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Abstract

The objective of this work is to propose a -highly‖ predictive material model for sheet metal forming simulation which can well represent the sheet material behavior under complex loading paths and large plastic strains. Based on the thermodynamics of irreversible processes framework, the advanced fully coupled constitutive equations are proposed taking into account the initial and induced anisotropies, isotropic and kinematic hardening as well as the isotropic ductile damage. The microcracks closure, the stress triaxiality and the Lode angle effects are introduced to influence the damage rate under a wide range of triaxiality ratios.

The distortion of the yield surface is described by replacing the usual stress deviator tensor by a ‗distorted stress' deviator tensor, which governs the distortion of the yield surfaces. For comparisons, the FLD and FLSD models based on M-K approach are developed.

A series of experiments for three materials are conducted for the identification and validation of the proposed models. For the parameters identification of the fully coupled CDM model, an inverse methodology combining MATLAB-based minimization software with ABAQUS FE code through the Python script is used. After the implementation of the model in ABAQUS/Explicit and a systematic parametric study, various sheet metal forming processes have been numerically simulated. At last, through the comparisons between experimental and numerical results including the ductile damage initiation and propagation, the high capability of the fully coupled CDM model is proved.

V Résumé L'objectif de ce travail est de proposer un modèle de comportement avec endommagement ductile pour la simulation des procédés de mise en forme de tôles minces qui peut bien représenter le comportement des matériaux sous des trajets de chargement complexes en grandes déformations plastiques. Basées sur la thermodynamique des processus irréversibles, les équations du comportement couplé à l'endommagement tiennent compte des anisotropies initiales et induites, de l'écrouissage isotrope et cinématique et de l'endommagement isotrope ductile. Les effets de fermeture des microfissures, de triaxialité des contraintes et de l'angle de Lode sont introduits pour influencer l'évolution de l'endommagement sous une large gamme de triaxialité des contraintes. La distorsion de la surface de charge est introduite via un tenseur déviateur qui gouverne la distorsion de la surface de charge. A des fins de comparaison, les courbes limites de formage sont tracées basées sur l'approche M-K. 
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Introduction

Sheet metal forming is a very important technology in manufacturing of various mechanical components, especially in automotive industry. Many works have been performed to understand the sheet metal forming processes and to predict forming limits of sheets in metal forming. Since industry revolution, the problem of strength of materials, especially the metallic materials have been one of the most attractive scientific fields. In the current century, new demands for passengers' safety, vehicle performance and fuel economy enhance the requirements of high functions and high complexity of product geometries using lighter and higher strength materials. Fig. I-1 shows one example of high strength steel application in automotive industries. However, a higher strength is generally accompanied by the lower ductility with the understanding of the relationship between ductility, toughness and the energy absorbed in fracturing.

Due to the weak ductility of these high strength materials, accurate prediction of metal forming limits during deformation has become a big issue. Researchers have done never-ending efforts to build the relation between the occurrence of failure and the general engineering concepts. The accuracy of such prediction depends on many important factors such as the yield function, hardening law, initial and induced anisotropies, etc. Different terms related to the material forming behaviors such Bauschinger effect, hardening evolution especially after loading-path changes and initial or subsequent anisotropies due to texture evolution. In large-scaled structure, the failure is also caused by extreme loading conditions.

All these are the active sources of understanding the failure in metal forming processes.

The term ‗failure' can be roughly classified as the onset of plastic instabilities such as buckling, the formation of localized necking or the final fracture. From the perspectives of sheet metal forming, failure can be defined by the formation of localized necking, wrinkles or macroscopic cracks. To accurately describe the deformation behavior of metal sheets, the corresponding constitutive equations should well represent the material behavior under complex loading conditions and also accurately predict the limit state conditions at the critical points during deformation process.

Experimental and theoretical determined Forming Limit Diagrams (FLDs) and Forming Limit Stress diagrams (FLSDs) are both the failure criteria formulated by principle strains or stresses, which define the failure when the specified criterion is satisfied. In the last three A robust behavior damage coupling model suitable for numerical implementation should be strong enough to predict not only the hardening behavior but also the onset of fracture and macroscopic crack propagation under a wide range of loading paths. In this study, a fully coupled ductile damage model is used, which takes into account the initial and induced anisotropies of yield surfaces, isotropic and kinematic hardening as well as isotropic ductile damage. Microcracks closure is introduced to affect the damage growth under various triaxiality ratios. Lode angle parameter takes three forms into the damage evolution equation

A successful model depends on its ability to describe the underlying physical phenomena influencing the material deformation and fracture. On the other hand, the accuracy of numerical simulations is also affected by the parameters values assigned to the model. In this study, the contribution of the work includes three parts. Firstly, an advanced ductile damage model based on CDM framework is proposed, which takes into account the initial and induced anisotropies and the ductile damage evolution under various stress states. Secondly, the inverse methodology for model parameters determination is investigated, which includes the parametric study and calibration with experimental results. An optimization program based on MATLAB is used to determine the optimal material parameters values, including the elastoplasticity parameters, hardening and the ductile damage parameters. The initial anisotropic parameters and distortional parameters are determined with analytical approach.

Thirdly, some complex loading paths like Nakazima tests, Cross-section deep drawing tests and rectangle drawing-redrawing tests are conducted with test materials for the validation purpose.

The thesis is organized as following:

Chapter I started by a review of the basic concepts of the continuum mechanics and thermodynamic framework as the kinematics of finite deformation, strain and stress measures as well as the main conservation laws. Before giving the fully coupled elastoplastic constitutive equations a literature survey about distortional hardening is given based on some published works. Following some published works, a new formulation of distortional hardening is introduced. On the other hand, the M-K approach structure is introduced, where the FLD and FLSD curves are plotted, including its yield criterion, hardening law and Finally, the main conclusions and some perspectives of the present work are given.

I.1 Continuum mechanics and thermodynamics framework I.I.1 Introduction

In this section, some basic concepts of mechanics and thermodynamics of continuous media are reviewed. The objective is not to go with details, but to record the key points needed for the better reading of the subsequent chapters. Detailed discussions in this field can be found in [Cal60, Eri62, Fun65, Man74, Gur81, Hun83, Ger86, Bow89, Bou96], among many others.

I.I.2 On kinematics of finite deformation: the strain measures and strain rates

Fig. 1-1. Configuration of the deformable body.

A fixed Cartesian coordinates system is assumed. An original (undeformed) body 0  is defined in this frame with three Lagrange base vectors 1 E , 2 E and 3 E , in which each material point can be noted by () pX of coordinates X . After deformation 0  is mapped to the new Eulerian configuration t  by the linear application ( , ) Xt



, where the current position of the particle () t px of spatial (or Eulerian) coordinates 𝑥 ⃑ is defined by: ( , )

x X t   (1-1)
The corresponding displacement vector is defined by

( ) ( , ) u p X t X   or () u p x X  (1-2)
Based on this kinematics, the transformation gradient F is introduced, which is noted as a second-rank operator given by: ( ( , )) d F Grad X t dX    (1-3) Using Equation (1-2), the gradient F can also be rewritten as:

() 1 d X u du F d X d X    
(1-4)

The transport of a small volume element from 0  to t  leads to the well-known relations:

0 0 det( ) 0 V FJ V             
where V and  are the volume and density of the solid at t  while 0 V and 0  are their respective values at the reference configuration.

Using the polar decomposition theorem, the gradient F can be decomposed into Lagrangian and Eulerian stretches and rotation components schematized as in Fig. 1-2, giving:

F R U V R    
(1-6) Fig. 12. Schematic illustration of the polar decomposition theorem U and V are respectively the right (Lagrangian) and left (Eulerian) stretch tensors and R is the orthogonal rotation tensor (rigid body rotation).

Considering the plane elementary surface transformation between original and deformed configurations, in order to define and quantify the change of distance between two particles, the right and left Cauchy-Green stretch tensors C and B , are respectively defined as:

2 T C U F F    and 2 T B V F F   
(1-7)

Based on these two stretch tensors, two different strain measures are defined. Namely, the Green-Lagrange strain tensor E (Lagrangian tensor): (1-9)

A number of other strain measures can be obtained with the Lagrangian and Eulerian stretch tensors. These definitions can be rationalized in the following forms (m being a given integer).

1 0 ln( ) 0 m U I if m m U if m           
(1-10)

To define appropriate strain rates, the time derivative of Equation (1-3) gives:

1 dx F d X F F dx L dx         (1-11)
where

1 L F F  
is called the Eulerian velocity gradient tensor. It can be decomposed into a symmetric tensor D (strain rate tensor) and a skew-symmetric tensor W, (spin or rotation tensor), defined as:

1 1 S A T T L F F L L R U U R R R D W               (1-12) 1 1 ( ) ( ) s s S T D L F F R U U R          (1-13) 1 1 ( ) ( ) A A A T T W L F F R U U R R R            (1-14)
Based on the concept of intermediate unloaded configuration, the total gradient F can be multiplicatively decomposed into elastic Fig. 123. Transformation gradient: the rotating frame formulations [START_REF] Badreddine | On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming[END_REF] The rotated configuration t C and P t C can be used in order to develop suitable constitutive equations accounting for various types of initial and induced anisotropies including mixed nonlinear hardening.

It is worth nothing that if the small elastic strain assumption is considered (i.e. where D is the rotated total strain rate and eJ  is the rotated Jaumann rate of the small elastic strain tensor. Note that in equation 1-17, p W can be defined in two different approaches. The first one deduces the plastic spin from an appropriate dissipation potential assuming the generalized normality rule [START_REF] Dafalias | The plastic spin[END_REF], this leads to:

V Q p V e V e F Q ep R Q p p TT Q W Q Q W Q W Q       (1-17)
A pA p F WN        (1-19)
where  is the generalized Mandel stress tensor to be defined later, and

A N
is the non-symmetric part of the outward normal to the plastic potential p F in the stress space.

The second way of defining p W , consists in postulating, a priori, an appropriate kinematical relation of the type [Dogui89, Badreddine10, Saanouni12]: ( ) :

p pp W K V D  (1-20)
where K is a fourth-rank tensor, which is an isotropic function of the rotated plastic stretch tensor p V . As shown in [START_REF] Badreddine | On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming[END_REF] the shapes of the fourth-rank tensor K can be given as following:

-Corotational (or Jaumann) frame (J): -Plastic Eigen strain frame (V): This frame works together with the eigenvectors of the rotated plastic stretch tensor P V , and finally the frame can be given as: ) equals to the plastic strain rate p D . The spin rotation of this frame is given by: ( ) :

K V D V V D V B D V V V V           (1-21)
22 1 2 3 ( ) : 2 2 2 A A A D D D D pR R p p p p p p p p W K V D B D B D B D B                            ( 
pT T p pV p W K V D W   
(1-23) 

K V D v D v D v D v                         
(1-24)

here, pi  are the principal invariants of p v as shown in [START_REF] Dogui | Plasticité anisotrope en grandes déformations[END_REF]. This leads to:

( ) ( ) ( ) TV p p p K V K V K V 
(1-25) (1-27)

I.1.3 Stress measures and stress rates

There are still many other common definitions for the stress tensors which can be found in the literature [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF] among others, like Kirchhoff stress tensor  , the first and second Piola-Kirchhoff stress tensors  and S , respectively defined as:

J   leading to 0    (Eulerian) (1-28) () T JF    (Mixed) (1-29) 1 () T S JF F      (Lagrangian) (1-30)
These various stress tensors can be easily expressed in terms of each other. Note that the first Piola-Kirchhoff stress tensor  is clearly non-symmetric, and is neither purely Eulerian nor purely Lagrangian, while S is symmetric due to the symmetry of  and is purely Lagrangian.

In order to ensure the objectivity requirement, any Eulerian second-rank tensor T and fourth-rank tensor T may be transported from the current configuration 

TT T Q Q T Q Q   
. The variable Q is the rotation tensor which maps the current configuration ) 1 Q t t  . These two configurations are Lagrangian by their orientation but Eulerian by the eigenvalues of the state variables.

In this work the simple total rotation configuration t C is used. The reader is referred to [START_REF] Badreddine | On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming[END_REF] for the use of the rotated isocline configuration p t C (see [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF].

The objective rotational derivation of the second-rank tensor T is given by: ()

T T T Q QQ dT dT d Q Q Q Q T Q Q T T W W T dt dt dt                    (1-31)
where Q W is defined in Eq.1-17. The choice of Q W through Eq.1-17 to Eq.1-25 gives rise to various objective rotational derivatives as can be found in [START_REF] Badreddine | On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming[END_REF][START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF].

These objective rotational derivatives performed in a locally rotated configuration give the simplest way to generalize the constitutive equations formulated under the small strain assumption to the large strain framework.

I.1.4 On the main conservation laws

In the following, we will provide, without detailed demonstrations, the main conservation laws of the physics of continuous media mainly in differential form for the case of materially simple continua.

I.1.4.1 Conservation of mass

The first conservation law concerns the fact that the mass of the domain  in its motion remains constant as time progresses during the motion.

0 d dV dt    (1-32)
This can be easily transformed into differential form:

0 x div u  
(1-33) where

x div u   denotes the spatial divergence of the velocity field.

I.1.4.2 Conservation of momentum or principle of virtual power

The principle of virtual power states that in any area  the momentum balance should be satisfied. The sum of the virtual power of internal force In its local form, this principle can be expressed by the following partial differential equation with associated Neumann boundary condition:

( ) 0 (1 35) (1 36) div f u in n F on               
where  is the Cauchy stress tensor, f is the body force vector, F is the surface force vector acting on part Γ F of boundary of , u is the acceleration vector, and n denotes the outward vector normal to the boundary surface  of the solid.

I.1.4.3 Conservation of energy or first principle of thermodynamics

The first principle of thermodynamic which also can be named energy conservation law, means the sum of internal energy rate per unit deformation volume of the isolated system is equal to the sum of the external stress power and the heat flux received by . By using the material time derivative of a volume integral as well as the divergence theorem in order to transform surface integrals into volume integrals, and by applying the spatial localization theorem for materially simple continua, we obtain the local form of the first principle of thermodynamics as below:

: ( ) 0 D e div q        (1-37)
where e is the specific internal energy (per unit of mass), D is the total strain rate tensor,  is the internal heat source, and q is the heat flux vector.

I.1.4.4 Positivity of the entropy production or second principle of thermodynamics

The second principle of thermodynamics states that the energy systems have a tendency to increase their entropy rather than to decrease it. In another words, the rate of the entropy production is always greater than or equal to the amount of heat received divided by the absolute temperature:

( ) 0 q s div TT      (1-38)
where s is the specific entropy per unit mass and T defines the absolute temperature.

I.1.4.5 Clausius-Duhem inequality

The Clausius-Duhem inequality expresses a statement concerning the irreversibility of natural processes, especially when energy dissipation is involved. The local forms of the first and second laws of the thermodynamics can be combined, eliminating the internal heat quantity, and a new inequality called Clausius-Duhem inequality is then obtained:

: ( ) ( ) 0 q D sT grad T T        (1-39)
where the specific free energy or Helmholtz free energy per unit mass  is defined by:

e Ts   (1-40)
This inequality plays an important role in the formulation of constitutive equations of continua in the framework of the thermodynamics of irreversible processes.

I.1.5 About the continuum damage mechanics (CDM)

In the few last decades, micromechanical modeling has been developed based on increasing understanding of the physical aspects of the material failure. An important modeling work has been done to describe these mechanisms using approximate models. They can be briefly classified into two groups, such as uncoupled and coupled damage approaches.

In the uncoupled approach, the effect of damage on elastic and plastic strains is neglected, and the so-called failure indicators which are based on maximum or equivalent stresses, maximum or equivalent strains, plastic work, or the equations of the strain rate, temperature and pressures, stress invariants [START_REF] Freudenthal | The Inelastic Behavior of Engineering Materials and Structures[END_REF][START_REF] Rice | On the ductile enlargement of voids in triaxial stress fields[END_REF]Johnson85,Bai08,[START_REF] Ebnoether | Predicting ductile fracture of low carbon steel sheets: Stress-based versus mixed stress/strain-based Mohr-Coulomb model[END_REF] are introduced to represent the deterioration of the materials. Due to their uncoupled nature, these models do not consider stress and stiffness softening within the material caused by damage during deformation, thus they can't accurately predict the localization and failure under various stress states without additional criteria.

With the assumption of pre-existing microcracks and micro-voids, a theory based on the concept of growth and coalescence was introduced. Rice and Tracey [START_REF] Rice | On the ductile enlargement of voids in triaxial stress fields[END_REF] theoretically presented a cavity growth model with a spherical cavity in the perfect plastic material. Later, a new model was introduced by [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth -Part I. Yield criteria and flow rules for porous ductile media[END_REF]. The starting point of Gurson' theory is the microscopic idealization of porous metals as aggregates containing voids of simple geometric shapes embedded in a metallic matrix whose behavior is governed by a rigid plastic von Mises yield function. The damage variable is considered as the local fraction of volume occupied by voids. The interaction between micro-defects is also very complex during large deformation, thus a number of related studies have been performed [Ghosh82,[START_REF] Pilling | Effect of Coalescence on Cavity Growth During Superplastic Deformation[END_REF][START_REF] Ridley | Cavitations and Superplasticity[END_REF].

The other widely used fracture approach is the CDM (continuum damage mechanics theory).

Since the pioneering work by Kachanov [START_REF] Kachanov | Time of the rupture process under creep conditions[END_REF], many works have been done for the formulation of constitutive models to describe the internal degradation of solids within the framework of continuum mechanics. A considerable work has been done in the field of CDM for many kinds of materials under various loading conditions, as can be found in the following books [START_REF] Lemaitre | Mécanique des matériaux solides[END_REF][START_REF] Lemaitre | A Course on Damage Mechanics[END_REF][START_REF] Voyiadjis | A plasticity-damage theory for large deformations of solids. Part I: theoretical formulation[END_REF]Lemaitre05,[START_REF] Lemaitre | Mécanique des matériaux solides[END_REF][START_REF] Besson | Continuum models of ductile fracture: a review[END_REF][START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF][START_REF] Murakami | Continuum damage mechanics: A continuum mechanics approach to the analysis of damage and fracture[END_REF]. For ductile damage dedicated to metal forming under large inelastic strain, the reader is referred to the recent book [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF].

I.1.5.1 Phenomenological aspects of the ductile damage

Ductile damage in metallic materials can be regarded as a physical process of creation and growth of micro-voids or microcracks. During the material (microstructure) deformation process, the metal degradation is strongly dependent on the material, loading conditions, temperature and other environment factors to which the material is subjected. Therefore, it is important to enumerate the main damage mechanisms in the case of metallic materials. In -Brittle damage normally occurs in the form of cleavage of crystallographic planes with cleavage forces not high enough to produce slip. This phenomenon always happens at low temperature, or under repeated loads at low level below the yield stress (high cycle fatigue)

but it also appears for high temperature, associated with creep fracture.

-Ductile damage normally occurs with the nucleation and growth of cavities with large plastic deformations. When happened at an elevated temperature, it can be called creep damage.

I.1.5.2 Mathematical representation of the ductile damage

For ductile damage, all kinds of defects in the material can be regarded as volume defects (micro-voids) together with surface defects (micro-cracks). Accordingly, a natural representation of these defects can be made using scalar variables as a simplest representation of isotropic damage:

() () void v RVE S S RVE V da V S db S              (1-41)
However, straightforwardly speaking ductile damage is of highly anisotropic nature at least at the microscopic scale. Many works have been dedicated to the modeling of anisotropic ductile damage for metallic material (e.g. [Murakami81, Murakami83, Ortiz85; Chow87, Chow88, Lubarda93, Seweryn98, Voyiadjis00, Menzel05] etc.). For the sake of simplicity, the ductile damage will be reduced to the isotropic damage in this work limiting ourselves to the plastic anisotropy. Recent works made by our team are dedicated to the anisotropy of the ductile damage [START_REF] Rajhi | Anisotropic ductile damage fully coupled with anisotropic plastic flow: Modeling, experimental validation, and application to metal forming simulation[END_REF][START_REF] Nguen | Anisotropie de l'endommagement et simulation numérique en mise en forme par grandes déformations plastiques[END_REF][START_REF] Larijani | The effect of anisotropy on crack propagation in pearlitic rail steel[END_REF].

