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Abstract

Flight Data Monitoring (FDM), is the process by which an airline rou-
tinely collects, processes, and analyses the data recorded in aircrafts
with the goal of improving the overall safety or operational efficiency.

The goal of this thesis is to investigate machine learning methods,
and in particular kernel methods, for the detection of atypical flights
that may present problems that cannot be found using traditional
methods. Atypical flights may present safety of operational issues
and thus need to be studied by an FDM expert.

In the first part we propose a novel method for anomaly detection that
is suited to the constraints of the field of FDM. We rely on a novel
dimensionality reduction technique called kernel entropy component
analysis to design a method which is both unsupervised and robust.

In the second part we solve the most salient issue regarding the field
of FDM, which is how the data is structured. Firstly, we extend
the method to take into account parameters of diverse types such
as continuous, discrete or angular. Secondly, we explore techniques
to take into account the temporal aspect of flights and propose a
new kernel in the family of dynamic time warping techniques, and
demonstrate that it is faster to compute than competing techniques
and is positive definite.

We illustrate our approach with promising results on real world datasets
from two partner airlines comprising hundreds of flights.



Résumé

L’analyse de données de vols appliquée aux opérations aériennes ou
”Flight Data Monitoring” (FDM), est le processus par lequel une
compagnie aérienne recueille, analyse et traite de façon régulière les
données enregistrées dans les avions, dans le but d’améliorer de façon
globale la sécurité.

L’objectif de cette thèse est d’élaborer dans le cadre des méthodes
à noyau, des techniques pour la détection des vols atypiques qui
présentent potentiellement des problèmes qui ne peuvent être trouvés
en utilisant les méthodes classiques.

Dans la première partie, nous proposons une nouvelle méthode pour
la détection d’anomalies. Nous utilisons une nouvelle technique de
réduction de dimension appelée analyse en entropie principale par
noyau afin de concevoir une méthode qui est à la fois non supervisée
et robuste.

Dans la deuxième partie, nous résolvons le problème de la structure
des données dans le domaine FDM. Tout d’abord, nous étendons la
méthode pour prendre en compte les paramètres de différents types
tels que continus, discrets ou angulaires. Ensuite, nous explorons des
techniques permettant de prendre en compte l’aspect temporel des
vols et proposons un nouveau noyau dans la famille des techniques de
déformation de temps dynamique, et démontrons qu’il est plus rapide
à calculer que les techniques concurrentes et est de plus défini positif.

Nous illustrons notre approche avec des résultats prometteurs sur des
données réelles de deux compagnies aériennes partenaires comprenant
plusieurs centaines de vols.



Je dédie cette thèse à mes parents.
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de ce travail.
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Important Note
For confidentiality reasons we could not disclose the name of the two airline
companies which have provided data as well as feedback for these studies.

These airlines will thus be called respectively Airline1 and Airline2 in this
work. Whenever necessary we will change the name of cities or maps if these

could be used to identify the companies.
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Chapter 1

Introduction

1.1 Introduction to the Industrial Context

1.1.1 Flight Safety

It is widely agreed that aviation is one of the safest means of transport, at least
in terms of fatalities per kilometers. However, the aviation community is under
constant pressure to achieve safety improvement. As seen in Figure 1.1, the
accident rate has been relatively stable since the early 80s. However, the volume
of air transportation traffic has surged in the last two decades, going from about
twenty-five million flight hours per year to more than fifty million in 2012 [Boeing,
2013] and will very likely continue to grow. This will result in an overall increase
in the number of accidents and fatalities. This increase in the number of accidents
is unacceptable for neither aircraft manufacturers nor airlines. Aside from the
tragic human losses, each accident comes with huge financial and economical cost,
from the replacement and loss of revenue of the aircraft to the media exposure
following any accident.

Flight failures are often due to a combination of factors, either technical,
such as for example an engine or a structural failure; or natural events such as
lightning, ice, bird strikes; or human factors such as crew errors, organizational
failure, improper communications etc.

The flight industry as a whole has been working on these issues since the
very beginning of commercial airborne transportation. Aircraft and component
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Figure 1.1: Evolution of accident rates and fatalities from 1959 to 2012. Source:
[Boeing, 2013]

manufacturers have designed ever more reliable and safe aircrafts, the regulation
has evolved, and a number of other innovations were developed such as navigation
aids, instrument flight etc.

Among these innovations one of the most important is the invention of flight
data recorders (commonly called “black boxes”) that are embedded into aircrafts.

1.1.2 Flight Data Recorders

The first flight data recorder was invented by François Hussenot and Paul Beau-
doin in 1939. It was a photograph-based flight recorder; the image on the photo-
graphic film was made by a thin ray of light deviated by a tilted mirror according
to the magnitude of the data to record. The photographic foil had to be re-
vealed, much in the same way as analog photographies. Another technique was
the metal foil engraver, where the continuous movement of a metallic stylus is
used to record parameters. Contrary to the photographic technique the metal foil
could be read almost directly. Around 1954 in Australia Dr David Warren pro-
duced the first recorder combining voice and data, using an innovative magnetic
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recording medium. At this time, flight data recorders were used to investigate
crashes, and thus these devices were put in fire and shock proof cases. Modern
recorders must comply with the specifications from the European Organization
for Civil Aviation Electronics (EUROCAE), such as for example [EUROCAE,
2003] resistance to impact shock, penetration, crush, high temperature, deep sea
pressure and fluid immersion. One of the manufacturers of these types of recorder
was the Société de Fabrication d’Instruments de Mesure 1 (SFIM) More informa-
tion regarding flight data recorders can be found in [Mendes, 2012].

1.1.3 Flight Data Monitoring

1.1.3.1 Presentation

From the 1960’s some airlines found it beneficial to analyze crash recorder data
to assist for maintenance. Multiple replays tended to reduce the lifespan of crash
recorder and consequently Quick Access Recorder (QAR) were introduced to
record data in parallel with the crash recorder, and the data were used for the
prevention of accidents. As storage capacity increased over the years, it became
possible to store data from several flights. These technological advancements lead
to the first Flight Data Monitoring (FDM) programs.

As defined by the Civil Aviation Authority (CAA) FDM is the “systematic,
pro-active and non-punitive use of digital flight data from routine operations to
improve aviation safety”. The idea is to make use of the data recorded on flight,
not only after a crash for investigation, but also for the prevention of accidents.

Since 2005, by legislation of the International Civil Aviation Organization
(ICAO) it is now mandatory to carry a FDM program for any commercial aircraft
of more than 27 tonnes.

1.1.3.2 The Four Stages of FDM

A typical FDM program can be divided into four phases. First, the transfer part,
which consists in recovering data from the aircraft. This can be done in many
ways, for example by downloading data from the aircraft QAR into a portable

1Now known as SAGEM Défense Sécurité of the SAFRAN Group.
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solid state drive or by wirelessly uploading data to the operator office via radio
or satellite.

The second phase is the processing phase, where raw data frames are first
decoded into engineering values. Then, in a classical event-driven analysis tech-
nique, a specific software such as SAGEM’s Analysis Ground Station (AGS) sifts
through the data in search of specific events, which most of the time are defined
as threshold exceedances on certain parameters. Events can be defined either by
the manufacturer, the airline or the legislation. For example an engine manufac-
turer may define thresholds on engine parameters to ensure that the engine stays
within the physical limits it was designed to. The airline on another hand will be
more interested for example in parameters related to the descent profile in order
to identify deviations from the Standard Operating Procedures (SOP).

The third phase is the validation phase. Each event that was detected in the
previous phase is examined by an analyst, an expert in flight procedures. Its
role is to assess if the events are of real safety concern. The software provides a
number of tools in order to assist the analyst, such as search facilities, graphical
representations, charts, key statistics etc. If an event is deemed to be important,
it is reported to the airline, and in particular to the Safety Officer (SO), a pilot
in the airline company who stands between the airline, the FDM provider and
other pilots.

The final phase is the remedial action phase. Informed of a critical event, the
SO is responsible for taking action in his company. The FDM culture is a just
and non-punitive culture. Pilots and crews are in general quite reluctant to see
their data thoroughly studied as is done in a FDM program, this is because of
a fear of punishment, even though in the vast majority of cases an accident is
due to a systemic or organizational failure and not to a single individual. As a
consequence, most of the time, data are anonymized so that it is not possible
to recover the pilot or crew identity of a flight. Thus, the actions consist in
modifying the training procedures or SOPs in order to reduce the identified risk.

Note that FDM is not restricted to safety aspect, operational efficiency such as
fuel consumption is also an important subject. As outlined by these four phases,
the goal of FDM is a continuous improvement of both safety and efficiency through
preventive and corrective actions.
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1.1.3.3 Limits of the Current Approach

There are however some limits to the current event-driven approach, and these
have pushed operators to search for more advanced techniques.

The first limitation is that a strictly event-based FDM program can only by
design detect problems which were foreseen during the creation of the event table.
This is unfortunate since from a safety perspective it would be very valuable on
the contrary to detect unexpected problems.

The second limitation is that as the instruments and flight recorders gain
in sophistication there are ever more parameters that are recorded in modern
aircraft. As a comparison, the first flight data recorders that were used in a FDM
program could store a handful of parameters, whereas in a modern aircraft such
as the A380 more than 2000 parameters are recorded, some at a frequency of
more than 32 Hz. There is thus a massive increase in the volume of data that
is recorded and can be studied in a FDM program, however much of this data
is stored but not used in most FDM program. This is because operators rely
on tried-and-true fundamental parameters that are well-known by actors in the
industry. This still leaves however a huge volume of data that is available but
not used, and which represents, a priori, a great value for airline companies.

1.2 Goal of Thesis

The goal of the work described in this thesis is to create a method to detect atypical
flights among a dataset of hundreds or thousands of flights.

An atypical flight is a flight which is in a sense different from most other
flights in a dataset, consequently such a flight may present operational or safety
issues and thus needs to be studied by an expert, in the same way that flights
which exhibit classical events are studied by experts. Such method should be
complementary with classical event-based techniques, with the hope that it de-
tects flights that are overlooked by traditional analysis, and with a sufficiently
low false-positive ratio.
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From a practical point of view, the method could be implemented in a software
program and used with the following steps by an operator:

1. Choose a set of related flights (for example all flights that landed on a
certain runway last year),

2. Choose a set of parameters (for example all parameters related to the de-
scent profile such as altitude, vertical speed, flaps and slats etc.),

3. Launch the analysis,

4. After some computation time the program would produce a complete report
with all detected atypical flights.

The report could provide scores measuring how likely a given flight is atypical, as
well as a number of indicators, statistics and most importantly graphical repre-
sentations. This report would be used by a flight operation analyst to study the
atypical flights and report to the airline if needed.

We have a number of requirements for this method:

• The method should be unsupervised. As will be detailed, developing an
unsupervised method for novelty detection is of great value for FDM. “Un-
supervised” means that we will be able to detect atypical flights without a
training set of normal and abnormal flights. Producing such a set is a long,
costly and tedious process; since field experts would have to review dozens
of flights and assign them a label. This would have severely undermined
our ability to work in collaboration with airline companies: we only have to
ask them for data. Asking them to additionally put expert resources to the
task of labeling flights would probably never have been met with a positive
response. Besides, we could have fed our algorithm with the labels recov-
ered from classical event-based analysis; but this would have had the effect
of implicitly calibrating our algorithms to detect the very same problems
that are already detected by classical analysis, whereas the method we wish
to design should be able to detect unforeseen problems.

• The method should be able to study any combination of parameters. The
parameters can be of any type (continuous, angular, binary/discrete) and

6



of any frequency. The method should be able to detect abnormalities that
stem from “synchronization” problems between parameters: a flight may
be normal with respect to parameter A and normal with respect to pa-
rameter B, but could be abnormal when studying parameters A and B in
combination.

• The method should be able to take into account the temporal aspect of
a flight, which means that preferably it should not rely solely on features
associated to flights. This is an issue that we will detail in Section 1.5 and
which will be the subject of Chapter 6.

• The method should be fast enough to run a study with a moderate num-
ber of parameters (∼ 20), around a thousand flights, and covering a whole
flight phase such as the landing phase in less than a couple of hours with a
standard recent computer.

1.3 Mathematical Approach

These limits of the current event-driven approach have fostered research into
more statistical approaches of FDM; the idea being that instead of measuring
deviations from the SOP by a set of fixed events, the flights themselves would
define what is normal or abnormal.

1.3.1 One Flight as One Sample

When carrying a statistical study, the first step is usually to define a dataset,
or more exactly a set of samples, and the associated factors (sometimes also
called features, or dimensions, depending on the context). Most often statistical
methods rely on an assumption such as:

X1, . . . , Xn i.i.d. (1.1)

Where X1, . . . , Xn are the samples, and i.i.d. stands for independent, identically
distributed; which means that each sample is supposed to be generated from the
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same probability distribution, and that samples are generated independently from
each others.

The approach we have chosen for the work in this thesis is to carry statistical methods
where one flight is one sample.

Note that it is possible to carry statistical algorithms on flight data using other
approaches. For example in the field of structural health monitoring, usually one
sample is the data recorded at one instant (what we shall later define as a time-
sample).

It is our belief that for the field of FDM, and contrary to health monitoring,
it is better to consider that one flight constitute one sample.

Using this approach, one can see that the dataset is very much in accordance
with the assumption defined in Equation 1.1. The first reason is that pilots
and crew are supposed to follow a certain flight procedure, so the “identically
distributed” part of the assumption is sensible. Of course there will be many
variations among flights, but this only means from a statistical point of view that
the distribution will be diffuse to some degree. The second reason is that each
new flight is supposed to be conducted after a significant number of check-ups,
concerning both the aircraft and the crew, which means that each new flight can
reasonably be considered independent from other flights.

Using this approach, and as a consequence of the law of large numbers, a flight
which is considered “central” from a statistical point of view should be “normal”
from a domain perspective, and conversely a flight which is a statistical outlier is
likely to be “abnormal” from a domain perspective. Of course this is only true
as far as the mathematical and statistical methods that we design are suited to
the type of problems that we want to discover.

1.4 Introduction to Kernel Methods

Among all statistics and machine learning methods, we have chosen the class
of kernel methods, for reasons that will hopefully be clear at the end of this
introduction. In this section we present the most important concepts of kernel
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Sepal Length Sepal Width Petal Length Petal Width
Flower 1 5.1 3.5 1.4 0.2
Flower 2 7.0 3.2 4.7 1.4
Flower 3 6.3 3.3 6.0 2.5

Table 1.1: Example of a tabular dataset

methods. This is intended for readers who may be domain expert, have some
mathematical background but never had to deal with any kind of machine learning
or pattern recognition method.

1.4.1 Feature-based Representation of a Dataset

Most pattern recognition algorithms work with a feature-based representation of
the dataset. This means that each individual entity in the dataset, which we call
samples in statistical terms is represented by a fixed number of factors, that are
also called features or dimensions. Suppose for example that one is studying a
group of fifty flowers of the Iris genus, and the dataset contains for each flower 4
features: the length and the width of the sepals and petals.

The advantage of having the same number of features for every sample is
that the dataset can be described in a table, like in Table 1.1 for example. If
in addition factors can be represented by real numbers (and we shall see that
is not always the case, especially for the field of FDM, as will be the subject of
Chapter 5) this means that each sample can be represented as a point in vector
space. This vector space representation is powerful because it is very convenient
from a mathematical point of view, and because many algorithms can be defined
in a geometric fashion. In this representation for example, a dataset with twelve
features would be represented as points (or vectors) in a twelve-dimensional vector
space. In the remainder of this thesis we shall refer to this type of data as vector
data.

So long as the number of features is finite, the theory of Euclidian spaces let us
carry geometrical methods in spaces with any number of dimensions much in the
same way as in three dimensional spaces. Even though a dataset never practically
contains an infinite number of features, we shall see later on that it may be useful
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to project data into a feature space of higher or even infinite dimensions. In this
case the mathematical tools that we shall use are not Euclidian spaces anymore,
but rather Hilbert spaces. Dealing with samples in a Hilbert space is a topic that
is treated partly in the first part of this thesis.

1.4.2 Pattern Recognition Illustration: Two-Classes SVM

In this subsection we present the quintessential pattern recognition algorithm, the
support vector machine (SVM) [Boser et al., 1992; Cortes and Vapnik, 1995]. We
present the SVM in its simplest form, non-kernelized and with linearly separable
data. The intent of this subsection is not to go into technical details but rather
to present the ideas behind a typical pattern recognition algorithm. This shall
be sufficient for the reader to develop a good intuition of such mechanisms.

Like many pattern recognition algorithms, the SVM in its “standard” form
works with vector data. The SVM is a supervised machine learning algorithm. It
is first trained with a labeled training data set. To each sample xi is assigned a
label yi in the set −1, 1; which is why this kind of SVM is called a two-class SVM.
For example, the dataset could contain the length and width of the sepals and
petals of fifty flowers of the Iris genus; and −1 might stand for iris versicolor
while 1 might stand for iris virginica. Once trained, the goal of the SVM is
to determine the label of unseen data. For example determine if a flower is in the
class iris versicolor or iris virginica just by looking at the length and
width of its sepals and petals.

The training phase of the SVM is the process of searching for a hyperplane1

in the feature space that separates the data such that all samples from one class
are at one side of the hyperplane and the samples from the other class at the
other side. Of course it is only possible to find such a hyperplane when the
dataset is indeed separable. Otherwise one has to recourse to using a variation
of the SVM called soft-margin. Even in the separable case, there is an infinite
number of hyperplanes that separate the data. The SVM algorithm consists in
finding the hyperplane with maximizes the margin, which is the distance from

1A hyperplane in a space of dimension d is a linear subspace of dimension d − 1; so for
example in the two dimensional plane, hyperplanes are merely lines.
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Figure 1.2: Two-class SVM illustration in two dimensions

the hyperplane to the nearest data point of each class. This is illustrated in the
two dimensional case in Figure 1.2, where the two classes are the squares and the
circles. Mathematically the hyperplane is defined by the following equation:

w⊺ ⋅ x + b = 0

Let us consider a dataset xi, yi, i = 1, . . . , n. Finding this optimal hyperplane is
equivalent to solving the following optimization program:

minimize
w,b

Lw, b =∏w∏
subject to yiw⊺ ⋅ xi + b ≥ 1, i = 1, . . . , n.

By introducing Lagrangian multipliers α it is possible to express this optimization
program in the following dual form:

maximize
α

L̃α =
n

P
i=1
αi −

1
2 P
i,j
αiαjyiyjx⊺i xj

subject to αi ≥ 0, i = 1, . . . , n and
n

P
i=1
αiyi = 0.

This second optimization program is computationally easier to solve because the
constraints are simpler. After the optimal solution α∗ has been found it is possible
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to recover the optimal hyperplane:

w∗ = P
i
α∗i yixi

Only a handful of αi will be non-zero, the corresponding vectors are called support
vectors. It is then possible to compute the optimal coefficient b∗, which verifies
for any non-zero αi:

b∗ = w⊺ ⋅ xi + yi

1.4.3 The Kernel Trick

In the previous subsection we have seen the SVM in its simplest form, as a linear
classifier. However one of the reasons the SVMs have been so popular is because
they can be used in the context of a kernel machine. Using the famous kernel
trick [Aizerman et al., 1964], it is possible to implicitly and non-linearly project
the data vectors into a space with a higher (and possibly infinite) number of
dimensions. The hyperplane is searched in this transformed feature space, which
is sometimes just called the feature space or kernel space, while the original space
is usually called the input space.

Formally the optimization program is the same, except that dot products are
replaced by the evaluation of a possibly non-linear kernel.

x⊺i xj → kxi,xj

Generally speaking, kernels are real functions of pairs of samples from the input
space, usually denoted k ∶ X ×X → R. Examples of kernels that can be used with
vector data are:

Gaussian kernel: kx,y = exp−∏x − y∏2

Polynomial kernel: kx,y = x⊺y + bd

Exponential dot product: kx,y = expx⊺y
Hyperbolic tangent: kx,y = tanhκx⊺y + c

The condition required for using a kernel in the framework of the kernel trick is
that the kernel must be positive definite, which is sometimes abbreviated p.d.:
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Definition 1. A kernel k ∶ X × X → R is positive definite if for any n ∈ N, and
∀X1, . . . , Xn ∈ X

n, ∀a1, . . . , an ≠ 0 ∈ Rn:

n

P
i,j
aiajkXi, Xj > 0

Although the SVM is the classic example of a kernel algorithm, any algorithm
that makes only use of dot products can be “kernelized” using a positive definite
kernel. This results from the Moore-Aronszajn theorem [Aronszajn, 1951], which
states that for every positive definite kernel on X there exists a unique reproducing
kernel Hilbert space (RKHS) H and a map Φ ∶ X → H such that:

∀x, y ∈ X , kx, y = ∐Φx,Φy˜H (1.2)

Although there is an infinite number of spaces H that verify Equation 1.2, only
one is a RKHS; consequently from now on when we mention the feature space,
we implicitly refer to the unique RKHS that is associated to the kernel.

With the kernel trick it becomes possible to extend a linear estimation proce-
dure into a non-linear one, thanks to the mapping Φ. It is not even necessary to
compute explicitly the coordinates of the mapping because dot products can be
computed from coordinates in the input space thanks to Equation 1.2.

Another widely used algorithm that has been extended using the kernel trick
is the principal component analysis method, which thus becomes the kernel prin-
cipal component analysis (KPCA), as proposed by Schölkopf et al. [1998b]. It is
a very powerful method as it can extract non-linear features from a dataset. This
algorithm will be studied in details in the first part of this thesis, and is even
more important when dealing with non-vector structured data as detailed later.

In the case of vector data, kernel methods can be very useful because some-
times in the input space the data is not separable, as illustrated in Figure 1.3.

The advantage of using a higher dimensional space as the feature space then
becomes clear: datasets become more separable as the number of dimensions
increases. In the case of the widely used Gaussian kernel for example, it has been
demonstrated that the associated RKHS is infinite-dimensional [Steinwart et al.,
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X

Φ

H

Figure 1.3: Illustration of a mapping Φ from an input space X to a feature space
H.

2006]. An infinite-dimensional space is “rich” enough such that any dataset of any
(finite) number of samples can always be separated with a hyperplane [Bousquet
et al., 2004], which is not the case in a Euclidian space.

1.4.4 Dealing With Structured Data

There is however another very useful property concerning kernel machines that
will be of paramount importance for this work, and that we will develop in the
second part of this thesis. In addition to the possibility of non-linearly mapping
vector data to higher dimensional spaces, the kernel trick can also be used to map
non-vector, structured data to a Hilbert space.

We call “structured data”1 everything that cannot be described as a mathe-
matical vector, as explained in Section 1.4.1. This may be due to several reasons:
the number of features may be different across samples; or a specific feature can-
not be described as a number on the real line for example. There may not even
be “features” anymore.

In reality vector data are anything but the norm in real-world datasets. One
has to deal with such diverse structures as strings, histograms, graphs, time series,
images etc. It is clear that one cannot “sum” two graphs, or multiply them by a
scalar as is done in vector spaces. One of the reasons so much of the literature in
classical statistics deals with tabular/vector datasets is that they are much more

1In the rest of this work we shall use indifferently the terms “non-vector” or “structured”,
they refer to the same concept.
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convenient to deal with from a mathematical point of view; the whole topic of
linear algebra is dedicated to the study of such spaces, as explained in Section
1.4.1.

Hence the power of kernel methods is that in most cases, the input space X
can be any arbitrary space. So long as the kernel k is positive definite, then one
can use any kernel method on this dataset and be sure that there exists a RKHS
H to which data are projected, and that dot products of these projected points
in the RKHS are simply evaluations of the kernel k.

Although a Hilbert space is not as convenient as a Euclidian space, especially
in the case where the number of dimensions is infinite (and with structured data
this is most often the case), it is noteworthy that it is possible to retain only the
most important dimensions of a dataset by carrying a kernel principal component
analysis for example. It is thus possible to recover for each sample a finite1

number of features, which allows us to consider a structured dataset as a tabular
one, thanks to the power of the kernel trick and the kernel principal component
analysis.

1.5 Structure of Flight Data

The domain we study in this work is especially suited to kernel methods because
the datasets we encounter are indeed highly structured.

1.5.1 Structure of Time-Samples

Firstly, at each instant (frequencies vary from 0.5Hz to 32Hz or more), more than
one parameter are recorded. We call the data that is recorded at each instant a
time-sample. We thus model each time-sample as a composite structure, which
contains elements of potentially different types.

For example, we might consider a study with 4 parameters: ALT, AIRSPEED,
AUTO and PITCH. In this case, ALT and AIRSPEED are continuous values and
thus can be modeled by real numbers. On the contrary, AUTO is a discrete

1By retaining only a finite number of dimensions we loose information, but the quantity of
information that is lost can be estimated, as will be described in Chapter 2.
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ALT 8500
AIRSPEED 254

AUTO ON
PITCH 5°

Table 1.2: Structure of a time-sample

parameter whereas PITCH is an angular parameter. An example of time-sample
is illustrated in Table 1.2.

Although the distinction between continuous and discrete parameters is quite
clear, many times angular values are treated as continuous ones, even if their
topology is totally different (real values lie on a line, and angular values on a
circle). This may be because their numerical representation in a computer is the
same. However this confusion leads to incorrect results: even a simple statistic
such as the mean cannot be computed in the same way for continuous or an-
gular values [Jammalamadaka and Sengupta, 2001]. The issue of dealing with
parameters of different types will be the subject of Chapter 5.

1.5.2 Structure of Flights as Sequences

Secondly, we shall model each flight as a sequence of time-samples, which could
be described as a generalized time series.

This is quite obviously a good model as flight data are recorded continuously
during a flight. As explained before, our approach is that from a statistical point
of view, one flight is one sample. We have introduced the term “time-sample” in
order to avoid any misunderstanding.

It is possible to consider whole flights, but generally we shall see that it is
better to cut flights into phases and to compare only the same phase of different
flights.

This structure for flights is illustrated in Table 1.3. It is clear that such a
dataset is very different from a tabular one such as for example Table 1.1. Even
if there were only continuous parameters such as ALT, it would not have been
possible to use a vector space model, because sequences may not have the same
length just as flights may not have the same duration.
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Flight 1
ALT 8500 8400 . . . 2000

AIRSPEED 254 256 . . . 100
AUTO ON ON . . . OFF
PITCH 5° 5° . . . 0°
time 0s 1s . . . 612s

Flight 2
ALT 6300 6200 6100 . . . 1000

AIRSPEED 120 122 110 . . . 100
AUTO ON ON ON . . . OFF
PITCH 3° 4° 2° . . . 2°
time 0s 1s 2s . . . 598s

Flight 3
ALT 7300 7200 . . . 1500

AIRSPEED 254 256 . . . 200
AUTO OFF OFF . . . OFF
PITCH 4° 4° . . . 2°
time 0s 1s . . . 703s

Table 1.3: Structure of an example flight dataset with 3 samples.
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Another layer of complexity is added as parameters are not recorded at the
same frequency. Depending on aircraft and flight recorder types, parameters can
be recorded at frequencies ranging from 0.5Hz to 32Hz or even more.

