requires little storage space, but it will probably be reconstructed
with a poor quality.

Although many lossy compression algorithms have been proposed, most manu-
facturers predominately utilize JPEG compression. The JPEG compression scheme
consists of three fundamental settings: color space, subsampling technique, and
quantization table. Even though JPEG was already proposed by the standard In-
dependent JPEG Group [15], manufacturers typically design their own compression
scheme for optimal trade-off of image quality versus file size. Fundamental steps of
the typical JPEG compression chain are shown in Figure 2.3.

The JPEG compression scheme works in the different color space, typically
YCbCr color space, rather than the RGB color space. The transformation to the
YCbCr color space is to reduce correlations among red, green and blue components.
It allows for more efficient compression. The channel Y represents the luminance of
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a pixel, and the channels Cb and Cr represent the chrominance. Each channel Y, Cb

and Cr is processed separately. In addition, the channels Cb and Cr are commonly
supsampled by a factor of 2 horizontally and vertically. The transformation from
the RGB color space to the YCbCr color space is linear Y

Cb

Cr

 =

 0.299 0.587 0.114

−0.169 −0.331 0.5

0.5 −0.419 0.081

R

G

B

+

 0

128

128

 . (2.10)

To avoid introducing too many symbols, let Z̃TIFF denote also the image obtained
after this transformation.

The JPEG compression algorithm consists of two key steps: Discrete Cosine
Transform (DCT), and quantization. It works separately on each 8 × 8 block of a
color component. The DCT operation converts pixel values from the spatial domain
into transform coefficients

I(u, v) =
1

4
TuTv

7∑
m=0

7∑
n=0

z̃TIFF(m,n)

× cos

(
(2m+ 1)uπ

16

)
cos

(
(2n+ 1)vπ

16

)
, (2.11)

where z̃TIFF(m,n) is a pixel in a 8 × 8 block, 0 ≤ m,n ≤ 7, I(u, v) denotes the
two-dimensional DCT coefficient, 0 ≤ u, v ≤ 7, and Tu is the normalized weight

Tu =

{
1√
2

for u = 0

1 for u > 0
. (2.12)

The index of color channel Y, Cb, and Cr is omitted for simplicity as each color
channel is processed separately. The coefficient at location (0, 0), called the Direct
Current (DC) coefficient, represents the mean value of pixels in the 8 × 8 block.
The remaining 63 coefficients are called the Alternating Current (AC) coefficients.
The DCT is known as sub-optimal transform with two important properties: energy
compaction and decorrelation. In a natural image, the majority of the energy tends
to be more located in low frequencies (i.e. the upper left corner of the 8 × 8 grid)
while high frequencies contains information that is not visually significant.

Then, the DCT coefficients go through the quantization process. The quantiza-
tion is carried out by simply dividing each coefficient by the corresponding quanti-
zation step, and then rounding to the nearest integer

D(u, v) = round

(
I(u, v)

∆(u, v)

)
, (2.13)

where D(u, v) is the quantized DCT coefficient and ∆(u, v) is the corresponding
element in the 8 × 8 quantization table ∆. The quantization table is designed
differently for each color channel. The quantization is irreversible, which results
in an impossibility of recovering the original image exactly. The final processing
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step is entropy coding that is a form of lossless process. It arranges quantized DCT
coefficients into the zig-zag sequence and then employs the Run-Length Encoding
(RLE) algorithm and Huffman coding. This step is perfectly reversible.

The JPEG decompression works in the reverse order: entropy decoding, dequan-
tization, and Inverse DCT (IDCT). When the image is decompressed, the entropy is
decoded, we obtain the two-dimensional quantized DCT coefficients. The dequan-
tization is performed by multiplying the quantized DCT coefficient D(u, v) by the
corresponding quantization step ∆(u, v)

I(u, v) = ∆(u, v) ·D(u, v), (2.14)

where I(u, v) stands for the dequantized DCT coefficient. The IDCT operation is
applied to dequantized DCT coefficients to return to the spatial domain

z̃IDCT(m,n) =

7∑
uh=0

7∑
uv=0

1

4
TuTvI(u, v)

× cos

(
(2m+ 1)uπ

16

)
cos

(
(2n+ 1)vπ

16

)
. (2.15)

After upsampling color components and transforming into the RGB color space, the
values are rounded to the nearest integers and truncated to a finite dynamic range
(typically [0, 255])

z̃JPEG(m,n) = trunc
(

round
[
z̃IDCT(m,n)

])
, (2.16)

where z̃JPEG(m,n) is the final decompressed JPEG pixel. In general, the JPEG pixel
z̃JPEG(m,n) differs from the original TIFF pixel z̃TIFF(m,n) due to the quantization,
rounding and truncation (R/T) errors in the process. Note that in this image
processing pipeline, R/T errors are only take into account one time for the sake of
simplification.

The way that JPEG compression works separately on each 8×8 block generates
discontinuities across the boundaries of the blocks, which are also known as block
artifacts [16]. The blocking artifacts are more severe when the quantization steps
are coarser. Moreover, because of the quantization in the DCT domain, the DCT
coefficients obtained by applying the DCT operation on the decompressed JPEG
image will cluster around integer multiples of ∆(u, v), even though those DCT
coefficients are perturbed by R/T errors. These two artifacts provide a rich source
of information for forensic analysis of digital images.

2.3 Passive Image Origin Identification

Basically, when an image is captured by a camera, it is stored with the metadata
headers in a memory storage device. The metadata, e.g. Exchangeable Image File
(EXIF) and JPEG headers, contain all recording and compression history. There-
fore, a simplest way to determine the image’s source is to read out directly from the
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metadata. However, such metadata headers are not always available in practice if
the image is resaved in a different format or recompressed. Another problem is that
the metadata headers are not reliable as they can be easily removed or modified
using low-cost editing tools. Therefore, the metadata should not be considered in
forensic analysis.

The common philosophy of passive approach for image origin identification is
to rely on inherent intrinsic fingerprints that the digital camera leaves in a given
image. The fingerprint can discriminate different camera brands, camera models,
and even camera units. Any method proposed for image origin identification must
respond to following questions:

1. Which fingerprints are utilized for origin identification?

2. How to extract these fingerprints accurately from a given image?

3. Under which frameworks is the method designed to exploit the discriminability
of fingerprints extracted from images captured by different sources1 and to
calculate the similarity of fingerprints extracted from images captured by the
same source?

Every stage from real-world scene acquisition to image storage can provide intrin-
sic fingerprints for forensic analysis (see Figure 2.1). Although the image processing
pipeline is common for most cameras, each processing step is performed according
to manufacturers’ own design. Thus the information left by each processing step is
useful to trace down to the device source. A fingerprint must satisfy three following
important requirements:

• Generality: the fingerprint should be present in every image.

• Invariant: the fingerprint does not vary for different image contents.

• Robustness: the fingerprint survives non-linear operations such as lossy com-
pression or gamma correction.

The second question involves a challenge for any forensic method since the fin-
gerprint extraction may be severely contaminated by non-linear operations (e.g.
gamma correction and lossy compression).

Generally, the image origin identification problem can be formulated into two
frameworks: supervised classification [17–19] and hypothesis testing [20]. Compared
with hypothesis testing framework, supervised classification framework is utilized by
most of existing methods in the literature. The construction of a classifier typically
consists of two stages: training stage and testing stage. It is assumed that the entire
image space ZN that includes all images from all the sources in the real world can be

1The term source means an individual camera instance, a camera model, or a camera brand.
Other sources such as cell-phone cameras, scanners, computer graphic are not addressed in this
thesis.
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divided into disjoint subsets in which images with same characteristics from the same
source are grouped together. Let {S1,S2, . . . ,SNs} be Ns different sources that are
required to be classified. Typically, each source Sn, 1 ≤ n ≤ Ns, is a subset of ZN .
In the training stage, suppose that Nim images are collected to be representative for
each source. Each image in the source Sn is denoted by Zn,i. Then a feature vector
is extracted from each image. Formally, a feature vector is a mapping f : ZN → F
where each image Z is mapped to aNf -dimensional vector v = f(Z). Here, F is called
feature space and Nf is the number of selected features, which is also the dimension
of the feature space F . The number of features Nf is very small compared with the
number of pixels N . Working in a low-dimensional feature space F that represent
the input images is much simpler than working on high-dimensional noisy image
space ZN . The choice of an appropriate feature vector is primordial in supervised
classification framework since the accuracy of a classifier highly depends on it. Thus
we obtain a set of feature vectors {vn,i} that is representative for each source. In
this training stage feature refinement can be also performed such as dimensionality
reduction or feature selection to avoid overtraining and redundant features. The
knowledge learnt from the set of refined feature vectors helps build a classifier using
supervised machine learning algorithms. A classifier typically is a learned function
that can map an input feature vector to a corresponding source. Therefore, in the
testing stage, the same steps such as feature selection and feature refinement are
performed on the testing images. The output of the trained classifier is the result
predicted for input testing images. Among many existing powerful machine learning
algorithms, Support Vector Machines (SVM) [18, 19] seem to be the most popular
choice in passive forensics. SVM are established in a solid mathematical foundation,
namely statistical learning theory [18]. Moreover, their implementation is available
for download and is easy to use [21].

Supervised classification framework involves two main drawbacks. To achieve
high accuracy, supervised classification framework requires an expensive training
stage that involves many images with different characteristics (e.g. image content
or camera settings) from various sources for representing a real-world situation,
which might be unrealistic in practice. Another drawback of this framework is that
the trained classifier can not establish the statistical performances analytically since
it does not rely on knowledge of a priori statistical distribution of images. In the
operational context, such as for law enforcement and intelligent agencies, the design
of an efficient method might not be sufficient. Forensic analysts also require that the
probability of false alarm should be guaranteed and below a prescribed rate. The
analytic establishment of statistical performances still remains an open problem in
machine learning framework [22].

On the other hand, the problem of image origin identification problem lends
itself to a binary hypothesis testing formulation.

Definition 2.1. (Origin identification problem). Given an arbitrary image Z under
investigation, to identify the source of the image Z, forensic analysts decide between
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two following hypotheses{
H0 : Z is acquired by the source of interest S0

H1 : Z is acquired by a certain source S1 that differs from the source S0.

(2.17)

Suppose that the source S0 is available, so forensic analysts can have access to its
characteristics, or its fingerprints. Therefore, they can make a decision by checking
whether the image in question Z contains the fingerprints of the source. Relying on
a priori statistical distribution of the image Z under each source, forensic analysts
can establish a test statistic that can give a decision rule according to some criteria
of optimality.

Statistical hypothesis testing theory has been considerably studied and applied
in many fields. Several statistical tests as well as criteria of optimality have been pro-
posed. While supervised learning framework only requires to find an appropriate set
of forensic features, the most challenging part in hypothesis testing framework is to
establish a statistical distribution to accurately characterize a high-dimensional real
image. In doing so, hypothesis testing framework allows us to establish analytically
the performance of the detector and warrant a prescribed false alarm probability,
which are two crucial criteria in the operational context that supervised classifica-
tion framework can not enable. However, hypothesis testing framework is of limited
exploitation in forensic analysis. For the sake of clarity, hypothesis testing theory
will be more detailed in Chapter A.

There are many passive forensic methods proposed in the literature for image
origin identification. In this thesis, we limit the scope of our review to methods for
identification of the source of a digital camera (e.g. camera brand, camera model,
or individual camera instance). The methods to identify other imaging mechanisms
such as cell-phone cameras, scanners, and computer graphics will not be addressed.
It is important to distinguish the problem of camera instance identification and the
problem of camera model/brand identification. More specifically, fingerprints used
for camera instance identification should capture individuality, especially cameras
coming from the same brand and model. For camera model/brand identification,
it is necessary to exploit fingerprints that are shared between cameras of the same
model/brand but discriminative for different camera models/brands.

Existing methods in the literature can be broadly divided into two categories.
Methods in the first category exploit differences in image processing techniques
and component technologies among camera models and manufacturers such as lens
aberration [23], CFA patterns and interpolation [24–26] and JPEG compression
[27,28]. The main challenge in this category is that the image processing techniques
remain identical or similar, and the components produced by a few manufacturers
are shared among camera models. Methods in the second category aim to identify
unique characteristics or fingerprints of the acquisition device such as PRNU [29–36].
The ability to reliably extract this fingerprint from an image is the main challenge
in the second category since different image contents and non-linear operations may
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severely affect this extraction. Below we will present the methods according to
the position of exploited fingerprints in the image acquisition pipeline of a digital
camera.

2.3.1 Lens Aberration

Digital cameras use lenses to capture incident light. Due to the imperfection of the
design and manufacturing process, lenses cause undesired effects in output images
such as spherical aberration, chromatic aberration, or radial distorsion. Spherical
aberration occurs when all incident light rays end up focusing at different points
after passing through a spherical surface, especially light rays passing through the
periphery of the spherical lens. Chromatic aberration is a failure of lens to converge
different wavelengths at the same position on the image sensor. Radial distorsion
causes straight lines rendered as curved lines on the image sensor and it occurs when
the transverse magnification (ratio of the image distance to the object distance) is
not a constant but a function of the off-axis image distance. Among these effects,
radial distorsion may be the most severe part that lens produces in output images.
Different manufacturers design different lens systems to compensate the effect of
radial distorsion. Moreover, focal length also affects the degree of radial distorsion.
As a result, each camera brand or model may leave an unique degree of radial
distorsion on the output images. Therefore, radial distorsion of lens is exploited
in [23] to identify the source of the image.

The authors in [23] take the center of an image as the center of distorsion and
model the undistorted radius ru as a non-linear function of distorted radius rd

ru = rd + k1r
3
d + k2r

5
d. (2.18)

Distorsion parameters (k1, k2) are estimated using the straight line method [37,38].
Then the distorsion parameters (k1, k2) are exploited as forensic features to train a
SVM classifier. Although experiments provided a promising result, experiments were
only conducted on three different camera brands. Experiments on large database
including different devices per camera model and different camera models are more
desirable. However, this lens aberration-based classifier would fail for a camera with
possibly interchangeable lenses, e.g. Digital Single Lens Reflex (DSLR) camera.

2.3.2 Sensor Imperfections

As discussed in Section 2.2, imperfections during the manufacturing process and
inhomogeneity of silicon wafers leads to slight variations in the response of each
pixel to incident light. These slight variations are referred as to PRNU, which is
unique for each sensor pattern. Thus PRNU can be exploited to trace down to
individual camera instance. The FPN was also used in [39] for camera instance
identification. However, the FPN can be easily compensated, thus it is not a robust
fingerprint and no longer used in later works.
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Generally, PRNU is modeled as a multiplicative noise-like signal [30,32]

Z = µ+ µK + Ξ, (2.19)

where Z is the output noisy image, µ is the ideal image in the absence of noise, K

represents the PRNU, and Ξ accounts for the combination of other noise sources.
All operations in (2.19) are pixel-wise.

Like supervised classification, the PRNU-based method also consists two stages.
The training stage involves collecting Nim images that are acquired by the camera
of interest S0 and extracting the PRNU K0 characterizing this camera. This is
accomplished by applying a denoising filter on each image to suppress the image
content, then performing Maximum Likelihood (ML) estimation of K0

K0 =

∑Nim
i=1 Zres

i Zi∑Nim
i=1

(
Zi
)2 , (2.20)

where Zres
i = Zi−D

(
Z
)
is the noise residual corresponding to the image Zi, 1 ≤ i ≤

Nim, and D stands for the denoising filter. Note that when the PRNU is extracted
from JPEG images, it may contain artifacts introduced by CFA interpolation and
JPEG compression. These artifacts are not unique to each camera instance and
shared among different camera units of the same model. To render the PRNU
unique to the camera and improve the accuracy of the method, a preprocessing
step is performed to suppress these artifacts by subtracting the averages from each
row and column, and applying the Wiener filter in the Fourier domain [30]. In the
testing stage, given an image under investigation Z, the problem of camera source
identification (2.17) is rewritten as follows{

H0 : Zres = µK0 + Ξ̃

H1 : Zres = µK1 + Ξ̃,
(2.21)

where the noise term Ξ̃ includes the noise Ξ and additional terms introduced by
the denoising filter. This formulation must be understood as follows: hypothesis
H0 means that the noise residual Zres contains the PRNU K0 characterizing the
camera of interest S0 while hypothesis H1 means the opposite. It should be noted
that the PRNU detection problem in [30, 32] is formulated in the reverse direction.
The sub-optimal detector for the problem (2.21) is the normalized cross correlation
between the PRNU term µK and the noise residual Zres [30]. In fact, the normalized
cross correlation is derived from the Generalized Likelihood Ratio Test (GLRT)
by modeling the noise term Ξ̃ as white noise with known variance [40]. A more
stable statistic derived in [32] is the Peak to Correlation Energy (PCE) as it is
independent of the image size and has other advantages such as its response to
the presence of weak periodic signals. Theoretically, the decision threshold for the
problem (2.21) is given by τ =

(
Φ−1(1 − α0)

)2 where α0 is the prescribed false
alarm probability, Φ(·) and Φ−1(·) denotes respectively the cumulative distribution
function (cdf) of the standard Gaussian random variable and its inverse. If the
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PCE is smaller than a threshold τ , the image Z is claimed taken by the camera in
question. The detection performance can be improved by selecting an appropriate
denoising filter [33], attenuating scene details in the test image [34,35], or recognizing
the PRNU term with respect to each sub-sample of the CFA pattern [36].

Beside individual camera instance identification, the fingerprint PRNU can be
also used for camera model identification [31]. This is based on an assumption
that the fingerprint obtained from TIFF or JPEG images contains traces of post-
acquisition processes (e.g. CFA interpolation) that carry information about the
camera model. In this case, the above preprocessing step that removes the linear
pattern from the PRNU will not be performed. The features extracted from the
PRNU term including statistical moments, cross correlation, block covariance, and
linear pattern, are used to train a SVM classifier.

2.3.3 CFA Pattern and Interpolation

Based on the assumption that different CFA patterns and CFA interpolation algo-
rithms are employed by different manufacturers, even in different camera models,
thus they can be used to discriminate camera brands and camera models. Typically,
both CFA pattern and interpolation coefficients are unknown in advance. They must
be estimated together from a single image. An algorithm has been developed in [24]
to jointly estimate CFA pattern and interpolation coefficients, which has shown the
robustness to JPEG compression with low quality factors. Firstly, a search space
including 36 possible CFA patterns is established based on the observation that
most cameras use a RGB type of CFA with a fixed periodicity of 2 × 2. Since a
camera may employ different interpolation algorithms for different types of regions,
it is desirable to classify the given image into three types of regions based on gra-
dient information in a local neighborhood of a pixel: region contains parts of the
image with a significant horizontal gradient, region contains parts of the image with
a significant vertical gradient, and region includes the remaining smooth parts of
the image.

For every CFA pattern PCFA in the search space, the interpolation coefficients
are computed separately in each region by fitting linear models. Using the final
output image Z and the assumed CFA pattern PCFA, we can identify the set of
pixels that acquired directly from the image sensor and those obtained by inter-
polation. The interpolated pixels are assumed to be a weighted average of the
pixels acquired directly. The interpolation coefficients are then obtained by solving
these equations. To overcome the difficulty of noisy pixel values and interference of
non-linear post-acquisition processes, singular value decomposition is employed to
estimate the interpolation coefficients. These coefficients are then use to re-estimate
the output image Ẑ, and find the interpolation error Ẑ−Z. The CFA pattern that
gives the lowest interpolation error and its corresponding coefficients are chosen as
final results [24].

As soon as the interpolation coefficients are estimated from the given image,
they are used as forensic features to train a SVM classifier for classification of cam-
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era brands and models [24]. The detection performance can be further enhanced by
taking into account intra-channel and inter-channel correlations and more sophisti-
cated interpolation algorithms in the estimation methodology [26]. Other features
can be used together with interpolation coefficients such as the peak location and
magnitudes of the frequency spectrum of the probability map [41].

2.3.4 Image Compression

Image compression is the final step in the image processing pipeline. As discussed
in Section 2.2, manufacturers have their own compression scheme for optimal trade-
off of image quality versus file size. Different component technologies (e.g. lenses,
sensors), different in-camera processing operations (e.g. CFA interpolation, white-
balancing), together with different quantization matrices will jointly result in sta-
tistical difference of quantized DCT coefficient. Capturing this statistical difference
and extracting useful features from it may enable to discriminate different camera
brands or camera models.

To this end, instead of extracting statistical features directly from quantized
DCT coefficients, features are extracted from the difference JPEG 2-D array [28].
The JPEG 2-D array consists of the magnitudes (i.e. absolute values) of quantized
DCT coefficients. Three reasons behind taking absolute values are the followings:

1. The magnitudes of DCT coefficients decrease along the zig-zag order.

2. Taking absolute values can reduce the dynamic range of the resulting array.

3. The signs of DCT coefficients mainly carry information of the outlines and
edges of the original spatial-domain image, which does not involve information
about camera models. Thus by taking absolute values, all the information
regarding camera models remains.

Then to reduce the influence of image content and enhance statistical difference
introduced in image processing pipeline, the difference JPEG 2-D array, which is
defined by taking the difference between an element and one of its neighbors in
the JPEG 2-D array, is introduced. The difference can be calculated along four
directions: horizontal, vertical, main diagonal, and minor diagonal. To model the
statistical difference of quantized DCT coefficients and take into account the corre-
lation between coefficients, the Markovian transition probability matrix is exploited.
Each difference JPEG 2-D array from a direction generates its own transition prob-
ability matrix. Each probability value in the transition matrix is given by

P
[
X(uh + 1, uv) = k

∣∣ X(uh, uv) = l
]

=

∑Nh
uh=1

∑Nv
uv=1 1X(uh,uv)=l,X(uh+1,uv)=k∑Nh
uh=1

∑Nv
uv=1 1X(uh,uv)=l

,

(2.22)
where X(uh, uv) denotes an element in the difference JPEG 2-D array and 1E is an
indicator function

1E =

{
1 if E is true

0 otherwise.
(2.23)
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These steps are performed for the Y and Cb components of the compressed JPEG
image. Totally, we can collect 324 transition probabilities for Y component and 162
transition probabilities for Cb component. The transition probabilities are then used
as forensic features for SVM classification. Experiments are then conducted on a
large database including 40000 images of 8 different camera models, providing a good
classification performance [28]. In this method it is more desirable to perform feature
refinement to reduce the number of features and the complexity of the algorithm.

2.4 Passive Image Forgery Detection

Image forgery detection is another fundamental task of forensic analysts, which aims
to detect any act of manipulation on image content. The main assumption is that
even though a forger with skills and powerful tools does not leave any perceptible
trace of manipulation, the manipulation creates itself inconsistencies in image con-
tent. Depending on which type of inconsistencies is investigated and how passive
forensic methods operate, they can broadly be divided into five categories. A single
method can hardly detect all types of forgery, so forensic analysts should use these
methods together to reliably detect a wide variety of tampering.

1. Universal Classifiers: Any act of manipulation may lead to statistical changes
in the underlying image. Instead of capturing these changes directly in a
high-dimensional and non-stationary image, which is extremely difficult, one
approach is to detect changes in a set of features that represent an image.
Based on these features, supervised classification is employed to provide uni-
versal classifiers to discriminate between unaltered images and manipulated
images. Some typical forensic features are higher-order wavelet statistics [42],
image quality and binary similarity measures [43, 44]. These universal clas-
sifiers are not only able to detect some basic manipulations such as resizing,
splicing, contrast enhancement, but also reveal the existence of hidden mes-
sages [45].

2. Camera Fingerprints-Based : A typical scenario of forgery is to cut a portion
of an image and paste it into a different image, then create the so-called
forged image. The forged region may not be taken by the same camera as
remaining regions of the image, which results in inconsistencies in camera
fingerprints between those regions. Therefore, if these inconsistencies exist in
an image, we could assume that the image is not authentic. For authentication,
existing methods have exploited many camera fingerprints such as chromatic
aberration [46], PRNU [30,32], CFA interpolation and correlation [25,47–49],
gamma correction [50,51], Camera Response Function (CRF) [52–54].

3. Compression and Coding Fingerprints-Based : Nowadays most commercial
cameras export images in JPEG format for ease of storage and transmission.
As discussed in Section 2.2, JPEG compression introduces two important ar-
tifacts: clustering of DCT coefficients around integer multiples of the quan-
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tization step, and blocking artifacts. Checking inconsistencies in these two
artifacts can trace the processing history of an image and determine its origin
and authenticity. A possible scenario is that while the original image is saved
in JPEG format, a forger could save it in a lossless format after manipulation.
Existence of these artifacts in an image in a lossless format can show that it has
been previously compressed [55–57]. Another scenario is that the forger could
save the manipulated image in JPEG format, which means that the image
has undergone JPEG compression twice. Detection of double JPEG compres-
sion can be performed by checking periodic patterns (e.g. double peaks and
missing centroids) in the histogram of DCT coefficients due to different quan-
tization steps [51, 58, 59], which are not present in singly compressed images,
or using the distribution of the first digit of DCT coefficients [60, 61]. The
detection of double JPEG compression is of greater interest since it can reveal
splicing or cut-and-paste forgeries due to the fact that the the forged region
and remaining regions of the image may not have the same processing history.
Inconsistencies can be identified either in DCT domain [62–65] or in spatial
domain via blocking artifacts [66, 67]. Furthermore, the detection of double
JPEG compression can be applied for detecting hidden messages [58,59].

4. Manipulation-Specific Fingerprints-Based : Each manipulation may leave spe-
cific fingerprints itself within an image, which can be used as evidence of
tampering. For example, resampling causes specific periodic correlations be-
tween neighboring pixels. These correlations can be estimated based on the
Expectation Maximization (EM) algorithm [68], and then used to detect the
resampling [68, 69]. Furthermore, resampling can be also detected by identi-
fying periodicities in the average of an image’s second derivative along its row
and columns [70], or periodicities in the variance of an image’s derivative [71].
Contrast enhancement creates impulsive peaks and gaps in the histogram of
the image’s pixel value. These fingerprints can be detected by measuring the
amount of high frequency energy introduced into the Fourier transform of an
image’s pixel value histogram [72]. Median filtering introduces streaking into
the signals [73]. Streaks correspond to a sequence of adjacent signal observa-
tions all taking the same value. Therefore, median filtering can be detected
by analyzing statistical properties of the first difference of an image’s pixel
values [74–77]. Splicing disrupts higher-order Fourier statistics, which leaves
traces to detect splicing [78].

5. Physical Inconsistencies-Based : Methods in this category do not make use
of any form of fingerprints but exploit properties of lighting environment for
forgery detection. The main assumption is that all the objects within an image
are typically illuminated under the same light sources, so the same properties
of lighting environments. Therefore, difference in lighting across an image can
be used as evidence of tampering, e.g. splicing. To this end, it is necessary
to estimate the direction of the light source illuminating an object. This can
be accomplished by considering two-dimensional [79] or three-dimensional [80]
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Figure 2.4: Typical steganographic system.

surface normals, and illumination under a single light source [79] or even under
multiple light sources [81]. The lighting environment coefficients of all objects
in an image are then used for checking inconsistencies.

2.5 Steganography and Steganalysis in Digital Images

Steganography is the art and science of hiding communication. The concept of
steganography is used for invisible communication between only two parties, the
sender and the receiver, such that the message exchanged between them can not
be detected by an adversary. This communication can be illustrated by prisoners’
problem [82]. Two prisoners, Alice and Bob, want to develop an escape plan but
all communications between them are unfortunately monitored by a warden named
Wendy. The escape plan must be kept secret and exchanged without raising Wendy’s
suspicion. It means that the communication does not only involve the confidentiality
of the escape plan but also its undetectability. For this purpose, a practical way is
to hide the the escape plan, or the secret message in a certain ordinary object and
send it to the intended receiver. By terminology, the original object that is used
for message hiding is called cover-object and the object that contains the hidden
message is called stego-object. The hiding technique does not destroy the object
content perceptibly to not raise Wendy’s suspicion, nor modify the message content
so the receiver could totally understand the message.

The advances in information technologies make digital media (e.g. audio, image,
or video) ubiquitous. This ubiquity facilitates the choice of a harmless object in
which the sender can hide a secret message, so sending such media is inconspicuous.
Furthermore, the size of digital media is typically large compared to the size of
secret message. Thus the secret message can be easily hidden in digital media
without visually destroying digital content. Most of researches focus on digital
images, which are also the type of media addressed in this thesis.

A typical steganographic system is shown in Figure 2.4. It consists of two stages:
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embedding stage and extraction stage. When Alice wants to send a secret message
M, she hides it into a cover-image C using a key and an embedding algorithm.
The secret message M is a binary sequence of L bits, M = (m1,m2, . . . ,mL)T with
mi ∈ {0, 1}, 1 ≤ i ≤ L. The resulting stego-image S is then transmitted to Bob via
an insecure channel. Bob can retrieve the message M since he knows the embedding
algorithm used by Alice and has access to the key used in embedding process.
Bob does not absolutely require the original cover-image C for message extraction.
From the Kerckhoffs’ principle [83], it is assumed that in digital steganography,
steganographic algorithms are public so that all parties including the warden Wendy
have access to them. The security of the steganographic system relies solely on the
key. The key could be secret key exchanged between Alice and Bob through a secure
channel, or public key.

In general, steganographic systems can be evaluated by three basic criteria: ca-
pacity, security, and robustness. Capacity is defined as the maximum length of a
secret message. The capacity depends on the embedding algorithm and properties
of cover-images. The security of a steganographic system is evaluated by the un-
detectability rather than the difficulty of reading the message content in case of
cryptographic system. However, we can see that steganographic systems also ex-
ploit the idea of exchange of keys (secret and public) from cryptographic system to
reinforce the security. Robustness means the difficulty of removing a hidden mes-
sage from a stego-image, so the secret message survives some accidental channel
distortions or systematic interference of the warden that aims to prevent the use
of steganography. It can be noted that longer messages will lead to more changes
in the cover image, thus less security. In brief, these three criteria are mutually
dependent and are balanced when designing a steganographic system.

The purpose of steganography is to secretly communicate through a public chan-
nel. However, this concept has been misused by anti-social elements, criminals, or
terrorists. It could lead to important consequences to homeland security or national
defence when, for example, two terrorists exchange a terrorist plan. Therefore, it
is urgent for law enforcement and intelligence agencies to build up a methodology
in order to detect the mere existence of a secret message and break the security of
steganographic systems. Embedding a secret message into a cover-image is also an
act of manipulating image content, so steganalysis is one of important tasks of foren-
sic analysts, or steganalysts in this case. Unlike in cryptanalysis, the steganalyst
Wendy does not require to retrieve the actual message content. As soon as she have
detected its existence in an image, she can cut off the communication channel by
putting two prisoners in separate cells. This is the failure of steganography. Besides,
the task of steganalysis must be accomplished blindly without knowledge of original
cover image.

Generally, the steganalyst Wendy can play either active or passive role. While
the active steganalyst is allowed to modify exchanged objects through the public
channel in order to prevent the use of steganography, the passive steganalyst is not.
The only goal of passive steganalyst is to detect the presence of a hidden message in
a given image, which is also the typical scenario on which most of researches mainly
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Figure 2.5: Operations of LSB replacement (top) and Jsteg (bottom).

focus. It can be noted that the steganalysis is like the coin-tossing game since the
decision of steganalysts is made by telling that the given image is either a cover-
image or a stego-image. Hence in any case, steganalysts can get a correct detection
probability of 50%. However, steganalysts should establish the problem of hidden
message detection in a more formal manner and design a powerful steganalysis tool
with higher correct detection probability, rather than a random guess. Apart from
detecting the presence of a hidden message, it may be desirable for steganalysts to
estimate the message length or brute-force the secret key and retrieve the message
content. The estimation of the message length is called quantitative steganalysis.
Brute-forcing the secret key and extraction of the message content are referred to
as forensic steganalysis.

As stated above, designing a steganographic system is a trade-off between three
basic criteria. Thus many steganographic algorithms have been proposed for differ-
ent purposes such as mimic natural processing [84–86], preserve a model of cover-
images [87, 88], or minimize the distorsion function [89, 90]. Among available al-
gorithms, Least Significant Bit (LSB) replacement might be the oldest embedding
technique in digital steganography. This algorithm is simple and easy to implement,
thus it is available in numerous low-cost steganographic softwares on the Internet
despite its relative insecurity. In addition, LSB replacement inspires a majority
of other steganographic algorithms (e.g. LSB matching [91], Jsteg [92]). Jsteg
algorithm is simply the implementation of LSB replacement in the DCT domain.
Therefore, understanding LSB replacement paradigm is a good starting point before
addressing more complex embedding paradigms. In this thesis, we only review LSB
replacement and Jsteg algorithm, and their powerful steganalysis detectors proposed
in the literature. The readers can be referred to [93–95] for other steganographic
and steganalysis methods.
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2.5.1 LSB Replacement Paradigm and Jsteg Algorithm

Considering the cover-image C as a column vector, the LSB replacement technique
involves choosing a subset of L cover-pixels {c1, c2, . . . , cL}, and replacing the LSB
of each cover pixel by a message bit. The LSB of a cover-pixel ci is defined as follows

LSB(ci) = ci − 2
⌊ci

2

⌋
, (2.24)

where b·c is the floor function. The LSB of the cover-pixel ci takes values in {0, 1}.
Therefore, by embedding a message bit mi into the cover-pixel ci, the stego-pixel si
is given by

si = 2
⌊ci

2

⌋
+mi. (2.25)

We see that when LSB(ci) = mi, the pixel value does not change after embedding,
si = ci. By contrast, when LSB(ci) 6= mi, the stego-pixel si can be defined as a
function of the cover-pixel ci in the following manner

si = ci + 1− 2 · LSB(ci) = ci + (−1)ci , ci, (2.26)

where ci is the pixel with flipped LSB. In other words, even values are never decre-
mented whereas odd values are never incremented. The absolute difference between
a cover-pixel ci and a stego-pixel si is smaller than 1, |ci − si| ≤ 1, thus the artifact
caused by the insertion of secret message M could be imperceptible under human
vision. The operation of LSB replacement technique is illustrated in Figure 2.5.
One problem that remains to be solved is the choice of the subset of cover-pixels or
the sequence of pixel indices used in embedding process. To increase the complexity
of the algorithm, the sender could create a pseudorandom path generated from the
secret key shared between the sender and the receiver so that the secret message
bits are spread randomly over the cover-image. Therefore, the distance between
two embedded bits is also determined pseudorandomly, which would not raise the
suspicion of the warden. We can see that the number of message bits that can be
embedded does not exceed beyond the number of pixels of the image Z: L ≤ N ,
which leads us to define an embedding rate R

R =
L

N
. (2.27)

This embedding rate R is a measure of the capacity of the steganographic system
based on LSB replacement technique.

Jsteg algorithm is a variant of LSB replacement technique in spatial domain.
Jsteg algorithm embeds the secret message into the DCT domain by replacing LSBs
of quantized DCT coefficients by message bits. The difference from the LSB replace-
ment technique in spatial domain is that Jsteg algorithm does not embed message
bits in the coefficients that are equal to 0 and 1 since artifacts caused by such em-
bedding can be perceptibly and easily detected. The DC coefficient is not used as
well for the same reason. The AC coefficients that differ from 0 et 1 are usable
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coefficients. Consequently, the embedding rate R in Jsteg algorithm is defied as the
ratio of the length L and the number of usable coefficients in the cover-image C

R =
L∑64
k=2 nk

. (2.28)

where nk is the number of usable coefficients at the frequency k, 2 ≤ k ≤ 64.

2.5.2 Steganalysis of LSB Replacement in Spatial Domain

Like the origin identification problem (2.17), the steganalysis problem can be also
formulated as a binary hypothesis testing.

Definition 2.2. (Steganalysis problem). Given a suspect image Z, to verify whether
the image Z contains a secret message or not, the steganalyst decides between two
following hypotheses {

H0 : Z = C, no hidden message.

H1 : Z = S,with hidden message.
(2.29)

To solve the steganalysis problem (2.29), several methods have been proposed
in the literature. Even though the secret message is imperceptible to human eye,
the act of embedding a secret message modifies the cover content and leaves itself
artifacts that can be detected. Steganalysis methods of LSB replacement can be
roughly divided into four categories: structural detectors, Weighted Stego-image
(WS) detectors, statistical detectors, and universal classifiers. Typically, structural
detectors and WS detectors are quantitative detectors that provide an estimation of
secret message length while statistical detectors and universal classifiers attempt to
separate stego-images from cover-images based on changes in statistical properties
of cover-images due to message embedding. Below we briefly discuss each category
of detectors.

2.5.2.1 Structural Detectors

Structural detectors exploit all combinatorial measures of the artificial dependence
between sample differences and the parity structure of the LSB replacement in
order to estimate the secret message length. Some representatives in this category
are the Regular-Singular (RS) analysis [96], the Sample Pair Analysis (SPA) [97–
99], and the Triple/Quadruple analysis [100, 101]. The common framework is to
model effects of LSB replacement as a function of embedding rate R, invert these
effects to approximate cover-image properties from the stego-image, and find the
best candidate R̂ to match cover assumptions.

Both RS and SPA methods rely on evaluating groups of spatially adjacent pixels.
The observations made in RS analysis were formally justified in SPA. For pedagogical
reasons, we discuss the SPA method. For the representation of the SPA method, we
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Figure 2.6: Diagram of transition probabilities between trace subsets under LSB
replacement.

use the extensible alternative notations in [95, 101]. Given an image Z, we define a
trace set Ck that collect all pairs of adjacent pixels (z2i, z2i+1) as follows

Ck =
{

(2i, 2i+ 1) ∈ I2
∣∣∣⌊z2i

2

⌋
=
⌊z2i+1

2

⌋
+ k
}
, (2.30)

where I is the set of pixel indices. Each trace set Ck is then partitioned into four
trace subsets, Ck = E2k ∪ E2k+1 ∪ O2k ∪ O2k−1, where Ek and Ck are defined byEk =

{
(2i, 2i+ 1) ∈ I2

∣∣∣z2i = z2i+1 + k, z2i+1 is even
}

Ok =
{

(2i, 2i+ 1) ∈ I2
∣∣∣z2i = z2i+1 + k, z2i+1 is odd

}
.

(2.31)

We can observe that the LSB replacement technique never changes the trace set
Ck of a sample pair but can move sample pairs between trace subsets. Therefore,
we establish transition probabilities as functions of the embedding rate R, which is
shown in Figure 2.6. Thus we can derive the relation between trace subsets of a
stego-image and those of a cover-image
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(2.32)
where Ec

k and Oc
k are trace subsets of the cover-image, and Es

k and Os
k are trace

subsets of the stego-image. Here |S| denotes the cardinality of the set S. After
inverting the transition matrix and assuming that |Ec

2k+1| = |Oc
2k+1|, we obtain a

quadratic equation

0 = R2
(
|Ck| − |Ck+1|

)
+ 4
(
|Es

2k+1| − |Os
2k+1|

)
+ 2R

(
|Es

2k+2|+ |Os
2k+2| − 2|Es

2k+1|+ 2|Os
2k+1| − |Es

2k| − |Os
2k|
)
. (2.33)
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The solution of Equation (2.33) is an estimator of the embedding rate R. The SPA
method was further improved by combining with Least Squares (LS) method [98]
and Maximum Likelihood [99], or generalizing from analysis of pairs to analysis of
k-tuples [100,101].

2.5.2.2 WS Detectors

WS detectors were originally proposed by J. Fridrich in [102] and then improved
in [103, 104]. The key idea of WS is that the embedding rate can be estimated via
the weight that minimizes the distance between the weighted stego image and the
cover image [95]. The weighted stego-image with scalar parameter λ of the image
Z is defined by

∀i ∈ I, z
(λ)
i = (1− λ)zi + λzi, with zi = zi + (−1)zi . (2.34)

The estimator R̂ can be provided by minimizing the Euclidian distance between the
weighed stego-image and the cover image

R̂ = 2 arg min
λ

N∑
i=1

wi
(
z

(λ)
i − ci

)2
, (2.35)

where the normalized weight vector w with
∑N

i=1wi = 1 is taken into account in
the minimization problem (2.35) to reflect the heterogeneity in a natural image. By
solving the root of the first derivative in (2.35), a simplified estimator is given as

R̂ = 2
N∑
i=1

wi(zi − zi)(zi − ci). (2.36)

Since the cover-pixels ci are unknown in advance, a local estimator for each pixel
from its spatial neighborhood can be employed, or more generally, a linear filter D,
to provide an estimate of cover-image: Ĉ = D(Z). The estimator R̂ in (2.36) follows
immediately. From above observations, the choices of an appropriate linear filter
D and weight vector w are crucial for improvement of WS detectors’ performance
[95,103,104].

Both structural detectors and WS detectors are established into quantitative
steganalysis framework, which means that instead of indicating a suspect image Z

is either a cover-image or stego-image, the output of those detectors is a real-value
estimate of the secret message length. In other words, even no secret message is
embedded in the image, i.e. R = 0, we could still obtain a negative or positive value.
Nevertheless, quantitative detectors offer an additional advantage over statistical
detectors, namely that the detection performance can be measured by evaluating
the deviation of the estimator R̂ from the true embedding rate R. Some criteria can
be used as measures of performance such as

• Mean Absolute Error (MAE):

1

Nim

Nim∑
n=1

|R̂n −R|, (2.37)
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where Nim is number of images.

• Median Absolute Error (mAE):

mediann|R̂n −R|. (2.38)

2.5.2.3 Statistical Detectors

In contrast to structural detectors and WS detectors, statistical detectors rely on
changes in statistical properties due to message embedding to detect the presence
of the secret message. The output of statistical detectors is a binary decision. Some
representatives are χ2 detector [105] and Bayesian approach-based detector [106].
Another interesting approach is the one proposed in [107] that is based on the
statistical hypothesis testing theory. To this end, two preliminary assumptions are
given in the following proposition:

Proposition 2.1. In the LSB replacement embedding technique, we assume that

1. The secret message bits are uniformly distributed over the cover-image, namely
that the probability of embedding a message bit into every cover-pixel is iden-
tique. Moreover, message bits and cover pixels are statistically uncorrelated
[107].

2. Secret message bits are independent and identically distributed (i.i.d), and each
message bit mi is drawn from the Binomial distribution B(1, 1

2)

P[mi = 0] = P[mi = 1] =
1

2
, (2.39)

where P[E] denotes the probability that an event E occurs.