I.1.5.3 Effect of ductile damage on the elastoplastic behavior of metals

For metallic materials, the fracture by ductile damage can be regarded as the irreversible phenomena that break the intermolecular bonds and destroy the continuity of the crystal planes. At the same time, the new breaking surfaces and volume discontinuities can be produced in the form of microcracks. These microcracks evolve through different mechanisms to form macroscopic cracks where plastic strain increases [Soyarslan10, Thuillier2011].

The presence of these microdefects inside deforming materials affects deeply the other phenomenon as strains, hardening, etc. This effect is schematized in -The equivalent stress assumption leading to the definition of the sole effective strain tensor.

-The elastic energy equivalence leading to the definition of both the effective stress and the strain tensors.

-The total energy equivalence leading to the definition of the overall effective state variables as pioneered by [START_REF] Saanouni | On the an elastic flow with damage[END_REF][START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF][START_REF] Murakami | Continuum damage mechanics: A continuum mechanics approach to the analysis of damage and fracture[END_REF]. This is discussed in the next section. 

I.1.5.4 State variables and effective state variables

The thermodynamics of irreversible processes requires the introduction of state variables. These state variables are divided into observable variables and internal variables. For the isothermal problems the observable variables are the total strain and stress tensors   The assumption of total energy equivalence is used to describe the effective state variables.

This postulates the existence of a fictitious undamaged configuration (where d = Y = 0), in which the state space is defined by the couples of effective variables ( , )

W d d d                 (1-42) ( , ) 1/ 2( : ) 1/ 2( : ) ( ) , () X W d X X d X d               (1-43) ( , ) 1/ 2( ) 1/ 2( ) ( ) , () rr r R W r d r R r R r d r R d         
(1-44)

The damage effect functions  e (d),   (d) and  r (d) are the positive and decreasing functions of the damage variables. These functions reduce to unity for an undamaged material and approach zero for a totally damaged material. These functions will be defined later.

I.2 Formulation of fully coupled elastoplastic-damage constitutive equations

I.2.1 Introduction

In sheet metal forming processes, it is well known that the deformation is accompanied by many anisotropic phenomena. In order to accurately describe the material behavior used for the numerical simulations, a comprehensive understanding of these initial and induced anisotropies is required. Lots of researches have been done on the initial anisotropy of onset of the plasticity yield function ([Hill48, Barlat87, Barlat89, Barlat91], etc.), which is assumed to be result from the texture induced during the rolling process. For damage prediction, it is also a big issue to well understand the evolution of the subsequent yield surfaces or induced anisotropies under proportional and non-proportional loading paths. Since the failure is very sensitive to small changes in the yield surface, the evolution of the subsequent yield surfaces attracts great attentions.

Since several decades, lots of experiments have shown a significant distortion of the yield surface [Phillips72; Phillips76; Phillips77; Phillips79; Phillips84]. The same result have been obtained concerning the evolution of yield surfaces for the AISI 304 stainless steel under axial-torsional proportional loading [START_REF] Wu | On the experimental determination of yield surfaces and some results of annealed 304 stainless steel[END_REF], and the common characteristics of yield surface was found in many experimental investigations [START_REF] Ishikawa | Subsequent yield surface probed from its current center[END_REF][START_REF] Brown | Experimental conducted in the contest of the strain-space formulation of plasticity[END_REF]. Most of experimental results were obtained in the combined axial-torsional or combined axial-internal pressure loading conditions using some thin-walled tubular specimens. Recently Khan and his group [Khan09, [START_REF] Khan | Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part II: a very high work hardening aluminium alloy (annealed 1100 Al)[END_REF][START_REF] Khan | Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part III: yield surface in tension-tension stress space (Al 6061-T6511 and annealed 1100 Al)[END_REF] have done much effort on this research about two kinds of aluminum alloys (AL6061-T6511 and annealed 1100 AL) under tension-tension axial, hoop, combined hoop and axial proportional loading paths. The initial yield surface is very close to the von-Mises yield surface and subsequent surfaces undergo the translation, distortion, extension or shrinkage, shape with a sharp nose in the front and blunting in the opposite direction. Also different cross-effects were correlated to the different hardening properties.

From theoretical point of view, a wide number of publications proposed different approaches for modeling the distortion of the yield surfaces, see e.g. [START_REF] Ortiz | Distortional hardening rules for metals plasticity[END_REF][START_REF] Rees | A examination of yield surface distortion and translation[END_REF][START_REF] Helling | An experimental investigation of the yield loci of 1100-O aluminum, 70:30 brass, and an overaged 2024 aluminum alloy after various prestrains[END_REF][START_REF] Helling | The Incorporation of Yield Surface Distortion into a Unified Constitutive Model, Part I[END_REF][START_REF] Yeh | An endochronic theory accounting for deformation induced anisotropy of metals under biaxial load[END_REF][START_REF] Yeh | An endochronic model of yield surface accounting for deformation induced anisotropy[END_REF][START_REF] Cho | Distortional and orientational hardening at large viscoplastic deformations[END_REF]Kowalsky99,[START_REF] François | A plasticity model with yield surface distortion for non proportional loading[END_REF]Wu02,Wu03,[START_REF] Feigenbaum | Directional distortional hardening in metal plasticity within thermodynamics[END_REF][START_REF] Feigenbaum | Simple model for directional distortional hardening in metal plasticity within thermodynamics[END_REF]). On the whole, all these publications can be categorized into two types namely, the algebraic approaches and the geometric approaches. For the first kind, Ortiz and Popov [START_REF] Ortiz | Distortional hardening rules for metals plasticity[END_REF] proposed a general expression for the yield surface with distortional hardening in which the classical von Mises with mixed isotropic and kinematic hardening is found as a particular case. François [START_REF] François | A plasticity model with yield surface distortion for non proportional loading[END_REF] extended the von Mises yield surfaces to include distortional hardening by modifying the expression of the deviatoric stress.

Feigenbaum

and Dafalias [START_REF] Feigenbaum | Directional distortional hardening in metal plasticity within thermodynamics[END_REF][START_REF] Feigenbaum | Simple model for directional distortional hardening in metal plasticity within thermodynamics[END_REF] introduced a thermodynamically-consistent framework of isotropic, kinematic and distortional hardening under small strains assumption.

In the geometric approach, the yield surface normally divided into forward and rear parts tried to fit the experimental responses from the geometric point of view [START_REF] Yeh | An endochronic theory accounting for deformation induced anisotropy of metals under biaxial load[END_REF][START_REF] Yeh | An endochronic model of yield surface accounting for deformation induced anisotropy[END_REF]. However, these geometrical approaches are subject to some problems:

-The physical signification of introduced model parameters: Even though many new material models can describe the distortion of the yield surfaces, but the less physical significance of the introduced parameters restrict their applicability.

-Lack description of the distortion ratio in experiment: The distortional ratio of the yield surfaces can be not accurately predicted compared to the experimental results.

-Test methods for sheet metal under changing loading paths. Commonly the distortions of subsequent yield surfaces are investigated using thin-wall tube specimen under axial torsion loading paths, which is not representative of sheet metal forming processes.

I.2.2 Overview of the distortional hardening without damage models

I.2.2.1 Barlat model

Barlat et al [START_REF] Barlat | An alternative to kinematic hardening in classical plasticity[END_REF] proposed a distortional hardening model named HAH, which is based on the homogeneous yield surface defined by a stable component  and a fluctuating component h  . This yield function f can be described by the following equation 1 1 12 ( , ) ( ) 0 ˆˆ: : : : ( ) 0 p q q p q eq h y eq q q q s s s s q q q p y eq fs f h s h s f h s h s

                              (1-45)
where q, 1 f and 2 f are three material parameters and ˆs h is the microstructure controlled deviatoric stress tensor generated by the prior deformation history and can be viewed as a continuum representation of a given set of active slip systems, irrespective to the slip directions. This tensor is usually set equal to stress deviator initiating plastic strain but this is not always necessarily so. The 1 f and 2 f can be represented by two new parameters 1 g and 2 g [START_REF] Barlat | An alternative to kinematic hardening in classical plasticity[END_REF], according to function below:

1 1 1 1 1 q q f g     (1-46) 1 2 2 1 1 q q f g

   

(1-47)

The yield surface depends on the sign of the scalar product   

  ( ) ( ) 0    p y eq f s s    .

I.2.2.2 Feigenbaum and Dafalias model

Based on Hill's quadratic yield criterion, a varying fourth-rank tensor is adopted to describe the distortion of the yield surface [START_REF] Feigenbaum | Directional distortional hardening in metal plasticity within thermodynamics[END_REF]. The yield surface function is given as:

( ) : : ( ) ( ) 0       p y eq f S X S X  (1-48)
H is a fourth-rank tensor describing the initial and induced anisotropies defined by: 0

( : ) r H H n X A  (1-49)
where A is the fourth-rank evolving anisotropic tensor, 0 H is a constant fourth-rank tensor representing the initial plastic anisotropy with Hill yield criterion. The orientation tensor r n is normal to the yield surface:

r SX n SX   
(1-50)

A is responsible for the distortional hardening, while : r nX is responsible for the directionality of the distortion. This quantity varies from X  to X affecting directly the distortional tensor A . Note that the fourth-rank tensor A is governed by the following differential equations:

2 1 2 3 ( : ) 2 r r r A c S X n X n n c A          (1-51)
where 1 c and 2 c are material constants.

I.2.2.3 Teodosiu model

Based on the relationship between the flow-stress evolution and the micro-structural evolution, a physically-based constitutive model has been proposed by [Teodosiu95,[START_REF] Haddadi | Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: Modelling, numerical analysis and indentification[END_REF]. The yield function is based on a modified Hill-type yield function:

( ) 0      y H f Z R f  (1-52)
with the Hill equivalent stress:

:: HZ    (1-53)
where ZX   and  and H are both fourth-rank tensors. 

() p R sat R C R R   and () X sat X C X N X   (1-54)
where C R and C x characterize the saturation rate of isotropic and kinematic hardening respectively, and R sat and X sat are both material parameters characterizing the saturation value of R and X. N denoting the current direction of the strain rate tensor, to the persistent dislocation structures whose effects are described by  .

Within the Teodosiu model, the strength due to the dislocation structures is decomposed into a part associated with current slip systems (denoted by ::

D NN  
) and the one related to the latent slip systems (denoted by

D L NN       )
. From this letter we can get

D L NN      
. For such quantities, Teodosiu postulated the evolution equations: g are deformation-dependent parameters [START_REF] Haddadi | Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: Modelling, numerical analysis and indentification[END_REF][START_REF] Shi | On the macroscopic description of yield surface evolution by means of distortional hardening models: Application to magnesium[END_REF].

() L nl SL LL sat C       and '' 12 () D SD sat D D C g g            (1-55)
According to equations above, there is no evolution equation for the total tensor  .

I.2.2.4 Levkovitch and Svendsen model

Although  is considered as internal variable by Teodosiu and Hu [Teodosiu95, Teodosiu98], but they did not give direct evolution relationship for it, since it is governed by (1-55). In the new constitutive equations, one possible evolution equation for  is defined by [START_REF] Noman | Experimental characterization and modeling of the hardening behavior of the sheet steel LH800[END_REF]:

1 12 ( ) ( / ) n SD p sat SD D sl sat LL c h N N c g g N N c             
(1-56)

Neglecting initial flow anisotropy and texture effects, this model is similar to Teodosiu and

Hu model [START_REF] Teodosiu | Microstructure in the continuum modelling of plastic anisotropy[END_REF]. More detailed comparisons can be found in [Teodosiu 98,[START_REF] Haddadi | Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: Modelling, numerical analysis and indentification[END_REF]Baodong12].

I.2.2.5 François model

François [START_REF] François | A plasticity model with yield surface distortion for non proportional loading[END_REF] proposed a simple model to describe the distortion of the yield surfaces within the classical thermodynamics framework. The idea of the model assumes that the distorted yield surface is nearby ‗egg-shaped' controlled by the kinematic hardening variables.

The yield surface has the following form: 

( , , ) 0      dy f X R S X R  (1-57)

I.2.3 Formulation of the proposed fully coupled model

I.2.3.1 State variables and effective state variables

In this study, the elastoplastic constitutive equations fully coupled with the isotropic ductile damage using a thermodynamically-consistent framework [START_REF] Saanouni | On the an elastic flow with damage[END_REF][START_REF] Badreddine | On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming[END_REF][START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF] are proposed. The detailed theoretical, numerical and applicative aspects of various versions of the fully coupled formulations can be found in [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF]. This general framework is used in this work in order to extend the fully coupled model presented in [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF] for the description of the yield surface distortion based on the François' model described above.

The following couples of state variables are used: (i) ( e , ) for the elastoplastic flow; (ii) (, given by:

X
(

1 ee d   , 1 d     ) (1-60) ( 1 d   , 1 X X d   ) (1-61) ( 1 r d r   , 1 R R d    ) (1-62)
where  is a parameter governing the effect of the ductile damage on the isotropic hardening [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF].

I.2.3.2 State potential and state equations

The effective variables chosen above are used in the state and dissipation potentials in order to describe the damaged elastoplastic behavior. The Helmholtz free energy , positive and convex function of all the state variables in the strain space is taken as a state potential. It is assumed here that the elastic strain is still very small compared to the plastic strain, so that (see equation 1-18)

eJ p DD  .
Assuming that the plastic strain has no effect on the elastic behavior, the state potential is additively decomposed (isothermal case):

( , , , ) ( , ) ( , , ) 

ee ep r d d r d         (1-63) with 1 ( , ) (1 ) 
                          (1-64)
The total differential of this free energy is:

: : : : e e rd rd                    (1-65)
Accordingly, the Clausius-Duhem inequality can be written in the following way: 

                   (1-66)
According to the reversibility of elastic strain and no-dissipation hypothesis, assuming the Helmholtz free energy is an isotropic function of the arguments, and together with small elastic strain and incompressibility assumptions, the following state equations can be easily obtained: 

( , ) ( , ) (1 ) 
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where e  and e  are the classical Lame's constants (

  / (1 )(1 2 ) e E        ,   / 2(1 ) e E  
), while the parameters C and Q are the kinematic and the isotropic hardening moduli respectively. Consequently, with the equations above, Equation (1-70) leads to the well-known form of the intrinsic dissipation:

:: p D X Rr Yd       (1-71)
where the rotational objective derivatives of the tensorial quantities are used.

It is widely admitted that when the stress (and strain) in a given point is compressive, the damage rate in that point is very slow, if not completely zero. The simplest way to account for this phenomenon while avoiding some drawbacks related to the loss of the convexity and continuity of the state and dissipation potentials is to decompose the elastic damage force e Y to a compressive part and tension part as suggested by Lemaitre and Ladeveze [Lemaitre85].

This can be done using the straightforward spectral decomposition of the strain and stress tensors into positive and negative parts [Lemaitre05,Lemaitre09 and Saanouni12] 

                                              (1-72)
Accordingly, the effect of the ductile damage on the elastic behavior described by the effective variables of Equation (1-60) is modified and decomposed into deviatoric and hydrostatic parts as following: 
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in which e e stands for the deviatoric part of the small elastic strain tensor e  and the parameter   0.0 1.0 h  is the microcracks closure parameter. If 1 h  , the microcracks closure effect is skipped, while when 0 h  the microcracks close as soon as the stress tensor is negative (see discussion in [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF]).

By using the effective strain-like variables defined above in the Helmholtz free energy taken as a state potential, the following new expression of  and e Y can be easily obtained [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF]:

        Y e e
h e e tr h tr

                                               (1-74)
Clearly, Equation (1-74) shows that the microcracks closure parameter h serves to reduce the elastic damage force e Y for compressive load if

1 h  . If 0 h  ,
there is no more contribution of the compressive load on the damage force. This is the simplest way to differentiate the damage rate under tension and compression.

I.2.3.3 Yield function, dissipation potential and evolution equations

The framework of non-associative plasticity is used and a yield function f and a plastic potential F , both positive and convex functions of their main arguments in the stress space, are introduced from which the evolution relationships are obtained by the normality rule. In this study, a single surface model is used to describe the damaged elastoplastic behaviour using the same yield function and plastic potential chosen as:
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is the anisotropic Hill48 equivalent stress characterized by an anisotropic operator H having six anisotropic parameters F, G, H, L, M and N, and  y is the initial yield stress. The parameters a and b represent the non-linearity of the kinematic and isotropic hardening respectively, while S , s ,  and 0 Y govern the ductile damage evolution.

The parameter

S governs directly the value of the equivalent plastic strain at fracture i.e. the material ductility. This parameter was always taken as constant under isothermal condition. However, it has been observed for many ductile materials that ductility is sensitive to the stress state which is represented by the stress invariants. In particular, the Lode angle 16

    ( 1 3 3 1 27 cos ( ) 32   eq J  
) has a great influence on the material ductility, as can be found in [START_REF] Wierzbicki | On the effect of the third invariant of the stress deviator on ductile fracture[END_REF]Cao13] 
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As in [START_REF] François | A plasticity model with yield surface distortion for non proportional loading[END_REF], the egg-axis is parallel to kinematic hardening, X , while S is decomposed into its part 
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(1-84)

The plastic multiplier  can be determined from the consistency condition [START_REF] Badreddine | On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming[END_REF][START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF], however, it will be kept as the main unknown at each integration point of each finite element which will be determined from the FE calculation. The equivalent plastic strain rate is: 11 : : : :

0 f  if 0 f  [Saanouni94,
p P P p p eq D H D n H n    (1-85)
This model is implemented into ABAQUS/Explicit© finite element code through the VUMAT user defined subroutine (see the next chapter II).

I.2.3.4 Thermodynamical admissibility

After the formulation of all these equations of developed model, it is also necessary to verify the positivity of the dissipation in (1-71) by using (1-80) to (1-84), the dissipation equation can be written as below:

  : : ( ) ( ) 0 1 px r R n X n a n br Y d               
(1-86) For 0   , the equation becomes:

  0 1 : : ( ) ( ) 0 (1 ) () 1 s px r YY R n X n a n br Y d S d              (1-87)
That is known O SS , especially when the loading path change is linear, so we can assumed xp nn  and 1 i n  . The equation above can be rewritten as:
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With the yield function (1-75a), we can simplify the equation to be:
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the proposed model is thermodynamically admissible since the positivity of the intrinsic dissipation is warranted. This means that the constitutive equations defined by the state relations (1-67) to (1-70) and the evolution equations (1-80) to (1-84), fulfill the Clausius-Duhem inequality given by (1-39) which is the combination of the first and second principle of thermodynamics.

I.3 Forming limit curves for sheet metal forming (FLCs) I.3.1 Introduction

Since 1950s, an extensive work has been done, which aims to find an effective way to find a relationship between the major principal strain 1  and the minor principal strain 2  . This has led to the construction of the so-called forming limit diagram (FLD), as pioneered by keeler [START_REF] Keeler | Plastic Instability and fracture in sheets streched over rigid punches[END_REF]Godwin68]. Since the FLDs are dependent on the stress paths, a Forming limit stress diagram has been proposed in the stress space and is shown to be insensitive to the strain paths [START_REF] Arrieux | Determination of an intrinsic forming limit stress diagram for isotropic sheets[END_REF][START_REF] Stoughton | Review of theoretical models of the strain-based FLD and their relevance to the stress-based FLD[END_REF]. From the theoretical point of view, various models have been proposed to calculate the forming limit curves. They can be classified in two classes: (i) these assuming the homogenous sheet metal are necking theory (swift, Hill. etc), bifurcation theory [START_REF] Stören | Localized necking in thin sheets[END_REF] and linearized perturbation theory [START_REF] Dudzinski | Perturbation analysis of thermoviscoplastic instabilities in biaxial loading[END_REF]; (ii) those based on non-homogeneous sheet metal [START_REF] Marciniak | Limit strains in the process of stretch-forming sheet metal[END_REF].