1.5.3 Flight Data in Practice

Flight data in general is nowhere near as “clean” as in other domain applications
of machine learning. Sensors are imprecise, or flight recorders do not record with
as much precision as is provided by the sensors. Parameters have glitches, limited
ranges of validity. Flights or flight phases are sometimes badly cut, parameters
may be missing. Parameters sometimes even get swapped for a few seconds in
the flight recorder. Values may be invalid for extended periods of time.

FDM operators are used to coping with these shortcomings, and they have de-
veloped over the years a great number of workarounds and solutions. In SAGEM,
where parts of the work described in this thesis have been carried, there is a
substantial amount of resources dedicated to such preprocessing of flight data.
Algorithms have been developed for the filtering, correction, validation of data
Garnier de Labareyre and Donadey [2013]; and also for the cutting of flights into
phases or the detection of events. These algorithms rely not only on mathematics
and signal processing but are also and above all the implementation of heuristics
carefully tuned by field experts.

The methods and algorithms developed in this work stand on top of these
crucial preprocessing steps. It assumed in this work that the data analyzed are
“clean” even though the dataset may contain flights that are atypical in any of
a number of ways. To put it another way, the goal of this work is not to detect
glitches, invalid parameters or recording problems but to detect flights which are
atypical from a safety or operational perspective.

1.6 Outline of Thesis

This work is divided into two parts. The first part deals with novelty detection
(also called anomaly detection). A novelty detection algorithm is capable of
identifying among a dataset of samples which are not normal. Commonly novelty
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detection methods are supervised, which means that they rely on a training phase
with examples of normal samples, such that the algorithm is able to infer the
characteristics of normal samples. However in this thesis we develop a method
for unsupervised novelty detection. Although very important for our work, this
part is arguably the most technical and mathematical and maybe of more interest
for machine learning researchers than FDM practitioners. This part of the thesis
ends with experiments on FDM data from airline Airline1 1. This experiment
is done by extracting features from each flight which yields a tabular dataset.
We detail how we extract these features, the selection of parameters and of the
samples. We compare the results with state-of-art algorithm MKAD from NASA
and from classical analysis from AGS.

The second part of the thesis is dedicated to the creation of a kernel that
is suited to the structure of flight data as explained in Section 1.5. This kernel
can be used in conjunction with the novelty detection method we propose in the
first part. We start this part of the thesis by introducing in Chapter 4 important
results from kernel methods theory that are relevant for structured data: we
introduce concepts such as distances, similarities, infinitely divisible kernels etc.

Afterwards, we design this kernel using a bottom-up approach: Chapter 5
presents an approach for designing a kernel that can be used to compare time-
samples, in other words this kernel can be used to compare data composed of
continuous, discrete and angular values.

In Chapter 6 is presented the final step in the construction of our kernel for
flight data. We present a new kernel on sequences, that we call the one-sided
mean kernel, that we will use for comparing sequences of time-samples, which is
how we model flights. We discuss how to efficiently implement this kernel using
dynamic programming, and we also illustrate the consistent behavior of this kernel
in the case of time series sub-sampling. Finally in Chapter 7 we experiment the
one-sided mean kernel on flight data from airline Airline2.

1For confidentiality reasons we could not disclose the name of the two airline companies
which have provided data as well as feedback for these studies. These airlines will thus be called
respectively Airline1 and Airline2 in this work.
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Part I

Novelty Detection
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Chapter 2

Novelty Detection with Vector
Data

2.1 Introduction

In many applications such as fault detection [Clifton et al., 2008], biomedical en-
gineering [Tarassenko et al., 1995], visual object recognition and robotics [Sofman
et al., 2009], it is useful to distinguish normal from abnormal data. For example
in fault detection one wants a machine to be able to raise an alert when reaching
very unusual conditions, which could potentially lead to hazards. Classical two-
class detection algorithms are not suited to this type of problem, because they
would by design only detect one type of abnormality. Instead, it is more conve-
nient to learn only the normal behavior and flag as abnormal every sample that
deviates from it. Such is the approach of novelty detection, also called one-class
classification or outlier detection.

A popular quote from Hawkins [1980] could define the notion of novelty (also
called an outlier): “an observation that deviates so much from other observations
as to arouse suspicion that it was generated by a different mechanism”. There
are many types of novelty detection techniques, ranging from purely statistical
[Clifton et al., 2010], inspired by immune systems [Hofmeyr and Forrest, 2000], to
kernel methods, the most popular techniques being the one-class support vector
machine (OC-SVM) designed by Schölkopf et al. [2001], and the support vector
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data description (SVDD) proposed by Tax and Duin [2004]. For a review of
classical methods one can refer to the work by Markou and Singh [2003a,b].

Framework

This chapter deals with the particular case of unsupervised novelty detection.
Most common novelty detection techniques such as the one-class SVM (OC-SVM)
work in a supervised setting: they begin by a training phase using only normal
data, after which they can be used to evaluate unseen test data. There has been
some attempts to take into account the presence of abnormal data in the training
phase, such as the small sphere and large margin (SSLM) method proposed by
Wu and Ye [2009], in a framework called novelty detection with few outliers, or
NDFO. However, most of these approaches are still in a supervised framework;
in the SSLM method for example abnormal samples are labeled as such in the
training phase, and they are used to estimate a better boundary between normal
and abnormal data.

On the contrary, in the unsupervised framework the machine has only ac-
cess to unlabeled data, which may contain both normal or abnormal data. This
framework has attracted less attention in the literature. In this work, we will
focus on an even more challenging task: the dataset may contain a significant
amount of abnormal data, including the case where there is as much abnormal
data as normal data. We call this approach unsupervised novelty detection with
many outliers, or UNDMO. It may seem surprising that a machine may be able to
detect normal data in these conditions, especially since there is no training phase;
but it will be shown that this can be achieved when some prior information about
the distribution of normal data is available.

2.1.1 Importance for the field of FDM

There are real benefits of developing such techniques for the field of FDM. Firstly,
the unsupervised framework has a strong practical advantage over the supervised
framework: one does not need a training dataset. This is a real boon for the
field of FDM, as the task of labeling flights is a very tedious one, in addition to
being prone to errors. Flight analysts deal with hundreds of flights on a daily
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basis, so it would be very difficult and costly to prepare such a labeled dataset.
While we could have labeled the flights with the information provided by the
classical event-based approach to FDM, this would have had the pernicious effect
of implicitly calibrating our algorithms to find the very same problems that we
already can detect using the classical approach, thus reducing the added benefit
of developing a statistical approach.

Methodology

Most one-class detection algorithms rely either explicitly or implicitly on one or
both of the two following informal assumptions:

1. “Most” samples are normal,

2. Normal samples are more “concentrated”.

The first assumption is very reasonable in most, but not all cases, since for exam-
ple a machine would be of poor use if it were too often out of order. The second
assumption also makes sense: since normal samples are generated by the same
mechanism it is only natural that in the long run they tend to be more and more
concentrated.

In the second assumption, the term “concentrated” can translate into statis-
tical concept, such as in the minimum volume set approach [Scott and Nowak,
2006], or geometrical concepts, such as in the support vector data description
method [Tax and Duin, 2004] which finds a sphere of minimum volume contain-
ing the data.

In the UNDMO approach, one can no longer rely upon the first assumption,
thus the algorithms presented here will have a strong focus on the second as-
sumption. Our approach is innovative in that we define “concentrated” using an
information theoretic concept, namely the Rényi entropy [Rényi, 1961], in the
spirit of the information theoretic learning (ITL) [Principe, 2010] framework.

First we use a recent dimensionality reduction technique called kernel entropy
component analysis, proposed by Jenssen [2009] to decompose the data distri-
bution into orthogonal components. Then, we select some of these components
according to their contribution to the Rényi entropy and our a priori information
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on the distribution of normal data. This is the step when parts of the distri-
bution resulting from abnormal behavior are discarded, and what is left is an
estimation of the “true”, noiseless distribution of normal data. Finally, samples
are ranked according to how much they fit this distribution, and outliers can then
be detected.

Contributions

The main contribution of this chapter is the design of an unsupervised novelty
detection method that works even with a significant amount of outliers.

To this end, we propose a theoretical justification for the choices of the KECA
components, based on Rényi entropy. To the best of the author’s knowledge it
is the first time that a priori knowledge about the complexity of the distribu-
tion has been used to improve the results of novelty detection. In addition to
this theoretical justification, we propose practical procedures for selecting these
components, in particular cases for example when one knows in advance that the
data distribution is unimodal.

Most importantly, we demonstrate an upper bound on the probability density
in input space based on the reconstruction error in feature space. This inequality
has not only been used for the purpose of this work but it also gives a probabilistic
justification to other studies, such as the KPCA for novelty detection by Hoffmann
[2007] or the denoising by projection on the kernel principal subspace [Honeine
and Richard, 2010], which were until now purely geometrical.

Organization of the Chapter

The remainder of the work is organized as follows. Section 2.2 builds the math-
ematical framework necessary to expose results. Section 2.3 presents the KECA
method, and Section 2.4 its application to novelty detection. Finally in Section
2.5 we apply the proposed method to synthetic and real world datasets to demon-
strate its superior performance compared to other state-of-the-art techniques.
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2.2 Mathematical Framework

In this section we start by briefly recalling the main properties concerning kernel
methods and the corresponding notations. We then state results that establish
a link between principal directions in the kernel feature space and the kernel
integral operator, as well as formulas that apply to the empirical case.

2.2.1 Kernel Methods and Notations

In this work we make use of a recent kernel method, the kernel entropy component
analysis method [Jenssen, 2009]. Thus we start by defining some notations and
stating some important results concerning kernel methods in general. The input
space is denoted by X , and k is a positive definite kernel.

The Moore-Aronszajn theorem [Aronszajn, 1951] ensures that there exists one
unique reproducing kernel Hilbert space (RKHS) denoted H, as well as a feature
map Φ ∶ X ↦ H such that:

∀x, y ∈ X , ∐Φx,Φy˜H = kx, y (2.1)

Although the reproducing property [Aronszajn, 1951] will not be used, most re-
sults in this work rely on the fact that the feature space H is a Hilbert space.

2.2.2 Random Variable in a Hilbert Space

We look upon this problem from a statistical perspective by making the classical
assumption that every sample in the dataset is an independent realization of a
random variable X ∈ X with probability distribution P :

X1, . . . , Xn ∼ P, i.i.d. (2.2)

The mapping Φ itself is deterministic, however as X is a random variable then
the object of interest, ΦX, is itself a random variable, which lies in a Hilbert
space, as stated in Section 2.2.1.

The advantage of using a statistical framework is threefold: first, this will en-
sure the consistency of our approach, which means that the detection will improve
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as more data become available. Secondly, we will expose a probabilistic interpre-
tation of the detection of outliers, akin to the high density region approach; and
thirdly, we will be able to choose which dimensions to retain according to infor-
mation theoretic concepts.

We assume that the feature space H is a separable Hilbert space of real func-
tions on X , that ΦX is a well-defined random variable of H and that its expec-
tation E(ΦX⌋ is also well-defined.

2.2.2.1 Empirical and Asymptotic Measures

Most of the results exposed in the following will hold with respect to some measure
of probability. In the general case we denote this measure by µ, in order to stress
the fact that the results holds for both the asymptotic case where µ = P , and the
empirical case where µ = Pn =

1
n Pn

i=1 δXi , with δ being the Dirac distribution.
In practice the PCA procedure consists in finding the linear subspace which

maximizes the empirical variance, which corresponds to the empirical measure
Pn, while the asymptotic case corresponds to the probability measure P .

2.2.3 Principal Directions in a Hilbert Space

This section builds upon work established by Blanchard et al. [2007]. We start
by recalling the definition of the non-centered covariance operator of a random
variable in a Hilbert space.

Definition 2. Let Z be a random variable in H. Provided E(∏Z∏2⌋ < ∞, then

there exists one unique operator CZ ∶ H → H such that:

∀f, g ∈ H, ∐f, CZ ⋅ g˜ = E(∐f, Z˜∐g, Z˜⌋.
We now define an integral operator which is related to the kernel function k.

Definition 3. Let k ∶ X ×X → R be a positive definite kernel function, H and Φ
its associated feature space and feature map, respectively. Let µ be a probability
measure on X . Then, the kernel integral operator associated with the kernel k
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and the measure µ is defined as KΦ ∶ L2µ → L2µ such that

∀f ∈ L2µ,∀t ∈ X , KΦft = R fxkx, t dµx. (2.3)

We now state two theorems that establish a link between principal directions
in the feature space H and eigenfunctions of the kernel integral operator KΦ.

Theorem 1. Let X ∈ X a random variable distributed according to a probability
measure µ, k a kernel function with its associated feature space H and feature
map Φ ∶ X → H, CΦ the non-centered covariance operator associated to ΦX and
KΦ the kernel integral operator associated to k and µ. Then CΦ and KΦ share
the same eigenspectrum:

λCΦ = λKΦ.

It is also possible to establish a relation between principal directions in feature
space and eigenfunctions of the kernel integral operator, while also providing a
very useful property concerning the dot product between feature vectors and
principal directions:

Theorem 2. Let α ∈ L2P be an eigenfunction of operator KΦ and λ its associated
eigenvalue. Then,

φ =
1
λ
E(ΦXαX⌋

is the associated principal direction (eigenvector) of CΦ with eigenvalue λ, and
of unit norm. Moreover, the projection of the feature vector Φx with x ∈ X on a
principal direction φ verifies

∐Φx, φ˜ = λ ⋅ αx. (2.4)

Both theorems were proved (in a more general form) by Blanchard et al. [2007].
Now denote by Π the projection operator, and by Vm the principal subspace of
dimension m spanned by φ1, . . . , φm. The squared distance of a point Φx to Vm
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is called the reconstruction error ρm and verifies the following equation:

∀x ∈ X , ρmx =∏Φx − ΠVmΦx∏2.

The following theorem gives an expression of the reconstruction error as a function
of the eigenvalues and eigenfunctions of the kernel integral operator. This expres-
sion can be trivially proved using Equation (2.4) and the fact that ∏Φx∏2 =

kx, x.

Theorem 3. Let ρmx be the reconstruction error of Φx with respect to the prin-
cipal subspace Vm spanned by φ1, . . . , φm, with α1, . . . , αm and λ1, . . . , λm the as-
sociated eigenfunctions and eigenvalues of the kernel integral operator. We have

ρmx = kx, x −
m

P
k=1

λk ⋅ αkx
2. (2.5)

2.2.4 Finding Principal Directions in Practice

This section shows the practical importance of Theorem 1. Indeed, in practice
one has to deal with a dataset X1, . . . , Xn, which is the empirical case, where
µ = Pn. Let us denote by Cn

Φ the empirical covariance operator of ΦX and by
Kn

Φ the kernel integral operator associated to k and Pn. According to Theorem 1,
λCn

Φ = λKn
Φ. Thus, the problem of finding the eigenvalues of Cn

Φ, which is a rather
abstract covariance operator in a space that is potentially infinite-dimensional (in
the Gaussian case for example), consists in finding the eigenvalues of Kn

Φ, which
can be cast as a matrix eigenvalue problem.

In fact, according to Equation (2.3), in the case of µ = Pn the eigenvalue
equation Kn

Φ ⋅ α = λ ⋅ α becomes

∀x ∈ X ,
1
n

n

P
i=1
kx,XiαXi = λ ⋅ αx. (2.6)

By applying Equation (2.6) to x = X1, . . . , Xn, we obtain the following matrix
equation:

Kn ⋅ u = λ ⋅ u, (2.7)
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where Kn = kXi, Xj~ni,j=1,...,n and u ∈ Rn. Kn is the normalized Gram matrix,
which is central to most kernel learning algorithms. Note that in practice, as∏u∏Rn = 1, one normalizes the eigenvectors a = n ⋅ u so that ∏a∏L2Pn = 1.

2.2.4.1 Out-of-sample Extension

Note that as an eigenfunction of L2Pn, α is defined on the whole space X , and
thus outside of X1, . . . , Xn. Once one has solved Equation (2.7) for a particular
eigenvalue and obtained the values αXi = ai, i = 1 . . . n, one can use once again
Equation (2.6) to compute values of α on the whole space X , as in Equation (2.8),
also known as the Nyström formula.

∀x ∈ X , αx =
1
nλ

n

P
i=1
aikx,Xi. (2.8)

2.2.5 Convergence of Principal Subspaces

We have exposed a common framework which encompasses both the asymp-
totic case µ = P and in the empirical case where one is given a finite dataset
X1, . . . , Xn ∼ P, i.i.d. and µ = Pn.

It is of interest to study whether some kind of convergence exists from the
empirical principal directions to the asymptotic principal directions. Fortunately
some authors have carried studies regarding this matter, for example Shawe-
Taylor et al. [2005] and Blanchard et al. [2007] have proven the convergence in
terms of mean reconstruction error, while Braun et al. [2008] is interested in
the convergence of dot products between eigenvectors and some functions in the
feature space.

This shows that the estimation of principal directions is consistent: when
one has more data to analyze, one can be confident that the empirical principal
subspaces become closer to the “true” ones and consequently outliers which are
not a realization of the same process are more likely to be detected.
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2.3 Kernel Entropy Component Analysis

In this section will be described the kernel entropy component analysis using the
mathematical framework established in the previous section.

2.3.1 KECA-compliant Kernels

In order to simplify our exposition we will assume X = Rd, however it should not
be difficult to extend our results to other cases. As stated by Jenssen [2009] we
will assume two important properties regarding the kernel.

Property 1. The kernel is positive definite: For any n ∈ N, and ∀X1, . . . , Xn ∈

X n,∀a1, . . . , an ∈ Rn:
n

P
i,j
aiajkXi, Xj ≥ 0

Property 2. Any partial evaluation of the kernel can be used as a Parzen window,
for any y ∈ X :

• Rx∈X kx, ydx = 1

• Rx∈X ⋃kx, y⋃dx < ∞

• lim⋃x⋃→∞⋃xky, x⋃ = lim⋃x⋃→∞⋃xk2y, x⋃ = 0

The first property, already stated in previous sections, guarantees the exis-
tence of the corresponding reproducing kernel Hilbert space. The second prop-
erty guarantees that the kernel can be used for nonparametric density estimation
[Parzen, 1962]. Together these two properties are used for kernel entropy com-
ponent analysis, that is why we will call them KECA-compliant kernels. Note
however that recently the KECA method has been extended to be used with non
positive definite kernels [Jenssen, 2011]; however in this case the kernel induce a
feature space which is reproducing kernel Krein spaces [Ong et al., 2004] whereas
in our work we make explicit use of the property that the feature space is a Hilbert
space. That is why in this chapter we shall require both properties, and in the
remainder k will denote a KECA-compliant kernel unless otherwise stated.
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2.3.2 Gaussian Kernel

In the case where X is a subset of Rd one of the most used kernels is the Gaussian
kernel, defined by the following equation:

kx, y = 2π ⋅ σ2−d~2 exp −

∏x − y∏2

2σ2 . (2.9)

The Gaussian kernel is positive definite and hence it induces a reproducing kernel
Hilbert space, which is of infinite dimension [Steinwart et al., 2006]. In addition
it can be trivially proved that it satisfies Property 2 of Section 2.3.1, which is
why in Equation (2.9) we have left a normalization factor that is not mandatory
for kernel methods in general. Originally much of this work was conceived for the
Gaussian kernel but remains valid for any KECA-compliant kernels.

2.3.3 Orthogonal Series Density Decomposition

We assume that the probability distribution P admits a density p with respect
to the Lebesgue measure. In this section, a relation between eigenfunctions of
the kernel integral operator and components of the probability density will be
established. This approach was pioneered by Girolami [2002]; as eigenfunctions
are respectively orthogonal in L2µ it will be possible to obtain an estimation of the
density as an orthogonal series. We will present a slightly different approach than
Girolami so as to insist on the geometrical aspect of the Hilbert space framework
established in Section 2.2.2; this will allow us to easily derive the results in the
empirical and asymptotic cases.

Sections 2.3.4 and 2.3.5 will present a well-founded tool for choosing which
terms of the decomposition to retain, based on concepts from Information Theo-
retic Learning.

2.3.3.1 Density Estimation and Mean Vector in Feature space

Suppose one is given data X1, . . . , XN and wants to estimate the density associ-
ated with the process X. By using the Parzen window estimation and Equation
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(2.1) an estimation px of the density is given as:

px =
1
n

n

P
i=1
kx,Xi (2.10)

=
1
n

n

P
i=1
∐Φx,ΦXi˜

= ∐Φx, 1
n

n

P
i=1

ΦXi˜
px = ∐Φx,EPn(ΦX⌋˜, (2.11)

where EPn(ΦX⌋ being the mean of ΦX1, . . . ,ΦXn. Equation (2.11) is a relation
between a geometrical concept, the mean of vectors, and a probabilistic concept,
the density estimation at a point x ∈ X .

2.3.3.2 Convergence of the Kernel Density Estimator

It shall be noted that to be precise one should use a notation kn instead of k in
Equation (2.10): in order for the density estimation to be consistent the width of
the kernel has to decrease to 0 at an appropriate rate when the number of samples
n increases, see for example Silverman [1978]. In the case of the Gaussian kernel
this can be achieved through the scale parameter σ. We have not included the
subscript n for the sake of clarity in our notations.

By assuming some properties regarding the smoothness of the kernel, as well
as a sufficiently fast decay of the width of the kernel to 0 it has been demonstrated
[Nadaraya, 1965] that p uniformly converges almost surely to p:

P lim
n→∞

∏p − p∏ ~= 0 = 0

In practice the width of the kernel is often chosen in a data-dependent way
so that it effectively converges to 0; one must bear in mind though that in high
dimensions the kernel density estimator is known to be problematic, for the pur-
pose of this work we make the assumption that the number of samples is sufficient
with respect to the dimensionality of the data.
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2.3.3.3 Asymptotic Density with Fixed Kernel Width

For the purpose of our demonstration we must also define the asymptotic density
estimation with a fixed kernel width. Recall Equation (2.10) that gives the Parzen
estimate of the probability density: px = 1

n Pn
i=1 kx,Xi. According to the law of

large numbers, when n → ∞,

lim
n→∞

px = p̄x = Ry∈X kx, ypydy.

We denote by p̄x this asymptotic density, which is the convolution product of p
with the Gaussian kernel k. By virtue of the continuity of the dot product we
also have:

p̄x = ∐Φx,EP (ΦX⌋˜.
2.3.3.4 Orthogonal Decomposition in the Asymptotic Case

As in Section 2.2.2, the results hold with respect to a probability measure µ

which can be either P or Pn; thus results are given in the asymptotic case since
the corresponding results for the empirical case can be easily obtained by using
the probability measure Pn. For the sake of clarity, in the remainder of this
chapter we use notations E(Φ⌋ and E(αk⌋ instead of respectively E(ΦX⌋ and
E(αkX⌋.

The approach taken by Girolami could be described as follows: instead of pro-
jecting Φx onto E(Φ⌋, we replace E(Φ⌋ by its projection on a principal subspace:
ΠVmE(Φ⌋. As orthogonal principal directions in the feature space correspond to

orthogonal functions of L2P (see Theorem 2), an orthogonal series density esti-
mation is given, with as many terms as the dimension of the principal subspace
Vm. Now let us denote λk the eigenvalues of the kernel integral operator, αk
and φk the associated eigenfunctions and principal directions respectively. Using
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Theorem 2 with the continuity of the dot product gives the following equations:

p̄x = ∐Φx,E(Φ⌋˜
=

∞

P
k=1
∐Φx, φk˜ ⋅∐E(Φ⌋, φk˜

=
∞

P
k=1

λkαkx ⋅ λkE(αk⌋
p̄x =

∞

P
k=1

(
λkE(αk⌋

⌋
⋅ αkx. (2.12)

Equation (2.12) is indeed an orthogonal series density estimation, with the αk
being the series terms (they are orthogonal in L2P ) and

(
λkE(αk⌋

⌋
the weights

associated to each term. In the remainder, we denote by p̄m a truncated estima-
tion of p̄ with m terms, though as shown later, the order of the terms may not
follow the order of λk.

2.3.3.5 Application to the Empirical Case

One now simply applies Equation (2.12), uses Pn instead of P , and replaces
asymptotic variables with their empirical counterparts obtained in Section 2.2.4:

px =
n

P
k=1

(
λkEPn(αk⌋

⌋
⋅ αkx.

This equation can also be written :

px =
n

P
k=1
(λk ⋅ 1n

Tak⌋ ⋅ αkx (2.13)

In Equation (2.13), λk and ak are respectively the normalized eigenvalues and
eigenvectors of Equation (2.7), αkx is given by the Nyström formula (2.8), and
1n

T is the row vector (1~n, . . . , 1~n⌋.
2.3.4 Rényi Entropy

Equation (2.12) is an orthogonal series decomposition of the density that corre-
sponds to orthogonal principal directions in the feature space. The question is
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what terms of this expansion to retain? The classical solution consists in keeping
the terms with the highest eigenvalue λ, but the following proves that this is not
the best solution.

The quadratic Rényi entropy is a measure of uncertainty that generalizes the
role of variance in Gaussian distribution. In his seminal work, Rényi [1961],
states four properties that entropies should verify, and he then defines a new
family of entropies, among them the quadratic Rényi entropy. The quadratic
Rényi entropy (simply referred to as Rényi entropy in the remainder) has been
used in ITL because it is differentiable and is easily estimated from data using
non-parametric techniques.

The Rényi entropy for a variable X is defined as:

H2X = − log R p2xdx. (2.14)

The argument of the logarithm, noted V X is called the information potential,

V X = R p2xdx.

In this work, the Rényi entropy will be used as a means to estimate the com-
plexity of the distribution. Recall that the entropy is a measure for uncertainty
or disorder. Then, complex distributions, such as multimodal distribution have
low entropy while simple distributions have high entropy. For example, in the
discrete case, the maximum entropy is achieved when all outcomes have the same
probability, which corresponds to the simplest distribution. The remainder of
this chapter will show that it is possible to significantly improve the performance
of the novelty detection algorithm by incorporating a priori knowledge of the
complexity of the distribution (expressed in terms of Rényi entropy).

