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Abstract

The vehicle routing problems (VRP) are combinatorial optimization problems in which a
set of vehicles must visit a set of nodes scattered over a geographical region. These problems
are known because their several applications and their complexity since they belong to the
NP-Hard class of problems. VRP models can be applied to humanitarian relief operations,
where relief aid such as food, water, sanitation supplies, medicine, vaccinations, medical
equipment, rescue teams, rescue equipment and other, must be delivered to required sites.
In humanitarian response operations, the survival rate of people is affected by the arrival time
of relief aid at required sites. In this research, several vehicle routing optimization models
are proposed for relief distribution after a disaster strikes, in which the sum of arrival times

is minimized.

The state of the art is divided in three sections. The first one overviews the different
applications of optimization techniques to humanitarian logistics. The second section focuses
on vehicle routing problems for relief distribution with emphasis in service-based objective
functions which better reflect humanitarian goals under urgency situations. The third section

explores the main solution methods applied to vehicle routing optimization problems.

In Chapter 3 the multitrip cumulative capacitated single-vehicle routing problem
(mt-CCSVRP) is introduced. In this case a single-vehicle with limited capacity and range
is supposed to be available and it allows to perform one or more trips while the sum of
arrival times is minimized. An exact method based on a shortest path algorithm with
resource constraints is proposed to solve this problem. The mt-CCSVRP is formulated as
a shortest path model where each trip becomes a node (trip-node) and the sites to visit
are resources. The resulting network is directed and acyclic due to the special properties
of the core problem. The solution method is an adaptation of Bellman-Ford algorithm to
a directed and acyclic graph with resource constraints and a cumulative objective function.
Several dominance rules, upper bounds and lower bounds are proposed to speed up the

search procedure. Computational results are reported on instances derived from benchmark
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sets for the classical CVRP and compared with the resolution of two mixed integer linear

models software.

In Chapter 4 the multitrip cumulative capacitated vehicle routing problem (mt-CCVRP)
is defined, which generalize the cumulative capacitated vehicle routing problem (CCVRP) to
multiple trips and the mt-CCSVRP to multiple vehicles. In this chapter four mixed integer
linear programs are proposed to solve the CCVRP. The proposed models are compared with
one from literature to extend the best one for the mt-CCVRP. A non-trivial mixed integer
linear program without vehicle nor trip indexes is also presented for the mt-CCVRP. Three
hybrid metaheuristics are developed too: a multi-start iterated local search (MS-ILS), a
memetic algorithm with population management (MA|PM) and a multi-start evolutionary
local search (MS-ELS). The three metaheuristics call a variable neighborhood descent (VND)
with some O(1) move evaluations. A two phases split procedure allows MA|PM and MS-ELS
to alternate between two different solution spaces. A comparison of the three metaheuristics
is presented for the mt-CCVRP while MS-ILS is also compared with metaheuristics from
literature for the CCVRP as special case. Moreover, the metaheuristics are able to retrieve
the optimal solutions of the mixed integer linear program, which can be computed for small

instances using a commercial solver.

The cumulative capacitated vehicle routing problem with indirect deliveries (CCVRP-ID)
is introduced in Chapter 5. This problem relaxes the CCVRP by allowing unvisited sites
if their requirements are provided by an auxiliary vehicle. A mixed integer linear model
is presented, which extends the CCVRP model to allow indirect deliveries. An MS-ELS
metaheuristic is also developed to solve the CCVRP-ID. Results compare the performances
of both solution methods for the CCVRP-ID and CCVRP as special case.

Chapter 6 presents the general conclusions of this research and future research directions.

Keywords:  Operations research, Combinatorial optimization, Metaheuristics,

Transportation, Humanitarian assistance, Business logistics.
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Résumé

Les problémes de tournées de véhicules (VRP) sont des problémes d’optimisation
combinatoire dans lesquels un ensemble de véhicules doit visiter un ensemble de nceuds
répartis sur une zone géographique. Ces problémes sont connus en raison de ses nombreuses
applications et ses complexités, car il appartient a la classe NP-difficile de problémes. Les
modéles VRP peuvent étre appliqués aux opérations de secours humanitaire, ot les produits
vitaux tels que la nourriture, I’eau, produits d’hygiéne, la médecine, les vaccinations, les
équipements médicaux, les équipes de secours, I’équipement de sauvetage et d’autres, doivent
étre livrés aux sites nécessaires. Dans les opérations d’intervention humanitaires, le taux de
survie des personnes est affecté par le moment d’arrivée des secours sur les lieux. Dans cette
recherche, plusieurs modéles d’optimisation de tournées de véhicules sont proposées pour la
distribution des secours aprés une catastrophe, dans lesquels la somme des temps d’arrivée

est minimisée.

L’état de D'art est divisé en trois sections. La premiére décrit d’un point de vue
général les différentes applications de la recherche opérationnelle & la logistique humanitaire.
La deuxiéme section examine les modéles développés pour les problémes de tournées des
vehicules pour la distribution des secours avec un accent sur les fonctions objectives basées
sur des services qui reflétent mieux les objectifs humanitaires dans des situations d’urgence.
La troisiéme section explore les principales méthodes de résolution appliquées a des problémes

de tournées des véhicules.

Dans le Chapitre 3, le probléme de tournées de véhicules cumulatif avec capacités et routes
multiples ou les tournées sont réalisées avec un seul véhicule (mt-CCSVRP) est introduit.
Dans ce cas un seul véhicule avec capacité limitée est disponible et il permet d’effectuer un
ou plusieurs voyages tandis que la somme des temps d’arrivée est minimisée. Une méthode
exacte basée sur un algorithme du plus court chemin avec des contraintes de ressources est
proposée pour résoudre ce probléme. Le probléme est formulé de telle facon que chaque

voyage se transforme en un super-noeud et les sites a visiter deviennent des ressources. Ce
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réseau est orienté et acyclique grace aux propriétés du probléme de base. La méthode de
solution est une adaptation de I’algorithme de Bellman-Ford pour une fonction objective
cumulative. Plusieurs régles de dominance, bornes supérieures et bornes inférieures sont
proposées pour accélérer la procédure de recherche. Les résultats numeériques sont présentés
sur des instances issues de la littérature pour le CVRP classique et comparés avec deux

modéles linéaires en nombres entiers.

Le probléme de tournées de véhicules cumulatif avec capacités et routes multiples
(mt-CCVRP) généralise le probléme de tournées de véhicules cumulatif avec capacités
(CCVRP) a de multiples voyages et le mt-CCSVRP a plusieurs véhicules. Quatre modéles
linéaires en nombres entiers sont proposés dans le Chapitre 4 pour résoudre le CCVRP. Les
modéles proposés et un modéle de la littérature sont comparés pour étendre le meilleur pour
le mt-CCVRP. Ce chapitre présente également un modéle linéaire en nombres entiers pour
le mt-CCVRP et trois métaheuristiques hybrides: un recherche locale itéré & démarrages
multiples (MS-ILS), un algorithme mémétique avec gestion de la population (MA|PM) et
un recherche locale évolutive a démarrages multiples (MS-ELS). Les trois métaheuristiques
appellent une recherche locale a voisinage variable avec des quelques évaluations O(1).
MA|PM et MS-ELS font également usage de la procédure split et alternent entre deux
espaces de solutions différentes. Une comparaison des trois métaheuristiques est présentés
pour la mt-CCVRP tandis que 'MS-ILS est également comparé avec des métaheuristiques
de la littérature pour le CCVRP. Ces méta-heuristiques sont capables de obtenir les solutions
optimales trouvées par résoudre le probléme linéaires en nombres entiers a ’aide d’un solveur

sur des petites instances.

Le probléme de tournées de véhicules cumulatif avec des livraisons indirectes
(CCVRP-ID) est introduit dans le Chapitre 5. Ce probléme est une version du CCVRP
qui permet d’avoir des sites non visités si leurs besoins sont livrés par des véhicules
supplémentaires.  Un modéle linéaire en nombres entiers est présenté ainsi qu’une

métaheuristique MS-ELS. Les résultats comparent les performances des deux méthodes de
résolution pour les modéles de CCVRP et CCVRP-ID.

Le Chapitre 6 présente les conclusions générales de cette étude et des orientations des

futures recherches.

Mots-clés: Recherche opérationnelle, Optimisation combinatoire, Métaheuristiques,

Transport, Aide humanitaire, Logistique (organisation).
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Arc-Set of the graph H for the first phase of the Split procedure.
Arc-Set of the graph H' for the second phase of the Split procedure.
Set of allocated sites to the visited site ¢ in the CCVRP-ID.

Set of visited required sites in the trip k.

Cost (sum of arrival times) of the trip k, when it starts at time to = 0.
Duration of the trip k.

Set of edges (i, ) in the graph G.

Set of edges in the auxiliary graph G'.

Cost of the arc (7,7) in the graph H for the first phase of the Split

procedure.

Cost of the arc (4, j) in the graph H’ for the second phase of the Split

procedure.

Graph where related vehicle routing problems are defined.
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Auxiliary graph for the first phase of the Split procedure.
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Set of all feasible trips.
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Maximum number of iterations in the metaheuristics MS-ILS ans
MS-ELS.

Maximum number of starts in the metaheuristics MS-ILS ans
MS-ELS.

b-th Neighborhood in a Variable Neighborhood Descent (VND)

metaheuristic.
Number of required sites.
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MA|PM metaheuristic.

Number of generations in the MA|PM metaheuristic.

Number of parent-chromosomes in the population POPp for the
MA|PM metaheuristic.

Population of children-chromosomes for the MA|PM metaheuristic.
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Vehicle capacity.

Demand of the required site 7.

Number of available vehicles.

Label of the path p.

Binary parameter indicates if site i is visited by trip & (path p), ri =1

(7“]"7 = 1), or not, rt =0 (7‘1’; =0).
Feasible solution.

Service time of the required site .
Minimum setup time.

Giant-tour solution.

Arrival time at site i.

Starting time of the trip k.

Set depot and required sites.
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V=V \{0}  Set of required sites.
W Traversal time of arc (i, 7).

w;; = wip+wp; Traversal time of replenishment arc (i, j).

Wi Total load of the trip k.

Wnin Minimum arc traversal time between two required sites.

wl . Minimum arc traversal time incident to the depot.

X Set of nodes in the graph H for the first phase of the Split procedure.

X' Set of nodes in the graph H’ for the second phase of the Split
procedure.

Objective function value (sum of arrival times) of a solution.

Z, Objective function value (sum of arrival time) of the multitrip or
path p.
Z; Objective function value (sum of arrival time) of the trip k£ in the

multitrip or path p.
16 Parameter used to compute the loading time of a trip.

A Maximum number of nodes interchanged by the neighborhood

A-interchanges.

o Sequence of sites.

O, Set of feasible succesors for path p.

O Last visited site in the trip k.

Qp Set of non-dominated partial paths ending at the trip-node k.

[ Setup time (or loading time) of the trip k.

A Parameter to control population diversity in the MA|PM
metaheuristic.

) Parameter to compute travel times of auxiliary vehicles in the
CCVRP-ID.
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Chapter 1
General Introduction

This thesis is devoted to the solution of vehicle routing problems raised from a
humanitarian disaster logistics context. Some authors have noted that relief distribution
has not got enough attention in the literature. Relief distribution can be challenged due to

different objectives or constraints that can arise and affect the decision making.

Contrary to classical commercial logistics, where the objectives emphasize on profits, cost
and return rates, humanitarian logistics focuses on saving lives and preventing suffering in
the case of a humanitarian disaster, as well as reducing their impact on the economy and

the environment, and returning to a state of normalcy after the disaster.

In that way, models for transport, routing and relief distribution in general can play
an important role in humanitarian logistics by taking into account the specific goals raised
by the emergency situation. Relief distribution is modeled by adapting classical models to
relief operations in humanitarian logistics where the special characteristics present different

challenges.

This chapter presents an overview on humanitarian logistics as a set of optimization
problems and the importance of transport and routing optimization models and algorithms

in relief distribution during the response operations following a disaster.

1.1 Operations Research

ROADEF (Société Frangaise de Recherche Opérationnelle et d’Aide a la Décision)
defines Operations Research (OR) as the discipline of scientific methods used to make

better decisions (ROADEF, 2014). It streamlines, simulates and optimizes the architecture
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and operation of production systems and organizations. The Operations Research Society
describes operations research as a ‘real world” discipline of applying appropriate analytical
methods with a focus on improving the complex systems and processes that underpin
everybody’s daily lives, Operational Research is the ‘science of better’ (The Operational
Research Society, 2014). The terms management science (MS) and decision science (DS) are

sometimes used as synonyms of Operations Research.

Operations Research is a scientific discipline at the frontier of mathematics, computer
science and economics, which uses techniques such as optimization, simulation, game theory
and heuristic methods, to find the best possible solution to quantitative problems. The

methods developed in this research make use of exact and heuristic optimization techniques.

Exact optimization methods aim at finding the best between the possible. That implicitly
means there exists a set of alternative solutions expressed by a set of decision variables,
which can be compared by a set of performance measures called objective functions.
These alternatives are subject to a set of limitations or constraints. The features of
the different components define different types of problems, for instance variables can
be reals, integers or binaries, and objectives and constraints can be expressed by linear,
quadratic or non-linear (convex or concave) functions. Optimization techniques include linear
optimization, mixed integer optimization, quadratic optimization, no linear optimization
and dynamic programming. For instance, mixed integer linear programs and dynamic

programming are used to model routing problems in this thesis.

On the other hand, heuristic methods are used when the exact optimization techniques
mentioned before require too much computational time. They include classical heuristics
rules like greedy constructive and improving heuristics, and metaheuristics such as genetic
algorithms (GA), simulated annealing (SA), tabu search (TS), iterated local search (ILS)
and evolutionary local search (ELS). Heuristics are frequently applied to solve combinatorial
NP-Hard problems as the ones referred in this thesis. Four metaheuristic algorithms are

developed in this thesis to deal with routing problems in humanitarian relief distribution.

In this thesis, humanitarian logistics and relief operations are studied. The algorithms
developed and described in this manuscript are considered to support relief operations by
using mathematical formulations for vehicle routing optimization models, an exact algorithm

and metaheuristic methods.
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1.2 Transportation and Routing

Transportation issues can be defined as optimization problems where routes to move
goods between locations, from origins to destinations, must be determined while optimizing
a relevant objective. Transportation is the most important economic activity of business
logistics systems. Previous researches estimate that in commercial applications, around one
to two thirds of the logistics costs of companies are spent on transportation. In disaster
logistics, the structure of the distribution network directly affects relief costs throughout the

relief chain as well as the response time.

In the capacitated vehicle routing problem (CVRP), a fleet of vehicles is available to
pick up or deliver people or goods from a set of depots to a set of required sites. In the
most classical constraints, each site must be visited exactly once, vehicle capacity should
be respected, vehicles must start at and return back to depot and route length can not
exceed a range. Additional features have led to many variants such as Open VRP (OVRP),
Multi-Depot VRP (MDVRP), Pick up and delivery VRP (PDVRP), General VRP (GVRP),
Green VRP, Multitrip VRP (mtVRP), and other.

VRPs are known as NP-hard combinatorial optimization problems and no polynomial
exact methods are known to solve them. The number of variations, their applications,
their complexity and their economic impact give to vehicle routing problems an important

practical and theoretical interest.

In disaster situations, it makes sense to think that each particular house or building
within the affected region could require relief or humanitarian aid, thus becoming a potential
demand point. In a severe crisis that affects a large area, it becomes impractical to consider
the fine details in designing and deploying humanitarian aid distribution networks. To cope
with these difficulties, demand points are aggregated into demand zones and needed products
are grouped into generic humanitarian packages, which can include food, water, sanitation
supplies, medicine, medical equipment, rescue equipment, etc. Due to the urgency and with
the objective of saving lives and avoid suffering, delivery of the humanitarian aids from
suppliers to demand points must be done in the fastest way. Depending on the structure
of the problem, the constraints and the performance measures, different mathematical
formulations are found in the literature but, compared to industrial logistics, an important
gap remains. Indeed, despite all variations presented in the literature, routing applied to

disaster response operations have not taken enough attention.
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1.3 Humanitarian Logistics

In the last decade, several disasters around the world have caused millions of victims and
massive destruction of infrastructure and environment. The effects of large-scale disasters
are increasingly devastating. Responding to these emergencies in the most effective manner

to reduce the loss of life and suffering becomes more and more important.

Examples of recent disasters are hurricane Katrina in the United States in 2005, hurricane
in Haiti in 2008, earthquake in Haiti in 2010, earthquake in Chile in 2010, floods and
landslides in China in 2010, earthquake and tsunami in Indian Ocean in 2004 and in Japan
in 2011. Between 2003 and 2012, according to the International Federation of Red Cross and
Red Crescent Societies (IFRC, 2013), 670 disasters occurred on average every year, which
have caused 115 thousand deaths and 216 millions of affected people. Seismic events have
induced the greatest number of deaths, on average 67 818 per year, which represents 63.66%
of the people reported killed in disasters. On the other hand, flood events have affected the
largest number of people, on average 108 million per year, which is equivalent to 49.89%
of the total number of affected persons by disasters. Information about disaster is updated
by IFRC in its web page. IFRC reports also classify disasters by continents, countries and

other different disaster classifications.

The enormous scale of these disasters, which can be checked in databases like
EM-DAT, AirDisaster.com, Natural Disaster Reference Database, The British Association
for Immediate Care, Social Studies Network for Disaster Prevention in Latin America,
Disaster Resource Guide or DisasterRelief.org, has brought attention to the need for
methodology and technology for effectively managing relief supply chains. Although a great
deal of research and technology is available for commercial supply chains, Beamon (2004)
notes that the challenges associated with managing humanitarian relief chains following
large-scale emergencies are often quite different. Table 1.1, taken from Beamon (2004),
presents the main differences between commercial supply chains and humanitarian relief
chains. Thomas & Kopczak (2005), van Wassenhove (2006) and Apte (2009) also compare

and contrast humanitarian relief chains and commercial supply chains.

Altay & Green IIT (2006) define disaster operations as the set of activities that are
performed before, during, and after a disaster with the goal of preventing loss of human life,
reducing its impact on the economy, and returning to a state of normalcy. Other definitions

are focused on the type of activities, for instance Blecken (2010) define humanitarian logistics

4
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Table 1.1: Commercial supply chains vs. Humanitarian relief chains.
Source: Beamon (2004).

Commercial Supply Chain

Humanitarian Relief Chain

Demand Relatively stable, predictable demand | Demand is generated from random
Pattern patterns. Demands occur from fixed | events that are unpredictable in terms
locations in set quantities. of timing, locations, type, and size.
Demand requirements are estimated
after they are needed, based on an
assessment, of disaster characteristics.
Lead time Lead time determined by the supplier | Approximately zero lead times
- manufacturer - distribution center - | requirements (zero time between the
retailer chain. occurrence of the demand and the
need for the demand), but the actual
lead time is still determined by the
chain of material flow.
Distribution | Well-defined methods for determining | Challenging due to the nature of the
network the number and locations of | unknowns (locations, type and size
configuration | distribution centers. of events, politics, and culture), and
"last mile" considerations.
Inventory Utilizes well-defined methods for | Inventory control is often unreliable,
control determining inventory levels based | incomplete or non-existent.
on lead time, demand and target
customer service levels.
Information | Generally well-defined, using | Information is often unreliable,
system advanced technology. incomplete or non-existent.
Strategic Typically: to produce high quality | Minimize loss of life and alleviate
goals products at low cost to maximize | suffering (Thomas, 2002).
profitability = and  achieve  high
customer satisfaction.
Performance | Traditionally: focused on resource | Primary focus on output performance
measurement | performance measures, such as | measures, such as the time required to
system maximizing profit or minimizing | respond to a disaster (Thomas, 2002)
costs. or ability to meet the needs of the
disaster (customer satisfaction).
What is | Products. Supplies and people.
"demand"?
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as the process of planning, implementing and controlling the efficient, cost-effective flow and
storage of goods, materials and equipment as well as related information, from points of origin
to points of consumption for the purpose of meeting the beneficiary’s requirements. Although
there is not a commonly accepted definition in the literature, Tomasini & van Wassenhove
(2009) remark that there is no doubt about the three main principles surrounding the
humanitarian issues: humanity, neutrality and equity. The last ones are described in
Hellingrath & Widera (2011) as follows: first, humanity figures as a main objective of
humanitarian organizations and its actions. Second, neutrality can be understood as a
restricted room for maneuver. Third, equity obliges humanitarian actors to ensure equal

treatment of beneficiary peers.

To complement the above definition, IFRC (2011) defines a disaster as a sudden,
calamitous event that seriously disrupts the functioning of a community or society and
causes human, material, and economic or environmental losses that exceed the ability of a
community or society to cope with using its own resources. The combination of hazards,
vulnerability and inability to reduce the potential negative consequences of a risk is a classical
cause of disasters. According to Apte (2009), a disaster is not necessarily a sudden event,
but suddenness is one of the factors that impacts the capacity to prevent the disaster

consequences.

IFRC classifies disaster types as natural hazards, which can be geophysical, hydrological,
climatological or biological, and technological or man-made hazards. It provides definitions
for each type of disaster while Green III & McGinnis (2002) discuss a broad classification of

these events by causation.

Apte (2009) presents a different classification based on time and location. The author
argues that these factors play important roles to determine the level of difficulty of
humanitarian logistics operations as depicted in Figure 1.1. For instance, preparation
activities can play an important role in the disasters classified in the first quadrant in Figure
1.1. In the second quadrant, preparation can help but pre-positioning becomes challenging.

Response operations are more and more present along second, third and fourth quadrants.

Altay & Green IIT (2006) also define the emergency response as the global response
to catastrophic and disaster events, without considering the daily responses of ambulance,
police, or fire departments to routine emergency calls. Indeed, there exists a general

agreement about a clear demarcation between what are termed routine emergencies
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(Hoetmer, 1991), also called everyday emergencies (Fischer III, 2003), and more serious

emergencies induced by disasters and catastrophes.

A routine event is typically managed with the resources of a single governmental agency,
or partial resources from several, using standard procedures, and with minimal dislocation.
Operationally, the transition to a higher category of emergency occurs when resources become
stressed, when non-standard procedures must be implemented to save life or when special
authorities must be invoked to manage the event (Landesman, 1996, 2001; Auf-Der-Heide,
1989). Readers interested in research on daily emergencies are referred to Chaiken & Larson
(1972), Swersey (1994) and Brandeau et al. (2004).

A 1L dispersed and IV. dispersed and

slow-onset sudden-onset

Dispersed
Location
Localized
I. localized and I11. localized and
slow-onset sudden-onset
>
Slow-Onset Sudden-Onset
Time

Figure 1.1: Classification of disaster based on time and location.
Source: Apte (2009).

Some authors (Thomas & Kopczak, 2005; Tomasini & van Wassenhove, 2009) have shown
that humanitarian logistics significantly contributes to the efficiency and effectiveness of
humanitarian operations, where logistics costs are between 40% and 60%, but can sum up
to 80% of the total spent (Blecken, 2010).
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Altay & Green III (2006) classify humanitarian logistics operations in four phases:
mitigation, preparedness, response and recovery. Other classifications have been presented
by the United Nations Office for Disaster Risk Reduction (UNISDR, 2004). First two concern
the pre-crisis. Mitigation is the application of measures that will either prevent the onset of
disasters or reduce their impacts, while preparedness activities train the community to react
when a disaster occurs. When the crisis occurs, the post-crisis phases take place. Response
is the deployment of resources and emergency procedures to preserve life, property, the
environment, and the social, economic, and political structure of the community. Recovery
involves the actions in order to stabilize the community and to restore some semblance of

normalcy after the immediate impact of the disaster.

While a large body of the recent research is focused on the preparation, planning of
disaster evacuation and alleviation, little attention has been put on humanitarian response

problems during and after disasters (Hamedi et al., 2012).

Figure 1.2, taken from Caunhye et al. (2012), summarizes the relationship between
the main emergency logistics activities, their corresponding phase (pre-disaster and
post-disaster) and their associated facilities and flows. The arcs indicate the activities as
well as the directions of the main flows they provoke. The edges (undirected arcs) do not

indicate flows but rather express that there is a relationship between the two entities linked.

Pre-disaster Post-disaster
operations Facilities operations
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Sl Cly §
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Potential Stock pre-positioning Medical Relief distribution

disaster sites Facility location centers ) Casualty transportation| Disaster sites
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Figure 1.2: Framework for disaster operations and associated facilities and flows.
Source: Caunhye et al. (2012).
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1.4 Disaster Response Operations

In the sequel, disaster response operations represent the set of the short-term activities
with the purpose of mitigating the urgent needs of a population after a disaster. Terms like
humanitarian relief are synonymous but daily emergencies are not consider as disasters. Some
authors like Apte (2009) make a distinction between disaster response and humanitarian

relief where different emergency levels are considered.

The distinguishing factor in disaster response operations, in contrast with pre-disaster
and long-term post-disaster operations, is that suffering and vulnerability can increase

rapidly in the absence of timely aid.

The logistics activities in this category involve relief distribution, evacuation of people,
treatment of disaster casualties, transfer of rescue equipment and personnel, assignment and
coordination of rescue teams and volunteers. According to Yi & Ozdamar (2007), logistics

support and evacuation are two major activities in disaster response.

An important logistic issue in disaster response operations is to determine the
transportation routes for first aids, supplies, casualties, rescue personnel and equipment
between supply points and a large number of destination nodes, geographically scattered
over the disaster region. In this sense, vehicle routing models can be considered for delivery
in disaster context by using service-based objective functions to reflect the different priorities
for delivering humanitarian aid (Campbell et al., 2008). On the other hand, the arrival time
of relief supplies at the affected communities clearly impacts the survival rate of citizens
and the amount of suffering. Figure 1.3 shows an example of a survival rate function. The
next section describes different system performance measurements used in VRPs, including

humanitarian logistics as well as commercial applications.

1.5 Performance Measurement

The goal of performance measurement is to establish the relationship between decision
variables and performance criteria or objectives. It is clear that different application
contexts can have different objectives. This difference is even stronger between commercial
applications and humanitarian interventions. For instance, commercial supply chains use
cost-based objectives or a combination between cost and service level, while humanitarian

logistics chains can vary their objectives depending on the disaster impact, phase, and
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A

Survival4
rate

>
Arrival time

Figure 1.3: Example of survival rate function.

external circumstances. When activities are performed to mitigate risks and preparation,
cost-based objectives can be considered but covered population or risks are also important.
During response operations, monetary measures are dominated by response time which is
more related to the amount of human lives in danger or the amount of suffering. The lack of
appropriate performance indicators appears as an important issue in humanitarian logistics
(Beamon, 2004).

Humanitarian logistics, as well as other service-based applications, pursues alternative
objectives, where financial and economical measures are sacrificed for more strategic and
important goals. Fconomical criteria can be handled by constraints, for instance a maximal

budget. Multiobjective approaches is another alternative.

The following examples illustrate different routing performance measures found in the

literature:

e Total cost minimization: This measure represents the most common objective in
industrial logistics and vehicle routing applications. Total cost can also be translated
in a total duration or a total length because these quantities are frequently related.
Stochastic applications use the total expected cost, while in robust optimization the

worst cost is minimized.

e Minimization of the number of vehicles: The number of vehicles can be consider as
a fixed cost of the distribution system. Although some applications consider it as a

constraint, many of them include it as an objective.

e Total profit maximization: This variant becomes useful when is not feasible to visit all

10
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customers and it is necessary to choose the ones who contribute with greater benefits

for the system.

e Longest route minimization: This objective consists in minimizing the tour length
of the vehicle traveling the longest distance. This problem is often of interest when
minimization of the time taken to visit all points is more important than the total
distance traveled. The best solutions make use of all available vehicles in an attempt
to reduce the distance traveled by those vehicles with the largest tours, leading to a

more equitable sharing of loads between the vehicles.

e Sum of (weighted) arrival time minimization: Contrary to the previous measures, this
is a service-based objective which gives priority to customer needs instead of company
costs. It has been recently used in humanitarian distribution due to it favours rapid
response. Weighted cases have been considered too, as cost function which take in

account the fuel consumption.

e Maximal arrival time minimization: This objective, which has been also considered
in humanitarian logistics operations, aims to reduce the worst service level received
by required sites or customers. Note that this objective is very close to longest route

minimization, but without considering the last arc in the route.

e Covered sites maximization: Different cases are found with this criteria. The most
common version is to avoid visiting all customers to visit closer customers within a
bounded distance. This case is useful when a second routing level can be used. Another
frequent version is presented when it is not possible to visit all customers: as many as
possible must be visited. Sometimes, the goal is to deliver as many goods as possible
when depot capacity is lower than total demand. In that case, equity constraints are

useful to deliver proportional quantities to every required site.

e Minimization of a sum of several objectives: Multiobjective cases can consider the sum
of weighted objectives to simply the search of good solutions. Other cases consider
penalty functions which penalize constraint violations, for instance the time windows

constraints.

Although it is not the rule, the first three objectives are more concerned with commercial

logistics while second three have emphasis on humanitarian logistics.

11
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1.6 Purpose of the Thesis

While many papers about relief distribution have put attention on features like
uncertainty on demands or travel times, the special emphasis of this research is the timely

response.

More precisely, the aim of this thesis is to study a new family of capacitated vehicle
routing problems, raised by the relief aid deliveries in the response phase of humanitarian
logistics: the Cumulative Capacitated Vehicle Routing Problems (CCVRP). Although it has
more applications, it is used here to model relief distribution after a humanitarian disaster
where urgency is the most critical feature. As mentioned before, arrival time to required

sites has a great impact on survival rate of citizens and suffering alleviation.

The CCVRP is a capacitated vehicle routing problem where a limited fleet is based at the
depot, goods must be delivered to a set of required sites and the objective function becomes

the sum of arrival times at required sites.

In disaster response operations the CCVRP models the delivery of relief aid (vaccinations,
rescue teams, or equipment for instance) where early arrivals can be translated in the increase
of the survival rate and alleviation of suffering. The objective function, the sum of the arrival

times, can be interpreted as the maximization of the survival rate.

Three different variations to the original CCVRP, which was first introduced by
Ngueveu et al. (2010), are considered and studied: a) the multitrip cumulative capacitated
single-vehicle routing problem (mt-CCSVRP), b) the multitrip cumulative capacitated
vehicle routing problem (mt-CCVRP) and c¢) the cumulative capacitated vehicle routing
problem with indirect deliveries (CCVRP-ID). The two first problems consider the case
where total vehicle capacity is not enough to deliver the required needs with one tour per
vehicle: multiple trips become necessary. The third variant considers the case where the
vehicle fleet delivers all required needs by single trips, but some sites can be left unvisited

to be supplied directly in a second distribution step from a visited site.

Solution methods for each problem version differ because their differences allow to take
advantage of their structure to improve solutions or accelerate the search procedure. Specific
algorithms for the CCVRP are not developed, but it can be solved as a special case of

more general versions by some of the proposed algorithms. Mathematical formulations
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have been proposed for the CCVRP to compare different modeling strategies and variable

definitions.

The mt-CCSVRP, studied in Chapter 3, is the case where only one vehicle is available
to visit the required sites (for instance a helicopter), but multiple sorties are allowed. An
additional constraint, which is not present in the CCVRP, avoids to perform routes which
exceed a length limit. Although the interest of this problem version is more theoretical than

practical, its mathematical properties allows to apply an exact method for its resolution.

In the mt-CCVRP, studied in Chapter 4, multiple trips are allowed for a limited fleet
of vehicles. Three metaheuristic algorithms have been developed: a Multi-Start Iterative
Local Search (MS-ILS) (Section 4.3), a Memetic Algorithm with Population Management
(MA|PM) (Section 4.5), and a Multi-Start Evolutionary Local Search (MS-ELS) (Section
4.6). All developed methods use a Variable Neighborhood Descent (VND) procedure as
improving phase. Elaborated moves are developed due to the special features of the objective
function (the minimization of the sum of arrival times), and the multitrip consideration. The
main difference between MS-ILS and MS-ELS in the depicted implementations is the presence
of a Split procedure in the MS-ELS algorithm, also used by the MA|PM and described in
Section 4.4.

Finally, the CCVRP-ID is a relaxation of the CCVRP where the demand of each site can
be delivered by a vehicle initially based at the depot, or dispatched from an assigned nearby
site by an auxiliary transportation mode. The MS-ILS and MS-ELS metaheuristics from the
mt-CCVRP are adapted to solve this problem and manage the new considered features. The
aim of this new proposed problem is to allow earlier arrivals to last sites in a route while
intermediate sites can be dispatched from another intermediate site to reduce the average

arrival time.

This research takes place in a wider program on disaster logistics funded by Troyes
University of Technology (UTT).

1.7 Contributions

In the state of the art (Chapter 2) a survey about optimization techniques applied to
humanitarian logistics is presented. The papers are classified by applications: inventory

systems, infrastructure recovery, location, transportation and resource allocation. More
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detailed descriptions are presented for vehicle routing applications, where not only
humanitarian logistics applications are considered, but also applications where the special
objective functions considered could be meaningful. A brief state of the art about VRP

solution techniques is also presented.

In Chapters 3, 4 and 5 three new problems are defined. These problems are raised from
relief operations. Nevertheless, they have other applications in logistics and scheduling, for

example in routing for maintenance operations and green logistics.

The first proposed problem is the multitrip cumulative capacitated single-vehicle routing
problem, abbreviated as mt-CCSVRP and defined in Chapter 3. In this problem, like in
the CCVRP, there exists a set of required sites with known demands, a capacitated vehicle
is based at the depot and the objective function becomes the sum of arrival times. New
features allow to perform multiple sorties by the available vehicle with a limited range. The

range is limited because of the fuel consumption.

To solve the mt-CCSVRP three exact approaches are proposed: two integer linear
mathematical models and an exact algorithm based on a resource-constrained shortest path
formulation. The first mathematical model is a flow-based model where variables are indexed
by sites and no vehicle nor trip indexes are needed. The second mathematical model is a
set partitioning formulation where columns correspond to trips and required sites becomes
resources. The shortest path algorithm is composed by two sequential phases. In the first
phase, three dominance rules are defined to speed up the network construction. In the second
phase, five lower bounds and five dominance rules are developed to find the shortest path. A
comparison of the three approaches is performed which shows that the resource-constrained

shortest path algorithm outperforms others.

The second problem, the multitrip cumulative capacitated vehicle routing problem
(mt-CCVRP), is defined in Chapter 4. In this problem, which extends the CCVRP to
multiple trips, a limited fleet of vehicles must serve to a set of required sites. No time limit
constraints are considered. An integer linear mathematical model and three metaheuristics
are developed to solve the mt-CCVRP.

Four alternative mathematical models for the CCVRP are also proposed in Chapter
4. A comparison between them and the model proposed by Ngueveu et al. (2010) is

presented. This comparison allows to evaluate the different model approaches and their
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possible extensions to the multitrip version of the problem. The proposed mathematical
formulation for the mt-CCVRP is a flow-based model similar to the proposed for the
mt-CCSVRP.

The three metaheuristic algorithms are: a) a Multi-Start Iterated Local Search (MS-ILS),
b) a Memetic Algorithm with Population Management (MA|PM), and c¢) a Multi-Start
Evolutionary Local Search (MS-ELS). All of them use a Variable Neighborhood Descent
(VND) algorithm as improving procedure, where moves become more involved than in
classical problems because of the different objective function and their multitrip feature.

Precomputations are designed to accelerate the VND moves.

A splitting procedure is developed and applied in the MA|PM and MS-ELS
metaheuristics. This procedure, adapted from Prins (2004), optimally translates a sequence
of sites into a solution for the mt-CCVRP. Two levels are used: the first level defines the

set of sites to be visited by each vehicle and the second one defines the trips of each multitrip.

The cumulative capacitated vehicle routing problem with indirect deliveries (CCVRP-ID)
is defined in Chapter 5. This problem relaxes the CCVRP in the sense that trips do not
necessary visit all required sites, but the unvisited ones must collect their demands from a

neighboring visited site, via an auxiliary transportation mode. A limited fleet is available.

An mixed integer linear formulation and a Multi-Start Evolutionary Local Search
(MS-ELS) are developed to handled this problem. New improving heuristics are defined
and their moves have a complexity of O(1). New precomputations are also defined to speed
up the new proposed moves. This problem shows that when two transportation levels are

used the average arrival time to required sites can decrease.
The different models and solution methods proposed in this thesis show that the

sum of arrival times objective raises different implementation challenges, as well as new

opportunities of applications in humanitarian logistics context.

1.8 Structure of the Manuscript

The manuscript is structured as follows:

Chapter 2 reviews the problems related to cumulative routing problems, and their solution
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methods. This chapter is divided in three sections: a) problematics in humanitarian logistics,
b) vehicle routing optimization models in disaster response operations, and c) vehicle routing
solution approaches. The section problematics in humanitarian logistics refers to several
operation research developments applied to humanitarian logistics problems. Vehicle routing
optimization in disaster response operations describes related routing problems and makes
emphasis on problems that use cumulative objective functions or alternative objectives
addressed to humanitarian logistics. In vehicle routing solution approaches, the main solution
strategies are described which are closely related to the solution approaches developed in this

research.

In Chapter 3 the multitrip cumulative capacitated single-vehicle routing problem is
defined. Two mathematical models are proposed, and an exact approach based on a
resource-constrained shortest path formulation and a dynamic programming solution is
developed. The computational testing describes and compares the results of the three

approaches.

Chapter 4 introduces the multitrip cumulative capacitated vehicle routing problem which
generalizes the single-vehicle case. Mathematical models are proposed for the mt-CCVRP as
well as the CCVRP. Three metaheuristic algorithms are presented, which make use of VND
metaheuristics and splitting procedure. Numerical evaluations are performed to compare

the different models and metaheuristic approaches.
The cumulative capacitated vehicle routing problem with indirect deliveries is described in
Chapter 5. A mathematical model and a metaheuristic algorithm are developed. Numerical

tests allow to compare the performance of the proposed methods.

Finally, general conclusions and future research directions close the thesis in Chapter 6.
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State of the Art

In this chapter, a literature review is presented and classified in three sections: a)
Problematics in humanitarian logistics, b) Vehicle routing optimization models in disaster
response operations, and c¢) Vehicle routing solution approaches. As many kinds of models are
found in humanitarian logistics, this chapter is focused on optimization and metaheuristic
techniques which are the main tools used in the contributions of this thesis. Simulation,

decision analysis, game theory and other techniques are not included in this research.

The first section, Problematics in humanitarian logistics, explores a general point of view
about optimization models applied to humanitarian logistics. Models are grouped based
on the field of application as follows: inventory systems, infrastructure recovery, facility
location problems, transportation problems and other applications which include for instance

scheduling and personnel assignment.

The section on vehicle routing optimization models in disaster response operations
reviews the papers which present applications of vehicle routing problems in disaster
response operations or other domains where similar objective functions are pertinent. These
applications are grouped according to their main characteristics, such as single or multiple

vehicles, objective function, special constraints, etc.

Finally, the last section on vehicle routing solution approaches section describes the
main strategies to solve vehicle routing problems, which mainly include exact methods,
greedy heuristics, improvement heuristics, metaheuristics and matheuristics. The methods
developed in this thesis are based on some of the algorithmic structures from the literature
review. These adaptations are not trivial due to the specific characteristics of the objective

function and other features of the addressed problems.
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2.1 Problematics in Humanitarian Logistics

A recent trend is to apply operations research techniques to facilitate logistic operations in
humanitarian disaster. Examples include, but are not limited to, inventory systems, facility
location, infrastructure recovery, evacuation, casualties transport, resource (volunteers or
rescue personnel and equipment) allocation, and vehicle routing. Short-notice evacuation,
facility location, and stock pre-positioning are drafted as the main pre-disaster operations,
while relief distribution and casualty transportation are categorized as the main post-disaster
operations (Caunhye et al., 2012). Several models have been proposed to address the
humanitarian disaster problems which are found along the four phases of disaster operations
defined by Altay & Green III (2006) and described in Section 1.3: mitigation, preparedness,

respomnse and recovery.

Caunhye et al. (2012) remark that the first optimization models in emergency logistics
were developed in the late 1970s following several maritime disasters in the late 1960s and
1970s, such as the Torrey Canyon shipwreck off the coast of England in 1967 and that of Argo
Merchant near Massachusetts in 1976. More recently, optimization models focus on oil spills
or maritime disasters in general (Charnes et al., 1976, 1979; Belardo et al., 1984; Psaraftis
& Ziogas, 1985; Psaraftis et al., 1986). Kemball-Cook & Stephenson (1984) first addressed
the need for logistics management in relief operation in Somalia, while Ardekani & Hobeika
(1988) found similar logistics needs in relief operations for the 1985 Mexico City earthquake.
From the 1980s up to now, research has also explored other large-scale emergencies such as

hurricanes, floods, earthquakes, famine and nuclear accidents.

The following are the main and more recent optimization applications in humanitarian

logistics operations.

2.1.1 Inventory Systems

Inventory systems are related to decisions like review strategy, reorder level or order

quantity, and they can take in account the probability of stock-out and expected costs.

Beamon & Kotleba (2006a) indicate that relief inventory modelling is specially
challenging compared to the commercial cases due to the irregular demand. They propose
a model to determine order quantities and reorder points for pre-positioned stocks for an
emergency relief response in South Sudan by supposing an uniform demand distribution.

The same application case is analyzed by Beamon & Kotleba (2006b) with a multi-supplier
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inventory model and unique demand pattern.

Das & Hanaoka (2014) develop a method which considers uniform distribution in demands
and lead-times while Davis et al. (2013) focus on the coordination of internal and external

supplies in the preparedness domain.

As it can be seen, inventory systems modelling in humanitarian logistics contexts is
focused on the preparedness disaster phase. Richer models consider inventory-location or

inventory-distribution problems.

2.1.2 Facility Location Problems

Facility location problems aim at determining the number, the position and the mission
of required humanitarian aid distribution centers. For instance, Marianov & ReVelle (1995)
provide an overview of optimization models, both deterministic and stochastic as well as
descriptive. Bell et al. (2013) develop a p-median model to locate depots for humanitarian

relief chains in a network with damaged links after an earthquake.

Ambulance allocation is addressed by Gong & Batta (2007). They consider the allocation
and reallocation of ambulances to casualty clusters which need to be treated. First allocation
is done based on makespan minimization of each cluster, and reallocations consider flow time

minimization. Surveys on ambulance location are presented by Brotcorne et al. (2003) and
Li et al. (2011).

Lin et al. (2012) develop a location model for temporary depots. They propose a heuristic
procedure which locates depots and allocates demand points in a first phase, and then

explores the operational cost-based logistics performance.

Furuta & Tanaka (2010) propose a maximal covering location problem to locate helipads

for helicopters with the objective of maximizing the amount of covered demand.

According to Schilling et al. (1993) and Farahani et al. (2012), models with coverage-type

objectives are especially used when response time is the primary performance criterion.

Most facility location models in emergency logistics combine the process of location
(building new facilities or choosing among existing ones) with inventory, evacuation, or relief

distribution decisions. For instance, Abounacer et al. (2014) present an e-constraint approach
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for a location-transportation problem where three objectives are considered: minimize the
sum of all transportation durations, minimize the number of agents needed to operate

humanitarian aid distribution centers and minimize the total uncovered demand.