Therefore, from the mechanism of LSB replacement, we can see that the probability
that the pixel does not change after embedding is 1− R

2 while the probability that its
LSB is flipped is R

2

P[si = ci] = 1− R

2
and P[si = ci] =

R

2
. (2.40)

Let P0 be the probability distribution of cover-images. Due to message embed-
ding at rate R whose properties are given in Proposition 2.1, the cover image moves
from the probability distribution P0 to a different probability distribution, denoted
PR. Thus the steganalysis problem (2.29) can be rewritten as follows{

H0 : Z ∼ P0

H1 : Z ∼ PR.
(2.41)

Based on the assumption that all pixels are independent and identically distributed,
the authors in [107] have developed two schemes depending on the knowledge of
the probability distribution P0. When the probability distribution P0 is not known,
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the authors study the asymptotically optimal detector (as the number of pixels
N → ∞) according to Hoeffding’s test [108]. When the probability distribution
P0 is known in advance, an optimal detector is given in the sense of Neyman-
Pearson [20, Theorem 3.2.1]. Although the statistical detector proposed in [107]
is interesting from theoretical point of view, its performance in practice is quite
moderate due to the fact that the cover model used in [107] is not sufficiently
accurate to describe a natural image. The assumption of independence between
pixels does not hold since the image structure and the non-stationarity of noises
during image acquisition process are not taken into account.

Some later works [109–114] rely on a simplistic local polynomial model in which
pixel’s expectations are different in order to design a statistical detector, providing
high detection performance compared with structural and WS ones. Far from as-
suming that all the pixels are i.i.d as in [107], those works propose to model each
cover-pixel by the Gaussian distribution, ci ∼ N (µi, σ

2
i ), in order to design the

Likelihood Ratio Test (LRT) in which the Likelihood Ratio (LR) Λ can be given by

Λ(Z) ∝
∑
i

1

σ2
i

(zi − zi)(zi − µi). (2.42)

The LRT is the most powerful test in the sense of Neyman-Pearson approach [20,
Theorem 3.2.1] that can meet simultaneously two criteria of optimality: warranting a
prescribed false alarm probability and maximizing the correct detection probability.
Moreover, the specificity in this approach is to show that the WS detector [102–104]
is indeed a variant of the LRT, which justifies the good detection performance of
such ad hoc detector. Besides, hypothesis testing theory has been also extended to
other complex embedding algorithm, e.g. LSB matching [115,116].

2.5.2.4 Universal Classifiers

Three previous families of detectors are targeted to a specific steganographic algo-
rithm, namely LSB replacement. In other words, these three families work on an
assumption that steganalysts know in advance the embedding algorithm used by the
steganographer. Such scenario may not be realistic in the practical context. Uni-
versal classifiers are employed by steganalysts to work in a blind manner in order to
discriminate stego-images and cover-images. Even though universal classifiers have
lower performance than specific embedding-targeted detectors, they are still impor-
tant because of their flexibility and ability to be adjusted to completely unknown
steganographic methods.

Typically, universal classifiers can be divided into two types: supervised and
unsupervised. Supervised classification [45, 76, 117–120] has been already discussed
in Section 2.3. While supervised classification requires to know in advance the
label of each image (i.e. cover-image or stego-image) and then build a classifier
based on labeled images, unsupervised classification works in a scenario of unlabeled
images and classifies them automatically without user interference. The accuracy of
supervised classifiers is limited if the training data is not perfectly representative of
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cover source, which may result in mismatch problem [121]. Unsupervised classifiers
try to overcome this problem of model mismatch by postponing building a cover
model until the classification stage. However, to the best of our knowledge, there
has not been yet a reliable method dealing with this scenario in steganalysis.

In universal steganalysis, the design of features is of crucial importance. Fea-
tures used for classification should be sensitive to changes caused by embedding, yet
insensitive to variations between covers including also some non-steganographic pro-
cessing techniques. In general, the choice of suitable features and machine learning
tools remains open problems [121].

2.5.3 Steganalysis of Jsteg Algorithm

Like steganalysis of LSB replacement in spatial domain, existing methods for ste-
ganalysis of Jsteg algorithm can be also divided into four categories. Structural
detectors detect the presence of secret message by employing the symmetry of the
histogram of DCT coefficients in natural images, which is disturbed by the op-
eration of Jsteg embedding. Some representative structural detectors are Zhang
and Ping (ZP) detector [122], DCT coefficient-based detector [123], and category
attack [124, 125]. Furthermore, the power of structural detectors can be combined
with theoretically well-founded ML principle [99] or the concept of Zero Message Hy-
pothesis (ZMH) [96]. These two approaches have been formally analyzed in [126].
Similar to structural detectors for steganalysis of LSB replacement technique, the
ZHM framework starts by choosing a feature vector x of the cover-image (e.g. trace
subsets in case of SPA method), establishes the change in the feature vector x due to
embedding algorithm Emb, then inverts embedding effects to provide a hypothetical
feature vector x̂

x̂ = Emb−1(xr, r), (2.43)

where xr is the stego vector and r is the change rate defined as the ratio between
the number of modified DCT coefficients and the maximum number of usable co-
efficients, thus r = R

2 . Using cover assumptions and zero message properties (e.g.
natural symmetry of the histogram of DCT coefficients), an appropriate penalty
function zmh(x) ≥ 0 is defined so that it returns zero on cover features and non-
zero otherwise. Therefore, the change rate estimator r̂ is defined as the solution of
a minimization problem

r̂ = arg min
r≥0

zmh(x̂) = arg min
r≥0

zmh(Emb−1(xr, r)). (2.44)

The minimization in (2.44) can be performed either analytically or numerically by
implementing a one-dimensional gradient-descent search over r. The main interest
in [126] is that all features proposed in [104,122,124,125] have been revisited within
ZHM framework. The detector proposed in [123] has been also improved in [126]
within ML framework using a more accurate model of DCT coefficients, namely
Generalized Cauchy distribution. It can be noted that although ZMH is only a
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heuristic framework and less statistically rigorous than ML framework, it has some
important advantages in terms of low computational complexity and flexibility.

Although Jsteg algorithm replaces LSBs by secret message bits in DCT domain,
the mathematical foundation of WS detectors can be also applied for steganalysis
of Jsteg [127, 128]. Given a vector of AC coefficients D = {D1, D2, . . . , DN}, the
WS-like detector is given by

R̂ ∝
∑
i

wi(Di −Di)Di. (2.45)

The difference between the WS detector in (2.36) and the one in (2.45) is that
the local predictor for cover AC coefficients is omitted since the expected value of
AC coefficients is zero in natural images. The weigh wi for each coefficient Di is
estimated by taking the coefficients at the same location as Di but in four adjacent
blocks. More details were provided in [128].

The hypothesis testing theory was also applied to the steganalysis of Jsteg al-
gorithm. By relying the Laplacian model of DCT coefficients, a statistical test was
designed in [129]. However, a considerable loss of power was revealed due to the fact
that the Laplacian model is not accurate enough to characterize DCT coefficients.

2.6 Conclusion

This chapter discusses the emerging field of digital image forensics consisting of two
main problems: image origin identification and image forgery detection. To address
these problems, active forensic approach has been proposed by generating extrin-
sically fingerprints and adding them into the digital image in the image formation
process, thus creates a trustworthy digital camera. However, active approach is of
limited application due to many strict contraints in its protocols. Therefore, passive
forensic approach has been considerably evolved to help solve these problems in their
entirety. This approach relies on intrinsic traces left by the digital cameras in the
image processing pipeline and by the manipulations themselves to gather forensic
evidence of image origin or forgery. Some intrinsic fingerprints for identification of
image source such as lens aberration, PRNU, CFA pattern and interpolation, and
JPEG compression are reviewed. The task of steganalysis that aims to detect the
mere presence of a secret message in a digital image is also discussed in this chapter.

The state of the art has shown that most of existing methods have been de-
signed within classification framework. Hypothesis testing framework is of limited
exploitation although this framework offers many advantages, namely that the sta-
tistical performance of detectors can be analytically established and a prescribed
false alarm probability can be guaranteed. Besides, existing methods are designed
using simplistic image models, which results in overall poor detection performance.
This thesis focuses on applying the hypothesis testing theory in digital image foren-
sics based on an accurate image model, which is established by modeling the main
steps in the image processing pipeline. These aspects will be discussed in the rest
of the thesis.
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3.1 Introduction

The application of hypothesis testing theory in digital image forensics requires an ac-
curate statistical image model to achieve high detection performance. For instance,
the PRNU-based image origin identification [30,32] takes into account various noise
sources during image acquisition inside a digital camera, which provides an image
model allowing to accurately extract the fingerprint for source identification. An
inaccurate image model will result in a poor detection performance, e.g. in case
of statistical detectors [107, 129]. Therefore in this chapter, the state of the art on
statistical modeling of natural images is reviewed. The statistical image modeling
can be performed either in spatial domain or DCT domain.

The chapter is organized as follows. Section 3.2 analyzes noise statistics in
spatial domain and presents some dominant image models widely used in image
processing. Section 3.3 discusses empirical statistical models of DCT coefficients.
Finally, Section 3.4 concludes the chapter.

3.2 Spatial-Domain Image Model

In this section, we adopt the representation of an arbitrary image Z as a column
vector of length N = Nr×Nc. The representation as a two-dimensional matrix is of
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no interest in the study of statistical noise properties. The index of color channel is
omitted for simplicity. Due to the stochastic nature of noise, a pixel is regarded as
a random variable. Generally, the random variable zi, i ∈ I, can be decomposed as

zi = µzi + ηzi , (3.1)

where I = {1, . . . , N} denotes the set of pixel indices, µzi denotes the expectation
of the pixel zi in the absence of noise, and ηzi accounts for all noise sources that
interfere with the original signal. By convention, µX and σ2

X denote respectively
the expectation and variance of a random variable X. Here, the expectation µzi is
considered deterministic and will not be modeled. However, the expectations differ
from each other due to heterogeneity in a natural image. From (3.1), it is easily
seen that the variance of noise ηzi is equal to the variance of pixel zi, i.e. σ2

zi = σ2
ηzi

.
Some models have been proposed in the literature for the noise ηzi in an un-

compressed image. They can be classified into two groups: signal-independent
and signal-dependent noise models. While signal-independent noise models as-
sume the stationarity of noise in the whole image, regardless original pixel intensity,
signal-dependent noise models take into account the proportional dependence of
noise variance on the original pixel intensity. A typical example for the group of
signal-independent noise is the Additive White Gaussian Noise (AWGN). Besides,
signal-dependent noise includes Poisson noise or film-grain noise [130], Poisson-
Gaussian noise [131, 132], heteroscedastic noise model [133, 134], and non-linear
noise model [135]. Although the AWGN model is widely adopted in image pro-
cessing because of its simplicity, it ignores the contribution of Poisson noise to the
image acquisition chain, which is the case of an image acquired by a digital cam-
era. Noise sources in a natural image are inherently signal-dependent. Therefore,
a signal-dependent noise model is more expected to be employed in further appli-
cations. Since our works mainly focus on signal-dependent noise, only the group of
signal-dependent noise models are discussed in this section.

3.2.1 Poisson-Gaussian and Heteroscedastic Noise Model

The study of noise statistics requires to take into account the impact of Poisson
noise related to the stochastic nature of photon-counting process and dark current
[131–134, 136]. Let ξi denote the number of collected electrons with respect to the
pixel zi. The number of collected electrons ξi follows the Poisson distribution with
mean λi and variance λi

ξi ∼ P(λi). (3.2)

This Poisson noise results in the dependence of noise variance on original pixel
intensity. The number of collected electrons is further degraded by the AWGN
read-out noise ηr with variance ω2. Therefore, the RAW image pixel recorded by
the image sensor can be defined as [136]

zi = a ·
(
ξi + ηr

)
, (3.3)
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where a is the analog gain controlled by the ISO sensitivity. This leads to the
statistical distribution of the RAW pixel zi

zi ∼ a ·
[
P(λi) +N (0, ω2)

]
. (3.4)

This model is referred to as Poisson-Gaussian noise model [131,132]. One interesting
property of this model is the linear relation of pixel’s expectation and variance.
Taking mathematical expectation and variance from (3.4), we obtain

µzi = E[zi] = a · λi, (3.5)

σ2
zi = Var[zi] = a2 · (λi + ω2), (3.6)

where E[X] and Var[X] denote respectively the mathematical expectation and vari-
ance with respect to a random variable X. Consequently, the heteroscedastic rela-
tion is derived as

σ2
zi = a · µzi + b, (3.7)

where b = a2ω2.
In some image sensors, the collected electrons ξi may be added by a base pedestal

parameter p0 to constitute an offset-from-zero of the output pixel [133]

zi ∼ a ·
[
p0 + P(λi − p0) +N (0, ω2)

]
. (3.8)

Hence, the parameter b is now given by b = a2ω2 − a2p0. Therefore, the parameter
b can be negative when p0 > ω2.

To facilitate the application of this signal-dependent noise model, some works
[133,134] have attempted to approximate the Poisson distribution by the Gaussian
distribution in virtue of a large number of collected electrons

P(λi) ≈ N (λi, λi). (3.9)

In fact, for λi ≥ 50, the Gaussian approximation is already very accurate [133]
while full-well capacity is largely above 100000 electrons. Finally, the statistical
distribution of the RAW pixel zi can be approximated as

zi ∼ N
(
µzi , a · µzi + b

)
. (3.10)

This model is referred to as heteroscedastic noise model in [134]. The term "het-
eroscedasticity" means that each pixel exposes a different variability with the other.

Both Poisson-Gaussian and heteroscedastic noise models are more accurate to
characterize a RAW image than the conventional AWGN, but they do not take
into account yet non-linear post-acquisition operations. Therefore, they are not
appropriate for modeling a TIFF or JPEG image. Besides, it should be noted
that the Poisson-Gaussian and heteroscedastic noise model assume that the effect
of PRNU is negligible, namely that all the pixels respond to the incident light
uniformly. The very small variation in pixel’s response does not strongly affect its
statistical distribution [136].
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3.2.2 Non-Linear Signal-Dependent Noise Model

To establish a statistical model of a natural image in TIFF or JPEG format, it is
necessary to take into account effects of post-acquisition operations in the image
processing pipeline. However, as discussed in Section 2.2, the whole image pro-
cessing pipeline is not as simple. Some processing steps that are implemented in
a digital camera are difficult to model parametrically. One approach is to con-
sider the digital camera as a black box in which we attempt to establish a relation
between input irradiance and output intensity. This relation is called Camera Re-
sponse Function (CRF), which is described by a sophisticated non-linear function
fCRF(·) [137]. Gamma correction might be the simplest model for the CRF with
only one parameter. Other parametric models have been proposed for CRF such as
polynomial model [137] or generalized gamma curve model [138].

Therefore, the pixel zi can be formally defined as [135,139]

zi = fCRF

(
Ei + ηEi

)
, (3.11)

where Ei denotes the image irradiance and ηEi accounts for all signal-independent
and signal-dependent noise sources. We can note that although some methodologies
have been proposed for estimation of CRF [50, 137, 140], it is also difficult to study
noise statistics with those sophisticated models.

To facilitate the study of noise statistics, the authors in [135] exploit the first
order of Taylor’s series expansion

zi = fCRF

(
Ei + ηEi

)
≈ fCRF

(
Ei
)

+ f ′CRF

(
Ei
)
ηEi , (3.12)

where f ′CRF denotes the first derivative of the CRF fCRF. Therefore, a relation
between noises before and after transformation by the CRF is obtained

ηzi = f ′CRF

(
Ei
)
ηEi . (3.13)

It can be noted that even when noise before transformation is independent of the
signal, the non-linear transformation fCRF generates a dependence between pixel’s
expectation and variance.

Based on experimental observations, the authors in [135] obtain a non-linear
parametric model

zi = µzi + µγ̃zi · ηu, (3.14)

where ηu is zero-mean stationary Gaussian noise, ηu ∼ N (0, σ2
ηu), and γ̃ is an

exponential parameter to account for the non-linearity of the camera response. Here,
taking variance on the both sides of (3.14), we obtain

σ2
zi = µ2γ̃

zi · Var[ηu] = µ2γ̃
zi · σ

2
ηu . (3.15)

In this model, the pixel zi still follows the Gaussian distribution and the noise
variance σ2

ηzi
is non-linearly dependent on the original pixel intensity µzi

zi ∼ N
(
µzi , µ

2γ̃
zi · σ

2
ηu

)
. (3.16)

This model allows to represent several kinds of noise such as film-grain, Poisson
noise by changing the parameters γ̃ and σ2

ηu (e.g γ̃ = 0.5).
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3.3 DCT Coefficient Model

3.3.1 First-Order Statistics of DCT Coefficients

Apart from modeling an image in the spatial domain, many researches attempt to
model it in the DCT domain since the DCT is a fundamental operation in JPEG
compression. The model of DCT coefficients has been considerably studied in the
literature. However, a majority of DCT coefficient models has just been proposed
without giving any mathematical foundation and analysis. Many researches focus
on comparing the empirical data with a variety of popular statistical models by
conducting the goodness-of-fit (GOF) test, e.g. the Kolmogorov-Smirnov (KS) or χ2

test. Firstly, the Gaussian model for the DCT coefficients was conjectured in [141].
The Laplacian model was verified in [142] by performing the KS test. This Laplacian
model remains a dominant choice in image processing because of its simplicity and
relative accuracy. Other possible models such as Gaussian mixture [143] and Cauchy
[144] were also proposed. In order to model the DCT coefficients more accurately, the
previous models were extended to the generalized versions including the Generalized
Gaussian (GG) [145] and the Generalized Gamma (GΓ) [146] models. It has been
recently reported in [146] that the GΓ model outperforms the Laplacian and GG
model. Far from giving a mathematical foundation of DCT coefficient model, these
empirical models were only verified using GOF test on a few standard images. Thus,
they can not guarantee the accuracy of the chosen model to a wide range of images,
which leads to a lack of robustness.

The first mathematical analysis for DCT coefficients is given in [147]. It re-
lies on a doubly stochastic model combining DCT coefficient statistics in a block
whose variance is constant with the variability of block variance in a natural image.
However, this analysis is incomplete due to the lack of mathematical justification
for the block variance model. Nevertheless, it has shown an interest for further
improvements. Therefore, here we provide a discussion about this mathematical
foundation.

Let I denote AC coefficient and σ2
blk denote block variance. The DC coefficient

is not addressed in this work [147]. The index of frequency is omitted for the sake
of clarity. Using the conditional probability, the doubly stochastic model is given
by

fI(x) =

∫ ∞
0

fI|σ2
blk

(x|t)fσ2
blk

(t)dt x ∈ R, (3.17)

where fX(x) denotes the probability density function (pdf) of a random variable
X. This doubly stochastic model can be considered as infinite mixture of Gaussian
distributions [148, 149]. From the establishment of DCT coefficients in (2.11), it is
noted that each DCT coefficient is a weighted sum of random variables. If the block
variance σ2

blk is constant, the AC coefficient I can be approximated as a zero-mean
Gaussian random variable based on the Central Limit Theorem (CLT)

fI|σ2
blk

(x|t) =
1√
2πt

exp
(
− x2

2t

)
. (3.18)
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Even though the pixels are spatially correlated in a 8× 8 block due to demosaicing
algorithms implemented in a digital camera, the CLT can still be used for Gaussian
approximation of a sum of correlated random variables [150]. It remains to find the
pdf of σ2

blk to derive the final pdf of the AC coefficient I. To this end, it was reported
in [147] that from experimental observations, the block variance σ2

blk can be modeled
by exponential or half-Gaussian distribution. These two distributions can lead to
the Laplacian distribution for the DCT coefficient I [147]. However, as stated above,
due to the fact that the pdf of block variance σ2

blk is not mathematically justified,
this mathematical framework is incomplete.

3.3.2 Higher-Order Statistics of DCT Coefficients

The above discussion only considers the first-order statistics (i.e. histogram) of
DCT coefficients. The DCT coefficients at the same frequency are collected and
treated separately. An implicite assumption adopted in this procedure is that the
DCT coefficients at the same frequency are i.i.d realizations of a random variable.
However, this is not always true in a natural image because DCT coefficients exhibit
dependencies (or correlation) between them. There are two fundamental kinds of
correlation between DCT coefficients [151], which have been successfully exploited
in some applications [126,151,152]

1. intra-block correlation: A well-known feature of DCT coefficients in a natural
image is that the magnitudes of AC coefficients decrease as the frequency
increases along the zig-zag order. This correlation reflects the dependence
between DCT coefficients within a same 8×8 block. Typically, this correlation
is weak since coefficients at different frequencies correspond to different basis
functions.

2. inter-block correlation: Although the DCT base can provide a good decorre-
lation, resulting coefficients are still correlated slightly with their neighbors at
the same frequency. We refer this kind of correlation as inter-block correlation.

In general, the correlation between DCT coefficients could be captured by adjacency
matrix [126].

3.4 Conclusion

This chapter reviews some statistical image models in spatial domain and DCT do-
main. In spatial domain, two groups of signal-independent and signal-dependent
noise models are discussed. From above statistical analysis, we can draw an im-
portant insight: noise in natural images is inherently signal-dependent. In DCT
domain, some empirical models of DCT coefficient are presented. However, most
of DCT coefficient models are given without mathematical justification. It is still
necessary to establish an accurate image model that can be exploited in further
applications.
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4.1 Introduction

Chapter 3 has presented an overview on statistical modeling of natural images in
spatial domain and DCT domain. Most of existing models in the literature were
provided empirically. The goal of this chapter is to establish a mathematical frame-
work of studying statistical properties of natural images along image processing
pipeline of a digital camera. The study is performed in spatial domain and DCT
domain. In the spatial domain, the heteroscedastic noise model is firstly recalled,
and a method for estimating the parameters of the heteroscedastic noise model fol-
lowing the Weighted Least Square (WLS) approach is proposed in Section 4.2. The
analytic establishment of WLS estimates allows us to study their statistical proper-
ties, which is of importance for designing statistical tests. The WLS estimation of
parameters (a, b) has been presented in [134].

Next, Section 4.3 presents the study of noise statistics in a TIFF image by
starting from the heteroscedastic noise model and take into account the effect of
gamma correction, resulting in the generalized signal-dependent noise model. It is
shown that the generalized noise model is also relevent to characterize JPEG images
with moderate-to-high quality factors (Q ≥ 70). This section also proposes a method
that can estimate the parameters of the generalized noise model accurately from a
single image. Numerical results on a large image database show the relevance of the
proposed method. The generalized noise model could be useful in many applications.
A direct application for image denoising is proposed in this section. The foundation
of generalized noise model and estimation of model parameters have been presented
in [153].

Section 4.4 describes the mathematical framework of modeling the statistical
distribution of DCT coefficients. To simplify the study, the approach is based on
the main assumption that the pixels are identically distributed (not necessarily in-
dependent) within a 8× 8 block. Consequently, the statistical distribution of block
variance can be approximated, thus the model of unquantized DCT coefficients is
provided. Moreover, it is proposed to take into account the quantization operation
to provide a final model of quantized DCT coefficients. The parameters of DCT
coefficient model can be estimated following the ML approach. Numerical results
show that the proposed model outperforms other existing models including Lapla-
cian, GG, and GΓ model. Section 4.5 concludes the chapter. The foundation of
DCT coefficient model has been presented in [154].

4.2 Statistical Modeling of RAW Images

4.2.1 Heteroscedastic Noise Model

The RAW image acquisition has been discussed in Section 2.2.1. Let Z = (zi)i∈I
denote a RAW image acquired by the image sensor. Typically, the model of RAW
pixel consists of a Poissonian part that addresses the photon shot noise and dark
current and a Gaussian part for the remaining stationary disturbances, e.g. read-



4.2. Statistical Modeling of RAW Images 51

estimated expectation: µ̂k

es
ti
m
at
ed

va
ri
an

ce
:
σ̂

2 k

0 0.05 0.1 0.15 0.2 0.250

0.4

0.8

1.2

1.6

2 ×10−5

Nikon D70: Estimated data
Nikon D70: Fitted data
Nikon D200: Estimated data
Nikon D200: Fitted data

Figure 4.1: Scatter-plot of pixels’ expectation and variance from a natural RAW
image with ISO 200 captured by Nikon D70 and Nikon D200 cameras. The image
is segmented into homogeneous segments. In each segment, the expectation and
variance are calculated and the parameters (a, b) are estimated as proposed in Sec-
tion 4.2.2. The dash line is drawn using the estimated parameters (a, b). Only the
red channel is used in this experiment.

out noise. For the sake of simplification, the Gaussian approximation of the Poisson
distribution can be exploited because of a large number of collected electrons, which
leads to the heteroscedastic noise model [133,134]

zi ∼ N
(
µi, aµi + b

)
, (4.1)

where µi denotes the expectation of the pixel zi. The heteroscedastic noise model,
which gives the noise variance as a linear function of pixel’s expectation, charac-
terizes a RAW image more accurately than the conventional AWGN model. The
heteroscedastic noise model (4.1) is illustrated in Figure 4.1. It is assumed that the
noise corrupting each RAW pixel is statistically independent of those of neighbor
pixels [133, 136]. In this section it is assumed that the phenomenon of clipping is
absent from a natural RAW image for the sake of simplification, i.e. the probability
that one observation zi exceeds over the boundary 0 or B = 2ν−1 is negligible. More
details about the phenomenon of clipping are given in [133,155] and in Chapter 8.

In practice, the PRNU weakly affects the parameter a in the heteroscedastic
noise model (4.1). Nevertheless, in the problem of camera model identification, the
PRNU is assumed to be negligible, i.e. the parameter a remains constant for every
pixel.
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4.2.2 Estimation of Parameters (a, b) in the Heteroscedastic Noise
Model

Estimation of noise model parameters can be performed from a single image or
multiple images. From a practical point of view, we mainly focus on noise model
parameter estimation from a single image. Several methods have been proposed
in the literature for estimation of signal-dependent noise model parameters, see
[133–135, 139, 156]. They rely on similar basic steps but differ in details. The
common methodology starts from obtaining local estimates of noise variance and
image content, then performing the curve fitting to the scatter-plot based on the
prior knowledge of noise model. The existing methods involve two main difficulties:
influence of image content and spatial correlation of noise in a natural image. In
fact, homogeneous regions where local expectations and variances are estimated
are obtained by performing edge detection and image segmentation. However, the
accuracy of those local estimates may be contaminated due to the presence of outliers
(textures, details and edges) in the homogeneous regions. Moreover, because of
the spatial correlation between pixels, the local estimates of noise variance can be
overestimated. Overall, the two difficulties may result in inaccurate estimation of
noise parameters.

For the design of subsequent tests, the parameters (a, b) should be estimated
following the ML approach and statistical properties of ML estimates should be
analytically established. One interesting method is proposed in [133] for ML es-
timation of parameters (a, b). However, that method can not provide an analytic
expression of ML estimates due to the difficulty of resolving the complicated sys-
tem of partial derivatives. Therefore, ML estimates are only numerically solved by
using the Nelder-Mead optimization method [157]. Although ML estimates given
by that method are relatively accurate, they involve three main drawbacks. First,
the convergence of the maximization process and the sensitivity of the solution to
initial conditions have not been analyzed yet. Second, the Bayesian approach used
in [133] with a fixed uniform distribution might be doubtful in practice. Finally, it
seems impossible to establish statistical properties of the estimates.

This section proposes a method for estimation of parameters (a, b) from a single
image. The proposed method relies on the same technique of image segmentation
used in [133] in order to obtain local estimates in homogeneous regions. Subse-
quently, the proposed method is based on the WLS approach to take into account
heteroscedasticity and statistical properties of local estimates. One important ad-
vantage is that WLS estimates can be analytically provided, which allows us to
study statistical properties of WLS estimates. Moreover, the WLS estimates are
asymptotically equivalent to the ML estimates in large samples when the weights
are consistently estimated, as explained in [158,159].
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4.2.2.1 WLS Estimation

The RAW image Z is first transformed into the wavelet domain and then seg-
mented into K non-overlapping homogeneous segments, denoted Sk, of size nk,
k ∈ {1, . . . ,K}. The readers are referred to [133] for more details of segmen-
tation technique. In each segment Sk, pixels are assumed to be i.i.d, thus they
have the same expectation and variance. Let zwapp

k = (zwapp
k,i )i∈{1,...,nk} and

zwdet
k = (zwdet

k,i )i∈{1,...,nk} be respectively the vector of wavelet approximation co-
efficients and wavelet detail coefficients representing the segment Sk. Because the
transformation is linear, the coefficients zwapp

k,i and zwdet
k,i also follow the Gaussian

distribution

zwapp
k,i ∼ N

(
µk, ‖ϕ‖22 σ2

k

)
, (4.2)

zwdet
k,i ∼ N

(
0, σ2

k

)
, (4.3)

where µk denotes expectation of all pixels in the segment Sk, σ2
k = aµk + b, and ϕ

is the 2-D normalized wavelet scaling function. Hence, the ML estimates of local
expectation µk and local variance σ2

k are given by

µ̂k =
1

nk

nk∑
i=1

zwapp
k,i , (4.4)

σ̂2
k =

1

nk − 1

nk∑
i=1

(
zwdet
k,i − zwdet

k

)2
, with zwdet

k =
1

nk

nk∑
i=1

zwdet
k,i . (4.5)

The estimate µ̂k is unbiased and follows the Gaussian distribution

µ̂k ∼ N
(
µk,
‖ϕ‖22
nk

σ2
k

)
, (4.6)

while the estimate σ̂2
k follows a scaled chi-square distribution with nk − 1 degrees

of freedom. This distribution can also be accurately approximated as the Gaussian
distribution for large nk [160]:

σ̂2
k ∼ N

(
σ2
k,

2

nk − 1
σ4
k

)
, (4.7)

Figure 4.1 illustrates a scatter-plot of all the pairs {(µ̂k, σ̂2
k)} extracted from real

natural RAW images of Nikon D70 and Nikon D200 cameras.
The parameters (a, b) are estimated by considering all the pairs {(µ̂k, σ̂2

k)}Kk=1

where the local variance σ̂2
k is treated as a heteroscedastic model of the local expec-

tation µ̂k. This model is formulated as follows

σ̂2
k = aµ̂k + b+ skεk, (4.8)

where εk are independent and identically distributed as standard Gaussian variable
and sk is a function of local mean µk. A direct calculation from (4.8) shows that

s2
k = Var

[
σ̂2
k

]
− Var

[
aµ̂k + b

]
=

2

nk − 1
σ4
k − a2 ‖ϕ‖22

nk
σ2
k =

2

nk − 1
(aµk + b)2 − a2 ‖ϕ‖22

nk
(aµk + b). (4.9)
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The heteroscedasticity in the model (4.8) is governed by different residuals sk. The
modeling in (4.8) also takes into account stochastic errors associated with estimation
of local estimates µ̂k and σ̂2

k. It can be noted that the residuals sk can not be defined
since the parameters µk and (a, b) are unknown in practice. In order to apply WLS
approach, a popular strategy is to first perform the Ordinary Least Squares (OLS)
approach to obtain initial estimates of the parameters (a, b) allowing to provide
the estimates ŝ2

k, then utilize the weights ŵk = 1
ŝ2k

for WLS estimation. The OLS

estimates (âL, b̂L) are given by [161]:(
âL

b̂L

)
= (HTH)−1HTυ, (4.10)

where

H =

 µ̂1 1
...

...
µ̂K 1

 , and υ =

 σ̂2
1
...
σ̂2
K

 ,

where HT and H−1 are the transpose and inverse of the matrix H, respectively.
Therefore, the consistent estimates ŝ2

k can be directly computed as

ŝ2
k =

2

nk − 1
(âLµ̂k + b̂L)2 − â2

L

‖ϕ‖22
nk

(âLµ̂k + b̂L). (4.11)

By using the estimated weights ŵk = 1
ŝ2k
, the WLS estimates (â, b̂) are given by

(
â

b̂

)
= (HTWH)−1HTWυ, (4.12)

where W = diag(ŵ1, . . . , ŵK) is the diagonal weight matrix.

4.2.2.2 Statistical Properties of WLS Estimates

As discussed above, the analytic establishment of WLS estimates (â, b̂) allows us to
study their statistical properties. According to [158, 159], the WLS estimates (â, b̂)

are consistent and follow the bivariate Gaussian distribution(
â

b̂

)
∼ N

((
a

b

)
,

(
σ2
a σab

σab σ2
b

))
, (4.13)

where σ2
a, σ2

b , σab denote respectively the variance of â, the variance of b̂ and the
covariance between â and b̂. The covariance matrix also needs to be defined.

From (4.12), the WLS estimates (â, b̂) can be alternatively written as

â =

∑K
k=1 ŵk(µ̂k − µ̂)σ̂2

k∑K
k=1 ŵk(µ̂k − µ̂)2

and b̂ = σ̂
2 − âµ̂, (4.14)
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where µ̂ is the weighted mean and σ̂
2
is the weighted variance

µ̂ =

∑K
k=1 ŵkµ̂k∑K
k=1 ŵk

and σ̂
2

=

∑K
k=1 ŵkσ̂

2
k∑K

k=1 ŵk
. (4.15)

For brevity, let denote

U1 =

K∑
k=1

ŵk(µ̂k − µ̂)σ̂2
k and U2 =

K∑
k=1

ŵk(µ̂k − µ̂)2, (4.16)

such that â = U1/U2. It is proposed to study statistical properties of U1 and U2,
then employ the Delta method in Lemma A.3 to calculate the covariance matrix.

It can be noted that µ̂k and σ̂2
k are mutually independent due to the orthogonality

of the wavelets [133]. Moreover, the pair (µ̂i, σ̂2
i ) and (µ̂j , σ̂2

j ) are also mutually
independent because the corresponding segment Si and Sj are non-overlapping.
These observations can facilitate the study of covariance matrix.

Because (âL, b̂L) are the consistent estimates of (a, b), i.e. they asymptotically
converge in probability to their true value: âL

p→ a and b̂L
p→ b, from the Continuous

Mapping Theorem [20, theorem 11.2.13], we can derive ŵk
p→ wk. It follows from

the Slutsky’s Theorem [20, theorem 11.2.11] that

µ̂
d→ N

µ, ∑K
k=1w

2
k
‖ϕ‖22
nk

σ2
k(∑K

k=1wk

)2

 , (4.17)

σ̂
2 d→ N

σ2,

∑K
k=1w

2
k

2
nk−1σ

4
k(∑K

k=1wk

)2

 , (4.18)

where

µ =

∑K
k=1wkµk∑K
k=1wk

, (4.19)

σ2 =

∑K
k=1wkσ

2
k∑K

k=1wk
= aµ+ b. (4.20)

Based on the linearity property of the Gaussian distribution, from (4.6) and (4.17),
it is easily shown that

µ̂k − µ̂ ∼ N
(
µk − µ,

‖ϕ‖22
nk

σ2
k + Var

[
µ̂
])
, (4.21)

where Var
[
µ̂
]
is given in (4.17). Combining (4.7) and (4.21), a direct calculation

yields to

E
[
(µ̂k − µ̂)σ̂2

k

]
= (µk − µ)σ2

k (4.22)

Var
[
(µ̂k − µ̂)σ̂2

k

]
= σ4

k

[ 2

nk − 1
(µk − µ)2 +

‖ϕ‖22
nk

σ2
kVar

[
µ̂
]]

+ o(n−2
k ), (4.23)
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where the notation x = o(y), with y > 0, means that x
y tends to 0 as y tends to 0.

Hence, the mathematical expectation and variance of U1 can be given by

E
[
U1

]
=

K∑
k=1

wk(µk − µ)σ2
k, (4.24)

Var
[
U1

]
=

K∑
k=1

w2
kσ

4
k

[ 2

nk − 1
(µk − µ)2 +

‖ϕ‖22
nk

σ2
k + Var

[
µ̂
]]
. (4.25)

From (4.21), based on the definitions of the mathematical expectation and the
variance, one obtains

E
[
(µ̂k − µ̂)2

]
= (µk − µ)2 +

‖ϕ‖22
nk

σ2
k + Var

[
µ̂
]
, (4.26)

Var
[
(µ̂k − µ̂)2

]
= 4(µk − µ)2

(‖ϕ‖22
nk

σ2
k + Var

[
µ̂
])

+ o(n−2
k ). (4.27)

Hence, the mathematical expectation and variance of U2 are given by

E
[
U2

]
=

K∑
k=1

wk

[
(µk − µ)2 +

‖ϕ‖22
nk

σ2
k + Var

[
µ̂
]]
, (4.28)

Var
[
U2

]
=

K∑
k=1

4w2
k(µk − µ)2

(‖ϕ‖22
nk

σ2
k + Var

[
µ̂
])
. (4.29)

On the other hand, from the definition of the covariance, a direct calculation
yields to

Cov
[
(µ̂k − µ̂)σ̂2

k, (µ̂k − µ̂)2
]

= E
[
(µ̂k − µ̂)3σ̂2

k

]
− E

[
(µ̂k − µ̂)σ̂2

k

]
E
[
(µ̂k − µ̂)2

]
= σ2

kE
[
(µ̂k − µ̂)3

]
− σ2

kE
[
(µ̂k − µ̂)

]
E
[
(µ̂k − µ̂)2

]
= 2σ2

k(µk − µ)
(‖ϕ‖22
nk

σ2
k + Var

[
µ̂
])
. (4.30)

Hence, the covariance between U1 and U2 can be given by

Cov
[
U1, U2

]
=

K∑
k=1

w2
kCov

[
(µ̂k − µ̂)σ̂2

k, (µ̂k − µ̂)2
]

=
K∑
k=1

2w2
kσ

2
k(µk − µ)

(‖ϕ‖22
nk

σ2
k + Var

[
µ̂
])
. (4.31)

Therefore, from the Delta method in Lemma A.3 the variance σ2
a can be approx-

imated as

σ2
a = Var

[
U1

U2

]

=
Var

[
U1

]
E2
[
U2

] − 2E
[
U1

]
E3
[
U2

]Cov
[
U1, U2

]
+

E2
[
U1

]
E4
[
U2

]Var
[
U2

]
+
(( K∑

k=1

n2
k

)−2)
. (4.32)
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Additionally, the variance σ2
b and the covariance σab are given by

σ2
b = Var

[
σ̂

2 − âµ̂
]

= Var
[
σ̂

2
]

+ a2Var
[
µ̂
]

+ µ2σ2
a + σ2

aVar
[
µ̂
]

(4.33)

σab = Cov
[
â, σ̂

2 − âµ̂
]

= −µσ2
a. (4.34)

4.3 Statistical Modeling of TIFF Images

4.3.1 Generalized Noise Model

To establish a model of TIFF images, it is proposed to start from the heteroscedastic
noise model (4.1) and take into account the effects of post-acquisition operations in
the image processing pipeline. For the sake of simplicity, the operations of demo-
saicing and white-balancing are assumed to be linear (see more details in Section
2.2.2), i.e. a white-balanced pixel, say żi, can be written as: żi = $zi where $ is a
factor representing the effects of demosaicing and white-balancing. Therefore, from
(4.1), it is easily shown that the white-balanced pixel żi also follows the Gaussian
distribution

żi ∼ N
(
µ̇i, ãµ̇i + b̃

)
, with ã = $a and b̃ = $2b, (4.35)

where µ̇i denotes the expectation of the white-balanced pixel żi. The relation be-
tween the expectation and variance of the white-balanced pixel żi remains linear.

The gamma correction is defined by the element-wise power-law expression z̈i = ż
1
γ

i .
By applying the change of variables theorem, the pdf of the gamma-corrected pixel
z̈i is given by

fz̈i(t) =
γtγ−1√

2π(ãµ̇i + b̃)
exp

(
− (tγ − µ̇i)2

2(ãµ̇i + b̃)

)
. (4.36)

It is desirable to establish the relation between expectation and variance of the
gamma-corrected pixel z̈i. Equivalently, Equation (4.35) can be rewritten as

żi = µ̇i + ηżi , with ηżi ∼ N (0, ãµ̇i + b̃), (4.37)

where ηżi accounts for zero-mean signal-dependent Gaussian noise after white-
balancing. Therefore, the gamma-corrected z̈i is given by

z̈i = ż
1
γ

i = (µ̇i + ηżi)
1
γ = µ̇

1
γ

i

(
1 +

ηżi
µ̇i

) 1
γ
. (4.38)

By using the Taylor’s series expansion of (1 + x)
1
γ at x = 0, it follows that

z̈i = µ̇
1
γ

i +
1

γ
µ̇

1
γ
−1

i ηżi + o
(ηżi
µ̇i

)
≈ µ̈i +

1

γ
µ̈1−γ
i ηżi , (4.39)

where µ̈i = µ̇
1
γ

i is the expectation of the gamma-corrected pixel z̈i. Taking math-
ematical expectation and variance on the both sides of the equation (4.39), the
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Figure 4.2: Scatter-plot of pixels’ mean and variance from JPEG images with ISO
200 issued from Nikon D70 and Nikon D200 cameras. The red channel is used in
this experiment. The image is segmented into homogeneous segments to estimate
local means and variances. The generalized noise model is used to fit to the data.

relation between gamma-corrected pixel’s expectation and variance is given as

σ̈2
i =

1

γ2
µ̈2−2γ
i Var

[
η2
żi

]
=

1

γ2
µ̈2−2γ
i (ãµ̈γi + b̃). (4.40)

If the camera exports the output image in TIFF format, the gamma-corrected
image undergoes the quantization Qκ with step κ in the image acquisition pipeline.
It should be noted that if the camera exports output image in JPEG format, the
quantization operation is assumed to be performed after operations in the DCT
domain. Under mild assumptions [162], the quantization noise can be modeled as an
additive noise that is uniformly distributed on the interval

[
− κ

2 ,
κ
2

]
and uncorrelated

with the input signal. Therefore, the output TIFF pixel z̃i can be defined as

z̃i = z̈i + ηQκ (4.41)

where ηQκ denotes the quantization noise. The variance of the uniformly-distributed
quantization noise is κ2

12 . Taking into account this variance, the generalized noise
model in a TIFF image is derived as

σ̃2
i = Var

[
z̈i

]
+ Var

[
ηQκ

]
=

1

γ2
µ̃2−2γ
i (ãµ̃γi + b̃) +

κ2

12
, (4.42)

where µ̃i = µ̈i since the quantization noise ηQκ is zero-mean. For the sake of
simplification, it is assumed that the quantization step is unitary, i.e. κ = 1. Now let
denote the generalized noise model (4.42) by the function fgen: σ̃2

i = fgen(µ̃i; ã, b̃, γ).
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Since this generalized noise model also accounts for heteroscedasticity of noise, it is
more appropriate to characterize a natural image in TIFF format than existing non-
linear models used in [135, 156]. The impact of JPEG compression is discussed in
Section 4.3.4. It is shown that the generalized noise model (4.42) is also relevant for
JPEG images with moderate-to-high quality factors. The generalized noise model
(4.42) for natural JPEG images is illustrated in Figure 4.2.

