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Abstract

This thesis consists of four parts : stochastic degradation modeling, prognosis of system
failures, failure level estimation and maintenance optimization. These parts are connected
and dedicated to three core issues of system failures : description, prediction and prevention.

The first part about stochastic degradation modeling proposes a degradation model based
on a time-dependent Ornstein-Uhlenbeck (OU) process. Such a process utilizes the inspection
records to establish the dynamic description of degradation process. The time-dependent OU
process is proved superior by its statistical properties on controllable mean, variance and
correlation. Its mean-reverting property can be introduced to interpret temporary correlated
fluctuations from an overall degrading trend in degradation records. Corresponding parameter
estimation is proposed based on maximum likelihood estimation method. A case study is
performed to test the model’s fitting goodness based on a degradation data-set of a passive
component in power plants.

The second part about prognosis of system failures is discussed further based on the time-
dependent OU process. And the first passage time is introduced as the system failure time,
to a pre-set failure level. Later how to estimate the failure time is discussed based on two
kinds of views : partial differential equation and integral equation. These two views lead to
various estimation techniques from different concentrations, and they can be classified into
3 categories : analytical approximations, numerical algorithms and Monte-Carlo simulation
methods. Simulation tests are done to calculate first passage density based on proposed
methods.

The third part about failure level estimation proposes some techniques to estimate failure
levels based on inverse first passage problems. In previous literature the failure level is gene-
rally treated as physical barriers or experts’ opinions, based on which failure prognosis from
first passage failures can hardly fit existing failure records. Therefore the effort in this part is
paid to make up the gap between failure records and inspection records under the definition
of first passage failure based on inverse first passage problems. When the lifetime distribution
is given or estimated from failure records, we emphasizes on numerically reproducing the
failure level under which the first passage time of the given stochastic process can have the
same lifetime distribution with the given lifetime distribution.

The fourth part about maintenance optimization investigates how to optimize mainte-
nance policies based on the time-dependent OU process. Based on monitored system condi-
tions and prognosis of system failures, condition-based maintenance is adopted to introduce
preventive maintenance such that the balance can be achieved between operation costs and
disastrous results caused by system failures. In this part, corresponding maintenance optimi-
zation problems are discussed based on the time-dependent OU process and the hypothesis
of continuously monitored system. Due to the unexplicit expression for prognosis of system
failures, classical heuristic optimization procedures cannot be fulfilled. Therefore approximate
first passage density is introduced to fulfill the maintenance optimization.





Résumé

Cette thèse est organisé en quatre parties :

1. la modélisation stochastique de la dégradation,

2. le pronostic de l’instant de défaillance du système,

3. l’estimation du niveau dégradation associé à la défaillance,

4. l’optimisation de la maintenance.

Ces différentes parties sont liées entre elles et tentent de décrire, prévoir et prévenir la
défaillance du système.

Dans la première partie, un modèle stochastique de la dégradation s’appuyant sur un
processus d’Ornstein-Uhlenbeck (OU) dépendant du temps et sur l’exploitation conjointe des
donnés d’inspection est proposé. Les qualités de ce modèle sont démontrées au travers de ses
propriétés statistiques qui permettent d’ajuster de manière indépendante la moyenne, la va-
riance et la corrélation. Une propriété de ”convergence” vers la moyenne est ensuite exploitée
pour interpréter la corrélation temporelle des fluctuations autour d’une tendance globale de
dégradation. Puis, s’appuyant sur une technique de maximisation de la vraisemblance, une
méthode d’estimation des paramètres de ce modèle est proposée. Enfin, un cas d’application
portant sur l’étude de la dégradation d’un composant passif de central électrique est traité.

La deuxième partie de la thèse est consacrée au pronostic de l’instant de défaillance du
système en s’appuyant sur un processus OU dépendant du temps. Cet instant de défaillance
est défini comme le premier temps d’atteinte d’un état de dégradation, critique i.e. d’un état
de santé inacceptable.. L’estimation de cet instant de défaillance est abordé selon deux ap-
proches : i) équations aux dérivés partielles, ii) équations intégrales. Ces approches conduisent
à différentes techniques d’estimation qui peuvent être classées selon le schéma suivant :

◦ les techniques d’approximation analytique,
◦ les techniques d’approximation numérique,
◦ les techniques de simulation de Monté-Carlo.

Des essais numériques destinés au calcul de la densité de l’instant de défaillance et permettant
la confrontation de ces différentes techniques, concluent cette seconde partie de la thèse.

L’estimation du niveau dégradation associé à la défaillance, que l’on appelle dans la suite
par commodité niveau de défaillance, est l’objet de la troisième partie du document. Classi-
quement, ce niveau de défaillance est déterminé sur la base de caractéristiques physiques ou
d’avis d’experts. Cependant ce niveau de défaillance ”théorique” n’est pas toujours cohérent
avec les données associées à des défaillances réelles. L’accent est donc mis sur la réduction de
cet écart. Pour ce faire, la loi de la durée de vie est supposée connue ou, tout au moins, estimée
sur la base de données de défaillances. Le niveau de défaillance peut alors être déterminé de
telle sorte que le processus stochastique de dégradation considéré conduise à une distribution
du premier temps d’atteinte du niveau de défaillance qui corresponde à la densité estimée.

La quatrième partie est dédiée à l’optimisation de la maintenance lorsque le processus de
dégradation considéré est un processus OU dépendant du temps. S’appuyant sur les données
de surveillance continue du système et sur le pronostic de l’instant de défaillance, un com-
promis peut être trouvé entre les coûts de maintenance préventive et ceux associés à une
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défaillance du système. Dans ce contexte, la formulation non explicite du pronostic de l’ins-
tant de défaillance ne permet pas d’exploiter les techniques d’optimisation classiques. Une
approximation de la densité de l’instant de défaillance est donc proposée pour mener à bien
cette étape d’optimisation.
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C.6.2 Critères d’évaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.6.3 Approximation-optimization . . . . . . . . . . . . . . . . . . . . . . . . 171

C.7 Conclusions et perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Bibliographie 175



Abbreviations and Notations

Abbreviations

pdf Probability density function
cdf Cumulative distribution function
MTTF Mean time to failure
OU Ornstein-Uhlenbeck
FPT First passage time
RFPT Randomized first passage time
RUL Residual useful lifetime
PHM Prognostics and health management
VIE Volterra integral equation
PDE Partial differential equation
SDE Stochastic differential equation
MC Monte-Carlo
AIC Akaike information criterion
LPT Last passage time
IFPT Inverse first passage time
CBM Condition-based maintenance
argmax Argument of the maximum
argmin Argument of the minimum
IPAk Indicator of type k for prognosis assessment

Notations

Xy,s
t The process Xt with an initial value y at time s.

L(t) An enough smooth, upper and time-dependent failure level.
∧ The smaller one between two values.
∨ The larger one between two values.
τy,s Conditional first passage time of the process to a given boundary based on

the observation of y at time s
a(t) Mean-reversion coefficient in dXt = (a(t)Xt + b(t))dt+ σ(t)dBt
b(t) Drift coefficient in dXt = (a(t)Xt + b(t))dt+ σ(t)dBt
σ(t) Diffusion coefficient in dXt = (a(t)xt + b(t))dt+ σ(t)dBt
c(t) σ2(t)/2
α(t, s) −

∫ t
s a(u)du

β(t, s) −
∫ t
s b(u)eα(u,s)du

γ(t, s)
∫ t
s c(u)e2α(u,s)du

δ(x) Dirac measure centered at 0
p(x, t|y, s) Transition probability density function from Xs = y to Xt = x, t ≥ s
F (x, t|y, s) Transition probability from Xs = y to Xt = x, t ≥ s
u(x, t|y, s) Joint probability of P (Xt ≤ x, τy,s > t|Xs = y), t ≥ s



2 ABBREVIATIONS AND NOTATIONS

w(x, t|y, s) ∂u(x,t|y,s)
∂x

ρx,y Correlative coefficient of random variables x and y
cov(x, y) Covariance function of random variables x and y
var(x) Variance function of the random variable x
E(x) Expectation of the random variable x
inf A The infimum of the set A
supA The supremum of the set A
∼ N (µ, σ2) Subject to normal distribution with mean µ and variance σ2



General Introduction

Background

The core issue discussed in this thesis is system failures. And the target is to utilize
observed information in industrial systems to describe, predict and prevent system failures.
This is a general topic discussed in reliability engineering [60], prognosis and system health
management (PHM) [70] and condition-based maintenance [16, 34]. To the extent of the
author’s understanding, reliability engineering concerns more on the descriptive research of
the system failures, PHM concerns more on the prediction techniques for the failures, and
condition-based maintenance concerns more on the prevention of the system failures.

The above understanding induces the organization of discussions in this thesis, the same
three issues for system failures will be reproduced. However we emphasize in this thesis on the
prognosis of system failures, and the title of this thesis is given based on this consideration.

This work is done in a model-based view to suppose the system degradation process
is determined by a justified model [1]. Therefore the system health state can be predicted
based on this model. Moreover supposing the system failure is described by the first passage
failure related to the system state, the prediction of system failures can be done based on
the prediction of system states. To prevent the system failures, the preventive maintenance
is introduced based on maintenance optimization problems. The role of first passage failures
in a model-based view is presented in Figure 1 1.

1. Technical issues such as failure level, first passage failure, preventive maintenance, maintenance optimi-
zation will be explained later in corresponding chapters.

Figure 1 – System failures as first passage failures : description, prediction and prevention.



4 GENERAL INTRODUCTION

Thesis Structure

This thesis consists of four parts : stochastic degradation modeling, prognosis of system
failures, failure level estimation and maintenance optimization. As stated before, these parts
are connected and dedicated to three core issues of system failures : description, prediction
and prevention.