2.3.5 Orthogonal Series Estimation of the Rényi Entropy

In this section will be presented expressions of an estimation of the Rényi entropy
of the distribution with respect to its orthogonal series decomposition; in both
the asymptotic and empirical cases.
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2.3.5.1 Asymptotic Case

As discussed in Section 2.3.3.2, we make the assumption that p̄ ≈ p, and thus the
information potential could be defined as:

V X = E(p̄X⌋. (2.15)

By replacing in Equation (2.15) the expression of p̄x given by Equation (2.12),

one has V X = E
(

P∞
k=1

(
λkE(αk⌋

⌋
⋅ αkx

⌋
. Finally by virtue of the continuity of

the expectation, one has an expression of the Rényi information potential with
respect to the eigendecomposition:

V X =
∞

P
k=1

γk, (2.16)

where the entropyvalues are defined as:

γk = λk ⋅

(
E(αk⌋

⌋2

.

2.3.5.2 Empirical Case

As in Section 2.3.3.5, by using the particular probability measure Pn the following
estimate for the Rényi entropy in the empirical case can be found:

V X =
n

P
k=1

γk, (2.17)

with the estimated entropyvalues:

γk = λk ⋅ 1n
T ⋅ ak

2.

2.3.6 Choice of Dimensions in KECA

In the classical PCA procedure and its kernel counterpart, one retains the di-
mensions with the largest variance (eigenvalues). The idea pioneered by Jenssen
[2009] is to focus instead on the entropyvalues γk.
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2.3.6.1 Rényi Entropy as an a priori on the Distribution

As was explained Section 2.3.4, as one keeps more entropy components, the in-
formation potential increases, and then according to Equation (2.14) the Rényi
entropy decreases which means that the distribution becomes more and more
structured.

In other words, each dimension that one keeps adds a layer of structure to the
distribution. Consequently if one had a priori a precise measure of the entropy
of the distribution, one would know precisely the number of dimensions to retain,
and one would be sure that the other dimensions are due to spurious data, such
as noise or outliers.

In practice of course, one would not know in advance the entropy of the
distribution, but the idea is to keep the simplest distribution, and this is not unlike
the Occam’s Razor principle that underlies many statistical learning algorithms.
We will use this principle to increase the accuracy of our detection in the following
section.

Thus choosing the dimensions with the largest entropyvalues amounts to keep-
ing the closest distribution in terms of information potential (and thus in terms of
Rényi entropy). In this respect the KECA departs significantly from the classical
KPCA procedure.

2.3.6.2 Procedure

In a first step, one would first classify the entropyvalues in decreasing order
γ1 > . . . > γn. In the sequel Vm and ρm will now refer to respectively the entropy-
principal subspace and the reconstruction error to this subspace instead of the
classical subspace.

There are three possibilities for the choice of components.

• First, one can choose the m largest entropyvalues so as to retain a prede-
termined proportion, for instance 90%, of the total information potential:

m

P
k=1

γk > 0.9 ⋅
n

P
k=1

γk

• Secondly, one may retain enough dimensions so as to reach a certain amount
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of information potential, corresponding to an a priori knowledge:

m

P
k=1

γk > Vmin,

or equivalently in terms of Rényi entropy:

− log
m

P
k=1

γk < Hmax.

As stated previously, while in general one may not know in advance the
entropy of the distribution we do not exclude that there may be special
cases where the entropy may be estimated a priori, for example by the
study of the mechanism itself generating the data.

• Thirdly, in the case where clusters in the data set are sufficiently sepa-
rated with respect to the scale parameter σ2, it has been shown [Jenssen,
2011; Shi et al., 2009] that dimensions with high entropyvalue correspond
to clusters of the dataset (modes of the distribution). Thus one may have
a priori knowledge of the number of modes and thus only retain a prede-
termined number mapriori of dimensions, knowing that the other modes are
the consequences of abnormal behavior:

m = mapriori.

2.3.7 Application to Toy Dataset

2.3.7.1 Presentation of the Dataset

In the following we illustrate these ideas on a toy dataset, bivariate and bimodal,
and with a high concentration of outliers, as in Figure 2.1. Both clusters are
from a Gaussian distribution, the first cluster (pluses “+”) contains 300 samples
while the second cluster (circles “○”) contains 100 samples. A number of 100
outliers (diamonds) were uniformly sampled around both clusters. Components
vary from 0 to 70, and the scale parameter σ2 for the Gaussian kernel was chosen
to be in the order of magnitude of 6-nearest neighbors: σ2 = 20. This example,
though simple, can be used to illustrate many interesting concepts, and will be
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Figure 2.1: Toy dataset consisting of two clusters
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Figure 2.2: Comparison of the 50 first eigenvalues and entropyvalues.

studied throughout this chapter.

2.3.7.2 Entropyvalues

We have computed the entropyvalues γk and compared them to the eigenvalues λk
considered in the KPCA procedure in Figure 2.2. First, as noted by Jenssen [2009]
the entropy components do not follow the same order as the eigenvalues. Secondly
there are much fewer significant entropy components than eigenvalues : only two
entropy components have non-zero values. For instance, in the KPCA procedure
one would select the first 43 components to account for 90.1% of the variance,
while in the KECA procedure one only needs to keep the first two components to
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retain 96.74% of the information potential. This sparser representation is another
significant advantage of KECA over KPCA.

2.3.7.3 Components

Using the Nyström formula (2.8) it is possible to estimate the components of
the distribution corresponding to principal directions in the feature space. We
estimate the first two components, which correspond to the only non-negligible
entropyvalues, and display the results in Figure 2.3. We see that each principal
direction corresponds to a cluster in the input space. This property was used
to design a clustering algorithm named data spectroscopy, by Shi et al. [2009],
and which is related to the KECA algorithm, as explained for example by Jenssen
[2011]. In this case it can be seen that for each cluster, the estimated component of
the distribution nicely corresponds to the density that would have been estimated
using parametric techniques.

2.4 Novelty Detection with the Reconstruction
Error

In this section the KECA technique is used for novelty detection, and a proba-
bilistic interpretation of the reconstruction error is exposed that bridges the gap
with the geometric approach proposed by Hoffmann [2007].

2.4.1 Probabilistic Interpretation of the Reconstruction
Error

In this section a proposed theorem establishes a relation between the truncated
density and the reconstruction error to the corresponding principal subspace of
the feature space. In order to simplify equations we use the notation R2 = 2π ⋅
σ2−d~2

= kx, x, ∀x ∈ X .

Theorem 4. Suppose one has selected m principal entropy components accord-
ing to the KECA procedure. Let x ∈ X be a point of the input space, ρmx the
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(b) Contour plot of second component

Figure 2.3: Densities of the first two principal components

reconstruction error to the m-dimensional entropy-principal subspace and p̄m the
corresponding truncated density. Then

p̄mx ≤
m

P
k=1

γk ⋅ R2 − ρmx (2.18)

Proof. As explained in Section 2.3.3.4 the truncated density can be expressed as
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a dot product with the projection of the mean vector on the principal subspace:

p̄mx = ∐Φx,ΠVmE(Φx⌋˜,
= ∐ΠVmΦx,ΠVmE(Φx⌋˜,

By using the Cauchy-Schwartz inequality we obtain:

p̄mx ≤∏ΠVmΦx∏ ⋅∏ΠVmE(Φx⌋∏
≤ R2 − ρmx ⋅

m

P
k=1
∐E(Φx⌋, φk˜2

≤ R2 − ρmx ⋅
m

P
k=1

γk.

Theorem 4 can of course be trivially extended to the empirical case. According
to the discussion in Section 2.3.6.1, p̄m is now the best estimate of the true density
taking into account the a priori one has about the distribution. The bound we
obtain in Equation (2.18) guarantees that when the reconstruction error tends to
R2, the associated density tends to 0. This leads to the following corollary:

Corollary 1. Points with high reconstruction error in feature space lie in low
density regions in input space.

Equation (2.18) thus bridges the gap between the geometrical approach pro-
posed by Hoffmann [2007] and the probabilistic approach: using the reconstruc-
tion error as a measure for novelty is a valid approach, from both perspectives.
Moreover, this corollary has consequences in other studies, such as the denoising
approach which consists in projecting a noisy point onto the principal subspace
in feature space, such as in studies by Schölkopf et al. [1998a] or more recently
by Honeine and Richard [2010]: we now have proof that in the input space this
amounts to displacing the point to high density regions where it should belong.

It should be noted though that our probabilistic interpretation of KECA is
very different from the one presented by Zhang et al. [2004]: they bring a prob-
abilistic interpretation by modeling the kernel as a Wishart process whereas we
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Figure 2.4: Reconstruction errors with different dimensions of the principal sub-
space

are interested in a non parametric density estimation in the input space.

2.4.2 Application to Toy Dataset

We have computed the reconstruction error of the whole input space for principal
subspaces of different dimensions. The results are displayed in Figure 2.4. It is
now clear that the entropy of the principal subspace can be considered as an a
priori for the complexity of the distribution.

Indeed, in Figure 2.4(a) we have retained only the largest entropy component,
which accounts for more than 82% of the total entropy. This amounts to suppos-
ing that a priori the distribution shall be as simple as possible. In this case only
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the most significant part of the dataset is retained: the distribution is assumed
to be unimodal, we see that all outliers and even all point from the second clus-
ters are considered abnormal. This approach is very powerful when one knows
in advance that the distribution is unimodal but may be highly polluted, as we
shall see in a real world example later.

In Figure 2.4(b) one allows the distribution to be more complicated and selects
the first two entropy component that account for more than 96% of the total
entropy and we see that in this case the two clusters are considered normal and all
outliers are considered abnormal. In Figure 2.4(c) and Figure 2.4(d), as one adds
more components to the principal subspace, little clusters that were previously
considered abnormal are now deemed to be part of the distribution, and only the
most isolated points are now considered outliers.

2.4.3 Comparison of the Reconstruction Errors Between
KPCA and KECA

The probabilistic interpretation presented in the previous section is indeed also
valid for the classical non-centered KPCA. However there is a very fundamen-
tal difference between the two methods: the KECA procedure selects in priority
principal directions with high entropyvalues instead of principal directions with
high eigenvalues. From an information theoretic perspective, the KECA proce-
dure makes the best choice of dimensions. Indeed as explained before variances
and entropyvalues do not necessarily follow the same order.

In order to illustrate this principle we have computed the principal directions
for different kernel width, σ2 = 9, we notice in Figure 2.5(a) that the principal
direction with second higher entropyvalue corresponds to the third higher vari-
ance. We have plotted the reconstruction errors in the input space using the two
most important principal directions using the KPCA procedure in Figure 2.5(b)
and KECA procedure in Figure 2.5(c).

It can be noticed that with only two components the KECA procedure cap-
tures the essential parts of the distribution while the KPCA procedure only fo-
cuses on the first cluster. In Section 2.5 we will also present the differences in
detection results that stem from using either one of these procedures.
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Figure 2.5: Reconstruction error comparison

2.4.4 Comparison with OC-SVM

One of the most used novelty detection is the OC-SVM, which consists in sepa-
rating the data from the origin with maximum margin. The following quadratic
program is solved:

min
w∈H, ξ∈Rn, ρ∈R

1
2∏w∏2 +

1
νn

P
i
ξi − ρ (2.19)

subject to ∐w,ΦXi˜ ≥ ρ − ξi, ξi ≥ 0

Here ρ is the offset parameter, ξi are slack variables and it can be shown [Schölkopf
et al., 2000] that ν is an upper bound on the number of outliers. Thus the one-
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class SVM can also be used as an unsupervised outlier detection method. However
one can see that in such a case the algorithm is not robust to the presence of
outliers: the sum of slack variables is minimized, this has the consequence that
the boundary tends to be attracted to the outliers, such that the slack variables
themselves remain low. This effect is particularly strong in very high dimensional
feature space such as the Gaussian RKHS. One could overcome this problem by
for instance replacing in Equation (2.19) ξi by 1ξi>0, or a smoother function such
as a sigmoid. However in this case the optimization problem is no longer convex,
and thus one looses one of the main advantages of using kernel methods.

2.5 Experimental Results

In this section we will apply the methods defined previously and demonstrate its
superior performance compared to state of the art algorithms. As stated before,
experiments are carried in an unsupervised setting: there is no training phase,
we only assume that normal samples are issued from a more defined or simple
mechanism than abnormal samples, so that outliers are likely to be abnormal
samples.

We would like to emphasize that the unsupervised novelty detection is a very
particular problem: one cannot take a two class data set and use it for novelty
detection by arbitrarily selecting one of the classes as the normal class. Indeed,
in this case most often the two classes are both well defined, and thus the dataset
is not suited to the problem presented here.

The goal of this section is to demonstrate the effectiveness of the presented
method on commonly used data sets, as well as to illustrate some interesting
properties.

2.5.1 Datasets and Experimental Settings

We have considered five medical diagnosis data sets Biomed, Breast cancer, Hep-
atitis, Thyroid 1. Each data set has different dimensionality and a different num-
ber of normal (positive) and abnormal, malignant or diseased (negative) samples.

1These data sets are available online from http://homepage.tudelft.nl/n9d04/occ/index.html
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Dataset #pos #neg d
Biomed 127 67 5

Breast cancer 458 241 9
Hepatitis 123 32 19
Thyroid 93 3679 21

Table 2.1: Datasets used in the experiments

These figures are summed up in Table 2.1.
We have compared four different techniques, the one-class SVM, the Parzen

window density estimator with a Gaussian kernel, the KPCA and the KECA.
Note that it is not necessary to compare with the support vector data description
method [Tax and Duin, 2004] since it has been demonstrated by Schölkopf et al.
[2001] that in the case of the Gaussian kernel this method produces the same
results as OC-SVM. Each method produces what can be considered a score which
is used to decide whether a sample is abnormal or not. In the case of one-
class SVM the score is the distance to the separating hyperplane, for the Parzen
window the score is the estimated density, and finally for the KPCA and KECA
the distance to the principal subspace is used.

As each technique produces a score, we have compute receiving operator curve
(ROC), which gives the proportion of true positives as a function of false posi-
tives, as the threshold on the score varies. The ROC curve is a common method
to compare detection techniques, and the area under the curve (AUC) a good
estimate of the global performance of the technique.

To evaluate the algorithms in the UNDMO setting, we have constructed sev-
eral datasets with a growing number of abnormal samples, from five percent to
half of the data set. This is useful to assess the robustness of the presented algo-
rithms. Moreover, in cases where the number of abnormal was sufficient we have
randomly divided the set of abnormal samples into multiple sets, and carried
many studies (called “trials”), each with the same normal samples but with dif-
ferent abnormal samples, and we have retained the mean and standard deviation
of all areas under the curve. This guarantees that the performance measured is
not the result of the choice of a particular set of abnormal samples.
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2.5.2 Preprocessing and Parameter Selection

As the data sets all contain a significant number of outliers we have chosen to
normalize the data using a median and a median absolute deviation instead of
the commonly used mean and variance. Certain data sets contained parameters
with nominal values, we have chosen to discard these parameters as we have used
a Gaussian kernel suited only for continuous values.

Each method tested rely on the width of the kernel, σ2. For each study we
have computed a reference width σ0, which is the median of all pairwise distances
in the dataset. Then we have tested for each method all following kernel widths
σ2

0~4, σ2
0~2, σ2

0, 2σ2
0, 4σ2

0, 8σ2
0, 16σ2

0, and we have kept only the best performance
for each method. Note that for the same dataset different method may have
different optimal width.

Regarding KPCA, we have chosen to keep 80% of the variance, and for KECA
we have made two studies, one which keeps 80% of the information potential,
referred to as “KECA”; and one which only retains the most informative prin-
cipal direction. This second study, referred to as “KECA-1”, corresponds to the
strongest “denoising” of the data distribution, and as stated before may be useful
when one knows in advance that the data distribution is unimodal. It has proved
very interesting to compare these two approaches. This framework is useful to
compare the reconstruction errors of KECA and KPCA in terms of their impact
for novelty detection.

Concerning the one-class SVM, we have set the ν parameter to the actual
proportion of outliers.

2.5.3 Interpretation of the Results

The numerical results are presented from Table 2.2 to Table 2.5. “Trials” refers
to the number of different sets of abnormal samples that were considered. The
numerical values are 100 ⋅AUC, where AUC refers to the mean of the area under
curve for all trials, the standard deviation is also given. Note that with a high
proportion of outliers certain datasets do not contain enough abnormal samples
to carry more than one trial, in that case no standard deviation is given and the
value given is merely the area under curve of the only trial.
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For each dataset and proportion of outliers the best performing method is put
in bold.

We see that our method performs really well, especially considering that there
is no training phase and a significant proportion of outliers. In most of the cases
our method surpasses the other methods. We note that in general the performance
tends to decrease when the proportion of outliers increases, which makes sense;
however we can see the KECA method is in this sense more robust, for example in
the Hepatitis the performance of KECA-1 (which keeps only the most informative
component of the data distribution) remains consistent even when the proportion
of outliers reaches 20% of the dataset.

We can also see that in addition to having in general the best performance
the KECA also has in general very stable results, the standard deviation of the
results are most often smaller than competing methods. The least stable method
is the one-class SVM.

The Breast Cancer is a very simple data set, and corresponds perfectly to
the framework of this work as the normal samples are very concentrated and
abnormal samples are very diffuse. Indeed, on this dataset the KECA method
achieves an area under the curve of 1, which means that normal and abnormal
samples are perfectly separated, even when the proportion of outliers reaches 35%
of the dataset.

On the contrary, the Thyroid dataset is much more challenging, and we note
an interesting phenomenon: when the proportion of outliers becomes high the
performance of all methods decreases steadily, especially for KECA-1, which has
an area under the curve lower than 0.5 and even close to 0. In fact in this
particular case it happens that the abnormal samples are more concentrated
that the normal samples, and thus there is an inversion in the detection. This
inversion is particularly visible for the KECA-1 method which focuses only on the
most informative component of the distribution. The exception is KPCA; after
investigation we have found that this score was achieved with the lowest σ2. In
this case the total variance in the feature space is much more spread out across
all principal dimensions. As we have chosen a fixed proportion 80% of variance to
be kept this has the consequence that more principal directions are kept and thus
a more comprehensive part of the data set is considered normal, which explains
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Biomed
Trials 11 4 2 1 1

Outliers 5 % 10 % 20 % 30 % 35 %
OC-SVM 85.42± 9.8 85.76± 5.5 84.18± 5.7 84.56 82.41
Parzen 91.04± 7.7 91.21± 6.6 90.06± 3.1 89.82 89.22
KPCA 91.45± 7.7 90.37± 6.3 88.74± 3.3 87.17 86.34
KECA 92.34± 6.6 92.86± 5.1 91.06± 2.6 91.13 90.66

KECA-1 92.47± 7.4 92.90± 5.5 92.05± 2.0 91.83 91.46

Table 2.2: Results on dataset Biomed

Breast Cancer
Trials 10 4 2 1 1

Outliers 5 % 10 % 20 % 30 % 35 %
OC-SVM 77.34± 2.0 79.40± 2.4 83.96± 0.9 95.00 95.07
Parzen 99.25± 0.4 98.54± 0.7 97.69± 0.4 98.01 97.82
KPCA 98.35± 0.6 91.67± 2.0 82.99± 12.9 96.53 95.74
KECA 100.00± 0.0 100.00± 0.0 100.00± 0.0 100.00 100.00

KECA-1 100.00± 0.0 100.00± 0.0 100.00± 0.0 100.00 100.00

Table 2.3: Results on dataset Breast Cancer

that the area under curve is above 0.5.
It should be noted that this effect is a consequence of the purely unsupervised

framework: it may be interesting to investigate a semi-supervised extension as
only a few examples of labeled normal samples would be sufficient so that the
detection is not inverted.

Conclusion

First, a mathematical framework of Hilbert space was used to define KECA in a
unified manner suitable for both asymptotic and empirical cases. Using the dual
nature of KECA-compliant kernels which are both positive definite kernels and
probability distributions, a relation between the reconstruction error in feature
space and the truncated, “denoised” density in input space has been established.
This relation justifies the use of the reconstruction error as a measure for novelty.
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Hepatitis
Trials 5 2 1

Outliers 5 % 10 % 20 %
OC-SVM 77.24± 10.8 78.46± 4.6 74.12
Parzen 84.96± 5.8 83.71± 6.0 84.09
KPCA 85.28± 5.1 83.99± 5.4 81.79
KECA 85.20± 5.9 85.30± 8.0 86.26

KECA-1 86.83± 4.5 86.34± 5.1 86.50

Table 2.4: Results on dataset Hepatitis

Thyroid (1)
Trials 100 100 100

Outliers 5 % 10 % 20 %
OC-SVM 80.35± 6.9 70.61± 5.8 60.53± 4.9
Parzen 91.62± 4.4 88.63± 2.7 81.76± 3.3
KPCA 96.28± 4.3 75.92± 6.9 64.84± 7.1
KECA 90.30± 3.2 88.87± 2.7 84.90± 3.5

KECA-1 90.30± 3.2 88.87± 2.7 84.90± 3.5

Thyroid (2)
Trials 94 59 39

Outliers 30 % 40 % 50 %
OC-SVM 55.32± 3.1 47.52± 5.5 45.67± 3.9
Parzen 60.12± 4.2 36.97± 3.6 16.73± 3.2
KPCA 51.90± 5.4 59.03± 4.9 70.05± 2.3
KECA 60.26± 5.1 50.37± 5.7 42.12± 6.3

KECA-1 60.26± 5.1 32.29± 4.3 8.42± 2.8

Table 2.5: Results on dataset Thyroid
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Most importantly, it was shown that the entropy associated with the principal
subspace can be used as a means to express the complexity of the distribution,
and using it as a priori knowledge has proven to be an efficient method for novelty
detection in the unsupervised case, where there is no training phase. This ability
to control the complexity of the distribution is a significant asset over current state
of the art methods, it allows our method to have consistent detection results even
when the proportion of outliers in the data set is significant. Our method is able
to discard significant parts of the data set if it does not fit the a priori on the
distribution complexity.

There remain however several challenges with respect to future research.
Firstly in this work data are not centered in feature space, it shall be inter-
esting to investigate whether there exists an interpretation of centered feature
space principal directions in terms of information theory. Secondly it has been
shown that in an unsupervised case even with some a priori the detection can
sometimes be inverted between normal and abnormal samples. One solution to
this issue would be to work on a semi-supervised extension of this method, where
very few labeled normal samples would be sufficient to induce good detection
results.

52



Chapter 3

Results on the Airline1 dataset

3.1 Introduction

In this chapter we present the results obtained from the application of the algo-
rithms of Chapter 2 on data provided by partner airline company Airline1.

The approach we have taken for this campaign is a feature-based one. It is
possible to achieve very satisfying results with this approach provided that, as
explained in the introduction of this thesis, the feature extraction is guided by
a good understanding of the domain. Furthermore the feature extraction step
comes after many steps of preprocessing of the flight data.

Once again we would like to emphasize the fact that the approach we have
chosen is the one pioneered by NASA [Amidan and Ferryman, 2005] which is that
of “one flight is one sample”. Consequently we shall consider a fixed number of
features per flights. In the context of FDM we have seen that this is the right
approach, as other ways, such as for example one sample per instant recorded did
not yield any sensible results for FDM (contrary to structural health monitoring).

We compare the results of our approach with the results obtained form clas-
sical analysis with AGS (recall that AGS is the software made by SAGEM which
is used for classical FDM analysis) as well as with state of the art NASA MKAD.
More generally, we try to assess the added value of a statistical approach for the
field of FDM.
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3.2 Presentation of the dataset

3.2.1 Samples

We consider a set of 721 flights of airline Airline1 from Porto, Portugal to run-
way 26 of Paris-Orly, France in the 2011 to 2012 period. Note that this restriction
is central to our approach, since we are interested in the flight procedures. In
previous approaches we had tried not restricting on the origin of flight but still
restricting on the arrival runway, this resulted in flights coming from unusual ori-
gins (such as a flight from Berlin when most other flights are from Porto) being
flagged as outliers, which is of course not very interesting for a FDM practitioner.

Flight phase Typically a flight is divided in several phases, which comprise the
taxi, takeoff, climb, cruise, descent and landing. In this study we cut the flights
in the descent and landing phase. More precisely, the flights are cut from 10000
feet until the touchdown.

3.2.2 Features

We consider 13 of the most important parameters related to the trajectory and
descent profile of flights. Of these parameters we take features, most importantly
the mean but sometimes also extrema or first or last values. When dealing with
angular parameters the mean is computed as described in Chapter 5. The set of
features is described in Table 3.1. We also added the duration of the considered
flight phase as a feature. Consequently, the dataset we consider can be represented
as 721 vectors in a 22-dimensions Euclidian space.

3.3 Procedure for KECA

In the sequel we refer to our method as “KECA”, in opposition to the state-of-
the-art MKAD from NASA.
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Code Parameter Features
ALTQNH Barometric Altitude Mean
RALTC Radio Altitude Mean
LONG Longitudinal Acceleration Mean, Absolute Max
HEAD Heading Mean

IVV Vertical Speed Mean, Absolute Max
PITCH Pitch Mean, Absolute Max
ROLL Roll Mean, Absolute Max

LATPC Corrected Latitude Mean, First
LONPC Corrected Longitude Mean, First
CASC Corrected Air Speed Mean, Max
GSC Corrected Ground Speed Mean, Max

N11C Primary Thrust Mean, Max
DURATION Duration of flight phase -

Table 3.1: Features retained

3.3.1 Detection of atypical flights

The first step is the extraction of the features. Then we have normalized these
features using the median value as a centroid and the median absolute deviation
as a measure of dispersion. These values have the benefit of being more robust
to outliers than the traditional mean and variance couple. This robustness is
very important in an unsupervised setting as the dataset is supposed to contain
a significant number of outliers.

Next we computed all pairwise distances between samples, and calculated a
bandwidth parameter for the Gaussian kernel as the median of all these distances.
We computed the principal directions in the feature space, and the associated
entropyvalues as described in Section 2.2.4. Retaining the dimensions that cover
more than 80% of the entropyvalues resulted in keeping only the first and the 16th

dimensions as the entropy-principal subspace. We then proceeded to compute the
distances of all samples from this entropy-principal subspace in the feature space.
After fitting a Gamma distribution on these distances, we kept as the detected
atypical flights the sample whose pvalues were under 0.05.
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3.3.2 Report for analysts

We have put a considerable amount of effort in developing a program that not
only detects atypical flights but also provides as much information as needed to
the flight analysts in order to understand the results. Once the atypical flights
have been detected a report is produced, which presents for each atypical flight
the estimated pvalue, a set of parameters which are likely responsible, as well as
a set of graphical representations that highlight the atypical flight by comparing
it to the rest of the fleet.