4.3.2 Estimation of Parameters (ã, b̃) in the Generalized Noise
Model

The generalized noise model (4.42) is non-linear, which causes a difficulty of esti-
mating noise model parameters. When the gamma factor γ is known in advance,
an obvious approach is to invert the gamma correction for obtaining again the het-
eroscedastic relation (4.35), and then perform the WLS estimation as proposed in
4.2.2. Unfortunately, this approach leads to many problems in practice [163]. Firstly,
the value of γ can not be known. One method for estimation of gamma factor γ
blindly without calibration information or knowledge of imaging device was pro-
posed in [50]. However the stability of this method on a large real image database
is still questioned. Secondly, even when the value of γ is exactly known, the effect
of the quantization Qκ makes the inversion of the gamma correction ill-conditioned.
Finally, this non-linear inversion would introduce artefacts into the signal, which
prevents from obtaining a subsequent good estimation of parameters. Therefore,
the goal of this section is to develop a method that estimate the model parameters
by working directly on the non-linear generalized noise model (4.42).

The proposed method consists of three fundamental steps: edge detection, im-
age segmentation, and ML estimation of parameters. Edge detection and image
segmentation aim at detecting homogeneous blocks and partition the image into
non-overlapping homogeneous segments in which the pixels are assumed to be i.i.d.
Thus local expectations and local variances in each segment can be calculated, al-
lowing to estimate noise model parameters simultaneously.

4.3.2.1 Edge Detection and Image Segmentation

Let Z̃ be a two-dimensional matrix representing a natural image. Firstly, an es-
timation of image structure is performed using a denoising filter D: Z̃app = D(Z̃)

where Z̃app is an approximate image structure. The residual image Z̃res, which is the
difference between the noisy image Z̃ and the denoised image Z̃app, is further used
to estimate local noise variances. Since it is desirable that the proposed method
can be further applied on JPEG images, and JPEG compression works separately
on each 8×8 block, it is proposed to decompose the image Z̃ (accordingly Z̃app and
Z̃res) into 64 vectors of pixels z̃l = (z̃l,1, . . . , z̃l,Nblk

), where l ∈ {1, . . . , 64} denotes
the location index in the 8 × 8 grid and Nblk is the number of blocks. Therefore,
the vector z̃l contains all the pixels at the same location of the 8 × 8 grid and the
pixels (z̃1,u, . . . , z̃64,u) are in the same block u.
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For edge detection, instead of identifying pixels at which a local discontinuity
exists, the approach aims to identify if a 8× 8 block is homogeneous or contains an
edge or discontinuity. To this end, the standard deviation of each block is calculated
and compared with a threshold ϑ. The median of absolute deviations (MAD), which
is considered as a robust estimator of standard deviation [164], is employed for the
calculation of standard deviation

MAD(x1, . . . , xn) = mediani

(
|xi −medianj(xj)|

)
. (4.43)

Therefore, the standard deviation of block u is calculated in the DCT domain as
follows

ςu = 1.4826 ·MAD
(

DCT
(
z̃app

1,u , . . . , z̃
app
64,u

))
, (4.44)

where 1.4826 is the scaling factor to make the estimator unbiased [133]. Here, the
denoised image Z̃app is employed instead of the noisy image Z̃ because the noise may
contaminate the calculation of standard deviation. Moreover, only 63 AC coefficients
are used in (4.44). The DC coefficient is excluded. The block u is selected if the
standard deviation ςu is smaller than the threshold ϑ. Hence the set of homogeneous
blocks is defined by

Shomo =
{

1 ≤ u ≤ Nblk : ςu ≤ ϑ
}
. (4.45)

After detecting homogeneous blocks, it is proposed to use only a sub-image z̃l
for partitioning into K non-overlapping segments. Each segment S̃k, k ∈ {1, . . . ,K}
is defined by

S̃k =
{
z̃l,u : z̃app

l,u ∈
[
tk −

κk
2
, tk +

κk
2

[
, u ∈ Shomo

}
. (4.46)

In other words, the dynamic range of the image is uniformly divided into K intervals
of length ∆k. The number of segments K is set to the number of quantization levels,
e.g. K = 2ν and κk = 1. For the sake of clarity, the pixel in each segment S̃k is
now denoted as z̃k,i, i ∈ {1, . . . , ñk} where ñk is the number of pixels in segment S̃k.
Analogously, z̃app

k,i and z̃res
k,i denote respectively its denoised value and residual value.

4.3.2.2 Maximum Likelihood Estimation

Consequently, the estimates of local expectation and local variance in each segment
S̃k are given by

ˆ̃µk =
1

ñk

ñk∑
i=1

z̃app
k,i (4.47)

ˆ̃σ2
k =

1

ñk − 1

ñk∑
i=1

(z̃res
k,i − z̃

res
k )2 with z̃res

k =
1

ñk

ñk∑
i=1

z̃res
k,i . (4.48)

Because the local estimate ˆ̃µk is calculated as the average of all denoised value in
each segment, it is assumed that its variance is negligible when the number of pixels
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is large, i.e. the local mean ˆ̃µk is very close to the true value µ̃k: ˆ̃µk ∼= µ̃k where
µ̃k is the expectation of all pixels in the segment S̃k. Meanwhile, the variance of
ˆ̃σ2
k is more crucial and needs to be treated carefully. In virtue of Lindeberg CLT,

for a very large number of pixels ñk, the local variance ˆ̃σ2
k follows the Gaussian

distribution
ˆ̃σ2
k ∼ N

(
σ̃2
k,

2

ñk
σ̃4
k

)
, (4.49)

where σ̃2
k = fgen(µ̃k; ã, b̃, γ) is the true variance with respect to the expectation µ̃k.

The scatter-plot of couples { ˆ̃µk, ˆ̃σ2
k}Kk=1 is illustrated in Figure 4.2.

The ML approach is used to fit the global parametric model σ̃2
k = fgen(µ̃k; ã, b̃, γ)

to the scatter-plot of couples { ˆ̃µk, ˆ̃σ2
k}Kk=1. The log-likelihood function ofK segments

is given by

L(ã, b̃, γ) = −1

2

K∑
k=1

[
log
(
2π

2

ñk
f2

gen(ˆ̃µk; ã, b̃, γ)
)

+
ˆ̃σ2
k − fgen(ˆ̃µk; ã, b̃, γ)
2
ñk
f2

gen(ˆ̃µk; ã, b̃, γ)

]
. (4.50)

Here, because the true value µ̃k is unknown in practice, it is proposed to replace µ̃k
by ˆ̃µk in the log-likelihood function L. The ML estimates of (ã, b̃, γ) are obtained
by maximizing the log-likelihood function L

(ˆ̃a,
ˆ̃
b, γ̂) = arg max

(ã,b̃,γ)

L(ã, b̃, γ). (4.51)

Because there is no closed form for ML estimates, the problem (4.51) is proposed
to be solved numerically by using the Nelder-Mead method [157].

4.3.3 Application to Image Denoising

The generalized noise model could be useful in many applications. One direct appli-
cation of the generalized noise model is for image denoising. The generalized noise
model (4.42) is proposed to apply with the Local Linear Minimum Mean Square
Error (LLMMSE) filter [130] to derive an efficient image denoising method. The
LLMMSE filter is based on the non-stationary mean, non-stationary variance image
model. From (4.39), the pixel z̃ can be decomposed as

z̃ = y +
1

γ
y1−γη, (4.52)

where y denotes the original pixel and η is the zero-mean signal-dependent noise,
σ2
η = ãµγy + b̃. The index of pixel is omitted for the sake of clarity. The original pixel
y involves non-stationary mean and non-stationary variance. The non-stationary
mean describes the gross structure of an image and the non-stationary variance
characterizes edge information of the image [130]. In the decomposition (4.52), the
quantization noise is assumed to be negligible. As explained in [130], the LLMMSE
filter for any signal-dependent noise model is formulated as

ŷ =
(

1−
σ2
y

σ2
z̃

)
µz̃ +

σ2
y

σ2
z̃

z̃, (4.53)
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where µz̃ and σ2
z̃ are respectively local mean and local variance of the pixel z̃, µy and

σ2
y are respectively local mean and local variance of the original pixel y. Since the

noise η is zero-mean, it follows from (4.52) that µz̃ = µy. The LLMMSE estimate is
the weighted sum of original signal mean µy and the noisy observation z̃ where the
weight is determined as the ratio of the original signal variance and noise variance.
For a low signal-to-noise (SNR) ratio, the LLMMSE filter puts more weight on
the prior mean µy because the image is too noisy to make an accurate estimate
of the original image. Conversely, for high SNR, this filter puts more weight on
noisy observations to preserve the edge sharpness. In the LLMMSE filter, a simple
technique to obtain local statistics µz̃ and σ2

z̃ is to calculate over a sliding window
of size (2r + 1)× (2c+ 1)

µz̃(m,n) =
1

(2r + 1)(2c+ 1)

m+r∑
i=m−r

n+c∑
j=n−c

z̃(i, j), (4.54)

σ2
z̃(m,n) =

1

(2r + 1)(2c+ 1)

m+r∑
i=m−r

n+c∑
j=n−c

(
z̃(i, j)− µz̃(m,n)

)2
. (4.55)

Therefore, it remains to calculate the variance σ2
y . From (4.52), the variance σ2

z̃

can be given by

σ2
z̃ = σ2

y +
1

γ2
E
[
y2−2γ

]
σ2
η. (4.56)

By using the Taylor series expansion of y2−2γ around µy, the expression of E
[
y2−2γ

]
can be simplified as

E
[
y2−2γ

]
= µ2−2γ

y + (1− γ)(1− 2γ)µ−2γ
y σ2

y . (4.57)

Combining (4.56) and (4.57), the variance σ2
y is then derived as

σ2
y =

σ2
z̃ − 1

γ2µ
2−2γ
y σ2

η

1 + 1
γ2 (1− γ)(1− 2γ)µ−2γ

y σ2
η

. (4.58)

The LLMSSE filter (4.53) follows immediately.

4.3.4 Numerical Experiments

To estimate the image structure, the wavelet-based denoising filter proposed in
[29, 165] is employed because of its relative accuracy and computational efficiency.
Besides, the proposed method requires an appropriate threshold ϑ such that we have
sufficient statistics for estimation process. Therefore, the threshold ϑ is defined as
the median of absolute deviations of all residual pixels z̃res

i

ϑ = 1.4826 ·MAD
(
z̃res

1 , . . . , z̃res
N

)
. (4.59)

This threshold is simple and efficient for rejecting blocks with strong edges. Besides,
the sub-image used segmentation and parameter estimation corresponds to the lo-
cation (4, 4) of the 8× 8 grid since compression error is higher for pixels near block
boundaries, and especially high at block corners [166].
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TIFF images JPEG images (Q = 90) JPEG images (Q = 80) JPEG images (Q = 70)
Avg Std Dev Avg Std Dev Avg Std Dev Avg Std Dev

ã = −0.0012 −0.0012 2.2e−4 −0.0012 2.5e−4 −0.0013 2.8e−4 −0.00095 4.1e−4

b̃ = 0.11 0.114 0.0097 0.117 0.0102 0.126 0.015 0.132 0.025
γ = 0.8 0.807 0.053 0.811 0.057 0.79 0.058 0.814 0.11

ã = −0.0025 −0.0024 3.5e−4 −0.0024 4.2e−4 −0.0026 5.4e−4 −0.0023 5.8e−4

b̃ = 0.20 0.196 0.0084 0.191 0.0098 0.215 0.0117 0.191 0.021
γ = 0.85 0.845 0.049 0.853 0.058 0.845 0.061 0.842 0.086

Table 4.1: Parameter estimation on synthetic images

ã

b̃
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Figure 4.3: Estimated parameters (ã, b̃) on JPEG images issued from different cam-
era models in Dresden image database.

Reference images from TID2008 database [167] are chosen to evaluate the ac-
curacy of the proposed estimation method. The parameters (ã, b̃, γ), which are
estimated from natural JPEG images that are acquired by Nikon D70 and Nikon
D200 cameras (see Figure 4.2), are used to generate synthetics images according to
the generalized noise model (4.42). The synthetic images are then compressed with
different quality factors {70, 80, 90}. The Table 4.1 shows the statistics of estimated
parameters on non-compressed TIFF images and JPEG images with different qual-
ity factors. It is noted that the estimated parameters are close to the ground truth.
Moreover, the distortion caused by JPEG compression with moderate-to-high qual-
ity factors (Q ≥ 70) seems to weekly interfere in the estimation process. Since the
generalized noise model (4.42) has not been proposed yet in the literature, there is
no existing method for noise parameter estimation to compare with the proposed
one.

To highlight the relevance of the proposed approach, experiments are then con-
ducted on a large image database. The Dresden database [168] that contains differ-
ent camera devices, different imaged scenes, different camera settings and different
environmental conditions is chosen for this experiment. All images of the database
are acquired with the highest available JPEG quality setting and maximum available
resolution. Figure 4.3 shows estimated parameters (ã, b̃) over 1000 JPEG images of
different camera models. As expected, the estimated parameters of the same camera
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Figure 4.4: Comparison between the proposed method and Farid’s for estimation of
gamma factor on JPEG images issued from Nikon D200 camera model.

Simple Wiener filter Extended LLMMSE filter
ã = −0.0012

b̃ = 0.11 30.06 50.97
γ = 0.8

ã = −0.0025

b̃ = 0.20 30.05 48.61
γ = 0.85

Table 4.2: PSNR of the extended LLMMSE filter

model are close to each other. Furthermore, estimated gamma values provided by
the proposed method are compared with the Farid’s [50]. Figure 4.4 shows estimated
gamma of the two methods on the JPEG images taken from Nikon D200 camera
model. It can be noted that the variability of gamma estimated by the proposed
method is considerably smaller than Farid’s [50], thus the value of gamma can be
estimated more efficiently.

To evaluate the denoising performance of the extended LLMMSE filter, it is
proposed to apply on the synthetic non-compressed images generated from TID2008
database. The parameters (ã, b̃, γ) are estimated on each synthetic image and then
used in the LLMMSE filter. Its averaged Peak Signal-to-Noise Ratio (PSNR) is
shown in Table 4.2. It is noted that the extended LLMMSE filter provides better
denoising performance.
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4.4 Statistical Modeling in DCT Domain

4.4.1 Statistical Model of Quantized DCT Coefficients

This section presents a complete mathematical framework of studying the statistical
distribution of DCT coefficients. The framework is based on the doubly stochastic
model as describe in Section 3.3. To facilitate the study, the framework is based
on the main assumption that the pixels are identically distributed within a small
8×8 block but not necessarily independent. Firstly, the model of block variance and
unquantized DCT coefficients are analytically established based on that assumption.
Then, it is proposed to take into account the impact of quantization in the DCT
domain and provide a final model of quantized DCT coefficients.

4.4.1.1 Statistical Model of Block Variance and Unquantized DCT Co-
efficients

The block variance σ2
blk can be defined as

σ2
blk =

1

63

7∑
m=0

7∑
n=0

(
z̃m,n − z̃

)2
, (4.60)

where z̃m,n denotes a TIFF pixel in a 8 × 8 block, 0 ≤ m ≤ 7, 0 ≤ n ≤ 7, and z̃

denotes the averaged pixel

z̃ =
1

64

7∑
m=0

7∑
n=0

z̃m,n. (4.61)

It can be noted that z̃ is itself a random variable. Then we have

z̃m,n − z̃ =
1

64

7∑
i=0

7∑
j=0

(
z̃m,n − z̃i,j

)
. (4.62)

By invoking the CLT for correlated random variables [150], the distribution of
z̃m,n − z̃ approaches to the Gaussian distribution with zero-mean. The fact of
"Gaussianization" is important since it allows us to simplify the study of the sum
of 64 random variables, of which pdf (4.36) is complicated. Because the square
of a standard Gaussian random variable follows the chi-square distribution of one
degree of freedom and a chi-square random variable scaled by a constant follows the
Gamma distribution, it follows that

1

63

(
z̃m,n − z̃

)2 d→ G
(1

2
, βm,n

)
, (4.63)

where G(·) denotes the Gamma distribution and βm,n is a scale parameter depending
on the variance of z̃m,n − z̃.

Consequently, from (4.60) the block variance σ2
blk can be considered as a sum of

correlated Gamma random variables. The exact distribution of a sum of correlated
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Gamma variables was analytically established in [169]. However, this exact distri-
bution is too complicated to establish the pdf fI (3.17) of the DCT coefficient I.
One alternative approach is to approximate the distribution of the sum of correlated
Gamma variables. According to [169], the Moment-Generating Function (MGF) of
σ2

blk can be expressed as

Mσ2
blk

(t) =
[

det
(
Id64 − t ·Dg ·Co

)]− 1
2
, (4.64)

where det(·) denotes the determinant operator, Id64 is the 64× 64 identity matrix,
Dg is the 64 × 64 diagonal matrix with the entries {βm,n}, and Co is the 64 × 64

covariance matrix defined by

Co =


1

√
ρ1,2 · · · √ρ1,64√

ρ2,1 1 · √
ρ2,64

· · · ·
√
ρ64,1 · · · · · · 1

 . (4.65)

Here, ρi,j is the correlation coefficient between two pixels within a block. Let {λi}64
i=1

be the eigenvalues of the matrix Dg ·Co, the MGF Mσ2
blk

(t) can be rewritten as

Mσ2
blk

(t) =
64∏
i=1

(
1− tλi

)− 1
2 . (4.66)

This MGF has a similar form of the one of the sum of independent Gamma variables
G
(

1
2 , λi

)
, i = {1, . . . , 64}.

It is proposed to approximate the distribution of the sum of independent Gamma
variables G

(
1
2 , λi

)
by a Gamma distribution G(α, β) using the moment matching

method. By matching the first two moments of two distributions, the parameters
(α, β) are given by

α =

(∑64
i=1 λi

)2
2
∑64

i=1 λ
2
i

and β =

∑64
i=1 λ

2
i∑64

i=1 λi
. (4.67)

As a result, the block variance σ2
blk can be approximately modeled by the Gamma

distribution G(α, β)

fσ2
blk

(t) =
tα−1

βαΓ(α)
exp

(
− t
β

)
, (4.68)

where α is a positive shape parameter, β is a positive scale parameter, and Γ(·)
denotes the gamma function.

Finally, it follows from (3.17), (3.18) and (4.68) that the pdf of the unquantized
DCT coefficient I is given by

fI(x) =
1√

2πβαΓ(α)

∫ ∞
0

exp
(
− t

β
− x2

2t

)
tα−

3
2dt. (4.69)
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Figure 4.5: Comparison between the Laplacian, GΓ and proposed model of DCT
coefficients.

From [170], the integral representation of the modified Bessel Kν(·) yields to

fI(x) =

√
2

π

(
|x|
√

β
2

)α− 1
2

βαΓ(α)
Kα− 1

2

(
|x|
√

2

β

)
. (4.70)

The Figure 4.5 illustrates the empirical distribution of the third DCT coefficient,
extracted from an image in the BOSS Base [171], compared with the proposed model
of unquantized DCT coefficients, Laplacian model and GΓ model.

One technique to study the shape of a statistical distribution is to determine
the kurtosis coefficient. Since the distribution of I is symmetric, the odd moments
vanish. Based on the law of total expectation, the variance of the unquantized DCT
coefficient I is given by

VarI
[
I
]

= EI
[
I2
]

= Eσ2
blk

[
EI|σ2

blk

[
I2|σ2

blk

]]
= Eσ2

blk

[
σ2

blk

]
= αβ. (4.71)

Then, the kurtosis coefficient of the proposed statistical distribution is defined by

γ2 =
EI
[
I4
]

Var2
I

[
I
] =

Eσ2
blk

[
3σ4

blk

]
E2
σ2

blk

[
σ2

blk

] = 3
αβ2(α+ 1)

α2β2
= 3
(

1 +
1

α

)
. (4.72)

It can be noted that the proposed model includes the Laplacian and Gaussian as
special cases. In fact, as α → ∞, then γ2 → 3. The DCT coefficient I tends
to be distributed as Gaussian variable. Similarly, as α = 1, γ2 = 6, then the
Gamma distribution of block variance reduces back to the exponential distribution,
the Laplacian model for AC coefficient I can be obtained [147]. Consequently, the
proposed model of I outperforms the Laplacian, yet at the expense of more complex
expressions and extra computational cost.
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Figure 4.6: Comparison between the quantized Laplacian, quantized GΓ and pro-
posed model for quantized AC coefficient.

4.4.1.2 Impact of Quantization

Let pD(l), l ∈ Z, be the probability mass function (pmf) of the quantized DCT
coefficient D with the corresponding quantization step ∆. The uniform quantization
operation with step ∆ can be written as follows

D = l⇐⇒ I ∈
[
∆
(
l − 1

2

)
,∆
(
l +

1

2

)[
. (4.73)

Therefore, the pmf pD(l) is defined by

pD(l) = P
[
D = l

]
=

∫ ∆(l+ 1
2

)

∆(l− 1
2

)
fI(x)dx. (4.74)

Because the pmf pD(l) is symmetric, it is sufficient to consider l ≥ 0. Let define the
function G(l) as

G(l) =

∫ ∆(l+ 1
2

)

0
fI(x)dx ∀l ∈ Z+. (4.75)

By changing the variable x = ∆(l+ 1
2) · t, a direct calculation from (4.70) and (4.75)

yields to

G(l) =

√
2

π

(√
β
2

)α− 1
2
(

∆(l + 1
2)
)α+ 1

2

βαΓ(α)
×
∫ 1

0
tα−

1
2Kα− 1

2

[
t ·∆

(
l+

1

2

)√ 2

β

]
dt. (4.76)

It follows from [170] that:

G(l) =
1

2
g(l)

[
Kα− 1

2
(g(l))Lα− 3

2
(g(l)) +Kα− 3

2
(g(l))Lα− 1

2
(g(l))

]
, (4.77)
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where g(l) = ∆(l + 1
2)
√

2
β and Lν(·) is the modified Struve function. Finally, the

pmf PD(l) is given by

pD(l) =

{
G
(
|l|
)
−G

(
|l| − 1

)
∀l ∈ Z∗

2G(0) l = 0.
(4.78)

The Figure 4.6 illustrates the empirical data compared with the proposed model of
quantized AC coefficients, quantized Laplacian and quantized GΓ model.

4.4.2 Estimation of Parameters (α, β) from Unquantized DCT Co-
efficients

The above mathematical framework does not explain the difference in scale of the
distributions across the DCT coefficients. In fact, because of heterogeneity in a
natural image, the energy tends to be more concentrated in the lower frequency than
in the higher frequency. Consequently, DCT coefficients at different frequencies do
not share the same parameters (α, β). The estimation of parameters (α, β) should
be performed on each frequency separately.

For the sake of clarity, the DCT coefficients are arranged into 64 vectors of coef-
ficients according to the zig-zag order. Let Ik = (Ik,1, . . . , Ik,Nblk

), k ∈ {1, . . . , 64},
be the vector of length Nblk representing the unquantized DCT coefficient at the
frequency k and the coefficients (I1,u, . . . , I64,u) are in the same block u. The pa-
rameters characterizing the distribution of unquantized DCT coefficient Ik are now
denoted by (αk, βk). Analogously, quantized DCT coefficients at the frequency k are
denoted byDk = (Dk,1, . . . , Dk,Nblk

) and ∆k denotes the corresponding quantization
step.

This section proposes to estimate the parameters (αk, βk) following the ML ap-
proach from unquantized DCT coefficients Ik. By definition, ML estimates of the
parameters (αk, βk) are defined as the solution of the maximization problem

(
α̂ML
k , β̂ML

k

)
= arg max

(αk,βk)

Nblk∑
u=1

log fIk
(
Ik,u
)
. (4.79)

It can be noted that the likelihood function is differentiable but computing the
derivative seems complicated. Since there is no closed form for ML estimates, it
is proposed to resolve the maximization problem (4.79) numerically by using the
Nelder-Mead method [157]. This method requires a starting point. This is accom-
plished by estimating the parameters (αk, βk) following the Method of Moments
(MM). It follows from (4.71) and (4.72) that

βk =
E
[
I4
k

]
3E
[
I2
k

] − E
[
I2
k

]
and αk =

E
[
I2
k

]
βk

. (4.80)

Therefore, MM estimates of the parameters (αk, βk) can be given by

β̂MM
k =

Ik,4

3Ik,2
− Ik,2 and α̂MM

k =
Ik,2

β̂MM
k

, (4.81)
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where Ik,2 and Ik,4 are the empirical second and fourth moments of Ik

Ik,2 =
1

Nblk

Nblk∑
u=1

I2
k,u and Ik,4 =

1

Nblk

Nblk∑
u=1

I4
k,u. (4.82)

4.4.3 Estimation of Parameters (α, β) from Quantized DCT Coef-
ficients

Due to the quantization in the DCT domain, the DCT coefficients of the original
image can not be perfectly recovered. For a practical use, the parameters (αk, βk)

need to be estimated from the quantized DCT coefficients Dk. It is proposed to
rely on the same approach that has been previously proposed for estimation of the
parameters (αk, βk) from unquantized DCT Coefficients, i.e. ML estimates of the
parameters (αk, βk) are numerically provided using the Nelder-Mead method and the
MM estimates are taken as initial solution.1 Therefore, it is sufficient to determine
the MM estimates of the parameters (αk, βk) from quantized DCT coefficients Dk.

According to the theory of quantization [162], the effect of uniform quantization
can be modeled by an additive noise that is uniformly distributed and uncorrelated
with the input signal. The quantized DCT coefficient Dk can be given by

Dk =
Ik
∆k

+ ηQ, (4.83)

where ηQ denotes the quantization noise, ηQ ∼ U
[
− 1

2 ,
1
2

]
, and U stands for the

uniform distribution. Based on the definitions of the mathematical expectation, the
second and fourth moments of Dk are given by

E
[
D2
k

]
=

1

∆2
k

E
[
I2
k

]
+ E

[
η2
Q
]

=
αkβk
∆2
k

+
1

12
(4.84)

E
[
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1

∆4
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E
[
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6

∆2
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E
[
I2
k

]
E
[
η2
Q
]

+ E
[
η4
Q
]

=
3

∆4
k

αkβ
2
k(αk + 1) +

1

2∆2
k

αkβk +
1

80
.

(4.85)

It follows that the parameters (αk, βk) can be expressed as

αk =

(
E
[
D2
k

]
− 1

12

)2

1
3E
[
D4
k

]
− E2

[
D2
k

]
+ 1

360

and βk =
∆2
k

(
E
[
D2
k

]
− 1

12

)
αk

. (4.86)

The MM estimates of (αk, βk) are then derived as

α̂MM
k =

(
Dk,2 − 1

12

)2

1
3Dk,4 −D

2
k,2 + 1

360

and β̂MM
k =

∆2
k

(
Dk,2 − 1

12

)
α̂MM
k

, (4.87)

1The algorithm of estimation of parameters (α, β) has been published on http://remi.
cogranne.pagesperso-orange.fr/.

http://remi.cogranne.pagesperso-orange.fr/
http://remi.cogranne.pagesperso-orange.fr/
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Barbara Boat Lena
Lap GG GΓ Prpsd Mod Lap GG GΓ Prpsd Mod Lap GG GΓ Prpsd Mod

V01 32 4 3 2 157 75 61 26 70 34 25 8
V10 213 70 67 39 57 60 52 51 1087 8 6 7
V20 4665 129 129 127 160 226 78 61 5496 365 353 332
V11 177 33 33 12 180 241 225 224 680 277 233 202
V02 83 8 7 5 4097 230 58 28 623 54 47 41
V03 1185 301 295 281 5573 690 683 566 21113 1537 1514 1290
V12 4046 302 296 289 831 351 349 289 4198 175 170 156
V21 644 161 158 161 176 49 8 7 6808 336 336 286
V03 2456 655 635 629 2120 96 94 86 7289 406 241 234

Table 4.3: χ2 test statistics of Laplacian, GG, GΓ, and proposed model for the first
9 quantized coefficients of 3 testing standard images.
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101

102
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104

proposed model
GΓ model
GG model

Figure 4.7: Averaged χ2 test statistics of GG, GΓ and proposed model for 63 quan-
tized AC coefficients

where Dk,2 and Dk,4 are the empirical second and fourth moments of Dk

Dk,2 =
1

Nblk

Nblk∑
u=1

D2
k,u Dk,4 =

1

Nblk

Nblk∑
u=1

D4
k,u. (4.88)

4.4.4 Numerical Experiments

Although many models have been proposed for DCT coefficients, Laplacian and
Generalized Gaussian (GG) model remain popular choice in several applications.
Besides, it has been recently reported in [146] that the Generalized Gamma (GΓ)
model outperforms the GG model and Laplacian model. To emphasize the relevance
of the proposed model, experiments are conducted to compare it with the Lapla-
cian, GG, and GΓ model. Firstly, the comparison is performed on some standard
images: lena, boat, and barbara. These three images are converted to JPEG format
using imagemagick with quality factor of 70. The χ2 GOF test is employed for the
comparison. The model whose the χ2 value is smaller is more relevant to charac-
terize the distribution of DCT coefficients. Table 4.3 shows the χ2 test statistics
of all models for AC coefficients in low frequencies. Obviously, the proposed model
outperforms quantized Laplacian, quantized GG, and quantized GΓ models. The
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Laplacian model is a special case of the GG, GΓ and the proposed model, thus it is
considerably less accurate.

Furthermore, experiment are conducted on 10000 images in the Dresden image
database [168]. Conducting experiments on such a large real database rather than
on some standard images allows to evaluate the robustness of the proposed model
to a wide variety of images. The averaged χ2 GOF test statistics of all models for 63
AC coefficients is illustrated in Figure 4.7. These results obviously show the better
accuracy of the proposed model compared with GG and GΓ model.

Remark 4.1. It can be noted that the whole image processing pipeline that goes
from the RAW image acquisition to JPEG compression is a complicated process. It is
too difficult to take into account all operations performed in the pipeline to establish
a model of DCT coefficients that reflects the reality perfectly. To simplify the study,
our mathematical framework is mainly based on the assumption that pixels are
identically distributed within a 8 × 8 block, i.e. the structure of block is assumed
to be relatively smooth. Although this assumption may not hold for all blocks in
practice, the proposed model outperforms other existing models including the state-
of-the-art GΓ model. The accuracy of the proposed model is also highlighted when
applying in the steganalysis of Jsteg algorithm (see more results in Chapter 9). The
proposed model of DCT coefficient is a trade-off between reality and exploitability.

The above limitation could be solved by taking into account the block structure.
In our framework, all the pixels in the block z̃blk = {z̃1, . . . , z̃n} with n = 64 are
assumed to have the same expectation, say µz̃i = t for all i, or equivalently

µblk =

µz̃1...
µz̃n

 = t ·

1
...
1

 . (4.89)

The block structure can be taken into account by using the parametric model µblk =

Hblk × t where the n× q full-rank matrix Hblk (q < n) has the form [172]

Hblk =


1 1

n · · ·
(

1
n

)q−1

1 2
n · · ·

(
2
n

)q−1

...
...

...
...

1 n−1
n · · ·

(
n−1
n

)q−1

1 1 1 1

 , (4.90)

and t ∈ Rq is an unknown parameter vector. The simple Least Squares method can
give estimates of µblk from the random vector z̃blk

µ̂blk = Hblk(HT
blkHblk)−1HT

blkz̃blk. (4.91)

Another limitation is that our framework only considers the first-order statistics of
DCT coefficients and neglects the fact that DCT coefficients still exhibit intra-block
correlation and inter-block correlation [151]. These correlations can be captured by
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co-occurrence matrix [152] or adjacency matrix [126], which can lead to a generalized
model of DCT coefficients. These considerations could be the subject of future
researches.

4.5 Conclusion

This chapter establishes a statistical framework of modeling a natural image from
RAW format to JPEG format, both in spatial domain and DCT domain. A method-
ology for estimation of model parameters from a single image is developed. The
proposed models are more relevant to characterize a natural image than other ex-
isting models in the literature. Numerical results on a large image database show
the relevance of the proposed approaches. Since a natural image can be accurately
modeled and the model parameters can be efficiently estimated, this chapter builds
up a solid foundation for applications in the field of digital image forensics. All these
works have been valorized in our publications [134,153,154].
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5.1 Introduction

The goal of this chapter is to design a statistical test within hypothesis testing frame-
work for camera model identification from RAW images based on the heteroscedastic
noise model (4.1). The main contributions are the following:
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• The approach is based on the heteroscedastic noise model which describes more
accurately natural images in RAW format. The parameters (a, b) are proposed
to be exploited as camera fingerprint for camera model identification.

• Stating the camera model identification problem into hypothesis testing frame-
work, this chapter studies an optimal detector given by the LRT in an ideal
context where all model parameters are known in advance. This optimal de-
tector serves as an upper-bound of any statistical test for the camera model
identification problem based on the heteroscedastic noise model.

• In the practical context, the model parameters are unknown. Two GLRTs are
designed to deal with the difficulty of unknown parameters. The statistical
performance of these GLRTs is analytically established. Moreover, the pro-
posed GLRTs allow the guaranteeing of a prescribed false-alarm rate and the
setting of decision threshold independently of the image content. Numerical
experiments also show that the loss of power of GLRTs compared with the
LRT is negligible.

In general, the fact of relying on the heteroscedastic noise model is to exploit
the difference in noise characteristics from different sources. Previously, noise char-
acteristics have been used only empirically in digital image forensics, e.g. for image
forgery detection [173, 174]. This chapter goes further by using a parametric noise
model and handling the camera model identification problem within an analytic
framework. The work in this chapter has been published in [134].

The chapter is organized as follows. Section 5.2 studies properties of the pa-
rameters (a, b) that are further exploited as camera fingerprint for camera model
identification. Section 5.3 formally states the camera model identification prob-
lem in the framework of hypothesis testing theory and studies an optimal detector
assuming that all model parameters are known. Section 5.4 designs a GLRT to ad-
dress the difficulty of unknown image parameters. Section 5.5 addresses the context
where the image parameters and the camera parameters are all unknown. Section
5.6 presents numerical results of the proposed tests on simulated and real natu-
ral RAW images. Section 5.7 discusses strengths and limitations of the proposed
approach and concludes the chapter.

5.2 Camera Fingerprint

In Section 3.2.1, the heteroscedastic noise model has been analyzed by studying the
RAW image acquisition and taking into account various noise sources introduced in
this stage. This model can accurately capture statistics of RAW images acquired by
a digital camera. Moreover, the parameters (a, b) of the heteroscedastic noise model
exhibit some meaningful properties. From the relation (3.7), it can be noted that
the parameters (a, b) mainly depend on the ISO sensitivity. If the digital imaging
sensor does not add a pedestal parameter p0, the parameter a is proportional to
ISO sensitivity while the parameter b is proportional to its square. Other camera
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Figure 5.1: Estimated camera parameters (a, b) on 20 RAW images of different
camera model with ISO 200 and different camera settings.
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Figure 5.2: Estimated camera parameters (a, b) of different devices per camera model
with ISO 200 and different camera settings.

settings such as integration time, shutter speed or focal length can also affect the
parameters (a, b). However, those effects are very small compared with the effect of
ISO sensitivity. For a fixed ISO sensitivity, the parameters (a, b) are discriminative
for different camera models, see Figure 4.1 and Figure 5.1. Besides, the parameters
(a, b) are similar for different devices of the same model because of the same sensor
characteristics, see Figure 5.2. Therefore, the parameters (a, b) of the heteroscedastic
noise model can be exploited as camera fingerprint for camera model identification.
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5.3 Optimal Detector for Camera Model Identification
Problem

5.3.1 Hypothesis Testing Formulation

Let analyze two camera models S0 and S1. Each camera model Sj , j ∈ {0, 1}, is
characterized by two parameters (aj , bj) for a fixed ISO sensitivity. For obvious rea-
sons, it is assumed that (a0, b0) 6= (a1, b1). In a binary hypothesis testing framework
as described in Definition 2.1, the inspected RAW image Z = (z1, . . . , zN )T is either
acquired by camera model S0 or camera model S1. The goal of the test is to decide
between two hypotheses defined by

H0 =
{
zi ∼ N (µi, σ

2
i,0), ∀i ∈ {1, . . . , N}

}
H1 =

{
zi ∼ N (µi, σ

2
i,1), ∀i ∈ {1, . . . , N}

}
,

(5.1)

where µi and σ2
i,j respectively denote the expectation and variance of the RAW

pixel zi under hypothesis Hj , σ2
i,j = ajµi + bj . The parameters µi represent the

image content in the absence of noise, which do not contain information about the
camera model. They can be considered as nuisance parameters in the camera model
identification problem (5.1). Moreover, they are unknown in practice. As previously
explained in Chapter A, we focus on designing a test that allows to guarantee a
prescribed false-alarm probability. Hence, let

Kα0 =
{
δ : sup

(µ,a0,b0)
PH0

[
δ(Z) = H1

]
≤ α0

}

be the class of tests whose false alarm probability is upper-bounded by the rate
α0 where µ = (µ1, . . . , µN ) is the mean vector. Among all the tests in the class
Kα0 , it is aimed at finding a test δ which maximizes the power function. The
problem (5.1) highlights the difficulties of the camera model identification because
the parameters (µi, aj , bj) are unknown in practice. It is assumed that the camera
model S0 is available, thus forensic analysts can have access to its characteristics, or
its fingerprints, i.e. the parameters (a0, b0) can be known. Meanwhile, the camera
parameters (a1, b1) could be known or unknown. The main goal of this chapter is
to study the LRT and to design the GLRTs to address the difficulty of unknown
parameters (µi, a1, b1).

5.3.2 LRT for Two Simple Hypotheses

In the ideal context where all model parameters are known, in virtue of the Neyman-
Pearson lemma, the MP test δ∗het solving the problem (5.1) is the LRT given by the
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following decision rule

δ∗het(Z) =


H0 if Λhet(Z) =

N∑
i=1

Λhet(zi) < τ∗het

H1 if Λhet(Z) =
N∑
i=1

Λhet(zi) ≥ τ∗het

(5.2)

the LR Λhet(zi) is defined by

Λhet(zi) = log

1√
2πσ2

i,1

exp
[
− (zi−µi)2

2σ2
i,1

]
1√

2πσ2
i,0

exp
[
− (zi−µi)2

2σ2
i,0

]
=

1

2

(
log
(
σ2
i,0

)
− log

(
σ2
i,1

))
+

1

2

( 1

σ2
i,0

− 1

σ2
i,1

)
(zi − µi)2. (5.3)

For brevity, let denote two functions h1(x) and h2(x) as

h1(x) = log(a0x+ b0)− log(a1x+ b1) and h2(x) =
1

a0x+ b0
− 1

a1x+ b1
, x ∈ R+,

such that
Λhet(zi) =

1

2
h1(µi) +

1

2
h2(µi)(zi − µi)2. (5.4)

As discussed in Section A.3, it is proposed to exploit the Lindeberg CLT to
determine the statistical distribution the LR Λhet(Z). To this end, it is necessary
to calculate the first two moments of Λhet(zi).

Proposition 5.1. Under hypothesis Hj, the first two moments of Λhet(zi) are given
by

EHj
[
Λhet(zi)

]
=

1

2
h1(µi) +

1

2
h2(µi)σ

2
i,j (5.5)

VarHj

[
Λhet(zi)

]
=

1

2
h2

2(µi)σ
4
i,j . (5.6)

Proof. It follows from zi ∼ N (µi, σ
2
i,j) under each hypothesis Hj , j ∈ {0, 1}, that

(zi − µi)2

σ2
i,j

∼ χ2
1.

Therefore, the first two moments of (zi − µi)2 under Hj can be given by

EHj
[
(zi − µi)2

]
= σ2

i,j

VarHj

[
(zi − µi)2

]
= 2σ4

i,j .

The proof follows immediately.
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In virtue of the Lindeberg CLT, the statistical distribution of the LR Λhet(Z)

under hypothesis Hj is given by

Λhet(Z)
d→ N

(
m

(j)
het, v

(j)
het

)
(5.7)

where the expectation m(j)
het and variance v(j)

het are given by

m
(j)
het =

N∑
i=1

[
1

2
h1(µi) +

1

2
h2(µi)σ

2
i,j

]
(5.8)

v
(j)
het =

N∑
i=1

1

2
h2

2(µi)σ
4
i,j . (5.9)

Since a natural RAW image is heterogeneous, it is proposed to normalize the LR
Λhet(Z) in order to set the decision threshold independently of the image content.
The normalized LR is defined by

Λ?het(Z) =
Λhet(Z)−m(0)

het√
v

(0)
het

. (5.10)

Consequently, it follows from (5.7) that
Λ?het(Z)

d→ N (0, 1) under H0,

Λ?het(Z)
d→ N

m(1)
het −m

(0)
het√

v
(0)
het

,
v

(1)
het

v
(0)
het

 under H1.
(5.11)

The corresponding LRT δ?het is rewritten as follows

δ?het(Z) =

{
H0 if Λ?het(Z) < τ?het

H1 if Λ?het(Z) ≥ τ?het

(5.12)

where the decision threshold τ?het is the solution of the equation PH0

[
Λ?het(Z) ≥

τ?het

]
= α0 to ensure the LRT δ?het to be in the class Kα0 . The fact of normalizing

the LR Λhet(Z) allows the test δ?het to be applicable to any natural RAW image
since the normalized LR Λ?het(Z) follows the standard Gaussian distribution under
hypothesis H0. The decision threshold τ?het and the power function β(δ?het) are given
in the following theorem.

Theorem 5.1. In an ideal context where all the model parameters (µ, aj , bj) are
known in advance, the decision threshold and the power function of the LRT δ?het are
given by

τ?het = Φ−1(1− α0) (5.13)

β(δ?het) = 1− Φ

m(0)
het −m

(1)
het + τ?het

√
v

(0)
het√

v
(1)
het

 . (5.14)
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Proof. is given as in Example A.1.

The test power β(δ?het) serves as an upper-bound of any statistical test for the
camera model identification problem. The test δ?het allows to warrant a prescribed
false alarm rate and maximizes the detection probability. Since its statistical per-
formance is analytically established, it can provide an analytically predictable result
for any false alarm probability α0. Besides, it can be noted that the detection per-
formance of the test depends on the distance between (a0, b0) and (a1, b1). The
smaller the distance between two points (a0, b0) and (a1, b1) is, the more difficult
the camera model identification is.