The first part about stochastic degradation modeling proposes a degradation model based
on a time-dependent Ornstein-Uhlenbeck (OU) process. Such a process utilizes the inspection
records to establish the dynamic description of degradation process. The time-dependent
OU process is proved good by its statistical properties on controllable mean, variance and
correlation. Its mean-reverting property can be introduced to interpret temporary correlated
fluctuations from an overall degrading trend in degradation records. Corresponding parameter
estimation is proposed based on maximum likelihood estimation method. A case study is
performed to test the model’s fitting goodness based on a degradation data-set of a passive
component in power plants.

The second part about prognosis of system failures is discussed further based on the time-
dependent OU process. And the first passage time is introduced as the system failure time,
to a pre-set failure level. Later how to estimate the failure time is discussed based on two
kinds of views : partial differential equation and integral equation. These two views lead to
various estimation techniques from different concentrations, and they can be classified into
3 categories : analytical approximations, numerical algorithms and Monte-Carlo simulation
methods. Case studies are done to calculate first passage density based on proposed methods.

The third part about failure level estimation proposes some techniques to estimate fai-
lure levels based on inverse first passage problems. In previous literature the failure level is
generally treated as physical barriers or experts’ opinions, based on which failure prognosis
from first passage failures can hardly fit existing failure records. Therefore the effort in this
part is paid to make up the gap between failure records and inspection records under the
definition of first passage failure based on inverse first passage problem. And suppose the
lifetime distribution is given or estimated from failure records, we emphasizes on numerically
reproducing the failure level under which the first passage time of the given stochastic process
can have the same lifetime distribution with the given lifetime distribution.

The fourth part about maintenance optimization investigates how to optimize mainte-
nance policies based on time-dependent OU process. Based on monitored system conditions
and prognosis of system failures, condition-based maintenance can be adopted to introduce
preventive maintenance such that the balance can be achieved between operation costs and
disastrous results caused by system failures. In this part, corresponding maintenance optimi-
zation problems are discussed based on the time-dependent OU process and the hypothesis
of continuously monitored system. Due to the unexplicit expression for prognosis of system
failures, classical heuristic optimization procedures cannot be fulfilled. Therefore approximate
first passage density is used to fulfill the maintenance optimization.

Main Contributions

Compared to previous literature, this thesis is new from the following aspects :
◦ A time-dependent OU process is introduced into the field of stochastic degradation

modeling with applications to prognosis and health management, and maintenance
optimization.
◦ Prognosis of system failures based on first passage problems is considered from a
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technical view. Analytical approximations, numerical algorithms and a piecewise quasi-
linear Monte-Carlo method are proposed and fulfilled.
◦ The gap between failure records and failure prognosis based on first passage failures

is investigated from a data-analysis view, where the inverse first passage problem is
introduced to do failure level estimation.
◦ Maintenance optimization for a continuously monitored system is presented for the

time-dependent OU process.





Chapitre 1

Degradation Modeling Based on a
Time-Dependent Ornstein-Uhlenbeck
Process

This chapter is written mainly based on the submitted manuscript [20].

In this chapter, a time-dependent Ornstein-Uhlenbeck (OU) process is introduced to sto-
chastic degradation modeling. The time-dependent OU process is proposed from its statistical
properties on controllable mean, variance and correlation. Its mean-reverting property can be
introduced to interpret temporary correlated fluctuations from an overall degrading trend in
degradation records. Corresponding parameter estimation is proposed based on the maximum
likelihood estimation method. Several simulation tests are done to test the model’s fitting
goodness based on a degradation data-set of a passive component in power plants.

The whole chapter is organized as follows. In Section 1.1, we will review several existing
stochastic process models and describe the considered system. In Section 1.3, we will introduce
the statistical properties for the time-dependent OU process, its mean-reverting property will
also be emphasized. In Section 1.4, a maximum likelihood estimation for statistical inference
will be introduced. In Section 1.5, a case study will be considered based on several information
criterions to compare the fitting goodness of the OU process and a linear-diffusion model,
where the degradation data-set comes from a passive component in power plants. At the end,
several conclusions and perspectives are presented in Section 1.6.

1.1 Introduction

In this thesis, we concentrate on deteriorating systems subject to gradual degradation
processes such as fatigue crack, corrosion, erosion etc.. Generally speaking, inspection data
related to this kind of gradual degradation phenomena show many different recorded paths
for the same type of system in the same environment or test parameters. The variations from
one path to another are usually considered uncertainties due to measurement errors, unit-
to-unit difference and internal deterioration mechanisms [68]. Purely deterministic physical
models can not always explain and represent properly such uncertainties.

Hence, when degradation mechanisms are not revealed or too complex, the physical mo-
deling may be inadequate and the degradation modeling is therefore a regression or filtering
problem for chosen models. In such cases, the flexibility of the degradation models is of im-
portance as it is connected to the model’s fitting-goodness to degradation records. In this
context, we propose to model the system deteriorating state by a continuous time stochastic
process which is called degradation process. A realistic hypothesis is adopted that temporary
fluctuations in degradation process can be tolerated, while the degradation process should
have an overall degrading trend.
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For commonly used processes such as Gamma process [84] and drifted Brownian mo-
tion [66], the mean tendency or the drift can be chosen quite freely but the variance strongly
depends on the considered process. Following this idea, the modeling stage considered in this
thesis is started from controlling statistical properties of the degradation records and possi-
bly taking into account expert opinions. Specifically the choice of both a mean degradation
tendency and a variance function will be considered. The possibility to build a model with
a free choice for the mean degradation tendency and for the variance function is the main
contribution of this chapter and justifies the use of a time-dependent OU process.

From the overall degrading trend, we can consider stochastic processes devoted to the
modeling of degradation as a pure monotone phenomenon where increasing Lévy processes
and jump processes are most widely used including Gamma process [84], inverse Gaussian
process [88] etc. This comes from the hypothesis that the damage of system is caused by
small shocks which accumulate without any ”self-repair” in systems [75]. Also the monotone
property results in an explicit formula to describe the failure time for a constant failure level
when first passage failure is considered [84, 88]. This advantage makes later estimation easier
on failure time, residual useful lifetime and mean time to failure (MTTF) etc.

However, the monotone process cannot explain well on fluctuations existing in some de-
gradation records. To describe such fluctuations, a first intuitive idea is that fluctuations
come from external stochastic impacts such as measurement errors, unit-to-unit difference,
noisy observations etc.. This idea induces the introduction of external stochastic impacts for
existing models. For instance, Khanh considered introducing independent Gaussian noises
for Gamma process model [77]. Blain treated the fluctuations in the stress crack corrosion
as external noises [8]. And the stochastic filtering models for Wiener process [68], Markov-
switching models [65] and references therein. A good overview on statistical data-driven RUL
estimation is given by Si et al. in [67].

Especially, a good applicable tool would be to use random coefficient regression models or
mixed effect models [94]. However, as stated in the review [67], these models give the pdf of
the RUL in some simple cases or under the assumption of monotonic degradation paths (then
applying this kind of methods may generate a conservative estimation). This approximation
is adopted in [94], the degradation model is supposed to be monotone whereas it is not
(assumption A2 therein). Another drawback of these kind of models is that they do not take
into account the temporal variability of the RUL [51].

A second intuitive idea is to investigate those fluctuations from the internal system un-
certainties which may be due to noises such as non-homogeneous material, random loading
and thermal effects in fatigue crack modeling [75]. In these noise-excited dynamic systems,
white noise is commonly accepted and introduced to induce correlated Gaussian fluctua-
tions in degradation records. Correspondingly diffusion processes are therefore introduced for
degradation modeling. For example, to describe crack growth, physical modeling based on
deterministic crack models [52] leads to the consideration of fluctuations caused by random
residual stress [73, 76] etc.

These diffusion degradation models are established based on specific physical laws such
that they can hardly be applied to a general degradation process where degradation mecha-
nisms are not revealed. Moreover when boundary-crossing failures are considered, correspon-
ding boundary-crossing problems are difficult for these general diffusion processes. Therefore
previously most of diffusion models adopted in the degradation modeling are still related to
Brownian motion [54, 45], where the first passage failure can be described explicitly by inverse
Gaussian distribution. However the linearity of Brownian motion restricts its application and
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to increase the model’s fitting-goodness, Si et al. [66], Tseng and Peng [82] have considered
a process with nonlinear drift and linear diffusion whose RUL estimation are based on an
approximate expression of first passage density of Gauss processes [25]. This model is also
used by Le Son et al. to test the PHM 2008 data challenge data in [78]. A more general model
named Gauss-Markov process [23] attracts also researchers’ attention recently, in Peng and
Tseng [55] corresponding RUL estimation is considered based on numerical solutions to an
integral equation [23].

Under the framework of Gauss-Markov process, the average performance of the degra-
dation process can be described well as in Si et al. [66, 55]. However in these Brownian-like
processes, uncertainties are introduced with little control such that the flexibility to adjust the
model’s volatility is absent. This chapter is therefore triggered to introduce a dynamic model
which balances between the model’s complexity and the efficiency on RUL estimation. As is
shown later, a time-dependent Ornstein-Uhlenbeck process will be proposed to control the
statistical quantities of models on mean, variance and correlation, where the conditional first
passage failure to a time-dependent boundary is adopted for RUL estimation. Moreover, its
mean-reverting property is interpreted as a self-repair mechanism to compensate uncertain-
ties introduced in this time-dependent OU process. This interesting property is emphasized
from a basic fact : when we talk about a degradation process, it should have an overall degra-
ding trend if this is a real degradation. Even fluctuations exist in degradation records, these
fluctuations should be temporary and system’s degradation will tend to move to a monotone
average degradation performance in long-term period.