I.3.2 About the construction of FLD curves

In order to construct the FLD curves, many researchers have carried out experimental and theoretical analyses to achieve this. During this process, it is found that the maximum admissible limiting strains strongly depend on many physical factors, including the materials work-hardening, strain rate sensitivity, loading history, and the initial plastic anisotropy induced by the rolling process.

For experimental determination of the FLD, the Nakazima tests and Marciniak tests are the common used methods. Both two tests can be conducted on Erichsen sheet metal testing machine. Fig. 1-6 illustrates the schematic of these two tests setups. The Nakazima test is probably the most widely used since the Marciniak method is more complex to perform. The specimens for two tests are prepared with electro-etched using grid of circles or squares with a size of 2 mm on the surface (Fig. 1234567). with the help of digital system, we can accurately record the coordinates of each point on the captured pictures, and obtain the displacement and strain fields. M-K model obtains its name from the highly cited paper [START_REF] Marciniak | Limit strains in the process of stretch-forming sheet metal[END_REF]. Here, the existence of an initial groove (initial perturbation) with diminished thickness, of infinite length and oriented along the minor strain direction, was assumed in order to predict the forming limit of monotonic strain paths in the right-hand side of the FLD. Sheet inhomogeneity is thus characterized by the initial thickness ratio of groove over surrounding matrix known as the imperfection parameter. The onset of localized necking instability is calculated by imposing geometric compatibility and force equilibrium between the groove in the model and the surrounding material. In this study, attention is paid to the Nakazima tests and M-K approach, to investigate FLDs of objective sheet metals. The Nakazima test will be introduced in Part III.

In the coming chapter, we will briefly give the description of M-K approach.

I.3.3 FLD curves from the M-K approach

I.3.3.1 A brief description of the M-K approach

Marciniak-Kuczynski model (M-K) is based on the growth of an initial defect as inhomogeneities in the form of a narrow band and oriented with an angle ( 0 This two-zone material is subjected to plastic deformation through applying a constant incremental stretching of the homogeneous part, but the plastic evolutions in these two zones are not the same. The flow localization occurs in the groove at a critical strain in the homogeneous region, at that time, the values of major and minor strains of homogenous region can be reported for plotting of Forming limit diagrams, also values of major and minor stress of the same region can be reported for Forming limit stress diagrams, which is assumed to be independent on the pre-strain deformation.

In zone a, imposing the equivalent strain increment a d , the hardening rule allows the determination of equivalent flow stress 

                a T a a T a ntz xyz ntz xyz T T d T d T           (1-91)   cos sin 0 sin cos 0 0 0 1 T          (1-92)
The defect band rotation during loading is described by:

    0 11 ( ) / aa xy tan tan d d       
(1-93)

In order to compute the equivalent increment strain The compatibility condition assumes that the elongation in the direction of the necking band is identical in two regions:

ab tt tt dd   (1-95)
The equilibrium equations can be reduced to:

ba nn nn ba nt nt f f          (1-96) where / ba f e e 
is the non-homogeneity factor and can be described as: 

                  
(1-98)

I.3.3.2 Yield function and hardening law

The material is completely defined macroscopically by its yield function and its hardening law. In this study, the chosen yield criterion and hardening law are quadratic Hill'48 law [START_REF] Hill | A theory of the yielding and plastic flow of anisotropic metals[END_REF]:

2 2 2 2 ( ) 2 x x y y xy H F H N            (1-99)
where F, H, N can be calculated using the anisotropy coefficients, and swift hardening law: 

I.4 Conclusions

This chapter was dedicated to the modeling aspects. In the first section, the theoretical background of continuum mechanics and thermodynamics of irreversible processes with state variables are reviewed. Also the framework of continuum damage mechanism is shortly summarized. In the second section, fully coupled constitutive equations have been formulated

in the framework of non-associative plasticity under large plastic strains. A new contribution has been introduced concerning the distortion of the yield surface based on the original work of François.

Finally, a short discussion of the forming limit curves is presented. The FLD based on the M-K approach is described in some detailed to be used later for the comparison with the fully coupled approach. The numerical aspect of both fully coupled approach and the M-K approach will be discussed in the next chapter. 

Chapter II

II.1 Introduction

This chapter is dedicated to the numerical aspects related to:

-The initial and boundary value problems (IBVP) arising from equilibrium problem of an elastoplastic solid described by the fully coupled constitutive equations introduced in Section I.2.

-The M-K instability problem to compute the FLD for thin sheets, introduced in Section I.3.

II.2 Numerical implementation of the proposed model

The highly nonlinear IBVP is defined in the space-time domain 0

[ , ] f tt 
, where  is the space domain and 0 [ , ] f tt is the time domain with 0 t is the initial time and f t is the final time. The space domain will be discretized using the displacement based Galerkin finite element method; while the time domain will be discretized using central finite difference method. For all these aspects the reader is referred to the general books dedicated to the Finite Element Method for non-linear problems [Bathe81, Hughes87, Zienkiewicz84, Zienkiewicz89, Bonnet97, Belytschko01, Crisfield91, Simo98 among many others].

II.2.1 Time and space discretization of the IBVP

II.2.1.1 Strong and weak forms of the IBVP

Let us consider a deformable and damageable solid occupying at any time The following force fields are imposed:

-Force field

F F imposed on F t  ; -Contact force C F imposed in C t  ; -Body force V f on t  .
For this isothermal IBVP, the strong form is defined by the classical equilibrium equations together with mixed Dirichlet and Neumann Boundary conditions:

( ( , )) ( , ) ( , ) in (2 1) ( , ) on (2 2) ( , ) on (2 3) V t u t t F F t tt div x t f x t u x t u x t u x t n F                    
The three subsurfaces 

F C t t t t F u F C u C t t t t t t                     (2-4)
In Equation 2-1,  is the Cauchy stress tensor defined by the fully coupled constitutive equations, V f is the body forces vector, t  is the solid density and u is the acceleration vector. Appropriate initial conditions should be added. Note that for the sake of simplicity, the contact forces field is included in Equation 2-3.

The weak form of the IBVP is deduced from the strong form defined above by Eq. 2-1 to Eq. 2-3, thanks to the well-known weighted residual method together with Galerkin assumption.

If the updated Lagrangian formulation is used, the weighted residual method applied to Equation 2-1 and after the integration by part and the use of the Neumann Boundary condition (Equation 2-3), the following weak form is obtained:

ˆˆˆ( , )

: 0

F FC V t J u u D dV u u dV f u dV F F u ds                      ˆ.. u K A  (2-5)
where û is the kinematically admissible (K.A.) virtual velocity field and D is the associated virtual total strain rate tensor.

To Equation 2-5, the Dirichlet boundary conditions (Eq. 2-2) should be added after the discretization of Equation 2-5 by the FEM.

II.2.1.2 Space discretization of the IBVP

The total volume  t of the solid is discretized with e N finite elements, each has an elementary volume e  so that: ,,    , so that:

        e e i i x N x      (2-7)
where

   
x  is the coordinates vector of any material point of 

        ˆ( , ) ( ) ( )
             (2-8)
where

  e i N   
are the interpolation functions of the displacement fields and  

()

e i ut (resp.   ˆ() e i ut
) is the nodal displacement (resp. virtual displacement) vector.

The time derivatives of Equation 2-8 give the velocity fields: 

        ˆ( , ) ( ) ( ) and ( , ) ( ) ( ) 
u t N u t u t N u t              (2-9)
Finally, the acceleration field is obtained from the time derivatives of (Equation 2-9a):

    ( , ) ( ) ( ) e e e II u t N u t     (2-10)
where   e I u is the accelerations vector of the element nodes.

By using the equations above, the weak form (2-5) written for a single isoparametric reference element can be easily expressed with the following matrix form: 

          int ˆ,
                (2-12)
the internal element force vector is given by:

    int e T e e e Vr V F B J dV      (2-13)
and the external forces vector is given by:

        e F C T T T e e V e e F e e C e ext t V r t s r t s r V F N F J dV N F J dA N F J dA                    (2-14) e B
  is the deformation-displacement interpolation matrix, defined by:

ee e ee NN B xx                      (2-15)
If  indicates the finite element assembly operator, the discretized week form (2-5) can be written as:

      int 1 1 1 1 ˆ( ) 0 .
. 

u F F u K A                  (2-16) Leading to:       int ( ) 0 L ext R u M u F F       (2-17)
where   u is the global (for all nodes of all elements) accelerations vector, and Note that the lumped mass matrix is obtained from the consistent mass matrix (2-12), following the well-known mass concentration procedure which can be found in [START_REF] Hughes | The finite element method[END_REF] among others.

II.2.1.3 Time discretization of the IBVP

The total time interval is thus discretized into t N subintervals with empty intersections, so that the approximation

  01 0 ,, t N f n n n n t t t t t t        
is valid with sufficient precision. For each time increment, the non-linear problem is solved to determine all the unknowns of the IBVP.

In fact, the unknowns are supposed to be known at n t , and their values are computed at the end of the time increment under concern 1 () n t  , with the load increment prescribed over that time increment.

II.2.1.4 Global resolution scheme

The algebraic system (Equation 2-17) constitutes a highly nonlinear algebraic system that should be solved numerically for each typical time increment of size

1 nn t t t     .
Two widely used resolution schemes can be applied to solve the nonlinear algebraic system (2-17) over each time increment. The first one called the static implicit (SI) scheme, is applied when the inertia term (mass matrix) is neglected in (2-17) leading to (at

1 n t  )     1 int 11 0 n ext nn FF      (2-18)
This system is generally solved thanks to a linearization process of Newton-Raphson type. In that case a consistent tangent stiffness matrix should be calculated [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF].

This second scheme, explicit in nature, is called the dynamic explicit (DE) scheme based on writing the system (2-17) at

n t :   1 0 L n n Mu     (2-19)
It has been shown in [Saanouni03,[START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF] that for metal forming simulation the (DE) scheme is preferred if we want to perform any sheet or bulk metal forming process simulation. This is particularly true when damage-induced softening is accounted for and when the number of nodes concerned by the contact is very large.

In this work only the (DE) resolution scheme is used in the framework of ABAQUS/Explicit finite element code in which the numerical integration of our fully coupled constitutive equations have been precisely implemented. The main steps of this resolution scheme are:

1. Define the mass matrix

L n M   at time n t .
2. Solve the equation 2-9, to calculate the displacement increment at the end of the step t n+1 by using the following explicit scheme:

      1 int () L ext n n n n u M F F     (2-20)         1 1/ 2 1/ 2 ... 2 nn n n n tt u u u         (2-21)       1 1 1/ 2 ... n n n n u u t u       (2-22)
3. Integrate all the constitutive equations for the state variables including   11 , p nn   and

hardening variables   1 1 , n n X    ,   11 , nn rR    11 , nn dY  at time 1 n t  . 4. Calculate L M   ,   int F ,   ext F at 1 n t  .
5. Predict the next time step t  .

6. Update the time

1 nn t t t     . If 1 nf tt  
go back to step 1, if not, the simulation is terminated.

This explicit scheme does not require iterative or tangent stiffness matrix, but it is conditionally stable, as mentioned above. Consequently, the control of time step t  is essential to ensure the stability and accuracy of the solution [START_REF] Hughes | The finite element method[END_REF]. It has been shown

that the stability limits are inversely proportional to the largest eigenvalue of the global

system [Abaqus01] 2 max 2 ( 1 ) t w      (2-23)
where max w is the highest eigenvalue of the system, and  denotes the fraction of the critical damping in the highest frequency mode. In practice it is not necessary to solve the eigenvalue problem of the complete system. Indeed, an estimate of the largest eigenvalue of the system can be obtained by determining the highest value of volume expansion of all mesh elements, as the smallest transit time of a dilatational wave across any of the elements in the mesh. Accordingly the stable time increment is calculated using the expression: min( )

e d L t C  (2-24)
where e L is the smallest element dimension in the mesh (calculated as the smallest distance between adjacent nodes of element e). and where  is the material density, e  and e  are the Lame's constants introduced in Chapter I. For IBVPs with time-independent behavior (non-viscous effect), it is benefit to increase artificially the material density in order to increase the time step (see Eq. 2-26) and hence save the CPU time. This procedure, called -mass scaling‖ in ABAQUS/Explicit (see ABAQUS theory manual [START_REF] Abaqus | Theory manual[END_REF]), requires to check that higher value of the density does not give any induced viscous effect.

II.2.2 Local integration scheme: state variables computation

Whatever the global resolution scheme used, we need to calculate the elementary operators as the matrices or vectors characterizing the IBVP, which are defined by the volume or surface integrals for each reference element, (see Equation 2-12, 2-13, 2-14).

To compute the internal forces vector defined by Equation 2-13 for any reference finite element, the Cauchy stress tensor is required at each

1 n t  , the end of a typical time increment   1 , n n n t t t t
    . This requires the numerical integration of the complete set of the fully coupled constitutive equations defined in Chapter I by equations (1-67, 1-68, 1-69, 1-70, 1-73, 1-74).

Suppose that all the state variables are known at n t and we have to compute their values

          1 1 1 1 1 1 1 1 , , , , , , , 
p n n n n n n n n X R r Y d           
at 1 n t  resulting from an applied loading path in terms of an increment of total strain   , so that

1 nn        is completely known.
Since we have assumed the small elastic strain, the total strain rate is additive:

eJ p DD  .
In the incremental form, this is written

ep         in which t D dt    and pp t D dt    .
Besides, the numerical integration is performed in the locally rotated deformed configuration as discussed in Chapter I.1.2. However, the upper bar defining the rotated tensors are not used in order to simplify the rotations. 

      00 0 12 00 0 1 () 1 1 : : () 2 ( / 1 ) 2 ( / 1 ) : : () : 2 ( / 1 ) ( ) : H : ( ) , ( ) 
1 ( )1 ( ) 3 2 1 1 c d H y c d c l y l y p d p ly k k k d d d H dev ee e SX R fa d d SS XX S S X S b X R d X R d SS SX S S X with S S X c XX X R d S X S X S X k c p d S tr e d e hd e                                                2 3 22 12 0 1 () 1 ( ) 1 ( ) 1 ( ) (1 ) ( ) (1 ) ( ) 2 : 
XS n D n n l d X R d                                                        00 0 1 00 1 2 1 0 01 ( : ) ( : )( : ) 2 ( : ) ) with ( ) 1 ( / 1 ) ( : )( : ) ( ) with 1 ( ) 1 2 1 ( / 1 ) : () () (1 ) () 3 2 () d d x xd p ly d i i n p ly p d d p d H s S S n S X X n S XX n a n n m d X R d S S n X n r br n n d d X R d H S X no SX YY dp d S Sc S                                           1/ 2 1/ 2 0 1 2 1 3 3 3 sec ( ) 1 6 3 , 1 6 ( ) 1 27 3 cos ( ) : det( ) ( ) 3 2 2 s s eq M eq c
Wierzbicki type q S c c Cao type J where S S and J S r

                                    (2-27)
Before going away, let us recall the fully coupled constitutive equations (see chapter I) to be numerically integrated by presenting them in the box above (Equations 2.27).

By using the fully explicit forward Euler scheme together with asymptotic scheme applied only to the hardening equations, the discretized equations can be given by:
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:

d d n n n n n n n n p n l n n y d n n n n i n p n l n n y p n dn d n p dn S nS X X n S XX n d X R d S S n X n o d X R d H S X n S X                                                 1 1 0 1 1 1 1/ 1 0 1 2 1 1 1 1/ 2 1 0 1 2 3( 1) 1 1 3 1 () 0 ( ) (1 ) () 3 sec ( ) 1 6 23 ( ) , 1 6 ( ) 1 27 cos ( ) 3 2 n H s n n n n n s n n n n s n n n n M p YY d d q d S S c c Wierzbicki type S r S c c Cao type J w                                                                            1 1 1 3( 1) 1 3 : det( ) ( ) 2 n n n n n M here S S and J S s        
(2-28)

To solve these equations, the classical elastic prediction, plastic correction scheme is applied.

Note that before performing the numerical integration, the rotation tensors

1 n Q  required to
rotate the actual deformed configuration should be calculated. This is made by solving the differential equations summarized in (2-28) after choosing the rotated frame Q W according to the discussion in Chapter I.1.2 (see Badreddine10, Saanouni12 for more details).

Elastic prediction:

We first assume the total strain increment   is completely elastic, without any dissipation, i.e. 

0 0 0 0 p r d               1 1 1 1 PP nn nn nn nn rr dd                  (2-29) So the called trial stress 1 n    can be obtained with pe nn               is the assumed elastic strain:         * 1 1 1 1 1 2 1 1 1 ( ) 1 
                              (2-30) * * * 1 1 1 ( )1 n n n S tr      (2-31)   1 1 1 1 1 3 e e e n
n n e tr

        (2-32) * ( 1) * * * * 0( 1) ( 1) ( 1) ( 1) 
: and :

n n n n n x n x n nn SX S S S S X XX          (2-33) * * 0( 1) 0( 1) * * * ( 1) 1 0( 1) 1 1 2 : : 2(1 ) ( / 1 ) 2(1 ) ( / 1 ) n n c n n n d n n n c n l n n y n l n n y S S XX S S X S d X R d d X R d                    (2-34)
Then, the yield function at this trial state is:

* ( 1) 1 1 ( , , , ) 1 1 c n dn n H n n n n n y n n SX R f X R d d d             (2-35) If   1 1 , , , 0 n n n n n f X R d     
 , then the assumption of elastic state is true, giving the following solution:

* 11 1 1 1 11 11 , ( ) , ( ) , ( ) , ( 
)

pp nn nn nnnn n n n n n n n n a X X b R R r r c Y Y d d d                       (2-36) Plastic correction: If   11 , , , 0 n n n n n f X R d      , then the solution is plastic over [ n t , 1 n t  ]
and the trial solution   1 . , , ,

n n n n i e X R d    should be corrected to determine   11 , e nn   ,   1 1 , n n X    ,   11 , nn rR    11 ,
nn dY  , so that the following plastic admissibility condition is fulfilled:

1 1 1 1 1 ( , , , ) 0 n n n n n f X R d        (2-37)
To proceed with this plastic correction, the discretized nonlinear equations summarized in 2-28 should be solved using the classical Newton-Raphson iterative scheme (see [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF] for more details). The stresses

1 1 1 1 1 1 1 1 1 ( , , ), ( , , ), ( , , ) 
p p p n n n n n n n n n n d X n d R n d                
are given by:

1 1 1 1 1 1 1 1 0( 1) 1 1 1 1 1 1 1 1 1 (1 ) ( , , ) 1 2 , 1 with ( , , ) : 1 ) 1 
(1 ) ( / 1 )

p p n n n n n n e n n d n n p p dev n n n n p n n l n n y d n d d n d XS n n n d d d X R d                                                  (2-38) 1 1 1 1 1 1 0( 1) 0( 1) 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 (1 ) 2 ( , , ) 1 (1 ) 1 3 ( : ) ( : )( : ) 2 ( : ) with 
(1 ) ( / 1 )

p x a a n n n n n n n n d d n n n n n n n n n x x d n n n p n l n n y d C X n d X e d e n d a S S n S X X n S X X n n n d X R d                                                    
(2-39) 

1 1 1 1 1 1 1 0( 1) 0( 1) 1 1 3/ 2 2 1 1 1 1 (1 ) ( , , ) 1 (1 ) 1 ( 
: )( : ) with 1 2(1 ) ( / 1 ) p b b i n n n n n n n n d n n n n i n p n l n n y d Q R n d R e d e n db S S n X n d X R d                                       ( 
(1 ) () ( , , ) : 1 1 c n n n d n n p n n H n y n n n s p n n n n n n n n n n p p d dn n n n n S d X X Rd f n d a d d Y d X Y g n d d d b d S n n d n d                                                             1 0( 1) 1 1 1 1 0 ( ) (1 ) ( / 1 ) ev n n n l n n y XS c d X R d                                   (2-41) ( , ) ( , , ) 0 ( ) 1 1 ( , , , ) ( , , ) 0 ( ) 
This system is solved thanks to the classical linearization by Newton-Raphson method according to:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ( ) ( ) : ( ) 0 ( ) ( ) : ( ) 0 
( ) ( ) : ( ) 0 p k k k k n n n n n n p n n p k k k k n n n n n n p n n k p k k k n n n n n p n n n f f f f d n d n g g g g d n d n dn d n                                                                                          
(2-42)

or under the matrix form:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ( ) ( ) ( ) 0 ( ) ( ) ( ) 0 0 ( ) ( ) ( ) k k k n n n p k n n n k k k k n n n n p n p k n k k k n n n p n f f f d n f g g g gD d n n d n                                                                                (2-43)
This system can be solved with respect to   ,

1  n d  and 1  p n n  : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) k k k n n n p k n n n k k k k n n n n p n p k n k k k n n n p n f f f d n f g g g dg d n n d n                                                                            (2-44)
The components of the material Jacobian matrix in (2-44) are given here after. Once the correction variables

1 1 1 , , ( 
) p k k k n n n dn        
obtained after the convergence at the iteration (k), the other state variables are calculated using (2-38) to (2-40).