5.4 GLRT with Unknown Image Parameters

In practice, the parameters µi and (a1, b1) are unknown, which compromises the
LRT. A possible approach to deal with unknown parameters consists in eliminating
them by using the invariance principle [20]. However, in the heteroscedastic noise
model, the image parameter µi appears in both expectation and variance of the RAW
pixel zi. The invariance approach may not be applied due to a difficulty of finding a
group of transformation under which the problem remains invariant. Alternatively,
it is proposed to design a GLRT to deal with the difficulty of unknown parameters
by replacing unknown parameters by their ML estimates in the LR Λhet(zi) (5.3).

The GLRT designed in this section deals with the difficulty of unknown image
parameters µi when the camera parameters (a0, b0) and (a1, b1) are still known. This
GLRT can be interpreted as a closed hypothesis testing since the decision is made
only between two known camera models S0 and S1.

Since a natural image is high-dimensional, the number of unknown image pa-
rameters µi grows with the number of pixels N . Therefore, a preprocessing stage
consisting in segmenting the inspected image Z into K non-overlapping homoge-
neous segments Sk of size nk is performed to reduce the number of unknown param-
eters. It is proposed to employ the segmentation technique proposed in [133] (see
also Section 4.2.2). The camera model identification problem (5.1) can be rewritten
asH0 =

{
zwapp
k,i ∼ N (µk, ‖ϕ‖22σ2

k,0), ∀k ∈ {1, . . . ,K}, ∀i ∈ {1, . . . , nk}
}

H1 =
{
zwapp
k,i ∼ N (µk, ‖ϕ‖22σ2

k,1), ∀k ∈ {1, . . . ,K}, ∀i ∈ {1, . . . , nk}
}
.

(5.15)

with σ2
k,j = ajµk + bj . Using the ML estimates µ̂k defined in (4.4), the GLRT δhet

solving the problem (5.15) is designed as follows

δhet =


H0 if Λhet(Z) =

K∑
k=1

nk∑
i=1

Λhet(z
wapp
k,i ) < τhet

H1 if Λhet(Z) =

K∑
k=1

nk∑
i=1

Λhet(z
wapp
k,i ) ≥ τhet

(5.16)
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where the GLR Λhet(z
wapp
k,i ) is given by

Λhet(z
wapp
k,i ) =

1

2

(
log
(
a0µ̂k + b0

)
− log

(
a1µ̂k + b1

))
+

1

2

( 1

a0µ̂k + b0
− 1

a1µ̂k + b1

) (zwapp
k,i − µ̂k)2

‖ϕ‖22

=
1

2
h1(µ̂k) +

1

2
h2(µ̂k)

(zwapp
k,i − µ̂k)2

‖ϕ‖22
. (5.17)

Proposition 5.2. Under hypothesis Hj, the first two moments of the GLR
Λhet(z

wapp
k,i ) are given by

EHj
[
Λhet(z

wapp
k,i )

]
=

1

2
h1(µk) +

1

2
h2(µk)σ

2
k,j

(
1 +

1

nk

)
(5.18)

VarHj

[
Λhet(z

wapp
k,i )

]
=

1

4

(
h′1(µk)

)2 ‖ϕ‖22
nk

σ2
k,j +

1

2

(
h2(µk)

)2
σ4
k,j

(
1 +

1

nk

)2

+
3

4

(
h′2(µk)

)2 ‖ϕ‖22
nk

σ6
k,j

(
1 +

1

nk

)2
, (5.19)

where h′1 and h′2 respectively denote the first derivative of the function h1 and h2

h′1(x) =
a0

a0x+ b0
− a1

a1x+ b1

h′2(x) =
a1

(a1x+ b1)2
− a0

(a0x+ b0)2
.

Proof. of Proposition 5.2 is given in Appendix 5.8.1.

By invoking the Lindeberg CLT, the statistical distribution of the GLR Λhet(Z)

under hypothesis Hj is defined as

Λhet(Z)
d→ N

(
m

(j)
het, v

(j)
het

)
, (5.20)

where the expectation m(j)
het and variance v(j)

het are given by

m
(j)
het =

K∑
k=1

nk∑
i=1

[
1

2
h1(µk) +

1

2
h2(µk)σ

2
k,j

(
1 +

1

nk

)]
(5.21)

v
(j)
het =

K∑
k=1

nk∑
i=1

[
1

4

(
h′1(µk)

)2 ‖ϕ‖22
nk

σ2
k,j +

1

2

(
h2(µk)

)2
σ4
k,j

(
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Similarly to (5.10), the normalized GLR Λ
?
het(Z) is defined by

Λ
?
het(Z) =

Λhet(Z)−m(0)
het√

v
(0)
het

. (5.23)
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Figure 5.3: The detection performance of the GLRT δ
?
het with 50 pixels selected

randomly from simulated images.

However, since the image parameters µk are unknown in practice, the expectation
m

(0)
het and variance v(0)

het can not be defined. Therefore, it is proposed to replace µk
by µ̂k in (5.21) and (5.22) to obtain the estimates of m(0)

het and v(0)
het, denoted m̂

(0)
het

and v̂
(0)
het, respectively. Consequently, the normalized GLR can be given in practice

as

Λ
?
het(Z) =

Λhet(Z)− m̂(0)
het√

v̂
(0)
het

. (5.24)

Since the estimates m̂
(0)
het and m̂

(0)
het are consistent, it follows from the Slutsky’s the-

orem [20, theorem 11.2.11] that
Λ
?
het(Z)

d→ N (0, 1) under H0,

Λ
?
het(Z)

d→ N

m(1)
het −m

(0)
het√

v
(0)
het

,
v

(1)
het

v
(0)
het

 under H1.
(5.25)

The corresponding GLRT δ
?
het is rewritten as follows

δ
?
het(Z) =

{
H0 if Λ

?
het(Z) < τ?het

H1 if Λ
?
het(Z) ≥ τ?het

(5.26)

where again to ensure the GLRT δ
?
het to be in the class Kα0 , τ?het is the solution of

the equation PH0

[
Λ
?
het(Z) ≥ τ?het

]
= α0.

Theorem 5.2. For testing between two known camera models S0 and S1, i.e. the
parameters (a0, b0) and (a1, b1) are known in advance, the decision threshold and the
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power of the GLRT δ
?
het are given by

τ?het = Φ−1(1− α0) (5.27)

β(δ
?
het) = 1− Φ

m(0)
het −m

(1)
het + τ?het

√
v

(0)
het√

v
(1)
het

 . (5.28)

Proof. From (5.25), the proof follows immediately.

The detection performance of the GLRT δ
?
het for 50 pixels selected randomly from

simulated images is illustrated in Figure 5.3. A small loss of power compared with
the LRT δ?het can be noted due to the slight inaccuracy of employed segmentation.
More details are given in Section 5.6.

5.5 GLRT with Unknown Image and Camera Parame-
ters

The goal of this section is to design a GLRT to deal with the difficulty of unknown
image parameters µk and unknown camera parameters (a1, b1). This GLRT can be
interpreted as open hypothesis testing when it aims to verify whether the inspected
image Z is acquired by the camera model S0 or not. In other words, the inspected
image Z is allowed to be taken from an unknown camera model.

Before designing the GLRT, the WLS estimation of camera parameters (a1, b1)

is performed on the inspected image Z as proposed in Section 4.2.2. Since WLS
estimates (â1, b̂1) are asymptotically equivalent to ML estimates [158,159], they are
also relevant to be exploited in the design of the GLRT. Using the ML estimates µ̂k
and WLS estimates (â1, b̂1), the GLRT δ̃het solving the problem (5.15) is given as
follows

δ̃het =


H0 if Λ̃het(Z) =

K∑
k=1

nk∑
i=1

Λ̃het(z
wapp
k,i ) < τ̃het

H1 if Λ̃het(Z) =

K∑
k=1

nk∑
i=1

Λ̃het(z
wapp
k,i ) ≥ τ̃het

(5.29)

where the GLR Λ̃het(z
wapp
k,i ) is defined as

Λ̃het(z
wapp
k,i ) =

1

2

(
log
(
a0µ̂k + b0

)
− log

(
â1µ̂k + b̂1

))
+

1

2

( 1

a0µ̂k + b0
− 1

â1µ̂k + b̂1

) (zwapp
k,i − µ̂k)2

‖ϕ‖22
. (5.30)

The WLS estimates (â1, b̂1) exhibit a certain variability. Let σ2
a1
, σ2

b1
, σa1b1 de-

note respectively the variance of â1, variance of b̂1 and covariance between â1 and
b̂1, which have been defined in Section 4.2.2.2. The statistical properties of WLS
estimates (â1, b̂1) need to be taken into account in the establishment of statistical
performance of the GLRT δ̃het.
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Proposition 5.3. Under hypothesis Hj, the first two moments of the GLR
Λ̃het(z

wapp
k,i ) are given by
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with

VarHj
[
â1µ̂k + b̂1

]
= a2

1

‖ϕ‖22
nk

σ2
k,j +

(
µ2
k +
‖ϕ‖22
nk

σ2
k,j

)
σ2
a1

+ 2µkσa1b1 + σ2
b1 .

Proof. of Proposition 5.3 is given in Appendix 5.8.2.

In virtue of Lindeberg CLT, the GLR Λ̃het(Z) follows the Gaussian distribution
under hypothesis Hj

Λ̃het(Z)
d→ N

(
m̃

(j)
het, ṽ

(j)
het

)
(5.33)

where the expectation m̃(j)
het and variance ṽ(j)

het are defined by

m̃
(j)
het =

K∑
k=1

nk∑
i=1

EHj
[
Λ̃het(z

wapp
k,i )

]
(5.34)

ṽ
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nk∑
i=1

VarHj

[
Λ̃het(z

wapp
k,i )

]
. (5.35)

with EHj
[
Λ̃het(z

wapp
k,i )

]
and VarHj

[
Λ̃het(z

wapp
k,i )

]
given in Proposition 5.3.

Similarly, the normalized GLR Λ̃?het(Z) is defined by

Λ̃?het(Z) =
Λ̃het(Z)− ̂̃m(0)

het√̂̃v(0)

het

(5.36)

where ̂̃m(0)

het and ̂̃v(0)

het are the estimates of the expectation m̃(0)
het and variance ṽ(0)

het by
replacing (µk, a1, b1) by (µ̂k, â1, b̂1) in (5.34) and (5.35). The GLRT δ̃?het based on
the normalized GLR Λ̃?het(Z) is given by

δ̃?het(Z) =

{
H0 if Λ̃?het(Z) < τ̃?het

H1 if Λ̃?het(Z) ≥ τ̃?het

(5.37)

where the decision threshold τ̃?het is the solution of the equation PH0

[
Λ̃?het(Z) ≥

τ̃?het

]
= α0.
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Figure 5.4: The detection performance of the GLRT δ̃?het with 50 pixels selected
randomly on simulated images.

Theorem 5.3. For testing against a known camera model S0, i.e. the parameters
(a0, b0) are known, the decision threshold and the power of the GLRT δ̃?het are given
by

τ̃?het = Φ−1(1− α0) (5.38)

β(δ̃?het) = 1− Φ

m̃(0)
het − m̃

(1)
het + τ̃?het

√
ṽ

(0)
het√

ṽ
(1)
het

 . (5.39)

Proof. From the Slutsky’s theorem, the proof follows immediately.

The philosophy presented in the GLRT δ̃?het is quite different from the one in
the LRT δ?het or the GLRT δ

?
het. While the LRT δ?het and the GLRT δ

?
het deal

with the scenario of two known camera models, the GLRT δ̃?het needs to deal with
the scenario of one camera model in hand and verify whether the given image is
captured by that camera model under hypothesis H0. The camera model under H1

is unknown, so the its fingerprint are also unknown. Consequently, the GLRT δ
?
het

can not be applied in this case. Therefore, the GLRT δ̃?het is derived by using the
parameters (a, b) estimated from the given image. If the given image is captured by
the camera model under H0, the estimates (â, b̂) should be in the neighborhood of
(a0, b0). The test performance depends on the accuracy of parameter estimation.

The Figure 5.4 illustrates the detection performance of the test δ̃?het on simulated
images with 50 pixels. Here gain, the GLRT δ̃?het shows a small loss of power due to
the imperfect employed segmentation.
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Figure 5.5: The detection performance of the test δ?het with 200 pixels selected
randomly on simulated images for a0 = 0.0115 and different parameters a1.
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Figure 5.6: The detection performance of the test δ?het and δ̃?het on simulated images
for different numbers of pixels.

5.6 Numerical Experiments

5.6.1 Detection Performance on Simulated Database

The detection performance of the proposed GLRTs δ?het and δ̃?het is first theoretically
studied on a simulated database. The camera model S0 and S1 are respectively
characterized by (a0, b0) = (0.0115, 0.0002) and (a1, b1) = (0.0195, 0.00025). These
parameters respectively correspond to Nikon D70 and Nikon D200 camera models
with ISO 200 estimated from the Dresden image database [168], see Figure 4.1.
Moreover, the values correspond to an 8-bit image in the normalized [0,1] scale. The
camera parameters are used with 8-bit synthetic image of size 512×512 to generate
randomly 5000 images for camera model S0 and 5000 images for camera model S1.
The number of segmentsK is set toK = 28. The Figure 5.3 and Figure 5.4 illustrate
respectively the detection performance of the GLRTs δ?het and δ̃?het with 50 pixels
selected randomly on the synthetic images. The segmentation method [133] used to
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obtain homogeneous segments is certainly not perfect. Therefore, a slight error in the
estimation of local expectations in each segment leads to a small loss of optimality.
A perfect segmentation may not be available in practice due to the difficulty of
controlling noise in natural images and the influence of image content. The perfect
segmentation can be performed in this simulation since the original synthetic image
is available. The empirical power with perfect segmentation fits accurately to the
theoretical power. This also indicates that the variability of estimates are well taken
into account.

Additionally, it is desirable to observe the detection performance for different
camera parameters. The test δ?het is conducted by keeping the parameters (a0, b0)

and setting a1 to {0.0195, 0.015, 0.012}. As expected, the Figure 5.5 shows that
when the parameter a1 tends to a0, the power function of the test δ?het declines and
the ROC curves tends to β(δ

?
het) = α0. In other words, the detection performance

of the proposed tests depends on the discriminability of camera parameters (a, b).
The Figure 5.6 illustrates in log-log scale the detection performance of the GLRT

δ
?
het and δ̃?het for {50, 100, 200} pixels. A small loss of power is obviously revealed
for 50 and 100 pixels between δ?het and δ̃?het due to insufficient statistics. Both tests
are identical with 200 pixels. Besides, the proposed GLRTs are perfect with 500
pixels, i.e. no error of detection has been observed from 5000 simulated images
of camera model S0 and 5000 simulated images of camera model S1. Actually,
the fact of selecting a number of pixels (e.g. 50, 100, 200 pixels) for the tests on
the simulated data allows a better visibility since the empirical power function of
the tests is perfect (e.g. β(δ) = 1) with only 500 pixels. The proposed approach
only requires a small number of pixels to achieve perfect detection performance
while other methods usually exploit all the pixels without this performance. This
emphasizes the sharpness of the proposed approach.

5.6.2 Detection Performance on Two Nikon D70 and Nikon D200
Camera Models

The experiments on simulated data give us an important insight: the employed
segmentation is probably not perfect, which leads to an error in the estimation of
pixels’ expectation. In practice, for real images, this task is more difficult since
the presence of edges or details can cause poor estimates. Those outliers need to
be removed because they can dramatically affect the detection performance of the
proposed GLRTs. Therefore, it is proposed to remove those outliers by the classical
three-sigma rule [175]. Under normality, a pixel is considered as non-outlier if both
following conditions are satisfied:

∣∣zwapp
k,i − µ̂k

∣∣ ≤ 3‖ϕ‖2
√
âµ̂k + b̂∣∣zwdet

k,i

∣∣ ≤ 3

√
âµ̂k + b̂

(5.40)

After outlier removal, all remaining pixels are used for the proposed tests.
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Figure 5.7: The detection performance of the GLRTs δ?het and δ̃?het on the Dresden
database for different numbers of pixels.

To highlight the relevance of the proposed tests, two camera models from the
same brand Nikon D70 and Nikon D200 of the Dresden image database [168] are
chosen to conduct experiments since two camera models of the same brand are
expected to exhibit similar characteristics. These cameras are set at the same ISO
200. Prior to experiments, each RAW image was converted to an uncompressed
format using Dcraw (with parameters -D - T -4 -j -v) and was decomposed into 4
sub-images. Only the red color channel is used in experiments. The Nikon D70 and
Nikon D200 cameras are respectively set at H0 and H1. The camera parameters are
estimated on each image following the WLS approach. The reference parameters
(a0, b0) and (a1, b1) are obtained by averaging the previously estimated values over
50 images. The Figure 5.7 shows the detection performance of the GLRTs δ?het

and δ̃?het for different numbers of pixels. We can note a similar behavior to the
ROC on simulated database. Obviously, there is a small loss of power between
the two power functions since the test δ̃?het takes into account different estimates
(â1, b̂1) influenced by the image content. Nevertheless, two proposed tests are almost
perfect for 500 pixels. Besides, the Figure 5.8 shows the comparison between the
theoretical and empirical false alarm probability as a function of decision threshold.
The two proposed GLRTs δ?het and δ̃?het show a capacity of guaranteeing a prescribed
false alarm rate, even though there is a slight difference in some cases (typically
α0 ≤ 10−3) due to the influence of image content, the presence of weak outliers that
can not be detected by the above outlier removal process, and the inaccuracy of the
CLT for modeling tails.

5.6.3 Detection Performance on a Large Image Database

Experiments are then conducted on a large database to verify the efficiency of the
proposed approach. The test set includes cameras from Dresden database [168],
BOSS base [171] and our own database. Technical specifications of the cameras are
shown in Table 5.1. The test set covers different devices per camera model, different
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Figure 5.8: Comparison between the theoretical false alarm probability (FAP) and
the empirical FAP, from real images of Dresden database, plotted as a function of
decision threshold τ .

Camera Model No. devices Sensor size Bit Depth ISO Sensitivity No. images
Nikon D70 [168,171] N70 3 23.7× 15.6 mm CCD 12 200-400-800 1300
Nikon D90* N90 2 23.6× 15.8 mm CMOS 12 200-400-800 800
Nikon D200 [168] N200 2 23.6× 15.8 mm CCD 12 200 750
Canon 7D [171] C7 1 22.3× 14.9 mm CMOS 14 100 250
Canon 40D* C40 2 22.2× 14.8 mm CMOS 14 200-400-800 800
Canon 400D [171] C400 1 22.2× 14.8 mm CMOS 12 100-200-800 1300
Canon 450D* C450 2 22.2× 14.8 mm CMOS 14 100-400 800
Pentax K20D [171] P 1 23.4× 15.6 mm CMOS 12 100-200-400 1200

Table 5.1: Camera Model Used in Experiments (the symbol * indicates our own
camera)

imaged scenes, different camera settings and different environmental conditions. The
Dresden database [168] contains two devices per camera model. In case of the Nikon
D200 camera, two SLR-camera bodies were used with interchanging two different
lenses for each acquired scene. Note that the BOSS base [171] also contains a Nikon
D70 camera device. Therefore, the test set finally contains 3 different devices of the
Nikon D70 camera model.

Prior to the experiments, a training stage involves using 50 RAW images per
ISO sensitivity and per camera model to estimate the reference parameters (a0, b0).
Evidently, using more images will get a better estimate but it is also less realistic.
The number of 50 is a good trade-off. In the experiments, the test δ̃?het is used to
verify whether a given image is acquired by camera model under investigation. The
decision threshold τ̃?het is given by Theorem 5.3 corresponding to the false alarm rate
α0 = 10−5. If the normalized GLR Λ̃?het(Z) is smaller than the decision threshold
τ̃?het, the hypothesis H0 is accepted, i.e. the given image is declared taken from the
camera model under investigation. On the contrary, the hypothesis H1 is accepted.
The detection performance of the proposed test for each ISO 100, 200, 400, 800 is
shown in Table 5.2. In these tables, each camera model is considered as hypothesis
H0 (row) and all images (column) are tested against H0. The values in the tables
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Inspected Images
C7 C400 C450 P

H0

C7 97.3 0 0 0
C400 0 99.7 0 0
C450 1.7 0 100 0
P 0 0 0 99.8

(a) ISO 100

Inspected Images
N70 N90 N200 C40 C400 P

H0

N70 99.6 1.1 0.2 0 0 0
N90 1.1 100 0 0 0 0
N200 0 0 99.6 0 0 0
C40 0 0 0 100 0 0
C400 0 0 0 0 99.8 0
P 0.7 0 0 0 0 99.8

(b) ISO 200
Inspected Images

N70 N90 C40 P

H0

N70 100 0 0 0
N90 0 100 0 0
C40 0 0 100 0
P 0 0 0 100

(c) ISO 400

Inspected Images
N70 N90 C40 C400

H0

N70 100 0 0 0
N90 0 100 0 0
C40 0 0 100 0
C400 0 0 0 99.5

(d) ISO 800

Table 5.2: Detection performance of the proposed detector.

Inspected Images
N70 N90 N200 C40 C400 P

H0

N70 97.9 0 0 0 0 0
N90 0 85.5 0 0 0 0
N200 0 0 100 0 0 0
C40 0 0 0 100 0 0
C400 0 0 0 0 99.8 0
P 0 0 0 0 0 99.3

Table 5.3: Detection performance of PRNU-based detector for ISO 200.

indicate the percentage of images that are claimed taken from the camera model
H0. It should be noted that these tables are not used in the same way as in the
classification in which the sum for each class yields 100%. The inspected image is
brought into the binary testing of the known camera model H0 against the others,
thus the sum of a class may not yield 100%. Therefore, it could lead to a scenario
that an image is claimed taken by at least two camera models. To deal with this
scenario, the GLRT δ

?
het can be performed to decide which camera model acquires

the inspected image.
Potentially, there are many detectors in the literature for camera model identi-

fication, such as PRNU-based detector [31] and CFA-based detector [24]. However,
they are based on the fact that the fingerprint obtained from images in the TIFF or
JPEG format contains traces of post-acquisition processes (e.g. demosaicing) that
carry information about the camera model. This chapter focuses camera model
identification from RAW images, which have not gone through post-acquisition op-
erations yet. Therefore, those detectors are not relevant to compare with the pro-
posed detector. To the best of our knowledge, the proposed detector is the only
one that focuses on RAW images to identify camera models. The PRNU-based de-
tector proposed in [30, 32] can also deal with RAW images but it was proposed for
camera instance identification, which differs from camera model identification. Nev-
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ertheless, this detector is performed on the test set to compare with the proposed
detector. The reference PRNU is calculated using 50 images per camera model. In-
stead of the normalized correlation [30], the Peak to Correlation Energy (PCE) [32]
is used as a test statistic for the decision problem. The decision threshold is given
by τ =

(
Φ−1(1 − α0)

)2 with α0 = 10−5. This detector does not depend on ISO
sensitivity. However, to ensure that the experiments are conducted in the same
scenario for the two detectors, only images with the same ISO from the same device
are considered. Table 5.3 shows the detection performance of the PRNU-based de-
tector [32] for all images from the same device per camera model with ISO 200. It
is noted that the proposed detector slightly outperforms the PRNU-based detector.

Remark 5.1. This chapter has shown the discriminability of the parameters (a, b)

for different camera models at the same ISO sensitivity and has exploited this finger-
print for camera model identification. Therefore, one can rely on this fingerprint to
train a classifier. However, as discussed in Section 2.3, the classification approach can
not analytically provide the statistical performance, nor warrant a prescribed false
alarm probability. By contrast, these criteria can be met in our works that design
a statistical test within hypothesis testing framework based on a priori knowledge
of image model.

5.7 Conclusion

In the literature, most of existing forensic methods are designed within a super-
vised classification framework using imaging noise (e.g. PRNU) or post-acquisition
processes (e.g. CFA interpolation) as forensic features for camera model identifica-
tion. This chapter proposes a different approach that designs a statistical test in the
framework of hypothesis testing theory. The approach is based on the heteroscedas-
tic noise model that is more relevant to describe a natural RAW image than the
conventional AWGN model. Two parameters (a, b) characterizing the heteroscedas-
tic noise model are exploited as camera fingerprint for camera model identification.
The main strength of the proposed approach is the designing of the GLRTs with
analytic performance and the guaranteeing of a prescribed false alarm probability.

The main limitation is that the proposed approach mainly focuses on RAW im-
ages that may not be available in practice. Since the proposed approach shows a
almost perfect detection performance, it is worth extending it to other image for-
mats, e.g. TIFF and JPEG. The most challenging part when extending this work is
the impact of post-acquisition enhancement and compression processes. Non-linear
processes (e.g. gamma correction) modify the heteroscedastic noise model. More-
over, the spatial correlation caused by CFA interpolation can lead to a difficulty of
estimating accurately noise model parameters. Another limitation is the dependence
of the proposed approach on ISO sensitivity. However, this is not crucial because
there are not many ISO sensitivity for a camera and only a small number of images
are sufficient to estimate the fingerprint (a, b). Additionally, we can also exploit the
relation between the camera parameters (a, b) and ISO sensitivity, as shown in Sec-
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tion 3.2.1, to avoid the dependence of the proposed detectors. Moreover, it would
be interesting that the ISO factor can be estimated and taken into account in the
the test. However, the design of such detectors lies out of the scope of the present
works.

In our works, the Gaussian distribution is used to simplify the statistical study of
the LR. However, this distribution is not accurate enough for modeling tails, which
leads to the inaccuracy for very small false alarm probability. A more solid study
for this case is desirable in future works.

In terms of computational complexity, the algorithm depends on the number of
segments K and the image size. In this paper, the number of segments K is set to
the number of quantization levels, e.g. K = 2ν . Therefore, the algorithm is of the
order of O(N · 2ν).

5.8 Appendix

5.8.1 Expectation and Variance of the GLR Λhet(z
wapp
k,i ) under Hy-

pothesis Hj

From (4.2) and (4.6), we obtain

zwapp
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(
0, ‖ϕ‖22σ2
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Therefore, the expectation and variance of
(zwapp
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‖ϕ‖22
are given by
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VarHj
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1
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. (5.43)

Besides, it can be noted that two functions h1(µ̂k) and h1(µ̂k) only depend on
the parameter µ̂k. These functions are continuous and differentiable on R+. Using
the Delta method in Lemma A.2, it follows from (4.6) that

h1(µ̂k)
d→ N

(
h1(µk), (h

′
1(µk))

2 ‖ϕ‖22
nk

σ2
k,j

)
(5.44)

h2(µ̂k)
d→ N

(
h2(µk), (h

′
2(µk))

2 ‖ϕ‖22
nk

σ2
k,j

)
. (5.45)

Consequently, the first two moments of Λhet(z
wapp
k,i ) under hypothesis Hj can be
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given by

EHj
[
Λhet(z

wapp
k,i )

]
=

1

2
EHj [h1(µ̂k)] +

1

2
EHj [h2(µ̂k)]EHj

[
(zwapp
k,i − µ̂k)2

‖ϕ‖22

]
=

1

2
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1

2
h2(µk)σ

2
k,j

(
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1

nk

)
(5.46)

VarHj

[
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wapp
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]
=
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4
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1

4
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1
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(zwapp
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1
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)2 ‖ϕ‖22
nk

σ2
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1

2

(
h2(µk)

)2
σ4
k,j

(
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1

nk

)2

+
3

4

(
h′2(µk)

)2 ‖ϕ‖22
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σ6
k,j

(
1 +

1

nk

)2
. (5.47)

5.8.2 Expectation and Variance of the GLR Λ̃het(z
wapp
k,i ) under Hy-

pothesis Hj

For brevity, let denote

ζk = log
(
a0µ̂k + b0

)
− log

(
â1µ̂k + b̂1

)
and %k =

1

a0µ̂k + b0
− 1

â1µ̂k + b̂1
, (5.48)

such that the Λ̃het(z
wapp
k,i ) can be rewritten as

Λ̃het(z
wapp
k,i ) =

1

2
ζk +

1

2
%k

(zwapp
k,i − µ̂k)2

‖ϕ‖22
. (5.49)

The first two moments of
(zwapp
k,i −µ̂k)2

‖ϕ‖22
under hypothesis Hj have been already given

in (5.42) and (5.43). Therefore, it is necessary to calculate the first two moments of
ζk and %k.

5.8.2.1 Statistical Properties of ζk

Using the Delta method in Lemma A.2 with the function h(x) = log(ax+ b), from
(4.6) we obtain

log
(
a0µ̂k + b0

) d→ N

(
log(σ2

k,0),
a2

0

σ4
k,0

‖ϕ‖22
nk

σ2
k,j

)
. (5.50)
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Besides, based on the definitions of mathematical expectation and variance, a little
calculation shows that

EHj
[
â1µ̂k + b̂1

]
= a1µk + b1 = σ2

k,1 (5.51)

VarHj
[
â1µ̂k + b̂1

]
= VarHj [â1µ̂k] + VarHj [b̂1] + 2CovHj [â1µ̂k, b̂1]

= E2
Hj [â1]VarHj [µ̂k] + EHj [µ̂

2
k]VarHj [â1] + VarHj [b̂1]

+ 2CovHj [â1µ̂k, b̂1]

= a2
1

‖ϕ‖22
nk

σ2
k,j + (µ2

k +
‖ϕ‖22
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σ2
k,j)σ

2
a1

+ 2µkσa1b1 + σ2
b1 . (5.52)

Consequently, it follows from Corollary A.1 that

EHj
[

log(â1µ̂k + b̂1)
]

= log(a1µk + b1) = log(σ2
k,1) (5.53)

VarHj

[
log(â1µ̂k + b̂1)

]
=

VarHj
[
â1µ̂k + b̂1

]
σ4
k,1

, (5.54)

where VarHj
[
â1µ̂k + b̂1

]
is given in (5.52). Combining (5.50), (5.53) and (5.54), the

first two moments of ζk can be expressed as

EHj
[
ζk
]

= EHj
[

log(a0µ̂k + b0)
]
− EHj
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log(â1µ̂k + b̂1)

]
= log(σ2

k,0)− log(σ2
k,1) = h1(µk) (5.55)
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. (5.56)

5.8.2.2 Statistical Properties of %k

Using the Delta method in Lemma A.2 with the function h(x) = 1
ax+b , from (4.6)

we obtain

1

a0µ̂k + b0

d→ N

(
1

σ2
k,0

,
a2

0

σ8
k,0

ckσ
2
k,j

)
. (5.57)

Using Corollary A.1, it follows from (5.51) and (5.52) that

EHj
[ 1

â1µ̂k + b̂1

]
=

1

a1µk + b1
=

1

σ2
k,1

(5.58)

VarHj

[ 1

â1µ̂k + b̂1

]
=
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[
â1µ̂k + b̂1

]
σ8
k,1

. (5.59)
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Combining (5.57), (5.58) and (5.59), the first two moments of %k can be expressed
as

EHj [%k] = EHj
[ 1

a0µ̂k + b0

]
− EHj

[ 1

â1µ̂k + b̂1

]
=

1

σ2
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= h2(µk) (5.60)

VarHj [%k] = VarHj
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[ 1
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]
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. (5.61)

5.8.2.3 Statistical Properties of Λ̃het(z
wapp
k,i )

Combining (5.42), (5.43), (5.55), (5.56), (5.60), (5.61), we derive the first two mo-
ments of the GLR Λ̃het(z

wapp
k,i ) under hypothesis Hj
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=
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. (5.63)
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6.1 Introduction

Chapter 5 has proposed a new approach for camera model identification problem by
designing a statistical test within the framework of hypothesis testing theory based
on the heteroscedastic noise model. Even though that approach shows a nearly
perfect detection performance, it has two main limitations. Firstly, it mainly focuses
on RAW images that may not be available in practice. Secondly, the proposed
fingerprint (a, b) depends on ISO sensitivity [134]. Although this is not crucial
because there are not many ISO sensitivity for a camera and only a small number
of images are sufficient to estimate the reference camera parameters (a, b) for each
ISO sensitivity, it is more desirable to rely on a fingerprint that is invariant to image
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content and camera settings, and robust to non-linear processing operations (e.g.
gamma correction).

The goal of this chapter is to design a statistical test within hypothesis testing
framework for camera model identification from JPEG images based on the gener-
alized noise model (4.42). The main contributions are the following:

• This approach is based on the generalized noise model that characterizes a
natural image in TIFF or JPEG format accurately. The parameters (ã, b̃, γ)

characterizing the generalized noise model are proposed to be exploited as
camera fingerprint to identify camera models.

• Stating the camera model identification problem into hypothesis testing frame-
work, the most powerful test given by the LRT is studied in the ideal context
where all model parameters are known. In practice, the model parameters are
unknown. Two GLRTs are designed to deal with the difficulty of unknown
parameters. The statistical performance of the proposed tests is analytically
established. Moreover, they allow the guaranteeing of a prescribed false-alarm
rate and the setting of decision threshold independently of the image content.

The work in this chapter has been presented in [176] and valorized in the patent
[177]. The chapter is organized as follows. Section 6.2 studies properties of the
parameters (ã, b̃, γ) that are further exploited as camera fingerprint for camera model
identification. Section 6.3 states the camera model identification problem in the
framework of hypothesis testing theory and studies an optimal detector assuming
that all model parameters are known. Section 6.4 designs two GLRTs to address
the difficulty of unknown parameters. Section 6.5 presents numerical results of two
proposed GLRTs on simulated and real natural JPEG images. Finally, Section 6.6
concludes the chapter.

6.2 Camera Fingerprint

The study of noise statistics in a natural image from RAW format to TIFF format
has been performed in Section 4.3. The main steps of image processing pipeline are
modeled. By starting from the heteroscedastic noise model and taking into account
the non-linear effect of gamma correction, the generalized noise model (4.42) is
developed. This noise model gives the pixel’s variance as a non-linear function of
pixel’s expectation. The generalized noise model is relevant to characterize a natural
image in TIFF or JPEG format acquired by a digital camera. This thesis mainly
focuses on JPEG format that is the most popular format for images produced by a
digital camera. TIFF images could be sensitive to ISO and they are less available
in practice.

The application of hypothesis testing theory requires to know the statistical
distribution of a JPEG pixel. To this end, it is necessary to model the JPEG com-
pression chain rigorously. JPEG compression mainly involves the DCT operation
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Figure 6.1: Empirical distribution of noise residuals z̃res
k,i in a segment compared with

theoretical Gaussian distribution.

and the quantization in the DCT domain, while the JPEG decompression performs
dequantization and inverse DCT operation to return to spatial domain, see Sec-
tion 2.2. In general, the reconstructed image from a compressed file usually differs
from the original image. There are two fundamental factors involved in this spatial-
domain error [166]: the DCT basis vectors, and quantization error introduced in
the DCT domain. The spatial-domain error at a pixel location is a weighted sum
of 64 DCT-domain quantization errors within a 8 × 8 block. Providing an exact
statistical distribution of a JPEG pixel is a challenging task due to the difficulty of
establishing mathematically the model of DCT coefficients, characterizing the effect
of quantization in the DCT domain, and deriving the distribution of the sum of
those random variables.

To overcome this difficulty, it is proposed to invoke the Lindeberg CLT. In the
homogeneous segment S̃k (see Section 4.3.2), a JPEG pixel z̃k,i can be decomposed
as

z̃k,i = µ̃k + ηz̃k,i , (6.1)

where µ̃k denotes the expectation of all pixels in the segment S̃k and ηz̃k,i accounts
for spatial-domain noise after JPEG compression. The pixels in the segment S̃k
are assumed to be i.i.d, thus they have the same expectation and variance. Since
the DCT can approximately decorrelate the input image [166], the spatial-domain
noise ηz̃k,i in the decompressed JPEG image can be seen as a linear combination of
independent random variables because of IDCT operation. In virtue of the Linde-
berg CLT, the random variable ηz̃k,i can be approximately modeled by the Gaussian
distribution with zero-mean [166]. Meanwhile, the variance of noise ηz̃k,i depends on
pixel’s expectation µ̃k according to the generalized noise model (4.42). Figure 6.1



102
Chapter 6. Camera Model Identification Based on the Generalized

Noise Model

ã
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Figure 6.2: Estimated parameters (ã, b̃) on JPEG images issued from Canon Ixus
70 camera with different camera settings.

shows the empirical distribution of residuals z̃res
k,i in a segment extracted from a nat-

ural JPEG image, compared with theoretical Gaussian distribution. Finally, the
JPEG pixel z̃k,i can be modeled as

z̃k,i ∼ N
(
µ̃k, σ̃

2
k

)
, with σ̃2

k = fgen(µ̃k; ã, b̃, γ). (6.2)

For camera model identification problem, it is necessary to evaluate the vari-
ability of the camera parameters (ã, b̃, γ) for different camera settings and different
devices per camera model, and to verify their discriminability for different camera
models. The Figure 6.2 shows the parameters (ã, b̃) estimated from JPEG images of
Canon Ixus 70 camera with different camera settings. Furthermore, the Figure 6.3
shows the parameters (ã, b̃) estimated from JPEG images that are acquired by dif-
ferent devices of Canon Ixus 70 camera model and the Figure 4.3 illustrates the
discriminability of the parameters for different camera models. It is worth noting
that in contrast to the parameters (a, b), the parameters (ã, b̃) are invariant to im-
aged scenes and camera settings, robust to non-linear post-acquisition processes and
discriminative for different camera models. Since the difference between estimated
gamma factors of different camera models is small, we do not report them in this
chapter. The parameters (ã, b̃, γ) are proposed to be exploited as camera fingerprint
to identify camera models.

6.3 Optimal Detector for Camera Model Identification
Problem

6.3.1 Hypothesis Testing Formulation

The camera model Sj , j ∈ {0, 1} is now characterized by three parameters
(ãj , b̃j , γj). It is assumed that (ã0, b̃0, γ0) 6= (ã1, b̃1, γ1). In a binary hypothesis
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Figure 6.3: Estimated parameters (ã, b̃) on JPEG images issued from different de-
vices of Canon Ixus 70 model.

testing, the inspected JPEG image Z̃ is either acquired by camera model S0 or cam-
era model S1. The goal of the test is to decide between two following hypotheses

H0 =
{
z̃k,i ∼ N

(
µ̃k, σ̃

2
k,0

)
,∀k ∈ {1, . . . ,K}, ∀i ∈ {1, . . . , ñk}

}
H1 =

{
z̃k,i ∼ N

(
µ̃k, σ̃

2
k,1

)
,∀k ∈ {1, . . . ,K}, ∀i ∈ {1, . . . , ñk}

}
,

(6.3)

where σ̃2
k,j = fgen(µ̃k; ãj , b̃j , γj) is the noise variance with respect to the expectation

µ̃k under hypothesis Hj . Let

Kα0 =
{
δ : sup

(µ̃,ã0,b̃0,γ0)

PH0

[
δ(Z̃) = H1

]
≤ α0

}

be the class of tests whose false alarm probability is upper-bounded by the rate α0

where µ̃ = (µ̃1, . . . , µ̃K) is the mean vector. Among all the tests in the class Kα0 ,
it is aimed at finding a test δ which maximizes the power function β(δ). It can be
noted that several steps in this chapter are similar as in Chapter 5. It is assumed
that the camera parameters (ã0, b̃0, γ0) are known in advance, i.e. the image under
investigation Z̃ will be tested against the known camera model S0. The main goal
of this chapter is to study the optimal test for the problem (6.3) and design the
GLRT to deal with the difficulty of unknown parameters (µ̃, ã1, b̃1, γ1).

6.3.2 LRT for Two Simple Hypotheses

When all model parameters are known, in virtue of the Neyman-Pearson lemma, the
MP test δ∗gen solving the problem (6.3) is the LRT given by the following decision
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rule

δ∗gen(Z̃) =


H0 if Λgen(Z̃) =

K∑
k=1

ñk∑
i=1

Λgen(z̃k,i) < τ∗gen

H1 if Λgen(Z̃) =
K∑
k=1

ñk∑
i=1

Λgen(z̃k,i) ≥ τ∗gen,

(6.4)

where the LR Λgen(z̃k,i) is defined by

Λgen(z̃k,i) =
1

2

(
log
(
σ̃2
k,0

)
− log

(
σ̃2
k,1

))
+

1

2

( 1

σ̃2
k,0

− 1

σ̃2
k,1

)
(z̃k,i − µ̃k)2. (6.5)

Proposition 6.1. Under hypothesis Hj, the first two moments of the LR Λgen(z̃k,i)

are given by

EHj
[
Λgen(z̃k,i)

]
=

1

2

(
log
(
σ̃2
k,0

)
− log

(
σ̃2
k,1

))
+

1

2

( 1

σ̃2
k,0

− 1

σ̃2
k,1

)
σ̃2
k,j (6.6)

VarHj

[
Λgen(z̃k,i)

]
=

1

2

( 1

σ̃2
k,0

− 1

σ̃2
k,1

)2
σ̃4
k,j . (6.7)

Proof. It follows from z̃k,i ∼ N (µ̃k, σ̃
2
k,j) under each hypothesis Hj , j ∈ {0, 1}, that

(z̃k,i − µ̃k)2

σ̃2
k,j

∼ χ2
1.

Therefore, the first two moments of (z̃k,i − µ̃k)2 under Hj can be given by

EHj
[
(z̃k,i − µ̃k)2

]
= σ̃2

k,j

VarHj

[
(z̃k,i − µ̃k)2

]
= 2σ̃4

k,j .

The proof follows immediately.

Under hypothesis Hj , in virtue of Lindeberg CLT, the LR Λgen(Z̃) follows the
Gaussian distribution with expectation m(j)

gen and variance v(j)
gen as

Λgen(Z̃)
d→ N

(
m(j)

gen, v
(j)
gen

)
(6.8)

with

m(j)
gen =

K∑
k=1

ñk∑
i=1

[
1
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(
log
(
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+
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( 1
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− 1

σ̃2
k,1

)
σ̃2
k,j

]
(6.9)

v(j)
gen =

K∑
k=1

ñk∑
i=1

1

2

( 1

σ̃2
k,0

− 1

σ̃2
k,1

)2
σ̃4
k,j . (6.10)
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Finally, the LRT δ?gen based on the normalized LR Λ?gen(Z̃) =
Λgen(Z̃)−m(0)

gen√
v

(0)
gen

is

rewritten as follows

δ?gen(Z̃) =

{
H0 if Λ?gen(Z̃) < τ?gen

H1 if Λ?gen(Z̃) ≥ τ?gen.
(6.11)

where the decision threshold τ?gen is the solution of the equation PH0

[
Λ?gen(Z̃) ≥

τ?gen

]
= α0 to ensure the LRT δ?gen to be in the class Kα0 .