Summarize all the above and for mathematical simplification, the degradation process or
system health state considered in this thesis is supposed to have the following properties :

◦ The system deteriorates gradually without the risk of large shocks, such that the
degradation process can be supposed to be continuous.
◦ The degradation records are disturbed by noises from an underlying degradation pro-

cess, which has a long-term monotone trend.
◦ Noises in degradation records are gaussian and they come from internal system me-

chanisms, which can accumulate and influence later records.
◦ The system is with the memory-less property, i.e. the current system state determines

the future evolution of the system.
These hypotheses are not restrictive. They are rather common and the foundation for

many literature related to diffusion processes, see [68, 66, 65] and references therein.

1.2 The Overview on Stochastic Degradation Processes

In this section, several stochastic processes used in stochastic degradation modeling will
be introduced. The discussion concerns :

◦ Homogeneous Gamma process, which belongs to pure jump processes. This leads to
the introduction of nonhomogeneous Gamma process.
◦ Brownian motion, which belongs to continuous processes. This leads to the introduc-

tion of stochastic differential equations.
Our contribution in this thesis related to passage problems is limited in the framework

of stochastic differential equations. And it should be noticed that a key characteristic to dis-
tinguish the stochastic degradation modeling with other stochastic modeling areas is failure-
oriented modeling. Stochastic degradation modeling is discussed in the field of reliability
engineering, and it serves as a first step for reliability analysis, prognostics and health ma-



10
DEGRADATION MODELING BASED ON A TIME-DEPENDENT

ORNSTEIN-UHLENBECK PROCESS

nagement, and condition-based maintenance. So the fitting goodness to existing inspection
records is not the only indicator to choose models, how to connect this modeling work with
the failure’s description and prognosis attracts more attention. The emphasis on the compu-
tability of failure prognosis corresponding to the modeling work should be put into the first
place during modeling.

Throughout this thesis, the system failure is considered as a first passage time, that
is to say, given a pre-set failure level, the system is considered as failed when the system
degradation is beyond the failure level. This definition is utilizable and widely accepted in
engineering problems, but also it provides the possibility to consider the system failure in a
mathematical way combining with the stochastic modeling work. Actually, if the stochastic
degradation process Xt has been established, it would be convenient to consider the failure
time as the random time τ = inft>0{Xt ≥ L(t)} where L(t) is the given failure level.

So summarize all the above, the introduction presented in this section emphasizes on
three points : the definition of the stochastic process, the transition pdf leading to model’s
estimation and the possibility of solving first passage problems.

1.2.1 Gamma Process

Homogenous Gamma Processes

The statement follows the one in [84, 63]. Homogeneous Gamma process is one of the most
widely accepted degradation models in the field of reliability engineering. And the Gamma
process can describe well degradation phenomenons caused by cumulative small shocks, such
as the crack growth due to shocks in the trackway [63].

Recall for a Gamma random variable Ga(v, u), for v, u ∈ R+ the corresponding Gamma
distribution function is given by

Ga(x|v, u) =
uv

Γ(v)
xv−1 exp(−ux)I[0,+∞)(x), (1.2.1)

where IA(x) is the indicator function, and Γ(a) =
∫ +∞

0 za−1e−zdz is the Gamma function for
a > 0. u is called scale parameter and v shape parameter.

When the shape parameter in the Gamma distribution is a linear function v ·t with v > 0,
the homogeneous Gamma process is derived as follows

Definition 1.2.1. A continuous-time stochastic process {Xt, t ≥ 0} is called homogeneous
Gamma process if for the shape function v · t and scale parameter u > 0,

1. X0 = 0, almost surely,

2. Xt −Xs ∼ Ga(v · (t− s), u), ∀t > s ≥ 0,

3. Xt has independent and stationary increments.

Therefore the transition pdf, that is to say, the pdf of the distribution of Xt conditioned
on Xs = y is given by

p(x, t|y, s) = Ga(x− y|v · (t− s), u). (1.2.2)

Noticing the right part is only related to t− s, therefore p(x, t|y, s) = p(x, t− s|y, 0), so Xt is
homogeneous.

Some properties of the homogeneous Gamma process are of interest :
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1. E(Xt) = v
u t and var(Xt) = v

u2
t are all linear functions. Therefore homogeneous Gamma

process can model those degradation process with linear tendency.

2. E(Xt)
var(Xt)

is a constant. This strong constraint limits its application where inspection
records don’t show this appearance.

3. Xt is a pure jump, Markov process. So this memory-less property provides a much
easier situation when problems are considered.

4. Xt is with nondecreasing trajectories. This property fits most of degradation processes,
as in general the engineering system is considered to degrade all the time without
maintenance.

Nonhomogeneous Gamma Processes

However, the linear tendency cannot fit all degradation in consideration, and therefore
in some cases homogeneous Gamma process is not preferred. So it is natural to introduce a
non-homogeneous Gamma process as follows.

Let v(t) be a non-decreasing, right-continuous, real-valued function for t ≥ 0, with v(0) =
0. Then it comes to the definition of non-homogeneous Gamma process [84].

Definition 1.2.2. A continuous-time stochastic process {Xt, t ≥ 0} is called Gamma process
if for the shape function v(t) > 0 and scale parameter u > 0,

1. X0 = 0, almost surely,

2. Xt −Xs ∼ Ga(v(t)− v(s), u),∀t > s ≥ 0,

3. Xt has independent increments.

Therefore the transition pdf is given by

p(x, t|y, s) = Ga(x− y|v(t)− v(s), u), (1.2.3)

Noticing the right part cannot be presented with a function of t − s, therefore p(x, t|y, s) 6=
p(x, t− s|y, 0), so Xt is nonhomogeneous.

Some properties of the nonhomogeneous Gamma process are of interest :

1. E(Xt) = v(t)
u and var(Xt) = v(t)

u2
are all ajustable functions. Therefore nonhomogeneous

Gamma process can model those degradation process with nonlinear tendency by
choosing proper shape function v(t).

2. E(Xt)
var(Xt)

is a constant. This strong constraint limits its application where inspection
records don’t show this appearance.

3. Xt is a pure jump, Markov process. So this memory-less property provides a much
easier situation when problems are considered.

4. Xt is with nondecreasing trajectories. So like homogeneous Gamma process, it suppose
that the engineering system is considered to degrade all the time without maintenance.

Failure time for Increasing Processes

As stated before, when the degradation process has been established, the system failure
time can be modeled by a first passage time to a preset failure level. So deriving a description
of such a failure time could be of interest in the field of reliability engineering. Furthermore
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it is noticed that for an increasing process Xt with initial value x0 (e.g. Gamma process), for
a constant boundary L, its first passage time τ := inft≥t0{Xt ≥ L} satisfies :

P (τ > t) = P (Xt < L) =

∫ L

x0

p(x, t|x0, t0)dx, (1.2.4)

where p(x, t|y, s) is the transition pdf of Xt if it is existing.

This property provides an explicit expression on the statistical description of the failure
time for increasing processes. Actually the monotone property promises that the process
cannot go back to its previous state, so there is no problem of ”first passage”, and the
current state of the process determines whether it is beyond or not the crossing boundary for
the future.

1.2.2 Brownian Motion

Gamma processes and other increasing processes are adopted widely in the field of relia-
bility engineering to model degradation processes. However some cases cannot be explained
clearly by increasing processes, when degradation records are with fluctuations. This may be
due to internal mechanisms such as crack closure [75], or external mechanisms such as mea-
surement errors. For the external fluctuations, we can still model the degradation process by
increasing processes with the help of filtering. However for internal fluctuation mechanisms,
it needs more tools. So the Brownian motion is proposed to model a Gaussian noise in the
system.

The Brownian motion is also called Wiener process and it is defined as follows, which can
describe linearly increasing and fluctuating degradation records.

Definition 1.2.3. A stochastic process {Bt, t ≥ 0} is called a (standard) Brownian motion,
if

1. B0 = 0,

2. {Bt, t ≥ 0} has independent and stationary increments,

3. Bt ∼ N (0, t), ∀t > 0.

Then the transition pdf for Brownian motion Bt is given by

p(x, t|y, s) =
1

2πσ2(t− s)
exp(− (x− y)2

2σ2(t− s)
) (1.2.5)

Some properties of the Brownian motion are of interest :

1. E(Bt) = 0 and var(Bt) = t, so its mean is zero, and its variance is a linear function.

2. Bt is not a jump process, but it is still a Markov process. So this memory-less property
provides a much easier situation when problems are considered.

3. Bt is with fluctuating trajectories.

4. Brownian motion is almost surely continuous, unlike Gamma processes, it is without
jumps. So it suppose there is no huge shocks in the systems such that the system state
can be continuous.
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Brownian motion can model well the mean-zero, linear-variance Gaussian noises in the
degradation process, so it is natural to propose a drifted Brownian motion Xt to model
degradation processes as follows

Xt = x0 + µt+ σBt, (1.2.6)

where x0 ∈ R, µ > 0, σ > 0. With such an expression, the engineering system is not always
degrading, but sometimes it can automatically have some self-repair.

Therefore for the drifted Brownian motion Xt, it has a mean E(Xt) = x0 + µt and
other properties remain the same with Brownian motion. It should be noticed that similar
to Gamma process, E(Xt)

varXt
is a constant for the drifted Brownian motion if x0 = 0.

To describe the system failure, we consider a constant failure level L for Xt = x0µt+σBt,
then the failure density function is given by the inverse Gaussian distribution :

g(t) =
L− x0√
2πσ2t3

exp(−(L− x0 − µt)2

2σ2t
). (1.2.7)

Then the reliability function or the survival function is given by
∫ +∞
t g(s)ds.