Concerning the nine components of the material Jacobian matrix defined in (2-44) they are calculated as following:

1 1 1 ( 1) 1 1 1 1 ( 1) 1 1 ( 1) 1 1 ( , , , ) 1 1 1 1 1 1 1 1 c n n n d n n Hill n n n c c dn n n dn n n S d X X f R d d S X R n d d                                                      (2-45) 1 1 1 ( 1) 1 ( 1) ( 1) 1 1 1 1 1 ( , , , ) 1 : 1 1 c c c n n n d n n d n d n Hill p p p n n n n n S d X X n S f n n n d d                           (2-46) 1 1 ( 1) 1 1 ( 1) 3/ 2 3/ 2 1 1 1 1 1 1 1 1 1 1 2(1 ) 2(1 ) 1 1 c n dn c n n dn n n n n n n n SX f d R S X R d d d d d d d                                 (2-47) 1 1 0 1 0 1 1 1 1 1 1 1 (1 ) ( ) ( ) (1 ) ( ) s s n n n n n n n n g Y Y s Y Y Y d S S d S                              (2-48) 1 1 0 1 1 1 1 1 1 ( ) (1 ) ( ) s n n p p n n n n n g s Y Y Y n n S d S                     (2-49) ( 1) ( 1) 0( 1) 1 1 0( 1) ( 1) 1 1 1 1 1 ( 1) 1 2 1 1 : : 1 1 1 1 p p d n d n n n n n d n p p p n n n p p n n dn n p M l n n n S X S n X AA n n n I n d n X X n                                                       (2-50) ( 1) ( 1) 0( 1) 1 1 1 0( 1) ( 1) 0( 1) ( 1) 1 1 1 1 ( 1) 0( 1) 2 1 1 : : : 1 1 1 ( : ) 1 1 p p d n d n n p p n n n n d n n d n p n l n n d n n n n n S X X S n S n X AA d X R n X S d AA                                                                     (2-51) 1 ( 1) 0( 1) 3/ 2 1 1 1 1 ( 1) ( 1) 0( 1) 1 1 1 0( 1) ( 1) 0( 1) ( 1) 1 1 1 1 1 1 1 :1 2(1 ) ( / 1 ) 1 : : : 1 1 1 1 p n d n n dev n l n n y p p d n d n n p p n n n n d n n d n n n n n n n l n X S d X R d n n S X X S n S n X d AA d d d d d X AA                                                                     1 1 1 ( 1) 0( 1) 2 3/ 2 1 1 1 1 ( : ) 1 21 p n n d n n n n n R d n X S d d d                                                                                
(2-52) 

1 1 1 1 ( / 1 ) p l n n y AA X R d       and 2 1 1 1 ( / 1 ) l n n y BB X R d       (2-53) ( 1) 1 1 ( 1) 1 ( 1) ( 1) 1 1 ( 1) 1 ( 1) ( 1) 1 2 1 ( 1) : : ( ) : ( ) 1 : c c dn n n dn c c n dn dn c d c n n d n n d n d n n Hill Hill c n dn Hill S X H H S X H S X n S X S X n S X S X                                                                                                 (2-54) ( 1) 1 1 ( 1) 1 ( 1) ( 1) 1 1 ( 1) ( 1) ( 1) ( 
S X H H S X H S X n S X S X n S X S X                                                                                                 (2-55)   1 1 ( 1) ( 1) ( 1) ( 1) 1 1 1 ( 1) ( 1) ( 1) 2 1 1 1 1 ( 1) 1 1 1 1 ( 1) : 1 2 : : 2 1 2 1 \1 1 2 : : 2 1 n c n d n o n o n o n n n n o n o n o n l n n n y n on n n n n on R S S S S X S X S X S S AA X d R d S X X X S X X BB                                                                               1 1 1 ( 1) 2 1 1 1 1 1 1 ( 1) ( 1) ( 1) ( 1) 1 1 1 ( 1) ( 1) ( 1) 2 1 1 1 1 : 2 1 \1 : 1 2 : : 2 1 2 1 \1 n n on l n n n y n P n d n o n o n o n n n n o n o n o n l n n n y R X S X d R d R S S S S X S X S X S S AA X d R d                                                                 
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Note that in the case of plane stress assumption, a new equation 
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To solve this system a similar iterative scheme used to solve (2-41) is applied.

II.2.3 Numerical treatment of contact with friction

The numerical treatment of contact with friction must be taken into account because the frictional behavior plays an important role in the solution of the metal forming problems.

Here the well-known Coulomb model is used to describe the friction at the contact interfaces. This is an available standard way in ABAQUS/Explicit (Rep. ABAQUS theory Manuel). We note simply that the Coulomb friction parameter  is taken constant, and the numerical treatment of contacting nodes based on master/slave surfaces algorithm over the nodes is expected to come in contact.

II.3 Numerical Aspect of M-K approach

In order to calculate the unknown variables in the groove zone, including the equivalent strain increment b d and the stress value b tt  , the Newton-Raphson method is applied, can be found [START_REF] Assempour | A methodology for prediction of forming limit stress diagrams considering the strain path effect[END_REF][START_REF] Butuc | A theoretical study on forming limit diagrams prediction[END_REF]. The equations to be solved are:

1 2 ( , ) 0 ( , ) 0 bb b b YF tt b a b b tt tt tt Fd F d d d                    (2-79)
With the hardening law, and yield function, the iterative formula for Newton-Raphson method is described as follows: 
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II.4 Conclusions

In this chapter, the Numerical aspect of the proposed models is roughly discussed, which includes the time and space discretization of the initial and boundary value problems, local integration scheme of the proposed fully coupled CDM model. On the other hand, the numerical treatment of the proposed M-K approach is also given in the third part of this chapter. In the coming chapter, based on same typical tests of three materials, the developed models will be identified and validated.

III.1 Introduction

In the first part of this Chapter experimental tests performed on three selected materials are presented. The obtained experimental results will be used in Chapter III to identify the material parameters and to validate the proposed fully coupled model.

In the second part, a relatively extensive parametric study is conducted in order to examine the capabilities of the proposed model in describing some phenomena as the microcracks closure in compression, the distortion of the yield surface during plastic loading and the effect of the stress triaxiality and Lode angle on the ductile damage evolution.

The last section of this chapter is dedicated to a short parametric study of the M-K model and its sensitivity to the initial imperfection for a given hardening law.

III.2 Experimental procedure and results

In this section, series of tests are carried out in order to calibrate and validate the proposed 

III.2.1 Test materials

A general trend in steel product is the development towards higher strength grades in order to achieve higher structural strength while decreasing the metal weight. In the automotive industry, a large number of new high strength steels and aluminum alloys are used in the body structure components, as shown in Fig. 3-1, where the correlations between the total elongation and the tensile strength of the materials is given.

In this study, three 1.5 mm thickness commercial sheet metals are chosen as test materials.

They are the dual phase steel DP1000, the complex phase steel CP1200 and the aluminum alloy Al7020, which are widely used in automotive industry. Their chemical compositions are shown in Table 3-1. Engineering strain-stress curves: The engineering strain and engineering stress (Piola Kirchhoff stress) are defined by:

0 0 0 eng FF St    (3-1) 0 0 0 0 1 eng ll l l l l l        (3-2)
where F is the applied load; 0 l , 0 t 0  are the initial length, thickness, width and the initial area of the test zone respectively (Fig. 3-3a). The engineering stress-strain curves for three materials in three loading directions are shown in Fig. 3456. 

true eng eng eng F F l S t l          (3-3)
where S is the current cross-sectional area. The true strain is given by the integral of the strain increment, i.e. 

l eng l dl l d ll           3-4
The true stress-strain curves for the three materials under concern are given Fig. 34567. The L r  -value (Lankford ratio) equation can be constructed as the form below. According to the volume conservation principle:

1 2 3 0          (3-5)
The through thickness strain is given by:

3 1 2 ()          (3-6) 22 3 1 2 L r              (3-7)
Then, based on the equations above, the slop of the 23 For the L r  -values, the hand calculated results (Eq. 3-7) are a bit different from the measured results, and the error rate can be calculated according to:

(measured result)-(calculated result) Error(%) = 100% (measuredresult)  (3-8)
The L r  -values for given orientation () can be expressed function of the Hill anisotropy parameters [Banabic00]:

22 22 (2 4 ) sin cos sin cos L H N F G H r FG              (3-9)
With the assumption of G+H=1, we can get the anisotropic parameters as shown in Table 3-3: 

III.2.2.2 In-Plane Torsion tests (IPT)

Fig. 3456789. Experimental setup for IPT tests (IUL/TUD). and the post-mortem of specimens is shown in Fig. 3-14. We remark that the displacements at the final fracture of the PNT specimens are smaller for the small notch radii. The fracture displacement for specimen with c r = 20.0 mm is higher than the one with c r = 5.0 mm. This is the well-known behavior of ductile fracture, called notch sensitivity of ductile materials.

The trend is due to the different stress triaxiality ratios in the critical notched zone. The SS test is recently proposed by Shouler and Allwood [START_REF] Shouler | Design and use of a novel sample design for formability testing in pure shear[END_REF]. There are double test zones which can efficiently avoid the torque caused by the load imbalance on each test zone (see Fig. 345678910111213141516171819). When q = 0.0 mm, simple shear stress state is obtained in the critical zone.

III.2.2.4 Simple shear tests (SS)

When q = 1.25 mm and q = 2.5 mm, and keeping the distance of the connection band constant, a combined tension and shear stress state is created. This test is also conducted on 

III.2.2.5 Combined loading tests (CL)

To investigate the macroscopic behavior under complex loading paths, a most simple change of the deformation mode can be chosen, passing from a constant strain rate test (e.g. uniaxial In the critical zone, in order to capture the small strain and enhance the accuracy of the observation, the optical strain measurement is used. On the specimen, the tested critical zone is a rectangular zone of 15 3  mm 2 , and two rows of 8 dots are sprayed on the center of testing zone. The camera can capture the trace of the dot to be used for the strain calculation with average value of dots position information. The specimens are first loaded in monotonic tension and shear directions, the stress-strain curves are obtained according to the equations below, which is only suitable for small deformation and can cause some error when the strain reaches some big values. During test, loading velocity is kept constant around 1.0 mm/min to ensure the quasi-static deformation and avoid the strain rate effect on stress. 
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The deformation of the sample is reflected in the change of the coordinates of the dots (shown in Fig. 345678910111213141516171819202122). With the referred study, the error of the strain measurement is less than 5•10 -4

[Riel08], so with this optical system, we can capture the elastic domain during tests. The stresses are calculated by: Moreover, here we will focus on the effect of the parameters related to (i) the microcracks closure h under the compressive stage of the loading path; (ii) to the distortional hardening;

and (iii) to the effect of Lode angle on the predicted material ductility.

III.3.1 Microcracks closure effects

Note that the use of the total energy release rate given by equations Equation (1-70, 1-74) in the damage evolution equation (see Equation (1-84)) leads to a contribution of the elastic as well as the hardening parts in the damage energy release rate. It is important to highlight that the microcracks closure effect is only applied to the elastic part of the damage energy release rate.

In Fig. 3-39 the microcracks closure effect on the ductility, here given as the equivalent plastic strain at fracture, comparing both elastic and total energy in the damage evolution, is depicted. This Figure describes the evolution of the ductility (i.e. equivalent plastic strain before final failure d =0.9) with respect to the triaxiality ratio obtained with the material parameters given in Table 4-2 and Table 4-4 in chapter IV. From this Figure, the ductility increases for negative triaxiality when h <1.0 i.e. when the microcracks closure effect is accounted for. This increase is more important when considering only the elastic part of the damage energy release rate, for which it is observed that the ductility tends to infinity for the triaxiality values below -1/3, i.e. uniaxial compression, for the case h =0.0. This strong increase of the material ductility seems meaningless. However, when the contribution of the hardening in the damage energy release rate is taken into account, this increase is much less lower i.e. around Y of the energy release rate as the damage driving force, h =0.2 is suggested for metallic materials leading to a ductility higher than 100%. Fig. 3-39. Effect of the microcracks closure parameter h on the variation of plastic equivalent strain for DP1000 at final rupture (d=0.9) versus the triaxiality ratio.

III.3.2 Distortional parameters effects on the yield surfaces

To examine the effect of the distortion parameters ( 1 1 2 , and cP l l l X X X ) on the response of the proposed fully coupled model, we consider an initially isotropic material defined by the parameters shown in Table 3-5. Different proportional and non-proportional loading paths are considered with 5.0% total strain amplitude: cyclic tension, cyclic shear, combined cyclic tension and shear, sequential non-proportional square form of tension-shear and non-proportional elliptic form of tension-shear. For the cases of proportional loadings we will consider associative normality with

1 1 1 cP l l l
X X X . However, for non-proportional loadings we will consider some non-associative cases for which 11 cp ll XX 

. Note that when

1 1 2 = cP l l l X X X 
  (larger than 10 4 ), the influence of the distortion of the yield surface is ignored and the current fully coupled CDM model proposed in this study will become the classical fully coupled ductile damage model proposed in [START_REF] Badreddine | On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming[END_REF]. ), the principal stresses plane ( 12 , ) and the tensionshear plane ( 14 3 2 3 : , : ee  ). Note that every symmetric stress tensor can be expressed as a six-dimensional unit tensor in the following cases: 
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gives the scheme of the loading path. Through the strain step control, a tension loading is applied until 11  reaches 5.0%, and then an opposite compression is applied until 11  reaches -5.0%, at last 11  returns back to 0.0. During these processes, different distortional values are assigned to 
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The sequential tension-shear loading tests and elliptic shape tension-shear tests simulation are chosen as the non-proportional loading paths tests and conducted respectively. Their results are separately shown in Fig. 3-44 and Fig. 3-45.

For the sequential non-proportional tension-shear loading path, its scheme of the loading path is shown in Fig. 3-44a, which can be described as a rectangle. In Fig. 3 , and cp l l l X X X . Their responses on the stress-strain curves are the same ( 0.05 p eq   in Fig. 4-44b).

When the loading path is changed to shear (A-B), the center and the front point following the loading direction of the yield surfaces are not all fit (Fig. 4-44d). This difference happens when 1 p l X , that can be explained by its contributions on the hardening normality (Eq.1-80, Eq.1-81 and Eq.1-82). The stress-strain curves give the different responses ( 0.05 0.1

p eq  ).
Through the comparisons of the stress-strain curves, we can found that when M P a For the elliptic shape of the non-proportional tension-shear loading path, its simulation results are shown in Fig. 3-45. The scheme of the loading path is shown in Fig. 3-45a. In Fig. 3-45b the evolutions curves for Cauchy stress eq  , equivalent kinematic hardening eq X and isotropic hardening R in four stages are given, and at the same time the simulation results about the yield surface evolution in four stages with and without distortion effect are compared. These differences on the stress-strain curves can be explained by the evolutions of the yield surface during different stages.
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Through the comparison, more proofs can be found about the effect of 
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evolutions and total equivalent plastic strain due to 1 p l X are more important compared with other conditions (Fig. 4-45b).

After the first tension stage, it is also found that the center and the front point following the loading direction of the yield surfaces are not all fit due to the non-proportional loading paths.

Together with the simulation results of sequential non-proportional tension-shear, we can conclude that, when the loading paths are non-proportional, the influence of the yield surface distortion on hardening evolution becomes important.

III.3.3 Distortional parameters effect on damage evolution

In order to test the distortional hardening effect on the subsequent hardening and damage evolution, a pre-tension (16%) is applied on RVE, and then a followed shear process is conducted. Caused by the loss of the investigation on damage during tests, an assumed material is chosen as the test objective, whose material parameters are shown in Table 3-6.

The pre-deformed state variables (hardening and ductile damage) are recorded as the initial conditions before tension loading applied with elastic unloading. Due to the distortion of the yield surfaces, both the hardening evolution and the ductile damage evolution in the subsequent step are affected. In Fig. 3-46, the evolution of the equivalent stress is plotted with different distortion value

( 1 C l X , 1 p l X , 2 l X )
. By comparing the subsequent stress curves between the results with and without distortional hardening effect, it has been found that with the decrease of the 1 C l X , the distortional ratio increases and the failure occurs later and clear work-hardening stagnation stage is found. The parameter 1 p l X does not affect the yield stress, but will give influence on the hardening evolution. When 2 l X is positive, the subsequent yield surface expands, but when hardening increases, the stress-strain curve coincides again with the original curves. On In Fig. 3-49 the contributions of the Lode parameter to () S  for Wierzbicki and new proposed form of the damage evolutions are compared using ( 12 1 and 0 cc  ). It is found that these two forms give nearby the same values with changing Lode parameters, so these two forms can be regarded as the same. In Fig. 3-50 the equivalent plastic strains at fracture are plotted versus the triaxiality ratio using ( 12 1 cc  ). These results have shown that the fracture strain is not a monotonically decreasing function of stress triaxiality when the Lode parameter is introduced. For a high level of stress triaxiality ratio, where the spherical void growth mechanism plays a major role in the damage evolution process, the equivalent plastic strain decreases with the increase of the stress triaxiality ratio. However, within the range of 

III.3.4 Triaxiality ratio and Lode angle effect on damage evolution

III.4 Parametric study of M-K approach

Besides the proposed fully coupled CDM model, FLD and FLSD will be used as another failure criterion. For the comparison with CDM model, the material Al7020 will also be chosen as the test objective of M-K approach. The FLD and FLSD curves for Al7020 will be constructed for the simulation. In order to well present the influence of the subframes like yield criteria and hardening on the FLD and FLSD curves, Al7020 is chosen as the test objective material to input the program. With the help of uniaxial tension along different directions, the directionalities and anisotropic ratio r-value can be determined (Chapter IV.3).

The true stress-true plastic strain data measure in uniaxial tensile test can help to fit the swift hardening law and Voce hardening law: 

III.4.1 Initial imperfection

Here, we chose the same Hill48 as the yield function, swift hardening as the hardening law, so in the case, just the initial imperfection is investigated variable. 3-53 by using related to changing initial imperfection values, whereas the yield surface is described by the same Hill48 yield function. These results show that the forming limit diagrams obtained using swift equation is always higher than those obtained using Voce equation whatever the same yield function is used.