Balcik & Beamon (2008) integrate facility location with inventory decisions in a maximal
covering model. They also consider probabilistic scenarios, multiple item types, budgetary

constraints and capacity restrictions.

An emergency location survey is presented by Bagar et al. (2012). Prodhon & Prins (2014)
provide a survey on location-routing problems which includes a section about problems raised

from emergency situations.

2.1.3 Transportation Problems

Most developments in transportation science for disaster logistics can be partitioned in

shortest path, network flow and routing models.

One example of shortest path problem is given in Campos et al. (2012). They present
an algorithm which defines two independent paths from the disaster area to one destination
point of an evacuation plan. This algorithm takes into account the capacity of transportation

routes and the travel time to select the best set of routes.

A shortest path model to find emergency paths by using two criteria is proposed by
Mohaymany et al. (2003). The criteria are the minimization of the travel time and the

maximization of the rescue teams capabilities to cover the affected population.

Ozdamar et al. (2004) describe a network flow model that coordinates deliveries of
supplies from different depots in the context of relief operations. Their model addresses
a dynamic time-dependent transportation problem which needs to be solved repetitively
during ongoing aid delivery. The authors propose a mathematical model which integrates
the multi-commodity network flow problem and the vehicle routing problem to minimize the
sum of unsatisfied demand throughout the planning horizon. This model is applied to small

instances up to 9 sites.

Lin et al. (2011) compare a genetic algorithm and a decomposition approach in a routing
problem in which multiple items, multiple vehicles, multiple periods, soft time windows

and split deliveries are considered while three objectives are weighted: minimization of the
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unsatisfied demand, the total travel time and the difference in satisfaction rates among sites.
A multimodal transportation routing approach inspired by an immune affinity model is

presented by Hu (2011). This model considers a cost-based objective.

Jotshi et al. (2009) develop a model of dispatching and routing of emergency vehicles with
the support of data fusion. This model collects and interprets information from multiple
sources, assign a vehicle to a demand (casualty) point, and determines the path to pickup

and deliver casualties.

Lagaros & Karlaftis (2011) propose a vehicle routing problem concerning infrastructure
inspections. Its purpose is to find routes and crews to inspect infrastructures in urban areas
after a disaster. The solution approach considers a first step where structural blocks to
be inspected are grouped in clusters and a second one where clusters are scheduled to be

inspected by crews. Five heuristics are developed and compared to solve this problem.

A hybrid fuzzy clustering-optimization approach is proposed by Sheu (2007) for urgent
relief demand distribution. This model considers two objective functions: total cost
minimization and unsatisfied demand minimization, while fuzzy techniques are used to group

required sites in clusters classified by their urgency.

Bakuli & Smith (1996) propose a state-dependent queuing network model for emergency
evacuations. Similarly, Stepanov & Smith (2009) deals a multi-objective evacuation routing
problem via state-dependent queuing models. Their model include blocking probabilities,

clearance time and total travelled distance as objectives.

Vehicle routing applications are presented in more details in Section 2.2.

2.1.4 Infrastructure Recovery

Infrastructure recovery is a topic especially important in the recovery operations phase
where, after an earthquake for example, roads can be damaged and some nodes on the
network can become inaccessible or costly to reach. In this kind of situations, disruption of
the communication and transport infrastructure deserves particular attention because it can
obstruct the post-disaster operations (Maya & Sorensen, 2011). A recovery planning must
be performed to upgrade the network by making damaged roads operational or upgrading

their capacity.
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Bryson et al. (2002) propose a mathematical model based on a knapsack formulation to

optimize the potential recovery measure for the set of selected recovery plans.

Maya & Sorensen (2011) develop a solution approach based on GRASP and VNS
metaheuristics to determine how the scarce resources must be assigned in order to optimize
the network accessibility after a disaster, by respecting budget and time limitations. This

approach is tested on data based on the case of Haiti natural disaster in 2008.

Aksu & Ozdamar (2014) present a dynamic path based mathematical model to restore

blocked roads with the goal of opening access paths for all locations as early as possible.

2.1.5 Other Applications

This subsection gathers miscellaneous applications which do not justify dedicated

sections.

Allocation models can be considered, in disaster relief context, to allocate airtankers in

forest-fire management, rescue teams to clusters, or volunteers to different activities.

Islam (1998) addresses the daily airtanker deployment problem for forest-fire management.
Their model decides how many airtankers must be used every day and where they should be

deployed dynamically.

A resource-constrained project scheduling problem is solved by Yan et al. (2009) for
scheduling and controlling rescue teams in a maritime disaster. Five heuristics are analyzed

for this problem.

A volunteer assignment model in humanitarian organizations is proposed by Falasca &

Zobel (2012), where volunteers abilities and preferences must be considered.

Two resource allocation problems are addressed by Chou et al. (2014) using evolutionary
algorithms. The authors test the algorithm on a refuge site staff allocation planning and a

relief supply distribution planning.

Pettit & Beresford (2005) model the relations between participating bodies including

military and non-military organizations.
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Scott & Rogova (2004) describe how to manage and interpret multiple information sources

to conduct disaster relief management with data fusion.

Additional information about operations research applied to disaster relief operations
can be found in different surveys on the literature: Altay & Green IIT (2006) present a
literature review where papers on disaster operations management are classified and future
research directions are proposed. They classify papers according to different features: the
disaster phases concerned (before, during or after disaster operations), research methodology,
research contribution, disaster type and problem scenario. A study about emergency
evacuations is conducted by Abdelgawad & Abdulhai (2009). Caunhye et al. (2012) present
a literature review about optimization models focused on facility location, relief distribution
and casualty transportation with an analysis about future research directions. Galindo &
Batta (2013) follow the same classification proposed in Altay & Green I1T (2006), complement
their literature review covering the period between 2005 and 2010, and propose future

research directions.

2.2 Vehicle Routing Optimization Models in Disaster

Response Operations

The CVRP involves designing the delivery routes for a set of capacitated vehicles which
service a set of geographically-scattered demand points in order to minimize a cost function

while taking into account a set of constraints.

Several papers on routing problems applied to disaster response operations contexts have
been published, which is a proof of the importance, variety of case studies and complexity
of this applications. In this section the vehicle routing models applied to disaster logistics
are studied. In Section 2.2.1 special attention is put on models using cumulative objective

functions, while Section 2.2.2 is focused on other alternative optimization criteria.

Barbarosoglu et al. (2002), for example, introduce a hierarchical decision support
methodology to use helicopters efficiently. They consider two decision levels: in the first
level, decisions about fleet size, assignment of pilots to helicopters and number of tours to
be performed by each helicopter are elaborated, while the second level is devoted to routing,

re-fueling and deliveries, transships and load /unload decisions.
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De Angelis et al. (2007) consider the airplane routing and scheduling problem to transport
food after an emergency in Angola. They investigate the case where aircrafts can make
several full-load departs each day to visit required sites and the objective is to maximize the

satisfied demand. A mathematical model is built and experiments are run on real data.

The last mile distribution problem (LMDP), defined by Balcik et al. (2008) as the final
stage of the relief chain, refers to delivery of relief supplies from local and temporary
distribution centers to the people in the affected areas (demand locations). It combines
location and routing decisions. For instance, Ozdamar (2011) presents a planning system to

coordinate helicopters in the last mile distribution problem after a disaster.

Selective vehicle routing problem has been also considered in humanitarian context.
Allahviranloo et al. (2014) explain that this kind of problem is especially useful in
humanitarian logistics due to the possibility of damaged routes. The authors propose
a classical genetic algorithm and three parallel versions to solve different variants of the

problem under uncertainty: reliable, robust and fuzzy selective vehicle routing problem.

In humanitarian relief operations context, as Campbell et al. (2008) explain, it is critical
that the deliveries to affected sites are both fast and fair. The authors suggest that using
service-based objective functions may better reflect the different priorities and strategic goals
found in delivering humanitarian aid. One of this service-based objective functions is the sum
of arrival times, explored in the next section, while Section 2.2.2 is dedicated to alternative

service-based objectives.

2.2.1 Cumulative Objective Functions

The cumulative objective function is used in problems aiming at minimizing the sum
of arrival times (or weighted arrival times). This objectives received special attention in
some industrial applications like maintenance, or when CO; emissions or fuel consumption
must be minimized as a function of vehicle load. They can be also applied to humanitarian

logistics due to their focus on service and their relation with the survival rate of victims.

In relief context, it is critical that the deliveries should take into account the urgency
of the situation. In that sense service-based objective functions, like the minimization of
the sum of arrival times, better describes the emergency of humanitarian logistic operations

than classical objective functions such as the minimization of total tour length. Note that
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the minimization of the sum of arrival times is equivalent to the minimization of the average

arrival time.

The sum of arrival times has already been used in single-tour problems. For instance, the
minimum latency problem (MLP) consists in finding a tour starting at a depot and visiting
each other node only once, in such a way that the total latency is minimized (Blum et al.,
1994; Archer & Williamson, 2003). The latency of a node is defined as the total distance
or travel time to reach that node. This problem is also known as the delivery man problem
(DMP) (Fischetti et al., 1993) or the travelling repairman problem (TRP) (Tsitsiklis, 1992;
Jothi & Raghavachari, 2007) because of its possible applications to maintenance operations.
Picard & Queyranne (1978) and Simchi-Levi & Berman (1991) study its applications in

machine scheduling problems.

Fischetti et al. (1993) develop a mathematical integer formulation, lower bounds, and an
enumerative algorithm while Blum et al. (1994) present a dynamic programming approach for
the TRP. Minieka (1989) propose a pseudo-polynomial algorithm for the special case where
nodes belong to a tree network. Two exact algorithms based on dynamic programming and
branch and bound methods, as well as a dynamic programming based heuristic, are described
in Bianco et al. (1993). An online version of the TRP is handled by Krumke et al. (2003)
with a greedy randomized heuristic. A Greedy Randomized Adaptive Search Procedure with
Variable Neighborhood Search (GRASP-+VND) is introduced in Salehipour et al. (2008).

Many approximation algorithms have been also developed (Blum et al., 1994; Garg,
1996; Goemans & Kleinberg, 1998; Arora & Karakostas, 2000; Archer & Williamson, 2003;
Fakcharoenphol et al., 2003).

The multiple travelling repairman problem (k-TRP) is a generalization of the minimum
latency problem where k tours must be determined (Jothi & Raghavachari, 2007). Jothi &
Raghavachari (2004), Fakcharoenphol et al. (2007) and Jothi & Raghavachari (2007) provide

approximation algorithms.

The time-dependent travelling salesman problem (TDTSP) is a generalization of the
standard TSP and the TRP in which the traversal cost of an arc depends on its position
in the tour (Picard & Queyranne, 1978; Lucena, 1990; Gouveia & Voss, 1995). In Lucena
(1990) a branch and bound algorithm is developed and tested with TRP instances. A
Bender’s decomposition methodology is used by Vander Wiel & Sahinidis (1996). Heuristic
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solutions are also computed by Vander Wiel & Sahinidis (1995): a local search heuristic
based on the Lin-Kernighan tour improvement heuristic and a Benders-decomposition-based
heuristic. Gouveia & Voss (1995) compare different mathematical formulations and provide
one based on a quadratic assignment formulation. Malandraki & Dial (1996) propose a

heuristic method based on a restricted dynamic programming approach.

Picard & Queyranne (1978) apply the TDTSP to solve one-machine scheduling problems
via a branch and bound method based on a shortest path formulation and compare different

integer formulations.

Among applications requiring several capacitated vehicles, school bus routing problems
(SBRP) frequently consider similar objective functions. Li & Fu (2002) present a
multi-objective algorithm for the SBRP with four objectives, one of them being the
minimization of total student travel time. Bennett & Gazis (1972) design a bi-objective
approach minimizing both the total bus travel time and the total student travel time. A
survey on SBRP can be found in Park & Kim (2010), where seven objective functions are
identified. Three of them are service-based: total student riding distance or time (or total
affected individual waiting time in relief distribution), student walking distance and student’s

time loss.

Kara et al. (2007, 2008) tackle another vehicle routing problem that they call cumulative
VRP. They explain that the cost of a route is not adequately represented by the distance
between sites. Some cost factors such as fuel consumption, vehicle depreciation and
maintenance can be captured by a function of the load on the arcs. The contribution to
the cost proposed for each arc is the arc length multiplied by the flow traversing the arc (the
vehicle load). The objective function is the sum of these products over the set of traversed
arcs, which can be translated as the sum of weighted arrival times. This model can be
considered as a generalization of the k-TRP. Kara et al. (2007) formulate integer linear
programs for the collection and delivery cases, and additional extensions for the distance
constraint cases. Kara et al. (2008) model the problem as an integer linear program and test

it on the highway network of Turkey to minimize the energy consumption of a fleet of vehicles.

The cumulative capacitated vehicle routing problem (CCVRP) is a variant of the classical
CVRP where the objective function becomes the sum of arrival times at demand sites
(Campbell et al., 2008; Ngueveu et al., 2009, 2010). The CCVRP can also be considered as

the generalization of the minimum latency problem to several capacitated vehicles.
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The CCVRP was first studied by Campbell et al. (2008). They perform a comparison
between cost minimization, maximal arrival time minimization and average arrival time
minimization for the TSP and the CVRP. Their paper presents lower bounds, an insertion

heuristic and a local search procedure.

Ngueveu et al. (2009, 2010) provide a mathematical model, several lower bounds and
two memetic algorithms. Solutions are compared using classical CVRP instances from
Christofides et al. (1979), replacing the total length of the routes by the sum of arrival
times, and on TRP instances from Salehipour et al. (2008). Nevertheless their results are
not comparable with the results of Campbell et al. (2008). The results confirm that the
CCVRP and the classical CVRP can have quite different solutions on the same instance,
as already observed by Campbell et al. (2008). In Euclidean versions for instance, CVRP
solutions with edge-crossings are suboptimal, while the elimination of these crossings often

brings no improvement for the cumulative objective (Campbell et al., 2008).

More recently, Ribeiro & Laporte (2012) have presented an adaptive large neighborhood
search (ALNS) algorithm for the CCVRP, which is compared with the memetic algorithms
in Ngueveu et al. (2010) using additional instances from Golden et al. (1998). Destroy and
repair operators are used to generate new solutions, and the best-performing neighborhood

is selected with an adaptive probabilistic rule.

Ke & Feng (2013) analyze a two-phase metaheuristic which applies exchange-based and
cross-based operators to perturb the solutions in the first phase and a local search procedure
in the second phase. This metaheuristic improves some best known solutions from previous
works (Ngueveu et al., 2010; Ribeiro & Laporte, 2012).

Chen et al. (2012) propose an iterative local search algorithm based on insertion, swap
and 2-opt moves. A comparison between three metaheuristics: a tabu search, a genetic
algorithm and an evolutionary algorithm involving a particle swarm optimization mechanism

with genetic operators, is presented in Ozsoydan & Sipahioglu (2013).

Lysgaard & Wghlk (2014) develop a branch and cut and price algorithm for the CCVRP

able to solve instances up to 69 required sites.

A multiobjective mathematical model is proposed by Huang et al. (2012) for the last

mile distribution problem (LMDP) where three performance measures are used: efficiency
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is measured as the total travel time, efficacy is equivalent to the sum of arrival times, and

equity computes the difference between service levels of all required sites.

Note that although vehicles must perform closed-routes, i.e. the vehicles must return to
the depot, the travel time of the last arc is not counted since it does not affect any required
site. This is a common feature with the Open VRP (OVRP), another CVRP variant where
each route ends at its last customer, without returning to the depot (Salari et al., 2010a;
Repoussis et al., 2010). Hence, like in the CCVRP, the distance to go back to the depot is
ignored in the objective function. Nevertheless, Ngueveu et al. (2010) show on an example
that optimal OVRP and CCVRP solutions are also quite different.

2.2.2 Alternative Objective Functions

Other authors consider different objective functions to model relief distribution in
humanitarian logistics. The main examples are the maximization of the demand satisfaction,
the maximal arrival time minimization, and the weighted sum of multiple objective

functions.

In the VRP with maximal arrival time minimization, also known as min-max VRP, the
goal is to minimize the maximum arrival time among all sites, discarding the arrival times
at the intermediate sites of each route, which can vary considerably if many sites are served
early or late on their route. The min-max VRP is studied by Campbell et al. (2008) and
compared with the minimization of the total travel time and the minimization of the sum of
arrival times. Other version of the min-max VRP consider the minimization of the longest
tour. Applegate et al. (2002) also address this objective via a branch-and-cut algorithm,
while Hemel et al. (1996) solve a practical problem aiming at minimizing the maximal tour
length, using the average arrival time to break ties. Dell et al. (1996) add a multi-period
horizon and equity constraints. Approximation algorithms are proposed by Arkin et al.
(2006) for the minimum and min-max VRP. The min-max windy rural postman problem
with k vehicles is addressed by Benavent et al. (2009) and Benavent et al. (2010) via a

branch-and-cut and a multistart iterated local search (MS-ILS), respectively.

Covering models are also considered for emergency relief. Naji-Azimi et al. (2012a)
propose a covering tour approach to supply humanitarian aid where satellite distribution
centers must be located in such a way that all demand points are covered within a maximal
distance and satellites distribution centers must be supplied from a central depot. The same

problem is addressed by Salari & Naji-Azimi (2012) using an integer programming-based
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local search algorithm. Ha et al. (2013) propose an exact approach and an evolutionary
local search for the multi-vehicle covering tour problem with a constraint on the number of

vertices.

Other covering tour approaches include the formulations and heuristic proposed by
Current & Schilling (1994) for the bi-objective median tour and maximal covering tour
problem. Jozefowiez et al. (2007) also deduce a bi-objective model for the maximal covering
tour problem which is solved with a hybrid algorithm combining an evolutionary algorithm
and a branch and bound method. Naji-Azimi & Salari (2014) describe the time-constrained
maximal covering salesman problem and construct an integer linear programming-based

heuristic for this problem.

Chen et al. (2006) formulate a real-time time-dependent vehicle routing problem as a
sequence of mixed integer programming models in which the objective is a weighted function

of travel times, waiting times before service and waiting times before departure at all sites.

In the context of the last mile distribution problem, Balcik et al. (2008) present a
mathematical formulation where the total travel cost and a penalty cost associated with

unsatisfied demand are summed in a unique objective function.

Similarly, Hsueh et al. (2008) introduce a dynamic vehicle routing problem for relief
logistics (DVRP-RL) which considers that pick-up and deliveries can vary and be known in
real time manner. They formulate DVRP-RL as a sequence of mixed integer programming
models on a rolling time horizon. The objective of the DVRP-RL is to minimize the total

travel time of all routes and the total penalty due to late arrivals.

Holguin-Veras et al. (2013) discuss the appropriate objective function to be used in
post-disaster humanitarian logistics. In their survey, most of the analyzed papers use
logistic cost (or related) objectives, while unmet demands and social cost are the least used

objectives.

2.3 Vehicle Routing Solution Approaches

In this section the main solution approaches to vehicle routing problems are presented.
Solution approaches are divided in five categories: a) exact methods, which guarantee to find

an optimal solution but are computationally costly, b) constructive heuristic methods, which
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build a single solutions in a very fast way by using simple rules, ¢) improvement heuristics,
focused on the iterative improvement of an existing solution, d) metaheuristics, which include
mechanisms to escape from local optima and get better solutions at the expense of longer
running times, and e) matheuristics, methods that have become more popular in recent years

by combining exact methods with (meta)heuristic techniques.

2.3.1 Exact Methods

The exact algorithms, as written before, determine an optimal solution. They enumerate
implicitly all feasible solutions to find the best one, and discard families of solutions to
accelerate the search. However, as they require a large computational effort, only small

instances can be solved. Some representative examples are described in the sequel.

Branch and bound algorithms are used to solve discrete and combinatorial optimization
problems. They enumerate the candidate solutions on a tree space search. When the
algorithm inspects one node of the tree, lower bounds are computed and compared against
an upper bound. The node (and its descendents) is discarded if it cannot produce a
better solution than the best one found so far by the algorithm. Normally, nodes represent
partial solutions. Examples of these techniques for the CVRP are developed by Christofides
& FEilon (1969), Christofides (1976), Christofides et al. (1981a), Laporte et al. (1986),
Fisher (1994), Fischetti et al. (1994) and Hadjiconstantinou et al. (1995). More recently,
Turkensteen et al. (2008) have dealth with the asymmetric TSP, Zhang et al. (2012) the single
vehicle routing problem with toll-by-weight, and Almoustafa et al. (2013) the asymmetric

distance-constrained vehicle routing problem.

The branch and cut technique uses valid linear inequalities (cutting planes) to strengthen
the linear programming relaxation at each node of a branch and bound tree. This technique
is often applied on flow based formulations where the set of decision variables z;; indicates
whether a vehicle traverses the arc (4, j) (z;; = 1) or not (z;; = 0). If decision variables are
expressed as the load on the traversed arc (i, ), different models can be formulated. Some
examples can be found in Golden et al. (1977), Gavish & Graves (1979), Fisher & Jaikumar
(1981), Lysgaard et al. (2004), Baldacci et al. (2004) and Gounaris et al. (2011) to solve
the CVRP. Branch and cut has been also used to solve other vehicle routing applications
such as the location-routing problem (Belenguer et al., 2011), the location-routing problem
with simultaneous pickup and delivery (Karaoglan et al., 2011), the school bus routing
(Riera-Ledesma & Salazar-Gonzélez, 2012), the traveling purchaser problem (Batista-Galvan

et al., 2013), the hub location and routing problem (Rodriguez-Martin et al., 2014) and the
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split delivery VRP (Archetti et al., 2014).

In column generation, the decision variables, also called columns, are associated to
patterns, for instance a list of customers to visit. As patterns are generally extremely large,
a restricted subset of patterns is gradually constructed. This method generates only patterns
which have the potential to improve the objective function, i.e. to the ones with negative
reduced cost. Two subproblems are solved iteratively: a master problem which finds the best
configuration of patterns, and a pricing problem which find new patterns that can reduce the
cost. The process terminates when the pricing problem returns a solution with non-negative
reduced cost. Examples of vehicle routing applications include the heterogeneous fleet VRP
(Choi & Tcha, 2007), the split delivery VRP (Jin et al., 2008), a rich vehicle routing and
inventory problem (Oppen et al., 2010), a waste collection routing problem (Hauge et al.,
2014) and a ship routing and scheduling problem in oil transportation with split deliveries
(Nishi & Izuno, 2014).

Branch and price is a branch and bound method in which at each node of the search
tree, columns may be added. Some examples can be found in Gutiérrez-Jarpa et al. (2010)
for the VRP with deliveries, selective pickups and time windows, Salani & Vacca (2011) for
the VRP with discrete split deliveries and time windows, Santos et al. (2011) for the VRP
with cross-docking, Dayarian et al. (2014) for the multi-period VRP and Tas et al. (2014)

for the VRP with soft time windows and stochastic travel times.

When branch and bound works by adding columns as well as cuts, it is called branch
and cut and price. This strategy is used by Fukasawa et al. (2006) to solve the CVRP, by
Martinelli et al. (2011) for the CARP, by Stalhane et al. (2012) for the ship routing and
scheduling problem with split loads, by Luo et al. (2014) for the multiple TRP with distance
constraints and by Gauvin et al. (2014) for the VRP with stochastic demands.

Dynamic programming splits an optimization problem recursively, into nested subproblems.
This method is based on the principle that an optimal solution has the property that
whatever the initial state and initial decision are, the remaining decisions must constitute
an optimal solution with regard to the state resulting from the first decision. Examples are
proposed for the CVRP by Eilon et al. (1971), Christofides et al. (1981b), Laporte & Nobert
(1983), Laporte et al. (1985), Naddef & Rinaldi (2002) and Lysgaard et al. (2004).

The VRP and most of their variant belong to the NP-Hard class (Lenstra & Kan,
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1981), so only non-polynomial algorithms are known to solve relatively large instances to
optimality. Due to this feature, heuristic approaches must be used in practice to solve larger
instances. By opposition to exact methods, heuristics find a relatively good solution by
using significantly less computational effort. In the sequel, the more common approaches

are described.

2.3.2 Constructive Heuristics

In this section, the simpler algorithms to solve the CVRP are described. On every step
of these algorithms, a greedy function is used to make a decision which cannot be reversed,

leading to a single solution at the end. The following are some representative methods.

Savings algorithms are among the most popular heuristics in routing problems. The
first one was proposed by Clarke & Wright (1964). Although there are several kinds of
implementations, they are based on merging routes to get a positive saving, computed as
Si; = Wo; +wjo —w;; if the first route ends at customer ¢ and the second begins with customer
j. Note that this formula has sense for the classical cost-based objective function, but not for
others like the sum of arrival times or the satisfaction of demands, which are more common in
disaster logistics. Other authors have proposed modifications in order to improve the Clarke
and Wright algorithm (Golden et al., 1977; Altinkemer & Gavish, 1991; Wark & Holt, 1994;
Paessens, 1988; Nelson et al., 1985).

Petal algorithms, first proposed by Balinski & Quandt (1964), builds a set of routes,
called petals, and selects a subset of them by solving a set covering model. A simpler
implementation is proposed in Gillett & Miller (1974), called sweep algorithm, where a set
of non-overlaping petals are generated. Similar algorithms are found in Foster & Ryan
(1976), Ryan et al. (1993) and Renaud et al. (1996b).

In Cluster-first route-second algorithms, first proposed by Fisher & Jaikumar (1981),
R seeds are located in the first step. The set of sites to visit are clustered by using a
generalized assignment model to minimize the sum of nodes-to-seed distances. Then, a route
is determined on each cluster by solving a traveling salesman problem. Baker & Sheasby
(1999) describe some procedures to select seeds and Bramel & Simchi-Levi (1995) present a

capacitated location model to select seeds.

The route-first cluster-second approach first creates a giant circuit that visits all

customers. Then, the circuit is cut optimally in several feasible routes starting and ending
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at the depot (Beasley, 1983; Prins, 2004).

A more descriptive review about vehicle routing heuristics can be found in Laporte (2002).

2.3.3 Improvement Heuristics

Improvement heuristics, also called neighborhood search in local search, are frequently
used as post-optimization processes to improve a heuristic solution or an intermediate

solution, in a more general approach as metaheuristics or matheuristics.

The neighborhood of a solution is a relatively small subset of solutions, obtained using
elementary transformations called moves. Hence, most neighborhoods are implicitly defined

by their moves.

Intra-route moves: This category refers to moves which are designed to improve each
route in a separate way, which means that any improvement heuristic for the traveling

salesman problem belongs to this category.

Lin (1965) described a very general heuristic (A-opt), which consist in removing A edges
from a route to reconnect the remaining segments in all possible ways. The parameter A
is usually limited to 2 or 3. Lin & Kernighan (1973) propose a dynamic control of this

parameter.

The Or-opt method, proposed by Or (1976), relocate a string of consecutive nodes
(limited to 3 nodes).

A modified version of 4-opt, called 4-opt*, is proposed by Renaud et al. (1996a) where only
promising reconnections between a chain with a number of edges limited by a user-parameter
and another chain of two edges can be evaluated.

A review of this kind of moves can be found in Laporte (2010).

Inter-route moves: In this category moves which generate changes on several routes

simultaneously are considered.

Thompson & Psaraftis (1993) present the b-cyclic k-transfer where b is the number of

routes organized in a circular permutation and k is the number of nodes relocated from a
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route to the next one.

Several kinds of operations are defined by Breedam (1994): string cross, string exchange,
string relocation and string mix. String cross consists in removing one edge from two routes
and relinking the resulting strings with different edges. String exchange takes two strings
of at most k£ nodes in different routes and exchange them. String relocations move a string
from a route to another route. The string mix move selects the best move between string

exchange and string relocation.

Other moves have been proposed depending on the different features considered. For
instance, multitrip, multi-depot or split delivery need different moves which cannot be

applied in a general way.

The implementations also differ in the move finally selected to modify the current
solution. In the best improvement strategy, all possible moves are evaluated and the best
improving one is executed. In the first improvement strategy, the first improvement found
is applied. An intermediate strategy is proposed by Vidal et al. (2013) where the best

improvement solution, if it exists, is selected when 5% of the neighborhood is explored.

2.3.4 Metaheuristics

Metaheuristics are general-purpose algorithms that can be applied to solve almost any
optimization problem (Talbi, 2009). The success of these methods is based on the balance
between intensification and diversification strategies. Intensification strategies are related
to the goal of improving quickly a solution by exploiting a promising solution structure,
while diversification strategies are oriented to explore different regions of the solution space,
escaping from local optima. The most common intensification mechanism is to apply
improvement heuristics. Usually, compared with intensification, diversification mechanisms
require less computational effort. The most relevant and successful metaheuristic strategies

for vehicle routing problems are briefly described in the sequel.

In tabu search (TS), improvement heuristics are used as intensification mechanism while
diversification takes place with short-term (tabu list) and long-term memories. Examples of
this method can be found in Cordeau et al. (1997) for a periodic and multi-depot VRP and
in Derigs & Kaiser (2007) for the CVRP.
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Simulated annealing (SA) explores randomly the neighborhood to search improvements,
but accepts non-improvements to escape from local optimal solutions with a probability
which depends on the quality of the solution and a timing control parameter.
Threshold-accepting algorithm (Dueck & Scheuer, 1990) and record-to-record travel algorithm

(Dueck, 1993) are special cases where the acceptance of a solution is not probabilistic.

Genetic algorithms (GA) is a population-based metaheuristic where offspring, created
from selected parents of current population, replace the worst individuals of the population to
maintain a high quality set of solutions. Their principal components are selection, crossover
(intensification) and mutation (diversification). Some implementations are combined with
improvement heuristics to give memetic algorithms (Prins, 2004; Mester & Bréysy, 2005;
Nagata, 2007; Mester & Briysy, 2007; Prins, 2009a). Initial population is normally
generated randomly. Other implementations generate a set of high-quality solution by
using improvement heuristics, recombine that set to create a new population and restart the
improvement heuristics (Rochat & Taillard, 1995; Tarantilis & Kiranoudis, 2002; Tarantilis,
2005).

Variable neighborhood search (VNS) makes use of different improvement heuristics as
intensification strategy. Several neighborhoods alternate to allow different search directions.
An application of VNS to very large scale vehicle routing problems is described in Kytojoki
et al. (2007).

The very large neighborhood search destroys and reconstructs simultaneously some parts
of the solution as a general improvement heuristic. Shaw (1998) make use of constraint
propagation in the re-insertion process while Ergun et al. (2006) define a multi-label shortest

path problem to find good neighbors heuristically.

Several insertion and removal heuristics are used by the adaptive large neighborhood search
(ALNS) which reproduce the effect of many complex neighborhoods. This strategy has been
used by Ropke & Pisinger (2006) and Pisinger & Ropke (2007).

Iterated local search (ILS) (Lourengo et al., 2010) and evolutionary local search (ELS)
(Wolf & Merz, 2007) are based on the use of local search and mutation procedure. The
idea behind ILS is to iteratively apply perturbation and local search procedures to a current
solution, and it has been apply to VRPs in Hashimoto et al. (2008) and Penna et al. (2013).
ELS extends ILS by creating a set of children at each iteration instead of only one. ELS has

35



Logistics Optimization in Disaster Response Operations

been used by Prins (2009a), Duhamel et al. (2010) and Duhamel et al. (2011).

The granularity principle is a strategy to concentrate the search in the most promising
edge by removing the longest from the network. This principle has been applied by Toth
& Vigo (2003) in a tabu search method (granular tabu search) and by Li et al. (2005) in

conjunction with a record-to-record algorithm.

Penalty functions can also be used in order to intensify or diversify the search process.
Intensification strategies consist in penalizing the most frequently performed moves while
diversification strategies allow to explore infeasible solutions (Taillard, 1993; Gendreau et al.,
1994; Cordeau et al., 1997, 2001).

Frequency based memory also allows to increase the preference for some solution
components when their appear on high quality solutions in ant colony optimization
algorithms (ACO). Reimann et al. (2004) describe an ACO for the CVRP.

2.3.5 Matheuristics

Matheuristics are hybrid heuristic algorithms consisting in the interoperation of

metaheuristics and mathematical programming techniques (Boschetti et al., 2009; Caserta
& Vok, 2010).

One common strategy for VRPs is to create a set of trips by a (meta)heuristic and then
build a feasible solution using a set partitioning model. This strategy is used by Salhi et al.
(2013) for a fleet size and mix VRP, and by Alvarenga et al. (2007) and Dhahri et al. (2014)
for the VRP with time windows (VRPTW). Villegas et al. (2013) solve the truck and trailer
routing problem by hybridizing an ILS with a set partitioning formulation. Allaoua et al.

(2013) apply similar techniques for a home health care problem.

Some Very Large-scale Neighborhood Search (VLNS) algorithms (Ahuja et al., 2002)
define their neighborhoods based on network flow techniques or dynamic programming.
VLNS has been applied to routing problems by in Thompson & Psaraftis (1993) and Glover

& Punnen (1997). The corridor method is a dynamic programming-based VLNS (Sniedovich
& Vofs, 2006) which is applied to TSP.

Yagiura & Ibaraki (1996) use dynamic programming to optimize crossover operators in

genetic algoritms applied to the TSP and two additional combinatorial problems.
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In Schittekat et al. (2013) an exact algorithm assigns student to stops for a given set of

routes for the school bus routing problem with stop selection.

The Integer Linear Programming-based heuristic (ILP) is an ALNS algorithm in which
insertions or reconstruction phase is performed by an integer programming model. This
approach is applied by Franceschi et al. (2006) and Toth & Tramontani (2008) for the
capacitated vehicle routing problem, by Salari et al. (2010a) for the open VRP, by Salari
& Naji-Azimi (2012) for the covering salesman problem, by Naji-Azimi et al. (2012a) for
the m-Ring-Star problem, by Coelho et al. (2012) for the inventory-routing problem, and by

Guerrero et al. (2013) for the inventory location-routing problem.

Finally, splitting procedure or split procedure is a common method in vehicle routing
problems. For a given sequence of nodes (or TSP-like solution) it finds an optimal set of
trips respecting that sequence. This procedure introduced by Beasley (1983) has been used
for the first time in a metaheuristic by Prins (2004). Prins et al. (2014) present a survey
on this technique and its adaptations. In Section 4.4 a more detailed description of the

procedure is presented.

A review of key-references on exact and heuristic methods for the CVRP and its variations
can be found in Laporte (2009).

2.4 Concluding Remarks

Most optimization problems raised by humanitarian logistics focuses on a specific phase.
For instance, inventory systems researches are mainly concerned by the preparedness phase,
where prepositioning becomes challenging because in most cases it is not possible to predict
when and where disaster will occur, and how many people will be affected. Location and
transportation problems are more frequently applied to response operations, where urgency
and an important number of new demands are the main features. Infrastructure restoration

takes place when communities start to come back to normalcy in recovery phase.

As noted before, the most important feature in response phase is the emergency of the
situation. Nevertheless, many vehicle routing and transportation problems for relief effort
still use cost-based objectives. In Section 2.2, various serviced-based objective functions for
vehicle routing problems are reviewed. This section shows that few works have treated these

alternative objectives which impact deeply the solution methods, for instance the design of
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local search procedures.

From these conclusions, the aim of this research is precisely to investigate vehicle routing
problems raised by the response phase after a disaster and characterized by cumulative

objective functions.
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The Multitrip Cumulative Capacitated
Single-Vehicle Routing Problem: An
Exact Solution Approach

3.1 Introduction

The aim of this chapter is to propose an exact method based on a resource-constrained
shortest path formulation for a new version of the capacitated vehicle routing problem
(CVRP). An application case of this problem can be found in the response phase of relief
operations, in which the classical objective function (total time or distance traveled) becomes
the sum of arrival times at affected sites. In this version, a single vehicle with a limited
capacity should satisfy all the demand by several trips. This problem, called the multitrip
cumulative capacitated single-vehicle routing problem (mt-CCSVRP), is described in Section
3.2.

Angel-Bello et al. (2013) propose and compare two mathematical models for the
mt-CCSVRP with a maximal number of trips. These models are tested with randomly

generated instances and can solve instances with no more than 25 sites.

Azi et al. (2007) develop an exact algorithm based on an elementary resource-constrained
shortest path (ERCSPP) formulation for the single-vehicle routing problem with time
windows and multiple trips. On some instances it is not possible to cover all sites because
of the time windows. That is why solutions with a maximum number of visited sites
are preferred, and minimum total cost is used to break ties. The authors also provide

a mathematical program and some dominance rules. The solution method is based on
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the elementary shortest path algorithm with resource constraints proposed by Feillet et al.
(2004), which is a label correcting algorithm. Additional information about shortest path

algorithms for transportation applications can be found in the survey of Fu et al. (2006).

A general description of the algorithm developed is depicted in Section 3.3. This
algorithm is divided in two phases: Auxiliary network generation (Section 3.4) and Shortest

path solution approach (Section 3.5).

In Section 3.5, an exact approach inspired by the ERCSPP formulation and the
algorithms of Feillet et al. (2004) and Azi et al. (2007) is developed. This algorithm differs
from the one proposed by Azi et al. (2007) because it always visits all affected sites, the
auxiliary network is acyclic (which censures elementary paths) and the objective function is

the sum of arrival times. It also involves different dominance rules.

The chapter is structured as follows: in Section 3.2 the problem is formally defined
and modelled by two mixed linear programs. A general description of the algorithmic
methodology is summarized in Section 3.3. Section 3.4 describes the procedure to transform
the mt-CCSVRP in a resource-constrained shortest path problem on an acyclic directed
graph. A shortest path algorithm with resource constraints is developed in Section 3.5.
Computational results are presented in Section 3.6 while concluding remarks are given in
Section 3.7.

3.2 Problem Definition and Mixed Integer Linear Models

The multitrip cumulative capacitated single-vehicle routing problem (mt-CCSVRP) uses
the sum of arrival times at required sites as objective function, like in the cumulative CVRP,
but involves a single vehicle which can perform more than one trip. This flexibility is
necessary when the total demand exceeds the capacity of the vehicle or the range of the
vehicle is limited. This problem can also be seen as a generalization of the traveling repairmen

problem (TRP) with replenishment arcs.

In the context of humanitarian logistics, the mt-CCSVRP models the distribution of
relief supplies to a set of sites affected by a disaster, using for instance one helicopter which
can do multiple sorties. After a disaster, the victims are waiting for rescue and multiple
crews can be coordinated to use the vehicle full time. Nevertheless, the limited range of the

vehicle imposes an upper bound on the flight time of each trip.
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Although in a realistic intervention several vehicles can be required, the single-vehicle
version presented in this chapter can be useful in a more general solution method where the

affected area is divided into elementary zones, each zone being assigned to one vehicle.

The problem can be defined on a complete undirected graph G = (V, E). The node-set
V = {0, ...,n} includes one depot-node 0 and a subset V' = V'\ {0} of n locations affected by
a disaster, also called required sites. The set E is composed by edges (i, j) with travel times
w;; satisfying the triangle inequality, also called flight times. A single vehicle of capacity )
and range Ly, (in terms of flight time) is based at the depot. Each required site i € V'

has a known demand ¢; and service time s;. It is assumed without loss of generality that
Y i>Qandg<QVieV.
eV

The objective is to identify an ordered sequence of trips (1,2,...,v), called multitrip,
such that each required site is visited exactly once and the sum of arrival times at the sites
is minimized (in the last trip, the return to the depot is not counted). A trip k is a cycle,
starting and ending at the depot, whose total load W), fits vehicle capacity () and total flight
time Ly, does not exceed the range L;,.,. Each trip k has also a setup time (loading time) g,
before leaving the depot, computed as the sum of service times over all required sites served
by the trip, weighted by a given coefficient 5. The loading times and service times do not

affect vehicle range but delay the arrivals at required sites.

In this version, the number of trips is a decision variable. Contrary to the mtVRP,
note that the cumulative objective function is sensitive to the trip ordering: Theorem 3.3
in Section 3.4 defines the optimal ordering for a given set of trips. Figure 3.1 illustrates
a small mt-CCSVRP instance with five required sites and one feasible solution with three
trips. Each site demand is equal to 10 while the vehicle capacity is set to 20. Null service
times are used (s; = 0 Vi € V’). In the figure, every node denote a site and arcs represent
the roads between sites. Dashed arcs correspond to transitions between two successive trips,
called replenishment arcs, which indicate the return to depot and the beginning of a new
trip. The arrival time ¢; at site ¢ is given near to each site-node while the values on each

arc are the flight times. The cost of this solution is Z = Z t; = 190, where t; indicates the
iV’
arrival time at site 1.

In the following, two mixed integer linear programs (MILP) for the mt-CCSVRP are
developed. The first one is a flow-based model whose variables have no trip index, which

is not at all trivial. The second one is based on a set partitioning model where columns
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Solution:
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Figure 3.1: Example of an mt-CCSVRP solution for an instance with n = 5, all ¢; = 10 and
Q = 20.

— classical arc

- » replenishment arc

correspond to the possible routes and each site must be covered (visited) by exactly one

route.

3.2.1 Flow-Based Model

The model presented in this subsection is a mixed integer linear program in which the

concepts of replenishment arc and arc coefficient are essential.

The notion of replenishment arc has been used by Boland et al. (2000) and Mak &
Boland (2000) for a multitrip traveling salesman problem in which one vehicle with limited
capacity must replenish (reload) at the depot. Replenishment arcs constitute a nice trick to
replace the successive trips of a multitrip by a single trip: when a trip with last customer
i is followed by a trip with first customer j, the two arcs (¢,0) and (0, j) are replaced by
a replenishment arc (i,7). Here the same technique is used to model the mt-CCSVRP: a
multitrip is a sequence of arcs in which replenishment arcs delimit successive trips. The

length of a replenishment arc (i, j) is wj; = wio + wo;-

The concept of arc coefficient is defined by Ngueveu et al. (2010) for a memetic algorithm
for the CCVRP. The sum of arrival times C} for a trip k defined without loss of generality

by a sequence of M required nodes (1,2, ..., M) can be written as:
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M,
Crh=) ti=ti+t+ ... +ty, (3.1)

=1

1—

where t; = iy, + > _5_

site 4, so = 0 and pup = [ - Zj\ﬁ‘l s; is the loading time of the trip. Cj can be rewritten as:

o (8; + wj j+1) is the arrival time to site 4, s; denotes the service time at

C =My, - py + My, - (so +wor) + (M —1) - (s1 +wi2) + ... + (Smm1 + Waim1,0,.)

My—1 . (3.2)
Cp =My, -+ Y (My = 5) - (55 + wjj11)

=0

In other words, the traversal time of the first arc in the route is counted M times,
the cost of the second arc M — 1 times, and so on. The number of times the cost of arc
(1,7) is counted is what we call the coefficient of (i,7). Note that this coefficient is also the
number of demand sites visited after site ¢ in the route. The concept can be extended to the

replenishment arcs in the multitrip CCVRP.

Similarly, the loading time g is counted M) times in the objective function. This

coefficient is referred as loading time coefficient in the sequel.