This explicit expression also simplifies the analysis to apply such a process in engineering
problems. However it is also remarked that for the Brownian motion, except for a few cases
of failure levels, the first passage failure distribution cannot be solved explicitly.

Gauss-Markov Process

The Brownian motion is with a linearly increasing variance, and in some cases, this mo-
deling could put over-estimated uncertainties into the degradation process. So the Brownian
motion can be extended to Gauss-Markov process to control such a variance, it is defined as
follows :

Definition 1.2.4. A stochastic process {Xt, t ≥ 0} is called Gauss-Markov process, if for a
non-zero function h(t) and non-decreasing function f(t),

1. X0 = 0,

2. {Xt, t ≥ 0} has independent increments,

3. Xt = h(t)B(f(t)),∀t > 0, B(∗) is a standard Brownian motion.

Some properties of the Gauss-Markov process are of interest :

1. E(Xt) = 0 and var(Xt) = h(t)2f(t), so its mean is zero, and its variance can be
adjusted by choosing appropriate functions h, f for applications.

2. Xt is a Markov process. So this memory-less property provides a much easier situation
when problems are considered.

3. Xt is with fluctuating trajectories.

4. Gauss-Markov process is almost surely continuous, unlike Gamma processes, it is wi-
thout jumps. So it suppose there are no huge shocks in the systems such that the
system state can be continuous.

Gauss-Markov process can model well nonlinear-variance, zero-mean Gaussian noises, so
it is natural to propose a drifted Gauss-Markov Xt to model degradation processes as follows

Xt = n(t) + h(t)B(f(t)). (1.2.8)
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With such an expression, the engineering system is not always degrading, but sometimes it
can automatically have some self-repair. And E(Xt) = n(t), but other properties remain the
same with Gauss-Markov process.

For the Gauss-Markov process, it is hard to get an explicit expression for the failure
description based on the first passage failure definition, although it can flexibly model degra-
dation processes. So this is a challenge, but also a current research emphasis in the field of
reliability engineering [66, 68].

1.2.3 Itô’s Stochastic Differential Equation

Although we presented many models to model degradation processes such as Gamma
processes and drifted Brownian motion etc., one default for those modeling work is that
these processes are proposed based on more intuitive consideration. That is to say, we just
consider simple models to describe generally the tendency of the degradation models. It is
hard to find the micro understanding of these processes to describe a system mechanism.

Therefore to consider more complex modeling work, and especially to combine the mode-
ling work with existing physical laws, it is natural to introduce stochastic differential equations
(SDEs) based on Brownian motion. SDEs first appear in the beginning of 20th century due
to some research on statistical mechanics, and is strictly formulated by Itô in 1950s. It can
be accepted from the following Langevin-type equation [30, 42] :

dXt

dt
= m̃(Xt, t) + σ(Xt, t)ξt, t ≥ 0, (1.2.9)

where ξt is white noise, i.e. E(Xt) = 0,E(XtXs) = δ(t − s), where δ is the Dirac measure
centered at 0 (e.g. p39, [30]). This system can be viewed as the original ordinary differential
system influenced by the noise σ(Xt, t)ξt.

Consider an informally transformed expression of white noise by Brownian motion ξt =
dBt
dt , we can get the general expression of SDE. However this physical illustration leads to the

Stratonovich SDE (e.g. p.111, [30]), corresponding to the following Itô’s SDE :

dXt = m(Xt, t)dt+ σ(Xt, t)dBt, (1.2.10)

where m(Xt, t) = m̃(Xt, t) − 1
2σx(Xt, t)σ(Xt, t), Bt is a standard Brownian motion. m,σ :

R× [0,+∞)→ R are properly defined functions and let X0 be the initial value independent
of Bt.

The solution of (1.2.10) is a Markov process with continuous trajectories a.s.. And its
transition pdf p(x, t|y, s) when t > s satisfies the following Fokker-Planck equation :

∂p(x, t|y, s)
∂t

= −∂(m(x, t))p(x, t|y, s)
∂x

+
1

2

∂2σ2(x, t)p(x, t|y, s)
∂x2

. (1.2.11)

Several properties of SDEs are of interest :

1. SDEs can be derived directly from existing physical models by introducing Gaussian
white noises, such that many classical results and empirical research can be extended
to a stochastic version. In the field of reliability engineering, the effort has been paid to
extend the work of crack modeling, e.g. the Paris’ Law to the SDE models [74, 75, 73].

2. By introducing stochastic influences, SDEs are with much more flexibility in the mo-
deling work than the deterministic models, and it could be expected to have more
accurate fitting results than deterministic models.
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3. It is an almost surely continuous, Markov process. This memory-less property provides
a simplified discussion.

But because of the complexity of SDEs, only a few cases can be solved explicitly with also
explicit transition pdf. Therefore our concentration in this thesis will be put on the following
time-dependent Ornstein-Uhlenbeck (OU) process

dXt = (a(t)Xt + b(t))dt+ σ(t)dBt, t ≥ 0. (1.2.12)

It will be presented later that the OU process has an explicit solution and explicit transition
pdf.

Moreover it is not an easy work to estimate the failure time based on SDE models. And
this problem based on first passage definition is the main topic discussed in this thesis.

1.3 Ornstein-Uhlenbeck Process

1.3.1 Main Properties

General Process

As stated before, the OU process is one of few cases which can be solved explicitly with
also explicit probability laws in stochastic differential equations. Therefore to apply such
a process into the field of reliability engineering could be interesting to balance between
the modeling and the computability. Also based on proposed system hypotheses, it will be
presented that a time-dependent Ornstein-Uhlenbeck process could be a good candidate for
degradation modeling. OU process is widely applied in fields such as financial market, to
describe physical dynamics of systems which stabilize at its equilibrium point. It is given by

dXt = (aXt + b)dt+ σdBt, (1.3.1)

where a, b, σ are constants, Bt is the standard Brownian motion.

However it is inconvenient to be applied directly in the degradation modeling as the
mean of OU process is a constant which disobeys the overall degrading trend for degradation
data. Two modifications to compensate this inconvenience include adding a drift as in [47]
and considering time-dependent coefficients as in [2]. As a consequence the following Itô’s
stochastic differential equation will be considered throughout to define stochastic processes
for degradation modeling [92] :

dXt = (a(t)Xt + b(t))dt+ σ(t)dBt, t ≥ 0. (1.3.2)

where a, b and σ are enough smooth functions and Bt is standard Brownian motion. The
initial value X0 is a random variable independent of Bt (including the deterministic case
where the distribution degrades to Dirac measure).

Furthermore, following notations are considered throughout this thesis :

α(t, s) = −
∫ t

s
a(u)du,

β(t, s) = −
∫ t

s
b(u)eα(u,s)du, (1.3.3)

γ(t, s) =

∫ t

s
c(u)e2α(u,s)du,
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where c(t) = σ2(t)
2 > 0.

Equation (1.3.2) is too general to be connected with the degradation modeling in a straight
way but several interesting properties can be derived.

◦ An explicit form of Xt can be derived from Equation (1.3.2). It is given under notations
in (1.3.3) :

Xt = e−α(t,0)

[
X0 − β(t, 0) +

∫ t

0
σ(s)eα(s,0)dBs

]
. (1.3.4)

◦ The mean of the process is given by :

E(Xt) = e−α(t,0)

(
E(X0)− β(t, 0)

)
. (1.3.5)

◦ The process’ covariance is :

cov(Xt, Xs) = e−(α(t,0)+α(s,0))

{
var(X0) +

∫ t∧s

0
σ2(u)e2α(u,0)du

}
, (1.3.6)

which means correspondingly that the variance can be written as :

var (Xt) = e−2α(t,0)

{
var(X0) +

∫ t

0
σ2(u)e2α(u,0)du

}
. (1.3.7)

◦ Moreover, the process’ correlation coefficient is :

ρXt,Xs =
cov(Xt, Xs)√

var(Xt) var(Xs)
=

√
var(X0) +

∫ s
0 σ

2(u)e2α(u,0)du√
var(X0) +

∫ t
0 σ

2(u)e2α(u,0)du
, t ≥ s (1.3.8)

What should be mentioned more is that the OU process is Markov, with continuous
trajectories (almost surely).

Preserving Mean and Variance

Let us recall that one of the aims of this chapter is to propose and consider a process Xt

such that
E(Xt) = m(t) and var (Xt) = v(t). (1.3.9)

where m ∈ C1[0,+∞) and v ∈ C1[0,+∞) are functions chosen from statistical analysis or
from expert opinion with v(t) ≥ 0, ∀t ≥ 0.

When v(0) > 0, from Equations (1.3.5) and (1.3.7) it can be shown that (1.3.9) is obtained
by defining functions a and b in (1.3.2) as :

a(t) =
v′(t)− σ2(t)

2v(t)
, (1.3.10)

b(t) = m′(t)− a(t)m(t), (1.3.11)

where the pending σ(t) is introduced to adjust further the covariance of the process. The
case of a deterministic initial value i.e. with v(0) = 0 has to be considered carefully where
Equation (1.3.10) may not be applied. A specific case will be considered later where v(t) is
chosen as an exponential function.
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A Special Time-dependent OU process

From now on and from (1.3.11), the following special time-dependent OU process Xt

is considered in this chapter instead of the general process (1.3.2). It is described by the
following Itô’s stochastic differential equation :

dXt = (a(t)Xt +m′(t)− a(t)m(t))dt+ σ(t)dBt, t ≥ 0, (1.3.12)

where X0 is a random variable with E(X0) = m(0), var(X0) = v(0). Remark here a(t) can be
replaced by expressions in (1.3.10) when v(0) > 0 such that Equation (1.3.9) holds.