III.4.2 Hardening laws

III.5 Conclusions

In this chapter, we first gave the test materials: two kinds of high strength steels DP1000 and CP1200 and one aluminum alloy Al7020. Through series of tests: tensile tests, shear tests, in-plane torsion tests and combined loading tests, the material formability were investigated under different loading paths. On the other hand, we have also done some validation tests, Nakazima tests and Cross section deep-drawing tests, which can create complex loading paths.

In the third part of this chapter, before the identification of the models parameters, some parametric studies of fully coupled CDM model were performed first: (i) the microcracks closure h under the compressive stage of the loading path; (ii) to the distorsional hardening; and (iii) to the effect of lode angle on the predicted material ductility. All these studies will help us well understand the novelty of the proposed fully coupled CDM model.

In the fourth part of this chapter, similar parametric studies for M-K approach have been done:

including the initial imperfection and the hardening laws study. Two kinds of hardening laws were introduced in this approach: Swift and Voce, but in the coming chapter, we will just take the Swift hardening law for the FLD and FLSD prediction.

IV.1 Introduction

After the experimental investigations of three metallic materials under different loading conditions and parametric study of the proposed models (fully coupled CDM and M-K), the parameters of two models suited to three materials should be determined and validated.

Different series of tests will be chosen for the parameter identification of two models, separately shown in section IV.2 and section IV. 

IV.2 The identification methodology of fully coupled CDM model

An inverse methodology is used for the material parameters identification. Various identification methodologies based on inverse approach have been proposed to identify different kinds of constitutive equations [Khoddam96, Yoshida98, Bonora99

. These methods enable the usage of unusual tests set-ups or even the forming process themselves as long as the assumption of homogeneous stress field is not needed anymore [START_REF] Unger | Inverse error propagation and model identification for coupled dynamic problems with application to electromagnetic metal forming[END_REF][START_REF] Gelin | An inverse method for determining viscoplastic proper-ties of aluminum-alloys[END_REF].

In this study, concerning the kinematic hardening parameters (C, a), the measured moments versus rotation angles obtained from TBT tests (see Chapter III) are used under loading-unloading conditions. In order to form the objective function to be minimized, the 

IV.2.1 Elastoplasticity parameters identification

From UT tests, the isotropic elasticity parameters (E, ) and the initial yield stress y  can be obtained directly. From the Lankford parameters L r  in three directions (Fig. 345678) and the Equation 3-9, the Hill48 anisotropic parameters can be determined with the analytical approach (see chapter 4 of [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF]). The mixed hardening parameters are determined with the IPT and UT experimental responses with the inverse approach.

Concerning the experimental responses used by the inverse methodology, the tensile load versus global displacement curves obtained from the uniaxial tensile tests (UT, Fig. 3-3) as well as the torsion angle versus the torsion torque curves in the two bridge torsion tests (IPT, Fig. 3-10) are used. Without the ductile damage effect, the simulations are conducted with ABAQUS/Explicit using user's subroutine VUMAT, and compared with experimental responses before the maximum values of loads. It is assumed that the damage affects the material response before the experimental maximum load point. For the explicit simulation of the quasi-static deformation process, kinetic energy should be controlled less than 10% of the internal energy, in order to minimize the inertia effects [START_REF] Abaqus | Theory manual[END_REF]. The displacement rate is 10.0 mm/s, and the initial time increment is fixed to be 2.0E-6 with mass scaling method. (Fig. 4-3a) and CP1200 (Fig. 4-3b), the CP1200 presents less Bauschinger effect and its saturation value is 0.07 y for kinematic hardening, compared to 0.26 y for DP1000. With pre-strain 1.5 degrees of torsion for Al7020 (Fig. 3-53c) the saturation value is 0.1 y , the Bauschinger effect can be obtained using the determined hardening parameters.

Note that all the numerically predicted curves in Fig. 4-2 and Fig. 4-3 are obtained using the best values of the material parameters given in Table 4-2. 

IV.2.2 Distortion parameters identification

Based on CL tests: The strategy of the CL tests is to calibrate the distortional parameters 1 C l X and 1 P l X through one tension-shear test with a fixed equivalent plastic strain, and then other tension-shear and shear-tension tests following different tension directions will be used for the validation. The determination of 2 l X depends on the need for each material.

For Al7020, the pre-tension equivalent plastic strain value is 18.0%. After 18.0% pre-tension, the subsequent shear yield stresses are 197.0 MPa, while simulated result (without the effect of yield surface distortion) is 220.0 MPa, and at that time, the kinematic hardening values are ( 11 X = 36.0, 22 X = -18.0, 33 X = -18.0, 12 X = 0.0, 13 X = 0.0, 23 X = 0.0) MPa and isotropic hardening value is R = 49.0 MPa. showing the evolution of the yield surface for AL1100 when subject to three different loading paths: (i) tension, (ii) torsion and (iii) combined tension-torsion. Besides the initial yield surface, the subsequent ones are measured after 2.0%, 8.0% and 16.0% of equivalent plastic strain for the tension and tension-torsion paths and after 4.0%, 10.0% and 20.0% of the equivalent plastic strain for torsion paths. One yield surface is determined with one specimen in each loading direction at several levels of strain. After pre-strain, the specimen needs to be relaxed for 1 h to remove the strain-rate effect from the previous measurement and performed using less than 10 definition of yield surface. Focus on the tensile loading data, the material is assumed to be plastically isotropic and the initial yield stress and plastic hardening evolution can be observed directly from the tensile path with a step-wise fashion, as shown in Fig. 45678. As expected, the transition of the yield surfaces centers is regarded as the equivalent kinematic hardening value. Considering the shrink of the yield surfaces, the minimum radius value following the loading direction is regarded as isotropic hardening value. The parameter identification process is performed in a step-wise method. First, with the observed three steps evolution points of the kinematic hardening and isotropic hardening, the kinematic hardening parameters C and a, isotropic 100.0 and 150.0

CP l l l X X X    .
The comparisons between experimental and numerical results under three different loading paths are shown in Fig. 456789. Clearly, the proposed model describes well the yield surfaces evolutions including the distortion of the yield surfaces. From Fig. 4-9a, the numerically predicted kinematic hardening (center of the yield surfaces) is in good agreement with experimental results, while the predicted shear stress (i.e; in the orthogonal direction) is a little bit underestimated. From Fig. 4-9b it is found that the predicted kinematic hardening and isotropic hardening are both slightly underestimated, and the distortional ratio seems also poorly predicted.

The subsequent yield surfaces after combined tension-torsion are shown in Fig. 4-9c. The position and size of subsequent yield surfaces are close to the experimental results.

Subsequent yield surface evolution under complex loading paths:

The same material parameters of Table 4-3 are used, to investigate the evolution of the subsequent yield surfaces under complex loading paths. The pre-tension path consists on applying a tension loading until 16% of equivalent plastic strain is obtained, and the loading path is translated to shear direction increasingly. From Fig. 4-10, the yield surface clearly rotates, when the loading path moves from tension to shear. With the strain increasing, a clear nearby -egg‖ shaped subsequent yield surfaces appear, with a -nose‖ on the front, and a flat on the opposite direction. The observed distortional surfaces well fit the experimental observation when 2.0% eq   and 16.0% eq   ,

which also proves the good capability of the proposed model. During the loading path change, the subsequent yield surface rotates in such a manner that the -nose‖ keeps on the front of yield surface following the kinematic hardening direction. With the elastoplasticity parameters and distortional parameters determined above, The PNT and SS tests are simulated with the same setting conditions in ABAQUS as used above. Since the present model is fully local and accounts for damage-induced softening, the influence of mesh size on damage evolution is handled via accounting the smallest mesh size as a process parameter as well [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF]. A finer mesh will lead to a faster damage evolution meaning that the numerical solution depends on the mesh size. In fact, the straightforward way to ensure the mesh independency is to use appropriate nonlocal formulations as deeply discussed in the literature (see [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF]). Accordingly, a constant minimum mesh size of 0.15 mm on the plate surface and in thickness direction is used in the critical deformation zone where the fracture is expected to occur. The contributions of any other damage parameters (S, s,  ) to damage evolution and their influences on the damage evolution have been well described in [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF]. With the help of the inverse approach, by minimizing the error of the objective functions of each test simulations with the nonlinear least squares method, after dozens of optimization cycles the optimal damage parameters (S, s,  , h) obtained with PNT and SS tests are shown in Table 4-4, which also includes the parameters (  , 0 Y ) obtained with analytical approach for the three materials.

IV.2.3 Ductile damage parameters identification

As an example, the evolutions of damage parameters (S, s,  ) for DP1000 are plotted in During the whole deformation history, when d = 1.0, the element is failed and deleted from the mesh (kill-element technique). The initial failure element locates in the center of notched zone, and finally extends to the edge of the specimen, that can be explained by the relationship of triaxiality ratio  and equivalent limit plastic strain. For the material in tension states, the equivalent limit plastic strain will decrease with the increase of triaxiality ratio  . In the notched tension tests, the  value in the center point is higher than the value on the edge of the specimen. When the notched radius is changed (three radii used in our tests: ).

The relationship between equivalent plastic strain and stress triaxiality ratio at the critical For PNT specimen, it is found that with the increase of notched radius, the triaxiality ratio decreases, and the equivalent plastic strain increases. The triaxiality ratio actually affects the deformation capability of the sheet. 

IV.3 Determination of FLD and FLSD for Al7020

For FLD and FLSD determination, only the Swift isotropic hardening rule is considered. The failure of the material. From the Fig. 4-19a, we can find that when 0 f =0.998, the simulated failure points cover with the experimental responses, which mean giving good results, so 0 f = 0.998 is chosen as the defined imperfection factor for Al7020. In the coming works, the calculated FLD and FLSD curves of Al7020 will be input into ABAQUS as the failure criterion in order to estimate the capability of the CDM model. The calculations are also carried out using the ABAQUS/Explicit. The material parameters input for three materials are listed in Table 4-2 and Table 4-4 neglecting the yield surface distortion. The geometrical model is shown in Fig. 4-20. There gives the example for the specimen with r N = 65.0 mm. The C3D8R brick element is used to mesh the sheet. In the critical zone, the minimum mesh size of 0.15 mm is used, giving 10 elements throughout the thickness and a total of 13160 elements. The punch moves vertically with a constant speed of 10.0 mm/s. When the punch comes in contact with the blank, the Coulomb friction model with friction coefficients  = 0.05 is used. The simulation will stop when the final fracture happens on the blank.

The comparisons of the experimental and numerical force-displacement responses of Al7020 and DP1000 are shown Fig. 4-21. As we can see, with the decreasing of the width (i.e., increasing of notched radius) of specimens, the maximum limit force and displacement decrease at the same time. The simulation results well capture this effect. In Fig. 4-21(a) are shown the comparisons of Force-displacement curves for Al7020. Except sample 3 and 6, a good agreement between experiment and simulation is observed. The maximal difference is less than 5%. But for sample 3 and 6, the maximum differences between limit displacements seem more than 10%. In Fig. 4-21(b), there gives the comparisons for DP1000. The maximum differences of the limit displacement are for sample 1 and 2. In Fig. 4 CDM model get close to the experimental FLC, but there still some big differences between them. In the low triaxiality ratio region (left hand of FLD), the CDM predicted FLCs is higher than the FLC and FFLD (fracture forming limit diagram) obtained from experiments, and the opposite is observed in the high triaxiality ratio region (right hand of FLD). The CDM predicted FLC is more close to FFLD when f d =0.1, but still underestimate the limit strains in high triaxiality ratio region. The difference between the FLD curves obtained from the simulation results with fully coupled CDM model and experiments seems due to the experimental strain measurements, which underestimate the values of the plastic strain inside the highly localized zones. It is clear from Fig. 4-29 that our model predicts higher values of the major strains compared to the experimentally measured ones. This point need to be deeply examined in the future by using complementary accurate measurement technologies as ESPI (Electronic speckle pattern interferometry).

IV.5 Cross section deep drawing tests (CSD)

The cross section deep drawing tests (CSD) of the three studied materials are also simulated using ABAQUS/Explicit with fully coupled CDM model to predict their forming limits. In addition for Al7020, the FLD and FLSD got with M-K approach are also used to compare with the proposed fully coupled CDM method. The modeled geometry (in order to well present the model structure, only half of the geometry is given) and the adopted finite element CSD simulation for Al7020: For Al7020, the blank holder force is set to be 120.0 kN. The comparison between experimental and numerical force-displacement curves is shown in Fig.

4-32.

A good agreement is shown between these two responses. 

Effect of the yield surface distortion:

To highlight the effect of the yield surface distortion, a series of new simulation are performed using two levels of pre-strain.

The first corresponds to 1.0% of the saturated kinematic hardening stress which is (Fig. it is observed a difference between the results obtained with or without the distortion effect. This difference increases when the punch displacement increases. In fact, the difference between the maximum values of stress, equivalent plastic strain and damage are small for U = 14.6 mm as can be seen in Fig. 4-36(a). However, the first macroscopic crack appears at internal corner for U = 17.0 mm with distortion effect, while without distortion effect the crack appears simultaneously in internal and external corners for U = 17.6 mm.

Similar remarks can be made for the case with

3.0 MPa init X 
shown in Fig. 4-37.

However, the predicted crack location is quite different from the first case with and without distortion effect. In fact, the macroscopic crack is predicted at the internal corner and one external corner for U = 18.8 mm by the model with distortion; while it is predicted at the internal and another external corners for U = 17.6 mm by the model without distortion effect (Fig. 4-37b). 

IV.6 Rectangular drawing tests (RD)

A simple rectangular draw die is used to draw sheet metal to a certain depth. After load, the draw-in amounts for 4 corners and edges are compared with and without yield surface The distributions of the displacement components in two directions, the equivalent von Mises stress, the equivalent plastic strain and the ductile damage inside the formed sheet at punch displacement equal to 15.0 mm are given separately in Fig. 4-47. Both the numerical results with and without yield surface distortion effect are given.

After 15.0 mm drawing of the punch, the draw-in amounts in horizontal direction are 11.39 mm with distortion effect and 11.38 mm without distortion effect. On the other hand, the draw-in amounts in vertical direction are 11.91 mm with distortion effect and 11.92 mm without the distortion effect. The difference of the draw-in shape caused by the yield surface distortion is less than 0.05%.

The Maximum equivalent stress reaches 432.3 MPa, the equivalent plastic strain reaches 27.4% and the ductile damage reaches 8.9% when the yield surface distortion is taken into account.

On the other hand, without distortion effect, the Maximum equivalent stress reaches 427.6

MPa, and the equivalent plastic strain and the ductile damage reach 25.4% and 8.0%

respectively. The differences of the equivalent plastic strain and the ductile damage do not exceed 7.0% and 10.0%. Note that the ductile damage does not exceed 0.09 at U = 15.0 MPa.

No information concerning the thickness distribution is available in this example. From this example no significant differences between the simulations with and without yield surfaces 

Conclusions and perspectives

Nowadays, it is well admitted that metal forming simulation requires ‗advanced' constitutive equations able to describe the main physical phenomena under large plastic strains. This work aims to contribute in this goal by using thermodynamically-consistent non-associative constitutive equations accounting for anisotropic plastic flow, mixed nonlinear isotropic and kinematic hardening, the all fully coupled with isotropic ductile damage. The main contributions of present work consist in taking into account the distortion of the yield surface, the triaxiality ratio and the Lode angle during the loading history and their effects on the hardening and damage occurrence. This goal is justified by the fact that during metal forming the critical zones where high plastic strains and consequently ductile damage localize are subjected to complex loading paths.

The following aspects have been investigated:

 Based on continuum damage mechanics framework the advanced fully coupled constitutive equations are proposed, which take into account the initial and induced anisotropies, isotropic and kinematic hardening as well as isotropic ductile damage.  The obtained fully coupled constitutive equations have been discretized in the time using appropriate finite difference scheme and in space domain using FEM and implemented into ABAQUS/Explicit FE code.

 In order to assess the capability of the proposed fully coupled CDM model, the obtained numerical results have been compared with the widely used FLD and FLSD curves based on M-K approach for one material (Al7020). Different yield criterion and hardening laws As is well known, the main objective of any predictive model is to combine the simplicity of numerical implementation with ease of use in order to reproduce as accurately as possible the desired physical phenomena. The proposed model in this work attempts to achieve this by taking into account the main physical phenomena characteristic of large strains of metallic materials such as various types of hardening, the various initial and induced anisotropies (kinematic hardening, yield surface distortion) and fracture by ductile damage under various complex loading paths. The constitutive equations of the model are derived from the thermodynamics of irreversible processes framework with various couples of state variables.

This model is not so complicated to identify and to be used for the simulation of the metal forming processes.

However, further developments are still to be conducted in order to extend the proposed model to cover more general loading conditions. They can be summarized in the following points:

 Mainly in metal sheets the ductile damage can be highly anisotropic. Extension of the present model to include the anisotropy of the ductile damage should be made. This work is done in the LASMIS team by representing the damage through a couple of second-rank tensors namely ( , ) dY [Ngu12,Rajhi14].

 To be free from the dependence of the numerical solution to the discretization aspects, the mechanics of generalized continua should be used. Extension of the present fully local model to the non-local formulation has to be performed in the framework of micromorphic theory [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF][START_REF] Saanouni | Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects[END_REF].

 Some sheet metals forming processes have to be performed under high temperature in order to facilitate their formability. Extension of the present model to the viscoplasticity framework has to be done together with considering the thermal exchanges by adding the heat equations.

 Additional experimental work is still needed to be done in order to cover a wide range of more complex non-proportional loading paths. This is required to facilitate the identification of large number of material parameters entering the advanced constitutive equations which can exceed many tens for the more general version of the model.

 Finally, more industrial tests have to be performed in a wide range of complex forming processes which can help to validate these advanced fully coupled constitutive equations. ( 1
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où  est un paramètre qui exprime l'effet de l'endommagement ductile sur l'écrouissage isotrope d'une manière différentes par rapport à l'écrouissage cinématique et les modules élastiques [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF].

Potentiel d'état et équations d'état

Ces 
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En supposant que les déformations élastiques sont infinitésimales devant les déformations plastiques, et en utilisant des arguments standard de la thermodynamique des processus irréversibles, les équations d'état suivantes peuvent être obtenues: 
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Fonction de charge et potentiel de dissipation : équations d'évolution

Nous introduisons dans le cadre de la plasticité non-associée une fonction de charge f et un potentiel plastique F [START_REF] Badreddine | On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming[END_REF]. Dans cette étude, un modèle à surface unique est utilisé pour décrire le comportement élastoplastique endommagé en utilisant la même fonction de charge et le potentiel plastique suivant: Y sont des paramètres matériau qui définissent l'évolution de l'endommagement ductile. Afin d'introduire l'angle de Lode  qui influe sensiblement sur l'évolution de l'endommagement, en particulier sous les forts rapport de triaxialité des contraintes, deux formes sont proposées : 
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Le multiplicateur plastique  peut être déterminé à partir de la condition de cohérence Chapitre II Aspects numériques 
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Ces équations discrétisées par des schémas aux différences finies appropriés sont résumées par (30). En fait la discrétisation repose sur la combinaison de deux schémas :

 La Téta-méthode purement implicite pour les équations gouvernant la déformation plastique et l'endommagement  La méthode asymptotique pour les équations gouvernant l'écrouissage isotrope et l'écrouissage cinématique De plus amples détails peuvent être trouvés dans (Badreddine 10,[START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF]. Nous nous contentons de donner ici la synthèse de toutes les équations écrite à l'instant 1 n t  qui est le temps de fin d'un intervalle de temps typique résultant de la discrétisation du temps. Ces équations sont rassemblées dans (30).