In the model, the arc coefficients (M — j) from Equation (3.2) are described by variables
y;; for arcs (,7), while loading time coefficients M), which multiplies py, in the first term
of Equation (3.2) is expressed by variables ¢;;. Note that two indexes are used to allow
modeling the constraints by flow constraints. Variables Fj; define the flow on each arc (i, j),
i.e., the load of the vehicle traversing this arc. The binary variables x;; are equal to 1 if and
only if arc (4, j) is traversed. The variables z(; are only used at the beginning of the first
trip and x;9 at the end of the last trip, other depot connections are described by variables
:v;j which represent the replenishment arcs. Due to the special nature of replenishment arcs,
similar but separate variables z;; and y;; are used for these arcs. Finally, the variables f;
are used to respect vehicle range: they represent the cumulated flight time to arrive at site
i since the last departure from the depot (without loading and service times), and not the

arrival time.

The resulting MILP is defined by Equations (3.3) to (3.34). The objective function (3.3)
represents the sum of arrival times to affected sites, extending Equation (3.2) to multitrips

and using the variables defined before. The first term computes the loading times for each trip
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and the service and flight times for normal arcs multiplied by their corresponding coefficients,

while second term computes service and flight times for replenishment arcs multiplied by their

arc coefficients. The flight time of replenishment arcs are in fact w;o + wo;.

minZ:ZZ((si—l—wij)-yij+5-sj-cpij)+zz(Si+wi0+woj)-yz’j

eV jev eV’ jev’

Zxoj = 1,

jev’

D (i + ) +wo; = 1,

eV’
Z (zji +27;) < 1,
eV’

ZFJ‘@'— ZFU:Q’"

jeV jev’
Fi; <Q - zy,
Foj < Q- (o5 + Z i),

eV’

Yoj + Z (yij + i) — Z (i — ¥3) = 1,

eV’ eV’
Yoj = 1 - Toj,
Yi; < (n—1) - x4,
yij < (n—1) - af,
Yij = Xij,
Yi; > T,
Yij = 2+ Tij — Tjo,

/ '
Yij > 2- Li; — Tj0,

2.0 it ) ) wy=n

eV jev’ eV’ jev’
Z Z Z Z (n + n-(n+1)
yl] + yz] Y
i€V jev’ eV’ gev!

WYo; = N - oy,

ij = y;j?
Pij 2 Yij,
> Z@kz -—n- Izg)

kev
pij < (@ + ),

VjeV
VjeV
VieV

VieV', jeV
VjeV

VjeV

VjeV

VieV', jeV’
VieV', jeV’
VieV, jeV’
vVieV', jeV
VieV, jeV’
VieV jeV'

VjeV

VieV', jeV’
VieV', jeV
VieV', jeV’

VieV', jeV

(3.24)
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fi > wy, VjeV’
fi > fitwy— Lipaz - (1 —5), VieV, jeV’

fi+wio < Linge, YieV

z; €{0,1}, VieV, jeV' i#j

ri; €4{0,1},  VieV, jeV, i#j

vi; >0, VieV, jeV, i#j

yi; >0, YieV, jeV, i#j

F;>0, VYieV, jeV i#j

0i; >0, VieV, jeV i#j

f,>0, VYieV

Constraint (3.4) means that only one vehicle is used. Equations (3.5) and (3.6)
respectively indicate that exactly one arc is traversed to arrive at each site j and leave
it. The last arc of the multitrip is ignored since it has no impact on the objective function.
Constraints (3.7) to (3.9) concern flow variables: Equations (3.7) ensure that each demand
is satisfied and express the load variation after visit to site i, Equations (3.8) and (3.9)
guarantee that vehicle capacity is respected and no flow can traverse an unused arc, and

Equations (3.9) limit the maximum flow at the beginning of each trip to the capacity Q.

Constraints (3.10) to (3.13) concern arc coefficients. Constraints (3.10) imply that the
coeflicients of successive arcs decrease along a trip. Equations (3.11) to (3.13) are related to
the maximum arc coefficients, for instance after the first arc of the multitrip n sites are visited
and at most n — 1 after the remaining arcs. No traversed arc have arc coefficients equal to
zero. Constraints (3.12) concern normal arcs and constraints (3.13) concern replenishment
arcs. Constraints (3.14) to (3.19) are simple valid inequalities which are useful to reduce
running time when the model is solved by a commercial solver. Constraints (3.14) and
(3.15) mean that all traversed arcs, except the last one, have a positive arc coefficient,
which are greater than 1. Constraints (3.16) and (3.17) imply that traversed arcs (i, j) have
coefficients greater or equal to 2, but becomes 1 if the next arc is the last one, z;0 = 1.
Equation (3.18) indicates that exactly n sites must be visited and consequently the arc
coeflicient of the first arc is n. Equation (3.19) expresses the sum of the arc coefficients
WA W WED RS TS
i€V jev eV’ jev’

The coefficients used for loading times, given by the variables ¢;;, are constrained by
Equations (3.20) to (3.24). Constraints (3.20) set the loading time coeflicient of the first
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arc, similar to Equations (3.11) for the arc coefficients. Constraints (3.21) and (3.22)
guarantee that loading time coefficients are greater than the corresponding arc coefficients.
Equations (3.23) imply that loading time coefficients only decrease when a replenishment arc

is traversed. Constraints (3.24) indicate that loading time coefficients are null for unused arcs.

The range constraint is implemented via Equations (3.25) to (3.27), using the flight
time variables f;. Constraints (3.25) impose a lower bound to the flight time to reach a
site. Constraints (3.26) compute the flight time to reach site j when arc (7, j) is traversed.

Constraints (3.27) limit the range to Lyqq-

Finally, constraints (3.28) to (3.34) define the seven groups of variables. Note that
variables y;;, yl’-j, F;; and ¢;; are flow variables, and they are not required to be binary nor
integer. The flight time variables f; are positive real by nature. Only the variables z;; and

/ .
T;; are binary.

The model has been tested on small instances and computational results are reported in
Subsection 3.6.3.

3.2.2 Set Partitioning Model

The mt-CCSVRP can also be modeled as a set partitioning problem. In this model,
it is assumed that the set K of all feasible and non-dominated trips is built using a
precomputation procedure (see Section 3.4 for details), with the following attributes for
each trip k € K: the cost C}, the duration Dy, the number of required sites visited M}, and

binary indicators i, = 1 if site i is visited by trip k.

This model takes advantage of Equation (3.35) to compute the cost of a multitrip, based
on the cost, duration and number of sites of each trip. The sum of arrival times Z, for a

multitrip p = (1,2, ...,v) composed of v trips can be computed as:

Zy=Ci+ Dy (My+ ...+ M,)+Co+ Dy - (Ms+ ...+ M,) + ...
+Cv—1+Dv—l'Mv+Cv

Zy=Ci+Di-Y My+Co+Dy-Y My+..+Cyoy+Dyy - My +C, (3.35)

k=2 k=3

Zy = Z(Ck—'—Dk' Z Mk')

k=1 k'=k+1
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Two types of binary variables are used. The variable y; is equal to 1 if trip k is selected
in the solution. Variables 7. define the relative order of the trips in the multitrip: v = 1

if trip k is performed before trip &’.

The set partitioning formulation for the mt-CCSVRP is given by Equations (3.36) to
(3.42). The objective function (3.36) which represents the sum of arrival times is derived

from Equation (3.35), by adding the decision variables.

min Z = Z <Ck Xk T+ Z (Dy - My "Ykk/)) (3.36)

keK k'eK

driexe=1, VieV (3.37)
keK
Yo <Xk, VkeK, KeK

'7kk’§Xk’7 V]{?EK, EFeK

s €{0,1}, VkeK

(3.38)
(3.39)
Yk + Wk > Xe+ X —1, VEkeK, kK eK (3.40)
(3.41)
e € {0,1}, VkeK, K eK, k£F (3.42)

Constraints (3.37) imply that each required site is visited by exactly one trip. Constraints
(3.38) to (3.40) control the order of the trips. Equation (3.38) (resp. (3.39)) inhibits the
ordering variable vy, when trip & (resp. k') is not used in the solution, i.e., when x; = 0
(resp. xx = 0). Equations (3.40) impose an order between trips k& and k" when both belong

to the solution.

Finally, Equations (3.41) and (3.42) define the variables. In Subsection 3.6.3 this model
is tested and compared with the flow model and the exact method of Section 3.5 on small

instances.

3.3 General Description of the Algorithm

The resource-constrained shortest path algorithm developed in this chapter is split in two
sequential phases. The first phase translates the single-vehicle routing problem to a shortest
path problem where each node is a trip, called trip-node in the sequel, and required sites

becomes resources. The generated graph is acyclic due to the property in Theorem 3.3. The
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second phase adapts the resource-constrained shortest path algorithm to manage the sum of

arrival times objective.

An example of a solution is depicted in Figure 3.2. This figure shows the auxiliary
network for the instance of Figure 3.1. In that network, inside each trip-node k (represented
by squares), the visited required sites of the trip are recorded. The cost trip Cj for a
departure at time 0 and duration trip Dy are given above and under each node, respectively.
The solution cost can be computed as a function of the trip costs, trip durations and number
of visited sites. The boldfaced arcs represent the feasible solution (multitrip) in Figure 3.1
where the cost can be computed as Z = (27429 +13) +29- (24 1) + 31 -1 = 187, following
Equation (3.35).

Figure 3.2: Example of a solution on the shortest path network.

3.4 Auxiliary Network for the Shortest Path Problem

This section describes how to transform the mt-CCSVRP into a resource-constrained
shortest path problem. A directed acyclic graph (DAG) G' = (K, E’), called auziliary
network, is built, where each node in K (called trip-node to distinguish them from the
nodes of the real network G) represents one trip, E’ contains one arc (k, k') if trip k can
be followed by A’ in a multitrip, and the required sites become consumable resources. The
precomputation of feasible trips looks very heavy but many trips can be discarded in practice,
using two dominance rules stated in Theorems 3.1 and 3.2. The process is also sensitive to

the vehicle range L,,q., as shown in the tests of Section 3.6.

One arc links two trip-nodes k and k" if they have no required site in common and if a
crucial dominance property stated in Theorem 3.3 holds. It is this dominance rule which
leads to an acyclic graph. A feasible solution is a path, called complete path, whose trip-nodes

cover all required sites.
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3.4.1 Generation of the Set of Trip-Nodes

Each trip k is defined by a cost C}, a duration Dy, a set of visited required sites By,
M, = |Bygl|, a total load Wy, a last site visited 0, and a total flight time L. Recall

that the latter differs from the trip duration D, which includes service and setup times:

i€By,

The trip set K is initialized with one direct trip per required site. Then, each trip
k € K is extended by adding one required site ¢ at the end, provided 7 is not already
visited (i ¢ Bjg) and capacity and range constraints are satisfied (W, + ¢ < @ and
Ly, + wp, i + wip — wo, 0 < Lpmasz). The number of trips with the same required sites is

strongly reduced using Theorem 3.1 and Theorem 3.2.

Theorem 3.1. Let k and k' be two trips with sum of arrival times C), and Cy, durations
Dy and Dy, and visiting the same subset of required sites (By, = By ). Trip k dominates trip
k?/ Zf Ck S Ck/ and Dk S Dk/.

Proof. Let p’ be the best complete path in G’ containing &'. Tts cost (sum of arrival times

at sites) can be computed as (recall Equation 3.35):

'l lp'|
Zp/zzl CU+DU' Zle’
V= v'=v+

Now, suppose that trip &’ is replaced by trip k in path p’, giving path p. The difference
between Z, and Z,; can be computed as:
Ip'|
Zy —Zy=Cp = Cr+ Dy —Dy)- Y My
v'=k'+1
Since it is assumed that C, < Cjp and Dy < Dy, it can be concluded that Z, > Z,,
which means that trip &’ is dominated by trip k. O

Theorem 3.2. Let two trips k and k' with the same required sites (By = By ) and the
same last site (0 = O ). If Cr, < Cy and Dy < Dy, then any trip obtained by adding a
sequence v of required sites at the end of trip k dominates the trip obtained by adding the

same sequence at the end of k.
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Proof. Let u and u' denote trips k& and k' without the depot at the end and & the
concatenation operator. If a sequence of required sites v = (v1, v, -+ ,v)y) is added to k
and k" after the last required site 0y, the sums of arrival times for the resulting trips (u®v@®0)

and (v’ & v @ 0) are:

] i—1
Zygveo = Cr+ Z (Dk — We,,,0 T Woy vy + Z (Svjfl + wvjlﬂ)j))

i=1 j=1

= Cip+ |v]- (Dy — w0+ wo,0) + Ch

and:
|v] i—1
Zyawao = Cr + Z <Dk/ — Wop 0 + Wo,r 01 + Z (Svjfl + w”jl’vj)>
i=1 j=1
= Cp+|v] - (Dp — wa,, 0+ we,, 0) + Cy
lv| /i1
where C, = Z (Z (Svj,l + wvjhvj)) is the cost of sequence v.
i=1 \j=1

The following expression indicates the difference between Z,/q,00 and Z,gpa0:

Z“’@U@O - ZMEBUEBO = Ck’ - Ok + |U‘ . (Dk/ — Dk)

Since Cy < Cy and Dy < Dy, it can be concluded that Z,oue0 > Zugvso- This proves
that the trip obtained by adding any sequence of required sites v at the end of trip k
dominates the trip built by adding the same sequence at the end of trip &' O

The two theorems concern two trips k and &’ with the same required sites. If C), < Cy/
and Dy < D then Theorem 3.1 holds, and Theorem 3.2 too if k and &’ share the same
last site. If Theorem 3.2 holds for k£ = (1,2,3) and &' = (2,1,3) (for instance), k & v will
dominate k' ® v for any sequence v of sites, e.g., (1,2,3,4,5) will dominate (2,1,3,4,5).
Hence, k' can be deleted immediately. However, if k& and £’ satisfy Theorem 3.1 but have
distinct last sites, e.g. (1,2,3) and (3,1,2), £ dominates &’ but this is not necessarily the
case for extensions like (1,2,3,4) and (3,1,2,4). So, Theorem 3.1 is applied only at the end,

once all possible extensions of each trip have been generated.
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Note that after the precomputation of K, it is no longer necessary to verify capacity and
range constraints. The same trip generation procedure is also used in the set partitioning

model described in Subsection 3.2.2.

3.4.2 Generation of the Arc-Set

The arc-set E’ contains one arc (k, k') if trip-node k can be followed by trip-node £’ in
a complete path, e.g., if trip k& can be followed by trip &’ in a multitrip. A first condition is
that k£ and £ visit distinct sites, i.e., By N By = &. Theorem 3.3 demonstrates that it is not

necessary to consider all possible trip orderings in a multitrip.

Theorem 3.3. The cost of a multitrip is minimized by ordering its trips in non-decreasing
order of mean trip duration, where the mean duration of a trip k is defined as its total duration

Dy, divided by its number of required nodes Mj,.

Proof. Consider a multitrip p which does not follow this rule. It contains two consecutive
trips k and &’ such that the mean duration of k is larger than the one of &’. Let Z} be the
sum of arrival times of trip & in multitrip p, ¥ its starting time, and ¢; the arrival time at

site ¢ (if trip k starts at ¢§). The two trip costs can be written as follows:

ZP = (th+t:) = M- th+ Y t;

i€k 1€k

and
i€k’ ek’

As k is ordered before &/, we can take without loss of generality t§ = 0 and t£' = Dj.
Then the total cost is:

ZP+ 20 =Y ti+ My D+t
i€k ek’

If k and &’ are swapped to obtain a new multitrip p’ which does not affect the trips before

k or after &', then t£' = 0, t& = Dy, and the sum of arrival times for the two trips becomes:

ZV + 20 =My Dy + > ti+ Y t;

ick ek’
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The cost difference is:
(2P + Z2) — (2% + ZP) = My - Dy, — My, - Dy
But the initial assumption states that the mean duration of £’ is less than the one of k:
Dk Dk:’

M, ~ My

Therefore:
(2P +20) — (Z2F + ZP) > 0

which shows that the total cost is reduced by swapping two consecutive trips that are not

ordered in non-decreasing order of mean trip duration. O]

According to this theorem, E’ can be limited to the arcs (k, k") such that By N By = &
D, Dy .. ) ) Dy, Dy .
——, giving a directed acyclic graph. If — = —— either (k, k") or (K, k) can
M, < Bvin yelic grap M, M (k, k') or (K, k)
be selected, provided no cycle is created. Moreover, by ordering the set K of trip-nodes in
non-decreasing order of mean duration, a topological sort of G’ is obtained, which simplifies
the shortest path algorithm. Theorem 3.3 can be also applied to reduce solution space in

the set partitioning model of Subsection 3.2.2, by adding the constraints:

<Dk/ Dk

—— ) sy >0 VkeK, KekK 3.43
M,y Mk) Yrk = U, €N, k€ ( )

During the construction of G, the following values are precomputed to ease calculations
of lower bounds and dominance rules in the shortest path algorithm described in the next

section: the maximum number of required sites per trip M,,,, = max{M; | k € K} and, in
0

the original graph, the minimum cost of the arcs incident to the depot wy,;, = min{wy; |
j € V'}, the minimum service time s,,;,, = min{s; | 7« € V’}, and the minimum cost of the

arcs between two required sites Wy, = min{w;; | i,j € V'}.

3.5 Shortest Path Algorithm

Like in Feillet et al. (2004) and Azi et al. (2007), an extension of Bellman-Ford algorithm
with multiple labels per node is used to solve the resource-constrained shortest path problem.

In this version, shown in Algorithm 3.1, all paths are implicitly elementary since the graph
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is directed and acyclic: each partial path undergoes a single extension towards its feasible

SUCCeSSors.

The algorithm numbers the trip-nodes from 1 to |K| in topological order. It defines for
each trip-node k € K a set () of non-dominated partial paths ending at this trip-node and
updates the best solution p* when it is improved. This solution is initialized in line 1 by the

best result of two heuristics, called in the procedure Initial solution described in the sequel.

Each path p is identified by a label R, = (C,, D,, B, M,,). For the sake of simplicity,
the same notation is used as for the trips, but with a path index p instead of a trip index k:
C, is the total cost of the path (sum of arrival times), D, its duration, B, the set of visited
required sites and M, = |B,| = Z M, its cardinality.

kep

In most shortest path problems on DAGs, feasible paths go from the first node (without
predecessors) to the last (without successors). Here, other nodes may lack successors or
predecessors (see Figure 3.2) and a complete path may begin and end at any node. So, for
each trip-node k, the algorithm initializes (), with the partial path reduced to trip k, with a
label Ry = (Ck, Dy, B, My,) (lines 2 to 4). Then, it inspects each trip k in topological order
(line 5) and each partial path p € € (line 6) and tries to extend it by adding one trip &’
at the end. The candidates correspond to the arcs (k,k’) € E’. The existence of arc (k, k')
ensures by construction that trips k and k£ have no common sites but some sites of k can be
visited by earlier trips on the path: this case is avoided by checking that B, N B, = &. The
set of feasible successors for path p, ©,, is computed in line 7 via the procedure Successors,

which can be accelerated using the condition M, + M;, < n.

For each successor k' € ©,, a tentative label R, can be computed for the new path
p@®K', using the system of equations (3.44). Silva et al. (2012) have defined similar equations
to concatenate sequences of customers in a local search for the Cumulative TSP. The
equations are adapted here to concatenate one trip-node k' at the end of a path p. In
that case the last site of the path p and the first site of the trip-node k' is the depot, which

allows to simplified some equations.

Cpar =Cp+ Dy, - My, + Cy,
Dpéek = Dp + Dy,

Byer = By U By

Myer = My, + My

(3.44)
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Algorithm 3.1 — Shortest path algorithm for the mt-CCSVRP
1. Initial_ solution (p*)
2: for k + 1 to |K| do

3: Qp <~ {k}

4: end for

5. for k <+ 1 to |K| do

6 for each partial path p in ;. do

7 ©, < Successors (K,p)

8 for each k' € ©, such that LB,gr < Z,« do

9 if (Mpar =n) and (Cpgr < Z,) then

10: pr—pdK

11: end if

12: u<k+1

13: while (u < |K|) and (no path in Q, dominates p @ k') do
14: remove from €2, the paths dominated by p & £’
15: u<—u-+1

16: end while

17: if w > |K| then Q < Qp U {p ® £’} endif

18: end for

19: end for
20: end for

LBy is the lower bound of the best complete path which extends p@£&’. It is computed
as the maximum of the five bounds presented in the next subsection. The new partial path is
discarded if this bound is not smaller than the best cost Z,-. Otherwise, if p@® k' is complete

and outperforms the current best solution (line 9), p* is updated (lines 9-11).

Most shortest path algorithms on DAGs compare paths with the same extremities and
apply dominance tests only to € when one arc (k, k) is added to a partial path ending at
node k. A singularity of the mt-CCSVRP problem is that dominated or dominating paths
may exist in sets (41, Qipo, ..., Qx| For instance, the simplest dominance rule presented
in the next subsection states that path p dominates p' it C,, < Cy, D, < D,y and By C B,,.
Consider a partial path p ending at trip-node k, with B, = {2,3,4}, and the three next
nodes such that By, = {2,3,7}, Bryo = B = {7,8} and By, 3 = {3,8}. In that case, By,
and By are both included in Bpgr = {2,3,4,7,8}. Dominated labels may exist in Q44
and .3, not only in €/, and paths £+ 1 and k£ + 3 may be dominated by path p@® k', even
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if they do not have the same extremities.

This is why the while loop of lines 13-16 browses each trip-node u after k, even if the
new partial path is complete, to eliminate the existing paths which are dominated. This
loop stops when all trip-nodes have been inspected or as soon as an existing path dominates
the new one. If the latter is not dominated (line 17), it is added to .

3.5.1 Lower Bounds

Given a partial path p, five lower bounds of the best complete path which extends p are
described.

Recall that the following values have been computed during the construction of G’: the
maximum number of required sites per trip M., = max{M; | k € K}, the minimum cost
of the arcs incident to the depot wl. = min{wy; | j € V'}, the minimum service time
Smin = min{s; | ¢ € V'}, and the minimum cost of the arcs between two required sites

Winin = min{w; | i,j € V'}.

Lower Bound 3.1. Consider a partial path p and the best complete path p @ p that
extends it, i.e., p is the optimal way of visiting the remaining required sites after p. According
to Equation (3.35), the cost of the complete path is Cpgp = C, + D, - Mz + Cp. As p is
unknown and C; > 0, Cj can be set to 0 and, since M; = n — M, get a first lower bound
LB} = Cy,+ D, - (n— M,) for the cost of p@p. This simple bound can be computed in O(1).

Lower Bound 3.2. LB; can be improved by serving the remaining sites in a single trip
k. Equation (3.2) defined the cost of a trip k = (0, 1,2, ..., M, 0) as Cy, = M- (- ZZ | s+
SOMETE (M, —4) - (i + wii11). Using the minima defined at the end of Section 3.4, the cost

of the first arc wp; can be set to w?,, , the cost of each arc linking two required sites w; ;41 to

Wmin, and each service time s; to s,,;,. After simplification, a second lower bound is obtained:
L32 LB1 +(w gu-n%—ﬁ-smm(n—Mp))-(n—Mp)+%-(wmm—i—smm)-(n—Mp)-(n—Mp—l). This

bound dominates LB; and, as Wyin, W and s,,;, are precomputed, it is also computable

0
min

in constant time.

Lower Bound 3.3. The previous bound can be refined by using M,,.. to approximate

the minimum number of remaining trips m and a lower bound for their cost and duration.
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n—M
First, the minimum number of remaining trips can be computed as m = [(Z\/[—p)—‘
max

Then, lower bounds for the cost and the duration of the first (m — 1) trips, which visit at
most M., required sites, can be written as LB, = (W, + 3 Smin* Mmaz)* Mnaz + % (Wpin+
Smin)*(Momaz—1) Mypaz and LBy = 2-w2 ;. +wWomin(Mimaz— 1)+ (14 8) - Smin* Minaz, respectively.

As the last trip visits the (n — M, — M4, - (m — 1)) remaining sites, its cost can be lower
bounded by LB s = (w0, + B Smin - (0 — My — Myas - (m — 1)) - (n — My — Mypas - (m —
1)) + 5 - (Wiin + Smin) + (0 — My — Mo - (m — 1)) - (n — My, — Mypgp - (m — 1) — 1),

Finally, the lower bound can be computed as LB} = LB, + (m — 1) - (LB. + LBq - (n —
My, — Mypag - (m —1))) 4+ 5 - LBy - Mypag - (m — 1) - (m — 2) + LB**. Tt dominates LB, and
LB? and can be computed in O(1) too. It can be seen that when the number of remaining

nodes n — M, is lower than M,,,,, the minimum number of remaining trips becomes m = 1
and then LB} = LB},

Lower Bound 3.4. This lower bound approximates the arrival times to the remaining
sites. Consider a list 7, containing these sites ¢ in non-decreasing order of distance to the
depot wp;. The arrival time at the i-th site in 7, is approximated as ¢; = (i- 4+ —1) - Sppin +
Wo r, (i) - Pi-1 + di, where 7,(i) is the i-th site in T, di = (Wr,i-1).0 + Wor, (i) * Pim1 + di-1,
do = Dy, m,(0) = 0, pp = 0, and p; a binary indicator equal to 1 if ¢ is multiple of M,,,, which
means that a trip would be terminated at node i. Finally, the lower bound is computed as
LB =C,+ Y1 M.

Note that ¢ is always smaller than the real arrival time at the i-th remaining site if the
triangle inequality is satisfied, because a) wo i) < 23:1 Wat (j—1)m1(j) for any order m, is a
lower bound of the flight time to reach the i-th site in m,, and b) d; is a lower bound of the

duration of trips before that site.

Lower Bound 3.5. In this modification of LB;7 the arrival time at the i-th site
in m, is approximated by ¢/ = (i -84+ i — 1) Spin + (1 — T) - Wpn + d; , where
d; = (w”p(Q'Ti)70 + wovﬂ'p(Q’Tz'—i-l)) Pi—1 + dz 1 d/O = Dp + wOJ"p(D’ and Ti = Ti-1 + Pi is the
minimum number of trips until i-th site (7o = 1). The binary indicator p; is equal to 1 if,
given the last position j such that p; = 1, we have wq, )0+ (J—1) Win +Wo (i) > Limaz OT

(1 —j+1) = Mye.. Compared with LB;, Wo,x, ;) in ¢ is replaced by Z;’:l Winin = 1 * Wynin,
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which is smaller than Z;zl Wt (j—1),71, () for any order m,. The bound is computed as
LB5 C +Z” My //

The two last lower bounds can be computed in O(n). The following strategy is applied
in line 8 of Algorithm 3.1. As the bounds LB, and LB}, are dominated by LB}, they
are not used. LB3 ek 18 first computed in O(1). If LB;’@k > Zp~, the new partial path p @ k

can be discarded. Otherwise, LB%., and LB?>

bk en are computed in O(n) and the best one is

compared with Z«.

3.5.2 Dominance Rules

Section 3.4 describes two dominance rules to eliminate trip-nodes when building the
auxiliary network. Four other rules are now introduced to discard partial paths in the
shortest path algorithm. The first one (Theorem 3.4) extends Theorem 3.1 to compare two
partial paths p and p’ instead of two trips k and k’. It simply says that path p dominates
path p’ if it is not more costly, it does not last longer, and all sites visited by path p’ are also

visited by path p.

Theorem 3.4. A partial path p dominates a partial path p' if C, < Cp, D, < Dy, and
B, C B,.

Proof. Let p and p’ be two partial paths with labels R, = (C,, D,,B,, M,) and
Ry = (Cy, Dy, By, M,y), respectively. Let p @ p and p’ @ p’ denote the best complete paths
extending p and p’, C; and Cj the costs of p and ¢/, and M; =n — M, and My =n — M,y
the number of sites that they visit. From Equation (3.35), the costs of the two complete

paths are:

Zpay =Cp+ Cs+ D, - (n— M,)
and
Zyey = Cp + Cy + Dy - (n — My)

It can be proved that Z,e; < Zyep by showing that each term in the first cost does
not exceed the corresponding term in the second one. From the hypotheses, it is known
that C, < Cy and D, < D,. Moreover, as B, C B,, then M,y = |By| < M, = B, <=
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n — M, <n — M,y. Finally, as B; C By and travel times satisfy the triangle inequality, it
can be confirmed that C; < Cp. O

The remaining rules are deduced from Theorem 3.4 by computing lower bounds for the

costs of the two complete paths.

Theorem 3.5. A partial path p dominates a partial path p' if By C B, and C, + D, -
(n—My) < Cp+ Dy - (n— My).

Proof. Consider again two partial paths p and p’ and the best complete paths p & p and
p' @ p’ which extend them. According to the hypotheses:

C,+D, - (n—My)<Cy+Dy-(n—My)
In the previous proof it can be seen that n — M, <n — M,,, which implies:
Co+D, (n—M,) <Cy+Dy-(n—My)
As C5 < Oy, we can write:
Cp+ Dy~ (n—My) +Cp < Cp + Dy - (n— My) + Cy

As the two sides of this inequality correspond to Z,q; and Z, 45 according to Equation

(3.35), it can be concluded that path p dominates path p'. ]

Theorem 3.6 below can be deduced from the proof of Theorem 3.5. It has the same
statement, except that M, is replaced by M, in the left-hand side of the inequality. This

theorem dominates the two previous ones.

Theorem 3.6. A partial path p dominates a partial path p’ if By C B, and C, + D, -
(n—M,) <Cy+ Dy (n— My).

It can be verified that if Theorem 3.4 holds, Theorems 3.5 and 3.6 too. And, if Theorem
3.5 holds, from the previous proofs n — M, < n — M, is satisfied, which implies that
C,+D,-(n—M,) <C,+ D, (n— My). Then, from the statements of Theorem 3.6
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C,+D,-(n—M,) <C,+D,-(n—My) <Cy+ Dy-(n— M,y), which implies that if
Theorem 3.5 holds, Theorem 3.6 too.

The last dominance rule, specified by Theorem 3.7, improves and generalizes the previous
ones by including a lower bound on the cost to visit the sites visited by path p but not by
path p/, i.e., the sites in B, \ B.

Theorem 3.7. A partial path p dominates a partial path p' if By C B, and C,+D,-(n—
M,) < Cp’+Dp"(”_Mp/)+wmin'(Mp_Mp’)'(”_Mp)+%'wmin'(Mp_Mp’)'(Mp_Mp’+1)-

Proof. Like for Theorem 3.4, p & p and p’ @ p’ are the best complete paths that extend
p and p/, with their costs defined by Equation (3.35):

Zpap = Cp+ Cp+ Dy - (n — M)
and
Zyep = Cy + Cp + Dy - (n— My)

As M,y < M, path p’ has to visit M, — M,y more sites than p and:

1
Cy > Cy+ 3 Winin + (My — My) - (My — My + 1) 4+ Wi - (M, — Myy) - (n — M)

where % - Wi - (M, — M) - (M, — My + 1) is a lower bound for the cost of visiting the
M, — M, additional sites, and Wy, - (M, — M) - (n — M,) is a lower bound for the sum of

arrival time shifts at the last (n— M,,) sites of p’, due to the travel times to the first M,, — M,

sites visited by this path.

According to the hypotheses:

Cp"‘DP'(”_Mp) < Cp+ Dy - (n_Mp’) +wmm'(Mp_Mp’) : (”_Mp)

1
g+ Wnin - (My = My) - (My = My + 1)

If Cp is added to both sides, the following inequality is obtained:

Cp"‘Dp'(”_Mp)+cﬁScp’+Dp"(n_Mp/)+

1
Cp + Wi, - (Mp - Mp’) - (n — Mp) + 9 Wmin (Mp - Mp’) ’ (Mp - My + 1)
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As shown before, the second line is not greater than Cp. So:

Co+D, - (n—M,)+C; <Cpy+Cy+Dy-(n—My)
which means that Z,s; < Z,45 and p dominates p'. O

Note that when wy,;, = 0, Theorem 3.7 reduces to Theorem 3.6 and, when B, = B,
Theorems 3.5, 3.6 and 3.7 give the same result. Since the last dominance rule dominates the

others, it is the only one actually used in Algorithm 3.1.

3.5.3 Initial Solutions

Two constructive heuristics are executed at the beginning of the algorithm. The best

solution obtained is used to initialize p*.

First heuristic. Starting with an empty path p, the first heuristic sweeps the trip-nodes
in topological order (non-decreasing mean duration) and adds the incumbent trip-node k at
the end of p if its required sites are not already visited by the path (B, N By = @). The

heuristic ends when path p is complete (all required sites are covered).

Second heuristic. According to the system of equations (3.44) and the first lower bound,
the expression C, + Cy, + D, - My + (Dy, + D,) - (n — M}, — M,)) gives a lower bound for the
cost of a shortest path beginning with the path p & k. Starting again from an empty path,
the second heuristic adds at each iteration the feasible trip-node k& with the smallest lower

bound value.

3.6 Computational Experiments

Computational experiments have been conducted to evaluate and compare the
performances of the two mathematical models and the shortest path approach. The
instances used are presented in Subsection 3.6.1. Subsection 3.6.2 discusses the impact
of the dominance rules of Theorem 3.1 and Theorem 3.2 on the auxiliary network generation
phase. In Subsection 3.6.3, the two mathematical problems are solved using a MILP solver
(CPLEX) and compared with the shortest path algorithm on instances with n = 20 required

sites. The exact approach is tested on larger instances with up to n = 40 in Subsection 3.6.4.
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3.6.1 Implementation and Instances

The shortest path algorithm is coded in Microsoft Visual Studio C++ 2010 Professional
while the mathematical models are solved using IBM ILOG CPLEX Optimization Studio
version 12.5. The tests are run on an Intel Core i5 PC at 2.50 GHz with 4 GB of RAM and

Windows 7 Professional.

The 14 classical CVRP instances from Christofides et al. (1979) (CMT instances) are
taken as a basis. These benchmark problems with 50 to 199 customers include 7 instances
with service times (instances 6 to 10, plus 13 and 14). Instances 6 to 10 with 50, 75, 100,
150 and 199 customers are selected to derive 138 mt-CCSVRP instances, partitioned in four
groups containing n = 20, 25, 30 and 40 sites, respectively. To build a set of instances with
n sites, each CMT instance is taken as basis, a single vehicle is considered, and different

values of L,,,, are chosen. The depot and a subset of n required sites is kept.

The values for L,,,, are multiples of 10, between a minimum feasible value (which depends
on the CMT instance) and 120. The nodes selected are the depot and the n first required
sites ¢ which can be reached by the vehicle, i.e., the ones satisfying 2 - wy; < L. Note
that the selected nodes are not necessarily consecutive in the original CMT instance. The
coordinates of these sites, their demands and service times, and the vehicle capacity are the
same as in the original CMT file. The traveling time w;; on each edge (i, j) is equal to the

Euclidean distance, computed as a double-precision real number.

Finally, the loading time for each trip k£ in the auxiliary network is computed as
e =p - Z s;, where s; is the service time at site ¢ and 5 = 0.2.
ick
Instances 13 and 14 (100 and 120 customers) are discarded. Contrary to the other CMT
instances, their clustered nodes induce a huge number of trips. For example, instance 13
with L., = 70 and a selection of n = 20 required sites has already more than 20 millions

feasible trips and the auxiliary network requires more than 24 hours to be generated.

3.6.2 Impact of Dominance Rules on Auxiliary Network
Construction
As explained in Section 3.4, Theorem 3.2 can be applied to delete dominated trips as

soon as they are generated, thus avoiding useless attempts to extend them, while Theorem

3.1 is used only at the end, once all extensions have been done. Two strategies are compared
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to evaluate the impact of these rules. Strategy 1 consists in using Theorem 3.1 only, while
Strategy 2 applies both theorems. The two strategies end by sorting the resulting set K of
non-dominated trips in non-decreasing order of mean trip duration, following Theorem 3.3,
and building the arc-set E’. Experiments are conducted on 20 instances with n = 20 sites

and four L,,q, values: the minimum feasible multiple of 10, plus 70, 100 and 120.

Table 3.1 summarizes the results. The two first columns indicate the original CMT
instance and the vehicle range L., which defines the instance data. Column |K| reports
the number of non-dominated trips obtained at the end. This number, identical for both
strategies, is the number of trip-nodes in the auxiliary graph G’ for the shortest path
algorithm. Column M,,,, mentions the maximum number of required sites per trip, to
see the impact of the parameter L,,,, and have an idea of the size of the solution space. The
last four columns provide for each strategy the number of generated trips (columns |K|)

and the total time in seconds to build the auxiliary graph (columns Time,).

The table shows that Strategy 1 (Theorem 3.1 alone) leads to a strong reduction between
the | K| trips generated and the final || non-dominated trips. This reduction ranges from
57% (for CMTyg) to 95% (for CMTqy), with an average of 77%. Clearly, this reduction gets
stronger as L,,,, increases but, in parallel, the running time, the number of generated trips
and the number of non-dominated trips grow very quickly. The maximum number of sites

per trip (M,,q.) is roughly proportional to Lz

The application of Theorem 3.2 in the second strategy brings additional savings.
Compared with Strategy 1, the number of generated trips |K,| is reduced by up to 64%
(for CMTg9) and by 27% on average. A decrease in running time of up to 81% (CMTg
again) and 74% on average can also be observed: the extra time spent in applying Theorem

3.2 is compensated by a much smaller number of trip extensions.

Among the instances derived from CMT(g, the number of non-dominated trip-nodes | K|
is larger for L,,,, = 40 than for L,,,, = 70. This result is not abnormal since the n sites
1 extracted, which are the first to satisfy 2 - wo; < L.z, are not necessarily the same for

different L,,,, values.

3.6.3 Comparing the Mathematical Models and the Exact Method

Table 3.2 compares the two mathematical models and the resource-constrained shortest

path algorithm, reusing the 20 instances with n = 20 of the previous section. The three first
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Table 3.1: Impact of dominance rules on auxiliary network generation for instances with

n = 20 sites.

Instance L. K| M, Strategy 1. Strategy'Q
|K,|  Time, |K,| Time,
CMTog 50 160 4 374 0.00 371 0.00
CMTog 70 504 1568 0.00 1473 0.00
CMTg 100 9023 67 746 6.41 43011 4.84
CMTg 120 45599 10 736122 1284.73 301130 285.83
CMTy 40 173 4 24 000 422 0.00
CMTy, 70 596 6 1956 0.01 1774 0.02
CMTy, 100 9071 8 71704 8.21 42929 5.03
CMTyy, 120 38047 8 621252 1129.94 246662 230.99
CMTe 40 263 5 726 000 698  0.00
CMTos 70 192 5t 472 0.00 461 0.00
CMTos 100 3321 8 16778 0.32 12743 0.21
CMTg 120 17720 9 158 492 43.43 87016  20.90
CMTg 30 209 5 524 000 510 0.00
CMTog 70 636 6 2408 0.01 2134 0.01
CMTgg 100 10782 9 97 362 13.32 54 665 6.94
CMTyg 120 56866 11 1030402 2199.37 369435 416.75
CMTy 30 199 6 568 000 529 0.00
CMTy 70 587 2192 0.01 1933 0.01
CMTyy 100 9220 72940 7.67 43143 4.76
CMTqq 120 51047 11 774642 1360.43 307339 309.06

columns recall the CMT instance of origin, the range L,,,, and the number of non-dominated

trip-nodes |K|. For the exact method are reported the optimal solution value Z,- and the

total running time in seconds (including the network construction using Strategy 2). For

each mathematical model are given the time in seconds to find an optimal solution (limited

to two hours), the percentage gap between the best integer solution found and the best lower

bound reported by CPLEX (Gap,.) and the percentage gap between the best integer solution

found and the optimal solution (Gap). Null gaps are highlighted in boldface while dashes

indicate memory overflows in CPLEX.

The results show that the shortest path approach is much more efficient than a direct
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Table 3.2: Results of the mt-CCSVRP solution approaches on small instances with n = 20

sites.
Shortest Path Flow-based model Set partitioning model
Instance Lyuaz | K| - - -
Zy Time Time Gap. Gap Time Gap. Gap

CMTes 50 160 5474.61 0.2 720000 586 0.00 2092.72 0.00 0.00
CMTes 70 504 5529.37 012 720000 891 0.00 7200.00 74.44  0.00
CMTes 100 9023 5037.30 7.76 720000 852 0.81 - - -
CMTes 120 45599 4942.38 305.42 720000 6.43 1.09 - - -
CMTo; 40 173 456243 003 720000 2.36 0.00 2683.07 0.00 0.00
CMTyr 70 596 5536.46  0.03 720000 10.63 0.51 7200.00 75.19 3.76
CMTy: 100 9071 5065.22 874 720000 7.56 0.36 -
CMTy; 120 38047 5031.30 252.98  7200.00 6.90 0.48 - - -
COMTgs 40 263 461632 0.0 7200.00 800 0.00 720000 27.13 151
CMTes 70 192 7141.29 0.0 7200.00 10.07 0.00 2650.01 0.00  0.00
CMTes 100 3321 5272.93  1.07 720000 853 0.56 -
CMTes 120 17720 5143.83 2507 720000 543 0.00 - - -
CMTgy 30 209 411295 0.6 7200.00 6.37 0.08 661231 0.00 0.00
CMTe 70 636 557145 0.6 720000 9.68 0.87 7200.00 64.54 5.7
CMTeo 100 10782 4958.99 11.43 720000 7.69 1.36 - - -
CMTe 120 56866 4821.66 441.59  7200.00 3.66 0.00 - - -
CMT; 30 199 395331 003 720000 1.8 0.00 234146 0.00 0.0
CMTy 70 587 5627.16  0.03 720000 7.73 0.00 7200.00 65.33 6.15
CMTy 100 9220 503516 860 720000 875 1.45 - - -

CMTyy 120 51047 4926.24 334.80  7200.00 6.40 0.85 - - -

resolution of the two mixed integer linear programs: it solves all instances to optimality in
69 seconds on average and in 441 seconds (7.4 minutes) in the worst case. Nevertheless, the
number of trip-nodes in the auxiliary network and the total running time grow quickly with
Lpaz. A comparison with the previous table reveals that the fraction of time devoted to
the auxiliary network construction increases in parallel, reaching 92.3% for the last instance
(309.06 seconds out of 334.80).

Although the instances considered are small (20 required sites), the flow-based model
retrieves only nine of the optima found by the shortest path algorithm and CPLEX has

no proof of optimality since its branch-and-cut is always interrupted after two hours. The
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CPLEX gaps (Gap,) varies between 1 and 10% but is not sensitive to the parameter L.

The set partitioning formulation behaves differently due to the large number of columns:
|K'| binary variables are used to select the trips, plus O(]K|?) to enforce the dominance
relation for the order of these trips in the multitrip. The five smaller instances with at most
209 trip-nodes are solved to optimality. The time limit is reached and poor integer solutions
are returned for 5 other instances with up to 636 trip-nodes. The 10 remaining instances

from 3321 trip-nodes onwards raise an “out of memory” error.

Contrary to the other instances, on the instances derived from CMTg, the set partitioning
formulation obtains an optimal solution when L,,,, = 70 but not for L,,,, = 40. These
results can be explained by the number of non-dominated trip-nodes, which is larger in the

instance with L,,,, = 40.

3.6.4 Test of the Shortest Path Algorithm on Larger Instances

The previous subsections have shown that the shortest path approach is fast enough for
n = 20 (one minute on average) to solve larger instances. Tables 3.3, 3.4 and 3.5 respectively
gather the results for 25, 30 and 40 required sites. Most column headers have been already
defined. The number of trips generated |K,| and the final number of non-dominated trips
| K| come again from Strategy 2. The time to generate the auxiliary network (Time,) is now
distinguished from the time to determine the shortest path (Time,), and it is provided the
percentage gap between the initial solution and the optimum (Gapy). Concerning vehicle
range L,q., all multiples of 10 between the minimum feasible value and 120 are considered
for n € {25,30}. For n = 40, L., has been limited to 100 otherwise the network is too large.