The process Xt is non-stationary and time-inhomogeneous and its explicit expression can
be formally derived from (1.3.4). It comes :

Xt = e−α(t,0)
(
X0 − β(t, 0) +

∫ t

0
σ(u)eα(u,0)dBu

)
, (1.3.13)

with updated notations

α(t, s) = −
∫ t

s
a(u)du and β(t, s) = m(s)−m(t)eα(t,s).

It can be derived naturally from (1.3.13) that E(Xt) = m(t).

Some particular cases of this process can be considered specifically.
◦ The limit case where a(t) = 0 and σ(t) = σ is a constant was studied by Si et al. [66].

In this case Xt = X0 + (m(t) −m(0)) + σBt is drifted Brownian motion. Moreover,
we have E[Xt] = m(t), var(Xt) = v0 + σ2t.
◦ When a(t) is a negative function, several additional technical conditions on a(t) and
σ(t) can be proposed :

α(+∞, 0) = −
∫ +∞

0
a(u)du = +∞, γ(+∞, 0) =

1

2

∫ +∞

0
σ2(u)e2α(u,0)du = +∞.

(1.3.14)
Corresponding physical meaning of such conditions will be revealed later by conside-
ration of mean-reversion / self-repairing mechanism.
When the condition (1.3.14) is satisfied, from l’Hôpital’s rule we could find that :

lim
t→+∞

var(Xt) = lim
t→+∞

v(0) +
∫ t

0 e
2α(u,0)σ2(u)du

e2α(t,0)
= lim

t→+∞
−σ

2(t)

2a(t)
. (1.3.15)

Also the asymptotic correlation coefficient is obtained when h > 0 is fixed :

lim
s→+∞

ρXs+h,Xs =
cov(Xs+h, Xs)√

var(Xs+h) var(Xs)
= lim

s→+∞

√√√√ ∫ s
0 e

2α(u,0)σ2(u)du∫ s+h
0 e2α(u,0)σ2(u)du

= lim
s→+∞

σ(s)

σ(s+ h)
exp(

∫ s+h

s
a(u)du). (1.3.16)

Therefore the mean of the process (1.3.12) is expressed by m(t). The variance and the
correlation coefficient of the process when time is large can be fully determined by
the function σ(t) and the function a(t). If the variance and the covariance are given
by a statistical analysis of the data-set, the model can be roughly established without
further calculation.
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◦ The case a(t) = −r being a constant (r > 0) leads to some particular asymptotic
properties. From (1.3.15), it can be derived that :

lim
t→+∞

var(Xt) = lim
t→+∞

σ2(t)

2r
. (1.3.17)

The asymptotic coefficient of correlation is obtained from (1.3.16) when h > 0 is fixed :

lim
s→+∞

ρXs+h,Xs = lim
s→+∞

σ(s)

σ(s+ h)
exp(−rh). (1.3.18)

Therefore, if σ(t) → σ when t → +∞, then we know the correlation coefficient when
time is large is almost exp(−rh).
◦ Special attention can be paid to model the case when a constant variance (or almost a

constant) is observed (v(t) ∼ v). In such a case we can propose σ(t) = σ as a constant
from (1.3.17) where r is also constant. As a consequence the process is proposed as in
[18, 17] :

dXt = (−rXt +m′(t) + rm(t))dt+ σdBt, t ≥ 0. (1.3.19)

The solution of Equation (1.3.19) based on X0 can be given from (1.3.13) by :

Xt = m(t) + (X0 −m(0)) exp(−rt) + σ

∫ t

0
exp(−r(t− u))dBu. (1.3.20)

And for t ≥ s it comes to

E(Xt) = m(t), cov(Xt, Xs) =
σ2

2r
exp(−r(t+ s))(exp(2rs) +

2rv(0)− σ2

σ2
),

var(Xt) =
σ2

2r
exp(−2rt)× (exp(2rt) +

2rv(0)− σ2

σ2
). (1.3.21)

From Equation (1.3.21), when v(0) = σ2

2r , then the variance of Xt is a constant v(0).
Therefore it can be a substitute a random-effect model Xt = m(t) + ξ, ξ ∼ N(0, v0).
It reserves consideration of fixed-variance uncertainty while it also includes the inter-
action of uncertainties at different times.
Moreover when X0 is arbitrary, the asymptotic distribution of Xt is Gaussian with
mean m(t). And the long-term performance of (1.3.20) is derived from (1.3.15)
and (1.3.16) :

lim
t→+∞

var(Xt) =
σ2

2r
and lim

s→+∞
ρXh+s,Xs = exp(−rh), h ≥ 0. (1.3.22)

From Equation (1.3.22), the asymptotic variance is a constant v = σ2

2r , and the corre-
lation coefficient is described by r which can be adjusted in the modeling.
◦ Recall further Equations (1.3.9), to consider the case when X0 = m(0) is deterministic,

it is supposed here v(t) = ν(1− e−ut), u, ν > 0 and m(t) are given. Then the following
process can be proposed to describe the given mean and variance m(t), v(t) :

dXt = (−u
2
Xt +m′(t) +

u

2
m(t))dt+

√
uνdBt, t ≥ 0. (1.3.23)

These special cases are with different statistical properties. This can help to establish the
model, with a preliminary comprehension of the fitting data. And also two specific cases i.e.
non-linear drift, linear-diffusion processes [66], and Equation (1.3.19) will be applied to the
case study later.
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Illustrative Examples on Controlling Statistical Properties

The discussion in this subsection is to present that controlling the process’ mean and
variance is not enough in the modeling work. Actually if we consider a simple model as in
(1.3.19), then it is found similar with the following random effect model :

Yt = m(t) + ξ, ξ ∼ N(0, v(0)), (1.3.24)

with E(Yt) = m(t), var(Yt) = v(0), ρ(Yt, Ys) = 1.

Compared to the random effect model (1.3.24), the OU process (1.3.19) (with v(0) = σ2

2r )
is with one more control on the correlation of the process. And the question comes : is it
useful to consider such a flexility on the correlation of the process ? This question will be
answered by illustrative examples in the following.

Suppose the process Xt is given as in (1.3.19), with the same mean m(t) = 5.6338738((t+
1)0.5964851 − 1) + 1.7922389 and the same variance v(t) = 11.86187 as a constant. And the
correlation coefficient ρXt,Xs = exp(a(t− s)) only depends on a.

The simulation tests here is to fix the mean m(t) and variance v(t), meanwhile we change
σ and a to adjust the process’ correlation coefficients. Therefore figures are produced to
present simulated trajectories for processes with different correlation coefficients, see Figure
1.1.

From the figures, the necessity to introduce one more adjustable parameter on the corre-
lation can be concluded :

◦ When the correlation is stronger, less fluctuations are introduced into the process.
◦ When the correlation is weaker, more fluctuations are introduced into the process.

1.3.2 Time-Change and Gauss-Markov Process

The following lemma states a time-change of Itô’s stochastic integral, see Proposition
7.6 in [80], which leads to an expression of Gauss-Markov process for OU processes with a
deterministic start.

Proposition 1.3.1. [80] If f ∈ C[0, T ], then the process defined by Zt =
∫ t

0 f(s)dBs, t ∈
[0, T ] is a mean zero Gaussian process with independent increments and with covariance
function

Cov(Zs, Zt) =

∫ s
∧
t

0
f2(u)du. (1.3.25)

Proof. see Proposition 7.6 by Steele in [80].

Moreover, Zt can be treated as a Brownian motion under the time-change Zt = Bρ(t) with

ρ(t) :=
∫ t

0 f
2(u)du. Consider the general OU process Yt in (1.3.2), when initial condition is

considered to be a constant y at time s ≥ 0, the solution is expressed from (1.3.4) by :

Yt := Y y,s
t = e−α(t,s)

[
y − β(t, s) +

∫ t

s
σ(u)eα(u,s)dBu

]
, t ≥ s. (1.3.26)

Moreover recall in Definition 1.2.4, a Gauss-Markov process is expressed by

Xt = h(t)Bf(t), (1.3.27)
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(a) Simulated trajectories of MOUR with a =
−0.06683215.

(b) Simulated trajectories of MOUR with a =
−0.09451493.

(c) Simulated trajectories of MOUR with a =
−0.1056709.

(d) Simulated trajectories of MOUR with a =
−0.2113418.

(e) Simulated trajectories of MOUR with a =
−0.6340254.

(f) Simulated trajectories of MOUR with a =
−1.268051.

Figure 1.1 – Trajectories of MOUR with the same mean m(t) = 5.6338738((t+ 1)0.5964851 −
1) + 1.7922389 and variance 11.86187, the correlation coefficient exp(a(t− s)) varies.
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where h(t), f(t) are properly defined deterministic functions, and B∗ is a standard Brownian
motion. Then from (1.3.26) and Proposition 1.3.1, if the initial condition is given by a constant
y at time s, we know under the time-change 2γ(t, s) :=

∫ t
s σ

2(u) exp(2α(u, s))du, Yt = (y −
β(t, s))e−α(t,s) + e−α(t,s)B2γ(t,s). So under notations in (1.3.3), we have expressed Yt as a

drifted Gauss-Markov process Yt = n(t) + h(t)B(f(t)), where n(t) = (y − β(t, s))e−α(t,s),
h(t) = e−α(t,s), f(t) = 2γ(t, s), t ≥ s.

Remark : the time-dependent OU process (1.3.2) is a Gauss-Markov process only if the
initial value Y0 is deterministic.

This time-change technique can lead to the transition pdf for Yt. As σ(u)eα(u,s) is deter-
ministic and continuous, so the stochastic integral Zt :=

∫ t
s σ(u)eα(u,s)dBu, t ≥ s is also a

mean zero Gaussian process from Proposition 1.3.1. Moreover we know Zt ∼ N (0, 2γ(t, s)),
and N (µ, σ2) represents the normal distribution with mean µ and variance σ2.