In order to identify responsible parameters we compute the gradient of the
reconstruction error evaluated at the detected atypical flight. In this case the
gradient is thus a 22-dimensional vector; in practice we have observed that in the
vast majority of cases this vector is sparse, and the sign of the non-null values
gives the direction to which the feature should be modified for the flight to be
normal. This makes sense as the principal subspace is supposed to represent
the normal distribution of flights as explained in Section 2.4. Furthermore this
approach is all the more practical as the gradient can be obtained as a closed-form
equation in the case of the Gaussian kernel.

3.4 Procedure for NASA MKAD

The MKAD source code is available freely on the Dashlink website [NASA, 2014].
The MKAD is based on a symbolic representation of time series named SAX, as
described by Lin et al. [2003] and in Chapter 5. Consequently, it does not rely on
features; but it is still interesting to compare the results of the two methods. We
study the same parameters listed in Table 3.1, but ignore the features. Flights are
still cut from 10000 feet till touchdown. We keep the default parameters for the
symbolic representation of time series [Lin et al., 2003], which are a window width
of 30 seconds and an alphabet size of 10. We set 0.05 as the pvalue threshold for
detection, the same that we have set for our method.
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Class Total Number Detected by KECA Detected by MKAD
Class 1 23 flights 11 flights 19 flights
Class 2 5 flights 3 flights 4 flights
Class 3 1 flight 0 flight 1 flight

Table 3.2: Comparison with classical analysis

3.5 Results

Of the 721 flights, 43 were detected as outliers by MKAD, 35 were detected as
outliers by our method. 14 flights were detected by both methods. In total there
are thus 64 flights that were detected by either method. Note that the expectation
of the number of detected flights is 0.05 ⋅ 721 = 36.

We also ran classical event detection on all 721 flights using the AGS. Recall
that in classical analysis events are divided into classes depending on their severity
(most often this is related to how far from the threshold the value is). Events
of class 3 are the most critical class of events and are systematically reported to
the airline. We have summed up the results from classical analysis in Table 3.2.
With the help of flight data analysts we made an exhaustive study of these 64
flights and almost all of them were deemed to be of interest. Among the flights
detected we encountered the following patterns:

Go-arounds The go-around is the decision to re-initiate the approach if it
is deemed it cannot be continued (for example in the case of an unstabilized
approach, runway obstructed etc.). The go-around is considered to be a normal
flight phase, but its good execution is critical for safety. More precisely, it is
the lack of go-around decision that is the leading risk factor in approach and
landing accidents and is the primary cause of runway excursions during landing.
In a report by Flight Safety Foundation et al. [2013] it is even stated that no
other single decision could have a higher impact on the overall aviation accident
rate. Both KECA and MKAD methods detected 4 flights with go-arounds in the
dataset, whereas the classical heuristic-based method only detected 2 of them.
Flights with go-arounds are usually detected as outliers with very low (< 10−3)
pvalue.
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Wind shear Wind shear is a sudden change in wind velocity or direction that
can affect the dynamics of the aircraft. It can result in a loss of airspeed or power,
and can make an approach unstable at a point where a go-around is no longer
possible, with disastrous consequences. The KECA method has found one fight
(pvalue = 0.0229) which is very likely due to a wind shear.

Among the other interesting patterns that were found we had hard landings,
incorrect flares which is the transition phase from the final approach and the
touchdown, late flap settings which are symptomatic of a rushed approach.

More generally many flights detected took a too sharp turn, some conversely
took a too large turn. Some flights had a very high altitude profile, and some
others had too low altitude profile.

Less interestingly we came across flights that simply had recording glitches,
which resulted in incorrect values and explain that these flights were detected as
atypical. Although not very interesting it is still quite reassuring that these are
detected by our method.

Most interestingly we came across flights that had very atypical profiles that
could not be easily classified and that baffled our flight analysts. Most often these
flights had no event severe event detected so were totally overlooked by classical
systems. We argue that there lies the value of such a system, we present some
examples of these flights in the next section.

3.5.1 Examples of atypical flights

In this section we present a set of four interesting flights, their associated pvalues
and some graphical representations that compare the atypical flight with the rest
of the studied fleet. Note that the graphical representations themselves are novel
and generally spark much interest among the FDM practitioners. The atypical
flight is plotted in red whereas the other flights in the dataset are plotted in
transparent green, such that parts of the domain that a large number of flights
cross are darker, and conversely unusual parts of the domain are left white. Most
graphics display the time remaining until touchdown (in seconds) as the horizontal
axis, except for the trajectory graphs where the horizontal axis is the longitude
and the vertical axis is the latitude.
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Figure 3.1: Trajectory of Flight 1

In the following we name the flights Flight 1, Flight 2 etc. for easy referencing
but these numbers are unrelated to the original identification numbers in the
database or even the order of detection.

Flight 1 This flight was detected as an outlier with an extremely low pvalue
(< 10−14). Interestingly, FDM analysts all agreed that this flight was the perfect
example of an “atypical flight”. One can see in the trajectory graph of Figure 3.1
that this flight made a very tight loop just before landing. This flight was not
detected by MKAD, and only raised a classical event of class 1, and even after
investigating with the company it remains unclear why the pilot proceeded that
way. It may be because the aircraft had too much speed, or maybe the runway
was found at the last minute to be obstructed.

Note that the other parameters from this flight also display some kind of
atypicality.

Flight 2 This flight was detected as an outlier with pvalue under 10−4. It is an
example of a go-around. In this case the decision to re-initiate the landing was
done very close to the ground, as one can see in Figure 3.8 and 3.10. One can
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Figure 3.2: Altitude of Flight 1

Figure 3.3: Airspeed of Flight 1
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Figure 3.4: Ground speed of Flight 1

Figure 3.5: Flaps of Flight 1
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Figure 3.6: Vertical speed of Flight 1

Figure 3.7: Trajectory of Flight 2
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Figure 3.8: Altitude of Flight 2

Figure 3.9: Primary thrust of Flight 2
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Figure 3.10: Radio altitude of Flight 2

Figure 3.11: Flaps of Flight 2
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Figure 3.12: Vertical speed of Flight 2

also see in Figure 3.9 that the engine thrust was put to almost the maximum in
order to regain altitude, we see the effect in the vertical speed in Figure 3.12.

Flight 3 This flight was detected as an outlier with an very low pvalue (< 10−3).
It seems that this flight was detected as outlier because of a combination of effects.
First this flight has a heading deviation, as can be seen in Figure 3.13. In other
words this flight went too far when aligning with the runway and thus found
itself on the right hand side of runway (when facing it) where it should not have
been. Secondly it has a lower altitude profile, this can also be seen in the graph
of Figure 3.13 as the trajectory is cut from 10000 feet we see that the trajectory
of this flight begins much sooner than others. We also observe that the speeds
(both air and ground) were very high before getting back to a normal range, and
moreover the flaps are set very late.
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Figure 3.13: Trajectory of Flight 3

Figure 3.14: Altitude of Flight 3
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Figure 3.15: Airspeed of Flight 3

Figure 3.16: Ground speed of Flight 3
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Figure 3.17: Flaps of Flight 3

Figure 3.18: Vertical speed of Flight 3
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3.6 Conclusion

Overall this first campaign on the data from airline Airline1 is very positive.
Firstly it is safe to say that we have validated the added value of using a sta-
tistical approach for FDM, as both FDM analysts in SAGEM and our partners
in Airline1 were very impressed that we were able to find genuinely interesting
flights that were completely overlooked by classical methods. Besides, almost
all other flights were in accordance with what experts would qualify as “atypical
flights” even if not all had issues with safety.

However it is clear that the feature-based approach is insufficient. Although
in our method we have addressed some shortcomings of the state-of-art MKAD,
such as a more robust novelty detection algorithm than the one-class SVM as
described in Chapter 2 and a better treatment of angular parameters as will be
described in Chapter 5; there are atypical flights who simply cannot be detected
by a feature-based approach. The reasons being first that a problem may be
too localized in time to transpire in the feature vector and second that the flight
procedure is really defined in terms of a sequence of events that has to be followed
in the right order.

It is the subject of the second part of this thesis to extend this method to take
into the structure of flight data as described in the introduction, and we hope to
build a more principled approach than the one which is currently used in NASA
MKAD.
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Part II

Structured Data
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Chapter 4

About Distances, Similarities,
and Related Kernels

4.1 Introduction

In using kernel machines, the view most shared by practitioners is that kernel
values reflect some kind of similarity between samples. This is in part due to
the fact that often data can be represented in an Euclidian space, and one of the
most commonly used kernel in this case is the Gaussian kernel:

kx, y = exp −∏x − y∏2

This kernel is well-known to be positive definite, and its values can readily be
interpreted as similarities: kx, y = 1 if and only if x = y, and kx, y → 0 when∏x − y∏ → ∞. By analogy, many practitioners have tried defining new kernels

by exponentiation of a distance:

kx, y = exp −dx, y2

Kernels expressed as function of a distance are called isotropic kernels, and more
generally, kernels with values interpretable as similarity coefficients are sometimes
called generalized radial basis kernels [Haussler, 1999], here we simply refer to

71



them as radial basis kernels.
However, one cannot be certain that the resulting kernel is indeed positive

definite; in fact some kernels derived from distances have been proved to be not
positive definite, as we shall see in the following.

In this chapter we will introduce some results on which type of distances yields
a positive definite kernel when exponentiated, and to this end we will introduce
the concepts of infinitely divisible kernels, conditionally negative definite kernels
as well as some other important related theorems. In addition, we shall see how
these are linked to radial basis kernels, and how one can normalize any positive
definite kernel with positive values to yield a radial basis kernel.

This chapter does not contain new contributions, but rather exposes some
important results that can be found in [Berg et al., 1984; Cuturi, 2009; Haussler,
1999].

Many results stated in this chapter will serve as the foundation for the devel-
opments in subsequent chapters. In particular, Theorem 8 will be used several
times particularly in Chapter 5, as a way to construct a kernel with all the prop-
erties that we seek, namely positive definite, radial basis and infinitely divisible.

4.1.1 Importance for the Field of Flight Data Monitoring

From a practical point of view these properties are of prime importance. A
positive definite kernel ensures that most optimization problems resulting from
the use of kernel machines will be convex and thus will present a global optimum.
An infinitely divisible kernel can be scaled at will while still retaining its positive
definite property. A radial basis kernel yields a Gram matrix whose coefficients
can readily be interpreted as similarity coefficients, which are easily interpreted
and understood by domain experts. Consequently, they will be able to validate
the algorithm that computes the Gram matrix if they deem that the values are
in accordance with their expertise. In this case one can be confident that any
atypical flight detected will likely also be abnormal from a domain expertise point
of view. Additionally, many kernel methods rely explicitly or implicitly on the
radial basis property.
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4.2 Distances and Conditionally Negative Defi-
nite Kernels

First let us recall the definition of a distance, or metric on a space X .

Definition 4. A function d on X ×X with non-negative values is a distance (or
metric) if for any x, y, z in X the following three axioms are true:

1. dx, y ≥ 0 and dx, y = 0 if and only if x = y,

2. dx, y = dy, x (symmetry),

3. dx, y ≤ dx, z + dz, y (triangle inequality)

Distances are linked to a class of kernels named conditionally negative defi-
nite kernels. In the literature, they are sometimes called negative definite kernels
[Haussler, 1999], which can be mistaken for the opposite of positive definite ker-
nels; other times it is the opposite of conditionally negative definite kernels which
is of interest and they are called conditionally positive definite [Scholkopf, 2001].
In this work we shall use the term conditionally negative definite kernels in order
to avoid any misunderstanding.

Definition 5. A function Nx, y on X ×X is conditionally negative definite if it
is symmetric and for any x1, . . . , xn in X and real c1, . . . , cn such that Pn

i=1 ci = 0:

n

P
i,j
cicjNxi, xj ≤ 0

Positive Definite and conditionally negative definite kernels Note in
the Definition 5 that the condition Pn

i,j cicjNxi, xj ≤ 0 is only required for the
coefficients that sum to zero. Consequently, for any positive definite kernel k, the
kernel −k is conditionally negative definite. However, there exist conditionally
negative definite kernels N such that −N is not positive definite. As such, the
class of conditionally negative definite kernels is larger than the class of positive
definite kernels. Although conditionally negative definite kernels do not share the
same properties as positive definite ones, many kernel methods can be used with
conditionally negative definite kernels as explained by Scholkopf [2001].
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Conditionally Negative Definite kernels and distances Let us first define
what is a Hilbertian norm:

Definition 6. A metric d on a space X is Hilbertian if there is an isometric
embedding of X , d into some Hilbert space H.

Distances which are Hilbertian norms can be identified with conditionally
negative definite kernels, as is made explicit by Berg et al. [1984]:

Theorem 5. Let Ψ be a conditionally negative definite kernel on X × X . Then
there exist a Hilbert space H, a mapping φ from X to H, and a function f ∶ X → R
such that for any x, y in X :

Ψx, y =∏φx − φy∏2 + fx + fy (4.1)

If the set of pairs x, y such that Ψx, y = 0 is exactly x, x, x ∈ X then Ψ is a
distance.

Thus, any Hilbertian norm can yield a conditionally negative definite kernel.
Moreover, as the function f can be deduced from Ψ using Equation 4.1, fx =

Ψx, x~2, then from any conditionally negative definite kernel it is possible to
recover a Hilbertian norm. However, not all distances lead to a conditionally
negative definite kernel, as not all distances correspond to a Hilbertian norm, for
example it has been demonstrated that most variations of the edit-distances on
strings are not Hilbertian [Lei and Sun, 2007]. This has important consequences
for the study of sequences, which is how we model flights; we shall study in greater
details this issue in Chapter 6.

4.3 Introduction to Infinitely Divisible Kernels

In this section we shall give the definition of infinitely divisible kernels, and expose
how these are related to the concepts of conditionally negative definite kernels,
distances and similarities.
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Definition 7. Let K be a positive definite kernel on X × X . The kernel K
is called infinitely divisible if for each positive integer n there exists a positive
definite kernel Kn such that K = Kn

n .

The following theorem, from [Berg et al., 1984], establishes a link between
infinitely divisible kernels and conditionally negative definite kernels.

Theorem 6. Let k be a positive definite kernel, and N = − log k. Then the
following are equivalent:

1. k is infinitely divisible.

2. ktx, y is positive definite for any t > 0.

3. N is conditionally negative definite.

Therefore Theorem 6 and Theorem 5 let us partly answer the question asked in
the introduction. If d is a Hilbertian distance on X , then k = exp−d2 is a positive
definite kernel on X . Moreover, this kernel is infinitely divisible, which according
to the second property of Theorem 6 means that it can be scaled arbitrarily and
still preserve its positive definiteness. In this case, for any t > 0, the kernel
kt = exp−t ⋅ d2 is still positive definite.

4.4 Similarities and Radial Basis Kernels

We start by defining radial basis kernels, which are kernels with values inter-
pretable as similarity coefficients.

Definition 8. Le k be an arbitrary kernel on X . k is called a radial basis kernel
if it verifies the following axioms for any x, y in X :

1. 0 ≤ kx, y ≤ 1,

2. kx, y = 1 if and only if x = y.

As described by Haussler [1999], it is possible to normalize a positive definite
kernel with positive values to yield a radial basis kernel.
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Theorem 7. Let k be a positive definite kernel on X with positive values. In
particular, ∀x ∈ X , kx, x > 0. Denote by k̃ the kernel:

k̃x, y =
kx, y

kx, xky, y

Then the following hold:

1. k̃ is positive definite,

2. k̃ is a radial basis kernel.

k̃ is called the radial basis normalization of k.

We may finally link all the concepts introduced in this chapter together with
this theorem:

Theorem 8. Let d be a Hilbertian metric on a space X , and for any t > 0, let kt
be the kernel on X defined as:

ktx, y = exp−t ⋅ d2x, y

Then we have that:

1. kt is positive definite,

2. kt is a radial basis kernel,

3. kt is infinitely divisible.

Moreover, let N be any conditionally negative definite kernel associated to d, such
that there exists a function f which verifies Nx, y = d2x, y + fx + fy. Denote by
kt,N the infinitely divisible kernel associated to N :

kt,Nx, y = exp−t ⋅Nx, y

Denote by k̃t,N the radial basis normalization of kt,N . Then we have:

k̃t,N = kt
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Theorem 8 thus lets us create positive definite kernel from Hilbertian metrics,
and these kernels are radial basis so their values can readily be interpreted as
similarity coefficients. One may wonder though what is the use of defining a
new kernel by exponentiation when one already has a kernel on X : indeed as the
metric d is Hilbertian, a dot-product can be resolved from d and used as a kernel,
by definition.

The answer is that such a kernel can be used to account for non-linearity in
the dataset, such as estimating manifolds instead of principal subspaces. Addi-
tionally, kernels defined using Theorem 8 have another interesting property: as
these kernels are infinitely divisible, one is able to scale them at will while still
retaining the positive definite property. With a small scale practitioners are in-
terested in local properties of the dataset, which are related to its topology, while
a larger scale can be used to extract features related to the global structure of
the dataset.

4.5 Conclusion

In this chapter we have seen how the concepts of distance and similarity are
linked in the context of kernel methods. Most importantly we have presented
a way to define a kernel by exponentiation of a distance: provided the distance
is Hilbertian, then the resulting kernel will have all the properties that we seek,
namely positive definite, radial basis and infinitely divisible. In the sequel we
will make use of this theorem to construct kernels suitable for the study of flight
data.
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Chapter 5

Multivariate Data with Mixed
Types

5.1 Introduction

In classical statistics as well as in machine learning, datasets are in the vast
majority of cases multivariate. Although multivariate datasets do require spe-
cial statistic treatments [Anderson, 1954] especially in the high dimensional case
[Bühlmann and Van De Geer, 2011], this issue is not a real concern for practi-
tioners.

However, things get a little more complex when features are of heterogeneous
(mixed) types, such as for example samples consisting of both continuous and
discrete features, or both continuous and circular values. This issue has largely
been addressed in the field of nonparametric statistics [Jammalamadaka and Sen-
gupta, 2001; Li and Racine, 2003]. Nevertheless, we wish to dedicate a chapter to
this topic because it seems that most other machine learning algorithm dedicated
to FDM such as [Amidan and Ferryman, 2005; Das et al., 2010; Smart et al.,
2012] did not handle such issue properly, especially the problem of angular data.
Moreover, in this chapter we present this issue from a kernel methods perspective,
which is necessary for our task.
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Importance for the Field of FDM

This chapter is of prime importance for the field of FDM because the data we
have to deal with in this field is of several different types. We have distinguished
four types of parameters, although most FDM systems only consider two of them
(continuous and binary).

1. Continuous parameters. Continuous parameters are used to model physical
quantities that lie in a defined range. Common continuous parameters
include for example the different types of altitude (whether measured using
pressure or using radio etc.), different types of speeds (either air or ground
etc.), accelerations etc. In the flight recorder, continuous parameters are
coded by a fixed number of bits. FDM softwares such as AGS may decode
such values because the range and precision of the parameter is known, as
defined in the data frame which contains all information necessary for the
decoding of parameters. These parameters can be mathematically modeled
using real values (R), and implemented using floating-point arithmetic.

2. Angular parameters. Most FDM systems (including flight recorders) do not
make the distinction between angular parameters and general continuous
values. They are decoded and processed exactly in the same way as contin-
uous parameters. However, we argue that for using statistical methods it is
of paramount importance to make the distinction. Such values are usually
called circular values in the field of statistics, because from a topological
point of view angular values lie on circle. Consequently mathematical con-
cepts such as distances (as explained in Chapter 4), or centroids are not the
same, as will be discussed in Section 5.3. We designate the set of angular
values as A, and model them as points on the unit circle S1. Examples of
angular parameters are the pitch, the roll, the heading, the latitudes and
longitudes etc. Note that these parameters are core parameters that are
often analyzed in FDM studies. Additionally certain data like for example
the time of the day on a 24 hour cycle can be considered as circular values.

3. Discrete parameters. Discrete parameters are parameters which can only
be in one of a finite number of states (sometimes also called modes) at a
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Autopilot Status
State b0 b1
OFF 0 0

Flight Director 0 1
Command 1 0
Undefined 1 1

Table 5.1: The 3-state discrete parameter Autopilot Status

time. In the most common case, discrete parameters can only be in one of
two states, and are thus called binary. A binary parameter can be used for
example to model the state of a switch or an alarm. Some FDM software
define discrete parameters that can be in more than two states. This is done
by combining several raw binary parameters, and leads to a much easier
interpretation as the analyst only has to look at one parameter instead of
several. For example, the autopilot status discrete parameter can take one
of 3 different states and is defined using two raw binary parameters, as
illustrated in Table 5.1. We denote in this case the set of states as D; such
that for example for autopilot status, D = OFF,FD,CMD

4. Ordered discrete parameters. Like discrete parameters, ordered discrete
parameters can only take a finite number of states. However, these states
can be ordered. The easiest way to model this order is to associate to each
state a real number, which not only accounts for the order, but can also be
used to derive distances and similarities between states, which will be put
to use when designing a kernel. In this case, ordered discrete parameters
can be considered as continuous parameters. Examples of ordered discrete
parameters include the FLAP parameter, which describes the angle of the
flaps on the wing of the aircraft. The FLAP parameter can only take values
in the 0, 10, 15, 30, 35 set. We denote in this case the set of states as O,
such that for example for the FLAP parameter, O = 0, 10, 15, 30, 35.

In this regard it is important to note that what matters for our studies are not
the “raw” parameters as they are recorded in a flight recorder in an aircraft; but
rather the high-level engineering values that are computed by a software such as
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ALT 8500
AIRSPEED 254

AUTO ON
PITCH 5°

Table 5.2: Structure of a time-sample

the AGS, and that are the result of several steps of decoding, validation, filtering
etc., as briefly explained in Section 1.5.3. It is these high-level engineering values
that will be the input of the algorithms that are established in this thesis.

Goal of the Chapter

The goal of this chapter is to establish the necessary mathematical tools such that
the method we develop in this thesis is able to handle properly all four types of
parameters that we encounter in the field of flight data monitoring. More exactly,
using the terms defined in the introduction of this thesis, the goal of this chapter
is to construct a kernel k on the space of time-samples, that we denote by X .
Recall that we call a time-sample the data that is recorded at each instant in an
aircraft, and that may contain several parameters of different types, as described
for example in Table 5.2.

The kernel should have suitable properties that will be necessary for further
developments. In particular it should be a positive definite, infinitely divisible,
radial basis kernel. Moreover it should be consistent with the simpler case of real
vectors, and if possible it should be compliant with kernel entropy component
analysis as defined in Chapter 2.

As explained in Section 1.6, once we have defined a kernel k on the space X
of time-samples, we can then construct a kernel k∗ on the space X ∗ of sequences
of time-samples, as will be shown in Chapter 6.

Organization

In Section 5.2 we briefly present two previous attempts at solving this problem
in the field of FDM, and address their shortcomings. In Section 5.3 we propose a
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different kernel for each parameter type that is encountered in the field of FDM.
Recall that R is the state space for continuous parameters, D is the state space
for discrete parameters, A is the state space for angular parameters, O is the
state space for ordered discrete parameters; then we will propose the following
kernels:

kc ∶ R × R → R
kd ∶ D × D → R
ka ∶ A × A → R
ko ∶ O ×O → R

Section 5.4 is the core section of this chapter and explains how using the prod-
uct approach one can combine the kernels kc, kd, ka, ko to construct a kernel k on
a space X = Rdc×Ddd×Ada×Odo of a combination of any number of any parameter
types. Finally in Section 5.5 we illustrate that the product approach estimates
the precise dependency relation between the different components whereas the
sum approach is useful when the function to be estimated is the result of the
“sum of influences” from the different components.

5.2 Previous Approaches

In the field of FDM, previous studies [Amidan and Ferryman, 2005; Das et al.,
2010] have began experimenting different approaches for solving this problem,
especially the case of binary parameters.

5.2.1 NASA Morning Report

The NASA Morning Report [Amidan and Ferryman, 2005], takes a feature-based
approach at solving the problem of the FDM data structure. The first step in
the analysis is the creation of a feature vector for each flight, what is called in
the article a mathematical signature.

For continuous parameters, the mathematical signature consists in a set of 4
statistics (mean value, standard deviation, minimum, maximum) on coefficients
of a quadratic model estimated on a sliding window of 11 seconds over the entire
flight phase that is studied. As there are 4 coefficients for the quadratic model
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(including the error between actual and predicted values) the end result is thus
a vector of 16 real values for each continuous parameters that is studied.

For discrete parameters, the mathematical signature is the transition matrix
of the parameter. Each entry in the matrix counts the proportion of times that
the parameter went from a mode to another. Consequently, the diagonal entries
count the proportion of time that a parameter stayed in a particular state. The
transition matrix is then reshaped into a vector, so for example a parameter with
3 possible states as illustrated in Table 5.1 will have a 3 × 3 transition matrix
which is then reshaped into a vector of 9 elements.

When studying several parameters the signature of a flight is the vector re-
sulting from the concatenation of all signature vectors of all parameters. For
example, when studying 3 continuous parameters and one discrete parameters
with 5 states, this results in a real vector of 3 × 16 + 52 = 73 values.

The great advantage of using such a feature-based approach is that the repre-
sentation of flights is now a convenient vector of real values, and thus one can use
a very large set of tools and methods (the Morning Report uses a principal com-
ponent analysis and also a clustering in later versions). Moreover this approach
is sufficient to extract global and important properties of the flights.

Nonetheless, this approach falls short in the cases where one wants to detect
problems that are really localized in time, and which thus do not transpire in the
feature vector.

5.2.2 NASA MKAD

The NASA Multiple Kernel learning for heterogeneous Anomaly Detection takes
a very different approach, and focuses on kernel methods. Firstly, the MKAD
uses the SAX representation [Lin et al., 2003] for continuous parameters. The
SAX representation consists in first averaging values over fixed length window,
and then assigning to each averaged value a symbol according to its deviation
from the mean taken over all flights. This is illustrated in Figure 5.1.

A similarity matrix Kc is then created such that for two SAX sequences xi
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Figure 5.1: Continuous parameter transformed into SAX representation: ffff-
feeeddcbaabceedbcaaaaacddee

and xj of a continuous parameter of any two flights numbered i and j:

Kcij =

⋃LCSxi, xj⋃
⋃xi⋃ ⋅ ⋃xj⋃ .