The results in Tables 3.3, 3.4 and 3.5 confirm the impact of the dominance rule of
Theorem 3.1. If |K,| and |K| are compared, the number of trip-nodes in the auxiliary
network is reduced by 59% to 82% for instances with n = 25 sites, 60% to 85% for n = 30,
and 66% to 82% for n = 40. These percentages are not significantly affected by the number
of sites but tend to increase with L,,.,. For most instances, a greater value of |K/| or |K|
implies a greater value of the maximum number of sites per trip M,,.., but the latter can

stagnate because of capacity constraints, see for example instance CMTy; in Table 3.4.

The two heuristics used at the beginning yield very good solutions on average, since Gapg
varies between 0% and 12.7%, with an average value of 4.31%. Nevertheless, a better initial

solution does not always imply a faster resolution. Consider in Table 3.5 instance CMT 7
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Table 3.3: Results of the shortest path approach for the mt-CCSVRP for instances with

n = 25 sites.

Instance Liq | K] K| Mo Time, Gapoy Zyy Time,
CMTg 50 1863 657 6 0.01 3.87 7791.63 14.20
CMTyg 60 932 377 5 0.00 0.12  9000.46 3.77
CMT 70 2170 766 6 0.01 593 8521.20 2.57
CMT g 80 8220 2502 7 0.08 226 7869.37 1.71
CMTgg 90 29318 7796 8 0.87 0.00 7753.51 12.21
CMT 100 97792 22301 8 2.49  0.50 7678.77 74.65
CMTs 110 311092 62545 9 212.27  0.78  7617.17 348.08

CMTo 120 930583 162971 10 2041.07 090 757853 145552
77777777777777777777777777777 6 000 470 687475 145

6 000 447 760616  5.10

6 001 58 837139  23.01

6 003 704 892086  39.09

CMTo; 80 6264 1886 6 005 430 875041  31.00
T 043 583 814482 1227
CMT,; 100 59519 13661 8 378 216 793653  26.76
CMT,; 110 162762 32566 8  50.68 277 7909.23 11444

9

CMTyr 120 410258 72477 409.20  2.55 7909.23  467.83

CMTg 40 924 355 5 0.00 3.55 7367.81 4.21
CMTgg 50 3500 1020 7 0.02 3.46 7461.80 15.16
CMTgg 60 2477 784 6 0.01 11.43 8481.42 18.32
CMTs 70 997 380 0.00 898 10507.82 16.16

5
CMTg 80 2125 729 6 0.01 4.56 9042.59 0.28
CMTs 90 6905 2120 6 0.06 3.48 8565.82 0.90
CMTg 100 21058 5656 8 048 1.19 8287.96 3.25
CMTg 110 60715 14389 9 3.84 225 8087.34 14.81
CMTgg 120 169345 35786 9 51.37  1.42 804347 80.84

CMTgy 30 821 334 5 0.00 2.59 6141.02 1.32
CMTg 40 1026 385 6 0.00 0.22 6837.04 1.32
CMTgy 50 2443 808 6 0.01 6.96 7308.46 5.09
CMTyy 60 1811 643 6 0.01 12.70  8424.55 7.87
CMTyy 70 2777 863 6 0.01 6.40 8968.68 29.95
CMTyy 80 9879 2752 7 0.10 4.45 7896.67 3.79
CMTgy 90 34108 8378 8 1.04 445 7725.48 15.43
CMTgy 100 113569 24960 9 15.04 3.51  7498.90 53.18

CMTgy 110 362612 73286 10 234.05 145 7357.69  297.57
CMTgy 120 1115535 206372 11 2323.26 0.00 7340.54 1663.67

CMTyo 80 7141 2022
CMTo 90 22535 5630
CMTo 100 67993 15123
CMTg 110 195408 38449
CMTg 120 540922 95872

0.06 876 8721.17 22.07
0.49 2.08 8031.10 6.88
4.52 247  7877.49 27.63
7740.00  109.58
7667.16  482.87

CMTg 30 1279 458 6 0.00 0.00 5890.93 0.67
CMTg 40 474 191 5 0.00 1.52 7573.60 0.28
CMTqg 50 992 360 5 0.00 3.84 8624.68 14.68
CMTqo 60 2382 802 6 0.01 7.94 8423.82 19.88
CMTqo 70 4494 1316 7 0.03 4.87 8846.70 52.17

7

8

9

=
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Table 3.4: Results of the shortest path approach for the mt-CCSVRP for instances with

n = 30 sites.

Instance L,u0 | K| K| Moz Time, Gapy Z e Time,
CMTyq 60 2660 930 7 0.00 10.29 11972.47 0.22
CMToq 70 4188 1454 6 0.02 299 11884.52 0.28
CMTog 80 18205 5392 8 047 6.03 11137.31 3.70
CM Ty 90 74422 19478 9 1045 418 1070101 41.36
CMTe 100 282931 64931 10 92076 3.25 10428.35  375.68
CMTy 110 1019319 207685 10  2951.20 2.53 10376.84 3232.78
CMTys 120 3356052 1310047 11  30959.25 2.51 10422.68 80226.02
CMT,, 50 4875 1531 7 0.03 317 1004172 0.32
CMTys 60 5687 1753 7 0.05 3.86 11357.59 0.53
CMTor 70 10454 3006 7 0.14 561 11625.83 0.97
CMTy; 80 40196 9965 8 211  7.06 11293.42 10.37
CMTy; 90 149514 31797 8 53.32  3.57 10832.63 80.63
CMTy;, 100 485501 88918 9 753.47 3.61 1073875  595.76
CMTy;, 110 1376717 216623 9 650547 191 10697.95 3439.42
CMTy; 120 3325977 476430 9 3834350 1.66 10697.95 15774.61
CMTy 40 2225 837 6 0.01 504 984119 0.12
CMTog 50 4583 1408 7 0.03  4.80 10540.81 0.26
CMTos 60 3117 1002 6 0.02 1241 12805.36 0.98
CMTos 70 5228 1555 7 0.04 421 13053.24 0.45
CMTog 80 16642 4396 8 043  6.41 11745.29 1.97
CMTog 90 57085 13434 9 6.25 155 11262.15 15.41
CMTys 100 194220 41537 9 120.87 243 10936.76  138.49
CMTes 110 619710 117912 10 121940 3.68 10761.69  992.23
CMTes 120 1915491 328233 11  12512.69 2.03 10549.61 5973.68
CMTe 40 3335 1077« 6 0.02 306 951848 021
CM Ty, 50 3556 1177 6 0.02  1.67 10309.85 0.22
CM Ty, 60 4561 1466 6 0.03 11.94 11695.71 0.33
CM Ty, 70 4639 1503 6 0.03 8.87 12523.25 0.38
CM Ty, 80 19261 5512 7 045 751 11362.75 4.09
CM Ty, 90 77839 19836 9 838 558 10709.45 39.11
CMTy 100 298288 67979 10 183.63 1.88 10546.39  386.07
CMTy 110 1084926 226277 11 250697 3.36 1039625 3511.24
CMTy 120 3812339 732867 12 3325576 3.57 10239.78 26629.38
CMTy,, 40 1328 459 6 0.00 220 9863.88 0.05
CMT, 50 1753 634 6 0.00 4.05 11715.45 0.65
CMT, 60 6038 1855 7 0.05 3.22 10914.47 0.43
CMT, 70 15136 4105 7 0.32  8.39 11260.09 1.94
CMTy, 80 40665 10197 9 215  3.07 11206.42 8.09
CMTy, 90 160153 35250 10 56.59  5.85 10662.64 87.47
CMT,, 100 583174 112859 11 930.87 3.51 10463.74  734.42
CMT,, 110 1981764 336220 12 10573.35 2.4 10301.81 5338.83
CMT,, 120 6307617 944922 12 105836.07 2.11 10269.46 36075.79
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Table 3.5: Results of the shortest path approach for the mt-CCSVRP for instances with

n = 40 sites.

Instance La | K| |K| M Time, Gapog Z e Time,
CMTyg 70 14274 4397 7 0.28 3.50 20867.69 2.94
CMTyg 80 67730 18032 9 791 5.84 19361.03 49.16

CMTog 90 318535 76182 10 288.26  3.50 18835.61 720.29
CMTog 100 1435280 306674 11 7568.10 4.15 18203.66 9493.35

CMTy; 50 29750 7435 7 165 895 1751644 6.51
CMTy; 60 37199 9568 7 1.88 504 18703.93  14.47
CMTy; 70 44396 11204 8 230 8.00 19762.98  27.88
CMT,; 80 181916 41388 8 8344 480 1886602  246.15
CMTy; 90 755087 149248 9 195473 249 18398.30 3258.86
CMTy; 100 2719984 475916 O 26683.87 2.64 18223.80 39534.99
CMTes 50 7176 2385 T 0.06 312 18399.02 104
CMTes 60 22509 580 8 0.63 835 20897.66 7.25
CMTes 70 11287 3199 7 0.18 546 22532.44 2.31
CMTes 80 52230 13564 8 3.80 222 2044341  22.80
CMTes 90 181591 41935 9 9108 473 1991311  199.83

CMT s 100 722857 152764 10 192796 5.27 19231.59 2662.42

CMTqg 40 12293 3705 7 0.22 718 16130.70 26.82
CMTyy 20 37699 9437 9 2.38 4.16 16569.72 13.60
CMTyy 60 28283 7914 8 091 547 18280.33 9.36
CMTgg 70 22859 6329 7 0.73 5.77 21818.16 5.15
CMTgg 80 98199 24222 9 20.65 7.32 19149.11 69.57

CMTqg 90 441127 97765 10 621.76  6.82 18574.58 903.67
CMTgy 100 1926620 386437 11 15106.90 6.60 18142.65 14513.45

CMTyg 40 6882 2058 7 0.07 3.14 16073.16 1.35
CMTyo 50 13216 3763 7 0.30 2.89 18061.52 33.07
CMTyg 60 17778 5282 8 0.34 6.27 18369.49 4.36
CMTyg 70 35263 9490 8 1.52  3.34 19551.22 14.08

CMTyg 80 171076 40270 10 54.32  6.18 18595.38 185.93
CMTo 90 835757 177535 11 1870.86 3.77 18120.34 3146.68
CMTyo 100 3870005 746480 11 34203.30 2.32 17719.54 45118.58

with Lyee = 90, and CMTog with L, = 100. They have comparable networks (149 248 and
152764 non-dominated trips). However, the first one which has a better initial gap (2.49%
vs. 5.27%) takes longer to be solved (3258 seconds vs. 2662 seconds).

The time to generate the auxiliary network and compute the shortest path increases

quickly with n and L,,.,. For instances with the largest L,,,, values, constructing the
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network can be more time-consuming than determinating the min-cost path, like for CMTy
with L,,,. = 120 in Table 3.4. Figures 3.3 and 3.4 illustrate the number of non-dominated
trip-nodes (|K|) for the different values considered for n and L,,.,. Figure 3.3 uses a linear

scale for the Y-axis while Figure 3.4 uses a logarithmic one.

Similarly, Figures 3.5 and 3.6 illustrate the total running time (Time, + Time,) for the
different values considered for n and L,,,, with linear and logarithmic scale respectively. In
the logarithmic plots, the curves are almost linear when L,,,, is large enough, indicating an

exponential growth.

3.7 Concluding Remarks

This chapter has presented a new version of the CCVRP, in which only one vehicle
is available and the range of the vehicle represents a very restrictive constraint. This
combinatorial optimization problem constitutes a good way to model the delivery of relief
supplies after a humanitarian disaster, since the objective function takes into account the

urgency of the situation.
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Figure 3.3: Impact of n and L,,,, on |K| for the mt-CCSVRP (linear scale).
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Figure 3.4: Impact of n and L4, on | K| for the mt-CCSVRP (logarithmic scale).
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Figure 3.5: Impact of n and L,,,, on the total running time for the mt-CCSVRP

(linear scale).
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Figure 3.6: Impact of n and L,,,, on the total running time for the mt-CCSVRP

(logarithmic scale).

Two mathematical models have been formulated to solve the mt-CCSVRP. Both are
compared with an exact approach based on a reformulation of the mt-CCSVRP as a
resource-constrained shortest path problem in an ad hoc auxiliary graph. While a commercial
MIP software solves only a minority of instances for 20 required sites, the proposed shortest
path model can tackle instances with up to 40 required sites, thanks to good initial solutions,
dominance rules and lower bounds which accelerate the solution procedure. Like many
dynamic programming approaches, the proposed exact method reaches its limits for large

values of the range L., which lead to huge state-graphs.

Although a realistic intervention requires several vehicles, our single-vehicle version can
be useful in a solution method where the territory concerned is divided into elementary

zones, each zone being assigned to one vehicle.

Conferences and Publications

Preliminary results of the exact procedure developed in this chapter were presented in
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Chapter 4

The Multitrip Cumulative Capacitated
Vehicle Routing Problem: Mathematical

Formulations and Solution Algorithms

4.1 Introduction

In this chapter the problem presented in the previous chapter is generalized by allowing
a fleet of several identical vehicles. As in the previous chapter, the objective function is
the sum of arrival times and multiple trips are allowed. In the sequel, this problem will be

referred as the multitrip cumulative capacitated vehicle routing problem (mt-CCVRP).

Three metaheuristic strategies are proposed. The components of these metaheuristics
must be tailored for the multiple trips and the cumulative objective function. The considered
strategies are Multistart Iterated Local Search (MS-ILS), Memetic Algorithm with
Population Management (MA|PM) and Multistart Evolutionary Local Search (MS-ELS).
All of them make use of a Variable Neighborhood Descent (VND) metaheuristic to improve
solution. In MA|PM and MS-ELS, an adapted splitting procedure with two levels is
proposed, which takes a sequence of required sites, splits it optimally into a set of multitrips

and deduces an optimal set of ordered trips from each multitrip.

The mathematical formulation presented for the mt-CCVRP is an extension of the
best mathematical model among the four proposed formulations and the model proposed
by Ngueveu et al. (2010) for the CCVRP. The five formulations are mixed integer linear

programs and they are compared by using small instances with a commercial solver.
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The mt-CCVRP generalizes the CCVRP introduced by Ngueveu et al. (2010) to multiple
trips. In most studies, a fundamental assumption is that each vehicle performs a single trip.
Clearly, in many cases this assumption does not hold. In the last decades, some publications
have studied the case where vehicles are allowed to make multiple trips. The multitrip
extension of the classical CVRP is known as the multitrip vehicle routing problem (mt-VRP)
and was first studied by Fleischmann (1990).

Taillard et al. (1996) design a hybrid algorithm for the mt-VRP by combining tabu
search, a population-based approach and a bin-packing heuristic. A penalty is incurred
when a trip exceeds a given time limit. Brandao & Mercer (1997) present an approach for a
real life problem with multiple trips, time windows, unloading times and access restrictions
at customers, and a maximum length for each trip. The same authors (Brandao & Mercer,

1998) compare a tabu search metaheuristic with the algorithm presented in Taillard et al.
(1996).

Petch & Salhi (2004) design an algorithm combining the approaches proposed by Brandao
& Mercer (1998) and by Taillard et al. (1996) and evaluate the savings induced by multiples
trips. Olivera & Viera (2007) describe an adaptive memory procedure while Salhi & Petch
(2007) develop a genetic algorithm. Gribkovskaia et al. (2006) present a real application of
the mt-VRP. Prins (2002) investigate the mt-VRP with heterogeneous vehicles and propose

constructive heuristics and a tabu search.

A hybrid memetic algorithm in which a splitting procedure is developed is proposed by
Cattaruzza et al. (2014).

To the best of our knowledge, no published article considers the multi-trip cumulative
capacitated vehicle routing problem. The special objective already complicates the moves
in local search procedures for the cumulative CVRP, although each vehicle is limited to one
trip in this problem (Ngueveu et al., 2010). For instance, the cost of a sequence of customers
changes when it is inverted by a 2-opt move, contrary to the classical CVRP. As we shall
see, the calculations are even more complicated if multiple trips are allowed, since the cost

of a multi-trip depends on the order of its trips.

The chapter is structured as follows: In Section 4.2 the problem is formally defined and
modelled as a mixed linear program. A metaheuristic approach derived from iterated local

search is developed in Section 4.3. The splitting procedure is described in Section 4.4, and
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called by the memetic algorithm of Section 4.5 and the evolutionary local search-based
metaheuristic of Section 4.6. Computational results are presented in Section 4.7 while

concluding remarks are given in Section 4.8.

4.2 Problem Definition and Mixed Integer Linear Models

Compared to the CVRP, the mt-CCVRP uses the sum of arrival times at required nodes
as objective function, like in the cumulative CVRP, but it allows more than one trip per
vehicle. This flexibility is necessary when the total demand exceeds the total capacity of the
fleet of vehicles. Moreover, while the fleet size is often a decision variable in CVRP, it must
be fixed for the CCVRP and the mt-CCVRP, otherwise the least-cost solution consists in
doing a direct trip for each required node, as noted by Ngueveu et al. (2010).

In the context of humanitarian logistics, the mt-CCVRP models the distribution of relief
supplies to a set of sites affected by a disaster, using for instance helicopters which can do
multiple sorties. A planning horizon limited to one day is considered, without time windows
on affected sites nor maximum working times for vehicles. Indeed, time windows are in
general imposed by customers in commercial logistics, while maximum working times result
from regulations about driving time. After a disaster the victims are waiting for rescue and

successive crews can be used to use each vehicle full time.

The problem can be defined on an undirected complete graph G = (V, E'). The node-set
V ={0,...,n} includes a depot-node 0 and a subset V' = V' \ {0} of n affected sites, also
called demand nodes or required sites. In the sequel, it is assumed that G is encoded as
a symmetric directed graph, with travel times w;; = wj; for each arc (7,j) in E. A fleet
of R identical vehicles of capacity @ is based at the depot and each node i € V'’ has a

known demand ¢;. Tt is assumed without loss of generality that Z ¢ > R-Q,n> R, and
eV

The objective is to identify a set of trips such that each site is visited exactly once and
the sum of arrival times at sites is minimized. The most important factor in the emergency
relief operations is the arrival time at sites and not the total distance traveled by vehicles.
A trip is defined as a circuit, starting and ending at the depot, in which the total demand
serviced does not exceed the vehicle capacity ). Every trip must be assigned to exactly one
vehicle and, if it is necessary, vehicles can perform more than one trip. Moreover, the trips

assigned to each vehicle must be ordered because this affects the objective function. As it is
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defined in Chapter 3 for one vehicle, the set of successive trips performed by one vehicle is

called a multitrip.

In the following subsections, mathematical models are described. In Subsection 4.2.1
five mixed integer linear formulations for the CCVRP are presented. A comparison of these
models allows to compare different approaches to formulate cumulative routing problems.
In Subsection 4.2.2 the mt-CCVRP is modeled as an mixed integer linear program which
extends the best model of Subsection 4.2.1.

4.2.1 Mathematical Formulations for the Cumulative Capacitated

Vehicle Routing Problem

In this subsection, five mathematical formulations for the CCVRP are described. The
aim of this presentation is to compare different decision variables and modeling approaches,
to choose the best way to model the CCVRP and extend it in the next subsection to the

multitrip case.

CCVRP mathematical model 1

The first model, referred as CCVRP1 in the sequel, is presented by Ngueveu et al. (2010),

and it is the only one found in the literature review. This model is based on two sets of

fj is a binary variable equal to 1 if vehicle k traverses edge (i,7) from
k

¢ to j, and ¢; is the arrival time at site 7. Originally the model uses ¢7, the arrival time of

decision variables: x

vehicle k at site ¢, but index k is not necessary. This model is defined by Equations (4.1) to
(4.9).

The objective function (4.1) models the sum of arrival times at sites. Equations (4.2)
express that a vehicle arriving at site ¢ must leave it. Equations (4.3) specify that every
site must be served by exactly one vehicle. The capacity constraints are given by Equations
(4.4), where the sum of demands of the nodes serviced by a vehicle cannot exceed the vehicle
capacity ). Equations (4.5) and (4.6) ensure that the depot is at the beginning and at the
end of each route, respectively. Arrival times are defined via Equations (4.7): the arrival
time at site j must be greater than arrival time at site ¢ plus the travel time between the
two sites if arc (7,j) is traversed by vehicle k. These equations are also useful to prevent
sub-tours. Finally, Equations (4.8) and (4.9) define the domain of the decision variables.
The parameter M has a big enough value satisfying M > tF + w;;.
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> oak =) ak VjeV' ke{l,. R} (4.2)

eV eV
R
MY ak=1, VieV (4.3)
k=1 jev
YN ala<Q, Vke{l,. ., R} (4.4)
eV’ jev
> af =1, Vke{l, . R} (4.5)
jev!
> ak =1, Vke{l,., R} (4.6)
eV’
ti+wy — (L—afy) - M <, Vi, jeV', ke{l,.. R} (4.7)
ti 2 Wo;, Vie V/ (48)
i, € {0,1}, Vi, jeV,i#j, ke{l, .. R} (4.9)

When the triangle inequality is satisfied, the arrival time at site ¢, given by the variable
t;, can be constrained to be greater than its distance to the depot, as shown in Equations
(4.8).

CCVRP mathematical model 2

This second model, referred as CCVRP2 in the sequel, is a flow-based formulation. The
k
57
The set of decision variables F;; measures the load on arc (7, j) and allows to limit the vehicle
load. CCVRP2 model is defined by Equations (4.10) to (4.19).

index £ is removed from variable z7;, but it is noted z;; as in previous model for simplicity.

The objective function (4.10) uses the same Equation (4.1) as in the model CCVRP1.
Equations (4.11) limit the number of available vehicles to R. The Equations (4.12) and
(4.13) specify that only one arc can arrive at each site and leave it. The Constraints (4.14)
indicate that the load is reduced at every site by a quantity equal to the site demand. The
capacity constraints are given by Equations (4.15): the load on every arc can exceed the
vehicle capacity ) and the load on no traversed arcs is zero. Arrival times are handled

by Equations (4.16) like in the model CCVRP1. These equations also prevent sub-tours in
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this model. Finally, Equations (4.17), (4.18) and (4.19) define the domain of the decision

variables.
min Z=» t (4.10)

Z To; = R, (411)

jev!
D ay=1, VjeV (4.12)
eV
D ay =1, VieV’ (4.13)
jev
Y Fi— > Fj=a, VieV (4.14)
% jev!
Fz’j < Q * Tij, Vie V, j S Vv’ (415)
t2+w”—(1—$”)M§t], VZ, ] S V, (416)
ti 2 woi, VieV’ (4.17)
Fi; >0, VieV, jeV, i#] (4.18)

CCVRP mathematical model 3

The third model, referred as CCVRP3 in the sequel, considers the set of decision variables
y;; to compute the objective function instead of variables ¢;. The variable y;; expresses the
arc coefficient of the arc (7, 7), which means that the traversal time w;; is summed y;; times
in the objective function. The concept of arc coefficient, introduced by Ngueveu et al. (2010),
is detailed in Subsection 3.2.1. The proposed model is defined by Equations (4.20) to (4.30).

The objective function (4.20) expresses the sum of arrival times at sites. This equation
adapts Equation (3.3) from the Flow-Based model for the mt-CCSVRP in Subsection 3.2.1.
Equation (4.20) differs from Equation (3.3) because the CCVRP3 model has null service

times (s; = 0) and does not consider multiple trips neither loading times.

Equations (4.21) to (4.25) correspond to Equations (4.11) to (4.15) in the model
CCVRP2. Equations (4.26) limit the maximal arc coefficient values. As demonstrated
by Ngueveu et al. (2010), when n > R, all available vehicles are used in optimal solutions,

which means that at least one site is visited by each vehicle. Then, the maximum number
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of sites visited by a vehicle is n — R + 1.

Constraints (4.27) indicate that arc coefficients are decremented 1 at each visited site.
Finally, Equations (4.28), (4.29) and (4.30) define the domain of the decision variables.

i€V jev

Z Toj = R, (421)

jev!
Doy =1, vjiev (4.22)
eV
> ay =1, VieV (4.23)
JEV
Jjev JEV!
Fy <Q - wij, VieV, jeV (4.25)
Yij < (n—R+1) -y, VieV, jeV (4.26)
Z (W5i — yij) = 1, VieV' (4.27)
JEV
zi; € {0, 1}, Vi, jeV,i#] (4.28)
yij > 0, Vi, jeV, i#7 (4.29)
Fy>0 Vi, jeV,i#] (4.30)

Note that this model does not have big-M constraints, contrary to the two previous ones.

Sub-tour elimination is modelled by Equations (4.24) and (4.27) in this formulation.

CCVRP mathematical model 4

The previous three models use binary variables z;; (or ycf]) to model routes. The fourth
model, CCVRP4, defines the routes by using alternative decision variables zp% which indicate
whether site ¢ is the [-th visited site by the route k. This model is defined by Equations
(4.31) to (4.38).

The Equation (4.31) describes the objective function, the sum of arrival times, like in the
first two models CCVRP1 and CCVRP2. Equations (4.32) indicate that all sites must be

visited exactly once while Equations (4.33) describe that at most one site can be assigned to
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one position in a route. Constraints (4.34) express that a position can be occupied only if
the previous position is occupied. Vehicle capacity is respected by Equations (4.35). Arrival
times are limited by Constraints (4.36) where the arrival time at site j must be greater than
arrival time at site ¢, plus the traversal time w;; if both site are visited by the same vehicle
and site j is visited immediately after site i. Finally, Equations (4.37) and (4.38) define the

decision variable domains. This model does not require sub-tour elimination constraints.

min Z =) "t (4.31)

n R
SN aph =1, VieV (4.32)

=1 k=1
> aph <1, Vke{l,.,R}le{l,. . n} (4.33)

eV’
D aph <> apl Vke{l,.,R},l1€{2 .. ,n} (4.34)

eV’ 4
>N apha<Q Vke{l..R} (4.35)
eV’ =1

titwy—(2—apl—aph, ) - M <t Vi,jeV le{l,..n} ke {l, .. R}(4.36)
ti Z Woji, Vie V/ (437)
apl € {0, 1}, VieV' ie{l,..,n},ke{l,...R}  (4.38)

CCVRP mathematical model 5

The last proposed model, referred as CCVRP5 in the sequel, uses alternative decision
variables :z:bf’j which are equal to 1 if site ¢ is visited before site 7 by route k. These decision
variables also define an order on the sites visited by a vehicle. Note that these decision
variables do not require that site j be visited immediately after site 7. This model is defined
by Equations (4.39) to (4.48).

Equation (4.39) expresses the sum of arrival time as objective function. Equations (4.40)
indicate that every site must be visited by exactly one vehicle. Equations (4.41) and (4.42)
mean that the variables related to a pair of sites ¢ and j can only be used (equal to one) if
sites ¢ and j are assigned to the same vehicle. Equations (4.43) indicate that when sites i
and j are visited by the same vehicle, only one order is possible. Constraints (4.44) force

to assign a visiting order to sites ¢ and j when both are assigned to the same vehicle.
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The vehicle capacity cannot be exceeded thanks to Equations (4.45). Arrival times are
guaranteed by Equations (4.46). Finally, Equations (4.47) and (4.48) define the domain of

decision variables. No sub-tour elimination constraints are needed with this set of decision

variables.
min Z =) "t (4.39)
eV’

R
> abf; =1, VjeV’ (4.40)

k=1
bl < xbfy;, Vi, jeV' ke{l,. R} (4.41)
xbf; < aby;, Vi, jeV', ke{l,.. R} (4.42)
abl + wbf; < 1, Vi, jeV', ke{l,.. R} (4.43)
xbl; 4 abf, > abf;, + xbf; — 1, Vi, jeV' ke{l,. R} (4.44)
> ably g <Q, Vke{l, ., R} (4.45)

jev’

ti+wy — (1 —xbf) - M <t Vi, jeV', ke{l,.. R} (4.46)
tz‘ 2 Woj; V1 S V/ (447)
abf; € {0,1}, VieV,jeV, i#j ke{l,.,R} (4.48)

The five models are compared in Section 4.7 in order to select the best model to formulate
the mt-CCVRP. This comparison allows to select the best model, CCVRP3, to be extended

to the multitrip case, as explained in the following subsection.

4.2.2 Mathematical Formulations for the Multitrip Cumulative
Capacitated Vehicle Routing Problem

In this subsection a 0-1 mixed integer linear program (MILP) for the mt-CCVRP is
described. This model extends the model CCVRP3 from previous subsection to the multitrip
case, and the flow-based model from Subsection 3.2.1 to several vehicles. Nevertheless, this
model considers null service times. Contrary to the model proposed by Ngueveu et al. (2010),
variables are indexed only by arcs and no trip nor vehicle index are required. The concepts
of replenishment arc and arc coefficient respectively are introduced by Boland et al. (2000)
and Ngueveu et al. (2010), and they are recalled in Subsection 3.2.1. They are central in the
mt-CCVRP formulation.
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Replenishment arcs constitute a trick to replace the successive trips of a multitrip by a
single trip: a replenishment arc (7, j) implies the traversal of arcs (i,0) and (0, j) when ¢ is

the last site of a trip and j the first site of the next trip.

Arc coefficients allow to compute the sum of arrival time as a weighted sum of the
traversal times. The coefficient of the arc (i, j) means the number of times the traversal time

w;; is counted in the objective function.

This model is based on five types of variables. Like in all flow-based vehicle routing
models, variables Fj; define the flow on each arc (3, j), i.e., the load of the vehicle traversing
this arc. The binary variables x;; are equal to 1 if and only if arc (7,7) is traversed by a
vehicle. The arc coefficients explained before are expressed by variables y;; which are very
useful to compute the objective function and prevent subtours. Due to the special nature of

replenishment arcs, similar but separate variables z}; and y;; are used for these arcs.

To better understand the model, note that four basic actions are possible for a vehicle: 1)
it leaves the depot to reach the first required node j of its multitrip (x¢; = 1); 2) it traverses
a normal arc linking two required nodes ¢ and j (z;; = 1); 3) it traverses a replenishment
arc connecting two required nodes ¢ and j, i.e., it ends a trip at ¢, reloads at the depot and
initiates a new trip with j (zj; = 1); 4) it returns to the depot after the last required node of
its multitrip (z;o = 1). Normal arcs (0, j) leaving the depot are used only at the beginning
of the first trip of a multitrip. The fourth action is not important because the return arcs
(7,0) have no influence on the objective function considered. It is assumed that variables z ;o
exist, but with a null cost since their arc coefficients are zero. For instance, if a trip visits
nodes 1, 2 and 3, the sum of arrival times is (wg1) + (wo1 + w12) + (we1 + w2 + we3) and the

arc coefficients are yo; = 3, Y12 = 2, y23 = 1 and y39 = 0.

The resulting 0-1 mixed integer linear program, a flow-based formulation, is given by
Equations (4.49) to (4.67).

min Z = Z Z Wij Yij + Z Z (wio + woy) Yy (4.49)

i€V jev eV’ jev’

> 0= R, (4.50)

Z (ZL‘Z‘]‘ + ZL‘;]) + To; = 1, v j S V, (451)

eV’
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D (wji+ ) + a0 =1, VieV (4.52)
eV’
Jjev Jjev
Fij < Q * Lij, Vie V/, ] eV (454)
Foy < Q- (zo; + Y _ ), VieV (4.55)
eV’
yi; < (n— R) -y, VieV', jeV’ (4.57)
oy =y + D Wy — i) =1, VieV (4.58)
JEV jev’
Yij > Tij, Vie ‘/, j S 74 (459)
yl >, VieV, jeV (4.60)
yij Z 2 xij — ZEjo, V 1€ ‘/, j € V, (461)
Yl > 22l — xjo, VieV, jeV’ (4.62)
zi; € {0,1}, VieV,jeV, it (4.63)
zl; € {0,1}, VieV, jeV i#j (4.64)
vij 2 0, VieV, jeV, i#j (4.65)
yi; > 0, VieV jeV i#j (4.66)
Fy>0, YieV.jeV, i#j (4.67)

The objective function (4.49) represents the sum of arrival times to affected sites,
expressed using the arc coefficient variables y;;. The second sum with the y;; concern
replenishment arcs (i, 7), as their traversal times are in fact w; + wq;. Constraints (4.50)
mean that only R vehicles (R multitrips) can be used (recall that variables x(; are used only

at the beginning of the first trip of a vehicle).

The Equations (4.51) and (4.52) respectively indicate that exactly one arc is traversed to
arrive at site 7 and leave it. These equations are based on the three first actions explained

before.

Constraints (4.53) to (4.55) concern flow variables and ensure that each demand is
satisfied. Equations (4.53) express the vehicle load variation after a visit to site ¢ and ensure
that each demand is satisfied. Using Equations (4.54), no flow can traverse an unused arc
and each flow is limited by vehicle capacity. Equations (4.55) limit the maximum flow at

the beginning of each trip to the capacity @ of vehicles: zp; = 1 concerns the flow for the
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first trip of a vehicle while x{; = 1 concerns its other trips, after a replenishment arc.

Constraints (4.56) to (4.58) concern arc coefficients. Equations (4.56) (resp. (4.57)) limit
the coefficients y;; (resp. y;;) to the maximum number of normal or replenishment arcs that
can be used in a multitrip. Ngueveu et al. (2010) have shown that all the vehicles are used
in an optimal CCVRP solution (each vehicle visits at least one demand node) and this is
still true for the mt-CCVRP. This implies that no multitrip can visit more than (n — R+ 1)
demand nodes, which is also the maximum arc coefficient. In constraints (4.57) the limit is

reduced by one, because there is at least one required node before a replenishment arc.

Constraints (4.58) imply that the coefficients of successive arcs decrease along a trip. This
property prevents subtours, like in the Miller-Tucker-Zemlin subtour elimination constraints
for the TSP (Miller et al., 1960). Note that it is not necessary to use integer variables for
yi; and y;;. Constraints (4.59) to (4.62) are valid inequalities, since they are not necessary
to guarantee feasibility but allow to find better linear relaxations and reduce on average
the time to get optimal solutions. Equations (4.59) (resp. (4.60)) assign an arc coefficient
greater than or equal to one to a normal arc (resp. replenishment arc) when this arc is
traversed. Similarly, Equations (4.61) (resp. (4.62)) are valid inequalities, which express
that traversed arcs with not depot destination have an arc coefficient greater or equal than

two, but becomes one if the destination of its immediate successor arc is the depot (z;0 = 0).

Finally, constraints (4.63) to (4.67) define the five groups of variables. According to
constraints (4.56), (4.57) and (4.58), note that the last arc traversed by each vehicle may
have a rank equal to zero, which means that this arc is not considered in the objective
function. The model is tested on small instances and computational results are reported in
Subsection 4.7.5.

4.3 Multi-Start Iterative Local Search

Iterated Local Search (ILS) is a local search-based metaheuristic which has proved its
efficiency on various optimization problems (Lourenco et al., 2010). This metaheuristic is
composed of three components: a constructive heuristic, an improvement heuristic, and a
perturbation procedure also called mutation because of its similarity to the mutation operator

of genetic algorithms.

The constructive heuristic is used to create an initial solution, which is improved by the
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improvement heuristic and marked as the current solution. Then, for each iteration of the
ILS, a child-solution is generated by applying a perturbation and the improvement heuristic
on the current solution. If the resulting solution improves the current solution, the last one

is replaced. The process is repeated until a stop criteria in found.

The ILS has been used to solve several VRP variants. For instance, Hashimoto et al.
(2008) propose an ILS for the time-dependent vehicle routing problem with time windows,
whit an improvement heuristic based on 2-opt*, cross exchange and Or-opt moves. Laurent &
Hao (2009) develop an ILS using ejection chains-based improvement, also called block moves,
for the multiple depot vehicle scheduling problem. Cordeau & Maischberger (2012) develop
a parallel metaheuristic combining ILS with tabu search to solve four VRP variants: classical
VRP, periodic VRP, multi-depot VRP, and site-dependent VRP, and its time windows
versions. Walker et al. (2012) present a flexible hyper-heuristic with a multiple-neighborhood
iterated local search. Nguyen et al. (2012a) describe a multi-start version (MS-ILS) with
short-term memory, path relinking and split procedure for the two-echelon location-routing
problem. A periodic VRP with time windows and time spread constraints on services is
solved by Michallet et al. (2014) with an MS-ILS algorithm. Vansteenwegen & Mateo (2014)
address the single-vehicle cyclic inventory routing problem with an ILS algorithm. Palhazi
Cuervo et al. (2014) elaborate an ILS for the VRP with backhauls.

In the following subsections the proposed MS-ILS and its components are described.

4.3.1 Principle and General Structure

The proposed metaheuristic is a multi-start iterated local search (MS-ILS) calling a
variable neighborhood descent (VND). The MS-ILS variant, consisting in restarting an ILS
from several initial solutions to diversify the search, has given excellent solutions on the
CVRP (Prins, 2009a). VND is a kind of local search in which wider and wider neighborhoods
are successively explored (Mladenovi¢ & Hansen, 1997). The resulting hybrid metaheuristic

is sketched in Algorithm 4.1 while its internal components are described in the sequel.

MazxStart successive ILS are executed and update a global best solution BS. Each ILS
calls a greedy randomized heuristic to get one initial solution, improves it using the VND,
and then performs Mazlter iterations. Each iteration of the incumbent ILS takes a copy S’ of
S, applies a perturbation procedure (Perturb) and calls the VND to improve the perturbed
solution. In most implementations, S is replaced by S’ in case of improvement. As solutions

with equal costs are not rare, S is also replaced by S’ when Zg = Zg (line 11) to better
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diversify the search.

Note that each ILS generates a sequence of local optima with decreasing costs. The
procedures Precomputations and Update_ Precomputations, explained later, are used to speed
up the VND.

Algorithm 4.1 — MS-ILS for the mt-CCVRP
1: Zgg < o0
2: for Start < 1 to MaxStart do
3: Greedy Randomized_ Heuristic (S)

4: Precomputations (S)

5: VND (S)

6: for Iter <— 1 to Maxlter do

T S« S

8: Perturb (S”)

9: Update_ Precomputations (S')
10 VND (5)

11: if Zg < Zg then

12: S5

13: end if

14: end for
15: if Zg < Zpg then

16: BS « S
17: end if
18: end for

4.3.2 Solution Representation

A solution is encoded as R lists of nodes, one per vehicle or multitrip. Each list indicates
the order in which the required nodes are visited by the corresponding multitrip, using the
depot (node 0) as delimiter. Figure 4.1 gives an example for seven required nodes with
respective demands {10, 20, 10, 20, 10, 10,10} and two vehicles with capacity 35. The arcs
used are plotted with their traversal times w;;. Vehicle 1 performs one multitrip of two trips
while vehicle 2 performs one trip only. Arc (2,3) is an example of replenishment arc. The
arrival times are written near each node. The cost of this solution (sum of arrival times to

required nodes) is Z = 226.
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4.3.3 Precomputations

Contrary to the CVRP, it is not obvious to evaluate a move in constant time in local search
procedures for the mt-CCVRP, due to several subtle differences. Inserting or removing a node
in a route shifts the arrival times at the following nodes. Several moves in the proposed VND
involve reversals of sequences of nodes: unlike the CVRP, the cost of a sequence is modified
after a reversal and, in particular, the cost of a trip changes when performed backwards. A
move in a route changes also the costs of the following routes in the same multitrip. Finally,

the cost of a multitrip depends on the ordering of its trips.

Solution:

9 0, 1, 2,0, 3, 4, 0]
Z = 226
58 14 24
. o8 — classical arc
@\/ 19 . \é@ - -> replenishment arc

Figure 4.1: Example of a solution for an instance with n =7, R =2 and ) = 35.

Ngueveu et al. (2010) have succeeded in evaluating each move in O(1) in their heuristics
for the CCVRP, but using heavy cost variation formulas. Silva et al. (2012) have proposed
for the cumulative TSP simpler equations, based on the fact that any move can be
expressed by concatenations of node sequences. For instance, if node 5 is inserted in route
(1,2,3,4) after node 2, the result can be written as (1,2) @ (5) @ (3,4), @ denoting the
concatenation. Silva et al. (2012) define the attributes listed in Table 4.1 for a sequence
of nodes 0 = (0,041, ...,0;), denoted in the sequel as (7,7 + 1,..., ) to save one level of

indexing. Recall that ¢; denotes the arrival time at node .

For a sequence o reduced to a single node, we have M, = 1 and C, = D, = 0. If sequence
o' =(i,i"+1,...,j) is concatenated after o, the following equations can be used to deduce

the attributes for o @ o”':
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Table 4.1: Notations from Silva et al. (2012) for a sequence ¢ of nodes.

Symbol Definition

C, Cost to perform the sequence o when leaving 7 at time 0,
J
Co=> 1
1=i

7j—1
D, Duration of the sequence o, i.e., D, = 5 Wi 141
I=i

M, Number of sites in the sequence o
M,por = M, + My (4.68)
Dygor = Dy+wjiy+ Do (4.69)
Ca@a’ = Cg + Mgl : (DU + U)j}g) + Cg/ (470)

This formalism for the cumulative TSP can be extended to the mt-CCVRP, where a
sequence o may span several trips in a multitrip and include copies of the depot. Three
modifications are required. The first one is to check vehicle capacity by introducing the

total demand W, for a sequence o: a trip obtained by concatenating two sequences ¢ and
o' is feasible if W, + W, < Q.

The second modification is to ignore depot copies when computing C, and M,, i.e., u € o
in the sum for C, must be such that o, # 0 and M, counts only the required nodes in o.
However, D, does not change and still includes the cost of arcs incident to depot copies.
As several moves in the proposed VND are based on sequence reversals, the third change
consists in defining for a sequence o its reversal . Note that Mg = M, and D4 = D,.

The way of computing C% is indicated at the end of this subsection.

As an example, imagine that in Figure 4.1 a new demand node 8 is inserted after node 1 in
the first multitrip, with gz = 5, wig = 7 and wg, = 8. Vehicle capacity is respected but how
to compute the cost of the resulting multitrip? If o = (0, 1), o/ = (8) and ¢” = (2,0, 3,4,0),
the goal is to get Cogoraor. Using Equation (4.70), we compute first Cogor = Cp + My -
(D, 4+ wig) + Cor = wor + 1+ (wo1 + wig) + 0 = 2wo; + wis. Then, if 0 @ o’ = 7, we calculate
Cor = ta +t3+ts = 0+ (wao + wos) + (W + wo3 + wsg) = 2wsy + 2wp3 + w34, and finally
Csaon = Co+ Mo+ (Da+wsy) +Cor = (2wor +wig) +3((wo1 +wig) +wsz ) +(2w20 +2wo3 +ws34).
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We obtain bwg; +4wig+3wsa+2wag+2we3+wss = HX8+4AXT+3IX8+2x194+2x20+12 = 182.
Note that 2 - (wgg + wp3) corresponds to the contribution of replenishment arc (2,3) in the

objective function of the mathematical model (Equation (4.50)).