Therefore from (1.3.26), the transition pdf of Yt, p(x, t|y, s), t ≥ s can be derived with
Zte
−α(t,s) = Yt + (y − β(t, s))e−α(t,s). This leads to

p(x, t|y, s) =
1√

4πγ(t, s)e−2α(t,s)
exp(−(x+ (β(t, s)− y)e−α(t,s))2

4γ(t, s)e−2α(t,s)
). (1.3.28)

The transition pdf also satisfies a Fokker-Planck equation, which can also lead to (1.3.28).
Related details are included in Appendix A in this thesis.

1.3.3 Mean-Reversion Properties

In the previous section, a time-dependent OU process is proposed in (1.3.12). It is shown
that the process is exactly determined by the knowledge of the functions m(t), v(t) and
σ(t) which describe respectively its mean, its variance and the way to adjust its long-term
correlation relationship. From a statistical view, this process can be considered relevant for
observations fluctuating in multiple ways. Furthermore the time-dependent OU process ex-
hibits a mean-reverting property which makes the expectation of Xt tend to drift toward its
long-term mean over time. This property is discussed in this section.

Assume that the degradation process has been perfectly observed at time s with Xs = y.
From equation (1.3.13), the mean E(Xy,s

t ), t ≥ s can be written as :

E(Xy,s
t ) = m(t) + (y −m(s)) exp(

∫ t

s
a(u)du). (1.3.29)

When a(t) is negative and satisfies Equation (1.3.14), the deviation (y−m(s)) from the mean
function is weighted by exp(

∫ t
s a(u)du) which tends to 0 as t tends to infinity. Therefore, the

influence of a monitored fluctuation on the long-term average performance of the system
decreases in time. Figure 1.2 proposes an illustration of the mean-reversion property by
comparison of an OU process which exhibits the property and a drifted Brownian motion
which doesn’t. The two processes are defined respectively by Xt =

∫ t
0 (−Xu +u)du+

∫ t
0 4dBu

and Yt = t + 2Bt i.e. in a such way that starting from the origin, they have the same mean
function m(t) = t (E(Xt) = E(Yt) = t). The stars represent observed values every 0.5 unit of
time up to time 1.5. Blue and red curves are possible paths starting from the last observed
degradation level which is quite far from the mean value. The blue curves are trajectories
produced for the OU process the red curves are trajectories of the drifted Brownian motion.
The corresponding conditional expectations are drawn by a solid light blue and red curve
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Figure 1.2 – Comparison of OU process and Brownian motion for mean reverting property
illustration : OU process in blue, Brownian motion in red. The stars represents degradation
levels observed at the inspection times starting from the origin. Later blue and red curves are
possible trajectories for degradation prognosis based on the last inspection for respectively
OU process and Brownian motion with the same mean m(t).

respectively. As described by equation (1.3.29) the temporary deviation vanishes for the OU
process, and its conditional mean function tends to the original mean function. However
Brownian motion doesn’t have the same property.

The way fluctuations accumulate is important in degradation models. For instance, simple
addition of gaussian white noises leads to linear-diffusion models as in Si et al. [66] where mo-
dels’ uncertainties increase rapidly as time moves on. The mean-reverting property provides
a localizing mechanism to control uncertainties in stochastic models such that uncertainties
can be adjusted.

Moreover, the mean-reverting property can also be supported by some cases from a phy-
sical modeling view as in the two-state crack growth model proposed by Sobczyk and Spen-
cer [75]. Actually in the stochastic process (1.3.12), m(t) can be treated as the ”correct” de-
gradation mechanism, and the mean-reversion can be introduced as a self-repair mechanism
to describe the recovery ability of the system to its ”correct” state spontaneously. Therefore
a(t) can represent the recovery rate for the accompanying self-repairing mechanism, and σ(t)
for the fluctuating influence of surrounding environment. The total uncertainties in the time-
dependent OU process therefore are determined by the combination between the self-repair
and environmental influences.

This general description of fluctuations in degradation processes from a self-repairing
mechanism deserves its reasonability for fatigue cracks, due to revealed mechanisms e.g.
crack-closure. It could be adopted in more general degradation processes related to fatigue
cracks. Also rather than an actual self repairing of the considered system this hypothesis
refers to the fact that the internal intrinsic randomness of the degradation phenomenon can
not cause its instability. Hence it is possible to stabilize fluctuations around the average trend

More specifically, the system dynamic state xt can be mainly determined by a continuous
dynamic system, for example Paris’ law for the crack growth [52], where m(t) is supposed to
be the ”correct” model :

dxt = m′(t)dt. (1.3.30)

To consider the fluctuations in degradation records, suppose during the period [t, t+ dt), the
fluctuation can be described by a Gaussian variable which is given in the form of σ(t)dBt,
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where dBt ∼ N(0, dt), then the model (1.3.30) turns to the following one :

dxt = m′(t)dt+ σ(t)dBt. (1.3.31)

The time-dependent strength of noises σ(t) can be treated as a constant. This case was
adopted by Si et al. [66], Tseng and Peng [82]. And Equation (1.3.31) is not bad to describe the
local performance of system states, however this addition of noises leads to a rapidly increasing
variance such that the long-term system state may be with over-estimated uncertainties.
Therefore the mean-reversion can be proposed to adjust Equation (1.3.31).

We here avoid a strict exploration on this phenomenon, but think the self-repairing me-
chanism acts like damping on a permanently vibrating system : the further the system state
is away from the underlying mechanism, the stronger the system will react to return to its
underlying mechanism. Therefore, an item a(t) is introduced to represent strength of mean-
reversion, and a(t)(xt − m(t)) represents the correcting power from abnormal states such
that :

dxt = (a(t)(xt −m(t)) +m′(t))dt+ σ(t)dBt. (1.3.32)

It should also be noticed that the general OU process includes a wide range of degradation
processes e.g. the drifted Brownian motion, which is without mean-reverting property. So
the mean-reversion is not a strong technical constraint for the modeling, but just a way to
avoid unwanted properties induced by the process, e.g. the rapidly-increasing variance of the
Brownian motion.

Summarize all the above, the modeling work is started by macro performance of de-
gradation phenomenons, and fluctuations are introduced by the co-effect of exciting noises
and self-repairing mechanisms. Under this framework, the condition (1.3.14) is proposed to
promise the mean-reversion of Xt..

1.4 Parameter Estimation

In this section, the problem of statistical inference is considered for OU process. The first
step consists in choosing some parametric functions for m(t), v(t) and σ(t). In the sequel the
vector of useful parameters will be denoted θ and the corresponding functions respectively
m(t|θ), v(t|θ) and σ(t|θ). These functions depend on the case study and can be chosen from
a predetermined list by considering descriptive statistics from the dataset or expert opinion.

Let Xt;θ be the stochastic process described by (1.3.12). It has been stated that its tran-
sition pdf p(x, t|xs, s; θ), t > s ≥ 0 can be derived from the framework of stochastic analysis
based on properties of Itô’s stochastic integral [80]. It can be shown directly that the analytical
expression of p(x, t|y, s; θ) is given by (1.3.28) :

p(x, t|y, s; θ) =
eα(t,s|θ)√
4πγ(t, s|θ)

exp(−(xeα(t,s|θ) + β(t, s|θ)− xs)2

4γ(t, s|θ)
), (1.4.1)

where α(t, s|θ), β(t, s|θ), γ(t, s|θ) with c(u|θ) := σ(u|θ)2
2 are given by :

α(t, s|θ) = −
∫ t

s
a(u|θ)du,

β(t, s|θ) = m(s|θ)−m(t|θ)eα(t,s|θ), (1.4.2)

γ(t, s|θ) =

∫ t

s
c(u|θ)e2α(u,s|θ)du.
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Let us further suppose that the degradation records have been obtained from n inde-
pendent components and that mi is the number of records collected on the ith component
(1 ≤ i ≤ n). Furthermore (xij , tij) stands for the record at the jth time on the ith component
with i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi}.

In the general case X0 is subject to a distribution function F0,θ and the corresponding
transition pdf based on random initial condition p(x, t|X0, 0; θ) can be written as :

p(x, t|X0, 0; θ) =

∫ +∞

−∞
p(x, t|u, 0)dF0,θ(u) (1.4.3)

If X0 is supposed to be deterministic, its probability law becomes a Dirac measure with
ti0 = 0 and xi0 = x0 for all i ∈ {1, . . . , n}.

The adopted stochastic process (1.3.12) is a Markov process. As a consequence the condi-
tional probability density of every record based on the previous records in the same trajectory
can be simplified by Markov property to the transition pdf based on the closest record i.e. :

p(xij , tij |{(xiz, tiz)}j−1
z=0; θ) = p(xij , tij |xi(j−1), ti(j−1); θ).

Then the log-likelihood function for the ith trajectory can be written as follows :

logLi(θ) =

mi−1∑
j=1

log
(
p
(
xi(j+1), ti(j+1)|xij , tij ; θ

))
+ log(p(xi1, ti1|X0, 0; θ), (1.4.4)

where the transition pdf to (xi(j+1), ti(j+1)) from (xij , tij) can be given directly from (1.4.1)
and (1.4.3).

Noticing that different trajectories are independent with each other, therefore the log-
likelihood function for the whole data set is as follows :

logL(θ) =

n∑
i=1

mi−1∑
j=1

log
(
p
(
xi(j+1), ti(j+1)|xij , tij ; θ

))
+

n∑
i=1

log(p(xi1, ti1|X0, 0; θ)). (1.4.5)

The maximum likelihood estimate θ∗ = argmaxθ logL(θ) of the parameters can be ob-
tained by maximization of the log-likelihood function (1.4.5). As it is generally not easy to
calculate analytically, numerical algorithms can be used e.g. Nelder-Mead method. However
to reach the global optimum, a good initial estimate is crucial.