Prédiction élastique :

On suppose que l'accroissement de la déformation totale   est complètement élastique :
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Ainsi, la contrainte « essai » peut être obtenue : 
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Le critère d'écoulement correspondant à cet état essai est alors donné par :
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 , donc l'hypothèse de solution élastique est correcte, et la solution du problème est la suivante : ). 
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Identification des paramètres de distorsion

Les essais CL servent à calibrer les paramètres de distorsion Pour l'alliage Al7020, la valeur de la déformation plastique équivalente de pré-tension est de 18.% (Fig. 5). Après 18,0% de pré-tension, les contraintes de cisaillement sont de 197.0 MPa, tandis que le résultat simulé (sans l'effet de distorsion de la surface) est de 220.0 MPa. La valeur de 1 c l X peut être déterminée dans l'espace des tension-cisaillement avec la diminution de la limite d'élasticité (comme représenté sur la Fig. 5). Quand 

Identification des paramètres d'endommagement ductile

Pour la détermination des paramètres d'endommagement (S, s,  , Y 0 , h), les essais PNT et SS conduits jusqu'à la rupture finale sont utilisés. Cela permet de suivre le développement de l'endommagement ductile sous différents trajets de chargement caractérisés par différents rapports de triaxialité des contraintes.

Les réponses numériques des essais de PNT en termes de courbes force-déplacement sont utilisées comme courbes de références pour identifier les paramètres. Le tableau 3 présente les valeurs optimales de tous les paramètres identifiés. Les paramètres de maillage utilisé pour la tôle sont présentés dans la Fig. 11. 

Conclusions et perspectives

Les principales contributions de ce travail concernent la prise en compte, pour la simulation des procédés de mise en forme des tôles minces, de la distorsion de la surface de charge, du taux de triaxialité, de l'angle de Lode, de l'histoire de chargement et l'analyse de ( 1
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wobei  ein Parameter für die Wirkung der duktilen Schädigung isotroper Verfestigung ist, welcher vergleichbar mit der kinematische Verfestigung und elastischen Modulen [START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF] steht.

Zustandspotential und Zustandsgleichungen

Diese oben gewählten effektiven Variablen werden als Zustands-und Dissipationspotentiale 
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(5) Nach der reversiblen, elastischen Verformung und der Nicht-Dissipation Hypothese wird die freie Helmholtz Energie  als eine isotrope Funktion, mit kleiner elastischer Dehnung und inkompressiblen Verformungsannahmen vorausgesetzt, sodass folgende Zustandsgleichungen gilt: 
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I.3 Grenzformänderungskurven für die Blechumformung (FLCs)

Für die experimentelle Bestimmung der FLD, zählt der Nakazima Versuchund der Marciniak-Versuch zu den häufigsten verwendeten Methoden. Beide Versuche können auf zwei Erichsen Blechprüfmaschine durchgeführt werden. Die Nakazima Versuch ist wahrscheinlich das am häufigsten verwendete Verfahren, da das Marciniak Verfahren ist aufwendiger bei der Ausführung ist. ).

Eine kurze Beschreibung des M-K-Ansatz

        * 1 1 1 1 1 2 1 1 1 ( ) 1 
Darstellung der Fließortkurve in der deviatorischen Ebene ( 12 , ). 

Wirkung der Triaxialität und Lode-Winkel auf die Schädensevolution

n n i i i i i x x x x        (A-2)
The global criteria of the convergence are that the numerical results must satisfy the following conditions:

() i total gx   (A-3)
where  total is the limit tolerance between the simulation and experiment force.

The whole optimization process works based on a set of MATLAB code which is written linking ABAQUS/Explicit solver. With ABAQUS script language python, the objective data can be read from the objective file. The optimization process can be divided in six stages, 2) are given in Fig. A1. As it is seen, the scheme locates the optimum value after 14 iterations. The situation for initial set of (S, s, ) = (0.3, 1.2, 2.8) is shown in Fig. A2. It can be found that after 300 iterations the final parameter set comes to (0.55, 1.5, 3), and arrives the optimum value after more than 1000 iterations, but it can be seen that the error between the experimental numerical results can be negligible (less than 1%) compared with initial error after 10 iterations, so this inverse method is applicable for the parameter identification. Prédiction de l'endommagement ductile en formage de tôles minces L'objectif de ce travail est de proposer un modèle de comportement avec endommagement ductile pour la simulation des procédés de mise en forme de tôles minces qui peut bien représenter le comportement des matériaux sous des trajets de chargement complexes en grandes déformations plastiques. Basées sur la thermodynamique des processus irréversibles, les équations du comportement couplé à l'endommagement tiennent compte des anisotropies initiales et induites, de l'écrouissage isotrope et cinématique et de l'endommagement isotrope ductile. Les effets de fermeture des microfissures, de triaxialité des contraintes et de l'angle de Lode sont introduits pour influencer l'évolution de l'endommagement sous une large gamme de triaxialité des contraintes. La distorsion de la surface de charge est introduite via un tenseur déviateur qui gouverne la distorsion de la surface de charge. A des fins de comparaison, les courbes limites de formage sont tracées basées sur l'approche M-K. Des essais sont conduits sur trois matériaux pour les besoins d'identification et de validation des modèles proposés. L'identification utilise un couplage entre le code ABAQUS et un programme MATLAB via un script en langage Python. Après l'implémentation numérique du modèle dans ABAQUS/Explicite et une étude paramétrique systématique, plusieurs procédés de mise en forme de structures minces sont simulés. Des comparaisons expériences-calculs montrent les performances prédictives de la modélisation proposée.
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The objective of this work is to propose a "highly" predictive material model for sheet metal forming simulation which can well represent the sheet material behavior with damage under complex loading paths and large plastic strains. Based on the thermodynamics of irreversible processes framework, the advanced fully coupled constitutive equations are proposed taking into account the initial and induced anisotropies, isotropic and kinematic hardening as well as the isotropic ductile damage. The microcracks closure, the stress triaxiality and the Lode angle effects are introduced to influence the damage rate under a wide range of triaxiality ratios. The distortion of the yield surface is described by replacing the usual stress deviator tensor by a 'distorted stress' deviator tensor, which governs the distortion of the yield surfaces. For comparisons, the FLD and FLSD models based on M-K approach are developed.

A series of experiments for three materials are conducted for the identification and validation of the proposed models. For the parameters identification of the fully coupled CDM model, an inverse methodology combining MATLAB-based minimization software with ABAQUS FE code through the Python script is used. After the implementation of the model in ABAQUS/Explicit and a systematic parametric study, various sheet metal forming processes have been numerically simulated. At last, through the comparisons between experimental and numerical results including the ductile damage initiation and propagation, the high capability of the fully coupled CDM model is proved.
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  Des essais sont conduits sur trois matériaux pour les besoins d'identification et de validation des modèles proposés. L'identification utilise un couplage entre le code ABAQUS et un programme MATLAB via un script en langage Python. Après l'implémentation numérique du modèle dans ABAQUS/Explicite et une étude paramétrique systématique, plusieurs procédés de mise en forme de structures minces sont simulés. Des comparaisons expériences-calculs montrent les performances prédictives de la modélisation proposée. VI Abstrakt Das Ziel dieser Arbeit ist es, ein Materialmodell für die numerische Blechumformung zu entwickeln, welches eine "genaue" Vorhersage über das Werkstoffverhalten bei komplexen Belastungspfaden und bei hoher plastischer Umformung wiedergibt. Auf Basis irreversibler thermodynamischer Prozesse, werden vollständige gekoppelte Stoffgesetze vorgeschlagen, die die anfängliche und induzierte Anisotropien, die isotrope und kinematische Verfestigung sowie die isotrope duktile Schädigung berücksichtigt. Der Mikrorissschließungfaktor, die Spannungsmehrachsigkeit und der Effekte des Lodewinkels werden hierbei eingeführt, um den Einfluss der Schädigungsrate gegenüber verschiedener Bereiche der Triaxialität zu erhalten. Beschrieben wird die Verzerrung der Fließortfläche, indem der übliche Spannungstensor durch den "verzerrten Spannungstensor-ersetzt wird und folglich die Verzerrung der Fließflächen geregelt werden kann. Für den Vergleich wurden FLD und FLSD Modelle auf Basis des MK-Ansatzes entwickelt. Über eine Reihe von Versuchen wurden drei Werkstoffe für die Identifikation und Validierung des vorgeschlagenen Modells untersucht. Bei der vollständigen gekoppelten Parameteridentifikation des CDM-Modells wurde inverse Methodik verwendet. Für die Optimierung stand die MATLAB-basierte Software zur Verfügung, die in Verbindung mit dem Python-Skript in ABAQUS FE Code steht. Nach der Implementierung des Modells in ABAQUS / Explicit und einer systematische Parameterstudie wurden verschiedene Blechumformprozesse numerisch berechnet. Im Anschluss wurden die experimentellen und numerischen Ergebnisse hinsichtlich der Rissinitiierung und Ausbreitung von Schädigung verglichen, um die Gültigkeit des vollständigen gekoppelten CDM-Modells zu prüfen.

  modeling has been developed based on increasing understanding of macroscopic failure process. From the microscopic viewpoint, ductile damage resulting from the localization of large plastic strains of metallic materials develops in three main stages: (i) micro-voids nucleation around the pre-existing inclusions, precipitates or second phases, (ii) micro-voids growth and (iii) micro-voids coalescence leading to the initiation of macroscopically observed cracks. To reflect the gradual weakening sourced from the mentioned void and microcracks, the most largely used two coupled generic damage models are: the physically motivated porosity models (Gurson type models) and the phenomenologically motivated continuum damage mechanics based models (CDM).

Fig. I - 1 .

 1 Fig. I -1. Contour of the used materials in body structure of modern cars.

INTRODUCTION 4 are

 4 given, which can help investigating the material behavior under different stress states. Then, several complex loading tests like: Nakazima tests and cross-section deep drawing tests are conducted which can help to assess the capabilities of the proposed models. At the same time, in order to facilitate the model parameters determination in the coming chapter, some parametric studies about microcracks closure, distortional parameters and Lode parameters' dependence are given. In chapter IV, the parameters determinations and applications of fully coupled CDM model and M-K model are given. Based on different tests, these two models are calibrated. Finally, with the application of these two models on the simulations of Nakazima tests, Cross section deep drawing tests and rectangle deep-drawing tests, the comparisons of the capabilities of FLD and FLSD with CDM model are investigated.

CCV

  which ensure the fulfillment of the objectivity requirement, as represented in Fig. 1-3.The configuration P t C is named plastic ‗isocline' configuration and its orientation is CHAPTER I THEORETICAL ASPECTS 10 defined by a rigid body rotation tensor Q with respect to the actual configuration is obtained by the total transformation gradient F . From Fig.1-3 we can obtain: the rotated right elastic stretch tensor, p V is the rotated plastic stretch tensor, With the rotating framework, any tensorial quantity.

  plastic strain rate and the plastic spin. With the small elastic strain assumption, the equation 1-16 reduced to:

-

  Proper rotation (or Green-Naghdi) frame (R): Using

  -Logarithmic (or triaxial) frame (T): is defined as the frame in which the time derivatives of the Hencky plastic logarithmic strain (

tC

  to the configuration t C as shown in Fig. 1-3. The rotation tensor is the solution of the ordinary differential equation Eq.1-17 with the initial condition 0 (

  time equal to the total virtual power of inertia forces

  Fig. 1-4. Damage in (a) high temperature creep; (b) superplastic forming; (c) cold forming; (d) hot forming [Lin05].

  Figure I-5, showing schematically a typical force-displacement curve with ductile damage effect at the origin of the final fracture. In the CDM framework, the ductile damage effect on the material behavior is called the damagebehavior coupling [Lemaitre85, Lemaitre05, Besson10, Saanouni12]. This coupling is performed thanks to the definition of effective state variables through four kinds of assumptions: -The equivalent strain assumption leading to the definition of the sole effective stress tensors [lemaitre85].

Fig. 1

 1 Fig. 1-5. Schematic effect of the ductile damage on the force-displacement curve from the initial plastic yield to final fracture [Saanouni12].

  and internal variables and their associated variables are summarized in

  planar persistent dislocations related to the texture anisotropy. Isotropic and kinematic hardenings are governed by the classical Armstrong-Frederick evolution rule:

SS

  where d is function of existing Cauchy stress and kinematic hardening stress: to the kinematic hardening X , and another collinear part to X

,

  ) for the kinematic hardening depicting the translation of the yield surface; (iii) (r, R) for the isotropic hardening depicting the change of yield surface radius, (v) (d, Y) represents the isotropic ductile damage in Lemaitre and Chaboche' sense [Lemaitre85, Saanouni12]. The distortion of the yield surface during the deformation is described by replacing the usual stress deviator S by a ‗distorted stress' d S [François01], which is not remarked as a new thermodynamic force, but only function of existing variables. It should be noted that the damage variable has a values between 0 and 1, the total fracture of the RVE (Representative Volume Element) is achieved when 1 c dd  . The strong coupling between the plastic flow with hardening and the ductile damage is performed in the framework of the total energy equivalence assumption [Saanouni94, Saanouni12], leading to the definition of the effective state variables   , rR through the use of two damage-effect functions

XX

  is the same as in François model, used to help adjusting the distortion ratio of the subsequent yield surfaces. A new parameter 2 l X was introduced into c d S to control the cross size of subsequent yield surfaces. Note that, from (1-78) it is possible to define the -damaged‖ parameters on subsequent yield surfaces will be studied in next chapter.Applying the generalized normality rule leads to the following flux variables which define the evolution of the dissipative phenomena:

Fig. 1

 1 Fig. 1-6. Experimental setups for the determination of FLD curves

e

  Fig. 1-8. Initial conditions for the M-K approach.

b

  d and the stress value in the longitudinal direction of groove b tt  , the force equilibrium condition and compatibility equations between two regions are proposed. The equilibrium condition which indicates the force balance leads the following equations:

  the condition above, the flow stress value in the normal direction of the groove and the flow shear stress in the groove can be calculated. And then transposed to the stress matrix in the principal referential frame [] xyz , which through the yield function allows the evaluation of the equivalent flow stress



  Fig. 1-9 Structure of M-K code

  Fig. 2-1. Deformable solid with boundary condition at time



  forming the boundary t  , fulfill at each time t the following classical relationships:

  u

  the Galerkin displacement based FEM, the displacement vector and the virtual displacement vector inside each reference FE ( r  ) are approximated by:

  internal and external force vectors. These global operators are obtained by the assembly of the corresponding elementary operators defined by Equation (2-12), (2-13), (2-14).

dC

  is the dilatational wave speed travelling in the material, determined by:

  2-40)They are function of the three unknowns namely:  . With the help of 2-28a, 2-28m and 2-28q, the overall equations are reduced to the following three equations with

  models. The forming capabilities of three materials under different deformation paths are investigated through various tests, including: the Uniaxial tensile tests (UT), In-plane torsion tests (IPT), Pre-notched tension tests (PNT), Simple shear tests (SS), Combined loading tests (CL), Nakazima tests (NAK) and Cross section deep-drawing tests (CSD).

Fig. 3

 3 Fig. 3-1. Materials properties used in automotive body components.

  Fig. 3-3. Geometry of UT specimen.

  Fig. 3-4. Force-displacement curves for UT tests.

Fig

  Fig. 3-5. Post mortem of UT specimens after the final fracture.

Fig

  Fig. 3-6. Engineering stress-strain curves for three materials

Fig

  Fig. 3-7. True strain-stress response

  Fig. 3-8. Ratio of the width and thickness strain and Contour of L r  -value

Fig. 3 -F

 3 Fig. 3-10. Specimen geometry for IPT tests.

  Fig. 3-11. IPT tests results for the three materials.

  The post-mortem specimens are shown in Fig.3-14, where the final shapes of the fracture surfaces are shown. For DP1000, the shear slip first appears at the center and extends to the notch edge by the different sides. Meanwhile, for CP1200 and Al7020, the shear slip keeps on the same sides of the crack.

Fig

  Fig. 3-14. Post-mortem of PNT tests after loading.

Fig. 3 -

 3 Fig. 3-19. Specimen geometry for simple shear (SS) tests.

universalFig. 3 -

 3 Fig. 3-20. Experimental results for SS tests for the three materials.

  Fig. 3-21. Experimental setup for CL tests (AM/TWENTE)There are two actuators respectively in vertical and horizontal directions which can be used to apply the tensile and shear loading on objective specimens. When tension loading is applied, a tensile stress state between the plane-strain tension and uniaxial tension stress state can be produced in the critical test zone.

Fig. 3 -

 3 Fig.3-23. Stress-strain curves for monotonic loading paths for Al7020.

Fig. 3 -

 3 Fig. 3-29. Shear versus plastic strain after 10% pre-shear in form of equivalent stress and strain of DP1000.

Fig. 3 -Fig

 3 Fig. 3-32. Post-mortem of NAK after loading (IUL/TUD).

  that in the original Lemaitre's damage model, which uses only the elastic part e

  3-40 compares the initial yield surface without distortion to the yield surfaces after 5% of p eq  in different stress spaces, respectively the deviatoric plane ( plane  

  Fig.3-40b gives the demonstration of the effect of the parameter. Through the variation of parameter

Fig. 3 -XFig. 3 -

 33 Fig.3-40c and Fig.3-40d show the effects of 1 c l X and 2 l X in the principal stresses plane (

4

 4 

  to see their different influences of the simulation results through the stress-strain curves and yield surface evolutions. In Fig.4-41b the stress-strain curves about Cauchy stress eq  , equivalent kinematic hardening eq X and isotropic hardening R are given, in which their responses under monotonic and cyclic tension loading paths are compared. Fig. 4-41c gives the yield surfaces evolution at point A (first tension stage). The yield surfaces with different distortion parameters values are compared with initial yield surface. The conditions with 12 discussed. As we can see that the centers and the front points following the loading direction of the yield surfaces under the conditions above are the same regardless of the values of 1 c l X and 2 l X . These same results have been found in other stages, separately shown in Fig. 4-41d, Fig. 4-41d and Fig. 4-41f. So we can remark that the distortion of the yield surfaces does not affect the stress responses under cyclic tension loading paths. (a) Loading path of the cyclic tension. (b) stressplastic strain curves. (c) Yield surfaces at point A. (d) Yield surfaces at point B.

  Yield surfaces at point C. (f) Yield surfaces at point D. Fig. 3-41. Results of cyclic tension The numerically predicted responses for the cyclic shear loading tests are shown in Fig. 3-42.

Fig. 3 -

 3 Fig.3-32a gives the scheme of the loading paths of the cyclic shear loading. In Fig.3-42b the

  Fig.4-44c. As we can found that the center and the front point following the loading direction of the yield surfaces are the same in this stage regardless of the values of

  the yield point in the subsequent stage decreases and very small decrease happens on the hardening evolution. and there is also very small decrease on the hardening evolution. On the other hand, when the contribution of 1 hardening evolution is highly decreased, and the total equivalent plastic strain value is decreased. The similar influence is found for kinematic hardening. It can be remarked that the 12 and c ll XX affect the subsequent yield points, but 1 p l X gives more effect on hardening evolution. In the following stages (B-C, C-D) the influence of the three parameters become more important. But for the isotropic hardening the contributions of three distortion parameters are very limited, so the change of the isotropic hardening evolution and the size of the yield surface parallel the loading during these whole stages are very small. (a) Loading path of the sequential tension -shear. (b) Stressplastic strain curves. (c) Yield surfaces at point A. (d) Yield surfaces at point B.

  Yield surfaces at point C. (f) Yield surfaces at point D. Fig. 3-44. Results of sequential non-proportional tension-shear. (a) Loading path of the elliptic shape tension -shear. (b) Stressplastic strain curves.

  Yield surfaces at point A. (d) Yield surfaces at point B. (e) Yield surfaces at point C. (f) Yield surfaces at point D. Fig. 3-45. Results of elliptic shape of the non-proportional tension-shear loading path.