In the previous example, the computations can be done in constant time provided the
attributes of involved sequences are already known. This is the role of the Precomputations
procedure in Algorithm 4.1, which calculates the attributes for each sequence o = (i,i +
1,...,J) contained in the multitrips of the incumbent solution, and for its inverse . This
procedure contains a main loop which scans each multitrip and each node 7 in this multitrip,

while a nested loop inspects each node j from i onward in the same multitrip.

For + = j, we have M, = M = 1 and D, = D = C, = Cs = 0. When j is
incremented, the attributes for the new sequence are derived in O(1) from the ones for
o, using Equations (4.68) to (4.70) with ¢’ = (j + 1). For instance, C,g, is computed
via Equation (4.70): Crer = Cy, + My - (Dy + wjj11) + Co = Cy + Dy + w; j+1. For
the reverse sequence, the same formula is used but adding j + 1 at the beginning, i.e.,
Coe =Cg o =05+ Mg - (D +wj1) + O = My - wjpr; + Ok

In practice, the attributes are stored in matrices, using the first node and last node of
each sequence as subscripts. For instance, the value of C, for ¢ = (i, + 1,...,j) is stored
in a matrix C, in element 51] As each attribute is calculated in O(1), it is clear that all
precomputations can be done in O(n?). After a call to Precomputations, each perturbation
and each move in the VND can be evaluated in O(1). As accepted perturbations and moves
change the incumbent solution, the attributes must be updated. This task is carried out
by the Update Precomputations procedure, similar to Precomputations but restricted to the

sequences contained in modified multitrips.

Note that when sequences to concatenate are trips which start and finish at the depot,

for instance oy = k; and oy = ko, Equations (4.69) and (4.70) can be simplified:

Dy ek, = Dy, +woo + Dy, = Dy, + Dy,

and

Cryoky = Cry + My, - (Dy, +wop) + Cry, = Ciy + My, - Dy, + Cy,

which are equivalent to the Equations (3.44) presented in Section 3.5 of previous chapter.
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Similarly, the dominance rule given by Theorem 3.3 in Subsection 3.5.1 shows that it
is not necessary to consider all possible trip orderings in a given multitrip. That theorem
remains valid for the mt-CCVRP. To recall, Theorem 3.3 states that the cost of a multitrip
is minimized by ordering its trips in non-decreasing order of mean trip duration, where the
mean duration of a trip & is defined as its total duration D, divided by its number of required
sites M.

Preliminary tests have shown that it is too time-consuming to enforce the dominance
rule at each step of the metaheuristic. In practice it is applied to the initial solution of each
ILS, and periodically in the VND.

4.3.4 Initial Solutions

Each ILS in the proposed MS-ILS starts with an initial solution computed by a greedy
randomized heuristic that builds one route at a time. Each new route is initialized with the
farthest unserviced site. Then, all feasible insertions of remaining sites in the incumbent
routes are evaluated. A restricted candidate list (RCL) gathers the sites satisfying Equation
(4.71), where V" is the set of unserviced sites, z(¢) is the insertion cost of site i in the
emerging trip, and 2,,,, and z,,, are the largest and smallest insertion costs. One site is
randomly selected from the RCL for a real insertion. The incumbent trip is finalized when
all demand nodes are serviced or when all possible insertions of remaining demand nodes

violate vehicle capacity.

RCL = {Z € V” ‘ ’2(2) < Zmin T 0.1- (Zmaz - Zmzn)} (471)

Finally, R empty multitrips are prepared, the trips are sorted in non-decreasing order of
mean duration Dy /M), according to the Theorem 3.3, and added one by one at the end of

the multitrip with minimum duration.

4.3.5 Variable Neighborhood Descent

The improvement procedure used in the proposed MS-ILS is a variable neighborhood
descent (VND). VND is in itself a simple metaheuristic, based on d neighborhoods N,
b = 1,2,...,d. Fach neighborhood is implicitly defined by a type of move. Starting
from b = 1 and one input solution S’, the basic iteration of VND consists in exploring the
neighborhood N, of S" (N,(S”)). The first improvement mode is used: as soon as a better

solution is discovered, it becomes the incumbent solution and b is reset to 1, otherwise b is
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incremented. The procedure stops when the exploration of the last neighborhood Ny brings

no improvement. The method is sketched in Algorithm 4.2.

The proposed VND for the mt-CCVRP is based upon d = 5 neighborhoods, each of them
being implicitly defined by the union of several elementary moves. N; involves 2-opt moves
and M-interchanges, adapted to the cumulative objective function and applied to individual
trips. Ny considers the same moves, but applied to two trips in the same multitrip. In Nj
the same moves are attempted on two trips of different vehicles. N, and Nj respectively
consist in splitting a trip and reordering the trips of a multitrip. Only feasible solutions are

considered, i.e., all moves must respect vehicle capacity and fleet size.

As the reversal of each moved sequence in the reinsertions are also tested, each classical
CVRP move like 2-opt is here declined into several cases. Since it would take too much room
to give the evaluation formula for each move and each of its cases, the equation is given only
for two moves in the sequel, knowing that the transposition to the other cases is easy using
the pre-computed attributes. Without the pre-processing, the cost variation formulas would
be much more complicated and time consuming, especially for moves operating on two

multitrips.

Algorithm 4.2 — VND for a solution S’
b1
2: while b < d do
3: search for the first solution S” € N,(S’) such that Zg» < Zg
if S” exists then
S« 5"
b+ 1
Update_ Precomputations (S")

else
b+—b+1
10: end if

11: end while

N; : 2-OPT moves and M-interchanges on one trip

The 2-opt move on one trip was already used by Ngueveu et al. (2010) for the CCVRP.
In this case, two arcs (4,7 + 1) and (7,7 + 1) are deleted in one trip k of one multitrip p
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and the fragments are reconnected via two new arcs. Equivalently, it can be defined as the
reversal of sequence (i + 1,...,7). Let oy be the beginning of the multitrip p up to node i
included, o9 = (i+1,...,j), and o3 the rest of p. The cost variation can be computed using
Equation (4.72). This move is depicted in Figure 4.2. This figure also shows the legends used
to describe the changes in arc coefficients: a) unchanged arcs keep the same coefficients, b)
coefficient modified indicates arcs which are changed their position in the solution, and c)

inserted arcs correspond to those no belonging to original solution.

AZ - Ca'l@g@g?) - 001@02690-3 (4.72)

—— unchanged arc

---» coefficient modified

’_)D B' --{ k-- "jj E—)‘ """ > inserted arc

DI+ (] site
............ * ’ depot

Figure 4.2: Example of 2-opt move within a route.

As the cost of a trip changes when inverted, it is considered also the new variant of
Figure 4.3. Let o1 be the sequence containing the trips before trip k, o5 the beginning of k
up to node i included, o3 = (i + 1,...,7), o4 the end of k, and o5 the rest of multitrip p.
Contrary to the standard 2-opt move, o9 and o4 are reversed, but not o3. The cost variation
is deduced by Equation (4.73).

AZ = CO’l@H@Ug,@%@O’s - 001@026903@04@05 (4'73)
i i1 ..............
& -0 OO0 k@
""'.. ‘-‘.:. j ] * !

Figure 4.3: Example of 2-opt move within a reversal route.

The other moves of N; are A-interchanges. They consist in exchanging a sequence with
one to A consecutive nodes with another (non-overlapping) sequence containing zero to A

consecutive nodes. The two sequences must belong to the same trip £ but may have different
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lengths. Each sequence with more than one node can be reversed in the reinsertion, giving
four cases. A null length is allowed for the second sequence, to include relocations of the

first sequence as particular case.

Figure 4.4 shows the case where no sequence is reversed. Let o; be the beginning of
multitrip p up tonode 4, oo = (i +1,...,7), 03 = (' +1,...,4), 04 = (j + 1,5') and o5 the
rest of the multitrip. The cost variation if o5 and o4 are exchanged is given by Equation
(4.74).

AZ = 001@04@03@02@05 - 001@02@03@04@05 (474)
i+ 1 Y z +1 I
¢ Et"'ﬂ EF'"*D D a @_>,
i+l 3

Figure 4.4: Example of A-interchange within a route.

In all cases, the cost variation can be computed in constant time using the operator &.
It is easy to see that N; can be explored in O(n?/7), where 7 is the number of trips in the

incumbent solution.

N : 2-OPT moves and M-interchanges involving two trips in a multitrip

Figure 4.5 depicts the two kinds of 2-OPT moves for two routes k& and £’ contained in
the same multitrip. The A-interchanges now involve one sequence in each trip, like in Figure
4.6. This detail is important to interpret the two figures, as the line styles used (coefficients
changed or not, see Figure 4.2) depend on the relative order of the two trips. As reversals
of k and k" are allowed in these transformations, eight cases must be evaluated for 2-OPT
moves and four for M\-interchanges. The evaluation of each case is still possible in O(1) using

the pre-computations, and N, can be searched in O(n?/R).
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7 i+1

‘ ‘B ‘B > J:]-----D----‘
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PR S S L PN

Jj+1

Figure 4.5: Example of 2-opt move on two trips done by the same vehicle.

i i+1 i i+ 1

O— 1 [l [Tl

QGEDGE e

J+1 J i+

Figure 4.6: Example of A-interchange on two trips done by the same vehicle.

N3 : 2-OPT moves and A-interchanges on two trips done by distinct vehicles

Moves affecting two trips of two different multitrips are similar to the ones browsed in
N; and N, but require more complicated cost variation formulas since two multitrips are
modified. The moves in N3 bring deeper modifications to the incumbent solution, which
explain why this neighborhood is searched after N; and Ny by the VND. N3 can be browsed
in O(n?).

An example of A-interchange move between different vehicles is shown in Figure 4.7.
Note that this figure looks like Figure 4.6, but as two multitrips are concerned the arc
coefficient changes are not the same. For instance, the arc coefficients of the first sequence
can change in both multitrips if the interchanged sequences have different number of nodes.

But interchanges never affect the arc coefficients of the last sequence in the multitrip.
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i+1 i’

G = e
S = = e T

Jj+1 7’

Figure 4.7: Example of A-interchange on two trips done by distinct vehicles.

Ny : Trip reordering

According to the dominance rule presented in Subsection 3.5.2, a solution can be
improved by sorting the trips of each multitrip in non-decreasing order of mean duration.
During preliminary tests we tried to evaluate the moves in Ny, Ny and N3 while reordering
simultaneously the affected trips, but the metaheuristic became too time-consuming. In fact,
the quality of final solutions is practically the same if the trips are reordered only when the

three previous neighborhoods bring no improvement.

Although this reordering phase is called Ny in the VND, no real neighborhood is searched
since the trips are sorted systematically in each multitrip. This process can be executed in
O(R mlogm), where R is the number of multitrips and m = (Z qi> /(@ - R) is the average

i=1
number of trips per multitrip.

N5 : Trip splitting

This neighborhood is based on an adaptation of a route-splitting procedure called meiosis
and designed by Petch & Salhi (2004) for the multitrip VRP. This procedure determines the
shortest multitrip p, inspects each multitrip p’ # p and evaluates the cost variation when
a) the last trip of p’ is cut after the first, second, ..., or last but one customer, then b) the
rest of the trip is moved at the end of multitrip p. This process which can be implemented
in O(R n) is interrupted as soon as a saving is obtained. In case of improvement, the VND

goes back to neighborhood Ny, otherwise it terminates.

4.3.6 Perturbation

The perturbation is applied before calling the VND and consists in swapping three pairs
of nodes randomly selected. The nodes in each pair may belong to the same trip, to two
trips of the same multitrip, or to two multitrips, but vehicle capacity must be respected.

It is interesting to observe that this kind of move is tested in the neighborhoods N;, N
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and N3, so the effect of the perturbation could be theoretically cancelled in the VND that
follows. In fact, the perturbation is sufficient to change the trajectory of the VND which
uses a first-improvement implementation instead of a best improvement strategy. In the
perturbation different moves not used in the VND are tried, like random 4-OPT moves, but

without getting better results on average.

4.4 Split Procedure for the mt-CCVRP

This section describes a split procedure applied to the solution of the mt-CCVRP. The
developed method has two levels: the first level splits a giant-tour in multitrips, while the

second one splits each multitrip in feasible trips.

In the following, Subsection 4.4.1 recalls the general splitting procedure and its
applications, and Subsection 4.4.2 introduces the two-level split procedure developed for
the mt-CCVRP.

4.4.1 The Split Procedure and The Route-First Cluster-Second

Principle

The Split procedure is an optimization technique used in VRPs which takes a giant-tour
solution, and optimally splits it in several routes. A giant-tour is a TSP-like tour which
starts at the depot and covers all sites with unlimited vehicle capacity and without depot
delimiters. When used in metaheuristics, the advantages of this technique are the reduced
solution space, its flexibility to manage different features, and its efficiency (Prins et al.,
2014).

Beasley (1983) is the first to propose a method to decompose a giant-tour solution into
several capacitated routes, by solving a shortest path problem on an auxiliary graph for the

CVRP. Unfortunatelly, he does not provide numerical results.

Prins (2004) has the idea of using the split procedure to evaluate chromosomes encoded

as giant-tours, in a memetic algorithm for the CVRP.

Split procedures have been applied and adapted later to several vehicle routing variants.
Some of these adaptations consider the application of Split to the CVRP (Prins, 2004, 2009a),
the VRP with heterogeneous fleet (Prins, 2009b), the multi-compartment VRP (Fallahi et al.,
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2008), the stochastic multi-compartment VRP (Mendoza et al., 2010), the VRP with time
windows (Labadi et al., 2008¢), the capacitated arc routing problem (CARP) (Lacomme
et al., 2001, 2004), the periodic CARP (Lacomme et al., 2005; Chu et al., 2006), the CARP
with time windows (Reghioui et al., 2007; Labadi et al., 2008b), the split delivery CARP
(Labadi et al., 2008a; Belenguer et al., 2010), the bi-objective CARP (Lacomme et al.,
2006), the bi-objective stochastic CARP (Fleury et al., 2008), the location-routing problem
(Duhamel et al., 2010), the truck and trailer routing problem (TTRP) (Villegas et al., 2010),

and others.

A state of the art on Split-like methods has been presented by Prins et al. (2014), where

more than 70 references are presented, showing the flexibility of this procedure.

Ngueveu et al. (2010) develop a split procedure for the cumulative VRP, while Vidal
et al. (2014) apply Split to the multitrip VRP. Nevertheless, no publication has adapted
split simultaneously to cumulative objective and multiple trips. In the following subsection,
a two-level Split is developed for the mt-CCVRP.

4.4.2 Two-Level Split Procedure for the mt-CCVRP

The Two-Level Split Procedure allows to obtain an mt-CCVRP solution S from a
giant-tour solution 7" by reformulating the problem as a set of shortest path problems in

an auxiliary digraph where the order of sites in T" is conserved.

In the first phase, the auxiliary digraph H = (X, A) is defined. X = {0,1,...,n} is the
set of nodes. The arc set A contains all arcs (7, j) with ¢ < j, where arc (7, j) means that the
sequence of sites o = (Tj1y, ..., T}) is visited by a vehicle and e;; is the multitrip cost (sum of
arrival times assuming a beginning at time zero) of these arcs. Note that multitrips do not
have capacity constraints, and the number of sites in multitrips is not limited. Nevertheless,
as shown by Ngueveu et al. (2010), in an optimal solution for the sum of arrival times
objective, all available vehicles are used, which implies in practice that the p-th multitrip
can start at site 7}, and finish at site 7},_g.,, but the number of arcs A is limited to R which

increase the algorithm complexity.

Figure 4.8 illustrates an example of the graph H of the example depicted in Figure 4.1
with the giant-tour solution 7" = (1,2,3,4,5,6,7). Only a subset of arcs in A is included
to facilitate the comprehension of the figure. Above every node, the demand of each site

is presented. Above every arc, the sequence of nodes in the corresponding multitrip is
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recorded, following by the multitrip cost. The boldfaced path corresponds to the multitrip
depicted in Figure 4.1. The solution cost is computed as the sum of the multitrip costs:
Z = Coy + Cy7 = 155+ 71 = 226.

(1,2,3,4):155

(1,2,3):85 Rd,5):117 (5,6,7):71
‘(5,6):38 (6,7):59
‘V
10
(1):8 L (2):19 L2f (3):20 L2f (4):24 r (5):14 Lo (6):25 Lok (7):28

Figure 4.8: Example of the first phase split graph with n = 7.

Note that arc cost (or multitrip cost) e;; is not unique in general since sequences can be
split into different sets of trips. The optimal arc cost e;; of arc (i,7) € A is computed by
solving a supplementary shortest path problem on a new auxiliary digraph H' = (X', A’),
where the set of nodes X’ contains a dummy node 0, and the j — 7 nodes of the sequence
0. The arc set A’ contains arc (¢, j') with i < j’ if the sequence ¢’ = (T}141,...,T}/) can be
serviced by a feasible trip, respecting the capacity constraint given by the Equation (4.75).

The cost ¢}, of arc (i, j') € A" is the sum of arrival times of the corresponding trip.

> <Q (4.75)

vEa’

Figure 4.9 illustrates the relationship between both phases of the Two Phase Split
Procedure proposed. The graph above corresponds with the graph H in Figure 4.8, while
the graph H’ below represents the shortest path graph corresponding to the arc (0,4) in the
first phase. In the graph H’ each node is equivalent to a node in H. Over each arc (¢, j')

the best path which finish in the arc (¢, j'), following by its cost, is recorded.

The trip cost e}, of arc (i/,j') € A’ is the sum of arrival time of the sequence

(0,T341, ..., Tj) when starting time is zero (o = 0). In practice, the trip cost ey i can

111, by following the Equation (4.76), where €/, ,, = 0.

be deduced from the trip cost €’ J

62/’]-/ - (]/ - Z/) . wO,TL., + (,]/ - ?;/ - 1) : (wTi/7Ti/+1 - wO,Ti/+1) + e;’ﬁ»l,j’ (476)

Similarly, the graph H' = (X', A’) for X' = (0,7,...,5') can be deduced by adding
the node 7' and its corresponding feasible arcs to the graph H) = (X}, A,) with X} =
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(1,2,3,4):155

/ (0,1,2,0,3,4,0):155 (0,2,3,0,4):144 (0,3,4,0):52 N

; \
; \
\
/0 10 Q 10 20\

0 1 2 3 1
(0,1,0,2,3,0,4):200 = (0,2,0,3,4,0):159 =  (0,3,0,4,0):84 = (0,4,0):24

Figure 4.9: Example of the second phase split graph.

(0,4 +1,...,5"), and their labels can be reused.

Figure 4.10 shows how the shortest path solution is interpreted. In the figure, the
multitrips (1,2,3,4) and (5,6,7) from Figure 4.9 are represented by dashed arrows, and
the trips (1,2), (3,4) and (5,6,7) are represented by continuous arrows.

Solution:
[0, 1, 2, 0, 3, 4, 0]
|0, 5, 6, 7, 0]

— trip arc

- -> multitrip arc

Figure 4.10: Interpretation of the shortest path given by Figures 4.8 and 4.9.

From Equation (4.70), where the cost of two concatenated sequences Cyg, is computed
using the concatenation operator @, it can be seen that different path costs and path
durations can produce several labels when paths are extended forwards. In order to reduce
the complexity of the shortest path algorithm, paths are extended backwards, starting from
the last node j' to the first one i'. When paths are extended backwards, only one label must
be saved on each node, because the number of nodes in a path starting in node ¢’ is fixed. In

this way, shortest path can be computed using an adapted Bellman’s algorithm for directed
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acyclic graphs, with a complexity O(R n?®), where R is the number of vehicles.

To summarize, the split algorithm has been adapted for the mt-CCVRP where a) the
objective function is the sum of arrival times instead classical total travel time, b) multiple
trips are allowed by managing two phases, ¢) the number of vehicles is limited to R, d) the
generated labels are memorized to speed up the computations, and e) the paths are extended

backwards which generates one label per node in the graph H'.

Algorithm 4.3 describes the first level of the proposed split method, while Algorithm 4.4
presents the second level. Algorithm 4.5 describes how to extract a mt-CCVRP solution S
like introduced in Subsection 4.3.2. These algorithms use the node-labels V; for similarity
with the algorithm described by Prins et al. (2014).

Algorithm 4.3 performs an iteration for every available vehicle. On each iteration p, the
labels V;, W; and Suc,; of node i are updated. Label W; indicates the cumulative cost of
a shortest path from node i to node n for the iteration p based on the cumulative cost of
shortest paths on iteration p — 1. Label Suc, stores the successor of node ¢ on the shortest

path at iteration p.

Lines 1-6 initialize the variables V; and W,;. The value UB corresponds to an upper

n
bound of the objective function, which is computed by assuming [E-‘ sites on the first R —1
multitrips and the remaining sites on the last multitrip, and trips are built by adding sites

while capacity constraint is satisfied.

A sequence is ignored when the number of nodes exceeds the maximum n — R+ 1 or

when the cost of the resulting path is upper then UB.

Algorithm 4.4 uses two functions to compute the cost of a multitrip. When all nodes of
the sequence can be visited by a single trip, the Equation (4.76) is used in line 3, otherwise
Equation (4.70) is adapted in line 15. The label Sucgj expresses the successor of site ¢ in the

graph H’ for the multitrip finished at site j.

The values load; and length; respectively, are recursively computed by Equations (4.77)
and (4.78), and accumulate the demand and the length along the sequence without depot
visits, with loady = 0 and lengthy = 0.
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Algorithm 4.3 — First level Split for the mt-CCVRP

1: V,+ 0

2. W, <0

3: fort < 0ton—1do
4: Vi<~ UB+1

5: W;«~UB+1

6: end for

7. for p<+ 1to R do

8: J4<n

9: while V; <UB and j > R —p do

10: 1475 —1

11: if e;; is not already computed then
12: multitrip_ cost (e;;)

13: end if

14: while : > R—pand V; +e;; <W;and V; +¢;; <UB do
15: Wi <V + ey

16: Sucy; < j

17 11—1

18: if e;; is not already computed then
19: multitrip_ cost (e;;)
20: end if
21: end while
22: j—j—1
23: end while
24: for 1 < 0 ton do
25: Vi« W,
26: Sucpy1, < Sucy,;

27: end for
28: end for

load; = load;_1 + qr, (4.77)

length; = length;,—1 + wr,_, 1, (4.78)

In Algorithm 4.5 R multitrips are created, which are composed by sites in the sequence

(¢ +1,7) where j <= Suc,; is the successor of site ¢ in the multitrip p. Similarly, trips are
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generated with sequences (i’ + 1, j') where j' <— Suc], ; is the successor of site i’ in a trip of

the multitrip finished at site j.

Algorithm 4.4 — Second level Split for the mt-CCVRP
1. if load; — load; < () then

2 if ¢; ; is not already computed then

3 €ij ¢ Cipry+ (=) wory, +( —i— 1) (W, 1., — Wor,,)

4 Suci; < j

5 end if

6: Cij < €

7: else

8 j—i+1

9 e ;< UB

10: while j' < j and load); — load; < () do

11: if ¢} is not already computed then

12: €;J/ — €;+1,j’ + (j/ - Z) " Wo, T,y T (], —i— 1) ’ (wTi+17Ti+2 - szTi+1)
13: end if

14 if e;j > ey +ejj+ (wor,, +length —lengthii1) - (j — j') then
15: eij < €y + ey + (wor,, + lengthi —lengthiiy) - (j — j')

16: Sucy; < j'

17: end if

18: j—7+1

19: end while
20: end if

The character “0” is added at the start of each multitrip in line 4 and at the end of each
trip in line 13, which means the start and finalization of each trip at the depot. Lines 15
(i = Sucy) and 18 (i <= Sucj, ;) indicate that the last site of a multitrip and trip respectively
become the initial point for the next multitrip and trip respectively. The objective function

value is placed in the label Vj as shown in line 20.

4.5 Memetic Algorithm with Population Management

Memetic algorithms (MA) are a class of metaheuristics which combine ideas from
population-based algorithms and local search techniques (Neri & Cotta, 2012). Hart et al.

(2005) define memetic algorithms as a population-based metaheuristic composed of an
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Algorithm 4.5 — Extraction of mt-CCVRP solution after Split
1S« 0
2: 140

3: for p+1to Rdo
4: multitrip < {0}

5: J + Sucy

6: i

7 while ¢ < Sucj, ; and i’ < Suc,; do
8: trip < 0

9: J' <« Sucj, ;

10: for v <~ i +1 and j' do

11: add site T, at the end of trip
12: end for

13: add {0} at the end of trip

14: add trip at the end of multitrip
15: i < Sucy

16: end while

17: add multitrip at the end of S
18: i < Sucy;

19: end for

20: Zg +— Wy

evolutionary framework and a set of local search algorithms which are activated within
the generation cycle of the external framework. Nevertheless, most of the implementations
in combinatorial optimization are hybrid metaheuristics combining genetic algorithms (GA)
with local search procedures. GA allows to explore the search space due to maintain a pool
of solutions simultaneously. On the other hand, local search procedures aim to intensify the

search on promising zones of the solution space.

In basic GAs, an initial population generator creates a set of randomized solutions. A
selection operator selects solutions (parents) to be combined and generate new solutions
(children). The children are generated by a crossover operator. To avoid a premature
convergence, some children are selected, usually with a small probability, to be mutated by
a mutation operator. Finally, the population is updated to keep the best solutions. Here,
the best solutions are not necessarily chosen by a quality criteria, but distance criteria helps

to maintain the diversity in the population. The cycle of selection, crossover, mutation and
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update is repeated until a stopping criteria is met. Local search moves are used to improve

individual solutions in the population.

Memetic algorithms have been successfully used to solve vehicle routing problems and its
variants. For instance, Prins (2004) propose a memetic algorithm with split for the CVRP.
More recently, Vidal et al. (2012) have developed a memetic algorithm which can manage
three problems: multidepot VRP, periodic VRP and multidepot periodic VRP. The unified
framework in Vidal et al. (2014) use general purpose local search, genetic operator and split

procedure to solve 29 variants of VRPs.

The multitrip CVRP (mt-VRP) is treated by Cattaruzza et al. (2014), and the cumulative
CVRP is addressed by Ngueveu et al. (2010).

The following sections describe a memetic algorithm which combines genetic operators,

variable neighborhood search metaheuristic, split procedure and population management for
the mt-CCVRP.

4.5.1 Principle and General Structure

The proposed evolutionary algorithm is a memetic algorithm with population management
(MA|PM). In this version of the algorithm, the selection and crossover operator are
maintained, following by a local search improvement which is a VND similar to the one
used in the MS-ILS of Section 4.3. The mutation operator is controlled by a population
management strategy. As explained by Sorensen & Sevaux (2006), population management
works by measuring and controlling the diversity of a small population of high-quality

solutions, and makes ample use of distance measures.

A population POPp of npop parent-chromosomes is generated by the initial population
generator. Chromosomes are coded as giant-tour solutions, and their objective function
values are obtained by the two phases split procedure described in Section 4.4. ngen
generations are performed, which allow to evolve and improve the fitness of the population. In
every generation, a new population PO P¢ of npop child-chromosomes are generated, where
each child is a combination of two parent-chromosomes selected by the selection operator.
Both parents are combined by the crossover operator and translated to a mt-CCVRP solution
by the splitting procedure. Finally, the VND metaheuristic is performed to improve the

solution.
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An acceptance criteria based on population management strategies is used to decide
which chromosomes are included in population PO Pp for the next generation. The mutation
operator is also controlled by the acceptance criteria. The main structure of the proposed

memetic algorithm is sketched in the Algorithm 4.6.

Algorithm 4.6 — MA|PM for the mt-CCVRP
1: POPp < initial _population ()
2 Z(Thest)  min(Z(POPp))

3: for gen =1 — ngen do

4; for child = 1 — nchildren do

5: (Tp1,Tp2) < Select (POPp)
6: Te < Crossover (Tp1,Tps)
7: Sc « Split (T¢)

8: Sc + VND (S¢)

9: Te <+ Concatenate (S¢)

10: POP; <+ POP-UT¢

11: if Z(Te) < Z(Tpesy) then
12: Tyest < To

13: end if

14: end for
15: POPp + Update (POPp, POP;)
16: end for

17: return Tj.q

The following subsections describe the components of the proposed MA|PM metaheuristic.

4.5.2 Solution Representation

This algorithm alternates between two solution representations: giant-tour solutions and
mt-CCVRP solutions. The giant-tour solutions, noted by 7', are TSP-like solutions starting
at the depot, covering all required sites and without multitrip nor trip delimiters, as it is
described in Section 4.4. On the other hand, mt-CCVRP solutions, noted by S, are lists of
required sites in the order to be visited where every list correspond to a multitrip, and depot
delimiters (site 0) are used to separate consecutive trips, as it is explained in the Subsection
4.3.2.
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To handle with both solution representations, the proposed metaheuristics in Algorithm
4.6 makes use of the procedures Split (line 7) and Concatenate (line 9). The procedure
Split optimally translates in O(R n®) a giant tour T to an adequate mt-CCVRP solution
S by using the two-level split procedure described in Section 4.4. On the contrary, the
procedure Concatenate transforms a mt-CCVRP solution S to its correspondent giant-tour

T, by removing depot delimiters and merging the mt-CCVRP list in a single-list in O(n).

4.5.3 Initial Population

A randomized constructive procedure based on nearest neighbor heuristic for the TSP
(NNH_TSP) is used to generate the initial population. The first npop/2 chromosomes
are generated by NNH TSP procedure and their objective function values are obtained by
calling the split method described in Section 4.4. The second half population corresponds to
the resulting solutions after applying the procedures VND and Concatenate to the solutions

of the first half population.

That means half of the population is composed by local optima solutions, and other half

are random solutions which contribute with the diversity of the population.

4.5.4 Selection Operator

Every child is created by the combination of two parents which are selected by the
function Select (line 5 in Algorithm 4.6). This function uses the roulette method to choose
two solutions, Tp; and Tpsy, from PO Pp. The roulette method randomly selects two parents,
where the selection probabilities depend on the quality of each solution. In the proposed
method the selection probabilities are computed according with the function depicted in the
Figure 4.11.

In this function, Z,,;, and Z,,., are the smallest and the largest objective function
of the solutions in the population, respectively. Similarly, pri... is the probability of the
solution with smallest objective function in the population, and pr,.;,, the probability of the
solution with largest one. The probability of the intermediate solutions is proportional to
their objective function values. The values pr,,.. and prp..,, as well as probabilities of the
remaining solutions in the population are computed each generation because they depends
on the distribution of the objective function values. Nevertheless, in this research these

values are set in such a way that pr,.. = 3 - prou. after preliminary test.
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prmam

PTmin

Figure 4.11: Probability function of selection operator.

4.5.5 Crossover Operator

The crossover operator used in this algorithm (line 6 in Algorithm 4.6) is an one-point
crossover operator where the child takes the first m genes of one parent and the chromosome
is completed with the unvisited sites in the order in which their appear in the second parent.

The value r is an random integer number between 0.2 - n and 0.8 - n.

The Figure 4.12 shows an example of the crossover operator for the example introduced

in Figure 4.1 with m = 4.

parent 1 | 1 |2 |3 |4 |5]|6]|7

parent 2 6 | 3|1 |52 (4|7

child 112131416157

Figure 4.12: Crossover example.

4.5.6 Variable Neighborhood Descent

A VND metaheuristic is used by the MA|PM to improve the solutions quality (line 8 in
Algorithm 4.6). Starting from b = 1 and one input mt-CCVRP solution S, the basic iteration
of VND consists in exploring the neighborhood N, of S. When the current solution S is
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improved, it replaces S and b is reset to 1, otherwise b is incremented. The procedure stops
when the exploration of Ny brings no improvement. Only feasible solutions are accepted.
This VND is very similar to the one presented in Subsection 4.3.5, but with two main
differences: first three neighborhoods are divided in two different neighborhoods each one,

one neighborhood corresponding to 2-opt moves and the second one to A-interchange moves.
The second difference, contrary to the VND in MS-ILS, this VND selects the best neighbor
of the current solution, because this strategy performs better for MA|PM.

With these differences, the VND applied in this MA|PM is composed by the following
d = 8 neighborhoods:

N; : 2-OPT moves on one trip

N : A-interchanges on one trip

N3 : 2-OPT moves involving two trips in a multitrip

Ny : A-interchanges involving two trips in a multitrip

N; : 2-OPT moves on two trips done by distinct vehicles
Ng : A-interchanges on two trips done by distinct vehicles
N7 : Trip interchange

Ng : Trip splitting

Moves N; to Ng are already described in Subsection 4.3.5. It can be noted that first
neighborhood in Subsection 4.3.5 merges neighborhoods N; and N, of this VND; second
neighborhood merges N3 and Ny; and third merges N5 and Ng.

Neighborhood N7 is a new one which has not been tested in the VND of Subsection 4.3.5
and it is described in the following. Neighborhood Ny is the same as fifth neighborhood from
Subsection 4.3.5.

N7 : Trip interchange

This neighborhood interchanges two trips from different multitrips. Every trip is inserted
in the corresponding multitrip in non-decreasing order of mean trip duration by following

the dominance rule given by Theorem 3.3. For instance, note that after the insertion or
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removing of a trip in a multitrip, only one order must be considered. This neighborhood can

be browsed in O(m3R?), where R is the number of multitrips and m = (Z qi> /(Q-R)is
i=1
the average number of trips per multitrip.

4.5.7 Concatenation

The concatenation procedure allows to transform a mt-CCVRP solution, S, to a giant
tour solution, 7', without trip or multitrip delimiters in a list of size n. The procedure starts
by adding to an empty list, in order, the required nodes visited by the first multitrip, after
that it continues adding the required nodes of the second multitrip, and so on, until multitrip
R.

4.5.8 Population Updating

The function Update (line 15 in Algorithm 4.6) defines the population for the following
generation, POPp. The population POP; is composed of all generated children in the
current iteration. A solution in POP; is accepted to be included in the next population if
its distance to other solutions in POP¢ is larger than a parameter A, otherwise mutation
operator is applied. Note that all solutions in POPs are local optima, then the accepting
criteria depend just on the distance measurement. No quality criteria is used. When all
solutions in PO Py satisfy the distance criteria, PO P replace PO Pp.

Several distance measures have been proposed to compare two solutions. For instance,
Sevaux & Sorensen (2005) describe 9 different distance measures. Sorensen & Sevaux (2006)

use edit based distance in their MA|PM metaheuristic.

The exact match distance (Ronald, 1998) counts the number of times the characters in the
same position are different in two strings. This distance is relevant to permutation problems
where the absolute position of a node in the solution is important. Deviation distances
measure the difference between the position of the items in both strings. Different definitions
of deviation (i.e. absolute deviation or square deviation) produce different measures. The
A distance is proposed by Campos et al. (2005) as the sum of absolute differences between
the positions of all items in both strings. R distance (Campos et al., 2005), measured as
the number of times two consecutive nodes in one string are not in the other. Edit distance
(Ukkonen, 1985; Sorensen, 2007) measures the cost to transform a string to another. Different

implementations can produce different distance values. Similarly, reversal distance count the
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number of reversals required to convert a string to the other. Longest common subsequence
and longest common substring can also be used. The difference between both is that in
substrings the nodes must be adjacent. The distance Kandall’s tau (Sevaux & Sorensen,

2005) counts the number of times two nodes appear in the same order in both strings.

In this research, the R distance is used. This distance is relevant for the objective function
studied because it measures the number of arcs in common and takes into account the arc
direction. R distance is not dependent of the multitrip order in the giant-tour. The distance

between two giant-tours, 7" and 7", is measured by metric R in Equation (4.79):

dr(T,T) = &,
=1

e, (4.79)
Where&:{l’ i3y 1 =15 and Topy = Tjy,

0, otherwise

The distance between a giant-tour and the population is defined as the minimum distance
between the given giant-tour and all remaining giant-tours in the population (Equation
(4.80)):

dp™(T) = min{dz(T,T") | T,T' € POP, T #T'} (4.80)

4.5.9 Mutation Operator

When a solution is not accepted, it is mutated to increase the distance to the population
until the distance criteria is satisfied. This procedure is performed in order to increase the

population diversity.

The mutation operator consists in reversing the direction of a sequence of sites in the
non-accepted solution. These moves normally produce solutions with lower quality but with
a large distance when it is compared with the population while some solution structures as
the nearer sites are maintained. This procedure is performed during the updating procedure
Update in Algorithm 4.6.
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4.6 Multi-Start Evolutionary Local Search

The Evolutionary Local Search (ELS) is an iterative procedure in which each iteration a
set of children are created by a mutation operator from a incumbent solution (Wolf & Merz,
2007). Every child is improved by a local search procedure and the best child updates the
incumbent solution in case of improvement. As noticed by Prins (2009a), when the number

of children is one, the procedure is equivalent to an ILS.

Prins (2009a) compares the performance of ELS with ILS and their multi-start
versions called GRASPxXELS and GRASP XILS, respectively. Duhamel et al. (2010) apply
GRASPXELS to the capacitated location-routing problem and use a splitting procedure.
The implementation for the Two-Echelon Location Routing Problem of Nguyen et al. (2010)
alternates between ELS and ILS in an intensification strategy. Villegas et al. (2010) compare
a multi-start ELS with a GRASP/VND for the single truck and trailer routing problem with
satellite depots. The multi-start ELS of Duhamel et al. (2011) solves the two-dimensional
loading capacitated vehicle routing problem (2L-CVRP) from a relaxation of the problem
based on the resource-constrained project scheduling problem (RCPSP-CVRP). Duhamel
et al. (2012) propose an ELS with a new generic split procedure based on a depth first search.

In the following subsections the proposed MS-ELS and its components are described.

4.6.1 Principle and General Structure

The proposed multistart evolutionary local search (MS-ELS) alternates between two
solution representations: mt-CCVRP solutions, which are sets of trips grouped in multitrips,
and giant tours solutions without trip nor multitrip delimiters. The metaheuristic also calls
a split procedure and a wariable neighborhood descent (VND) as improving phases. The
MS-ELS is sketched in Algorithm 4.7.

A number (MazStart) of successive Randomized Greedy Solutions are constructed. Each
solution S is built by the procedure Greedy Randomized Heuristic (line 3) described in
Subsection 4.3.4. The resulting solution is an mt-CCVRP solution in which each multitrip
is coded as a list of nodes in the order to be visited and uses the node “0” to delimit at the

start and end of trips which means the visit to the depot.

The procedure Precomputations computes the attributes of each sequence o described in

Subsection 4.3.3 (line 4). Every randomized initial solution S, is immediately improved by
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the VND procedure in line 5. In this algorithm, the VND described in Subsection 4.5.6 is

used.

Algorithm 4.7 — MS-ELS for the mt-CCVRP
1: Zgx < 00
2: for Start < 1 to MazStart do
3: Greedy Randomized_ Heuristic (S)

4: Precomputations (S)

5: VND (S)

6: for Iter < 1 to Maxlter do
7 Concatenate (S,T)

8: Lgr 4— 00

9: for Child < 1 to MazChildren do
10: T < T

11: Perturbation (T")

12: Split (T",5")

13: Update_ Precomputations (S”)
14 VND (S")

15: if Zg» < Zg then
16: S 5"

17: end if

18: end for

19: if Z¢ < Zg then

20: S8

21: end if

22: end for

23: if Zg < Zg« then

24: S* S

25: end if

26: end for

Concatenate (line 7) procedure allows to translate the solution S in a giant tour 7', where
the last one is a TSP-like solution composed of a single list of all required nodes in the order

to be visited without trip or multitrip delimiters as described in Subsection 4.5.2.

After that, a number (Mazlter) of iterations are performed. In each iteration
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MazxChildren copies (T") of T are taken, a perturbation procedure (Perturbation) is applied
(line 11) to each copy by the procedure Mutation described in Subsection 4.5.8. This
perturbation procedure changes the absolute position of several nodes in the giant tour while
the connections between nodes remains similar. This perturbation method keeps linked most
of the nodes of the original solution but the new solution is different because a) the cost of
a sequence changes when it is reversed and b) new trips are defined by the split procedure.
The last feature means that even if the reversed sequence belong to the same trip, after the

Split procedure the nodes in the trip can change.

The perturbed giant tours are optimally split up in multitrips to give mt-CCVRP
solutions (S”) by the Split procedure (line 12) described in Section 4.4 and improved by
VND in line 14 of Subsection 4.5.6. The procedure Update Precomputations of line 13
updates the attributes of solution S to speed up the VND procedure.

The best of the MaxChildren solutions is used to replace S, in case of improvement.
Finally, the best solution found S* is updated when S improves the latter. In Algorithm
4.7, Zg« and Zg define the global best cost and the cost of the best child of the current

generation, respectively.

4.7 Computational Experiments

Computational experiments have been performed to evaluate and compare the
performance of the mixed integer mathematical models and the metaheuristics algorithms
for the CCVRP and the mt-CCVRP. The Subsection 4.7.1 presents the instances. Parameter
tuning is described in Subsection 4.7.2. A comparison between the results of five
mathematical formulations for the CCVRP on small instances is performed in Subsection
4.7.3. The results on larger instances for the CCVRP are shown in Subsection 4.7.4. For the
mt-CCVRP, Subsections 4.7.5 and 4.7.6 describe the results on small and larger instances,
respectively. Subsection 4.7.7 compares the solutions for the CCVRP and the mt-CCVRP.

4.7.1 Implementation and Instances

The metaheuristic algorithms, MS-ILS, MA|PM and MS-ELS, have been implemented
in Visual C+—+ 2010 and the mathematical models in CPLEX 12.5. All of them have been
tested on a 2.50 GHz Intel Core i5 computer with 4 GB of RAM and Windows 7 Professional.
Four sets of experiments are reported. The first one compares the five mathematical
models for the CCVRP via a commercial solver (CPLEX). Similarly, the second set of
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experiments compares the resolution of the 0-1 MILP with the hybrid metaheuristic for the
mt-CCVRP. Obviously, such comparisons are only possible on small instances. The third set
of experiments applies the MS-ILS metaheuristic to the CCVRP, the particular case of the
mt-CCVRP with one trip per multitrip, because the results of three published metaheuristics
can be used for comparison. MA|PM and MS-ELS cannot solve the special case of CCVRP
because split procedure needs complex modifications to force it to find only one trip per
vehicle. Finally, the fourth set of experiments consists in evaluating the three metaheuristics
on the mt-CCVRP.

The comparison with CPLEX involves 12 randomly generated instances with 15 demand
nodes. For the CCVRP, the instances of the literature are used, which are derived from
classical CVRP instances: the 14 CMT instances (Christofides et al., 1979), with n = 50 to
199 demand nodes, and the 20 GWKC larger instances (Golden et al., 1998), with n = 200
to 483. To get CCVRP problems, the fleet size is fixed (otherwise the optimum is trivial,
with one direct route to each demand node) and the maximum trip length defined for some
instances is ignored. As the seven CMT instances with a trip length constraint share the
same network as the seven unconstrained instances, 7 + 20 = 27 CCVRP instances are
finally obtained. In all instances the traveling time w;; on arc (4, j) is equal to the Euclidean

distance, computed as a double-precision real number.

The same 27 instances are taken for the mt-CCVRP, but reducing the number of vehicles
to force the metaheuristic to build several trips per vehicle. For the sake of simplicity, the

resulting data files are still called CMT and GWKC instances in the sequel.

4.7.2 Parameter Tuning
Multi-Start Iterated Local Search

A big advantage of MS-ILS is to have only three parameters: the number of successive
starts (MaxStart), the number of iterations per ILS (MaxIter), and the maximum number

of consecutive sites in A-interchange moves (\).