Where LCS is the longest common subsequence [Paterson and Danč́ık, 1994] be-
tween two sequences, where we denote by ⋃x⋃ the length of any sequence x. If
there are more than one continuous parameters in the study then the resulting
similarity matrix is the mean of all similarity matrices.

Similarly for discrete parameters a separate similarity matrix Kd is computed,
using once again the length of the longest common subsequence as a similarity
measure.

To combine the two matrices Kc and Kd, the MKAD uses the multiple kernel
approach as proposed by Bach et al. [2004]:

K = ηKd + 1 − ηKc

Where η ∈ (0, 1⌋ is a parameter set by the user and used to weight the influence
of the two matrices. The similarity matrix K is then used as a Gram matrix in
the context of kernel methods, and used as input to an improved one-class SVM
named ν-anomica [Das et al., 2009].

There are however several flaws to this method. First, although the authors
claim that the length of the longest common subsequence yields a positive semi-
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definite matrix it has been proved otherwise [Vert, 2008]. Secondly, we do not
think that summing the Gram matrices is the right approach when dealing with
samples of heterogeneous types, as will be explained in Section 5.5. Finally,
authors do not make the crucial distinction between continuous and angular pa-
rameters.

5.3 The Four Types of Parameters in FDM

In this section we propose a kernel for each of the four types of parameters that is
typically encountered in the field of FDM. In addition, when appropriate we also
discuss the issues of estimating centroids. We use the term “centroid” to designate
an element that is as central as possible with respect to a set of elements. Note
that in some cases the centroid may not be an element of the set. It could be
seen as a generalization of the mean but for arbitrary types of data. Estimating
a centroid will be useful many times in our endeavor. For example when down-
sampling a time series with a period ∆t it is better to take the centroids across
periods (0,∆t(, (∆t, 2∆t(, etc. rather than just the values at times 0,∆t, 2∆t,

etc.

5.3.1 Continuous Parameters

Continuous parameters are the most common and easiest to deal with type of
parameters. They are simply modeled by numbers of the real line R.

5.3.1.1 Kernel on Continuous Values

The usual Euclidian distance ⋃xi − xj⋃ (note that here xi and xj are not vector
but simple real values) is of course a Hilbertian metric, and it is widely known
that the corresponding kernel:

kcxi, xj = exp −xi − xj
2

is positive definite and infinitely divisible.
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5.3.1.2 Centroid for Continuous Values

The most common way to estimate a centroid in a set S = x1, . . . , xn of n contin-
uous values is the mean:

x̄ =
1
n

n

P
i=1
xi. (5.1)

Being a linear function of its entries the mean is very convenient to handle from
a mathematical point of view; however it suffers from being very sensitive to
outliers [Huber, 1981]. As the robustness is a very important property for any
unsupervised novelty detection algorithm as explained in Chapter 2, we shall
rather use the median whenever possible. The median is defined as the numerical
value separating the higher half of the population from the lower half.

5.3.2 Angular Parameters

As explained in the introduction angular parameters are quite common in the
field of FDM. We model them by circular values. Let θi and θj be two angular
values, such that θi ∈ (0, 2π( and θj ∈ (0, 2π(.
Point Representation Throughout this subsection we will use a two-dimensional
vector representation of angular values. We model angular values θi and θj by
points xi and xj on the unit circle S1 of R2, such that:

xi =
cosθi
sinθi

and xj =
cosθj
sinθj

5.3.2.1 Distances on Circular Values

There are at least three different ways to define a distance on circular values.
Each has different mathematical properties, and some may be more appropriate
for use within an FDM system.

Absolute Angular Difference The most obvious way to define a distance
between two angular values θi and θj is the absolute angular difference, that we
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denote d0:
d0θi, θj = min⋃θj − θi⋃, 2π − ⋃θj − θi⋃

Such that for any θi and θj, d0θi, θj ∈ (0, π⌋. It is clear that the absolute angular
difference between θi and θj is the shortest geodesic distance along the circle
between xi and xj, that we denote by δ:

d0θi, θj = δxi,xj.

The absolute angular difference is the most straightforward way to define a dis-
tance between angles but there are two other possibilities that have interesting
mathematical properties.

Cosine Distance Another possible distance definition is the cosine distance,
denoted as d1:

d1θi, θj = 1 − cosθi − θj (5.2)

The cosine distance is a monotonous increasing function of the absolute angular
difference, it ranges from 0 to 2. The interest of this distance from a mathematical
point of view is that it is linked to the von Mises probability distribution [Forbes
et al., 2011]. With a measure of location µ and a measure of concentration κ, the
von Mises distribution can be expressed as:

fx⋃µ, κ =
eκ cosx−µ

2πI0κ

Where I0x is the modified Bessel function of order 0. When κ is close to 0 the
distribution is close to uniform, whereas with large κ the distribution is con-
centrated around the angle µ. The von Mises distribution has many interesting
properties which explains that it is also called the circular normal distribution.
Among them, given an expectation on the circle, it is the distribution that maxi-
mizes the entropy. Additionally, it is the distribution on the circle whose location
parameter is estimated with maximum likelihood by the sample circular mean,
which we shall define in Section 5.3.2.3.
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O

xj

xi
d1

d0

d2

Figure 5.2: Illustration on the unit circle of the three angular distances d0, d1
and d2.

Euclidian Distance A third way to define distances between angular values is
simply to consider the Euclidian distance between the vector representations of
angular values. We denote this distance by d2:

d2θi, θj =∏xi − xj∏
Note that d2 can be expressed as

d2θi, θj = 2 sin
⋃θi − θj⋃

2

Similarly the Euclidian distance is a monotonous increasing function of the abso-
lute angular difference, and it ranges from 0 to 2. Note also that for small angular
differences, ⋃θj − θi⋃ ≈ 0 Ô⇒ d2θi, θj ≈ d0θi, θj

The difference between these three distances is illustrated in Figure 5.2.
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5.3.2.2 Kernel on Circular Values

Using the distances expressed previously it is now possible to define kernels on
circular values. We present here two possibilities, using respectively the distances
d1 and d2. Although it would make sense from a FDM perspective to define a
kernel based on the distance d0, we haven’t found any use of such kernel in the
literature, and it is unclear if the properties that we seek, especially positive
definiteness, are valid in this case.

The zonal kernel The most commonly used kernel for circular values is the
zonal kernel [Fasshauer, 2011], which uses the cosine distance as defined in Equa-
tion 5.2:

k′aθi, θj = exp
(
−21 − cos⋃θj − θi⋃⌋

The zonal kernel is linked to the von Mises probability distribution [Forbes et al.,
2011], differing only by a multiplicative factor.

The spherical Gaussian kernel Another very simple way to design a kernel
that would be positive definite by design is to take the evaluation of the standard
2-dimensional Gaussian kernel on the points xi and xj, in other words to take the
exponential kernel associated to the Euclidian distance d2 between angles:

kaθi, θj = exp −d2θi, θj
2 = exp

−4 sin2
⋃θj − θi⋃

2


This kernel is sometimes called the spherical Gaussian kernel [Fasshauer, 2011].
The spherical Gaussian kernel is our kernel of choice for dealing with angular
values. Firstly, as explained before, for close angles its value is approximately
the one that would be obtained using the d0 distance, which is the most sensible
distance from a domain perspective. Secondly, as xi and xj lie on the unit sphere
which is merely a subset of R2, then by virtue of Theorem 8 we are assured that
the kernel ka has all the properties that we seek: it is a positive definite, radial
basis and infinitely divisible kernel.
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5.3.2.3 Centroid and Measure of Dispersion

Centroid Obviously one cannot use Equation 5.1 for angular values. Once more
we make use of the representation of angular values as points on the unit circle in
order to solve this issue. Let us consider a set of n angular values S = θ1, . . . , θn

and their associated points on the unit circle x1, . . . ,xn. First we compute the
mean of x1, . . . ,xn, which generally does not lie on the unit circle except for the
very particular case where all angular values are identical:

x̄ =
1
n

n

P
i=1

xi

The coordinates of x̄ can also be expressed using the angular values:

x̄ =

1
n Pn

i=1 cosθi
1
n Pn

i=1 sinθi

A centroid for the set S can then be defined as the angular value associated to
x̄, with respect to the origin, whenever x̄ is different from the origin:

θ̄ = atan2
( 1
n

n

P
i=1

sinθi,
1
n

n

P
i=1

cosθi
⌋

(5.3)

Where atan2 is a quadrant-specific version of the arc-tangent function.

Measure of dispersion Note in addition that the norm of x̄ can be used to
define a measure of dispersion. The closer x̄ lies to the unit circle, the more we
can say that the angular values are concentrated. Conversely, x̄ may be close the
origin if the angular values are evenly spread across the unit circle. Consequently,
a common measure for the dispersion of angular values is

1 −R, where R =∏x̄∏. (5.4)

Angular centroid and dispersion measure are illustrated in Figure 5.3. Note that
both this centroid and this measure of dispersion are sensible from a statistical
perspective. Let us define D1α, S = 1⋃S⋃ Pθ∈S d1α, θ the mean of the cosine
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O

x̄
R
θ̄

Figure 5.3: Illustration of the centroid and dispersion measure of angular values.

distances between an angle α and all angles in the set S. Then it has been
demonstrated [Jammalamadaka and Sengupta, 2001] that for any set S with
circular mean θ̄ as defined in Equation 5.3 and dispersion 1 − R as defined in
Equation 5.4:

min
α∈(0,2π(D1α, S = 1 −R

argmin
α∈(0,2π(D1α, S = θ̄

In other words, the circular mean is the angular value which minimizes the sum
of cosine distances, and this sum is related to the dispersion measure.

5.3.3 Discrete Parameters

Dealing with discrete parameters is very different from continuous or angular
parameters. In this section we propose a simple way to derive a kernel for discrete
values, and we briefly address the problem of defining a centroid for this type of
data.
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OFF FD CMD
OFF 0 1 1
FD 1 0 1

CMD 1 1 0

Table 5.3: Distance matrix for parameter Autopilot Status

5.3.3.1 Distances on Discrete Values

Distances on a discrete parameter with state space D can be completely defined
by a matrix of size ⋃D⋃ × ⋃D⋃. For example in the case of the Autopilot Status
parameter, one could use a distance matrix as defined in Table 5.3. Of course one
could tweak the values of such matrix in order to get closer to a representation
that would be sensible from a domain perspective, for example such that the CMD
state may be closer to FD than to OFF. However not all values lead to matrix
that represents valid distances, much less Hilbertian ones, as defined in Chapter
4. This problem of incorporating information about the “topology” of discrete
states, or in other words how much states are close to one another is treated
in part in Section 5.3.4, where we define ordered discrete parameters. Here we
consider the most simple topology, such as the one described in Table 5.3, even
if it could be argued in this case that indeed Autopilot Status could be considered
as an ordered discrete state.

General case Let us consider a discrete parameter with state space D of ⋃D⋃ =

q states. The distance we consider is thus:

dx, y =
0 if x = y

1 if x ≠ y

Which means that any two different states are at the same distance. First we shall
see that this distance is a Hilbertian distance, and consequently we will be able
to design an infinitely divisible kernel by virtue of Theorem 8. Let D = x1, . . . , xq,
where each x1, . . . , xq represents a possible state, or mode, of this parameter. We
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define a mapping φ such that:

φ ∶

D → Rq

xi ↦ 0, . . . , 1~2
ith position

, . . . , 0

Using this mapping, it is trivial to see that we have that for any two states
x, y ∈ D,

dx, y =∏φx − φy∏
As Rq is a Euclidian space, then we have by definition that d is a Hilbertian
metric on D. We can thus define a kernel kd on discrete values as:

kd ∶
D × D → R
x, y ↦ exp −dx, y2

By virtue of Theorem 8, kd is a positive definite, infinitely divisible, and radial
basis kernel.

Moreover, as a consequence of the infinite divisibility, and because x ↦ exp−x
is a bijection from (0,∞( to ⌋0, 1⌋ then any kernel of the form:

kd ∶

D × D → R

x, y ↦
1 if x = y

a if x ≠ y

where a < 1 is also a valid kernel with the same properties enunciated before.

5.3.4 Ordered Discrete Parameters

In order to deal with discrete parameters we use a very simple model. As briefly
explained in the introduction of this chapter, we associate a real number to each
possible state of the ordered discrete parameter. Sometimes this real number
can naturally be defined, for example in the case of the FLAPC parameter, each
possible state 0, 10, 15, 30, 35 is already associated to a real number. However
sometimes there are discrete states that are not already associated to a real
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number but we still wish to bring an order (or more generally a topology) to
these states. For example as described previously, the AUTO parameter can
naturally be considered as a discrete (unordered) parameter. But some FDM
experts may argue that the CMD state should be closer to the FD state than to
the OFF state. Thus an association function φ from the state space O to R may
be for example:

φ ∶

O → R
OFF ↦ 0

FD ↦ 1
CMD ↦ 2

5.3.4.1 Kernel on Ordered Discrete Parameters

Once in R one can simply use the Gaussian kernel, which has already all the
properties we wish our kernel to have (positive definite, infinitely divisible and
radial basis):

ko ∶
O ×O → R
x, y ↦ exp−∏φx − φy∏2

5.3.4.2 Centroid and Measure of Dispersion

Similarly, for a centroid one can simply take the mean of the associated real
values; and the standard deviation as a measure of dispersion. Note that in this
particular case the centroid does not in the general case belong to the state space
O, but this is not an issue as it is easy to deal with real values.

5.4 Combining Kernels for Different Types of
Parameters

In this section we present a way to combine the kernels kc, ka, kd, ko in order to
construct a kernel k on the space X = Rdc × Ddd × Ada × Odo of time-samples.
This problem of incorporating data from heterogeneous sources has already been
studied in the field of kernel methods, and there are roughly two approaches
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to solving it: either consider the sum of the kernels (or more exactly the conic
combination) [Bach et al., 2004; Sonnenburg et al., 2006] or the product [Haussler,
1999; Kondor and Lafferty, 2002; Shin and Kuboyama, 2008]. Note that the main
goal of [Bach et al., 2004] is to learn the weight parameters of the kernels, in a
supervised setting, by developing an efficient procedure for solving the resulting
quadratically constrained quadratic program. Hence in [Bach et al., 2004] the
idea in using multiple kernels is to enhance performance in a supervised setting,
not necessarily to incorporate data from heterogeneous sources; as for example
multiple kernel matrices may come from the same data sources but with different
normalization factors.

As explained before, one of the previous attempts to applying kernel methods
to the field of FDM we have studied, the NASA MKAD [Das et al., 2010] uses the
conic combination approach to combine data from multiple parameters. It is our
belief that this is not the right approach for this problem, and in this section we
present the kernel product approach. In Section 5.5 we compare both approaches.

5.4.1 Mathematical Framework

In order to simplify our exposition we restrict ourselves to the case where each
sample is a composite structure comprising two elements, one from a space X
and one from a space Y. The extension to a more general case with an arbitrary
number of elements is trivial. We denote the composite input space as Z = X ×Y.
We thus consider the following dataset:

X1, Y1, . . . , Xn, Yn

We assume that each space X and Y is endowed with a kernel, respectively
kX and kY , and that these kernels are positive definite, radial basis and infinitely
divisible. The goal is thus to construct a kernel kZ on Z which has the same prop-
erties, and which is able to properly estimate the dependency relation between
the two variables X and Y .
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5.4.2 The Product Kernel

The idea is to consider the generalized product kernel kZ , also called tensor prod-
uct in some publications [Haussler, 1999]. We use the term generalized to em-
phasize the fact that spaces X and Y may be different. The generalized product
kernel is defined as follows:

kZ ∶ X × Y × X × Y → R

x0, y0, x1, y1 ↦ kXx0, x1 ⋅ kY y0, y1

We shall now examine the properties of the resulting kernel kZ .

5.4.2.1 Positive Definite

The positive definiteness of the kernel kZ is directly inherited from results on the
Schür algebra of matrices [Horn and Johnson, 2012].

Considering the samples X1, Y1, . . . , Xn, Yn, let Kx be the Gram matrix con-
structed using kernel kX and KY the Gram matrix constructed using kernel kY .
Then the Gram matrix KZ constructed using the kernel kZ is the Schür product
of the matrices KX and KY :

KZ = KX ⊗KY

The Schür product, also known as the Hadamard product, is the entrywise prod-
uct between two matrices, such that KZi,j = KXi,j ⋅KY i,j.

The Schür product theorem [Horn and Johnson, 2012] guarantees that the
Schür product of two positive definite Gram matrices is a positive definite matrix.
Consequently, the generalized product kernel kZ is positive definite.

5.4.2.2 Radial Basis

The radial basis property is easier to prove. Let z0 = x0, y0, z1 = x1, y1 two samples
from Z. As both kX and kY are supposed to be radial basis, then 0 ≤ kXx0, x1 ≤ 1
and 0 ≤ kY y0, y1 ≤ 1 which leads to 0 ≤ kZz0, z1 ≤ 1. Additionally z0 = z1 if and
only if x0 = x1 and y0 = y1, consequently z0 = z1 if and only if kZz0, z1 = 1, which
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proves this property.

5.4.2.3 Infinitely Divisible

Let n ∈ N∗. As both kX and kY are supposed to be infinitely divisible, then k
1~n
X

and k
1~n
Y are positive definite. According to the results established in Section

5.4.2.1, the kernel k
1~n
X ⋅ k

1~n
Y = kX ⋅ kY

1~n
= k

1~n
Z is positive definite; which

proves that kZ is infinitely divisible.

5.5 Comparison with the Conic Combination Ap-
proach

5.5.1 General Principles

We argue that the choice of the method to combine the kernels should depend on
the semantic of the data: either each kernel represents a different representation
of the data, or the data are of composite structure and each kernel represents a
way to compare a component of this structure.

A common illustration is the case of the proteins: a protein can be considered
as an amino-acid sequence, a macromolecule with a 3D-structure, an expression
level in a DNA-chip or even a node in a biological pathway. Each representation
can be associated to a kernel and it is possible to combine all these kernels using
a conic combination:

k =
m

P
l=1
βlkl, with

m

P
l=1
βl = 1 and ∀l, βl > 0

A kernel algorithm generally yields a linear combination of point-wise evaluations
of the kernel functions:

fx =
n

P
i=1
αikx,Xi =

m

P
l=1
βl

n

P
i=1
αiklx,Xi

Thus it can be seen that it makes sense to use a conic combination when the
function to be estimated represents a “sum of influences”. In this case, an algo-
rithm such as the one described in [Bach et al., 2004] can be used in a supervised
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setting to learn the parameters β1, . . . , βl as well as the coefficients α1, . . . , αn.
On the contrary, in the case where one has to deal with a composite structure,

for example samples with mixed data Zi = Xi, Yi and the goal is to estimate a
function that takes into account the dependency relation between each compo-
nent, one has to multiply the associated kernels as described in this section.

To understand this let us review the case of radial basis kernels that may
represent degrees of similitudes that range from 0 to 1. Two samples Z1 = X1, Y1

and Z2 = X2, Y2 of composite structure can be considered similar if

X1 is similar toX2 AND Y1 is similar toY2

Which translates into the multiplication of the similarity functions.
For example in the trivial case of two-dimensional vectors in an Euclidian

space it would not occur to a practitioner to use the kernel exp (−x1 − x2
2⌋ +

exp (−y1−y2
2⌋ instead of exp(−(x1−x2

2+y1−y2
2⌋⌋ = exp (−x1−x2

2⌋ ⋅exp (−y1−y2
2⌋.

Implications for the number of samples It is very important to understand
that when one knows in advance that the function to be estimated can be mod-
eled as a sum of (independent) influences then summing the kernels is the right
approach and requires far less samples to yield a proper estimation. We here
present some informal arguments to understand this phenomenon.

Suppose for example that the functions associated to the kernels k1, . . . , km

require respectively n1, . . . , nm samples for a sufficiently precise estimation. Then
it is clear that the function of interest f would require a number of samples in
the order of maxn1, . . . , nm to be correctly estimated.

On the contrary, in the case where the problem is to estimate a proper depen-
dency relation between components of a composite structure (where the product
kernel is the right approach) then one cannot escape the curse of dimensionality.
In this case the number of samples required will be in the order of n1 × . . . × nm.
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Figure 5.4: Novelty due to “bad synchronization”

5.5.2 Interest for Novelty Detection

We illustrate further the differences between the conic combination and the prod-
uct approach by studying the implications in the context of novelty detection. Let
us consider a novelty that arises due to what is sometimes called a problem of
“bad synchronization” between two parameters X and Y . Such a novelty cannot
be detected by looking at the univariate distributions, it results from an unusual
dependency relation between the two parameters X and Y . This is illustrated
in Figure 5.4, where we have two clusters represented by blue and green ellipses,
and one red point which is a novelty. It is clear in this figure that the novelty
cannot be detected by looking only at univariate histograms for example.

Let us now investigate how such a dataset would be represented using Gram
matrices. In Figure 5.5 we represent respectively the Gram matrices KX , KY ,
1
2KX +KY and KX ⊗KY . The indexes of the Gram matrices are all ordered in
the same way, the first points are from the green cluster, then comes the novelty,
then the points from the blue cluster. This ordering is apparent in the choice of
colors. Furthermore the intensity of the color represents the magnitude of the
values. To simplify we could say that the clusters are infinitely compact, such
that bright colors represents values of 1, washed colors represent values of 0.5 and
white represents a value of 0. We can see in Figure 5.5 that when using a conic
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1
2KY +KX

“mild outlier” “strong outlier”

KY ⊗KX

Figure 5.5: Comparison of Gram matrices

combination approach the novelty is “diluted” in the two clusters, which results
in a mild outlier. Conversely, using the product approach the novelty is clearly
independent from the two clusters and results in a strong outlier.

Using a novelty detection algorithm based on a decomposition of the Gram
matrix in eigenvectors such as the one proposed in Chapter 2 would result in
each cluster belonging to a subspace of its own in the kernel feature space, these
two subspaces being orthogonal. Moreover the novelty itself would be in its own
subspace, orthogonal to the subspaces of the two clusters. However, retaining the
principal subspace with the highest variance (or entropy as explained in Chapter
2) results in retaining the subspaces corresponding to the two clusters. Conse-
quently the novelty would thus lie far from the principal subspace, and this point
would certainly be detected as a novelty based on the reconstruction error.

100



5.6 Conclusion

We have thus seen that using the product approach yields a kernel that possesses
all three important properties defined in Chapter 4, it is a positive definite, radial
basis and infinitely divisible kernel. Using this approach we are now able to
construct a suitable kernel for the space of time-samples X = Rdc ×Ddd ×Ada ×Odo .
In Chapter 6 we describe the next step for the development of our kernel for
comparing flights: we build upon the kernel k on X in order to construct a kernel
k∗ on X ∗ which is the space of sequences of elements of X .
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Chapter 6

Data as Sequences

6.1 Introduction

Goal of the Chapter In the previous chapter, we have designed a kernel k on
a space X which models the set of all possible time-samples. In other words, the
kernel k can be used to compare the data that is recorded at one instant with the
data that is recorded at another instant. In this chapter, we present the final step
in the creation of the kernel on flights. As explained in the introduction of this
work, we model a flight as a sequence of time-samples. Denote by X ∗ the space
of finite sequences with elements in X , such that X ∗ = ∪∞i=1X

i. In the literature
the kernel k is sometimes called the base kernel or ground kernel, and the space
X the ground space. The goal is now to design a sequence kernel k∗ on X ∗ with
suitable properties.

Framework Let x = x1, . . . , xl and x′ = x′1, . . . , x
′
m two elements of X ∗. In the

general case, these two elements may not have the same length, and thus one
cannot use traditional vector-based approaches such as a Gaussian kernel in an
Euclidian space to compare these sequences. When dealing with sequences of
discrete elements one solution is to compute the minimum number of operations
(such as insertion, deletion and modification) needed to obtain one sequence from
another. This number of operations can be considered as a distance, and is called
the Levenshtein distance [Levenshtein, 1966] or more generally the edit-distance.
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Another solution is to define alignments between sequences. An alignment asso-
ciates elements from one sequence to elements in another sequence such that the
order of elements is preserved.

The first attempts to deal with this problem resulted in the well-known dy-
namic time warping method [Sakoe and Chiba, 1978], which seeks the best align-
ment between two sequences, and which results in the so-called optimal assign-
ment kernel. Although this kernel has been extensively used by practitioners it
has been demonstrated recently that it is in fact not positive definite [Vert, 2008].
Since then some researchers have proposed alternatives, such as for example the
global alignment kernel [Cuturi et al., 2007] or the spectrum kernel [Leslie et al.,
2002].

Methodology The kernel we propose in this chapter is novel in two regards.
Firstly, we only consider a particular kind of alignments with repetitions, these in
which only the shorter sequence can have repeated elements, hence the name “one-
sided”. Secondly, instead of only retaining the best alignment like in the optimal
assignment we rather consider the mean (in a sense which shall be clarified) of
all alignment scores.

In this work we will not use the classical formalism of alignments, but rather
refer to what we call “dilatation operators”. These will be precisely defined in
Section 6.4.2.1, but we can already define them informally: a dilatation operator
is a function that maps a finite sequence to a longer finite sequence by repeating
one or more of its elements.

Contributions We demonstrate using the theory of infinitely divisible ker-
nels that the proposed kernel is positive definite. We also illustrate many other
interesting practical properties: it is a radial basis kernel, has no issues of di-
agonal dominance, and presents a consistent behavior in the case of time series
sub-sampling. We propose an implementation of this kernel using dynamic pro-
gramming techniques, which result in a complexity in Ol × m − l for a pair of
sequences of respective lengths l < m, which is much faster than competing tech-
niques which have a complexity in Ol ×m. In the next chapter, we illustrate our
approach with promising results in the field of FDM.
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ATGCCGTGACATGCATTTAAGC
GTG-CGT-ATATG--TTT---C

Figure 6.1: Alignments with gaps

ATGCCGTGACATGCATTTAAGC
ATGGCGTTACATGGGTTCCCCC

Figure 6.2: Alignments with repetitions

6.2 Alignments and Alignment Scores

Let x = x1, . . . , xl and x′ = x′1, . . . , x
′
m two elements of X ∗. An alignment asso-

ciates elements from one sequence to elements in another sequence such that the
order of elements is preserved. Alignments can either introduce gaps or repeti-
tions, as illustrated in Figures 6.1 and 6.2. In these figures we use the example
of genome sequences for illustration, but of course the concepts presented here
are still valid for time series (sequences of real values) or more generally for se-
quences of structured data. As always the practitioner must choose the right type
of alignments based on the application, for example it is commonly agreed that
gap alignments are suited to the study of genome sequences whereas alignments
with repetitions can be used for trajectory comparisons.