Theorem 6.1. In an ideal context where all the model parameters (µ̃, ãj , b̃j , γ) are
known in advance, the decision threshold and the power function of the LRT δ?gen

are given by

τ?gen = Φ−1(1− α0) (6.12)

β(δ?gen) = 1− Φ

m(0)
gen −m(1)

gen + τ?gen

√
v

(0)
gen√

v
(1)
gen

 . (6.13)

Proof. From (6.8) and the definitions of the decision threshold and the test power,
the proof follows immediately.

6.4 Practical Context: GLRT

6.4.1 GLRT with Unknown Image Parameters

The GLRT designed in this subsection deals with the difficulty of unknown image
parameters µ̃k assuming that the camera parameters (ã0, b̃0, γ0) and (ã1, b̃1, γ1) are
known. By replacing µ̃k by ˆ̃µk, which is given in (4.47), in the LR Λgen(z̃k,i), the
GLR Λgen(z̃k,i) is now given by

Λgen(z̃k,i) =
1

2

(
log
(
fgen(ˆ̃µk; ã0, b̃0, γ0)

)
− log

(
fgen(ˆ̃µk; ã1, b̃1, γ1)

))
+

1

2

(
1

fgen(ˆ̃µk; ã0, b̃0, γ0)
− 1

fgen(ˆ̃µk; ã1, b̃1, γ1)

)
(z̃k,i − ˆ̃µk)

2. (6.14)

Since the variance of ˆ̃µk is assumed to be negligible, the estimate ˆ̃µk can be treated
as constant µ̃k. Therefore, the expectation and variance of the GLR Λgen(z̃k,i) under
each hypothesis do not change

EHj
[
Λgen(z̃k,i)

]
= EHj

[
Λgen(z̃k,i)

]
=

1
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(
log
(
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σ̃2
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σ̃2
k,1
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σ̃2
k,j (6.15)

VarHj

[
Λgen
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= VarHj
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Λgen(zk,i)

]
=
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( 1

σ̃2
k,0

− 1

σ̃2
k,1

)2
σ̃4
k,j . (6.16)
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Consequently, the GLR Λgen(Z̃) =
∑K

k=1

∑ñk
i=1 Λ̂1(zk,i) also follows the Gaussian

distribution with expectation m(j)
gen and variance v(j)

gen under hypothesis Hj

Λgen(Z̃)
d→ N

(
m(j)

gen, v
(j)
gen

)
(6.17)

where m(j)
gen and v(j)

gen are given in (6.9) and (6.10) respectively.

Finally, the GLRT δ
?
gen based on the normalized GLR Λ

?
gen(Z̃) =

Λgen(Z̃)−m̂(0)
gen√

v̂
(0)
gen

is

given by

δ
?
gen(Z̃) =

{
H0 if Λ

?
gen(Z̃) < τ?gen

H1 if Λ
?
gen(Z̃) ≥ τ?gen,

(6.18)

where m̂(0)
gen and v̂

(0)
gen are the estimates of the expectation m

(0)
gen and variance v(0)

gen

by replacing µ̃k by ˆ̃µk in (6.9) and (6.10), and the decision threshold τ?gen is the

solution of the equation PH0

[
Λ
?
gen(Z̃) ≥ τ?gen

]
= α0. From the Slutsky’s theorem,

the decision threshold and the power of the GLRT δ
?
gen can be accordingly defined

as in the Theorem 6.1.

6.4.2 GLRT with Unknown Image and Camera Parameters

Before designing the GLRT, the ML estimation of camera parameters (ã1, b̃1, γ1) is
performed on the inspected image Z̃; see Section 4.3.2. Instead of estimating three
parameters simultaneously, it is proposed to set γ1 = γ0 and reduce the maximiza-
tion problem (4.51) with three parameters back to the one with two parameters. By
setting γ1 = γ0, the inspected image Z̃ is expected to be taken by the camera model
S0. Let (ˆ̃a1,

ˆ̃
b1) be the solution of that maximization problem. The ML estimates

(ˆ̃a1,
ˆ̃
b1) are asymptotically consistent, i.e. they asymptotically converge in proba-

bility to their true value: ˆ̃a1
p→ ã1 and ˆ̃

b1
p→ b̃1. The parameters (ã1, b̃1, γ1) would

characterize an unknown camera model. Furthermore, the ML estimates (ˆ̃a1,
ˆ̃
b1)

exhibit a certain variability. Let σ2
ã1
, σ2

b̃1
, σã1b̃1

denote respectively the variance of

ˆ̃a1, the variance of ˆ̃
b1 and the covariance between ˆ̃a1 and ˆ̃

b1, see also discussions in
Section 6.5.1 for this covariance matrix.

The GLRT is designed by replacing unknown parameters (µ̃k, ã1, b̃1) by
(ˆ̃µk, ˆ̃a1,

ˆ̃
b1) in the LR Λgen(z̃k,i). The GLR Λ̃gen(z̃k,i) is now given by

Λ̃gen(z̃k,i) =
1

2

(
log
(
fgen(ˆ̃µk; ã0, b̃0, γ0)

)
− log

(
fgen(ˆ̃µk; ˆ̃a1,

ˆ̃
b1, γ1)

))
+

1

2

(
1

fgen(ˆ̃µk; ã0, b̃0, γ0)
− 1

fgen(ˆ̃µk; ˆ̃a1,
ˆ̃
b1, γ1)

)
(z̃k,i − ˆ̃µk)

2. (6.19)
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Proposition 6.2. Under hypothesis Hj, the first two moments of the GLR Λ̃gen(z̃k,i)

are given by

EHj
[
Λ̃gen(z̃k,i)

]
=
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log
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)
− log
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+

1

2

( 1

σ̃2
k,0

− 1

σ̃2
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)
σ̃2
k,j (6.20)

VarHj
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(1

4
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4

σ̃4
k,j

σ̃4
k,1

)
. (6.21)

Proof. of Proposition 6.2 is given in Appendix 6.7.

It can be noted that the second term in (6.21) aims to take into account the vari-
ability of the ML estimates (ˆ̃a1,

ˆ̃
b1). In virtue of Lindeberg CLT, under hypothesis

Hj , the GLR Λ̃gen(Z̃) =
∑K

k=1

∑ñk
i=1 Λ̃gen(z̃k,i) follows the Gaussian distribution as

Λ̃gen(Z̃)
d→ N

(
m(j)

gen, ṽ
(j)
gen

)
, (6.22)

where the expectation m(j)
gen is given in (6.9) and the variance ṽ(j)

gen is given by

ṽ(j)
gen =

K∑
k=1

ñk

[
1
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+
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σ̃4
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σ̃4
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. (6.23)

The GLRT δ̃?gen based on the normalized GLR Λ̃?gen(Z̃) =
Λ̃gen(Z̃)−m̂(0)

gen√̂̃v(0)

gen

is given as

follows

δ̃?gen(Z̃) =

{
H0 if Λ̃?gen(Z̃) < τ̃?gen

H1 if Λ̃?gen(Z̃) ≥ τ̃?gen,
(6.24)

where m̂(0)
gen and ̂̃v(0)

gen are obtained by replacing unknown parameters (µ̃k, ã1, b̃1) by

estimates (ˆ̃µk, ˆ̃a1,
ˆ̃
b1) in (6.9) and (6.23). The decision threshold and the power

function of the GLRT δ̃?gen are given in the following theorem.

Theorem 6.2. For testing against a known camera model S0, i.e. the parameters
(ã0, b̃0, γ0) are known, the decision threshold and the power of the GLRT δ̃?gen are
given by

τ̃?gen = Φ−1(1− α0) (6.25)

β(δ̃?gen) = 1− Φ

m(0)
gen −m(1)

gen + τ̃?gen

√
ṽ

(0)
gen√

ṽ
(1)
gen

 . (6.26)

Proof. Based on the Slutsky’s theorem, from (6.22), the proof follows immediately.
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Figure 6.4: Detection performance of the proposed tests for 50 and 100 pixels ex-
tracted randomly from simulated JPEG images with quality factor 100.

6.5 Numerical Experiments

6.5.1 Detection Performance on Simulated Database

The detection performance of the proposed tests is first theoretically studied on a
simulated database. The camera model S0 and S1 are respectively characterized
by (ã0, b̃0, γ0) = (−0.0012, 0.11, 0.8) and (ã1, b̃1, γ1) = (−0.0025, 0.20, 0.85). These
parameters respectively correspond to Nikon D70 and Nikon D200 camera models
in the Dresden image database [168], see Figure 4.2. The camera parameters are
used to generate randomly 5000 images for camera model S0 and 5000 images for
camera model S1 that further are compressed with different quality factors .

The implementation of the GLRT δ̃?gen requires to know the covariance matrix

of ML estimates (ˆ̃a1,
ˆ̃
b1). However, the ML estimates (ˆ̃a1,

ˆ̃
b1) are given numerically,

which causes a difficulty of establishing the covariance matrix analytically. To over-
come this difficulty, it is proposed to estimate (ˆ̃a,

ˆ̃
b) on each image from 50 images

that are taken by the camera model S0. Then the empirical covariance matrix can
be calculated from previous couples (ˆ̃a,

ˆ̃
b). Speaking rigorously, this is the covari-

ance matrix characterizing the variability of (ã0, b̃0). By doing so, it is expected
that the parameters (ˆ̃a1,

ˆ̃
b1) fall into the neighborhood of (ã0, b̃0), namely that the

inspected image Z̃ is acquired by the camera model S0. This leads us to exploit
this covariance matrix in the implementation of the GLRT δ̃?gen. This step is also
performed in the test with real images.

The detection performance of the proposed tests for different number of pixels is
illustrated in Figure 6.4. The very small loss of power between the LRT δ?gen and the
GLRT δ

?
gen highlights the accuracy of the proposed estimation algorithm. Moreover,

from Figure 6.4, it can be noted that the loss of power between the GLRT δ
?
gen and
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Figure 6.5: Detection performance of the GLRT δ̃?gen for 100 pixels extracted ran-
domly from simulated JPEG images with different quality factors.

the GLRT δ̃?gen decreases when the number of pixels increases. For only 50 pixels,
there is no sufficient statistics for the convergence of the CLT. Furthermore, the
detection performance of the GLRT δ̃?gen for different quality factors is illustrated in
Figure 6.5. As expected, the correct detection probability β(δ) decreases with the
decline of the quality factor. Like the GLRTs proposed in Chapter 5, the GLRTs
proposed here only require a small number of pixels to achieve a perfect detection
performance (e.g. from 500 pixels).

6.5.2 Detection Performance on Two Nikon D70 and Nikon D200
Camera Models

To improve the performance of the GLRT when dealing with real images, it is
proposed to remove outlier pixels z̃k,i in each segment S̃k using the classical three-
sigma rule [175]. The pixel z̃k,i is considered as non-outlier if the following condition
is satisfied: |z̃res

k,i | ≤ 3ˆ̃σk. This step is repeated iteratively to obtain better estimates
ˆ̃µk and ˆ̃σ2

k. After outlier removal, all remaining pixels are used for the proposed
tests.

It is important to remind that the proposed GLRTs are designed in the frame-
work of hypothesis testing theory where the reference camera parameters (ã0, b̃0, γ0)

under hypothesis H0 are assumed to be known in advance. Therefore, those pa-
rameters need to be defined accurately in practice. To this end, the parameters
(ã, b̃, γ) are estimated on each image of 50 images. The reference parameter γ0 is
calculated as the average of previous gamma values. Then the parameters (ã, b̃) are
re-estimated on each image by setting the parameter γ to the averaged γ0. The ref-
erence parameters (ã0, b̃0) are finally obtained by averaging the previous estimates
(ã, b̃).

To highlight the relevance of the proposed GLRTs, two Nikon D70 and Nikon
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Figure 6.6: Detection performance of the GLRT δ
?
gen and δ̃?gen for 50 and 100 pixels

extracted randomly from JPEG images of Nikon D70 and Nikon D200 cameras.

D200 camera models of the Dresden image database [168] are chosen to conduct
experiments. Only the red color channel is used in this experiment. The Nikon
D70 and Nikon D200 cameras are respectively set at H0 and H1. The Figure 6.6
shows the detection performance of the GLRT δ

?
gen and δ̃?gen for different numbers

of pixels. We can note a similar behavior to the ROC on simulated database. There
is a small loss of power between the two power functions since the GLRT δ̃?gen takes

into account different estimates (ˆ̃a1,
ˆ̃
b1) that are influenced by the image content.

Nevertheless, two proposed GLRTs are almost perfect from 500 pixels. Besides,
the Figure 6.7 shows the comparison between the theoretical and empirical false
alarm probability, which are plotted as a function of decision threshold τ . The two
proposed GLRTs δ?gen and δ̃?gen also show an ability of guaranteeing a prescribed
false alarm rate.

6.5.3 Detection Performance on a Large Image Database

Experiments are then conducted on the Dresden image database [168] to verify the
efficiency of the proposed approach. Technical specifications of the cameras are
shown in Table 6.1. In these experiments, the GLRT δ̃?gen is used to verify whether
a given image is acquired by the camera model of interest. The decision threshold
τ̃?gen is given by the Theorem 6.2 corresponding to the false alarm rate α0 = 10−5.
The detection performance of the proposed detector δ̃?gen is shown in Table 6.2.
A SVM-based detector has been already performed on the Dresden database [168]
using 46 different features to capture characteristics of different camera components
of a digital camera. This SVM-based detector has used 60% of the images of one
device per model for training and all images of the remaining devices for testing.
The detection performance of the SVM-based detector is shown in Table 6.3. The
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Figure 6.7: Comparison between the theoretical false alarm probability (FAP) and
the empirical FAP, plotted as a function of decision threshold τ .

PRNU-based detector [32] is also performed in these experiments. This detector [32]
is only performed on one device per model. Its detection performance is shown in
Table 6.4. It can be noted that the proposed detector slightly outperforms prior-art
ones.

6.6 Conclusion

The goal of this chapter is to design a statistical test within the framework of hy-
pothesis testing theory for camera model identification from JPEG images. The
approach is based on the generalized noise model that accurately characterizes a
natural image in TIFF or JPEG format acquired by a digital camera. The param-
eters (ã, b̃, γ) characterizing the generalized noise model are exploited as camera
fingerprint for camera model identification. Based on this accurate image model,
the most powerful LRT are studied in the theoretical context and two GLRTs are
designed to deal with the difficulty of unknown parameters. The strength of the
proposed approach is that statistical performance of the tests can be analytically
established as well as they can warrant a prescribed false alarm rate while ensuring
a high detection performance. This chapter also completes the limitations of the
GLRTs proposed in Chapter 5.

A limitation in this approach is that the demosaicing and white balancing are
not completely modeled. The proposed approach only assumes that those opera-
tions are linear, which simplifies the statistical study and makes the resulting model
more exploitable. The demosaicing always involves a convolution operation, which
requires us to consider a multivariate distribution. That distribution coule be more
relevant but inexploitable. Overall, the common philosophy in this thesis is a trade-
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Camera Model No. devices Resolution No. images
Canon Ixus 55 Cn1 1 2592 × 1944 200
Canon Ixus 70 Cn2 3 3072 × 2304 500
Casio EX-Z150 Cs 5 3264 × 2448 600
Fujifilm J50 F 3 3264 × 2448 500
Nikon D200 N2 2 3872 × 2592 500
Nikon D70 N3 2 3008 × 2000 300
Olympus 1050SW O 5 3648 × 2736 700
Panasonic FZ50 Pa 3 3648 × 2736 600
Pentax A40 Pe 4 4000 × 3000 600
Praktica DCZ Pr 5 2560 × 1920 700
Ricoh GX100 Ri 5 3648 × 2736 700∑

11 38 5900

Table 6.1: Camera Model Used in Experiments

Inspected images
Cn1 Cn2 Cs F N2 N3 O Pa Pe Pr Ri Avg

H0

Cn1 98.41 0 0 0 0 0 0 0 0 0 0
Cn2 0 100 0 0 0 0 0 0 0 0 0
Cs 0 0 99.82 0 0 0 0 0 0 0 0
F 0 0 0 91.55 0 0 0 0 0 0 0
N2 2.26 0 0 0 100 0 0 0 0 0 0
N3 0 0 0 0 0 100 0 0 0 0 0
O 0 0 0 0 0 0 97.25 0 0 0 0
Pa 0 0 0 0 0 0 0 98.57 0 0 0
Pe 0 0 0 0 0 0 0 0 92.21 0 0
Pr 0 0 0 0 0 0 0 0 0 100 0
Ri 0 0 0 0 0 0 0 0 0 0 98.33

97.83

Table 6.2: Performance of proposed detector

off between the reality in image acquisition and exploitability in practice.

6.7 Appendix

Since the variance of ˆ̃µk is negligible, the estimate ˆ̃µk can be treated as a con-
stant µ̃k. Moreover, the estimates (ˆ̃a1,

ˆ̃
b1) are asymptotically consistent. Therefore,

the mathematical expectation of the GLR Λ̃gen(z̃k,i) under hypothesis Hj does not
change

EHj
[
Λ̃gen(z̃k,i)

]
=

1

2

(
log
(
σ̃2
k,0

)
− log

(
σ̃2
k,1

))
+

1

2

( 1

σ̃2
k,0

− 1

σ̃2
k,1

)
σ̃2
k,j . (6.27)
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Inspected images
Cn2 Cs F N2 N3 O Pa Pe Pr Ri Avg

H0

Cn2 * 98.26 * * 2.61 * * * * * *
Cs * * 99.71 * 2.77 * * * * * *
F * * * 99.94 * * * * * * *
N2 * * * * 93.73 * * * * * *
N3 * * * * * 84.57 * * * * *
O * * * * * * 98.95 * * * *
Pa * * * * * * * 97.31 * * *
Pe * * * * * * * * 90.86 * *
Pr * * * * * * * * * 98.42 *
Ri * * * * * * * * * * 100

96.17

Table 6.3: Performance of SVM-based detector (the symbol * represents values
smaller than 2%)

Inspected images
Cn1 Cn2 Cs F N2 N3 O Pa Pe Pr Ri Avg

H0

Cn1 100 0 0 0 0 0 0 0 0 0 0
Cn2 0 100 0 0 0 0 0 0 0 0 0
Cs 0 0 99.44 0 0 0 0 0 0 0 0
F 0 0 0 73.81 0 0 0 0 0 0 0
N2 0 0 0 0 98.92 0.33 0.28 0 0 0 0
N3 0 0 0 0 0 100 0 0 0 0 0
O 0 0 0 0 0 0.16 87.25 0 0 0 0
Pa 0 0 0 0 0 0 0 94.71 0 0 0
Pe 0 0 0 0 0 0 0 0 100 0 0
Pr 0 0 0 0 0 0 0 0 0 96.65 0
Ri 0 0 0 0 0 0 0 0 0 0 100

95.52

Table 6.4: Performance of PRNU-based detector

Meanwhile, the variance of f(ˆ̃µk; ˆ̃a1,
ˆ̃
b1, γ1) is given by
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σã1b̃1
. (6.28)

Therefore, we derive from Corollary A.1 that
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Consequently, the asymptotic variance of the GLR Λ̃gen(z̃k,i) is given by
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7.1 Introduction

This chapter proposes a novel approach for camera model identification. Instead
of extracting the camera fingerprint in the spatial domain as presented in Chap-
ter 5 and 6, the approach proposed in this chapter relies on the state-of-the-art
model of DCT coefficients in order to extract the fingerprint in the DCT domain.
The main motivation behind fingerprint extraction in the DCT domain is that the
statistics of DCT coefficients change with different sensor noises combining with
various in-camera processing algorithms. Relying on the highly accurate model of
DCT coefficients allows us to capture this statistical difference in natural images
taken by different camera models. The goal of this chapter is to design a statisti-
cal test for camera model identification from JPEG images based on the proposed
model of DCT coefficients. The main contributions are the following:

• This chapter presents a novel camera fingerprint that is extracted in the DCT
domain based on the state-of-the-art statistical model of DCT coefficients
(see Section 4.4). The proposed camera fingerprint is invariant to image con-
tent and camera settings, and robust to non-linear processing operations (e.g.
gamma correction).

• Still stating the camera model identification problem into hypothesis testing
framework, this chapter studies the most powerful test given by the LRT in the
ideal context where all model parameters are known and designs two GLRTs to
deal with the difficulty of unknown parameters. The statistical performance
of the proposed tests is analytically established. The proposed tests allow
the guaranteeing of a prescribed false-alarm rate and the setting of decision
threshold independently of the image content.

The work in this chapter has been presented in [178] and valorized in the patent
[179]. The chapter is organized as follows. Section 7.2 designs the camera fingerprint
that is further exploited for camera model identification, and proposes an algorithm
for camera fingerprint extraction in the DCT domain. Section 7.3 states the camera
model identification problem in the framework of hypothesis testing theory and
studies the LRT assuming that all model parameters are known in advance. In
practice, those parameters are unknown when inspecting a digital image. Section
7.4 designs two GLRTs to address the difficulty of unknown parameters. Section
7.5 presents numerical results of two proposed GLRTs on simulated and real JPEG
images. Finally, Section 7.6 concludes the chapter.

7.2 Camera Fingerprint

7.2.1 Design of Camera Fingerprint

The study of image statistics in the spatial domain and DCT domain has been per-
formed in Chapter 4. The parameters (a, b) and (ã, b̃, γ), which are extracted in the
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Figure 7.1: Estimated parameters (α, β) at frequency (0, 1) and (8, 8) of uniform
images generated using ã = 0.1, b̃ = 2, γ = 2.2.

spatial domain, are exploited as camera fingerprint for camera model identification.
In other words, the parameters (ã, b̃, γ) contain information about camera model.
After transforming into the DCT domain, this information is expanded over different
frequencies. Moreover, the statistics of DCT coefficients can be accurately captured
by the model proposed in Section 4.4, which is characterized by the parameters
(α, β). Therefore, it is proposed to establish the relation between the parameters
(ã, b̃, γ) and (α, β) to capture such information in the DCT domain. For the sake of
simplification, this relation is given by

β−1 = c̃ α+ d̃, (7.1)

where the parameters (c̃, d̃) depend on (ã, b̃, γ) (see more details in Appendix 7.7.1).
This suggests that the parameters (c̃, d̃) can be also used for camera model iden-
tification. It can be said that while the relations (4.1) and (4.42) characterize the
non-stationarity of noise in the spatial domain, the relation (7.1) characterizes this
property in the DCT domain. The relation (7.1) can capture the difference of noise
statistics in natural images taken by different camera models. Moreover, the linear-
ity in relation (7.1) can facilitate the estimation of the parameters (c̃, d̃). It should
be noted that in an image whose each 8× 8 block is uniform, the same parameters
(α, β) and (c̃, d̃) are shared among DCT coefficients at different frequencies. The
relation (7.1) on such images is illustrated in Figure 7.1.

7.2.2 Extraction of Camera Fingerprint

An important requirement when using the parameters (c̃, d̃) as camera fingerprint
is that they should be invariant to image content. Furthermore, to guarantee the
whole statistical analysis from RAW format to JPEG format, it is necessary to work
on homogeneous blocks. These considerations are addressed in this section.
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Because of heterogeneity and noise non-stationarity in a natural image, the en-
ergy tends to be more located in lower frequencies. Consequently, DCT coefficients
at different frequencies do not share the same parameters (α, β) and (c̃, d̃). There-
fore, the estimation of parameters (α, β) and (c̃, d̃) should be performed on each fre-
quency separately. The DCT coefficients are arranged into 64 vectors of coefficients
according to the zig-zag order. Let Ik = (Ik,1, . . . , Ik,Nblk

) with k ∈ {1, . . . , 64}, be
the vector of length Nblk that contains coefficients at the frequency k. Analogously,
let denote (αk, βk) and (c̃k, d̃k) the parameters of the AC coefficients Ik.

The proposed algorithm for estimation of parameters (c̃k, d̃k) consists of three
fundamental steps: image denoising, homogeneous block detection, and Least-
Squares (LS) estimation [161]. Image denoising step aims to attenuate the impact
of image content. The detection of homogeneous blocks is performed subsequently
to provide appropriate sample data for parameter estimation. The LS approach is
applied straightforwardly as the relation (7.1) is linear.

Let Z̃ be a two-dimensional matrix representing a natural image in TIFF or
JPEG format in the spatial domain. To remove the image content, a denoising filter
D is employed so that the residual image Z̃res is given by

Z̃res = Z̃−D(Z̃). (7.2)

If Z̃ is a color image, the denoising filter D is performed on each color component,
then three residual components are combined into one residual image using the usual
conversion from RGB to grayscale

Z̃res = 0.2989 · Z̃res
R + 0.587 · Z̃res

G + 0.114 · Z̃res
B , (7.3)

where Z̃res
R , Z̃res

G , and Z̃res
G denote respectively residuals of red, green, and blue

component. The residual image Z̃res is then transformed into the DCT domain

I = DCT(Z̃res), (7.4)

where I is the image of DCT coefficients of the residual image Z̃res.
For homogeneous block detection, it is proposed to calculate the standard de-

viation of each block and compare it with a threshold ϑ. The empirical standard
deviation of the block u is calculated in the DCT domain as

ςu = MAD
(
I2,u, . . . , I64,u

)
. (7.5)

The DC coefficient I1,u is excluded in the calculation of ςu. The block u is selected
if the standard deviation ςu is smaller than the threshold ϑ. Let denote Nb as the
number of selected homogeneous blocks.

Suppose that M couples (α̂k,m, β̂k,m), m ∈ {1, . . . ,M}, are available, the LS
estimates of the parameters (c̃k, d̃k) are given by(

ˆ̃ck
ˆ̃
dk

)
= (HT

kHk)
−1HT

k υk (7.6)
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with

Hk =

 α̂k,1 1
...

...
α̂k,M 1

 and υk =

 β̂−1
k,1
...

β̂−1
k,M

 ,

The LS estimates (ˆ̃ck,
ˆ̃
dk) are unbiased and asymptotically equivalent to ML esti-

mates in large samples [161].
As showed above, the LS approach requires several couples (αk, βk) for esti-

mation of parameters (c̃k, d̃k). One can collect M images and estimate a couple
(αk,m, βk,m) from all homogeneous blocks of each image following the ML approach
(see Section 4.4.2). However, from the practical point of view, it is necessary to
estimate the parameters (c̃k, d̃k) from a single image. This is accomplished by ex-
tracting randomly a subset of homogeneous blocks from Nb blocks, then performing
the ML estimation of parameters (αk,m, βk,m) on this subset.

7.2.3 Property of Camera Fingerprint

When the image content is removed perfectly, the parameters (c̃k, d̃k) remain iden-
tical for images with different image contents. However, in practice, due to the
fact that the perfect denoising filter D is difficult to obtain, the DCT coefficients at
low frequencies are still affected by image content. Meanwhile, the coefficients at
high frequencies contain mostly noises because of the energy compaction property
of DCT operation. Thus they are more relevant to exploit for camera model identi-
fication. Figure 7.2 shows the the linear relation (7.1) at frequency (8, 8) of natural
JPEG images taken by Canon Ixus 70 and Nikon D200 camera models. It should
be noted that each point (α, β) in Figure 7.2 corresponds to one image. Figure 7.2
involves the JPEG images with different imaged scenes, different camera settings,
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different devices per model, and different environmental conditions. This indicates
that the parameters (c̃k, d̃k) remain similar under those conditions.

Moreover, for camera model identification problem, it is necessary to verify the
discriminability of parameters (c̃k, d̃k) for different camera models. The Figure 7.3
shows the parameters (c̃k, d̃k) estimated from JPEG images at frequency (8, 8) for
different camera models. This figure clearly shows their discriminability between
different camera models. Therefore, the parameters (c̃k, d̃k) are exploited as camera
fingerprint to identify camera models in this chapter.

7.3 Optimal Detector for Camera Model Identification
Problem

7.3.1 Hypothesis Testing Formulation

The camera model Sj , j ∈ {0, 1}, is now characterized by the parameters (c̃k,j , d̃k,j),
k ∈ {1, . . . ,K}, where K is the number of usable frequencies for camera model
identification. It is assumed that (c̃k,0, d̃k,0) 6= (c̃k,1, d̃k,1). The goal of the test is to
decide between two hypotheses defined by

H0 =
{
Ik,i ∼ Pθk,0 , β

−1
k,0 = c̃k,0αk + d̃k,0, ∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , Nb}

}
H1 =

{
Ik,i ∼ Pθk,1 , β

−1
k,1 = c̃k,1αk + d̃k,1, ∀k ∈ {1, . . . ,K},∀i ∈ {1, . . . , Nb}

}
,

(7.7)
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where Pθk,j , θk,j = (αk, c̃k,j , d̃k,j), denotes the probability distribution of DCT co-
efficients Ik,i under hypothesis Hj . Let

Kα0 =
{
δ : sup

θ0

PH0

[
δ(Z̃) = H1

]
≤ α0

}
be the class of tests whose the false alarm probability is upper-bounded by the pre-
scribed rate α0 where θ0 = (θ1,0, . . . ,θK,0) is the vector containing all parameters.
Among all the tests in the class Kα0 , it is aimed at finding a test δ which maxi-
mizes the power function β(δ). The camera parameters (c̃k,0, d̃k,0) are assumed to
be known in advance. The main goal of this chapter is to study the LRT and to
design the GLRTs to address the difficulty of unknown parameters (αk, c̃k,1, d̃k,1).

7.3.2 LRT for Two Simple Hypotheses

When all model parameters are known, in virtue of the Neyman-Pearson lemma, the
MP test δ∗dct solving the problem (7.7) is the LRT given by the following decision
rule

δ∗dct(Z̃) =


H0 if Λdct(Z̃) =

K∑
k=1

Nb∑
i=1

Λdct(Ik,i) < τ∗dct

H1 if Λdct(Z̃) =

K∑
k=1

Nb∑
i=1

Λdct(Ik,i) ≥ τ∗dct

(7.8)

where the LR Λdct(Ik,i) is defined as

Λdct(Ik,i) = log
Pθk,1

[
Ik,i
]

Pθk,0
[
Ik,i
] , (7.9)

assuming that the DCT coefficients are statistically independent. From (4.70), it
can be noted that the expression of the LR Λdct(Ik,i) is difficult to exploit for
subsequent stages, e.g. the design of the GLRT and analytic establishment of its
statistical performance. Therefore it is proposed to simplify the LR Λdct(Ik,i) to
facilitate the study in the manner that it does not cause any loss of optimality.

Using the Laplace’s approximation [180, 181] (see more details in Appendix
7.7.2), the pdf fI(x) (4.70) can be approximated as

fI(x) ≈ |x|α−1

(2β)
α
2 Γ(α)

exp

(
−|x|

√
2

β

)
. (7.10)

Consequently, the LR Λdct(Ik,i) can be given as

Λdct(Ik,i) = log

|Ik,i|αk−1

(2βk,1)
αk
2 Γ(αk)

exp
(
−|Ik,i|

√
2
βk,1

)
|Ik,i|αk−1

(2βk,0)
αk
2 Γ(αk)

exp
(
−|Ik,i|

√
2
βk,0

)
=
αk
2

log
β−1
k,1

β−1
k,0

−
√

2|Ik,i|
(√

β−1
k,1 −

√
β−1
k,0

)
. (7.11)
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It should be noted that other polynomial expansions for the modified Bessel function
Kν(x) are provided in [170], so a polynomial approximation of fI(x) can be derived.
However, those approximations are not considered in this chapter. The main ad-
vantage of the Laplace’s approximation (7.10) is to provide an approximation of the
form of exponential family function, which allows us to simplify the expression of the
LR Λdct(Ik,i). The approximating function (7.10) is used only for simplification of
the LR. The estimation of parameters (αk, βk) is always based on the exact function
(4.70).

Proposition 7.1. Under hypothesis Hj, the first two moments of the LR Λdct(Ik,i)

are given by

EHj
[
Λdct(Ik,i)

]
=
αk
2

log
β−1
k,1

β−1
k,0

− 2√
π
β

1
2
k,j

Γ(αk + 1
2)

Γ(αk)

(√
β−1
k,1 −

√
β−1
k,0

)
(7.12)

VarHj

[
Λdct(Ik,i)

]
= 2
(√

β−1
k,1 −

√
β−1
k,0

)2(
αkβk,j −

2βk,j
π

Γ2(αk + 1
2)

Γ2(αk)

)
. (7.13)

Proof. of Proposition 7.1 is given in Appendix 7.7.3.

In virtue of Lindeberg CLT, the statistical distribution of the LR Λdct(Z̃) under
hypothesis Hj is derived as

Λ(Z̃)
d→ N

(
m

(j)
dct, v

(j)
dct

)
, (7.14)

where the expectation m(j)
dct and variance v(j)

dct are given by

m
(j)
dct =

K∑
k=1

NbEHj
[
Λ(Ik,i)

]
(7.15)

v
(j)
dct =

K∑
k=1

NbVarHj

[
Λ(Ik,i)

]
. (7.16)

The normalized LR Λ?dct(Z̃) is defined as

Λ?dct(Z̃) =
Λdct(Z̃)−m(0)

dct√
v

(0)
dct

. (7.17)

Finally, the corresponding LRT δ?dct is rewritten as follows

δ?dct(Z̃) =

{
H0 if Λ?dct(Z̃) < τ?dct

H1 if Λ?dct(Z̃) ≥ τ?dct

(7.18)

where the decision threshold τ?dct is the solution of the equation PH0

[
Λ?dct(Z̃) ≥

τ?dct

]
= α0. The decision threshold τ?dct and the power β(δ?dct) are given in following

theorem.
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Theorem 7.1. In an ideal context where all the model parameters (αk, c̃k,j , d̃k,j) are
exactly known, the decision threshold and the power function of the LRT δ?dct are
given by

τ?dct = Φ−1(1− α0) (7.19)

β(δ?dct) = 1− Φ

m(0)
dct −m

(1)
dct + τ?dct

√
v

(0)
dct√

v
(1)
dct

 . (7.20)

Proof. From (7.14), based on the definitions of decision threshold and power func-
tion, the proof follows immediately.

7.4 Practical Context: GLRT

The scenario studied in the LRT may not be realistic because the parameters
(αk, c̃k,1, d̃k,1) are unknown in practice. This section designs two GLRTs to deal
with unknown parameters. It is proposed to replace unknown parameters by their
ML estimates in the LR Λdct(Ik,i) (7.11).

7.4.1 GLRT with Unknown Parameters αk

In this subsection the camera parameters (c̃k,j , d̃k,j) are assumed to be known. We
only deal with unknown nuisance parameters αk. By replacing αk by α̂k given by
the ML estimation in Section 4.4.2, the GLR Λdct(Ik,i) can be given by

Λdct(Ik,i) =
α̂k
2

log
c̃k,1α̂k + d̃k,1

c̃k,0α̂k + d̃k,0
−
√

2|Ik,i|
(√

c̃k,1α̂k + d̃k,1 −
√
c̃k,0α̂k + d̃k,0

)
.

(7.21)
The ML estimate α̂k is asymptotically consistent [20], i.e. it asymptotically

converges in probability to its true value: α̂k
p→ αk. Therefore, from the Slut-

sky’s theorem, the GLR Λdct(Z̃) =
∑K

k=1

∑Nb
i=1 Λdct(Ik,i) asymptotically follows the

Gaussian distribution under each hypothesis Hj as

Λdct(Z̃)
d→ N

(
m

(j)
dct, v

(j)
dct

)
, (7.22)

where the expectation m(j)
dct and variance v(j)

dct are given in (7.15) and (7.16), respec-

tively. Finally, the GLRT δ
?
dct based on the normalized GLR Λ

?
dct(Z̃) =

Λdct(Z̃)−m̂(0)
dct√

v̂
(0)
dct

is given by

δ
?
dct(Z̃) =

{
H0 if Λ

?
dct(Z̃) < τ?dct

H1 if Λ
?
dct(Z̃) ≥ τ?dct

(7.23)

where the decision threshold τ?dct is the solution of the equation PH0

[
Λ
?
dct(Z̃) ≥

τ?dct

]
= α0, and m̂

(0)
dct and v̂

(0)
dct are estimates of m(0)

dct and v
(0)
dct by replacing αk by α̂k
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Figure 7.4: Detection performance of proposed tests on simulated vectors with 1024
coefficients.

in (7.15) and (7.16), respectively. From the Slutsky’s theorem, the decision threshold
τ?dct and the power β(δ

?
dct) of the GLRT δ

?
dct can be accordingly defined as in the

Theorem 7.1.

7.4.2 GLRT with Unknown Parameters (αk, c̃k,1, d̃k,1)

Before designing the GLRT, the LS estimation of camera parameters (c̃k,1, d̃k,1) is

performed on the inspected image Z̃; see Section 7.2.2. The LS estimates (ˆ̃ck,1,
ˆ̃
dk,1)

are asymptotically equivalent to ML estimates in large samples [161]. Moreover,
they are unbiaised and follow the asymptotic bivariate Gaussian distribution(

ˆ̃ck,1
ˆ̃
dk,1

)
∼ N

((
c̃k,1
d̃k,1

)
,

(
σ2
c̃k,1

σc̃k,1d̃k,1
σc̃k,1d̃k,1 σ2

d̃k,1

))
, (7.24)

where σ2
c̃k,1

, σ2
d̃k,1

, σc̃k,1d̃k,1 denote the variance of
ˆ̃ck,1, variance of

ˆ̃
dk,1, and covariance

between ˆ̃ck,1 and ˆ̃
dk,1, respectively. This covariance matrix is empirically calculated

as discussed in Section 6.5.1. The parameters (c̃k,1, d̃k,1) would characterize an
unknown camera model. It is required to take into account the variability of LS
estimates (ˆ̃ck,1,

ˆ̃
dk,1) in the establishment of the statistical performance of the GLRT.

By replacing unknown parameters (αk, c̃k,1, d̃k,1) by (α̂k, ˆ̃ck,1,
ˆ̃
dk,1) in the LR

Λ(Ik,i) (7.11), the GLR Λ̃dct(Ik,i) is given as

Λ̃dct(Ik,i) =
α̂k
2

log
ˆ̃ck,1α̂k +

ˆ̃
dk,1

c̃k,0α̂k + d̃k,0
−
√

2|Ik,i|
(√

ˆ̃ck,1α̂k +
ˆ̃
dk,1 −

√
c̃k,0α̂k + d̃k,0

)
.

(7.25)
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Figure 7.5: Detection performance of proposed tests on simulated vectors with 4096
coefficients.

Proposition 7.2. Under hypothesis Hj, the first two moments of the GLR Λ̃dct(Ik,i)

can be approximately defined by

EHj
[
Λ̃dct(Ik,i)

]
= EHj

[
Λdct(Ik,i)

]
(7.26)

VarHj

[
Λ̃dct(Ik,i)

]
= VarHj

[
Λdct(Ik,i)

]
+
β2
k,1αk(αk + 2)

4

(
α2
kσ

2
c̃k,1

+ σ2
d̃k,1

+ 2αkσc̃k,1d̃k,1

)
. (7.27)

Proof. of Proposition 7.2 is given in Appendix 7.7.4.

It can be noted that the second term in (7.27) aims to take into account
the variability of LS estimates (ˆ̃ck,1,

ˆ̃
dk,1). In virtue of Lindeberg CLT, the GLR

Λ̃dct(Z̃) =
∑K

k=1

∑Nb
i=1 Λ̃dct(Ik,i) follows the Gaussian distribution under each hy-

pothesis Hj
Λ̃dct(Z̃)

d→ N
(
m

(j)
dct, ṽ

(j)
dct

)
, (7.28)

where the expectation m(j)
dct is given in (7.15) and the variance ṽ(j)

dct is defined as

ṽ
(j)
dct =

K∑
k=1

NbVarHj

[
Λ̃dct(Ik,i)

]
. (7.29)

Finally, the GLRT δ̃?dct based on the normalized GLR Λ̃?dct(Z̃) =
Λ̃dct(Z̃)−m̂(0)

dct√̂̃v(0)

dct

is

written as

δ̃?dct(Z̃) =

{
H0 if Λ̃?dct(Z̃) < τ̃?dct

H1 if Λ̃?dct(Z̃) ≥ τ̃?dct

(7.30)
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Figure 7.6: Detection performance of proposed GLRTs for 1024 coefficients at fre-
quency (8, 8) extracted randomly from simulated images with different quality fac-
tors.

where the decision threshold τ̃?dct is the solution of the equation PH0

[
Λ̃?dct(Z̃) ≥

τ̃?dct

]
= α0, and m̂

(0)
dct and ̂̃v(0)

dct are estimates of m(0)
dct and ṽ

(0)
dct by replacing

(αk, c̃k,1, d̃k,1) by (α̂k, ˆ̃ck,1,
ˆ̃
dk,1) in (7.15) and (7.29), respectively. From the Slut-

sky’s theorem, the decision threshold and the power of the GLRT δ̃?dct are given in
the following theorem.

Theorem 7.2. When the image Z̃ is tested against the known camera model S0

characterized by the parameters (c̃k,0, d̃k,0), the decision threshold and the power of
the GLRT δ̃?dct are given by

τ̃?dct = Φ−1(1− α0) (7.31)

β(δ̃?dct) = 1− Φ

m(0)
dct −m

(1)
dct + τ̃?dct

√
ṽ

(0)
dct√

ṽ
(1)
dct

 . (7.32)

Proof. From (7.28), based on the definitions of decision threshold and power func-
tion, the proof follows immediately.

7.5 Numerical Experiments

In this chapter, to suppress image content, the wavelet-based denoising filter pro-
posed in [29, 165] is employed because of its relative accuracy and computational
efficiency. Besides, the selection of homogeneous blocks requires an appropriate
threshold ϑ. This threshold should be fixed independently of image content. The
threshold ϑ is set at ϑ = 0.5.
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Figure 7.7: Detection performance of proposed tests for different number of coef-
ficients at frequency (8, 8) of natural JPEG images taken by Canon Ixus 70 and
Nikon D200 camera models.