As the running time of MS-ILS is roughly proportional to the number of calls to the VND,
we decided to allocate a fixed “computing budget” of 5000 calls to control the execution
time. Like Prins (2009a), who developed an MS-ILS for the CVRP, it is observed that the
partition of the calls among several restarts is critical, with two extreme options: using

MaxStart = 1, the metaheuristic reduces to a single ILS with 5000 iterations, while for
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MazlIter = 1 it becomes a GRASP with 5000 independent iterations. Several tests have
been performed with different parameter values: MaxStart tested values are {1,3,5,10},
while MaxIter = 5000/MaxStart. Preliminary results suggest A = 3 to balance quality
and execution time. For the mt-CCVRP the best results on average are obtained using
MazStart = 3, MaxIter = 1000 and A\ = 3.

For the CCVRP, the MS-ILS lasts longer than the metaheuristics from literature because
it is designed for a more general problem: to limit the running time on these instances, we

preferred to reduce the number of successive ILS restarts to two, while keeping five runs.

Memetic Algorithm with Population Management

Five parameters must be tuned when MA|PM is applied: Size of the population (npop),
number of generations (ngen), the number of children (nchildren), the minimum distance

threshold (A) and the maximum number of consecutive sites in A-interchange moves ().

Preliminary results show that MA|PM requires additional computational effort due to
resulting children from crossover operator are normally far from local optima solutions. For
that reason the “computing budget” is reduced to 3000 VND calls where the execution time
is similar to the tests for the MS-ILS on CMT and small instances. As in the proposed
MA|PM, the VND is applied to each generated child, the number of VND calls can be
computed as ngen - nchildren. As explained before, A = 3 to balance quality and execution
time. The number of children nchildren is equal to the population size npop. They are
tested with the values npop = {10,30,50}. Note that large population size values require
excessive computational effort due to distance measures demand many comparisons. The
number of generations ngen is equal to ngen = 3000/nchildren. The parameter A has been
tested with the values A € {0.2-n,0.3-n,0.4-n}. Large A values accept only very dissimilar
solutions while values close to zero only reject very close solutions. The chosen values allow
a relative good diversity while the quality is not very penalized. On average, the best results
are obtained using npop = nchildren = 30, ngen = 100, A = 3 and A = 0.3 -n. The
parameter A is the minimum distance to accept a child, where high values require larger

differences between solutions.

Note that in this method, contrary to most MA implementations, the size of the
population is relatively small. Indeed too many comparisons must be performed when larger

populations are used, which increases the running time.
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Multi-Start Evolutionary Local Search

The MS-ELS has only four parameters: the number of successive starts (MaxStart), the
number of iterations per ELS (MaxzIter), the number of children (MazChildren) and the

maximum number of consecutive sites in A-interchange moves ().

Due to the similarity between MA|PM and MS-ELS components, a “computing budget”
of 3000 VND calls is fixed. Like in MS-ILS, MazStart = {1,3,5,10} and A = 3 are tested.
Nevertheless, computing budget is now computed as MaxStart - MaxIter - MaxChildren.
MaxChildren = {1,5,10} values are tested. The best results on average are obtained with
MaxStart = 3, MaxIter = 100, MaxChildren = 10 and A = 3.

For large instances results are also compared with MaxStart = 3, MaxIter = 1000,
MaxChildren = 1 and A\ = 3 which is equivalent to a MS-ILS by performing the splitting

procedure.

4.7.3 Comparison of Different Models for the CCVRP

In this subsection the five mathematical models presented in Subsection 4.2.1 are

compared. The results are presented in Table 4.2.

Table 4.2 keeps the same four first columns than Tables 4.5 and 4.6: the instance name,
the number of required sites n, the number of vehicles R, and the factor Z ¢ | /(Q-R).

Note that the meaning of this factor changes. As only one trip is allowed in tzge1 CCVRP, this
factor defines the average loading level of vehicles and the strength of the capacity constraint.
Then, for each model, four columns are shown: the linear relaxation (LR), the solution cost
(Cost), the percentage gap between the best integer solution and the best lower bound given
by CPLEX (gap), and the running time in seconds (Time), limited to one hour. When
CPLEX must be interrupted, the best lower bound and the cost of the best integer solution
found are reported instead of solution value. Gaps equal to zero (displayed in boldface)

means that CPLEX has found the optimal solution in less than one hour.

Models which are based on the use of decision variables ¢;, defining the arrival times
at site 7, always find the same linear relaxation, for instance models CCVRP1, CCVRP2,
CCVRP4 and CCVRP5. These linear relaxation values also are shared for instances with
the same node locations and demands, as instances testg; to testypg and instances testg; to

test;o. Model CCVRP3, where the sum of arrival times is computed using arc coefficients
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variables y;; instead of arrival time variables ¢; find better (greater) linear relaxations for the
12 test instances. The linear relaxations for this model increase when the number of vehicles

decreases.

Model CCVRP4 has the worst performance. It finds no optimal solutions in an one hour
limit and its average gap is 72.13% (23.33% in the best case and 145.96% in the worst case).

Model CCVRP1 finds two optimal solutions, the optimal solutions for the two instances
with larger number of vehicles and lower average load of vehicles. Its worst gap is 81.16%,
and 38.89% on average. Model CCVRP2 finds four optimal solutions, and the average gap
is reduced to 23.39%.

Only models CCVRP3 and CCVRP5 find all optimal solutions in less than one hour.
Nevertheless, CCVRP5 is 2.5 times slower. CCVRP3 is faster in every instance.

When CPLEX finds the optimal solution, the time to find the optimal solution tends to
increase when the number of vehicles decreases or when the average loading factor increases.
Similarly, when the time limit is reached, the gap tends to increase when the number of

vehicles decreases or when the average loading factor increases.

4.7.4 Results on Larger Instances for the CCVRP

To this date, as far as we know, four metaheuristics have been published for the
CCVRP: the memetic algorithms MA1 and MA2 of Ngueveu et al. (2010), the adaptive large
neighborhood search (ALNS) of Ribeiro & Laporte (2012) and the two-phase metaheuristic
T-PM of Ke & Feng (2013). All these authors have solved the CMT and GWKC instances
using 5 runs, except Ngueveu et al. who have tackled only the CMT problems, and with a
single run. However, for a fair comparison with ALNS, Ribeiro and Laporte asked the codes
of MA1 and MA2 to Ngueveu et al. to solve five times the CMT and GWKC instances on

their computer. In this comparison the same recomputed costs is used.

From the metaheuristics proposed in this research, only MS-ILS can solve CCVRP
(single trip version), but it must be modified to use at most one trip per vehicle. MA|PM
and MS-ELS cannot solve this version of the problem because the split algorithm cannot

guarantee to find a solution with only one trip per vehicle.

On CCVRP instances, the initial constructive heuristic of Subsection 4.3.4 builds in
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general no more than R trips and the final step that packs these trips into multitrips is no
longer used. The following simple procedure is applied when R trips are not sufficient: a)
the node u not yet serviced with largest demand is determined; b) if u cannot be feasibly
inserted, demand nodes are removed at random from the R trips until feasible insertions
appear; c) the best possible insertion of u in the R trips is performed. This process, is

repeated until all sites are routed, never fails on the instances tested.

Apart from the suppression of N5 and the modification of the initial heuristic, the code
of MS-ILS remains identical when applied to the CCVRP: for instance, complex moves in

neighborhoods Ny, N3 and Ny are not simplified or removed.

Table 4.3 compares the four published algorithms with MS-TLS on the seven CMT
instances and Table 4.4 does it for the 20 GWKC instances. On each table, the four first
column headers correspond to the instance name, the number of demand nodes n, the number
of vehicles used R, and the best known solution (BKS) found using all heuristics. For each
algorithm are indicated the best and average deviation to the best known solution over 5
runs (BestD and AvgD), and the average computational time in seconds (Time). Best known

solutions have a null deviation and they are displayed in boldface.

On the seven CMT instances, the proposed MS-ILS retrieves six best known solutions.
The running time increases quickly with instance size, but remains comparable with the
durations of the other heuristics. The only instance where MS-ILS from this research fails
to find the BKS is the largest one (199 demand nodes). Considering performance indicators
averaged on the seven instances, the execution time is less than two and a half minutes
(variation between 19 seconds and 5 minutes) and the best and average deviations are quite
small (0.05% and 0.49%). Moreover, the best deviation is outperformed only by T-PM and
MS-ILS gives the second best average deviation after ALNS.

On the 20 larger GWKC instances, MS-ILS finds only one best known solution. TP-M
and ALNS are better in terms of solution quality and running time, but MS-ILS metaheuristic
is still better than MA1 and MA2 for these two criteria. Concerning the results averaged
over the 20 instances, the average execution time is around 45 minutes, varying between
4 and 189 minutes, the best deviation is 1.01% and the average deviation 1.26%. These
results are good, keeping in mind that MS-ILS is designed for a more general problem (the

mt-CCVRP) and tested here without simplifying its code.
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4.7.5 Results on Small Instances for the mt-CCVRP

Table 4.5 presents the results for the 0-1 mixed integer linear program on small instances
with n = 15 required sites, while Table 4.6 presents the results of the three metaheuristics

on the same instances.

In Table 4.5 the first four columns display the instance name, the number of required sites

n, the number of vehicles R, and the average number of trips per vehicle Z g | /(Q-R).
i=1
This table presents two types of results for the mathematical model developed in Section

4.2: the first without valid inequalities (4.59) to (4.62), called 0-1 MILP, and then with valid
inequalities, called 0-1 MILP*. For both CPLEX results the cost of the linear relaxation
of the mathematical model (LR), the solution value (Cost), the percentage gap between
the best integer solution found and the best lower bound found (gap), which is given by
CPLEX, and the running time in seconds (Time), limited to one hour. When CPLEX must
be interrupted, the best lower bound and the cost of the best integer solution found are
reported instead of solution value. The comparison between both models, 0-1 MILP and
0-1 MILP*, allows to evaluate the impact of the valid inequalities (4.59) to (4.62).

Table 4.5: Results of the mathematical models on small mt-CCVRP instances.

Fi S g 0-1 MILP 0-1 MILP*
ille n R &£

Q-R LR Cost gap Time LR Cost gap Time
testoy 15 4 1.00 588.75 687.29 0.00 1597 619.04 687.29 0.00 8.66
testge 15 4 1.25 605.08 741.91 0.00 77.63 633.47 741.91 0.00 33.99
testos 15 4 1.67 661.11 855.91 0.00  260.60 686.32 855.91 0.00 38.38
testops 15 4 2.50 836.57 1090.67 0.00  264.80 851.99 1090.67 0.00 24.20
testops 15 3 1.11 632.83 817.22 0.00  138.95 697.26 817.22 0.00 16.13
testos 15 3 1.33 643.13 942.45 0.00 2943.82 708.68 942.45 0.00 414.64
testoy 15 3 1.67 674.25 (941.99/1008.03)  7.01 - 733.24 1008.03 0.00 560.17
testos 15 3 2.22  749.57 (1035.92/1111.44) 7.29 - 788.88 1111.04 0.00  124.54
testoo 15 2 125 68748 (1070.01/1201.30) 1227 - 802.20 (1116.97/1182.66) 5.8 -
testip 15 2 1.67 702.20 (1059.41/1310.17) 23.67 - 814.44 (1100.45/1327.76) 20.66 -
test;; 15 2 2.00 720.16 (1101.58/1403.74) 27.43 - 830.58 (1199.17/1391.60) 16.05 -
test;p 15 2 250 761.58 (1164.97/1513.06) 29.88 - 862.40 (1296.97/1513.06) 16.66 -
Mean 8.96 2108.48 494 1301.73

Table 4.6 keeps the same first column of Table 4.5. Then, for each metaheuristic,
the best solution value over five runs (Best cost), the average solution value (Avg cost),

the percentage deviation of the best solution cost Z(heur) to the optimum Z(MILP)
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of CPLEX (or to the best lower bound when the solver must be stopped) computed as
gap= (Z(heur)/Z(MILP) — 1) x 100, and the average running time per run in seconds

(Time) are indicated.

Table 4.6: Results of metaheuristics on small mt-CCVRP instances.

Fi / g MS-ILS MAPM MS-ELS
ile n R

QR Best cost Avgcost gap Time Best cost  Avg cost gap Time Best cost Avg cost gap Time
testpr 15 4 1.00 687.29 687.29  0.00 1.95 687.29 687.29  0.00 2.27 687.29 687.29  0.00 1.87
testope 15 4 1.25 741.91 741.91 0.00 2.76 741.91 741.91 0.00  2.35 741.91 741.91 0.00 2.54
testg3 15 4 1.67  855.91 855.91  0.00 1.96 855.91 855.91  0.00 1.90 855.91 855.91  0.00 1.76
testoy 15 4 250 1090.67 1090.67 0.00 1.41 1090.67 1090.67 0.00 1.40 1090.67 1090.67 0.00 1.24
testgs 15 3 1.11 817.22 81722  0.00 4.78 817.22 817.22  0.00 2.53 817.22 817.22  0.00 4.15
testos 15 3 1.33 942.45 942.45  0.00 4.28 942.45 942.45  0.00 2.55 942.45 942.45  0.00 3.98
testoy 15 3 1.67 1008.03 1008.03 0.00 2.32 1008.03 1008.03 0.00 2.33 1008.03 1008.03 0.00 2.06
testops 15 3 2.22  1111.04 1111.04 0.00 2.53 1111.04 1111.04 0.00 1.82 1111.04 1111.04 0.00 2.38
testopg 15 2 1.25 1182.66 1182.66 5.88 5.45 1182.66 1182.66 5.88  2.56 1182.66 1182.66 5.88 5.07
testyp 15 2 1.67 1310.17 1310.17 19.06 3.69 1310.17 1310.17 19.06 2.40 1310.17 1310.17 19.06 3.16
test;; 15 2 2.00 1391.60 1391.60 16.05 3.49 1391.60 1391.60 16.05 2.11 1391.60 1391.60 16.05 3.28
testp 15 2 250 1513.06 1513.06 16.66 1.57 1513.06 1513.06 16.66 1.97 1513.06 1513.06 16.66 1.11
Mean 4.80 3.02 480 2.18 480 2.72

The results indicate that the relaxed LP yields acceptable lower bounds, a good sign for
a future study on valid inequalities. For the eight first instances, CPLEX finds an optimal
solution. The model with valid inequalities outperforms the model without them: all linear
relaxations are improved, two more optimal solutions are found in less than one hour, the
gap is reduced when time limit is reached, and the running times are decreased when optimal
solutions are found by both models. The instances look harder when the number of vehicles
decreases and the average number of trips per vehicle increases: the running time of CPLEX

augments quickly and the four last instances cannot be solved in one hour.

The three proposed metaheuristics always return a solution in at most 5.5 seconds. When
optimal solutions are found by CPLEX (on the first 8 instance), the three metaheuristics have
found the same solution. When time limit is reached by CPLEX (on the last 4 instances), the
gaps are computed using the best lower bound found by CPLEX and the solutions found by
the metaheuristics have the same values in all cases. These gap values for the last 4 instances
are probably overestimated since solutions found by metaheuristics are always better than
best integer solutions found by CPLEX and perhaps they are optimal but it is not possible
to prove it. In addition, the columns average cost indicate that the same solution cost is

found on the five runs.
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The running times of the metaheuristics are similar. Nevertheless, the average running
time is lower for the MA|PM than for the other two. Contrary to CPLEX, the running
time is not affected significantly by the number of vehicles, but when the vehicle capacity

n
increases. In that case, the average number of trips per vehicle Z qi) /(Q - R) decreases,

i=1
which impacts the complexity of neighborhoods 2-OPT on one trip, A-interchanges on one

trip, trip interchange and trip reordering.

4.7.6 Results on Larger Instances for the mt-CCVRP

In this subsection the three proposed metaheuristics (MS-ILS, MA|PM and MS-ELS) are
compared on larger mt-CCVRP instances. Two results are shown for MS-ELS: MS-ELS'
refers to MS-ELS with ten children and 100 iterations while MS-ELS! refers to the same
method with one child and 1000 iterations. MS-ELS! is an MS-ILS but differs from the
one presented in Section 4.3 because it operates in two solution spaces and applies the split

procedure described in Section 4.4.

Tables 4.7 and 4.8 present the results for the CMT instances and GWKC instances

respectively, using the same columns: instance name, number of nodes n, number of vehicles
n

R, average number of trips per vehicle Z ¢;/(Q - R), best known solution BK S, and for each

method (MS-ILS, MA|PM, MS-ELS* aZI;cll MS-ELS') deviation from the best known solution
in 5 runs in percent (Dyes), average deviation of the 5 solutions from best known solution
in percent (D,,,) and average duration per run in seconds (7Time). It can be recalled that
the CMT and GWKC instances for the mt-CCVRP are identical to the CCVRP versions,

except a reduced fleet size to get several trips per vehicle.

On the CMT instances, the average computational time is less than 6 minutes, varying
between 0.54 and 14.55 minutes. MS-ILS is the slowest algorithm, its average computational
time is 1.72 times the computational time of the fastest algorithm (MS-ELS'). Nevertheless,

its execution time for instance CMTs is lower than MA|PM execution time.

MA|PM is 50% slower than MS-ELS', and 34% slower than MS-ELS'. Although
these three methods use the same VND algorithm and the same splitting procedure, these
difference in the execution time can be explained by the children generation strategies and
their impact on the VND precomputations: as MS-ELS is based on small changes on a single

incumbent solution, children can reuse most of the precomputations of the incumbent
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solution and need less VND moves to find a local optima solution, while children in MA|PM
do not reuse precomputations from parents and can be far from local optima solutions. The
number of children in MS-ELS has an impact on the computational time: from nchildren =1
to nchildren = 10 the computational time increases 12%. MS-ELS! is, on average, the fastest
algorithm, nevertheless, MS-ELS' presents the best times for two instances: CMTy; and
CMTy3. A comparison with Table 4.3 (CCVRP) shows that the running time for MS-ILS is
roughly multiplied by 2.5 when multitrips must be handled.

With five runs, MS-ILS finds five out seven best known solutions. It fails on the two
largest instances which also have the largest average number of trips. Nevertheless, MS-ILS
solutions are very close to best known solutions since its deviation is 0.03%. MA|PM finds
three best known solutions and its average deviation (0.23%) indicates that its solutions are

close to best known solutions.

MS-ELS! always finds the best known solution (with five runs). When the number of
children is reduced the method does not find two of them and the average deviation from the
best known solution increase from 0% to 0.08%. The average costs for five runs is close to the
best cost on the four approaches (0.22%, 0.33%, 0.20% and 0.28%, respectively), indicating
that they are robust.

The average deviations from best known solutions for MS-ILS, MS-ELS! and MS-ELS'?
increase moderately on GWKC instances, with 0.11%, 0.23% and 0.19%, respectively. For
MA|PM algorithm this increasing is more pronounced (1.30%).

MS-ILS finds 10 best known solutions and its average deviation is 0.11%. The average
computational time is 78 minutes, ranging from 13 minutes to 265 minutes. The proposed
MS-ILS is still relatively stable in terms of solution quality but its running time becomes

important on the largest instances with 480 demand nodes.

MA|PM has the poorest performance. Its average deviation is 11.8 times the deviation
in MS-ILS, and the computational time is 1.5 times larger. MA|PM has not found any best

known solution.

MS-ELS still being the fastest of the proposed methods, around 60 minutes (22%
faster than MS-ILS) for nchildren = 1 and 62 minutes (20% faster than MS-ILS) when

nchildren = 10. Nevertheless, their average deviation are now greater, 0.23% and 0.19%
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respectively, compared with 0.11% in MS-ILS. MS-ELS! finds four best known solutions and

MS-ELS™ finds seven, with five runs per instance.

The deviation from the best solution found (Dpe;) from MS-ELS! is larger than the
Dyest from MS-ILS due to the values of a few instances. For instance, if instances GWKCg,
GWKC,9 and GWKCy are ignored, Dy.s from MS-ELS!® becomes 0.11% while Dy, from
MS-ILS becomes 0.13%.

Moreover, the execution times vary a lot among instances of the same size: for example,
instances GWKCy; and GWKC;; contain 240 demand nodes but require respectively 2443
and 791 seconds of processing time by MS-ILS metaheuristic. This comparison remains
similar for MA|PM, MS-ELS' and MS-ELS' metaheuristics. This variation is mainly due
to the neighborhood N; in which in the VND spends most of its time. Indeed, it can be seen
in Subsection 4.3.5 that |[N;| = O(n?/m), where the number of trips m can be computed
asm = R- Zqi/(Q . R)): GWKCy; and GWKC;; respectively require m = 8.72 and

i=1
m = 21.6 trips. Similar analysis can be done with different subsets of instances. Note that

grater number of trips with the same (or similar) number of required nodes implies a greater

average number of nodes per trip.

Figure 4.13 shows the evolution of the average deviation to the best known solution
during the iterations of MS-ILS, on the CMT instances, using a logarithmic scale for the
deviation axis. For each number of iterations, the deviation reported is the average of 35
values (7 instances and 5 runs per instance). The initial deviation is 7.78% for the first local
optimum, obtained by the greedy randomized heuristic followed by one call to the VND. A
major part of the descent is accomplished using the allocated budget of 5000 iterations: the
deviation reduces to 0.22%. Additional iterations bring only a minor improvement, at the

expense of larger running times.

Table 4.9 details the percentage deviations for each instance and adds the deviation of
the initial heuristic solution. As it can be observed, the deviation is below 1% (0.77%) after
1000 iterations versus 0.22% after 5000. Hence, a first way to reduce the large running
times on GWKC instances (up to 15000 seconds) is to use 1000 iterations only: in that
case no running time would exceed 50 minutes. A much faster option is to run the initial
constructive heuristic and improve it using a single call to the VND, which gives an average

deviation of 7.78% in at most 3 seconds per run, on all instances tested.
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Figure 4.13: Evolution of average deviation to best known solution on CMT instances.

Table 4.9: Improvement of initial solution (average of 5 runs).

Instance Initial gap Gap after 1st Gap after Gap after
to BS  call to VND 1000 calls 5000 calls

CMTy, 19.61 4.12 0.35 0.16
CMTg 36.08 8.20 0.36 0.04
CMTg3 35.13 6.41 1.02 0.42
CMToy 43.38 8.93 0.55 0.25
CMTs 39.12 9.02 1.80 0.48
CMT; 63.30 7.40 0.42 0.17
CMT1, 53.52 10.39 0.88 0.00
Average 41.45 7.78 0.77 0.22

4.7.7 Comparison between CCVRP and mt-CCVRP solutions

A comparison between the best known solutions of both problems, CCVRP and
mt-CCVRP, allows to evaluate the impact of the fleet size on the average arrival time.
Tables 4.10 and 4.11 compare the main features of each instance and the resulting average
arrival time at affected sites. The first two columns indicate the instance name and the

number of sites n. For each problem, CCVRP and mt-CCVRP, three columns are presented:
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the number of vehicles R, the average vehicle load (CCVRP) or average number of trips

(mt-CCVRP) computed as Z ¢;/(Q - R), and the average arrival time ¢ computed as the
i=1
objective function value of the best known solution in the corresponding instance-problem

divided by the number of nodes (t = BK.S/n).

Table 4.10: Comparison of the average arrival times of CCVRP and mt-CCVRP for CMT
instances (Christofides et al., 1979).

CCVRP mt-CCVRP
Instance n Sa — Sa —

R OR t OR t

R

CMTy, 50 5 0.97 44.61 3 162 77.13
CMTyy 75 10 0.98 31.89 3 3.25 110.67
CMTys 100 8§ 091 40.45 3 243 109.57
CMTyy 150 12 0.93 33.25 3 3.73 137.31
CMTys 199 17 094 29.19 3 5.31 170.76
CMTy; 120 7 0.98 60.95 3 229 131.65
CMTy, 100 10 0.91 35.59 3 3.02 106.59
Mean 0.95 39.42 3.09 120.52

Table 4.10 compares the CMT instances. The fleet size has been reduced between 40%
and 82% in mt-CCVRP. This reduction implies the increasing of the average arrival time
between 73% and 485%. The average arrival time for the CCVRP instances is 39.42 time
units, while for mt-CCVRP is 120.52 (3 times greater). The increasing in the average arrival

time is greater when the factor Z ¢;/(Q - R) becomes greater.
i=1

In Table 4.11 the values of the average number of trips are between 1.48 and 2.70. Here
the fleet size in reduced between 40% and 64%, and the average arrival time increases between
69% and 191%. On average, the average arrival time increases 2.40 times from single-trip to

multitrip version.
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Table 4.11: Comparison of the average arrival times of CCVRP and mt-CCVRP for
GWKC instances (Golden et al., 1998).

ST CCVRP mt-CCVRP
R =4 I R %% ¢
GWKCy, 240 9 0.97 228.28 4 218  512.02
GWKCp, 320 10 0.92 314.44 4 229  795.14
GWKCp; 400 10 0.89 427.57 4 222 1086.78
GWKCos 480 10 0.96 545.94 4 240 1407.53
GWKCps 200 5 0.89 570.82 3 1.48  966.70
GWKCps 280 7 0.89 501.54 3 2.07 1196.55
GWKCo, 360 8 1.00 501.34 3 2.67 1371.74
GWKCps 440 10 0.98 441.14 5 1.96  909.08
GWKCpe 255 14 096 18.53 5 2.69  53.93
GWKC;, 323 16 0.95  20.79 6 2.53  57.00
GWKC;; 399 18 0.95  23.09 7 243  60.75
GWKC;, 483 19 0.99  25.93 8 234  64.48
GWKCp; 252 26 097 1440 10 251  39.91
GWKCy4 320 29 099 1630 12 239  41.92
GWKC;s 396 33 098 1770 15 2.15  41.38
GWKC;s 480 37 097 1927 15 239  50.39
GWKCy; 240 22 098 1277 10 2.16  27.58
GWKC;s 300 27 1.00 14.07 12 225  31.28
GWKC;e 360 33 098 1534 12 270  41.37
GWKCy 420 38 099 1720 15 252  42.71
Mean 0.96 187.32 2.32  439.91

4.8 Concluding Remarks

This chapter introduces a new problem, the multi-trip cumulative capacitated vehicle

routing problem (mt-CCVRP). This problem constitutes a good way to model the delivery
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of relief supplies after a humanitarian disaster, where the number of vehicles is limited and

the time to reach affected areas is critical.

Four mathematical models for the single-trip version (CCVRP) have been proposed
and compared with the one found in the literature. The best results are obtained by the
model CCVRP3 which is generalized to the multitrip case. The mathematical model for the
mt-CCVRP, a 0—-1 MILP without vehicle nor multitrip indexes, is proposed and tested on

small instances.

The chapter develops also three metaheuristics to solve the mt-CCVRP: MS-ILS, MA|PM
and MS-ELS. MS-ILS hybridizes a multi-start ILS with a VND which evaluates each move
in constant time. Five moves are proposed, some precomputations speed up the VND, and a
dominance rule described in Chapter 3 avoids to consider multiple orderings for multitrips.

The same precomputations and dominance rule, with similar neighborhood structures are
used by MA|PM and MS-ELS.

The chapter also presents an adapted two-level split procedure which considers the
cumulative objective (the sum of arrival times) and the multiple trips. This procedure
solves optimally a shortest path problem in polynomial time complexity where the first level
defines the set of nodes in each multitrip, and the cost of each multitrip is computed by

solving the second level split which defines the different trips of each multitrip.

On small instances, the resulting metaheuristics find the same results as the mathematical
model when the latter can find the optimal solution. They are able to produce competitive

results in relatively short computing times.

MS-ILS competes with published methods for the case without multitrips, the CCVRP.
Although the running time becomes important on the largest instances close to 500 demand
nodes, it has been shown that the fast descent can be truncated to get good solutions in a

reduced duration.

A comparison between three metaheuristics is performed for larger mt-CCVRP instances.
The results show the efficacy of the proposed splitting procedure and the developed moves,

as well as impact of the fleet size on the average arrival time.
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Conferences and Publications

Preliminary results of the proposed methods have been presented in one national

conference (ROADEF 2012) and four international conferences:

e J. C. Rivera, H. M. Afsar and C. Prins. Une méthode ILS pour le probléme de tournées
de véhicules cumulatives avec routes multiples. 13éme congrés annuel de la Société
francaise de recherche opérationnelle et d’aide a la décision, ROADEF 2012. Angers,
France. April, 2012.

e J. C. Rivera, H. M. Afsar and C. Prins. An MS-ILS algorithm for the multi-trip
cumulative vehicle routing problem. Workshop on combinatorial optimization, routing
and location, CORAL 2012. Benicassim, Spain. May, 2012.

e C. Prins, J. C. Rivera and H. M. Afsar. A mathematical model and a metaheuristic
for the mt-CCVRP. Network Optimization Workshop, NOW 2013. Sicily, Italy. June,
2013.

e J. C. Rivera, H. M. Afsar and C. Prins. Split-based metaheuristic for the multitrip
cumulative capacitated vehicle routing problem (mt-CCVRP). Vehicle Routing and
Logistics Optimization, VeRoLog 2013. Southampton, England. July, 2013.

e J. C. Rivera, H. M. Afsar and C. Prins. Multistart evolutionary local search for a
disaster relief problem. Artificial Evolution, EA 2013. Bordeaux, France. November,
2013.

A full-paper version with results based on MS-ILS metaheuristic has been accepted at

Computational Optimization and Applications:

e J. C. Rivera, H. M. Afsar and C. Prins. A Multistart Iterated Local Search for
the Multitrip Cumulative Capacitated Vehicle Routing Problem. To appear in

Computational Optimization and Applications.

A paper comparing MS-ILS and MS-ELS has been accepted to be published, for a

post-conference book with selected papers, in Lecture Notes in Computer Science (LNCS):

e J. C. Rivera, H. M. Afsar and C. Prins. Multistart Evolutionary Local Search for a
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Chapter 5

The Cumulative Capacitated Vehicle
Routing Problem with Indirect

Deliveries

5.1 Introduction

In this chapter a new vehicle routing problem is studied. This problem is raised by the
relief aid delivery in the response phase of humanitarian logistics. As in previous chapters,
the objective function is the sum of arrival times, but here vehicles can perform one single
trip and not all sites need to be visited. The relief aid for unvisited sites must be distributed
by an auxiliary fleet from a visited site. This problem is named the cumulative capacitated
vehicle routing problem with indirect deliveries (CCVRP-ID).

The aim of this new problem is to reduce the average arrival time at sites by using
different transportation modes. As mentioned in previous chapters, early arrival times at
communities can increase the survival rate of the population. So communities close to each
other can be served from a common location, supplied by a fleet of vehicles (regular fleet),
based at the depot and then, if necessary, relief aid is distributed to unvisited communities

by smaller auxiliary vehicles, better suited for short distances.

This approach reduces the average arrival time at sites. For instance, when no auxiliary
vehicles are used, the solution is a CCVRP solution, but auxiliary vehicles can improve
the distribution system performance while preserving its feasibility. For the sequence
o= (,...,i—1,4,i+ 1,...,M,) of M, required sites visited by a regular vehicle, if the

transportation mode to reach site i from site ¢ — 1 is changed by a slower auxiliary vehicle,

135



Logistics Optimization in Disaster Response Operations

it is clear that the arrival time at site ¢ is increased. This increased arrival time at site ¢ can
be compensated by a decrease in the arrival times at sites i + 1 and all the M, — i sites after
site ¢ in the sequence, especially when the triangle inequality holds, since site ¢ + 1 is visited

from site ¢ — 1 by the regular vehicle.

The problem is formulated as an integer linear program, based on the formulation
CCVRP3 presented in Subsection 4.2.1. Additionally, a hybrid MS-ELS metaheuristic calling
a VND procedure is proposed to solve it. This metaheuristic is inspired by the MS-ILS
presented in Section 4.3, but with important modifications to handle the new problem
features (unvisited sites and two transportation modes). Evolutionary local search strategy
is applied instead of iterated local search because it has a more general structure which

includes ILS as special case.

There are similarities with other VRPs such as the Generalized VRP (GVRP), the
Selective VRP, and the two-echelon vehicle routing problem, and also problems with covering
considerations like the Ring-Star problem and the covering tour problem, where the sites

can be serviced with undirected arcs.

In the GVRP, studied by Pop et al. (2012), Pop et al. (2013) and Afsar et al. (2014),
a subset of sites must be visited but, contrary to the CCVRP-ID, the sites are grouped in
mutually exclusive geographical zones, auxiliary vehicles are not used, there is no cost for the
unvisited sites, only one site per group is visited, and the objective function is the classical
total travel time. Compared to GVRP, the selective VRP does not group the sites, but all
unvisited sites must be within a given maximal distance to a visited site (Valle et al., 2009,
2011).

The ring-star problem (RSP) consists in finding a subgraph that can be decomposed
into a cycle (or ring) and a set of edges with exactly one vertex in the cycle. Simonetti
et al. (2011) propose a branch-and-cut algorithm where the cost is computed as the sum of
the cost of its edges. Calvete et al. (2013) have designed an evolutionary algorithm based
on a bilevel formulation of the problem, where the solution cost is computed as the sum
of the cost of installing facilities on the nodes on the cycle, the cost of connecting them
and the cost of assigning the nodes not on the cycle to their closest node on the cycle.
The goal of the Capacitated m-Ring-Star Problem (CmRSP) is to find m cycles visiting a
central depot and a subset of demand nodes, while nodes not belonging to any cycle must

be allocated to a visited node. Additionally the number of nodes visited or allocated to a
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cycle cannot be greater than a given capacity. Solution approaches for the CmRSP include
the VNS metaheuristics developed by Salari et al. (2010b) and Naji-Azimi et al. (2012b),
the ILS proposed by Naji-Azimi et al. (2010) and the branch-and-cut algorithm of Berinsky
& Zabala (2011). the goal in the bi-objective RSP (B-RSP) introduced by Liefooghe et al.
(2010) is to minimize the cycle cost and the allocation cost in two separate objectives and
using four evolutionary algorithms based on iterative local search, IBEA (Indicator-Based
Evolutionary Algorithm), NSGA-II (Non-Dominated Sorting Genetic Algorithm II) and a
simple elitist EA.

In the two-echelon vehicle routing problem (2E-VRP) (Crainic et al., 2010; Nguyen et al.,
2012a,b) goods are delivered from depot to intermediary satellites by first-level routes, while
second-level routes deliver demands from satellites to customers. A special case is the
truck and trailer routing problem (TTRP) or vehicle routing problem with trailers and
transshipments (VRPTT), where trucks equipped with trailers may drop them to perform
second-level trips (Villegas et al., 2010; Drexl, 2013; Villegas et al., 2013). In TTRP

customers can be restricted to be visited only by trucks.

The CCVRP-ID proposed in this chapter is in fact a Cumulative Capacitated
m-Ring-Star Problem where the cost of a ring-edge in a solution depends on its length
and the number of nodes after it, the allocation costs are based on the edge length and a
parameter to model the velocity of auxiliary vehicles, and the sum of the node demands in

a cycle must fit the vehicle capacity.

The chapter is structured as follows: Section 5.2 presents the problem definition and a
mixed integer program. A multistart evolutionary local search metaheuristic is proposed in
Section 5.3. Results are described in Section 5.4 and concluding remarks are presented in
Section 5.5.

5.2 Problem Definition and Mixed Integer Linear Model

The cumulative capacitated vehicle routing problem with indirect deliveries (CCVRP-ID),
like the CCVRP and the mt-CCVRP, uses a fixed size fleet to deliver relief aid to minimize
the sum of arrival times at required sites. In this new version, two options are possible to
deliver relief aid: sites can be visited during trips or, when it is suitable they can be allocated
to a visited close site to be delivered indirectly via an auxiliary transportation mode. When

a second transportation mode is used, the regular fleet does not need to visit all sites and
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can cover a larger region in a faster way. In our mind, the indirect deliveries can be done
in the simplest case by pedestrians or personal vehicles coming to the closest site reached
by one vehicle, which explains that we do not consider vehicle capacities for the second

transportation mode.

The problem can be defined on an undirected complete graph G = (V, E). The node-set
V = {0,...,n} includes a depot-node 0 and a subset V' = V \ {0} of n affected sites or
required sites. The arc-set £ is composed of arcs (i,7) with travel times w;;. A set of R
vehicles of capacity ) are based at the depot. Each site i € V' has a known demand ¢;. It
is assumed without loss of generality that R <n, ¢; < Q Vi € V' and Z ¢ <Q-R.

iev?

The objective is to identify a set of trips and their allocated sites such that each site is
visited at most once, unvisited sites are supplied from a visited site by using an auxiliary
slower vehicle, and the sum of arrival times at sites, visited and allocated, is minimized. The
travel time w;; is the time required to traverse arc (4,j) by a normal vehicle, while ¢ - w;;
is the time required by an auxiliary vehicle. The parameter ¢ is the factor which indicates
how many times the auxiliary vehicles are slower than vehicles in the regular fleet. A trip
is defined as a circuit, starting and ending at the depot, with at least one visited site, and
a set of allocated sites, such that the total demand serviced, including visited and allocated
sites, does not exceed vehicle capacity ). In our version, a site cannot be allocated to the

depot.

A CCVRP-ID instance example is presented in Figure 5.1. In this example, n = 10
required sites with demands ¢; = 10 V i € V' are covered by R = 2 vehicles of capacity
() = 60. Continuous arrows indicate the arcs traversed by the vehicles. The travel times w;;
are given on every arc. The dashed arcs (i,7) mean that site j is allocated to site ¢ with
travel times 0 - w;j, using 0 = 2. The arrival times are written near each node. The cost
solution is Z = 180. Note that more than one site can be allocated to a visited site, for

instance sites 7 and 8 are here allocated to site 1.

It can also be noted that the CCVRP is a special case where no allocations are present.
That also implies that CCVRP-ID solutions are lower bounds for the CCVRP. Figure 5.2
compares optimal solutions for CCVRP and CCVRP-ID for an instance with n =15, R =1
and 0 = 2.5. As it can be seen, the CCVRP solution has a greater objective function than
the CCVRP-ID solution.
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Figure 5.1: Example of a CCVRP-ID solution for an instance with n = 10 and R = 2.

i
Z=2076.31 Z=1102.78 E «

+ depot

CCVRP Optimal Solution CCVRP-ID Optimal Solution

Figure 5.2: Comparison between optimal solutions for the CCVRP and the CCVRP-ID.

In the following, a 0-1 mixed integer linear program (MILP) for the CCVRP-ID is
described. This formulation uses four sets of decision variables. As in models CCVRP3 and
mt-CCVRP in Chapter 4, a binary variable z;; indicates if arc (i, j) is traversed (z;; = 1) or
not (x;; = 0), y;; gives its arc coefficient and Fj; is the total load on that arc. A new set of
assignment variables W;; indicates if site j is allocated to site 7. The resulting mathematical

model is given by Equations (5.1) to (5.14).
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Equation (5.1) represents the objective function, the sum of arrival times. Note that
decision variable y;; in the first term gives the number of times the arc cost w;; is counted in
the objective function when that arc is traversed by a vehicle, but indirect arc costs ¢ - w;;
in the second term are counted once. Equation (5.2) sets the number of available vehicles.
Constraints (5.3) indicate that every site must be visited once (z;; = 1) or allocated once

(V;; = 1). Equations (5.4) imply that a vehicle arriving a site must leave it.

min Z:ZZwij~yij+ZZ5-wij"I’ij (5.1)

i€V jev’ eV’ jev’

jev’
S ay+ Y Uy=1, VieV (5.3)
2% eV’
Zl’ij = Zl’ji, V1 S V/ (54)
JEV JeEV
EjSQ'zij7 ViEV,jEV/ (55)
ZFJ-Z»—ZFQ:%-(1—Z\Ifﬁ)+2qj-% VieV (5.6)
JeEV jev’ jev’ jev’
yZJS(TL—R+1)J,’ZJ7 VZEV,]EV/ (57)
JjEV jev’ jev’
yz’j 2 l’w’, V 1 & V, ] & V/ (59)
yij Z 2. fﬂij — .l’jo, V 7 € V, ] € V/ (510)
yij = 0, Vi, jeV,i#j (513)
Fi; >0, Vi, jeV,i#35 (5.14)

The total vehicle load on each arc is limited by the Equations (5.5) and (5.6). Constraints
(5.5) limit the maximum load to vehicle capacity (). Constraints (5.6) reduce the load when
a site ¢ is visited. The first two terms in Constraints (5.6) indicate the incoming flow and the
outgoing flow at visited site 7, respectively. The first term in the right-hand side expresses

that the demand of site 7 is included in the flow difference, except if site 7 is allocated to site
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J (¥;; =1 for asite j € V). The last term adds the demands of the allocated sites at site ¢

to the flow difference.

Similarly, Equations (5.7) and (5.8) define arc coefficient values. Constraints (5.7) limit
the maximum arc coefficient, while Constraints (5.8) reduce the arc coefficients when sites
are visited. The difference between arc coefficients of input and output arcs is decreased by
one on each visited site 7. This difference is reduced to zero if site 7 is not visited (¥;; =1

for a site j € V'), or it is increased by one for every allocated site j at site i (¥;; = 1).

The valid inequalities of the mt-CCVRP model remain valid for the CCVRP-ID, where
they are defined by Constraints (5.9) and (5.10). The domains of the decision variables are
specified by Equations (5.11) to (5.14).

5.3 Multistart Evolutionary Local Search

As explained in Section 4.6, ELS is a metaheuristic which generalizes ILS by generating
several children instead of one at every iteration, and it has been successfully applied to a

number of vehicle routing problems.

In this section, a multistart ELS (MS-ELS) is applied to the CCVRP-ID, and its

components, which are adapted to the new considered features, are described.

5.3.1 Principle and General Structure

The metaheuristic is described by the Algorithm 5.1.

A number (MazStart) of successive randomized greedy solutions are built by the
procedure Greedy Randomized_ Heuristic (line 3), which is based on best insertion
heuristics. Each resulting solution undergoes a VND (line 5) metaheuristic and is used

as initial solution for an ELS of Maxlier iterations.

In Each iteration of the current ELS, MazChildren child-solutions S” are generated by a
Mutation procedure (line 11). The procedures VND (line 13) and Post  Optimization (line

14) are used to improve the quality of each child-solution.

The best child-solution is recorded in S” (lines 15 to 17). Once the children have been

generated, the best-child can update the incumbent solutions in case of improvement (lines
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19 to 21). At the end of the current ELS, the global best solution S* is also updated when
improved (lines 23 to 25).

The procedures Precomputations (after each randomized construction) and
Update  Precomputations (after perturbation and during the procedures VND and
Post _ Optimization (Algorithm 5.2)), are used to speed up the local moves performed by the
VND. The VND has the same general structure as in Algorithm 4.2 but includes new moves

described later.

Algorithm 5.1 — MS-ELS for the CCVRP-ID
1: Zgx + 00
2: for Start < 1 to MazStart do
3: Greedy Randomized  Heuristic (S)

4: Precomputations (S)

5: VND (5)

6: for Iter < 1 to Maxlter do

7 Lgr 4— 00

8: S« S

9: for Child < 1 to MazChildren do
10 S" 5

11: Perturbation (S")

12: Update_ Precomputations (S”)
13: VND (S")

14: Post_ Optimization (S”)
15: if Zg» < Zg then

16: S 5"

17: end if

18: end for

19: if Z¢ < Zg then

20: S8

21: end if

22: end for

23: if Zg < Zg« then

24: S* S

25: end if

26: end for
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The components of the metaheuristic are described in the sequel.