  Fig. 3-46. Distortional parameters effect on subsequent equivalent stress-equivalent plastic strain curves after 16% pre-strain.

Fig. 3 -

 3 Fig. 3-47. Behavior of the ductile material in three dimensional fracture loci (a) postulated by [Johnson85], (b) postulated by [Wierzbicki05].

  Fig. 3-49. Influence of Lode parameter on () S  .

  Fig. 3-51, it gives the comparison between the experimental and modeled true stress-true strain curves and it shows a good agreement before necking. The modeled true stress-true strain curves are related to Swift and Voce hardening law, respectively shown in Eq.3-16(Swift) and Eq.3-17 (Voce).

Fig. 3 -

 3 Fig. 3-51. True stress-true plastic strain curve for Al7020

Fig. 3 -

 3 Fig. 3-52. FLD curves related to different initial imperfect value.

Fig. 3 -

 3 Fig. 3-53. Forming limit diagram using swift or voce hardening law.

  3. After the parameters determination, the Nakazima tests (NAK), Cross Section Deep drawing tests (CSD) and Rectangular Drawing tests (RD) are used to validate the parameters input for the fully coupled CDM model. By comparing the force-displacement curves, limit major strain distributions and final cracks occurrence with experimental responses, the capability of the fully coupled CDM model is assessed. CSD tests are simulated with proposed fully coupled CDM model for three given materials Al7020, DP1000, CP1200, and two additional simulations are conducted with FLC and FLSD curves of Al7020. Comparisons are made to show the different capabilities of fully coupled CDM, FLD and FLSD models. On the other hand, the CSD and RD tests are simulated with and without yield surface distortion effect for fully coupled CDM model in order to assess the effect of yield surface distortion on forming processes. Through the comparison of the draw-in amount the edges of the specimens and also the stress, strain distribution.

Fig. 4 -

 4 Fig. 4-1, which compares the output results with the experimental measurements, builds and minimizes the objective function and delivers the best set of the material parameters which minimizes the difference between the numerically predicted and the experimental results. More details about the inverse methodology are shown in Appendix A.

Fig. 4 -

 4 Fig.4-2. Comparison of force-displacement curves for uniaxial tensions (plot before max F ).

Fig. 4 -

 4 Fig.4-2 shows the comparison of Experimental-numerical responses in monotonic tension loading path in terms of force-displacement curves before the maximum force is reached. Fig.4-3 summarized the results obtained for the three materials when subject to one loading cycle in torsion (loading-unloading). With the same pre-strain 0.6 degree of torsion for DP1000

  Fig. 4-3. Numerical and experimental moment-Angle curves using the IPT tests loaded in rolling direction.

XFig. 4 -Fig. 4 -For AL1100 :

 44AL1100 Fig. 4-6. Comparison between the experimental and numerical results (a) 45°, (b) 90°, (c) 135° for Al7020.

  (a) Subsequent yield surfaces (b) Hardening flow curve for AL1100 Fig. 4-8. Experimental observations for AL1100. From Fig. 4-8a the shape of subsequent yield surfaces reveals a well-defined ‗nose' in the loading direction and flat in the opposite direction. Considering the character of our model, the parameters can be first identified with the data in pure tensile path. The pure shear and combined situation can be chosen to validate the model.

Fig. 4 -X

 4 Fig. 4-9. Comparison between numerically predicted and experimentally measured yield surfaces for AL1100.

Fig. 4 -

 4 Fig. 4-10. Evolution of subsequent yield surfaces under tension-shear loading path for Al1100.

For the determination of

  the damage parameters (S, s,  , Y 0 , h), PNT tests and SS tests are performed until the final fracture to investigate the ductile damage development under these different loading paths characterized by various triaxiality ratios. With ARAMIS system, 1.0 mm and 4.0 mm away to the horizontal central line of notched part on PNT specimens are chosen as the reference coordinates for local displacement output. Local displacement versus global force for PNT tests is chosen as experimental output, and global displacement versus global force for SS tests can test the damage evolution in shear stress state for microcracks closure h determination. A constant displacement rate of 0.1 mm/s is controlled to insure the quasi-static deformation state.

Fig. 4 -

 4 Fig. 4-11. Design and FEM Mesh for (a) the notched specimen (13240 brick elements C3D8R with the minimum mesh size of 0.15mm) (b) the shear specimen (12410 brick elements C3D8R with the minimum mesh size of 0.15mm).

Fig. 4 -

 4 11 shows the examples of the mesh conditions for PNT and SS specimens. The numerical responses of PNT tests (global forces over local info-node displacements) are used into the optimization program to be compared with the experimental responses. For the inverse optimization methodology, the initial values of input damage parameters and normalization method have big influence on the convergence of the objective function (more details in Appendix A). In order to minimize the objective function, the Trust Region reflective method is used. The experimental responses related to the average linearly interpolated displacements of the local nodes with equal weighting. The optimization process involves the approximate solution of a large linear system based on the method of preconditioned conjugate gradients. For the time consuming, the first guessed input damage parameters can be determined firstly with local method, and then taken into the optimization program as the initial parameters values. The critical damage value at fracture is fixed to be constant of 0.99 in order to capture the full process of material fracture, and  here is fixed to be 4.0   . 0 Y is the threshold damage force value for which the damage influences clearly the stress-strain curve.

Fig. 4 -Fig. 4 -

 44 Fig.4-11 during the iterative process with PNT tests.

Fig. 4 -Fig. 4 -

 44 Fig. 4-12. Numerical and experimental responses comparison of PNT tests (The symbol X indicates the first fully damaged integration point in the specimen) (a) Radius 5.0 mm, (b) Radius 10.0 mm, (c) Radius 20.0 mm.

Fig. 4 -

 4 Fig. 4-16 shows the comparisons of experimental responses and numerical responses for SS tests in two cases: fully coupled and uncoupled models with the same model parameters, which can clearly show the ductile damage influence (induced softening). In Fig.4-16a, the

Fig. 4 -Force

 4 Fig. 4-17. Crack initiation and propagation at the notch region regarding its location on the Force-displacement curve (

  CHAPTER IV IDENTIFICATION AND VALIDATION OF THE PROPOSED CDM MODEL AND FLCS 124 point is shown in Fig. 4-18. During the whole process, the flow tendencies of triaxiality ratios development at the critical and central points of the specimens show to be different. For the central point of SS specimen, it shows constant waving near the 0.1 value, while the value of critical point increases with the strain.

Fig. 4 -

 4 Fig. 4-18. Evolution of the equivalent plastic strain as a function of triaxiality ratio until the final fracture for SS and PNT tests.

  determined parameters are shown in Equation 3-16. Fig 3-51 shows the comparison between the experimental and numerical true stress-true strain curves with a good agreement between them before necking. After the material parameters for Al7020 are determined, we set the strain increment i  = 0.002 and the stress states between simple shear and biaxial tension are divided into 10 parts. The FLD and FLSD curves can be easily obtained with hundreds of calculations with M-K model. As shown in Fig. 4-19, with two initial imperfection factors 0 f = 0.99 and 0 f = 0.998. The FLD and FLSD give different responses. The greater value of 0 f postpones the coming of CHAPTER IV IDENTIFICATION AND VALIDATION OF THE PROPOSED CDM MODEL AND FLCS 125

  Fig. 4-20. Mesh condition for Sample 4 of Nakazima tests.

  -22 we give the more intuitive comparisons for these two simulations of NAK for Al7020 and DP1000, including the maximum values of drawing depths and equivalent strains.

Fig. 4 -(Fig. 4 -

 44 Fig. 4-21. Comparison of the Force-Displacement between experimental and simulation responses.

Fig. 4 -

 4 Fig. 4-29. Comparison of the numerical predicted FLCs and experimental FLCs.

  Fig. 4-31). There are totally 675615 eight-nodes solid elements used for the discretization of the sheet metal specimen.

Fig. 4 -

 4 Fig. 4-30. Half part of the FEM model for CSD test.

Fig. 4 -

 4 Fig. 4-31. Mesh condition of blank for CSD tests (157860 brick elements C3D8R with 2 0.15 0.15mm  in the critical zone).

Fig. 4 -Fig. 4 -Fig. 4 -

 444 Fig. 4-32. Comparison of the force-displacement curves of numerical and experimental responses for CSD tests for Al7020.

.

  Fig. 4-36. Comparisons between the numerical responses for

Fig. 4 -

 4 Fig. 4-37 Comparisons between the numerical responses for

Fig. 4 -

 4 Fig. 4-38. Comparison between the numerical Force-displacement with and without distortion effects.

  Fig 4-39. Comparison of the force-displacement curves of numerical and experimental responses for CSD tests for DP1000

Fig 4 -Fig. 4 -Fig. 4 -

 444 Fig 4-40. Comparison of the force-displacement curves of numerical and experimental responses for CSD tests for CP1200.

Fig. 4 -

 4 Fig. 4-43. Comparison of the macroscopic cracks between simulation and experimentation for DP1000.

Fig. 4 -

 4 Fig. 4-44 Comparison of the macroscopic cracks form between simulation and experimentation for CP1200.

Fig. 4 -Fig. 4 -Fig. 4 -

 444 Fig. 4-45 Scheme of the setup of rectangular drawing tests (RD)

Fig. 4 -Fig. 4 -Fig. 4 -

 444 Fig. 4-47 Comparison of the contour of the displacement, strain, stress and ductile damage got from the simulation using with and without distortion effect

Fig. 4 -Fig. 4 -

 44 Fig. 4-49. Location of four points inside the fracture zone.

  Microcracks closure is introduced to affect damage evolution under a wide range of triaxiality ratios. The introduction of Lode angle parameters (with two formulations) helps to enhance the predictive capabilities of the model. The novelties of the proposed model are the introductions of the Lode angle and the distortion of the yield surfaces during the deformation history. The distortion of the yield surface is described by replacing the usual stress deviator tensor S by a ‗distorted stress' deviator tensor d S , which governs the distortion of the yield surfaces.



  have been used in this analytical model and compared to the predictions of the fully coupled CDM model. An experimental data base has been performed during this study. Three metal sheets are chosen as the test materials DP1000, CP1200 and Al7020. Series of proportional and non-proportional loading paths have been used for the identification and validation of the elastoplastic and damage parameters. These tests include: the Uniaxial tensile tests (UT), In-plane torsion tests (IPT), Pre-notched tension tests (PNT), Simple shear tests (SS), Combined loading tests (CL), Nakazima tests (NAK) and Cross section deep-drawing tests (CSD). Before the parameters identification, a relatively exhaustive numerical parametric study has been conducted in order to analyses the sensitivity of the model parameters on the macroscopic behavior, including the microcracks closure h , the distorsion parameters and the Lode angle parameters. For the identification purpose, an inverse methodology combining MATLAB-based minimization software with ABAQUS FE code through the Python script is used. The best values of the material parameters are determined comparing the output results with the experimental data base by minimizing the objective functions. Finally, applications to some sheet metal forming processes were carried out for three materials as: Cross Section Deep drawing tests (CSD) and Nakazima tests (NAK) are simulated with the fully coupled CDM model. Some pre-strain conditions are assumed to test the distortion of the yield surfaces on the plasticity and damage evolution during CSD tests. On the other hand, the FLD and FLSD are also used for failure prediction of the CSD tests with the material Al7020. Through the comparisons of the damage initiation and propagation, the high capability of the fully coupled CDM model is proved.

  11) où e e désigne la partie déviatorique du tenseur des petites déformations élastiques e des microfissures en compression. En utilisant les variables effectives, définies ci-dessus, dans l'énergie libre de Helmholtz pris comme un potentiel d'Etat, les relations d'état suivantes peuvent être facilement obtenues [Saanouni94, Badreddine10, Saanouni 12] :

  équivalente anisotrope Hill48 caractérisée par un opérateur anisotrope avec 6 paramètres d'anisotropie: F, G, H, L, M et N.  y est la limite d'élasticité initiale et a et b caractérisent la non-linéarité de l'écrouissage cinématique et isotrope. S , s ,  et 0

e

  toutefois, il sera gardé comme la principale inconnue à chaque point d'intégration de chaque élément fini. Ce modèle est mis en oeuvre dans ABAQUS / Explicit © code aux éléments finis à travers la routine de l'utilisateur VUMAT. Ce sous-programme est développé en utilisant un algorithme itératif numérique purement implicite d'intégration[Saanouni03,[START_REF] Badreddine | On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming[END_REF][START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF].I.2 Courbes limites de formage pour les tôles (CLF) A propos la construction CLFPour la détermination expérimentale de la CLF, les essais de Nakazima etde Marciniak sont les plus communément utilisées. Les deux essais peuvent être effectués sur machine d'essai de Erichsen. Une brève description de l'approche M-K L'approche Marciniak -Kuczynski (MK) est basée sur la croissance d'un défaut initial comme inhomogénéité sous la forme d'une bande étroite inclinée d'un angle ( 0 ) par rapport à l'axe principal (Fig. 1-8). En Plasticité rigide, l'état de contraintes planes et l'écrouissage isotrope du matériau sont supposés. Le défaut de géométrie dans la zone b est caractérisé par un rapport 0 f des épaisseurs : représentent l'épaisseur initiale dans la zone b et la zone a. Le repère (x, y, z) défini les axes de laminage, transversal et normal de la plaque, tandis que les directions 1, 2 et 3 représentent les directions des contrainte principales dans la région homogène. Dans la zone de la rainure , n et t représentent le sens normal et longitudinal de la rainure.

Fig. 1 .

 1 Fig. 1. Schématisation de l'approche M-K. La condition d'équilibre qui indique l'équilibre des forces conduit aux équations suivantes:

X

  38)différents espaces des contraintes : le plan déviatorique ( commande le rapport de distorsion de la surface de charge, mais ne change pas sa taille ; alors que 2 l X commande la taille transversale des surfaces de charge orthogonalement à la direction de chargement. La décroissance de 2 l X entraine une croissance de la taille de la surface de charge.
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 22 Fig. 2. Influence des paramètres de distorsion 1 c X et 2 c X sur les évolutions de la surface de

Fig. 3 .

 3 Fig. 3. Effet des paramètres de distorsion sur les courbes de contrainte équivalent déformation plastique après 12 % de pré-contrainte

Fig. 4 .

 4 Fig. 4. Locus de fracture dans le plan de l'état de stress pour le type proposé évolution de l'endommagement. La contribution de l'angle de Lode de () S  pour le modèle de Wierzbicki et le modèle de Cao sur l'évolution de l'endommagement pour ( 12 1 et 0 cc  ) est maintenant étudiée. Il se trouve que ces deux formes donnent approximativement les mêmes valeurs avec la modification des paramètres de Lode, de sorte que ces deux formes peuvent être considérées comme identiques. Dans la Fig.4 les déformations plastiques équivalentes à la rupture sont tracées en fonction du rapport de triaxialité avec ( 12 1 cc  ). Ces résultats ont montré que la déformation à la rupture n'est pas une fonction monotone décroissante de la triaxialité des contraintes lorsque le paramètre Lode est considéré. Pour les fortes valeur de triaxialité des contraintes, où le mécanisme de croissance sphérique des cavités joue un rôle majeur dans le processus d'évolution des dommages, la déformation plastique équivalente diminue avec l'augmentation du rapport de triaxialité des contraintes. Dans la plage de 0 0.33   et
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  par un essai de tension-cisaillement avec une certaine déformation plastique équivalente. Selon les besoins, le 2 l X sera déterminé.

  Fig. 5. Evolution du comportement après 18% de pré-tension pour Al7020.

X

  est égal à 30.0 MPa, la surface de charge couvre la valeur expérimentale √3×197 MPa. La valeur optimale de 1 P l X qui contrôle l'écoulement est choisie à 100.0 MPa.
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 39 Fig. 6. FLDs et FLSDs expérimentales et théoriques pour Al7020
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 10 Fig. 10. Model E.F. de l'essai d'emboutissage en croix.
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 11 Fig. 11. Propriétés du Maillage de la tôle de l'essai d'emboutissage en croix (157860 hexaédrique C3D8R avec une taille de

Fig. 12 .

 12 Fig. 12.Comparaison des courbes expérimentale et numérique en termes de force-déplacement obtenues avec l'essai d'emboutissage en croix avec l' Al7020.

Fig. 16 .

 16 Fig. 16.Comparaison du trajet de fissure expérimental et numérique obtenu avec le modèle couplé à l'endommagement pour le DP1000.

Fig. 17 .

 17 Fig. 17. Comparaison du trajet de fissure expérimental et numérique obtenu avec le modèle couplé à l'endommagement pour le CP1200.

1 cdd,

 1  . Die stark Kopplung zwischen der plastischen Verfestigung und der duktilen Schädigung wurde als Gesamtenergieäquivalenz angenommen[START_REF] Saanouni | On the an elastic flow with damage[END_REF][START_REF] Saanouni | Damage Mechanics in Metal Forming: Advanced Modeling and Numerical Simulation[END_REF], zusammenhängend mit der Definition der effektiven Zustandsvariablen rR . Daraus ergeben sich zwei Funktionen der Schädigungseffekte:

  Parameter C und Q entspricht die kinematische und isotrope Verfestigung des Moduls. Dies kann erreicht werden, indem die Spannungs-und Dehungstensoren in positive und negative Anteile zerlegt werden. Hierfür wird jeder symmetrischer Tensor zweiter Stufe Stufe. Die additiven Zerlegung dieses Tensor in positive und negative Anteilen T T und i e die zugehörige Eigenvektor ist. Die Notation x gibt nur den positiven Wert der Notationx i.e. xx  wenn x  0 und 0 x  wenn 0 x  wieder. Dementsprechend wird der Effekt der duktilen Schädigung des elastischen Verhaltens der effektiven Variablen der Gleichung (1) beschrieben, modifiziert und in deviatorische und hydrostatischen Teile wie folgend zerlegt:

(

  

  11) wobei e e für den deviatorischen Teil kleinet elastischet Verzerrungstensor e  steht und der Parameter   0.0 1.0 h  als Rissschließungsparameter für Mikrorisse darstellt. Durch die Verwendung der effektiven Dehungsvariablen, wie zuvor in der Helmholtz freie Energie definiert ist und als Zustandspotenzial genommen wird, ergeben folglich die neue Ausdrücke für  und e Y [Saanouni94, Saanouni12]:

Fließfunktion,

  Dissipationpotenzial und Evolutionsgleichungen Es wird eine nicht-assoziative Plastizität verwendet und eine Fließfunktion f und ein plastisches Potential F , welches beide eine positive und konvexe Funktion im Spannungsraum annimmt und aus der Beziehungen der Evolution die Normalitätsregel gilt. In dieser Studie wird ein einzelnes Flächenmodell verwendet, um das beschädigte elastoplastische Verhalten mit der gleichen Fließfunktion und plastischenPotential zu beschreiben:

Der plastische Multiplikator  kann aus

  , Badreddine10, Saanouni12], jedoch gilt er an jedem Integrationspunkt jedes Finite-Elemente als Unbekannt und mit Hilfe der FE berechnet wird. Dieses Modell wird in ABAQUS / Explicit © Finite-Elemente-Code durch die ein VUMAT-Code implementiert (siehe nächstes Kapitel II).

  Marciniak Kuczynski-Modell (M-K) basiert auf das Wachstum von anfänglichen Defekten und Inhomogenitäten in Form von schmalen Bändern und mit einem orientierten Winkel ( 0  ), welcher auf die Hauptachse ausgerichtet ist. Starre Plastizität, ebenen Spannungszustand und isotropen Verfestigung am Werkstoff kann angenommen werden. Eine detaillierte Beschreibung des theoretischen MK-Ansatzes ist in Fig. 1-8 schematisch dargestellt und wird in vielen Publikationen [Marciniak67, Barata89] verwendet. Die Defektgeometrie in der Zone B wird durch das Dickenverhältnis gekennzeichnet in zone b und zone a separat darstellt. Die x, y, z Achsen entsprechen der walz, quer-und senkrechten Richtungen der Folie, während 1, 2 und 3 die Hauptspannungen und Belastungrichtungen in der homogenen Region ist. In der Nutzone stellt n und t die normale und die Längsrichtung der Nut dar.