7.5.1 Detection Performance on Simulated Database

The detection performance of proposed tests is first theoretically studied on simu-
lated database. The camera models S0 and S1 are characterized by the parameters
(c0, d0) = (11.8,−3.5) and (c1, d1) = (13.5,−4.5), respectively. These parame-
ters correspond to frequency (8, 8) of JPEG images taken by Canon Ixus 70 and
Nikon D200 camera models in the Dresden image database [168], respectively (see
Figure 7.2). They are used to generate randomly 5000 vectors of 1024 and 4096
coefficients under H0 and H1. Because the LR Λdct(Ik,i) is simplified to facilitate
the study, it is desirable to compare the detection performance of the LRT based
on the approximating LR with the one based on the exact LR. The expectation
and variance of the exact LR are calculated numerically. Moreover, it is necessary
to compare the detection performance of the proposed GLRTs with the LRT since
the GLRTs utilize ML estimates of unknown parameters, which may cause a loss of
power. Figure 7.4 and Figure 7.5 show the detection performance of all proposed
tests for 1024 and 4096 coefficients, respectively. For clarity, only regions of interest
are illustrated in the figures. It is worth noting that the loss of power between
the theoretical LRT and approximating LRT is negligible. Besides, a small loss of
power is revealed between the GLRTs and LRT due to the estimation of unknown
parameters. Nevertheless this loss of power decreases when the number of coeffi-
cients increases. It can be also noted that the loss of power between two GLRTs
δ
?
dct and δ̃?dct is negligible, i.e. the variability of estimates (ˆ̃ck,1,

ˆ̃
dk,1) are well taken

into account in the GLRT δ̃?dct. The power function of all proposed tests is perfect
(e.g. β(δ) = 1) from 214 coefficients for any false alarm rate α0.

Moreover, it is desirable to study the detection performance of the proposed
tests on simulated images that follow the image processing pipeline as described in
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Figure 7.8: Detection performance of the GLRT δ̃?dct for 4096 coefficients at differ-
ent frequencies of natural JPEG images taken by Canon Ixus 70 and Nikon D200
camera models.

Chapter 4. To this end, suppose the camera models S0 and S1 are characterized
by the parameters (ã0, b̃0, γ0) = (0.1, 2, 2.2) and (ã1, b̃1, γ1) = (0.2, 2, 2.2). These
parameters are used together with the reference image lena to generate randomly
5000 images under H0 and H1. The simulated images are then compressed with
quality factor of 90 and 75. The detection performance of the proposed GLRTs for
1024 coefficients at frequency (8,8) extracted randomly from those simulated images
is shown in Figure 7.6. As expected, a small loss of power is revealed with the decline
of quality factor.

7.5.2 Detection Performance on Two Canon Ixus 70 and Nikon
D200 Camera Models

In practice, the reference camera parameters (c̃k,0, d̃k,0) are given by estimating the
parameters (c̃k, d̃k) on each image of 50 images taken by the camera model S0 and
averaging 50 previous estimates.

To highlight the relevance of the proposed GLRTs, two Canon Ixus 70 and Nikon
D200 camera models of the Dresden image database [168] are chosen to conduct
experiments. The Canon Ixus 70 and Nikon D200 cameras are respectively set at
H0 and H1. The Figure 7.7 shows the detection performance of the GLRTs δ?dct

and δ̃?dct for 1024 and 4096 coefficients extracted randomly at frequency (8, 8) of
natural JPEG images taken by Canon Ixus 70 and Nikon D200 camera models. We
can note a similar behavior to the detection performance on simulated database.
Besides, there is a small loss of power between the two GLRTs because different
estimates (ˆ̃ck,1,

ˆ̃
dk,1) used in the design of the GLRT δ̃?dct are still influenced by

image content. Nevertheless, this loss of power also decreases when the number
of coefficients increases. Besides, Figure 7.8 illustrates detection performance of
the GLRT δ̃?dct for 4096 coefficients randomly extracted at different frequencies.
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Figure 7.9: Comparison between the theoretical false alarm probability (FAP) and
the empirical FAP, plotted as a function of decision threshold τ , of the proposed
tests at the frequency (8,8) of natural images.

Camera Model No. devices Resolution No. images
Canon Ixus 70 Cn2 3 3072× 2304 500
Fujifilm FinePix J50 F 3 3264× 2448 500
Kodak M1063 K 5 3664× 2748 550
Nikon Coolpix S710 N1 5 4352× 3264 550
Nikon D200 N2 2 3872× 2592 500
Nikon D70 N3 2 3008× 2000 300
Pentax Optio A40 Pe 4 4000× 3000 600
Praktica DCZ 5.9 Pr 5 2560× 1920 700
Ricoh Capilo GX100 Ri 5 3648× 2736 700
Rollei RCP-7325XS Ro 3 3072× 2304 350
Sony DSC-H50 S 2 3456× 2592 250∑

11 39 5500

Table 7.1: Camera Model Used in Experiments

It can be noted that the detection performance decreases with the reverse zig-zag
order. Meanwhile, the Figure 7.9 shows the comparison between the theoretical
and empirical false alarm probability, which are plotted as a function of decision
threshold τ , of the proposed tests at the frequency (8, 8) of natural images. The
two proposed GLRTs δ?dct and δ̃?dct show an ability of guaranteeing a prescribed false
alarm rate.

7.5.3 Detection Performance on a Large Image Database

Experiments are then conducted on the Dresden database to verify the efficiency of
the proposed approach. Technical specifications of the cameras are shown in Table
7.1. Firstly, the GLRT δ̃?dct is used to verify whether a given image is acquired by
the camera model of interest. The decision threshold τ̃?dct is given by the Theorem
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Tested images
Cn2 N1 Pe F Ro K N3 N2 Pr Ri S Avg.

H0

Cn2 100 26.54 20.42 * * * * * * * *
N1 * 84.61 10.56 * * * * * * * *
Pe * 7.79 82.04 * * * * * * * *
F * * * 91.67 6.63 * * * * * *
Ro * * * 22.92 100 * * * * * *
K * * * * * 99.81 14.15 * * * *
N3 * * * * * * 97.62 * * * *
N2 * * * * * * * 100 * * *
Pr * * * * * * * * 95.78 * *
Ri * * * * * * * * * 100 *
S * * * * * * * * * * 96.81

95.31

Table 7.2: Detection performance of proposed detector δ̃?dct (the symbol * represents
values smaller than 2%)

Tested images
Cn2 N1 Pe F Ro K N3 N2 Pr Ri S Avg.

H0

Cn2 98.26 * * * * * * 2.61 * * *
N1 * 100 3.97 * * * * * * * *
Pe * * 90.86 * * * * * * * *
F * * * 99.94 * * * * * * *
Ro * * * * 99.79 * * * * * *
K * * * * * 99.19 * * * * *
N3 * * * * * * 84.57 * * * *
N2 * * * * * * * 93.73 * * *
Pr * * * * * * * * 98.42 * *
Ri * * * * * * * * * 100 *
S * * * * * * * * * * 98.23

96.63

Table 7.3: Detection performance of SVM-based detector

7.2 corresponding to the false alarm rate α0 = 10−5. It is proposed to use the
last 21 high frequencies for the test since other frequencies may be still affected by
the image content. The detection performance of the test δ̃?dct is shown in Table
7.2. It can be noted that the incorrect detection in some groups of camera models,
such as (Cn2,N1,Pe), (F,Ro), and (K,N3), is important. This may be justified due
to a similarity in JPEG compression scheme used in the camera and the very false
alarm probability that is set in this experiment. To deal with this scenario, a second
testing round involves performing the GLRT δ

?
dct on the camera models of conflict.

The detection performance of the test δ?dct is shown in Table 7.5. The images are
almost correctly classified. It should be noted that the GLRT δ

?
dct aims to give

a decision rule between two different camera models, thus the experiment on the
diagonal of Table 7.5 is not performed. The SVM-based detector [168] is presented
for comparison. Its detection performance is shown in Table 7.3. The proposed
detector δ̃?dct is slightly equivalent to the SVM-based detector in terms of average
correct detection performance but the misclassification of the former is more severe.
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Tested images
Cn2 N1 Pe F Ro K N3 N2 Pr Ri S Avg.

H0

Cn2 100 * * * * * * * * * *
N1 * 98.92 * * * * * * * * *
Pe * * 100 * * * * * * * *
F * * * 73.81 * * * * * * *
Ro * * * * 99.49 * * * * * *
K * * * * * 99.19 * * * * *
N3 * * * * * * 100 * * * *
N2 * * * * * * * 98.92 * * *
Pr * * * * * * * * 96.65 * *
Ri * * * * * * * * * 100 *
S * * * * * * * * * * 100

96.99

Table 7.4: Detection performance of PRNU-based detector

H1

Cn2 N1 Pe F Ro K N3

H0

Cn2 - 0 3.52 - - - -
N1 0 - 3.13 - - - -
Pe 0 0 - - - - -
F - - - - 0 - -
Ro - - - 2.12 - - -
K - - - - - - 0
N3 - - - - - 0 -

Table 7.5: Detection performance of proposed detector δ?dct

Tested images
Canon 400D Pentax K20D Canon Rebel XSi Leica M9

H0

Canon 400D 98 78 * *
Pentax K20D 72 94 * *

Canon Rebel XSi * * 96 53
Leica M9 * * 49 93

Table 7.6: Detection performance of proposed detector δ̃?dct on 4 camera models of
BOSS database

The PRNU-based detector [32] is also performed in this experiment. This PRNU-
based detector is only conducted on one device per model. Its detection performance
is shown in Table 7.4. The detection performance of the proposed detector δ̃?dct is
slightly worse than other ones.

The proposed approach is based on the difference in statistical properties in the
DCT domain that jointly results from different sensor noises and in-camera pro-
cessing algorithms. Thus it is desirable to observe the detection performance of the
proposed tests on the images that go through the same post-acquisition processes.
Therefore, it is proposed to perform the same operations on 4000 RAW images from
4 camera models in the BOSS database [171] and compress them at the quality factor
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95. Consequently, the difference in statistical properties of DCT coefficients mainly
results from different sensor noises. The detection performance of the detector δ̃?dct

on these images is shown in Table 7.6. It can be noted that the probability of miss
detection is considerably poor. The detector δ?dct can not provide better results as
its detection performance is similar to the random guess. This experiment shows a
difficulty in camera model identification as the image processing techniques remain
identical or similar between camera models.

7.6 Conclusion

This chapter presents a new approach based on the state-of-the-art model of DCT
coefficients to capture their statistical difference, which jointly results from different
sensor noises and in-camera processing algorithms. The parameters (c̃, d̃) character-
izing the simplistic linear relation between α and β−1, which are two parameters of
the DCT coefficient model, are proposed to be exploited as camera fingerprint for
camera model identification. Based on the parametric model of DCT coefficients,
this chapter studies the most powerful LRT and proposes two GLRTs that can be
straightforwardly applied in practice.

7.7 Appendix

7.7.1 Relation between the Parameters (ã, b̃, γ) and (αu,v, βu,v)

For the sake of simplification, it is assumed that the pixels are independent and
identically distributed within each 8×8 block. By taking variance on the both sides
of the equation (2.11), we obtain

Var[Iu,v] = Var[z̃m,n] (7.33)

Var
[
I2
u,v

]
= Au,vVar

[
z̃2
m,n

]
+
(
1−Au,v

)
Var2

[
z̃m,n

]
, (7.34)

with

Au,v =
1

44
T 4
uT

4
v

7∑
m=0

7∑
n=0

cos4

(
(2m+ 1)uπ

16

)
cos4

(
(2n+ 1)vπ

16

)
. (7.35)

On the one hand, it follows from (4.71) and (4.72) that

Var
[
Iu,v
]

= αu,vβu,v (7.36)

Var
[
I2
u,v

]
= E

[
I4
u,v

]
− E2

[
I2
u,v

]
= 2α2

u,vβ
2
u,v + 3αu,vβ

2
u,v. (7.37)

On the other hand, from the noise model (4.42), we obtain

Var[z̃m,n] =
1

γ2
µ̃2−2γ(ãµ̃γ + b̃) (7.38)

Var
[
z̃2
m,n

]
=

4

γ2
µ̃4−2γ(ãµ̃γ + b̃). (7.39)
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Consequently, it follows that

αu,vβu,v =
1

γ2
µ̃2−2γ(ãµ̃γ + b̃) (7.40)(

Au,v + 1
)
αu,vβu,v + 3βu,v = 4Au,vµ̃

2. (7.41)

By resolving this system of equations, the relation between αu,v and β−1
u,v is given as

β−1
u,v =

(Au,v + 1)αu,v + 3

4b̃
2
γAu,v

(√
γ2αu,v b̃

(Au,v + 1)αu,v + 3

4Au,v
+
ã2

4
− ã

2

) 2
γ

. (7.42)

This relation is too complicated to exploit. Therefore, it is proposed to employ the
polynomial expansion and only keep the first two terms

β−1
u,v = c̃u,v αu,v + d̃u,v, (7.43)

where the parameters (c̃u,v, d̃u,v) depend on the parameters (ã, b̃, γ). Numerical
experiments show that this simplified equation sufficiently characterizes the relation
between the parameters (ã, b̃, γ) and (αp,q, βp,q) (see Figure 7.1 and Figure 7.2).

7.7.2 Laplace’s Approximation of DCT Coefficient Model

Let us briefly describe the idea behind the Laplace’s approximation [180]. The
Laplace’s method aims to provide an approximation for integrals of the form

I =

∫
exp

(
− g(t)

)
dt, (7.44)

when the function g(t) reaches the global minimum at t∗. By using the Taylor
expansion of the function g(t) at t∗, we have

g(t) = g(t∗) +
g′′(t∗)

2
(t− t∗)2 + o((t− t∗)2), (7.45)

where g′′(t) denotes the second derivative of the function g(t). Therefore, the integral
I can be approximated as

I ≈ exp
(
− g(t∗)

) ∫
exp

[
−g
′′(t∗)

2
(t− t∗)2

]
dt. (7.46)

This integral takes the form of Gaussian integral. We derive

I ≈

√
2π

|g′′(t∗)|
exp

(
− g(t∗)

)
. (7.47)

A generalization has been made in [181] with an arbitrary function h(t)

I =

∫
h(t) exp

(
− g(t)

)
dt ≈

√
2π

|g′′(t∗)|
h(t∗) exp

(
− g(t∗)

)
. (7.48)
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From (4.69), the DCT coefficient model fI(x) can be rewritten as

fI(x) =
1√

2πβαΓ(α)

∫ ∞
0

h(t) exp
(
− g(t)

)
dt (7.49)

where

g(t) =
t

β
+
x2

2t
and h(t) = tα−

3
2 . (7.50)

The function g(t) reaches the minimum at t∗ = |x|
√

β
2 and its second derivative is

defined by g′′(t) = x2

t3
. Consequently, the function fI(x) can be approximated as

fI(x) ≈ |x|α−1

(2β)
α
2 Γ(α)

exp

(
−|x|

√
2

β

)
. (7.51)

It can be noted that this approximating model is a special case of the GΓ model [146]
when γ = 1 (the variable γ is given in [146, Eq. (6)]).

7.7.3 Expectation and Variance of the LR Λdct(Ik,i) under Hypoth-
esis Hj

It can be noted from (7.11) that it is necessary to calculate expectation and variance
of the random variable |I|. Given a known variance σ2

blk, the random variable I is
normally distributed with zero-mean and variance σ2

blk. Thus, the random variable
|I| follows the half-Normal distribution [160]. Therefore, we obtain

EI|σ2
blk

[
|I| | σ2

blk

]
=

√
2

π
σblk. (7.52)

Based on the law of total expectation, the mathematical expectation of |I| is given
by

EI
[
|I|
]

= Eσ2
blk

[
EI|σ2

blk

[
|I| | σ2

blk

]]
=

√
2

π
Eσ2

blk
[σblk] =

√
2

π
β

1
2

Γ(α+ 1
2)

Γ(α)
. (7.53)

Besides, the variance of |I| is given by

VarI
[
|I|
]

= EI
[
|I|2
]
− E2

I

[
|I|
]

= αβ − 2β

π

Γ2(α+ 1
2)

Γ2(α)
. (7.54)

Consequently, the expectation and variance of the LR Λdct(Ik,i) under hypothesis
Hj can be defined by

EHj
[
Λdct(Ik,i)

]
=
αk
2

log
β−1
k,1

β−1
k,0

− 2√
π
β

1
2
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(7.55)

VarHj
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= 2
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√
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)2(
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2βk,j
π

Γ2(αk + 1
2)

Γ2(αk)

)
. (7.56)
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7.7.4 Asymptotic Expectation and Variance of the GLR Λ̃dct(Ik,i)
under Hypothesis Hj

The variance of the estimate α̂k is assumed to be negligible when the number of
coefficients Nb is very large. Thus the estimate α̂k can be treated as a constant
αk. Besides, since the estimates (ˆ̃ck,1,

ˆ̃
dk,1) are consistent, the asymptotic mathe-

matical expectation of the GLR Λ̃dct(Ik,i) under hypothesis Hj does not change, i.e.
EHj

[
Λ̃dct(Ik,i)

]
= EHj

[
Λdct(Ik,i)

]
.

Meanwhile, the variance of the GLR Λ̃dct(Ik,i) needs to take into account the

variability of the estimates (ˆ̃ck,1,
ˆ̃
dk,1). Based on the definitions of mathematical

expectation and variance, we have

EHj
[
ˆ̃ck,1α̂k +

ˆ̃
dk,1

]
= β−1

k,1 (7.57)

VarHj
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2
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+ 2αkσc̃k,1d̃k,1 . (7.58)

Subsequently, from the Delta method in Lemma A.2, we derive that
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and

VarHj

[√
ˆ̃ck,1α̂k +

ˆ̃
dk,1 −

√
c̃k,0α̂k + d̃k,0

]
= VarHj

[√
ˆ̃ck,1α̂k +

ˆ̃
dk,1

]
=

VarHj

[
ˆ̃ck,1α̂k +

ˆ̃
dk,1

]
4EHj

[
ˆ̃ck,1α̂k +

ˆ̃
dk,1

]
=
βk,1

4

(
α2
kσ

2
c̃k,1

+ σ2
d̃k,1

+ 2αkσc̃k,1d̃k,1

)
.

(7.60)

Finally, the asymptotic variance of the GLR Λ̃dct(Ik,i) can be given as
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ˆ̃ck,1α̂k +

ˆ̃
dk,1 −

√
c̃k,0α̂k + d̃k,0

]
VarHj

[
|I|2
]

=
β2
k,1αk(αk + 2)

4

(
α2
kσ

2
c̃k,1

+ σ2
d̃k,1

+ 2αkσc̃k,1d̃k,1

)
+ 2
(√

β−1
k,1 −

√
β−1
k,0

)2(
αkβk,j −

2βk,j
π

Γ2(αk + 1
2)

Γ2(αk)

)
. (7.61)
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8.1 Introduction

The goal of this chapter is to design a statistical test for the steganalysis of LSB
replacement in a natural RAW image. In spite of lots of existing methods proposed
for the steganalysis of LSB replacement in the literature (see Section 2.5.2), an
improvement of existing steganalysis methods is still desirable. Like Chapter 5, 6,
7, hypothesis testing theory is the main framework of our researches for the hidden
data detection problem. This framework has been already applied in the steganalysis
of LSB replacement, see [107,109–114]. However, those detectors are only based on
a simplistic image model that can not totally characterize a natural image, resulting
in inaccurate estimation of pixels’ expectation and variance. This leads to a loss of
power even on a simulated database.

Another problem that has not been studied yet in the literature is the phe-
nomenon of clipping. This phenomenon is due to limited dynamic range of the imag-
ing system. None of existing detectors have considered the clipping phenomenon,
thus its impact on their detection performance is unknown.

The main contributions are the following:

• The proposed approach is based on the heteroscedastic noise model that is
more relevant to characterize a natural RAW image than the conventional
AWGN.

• In order to estimate expectation of the pixels, a state-of-the-art denoising
method [155] is exploited. Using together with the heteroscedastic noise model,
this method can significantly improve the estimation of pixels’ expectation and
variance, resulting in a higher detection performance.

• The clipping phenomenon, which makes the so-called clipped pixels being over-
exposed or underexposed, is taken into account in a rigorous statistical model.
Based on this non-linear model of imaging device response, a generalized accu-
rate detector is provided for any natural RAW image (non-clipped or clipped).
It is also shown that this phenomenon dramatically reduces the performance
of prior-art detectors.

• Using the accurate statistical model of natural images, the GLRTs are designed
such that they allow the warranting of a prescribed false alarm probability
and the setting of decision threshold independently of the image content while
other statistical detectors [109] fail in practice.

The work in this chapter has been published in [182]. The chapter is organized
as follows. Section 8.2 presents a cover model for a non-clipped and clipped RAW
image. Section 8.3 casts the hidden data detection problem into the framework of hy-
pothesis testing theory and proposes a GLRT to deal with the difficulty of unknown
image parameters in a non-clipped image. Section 8.4 addresses a GLRT taking
into account the impact of clipping phenomenon. This detector serves as an upper
bound of the previously proposed detector or any practical detector which does not
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regard this kind of degradation. Section 8.5 presents numerical performances of the
proposed tests on synthetic and real natural images and some comparisons with
other state-of-the-art detectors. Finally, Section 8.6 concludes the chapter.

8.2 Cover-Image Model

As discussed in Section 3.2.1, a RAW image can be accurately characterized by the
heteroscedastic noise model. Besides, this model has been successfully applied to
the problem of camera model identification, see Chapter 5. Therefore, this chapter
proposes to start from the heteroscedastic noise model in order to design a statistical
test for hidden data detection.

8.2.1 Non-Clipped Image Model

It can be noted that the statistical analysis of heteroscedastic noise model in Section
3.2.1 has not taken into account yet the impact of quantization. For the sake of
clarity, let X = (x1, . . . , xN )T and Z = (z1, . . . , zN )T denote the non-clipped RAW
image before quantization and after quantization, respectively. According to the
heteroscedastic noise model (4.1), the pixel xi follows the Gaussian distribution
with expectation µi and variance σ2

i = aµi + b,

xi ∼ N (µi, σ
2
i ). (8.1)

For the sake of simplification, suppose the quantization is performed with unitary
step. Hence the quantized non-clipped RAW pixel zi can be defined as zi = bxic.
Let Pθi , given by

Pθi =
{
pθi [0], pθi [1], . . . , pθi [B]

}
, (8.2)

be the pmf of the non-clipped RAW pixel zi where θi = (µi, a, b), B = 2ν − 1 and
pθi [l], ∀l ∈ {0, . . . , B}, is given by

pθi [l] = P
[
zi = l

]
= P

[
l − 1

2
≤ xi ≤ l +

1

2

]
=

1

σi

∫ l+ 1
2

l− 1
2

φ
( t− µi

σi

)
dt

= Φ
( l + 1

2 − µi
σi

)
− Φ

( l − 1
2 − µi
σi

)
. (8.3)

From the mean value theorem, the probability pθi [l] can be simplified as

pθi [k] =
1

σi
φ
( l − µi

σi

)
+ o(σ−2

i ), (8.4)

where the term o(σ−2
i ) accounts for the error of approximation. It is assumed that

the error o(σ−2
i ) is negligible because of the fact that the quantization step is very

small compared with noise in a natural RAW image [110]. This assumption is quite
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realist because a RAW image is often coded with ν ∈ {12, 14, 16} bits. At this stage
it is assumed that the clipping phenomenon is absent, i.e. the probability that one
observation xi exceeds over the boundary 0 or B is negligible.

8.2.2 Clipped Image Model

In practice, the dynamic range of acquisition system is always limited. Indeed,
recorded pixels are bounded by the interval [0, B]. The clipping phenomenon may
happen when noise is very important, which may cause the pixel x to exceed these
bounds. Consequently, the recorded pixels exceeding theses bounds are replaced
by the bounds themselves. Let X = (x1, . . . , xN )T and Z = (z1, . . . , zN )T denote
the clipped RAW image before quantization and after quantization, respectively.
Therefore, the clipped pixel xi is defined by

xi = max(0,min(xi, B)), (8.5)

where xi follows the heteroscedastic noise model. As explained in [155], the gener-
alized pdf of clipped pixel xi is defined by

f
θi

(t) = Φ
(−µi
σi

)
δ0(t) +

1
σi
φ
(
t−µi
σi

)
Φ
(
B−µi
σi

)
− Φ

(
−µi
σi

) + Φ
(µi −B

σi

)
δ0(B − t), (8.6)

where δ0 is the Dirac delta impulse at 0. The first and the last term in (8.6) corre-
spond to the probabilities of clipping from below and from above while the second
term represents the pdf of a truncated Gaussian random variables (see details about
the truncated Gaussian distribution in [160]). The clipping phenomenon presents
two main difficulties. On the one hand, it modifies the statistical distribution of
RAW pixels, which now follow the double-censored Gaussian distribution (8.6). On
the other hand, the pixel’s variance can no longer be treated as the linear function
of its expectation. Similar to Section 8.2.1, the impact of quantization is assumed to
be negligible, i.e. the pmf P θi =

{
p
θi

[0], p
θi

[1], . . . , p
θi

[B]
}
of the quantized clipped

RAW pixel zi can be defined as (8.6).

8.3 GLRT for Non-Clipped Images

8.3.1 Impact of LSB Replacement: Stego-Image Model

Suppose the cover-image C = (c1, . . . , cN )T and its probability distribution is given
in Equation (8.2). The LSB replacement technique is performed by replacing a
ratio R of the cover pixels’ LSB by the secret message bits to create a stego-image
S = (s1, . . . , sN )T, see Section 2.5.1. Due to message embedding, the pmf of cover
pixels ci is changed. Let QR,θi , given by

QR,θi =
{
qR,θi [0], qR,θi [1], . . . , qR,θi [B]

}
, (8.7)
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be the pmf of the stego-pixel si at embedding rate R. The statistical model of LSB
replacement mechanism was described in Proposition 2.1. From the total probability
theorem, the probability qR,θi [l] is given by

qR,θi [l] = P
[
si = ci

]
P
[
ci = l

]
+ P

[
si = ci

]
P
[
ci = l

]
=
R

2
pθi [l] +

(
1− R

2

)
pθi [l], (8.8)

where l indicates the integer l with LSB flipped l = l + (−1)l .

8.3.2 Hypothesis Testing Formulation

The hidden bit detection problem is cast in the framework of hypothesis testing the-
ory. Given a non-clipped RAW image Z = (z1, . . . , zN )T, the steganalysis problem
described in Definition 2.2 can be rewritten asH0 =

{
zi ∼ Pθi , ∀i ∈ {1, . . . , N}

}
H1 =

{
zi ∼ QR,θi , ∀i ∈ {1, . . . , N}

}
.

(8.9)

Let

Kα0 =
{
δ : sup

θ
PH0

[
δ(Z) = H1

]
≤ α0

}
be the class of tests whose false alarm probability is upper-bounded by the rate α0

where θ = (θ1, . . . ,θN ) is the parameter vector. Among all the tests in Kα0 , it is
aimed at finding a test δ which maximizes the power function β(δ).

The problem (8.9) involves two main difficulties. First, the hypotheses H0 and
H1 are composite because the embedding rateR is unknown. Second, the parameters
θ are unknown in practice. Moreover, they do not contain any information about
the existence of the secret message. Hence they can be considered as nuisance
parameters.

For the first difficulty, an approach proposed in [113] attempted to reduce the
problem with two composite hypotheses to the one with two simple hypotheses based
on a local asymptotic approach [183]. The idea is to design a test that is AUMP
in the neighborhood of the border between two hypotheses. This test is referred
to as Locally Asymptotically Uniformly Most Powerful (LAUMP) test. However it
showed a considerable loss of optimality.

This chapter addresses the difficulty of unknown nuisance parameters θi while
the embedding rate R is assumed to be known in advance. Since the parameters
(a, b) can be accurately estimated from a single image (see WLS estimation in Section
4.2.2 and ML estimation in [133]), the main goal of this section is to design a GLRT
to deal with unknown parameters µi for the steganalysis of LSB replacement in
non-clipped RAW image.
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8.3.3 ML Estimation of Image Parameters

For estimation of image parameters µi, the proposed method consists of two key
steps: image denoising and image segmentation. The denoising step aims to estimate
approximately the image structure. Then the segmentation step is based on the
approximate image structure to divide the image in question into non-overlapping
homogeneous segments in which the pixels are supposedly i.i.d. These steps allow
us to provide analytically ML estimates of µi in each segment.

A majority of existing denoising algorithms in the literature is designed based on
AWGN model. However, as discussed in Chapter 3, noise in a natural image is inher-
ently signal-dependent. More particularly, noise variance in a RAW image linearly
depends on the image content according to the heteroscedastic noise model. Since
this chapter deals with LSB replacement in a RAW image, the heteroscedasticity of
noise needs to be taken into account in the denoising step.

There exist two approaches proposed in the literature for the denoising of an
image corrupted by signal-dependent noise. The first approach consists in directly
designing a denoising filter for such heteroscedastic noise [184,185]. The second ex-
ploits a variance-stabilizing homomorphic transformation [186] so that noise in the
image after transformation becomes signal-independent, which allows us to apply
a homoscedastic filter for AWGN on the transformed image [155, 187, 188]. Es-
pecially, the denoising filter designed in [155] has taken into account the clipping
phenomenon. The denoising filter proposed in this chapter relies on the second ap-
proach, which involves similar steps as proposed in [155]. For the sake of clarity, the
proposed filter is detailed in Appendix 8.7.1.

Formally, let D be the ideal denoising filter. It means that the image content of
a noisy non-clipped image can be very accurately recovered:

D(zi) = E[zi] = µi. (8.10)

The segmentation step consists in diving the image Z into K non-overlapping seg-
ments Sk of size nk, k ∈ {1, . . . ,K}. Each segment Sk, which is characterized by its
central value uk and allowed deviation κk > 0, is defined as :

Sk =
{
zi : D(zi) ∈

[
uk −

κk
2
, uk +

κk
2

[
, i ∈ {1, . . . , N}

}
. (8.11)

The number of segments K is set to the number of quantization levels, e.g. K = 2ν

and κk = 1. Without loss of generality, suppose that each segment Sk is represented
by a vector zk = {zk,i}nki=1 where pixels share the same expectation µk. Thus the
parameters θk = (µk, a, b) characterizes the statistical distribution of pixels in the
segment Sk. Consequently, the ML estimate of the image parameter µk in the
segment Sk is given by

µ̂k =
1

nk

nk∑
i=1

zk,i. (8.12)

This ML estimate is unbiased and follows the Normal distribution

µ̂k ∼ N
(
µk,

σ2
k

nk

)
, with σ2

k = aµk + b. (8.13)
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Remark 8.1. Amethod for ML estimation of image parameters µk has been already
presented in Section 4.2.2 when dealing with a natural RAW image. That method
involves transforming the RAW image into wavelet domain and performing the ML
estimation of image parameters in this domain. However, it seems impossible to
model statistically the mechanism of LSB replacement in the wavelet domain. Since
the secret message bits are embedded in the spatial domain, it is required to perform
ML estimation of image parameters directly in this domain. The method proposed
in this section serves this purpose.

Remark 8.2. It can be noted that the latter method is also based on similar steps
as the former. The main difference is that the former method works in a blind
manner, providing estimates of the parameters (µi, a, b) simultaneously, while the
latter method requires prior knowledge of the camera parameters (a, b) and only
provides estimates of the image parameters µi.

8.3.4 Design of GLRT

Using above segmentation, the steganalysis problem (8.9) can be equivalently rewrit-
ten as H0 =

{
zk,i ∼ Pθk , ∀k ∈ {1, · · · ,K}, ∀i ∈ {1, . . . , nk}

}
H1 =

{
zk,i ∼ QR,θk , ∀k ∈ {1, · · · ,K}, ∀i ∈ {1, . . . , nk}

}
.

(8.14)

When all the parameters θk are known, the MP test solving the problem (8.14) is
the LRT given by the following decision rule

δ∗ncl(Z) =


H0 if Λncl(Z) =

K∑
k=1

nk∑
i=1

Λncl(zk,i) < τ∗ncl

H1 if Λncl(Z) =
K∑
k=1

nk∑
i=1

Λncl(zk,i) ≥ τ∗ncl,

(8.15)

where the LR Λncl(zk,i) is defined by

Λncl(zk,i) = log
qR,θk [zk,i]

pθk [zk,i]
= log

(
R

2

pθk [zk,i]

pθk [zk,i]
+ 1− R

2

)
= log

[
1 +

R

2

(
exp

(γk,i(zk,i − µk)
σ2
k

)
− 1
)]
, (8.16)

where γk,i = zk,i − zk,i represents the embedding impact and takes value of 1 and
-1 depending on the parity of zk,i. By using the first-order series Taylor expansion
of log(1 + x) and exp(x), a simplified expression of the LR Λncl(zk,i) is derived as

Λncl(zk,i) =
R

2σ2
k

γk,i(zk,i − µk). (8.17)
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In practice the image parameters µk are unknown. In such situation, a usual
solution consists in replacing the unknown parameters by their ML estimates in the
LR Λncl(zk,i) (8.17), which leads to the GLRT defined by

δ̂ncl(Z) =


H0 if Λ̂ncl(Z) =

K∑
k=1

nk∑
i=1

Λ̂ncl(zk,i) < τ̂ncl

H1 if Λ̂ncl(Z) =
K∑
k=1

nk∑
i=1

Λ̂ncl(zk,i) ≥ τ̂ncl,

(8.18)

where the GLR Λ̂ncl(zk,i) is given by

Λ̂ncl(zk,i) =
1

σ̂2
k

γk,i(zk,i − µ̂k), with σ̂2
k = aµ̂k + b. (8.19)

Theorem 8.1. Under hypothesis H0, the GLR Λ̂ncl(Z) follows the Gaussian distri-
bution with zero-mean and variance v(0)

ncl as

Λ̂ncl(Z)
d→ N

(
0, v

(0)
ncl

)
, (8.20)

where

v
(0)
ncl =

K∑
k=1

nk + 1

σ2
k + a2

nk

. (8.21)

Proof. of Theorem 8.1 is given in Appendix 8.7.2.

Theorem 8.2. Under hypothesis H1, the GLR Λ̂ncl(Z) follows the Gaussian distri-
bution with expectation m(1)

ncl and variance v(1)
ncl as

Λ̂ncl(Z)
d→ N

(
m

(1)
ncl, v

(1)
ncl

)
(8.22)

where

m
(1)
ncl =

R

2

K∑
k=1

nk
σ2
k

(8.23)

v
(1)
ncl =

K∑
k=1

nk + 1 + nkR
2σ2
k

σ2
k + a2

nk

− R2nk
4σ4

k

 . (8.24)

Proof. of Theorem 8.2 is given in Appendix 8.7.3.

It can be noted that (m
(1)
ncl, v

(1)
ncl) depend on the camera parameters (a, b) and

embedding rate R. The smaller the embedding rate R is or the more important the
noise variance characterized by parameters (a, b) is, the smaller the detectability is,
because a small change in the LSB due to the message insertion is not significant
compared to the noise level.
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Figure 8.1: Detection performance on non-clipped simulated images for embedding
rate R = 0.05.

The normalized GLR Λ̂?ncl(Z) is defined by

Λ̂?ncl(Z) =
Λ̂ncl(Z)√

v̂
(0)
ncl

=

K∑
k=1

nk∑
i=1

1

σ̂2
k

√
v̂

(0)
ncl

(zk,i − zk,i)(zk,i − µ̂k). (8.25)

where v̂(0)
ncl is the estimate of the variance v(0)

ncl by replacing µk by µ̂k in (8.21). It is
worth noting that the normalized GLR Λ̂?ncl(Z) has a similar form of WS detector.
Accordingly, the corresponding GLRT δ̂?ncl based on the normalized GLR Λ̂?ncl(Z) is
given as follows

δ̂?ncl(Z) =

{
H0 if Λ̂?ncl(Z) < τ̂?ncl

H1 if Λ̂?ncl(Z) ≥ τ̂?ncl

(8.26)

where, to ensure the GLRT δ̂?ncl to be in the class Kα0 , the decision threshold τ̂?ncl is
the solution of the equation PH0

[
Λ̂?ncl(Z) ≥ τ̂?ncl

]
= α0.

Theorem 8.3. For any non-clipped RAW image whose parameters µi are unknown,
the decision threshold and the power of the GLRT δ̂?ncl based on the decision function
Λ̂?ncl(Z) are given by :

τ̂?ncl = Φ−1(1− α0) (8.27)

β(δ̂?ncl) = 1− Φ

 τ̂?ncl

√
v

(0)
ncl −m

(1)
ncl√

v
(1)
ncl

 . (8.28)

Proof. Since the estimate v̂(0)
ncl is consistent, it follows from the Slutsky’s theorem

that 
Λ̂?ncl(Z)

d→ N (0, 1) under H0,

Λ̂?ncl(Z)
d→ N

 m
(1)
ncl√
v

(0)
ncl

,
v

(1)
ncl

v
(0)
ncl

 under H1.
(8.29)

Based on the definition of decision threshold and power function, the proof follows
immediately.



148
Chapter 8. Statistical Detection of Data Embedded in Least Significant

Bits of Clipped Images

8.4 GLRT for Clipped Images

The purpose of this section is to design a GLRT taking into account the clipping
phenomenon. This GLRT is designed following similar steps as in Section 8.3 but
the calculation (e.g. the statistical distribution of the GLR) is different.

8.4.1 ML Estimation of Image Parameters

To perform ML estimation of image parameters µi in a clipped RAW image, it is
proposed to rely on similar steps such as image denoising and segmentation. Here
it is crucial to understand the relation between the clipped data and non-clipped
data [155] when dealing with a clipped image. The output image after performing
the denoising filter on a clipped image can only be treated as an estimate of the
expectation E[zi], not the parameter µi. Therefore it is necessary to combine the
denoising filter with a declipped operator [155] to transform a clipped value to the
corresponding non-clipped value. Let D be the ideal denoising and also declipped
operator

D(zi) = µi. (8.30)

Then the clipped RAW image Z is segmented into K non-overlapping segments Sk
of size nk, k ∈ {1, . . . ,K}, defined by

Sk =
{
zi : D(zi) ∈

[
uk −

κk
2
, uk +

κk
2

[
, i ∈ {1, . . . , N}

}
. (8.31)

The ML estimate µ̂k is given in (8.81). It follows the asymptotic Gaussian distribu-
tion

µ̂k ∼ N
(
µk,

1

nkF(µk)

)
(8.32)

where F is the Fisher information given in (8.84). More details are given in Appendix
8.7.4.

8.4.2 Design of GLRT

Now the cover image and stego image are respectively denoted by C = (c1, . . . , cN )T

and S = (s1, . . . , sN )T. Here again, without taking into account the impact of
quantization, the pmf P θi =

{
p
θi

[0], p
θi

[1], . . . , p
θi

[B]
}

of the cover clipped pixel
ci can be defined by (8.6). Due to the insertion of hidden bits, the pmf Q

R,θi
={

q
R,θi

[0], q
R,θi

[1], . . . , q
R,θi

[B]
}

of the stego clipped pixel si is given by

q
R,θi

[l] =
R

2
p
θi

[l] +
(

1− R

2

)
p
θi

[l]. (8.33)

Let Z = {z1, . . . , zN}T be the inspected clipped image. The hidden data detec-
tion problem (8.14) in the case of clipped images is rewritten as followsH0 =

{
zk,i ∼ P θk , ∀k ∈ {1, · · · ,K}, ∀i ∈ {1, . . . , nk}

}
H1 =

{
zk,i ∼ QR,θk , ∀k ∈ {1, · · · ,K}, ∀i ∈ {1, . . . , nk}

}
.

(8.34)
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Figure 8.2: Detection performance on clipped simulated images for embedding rate
R = 0.05.

The LR of one clipped observation zk,i can be defined as

Λcl(zk,i) = log

(
R

2

p
θk

[zk,i]

p
θk

[zk,i]
+ 1− R

2

)

= log

[
1 +

R

2

(
exp

(γ
k,i

(zk,i − µk)
σ2
k

)
− 1
)]

, (8.35)

with γ
k,i

= zk,i− zk,i. Here it is proposed to neglect the first and last terms in (8.6)
for the sake of simplification. Using again Taylor series expansion, the LR Λcl(zk,i)

can be simplified as

Λcl(zk,i) =
R

2σ2
k

γ
k,i

(zk,i − µk). (8.36)

It can be noted that the LR Λcl(zk,i) of clipped data has a similar form as the LR
Λncl(zk,i) but the image parameter µk is now no longer the expected value of the
clipped pixel zk,i. This bias can lead to the loss of power of the GLRT δ̂?ncl when
performing on a clipped image. The image parameter µk is always unknown in
practice.

The GLRT solving the problem (8.34) is given by

δ̂cl(Z) =


H0 if Λ̂cl(Z) =

K∑
k=1

nk∑
i=1

Λ̂cl(zk,i) < τ̂cl

H1 if Λ̂cl(Z) =
K∑
k=1

nk∑
i=1

Λ̂cl(zk,i) ≥ τ̂cl,

(8.37)

where the GLR Λ̂cl(zk,i) is defined by replacing the unknown parameter µk by the
ML estimate µ̂k in the LR Λcl(zk,i) (8.36)

Λ̂cl(zk,i) =
1

σ̂2
k

γ
k,i

(zk,i − µ̂k). (8.38)
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Theorem 8.4. Under hypothesis Hj, the GLR Λ̂cl(Z) follows the Gaussian distri-
bution with expectation m(j)

cl and variance v(j)
cl , defined as

Λ̂cl(Z)
d→ N

(
m

(j)
cl , v

(j)
cl

)
, (8.39)

with

m
(0)
cl = 0 (8.40)

v
(0)
cl =

K∑
k=1

nkσ
2
k

(
1 + t0,kT0,k − tB,kTB,k

)
+ 1

F(µk)

σ4
k + a2

nkF(µk)

(8.41)

m
(1)
cl =

R

2

K∑
k=1

nk
σ2
k

(8.42)

v
(1)
cl =

K∑
k=1

[
nkσ

2
k

(
1 + t0,kT0,k − tB,kTB,k

)
+ 1

F(µk) + nkR
2

σ4
k + a2

nkF(µk)

− nkR
2

4σ4
k

]
, (8.43)

and the terms t0,k, tB,k, T0,k, TB,k take into account the impact of truncation in
each segment Sk

t0,k = −µk
σk

and tB,k =
B − µk
σk

(8.44)

T0,k =
φ(t0,k)

Φ(tB,k)− Φ(t0,k)
and TB,k =

φ(tB,k)

Φ(tB,k)− Φ(t0,k)
. (8.45)

Proof. of Theorem 8.4 is given in Appendix 8.7.5.