5.3.2 Solution Representation

Like in the MS-ILS metaheuristic in Subsection 4.3.2, a solution is encoded as R lists of
nodes, with one list per vehicle or route. Each list indicates the order in which the required
nodes are visited by the vehicles, using the depot (node 0) at the start and at the end of
each list. Each node can represent a single-node, or a super-node grouping a visited site and
its allocated sites. The sites allocated to a node i are stored in a set (A4;). For instance,
the routes in Figure 5.1 can be represented as k; = (1,2,3) and ky = (4,5,6), where the
corresponding sets are A; = (7,8), Ay = (9) and A5 = (10).

5.3.3 Precomputations

The same precomputations as in Chapter 4 are used here to compute some moves in
constant time in VND procedure. Most of the moves in the proposed VND can be expressed

by the concatenation operator & defined in Subsection 4.3.3.

Equations (5.15) to (5.17) remind the equations (4.68) to (4.70) defined in Subsection
4.3.3, which allow to compute the cost, duration and number of sites of the sequence resulting

from a concatenation of sequences o and ¢’ (without allocated sites).

MU@O'/ = MO’ + Ma” (515)
Dogor = Do+ wji + Do (5.16)
Coaor = Co+ My - (Dy+wji) + Co (5.17)

Nevertheless, two new modifications are needed to apply these equations to CCVRP-ID.
The first are based on the definition of super-nodes. A super-node here is composed of a
visited site and a set of allocated sites, so for a sequence o0 = 7 of one super-node based at

visited site ¢ with a set A; of |A;| allocated sites, its cost is computed as C, = Z 0 - wj,
JEA;
its duration is D, = 0 and its number of sites is M, = 1 + |A4,|.

For instance, consider the sequences o = (1,2) and o’ = (3) where A; = 0, Ay = 0,
A3 = (475)7 MU = 27 Mcr’ = 37 Do = W2, Do’ = 07 CU = W2, Ca’ =9 (UJ34 +w35)-
The number of serviced sites, the cost and the duration of the sequence o @ o’ are M g, =

M, + M, = 5; DUEBJ’ = Dy +woz+ Dy = wia+woz and Ca@a’ = OJ+MJ"(DJ+w23)+CU’ =
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wig + 3+ (w1 + wag) + 0 - (w34 + wss), respectively.

The reversal of a sequence 0 = (1,2, ...,i— 1,1) for the CCVRP-ID can also be computed

recursively from the sequence o' = (1,2,...,7 — 1) as T=iab

The second modification is the definition of the allocation operator ® which means the
allocation of a site. Note that a site can be allocated to another site (or super-node), but
not to sequences with more sites. For instance o ® j with o = 7 implies the allocation of site
J to the super-node i. Equations (5.18), (5.19) and (5.20) allow to compute the number of

sites, the duration and the cost of the super-node .

M,o; = M,+1 (5.18)
Doo; = Dy=0 (5.19)
Cg@j = Cg + - Wi 4 (520)

As an example, the first route in the Figure 5.1 can be defined as o, @ g5 & 03, where
g1 = O, 09 = (1) © {7,8} and 03 = (2,3,0)

The allocation operator ® can be used to evaluate in constant time new moves like the
relocation of allocated sites and the change of transportation mode, which are explained in
Subsection 5.3.5.

5.3.4 Heuristic for the Initial Solution

Each ELS in the proposed MS-ELS begins with an initial solution computed by a greedy
randomized heuristic that builds R routes simultaneously. Perturbed distances are used after
the first start by generating random variables normally distributed (w;; ~ N(w;;,3)). The
distribution N (w;;, 3) generates values centered on w;; and with standard deviation equal to

3. Preliminary tests have been performed with different standard deviation values.

The first route is initialized with the nearest site to depot, while the remaining routes

are initialized with one randomly selected site.

Then, feasible insertions of the remaining sites in the incumbent routes are performed
until all sites are inserted. No allocations are allowed in the initial solution. Every time, the

site with greater difference between its best insertion and second best insertion is selected.
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When a site cannot be inserted in a route, its insertion cost is penalized by adding a big M

value to the best insertion cost, in order to promote its insertion.

When it is not possible to insert a site in any route, a randomly selected site already
visited is removed from the R trips until a feasible insertion appears. This process, repeated

until all sites are routed, never fails on the instances tested.

5.3.5 Variable Neighborhood Descent

Our MS-ELS for the CCVRP-ID uses a VND as improvement procedure, like in
previous metaheuristics for mt-CCVRP. The procedure can be described by Algorithm 4.2

in Subsection 4.3.5. New moves are defined to distinguish between visited and allocated sites.

The proposed VND for the CCVRP-ID is based on d = 6 neighborhoods. Fach
neighborhood is implicitly defined by a type of move. Starting from b = 1 and one input
solution S’, the basic iteration of VND consists in exploring the neighborhood N, of S’
(Np(S")). The best improvement mode is used: the best neighbor found after browsing the
complete neighborhood becomes the incumbent solution in case of improvement and b is
reset to 1, otherwise b is incremented. The procedure stops when the exploration of Ny

brings no improvement.

Neighborhood N; involves 2-opt moves on one trip, while Ny performs A-interchanges
on one trip. These two neighborhoods have been already used by MS-ILS, MA|PM and
MS-ELS metaheuristics for the mt-CCVRP, described in Subsection 4.5.6. Neighborhoods
N3 and Ny consider the same moves, but applied to two trips. They are similar to the
ones used in previous metaheuristics, but here only one trip per vehicle is available. Nj
considers the relocation of allocated sites when they exist. Finally, neighborhood Ng handles

transportation mode changes.

N; : 2-OPT moves on one trip

Recall that this move consists in deleting two arcs from a trip and reconnecting the
resulting fragments using two new arcs. As depicted in Figure 4.2, the arc coefficients between
new arcs change and precomputations are needed to compute the cost variations in constant
time. The variant shown in Figure 4.3 is also considered for this VND implementation. This
neighborhood can be browsed in O(n*/R). A more detailed description is given in Subsection
4.3.5.
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N, : A-interchanges on one trip

This type of move consists in exchanging a sequence o; from one to A consecutive nodes
with another (non-overlapping) sequence o, containing zero to A consecutive nodes. Each
sequence with more than one node can be reversed in the reinsertion, giving four cases.
Note that for the second sequence a length of zero is allowed, to include relocations of the
first string. An example of this move is depicted in Figure 4.4. This figure also shows
that arc coefficients in sequences o7 and o0y, as well as in the sequence between them,
change. This neighborhood can be explored in O((n?A?)/R) by using the previously described

precomputations. A more detailed description is presented in Subsection 4.3.5.

N3 : 2-OPT moves on two trips

The moves performed in this neighborhood take two trips k£ and &', delete one arc in each
one and reconnect them with different arcs. Note that this neighborhood is equivalent to
the exchange of two sequences of sites, beginning or ending at the depot. These moves are
similar to the ones used in the previous chapter, except that now we cannot have more than
one trip per vehicle. The same cost variations formulas can be used, since this neighborhood

is a special case where the number of trips is equal to one. This neighborhood can be browsed
in O(n?).

Ny : A-interchanges moves on two trips

Again, this neighborhood already browsed for the mt-CCVRP is here applied to the case
of one single trip per vehicle. Note that arc coefficients can vary depending on the positions

of the interchanged sequences and their number of nodes. Ny can be searched in O(n?)\?).

As explained in Subsection 5.3.3, a concatenation is always valid for the CCVRP-ID. The
formulas can be adapted for the implementation of Ny, No, N3 and Ny for the CCVRP-ID.

N5 : Node reallocation

This neighborhood consists in changing the visited sites to which are assigned the
allocated sites. That means the removal of each allocated site and the evaluation of all
its possible allocations, in the same and distinct trips. This move looks similar to the root
refining moves defined in Chao (2002) and Villegas et al. (2011) for the truck and trailer
routing problem, but becomes simpler because in CCVRP-ID only individual nodes can be
allocated instead of second-level trips in the TTRP. An example of this move is depicted in

Figure 5.3, where part (a.) shows a trip with node u allocated to node j, then this node is
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reassigned to node ¢ in the same trip in part (b.). If Vi, is the set of visited sites and V4 the
set of allocated sites (Vi U V4 = V'), N5 can be explored in O(|Vy/| |Va4|). The number of
neighbors (moves) can vary between |Vi/| - [Va| = 0 (if |V4| = 0) and |V | - |[Va| = n?/4 (if
(Wl = [Val).

s | N NI NI N N N
T T T T T T ’
i J

Figure 5.3: Example of node reallocation move for the CCVRP-ID.

Ng : Transportation mode change

This last neighborhood considers changing the transportation mode to reach a site. That
means a visited node can be removed and allocated to another node, or an allocated node

can be removed and inserted in a trip to be visited by a regular vehicle.

As shown in Figure 5.4, three cases are considered. Part (a.) of the figure shows the
original trip, where nodes ¢ and j are visited while nodes u and v are allocated to node 7. In
part (b.), node u is no longer delivered indirectly: it is inserted to be visited between node i
and j. In part (c.) the originally visited node j is removed and allocated to node i. Finally,
part (d.) shows the case where the role of nodes i and u are interchanged. Here when an
allocated node is removed, it can be inserted in the same or distinct trip. Similarly, when
a visited site is removed, it can be allocated to another node in the same or distinct trip.
Moves in this neighborhood can be computed in constant time by using the concatenation

operator @ and the allocation operator ®, and the neighborhood can be browsed in O(n?).

Salari et al. (2010b) define a neighborhood called Extraction-Assignment for the

Ring-Star problem, which can be seen as the union of Nj and Ng. The moves consist in
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Figure 5.4: Example of transportation mode change moves for the CCVRP-ID.

removing a node to insert it or reallocate it in the best possible position in the current

solution.

5.3.6 Post-Optimization Procedure

This procedure is used when there exist allocated sites in a solution. In this case, reversal
of sequences can be limited because of the allocated sites. For instance, in Figure 5.1, the
reversal of sequence (1,2, 3) may produce better sum of arrival times when only sites 1, 2 and
3 are considered, but as sites 7 and 8 are assigned to site 1, this reversal does not produce

a better result.

The VND improvement procedure is followed by a Post  Optimization procedure which
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behaves like a kind of large neighborhood search, see Algorithm 5.2. Basically, on each
iteration all allocated nodes are removed using the Remouving procedure, the VND is applied
to the remaining (visited) nodes, the removed nodes are reinserted like in the heuristic for

initial solution (see Subsection 5.3.4) and the VND is applied again.

This procedure is repeated until no improvements are found. As  Dbefore,

Update Precomputations is used to speed up local moves performed by VND.

Algorithm 5.2 — Post-Optimization for a solution S

1: repeat

2: S+ S

3: Removing (S)

4: Update Precomputations (S)
5: VND (5)

6: Inserting (S)

7: Update  Precomputations (S)
8: VND (S)

9: until Zg < Zg

10: S« S

5.3.7 Perturbation

The perturbation procedure described here is based on the destroy and reconstruct

procedures used by ALNS metaheuristics.

The proposed perturbation procedure consists in removing some sites from the incumbent
solution, and insert them by using a similar procedure to the one used by the Initial Solution
Heuristic (Subsection 5.3.4). As this procedure can reinsert the sites in their previous
positions, their insertion in the same route is penalized. A site can be inserted in the

same route only when insertions in another route are impossible.

The number of removed sites has been tested with different fixed values, randomly
generated values and dynamic values. After the tests of these different options, this number

has been set to three.

149



Logistics Optimization in Disaster Response Operations

5.4 Computational Experiments

Computational experiments have been performed to evaluate and compare the
performance of the mathematical model and the metaheuristic approach. The instances
used are presented in Subsection 5.4.1. Subsection 5.4.2 refers to parameter tuning.
Subsection 5.4.3 describes the results on small instances while larger instances are addressed
in Subsection 5.4.4.

5.4.1 Implementation and Instances

The MS-ELS described in this chapter has been implemented in Visual C++ 2010 and
the mathematical model in CPLEX 12.5. All of them have been tested on a 2.50 GHz Intel
Core i5 computer with 4 GB of RAM and Windows 7 Professional. Two types of experiments
are reported. The first one compares metaheuristic solutions with 0—1 MILP resolution via
a commercial solver (CPLEX), and compares CCVRP-ID and CCVRP solutions in terms of
average arrival time. The second type of experiments presents solutions on larger instances
and compares CCVRP-ID with published solutions for the CCVRP.

The comparison with CPLEX involves 24 randomly generated instances: 12 with 15
demand nodes and 12 with 30 demand nodes. For larger instances, the same instances
defined for the CCVRP have been used, which are derived from classical CVRP instances:
the 14 CMT instances (Christofides et al., 1979), with n = 50 to 199 demand nodes, and the
20 GWKC larger instances (Golden et al., 1998), with n = 200 to 483. The fleet size is fixed
as in the CCVRP (otherwise the optimum is trivial, with one direct route to each demand
node) and the maximum trip length defined for some instances is ignored. As the seven CMT
instances with a trip length constraint share the same network as the seven unconstrained
instances, 7 4 20 = 27 CCVRP instances are finally obtained. In all instances, the traveling
time w;; on arc (i, j) is equal to the Euclidean distance, computed as a double-precision real
number. The tests are performed with five o values: 10000, 10, 5, 2.5 and 1.

5.4.2 Parameter Tuning

The MS-ELS described in this chapter has only four parameters: MaxStart defines
the number of starts or number of calls to the ELS, MaxIter describes the number of
iterations to be performed by each ELS, MaxChildren indicates the number of children to
be generated on each ELS iteration, and A limits the maximum number of consecutive sites

to be interchanged in A-interchange moves used in neighborhoods Ny and Ny.
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Like in the previous chapter, a “computing budget” is fixed but, instead of 3000 VND
calls, the budget concern here the total number of children. Note that for the cases where no
allocated sites are used both criteria are identical. But when solutions contain allocated sites,
an impredictable number of VND calls is executed in the Post_ Optimization procedure. In

those cases the execution time can be increased.

Different parameter values have been tested on a subset of 4 selected instances. Three
values are used for MaxStart, MaxChildren and X\ (MaxStart € {1,3,5}, MaxChildren €
{1,5,10}, and X\ € {2,3,4}), while the value of MaxIter is computed as Maxlter =
Budget/MaxStart/MaxzChildren. The parameter A is set to 3 to have a compromise
between quality and execution time of the browsed neighborhoods, as in our previous

implementations.

Table 5.1 summarizes the different tests performed for parameters MaxStart, MaxIter
and MaxChildren. The first three columns indicate the parameter values while the
fourth one shows the average percentage deviation with respect to the best solution found
for the CCVRP-ID with 0 = 5 (AvgDev), for a subset of instances. The best results
in terms of average deviation are obtained with MaxStart = 3, MaxIter = 100 and
MazxChildren = 10, in boldface on Table 5.1.

Note that when MaxStart =1, MaxIter = 3000 and MaxChildren =1 the algorithm
is equivalent to an ILS metaheuristic, and when MaxStart # 1 and MaxChildren = 1, the
algorithm becomes an MS-ILS.

Table 5.1: Summary of the performed tests.

MaxStart Maxlter MaxChildren AvgDev

1 3000 1 0.22
1 600 5 0.21
1 300 10 0.19
3 1000 1 0.12
3 200 5 0.10
3 100 10 0.10
o 600 1 0.14
Y 120 5 0.12
5 60 10 0.11
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5.4.3 Results on Small Instances

Tables 5.2 and 5.3 present the results for the 0-1 mixed integer linear program on small
instances with n = 15 and n = 30 required sites, respectively. Each table is composed of five
result types which correspond to the five values of the parameter . Similar results are shown
in Tables 5.4 and 5.5 for the developed metaheuristic algorithm. The considered values of §
are 10000, 10, 5, 2.5 and 1. The value 10000 is used to avoid allocated sites in the solution,
which means that the problem is equivalent to a CCVRP. Although there is no proof saying
that this value guarantees to avoid allocations, that always happen for the tested instances.
0 = 1 is another extreme value which lead to the same edge costs in the two transportation

modes.

In Tables 5.2 and 5.3, the first four columns display the instance name, the number

of required sites n, the number of vehicles R, and the average loading level of vehicles
(Z ¢ | /(Q - R), which varies between 0 and 1 (1 meaning that all vehicles are full). For
i=1

each value of 9, the cost of the linear relaxation of the mathematical model (LR), the optimal
solution value (Cost), the percentage gap between the best integer solution found and the
best lower bound found (gap), which is given by CPLEX, and the running time in seconds
(Time), limited to one hour, are presented. For all § # 10000 the percentage reduction
of the average arrival time with respect to CCVRP, gaps, is also shown. Remind that
when 6 = 10000, our CCVRP-ID model is equivalent to the CCVRP case. Note that the
percentage reduction in the sum of arrival times is equivalent to the percentage reduction
in the average arrival time. In Table 5.3, when optimal solutions are not found (gap # 0),
the best integer solution and the best lower bound found by CPLEX are listed in the Cost

column.

The twelve instances in each table can be classified by their different features: the first
six instances present an average demand of 13.33 units, while the next six have an average
demand of 20.00 units. The node locations on the instances in the same subset are the same.
In both subsets, the number of vehicles and the average loading level of vehicles vary to

evaluate the impact of these features on the execution time.

In general, for n = 15 sites (Table 5.2) the mathematical model always finds an optimal
solution for the 12 instances and the five values of 0. The average execution time is larger
for the last six instances (instances 7 to 12). A small number of vehicles also implies a larger

running time, because of the subsequent larger number of sites per vehicle. In most of the
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Chapter 5: The Cumulative Capacitated Vehicle Routing Problem with Indirect Deliveries

cases, for the instances with the same number of vehicles, the execution time increases when

the average loading level gets close to one.

When 6 = 10 only the instance 7 has a different optimal solution value compared to
the corresponding optimal solution values for the CCVRP (6 = 10000). Nevertheless, the
execution time to solve the problem is reduced by 84.72% on average. The number of optimal
solution values which improve the corresponding CCVRP optimal solutions increases to 4
when 6 = 5. Only two objective values do not vary when 6 = 2.5 and all of them change for
0 = 1 with respect to the CCVRP optimal solutions. The previous one illustrates that when
auxiliary vehicles are less than five times slower than regular vehicles, the indirect deliveries

start to become more and more interesting, but that can very for each instance.

Broadly, the execution time decreases with the value of §. For instance, the average
execution time reduces by 57.80% and 98.90% for 6 = 10 and 6 = 1, respectively. The
execution time is also increased by larger numbers of vehicles and average loading levels of

vehicles.

The average arrival time decreases by 1.81%, 10.59% and 33.32% when ¢ is reduced to 5,
2.5 and 1, respectively. When the number of vehicles is lower, which implies a larger number
of nodes per vehicle, the average arrival time is more sensible to the § value. For instance,
for R = 2 the average arrival time reduces by 22.40% from § = 10000 to 6 = 2.5 and only
by 0.93% for R = 4 with the same § values.

When n = 30 sites (Table 5.3) similar results are found. However, the mathematical
model cannot solve the problem when ¢ > 5. The gap between the best integer solution and
the best lower bound in CPLEX reduces when ¢ decreases. For ¢ = 2.5, CPLEX finds 10

optimal solutions, while it finds all optimal values when § = 1, within a lower execution time.

Nevertheless, when comparing results for 6 = 10000 and 6 = 10, the gap between the
best integer solution and the best lower bound sometimes increases and, in one case, the best
integer solution has a worse objective function value for 6 = 10 (instance 15). The objective
function value is improved five times when ¢ = 10. Like in Table 5.2, instances look harder
when the number of vehicles is smaller and when the average loading level is greater. When
0 = 5 one of the best integer solutions is worse than the best integer solutions found for
d = 10000 and 10 (instance 24). Remind that these solutions are not optimal.
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Tables 5.4 and 5.5 present the results of the MS-ELS for the small CCVRP-ID instances.
The same first four columns as Tables 5.2 and 5.3 are kept. Then, for each value of
the parameter 0, the best objective function value over five runs (Cost), the percentage
deviation of the best solution cost Z(heur) to the optimal solution Z(MILP) of CPLEX
(or to the best lower bound when the solver must be stopped after one hour) computed as
gap = (Z(heur)/Z(MILP) — 1) x 100, and the average running time per run in seconds
(Time) are indicated. When § # 10000 the percentage reduction of the average arrival time
with respect to CCVRP (§ = 10000), gaps, is also shown.

For instances with n = 15 sites, all optimal solutions are found. Nevertheless, the
execution time is less sensitive to the parameter §, the number of vehicles or the average

loading level of vehicles, compared to CPLEX.

For some instances, especially when ¢ is large, the MS-ELS is faster than the
mathematical model, while for some others, especially when 0 = 1, this behavior is reversed.
Based on 5 runs, MS-ELS has always found the same solution for each instance and each ¢

value.

For instances with n = 30 sites, MS-ELS retrieves the optimal solutions found by the
mathematical model and, when gap # 0, it improves some of the best solutions found. As the
mathematical model becomes faster when ¢ decreases, the number of improved solutions and
the average improvement also diminish when ¢ decreases. When the mathematical model

finds an optimal solution, MS-ELS finds the same solution, with gap = 0 in boldface.

When § = 10 000, six best known solutions are improved, with an average improvement, of
0.94% and the average execution time is 10.81 seconds. For § = 10, six best known solutions
are again improved, but the average improvement is reduced to 0.39%. The execution times
present small variations. These variations are notably larger for instances with a smaller
number of vehicles R. The objective values are reduced by 0.81% on average. Only three
best known solutions are improved when § = 5, with an average improvement equal to 0.13%.
The execution time increases for most of the instances with 6 = 5. The sum of arrival times
are reduced by 5.47% on average with respect to the CCVRP case (6 = 10000). When
0 = 2.5 a best known solution is improved and the objective functions are 17.06% lower than
CCVRP. Ten of the solutions found have an optimal status. The execution time is reduced
with respect to the case 6 = 5. Finally, when § = 1, all optimal solutions are found, which

improves by 37.74% on average the arrival time compared to the CCVRP model. The
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average execution time is smaller than the other four cases.

5.4.4 Results on Larger Instances

In this subsection the results on CMT (Christofides et al., 1979) and GWKC (Golden
et al., 1998) instances are described. Table 5.6 presents the results for CMT instances with

the same five values of § used in Subsection 5.4.3. Similar results are shown in Table 5.7 for
GWKUC instances.

The first five columns in Tables 5.6 and 5.7 display the instance name, the number of
required sites n, the number of vehicles R, the average loading level Z g | /(Q-R), and

the best solution found for the CCVRP from Tables 4.3 and 4.4 frorrizslubsection 4.7.4 in
Chapter 4 respectively. Then, for each ¢ value, the best solution value (Cost), the percentage
deviation to the best solution (Dev) and the execution time in seconds (Time) are presented.
When § # 10000, the percentage reduction in the average arrival time with respect to the
best known solutions for the CCVRP is displayed. Remind that when 6 = 10000, our
CCVRP-ID model is equivalent to the CCVRP.

When 6 = 10000 the proposed algorithm finds all best known solutions for the CMT
instances over 5 runs. For GWKC instances it finds 4 of the best known solutions and
improves 2 of them. The average deviation ranges between 0% and 0.55%, which indicates
that the proposed MS-ELS is robust. The mean deviation is greater for CMT instances,
contrary to the behavior in CCVRP and mt-CCVRP in Chapter 4. The average execution
times, 84.85 seconds and 1324.54 seconds, respectively, are lower than the running times of
the MS-ILS applied to the CCVRP shown in Subsection 4.7.4.

The algorithm always finds a better objective function value when 6 = 10, compared to
5 = 10000 (CCVRP). The percentage reduction ranges between 0% and 1.31% for CMT
instances, and between -0.87% and 27.71% for GWCK instances, where negative values
indicate that the best objective function is not better than the best solution values for
the CCVRP. Only 8 out of 27 instances have an objective function value greater than the
best known solution for the CCVRP. The objective function value is reduced by 0.27% for
CMT instances and by 8.94% for GWKC instances on average. The average execution time
is increased by 70.78% for CMT instances, while it has decreased by 1.51% for GWKC

instances.
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Similar results can be observed for 6 = 5, 2.5 and 1. For instance, on CMT instances, the
percentage reduction on average arrival times are 4.24%, 12.11% and 25.62%, respectively.
The percentage average deviation with respect to the best solution found is also reduced by
0.17%, 0.16% and 0.00%, respectively. The average execution time increases when 6 = 5
but decreases for 6 = 2.5 and § = 1. It is important to note that when 6 = 1 the algorithm

always finds the same solution for every instance over 5 runs.

On the GWKC instances, the percentage reduction on the average arrival compared to
the best CCVRP solutions reaches 15.84%, 23.04% and 32.42%, respectively for § = 5, 2.5
and 1. The percentage average deviation with respect to the best solution found for the
CCVRP model is also reduced by to 0.19%, 0.15% and 0.01%, respectively. This deviation
reduction shows a more robust behavior when ¢ decreases. As for CMT instances, the average
execution time increases for 6 = 5 to 1517.25 seconds, and decreases for 6 = 2.5 and § =1
to 1215.66 seconds and 993.76 seconds respectively. Contrary to CMT instances, 12 out of

20 instances have presented the same solution value over 5 runs for § = 1.

When 6 < 5 all objective function values are lower than the best values found for CCVRP

model, which shows an improved survival rate.

5.5 Concluding Remarks

In this chapter a new VRP version raised from the relief aid delivery in the response phase
of humanitarian logistics, called cumulative capacitated vehicle routing problem with indirect
deliveries (CCVRP-ID), is introduced. This problem relaxes the CCVRP by allowing indirect
deliveries to some sites, using an additional transportation mode, instead of including them

in the routes performed by the main fleet.

To solve this problem two methods have been proposed: a mathematical model based
on the model CCVRP3 presented in Chapter 4 and an MS-ELS metaheuristic which calls a

VND and a post-optimization procedure.

The results show that the mathematical model can solve instances optimally up to 30
nodes. However, instances with larger values of §, the parameter which models the different
velocity between transportation modes, become more difficult to solve. Other features like
the number of vehicles and the average loading level also impact the execution time required

to solve the problem.
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On the other hand, MS-ELS succeeds to solve instances with different features. On small
instances, when the mathematical model finds the optimal solution, the metaheuristic finds
them too. In other cases, the metaheuristic always finds the best known solution. For larger
instances the algorithm is competitive compared to CCVRP in terms of execution time and

finds good quality solutions for different values of ¢.

When ¢ has a large value, the CCVRP-ID model finds the same solutions as the CCVRP.
For smaller values of d, the problem behaves as a relaxation of the CCVRP and finds solutions

with reduced average arrival time, which means a higher survival rate in disaster cases.

Conferences and Publications

Short papers with descriptions of the problem, methods and results introduced in this
chapter have been accepted to be presented in one national conference (ROADEF 2015) and

one international conference:

e J. C. Rivera, H. M. Afsar and C. Prins. Multistart evolutionary local search for
humanitarian relief operations with indirect deliveries. 16éme congrés annuel de la
Société francaise de recherche opérationnelle et d’aide a la décision, ROADEF 2015.

Marseille, France. Février, 2015.

e J. C. Rivera, H. M. Afsar and C. Prins. A cumulative capacitated vehicle routing
problem with indirect deliveries in relief response operations. Sixth international
workshop on freight transportation and logistics, Odysseus 2015. Ajaccio, France.
May, 2015.
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Chapter 6

(General Conclusions and Future

Research Directions

This final chapter summarizes the contributions of the thesis and offers promising future

research directions.

This thesis is devoted to solve logistic optimization problems raised from humanitarian
disasters such as tsunamis, floods and earthquakes. As it can be seen in the state of the art,
Operations Research applications in humanitarian logistics has an important growth in last
years. Although several models have been proposed for commercial cases, different features
and challenges are present in humanitarian contexts due to special constraints, systems

characteristics and strategic goals.

Transportation and routing problems are frequently applied on response operations,
where urgency and an important number of new demands are the main features.
Nevertheless, most of these applications for relief delivery use cost-based objectives.
Literature review suggests that developments are still needed with serviced-based objective
functions which may better reflect the strategic goal in humanitarian logistics. The problems
studied consider the minimization of the sum of arrival times, which is adapted to this

context.

The multitrip cumulative capacitated single-vehicle routing problem (mt-CCSVRP) is
defined in Chapter 3. In this version of the problem only one vehicle is avaiblable, which is
able to perform multiple trips with a limited capacity and range. Two mixed integer linear
models are formulated to solve this problem. Both are compared with an exact approach

based on a reformulation of the mt-CCSVRP as a resource-constrained shortest path problem
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in an ad hoc auxiliary graph. While a commercial software solves only a minority of instances
for 20 required sites, the proposed shortest path algorithm can tackle instances with up
to 40 required sites, thanks to good initial solutions, dominance rules and lower bounds
which accelerate the solution procedure. Like many dynamic programming approaches, the
proposed exact method reaches its limits for large values of the range L,,.,, which lead to

huge state-graphs.

The Chapter 4 introduces the multi-trip cumulative capacitated vehicle routing problem
(mt-CCVRP). This problem extends the CCVRP to multiple trips and the mt-CCSVRP of

Chapter 3 to several vehicles.

Four mixed integer linear models for the single-trip version (CCVRP) are proposed and
compared with the one found in the literature. The best results are found by the model
CCVRP3 where variables are defined in terms of the load and arc coefficient of each arc.
The mathematical model for the mt-CCVRP is a non trivial mixed integer linear model

without vehicle nor multitrip indexes which is tested on small instances.

In addition, three metaheuristics are also developed to solve the mt-CCVRP: MS-ILS,
MA|PM and MS-ELS. MS-ILS hybridizes a multi-start ILS with a VND which evaluates some
moves in constant time. Five neighborhoods are proposed which use some precomputations
to speed up the VND procedure. A dominance rule described in Chapter 3 avoids to consider
multiple trip orderings for multitrips. Similar neighborhood structures are used by MA|PM

and MS-ELS with the same precomputations and dominance rule.

MA|PM and MS-ELS also perform an adapted two-level split procedure which considers
the cumulative objective (the sum of arrival times) and multiple trips. This procedure solves
optimally a shortest path problem in polynomial time complexity where the first level defines
the set of nodes in each multitrip, and the cost of each multitrip is computed by solving the

second level split which defines the set of trips in each multitrip.

On small instances, the resulting metaheuristics find the same results as the mathematical
model when the latter can find the optimal solution. They are able to produce competitive

results in relatively short computing time.

MS-ILS competes with published methods for the case without multitrips, the CCVRP.

A comparison between three metaheuristics is performed for larger mt-CCVRP instances.
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The results show the efficacy of the proposed splitting procedure and the developed moves,

as well as impact of the fleet size on the average arrival time.

In the Chapter 5 the cumulative capacitated vehicle routing problem with indirect
deliveries (CCVRP-ID) is introduced. This problem relaxes the CCVRP by allowing the
attachment of sites and delivering relief aid with an auxiliary transportation mode, instead

of visiting them.

To solve this problem two methods have been proposed: a mixed integer linear program
based on the model CCVRP3 presented in Chapter 4 and an MS-ELS metaheuristic which

calls a VND and a post-optimization process.

The results show that the mathematical model can solve instances optimally up to 30
nodes. Although instances with slower auxiliary vehicles become more difficult to solve.
Other features like number of vehicles and average loading level also impact the necessary

execution time to solve the problem.

The MS-ELS metaheuristic is successful to solve instances with different features. On
small instances, when the mathematical model finds an optimal solution, the metaheuristic
finds it too. In other cases, the metaheuristic always finds the best known solution. For
larger instances the algorithm is competitive compared to CCVRP in terms of execution

time and it finds good quality solutions for different auxiliary vehicle velocities.

When auxiliary vehicles are slow enough, optimal solutions for the CCVRP-ID model
are identical to the optimal solutions of CCVRP. For faster auxiliary vehicles the problem
behaves as a relaxation of the CCVRP and it can find solutions with reduced average arrival

time, which means a higher survival rate in disaster cases.

As future research directions, additional models are proposed to enrich the studied

problems by introducing more realistic constraints to bring them closer to real situations.

A first extension would be to add the possibility for each vehicle to make multiple tours
in the CCVRP-ID model. This would provide a more complex problem, combining the two
challenges constituted by the possibility of indirect deliveries and the use of multiple trips
(both complications have been addressed separately in the three problems studied in the

manuscript).
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A second possible perspective would be to manage inventory in CCVRP-ID for the
directly visited sites, and then supply the sites visited by auxiliary vehicles. This problem

can consider storage capacity on visited sites and multiple periods.

Split deliveries can be also an interesting extension where full loaded vehicles may produce

a more efficient use of vehicles and solutions with a lower average arrival time.

The fourth generalization would turn around a dynamic version of the problem with
changing circumstances over time, as new affected populations by subsequent aftershocks
of a major earthquake. This supposes considering a planning horizon of several days, with
reoptimizations to adapt to new situations. This kind of dynamic optimization problem
can be very complex when the road network is changed, for example when bridges collapse
weakened because of a reply. Shortest paths in the network are affected and then it is even

necessary in some cases redirect trucks entered on routes that are blocked.

Finally, a wide research field is offered by multi-criteria generalizations, which must
handle several optimization criteria. As a solution minimizing the average access time some
sites may still be rescued by an unusually long time, it seems appropriate to consider at the
same time minimizing the maximum access time, which would introduce more fairness in

the distribution of aid.
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Appendix A

Résumé Etendu de la Thése en Francais:
Optimisation Logistique pour les

Opérations Post-Catastrophe

Chapitre 1 - Introduction générale

La thése est consacrée a des problémes d’optimisation logistique soulevés par des
catastrophes humanitaires comme des tsunamis, inondations et tremblements de terre. On
observe depuis quelques décennies une augmentation du nombre de catastrophes a grande
échelle et de leurs impacts humains. Une premiére explication est le réchauffement climatique
qui favorise les incendies de forét, les inondations ou au contraire les périodes de sécheresse,
les glissements de terrains etc. Une deuxiéme raison est l’augmentation de la population
dans des zones exposées, par exemple dans le delta du Gange au Bangladesh ot les terres
sont tres fertiles mais sujettes a de fréquentes inondations. Une troisiéme raison réside dans
le développement de grosses installations industrielles a risques, dont la centrale nucléaire
de Fukushima au Japon constitue un exemple typique. Enfin, la mondialisation accentue les
conséquences de catastrophes comme les épidémies, qui se propagent plus facilement dun

pays a l'autre, voir I’épidémie récente du virus Ebola en Afrique occidentale.

Outre les conséquences financiéres énormes de telles catastrophes (destructions et arréts
des activités économiques par exemple), l'impact en termes de vies humaines ou de
souffrances diverses est également trés important. On peut atténuer les conséquences d’une
catastrophe en s’y préparant, par exemple en stockant des moyens de secours, en faisant
des simulations ou en entrainant les populations. Mais la plupart des catastrophes sont

inévitables et, surtout, imprévisibles, ce qui a motivé un courant de recherche récent pour
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augmenter la réactivité et l'efficacité des opérations de secours une fois que le désastre est

survenu.

Cette optimisation est critique comme cela a pu étre constaté aprés le séisme qui a
détruit Port au Prince en Haiti : un an aprés la catastrophe, seulement 10% des déblais
avaient été évacués, faute d’engins de génie civil en nombre suffisant, ce qui a longtemps
bloqué la reconstruction. Les analystes de 'ONU ont souligné que ces problémes viennent
d’une mauvaise organisation logistique sur le terrain : les donateurs ont fourni rapidement
beaucoup d’argent et de nombreuses organisations humanitaires se sont rendues sur place,

mais sans coordination générale.

La Recherche Opérationnelle avec ses techniques de modélisation et d’optimisation de
grands systémes peut apporter beaucoup a la logistique de catastrophe, a l'instar des
succés obtenus en logistique industrielle. Cependant, les méthodes développées en logistique
industrielle ne sont pas directement transposables car les critéres d’optimisation et beaucoup
de contraintes sont différents. Alors que la logistique pour 'industrie cherche essentiellement
a réduire les cotits, la logistique de catastrophe vise a remédier a 'urgence, par exemple en
distribuant le plus possible de secours par heure, sans oublier des contraintes trés particuliéres

comme ’équité entre les personnes affectées.

Le Chapitre 1 d’introduction de la thése rappelle donc le réle général de la recherche
opérationnelle, les principaux problémes d’optimisation posés par le transport et les tournées
de véhicules, avant d’aborder la logistique humanitaire en soulignant ses caractéristiques et

ses différences vis-a-vis de la logistique classique (commerciale).

Le domaine étant trés vaste, le chapitre se concentre ensuite sur la phase de réponse
a une catastrophe, la seule considérée dans la thése. En d’autres termes, les problémes
différents posés par les phases de préparation (avant la catastrophe) ou de retour & la normale
(longtemps aprés celle-ci) sortent du cadre de la thése. Les principaux critéres d’optimisation
ou d’efficacité sont listés : outre les critéres classiques de cott ou de durée totale, on y trouve
la minimisation du temps maximal pour atteindre un site sinistré, la minimisation du temps
moyen d’intervention et la maximisation du nombre de sites secourus dans une période

donnée.

Les problémes de tournées de véhicules particuliers sur lesquels se concentre la thése sont

finalement présentés. Leur caractéristique commune est un critére d’optimisation spécial, la
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minimisation de la somme des temps d’arrivée sur I’ensemble des sites sinistrés, par exemple
des villages inondés. A une constante prés (le nombre de sites a secourir), ce critére est
évidemment équivalent au temps moyen de secours. Il est aussi appelé “cotit cumulatif” dans
la littérature. Dans le cas d’un taux de mortalité constant par période de temps, il est clair

que minimiser le temps moyen de secours permet aussi de maximiser le nombre de survivants.

Par exemple, si un camion atteint (dans l'ordre) un village 2 jours aprés la catastrophe,
puis un autre village 3 jours aprés le premier, pour retourner a la base en 2 jours, la durée
totale de la tournée est 2 + 3 + 2 = 7 jours, ce qui constitue un critére classique en logistique
industriel. En logistique de catastrophe, si on choisit le temps de secours moyen, le premier
village est livré en 2 jours et le second en 2 + 3 = 5 jours, soit un temps de secours moyen
de (2+5)/2 = 3.5 jours. On voit que le critére “cumulatif” a en général une valeur différente

de celle du critére classique et que le temps de retour au dépot n’est plus considéré.

Lors de la thése de Sandra Ulrich NGUEVEU au LOSI (soutenue fin 2009), un
premier probléme de ce type avait été introduit et étudié, le probléme cumulatif de
tournées de véhicules avec capacités (en anglais cumulative capacitated vehicle routing
problem ou CCVRP). Comme tous les problémes de tournées, le CCVRP est un probléme
difficile d’optimisation combinatoire, appartenant & la classe des problémes NP-difficiles
d’optimisation combinatoire. Cette thése se penche sur trois nouveaux problémes avec la

méme fonction-objectif, qui sont introduits dans le Chapitre 1.

Le premier probléme étudié au Chapitre 3 est le probléme cumulatif de tournées
avec capacités, un véhicule et des tournées multiples (multitrip cumulative capacitated
single-vehicle routing problem ou mt-CCSVRP). Comparé au CCVRP étudié par Ngueveu
et al. (2010), on considére un seul véhicule au lieu de plusieurs, mais ce véhicule est autorisé
a revenir charger au dépot pour enchainer plusieurs tournées (dans la version de Ngueveu,
les véhicules partent en paralléle pour effectuer une seule tournée). C’est la séquence de ces
tournées successives qui est appelée multitrip en anglais. Nous conservons dans la suite le
terme anglais qui n’a pas d’équivalent clair en francais. Ce mt-CCSVRP est un probléme
de base intéressant. En effet, la limitation a un seul véhicule, par exemple un hélicoptére,
n’est pas si restrictive que ca puisque les gestionnaires de catastrophes découpent souvent
le territoire affecté en mailles rectangulaires puis affectent un hélicoptére a chaque maille.
Si on suppose que ce découpage est déja réalisé, il reste a résoudre un mt-CCSVRP dans

chaque maille.
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Le second probléme, abordé au Chapitre 4, est le probléme cumulatif de tournées
de véhicules avec capacités et tournées multiples (multitrip cumulative capacitated vehicle
routing problem ou mt-CCVRP). Il peut étre vu comme une généralisation a plusieurs
véhicules du probléme précédent et comme une généralisation a tournées multiples du

CCVRP de Ngueveu.

Le troisiéme probléme (Chapitre 5) est le probléme cumulatif de tournées de véhicules
avec livraisons indirectes (cumulative vehicle routing problem with indirect deliveries ou
CCVRP-ID). 1l concerne la situation réaliste ou la flotte de véhicules, par exemple des
hélicoptéres, n’a pas le temps de visiter tous les sites affectés, par exemple des villages.
Cependant, les habitants des sites non visités peuvent venir chercher 'aide qui leur est
attribué au plus proche village visité, par exemple en utilisant des véhicules terrestres. L’aide
arrive ainsi en deux étapes a ces villages, constituant ainsi des livraisons dites indirectes.
L’objectif du probléme est donc de choisir les villages visités par les hélicoptéres & partir de
leur base, de définir une tournée de villages visités pour chaque hélicoptére, et de choisir pour
chaque site non visité un village visité a partir duquel une livraison indirecte sera effectuée.
L’objectif est toujours de minimiser le temps moyen d’arrivée des secours aux villages, qu’ils

solent livrés directement ou indirectement.

Il faut souligner la grande difficulté de ces problémes d’optimisation de tournées. Dans
un probléme classique de tournées ou il faut minimiser par exemple la longueur totale des
tournées (kilométrage), la variation de la longueur totale si un nouveau village k est inséré
entre deux villages 7 et j d’une tournée est simplement c;, +cy; —c;j, ou ¢;; désigne la longueur
du trajet entre ¢ et j. Avec le critére cumulatif, les calculs sont plus compliqués puisque
I'insertion de k retarde les heures d’arrivée a tous les villages qui suivent ¢ dans la tournée
existante. De plus, la possibilité de tournées multiples dans les deux premiers problémes
induit une complication supplémentaire. En effet, avec le critére classique de la longueur,
la longueur totale d’un “multitrip” ne dépend pas de l'ordre des tournées composant ce
multitrip : par exemple, si on affecte a un véhicule trois tournées de 7, 5 et 4 km, ces tournées
peuvent étre réalisées dans n’importe quel ordre et, de plus, chacune des tournées peut étre
parcourue a l'envers sans que cela change sa longueur. Dans les problémes cumulatifs, le
temps moyen de secours change si une tournée est inversée ou si on modifie 'ordre des

tournées dans un multitrip.

Le Chapitre 1 se termine en annonc¢ant la liste des chapitres de la thése.
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Chapitre 2 - Etat de l’art

Le chapitre a pour objectif de présenter les principaux travaux publiés, en trois blocs:
les principales problématiques en logistique humanitaires, les problémes de tournées de
véhicules posés par la phase de réponse aprés une catastrophe, et un rappel des techniques

de modélisation et de résolution des problémes de tournées de véhicules en général.