Fig. 1 .

 1 Fig. 1. Anfangsbedingungen für die M-K-Ansatz.

  ist die Lösung nicht elastisch. Hierbei ist es erforderlich für , , , , X Y R D  eine plastische Korrektur einzuführen, damit sichergestellt werden kann, dass folgende Gleichung gilt: Parameter gegenüber dem makroskopischen Verhalten untersucht werden, um das Modell besser verstehen zu können. In dem vorgeschlagenen Modell werdenn neue Parameter eingeführt: Mikrorissschließungsfaktor h , Verzerrungsparameter und ein neuer Therm () S  , welcher verwendet wird, um die Lode Parameter  bei der Schädigungsentwicklung zu erhalten. In den nächsten Abschnitten werden die neunen Parameter kurz beschrieben. Distorsionsisomere Parametereinfluss auf nachfolgende Fließfläche Um den Einfluss des Verzerrungsparameters auf das vorgeschlagenen Modells zu untersuchen, wird ein isotropes Werkstoffverhalten mit den Parameter in Tabelle 3-5 betrachtet. Das Fig. 3-40 vergleicht die Anfangsoberfläche ohne Verzerrung der Fließflächen nach 5% p eq  , die Spannungen in verschiedenen Räumen bzw. in deviatorischen Hauptspannungsebene und die Spannung in der Scherebene.

Fig. 2 .

 2 Fig. 2. Darstellung der Spannungsoberfläche für verschiedene Räume: Effekt der Verzerrungsparameter 1 c X und 2 c X

Fig. 3 .

 3 Fig.3. Einfluss des distorsionalen Parameters auf die Vergleichsspannung-plastische Dehnungskurven nach 12% Vordehnung.

Fig. 4 .

 4 Fig. 4. Fracture Locus in ebenen Spannungszustand für vorgeschlagene Art Schädigungsentwicklung.
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 53 Fig. 5. Nachfolgende Verhalten Nach 18.0% Vorspannung für Al7020.Identifizierung der duktilen Schädigungsparameter

Fig. 6 .

 6 Fig.6. Experimentelle und theoretische Flds und FLSDs mit dem MK-Ansatz bei Al7020.

Fig. 8 .Fig. 4 -

 84 Fig.8. Vergleich der Genzverschiebung und plastische Vergleichsdehnung bei (a) Al7020, (b) DP1000.

Fig. 9 .Fig. 12 .

 912 Fig. 9. Vergleich der numerischen FLCs und der experimentellen FLCs

Fig 13 .

 13 Fig 13. Vergleich der Kraft-Weg-Kurven zwischen Simulation und Experiment beim CSD-Tests.

Fig. 14 .

 14 Fig. 14. Vergleich des Rissbereichs zwischen Simulation und Experiment beim DP1000.

Fig. 15 .

 15 Fig. 15. Vergleich des Rissbereichs zwischen Simulation und Experiment beim CP1200.

  which includes: operate the ABAQUS simulation, read global data, compare the results with the experimental measurements, build and minimize the objective function, optimize parameters and update the input file. The detail of the optimization process is shown in Fig. 3-48. The verification of the developed optimization scheme is given below. The verification study depends on uniaxial tension of a single finite element which is free of the mesh size effects. The analytical expression for the damage development for this stress state is given in Equation A4. Initially, the test is run for a known parameter set of E = 200000 MPa and  = 0.3,  y = 900 MPa, K = 100 and (S, s, ) as (0.5, 1.0, 3.0) and the response is recorded, the (x are chosen to be (0~1, 0~3, 0~5) for (S, s, ) with empirical assumption. Then, the target damage parameters can be identified with different sets of initial values. show the importance of initial value for the convergence, two comparable examples with different initial set of values are given. The convergence pattern with initial set of (S, s, ) = (0.75, 0.4, 2.

Fig. A1 .

 A1 Fig. A1. The parameters convergence process with initial set of (S, s, ) = (0.75, 0.4, 2.2)

  

  

  

  

  

  

  

Table 1
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-1.

Table 1 -

 1 1. Internal variables and their associated or dual variables.

		Internal variables	Dual variables
	Elasticity:		e	
	Kinematic hardening:		X
	Isotropic hardening:	r		R
	Ductile damage	d	Y

Aspects Content

  Global resolution scheme ................................................................ II.2.2 Local integration scheme: state variables computation ........................................ II.2.3 Numerical treatment of contact with friction ....................................................... II.3 Numerical Aspect of M-K approach .......................................................................... II.4 Conclusions ..............................................................................................................

	II.1 Introduction ..............................................................................................................
	II.2 Numerical implementation of the proposed model .....................................................
	II.2.1 Time and space discretizations of the IBVP ........................................................
	II.2.1.1 Strong and weak forms of the IBVP .................................................
	II.2.1.2 Space discretizations of the IBVP ...................................................
	II.2.1.3 Time discretization of the IBVP ......................................................
	II.2.1.4

Table 3 -

 3 

	DP1000	Fe	C	Si	P	Mn	S	Cr	Ni	Al	Co
		Bal 0.16	0.49	1.5	0.011	0.002	0.44	0.035	0.043	0.016
	CP1200	Fe	C	Si	P	Mn	S	Al	Ti+Nb	Cr+Mo	V
		Bal 0.23	0.8	0.08	2.2	0.015	2	0.15	1.2	0.2
	Al7020	Al	Si	Fe	Cu	Mn	Cr	Mg	Zn	Zr+Ti	Other
		Bal 0.35	0.40	0.20	0.05-0.5	0.10-0.35	1.0-1.4	0.08-0.2	0.08-0.2	0.15

1. Chemical composition in wt.% III.2.2 Experimental procedures III.2.2.1 Uniaxial tensile tests (UT) (a) Universal tensile machine (b) Specimen position Fig. 3-2. Experimental setup for UT test (IUL/TUD). The uniaxial tensile test (or standard tensile test) is conducted on Zwick 250 machine with velocity of 0.1 mm/s (quasi-static loading conditions) available in IUL/TUD. UT tests are carried out on rectangular samples of dimension
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 3 

	-2.			
	Rolling	DP1000	CP1200	Al7020

L r  -value for three directions of each material.

Table 3

 3 

	-5 Assumed Model parameters				
	E (GPa)		y  (MPa)	F	G H	L	M
	72.						

Table 3

 3 

	-6 Assumed material parameters.				
	E (GPa)		y  (MPa)	F	G	H	L	M
	69.8	0.3	322.0	1.5	1.5	1.5	0.5	0.5
	N	C (MPa) a	Q (MPa) b	l1 X p	l1 X C	X	l2
	0.5	2260.0	75.0	675.0	7.0	100.0	100.0	150.0
	S	s		Y0	Dc	h		
	2.5	1.5	3.0	0.0	0.99	0.2		

Table 4 -

 4 CHAPTER IV IDENTIFICATION AND VALIDATION OF THE PROPOSED CDM MODEL AND FLCS 109 After dozens of optimization cycles, the determined best values of the material parameters of the proposed model are summarized in Table 4-2. 2 Elastoplastic parameters obtained from UT and IPT specimens for the materials under concern

Table 4
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	-5 Elasto-plastic parameters for Al7020					
	E (GPa)		 y (MPa)	F	G	H	L	M	N
	69.8	0.3	322	0.631	0.634	0.366	1.5	1.5	1.4
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	-2 and
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[START_REF]Parametric study of M-K approach[END_REF] 

without yield surface distortion effect.

Introduction

  Dans cette étude, un modèle couplé à l'endommagement ductile est proposé, qui tient compte des anisotropies initiales et induites avec écrouissage non linéaire mixte isotrope et cinématique. La fermeture des microfissures et l'angle de Lode sont introduits pour influencer la vitesse d'endommagement dans une large gamme de rapports de triaxialité des contraintes.La distorsion de la surface de charge est décrite par le remplacement de l'habituel tenseur déviateur des contraintes par un tenseur déviateur ‗de distorsion', qui régit la distorsion des surfaces de charge. Ce modèle, validé par de nombreux essais, est capable de représenter de nombreux résultats expérimentaux. La mise en oeuvre numérique a été réalisée et une série d'études numériques menée pour vérifier le modèle proposé. En outre, une approche MK (Marciniak-Kuczynski) est utilisée pour tracer les courbes limites de formage en déformations CLF (FLD) et en contraintes CLFC (FLSD) afin de comparer la prédiction de la rupture avec le modèle proposé d'endommagement ductile.

	La thèse se compose de 4 chapitres.

Chapitre I

Aspects théoriques I.1 Formulation d'équations constitutives du modèle élastoplastique couplé à l'endommagement Sélection des variables d'état et des variables effectives

  

	Dans ce chapitre, des équations constitutives élastoplastiques fortement couplées à
	l'endommagement ductile isotrope sont formulées dans un cadre thermodynamiquement-
	cohérent. Le couplage fort entre l'écoulement plastique avec écrouissage et l'endommagement
	ductile est réalisé dans le cadre de l'hypothèse de l'équivalence en énergie totale conduisant à
	la définition des variables d'état effectives qui sont : l'écoulement élastoplastique ( , ) e ,
	l'écrouissage cinématique ( , ) X 	et l'écrouissage isotrope ( , ) rR:

  variables effectives sont utilisées dans les potentiels d'état et des dissipations afin de décrire le comportement élastoplastique endommagé. L'énergie libre de Helmholtz

	     , e 	,	, rd		, fonction positive et convexe de toutes les variables d'état dans l'espace des
	déformations est retenue comme potentiel d'Etat. En supposant que la déformation plastique
	n'est pas d'effet sur le comportement élastique, le potentiel d'état peut être décomposé de
	façon additive comme suit (cas isotherme) :	
						( , , , ) ee ( , ) ep r d d        ( , , ) r d 	(4)
	avec							
					e	( , ) e d	2 ( : ) (1 ) e EE 2(1 )(1 2 ) 2(1 ) I d	e ( : )(1 ) e d
					p	( , , ) r d	11 : (1 ) 32 C d	Qr	2	(1	d 	)

II.1 application numérique du modèle proposé Programme d'intégration locale: calcul des variables d'état

  

											S		c
	S		S			d		S X R	S	d	X	S	S	SX XX	X	d
	S	n	n	tr		n							e
		n	e	d	n	e n e		hd	n	e n e		f
			e	d	n	tr	e				
	Quel que soit le schéma global de la résolution utilisée , nous devons calculer les opérateurs
	élémentaires que sont la matrice et les vecteurs caractérisant le problème d'évolution, qui sont
	définis par les intégrales de volume ou de surface pour chaque élément de référence. Ce
	calcul passe par la connaissance de toutes les variables d'état qui sont décrites par les
	équations constitutives. Pour résoudre ces équations, le schéma de prédiction élastique et
	correction plastique est utilisée.				

2 Formulierung der vorgeschlagenen voll gekoppelten Modell Auswahl der Zustandsvariabelen und effektiven Zustandsvariablen

  leurs effets sur les évolutions de l'ensemble variables décrivant l'état mécanique et plus particulièrement sur l'endommagement. Cet objectif est motivé par le fait que les zones critiques qui se développent lors de la mise en forme d'une tôle et où apparaissent des déformations plastiques élevées et par conséquent des dommages ductile localisé, sont les lieux de trajets de chargement loin d'être monotones et proportionnels. Beaucoup de travail reste à faire afin d'étendre le modèle proposé d'une part pour l'appliqué sur des trajets de chargement non proportionnels divers et variés et d'une autre part pour couvrir d'autre aspects plus généraux, tels que: l'anisotropie de l'endommagement, la prise en compte de la non localité de l'endommagement dans le cadre d'une formulation Micromorphe, la viscoplasticité dans le cadre d'une formulation thermomécanique couplé... Cette extension nécessite bien entendu le développement d'une base de données expérimentale assez complète permettant de couvrir des trajets de chargements plus complexes. Cette base de données servira à alimenter la méthodologie d'identification des paramètres du modèle de comportement qui dans sa version la plus générale contiendra des dizaines de paramètres. In dieser Arbeit wird ein vollständigs, gekoppeltes, duktiles Schädigungsmodell vorgeschlagen, welche die anfängliche-und induzierte Anisotropie der Fließfläche sowie die isotrope und kinematische Verfestigung berücksichtigt. Ebenfalls wird in diesem Modell die Mikrorissschließung betrachtet, um die Formänderungsgrenze bei niedrigem Triaxialitätsverhältnis zu erhalten. Der Lode-Winkel-Parameter nimmt drei Formen in die Gleichung der Schädigungsentwicklung ein, um den Einfluss der Umformgrenzen bei positiver und negativer Triaxialität zu erhalten. Das vorgeschlagene Modell kann viele bestehende Umformprozesse wiedergeben und wurde durch weitere Versuchreihe überprüft.

	durch eine "verzerrte Spannung" d S ersetzen wird [François01]. Diese wird als neue Umfangreiche zusammengefasst in Deutch thermodynamische Kraft angesehen und ist lediglich eine Funktion der vorhandenen
	Variablen. Es sei darauf hingewiesen, dass die Schädiungsvariable einen Wert zwischen 0 und
	1 ist. Ist ein vollständiger Bruch des RVEs (repräsenatives Volumeelement) erreicht, so
	Einführung: entspricht der Wert
	In dieser Studie wurde ein elastoplastische Stoffgesetz, welches vollständig mit einer
	isotropen, duktilen Schädigung und einem thermodynamischen Stoffgesetz [Saanouni94,
	Badreddine10, Saanouni12] gekoppelt ist, vorgeschlagen. Theoretische, numerische und
	applikative Aspekte der vollständigen, gekoppelten Formulierungen sind in [Saanouni12] zu
	finden. Im Rahmen dieser Arbeit wird vollständiges gekoppeltes Modell zur Beschreibung der
	verzerrten Fließfläche in [Saanouni12], welches auf das oben beschriebenen François 'Modell
	basiert, verwendet und erweitert. Es werden folgenden Paare von Zustandsvariablen
	verwendet: (i) ( e , ) für das elastoplastische Fließen; (ii) (, X) für die kinematische
	Verfestigung, welche die Fließfläche beschreibt; (iii) (r, R) für die isotrope Verfestigung, die
	den veränderten Radius der Fließfläche darstellt und (v) (d, Y), welche die isotrope, duktile
	Schädigung darstellt [Lemaitre85, Saanouni12]. Die Verzerrung der Fließfläche während der
	Verformung wird durch Spannungentensoren beschrieben, wobei der Spannungsdeviator S

Afin de valider toute cette modélisation avancée il primordiale de mettre en oeuvre une panoplie d'essais de mise en forme couvrant une grande partie des procédés industriels complexes . Die Umsetzung des vorgeschlagenen Bruchmodells erfolgte numerisch und wurde anhand von numerischen Versuchsreihen auf die Gültigkeit überprüft. Darüber hinaus wird ein MK-Ansatz entwickelt, um den Vergleich zwischen FLDs, FLSDs und duktilen Schädigung hinsichtlich der Vorhersage des Bruchversagens zu erhalten. Kapitel I Theoretische Aspekte I.

  gilt Dies ist der einfachste Weg, um die Schädigungsrate unter Zug und Druckbelastung zu unterscheiden (siehe Kapitel III).

			e ee d e e hd e          	( ) 1 e   e d tr hd tr       	(12)
			Y	e		2	: ee : e e e e e e h e e           	22 ( ) e h tr   ( ) e tr     	(13)
	Aus der Gleichung (1-74) geht hervor, dass der Mikrorissschließungsparameter h die
	elastische Schädigungskraft e Y bei Drucklast reduziert, wenn 1 h  ist und wenn keine
	Druckbelastung vorherscht	h 	0

  , gilt die Annahme, dass die elastische Belastung richtig ist. Daraus ergeben sich folgende Lösungen:

		n			e 	e n e   e n n n d hd e       		e 	(   ) 1 e e n n n n d tr hd tr         	(31)
							S	* n	1 	* n  1 () * 1 n tr   	I	(32)
							e	1   e n	  1 e n  1 1 3 e n tr     	I	(33)
							S	* 0( 1) n 		S	* ( 1) n 		S	* x n ( 1) 	und	S	* x n ( 1) 		* ( 1) XX : : n SX 	n		X	n	(34)
																						nn
							S		* ( 1) d n c 		S	* n	1 		* 0( 1) 1 / 1 : n n S X R 1 2 ( c l S     * 0( 1) n n d  		y	)	X	n		2 2 ( / 1 : n l n XX X R   n n d 		y	)	S	* 0( 1) n 	(35)
	Anschließend werden diese Zustandsgrößen in die Fließfunktion importiert:
							f	* dn ( 1) 1 SX n d  ** 11 ( , , , ) 1 n n H n n n n n R X R d d         	n y		0	(36)
																						n
	Wenn ** 11 ( n n f  	, , , ) 0 n n n X R d 								

2

Modells übersteigen können Materialparameter facilicate.

Schließlich haben mehr industrielle Tests, um in einer Vielzahl von komplexen

Bildungsprozesse, die helfen, diese erweiterten vollständig gekoppelten Stoffgesetze zu überprüfen durchgeführt werden.

X is set to be infinite (value higher than 10 4 ), and will not affect the subsequent hardening.

In Fig. 4-5, the results for DP1000 are given for a pre-strain 5% in tension, and the determined distortion parameters are ( 1 

:

:

Correction plastique :

 alors la solution du problème est plastique et on doit corriger les variables « essai » pour garantir que

 . Cela revient à résoudre les équations (30) après réduction du nombre d'équations pour économiser le temps CPU conduisant au système suivant :

: 1 1 

III.2 Etude paramétrique et identification des modèles proposés

Avant de déterminer les paramètres matériaux intervenant dans les équations du modèle, une étude paramétrique sur la sensibilité de la réponse du modèle aux divers paramètres est menée.

La sensibilité aux valeurs de plusieurs paramètres a été faite en détail dans plusieurs publications (voir par exemple Saanouni 10). Ici nous nous limitons à l'étude de sensibilité sur les nouveaux paramètres introduits pour décrire la distorsion de la surface de charge et les paramètres relatifs à l'effet de l'angle de Lode sur la vitesse d'endommagement.

Effets des paramètres de distorsion sur les surfaces des charges

La Fig. 2 compare la surface de charge initiale aux surfaces de charge après 5% de p eq  dans

Plastische Korrektur:

Die Gleichung (2-28) beinhaltet viele nichtlineare Gleichungen für die Elastoplastizität, die verzerrende Verfestigung und auch die isotrope duktile Schädigung. Um die Effizienz der Berechnung zu erhöhen, die es notwendig, die Größen des Systems zu reduzieren: 

Mit Hilfe der tensoriellen Diskretisierung des Newton-Raphson-Verfahrens kann das System reduziert werden. Die Werkstoffkomponenten der Jacobi-Matrix in Gl. (2-13) sind im Anhang zufinden. Sobald die Korrekturgrößen 1 

III.3 Parametrische Untersuchung und Identifikation der vorgeschlagenen

Modelle

Vor der Berechnung der Eingangsparameter sollte eine Studie über die Empfindlichkeit der

Appendix A

The hybrid experimental-numerical methodology used in this paper belongs to the inverse approach category, where certain input data is deduced from the comparison between the experimental results and numerical simulation results. Here, the relevant information from experiments can be the displacement-load responses or full-field surface measurements with optical measurement system. The inverse method here is narrowed to the optimization of the material parameters including hardening parameters and damage parameters. The basic principle of inverse methodology is almost the same, which is to search the minimum error value between simulation and experiment responses.

where () i gx is the objective function expressed in terms of weighted least square form,