Therefore, the normalized GLR Λ̂?cl(Z) is defined by

Λ̂?cl(Z) =
Λ̂cl(Z)√
v̂

(0)
cl

=

K∑
k=1

nk∑
i=1

1

σ̂2
k

√
v̂

(0)
cl

(zk,i − zk,i)(zk,i − µ̂k) (8.46)

where v̂(0)
cl is the estimate of v(0)

cl defined by replacing µk by µ̂k in (8.41). The GLRT
δ̂?cl based on the normalized GLR Λ̂?cl(Z) is defined as follows

δ̂?cl(Z) =

{
H0 if Λ̂?cl(Z) < τ̂?cl

H1 if Λ̂?cl(Z) ≥ τ̂?cl

(8.47)

Theorem 8.5. For any clipped RAW image whose parameters µi are unknown, the
decision threshold and the power of the GLRT δ̂?cl based on the decision function
Λ̂?cl(Z) are given by

τ̂?cl = Φ−1(1− α0) (8.48)

β(δ̂?cl) = 1− Φ

 τ̂?cl

√
v

(0)
cl −m

(1)
cl√

v
(1)
cl

 . (8.49)
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Figure 8.3: Detection performance on real clipped images for embedding rate R =

0.2.

Proof. According to Theorem 8.4, based on the definition of decision threshold and
power function, the proof follows immediately.

The clipping phenomenon whose impact on any steganalysis detector has never
been studied yet has been taken into account in the design of the proposed GLRT.
It can be noted that when the clipping phenomenon does not happen in a natural
RAW image, the power function β(δ̂?cl) tends to β(δ̂?ncl). In other words, β(δ̂?ncl) can
be regarded as a lower bound of β(δ̂?cl) when not taking into account the clipping.

8.5 Numerical Experiments

8.5.1 Detection Performance on Simulated Database

The detection performance of the proposed tests δ̂?ncl and δ̂?cl is first theoretically
studied on simulated database. The parameters (a, b) characterizing the het-
eroscedastic noise model are set at a = 0.0115 and b = 0.0002. These values
correspond to the Nikon D70 camera with ISO 200 estimated from the Dresden
image database [168]. These parameters are used with 8-bit synthetic image of size
512 × 512 to generate randomly 5000 cover images. The secret message bits are
drawn from a binomial distribution B(1, 1/2) and then embedded in pixel’s LSB.
The number of segments K is set to the number of grayscale levels, K = 28 and the
embedding rate R is set at 0.05. Potentially, a large number of detectors could be
compared with the proposed tests. In this chapter, it is proposed to include in the
comparison the revised version of WS [103, Eq.(2)], because it is well-known for a
good detection performance. In addition, it is also proposed to compare the proposed
tests with the AUMP detector [109] which is also designed within hypothesis testing
framework based on a simplistic piece-wise polynomial model. The Figure 8.1 and
Figure 8.2 illustrate respectively the detection performance of all detectors in case of
non-clipped images and clipped images. In both scenario, the empirical power of the
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Figure 8.4: Detection performance on real clipped images for embedding rate R =

0.4.
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Figure 8.5: Detection performance on real clipped images for embedding rate R =

0.6.

proposed GLRTs δ̂?ncl and δ̂
?
cl is identical to the theoretical one, which shows no loss

of optimality. It can be noted from Figure 8.1 that since the AUMP test only utilizes
the local polynomial model that can not provide accurate estimation of pixels’ ex-
pectation and variance, this bias leads to a loss of optimality of the AUMP test even
in the simulated database [109]. The Figure 8.2 also shows that the AUMP test can
not tolerate the impact of the clipping phenomenon. These experiments emphasize
the importance of taking into account both the heteroscedastic noise model and the
clipping phenomenon. The heteroscedastic noise model, which is more relevant to
characterize a RAW image, allows an accurate estimation of pixels’ expectation and
variance, thus improving the detection performance of the GLRTs. To deal with the
clipping phenomenon, it is crucial to rely on the heteroscedastic noise model.
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Figure 8.6: Detection performance on 12-bit images taken by Canon 400D with ISO
100 from BOSS database for embedding rate R = 0.05.
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Figure 8.7: Detection performance on 5000 images from BOSS database for embed-
ding rate R = 0.05.

8.5.2 Detection Performance on Real Image Database

Experiments are then conducted on real image database to highlight the relevance of
the proposed GLRTs. Real clipped images captured by the Nikon D300 camera are
provided at http://www.cs.tut.fi/~foi/sensornoise. Prior to our experiments,
every RAW image was converted to an uncompressed image format using Dcraw
(with parameters -D - T -4 -j -v). Only the red color channel is used in these
experiments. The camera parameters are estimated on each clipped image based
on the ML approach [133]. The reference parameters (a, b) are then provided by
averaging the previously estimated values. The denoising filter proposed in [155] is
employed for estimation of image parameters µi in a clipped image. The images are
standardized to the size of 512× 512 by cropping. The experiments are respectively
performed for the embedding rate R ∈ {0.2, 0.4, 0.6}. The detection performance for
each embedding rate is illustrated in Figure 8.3, 8.4 and 8.5. Similar to the case of

http://www.cs.tut.fi/~foi/sensornoise
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Figure 8.8: Empirical false-alarm probability from real images of BOSS database
plotted as a function of decision threshold, compared with theoretical FAP.

simulation, the proposed GLRT δ̂?cl remains ensuring a high detection performance
while the WS and AUMP detector fail.

To verify the efficiency of the proposed approach, experiments are conducted a
large image data base with 5000 RAW images from the BOSS base [171]. On the
one hand, the parameters (â, b̂) are estimated on each image. On the other hand,
the reference parameters (a, b) are provided by averaging the previously estimates
obtained from each image with the same ISO sensitivity per camera model. The
power function of both GLRTs δ̂?ncl and δ̂

?
cl is drawn using the fixed camera parame-

ters (a, b) and the estimated (â, b̂). The Figure 8.6 shows the detection performance
of all detectors on 12-bit RAW images of the Canon 400D camera with ISO 100.
The Figure 8.7 shows the detection performance on 5000 RAW images from the
BOSS base [171]. The clipping phenomenon seldom happens in the images of the
Canon 400D camera with ISO 100. Even in non-clipped images, the proposed tests
also outperform other detectors (see Figure 8.6). Moreover, it is worth noting that
there is no great difference between the test δ̂?cl with the reference parameters (a, b)

estimated from all image with the same ISO sensitivity per camera model and with
(â, b̂) estimated from each image. This indicates that the fact of estimating the
camera parameters on each image does not importantly affect the power function
of the test. In other words, the prior knowledge of camera parameters may not be
necessary when designing the GLRTs.

Finally, it is proposed to show the possibility of the proposed test to guarantee
in practice a prescribed false alarm probability. To this end, Figure 8.8 shows a
comparison between theoretical and empirical false-alarm probability as a function
of decision threshold. Note that, because the WS detector aims at estimating the
embedding rate and does not enable to warrant a prescribed false alarm probability,
this detector is omitted in this experiment. The Figure 8.8 obviously shows that the
AUMP detector [109] fails in practice to meet a prescribed false-alarm probability.
This is mainly due to a rather inaccurate image model as well as assumptions which
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seldom hold true such as constant variance on each block of pixels. On the opposite,
the proposed GLRTs allows us in practice to guarantee a false alarm probability. It
should be noted that, again, there is a no important difference of empirical false-
alarm probability of the test δ̂?cl with fixed parameters (a, b) and with parameters
(â, b̂) estimated on each image. Hence the use of estimated parameters is also
capable in practice to guarantee a false alarm probability. Similarly, the test δ̂?ncl

which does not take into account the clipping phenomenon slightly fails to meet a
false-alarm probability, particularly for a decision threshold typically corresponding
to α0 . 10−2. This is mainly due to the small number of images whose the number
of clipped pixels is not negligible.

8.6 Conclusion

This chapter proposes a statistical test to detect secret data hidden in the LSB plane
of a natural RAW image. The hidden data detection problem is cast in the frame-
work of hypothesis testing theory. The approach is based on the heteroscedastic
noise model that characterizes the RAW image more accurately than the AWGN or
a piece-wise polynomial model. The GLRTs are designed to deal with the difficulty
of unknown image parameters, which can be straightforwardly applied to any natu-
ral RAW image. It is also shown that the WS detector is a variant of the proposed
GLRTs, similar to other statistical detectors [109–113]. But the proposed approach
has gone further by relying on a more accurate image model and exploiting the
state-of-the-art denoising filter. This allows a more accurate estimation of pixels’
expectation and variance, resulting a considerable improvement of detection perfor-
mance. The specificity of the proposed approach is that the clipping phenomenon
is taken into account in the design of GLRT while other detectors can not toler-
ate its impact and fail in practice. Moreover, the proposed GLRTs can warrant a
prescribed false alarm rate while ensuring a high detection performance. Numerical
experiments on simulated database and real image database highlight the relevance
of the proposed approach.

8.7 Appendix

8.7.1 Denoising Filter for Non-Clipped RAW Images Corrupted
by Signal-Dependent Noise

We propose a denoising filter to remove the heteroscedastic noise corrupting non-
clipped RAW images. Firstly, a homomorphic transformation is employed to trans-
form a signal-dependent noise into a signal-independent noise and stabilize pix-
els’variance to unity. Let denote this homomorphic transformation by the function
f : [0, B] → R+. As explained in [186], this function is defined as the solution of
the problem

f(t) =

∫ t

− b
a

1

σ(x)
dx =

∫ t

− b
a

1√
ax+ b

dx. (8.50)
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Hence, the transformation f can be given by

f(t) =


2

a

√
at+ b t > − b

a

0 t ≤ − b
a
.

(8.51)

The transformation f is monotonically increasing, which implies the existence of the
inverse transformation f−1, given by

f−1(t) =
a

4
t2 − b

a
. (8.52)

By using the transformation f , one obtains an image Y that is corrupted by AWGN
with unitary variance

y ∼ N (ϑ, 1). (8.53)

The index of pixel y is omitted for simplicity. At this stage, a homoscedastic filter
Dho can be applied to remove the AWGN. Assuming that the free-noise image is
successfully recovered, the denoised value Dho(y) can be treated as the expected
value of y

Dho(y) = E[y] = ϑ. (8.54)

However, due to the non-linearity of f , the inverse transformation of the denoised
value Dho(y) can not be treated as the expected value of the pixel z

f−1(Dho(y)) = f−1(ϑ) 6= E[z] = µ. (8.55)

This leads to a systematic estimation bias, which needs to be corrected.
Let the function h defined by :

h : f(µ) 7→ ϑ = h(f(µ)).

By using the Taylor series expansion of f(z) around z = µ, one obtains :

f(z) = f(µ) +

∞∑
n=1

(z − µ)n

n!
f (n)(µ) (8.56)

where f (n) is the n-th derivative of f . The recursive formula of f (n) is given by

f (n)(t) =
(
− a

2

)n−1
(2n− 3)!! (at+ b)−n+ 1

2 , ∀n ≥ 2 (8.57)

where n!! denotes the double factorial of n. Taking expectations on both sides of
(8.56), the calculation shows that

ϑ = E[f(z)] = f(µ)−
∞∑
k=1

(a
2

)2k−1 (4k − 3)!!

(2k)!!

1

σ2k−1
. (8.58)
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Replacing t = f(µ) in (8.58), it follows that

ϑ = t−
∞∑
k=1

(4k − 3)!!

(2k)!!

1

t2k−1
. (8.59)

Therefore, the function h can be defined by

h(t) = t−
∞∑
k=1

(4k − 3)!!

(2k)!!

1

t2k−1
. (8.60)

The first derivative of h is positive, hence the function h is monotonically increasing
on R+. This ensures the invertibility of h. Consequently, the noisy RAW pixel is
ideally mapped to its denoised value by the relation

µ = f−1(h−1(Dho(f(z)))). (8.61)

Due to (8.61), the special denoising filter for heteroscedastic noise in non-clipped
images can be defined by

D = f ◦ Dho ◦ h−1 ◦ f−1. (8.62)

8.7.2 Statistical distribution of the GLR Λ̂ncl(Z) under hypothesis
H0

For brevity, let denote ρk,i = 1
σ̂2
k
(zk,i − µ̂k) such that the GLR Λ̂ncl(zk,i) can be

rewritten as Λ̂ncl(zk,i) = γk,iρk,i. Based on the total probability theorem, it is easily
shown that

EH0

[
Λ̂ncl(zk,i)

]
= PH0 [γk,i = 1]EH0

[
ρk,i | γk,i = 1

]
− PH0 [γk,i = −1]EH0

[
ρk,i | γk,i = −1

]
=

1

2
EH0

[
ρk,i

]
− 1

2
EH0

[
ρk,i

]
= 0, (8.63)

Meanwhile, the variance of the GLR Λ̂ncl(zk,i) can be expressed as

VarH0

[
Λ̂ncl(zk,i)

]
= EH0

[
γ2
k,iρ

2
k,i

]
= EH0

[
ρ2
k,i

]
= EH0

[(zk,i − µ̂k)2

σ̂4
k

]
. (8.64)

It follows from (8.13) that

σ̂2
k ∼ N

(
σ2
k,
a2

nk
σ2
k

)
. (8.65)

Using the second Delta method in Lemma A.3, it follows that

VarH0

[
Λ̂ncl(zk,i)

]
=

EH0

[
(zk,i − µ̂k)2

]
EH0

[
σ̂4
k

] =
1 + 1

nk

σ2
k + a2

nk

. (8.66)
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Finally, from the Lindeberg CLT, we derive the statistical distribution of the
GLR Λ̂(Z) under hypothesis H0

Λ̂ncl(Z)
d→ N

(
0, v

(0)
ncl

)
, (8.67)

with

v
(0)
ncl =

K∑
k=1

nk∑
i=1

VarH0

[
Λ̂(zk,i)

]
=

K∑
k=1

nk + 1

σ2
k + a2

nk

. (8.68)

8.7.3 Statistical distribution of the GLR Λ̂ncl(Z) under hypothesis
H1

Under hypothesis H1, the estimates µ̂k are obviously impacted by the insertion of
the secret message. However, under assumption that the impact of quantization is
negligible and the denoising operator D is ideal, one can obtain an almost identical
denoised image

D(C) = D(S). (8.69)

Hence, the probability that D(zi) falls into the interval
[
uk − κk

2 , uk + κk
2

[
does

not change under hypothesis H1. It is straightforward to derive that the impact of
insertion on the estimates µ̂k is negligible.

The image Z contains both cover and stego-pixels under hypothesis H1. Hence,
the law of total expectation and of total variance allow to calculate the first two
moments of Λ̂ncl(zk,i). The mathematical expectation of Λ̂ncl(zk,i) is defined as

EH1

[
Λ̂ncl(zk,i)

]
=
R

2
EH0

[
Λ̂ncl(zk,i)

]
+
(

1− R

2

)
EH0

[
Λ̂ncl(zk,i)

]
=
R

2
EH0

[
Λ̂ncl

(
zk,i
)]

=
R

2

(
PH0 [γk,i = 1]EH0

[
zk,i − µ̂k

σ̂2
k

|γk,i = 1

]

− PH0 [γk,i = −1]EH0

[
zk,i − µ̂k

σ̂2
k

|γk,i = −1

])

=
R

2

(
1

2
EH0

[
zk,i + 1− µ̂k

σ̂2
k

]
− 1

2
EH0

[
zk,i − 1− µ̂k

σ̂2
k

])

=
R

2
EH0

[ 1

σ̂2
k

]
=

R

2σ2
k

, (8.70)

with γk,i = zk,i −
(
zk,i + (−1)zk,i

)
= (−1)zk,i = zk,i − zk,i.
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Similarly, a direct calculation yields to

EH1

[
Λ̂2

ncl(zk,i)
]

= EH1

[(zk,i − µ̂k)2

σ̂4
k

]
=
R

2
EH0

[(zk,i − µ̂k)2

σ̂4
k

]
+
(

1− R

2

)
EH0

[(zk,i − µ̂k)2

σ̂4
k

]
= EH0

[(zk,i − µ̂k)2

σ̂4
k

]
+
R

2
EH0

[ 1

σ̂4
k

]
=

1 + 1
nk

+ R
2σ2
k

σ2
k + a2

nk

. (8.71)

It follows that

VarH1

[
Λ̂ncl(zk,i)

]
= EH1

[
Λ̂2

ncl(zk,i)
]
− E2

H1

[
Λ̂ncl(zk,i)

]
=

1 + 1
nk

+ R
2σ2
k

σ2
k + a2

nk

− R2

4σ4
k

. (8.72)

Hence, using again the Lindeberg CLT, one obtains the statistical distribution of
the GLR Λ̂ncl(Z) under hypothesis H1

Λ̂ncl(Z)
d→ N

(
m

(1)
ncl, v

(1)
ncl

)
(8.73)

where m1 and v1 are defined by

m
(1)
ncl =

R

2

K∑
k=1

nk
σ2
k

(8.74)

v
(1)
ncl =

K∑
k=1

nk + 1 + nkR
2σ2
k

σ2
k + a2

nk

− R2nk
4σ4

k

 . (8.75)

8.7.4 ML Estimation of Parameters in Truncated Gaussian Data

This section proposes a ML estimation of parameters in truncated Gaussian data.
For the sake of simplification, we neglect the first and the third terms in (8.6).
Suppose a random variable X follows the truncated Gaussian distribution taking
values on the interval (0, B). The data that takes value at the boundary 0 and B
is excluded. Such truncated Gaussian distribution is denoted by N(0,B)

(
µ, σ2

)
with

σ2 = aµ + b. This distribution also takes advantage of the heteroscedastic relation
between the mathematical expectation and variance. The pdf of X is simplified
from (8.6) as

fX(u) =
1

Φ(tB)− Φ(t0)

1√
2πσ2

exp
(
− (u− µ)2

2σ2

)
(8.76)
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where
t0 =

−µ
σ

and tB =
B − µ
σ

(8.77)

characterize the truncation. It must be noted that µ now is not the expected value
of X. According to [160], the mathematical expectation and variance of the random
variable X are given by

E[X] = µ+ (T0 − TB)σ (8.78)

Var[X] = σ2
[
1 + t0T0 − tBTB − (T0 − TB)2

]
(8.79)

where

T0 =
φ(t0)

Φ(tB)− Φ(t0)
and TB =

φ(tB)

Φ(tB)− Φ(t0)
. (8.80)

Suppose a vector of n independent realizations x = (xi)
n
i=1 drawing from the

truncated Gaussian distribution N(0,B)

(
µ, σ2

)
. By definition, the ML estimate µ̂ is

defined as the solution which maximizes the log likelihood function of the samples
x

µ̂ = arg max
µ

L(x;µ) = arg max
µ

n∑
i=1

L(xi;µ) (8.81)

where

L(xi;µ) = − log
[
Φ(tB)− Φ(t0)

]
− log(

√
2πσ2)− (xi − µ)2

2σ2
. (8.82)

Unfortunately, the ML estimate µ̂ can not be analytically given. In this section, the
problem (8.81) is numerically solved using the Nelder-Mead optimization method
[157] and taking the empirical mean x = 1

n

∑n
i=1 xi as initial solution. According

to [189], the ML estimate µ̂ follows the asymptotic Gaussian distribution

µ̂ ∼ N
(
µ,

1

nF(µ)

)
, (8.83)

where F(µ) represents the Fisher information

F(µ) = −E
[
∂2L(xi;µ)

∂µ2

]
=
∂2tB
∂µ2

TB +
∂tB
∂µ

∂TB
∂µ
− ∂2t0
∂µ2

T0 −
∂t0
∂µ

∂T0

∂µ
− a2σ2 − 2b2

2σ6

+
a(a2E[x2

i ] + 2bE[xi])

σ6
. (8.84)

8.7.5 Statistical distribution of the GLR Λ̂cl(Z)

The proof follows similar calculations as in Section 8.7.2 and 8.7.3. For simplicity,
we will not recall intermediate calculations.
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Under hypothesis H0, from the total probability theorem, it can be shown that
EH0

[
Λ̂cl(zk,i)

]
= 0. Besides, it follows from (8.32) that

σ̂2
k ∼ N

(
σ2
k,

a2

nkF(µk)

)
. (8.85)

The variance of the GLR Λ̂cl(zk,i) under hypothesis H0 can be calculated as

VarH0

[
Λ̂cl(zk,i)

]
=

EH0

[
(zk,i − µ̂k)2

]
EH0

[
σ̂4
k

]
=

EH0

[
(zk,i − µk)2

]
+ VarH0

[
µ̂k
]

E2
H0

[
σ̂2
k

]
+ VarH0

[
σ̂2
k

]
=
σ2
k

(
1 + t0,kT0,k − tB,kTB,k

)
+ 1

nkF(µk)

σ4
k + a2

nkF(µk)

, (8.86)

where the terms t0,k, tB,k, T0,k, TB,k take into account the impact of truncation in
each segment Sk

t0,k = −µk
σk

and tB,k =
B − µk
σk

(8.87)

T0,k =
φ(t0,k)

Φ(tB,k)− Φ(t0,k)
and TB,k =

φ(tB,k)

Φ(tB,k)− Φ(t0,k)
. (8.88)

Under hypothesisH1, the mathematical expectation of the GLR Λ̂cl(zk,i) is given
as

EH1

[
Λ̂cl(zk,i)

]
=
R

2
EH0

[ 1

σ̂2
k

]
=

R

2σ2
k

. (8.89)

Besides, the variance of the GLR Λ̂cl(zk,i) under hypothesis H1 is given as

VarH1

[
Λ̂cl(zk,i)

]
= EH1

[
Λ̂2

cl(zk,i)
]
− E2

H1

[
Λ̂cl(zk,i)

]
= EH0

[(zk,i − µ̂k)2

σ̂4
k

]
+
R

2
EH0

[ 1

σ̂4
k

]
− R2

4σ4
k

=
σ2
k

(
1 + t0,kT0,k − tB,kTB,k

)
+ 1

nkF(µk) + R
2

σ4
k + a2

nkF(µk)

− R2

4σ4
k

. (8.90)

Therefore, in virtue of Lindeberg CLT, the statistical distribution of the GLR
Λ̂cl(Z) under hypothesis Hj is given by

Λ̂cl(Z)
d→ N

(
m

(j)
cl , v

(j)
cl

)
, (8.91)

with
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m
(0)
cl = 0 (8.92)

v
(0)
cl =

K∑
k=1

nkσ
2
k

(
1 + t0,kT0,k − tB,kTB,k

)
+ 1

F(µk)

σ4
k + a2

nkF(µk)

(8.93)

m
(1)
cl =

R

2

K∑
k=1

nk
σ2
k

(8.94)

v
(1)
cl =

K∑
k=1

[
nkσ

2
k

(
1 + t0,kT0,k − tB,kTB,k

)
+ 1

F(µk) + nkR
2

σ4
k + a2

nkF(µk)

− nkR
2

4σ4
k

]
. (8.95)
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9.1 Introduction

The goal of this chapter is to design a statistical test for steganalysis of Jsteg al-
gorithm within hypothesis testing framework. As discussed in Section 2.5.1, Jsteg
algorithm is a variant of LSB replacement mechanism. Instead of embedding hid-
den bits into pixel’s LSB, Jsteg algorithm embeds them into the LSB of quantized
DCT coefficients. Like in steganalysis of LSB replacement, several detectors have
been proposed for the steganalysis of Jsteg algorithm, including structural detec-
tors [122–126], WS detectors [127,128], statistical detectors [129] and blind detectors.
Unlike statistical detectors proposed for steganalysis of LSB replacement, hypoth-
esis testing theory is of limited exploitation in the steganalysis of Jsteg algorithm.
A first step proposed in [129] is based on the Laplacian model to characterize DCT
coefficients. However, due to the fact that the Laplacian model is not relevant (see
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Section 4.4), a considerable loss of optimality is revealed. Other detectors perform
efficiently but their performance can not analytically established and they can not
warrant a prescribed false alarm probability.

The main contributions are the following:

• The approach is based on the highly accurate model of DCT coefficients pro-
posed in Section 4.4 that can detect any small change in statistical properties
of cover image due to message embedding.

• By formulating the hidden data detection as a hypothesis testing problem,
this chapter studies an optimal detector given by the LRT assuming that all
model parameters are known in practice. The statistical performance of the
LRT is analytically established. The test allows us to warrant a prescribed
false alarm probability and maximize the correct detection probability.

• Based on the proposed model of quantized DCT coefficients, a ML estimator
of embedding rate is also derived for quantitative steganalysis. Besides, the
WS detector [128] is revisited and a more efficient version is proposed relying
on a modified filter.

The chapter is organized as follows. Section 9.2 states the hidden data detection
problem in the framework of hypothesis testing theory and studies the LRT assum-
ing that all model parameters are known. Section 9.3 derives the ML estimator of
embedding rate based on the proposed model of quantized DCT coefficients and re-
visits the WS detector. Section 9.4 presents numerical results on simulated database
and real image database and the comparison with prior-art detectors. Numerical
results on simulated database and a large image database not only show the accu-
racy of the proposed model of quantized DCT coefficients but also emphasize the
relevance of the proposed detector and ML estimator. Finally, Section 9.5 concludes
the chapter. The work in this chapter has been published in [154]. Furthermore, the
same methodology has been proposed for steganalysis of Outguess algorithm [190].

9.2 Optimal Detector for Steganalysis of Jsteg Algo-
rithm

9.2.1 Hypothesis Testing Formulation

Let C be a matrix representing the cover image that is composed of 64 vectors of
quantized DCT coefficients Ck = (Ck,1, . . . , Ck,Nblk

), k ∈ {1, . . . , 64}, where Nblk is
the number of blocks. The pmf of the quantized DCT coefficient Ck is denoted by
Pθk,∆k

characterized by the parameter vector θk and the corresponding quantization
step ∆k. For instance, in our proposed model, θk = (αk, βk). In the Jsteg algorithm,
each hidden bit, that is either 0 or 1, is statistically independent of the cover coeffi-
cients. Moreover, the probability of insertion is equal for every coefficient. The Jsteg
does not embed in the coefficients that are equal to 0 and 1 since artifacts caused
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by such insertion can be easily detected. For the same reason, the DC coefficient
is not used for insertion as well. The number of usable coefficients in each vector
Ck, k ∈ {2, . . . , 64}, is represented by a random variable nk ≤ Nblk. The number
of usable coefficients nk depends on the image content and the quantization matrix
(hence the quality factor). Without loss of generality, the nk first components of
the vector are usable and the remaining n− nk components are excluded.

The secret message is embedded at rate R in the cover image C to create a
stego-image S = (S1, . . . ,S64). As described in Section 8.3.1, the pmf of Sk, say
QR,θk,∆k

, can be given as

QR,θk,∆k
(l) =


R

2
Pθk,∆k

(l) +
(

1− R

2

)
Pθk,∆k

(l) ∀l ∈ Z \ {0, 1}

QR,θk,∆k
(l) = Pθk,∆k

(l) l ∈ {0, 1},
(9.1)

where l indicates the integer l with LSB flipped l = l + (−1)l. Since coefficients
with value 0 and 1 are not used for insertion, the pmf Pθk,∆k

does not change for
l = {0, 1} after insertion.

When inspecting the image of DCT coefficients D that is either a cover image
{D = C} or a stego-one {D = S}, the goal of the test is to decide between two
hypotheses defined asH0 =

{
Dk,i ∼ Pθk,∆k

, ∀k ∈ {2, . . . , 64}, ∀i ∈ {1, . . . , Nblk}
}

H1 =
{
Dk,i ∼ QR,θk,∆k

, ∀k ∈ {2, . . . , 64},∀i ∈ {1, . . . , Nblk}
}
.

(9.2)

The DC coefficients D1 are excluded in the problem (9.2) because they are not used
for secret message embedding. Let

Kα0 =
{
δ : sup

θ
PH0

[
δ(Z) = H1

]
≤ α0

}
be the class of tests whose false alarm probability is upper-bounded by the rate α0

where θ = (θ1, . . . ,θ64) is the parameter vector. Among all the tests in the class
Kα0 , it is aimed at finding a test δ which maximizes the power function β(δ).

9.2.2 LRT for Two Simple Hypotheses

Assuming that the model parameters are known, in virtue of the Neyman-Pearson
lemma, the MP test over the class Kα0 is the LRT given by the following decision
rule

δ∗jst(D) =


H0 if Λjst(D) =

64∑
k=2

Λjst(Dk) < τ∗jst

H1 if Λjst(D) =

64∑
k=2

Λjst(Dk) ≥ τ∗jst

(9.3)
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where the LR Λjst(Dk) =
∑nk

i=1 Λjst(Dk,i) and Λjst(Dk,i) is defined by

Λjst(Dk,i) = log
QR,θk,∆k

(
Dk,i

)
Pθk,∆k

(
Dk,i

) = log

[
1− R

2
+
R

2

Pθk,∆k

(
Dk,i + (−1)Dk,i

)
Pθk,∆k

(
Dk,i

) ]
.

(9.4)
Here, it is assumed that the DCT coefficients are statistically independent. Ac-
cordingly, the LR Λjst(Dk,i) can be interpreted as a function of the coefficient Dk,i.
Suppose the function h(l;θk,∆k) defined as

h(l;θk,∆k) , log

[
1− R

2
+
R

2

Pθk,∆k

(
l + (−1)l

)
Pθk,∆k

(
l
) ]

, (9.5)

such that Λjst(Dk,i) = h(Dk,i;θk,∆k).
Because the proposed model of quantized DCT coefficients is complicated, it

seems impossible to simplify the expression of the LR Λjst(Dk,i) and establish ana-
lytically its expectation and variance. Nevertheless, it is proposed to take advantage
of the fact that the quantized DCT coefficient Dk,i only takes integer values in a
finite set, say D. The expectation m

(k,j)
jst and variance v(k,j)

jst of the LR Λjst(Dk,i)

under hypothesis Hj , j ∈ {0, 1}, can be numerically given by

m
(k,0)
jst = EH0

[
Λjst(Dk,i)

]
=
∑
l∈D

h(l;θk,∆k)Pθk,∆k

(
l
)

(9.6)

v
(k,0)
jst = VarH0

[
Λjst(Dk,i)

]
=
∑
l∈D

(
h(l;θk,∆k)−m

(k,0)
jst

)2
Pθk,∆k

(
l
)

(9.7)

m
(k,1)
jst = EH1

[
Λjst(Dk,i)

]
=
∑
l∈D

h(l;θk,∆k)QR,θk,∆k

(
l
)

(9.8)

v
(k,1)
jst = VarH1

[
Λjst(Dk,i)

]
=
∑
l∈D

(
h(l;θk,∆k)−m

(k,1)
jst

)2
QR,θk,∆k

(
l
)
. (9.9)

Theorem 9.1. Under hypothesis Hj, the LR Λjst(D) follows the Gaussian distri-
bution with expectation m(j)

jst and variance v(j)
jst as

Λjst(D)
d→ N

(
m

(j)
jst , v

(j)
jst

)
, (9.10)

with

m
(j)
jst =

64∑
k=2

Nblkp
∗
km

(k,j)
jst (9.11)

v
(j)
jst =

64∑
k=2

[
Nblkp

∗
kv

(k,j)
jst +Nblkp

∗
k(1− p∗k)

(
m

(k,j)
jst

)2]
, (9.12)

where p∗k = 1−Pθk,∆k
(0)−Pθk,∆k

(1) is the probability that a coefficient differs from
0 and 1.
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Figure 9.1: Detection performance of the test δ?jst based on the proposed model with
embedding rate R = 0.05 on the simulated images and real images.

Proof. It can be noted that the LR Λjst(Dk) is a random sum of nk elements since
nk, which corresponds to the number of coefficients that differ from 0 and 1, is itself
a random variable. The number nk follows the binomial distribution B(Nblk, p

∗
k).

The probability p∗k remains identical under every hypothesis since the insertion is
not performed in coefficients that are equal to 0 and 1. It follows from the Wald’s
identity [191] that the mathematical expectation and variance of the LR Λjst(Dk)

can be given by

EHj
[
Λjst(Dk)

]
= EHj [nk]EHj

[
Λjst(Dk,i)

]
= Nblkp

∗
km

(k,j)
jst

VarHj

[
Λjst(Dk)

]
= EHj [nk]VarHj

[
Λjst(Dk,i)

]
+ E2

Hj

[
Λjst(Dk,i)

]
VarHj [nk]

= Nblkp
∗
kv

(k,j)
jst +Nblkp

∗
k(1− p∗k)

(
m

(k,j)
jst

)2
.

In virtue of the Lindeberg CLT, the LR Λjst(Dk) follows the Gaussian distribution
as

Λjst(Dk)
d→ N

(
Nblkp

∗
km

(k,j)
jst , Nblkp

∗
kv

(k,j)
jst +Nblkp

∗
k(1− p∗k)

(
m

(k,j)
jst

)2)
.

Finally, from the linearity property of the Gaussian distribution, the proof follows
immediately.

Finally, the LRT δ?jst based on the normalized LR Λ?jst(D) =
Λjst(D)−m(0)

jst√
v

(0)
jst

is given

as follows

δ?jst(D) =

{
H0 if Λ?jst(D) < τ?jst

H1 if Λ?jst(D) ≥ τ?jst
(9.13)
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where the decision threshold τ?jst is the solution of the equation P0

[
Λ?jst(D) ≥ τ?jst

]
=

α0. The decision threshold τ?jst and the power function β(δ?jst) of the LRT δ?jst are
given in the following theorem.

Theorem 9.2. In an ideal context where the embedding rate R and the parameters
θk are known, the decision threshold and the power function of the LRT δ?jst are
given by

τ?jst = Φ−1(1− α0) (9.14)

β(δ?jst) = 1− Φ

m(0)
jst −m

(1)
jst + τ?jst

√
v

(0)
jst√

v
(1)
jst

 . (9.15)

Proof. From Theorem 9.1, based on the definitions of the decision threshold and the
power of the test, the proof follows immediately.

The statistical performance of the LRT δ?jst is analytically established. The
decision threshold is set independently of the image content. It can be noted that
the scenario studied by the test δ?jst may not be realistic because the parameters θk
can not be known in advance in a real image. An usual approach in practice is to
replace the parameters θk by ML estimates θ̂ML

k . Thus, the detection performance
of the test δ?jst depends on the accuracy of the proposed model of DCT coefficients
and ML estimates θ̂ML

k . The fact of replacing the unknown parameters θk by ML
estimates θ̂ML

k shows that the test δ?jst seems to coincide with the GLRT. However,
the test δ?jst does not consider the variability of ML estimates θ̂ML

k . Because the
ML estimates θ̂ML

k are numerically derived by the optimization method (see Section
4.4.3), their statistical properties can not be easily studied. This leads to a difficulty
of establishing analytically the statistical performance of the GLRT.

9.3 Quantitative Steganalysis of Jsteg Algorithm

9.3.1 ML Estimation of Embedding Rate

Here the estimation of embedding rate is formulated into the ML framework using
the proposed model of DCT coefficients. As discussed in [99], ML estimators are
more statistically rigorous, but their performance is weak due to lack of accurate
models for cover images. An extension for ML framework is derived in [126] that is
based on the concept of a precover introduced in [99] and the Generalized Cauchy
distribution for unquantized DCT coefficients [87]. On the contrary, the proposed
model of quantized DCT coefficients is exploited to estimate the embedding rate R.
Given an inspected image D, the ML estimator R̂ is given by

R̂ = arg max
0≤R≤1

64∑
k=2

nk∑
i=1

logQR,θk,∆k

(
Dk,i

)
(9.16)
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whereQR,θk,∆k

(
Dk,i

)
is given in (9.1). Again, the DC coefficients and the coefficients

that are equal to 0 and 1 are excluded. The maximization problem (9.16) is resolved
numerically by the Nelder-Mead method [157].

9.3.2 Revisiting WS estimator

Beside the ML estimator (9.16), it is also proposed to revisit the WS estimator [128].
Technically, the WS estimator [128] can be given in the following manner

R̂ ∝
∑
i

wi(Di −Di)Di, (9.17)

where the weight wi can be defined as

wi ∝
1Di /∈{0,1}

1 + V(D)i
. (9.18)

Here 1E denotes the indicator function and V(D)i denotes the local empirical vari-
ance with respect to the coefficientDi. To calculate this local empirical variance, the
authors in [128] employ the DCT coefficients at the same frequency in four adjacent
blocks (excluding the center block) as

V(D)i,j =
1

4

(
D2(i− 8, j) +D2(i+ 8, j) +D2(i, j − 8) +D2(i, j + 8)

)
−
[1

4

(
D(i− 8, j) +D(i+ 8, j) +D(i, j − 8) +D(i, j + 8)

)]2
. (9.19)

As discussed in [95, 103, 104], an appropriate choice of linear filter and weight
vector can remarkably improve the performance of WS estimator. Here rather than
employing the DCT coefficients at the same frequency in four adjacent blocks, we
propose to employ two coefficients at the same frequency in two adjacent blocks and
two other coefficients at the adjacent frequencies in the same block

V(D)i,j =
1

4

(
D2(i− 8, j) +D2(i+ 8, j) +D2(i, j − 1) +D2(i, j + 1)

)
−
[1

4

(
D(i− 8, j) +D(i+ 8, j) +D(i, j − 1) +D(i, j + 1)

)]2
. (9.20)

9.4 Numerical Experiments

9.4.1 Detection Performance of the proposed LRT

To illustrate the detection performance of the test δ?jst based on the proposed model,
the reference BOSSBase database [171] containing 10000 grayscale images of size
512 × 512 in PGM format is chosen to conduct experiments. The embedding rate
R is set at 0.05 for the Jsteg algorithm. The hidden bits are drawn from a binomial
distribution B(1, 1/2), i.e. each hidden bit can be 0 or 1 with the same probability.
The coefficients in which hidden bits are embedded are randomly chosen. All the
PGM images are converted to JPEG format using imagemagick with quality factor
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Figure 9.2: Detection performance of the test δ?jst based on the quantized Lapla-
cian, quantized GG, quantized GΓ, and proposed model on the BOSSBase with
embedding rate R = 0.05.

of 70. The 63 vectors of AC coefficients are extracted from every image. The quanti-
zation matrix is given in the header of each image file. The parameters θk = (αk, βk)

are estimated on each frequency of each image based on the ML approach. The esti-
mates θ̂k are used to generate each vector Dk such that the simulated data involves
the same model parameters as the ones estimated from real images. Therefore, the
simulated data perfectly follows the proposed model and there is no correlation be-
tween simulated DCT coefficients. The test δ?jst is performed on 10000 simulated
images and 10000 real JPEG images to evaluate the loss of power of the proposed
test δ?jst in the practical context. The power functions on simulated images and real
images are shown in Figure 9.1. A small loss of power is obviously revealed between
the two power functions, which may be caused by the following reasons. Firstly, the
accuracy of the proposed model may be affected by simplistic assumptions (e.g. the
pixels are identically distributed within a 8 × 8 block). Secondly, DCT coefficients
exhibit correlation in a real JPEG image. Finally, it can be caused by the estimation
of model parameters, which are numerically provided by the optimization method.

The proposed test δ?jst can be used with any cover image model. The more
accurate the cover image model is, the better the detection performance is. The
Figure 9.2 illustrates the detection performance of the test δ?jst based on quantized
Laplacian, quantized GG, quantized GΓ and proposed model on 10000 real JPEG
images. The test δ?jst based on the proposed model shows a higher correct detection
probability than the quantized Laplacian-based, quantized GG-based and quantized
GΓ-based. In this experiment, the proposed detector can provide an important
power with zero false alarm. Moreover, it appears that the quantized GΓ model fails
on a subset of about 1000 images, which leads to its very low power function for 0 ≤
α0 ≤ 0.1 while the proposed model still shows a high detection performance. The
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Figure 9.3: Detection performance of the test δ?jst based on the quantized Laplacian,
quantized GG, quantized GΓ, and proposed model on the subset of 1000 images
from the BOSSBase with embedding rate R = 0.05.

detection performance on this subset is illustrated in Figure 9.3. These results also
show that the proposed model is more robust and accurate for the DCT coefficients.
The term "robust" means the accuracy of the model on a wide range of images.
Besides, the test δ?jst based on the proposed model is nearly perfect for embedding
rate R = 0.1, i.e. β(δ?jst)

∼= 1, for any false alarm probability α0.

Potentially, there are many detectors in the literature could be compared with
the proposed test. The ZP detector [122] was known as the first quantitative at-
tack on Jsteg. The well-known WS detector [128, Eq. (9)] is also included in the
comparison because of its efficiency and low computational complexity. The recent
quantitative structural detector ZMH-Sym [126] based on the ZMH framework and
the exploitation of the natural symmetry of DCT coefficients in the cover image
was shown as the best detector among histogram-based attacks. The quantized
Laplacian-based test [129] is also performed because it is based on the same frame-
work of hypothesis testing theory. On the contrary to the support vector regression-
based detector [119] that needs an expensive training phase, all above detectors,
including the proposed one, work solely on an image-by-image basis. The Figure 9.4
shows the comparison of the proposed test δ?jst with other detectors. We have also
performed the ZMH-Cat structural detector [126] but do not report it in Figure 9.4
because its power function is considerably worse than the detector ZMH-Sym’s one,
see Figure9.5. Obviously, the proposed test outperforms other detectors, whatever
the false alarm probability. It should particularly be noted that for very low-false
alarm rate the proposed test performs much better than the others, which is the
most important in practice since the false-alarm probability must be set very low.
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Figure 9.4: Comparison between the proposed test δ?jst, ZMH-Sym detector, ZP
detector, WS detector and quantized Laplacian-based test.
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Figure 9.5: Mean absolute error for all estimators.

9.4.2 Accuracy of the Proposed Estimator

In terms of embedding rate estimation, the accuracy of all estimators is evaluated
for embedding rate R ranging from 0.01 to 0.1 using the Mean Absolute Error
(MAE) criteria. The Figure 9.5 shows the MAE of all estimators. The proposed
ML estimator (9.16) outperforms other estimators. The ZMH-Sym estimator has a
comparable accuracy to the proposed ML estimator but it has more outliers, which
leads to the degradation of the ROC curve. The high detection performance of the
test δ?jst (Figure 9.4) and high accuracy of embedding rate estimation (Figure 9.5)
also emphasize the accuracy of the proposed model of quantized DCT coefficients.

The modified WS estimator is also performed on the BOSSBase. Figure 9.6
shows the MAE for the proposed ML estimator, standard WS estimator and modi-
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Figure 9.6: Mean absolute error for proposed ML estimator, standard WS estimator
and improved WS estimator.

fied WS estimator. It can be noted that the accuracy of the modified WS estimator
is considerably improved and very competitive with the proposed ML estimator.
Moreover, its performance is quite stable for embedding rate ranging from 0.01
to 0.1. Meanwhile, the detection performance of the modified WS detector is only
slightly improved compared with the standard WS detector, see Figure 9.7. It should
be noted that the modified WS estimator employs the coefficients at the same fre-
quency in two vertical adjacent blocks and the coefficients at two horizontal adjacent
frequencies in the same block for the calculation of weights. Other directions also
result in the same performance. The considerable performance improvement of this
modified WS estimator can be justified due to the fact that the proposed calculation
of weights indirectly takes into account intra-block and inter-block correlations of
DCT coefficients.