Once an alignment has been found, it is then possible to compute an alignment
score between the two sequences, by for example summing the pairwise distances
between aligned elements. Consequently, for alignments using gaps there may be
elements in one of the two sequences that will not be compared to an element
in the other sequence, which does not happen when considering alignments with
repetitions.

6.2.1 Global Alignments

In this work we will be interested in alignments that introduce repeating states.
Formally we define an alignment π of length p between two sequences of lengths
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l and m as a pair π1, π2 of p increasing indexes such that:

1 = π11 ≤ . . . ≤ π1p = l

1 = π21 ≤ . . . ≤ π2p = m
(6.1)

and
π1i + 1 − π1i

π2i + 1 − π2i
∈

0
1
,

1
0
,

1
1

(6.2)

We denote by Ax,x′ the set of all alignments between x and x′.

6.2.2 One-Sided Alignments

In this work we will be interested in a particular subset of alignments that we have
called one-sided alignments. These are the alignments where only the shortest
sequence can have repeated elements. Suppose sequence x is shorter than x′,
such that l ≤ m; thus the condition on the alignment π becomes:

π1i + 1 − π1i

π2i + 1 − π2i
∈

0
1
,

1
1

(6.3)

One should remark that between two sequences of the same length, there exists
only one one-sided alignment, which is the trivial alignment ∀i ∈ 1 . . . l, π1i =

π2i = i. In the general case where l ≤ m it can be seen from Equation 6.3 that
there are m−1

l−1 one-sided alignments between x and x′. We denote by A−x,x′ the
set of one-sided alignments between x and x′.

6.2.3 Representation of Alignments

It is possible to conveniently represent alignments between two sequences of
lengths l and m as paths on matrix of size l,m. Note that in this section as
well as in the rest of the chapter we shall always represent this matrix with the
shorter sequence as the vertical indexes. At each step, the vertical position is
given by π1 and the horizontal position is given by π2. Equation 6.1 means that
each path starts at the upper left corner of the matrix and finishes at the lower
right corner. Moreover, as is described in Figure 6.3 and 6.4; positions of two
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Figure 6.3: Movements in global alignments

Figure 6.4: Movements in one sided alignments

Figure 6.5: Two examples of global alignments

subsequent steps are conditioned by either Equation 6.2 or Equation 6.3 depend-
ing on whether the alignment is global or one-sided. Figure 6.5 presents two
examples of global alignments between sequences of lengths 3 and 6, and Figure
6.6 presents two examples of one-sided alignments. Note that in Figure 6.6 we
have represented some cases of the matrix with stripes: these are cases that are
unattainable using one-sided alignments. Because of restrictions in the “move-
ments” as described in Equation 6.3 and illustrated in Figure 6.4, the part of the
matrix that can be attained is given by the following equations:

1 ≤ i ≤ l

i ≤ j ≤ m − l + i
(6.4)
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Figure 6.6: Two examples of one-sided alignments

This restriction of the domain will be put to use in Section 6.5 concerning the
implementation using dynamic programming: it will be possible to design an
algorithm with complexity Ol ×m − l instead of Ol ×m.

6.2.4 Examples of Kernels Defined with Alignments

6.2.4.1 Optimal Assignment Kernel

Based on the popular dynamic time warping technique [Sakoe and Chiba, 1978],
the optimal assignment kernel considers only the “best” alignment between two
sequences. When dealing with continuous values such that X = Rd the best
alignment is the one that minimizes Euclidian distances:

kDTWx,x′ = exp − min
π∈Ax,x′

1⋃π⋃
⋃π⋃
P
i=1

∏xπ1i − x
′
π2i∏2

Which when dealing with a Gaussian ground kernel k is equivalent to the following
equation:

kDTWx,x′ = max
π∈Ax,x′

⋃π⋃
L
i=1

kxπ1i, x
′
π2i

Although widely used in the literature, Vert [2008] demonstrated that this kernel
is in fact not positive definite and thus cannot be used as is in kernel methods.
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6.2.4.2 Global Alignment Kernel

To circumvent this issue, Cuturi et al. [2007] have proposed an alternative kernel,
named the global alignment kernel. Contrary to the optimal assignment kernel,
this one does not only consider the best alignment but rather sums the scores
associated to all possible global alignment. As a consequence this kernel may
prove more robust to quantify the similarity between two sequences, and they
demonstrated that it was indeed positive definite under mild conditions.

kGASx,x′ = P
π∈Ax,x′

⋃π⋃
L
i=1

kxπ1i, x
′
π2i (6.5)

6.3 The One-Sided Mean Alignment Kernel

The fact that we use only one-sided alignments for the definition of this kernel
will let us introduce another formalism that will not only simplify the notations
but also the demonstration of the main theorem of this chapter. The formalism
we introduce is that of dilatation operators.

A dilatation operator is a function that maps a sequence to a longer sequence
by repeating one or more of its elements while still keeping the order. We de-
note by ξl→m the set of dilatation operators that map sequences of length l to
sequences of length m. The dilatation operators will be properly defined in later
sections, but in the meantime one only has to know that there is a one-to-one
correspondence between the set of one-sided alignments A−x,x′ where x and x′

are two sequences of respective lengths l ≤ m and the set of dilatation operators
ξl→m. Note that consequently the cardinal of this set verifies ⋃ξl→m⋃ =

m−1
l−1 .

Before delving into the technical details we provide in Table 6.1 a set of
notations that may be helpful for reading the sequel.

6.3.1 Practical Case: Real Values with Gaussian Kernel

We start by giving an example of the one-sided mean kernel in the case where
elements of sequences are real values: X = R, and where the ground kernel k is
the usual one-dimensional Gaussian kernel. This is useful to get a sense of how
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x One sequence
x′ Another sequence
xl Shorter sequence between x and x′

xm Longer sequence between x and x′

l Length of the shorter sequence xl

m Length of the longer sequence xm

xl lth element of the sequence x
xm mth element of the sequence x

εli
Operator that repeats the ith element of sequences of length l

and leaves unchanged sequences of length other than l

ξ1→m

Set of dilatation operators without repetition from
sequences of length l to sequences of length m,

such that ⋃ξl→m⋃ =
m−1
l−1

ξ′1→m

Set of dilatation operators with repetition from
sequences of length l to sequences of length m,

such that ⋃ξ′l→m⋃ = m−1!
l−1!

x1, . . . ,xN N sequences that constitute the dataset
n Length of the longest sequence in x1, . . . ,xN .

Table 6.1: Notation table.

this kernel is represented in most practical cases, before we delve into the more
abstract setting of infinitely divisible kernels. As described in Table 6.1, let x and
x′ two elements of X ∗. Furthermore we refer to the shorter and longer elements
of x,x′ as xl and xm respectively, with l ≤ m denoting the respective lengths of
the sequences. Note that xl and xm are not to be mistaken for xl and xm which
refer respectively to the lth and mth elements of x. In the real case the one-sided
kernel k∗ is defined as:

k∗x,x′ = exp −
1⋃ξl→m⋃ P

ε∈ξl→m

1
m
∏εxl − xm∏2 . (6.6)

Note that as the shorter sequence plays a special role, this equation is not sym-
metric w.r.t. xl and xm; however it is indeed symmetric w.r.t. x and x′. Ad-
ditionally, note that when comparing two sequences of the same length m, this
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kernel reduces to the usual vector Gaussian kernel:

k∗x,x′ = exp −
1
m
∏x − x′∏2 . (6.7)

This example illustrates interesting an interesting difference with the global align-
ment kernel: as it is defined using means of distances instead of sums, the value
of the kernel is bounded even when the length of the sequences compared in-
creases. This has important consequences in terms of consistency when studying
sub-sampling of continuous time series.

6.3.2 Abstract Case: Infinitely Divisible Kernels

Definition 9. Let K be a positive definite kernel on X × X . The kernel K
is called infinitely divisible if for each positive integer n there exists a positive
definite kernel Kn such that K = Kn

n .

Next, for any kernel k on X × X , and any integer m ≥ 1 we denote by km ∶

Xm × Xm → R the product kernel defined as kmx,x′ = kx1, x
′
1 ⋅ . . . ⋅ kxm, x

′
m. We

can now state a more general definition of the one-sided mean kernel.

Definition 10. Let k be a kernel on X × X . The one-sided mean kernel k∗ is
a kernel on X ∗ × X ∗ defined as the geometric mean of all one-sided alignment
scores:

k∗x,x′ =

 L
π∈A−x,x′

⋃π⋃
L
i=1

kxπ1i, x
′
π2i

1⋃π⋃
1⋃A−x,x′⋃

Using dilatation operators the one-sided mean kernel can be defined in the follow-
ing way:

k∗x,x′ =

(
L

ε∈ξl→m
kmεxl,xm

1
m

⌋ 1⋃ξl→m⋃
(6.8)

As our main contribution we state the following theorem:

Theorem 9. The one-sided mean kernel k∗ verifies the following properties:

1. If k is positive definite and infinitely divisible, then k∗ is positive definite,
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2. When comparing two sequences x and x′ of the same length m, k∗ reduces
to the product kernel: k∗x,x′ = kmx,x′ 1

m .

3. If k is a radial basis kernel, then k∗ is a radial basis kernel.

The first property guarantees that the one-sided mean kernel can be used in
the framework of kernel methods [Schölkopf and Smola, 2002], which as briefly
explained in the introduction of this thesis, encompasses such diverse tasks as
classification, regression, clustering etc. The second property indicates that this
kernel on sequences is consistent with a kernel that would be built for dealing
with only fixed-length data according to the principles exposed in Section 5.5 for
example. This is especially remarkable in the case of real values with a Gaussian
kernel where the one-sided mean kernel reduces to a Gaussian kernel on vectors
when dealing with fixed-length data as in Equation 6.7. The third property
leads to a better interpretation of the entries in the Gram matrix as explained in
Chapter 4, additionally many kernel methods are supposed to work with a radial
basis kernel.

Of course, the Gaussian kernel kx, x′ = exp−x − x′2 where x, x′ ∈ R is itself
infinitely divisible [Berg et al., 1984], and it suffices to express the product as the
exponentiation of distances to be lead to Equation 6.6.

6.3.2.1 Expression Using Conditionally Negative Definite Kernels

Let us consider the case where the kernel k on X is infinitely divisible. According
to Theorem 6 of Section 4.3, this kernel can be expressed as the exponentiation
of a conditionally negative definite kernel, that we denote by N :

∀x, x′ ∈ X , kx, x′ = exp−Nx, x′

Much in the same way that we defined km from k, we define Nm the kernel on Xm

such that Nmx,x′ = Nx1, x
′
1+. . .+Nxm, x

′
m. As the sum of conditionally negative

definite kernels, Nm is itself conditionally negative definite. It is now possible to
express the one-sided mean kernel using sums of conditionally negative definite
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kernels instead of products of infinitely divisible kernels:

k∗x,x′ = exp −
1⋃ξl→m⋃ P

ε∈ξl→m

1
m
Nmεxl,xm (6.9)

One can see that Equation 6.9 is very similar to Equation 6.6. Upon seeing
Equation 6.8, the practitioner may be worried that a kernel defined with as many
products may suffer from issues related to diagonal dominance, as it suffices that
one term in the product be close to 0 in order for the whole kernel to be close to
0. In reality as the kernel can be expressed as the exponentiation of a sum, this
translates to the majority of terms in the product being close to 1, provided the
normalization of distances (or in this case conditionally negative definite kernels)
is properly done.

6.4 Demonstration of the Main Theorem

6.4.1 Strategy

In order to prove that the one-sided mean kernel is positive definite we will
prove that its evaluation over any finite dataset x1, . . . ,xN of any size N yields
a positive definite matrix. We denote by n the length of longest sequence in the
dataset. Informally, using the theory of infinitely divisible kernels we will “divide”
the values of kernel evaluations k∗xi,xj into sufficiently small parts that will be
rearranged to expose the fact that the Gram matrix can be expressed as a Schür
product1 of many positive definite matrices. Indeed, one can see that the kernel is
already defined as a product of other kernels, however this product is indexed by a
set ξl→m which depends on the particular pair of samples xl,xm being considered.
Thus our task shall be to rewrite this product such that it is indexed by ξ′1→n, a
set independent of the pair of samples considered.

1Recall that the Schür product is the entry-wise product.
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ε42
AT z→ AT

ATGC z→ ATTGC
CATC z→ CAATC

TTGAC z→ TTGAC

Figure 6.7: Example of applications of ε42 to sequences of different lengths.

6.4.2 Tools

6.4.2.1 Formal Definition of Dilatation Operators

We shall define the set of dilatation operators in a recursive manner. First for
any positive integer l indicating the length of a sequence, we denote by ε0,li the
operator that dilates a sequence of length l by repeating once its ith element:

ε0,li ∶
X l → X l+1

a1a2 . . . al ↦ a1a2 . . . aiai . . . al

For the sake of our demonstration we will have to extend slightly this definition
by enlarging the support of ε0,li to all of X ∗:

εlix =

ε0,li x if ⋃x⋃ = l

x if ⋃x⋃ ≠ l
(6.10)

As an illustration, Figure 6.7 presents the application of an extended dilatation
operator to examples of sequences. Next we denote by ξ′l→l+1 the set of all dilata-
tion operators that map a sequence of length l to a sequence of length l+1. Thus
ξ′l→l+1 = ε

l
i, i ∈ ((1, l⌋⌋.

Let l < m two integers. In order to define the set of dilatation operators that
map a sequence of length l to a sequence of length m, we state that one such
operator first dilates a sequence of length l to a sequence of length l + 1, then to
a sequence l + 2, etc. until a sequence of length m is reached. Recursively it can
be defined as:

ξ′l→m = ε′ ○ ε, ε ∈ ξ′l→m−1 ∧ ε′ ∈ ξ′m−1→m (6.11)
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Finally for consistency, we have ξ′l→l = IdX ∗ .

Combinatorial considerations For the sake of the demonstration we consider
for example ε31 ○ ε22 and ε33 ○ ε

2
1 to be two different elements of ξ′2→4 although they

are identical in the mathematical sense since they both represent the same input-
output relation. Thus in our sense, the cardinal of ξ′l→m is ⋃ξ′l→m⋃ = m − 1m −

2 . . . l = m−1!
l−1! . We denote by ξl→m the set of dilatation operators without repetition

such that ⋃ξl→m⋃ =
m−1
l−1 and such that each element in ξl→m is repeated exactly

m − l! times in ξ′l→m.
Consequently, any mean indexed by ξl→m is equal to the mean indexed by

ξ′l→m, so in the case of the one-sided mean kernel:

(
L

ε∈ξl→m
kmεxl,xm

1
m

⌋ 1⋃ξl→m⋃
=

(
L

ε∈ξ′
l→m

kmεxl,xm

1
m

⌋ 1⋃ξ′
l→m⋃ (6.12)

6.4.3 Developments

We first start by replacing xm by εxm which does not change the values by virtue
of Equation 6.10; and then by replacing ξl→m by ξ′l→m which does not change the
value of the geometric mean as expressed in Equation 6.12, so that we obtain

k∗x,x′ = L
ε∈ξ′

l→m

kmεxl, εxm

1
m⋅⋃ξ′

l→m⋃
.

Next, we change the left index of ξ′l→m from l to 1, and because both elements xl

and xm have length strictly superior to l − 1 this results according to Equation
6.10 to elements of ξ′l→m being repeated exactly l− 1! times, which we account for
by changing the exponent and which leads to

k∗x,x′ = L
ε∈ξ′1→m

kmεxl, εxm

1
m⋅l−1!⋅⋃ξ′

l→m⋃
.

Finally, as ⋃ξ′l→m⋃ = m−1!
l−1! , we have:

k∗x,x′ = L
ε∈ξ′1→m

kmεxl, εxm

1
m! (6.13)
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In the next step we shall prove a lemma.

Lemma 1. For any integer m ≥ 1; denote by Km the kernel on ∪mi=1X
i defined

as:
Kmx,x′ = L

ε∈ξ′1→m

kmεx, εx
′ 1
m! (6.14)

Then for any two sequences xl and xm of respective lengths l ≤ m, we have that:

∀p ≥ m, Kpxl,xm = Kmxl,xm

Proof. We shall prove this identity by induction. Let p ≥ m > l. The goal is to
prove that Kp+1xl,xm = Kpxl,xm. Using Equation 6.11 we can decompose any
element of ξ′1→p+1 such that:

L
ε∈ξ′1→p+1

kp+1εxl, εxm = L
ε′∈ξ′1→p

L
ε′′∈ξ′p→p+1

kp+1ε
′′ε′xl, ε

′′ε′xm (6.15)

Then by breaking down the definition of kp+1 and rearranging the terms in
the product one can easily see that for any xp, x′

p in X p:

L
ε′′∈ξ′p→p+1

kp+1ε
′′xp, ε

′′x′
p = kpxp,x

′
p
p+1 (6.16)

By applying Equation 6.16 to xp = ε′xl and x′
p = ε′xm and combining with

Equation 6.15 we obtain:

L
ε∈ξ′1→p+1

kp+1εxl, εxm = L
ε∈ξ′1→p

kpεxl, εxm
p+1

Finally, elevating to the power 1
p+1! and using Equation 6.14 leads to:

Kp+1xl,xm = Kpxl,xm

According to Equation 6.13 we have that k∗x,x′ = Kmxl,xm. Recall that n
is the length of the longest sequence in the dataset. Applying Lemma 1 for p = n
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leads to:
k∗x,x′ = Knxl,xm

As kn is symmetric we are finally lead to another expression for the one-sided
mean kernel:

k∗x,x′ = Knx,x′

k∗x,x′ = L
ε∈ξ′1→n

knεx, εx
′ 1
n! (6.17)

Recall that n is the length of the longest sequence in the dataset, thus Equation
6.17 is valid for any pair of samples x,x′ in the dataset.

6.4.4 Conclusion of the Demonstration

6.4.4.1 First Property: Positive Definiteness

For any ε ∈ ξ′1→n, denote by Kε,N the N ×N Gram matrix obtained by evaluation
of the kernel k

1
n!
n over the samples εx1, . . . , εxN . The Schür product theorem

[Horn and Johnson, 2012] guarantees that the product of two positive definite
and infinitely divisible kernels is a positive definite and infinitely divisible kernel.
As k is a positive definite infinitely divisible kernel, we thus have that k

1
n!
n is a

positive definite kernel. Thus for any ε ∈ ξ′1→n, Kε,N is a positive definite matrix.
Now let us denote by KN the Schür product of the n − 1! aforementioned

matrices:
KN = ℵ

ε∈ξ′1→n

Kε,N

Moreover, according to Equation 6.17, we have that

KN = k∗xi,xj
i,j .

One final application of the Schür product theorem guarantees that KN is positive
definite, which concludes the demonstration of the first property.
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6.4.4.2 Second Property: Two Sequences of Same Length

The second property follows from the fact that there is only one one-sided align-
ment between two sequences of the same length m, which is the trivial alignment
of length m: ∀i ∈ ((1,m⌋⌋, π1i = π2i = i. Equivalently using the formalism of

dilatation operators, ξ′m→m = IdX ∗ ; which leads to:

k∗x,x′ = kmx,x′ 1
m

6.4.4.3 Third Property: Radial Basis Kernel

Firstly, the one-sided mean kernel obviously has only positive values. Secondly,
if we suppose that k is a radial basis kernel, then it has values in range (0, 1⌋,
consequently for any m, the kernel km also has values in range (0, 1⌋. As the
geometric mean of values in the range (0, 1⌋, k∗ also has values in range (0, 1⌋.

Suppose x ≠ x′, then at least one of the terms in the definition of k∗ will be
different from 1 and thus k∗x,x′ < 1.

On the contrary, if we suppose x = x′, then according to the second property,
k∗ reduces to the generalized product kernel, whose every term is equal to 1,
which leads to k∗x,x′ = 1.

6.5 Implementation Using Dynamic Program-
ming

6.5.1 Introduction

In this section will be presented a practical way to compute the mean alignment
kernel as defined in Equation 6.8. As explained in Section 6.2.2, between two
sequences xl and xm of respective lengths l ≤ m there is exactly m−1

l−1 one-sided
alignments. Consequently, it is absolutely impractical to compute naively the
alignment scores for every alignment, except for very small sequence lengths.
Fortunately, as is the case with most sequence comparison methods there is a
way to implement the computation of the one-sided mean kernel using dynamic
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programming techniques, which results in polynomial complexity Ol ×m− l with
respect to both time and space.

In order to implement the one-sided mean kernel we shall refer to its ex-
pression using conditionally negative definite kernels as is described in Equation
6.9, we shall henceforth refer to this expression as the “additive” form of the
one-sided mean kernel. Most often the conditionally negative definite kernels
represent distances that are computed before the kernel evaluation, but other-
wise as is explained in Section 4.3 one can retrieve the conditionally negative
definite kernel corresponding to an infinitely divisible kernel by taking the oppo-
site of its logarithm: Nx, y = − log kx, y. The two reasons for using the additive
form are that firstly additions are much faster to compute than multiplications,
and secondly the additive form requires only one exponentiation (which is very
slow to compute).

6.5.2 Notations

As in previous sections, we denote by x and x′ two finite sequences of X ∗; xl and
xm refer respectively to the shorter and longer sequence between x and x′, with
l ≤ m their respective lengths. We shall focus on the argument of the exponential
function, that we call the one-sided mean distance and that we denote by Dxl,xm:

Dxl,xm =
1⋃ξl→m⋃ P

ε∈ξl→m

1
m
Nmεxl, xm

The index i ∈ ((1, l⌋⌋ will refer to an element of the sequence xl while the index
j ∈ ((1,m⌋⌋ will refer to an element of the sequence xm. Denote by Ni, j the

normalized evaluation of the conditionally negative definite kernel N on the ith

element of xl and the jth element of xm:

Ni, j =
1
m
Nxil, x

j
m
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Figure 6.8: Division of the alignment in three areas

Next denote by Di, j the one-sided mean distance between the first i elements of
xl and the first j elements of xm:

Di, j =
1⋃ξi→j⋃ P

ε∈ξi→j

1
m
Njεx

1
l . . . x

i
l, x

1
m . . . x

j
m

Note that we have to keep the normalization factor to 1~m, which breaks most
properties enunciated in previous sections; but this is not an issue as the Di, j
for i < l and j < m are merely intermediate results. We are only interested in
Dl,m as:

Dl,m = Dxl,xm

6.5.3 Recursive Formulas

The easiest way to understand the recursive relation is to visualize the alignments
as paths on matrices as was done in Section 6.2. We shall divide the domain into
three areas, as described in Figure 6.8, and derive a recursive formula on Di, j

for each of these areas.

6.5.3.1 First Area

The first area is covered by pair of indexes 1, j with 1 ≤ j ≤ m− l + 1. In this area
there is only one path that goes from 1, 1 to 1, j, and thus we have that:

D1, 1 = N1, 1,
∀j ∈ ((2,m − l + 1⌋⌋, D1, j = N1, j +D1, j − 1 (6.18)
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(a) First way (b) Second way

Figure 6.9: Two possible ways to reach i, j

6.5.3.2 Second Area

Similarly, for any pair of indexes i, i, 2 ≤ i ≤ l that belongs to the second area,
there is only one path that goes from 1, 1 to i, i, and thus we have that:

∀i ∈ ((2, l⌋⌋, Di, i = Ni, i +Di − 1, i − 1 (6.19)

6.5.3.3 Third Area

Finally let us consider i and j such that 2 ≤ i ≤ j − 1 ≤ m − l + i − 1. When
considering one-sided alignments, in order to reach indexes i, j, the path has to
cross either i−1, j −1 or i, j −1. This is illustrated in Figure 6.9. There is exactly
i−2
j−2 paths that cross i − 1, j − 1, and exactly i−1

j−2 paths that cross i, j − 1; and in
total there are i−1

j−1 =
i−2
j−2 +

i−1
j−2 paths that cross i, j. It then suffices to express Di, j

as a partial mean to be lead to:

Di, j =

i−2
j−2 +

i−1
j−2

i−1
j−1

⋅Ni, j +

i−2
j−2
i−1
j−1

⋅Di − 1, j − 1 +
i−1
j−2
i−1
j−1

⋅Di, j − 1

By simply using the expression of binomial coefficients with factorials this equa-
tion is simplified to:

Di, j = Ni, j +
j − i

j − 1 ⋅Di, j − 1 + i − 1
j − 1 ⋅Di − 1, j − 1 (6.20)

6.5.3.4 Combining the Three Areas

Note that in Equation 6.20, the factors i−1
j−1 and j−i

j−1 are either null or equal to 1
in areas 1 and 2 respectively. Thus one can simply extend slightly the domain
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Figure 6.10: Domain transformation

of definition of D by stating for example that D0, j = 0 and Di, 0 = 0, and as a
consequence Equation 6.20 is valid on areas 1 and 2 and replaces Equations 6.18
and Equations 6.19.

6.5.4 Optimizing for Memory Space

It is clear from the equations defining the domain 6.4 that the algorithm has time
complexity Ol×m− l. In addition, as the values of the matrix outside the domain
are never used, it is not necessary to store them. Fortunately the remaining values
can be conveniently stored in a full matrix, as is illustrated in Figure 6.10. This
is achieved by a simple change of indexes:

i ↦ i′

j − i + 1 ↦ j′
(6.21)

Consequently, computing the one-sided mean kernel evaluation of two sequences
of lengths l ≤ m requires the storage of a matrix of size l × m − l + 1. Denote
N ′ the l × m − l + 1 matrix containing pairwise evaluations of N in the new
parametrization. We have that:

∀i′ ≥ 1, j′ ≥ 1, N ′i′, j′ = Ni′, j′ + i′ − 1

Furthermore denote D′ the new parametrization of matrix D; then equations
become:

D′1, 1 = N ′1, 1,
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And for any i′, j′ that verifies:

1 ≤i′ ≤ l

1 ≤j′ ≤ m − l + 1
i′, j′ ≠ 1, 1

We have that:

D′i′, j′ = N ′i′, j′ +
j′ − 1

i′ + j′ − 2 ⋅D′i′, j′ − 1 + i′ − 1
i′ + j′ − 2 ⋅D′i′ − 1, j′.

6.5.5 Algorithm

It is now possible to properly state the algorithm that computes the evaluation
of the one-sided mean kernel. The complete algorithm is specified in Algorithm
1.

6.6 Consistency

In this section we review one of the most important feature of this kernel regarding
the application to flight data monitoring: its consistency when dealing with data
sampled from continuous processes. The reason for this consistent behavior is
that the one-sided mean kernel is defined using means instead of sums like the
global alignment kernel for example (see Equation 6.5). In this section we shall
illustrate this fact using synthetic data.