La partie sur la logistique humanitaire cite des références utiles, comprenant aussi bien des
synthéses introductives que des études trés spécialisées, sur les principales décisions pouvant
étre optimisées dans un systéme de réponse a une catastrophe : le placement optimal de
moyens de secours (véhicules, médicaments, nourriture etc.), la gestion des stocks et les
réapprovisionnements, les problémes de transport (comprenant la distribution d’aide aussi
bien que les évacuations), et les problémes de réhabilitation des infrastructures comme la

réparation des ponts ou la restauration de réseaux d’eau ou d’énergie.

La partie sur les problémes de véhicules cite les publications ot les véhicules de secours
distribuent 1’'aide en visitant chacun plusieurs points de livraison. Rappelons que la thése
se limite uniquement a ce type de distribution. Il existe une autre famille de problémes de
transport ou chaque véhicule fait des allers et retours entre la base et une seule destination
pour livrer des pleines charges. Les problémes de tournées conviennent aux cas ou on livre
une quantité plus petite, mais & plusieurs destinations, par exemple pour effectuer une
premiére évaluation en livrant uniquement des médicaments d’urgence. L’état de ’art insiste
particuliérement sur les nombreux critéres d’optimisation spéciaux qui ont été considérés

dans la littérature sur les problémes de tournées en logistique de catastrophe.

La derniére partie rappelle les principales méthodes de résolution pour les problémes
d’optimisation de tournées : méthodes exactes (résolution directe d'un modéle mathématique,
branch-and-bound etc.), heuristiques constructives simples, procédures d’amélioration
itérative (recherche locale), métaheuristiques et matheuristiques (hybridation entre une

métaheuristique et une méthode exacte).

L’état de I'art montre que la littérature contient beaucoup d’articles de typologie sur
les opérations de logistique humanitaire et des discussions prospectives sur les apports
possibles de la Recherche Opérationnelle, mais encore relativement peu de travaux appliquant
réellement des techniques d’optimisation qui tiennent compte des critéres d’urgence

spécifiques a ce contexte.
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Chapitre 3 - Une méthode exacte pour le
mt-CCSVRP

Ce chapitre est consacré au premier probléme mentionné dans le Chapitre 1, le probléme
cumulatif de tournées avec capacités, un seul véhicule et des tournées multiples. Les données
comprennent un dépot comme une base aérienne (nceud d’indice 0), n sites sinistrés ayant
chacun des besoins exprimés par une quantité, un véhicule basé au dépot (par exemple un
hélicoptére) et ayant une capacité de transport et une durée de vol maximale (autonomie en
temps) sans revenir au dépot, et les temps de vol entre tout couple de localités (dépot ou
sites affectés). L’hélicopteére peut effectuer des tournées successives en repassant a sa base
pour recharger des marchandises et faire le plein de carburant. La durée de chaque tournée
ne doit pas dépasser I'autonomie. L’objectif est de déterminer un ensemble de tournées et

leur ordre de réalisation, de maniére & minimiser la durée moyenne d’accés aux sites a visiter.

Deux modéles mathématiques (des programmes linéaires mixtes) basés sur des techniques
différentes sont développés. Le premier est un modéle de type flots. Dans ce type d’approche,
les tournées correspondent & des chemins dans un graphe étendu, entre une copie du
nceud-dépot servant de point de départ, et une autre copie servant de point d’arrivée. Les
principales variables sont des variables binaires z;;, égales a 1 si une tournée inclut une étape
de vol du village 7 au village j, et des variables F; ; qui expriment la charge du véhicule sur
cette étape (ces variables permettent de modéliser les déchargements successifs). Alors que
des modéles de la littérature sur les problémes a tournées multiples nécessitent un indice de
tournée pour les variables, par exemple x;;, = 1 si I'étape (4, j) est réalisé pendant la tournée
numéro k, le modéle proposé ici n’utilise aucun indice de tournée, ce qui n’est pas du tout
évident. L’astuce repose sur le concept d’arc de réapprovisionnement (replenishment arc) :
si une tournée se termine au village ¢ pour revenir au dépot (nceud 0) et est suivie d’une
tournée qui part de 0 pour aller & un premier village j, on peut remplacer les deux arcs
(,0) et (0,7) par un arc de réapprovisionnement (i, j), de durée égale au cotit des deux arcs
substitués. Une solution consiste alors en une séquence unique d’arcs, mixant des étapes
réelles de vol et des arcs de réapprovisionnement, ce qui revient a travailler sur une grande

tournée unique en s’affranchissant du découpage en tournées successives.

La figure suivante montre une solution pour un cas simple avec 5 sites a visiter a partir du
dépot (neeud 0) et 3 tournées. La demande de chaque site est de 10 tonnes et la capacité du
véhicule est de 20 tonnes. Les temps de déplacement sont indiqués sur chaque arc en heures

et I’heure d’arrivée est mentionnée prés de chaque noeud. Les arcs en pointillés correspondent
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aux fameux arcs de réapprovisionnement. La somme des heures d’arrivée aux sites est ici

Z =190, a diviser par 5 pour avoir le temps de secours moyen par site sinistré.

Solution:

[0, 1,2,0,3,4,0,5,0]

— classical arc

19

. 9 11 25
& 12 %
38
50

Example of an mt-CCSVRP solution for an instance with n = 5, all ¢; = 10 and @) = 20.

- - > replenishment arc

Le second modéle est de type partitionnement d’ensemble. L’ensemble des colonnes
correspond aux tournées possibles et une variable binaire indique pour chaque colonne si la
tournée associée est sélectionnée dans la solution. Par rapport & un probléme de tournées
classiques, le critére d’optimisation (temps d’accés moyen) dépend de l'ordre de réalisation
des tournées par le véhicule, ce qui nécessité des variables binaires supplémentaires 7y,

égales & 1 si le véhicule réalise consécutivement les tournées k et k'.

Le chapitre développe ensuite une méthode exacte, équivalente au calcul d’un chemin de
colt minimal dans un certain graphe auxiliaire, en présence de ressources consommables.
Les nceuds de ce graphe, appelés noeuds-tournées, correspondent aux tournées possibles.
Leur nombre peut étre a priori énorme, bien que la capacité et 'autonomie limitées du
véhicule éliminent les tournées visitant un grand nombre de villages. De plus, deux régles de
dominance sont élaborées pour comparer deux tournées visitant le méme sous-ensemble de
villages mais dans des ordres différents. Ces régles permettent d’éliminer un grand nombre

de noeuds-tournées, en prouvant qu’ils ne pourront pas faire partie d’une solution optimale.

Une fois que les noeuds-tournées du graphe auxiliaire ont été définis, un arc (i, j) est créé

pour tout couple de tournées 7 et 7 pouvant étre réalisés consécutivement par le véhicule. Une
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condition nécessaire est évidemment que les deux tournées n’aient pas de village commun,
car dans notre probléme chaque village est visité une seule fois vue 'urgence. Une solution
du probléme de tournées correspond donc & un chemin (suite de nceuds-tournées) de durée
minimale dans le graphe auxiliaire, tel que tous les villages soient visités. Par définition,
chaque arc (7, j) implique que les tournées ¢ et j n’aient aucun village en commun, mais cela
est insuffisant pour garantir qu’un village visité au début d’un chemin ne soit pas revisité
plus tard dans un autre nceud-tournée de ce chemin. L’algorithme de chemin utilisé, de type
Bellman-Ford, doit donc mémoriser pour les différents chemins I’ensemble des villages déja
visités pour éviter des visites multiples. Ceci revient a considérer chaque village comme une

ressource consommable unique, ce qui conduit a un algorithme a labels multiples.

Il est bien connu que les problémes de chemins optimaux sont plus faciles quand le graphe

n’a pas de circuits, comme en gestion de projet, car on peut alors ordonner les nceuds du
. s 12 e 9

graphe depuis les noeuds sans prédécesseurs jusqu’aux nceuds sans successeurs. Il est alors

impossible de repasser deux fois par le méme nceud. En présence de circuit, il faut un

mécanisme supplémentaire pour éviter de repasser par le méme nceud, ce qui reviendrait

dans notre cas i effectuer deux fois la méme tournée.

Ici, une propriété-clé a été démontrée pour aboutir a un graphe sans circuit. Elle stipule
que le “cotit” (temps d’acceés moyen aux sites) d’un multitrip est minimisé si ses tournées sont
ordonnées en ordre croissant de durée moyenne des tournées, la durée moyenne d’une tournée
k étant définie comme sa durée totale Dy, divisée par le nombre de sites visités M. Par
conséquent, les chemins qui ne respectent pas cette propriété ne peuvent pas étre optimaux.
En pratique, on peut donc éliminer tout arc (k, k') du graphe auxiliaire si la durée moyenne

de la tournée k est supérieure a celle de £/, ce qui réduit énormément la taille du graphe.

L’algorithme de plus court chemin dans le graphe auxiliaire est finalement accéléré par
cing bornes inférieures sur le cotit des chemins, ce qui permet d’éviter d’étendre de nombreux

chemins partiels aux cours des calculs.

Les évaluations numériques comparent la résolution directe des deux modéles
mathématiques a 'aide du solveur commercial CPLEX avec la méthode de chemin optimal
programmée en C++. Les “instances” (problémes-tests) utilisées sont dérivées d’instances
de la littérature pour le probléme classique de tournées de véhicules. Ces problémes appelés
CMT comportent de 50 a 199 clients a livrer qui sont interprétés ici comme des villages

affectés. Nous conservons les positions géographiques de ces points, les quantités a livrer et
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les temps de déplacement. Nous remplagons cependant la flotte de plusieurs véhicules par un
véhicule unique et remplagons la fonction-objectif classique (durée totale des tournées) par
le temps moyen d’arrivée au site sinistré. Nous considérons aussi plusieurs valeurs différentes
pour "autonomie de ’hélicoptére car une grande autonomie augmente le nombre de tournées

possibles et donc la taille du graphe auxiliaire.

Les tests montrent que méme en 2 heures de calcul les deux modéles mathématiques ne
peuvent aller au-dela de 20 villages. Méme pour 20 villages, le modéle de type flot ne trouve
pas toujours une solution optimale. Le modéle de partitionnement d’ensemble trouve plus de
solutions optimales, mais explose dans tous les autres cas par manque de mémoire pendant
la résolution. Par contre, la méthode exacte résout optimalement tous les cas a 20 villages

en 69 secondes en moyenne.

La méthode exacte est finalement évaluée sur des tests a 25, 30 et 40 sites, en comparant
I'impact des régles de dominance et de 'autonomie du véhicule. Les régles de dominance
permettent de diviser le nombre de nceuds-tournées du graphe auxiliaire par un factor de
2 a 4 en moyenne. Le nombre de nocuds-tournées du graphe augmente rapidement avec le
nombre n de sites et 'autonomie du véhicule. Cependant, les problémes jusqu’a 400000
nceuds sont résolus en quelques minutes. La limite de la méthode est atteinte pour n = 40 et
une grande autonomie: on arrive a presque 4 millions de nceuds avant application des régles

de domination, 750 000 avec ces régles, et un temps de calcul atteignant 15 heures.

En conclusion, la méthode exacte est trés performante jusqu’a 40 sites pour le probléme
a un véhicule et tournées multiples, a condition que I'autonomie du véhicule et le nombre
moyen de sites livrés par tournée ne soient pas excessifs, ce qui semblent le cas pour un
hélicoptére et les quantités relativement importantes a livrer a chaque village en cas de

catastrophe.

La méthode exacte développée dans le Chapitre 3 a été présentée avec des résultats
préliminaires a la conférence ROADEF 2014 a Bordeaux, en février 2014. Un article détaillé
a été soumis a Discrete Applied Mathematics (Elsevier), sans retour des évaluateurs au

moment ot nous écrivons ces lignes.
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Chapitre 4 - Le mt-CCVRP : formulations

mathématiques et algorithmes de résolution

Rappelons que le mt-CCVRP désigne le probléme cumulatif de tournées avec capacités
et tournées multiples. Il s’agit d’une généralisation du probléme précédent a une flotte de
R véhicules de capacité identique. Il s’agit donc pour chaque véhicule de déterminer une
séquence de tournées (multitrip) de fagon a visiter chaque village affecté une seule fois tout

en minimisant le temps d’accés moyen aux villages.

Le chapitre commence par reprendre le CCVRP étudié par Ngueveu et al. (2010), qui est
une version simplifiée ott chaque véhicule n’effectue qu’une tournée. Cette étape préliminaire
permet de comparer différentes approches de modélisation mathématique, basées sur des
variables différentes, avant d’introduire la complication que constitue la possibilité pour

chaque véhicule d’enchainer des tournées successives.

Cing programmes linéaires en variables mixtes sont discutés. Le premier est celui proposé
par Ngueveu dans sa thése de 2009, avec des variables binaires indiquant si un chaque
arc (i,7) est traversé ou pas par chaque véhicule k. TL’utilisation de l'indice de véhicules
(k) conduit & un grand nombre de variables. Quatre nouveaux modéles alternatifs sont
proposés. Les modeéles 2 et 3 sont des approches de type flot avec des variables sans indice
de véhicule, comme dans le chapitre précédent. Le modéle 4 utilise des variables binaires
spéciales exprimant 1'ordre de traversée des arcs : xpl, égales a 1 si le site i est visité en
position [ par le véhicule k. Enfin, le modéle 5 utilise des variables binaires d’enchainement

k
Ib1j7

égales a 1 si le véhicule k visite consécutivement les sites ¢ puis j.

Le modéle 3 est ensuite sélectionné pour y ajouter la possibilité de tournées multiples pour
chaque véhicule. Ce modéle de type flot peut étre évidemment vu comme une généralisation
a4 une flotte de plusieurs véhicules du modéle du Chapitre 3, qui concerne le cas d'un
véhicule unique. Son principal avantage est de limiter le nombre de variables en n’ayant
ni indice de véhicule, ni indice pour distinguer les différentes tournées d’un véhicule, ce qui
constitue un tour de force du point de vue de la compacité de modélisation. Comme dans
le chapitre précédent, ’astuce de modélisation repose largement sur I'utilisation d’arcs de

réapprovisionnement.

Trois métaheuristiques sont ensuite construites pour traiter des problémes de taille trop

grande pour les modéles mathématiques. Toutes partagent la méme procédure de recherche
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locale, une méthode de descente a voisinage variable (variable neighborhood descent ou VND).
Le principe des VND en général est d’essayer une suite de voisinages de plus en plus grands,
en effectuant des mouvements améliorants dans le voisinage courant tant qu’on peut en
trouver, avant de passer au voisinage suivant plus consommateur de temps de calcul. La
VND développée pour le mt-CCVRP utilise cinq voisinages. Le voisinage N; considére
des mouvements 2-OPT et des échanges de deux chaines contenant chacune de 1 a \ sites
(M-interchanges en anglais), mais appliqués dans une tournée. Le voisinage Ny considére les
mémes mouvements mais appliqués a une paire de tournées effectuées par le méme véhicule,
il est donc moins “local”. N3 est basé encore sur les mémes mouvements mais considére deux
tournées de deux véhicules différents. N, examine des coupures de tournées tandis que Ny

change l'ordre des tournées d’un véhicule.

Comparé aux problémes classiques de tournées optimisant la longueur ou la durée totale
des tournées, le calcul efficace (rapide) des variations de cotit dans ces mouvements est loin
d’étre évident avec notre critére de temps d’accés moyen aux sites sinistrés. Des formules
permettant de calculer en temps constant les variations de cotit ont pu étre élaborées pour
les voisinages Ny & N3. Elles reposent sur le pré-calcul de certaines valeurs avant de balayer

les mouvements des voisinages.

La régle de dominance du chapitre précédent est ici toujours valable : ’ordre optimal des
tournées dans un multitrip consiste a les trier par durée moyenne croissante. Cependant,
ce tri ne peut pas étre effectué en temps constant : des essais préliminaires ont montré que
la durée d’exécution de la VND était excessif si on applique l'ordre optimal aprés chaque
mouvement dans les voisinages N1 & N3. Les tests ont montré qu’il suffisait de réordonner les
tournées d’un véhicule seulement dans N4, quand les voisinages précédents ne fournissent plus
aucun mouvement améliorant : la qualité finale des solutions ne semble pas significativement

diminuée.

La premiére métaheuristique est une recherche locale itérative & démarrages multiples
(multi-start iterative local search ou MS-ILS). La métaheuristique ILS génére une suite
d’optima locaux de couts décroissants. Elle part d’une solution initiale calculée par
une heuristique constructive et immédiatement améliorée via la VND. Chaque itération
consiste ensuite a prendre une copie de la solution courante, a la perturber aléatoirement
(comme 'opérateur de mutation des algorithmes génétiques), & appliquer la VND & la copie
perturbée, et a remplacer la solution courante par la solution obtenue, mais seulement

en cas d’amélioration. Souvent, les ILS stagnent aprés quelques itérations : les solutions
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obtenues par perturbation et recherche locale n’améliorent plus la solution courante et
Palgorithme reste bloqué sur celle-ci. Il vaut mieux alors stopper I'ILS aprés un certain
nombre d’itérations et la redémarrer a partir d’'une autre solution initiale dans I’espace de
recherche. On utilise pour cela une forme randomisée de I'heuristique constructive initiale,

pour obtenir une solution de bonne qualité mais différente a chaque redémarrage.

La deuxiéme métaheuristique travaille sur une population de solutions, il s’agit d’un
algorithme mémétique avec “gestion de population” (memetic algorithm with population
management ou MA|PM). Les algorithmes mémétiques (en simplifiant) sont des algorithmes
génétiques renforcés par une procédure de recherche locale appliquée aux enfants générés par
I'opérateur de croisement. La gestion de population consiste a controler la diversité de la

population en utilisant une mesure de distance dans I'espace des solutions.

Alors que la premiére métaheuristique (MS-ILS) travaille directement sur des solutions
complétes, MA-PM travaille sur des “tours géants” dans lesquels on ignore les contraintes
de capacité. Ce codage de solution peut étre vu comme une tournée unique couvrant tous
les villages, effectuée par un véhicule de capacité infinie, ou plus simplement comme un
ordre de priorité sur les différents villages. La population est formée de tels tours géants,
générés au début par des heuristiques, puis par 'opérateur de croisement lors des itérations

de l'algorithme mémeétique.

La difficulté est évidemment de déduire une solution & notre probléme pour chaque tour
géant. Pour le probléme classique de tournées de véhicules, on peut montrer qu’on peut
découper le tour géant en tournées optimalement (sous contrainte de la séquence fournie) et
dans un temps de calcul polynomial, en se basant sur la résolution d’un probléme de chemin
optimal dans un certain graphe auxiliaire. Cette procédure de découpage appelée Split
(Prins, 2004) a été utilisée avec succés dans un algorithme mémétique pour les problémes
de tournées classique. L’algorithme mémétique peut donc explorer un espace de recherche
plus petit (celui des tours géants) et il n’y a pas de perte d’information puisque la procédure
Split permet de déduire rapidement le découpage optimal correspondant a chaque tour géant.
De plus, les croisements applicables aux tours géants sont beaucoup plus simples que ceux
nécessaires pour des couples de solutions complétes, en particulier la gestion des contraintes
de capacité est évacuée. Il est important de préciser que Split découpe optimalement un tour
géant donné mais on ne connait pas le tour géant globalement optimal, ¢’est-a-dire celui qui
va donner aprés découpage une solution compléte optimale pour le probléme de tournées qui

nous intéresse.
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Des procédures Split ont depuis été développées pour des problémes de tournées plus
complexes. La difficulté est que la gestion de contraintes supplémentaires dans le probléme
de découpage du tour géant en tournées peut le rendre NP-difficile. Pour le mt-CCVRP, nous
avons élaboré une procédure Split pas du tout évidente, en préservant la polynomialité. Le
tour géant est un simple ordre des sites visités. En simplifiant, la procédure proposée opére en
deux niveaux : elle détermine pour chaque sous-séquence de sites, assimilée a un multitrip
possible pour un véhicule, son découpage optimal en tournées et le coiit correspondant.
Puis elle détermine le découpage optimal en multitrips en choisissant des sous-séquences

consécutives (déja évaluées) pour minimiser le cott de la solution compléte.

L’algorithme mémétique proposé travaille sur une population de tours géants. A chaque
itération deux parents sont sélectionnés par une méthode de roulette favorisant les individus
de meilleur cotit. Un opérateur de croisement & un point est ensuite appliqué aux deux tours
géants choisis et un seul enfant est conservé. Il est décodé par Split pour obtenir une solution
compléte qui est ensuite améliorée par la méme VND que dans la MS-ILS. Le résultat de
la VND est finalement reconverti en tour géant, en concaténant les tournées successives des

différents véhicules.

La mise a jour de la population obéit aux principes de gestion de la population énoncés par
Sorensen & Sevaux (2006). Si enfant améliore la meilleure solution connue, il est conservé.
Sinon, la distance minimale entre ’enfant et les solutions de la population existante est
calculée et I'enfant est accepté seulement si cette distance est au moins égale a un seuil
donné A. Cette technique empéche que la population soit envahie par des solutions ayant
des structures trés voisines, ce qui peut conduire a une convergence prématurée. La distance
choisie fonctionne sur 'espace des tours géants, il s’agit de la “distance des paires cassées”
(Campos et al., 2005) : pour deux tours géants 17 et Ty, elle est égale au nombre de paires
de sites consécutifs dans 77 qui sont séparées (cassées) dans Ty. Cette distance augmente

quand le nombre de sous-séquences communes diminue entre les deux tours géants.

Si la solution n’est pas acceptée, elle subit des opérations de mutation successives pour

augmenter sa distance a la population, jusqu’a ce qu’elle soit acceptée.

La derniére métaheuristique est une recherche locale évolutionnaire & démarrages
multiples (multi-start evolutionary local search ou MS-ELS). La métaheuristique ELS est
une ILS dans laquelle un nombre fixé d’enfants sont générés par perturbation + recherche

locale en prenant des copies de la solution courante. Si le meilleur enfant obtenu améliore
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la solution courante, il remplace cette derniére. En fait, ILS est un cas particulier d’ELS
avec un seul enfant par itération. Une autre différence est que notre MS-ELS alterne entre
deux espaces de recherche, les tours géants et les solutions complétes du mt-CCVRP, un peu

comme dans ’algorithme mémétique.

Plus précisement, chaque redémarrage de MS-ELS utilise une heuristique randomisée
pour obtenir une solution compléte S, améliorée aussitot par la VND, et dont les tournées
sont concaténées pour obtenir un tour géant initial 7. On obtient donc un couple initial
(S,T), avec une solution compléte et le tour géant associé, obtenu par concaténation des
tournées. Chaque itération consiste ensuite a générer un nombre d’enfants comme suit et a
remplacer la solution courante si elle est moins bonne que le meilleur enfant. Une copie du
tour géant courant T est effectuée. Cette copie est perturbée aléatoirement en échangeant
quelques sites, puis elle est convertie en solution compléte S” avec la méme procédure de
découpage Split que dans 'algorithme mémétique précédent. S” est ensuite améliorée par la
VND. La meilleure solution enfant S’ est mémorisée. Si aprés la génération du nombre fixé
d’enfants, S’ est meilleure que la solution courante S, elle remplace cette derniére et le tour
géant courant T est mis & jour en concaténant les tournées de S’. Cette technique parait
bien compliquée mais elle est trés efficace. En effet, la VND ne contient que des mouvements
d’amélioration locale, affectant au plus deux tournées, tandis que le saut temporaire dans
I'espace des tours géants (concaténer les tournées puis appliquer Split) permet souvent de
changer plusieurs limites de tournées en méme temps. L’opérateur Split peut donc étre vu

comme un opérateur a grand voisinage, renforcant ainsi ’amélioration rapide des solutions.

Comme dans le Chapitre 3, les modéles ont été traduits en CPLEX et tous nos algorithmes
en C+-+. Les cinq modeéles mathématiques proposés pour le CCVRP (sans multitrips) ont
tout d’abord été testés sur 12 petits cas a 15 sites, les temps de calcul devenant prohibitifs
au-dela. Seuls les modéles numéro 3 et 5 résolvent tous les problémes optimalement, et en
moins de 4 minutes. Les autres échouent sur certaines instances, méme en leur accordant
une heure de calcul. L’intérét de ces tests est de montrer que nos modéles 3 et 5 sont plus
efficaces que le modéle 1 proposé par Ngueveu en 2009 et de nous conforter dans le choix
du modéle 3 pour le généraliser au mt-CCVRP qui autorise les multitrips. Le modéle de
Ngueveu est cependant meilleur que le modéle 4, qui est le seul & ne trouver aucune solution

optimale.

Nous avons ensuite comparé notre MS-ILS sur le CCVRP, avec deux algorithmes

mémétiques de Ngueveu et al. (2010), une recherche adaptative a large voisinage (ALNS)
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de Ribeiro & Laporte (2012) et une métaheuristique en deux phases appelée T-PM (Ke &
Feng, 2013). Notre MS-ILS étant congue pour un probléme plus général avec multitrips (le
mt-CCVRP), il a fallu les modifier légérement pour avoir une seule tournée par véhicule et
ainsi traiter des instances du CCVRP présentes dans la littérature. Les résultats montrent
que MS-ILS est la seconde métaheuristique en termes de qualité de résultats (aprés T-PM)
sur les instances CMT qui comprennent de 50 a 199 sites a visiter, avec des temps de calcul
du méme ordre. Ceci est remarquable puisque notre algorithme est cong¢u pour un probléme
plus général. De plus, les calculs de variation de coiits dans la VND sont bien plus complexes
dans le mt-CCVRP, comparé au cas plus simple du CCVRP et nous n’avons pas essayé de

modifier notre code pour simplifier les calculs dans le cas du CCVRP.

Nous avons finalement évalué trois métaheuristiques MS-ILS, MA|PM et MS-ELS sur
des instances construites pour le mt-CCVRP. 12 petits problémes-tests & 15 sites ont permis
de comparer ’écart des métaheuristiques a 'optimum, en résolvant optimalement le modéle
mathématique avec CPLEX. CPLEX parvient a résoudre optimalement 8 problémes sur les
12 si on lui octroie 1 heure de calcul. Toutes nos métaheuristiques retrouvent ces solutions

optimales, en des temps beaucoup plus courts (5 secondes en moyenne).

Des tests sont ensuite menés pour comparer nos trois algorithmes sur des instances
dérivées des problémes-tests pour le CCVRP et disponibles dans la littérature : les CMT
(50 & 199 sites) et les GWKC (200 a 483 sites). Sur les CMT les temps de calcul n’excédent
pas 15 minutes et MS-ELS donne toujours la meilleure solution par rapport aux deux autres
méthodes, montrant ainsi 'intérét d’alterner entre les deux espaces de recherche, les tours

géants et les solutions complétes.

Sur les trés grosses instances GWKC, les temps de calcul augmentent fortement & cause
des calculs beaucoup plus lourds que pour un probléme de tournées a critére d’optimisation
classique. A nombre d’itérations égal, MS-ILS qui est conceptuellement la méthode la plus

simple donne en moyenne de meilleures solutions. MS-ELS est presque aussi bonne.

Pour les deux jeux d’instances, CMT et GWKC, 'algorithme mémétique a population
donne les moins bons résultats moyens alors que le mécanisme de gestion de la population a
la réputation d’étre puissant. Il est possible que 'opérateur de croisement utilisée bride
l'algorithme et/ou que le travail sur une population de solutions se traduise par une
convergence plus lente, comparé & MS-ILS et MS-ILS qui ne considérent qu’une solution

A la fois.
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La MS-TILS a été présentée & ROADEF 2012 a Angers, en avril 2012. Elle a été exposée
en anglais avec des résultats plus complets a la conférence CORAL 2012 a Benicassim
prés de Valencia (Espagne). Le modéle mathématique et la MS-ELS ont fait 1'objet de
communications aux conférences NOW 2013 (Syracuse, Italie) et, avec plus de résultats
numériques, a VeRoLog 2013 (EURO Working Group on Vehicle Routing and Logistics,
Southampton, Royaume Uni) et EA 2013 (Evolution artificielle, Bordeaux, France).

Deux articles plus détaillé ont été publié & Computational optimization and applications

and Lecture notes in computer science.

Chapitre 5 - Le probléme cumulatif avec capacités et
livraisons indirectes (CCVRP-ID)

Rappelons que dans ce probléme introduit au Chapitre 1, il est possible de ne pas visiter
certains villages, dont I’aide est livrée via une seconde étape de transport (directe) a partir
d’un des sites visités. Ce probléme est assez réaliste et permet par exemple de distribuer
massivement de I'aide a quelques aérodromes encore opérationnels dans la zone du désastre,
et de diffuser ensuite cette aide aux villages sinistrés en utilisant par exemple des véhicules
terrestres. Les véhicules du premier niveau de distribution sont dits “normaux” et nécessitent
un temps donné w;; pour se déplacer entre deux points ¢ et j. Les déplacements du second
niveau entre un site ¢ visité par le premier niveau et un site non directement visité j sont
effectués par des véhicules dits “auxiliaires”, en une durée égale a d - w;;, ot 0 est un facteur
constant permettant d’indiquer combien de fois les véhicules auxiliaires sont plus lents que
les véhicules de la flotte principale. On peut évidemment s’attendre a ce que les solutions

optimales puissent changer beaucoup selon la valeur choisie pour le paramétre .

La figure suivante donne un exemple simple avec n = 10 sites ayant tous une demande de
10 tonnes. On dispose de 2 véhicules “normaux” de capacité 60 tonnes. Les arcs en trait plein
indiquent les déplacements effectués par ces véhicules. Les arcs en pointillé correspondent aux
livraisons indirectes, en prenant § = 2, ¢’est-a-dire que les temps de transport sont supposés
deux fois plus lent que si un véhicule normal était utilisé. Les heures d’arrivée figurent preés
de chaque nceud. La somme des temps d’arrivée pour cette solution est Z = 180, a diviser
par 10 pour avoir le temps d’accés moyen par site. On peut remarquer que plusieurs sites

comme 7 et 8 peuvent étre livrés indirectement a partir d’un site visité directement.

Le CCVRP-ID équivaut au CCVRP si les livraisons indirectes sont interdites. 1l

ressemble au probléme généralisé de tournées de véhicules (GVRP) et & certains problémes
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Example of a CCVRP-ID solution for an instance with n = 10 and R = 2.

de télécommunications comme le “ring-star problem”. Par contre, il ne doit pas étre confondu
avec les problémes de tournées a deux échelons, ot un second niveau de tournées doit étre
construit & partir des sites visités a partir de la base principale : en effet, dans notre cas, des
livraisons directes sont opérées pour atteindre les villages non visités, par exemple par des
véhicules-navettes ou tout simplement par les habitants venant chercher 'aide a pied. De

plus, contrairement aux problémes précédents, on ne considére pas de multitrips.

Aprés cette présentation du probléme, le Chapitre 5 se consacre & la construction d’un
modéle mathématique, un programme linéaire mixte. On peut dire qu’il s’agit d’un modéle
de type flot utilisant les mémes variables z;; et F}; que dans les modéles du Chapitre 3 pour le
mt-CCSVRP et du Chapitre 4 pour le mt-CCVRP. Une simplification est qu’on ne considére
plus les multitrips. Par contre, la livraison directe a chaque site n’est plus obligatoire mais
les sites non livrés directement doivent étre desservis a partir d’un des sites visités, ce qui

nécessite des variables d’affectation supplémentaires.

Une métaheuristique est ensuite étudiée pour traiter des cas hors de portée d’une
résolution directe du modéle mathématique. Il s’agit d’une recherche évolutionnaire
évolutionnaire a démarrages multiples (MS-ELS). Une MS-ELS alternant entre tours géants

et solutions complétes a été développée dans le chapitre précédent, pour résoudre le

185



Logistics Optimization in Disaster Response Operations

mt-CCVRP. La MS-ELS du Chapitre 5 travaille sur des solutions complétes car il semble
plus difficile de définir ici la procédure Split chargée de convertir optimalement un ordre
sur les sites en une solution compléte : il faudrait par exemple décider quels sites sont
visités directement ou pas et a quel site visité directement doit étre affecté les sites atteints

indirectement.

La perturbation dans notre MS-ELS pour le CCVRP-ID consiste a enlever un ensemble

de sites choisi aléatoirement pour le réinsérer dans les tournées.

Cette MS-ELS utilise aussi une procédure de descente a voisinage variable (VND) pour
améliorer les solutions, mais les voisinages sont évidemment différents de ceux du chapitre
précédent puisque nous avons maintenant deux types d’accés aux sites, directs ou indirects.

Nous avons considéré six voisinages.

Le premier voisinage N; consiste a faire des transformations 2-OPT (inversion d’une
sous-séquence de sites) dans une tournée. Le voisinage N, travaille aussi sur une tournée
a la fois mais échange deux sous-séquences de sites pouvant comporter chacune jusqu’a A
sites. Les voisinages N3 et N, correspondent respectivement a Ny et Ny mais travaillent sur
des paires de tournées : par exemple, N4 évalue I’échange d’une sous-séquence d’une tournée
avec une autre sous-séquence présente dans une autre tournée. Dans ces quatre voisinages,
I’affectation des sites visités indirectement n’est pas modifiée, ce qui est évidemment
insuffisant pour envisager d’atteindre une solution optimale. Les deux autres voisinages

considérent les sites visités indirectement (s’ils sont présents dans la solution, évidemment).

Dans le voisinage N5, on essaie de réaffecter les noeuds atteints indirectement a un autre
neeud visité directement. Dans un probléme de tournées classique avec la minimisation de
la longueur totale, ce genre de mouvement est inutile puisque 'affectation optimale se fait
toujours au site le plus proche visité directement, mais cela n’est plus vrai dans notre version

oll on souhaite minimiser le temps moyen d’accés au site.

Les mouvements les plus violents sont examinés dans le voisinage Ng qui consistent a
modifier le mode de livraison (direct/indirect) d’un site. Un site visité directement peut
donc étre enlevé de sa tournée pour étre atteint indirectement a partir d’un autre site, et
un site visité indirectement peut étre inséré dans une tournée de livraison directe si cela est

profitable.
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Une opération de post-optimisation plus globale a été incluse en fin d’algorithme. Elle
consiste a enlever tous les clients visités indirectement, a appliquer la VND aux sites restants,
puis a réinsérer au mieux les clients qui ont été enlevés. Ce processus est répété tant qu’on

peut améliorer la solution.

Les tests numériques comportent deux parties. La premiére partie considére 12
problémes-tests avec 15 sites et 12 autres avec 30 sites. Elle vise & comparer ’écart entre les
solutions de la MS-ELS et la solution optimale calculée en résolvant le modéle mathématique
avec CPLEX. La seconde partie utilise les 14 instances CMT (50 a 199 sites) et les 20
instances GWKC (200 a 483 sites) pour le CCVRP, déja utilisées dans le chapitre précédent.
Elles sont évidemment modifiées en autorisant maintenant les livraisons indirectes et en
introduisant le facteur 6 pour la durée de transport dans les livraisons indirectes. Ces

instances sont évidemment trop grosses pour le modéle mathématique.

Dans les deux parties, on en profite pour comparer les cotits du CCVRP-ID avec le
CCVRP ot les livraisons indirectes sont interdites. On teste aussi 5 valeurs différentes
du paramétre 0 : 1, 2.5, 5, 10 et 10000. Le cas 10000 est une valeur extréme visant a
empécher (en les pénalisant fortement) les livraisons indirectes, ce qui raméne le CCVRP-ID
au CCVRP classique. L’autre valeur extréme (1) considére les mémes temps de transport

sur un arc, que ce soit dans une livraison directe ou indirecte.

Pour les petits problémes de la premiére partie, CPLEX arrive a résoudre tous les cas
a 15 sites en deux minutes maximum, pour toutes les valeurs de §. Pour les cas a 30 sites,
CPLEX trouve des solutions optimales seulement pour 6 = 1 ou 2.5, si on lui accorde une
heure de calcul. Sur toutes les instances (a 15 ou 30 sites), la métaheuristique MS-ELS

retrouve toutes les solutions optimales obtenues par CPLEX.

Pour les grands problémes de la seconde partie, avec 6 = 1000, la MS-ELS retrouve toutes
les meilleures solutions connues de la littérature pour le CCVRP sur les instances CMT.
Pour les instances GWKC, plus grosses, elle retrouve 4 des meilleures solutions connues et
en ameéliore 2. Pour les valeurs inférieures de § qui induisent un vrai CCVRP-ID, on observe
un gain moyen qui augmente quand 0 diminue. Par exemple, la réduction du temps d’accés

moyen aux sites atteint 26% pour 6 = 1 dans le cas des instances CMT.

Ces résultats montrent d'une part que la MS-ELS développée pour le CCVRP-ID est

compétitive avec les meilleures métaheuristiques publiées sur le cas particulier que constitue
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le CCVRP, ot les livraisons indirectes sont interdites. D’autre part, les livraisons indirectes
permettent de diminuer le temps d’accés moyen aux sites pour un large éventail de valeurs
de 4.

La MS-ELS pour le CCVRP-ID a été acceptée pour etre presenté & ROADEF 2015 a
Marseille et & ODYSSEUS 2015 a Ajjacio.

Chapitre 6 - Conclusion et perspectives

Ce dernier chapitre récapitule les contributions de la thése et propose des perspectives
de recherche prometteuses. Trois nouveaux problémes de tournées inspirés par la logistique
de catastrophe ont été définis, modélisés mathématiquement et résolus exactement par un
solveur de programmation linéaire (pour les petits cas) et par des métaheuristiques ad hoc
pour des cas réalistes, allant jusqu’a 483 sites sinistrés. Les problémes étudiés considérent
une fonction-objectif adaptée au contexte et reflétant I'urgence de la situation, le temps
d’accés moyen aux sites sinistrés. Ils envisagent aussi des modes de fonctionnement réalistes,
comme le réemploi des véhicules pour effectuer des rotations successives sous contrainte
d’autonomie ou des livraisons en deux temps, par exemple en mode aérien puis terrestre. Des
techniques variées de Recherche Opérationnelle et d’algorithmique avancée ont été utilisées.
En particulier, des techniques de prétraitement sophistiquées ont dua étre utilisées pour
évaluer en temps raisonnable les variations de coiit de la solution lors des mouvements de

recherche locale.

Les perspectives proposées consistent a enrichir les problémes étudiés en introduisant

plus de contraintes réalistes, pour les rapprocher des situations réelles.

Une premiére extension consisterait a ajouter au CCVRP-ID la possibilité pour chaque
véhicule de faire des tournées multiples. On obtiendrait ainsi un probléme plus complexe,
combinant les deux difficultés constituées par la possibilité de livraisons indirectes et
I'utilisation de tournées multiples (ces deux complications ont été abordées séparément dans

les trois problémes étudiés dans la thése).

Une seconde perspective possible serait de gérer des stocks dans le CCVRP-ID, au niveau

des sites visités directement, pour ensuite alimenter les sites visités dans un deuxiéme temps.

La troisiéeme généralisation tournerait autour d’une version dynamique des problémes,
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avec une évolution de la situation au cours du temps, comme de nouveaux villages affectés
par des répliques ultérieures d’un tremblement de terre principal. Ceci suppose de considérer
un horizon de planification de plusieurs jours, avec des réoptimisations pour s’adapter aux
nouvelles situations. Ce genre de probléme d’optimisation dynamique peut étre trés complexe
quand le réseau routier est modifié, par exemple quand des ponts fragilisés s’écroulent a cause
d’une réplique. Les plus courts chemins dans le réseau sont alors impactés et il faut méme

dans certains cas réorienter les camions engagés sur des itinéraires qui se retrouvent bloqués.

Enfin, un large terrain d’investigation est offert par des généralisations multi-critéres,
ol on doit optimiser au sens de Pareto plusieurs critéres d’optimisation. Comme dans une
solution minimisant le temps d’accés moyen certains sites peuvent quand méme étre secourus
en un temps anormalement long, il nous parait opportun de considérer en méme temps la
minimisation du temps d’accés maximal, ce qui permettrait d’introduire plus d’équité dans

la distribution de P'aide.
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Optimisation de la logistique dans des
opérations en cas de catastrophes

Les problémes de tournées de véhicules cumulatives
avec capacité (CCVRP) sont étudiés dans cette
thése, ol la minimisation de la somme des temps
d'arrivée refléte mieux les objectifs stratégiques de
la logistique humanitaire.

Dans le probleme de multiples tournées d’un véhi-
cule cumulatif avec capacité (mt-CCSVRP), un seul
véhicule est disponible et il peut effectuer plusieurs
voyages. Un algorithme du plus court chemin avec
contrainte de ressources est proposé pour résoudre
ce probleme, dans lequel les tournées deviennent
des nceuds et les sites sont des ressources. Le ré-
seau est orienté et acyclique en raison des proprié-
tés particuliéres du mt-CCSVRP.

Le probléme de multiples tournées de véhicules
cumulatives avec capacité (mt-CCVRP) est introduit,
ol plusieurs véhicules peuvent effectuer multiples
voyages. Quatre programmes linéaires en nombre
entiers (PLNE) sont proposés pour résoudre le
CCVRP. Un PLNE pour le mt-CCVRP est proposé ainsi
que trois métaheuristiques : une recherche locale
iteré a démarrages multiples (MS-ILS), un algo-
rithme mémétique avec gestion de la population
(MA|PM) et une recherche locale évolutive a démar-
rages multiples (MS-ELS), qui appellent un algo-
rithme de recherche local a voisinages variables
(VND). Une méthode split a deux phases permet
MA|PM et MS-ELS d'alterner entre deux espaces de
solutions.

Le probléme de tournées de véhicules cumulatif
avec capacité et des livraisons indirectes (CCVRP-
ID) permet aux sites non visités si leurs demandes
sont fournies par un véhicule auxiliaire. Un PLNE et
un MS-ELS sont développés.

Mots clés : recherche opérationnelle — optimisation
combinatoire — métaheuristiques — transport — aide
humanitaire — logistique (organisation).

Logistic Optimization in Disaster Re-
sponse Operations

The cumulative capacitated vehicle routing prob-
lems (CCVRP) are studied in this thesis, where the
minimization of the sum of arrival times better re-
flects the strategic objectives of humanitarian logis-
tics.

In the multitrip cumulative capacitated single-
vehicle routing problem (mt-CCSVRP), only one vehi-
cle is available and it can perform multiple trips. An
exact resource constrained shortest path algorithm
is proposed for this problem, in which trips become
nodes and sites are resources. The resulting net-
work is proven to be directed and acyclic due to the
special properties of the mt-CCSVRP.

The multitrip cumulative capacitated vehicle routing
problem (mt-CCVRP) is introduced, where several
vehicles can do multiple trips. Four mixed integer
linear programs (MILP) are proposed to solve the
CCVRP. For the mt-CCVRP an MILP is also given as
well as three metaheuristics: a multi-start iterated
local search (MS-ILS), a memetic algorithm with
population management (MA|PM) and a multi-start
evolutionary local search (MS-ELS), which call a
variable neighborhood descent algorithm (VND). A
two phases split method allows MA|PM and MS-ELS
to alternate between two solution spaces.

The cumulative capacitated vehicle routing problem
with indirect deliveries (CCVRP-ID) allows unvisited
sites if their demands are provided by an auxiliary
vehicle. An MILP and an MS-ELS are developed.

Keywords: operations research — combinatorial
optimization — metaheuristics — transportation —
humanitarian assistance — business logistics.
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