9.5 Conclusion

This chapter designs the most powerful LRT for the steganalysis of Jsteg algorithm
based on the very accurate model of quantized DCT coefficients. The proposed
accurate model allows us to detect small changes in the cover image due to secret
message embedding. The LRT can warrant a prescribed false alarm probability and
maximizes the correct detection probability. An estimator of embedding rate is also
designed within ML framework based on the proposed model of DCT coefficients.
Moreover, the WS estimator is revisited using a different technique of calculation of
weights such that the estimation accuracy of the modified WS estimator is consider-
ably improved. Numerical results on simulated database and large image database
highlight the relevance of the proposed approaches. Future researches could look
into a test taking into account the image content as nuisance parameters. A first
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Figure 9.7: Comparison between the proposed test δ?jst, standard WS detector and
improved WS detector.

step has been proposed in [192].



Chapter 10

Conclusions and Perspectives

10.1 Conclusions

The evolution of digital imaging technology has raised a number of information
security challenges. Digital images, which have nowadays become ubiquitous, can
be easily manipulated because of a large availability of low-cost image editing tools.
To restore the trustworthiness of digital images, the field of digital image forensics
has been emerged.

The main goal of this thesis is to address the problem of image origin identifi-
cation and hidden data detection in the field of digital image forensics. The state
of the art shows that hypothesis testing theory is of limited exploitation by most
of existing detectors compared with supervised classification. Besides, the empiri-
cal image models employed by those detectors do not take into account the image
structure, nor the non-stationarity of acquisition noise, resulting in overall poor de-
tection performance. Therefore, the proposed approach aims to design a statistical
test within hypothesis testing framework based on an accurate parametric image
model, which is also established in this thesis.

The thesis starts from establishing a statistical model that can accurately char-
acterize a natural image acquired by a digital camera. This is accomplished by
modeling the main steps of image processing pipeline and studying image statistics
during these stages. Chapter 4 performs the study of image statistics in the spatial
domain and DCT domain, from RAW format to JPEG format. By modeling various
noise sources that corrupt a RAW image during acquisition stage, the heteroscedas-
tic noise model is provided, in which the RAW pixel is normally distributed and its
variance is linearly dependent on its expectation. This noise model is more relevant
to characterize a RAW image than the conventional AWGN since the former take
into account the contribution of Poisson noise in the acquisition stage. The study
of image statistics is extended to TIFF image by starting from the heteroscedas-
tic noise model and taking into account the non-linear effect of gamma correction,
which leads to the so-called generalized noise model. The latter model gives the
pixel’s variance as a non-linear function of its expectation. It is shown that the gen-
eralized noise model is also relevant for JPEG images with moderate-to-high quality
factors. One specificity is that the generalized noise model is proposed to combine
with LLMMSE filter to design an efficient method for image denoising. The study
of image statistics in the DCT domain is performed by modeling the distribution
of DCT coefficients based on the doubly stochastic model. The proposed model of
DCT coefficients outperforms other models, e.g. Laplacian, Generalized Gaussian
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and Generalized Gamma. Another contribution is that algorithms for estimation
of model parameters are designed in Chapter 4. In general, accurate image models
and parameter estimation provided in this chapter build up a solid foundation for
applications of hypothesis testing theory in the field of digital image forensics.

Based on the proposed statistical image models, the problems of camera model
identification and hidden data detection are formally stated in the framework of
hypothesis testing theory. The objective in this thesis is to design a test that can
meet two criteria of optimality simultaneously: the warranting of a prescribed false
alarm probability and maximization of the correct detection probability. In the
theoretical context where all model parameters are known, or the hypotheses are
simple, such optimal test is given by the LRT based on the Neyman-Pearson lemma.
However, this scenario is unrealistic because the model parameters are unknown in
practice. The GLRT is proposed to deal with the difficulty of unknown parameters,
by replacing unknown parameters by their ML estimates in the LR. The GLRT
almost coincides with the UMP test under large conditions. Numerical results show
that the loss of power of the GLRTs designed in this thesis compared with the LRT
is negligible. The main strength of the proposed GLRTs is that they can warrant a
prescribed false alarm probability as well as achieve a high detection performance on
a large database. In general, the proposed GLRTs outperform prior-art detectors,
thanks to the relevant image model and the accurate estimation algorithm of model
parameters. The list of statistical tests studied in this thesis is given in Table 10.1.

In this thesis, the problem of camera model identification is approached by many
directions, depending on the image model. In particular, the heteroscedastic noise
model is firstly exploited and its parameters (a, b) are considered as camera finger-
print for camera model identification from RAW images in Chapter 5. Two main
limitations of this methodology are the unavailability of RAW images in practice
and the dependence of parameters (a, b) on ISO sensitivity. Since most cameras
export images in JPEG format, two more methodologies are proposed to complete
these limitations by relying on the generalized noise model and the proposed model
of DCT coefficients in Chapter 6 and 7, respectively. The parameters (ã, b̃, γ) of
the generalized noise model and the parameters (c̃, d̃) characterizing the relation of
α and β are proposed as camera fingerprint to identify camera models from JPEG
images. These fingerprints are invariant to image content and camera settings, and
robust to non-linear operations.

Although the problem of hidden data detection has been stated in the hypoth-
esis testing framework, prior-art approaches are based on image models that can
not totally characterize a natural image, e.g. the piece-wise polynomial model for
steganalysis of LSB replacement. Therefore, a loss of power is revealed even on a
simulated database. By contrast, the proposed approach relies on a more accurate
image model that is already established in this thesis. The steganalysis of LSB
replacement in a natural RAW image based on the heteroscedastic noise model is
studied in Chapter 8. The proposed tests do not only show no loss of optimality, but
also can warrant a prescribed false alarm probability, which the AUMP test based
on the piece-wise polynomial model fails in practice. Furthermore, the specificity in
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δ?het

LRT based on the heteroscedastic noise model when the image pa-
rameters µi and camera parameters (aj , bj) are known.

δ
?
het

GLRT based on the heteroscedastic noise model to deal with unknown
image parameters µi when the camera parameters (aj , bj) are known.

δ̃?het

GLRT based on the heteroscedastic noise model to deal with unknown
parameters (µi, a1, b1).

δ?gen
LRT based on the generalized noise model when the image parameters
µ̃i and camera parameters (ãj , b̃j , γj) are known.

δ
?
gen

GLRT based on the generalized noise model to deal with unknown im-
age parameters µ̃i when the camera parameters (ãj , b̃j , γj) are known.

δ̃?gen

GLRT based on the generalized noise model to deal with unknown
parameters (µ̃i, ã1, b̃1, γ1).

δ?dct

LRT based on the DCT coefficient model when the parameters αk
and camera parameters (c̃k,j , d̃k,j) are known.

δ
?
dct

GLRT based on the DCT coefficient model to deal with unknown
parameters αk when the camera parameters (c̃k,j , d̃k,j) are known.

δ̃?dct

GLRT based on the DCT coefficient model to deal with unknown
parameters (αk, c̃k,1, d̃k,1).

δ̂?ncl

GLRT based on the heteroscedastic noise model for steganalysis of
LSB replacement in a non-clipped RAW image.

δ̂?cl

GLRT based on the heteroscedastic noise model for steganalysis of
LSB replacement in a clipped RAW image.

δ?jst
LRT based on the DCT coefficient model for steganalysis of Jsteg
algorithm.

Table 10.1: List of proposed statistical tests.

Chapter 8 is that the clipping phenomenon is taken into account in the design of
GLRT, which prior-art detectors can not tolerate this kind of degradation. Using
clipped pixels can significantly improve the detection performance. The steganal-
ysis of Jsteg algorithm based on the state-of-the-art model of DCT coefficients is
studied in Chapter 9. Another contribution is for quantitative steganalysis, a ML
estimator based on the proposed model of DCT coefficients is derived and the WS
estimator is improved by employing the coefficients at the same frequency in two
vertical adjacent blocks and the coefficients at two horizontal adjacent frequencies
in the same block for the calculation of weights. Numerical results do not only show
the better performance of the proposed detector compared with prior-art ones, but
also emphasize the high accuracy of the proposed model of DCT coefficients.

Overall, this thesis shows significant contribution to the field of digital image
forensics and statistical image modeling.
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10.2 Perspectives

The thesis highlights several aspects of potential interest for future researches, ac-
cording to three following axis: digital forensics, statistical image modeling, and
statistical hypothesis testing theory.

10.2.1 Perspectives to Digital Forensics

10.2.1.1 Image Forgery Detection

A direct extension of the proposed methodologies is for image forgery detection
problem. As shown by the state of the art, the image forgery detection problem has
not been formally stated in the hypothesis testing framework yet. Consequently,
an optimal detector that can warrant a prescribed false alarm probability has never
been studied in the literature. In fact, based on the image models proposed in this
thesis, the image forgery identification can be stated similarly as the steganalysis
problem: {

H0 : Z ∼ P0

H1 : Z ∼ P1,
(10.1)

where P0 is the probability distribution of the original image and P1 is the probability
distribution of the falsified image due to a certain manipulation. It can be noted
that any kind of manipulation that modifies the statistical properties of the original
image, e.g. data hiding or contrast enhancement, can be formulated as (10.1) and
studied.

The formulation (10.1) can be also performed for checking inconsistencies due
to splicing in the suspect region of the image. Based on the proposed fingerprints,
if the suspect region contains the fingerprint issued from a different camera model
compared with the fingerprint of the rest of the image, the image under investiga-
tion could be declared to be inauthentic. This research could be performed in the
supervised or unsupervised mode. The supervised mode implies the prior knowledge
of the suspect region’s location, which implies that forensic analysts only need to
check the inconsistency of the suspect region. The unsupervised mode involves a
search over the whole image by checking inconsistency of each possible region.

The JPEG compression history [55–57] and double-compression detection prob-
lem [62–65] have been considerably studied in the literature. However, these re-
searches are either based on the Laplacian model of DCT coefficient [55, 56] or a
simplistic model [64,65]. Using the proposed model of DCT coefficients is expected
to achieve better performance in terms of accuracy of quantization matrix estimation
or detection performance of double compression.

10.2.1.2 Video Forensics

It can be noted that research activities in the field of digital forensics mainly focus
on analyzing still images. Compared with a variety of fingerprints and techniques
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proposed for image forensics, researches about video forensics are generally moder-
ate, see [193] and references therein for an overview of recent video forensic methods.
Nowadays, with the advances of remarkable editing tools that make ease of mod-
ifying video content. A wide range of falsification operations can be operated on
video content, including all possible operations that can be applied to images. The
falsification on video content is more difficult to detect not only due to the large
amount of possible operations but also due to the complexity of video formation
pipeline. The falsification can be applied on each frame of a video sequence, which
resemble to an image, as well as can be performed in the temporal dimension. This
increases the number of degrees of freedom in the falsification. Moreover, video con-
tent is always available in a lossy compression format. Compression techniques may
alter or erase fingerprints left by previous processing operations (e.g. PRNU or CFA
interpolations) or by falsification operations. Therefore, it is urgent for law enforce-
ment agencies and scientific researches to more focus on video forensics and build
up a set of efficient techniques. This thesis has established a complete framework of
studying image statistics in the whole image processing pipeline, especially provid-
ing a highly accurate image model in spatial domain and DCT domain. A similar
framework could be performed for video forensics because of the same characteris-
tics of acquisition device. The proposed model of DCT coefficients is of potential
interest since video compression techniques are similar to JPEG compression.

10.2.1.3 Anti-forensics and Counter Anti-forensics

Identifying appropriate intrinsic fingerprints is crucial to perform forensic analysis.
However, their credibility can be questioned since a skillful adversary has also knowl-
edge of these fingerprints, thus he can develop techniques [194–196] to hide evidence
of image origin and forgery and fool forensic techniques. These techniques are called
anti-forensics. Like other types of manipulation, anti-forensic techniques may leave
behind fingerprints so that forensic analysts can develop countermeasures to detect
the use of anti-forensics [197–199]. Moreover, apart from designing a statistical test
for digital forensics isolatedly, it is desirable in future researches to take into account
actions of adversaries and forensic analysts into the same framework, for instance
game-theoretic framework [200] or information-theoretic framework [201], in order
to provide an optimal strategy for forensic analysts.

Although anti-forensic techniques are designed to fool forensic ones, they also
show some important insights. On the one hand, vulnerabilities in existing forensic
techniques help forensic analysts assess the reliability of their forensic techniques and
reinforce them to minimize the false alarm probability. On the other hand, anti-
forensics can be used by camera manufacturers to protect against reverse-engineering
[202] for intellectual property purposes since forensic techniques can estimate image
processing operations used by manufacturers inside the camera.
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10.2.1.4 Steganalysis

The high detection performance of statistical tests based on the heteroscedastic
noise model and the proposed model of DCT coefficients encourages an extension
to other image formats and target to other steganographic schemes. For example,
future researches could rely on the generalized noise model to design a statistical
test for steganalysis of LSB replacement or LSB matching in a natural image in
TIFF or JPEG format, similar to [115,116]. Moreover, the proposed model of DCT
coefficients can be applied to steganalysis of Outguess or F5 techniques.

10.2.2 Perspectives to Statistical Image Modeling

The statistical image modeling performed in this thesis could be potentially im-
proved by taking into account the block structure and correlation between DCT
coefficients to derive a more generalized model as proposed in Chapter 4, yet at the
expense of more complex expressions and extra computational cost.

It should be noted that the algorithm proposed for estimation of parameters
(ã, b̃, γ) in the generalized noise model only works with a sub-image (i.e. 1/64 of
the whole image). This implies a limitation that the proposed algorithm can not
work as the inspected image is already cropped to a smaller size. It is desirable to
establish a joint distribution of pixels taking into account the spatial correlation in
a natural image caused by the demosaicing. This will allows to model a natural
image as a whole and extract more meaningful informations for applications in
digital forensics. This path of statistical image modeling will be of more interest for
detection of forgery in a suspect region with small size.

Beside JPEG compression scheme, JPEG2000 scheme is another influential com-
pression standard. The JPEG2000 scheme is based on Discret Wavelet Transform
(DWT). Therefore, it is also possible to study the distribution of DWT coefficients
based on the similar framework proposed in Chapter 4.

10.2.3 Perspectives to Statistical Hypothesis Testing Theory Ap-
plied for Digital Forensics

The main framework of our researches in this thesis is binary hypothesis testing. It
could be possible for future researches to extend to multiple hypothesis testing for
a scenario that includes N sources of images or N types of falsification. Obviously,
the criteria of optimality should be redefined. Besides, when the whole image is ap-
propriately modeled, the theory of change detection [203] could be applied to detect
any change in statistical properties at the pixel-level due to a certain falsification.



Appendix A

Statistical Hypothesis Testing
Theory

A.1 Introduction

The origin identification problem and the steganalysis problem stated in Chapter
2 are concerned with making decisions between statistical hypotheses, i.e. either
accepting or rejecting a hypothesis. Typically, a statistical hypothesis represents a
specific structure of a population of observations that are associated with stochastic
errors. Compared with classification framework, statistical hypothesis testing theory
not only provides a rational decision rule for forensic analysts, but also offers many
advantages:

• The decision rule is given following a certain criterion of optimality.

• A prescribed false alarm rate can be guaranteed, which is important in the
operational context.

• The randomness of the decision can be characterized. Errors probabilities are
explicitly and analytically given.

• Stochastic errors associated with empirical observations are taken into account
in decision-making process.

The most challenging and difficult task is to determine the specific structure of the
underlying observations, i.e. the probability distribution Pθ from which data is
drawn. The probability distribution Pθ is specified by a parameter vector θ that
may be entirely or partly unknown. This task is more difficult because we have to
deal with high-dimensional natural images in which pixels are not i.i.d and take into
account heteroscedasticity of noise. An accurate image model can provide much
meaningful information and allows us to design a powerful statistical test.

The whole work presented in this thesis is involved in the application of hypothe-
sis testing theory in image origin identification and hidden data detection in natural
images. Therefore this chapter aims to briefly recall some basis aspects of statistical
hypothesis testing theory. The chapter is organized as follows. Section A.2 provides
basic concepts of statistical hypothesis testing theory. Section A.3 presents some
criteria of optimality and statistical tests between two simple hypotheses. Next,
Section A.4 presents an approach to deal with a more difficult scenario in which one
of two hypotheses becomes composite. Finally, Section A.5 concludes the chapter.
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A.2 Basic Concepts

A set of observations obtained in practice can be interfered by stochastic errors (e.g.
imperfections of manufacturing process, random noise). Statistical hypothesis test-
ing theory allows us to take into account those stochastic errors to give a decision rule
that can meet some criteria of optimality. Therefore, an image Z = (z1, . . . , zN )T is
considered as realizations of a random vector Z following a known probability dis-
tribution Z ∼ Pθ where the parameter vector θ may be partly or entirely unknown.

It is assumed that the image space ZN can be partitioned into two disjoint
subsets S0 and S1, i.e.

ZN = S0 ∪ S1, and S0 ∩ S1 = ∅. (A.1)

The behavior of observations in the subset Sj , j = {0, 1}, is characterized by a class
of probability distributions {Pθ|θ ∈ Θj}. Here, the subset Θj contains parameter
vectors θ that specify the probability distribution of observations over Sj . For
obvious reasons, we also assume that

θ1 6= θ2 ⇔ Pθ1 6= Pθ2 . (A.2)

Without loss of generality, it is assumed that the observations are continuous, and
the probability distribution Pθ admits a pdf fθ : ZN → R. The subsets Θ0 and Θ1

mutually form the parameter space Θ that contains all possible parameter vectors θ.
The dimension of the parameter space Θ is very small compared with the dimension
of the image space ZN . In the framework of statistical hypothesis testing, the goal
is to decide one subset which the parameter vector θ belongs to. The information
of the parameter vector θ is obtained from realizations Z. For the sake of clarity,
only the binary hypothesis testing is considered in this thesis. The extension to
multi-hypothesis testing is straightforward.

Definition A.1. (Statistical hypothesis). A (parametric) statistical hypothesis refers
to a set Θ that contains all possible parameter vector θ specifying the probability
distribution Pθ

Hj =
{
Z ∼ Pθ, θ ∈ Θj

}
, j = {0, 1}.

The hypothesis Hj is called simple when the set Θj is a singleton. In other words,
the simple hypothesis selects a unique point in the parameter space Θ and defines
uniquely the probability distribution Pθ. On the contrary, the hypothesis Hj is
called composite. Furthermore, by terminology, the hypothesis H0 is called null
hypothesis and the hypothesis H1 is alternative hypothesis.

Definition A.2. (Statistical test). A statistical test δ is a surjective and measurable
application from the image space ZN to the set of hypotheses δ : ZN → {H0,H1}.
In other words, the test δ gives a decision rule of either accepting or rejecting a
hypothesis.



A.3. Test between Two Simple Hypotheses 183

The ultimate goal of statistical hypothesis testing theory is to design a test that
is optimal towards some criteria. Mono-criteria approach, e.g. Bayesian test and
minimax test, involves designing a test such that it satisfies only one criterion while
a test designed following bi-criteria approach must satisfy two criteria of optimality
simultaneously. The readers are referred to [20, 204, 205] for more details of mono-
criteria approach. The bi-criteria approach is discussed in this chapter.

A.3 Test between Two Simple Hypotheses

This section considers the simplest scenario in which two simple hypotheses H0 and
H1 are defined as follows H0 =

{
θ = θ0

}
H1 =

{
θ = θ1

}
,

(A.3)

where θ0 and θ1 are known in advance. When performing a test δ between two
simple hypotheses H0 and H1, we may arrive at the correct decision, or we may
commit one of two errors:

1. We may wrongly reject the null hypothesis H0 when it is true (Type I error).

2. We may wrongly accept H0 when it is false (Type II error).

Definition A.3. (Error probabilities). Each error is measured by a probability

PHj
[
δ(Z) 6= Hj

]
, αj(δ), j = {0, 1},

where PHj is the probability of occurrence under hypothesis Hj . By terminology,
α0(δ) and α1(δ) are called false alarm probability and miss-detection probability of
the test δ, respectively.

Definition A.4. (Power of a test). The power of the test δ, denoted β(δ), is defined
by the correct detection probability

β(δ) , PH1

[
δ(Z) = H1

]
= 1− α1(δ).

Two criteria that are required to optimize are the false alarm probability α0(δ)

and the test power β(δ). The idea is to set an acceptable maximum false alarm
probability and to maximize the correct detection probability. Therefore, let define
a class of tests Kα0 as follows

Kα0 =
{
δ : α0(δ) = PH0

[
δ(Z) = H1

]
≤ α0

}
. (A.4)

The class Kα0 consists of all the tests whose false alarm probability is upper-bounded
by a prescribed rate α0. For different levels α0 we can achieve different test powers
β(δ). The behavior of the test power β(δ) is characterized by a function of α0, which
is called Receiver Operating Characteristic (ROC) curve. The detection performance
of the test δ is evaluated via ROC curve.
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Definition A.5. (Most powerful test). A test δ∗ is called Most Powerful (MP) in
the class Kα0 if

∀δ ∈ Kα0 , β(δ∗) ≥ β(δ).

The MP test achieves two goals simultaneously: warranting a prescribed false
alarm rate and maximizing the correct detection probability. The MP test is given
by the Neyman-Pearson (NP) lemma [20, Theorem 3.2.1].

Definition A.6. (Likelihood Ratio). Likelihood Ratio (LR) is the quantity

Λ(Z) =
fθ1(Z)

fθ0(Z)
.

Lemma A.1. (Neyman-Pearson lemma). Given a prescribed rate α0 ∈]0; 1[ and
two probability distributions Pθ0 and Pθ1, when one performs a test of null hypothesis
H0 =

{
θ = θ0

}
against alternative hypothesis H1 =

{
θ = θ1

}
, the MP test in the

class Kα0 is the Likelihood Ratio Test (LRT) given by

δ∗(Z) =


H0 if Λ(Z) =

fθ1(Z)

fθ0(Z)
< τ∗

H1 if Λ(Z) =
fθ1(Z)

fθ0(Z)
≥ τ∗,

where, to ensure that the LRT δ∗ is in the class Kα0, the optimal decision threshold
τ∗ is the solution of the equation

PH0

[
Λ(Z) ≥ τ∗

]
= α0.

When the random variables zi, i = {1, 2, . . . , N}, are statistically independent,
the Maximum Likelihood (ML) function fθj (Z), j = {0, 1}, can be rewritten as
fθj (Z) =

∏N
i=1 fθj (zi). Accordingly, the LR Λ(Z) can be given by

Λ(Z) =

N∏
i=1

fθ1(zi)

fθ0(zi)
=

N∏
i=1

Λ(zi). (A.5)

Taking logarithm on both sides of (A.5), we obtain the log-LR

log
(
Λ(Z)

)
=

N∑
i=1

log
(
Λ(zi)

)
=

N∑
i=1

log
(fθ1(zi)

fθ0(zi)

)
. (A.6)

Since the logarithm function is monotone, taking logarithm of the LR Λ(Z) does not
change the decision given by the LRT δ∗. Only the decision threshold is changed
according to the log-LR log

(
Λ(Z)

)
,1 the test power β(δ∗) remains unchanged. In

1Accordingly, the decision threshold τ∗ is replaced by log(τ∗).
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practice, the log-LR is more utilized than the LR. For the sake of clarity, in this
thesis the logarithm is usually taken in the calculation of the LR Λ(Z), i.e.

Λ(Z) =
N∑
i=1

Λ(zi) =
N∑
i=1

log
(fθ1(zi)

fθ0(zi)

)
. (A.7)

One advantage of statistical hypothesis testing theory is that it allows to establish
analytically the statistical performance of a test. This is accomplished by studying
the statistical distribution of the LR Λ(Z). However, providing analytically an exact
distribution of a sum of random variables is a difficult task, particularly when the
distribution of each random variable Λ(zi) can not be easily defined in practice.
To overcome this difficulty, the asymptotic theory can be exploited based on the
fact that the number of pixels is very large in natural images. To this end, it is
proposed to rely on the Lindeberg CLT [20, Theorem 11.2.5]. One advantage of
the Lindeberg CLT is that the random variables are not required to be identically
distributed. It can deal with the difficult scenario where pixels in a natural image
are not identically distributed.

Definition A.7. (Convergence in distribution). A sequence of random variables
{Xn} with cdf {FXn(x)} is said to converge in distribution to a random variable X
with cdf FX(x) if

FXn(x)→ FX(x)

at every point x ∈ R. This convergence is denoted Xn
d→ X.

Definition A.8. (Convergence in probability). A sequence of random variables
{Xn} converges in probability to a random variable X if, for every ε > 0,

lim
n→∞

P
[
|Xn −X| > ε

]
= 0.

This convergence is denoted Xn
p→ X. Convergence in probability implies conver-

gence in distribution; the converse is false in general. However, if Xn converges in
distribution to a distribution assigning probability one to a constant c, then Xn

converges in probability to c, and conversely.

Theorem A.1. (Lindeberg CLT). Suppose a sequence of independent random vari-
ables {Xn}, each with finite mean µn and finite variance σ2

n. Let mn =
∑n

i=1 µi and
s2
n =

∑n
i=1 σ

2
i . If this sequence satisfies the Lindeberg’s condition, i.e. for every

ε > 0,

lim
n→∞

1

s2
n

n∑
i=1

E
[
(Xi − µi)2 · 1|Xi−µi|>ε·sn

]
= 0,

where 1(·) is the indicator function, then∑n
i=1Xi −mn

sn

d→ N (0, 1),
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or equivalently,
n∑
i=1

Xi
d→ N (mn, s

2
n).

Therefore, in order to determine the asymptotic distribution of the LR Λ(Z) in
virtue of the Lindeberg CLT, it is sufficient to calculate mean and variance of each
random variable Λ(zi). Here we present the Delta methods that can facilitate the
calculation of the first two moments of a random variable.

Lemma A.2. (The first Delta method [20, theorem 11.2.14]) Suppose X1, X2, . . .

and X are random vectors in Rk. Assume τn(Xn − µ)
d→ X where µ is a constant

vector and {τn} is a sequence of constants τn → ∞. Suppose h is a function from
Rk to R which is differentiable at µ with gradient of dimension 1 × k at µ equal to
ḣ(µ). Then

τn
(
h(Xn)− h(µ)

) d→ ḣ(µ)X.

Corollary A.1. Suppose X a random variable with mean µ and variance σ2. Sup-
pose h is function from R to R which is differentiable at µ. The first two moments
of the random variable h(X) can be approximated as

E[h(X)] = h(µ) and Var[h(X)] =
(
h′(µ)

)2
σ2.

Lemma A.3. (The second Delta method [189]) Suppose two random variables X
and Y with mean µX , µY and variance σ2

X , σ
2
Y , respectively. The covariance between

X and Y is denoted as σXY . Consider the quotient T = X
Y . The first two moments

of the random variable T can be approximated as

E
[
X

Y

]
=
µX
µY

Var

[
X

Y

]
=
σ2
X

µ2
Y

− 2
µX
µ3
Y

σXY +
µ2
X

µ4
Y

σ2
Y .

Example A.1. Given an observation Z and two probability distributions Pθ0, Pθ1,
suppose the expectation and variance of the LR Λ(zi) are known in advance. In
virtue of Lindeberg CLT, the LR Λ(Z) can be asymptotically distributed following a
Gaussian distribution under each hypothesis Hj, j = {0, 1},

Λ(Z)
d→ N (µj , σ

2
j ), (A.8)

where the mean µj and variance σ2
j are given by

µj =
N∑
i=1

EHj
[
Λ(zi)

]
(A.9)

σ2
j =

N∑
i=1

VarHj

[
Λ(zi)

]
. (A.10)
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Here, EHj and VarHj respectively denote the mathematical expectation and variance
under hypothesis Hj. Then the optimal decision threshold τ∗ and the test power
β(δ∗) are easily expressed as

τ∗ = µ0 + σ0 · Φ−1(1− α0), (A.11)

β(δ∗) = 1− Φ

(
τ? − µ1

σ1

)
. (A.12)

Proof. The decision threshold τ∗ is the solution of equation

α0 = PH0

[
Λ∗(Z) ≥ τ∗

]
= 1− Φ

(
τ? − µ0

σ0

)
,

thus we derive τ∗ = µ0 + σ0 · Φ−1(1 − α0). Meanwhile, the power β(δ∗) is defined
as the correct detection probability

β(δ∗) = PH0

[
Λ∗(Z) ≥ τ∗

]
= 1− Φ

(
τ∗ − µ1

σ1

)
.

Remark A.1. It can be noted that the decision threshold τ∗ depends on image
content. Since a natural image is heterogeneous, it is proposed to normalize the LR
Λ(Z) in order to set the decision threshold independently of the image content. The
normalized LR is defined as follows

Λ?(Z) =
Λ(Z)− µ0

σ0
. (A.13)

Therefore, the normalized LR Λ?(Z) differs from the LR Λ(Z) only by an additive
constant and a multiplicative constant, which does not change the decision rule
given by the LRT δ∗. In doing so, the normalized LR Λ?(Z) tends to be distributed
following the standard Gaussian distribution under hypothesis H0. The decision
threshold and the power of the LRT based on the normalized LR Λ?(Z) are given
by

τ? = Φ−1(1− α0), (A.14)

β(δ?) = 1− Φ

(
µ0 − µ1 + τ? σ0

σ1

)
. (A.15)

A.4 Test between Two Composite Hypotheses

The scenario where both null hypothesis and alternative hypothesis are simple is
mainly of theoretical interest, since problems arising in practical applications typi-
cally involve a parametric family of distributions specified by unknown parameters.
Suppose that two hypotheses H0 and H1 are now defined asH0 =

{
Pθ|θ ∈ Θ0

}
H1 =

{
Pθ|θ ∈ Θ1

}
.

(A.16)
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In this scenario, the NP lemma is no longer valid since for each parameter θ0 ∈ Θ0

and θ1 ∈ Θ1 we derive a different MP test. Therefore, it is important to design a
test that is universally optimal. Firstly, let us redefine the false alarm probability
and the power of a test δ between two composites hypotheses.

Definition A.9. (False alarm probability). The false alarm probability of a test δ
between two composites hypotheses is the maximum probability of rejecting null
hypothesis H0 when it is true actually

α0(δ) = sup
θ0∈Θ0

PH0

[
δ(Z) = H1

]
.

Consequently, the class of tests Kα0 is redefined as follows

Kα0 =
{
δ : α0(δ) = sup

θ0∈Θ0

PH0

[
δ(Z) = H1

]
≤ α0

}
. (A.17)

This means that the class Kα0 comprises all the tests whose false alarm probability
is upper-bounded by a prescribed rate α0 for any parameter θ0 ∈ Θ0.

Definition A.10. (Power of a test). The power of a test δ of null hypothesis H0

against alternative hypothesis H1 for each parameter θ1 ∈ Θ1 is the probability of
accepting alternative hypothesis H1 when it is true

β(θ1; δ) = PH1

[
δ(Z) = H1

]
.

Following the bi-criteria approach, the goal is to design a test in the class Kα0

that can warrant a prescribed false alarm rate α0 and maximizes the test power
β(θ1; δ) in the domain Θ1.

Definition A.11. (Uniformly most powerful test). A test δ∗ is said to be Uniformly
Most Powerful (UMP) over the class Kα0 if

∀δ ∈ Kα0 , ∀θ1 ∈ Θ1, β(θ1; δ) ≤ β(θ1; δ∗),

or equivalently,

∀δ ∈ Kα0 , sup
θ1∈Θ1

[
β(θ1; δ)− β(θ1; δ∗)

]
≤ 0.

Unfortunately, such UMP test might scarcely exist in practice. In fact, the exis-
tence of UMP tests is restricted to the case involved in univariate family of densities
fθ admitting a monotone likelihood ratio [20, Theorem 3.4.1]. An alternative solu-
tion is to design a test that asymptotically coincides with a UMP test in virtue of
a large number of pixels in a natural image.

Definition A.12. (Asymptotically Uniformly Most Powerful test). The test δ∗ is
Asymptotically Uniformly Most Powerful (AUMP) in the class K∞α0

, given by

K∞α0
=
{
δ : lim sup

N→+∞
sup
θ0∈Θ0

PH0

[
δ(Z) = H1

]
≤ α0

}
,
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if δ∗ ∈ K∞α0
and

∀δ ∈ K∞α0
, lim sup

N→+∞
sup
θ1∈Θ1

[
β(θ1; δ)− β(θ1; δ∗)

]
≤ 0.

In general, the state of the art of statistical hypothesis testing theory shows that
it is difficult to design a single test that is optimal in any scenario (e.g. univariate or
multivariate family, simple or composite hypotheses ...). Nevertheless, there exists a
test that coincides with the optimal tests under large conditions, namely Generalized
Likelihood Ratio Test (GLRT) [206,207]. The GLRT is based on a modified version
of Neyman-Pearson approach.

Definition A.13. (Generalized Likelihood Ratio Test). Given two composite hy-
potheses H0 and H1, the Generalized Likelihood Ratio (GLR) between these hy-
potheses is defined by

Λ̂(Z) = log
supθ1∈Θ1

fθ1(Z)

supθ0∈Θ0
fθ0(Z)

.

Consequently, the GLRT δ̂ is defined by the following decision rule

δ̂(Z) =

{
H0 if Λ̂(Z) < τ̂

H1 if Λ̂(Z) ≥ τ̂ ,

where the decision threshold τ̂ is the solution of the equation

sup
θ0∈Θ0

PH0

[
Λ̂(Z) ≥ τ̂

]
= α0,

to ensure that the GLRT δ̂ is in the class Kα0 .

The idea of GLRT is to select the parameters the most likely characterizing the
distribution of a given observation Z. This is accomplished by estimating unknown
parameters θ by the ML approach. In doing so, the parameter space reduces to a
singleton. The Neyman-Pearson can be applied straightforwardly.

Definition A.14. (Maximum Likelihood estimation). Given a sample x =

{x1, . . . , xn} of n i.i.d observations coming from a probability distribution with a
pdf fθ, the ML estimate θ̂ML is defined as the solution maximizing the likelihood
function L(θ; x)

θ̂ML = arg max
θ∈Θ

L(θ; x) = arg max
θ∈Θ

n∏
i=1

fθ(xi;θ), (A.18)

or equivalently

θ̂ML = arg max
θ∈Θ

n∑
i=1

log
(
fθ(xi;θ)

)
. (A.19)
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For some probability distributions such as Normal distribution, the ML esti-
mate can be provided analytically as an explicit function of the observations x.
However, in many cases in practice, it is delicate to provide it analytically. In this
scenario, it is proposed to resolve the maximization problem (A.19) numerically by
an optimization method, e.g. Nelder-Mead method [157].

Under some regularity conditions, as the sample size n tends to infinity, the ML
estimate θ̂ML has following properties [189]:

• Asymptotic consistency: θ̂ML p→ θ0 where θ0 denotes the true value of the
parameter θ.

• Asymptotic normality: θ̂ML d→ N
(
θ0,

F−1(θ)
n

)
where F denotes the Fisher

information matrix defined as

Fi,j(θ) = E

[(
∂

∂θi
log(fθ(x;θ))

)(
∂

∂θj
log(fθ(x;θ))

)]

= −E

[
∂2

∂θi∂θj
log(fθ(x;θ))

]
. (A.20)

These two properties of ML estimate are of importance in the design of a GLRT
since the fact of replacing unknown parameters by their ML estimates might not be
sufficient. It is also desirable to take into account the variability of ML estimates
in the establishment of statistical performances of the GLRT. Therefore, the de-
tection performance of a GLRT in practice depends on two crucial conditions: the
relevance of the probability distribution describing the underlying observation and
the accuracy estimation of unknown parameters.

In Remark A.1, the fact of defining the normalized LR as (A.13) requires the
prior knowledge of the expectation µ0 and variance σ2

0 that depend on image content.
Since this latter is unknown in practice, the expectation µ0 and variance σ2

0 can not
be defined. A solution in this scenario is to exploit the consistent estimates that
was employed to design the GLRT in order to provide an estimate of µ0 and σ2

0,
denoted µ̂0 and σ̂2

0. Consequently, the normalized GLR can be defined as

Λ̂?(Z) =
Λ̂(Z)− µ̂0

σ̂0
(A.21)

In order to determine the statistical distribution of the normalized GLR Λ̂?(Z), it
is proposed to rely on the Slutsky’s theorem.

Theorem A.2. (Slutsky’s theorem [20, theorem 11.2.11]). Suppose {Xn} is a
sequence of real-valued random variables such that Xn

d→ X. Further, suppose {An}
and {Bn} satisfy An

p→ a and Bn
p→ b, where a and b are constants. Then

AnXn +Bn
d→ aX + b. (A.22)
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Remark A.2. Suppose that the statistical distribution of the GLR Λ̂(Z) under hy-
pothesis Hj can be determined in virtue of Lindeberg CLT, say Λ̂(Z)

d→ N (µj , σ
2
j ),

from Slutsky’s theorem, the normalized GLR Λ̂?(Z) follows the Gaussian distribu-
tion as 

Λ̂?(Z)
d→ N (0, 1) under H0,

Λ̂?(Z)
d→ N

(
µ1 − µ0

σ0
,
σ2

1

σ2
0

)
under H1.

(A.23)

Consequently, the decision threshold and the power function of the GLRT δ̂ can be
accordingly defined as in Remark A.1.

Remark A.3. In many applications, the parameter vector θ consists of informa-
tive parameters and nuisance parameters. Informative parameter vector is assumed
to be constant within the observation Z. For instance, in the problem of hidden
data detection, the only one informative parameter is the embedding rate R, other
parameters such as image content, image size, camera settings are nuisance parame-
ters since they do not contain any information about the presence of secret message.
Nuisance parameters are not of interest but they also characterize the family of dis-
tribution Pθ, thus they must be taken into account in the design of statistical tests.
This becomes difficult since the dimension of nuisance parameter space may be large
and nuisance parameters are generally unknown in advance. The GLRT allows us
to deal with the difficulty of unknown nuisance parameters by replacing them by
ML estimates. Besides, another possible approach is to use invariance principle [20]
to eliminate nuisance parameters.

A.5 Conclusion

In this chapter, several aspects about statistical hypothesis testing theory are briefly
discussed. Hypothesis testing theory allows us to warrant a prescribed false alarm
probability and analytically establish the performance of statistical tests, which is of
importance in the operational context. In a simplest scenario where two hypotheses
are simple, an optimal detector is given by the LRT. The statistical decision problem
becomes more difficult when two hypotheses are composites. A UMP test is mainly
of theoretical interest and scarcely exists. An AUMP test is presented in virtue of
a large number of pixels in a natural image. In practice, a GLRT is designed by
replacing unknown parameters by their ML estimates. The GLRT almost coincides
with the UMP test under large conditions. Moreover, the GLRT also allows us to
deal with the difficulty of unknown nuisance parameters. To achieve high detection
performance for the GLRT, an accurate statistical model of natural images and an
efficient method of parameter estimation are crucial.
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Modélisation et détection statistiques 
pour la criminalistique  des images  
numériques 
 
Le XXIème siècle étant le siècle du passage au tout 
numérique, les médias digitaux jouent maintenant 
un rôle de plus en plus important dans la vie de tous 
les jours. De la même manière, les logiciels sophis-
tiqués de retouche d’images se sont démocratisés et 
permettent aujourd’hui de diffuser facilement des 
images falsifiées. Ceci pose un problème sociétal 
puisqu’il s’agit de savoir si ce que l’on voit a été 
manipulé. Cette thèse s'inscrit dans le cadre de la 
criminalistique des images numériques. Deux pro-
blèmes importants sont abordés : l'identification de 
l'origine d'une image et la détection d'informations 
cachées dans une image. Ces travaux s'inscrivent 
dans le cadre de la théorie de la décision statistique 
et proposent la construction de détecteurs permet-
tant de respecter une contrainte sur la probabilité de 
fausse alarme. Afin d'atteindre une performance de 
détection élevée, il est proposé d'exploiter les pro-
priétés des images naturelles en modélisant les 
principales étapes de la chaîne d'acquisition d'un 
appareil photographique. La méthodologie, tout au 
long de ce manuscrit, consiste à étudier le détecteur 
optimal donné par le test du rapport de vraisem-
blance dans le contexte idéal où tous les paramètres 
du modèle sont connus. Lorsque des paramètres du 
modèle sont inconnus, ces derniers sont estimés 
afin de construire le test du rapport de vraisem-
blance généralisé dont les performances statistiques 
sont analytiquement établies. De nombreuses expé-
rimentations sur des images simulées et réelles 
permettent de souligner la pertinence de l'approche 
proposée. 
 
 
Mots clés : criminalistique - cryptographie - modèles 
mathématiques - tests d’hypothèses (statistique) - 
estimation de paramètres. 
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Statistical Modeling and Detection for 
Digital Image Forensics 
 
 
The twenty-first century witnesses the digital revo-
lution that allows digital media to become ubiqui-
tous. They play a more and more important role in 
our everyday life. Similarly, sophisticated image 
editing software has been more accessible, resulting 
in the fact that falsified images are appearing with a 
growing frequency and sophistication. The credibil-
ity and trustworthiness of digital images have been 
eroded. To restore the trust to digital images, the 
field of digital image forensics was born. This thesis 
is part of the field of digital image forensics. Two 
important problems are addressed: image origin 
identification and hidden data detection. These 
problems are cast into the framework of hypothesis 
testing theory. The approach proposes to design a 
statistical test that allows us to guarantee a pre-
scribed false alarm probability. In order to achieve a 
high detection performance, it is proposed to exploit 
statistical properties of natural images by modeling 
the main steps of image processing pipeline of a 
digital camera. The methodology throughout this 
manuscript consists of studying an optimal test 
given by the Likelihood Ratio Test in the ideal con-
text where all model parameters are known in ad-
vance. When the model parameters are unknown, a 
method is proposed for parameter estimation in 
order to design a Generalized Likelihood Ratio Test 
whose statistical performances are analytically 
established. Numerical experiments on simulated 
and real images highlight the relevance of the pro-
posed approach. 
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mathematical models - statistical hypothesis testing 
– parameter estimation. 

Ecole Doctorale "Sciences et Technologies" 