6.6.1 Illustration with Toy Data

To illustrate this behavior we have compared two continuously defined functions
f0 and f1 which are plotted in Figure 6.11(a). Note that f0 and f1 correspond
to two continuous processes of different durations: f0 is defined on the interval(0, 1⌋ whereas f1 is defined on the interval (0, 1.25⌋. This illustrates a common
case in flight data monitoring where the same phase of different flights will most
often have different durations.

122



Algorithm 1 Compute the one-sided mean alignment between two sequences
Precondition:

1. x and x′ are two sequences;
2. N is the conditionally negative definite kernel corresponding to k, in the

Gaussian case, Na, b =∏a − b∏2.

1 function OneSided(x,x′)
2 l ← length(x)
3 m ← length(x′)
4 if l > m then ▷ Swap x and x′ such that x is the shorter sequence
5 x,x′ ← x′,x
6 l,m ← m, l
7 end if

8 D ← matrix0..l, 0..m − l + 1 ▷ Matrix initialization
9 for i ← 1 to l do

10 D(i, 0⌋ ← 0
11 end for
12 for j ← 1 to m − l + 1 do
13 D(0, j⌋ ← 0
14 end for
15 D(1, 1⌋ ← Nx1, x

′
1

16 for i ← 1 to l do
17 for j ← 1 to m − l + 1 do
18 if i, j ≠ 1, 1 then
19 A ← i − 1~i + j − 2 ×D(i − 1, j⌋
20 B ← j − 1~i + j − 2 ×D(i, j − 1⌋
21 D(i, j⌋ ← Nxi, x

′
i+j−1 + A +B

22 end if
23 end for
24 end for
25 return exp−D(l,m − l + 1⌋~m
26 end function

123



0.0 0.2 0.4 0.6 0.8 1.0 1.2
time

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e f0

f1

(a) Two continuous functions

0.5 1.0 1.5 2.0 2.5 3.0
− log10(∆t)

0.0

0.2

0.4

0.6

0.8

1.0

k
(f

0
,f

1
)

Mean Alignment
Global Alignment

(b) Normalized kernel values

Figure 6.11: Comparison of the one-sided mean and global alignment kernels in
the case of continuous time series sampling

The advantage of continuously defined functions is that they can be sampled
to infinite precision, which serves nicely the purpose of our illustration; even
though in practice one always deals with functions that are already sampled. We
shall compare kernel values when the sampling period ∆t converges to 0.

We have compared the one-sided mean kernel with the global alignment kernel,
which is one of the few provably positive definite kernels that has been successfully
used for continuous time series analysis [Cuturi and Doucet, 2011]. However, the
global alignment kernel is defined with sums with respect to alignments; which
means that as the sampling period decreases, the number of alignment increases
to infinity, and so does the value of the kernel. Consequently, we have normalized
the global alignment kernel so as to yield a radial basis kernel as in Definition 8
of Chapter 4: k̃f0, f1 = kf0, f1~kf0, f0 ⋅ kf1, f1. Both kernels are defined from the
same ground kernel: the Gaussian kernel on R.

As one can see in Figure 6.11, as the sampling period ∆t converges to 0, the
one-sided mean kernel evaluation converges to a value close to 0.91 whereas the
global alignment kernel converges to 0. To circumvent this problem of diagonal
dominance, Cuturi et al. [2007] proposes to take the logarithm of the values of
the Gram matrix, but this is known to break the positive definite property.
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6.7 Conclusion

The kernel we propose is in the same family as the global alignment kernel; it
can just as well handle time series whose elements are structured data because it
is defined from a ground kernel k. With only mild requirements on the ground
kernel k we have demonstrated that k∗ is both positive definite and a radial basis
kernel. Because it is defined using means instead of sums the one-sided mean
kernel does not suffer from diagonal dominance issues, and thus can readily be
used in practice; whereas it is common to take the logarithm of the values of
the global alignment kernel which breaks its positive definite property. Of course
there are many applications where the fact that only the shorter sequence can
have repeated states is an issue, for example one would not want to use the one-
sided kernel for applications such as protein sequence analysis. However, when
dealing with for example the sampling of continuous processes, as is the case in
the field of Flight Data Monitoring, it is our belief that one can obtain meaningful
results.
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Chapter 7

Results on the Airline2 dataset

7.1 Introduction

In this chapter we apply the one-sided mean kernel described in Chapter 6 and the
novelty detection method described in Chapter 2 to a dataset that was provided
to us by partner airline Airline2.

As explained in the introduction of this thesis and in Chapter 3 we use the
approach of “one flight is one sample”. The difference with Chapter 3 is that we
will now use a kernel on sequences, which hopefully will let us detect problems
that are localized in time.

After a presentation of the dataset we explain why the one-sided mean kernel
is suited to the domain of FDM and how we have leveraged some of its properties.
We end this chapter by showing promising results on the Airline2 dataset.

7.2 Presentation of the dataset

Partner airline company Airline2 provided us with 604 flights of aircraft A320
that flew from to in 2013. is a city on the island of ,
part of the Archipelago of the in the North Atlantic Ocean and located
about km west of continental . The island is of volcanic origin, and
as one can see in Figure 7.1, its peculiar geography with a crater in the center
creates difficult wind conditions, which is why is considered a very tricky
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Figure 7.1: Map of island

Code Description Type
LATPC Latitude angular
LONPC Longitude angular

ALTSTDC Altitude continuous
FLAPC Flaps ordered discrete

SLATRW Slats ordered discrete
IASC Air speed continuous

VRTG Vertical acceleration continuous
IVVR Vertical speed continuous

PITCH Pitch angular
AOAL Angle of attack angular

HEADMAG Heading angular
ROLL Roll angular

Table 7.1: List of parameters in this study

runway. The parameters we have considered in this study are listed in Table 7.1,
along with descriptions and types.
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7.3 Preprocessing of the dataset

7.3.1 Flight phase

Just like for the Airline1 dataset of Chapter 3 we cut all the flights according
to the flight phases. This time we have cut the flights from 10000 until the end
of the landing phase, which is defined as the moment when the aircraft stops on
the runway or exits the runway.

7.3.2 Sub-sampling

As we model flights as sequences of time-samples, the naive way to compute a
Gram matrix would be to consider the data at their native frequency. However
there are several problems to this approach, the first being that not all param-
eters are recorded at the same frequency, for example in this dataset the VRTG
parameter is recorded at 8Hz whereas the LATPC is recorded at 1Hz. One could
take the parameter at the highest frequency and repeat samples accordingly for
other parameters, but this results in a very high number of samples for each flight,
even if the flight phase we are considering lasts for about ten minutes.

Another problem is that each comparison of two flights using most kind of
alignment technique results in complexity Ol × m, and we have to carry such
computation for any pair flights in the dataset, which grows quadratically with
respect to the number of flights. Even when using the one-sided alignment kernel
with its faster Ol ×m − l complexity, the computation times are too long to be
carried on a standard desktop computer as we would like for our experiments.

The third issue is that the information that is carried at such a frequency
may not be very interesting for the field of FDM. Rather, we would like to have
a more global view on the flight while still retaining the sequential aspect.

Consequently we have decided to sub-sample the data with a period ∆t. The
flight phase considered is divided into chunks of duration ∆t, and for each pa-
rameter and each chunk we compute a centroid, as explained in Section 5.3. It is
preferable to use a centroid rather than just the samples at times 0, ∆t, 2 ⋅∆t, . . .

because this approach better captures the information and is less subject to noise.
Note that as illustrated in Section 6.6 using the one-sided mean kernel ensures
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that the values of the Gram matrix will converge when ∆t → 0. Consequently,
when we have more processing power at our disposal we will be able to study
the dataset at a finer scale, and be sure that the results will be more and more
precise.

On the contrary, when ∆t → ∞ the centroids are computed with the data from
the whole flight phase, which yields “sequences” of length 1. Because of how the
one-sided mean kernel is defined, and because we have chosen the product kernel
approach as explained in Section 5.4 then this is in fact equivalent to the feature-
based approach presented in Chapter 3.

Thus we see that we are able to carry a whole spectrum of studies in a single
framework only by varying the parameter ∆t.

In this particular study we chose a period of ∆t = 5s.

7.3.3 Normalization

Contrary to the feature-based case described in Chapter 3 the normalization of
structured data and especially sequences can be quite involved, as the data are
not vectors. Consequently the approach we have chosen to normalize pairwise
distances between flights by their median value, which seems to work very well
for both vector and structured data.

7.3.4 Settings for KECA

Unfortunately it is not obvious how to define a measure on spaces of sequences,
and therefore we could not properly define a kernel which is simultaneously pos-
itive definite and that could be used as an equivalent of a Parzen window for
density estimation as is required for KECA. However we think that carrying this
procedure still yields sensible results, as the novelty detection algorithm described
in Chapter 2 also has a geometric interpretation.

After computing the entropy-values we noticed that only the first principal
dimension in the feature space had non-negligible entropy-value so we decided to
retain only this dimension as the principal subspace in the feature space.

As explained in Section 2.4 we use the reconstruction error to this principal
subspace as a measure for novelty. In the same manner as in Chapter 3 we fit a
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Figure 7.2: Trajectory of Flight 1

Gamma distribution to the reconstruction errors and present flights which have
a pvalue smaller than 0.05 according to this distribution.

7.4 Example of atypical flights

Among the 604 flights, 9 were deemed as very atypical with a pvalue < 10−2 and
17 others as atypical with a pvalue < 0.05. We present here some of the most
interesting flights detected, and try to give an explanation whenever possible.
In all the graphical representations the red plot represents the atypical flight,
whereas the other flights of the dataset are represented as transparent green plots
for easy comparison. Furthermore, the touchdown (moment when the aircraft’s
landing gear touches the runway) is represented as the 0 time on the horizontal
axis as well as a blue vertical line.

Flight 1 The first flight we present was detected as outlier with pvalue equal
to 0.0025. It is an example of a holding pattern: the pilot is certainly waiting
for instructions from the Air Traffic Control (ATC), so we see in Figure 7.2 that
the pilot maneuvers to stay in a defined airspace. This is an example of flight
which is atypical but not interesting from a safety perspective. Nevertheless for
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Figure 7.3: Altitude of Flight 1

information we have also provided other graphical representations.

Flight 2 Flight 2 is another interesting flight which was detected as outlier
with pvalue equal to 0.0032. This flight is atypical in many respect, first it does
not follow the trajectory of other flights, and then near the runway it seems to
be in a very long and unusual holding phase, as one can see in Figure 7.6. This
is certainly due to cloud ceiling, the pilot may be waiting for clouds to go up in
order to have visual conditions to land. As there is no ILS (Instrument Landing
System) in this airport the landing on both runways is always visual. Note that
there is a slight glitch in the values at the end of the phase, which explains the
two straight lines. This abnormality can also be seen in the other parameters we
studied.

Flight 3 Flight 3 was detected as outlier with pvalue equal to 0.0089. Flight
3 is another example of go around: the pilot initiated the descent, touched the
runway, but for some reason had to take off again and re-initiate a landing. Note
that the algorithm implemented in the AGS may not detect all go around, for
example if the transition to higher altitude is too smooth. The procedure to
detect a go around in the AGS as defined by Airline2 is defined as follows:
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Figure 7.4: Flaps of Flight 1

Figure 7.5: Air speed of Flight 1
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Figure 7.6: Trajectory of Flight 2

Figure 7.7: Altitude of Flight 2
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Figure 7.8: Flaps of Flight 2

Figure 7.9: Air speed of Flight 2
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Figure 7.10: Vertical speed of Flight 2

Figure 7.11: Roll of Flight 2

135



Figure 7.12: Trajectory of Flight 3

Go Around

• Engine not Stopped (N21C > 55% OR N22C>55%).

• Previous value of Flight Phase greater than/equal to APPROACH (pphase
≥ APPROACH).

• Throttle Lever position at TOGA - Engines #1 and #2.

OR

• Previous value of Flight Phase equal to GO AROUND (pphase ≥ GO AROUND).

• Height increasing (∆HEIGHT > 0 ft) during 3 seconds at least

Experimentally we have seen that our algorithms detected go arounds as atyp-
ical flights in almost all cases. This abnormality can also be seen in the other
parameters we studied.

7.5 Conclusion

For this dataset we only had access to the data in CSV form, so we could not run
the classical analysis on it. Although we did not have the means to make a more
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Figure 7.13: Altitude of Flight 3

Figure 7.14: Flaps of Flight 3
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Figure 7.15: Air speed of Flight 3

Figure 7.16: Vertical speed of Flight 3
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Figure 7.17: Pitch of Flight 3

precise comparison with the classical analysis the feedback we have gotten from
our partners in Airline2 looking at these results was highly positive. They are
positive that such a tool would be of tremendous value for FDM operators.
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Chapter 8

Conclusions

In the first part of this work, we proposed a novel method for unsupervised
novelty detection. This method is interesting in that it uses a criterion from
information theory, namely the Rényi entropy, as an a priori on the complexity
of the distribution of normal data in order to increase detection performance.
Using this method we were able to detect outliers in datasets that contained a
high proportion of abnormal data.

The second part of this thesis is dedicated to the construction of a kernel
suitable for the study of flights modeled as sequences of time-samples. We used
a bottom-up approach, by first designing a kernel for each type of parameter
that is encountered in FDM, namely continuous, angular, discrete and ordered
discrete. Then we explained how one can combine these kernels to define a kernel
on the space of time-samples, by using the product kernel approach. Finally we
presented a kernel on sequences that is not only provably positive definite but
also faster to compute than most other kernels defined using sequence alignments.

Application of these techniques to datasets from Airline1 and Airline2 gave
very relevant results that prove the usefulness of this approach as a complement
to the classical event-based detection systems.
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8.1 The right amount of supervision

Traditionally machine learning has been roughly divided into two categories: su-
pervised learning and unsupervised learning [Hastie et al., 2009]. Supervised
learning requires a training phase with labeled data such as for example normal
or abnormal; after the training phase the algorithm is supposed to be able to
determine the label of unseen data. Unsupervised learning does not rely on a
training phase nor labeled data, the goal in this case is to understand structure
about the data or more generally to infer knowledge about the data.

In supervised learning, given enough samples, enough computation power and
enough time, it could be argued that an algorithm may be able to infer the
complete relationship between the data and the labels, even down to the feature
extraction step. That is essentially the promise of the recent field of deep learning
[Bengio, 2009; Le et al., 2012].

Somehow in this work we have taken the opposite approach, we don’t have
much samples (in the order of thousands), and we don’t have much computing
resources. In an unsupervised setting, when analyzing large amounts of data
there are infinite ways to draw conclusions and to compute statistics; but only a
very small subset yields results that are sensible from a domain perspective. That
is why in this work and especially in the second part we have tried to “focus” our
algorithm on the kind of problems that we want to discover, namely problems in
the field of FDMs.

This principle has been formalized in the fields of optimization and machine
learning into a set of theorems called the No Free Lunch theorems [Wolpert, 1996;
Wolpert and Macready, 1997]. The idea is that for an algorithm to give sensible
results it has to be somewhat “guided”, or in other words it has to be given at
least some a priori about the data and the class of problems that one wants to
solve. In a statistical framework, “a priori” can be roughly defined as everything
that one knows about the data before seeing the data.

In our case for example, the a priori starts with the very definition of the
samples: we consider each flight as one sample, we cut them according to well-
defined and domain-related events (10000 feet till touchdown) and model them
as sequences that are aligned. Furthermore we do not expect to analyze every
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parameter but rather choose a set of parameters that we deem to be of interest
from an FDM perspective.

In fact it could be argued that the distinction between supervised and unsu-
pervised may not be binary but rather a spectrum, in other words that there is
more to supervision than just labeling samples. Any information about the data
or the problem that is given to the algorithm during a training phase or event
during its conception is a kind of supervision, and as such the distinction between
supervised or unsupervised is rather a spectrum.

The goal of course is to find the right place on this spectrum: too far on the
unsupervised side and we end up estimating nothing but noise (while needing
more samples and more computing power), but too far on the supervised side
and we end up doing classical event-based detection, or in other words finding
problems we already know. . .

In a nutshell, it is our belief that the reason the methods described in this work
give very meaningful results for FDM practitioners is that they were involved
during the conception of the methods, which has allowed us to calibrate our
algorithms accordingly.

8.2 Future research

There remains of course many challenges with respect to future research, both
practical and theoretical.

Firstly, with respect to the detection of atypical flights we believe that it could
be very valuable to be able to point out not only the parameters responsible for
the abnormality but also discover precisely the time where such abnormality ap-
peared (assuming this abnormality can be defined in time of course). Although
it is quite trivial to detect responsible parameters in a feature-based approach,
transposing such ideas when dealing with sequences seems much more compli-
cated, and especially with a sufficiently low complexity to be run in a reasonable
time.

Secondly, now that we have a positive definite kernel on flights, we could
do much more than detecting atypical flights. For example we could implement
kernel ridge regression, estimate the landing distance and then try to find the
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conditions to minimize it so as to reduce the risk of landing overrun. We could
also cluster the dataset and identify the most typical flight for each cluster (the
“anti-outliers”), that could give valuable information about how pilots in general
follow procedures.

Another area of great interest would be an extension of such methods in a
semi-supervised setting, such that for example after a first detection phase an
FDM practitioner could label the flights (holding, go-around) such that in the
future the method could automatically assign such labels to previously unseen
flights. As always, the idea is to minimize the amount of work for practitioners,
and in this respect the first phase would still be unsupervised.
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Part III

French Abstract
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Chapter 9

Résumé en Français

9.1 Introduction

9.1.1 Introduction au contexte industriel

9.1.1.1 La sécurité aérienne

Il est largement admis que l’aviation est l’un des moyens de transport les plus sûrs,
au moins en termes de décès par kilomètre. Cependant, le secteur de l’aviation
est constamment sous pression pour parvenir à une amélioration de la sécurité.
Comme on le voit sur la Figure, le taux d’accident a été relativement stable
depuis le début des années 80. Cependant, le volume du trafic aérien a fortement
augmenté au cours des deux dernières décennies, passant d’environ vingt-cinq
millions d’heures de vol par an à plus de cinquante millions en 2012 [Boeing, 2013]
et sera très probablement amené à crôıtre. Cela se traduira par une augmentation
globale du nombre d’accidents et de décès.

Cette augmentation du nombre d’accidents est inacceptable, que ce soit pour
les constructeurs d’avions ou les compagnies aériennes. Outre les pertes humaines
tragiques, chaque accident constitue un énorme coût financier et économique,
dû non seulement au coût de remplacement de l’appareil mais aussi à la perte
d’exploitation due à l’exposition médiatique après chaque accident.

Les incidents en vol sont souvent dûs à une combinaison de facteurs, soit
techniques, comme par exemple un moteur ou une défaillance de la structure ; ou
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des événements naturels tels que la foudre, la glace, les impacts d’oiseaux ; ou des
facteurs humains tels que des erreurs de l’équipage, un échec de l’organisation,
des communications inappropriées etc.

L’industrie dans son ensemble travaille sur ces questions depuis le début
de l’exploitation commercial du transport aérien. Les fabricants d’appareils
et les équipementiers ont conçu des avions de plus en plus fiables et sûrs, la
réglementation a évolué, et un certain nombre d’autres innovations ont été développées
telles que les aides à la navigation, le vol aux instruments, etc.

L’une de ces innovations est le développement d’enregistreurs de vols, qui
permettent de sauvegarder un grand nombre de paramètres de vols (altitude,
vitesse, etc.) tels qu’ils évoluent au cours du temps.

9.1.1.2 L’analyse des données de vol appliquée aux opérations aériennes

Telle que définie par la Civil Aviation Authority (CAA), l’analyse des données
de vol appliquée aux opérations aériennes, ou Flight Data Monitoring en anglais
(FDM) est l’analyse systématique, pro-active et non-punitive des données de vols
issues des opérations de routine dans le but d’améliorer la sécurité aérienne.

L’idée est d’utiliser les données de vols non pas seulement après un incident
pour en comprendre la cause mais aussi de façon générale pour la prévention des
incidents.

Depuis 2005 il est désormais obligatoire pour toute compagnie opérant des ap-
pareils de plus de 27 tonnes d’avoir un programme de FDM, d’après la législation
établie par l’International Civil Aviation Organization (ICAO).

9.1.1.3 Limites de l’approche actuelle

L’approche actuelle pour le FDM consiste à surveiller un certain nombre d’événements
prédéfinis. Cette approche possède cependant un certain nombre de limites qui
ont poussé les opérateurs à rechercher des techniques plus avancées.

La première limitation est qu’un programme de FDM strictement basé sur des
événements ne peut par essence détecter que les problèmes qui ont été prévus lors
de la création de la table d’événements. Ceci est regrettable car d’un point de
vue sécurité, il serait très utile au contraire de détecter les problèmes inattendus.
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La deuxième limitation est qu’à mesure que les instruments et les enregistreurs
de vol gagnent en sophistication le nombre de paramètres qui sont enregistrés
dans les avions modernes devient extrêmement grand, jusqu’à dépasser les 2000
paramètres enregistrés par seconde dans un appareil moderne tel que l’A380.

Il y a donc une augmentation massive du volume des données qui sont enreg-
istrées et qui peuvent être étudiées dans un programme de FDM, cependant une
grande partie de ces données est enregistrée mais jamais utilisé dans la plupart
des programmes de FDM.

La raison est que le plus souvent les opérateurs s’appuient uniquement sur un
petit nombre de paramètres fondamentaux qui sont bien connus par les acteurs de
l’industrie. Cela laisse cependant un énorme volume de données disponible mais
non exploité, et qui représente, a priori, une grande valeur pour les compagnies
aériennes.

9.1.2 But de la thèse

Le but de la thèse est de concevoir des techniques statistiques et d’apprentissage
automatique avancées pour améliorer les procédures FDM. Plus précisément,

Le but de ces travaux est de concevoir une méthode pour détecter les vols atypiques,
parmi un jeu de données de plusieurs centaines ou milliers de vols.

Un vol atypique est un vol qui est différent en un sens de la plupart des
autres vols étudiés. Un vol atypique présente donc probablement des problèmes
de sécurité ou opérationnels, et doit donc être étudié par un analyste FDM.

Le but de ce type d’étude statistique n’est pas de remplacer les méthodes “clas-
siques” mais d’apporter un complément d’étude, avec l’espoir que ces nouvelles
méthodes détectent des vols qui passent au travers d’approches plus tradition-
nelles.

Cette méthode doit être non supervisée (c’est à dire sans phase d’entrâınement),
doit être capable d’étudier n’importe quelle combinaison de paramètres de n’importe
quel type (continu, discret, angulaire etc.), doit prendre en compte l’aspect
séquentiel du vol et doit pouvoir analyser une flotte de plusieurs centaines de
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vols en moins de quelques heures sur un PC standard.

9.1.3 Approche mathématique

9.1.3.1 Jeu de données

Toute procédure statistique commence par le choix d’un jeu de données. L’approche
que nous avons choisie pour ces travaux est la suivante:

Chaque vol, ou phase de vol, constitue un échantillon.

Ainsi, en étudiant une flotte de 621 vols, nous possédons d’un point de vue
statistique 621 échantillons.

Remarquons que ce n’est pas la seule approche valable pour l’analyse des
données de vol, par exemple dans le cadre de la maintenance de système il
est préférable d’étudier des échantillons temporels, de telle sorte par exemple
qu’un essai de 600 secondes échantilloné à 1Hz corresponde à 600 échantillons
statistiques. Cependant pour l’analyse des données de vols d’un point de vue
opérationnel nous avons constaté, et d’autres avant nous [Amidan and Ferryman,
2005; Das et al., 2010] que c’était la meilleure approche.

9.1.3.2 Type de méthode

Pour ces travaux nous avons choisi de nous intéresser à la classe des méthodes à
noyau [Hastie et al., 2009], d’abord parce qu’elles sont particulièrement adaptées
à l’étude de données structurées telles que définies dans la section suivante, mais
aussi parce qu’elles sont assez performantes et reposent sur des bases mathématiques
saines [Schölkopf and Smola, 2002].

9.1.4 Structure des données de vol

Ce choix du jeu de données conditionne ainsi la structure mathématique de ces
données.
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ALT 8500
AIRSPEED 254

AUTO ON
PITCH 5°

Table 9.1: Structure d’un échantillon temporel

9.1.4.1 Echantillons temporels

En premier lieu, intéressons-nous aux données qui sont enregistrées à chaque
instant (les fréquences varient de 0.5Hz à 32Hz) au cours du vol. Nous appelons
ces données un échantillon temporel. Nous modélisons un échantillon temporel
comme une structure composite qui peut contenir un ou plusieurs paramètres de
types potentiellement différents. Par exemple, nous pourrions faire une étude avec
4 paramètres: ALT, AIRSPEED, AUTO et PITCH. Dans ce cas, ALT et AIRSPEED
sont des valeurs continues et peuvent donc être modélisées par des nombres réels.
Au contraire, AUTO est un paramètre discret tandis que PITCH est un paramètre
angulaire.

Un exemple d’échantillon temporel est illustré en Table 9.1.
Autant la distinction entre paramètres continus et discrets est assez évidente,

autant les paramètre angulaires sont très souvent traités comme des paramètres
continus. C’est bien sûr une erreur d’un point de vue mathématique, car ces deux
espaces possèdent des topologies bien distinctes: les données continues reposent
sur une droite alors que les données angulaires reposent sur le cercle unité. Ainsi,
de simples statistiques telles que la moyenne perdent totalement leur sens dès lors
qu’on traite des données angulaires.

Dans cette thèse l’espace des échantillons temporels est noté X . Le traitement
de ces données multivariées et de types hétérogène fait l’objet du Chapitre 5 de
la thèse.

9.1.4.2 Structure d’un vol

Nous modélisons ainsi un vol (ou une phase de vol) comme une séquence d’échantillons
temporels. Il est clair que cette modélisation fait sens, car les données sont en-
registrées de façon continue au cours d’un vol.
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Vol 1
ALT 8500 8400 . . . 2000

AIRSPEED 254 256 . . . 100
AUTO ON ON . . . OFF
PITCH 5° 5° . . . 0°
temps 0s 1s . . . 612s

Vol 2
ALT 6300 6200 6100 . . . 1000

AIRSPEED 120 122 110 . . . 100
AUTO ON ON ON . . . OFF
PITCH 3° 4° 2° . . . 2°
temps 0s 1s 2s . . . 598s

Vol 3
ALT 7300 7200 . . . 1500

AIRSPEED 254 256 . . . 200
AUTO OFF OFF . . . OFF
PITCH 4° 4° . . . 2°
temps 0s 1s . . . 703s

Table 9.2: Exemple de structure d’un jeu de données contenant 3 vols.