An initial estimate can be obtained by using the least square estimation method form(t|θ),
a(t|θ) and σ(t|θ) respectively based on their statistical meaning. Suppose θ = (θ1, θ2, θ3) where
θ1, θ2 and θ3 denote independent parameters such that m(t|θ) = m(t|θ1), a(t|θ) = a(t|θ2) and
σ(t|θ) = σ(t|θ3). The optimal value for θ1 can be estimated from the least square estimation
problem :

argmin
θ1

n∑
i=1

mi−1∑
j=0

(m(tij |θ1)− xij)2. (1.4.6)

The above discretization introduces new errors into the estimation. However it should
be noticed the least-square estimation is designed for an initial estimate for the maximum
likelihood estimation. So even it is with errors, a rough estimate near the real estimate is
enough for this two-stage estimation.
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The second step considers the Euler discretized equation [36] as an approximation
for (1.3.12) :

Xt+∆t = Xt +
(
a(t|θ2)

(
Xt −m(t)

)
+m′(t)

)
∆t+ σ(t|θ3)∆Bt, (1.4.7)

where ∆Bt ∼ N (0,∆t).

Parameters in a(t|θ2) can therefore be estimated from minimizing the following objective
function :

argmin
θ2

n∑
i=1

mi−1∑
j=0

(
xi(j+1) − xij −

(
a(tij |θ2)

(
xij −m(tij)

)
+m′(tij)

)(
ti(j+1) − tij

))2

. (1.4.8)

Furthermore, parameters θ3 in the diffusion part σ(t|θ3) can be found by fitting the
standard deviation of residuals.

The parameters estimation for the initial distribution F0,θ can be done according to the
values of E(X0) and var(X0) hence according to the values of m(0), a(0) and σ(0). In such a
case θ1, θ2, θ3 can be estimated by ignoring the items involving {xi0}ni=1 in (1.4.6) and (1.4.8).

1.5 Case Study

1.5.1 Degradation Data Set

In the following a real degradation data-set is considered which is composed of 415 re-
cords of degradation level of a passive component in a power plant for 159 independent
equipments. Figure 1.3 expresses the degradation records and recorded trajectories on dif-
ferent equipments. Single points in Figure 1.3 mean that only one record is recorded on that
equipment.

On average, only about 3 records exist for each component. Furthermore, if we consider
one trajectory carefully, there exists a large fluctuation. This datas-set could be considered
sparse, noisy, and non-smooth. However with records on different components, the sparse
data-set can still show statistical laws, which is the foundation for degradation modeling.
This is exactly the same consideration for the crack-growth data used in [94].

Moreover we don’t observe an obvious tendency of increasing variance in this case, such
that this hypothesis of rapidly increasing variance is not preferred in the modeling. This is
why Drifted Brownian motion is not adopted to describe this data-set. But a simple random-
effect model with fixed variance, e.g. m(t) + ξ, ξ ∼ N (0, c), can hardly explain the temporal
variability in the data-set [51].

Throughout this section n denotes the number of monitored equipments i.e. the number
of recorded degradation path, mi denotes the number of inspection after time t = 0 for
equipment number i i.e. the number of points on the i-th trajectory. As previously stated,
tij and xij respectively stand for the jth recording time and measured degradation level
on component i. It is suggested from expert opinion that all the equipments have the same
initial condition, which means that ti0 = 0 and xi0 = m0 for all i ∈ {1, . . . , n}. However initial
uncertainties due to various reasons, such as initial degradation, will also be considered and
compared in the following as in [17].
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Figure 1.3 – Recorded Degradation Trajectories

1.5.2 Evaluation Criterions

As the inspection times are not periodic and the proposed stochastic process is not time
homogeneous, the corresponding increments of degradation are not identically distributed.
Usual properties of classical goodness of fit criterions are failing. In this section, three different
criterions are proposed in order to assess the relevance of the considered models for a specific
data-set and for prognosis purpose.

Akaike Information Criterion

Akaike information criterion (AIC) is a widely used information criterion to evaluate the
fitting goodness of models [3]. The value which is noted as AIC thereafter is given by :

AIC = 2k − 2logL(θ∗), (1.5.1)

where k is the number of unknown parameters in the model, and L and θ∗ are defined
as in (1.4.5). In such a criterion, not only the maximization of the likelihood function is
considered, but also a punishment of introducing too complex models is introduced such that
the problem of over-fitting can be avoided to a certain extent. A better model should have a
smaller AIC value.

Indicators for Prognosis Assessment

The mathematical model considered for degradation modeling may be used for residual
lifetime prediction. As a stochastic process it is intrinsically designed to take into account the
variability of the measured degradation index which is characterized by the probability law of
the degradation level at a given future time. In order to make the best use of the data which
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are available by degradation path, a class of indicators for prognosis assessment is proposed
in [4]. In this class, the Indicator for Prognosis Assessment of type k is denoted as IPAk and
defined as follows :

IPAk(ε) =
1

Sk

n∑
i=1

mi−1∑
j=0

min(j+k;mi)∑
s=j+1

P{|x(tis)− xis| ≤ ε/x(tij) = xij}, (1.5.2)

with Sk =
n∑
i=1

{1k≤mi+1

(
k(mi − k) +

k(k + 1)

2

)
+ 1k>mi+1

mi(mi + 1)

2
}. (1.5.3)

To obtain a normalized value, Sk is equal to the total number of terms considered in the
definition of IPAk. The aim of this indicator is to reflect the accuracy of the model prediction.
Each point of each trajectory is successively considered as the last inspection data and the
gap between the model prediction and the available data is considered on the next k future
records on the same trajectory, if available. If less than k future inspection times are available
they all are considered. The probability that the model prediction stays within a range of
width 2ε around the next degradation records given the last inspection data is considered for
prognosis assessment. It can be written as :

P{|x(tis)− xis| ≤ ε/x(tij) = xij} =

∫ xis+ε

xis−ε
p(τ, tis|xij , tij)dτ, s > i, (1.5.4)

where the transition pdf p(x, t|y, s) is given by (1.4.1). Unfortunately the expression given by
equation (1.5.4) cannot be expressed analytically in general. Therefore a numerical integral
scheme is considered for the above integral expression. Given ε, the interval [xis− ε, xis+ ε] is
discretized in P parts with a step-size ∆ := 2ε

P . By denoting zkij = xij − ε+ k∆, k = 0, . . . , P
the calculation for (1.5.4) is based on compound trapezoid formula :

P{|x(tis)− xis| ≤ ε/x(tij) = xij} ≈
∆

2

{
p(z0

is, tis|xij , tij)

+

P−1∑
k=1

p(zkis, tis|xij , tij) + p(zPis, tis|xij , tij)
}
. (1.5.5)

Under the proposed Indicator for Prognosis Assessment, a better model should have a
larger value. Nevertheless a good capacity of prediction with a unimodal peaky probability
density function p(x, t|y, s) leads to a higher value of IPAk(ε) than if the pdf is spread out.
Hence it depends on the data variability.

In this chapter, the Prognosis Assessment of type 1 (IPA1(ε)) and ∞ IPA∞(ε) are consi-
dered. For the first one, only the record following the point considered as the inspection data
is taken into account. For the second one, all the end of the trajectory is considered.

1.5.3 Comparison on Fitting Results on Different Models

Compared Models

This section proposes a comparison between the time-dependent OU process and the
linear-diffusion model to test the validity of introducing self-repairing mechanism / mean-
reversion for cumulating fluctuations. The models considered here are the time-dependent
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OU process given in equation (1.3.19), and the linear-diffusion model in Si et al. [66]. These
models are introduced respectively in Tables 1.1, 1.2 and 1.3. The first 2 models are supposed
to start from an unobservable constant m0, and the third one is supposed to start from an
unobservable gaussian variable. For short in the following, we will note the linear-diffusion
model as MLD, the model of time-dependent OU process as MOU and the model of time-
dependent OU process with initial uncertainties as MOUR.

These models are expected to have same average performance, before statistical inference.
And the only different hypothesis is the uncertainty introduced in MLD, MOU and MOUR.
Here the variance of MLD is supposed to linearly increase, the variance of MOU is supposed
to increase but to converge to a constant and the variance of MOUR is a constant.

The mean function m(t) can be chosen freely, not limited to the shape in this paper. The
expression m(t) = α((t+1)β−1)+m0 is proposed due to some preliminary experts’ opinions
on the fitting data-set. Unfortunately because of confidentiality reasons this point cannot be
developed in the paper. It is also a very general polynomial function with plenty of flexibility.
Choosing a parametric function is a common choice for the modeling work, e.g. the mean is
pre-determined as a quadratic function in [94].