Ainsi la terminologie “échantillon temporel” permet d’éviter toute ambiguité,
sachant que d’un point de vue statistique nous considérons que chaque vol est un
échantillon.

Notons aussi que bien qu’il soit possible de considérer des vols entiers, nous
avons constaté que nous obtenons de bien meilleurs résultats en focalisant notre
étude sur des phases de vols bien définies, telles que le décollage, la phase de
descente, l’atterrissage etc.

La structure d’un jeu de données complet avec plusieurs vols ressemble donc à
ce qui est donné en Table 9.2. Dans cette thèse, l’espace des vols (autrement dit
l’ensemble auquel appartiennent chacun de nos échantillons) est noté X ∗. Ainsi
mathématiquement,

X ∗ = ∪∞i=1X
i. (9.1)

Notons que cette structure est bien différente de celle que l’on trouve typiquement
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dans des jeux de données standard, où chaque échantillon possède un nombre fixe
de facteurs. Ainsi, même dans le cas où tous les paramètres seraient de type
continu, la difficulté est que nous ne pouvons plus utiliser le formalisme vectoriel
des espaces Euclidiens. En effet comme les vols possèdent des durées différentes
alors les séquences sont elles aussi de longueurs variables et l’on ne peut plus
alors “additionner” par exemple deux échantillons comme on pourrait le faire
dans un espace vectoriel. Dans ce cas les méthodes à noyau nous serons d’une
grande aide car il suffit de construire un noyau k∗ ∶ X ∗ × X ∗ → R qui soit défini
positif pour projeter de façon implicite les échantillons (vols) dans un espace
Hilbertien (plus précisément un espace Hilbertien à noyau reproduisant) dans
lequel il devient possible de mener un certain nombre de procédures statistiques
classiques (analyse en composante principale, analyse discriminante etc.)

9.2 Détection de nouveauté

La première partie de cette thèse concerne la détection d’anomalie, autrement
appelée la détection de nouveauté. Le but est de séparer dans un ensemble
d’échantillons donné les échantillons normaux des échantillons anormaux [Markou
and Singh, 2003a,b].

Une citation de Hawkins [1980] définit assez bien le concept de nouveauté:
“Une nouveauté est une observation qui diffèrent tellement des autres observations
qu’il est raisonnable d’envisager qu’elle ait été générée par un autre mécanisme”1.

9.2.1 Détection non supervisée

Le cadre dans lequel nous nous plaçons est celui de la détection non supervisée.
En effet, la plupart des méthodes de l’état de l’art, telles que le one-class support
vector machine (OC-SVM) [Schölkopf et al., 2001] ou le support vector data de-
scription (SVDD) [Tax and Duin, 2004] reposent sur une phase d’apprentissage
où les données ne contiennent que (ou alors en majorité) des données normales.
Après la phase d’apprentissage, les algorithmes sont alors soumis à des données

1Traduction de l’anglais: “an observation that deviates so much from other observations as
to arouse suspicion that it was generated by a different mechanism”
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qui peuvent être ou normales ou anormales.
Dans le cadre dans lequel nous nous plaçons, il n’y a pas de phase d’apprentissage,

et les données peuvent contenir une proportion significative d’échantillons anor-
maux. Il est possible de détecter des données anormales dans ce cadre à condition
qu’un a priori assez fort soit disponible sur la distribution des données normales.

L’avantage d’une méthode non supervisée est qu’il n’est donc pas nécessaire
d’avoir un jeu de données étiquettées. Or le processus d’étiquettage d’un jeu de
données est long, coûteux et sujet à de possibles erreurs. Ainsi un algorithme non
supervisé est un grand avantage d’un point de vue métier.

9.2.2 Methodologie

La plupart des algorithmes de détection de nouveauté reposent sur l’une ou l’autre
ou les deux hypothèses suivantes:

1. La plupart des échantillons sont normaux,

2. Les échantillons normaux sont plus concentrés.

Les algorithmes de l’état de l’art formalisent la seconde hypothèse selon des ter-
mes géométriques comme le SVDD, ou encore probabilistes comme le minimum
volume set [Scott and Nowak, 2006]. Notre approche est innovante car nous
utilisons un formalisme de théorie de l’information [Principe, 2010].

9.2.3 A priori sur la distribution

Plus précisément, nous exprimons un a priori sur la complexité de la distribution
en termes d’entropie de Rényi. L’entropie de Rényi [Rényi, 1961] est une forme
alternative de mesure de l’entropie de celle de Shannon, dont l’avantage est de
pouvoir être facilement estimée à l’aide de statistiques non paramétriques. On
considère ainsi qu’une distribution possédant une forte entropie est une distri-
bution “simple” tandis qu’une distribution possédant une faible entropie est une
distribution “complexe”.
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9.2.4 Méthodologie

On suppose que le noyau utilisé est à la fois défini positif et peut être utilisé comme
fenêtre de Parzen [Parzen, 1962] pour l’estimation de densité, comme le noyau
Gaussien. Nous démontrons dans ce cas en utilisant le formalisme de la théorie
des variables aléatoires dans un espace de Hilbert [Blanchard et al., 2007] et en
suivant une approche proposée à l’origine par Girolami [2002] que la densité de
probabilité des données peut être décomposée en série de termes orthogonaux et
qu’à chaque terme correspond une dimension principale dans l’espace de Hilbert
à noyau reproduisant.

A chaque terme correspond aussi une quantité de potentiel d’information,
il est donc possible de sélectionner les termes les plus importants en fonction
de ce critère, tel que décrit dans la méthode proposée par Jenssen [2009], le
choix du potentiel d’information résultant correspondant ainsi à un a priori sur
la complexité de la distribution.

9.2.5 Contributions

Notre principale contribution est la démonstration d’un lien entre l’erreur de
reconstruction de l’image dans par le noyau un point à l’espace principal du
noyau est borné par la densité de probabilité tronquée à ce point dans l’espace
de départ. Ainsi, classer les points selon leur erreur de reconstruction possède un
sens d’un point de vue statistique en plus du sens géométrique.

9.2.6 Résultats sur données diverses

Nous illustrons cette approche en comparant notre méthode à l’état de l’art sur
des jeux de données classiques. Nous mettons en évidence que connâıtre la com-
plexité de la distribution (par exemple savoir à l’avance qu’elle est unimodale)
permet d’augmenter la performance de la méthode. Notre approche se compare
très favorablement à l’état de l’art.
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Classe Nombre total Détecté par KECA Détecté par MKAD
Classe 1 23 vols 11 vols 19 vols
Classe 2 5 vols 3 vols 4 vols
Classe 3 1 vol 0 vol 1 vol

Table 9.3: Comparaison avec l’analyse classique

9.2.7 Résultats sur données de la compagnie *

Nous avons appliqué notre méthode à une flotte de la compagnie , qui
comprend 721 vols de Porto à la piste 26 d’Orly. Nous nous sommes restreints à
13 des paramètres les plus importants en opération aérienne et en avons extrait
22 descripteurs.

Nous avons comparé notre méthode à l’état de l’art pour l’analyse statistique
des données de vols appliquée aux opérations aériennes, le NASA Multiple Kernel
Anomaly Detection [Das et al., 2010], ainsi qu’aux résultats obtenus par l’analyse
“classique” avec le logiciel SAGEM AGS. Le logiciel AGS classe les événements
détectés en un seuil de sévérité de 1 à 3. Notre méthode détecte 35 vols, tandis
que le MKAD en détecte 43, pour un total unique de 64 vols. Nous avons étudié la
répartition des événements classiques et comparé avec les approches statistiques
en Table 9.3. Plus important, les approches statistiques détectent de vols qui ont
été considérés par des analystes comme intéressants et qui n’ont pas du tout été
détectés par les méthodes classiques.

Un exemple de vol atypique, dont la pvalue a été estimée à environ 10−14. Ce
vol est un parfait exemple de vol atypique, on remarque en Figure que le pilote
effectue une boucle très courte juste avant l’atterrissage. Il est possible que cette
manœuvre ait été faite car la vitesse de l’appareil était trop grande.

9.3 Distances et similarités

Le Chapitre 4 introduit la deuxième partie de la thèse et donc le sujet des données
structurées. Nous nous intéressons aux noyaux à base radiale, dont les valeurs
peuvent s’interpréter comme des mesures de similarité, et nous interrogeons sur
les conditions nécessaires ou suffisantes pour la définie positivité de tels noyau,
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Figure 9.1: Trajectoire du Vol 1

Figure 9.2: Altitude du Vol 1
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Figure 9.3: Vitesse air du Vol 1

Figure 9.4: Volets du Vol 1

156



par analogie avec le très connu noyau Gaussien.
Nous introduisons le concept de noyau infiniment divisble, et reformulons ainsi

un résultat établi par Berg et al. [1984], qui servira de base aux développements
de la deuxième partie de la thèse:

Theorem 10. Soit d une métrique Hilbertienne sur un espace X , et pout tout
t > 0, notons kt le noyau sur X défini comme:

ktx, y = exp−t ⋅ d2x, y

Nous avons alors:

1. kt est défini positif,

2. kt est à base radiale,

3. kt est infiniment divisible.

9.4 Données multivariées et de types hétérogène

Dans le Chapitre 5, nous nous intéressons à l’une des particularité du domaine du
FDM, qui est le fait que les paramètres peuvent être de types variés. Il est donc
nécessaire de prendre en compte ce fait pour la conception de notre noyau pour la
détection de nouveauté, tout en faisant en sorte que celui-ci estime correctement
la structure de dépendance entre ces paramètres.

9.4.1 Un noyau par type de données

Pour chacun des types de données de données que l’on rencontre dans le domaine
du FDM, plus précisément les données continues R, les données angulaires A,
les données discrètes D et les données discrètes ordonnées O, nous proposons
un noyau défini positif et infiniment divisible, ainsi qu’un moyen d’estimer un
“centroide” et une mesure de dispersion généralisée.
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xj

xi
d1

d0

d2

Figure 9.5: Illustration sur le cercle unité de trois possibles distances angulaires:
d0, d1 et d2.

Données continues Ces données se modélisent comme des réels et il est tout
simplement possible d’utiliser le noyau Gaussien pour les comparer:

kcxi, xj = exp −xi − xj
2 (9.2)

Données angulaires Comme expliqué précédemment, les données angulaires
ne doivent pas être confondues avec les données continues même si leur représentation
informatique - les nombres à virgule flottante - est la même. En tirant partie de
la topologie circulaire de ces données, on propose un noyau défini positif et infin-
iment divisible, appelé le noyau Gaussien sphérique et qui s’écrit ainsi:

kaθi, θj = exp −d2θi, θj
2 = exp

−4 sin2
⋃θj − θi⋃

2


La distance d2 est la distance Euclidienne entre les points sur le cercle unité
correspondant à chacun des angles, comme illustré sur la Figure 9.5. Notons que
les distances d0 et d1 auraient aussi pu être utilisées mais possèdent des propriétés
mathématiques différentes.
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Données discrètes Nous proposons le noyau suivant:

kd ∶

D × D → R

x, y ↦
1 if x = y

a if x ≠ y

Et démontrons que pour tout a < 1 ce noyau est défini positif et infiniment
divisible.

Données discrètes ordonnées Notre traitement des données discrètes or-
données consiste à d’abord projeter ces données sur la droite des réels, selon
une fonction qui doit posséder un sens d’un point de vue du métier, et ensuite
d’utiliser le noyau Gaussien sur les valeurs discrètes. Pour le paramètre AUTO
on pourrait par exemple utiliser la projection suivante:

φ ∶

O → R
OFF ↦ 0

FD ↦ 1
CMD ↦ 2

Et le noyau s’écrirait donc ainsi:

ko ∶
O ×O → R
x, y ↦ exp−∏φx − φy∏2

Par construction, ce noyau est défini positif et infiniment divisible.

9.4.2 Combinaison des noyaux

Il ne reste plus qu’à trouver un moyen de combiner les noyaux kc, ka, kd et ko
pour créer un noyau k sur un espace issu de n’importe quelle combinaisons de ces
paramètres, du type X = Rdc × Ddd × Ada ×Odo .

Nous comparons les deux approches possibles : la combinaison conique [Bach
et al., 2004], qui à l’origine a été conçue dans un cadre supervisé avec une
procédure d’optimisation pour trouver les paramètres de combinaison optimaux,
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et le produit [Haussler, 1999; Shin, 2013].
Nous illustrons le fait que pour pouvoir estimer correctement la relation de

dépendance entre tous les paramètres, et pouvoir détecter une anomalie résultant
d’une mauvaise “synchronisation” entre paramètres, la bonne approche à choisir
est l’approche par produit. Au contraire, l’approche par combinaison conique
est la bonne approche lorsque l’on cherche à estimer une fonction qui peut
s’interpréter comme la somme de fonction indépendantes.

Dans le cas simple où l’on étudie seulement deux paramètres de types différents,
modélisés respectivement par X et Y, le noyau produit (généralisé) s’écrit ainsi:

kZ ∶ X × Y × X × Y → R

x0, y0, x1, y1 ↦ kXx0, x1 ⋅ kY y0, y1

A l’aide de la théorème de Schür [Horn and Johnson, 2012] il est possible de
prouver que le noyau kZ est défini positif et infiniment divisible dès que kX et
kY le sont. Ainsi, par extension à plus de deux paramètres, nous avons ainsi
conçu un noyau k défini positif et infiniment divisible capable de comparer deux
échantillons temporels.

9.5 Etude séquentielle

9.5.1 Cadre

Dans le chapitre 6 en partant du noyau k nous concevons un noyau k∗ sur
l’espace X ∗ des séquences d’échantillons temporels. Soient x = x1, . . . , xl et
x′ = x′1, . . . , x

′
m deux éléments de X ∗. Dans le cas général les deux séquences

peuvent ne pas avoir la même taille, autrement dit l ≠ m, et il n’est alors plus
possible d’utiliser des techniques vectorielles traditionnelles telles qu’un noyau
Gaussien. Dans la suite de cette partie, on notera x et x′ deux séquences quel-
conques, xl la plus courte de ces séquences avec l sa taille, xm la plus longue des
deux séquences avec m sa taille, de telle sorte que l ≤ m.

Dans le cas de données discrètes une solution est par exemple de calculer
le nombre minimal d’opérations (telles que ajout, suppression, modification)
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ATGCCGTGACATGCATTTAAGC
GTG-CGT-ATATG--TTT---C

Figure 9.6: Alignements avec creux

ATGCCGTGACATGCATTTAAGC
ATGGCGTTACATGGGTTCCCCC

Figure 9.7: Alignements avec répétitions

permettant de passer d’une séquence à une autre. Ce nombre de d’opérations
peut être considéré comme une distance et est appelé la distance de Levenshtein
[Levenshtein, 1966]. Une autre solution consiste à définir des alignements entre
séquences.

9.5.2 Alignements de séquences

Un alignement associe des éléments d’une séquence aux éléments d’une autre
séquence tout en préservant l’ordre. Les alignements peuvent introduire ou des
creux ou des répétitions comme illustré en Figures 9.6 et 9.7.

Une fois un alignement défini il devient alors possible de calculer un score
d’alignement entre les deux séquences, par exemple en additionnant les distances
entre chaque entre élément d’une paire.

9.5.3 Formalisme des alignements

Dans ces travaux nous nous intéressons aux alignements qui introduisent des
répétitions. Plus précisément, nous considérons les alignements où seule la séquence
la plus courte peut avoir des échantillons répétés. Nous les appelons les aligne-
ments unilatéraux, ou one-sided alignments en anglais. Supposons que x est plus
courte que x′, de telle sorte que l ≤ m, alors l’on peut définir un alignement π
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Figure 9.8: Mouvements pour les alignement unilatéraux

comme une paire π1, π2 d’indexes croissants tels que:

1 = π11 ≤ . . . ≤ π1p = l

1 = π21 ≤ . . . ≤ π2p = m
(9.3)

et
π1i + 1 − π1i

π2i + 1 − π2i
∈

0
1
,

1
1
. (9.4)

Ainsi, entre deux séquences de même taille il n’existe qu’un seul alignement uni-
latéral, qui est l’alignement trivial ∀i ∈ 1 . . . l, π1i = π2i = i. Dans le cas général
où l ≤ m il est clair que le nombre d’alignements unilatéraux est égal à m−1

l−1 . On
note A−x,x′ l’ensemble des alignements unilatéraux entre x et x′.

9.5.4 Représentation des alignements

Il est possible de représenter les alignements entre deux séquences de taille l et m
comme des chemins sur une matrice de taille l,m. Nous représenterons toujours
la séquence la plus courte par les indices verticaux de la matrice. L’équation 9.3
signifie que le chemin commence dans le coin supérieur gauche et se termine dans
le coin inférieur gauche. L’équation 9.4 se traduit par le fait qu’il n’y a que deux
“mouvements” possible dans le cas unilatéral, qui sont illustrés en Figure 9.8.
Ainsi deux exemples de représentation d’alignements unilatéraux sont illustrés
en Figure 9.9. Remarquons que dans la Figure 9.9 certaines cases sont hachées
: ce sont des cases qui sont inatteignables dans le cas unilatéral à cause des
restrictions des Equations 9.3 et 9.4.
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Figure 9.9: Deux exemples d’alignements unilatéraux

9.5.5 Formalisme des dilatations

Alternativement aux alignements nous proposons un formalisme plus simple à
manipuler qui s’appelle les opérateur de dilatation. Un opérateur de dilatation
ε associe à une séquence une séquence plus longue en répétant un ou plusieurs
de ses éléments sans en changer l’ordre. On note ξl→m l’ensemble des opérateurs
de dilatation qui permettent de passer d’une séquence de taille l à une séquence
de taille m. A chaque alignement unilatéral correspond un unique opérateur de
dilatation de la séquence la plus courte vers la plus longue et par conséquent,⋃ξl→m⋃ =

m−1
l−1 .

9.5.6 Le noyau par moyenne d’alignements unilatéraux

9.5.6.1 Cas pratique: séquences réelles

Nous proposons dans cette thèse de définir le noyau par moyenne d’alignements
unilatéraux, ou one-sided mean alignment kernel en anglais. Nous commençons
par présenter son expression dans le cas simple de données séquentielles réelles,
de telle sorte que X = R et k est le noyau Gaussien à une dimension :

kx, x′ = exp−x − x′2 (9.5)

Dans ce cas, le noyau par moyenne d’alignements unilatéraux s’écrit ainsi:

k∗x,x′ = exp −
1⋃ξl→m⋃ P

ε∈ξl→m

1
m
∏εxl − xm∏2 . (9.6)
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Notons que l’équation est bien symétrique par rapport à x et x′, mais n’est pas
symétrique par rapport xl et xm, car la séquence la plus courte possède un rôle
particulier. En outre, lorsque l’on compare deux séquences de même taille, le
noyau se réduit au noyau Gaussien vectoriel usuel:

k∗x,x′ = exp −
1
m
∏x − x′∏2 . (9.7)

9.5.6.2 Cas abstrait: noyaux infiniment divisibles

Considérons un noyau k sur l’espace X . Le noyau par moyenne d’alignements uni-
latéraux peut être défini comme la moyenne géométrique des scores d’alignements:

k∗x,x′ =

 L
π∈A−x,x′

⋃π⋃
L
i=1

kxπ1i, x
′
π2i

1⋃π⋃
1⋃A−x,x′⋃

Selon le formalisme des opérateurs de dilatation ce noyau peut aussi s’écrire ainsi:

k∗x,x′ =

(
L

ε∈ξl→m
kmεxl,xm

1
m

⌋ 1⋃ξl→m⋃
(9.8)

9.5.6.3 Théorème principal

Notre principale contribution pour ce chapitre consiste en la démonstration du
théorème suivant:

Theorem 11. Le noyau par moyenne d’alignements unilatéraux k∗ vérifie les
propriétés suivantes:

1. Si k est défini positif et infiniment divisible, alors k∗ est défini positif,

2. Pour deux séquences x et x′ de même taille m, k∗ se réduit au noyau
produit: k∗x,x′ = kmx,x′ 1

m .

3. Si k est un noyau à base radiale, alors k∗ est un noyau à base radiale.

164



Figure 9.10: Transformation du domaine

9.5.6.4 Démonstration

Le but est de démontrer que toute évaluation du noyau sur un nombre fini
d’échantillons conduit à une matrice définie positive. Pour cela nous utilisons
la propriété d’infinie divisibilité des noyaux, ce qui nous permet de “diviser”
l’évaluation du noyau en parties suffisamment petites qui seront alors ré-arrangées
pour faire apparâıtre le fait que la matrice de Gram peut s’exprimer comme le
produit de Schür (produit terme à terme) de matrices de Gram élémentaires dont
il est facile de prouver la définie positivité.

9.5.7 Implémentation à l’aide de programmation dynamique

Comme le nombre d’alignements crôıt en raison factorielle de la taille des séquences,
il est déraisonnable de calculer de façon exhaustive les scores associés à chacun
des alignements. Au lieu de cela il est possible d’utiliser des techniques de pro-
grammation dynamique afin d’aboutir à une complexité polynomiale en Ol×m−l.
Remarquons que la plupart des autres algorithmes basés sur des alignements sont
en complexité Ol ×m, mais le fait que nous ne considérons que les alignements
unilatéraux nous permet de diminuer l’espace de recherche comme illustré en
Figure 9.10.

9.6 Résultats sur données Airline2

Dans le chapitre 7 nous appliquons le noyau conçu dans la seconde partie de la
thèse à des données qui nous ont été fournies par la compagnie aérienne .
Il nous a été fourni les données de 604 vols d’A320, de jusqu’à la ville
d’ , située sur l’̂ıle dans l’archipel des kilomètres à l’Ouest
du .
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9.6.1 Prétraitement des données

Comme dans le chapitre 3, nous commençons par découper les vols en phase et
nous n’étudions qu’une phase précise de chaque vol, définie comme la partie de
la descente commençant à 10000 pieds jusqu’à l’arrêt complet de l’appareil sur la
piste d’atterrissage.

Egalement nous ne retenons que 12 paramètres, qui sont des paramètres fon-
damentaux pour l’étude opérationnelle.

Afin d’obtenir des séquences nous ne prenons pas les données échantillonnées
à leur fréquence d’enregistrement, mais nous sous-échantillonnons les données sur
des fenêtres de durée de 5s.

9.6.2 Résultats

Parmi les 604 vols, 9 vols ont été considérés comme très atypiques avec une
pvalue inférieure à 10−2 et 17 autres ont été considérés atypiques avec une pvalue
inférieure à 0.05.

Nous présentons deux exemples de vols atypiques.
Le premier vol a été détecté avec une pvalue égale à 0.0032. Comme illustré en

Figure 9.11, ce vol présente dans sa trajectoire une phase de holding très longue,
qui est probablement due à la présence de nuages, le pilote a donc certainement
dû attendre d’avoir des conditions visuelles suffisantes pour atterrir. En effet, la
piste n’est pas dotée d’un Instrumental Landing System permettant l’atterrissage
aux instruments.

Le deuxième vol a été détecté avec une pvalue égale à 0.0089. C’est un exemple
de Go Around, c’est à dire qu’au cours de l’atterrissage le pilote a ré-initié la phase
de descente car les conditions optimales n’étaient pas réunies. Dans le cas de ce
vol, le pilote a redécollé après avoir touché la piste. This abnormality can also be
seen in the other parameters we studied.
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Figure 9.11: Trajectoire du Vol 1

Figure 9.12: Trajectoire du Vol 2
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Figure 9.13: Altitude du Vol 2

Figure 9.14: Volets du Vol 2
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Méthodes à noyau pour l’analyse de 
données de vols appliquée aux opéra-
tions aériennes 
 
L'analyse de données de vols appliquée aux opéra-
tions aériennes ou "Flight Data Monitoring" (FDM), 
est le processus par lequel une compagnie aérienne 
recueille, analyse et traite de façon régulière les 
données enregistrées dans les avions, dans le but 
d'améliorer de façon globale la sécurité.  
L'objectif de cette thèse est d'élaborer dans le cadre 
des méthodes à noyau, des techniques pour la dé-
tection des vols atypiques qui présentent potentiel-
lement des problèmes qui ne peuvent être trouvés 
en utilisant les méthodes classiques.  
Dans la première partie, nous proposons une nou-
velle méthode pour la détection d'anomalies. Nous 
utilisons une nouvelle technique de réduction de 
dimension appelée analyse en entropie principale 
par noyau afin de concevoir une méthode qui est à la 
fois non supervisée et robuste. 
Dans la deuxième partie, nous résolvons le problème 
de la structure des données dans le domaine FDM. 
Tout d'abord, nous étendons la méthode pour pren-
dre en compte les paramètres de différents types 
tels que continus, discrets ou angulaires. 
Ensuite, nous explorons des techniques permettant 
de prendre en compte l'aspect temporel des vols et 
proposons un nouveau noyau dans la famille des 
techniques de déformation de temps dynamique, et 
démontrons qu'il est plus rapide à calculer que les 
techniques concurrentes et est de plus défini positif. 
Nous illustrons notre approche avec des résultats 
prometteurs sur des données réelles des compa-
gnies aériennes comprenant plusieurs centaines de 
vols. 
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Kernel Methods for Flight Data Monitor-
ing 
 
 
Flight Data Monitoring (FDM), is the process by 
which an airline routinely collects, processes, and 
analyses the data recorded in aircrafts with the goal 
of improving the overall safety or operational effi-
ciency. 
The goal of this thesis is to investigate machine 
learning methods, and in particular kernel methods, 
for the detection of atypical flights that may present 
problems that cannot be found using traditional 
methods. Atypical flights may present safety of 
operational issues and thus need to be studied by an 
FDM expert. 
In the first part we propose a novel method for 
anomaly detection that is suited to the constraints of 
the field of FDM. We rely on a novel dimensionality 
reduction technique called kernel entropy compo-
nent analysis to design a method which is both 
unsupervised and robust. 
In the second part we solve the most salient issue 
regarding the field of FDM, which is how the data is 
structured. Firstly, we extend the method to take 
into account parameters of diverse types such as 
continuous, discrete or angular.  
Secondly, we explore techniques to take into ac-
count the temporal aspect of flights and propose a 
new kernel in the family of dynamic time warping 
techniques, and demonstrate that it is faster to 
compute than competing techniques and is positive 
definite.  
We illustrate our approach with promising results on 
real world datasets from airlines comprising hun-
dreds of flights. 
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