Table 1.1 – General description of MLD

parameters α, β, σ,m0

expression Yt = m(t) + σBt
mean m(t) = α((t+ 1)β − 1) +m0

variance σ2t
covariance (t ≥ s) σ2s
initial value m0

nb. of parameters 4

Table 1.2 – General description of MOU

parameters α, β, a, σ,m0

expression dXt = (a(Xt −m(t)) +m′(t))dt+ σdBt
mean m(t) = α((t+ 1)β − 1) +m0

variance σ2

−2a(1− exp(2at))

covariance (t ≥ s) σ2

−2a exp(a(t+ s))(exp(−2as)− 1)

initial value m0

nb. of parameters 5

Table 1.3 – General description of MOUR

parameters α, β, a, σ,m0

expression dXt = (a(Xt −m(t)) +m′(t))dt+ σdBt
mean m(t) = α((t+ 1)β − 1) +m0

variance σ2

−2a

covariance (t ≥ s) σ2

−2a exp(a(t− s))
initial value N (m0,−σ2

2a )
nb. of parameters 5
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Fitting Results

Based on the method of maximum likelihood estimation as stated in section 1.4, the
estimated parameters listed in Table 1.4 have been found with help of Nelder-Mead algorithm
in R software. The simulated trajectories then are produced based on Euler-Maruyama scheme
with the step-size 0.01 [36], see Figure 1.4(a), Figure 1.4(b) and Figure 1.4(c) respectively. In
these pictures, some auxiliary curves are drawn to show statistical properties of corresponding
processes : the red curve for the mean, the blue curves for the mean ± standard variance,
and the black curves for the mean ± 3 times of standard variance.
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(a) Simulated trajectories of MLD.
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(b) Simulated trajectories of MOU.
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(c) Simulated trajectories of MOUR.

Figure 1.4 – Comparison on trajectories produced by MLD, MOU and MOUR.

Fitting goodness

The values of AIC, IPA1 and IPA∞ from (1.5.1) and (1.5.2) for MLD, MOU and MOUR

respectively are listed in Table 1.5. Under the information criterions AIC, IPA1 and IPA∞,
MOU and MOUR have a slightly better fitting result compared to MLD.
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Table 1.4 – Fitting results
parameters MLD MOU MOUR

α 1.873542 2.4402845 5.6338738
β 1.005893 0.8892020 0.5964851
σ 2.152958 2.4640884 2.2391552
a – -0.1806708 -0.2113418
m0 2.988090 2.8074561 1.7922389
X0 2.988090 2.8074561 N (1.7922389, 11.86187)

variance 4.635228t 16.8033(1-exp(-0.3613416t)) 11.86187

However, it is interesting to see that MOU and MOUR don’t have uniform fitting goodness
order under criterions AIC, IPA1 and IPA∞. It is recalled that the criterion of AIC concerns
more on describing existing records, while IPA1 and IPA∞ are proposed to predict system
state based on current observation. Although the difference here is not huge, it can be dis-
tinguished that MOU has a better ability to describe data while MOUR has a better ability
for the prognosis assessment.

Table 1.5 – Fitting goodness
criterion 1 MLD MOU MOUR

AIC 2048.64 2021.044 2025.84
IPA1 0.314464 0.3255434 0.3368724
IPA∞ 0.3333623 0.3524595 0.3687379

1.6 Conclusions and Perspectives

In this chapter, a time-dependent OU process is introduced to describe a degradation pro-
cess. The time-dependent OU process is proposed from its statistical properties on controllable
mean, variance and correlation. Its mean-reverting property can be introduced to interpret
temporary correlated fluctuations from an overall degrading trend in degradation records.
Corresponding parameter estimation is proposed based on maximum likelihood estimation
method. Several simulation tests are done to test the model’s fitting goodness based on a
degradation data-set of a passive component in power plants.

The characteristics to distinguish stochastic degradation modeling with other stochastic
modeling areas e.g. financial mathematics are :

◦ Long-term trend. As emphasized in this chapter, when degradation modeling is discus-
sed, the possible models should show a long-term trend to final failure. Therefore the
stochastic degradation modeling refers more to physical laws and empirical research
rather than purely mathematical analysis.
◦ Mean-reversion. Some self-repairing mechanisms e.g. crack closure show the possibility

of recovery of physical degradation phenomenons, which reveals a micro comprehen-
sion of stable macro appearance of slowly degradation phenomenons. This is one of
the reasons why the fluctuations is introduced in degradation modeling. But to control
such fluctuations to reach the overall degrading trend should be considered meanw-

1. In the calculation of IPA1 and IPA∞, the tolerance level ε = 0.25 where the step-size is 0.01 for the
numerical integral.
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hile. In this chapter, the mean-reversion of the time-dependent OU process could be
interesting and reasonable to fulfill this task.
◦ Failure-oriented modeling. Stochastic degradation modeling is discussed in the field of

reliability engineering, and it serves as a first step for reliability analysis, prognostics
and health management, and condition-based maintenance. So the fitting goodness to
existing inspection records is not the only indicator to choose models, how to connect
this modeling work with the failure’s description and prognosis attracts more attention.

Meanwhile, the mean-reversion in stochastic degradation modeling implies the possibility
to consider 2-stage models furthermore as in [75] and also Section 1.3.3. That is to say, the
real degradation process is treated as a should-be processes given by physical laws. To make
up the gap between this should-be process and observed data, the co-effect of self-repair and
exciting-noise leads to a modified model.

Also the mean-reversion could be a starting point to introduce Levy-driven OU processes
into stochastic degradation modeling. This is triggered by considering the risk of sudden
change of system states or jumps in mathematical descriptions. However this is from the
modeling view, it would be difficult to consider prognosis of system failures based on such
processes and involve advanced mathematical tools.





Chapitre 2

Prognosis of Systems Failures via First
Passage Problems

Considering the time-dependent OU process introduced in the last chapter as the stochas-
tic degradation process, prognosis of system failures is considered in this chapter based on
first passage times. This chapter contains several results in [20, 18, 17], and it emphasizes on
estimating the probability laws for the first passage time (FPT) of the time-dependent OU
process to a given failure level. Different methods are proposed, and their derivation is tried
to be given in a self-contained form in this chapter. This effort is not a direct reproduction
of existing ideas, but an interesting connection through Fortet’s equation [32, 57].

The whole chapter is organized as follows. In Section 2.1, first passage time is introduced
to describe the failure time. In Section 2.2, it is presented that the first passage problems can
be connected to the process itself, which forms a foundation for Section 2.3 and Section 2.4.
In Section 2.3, the first passage problem is considered from the view of partial differential
equation, and related results are presented. In Section 2.4, the first passage passage problem
is considered from the view of integral equation, where computable results are presented. In
Section 2.5, simulation tests are done to calculate first passage density based on proposed
methods. Conclusions and perspectives are stated in Section 2.6.

2.1 Introduction

2.1.1 Background

The aim in this chapter is to estimate the system’s residual useful lifetime (RUL). RUL
is often used as a decision indicator in the field of reliability engineering and prognostics
and health management (PHM). It is commonly defined as the “residual useful lifetime of a
system at time t given all available information up to time t”.

To fulfill the above task, the core issue is to determine when the system failure occurs.
Various ways exist to describe a system failure. In our research, we concentrate on deteriora-
tion phenomenons, eg. corrosion, erosion, crack etc., in which deterioration cumulates until
it reaches the material strength. So we will consider first passage failure throughout this
chapter : given a failure level 1 of deterioration, a system failure occurs when accumulating
deterioration exceeds the failure level.

1. In other literature, similar expressions exist corresponding to different emphases, such as alarm threshold,
safety limit, safety barrier, crossing boundary, hitting level, passage level etc. We don’t distinguish these
different names, and also in this thesis, it is treated differently due to different application. Failure level
is used when the applied problems are discussed, crossing boundary is used when mathematical issues are
discussed.
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Such first passage problems attract plenty of attention with various applications to serve
as decision rules. And in the field of reliability engineering, when increasing processes are
considered for stochastic degradation processes, it would be trivial to derive the distribution
of FPTs to a constant failure level due to the monotone property. That’s why FPT is not
discussed frequently before in reliability as most of considered degradation processes belong to
the group of monotone processes, e.g. Gamma process [84], Poisson process, inverse Gaussian
process [93]. However from a mathematical view, there are still few results for FPTs of
increasing processes to time-dependent boundaries.

Recently, due to the consideration of fluctuations in degradation processes, diffusion pro-
cesses are discussed more and more. However when FPTs for diffusion processes are discussed,
it would be more challenging as stochastic processes may return to the safe area after its first
passage. Therefore the most celebrated result is inverse Gaussian distribution for the first
passage density of Brownian motion with a linear boundary, which luckily can be solved ana-
lytically. Other issues are discussed more to develop efficient numerical algorithms, and these
views can generally categorized to 2 ideas : integral equation [57] and Fokker-Planck Equa-
tion [43, 53]. In this chapter, these 2 basic ideas will be reviewed and reproduced for the OU
process. Such an effort aims to reveal a connection between these 2 different ideas through
Fortet’s equation [32, 57]. An overview on first passage problems for diffusion processes can
refer to [24, 83].

These two ideas lead to different methods to estimate the first passage density or first
passage distribution, which can be categorized into three classes : analytical approximation,
numerical algorithms and Monte-Carlo simulation. These methods are designed for different
targets, with different advantages and disadvantages.

The consideration in this chapter not only contributes to the ordinary first passage pro-
blem, but also to the conditional first passage problem. That is due to the main concentration
in the field of PHM : when the system state is updated, the prognosis of system failures based
on current observation should also be updated. This treatment is not trivial as the adopted
degradation process is nonhomogeneous, non-stationary and without independent increments,
such that the results of ordinary first passage problems cannot be extended directly to the
conditional first passage problems.

2.1.2 System Description

In this chapter, supposing the degradation process is described by a stochastic process
{Xt, t ≥ t0} defined by (1.3.2) on a complete probability space (Ω,F,P), the following time-
dependent Ornstein-Uhlenbeck process Xt will be considered throughout this chapter :

dXt = (a(t)Xt + b(t))dt+ σ(t)dBt, t ≥ t0, (2.1.1)

where a(t), b(t), σ(t) ∈ C1(R+), σ(t) is positive, Bt is a standard Brownian motion. X(t0) =
x0 is a random variable independent of Bt with a pdf f0 (if it exists) and distribution function
F0. When x0 is deterministic, F0(du) = δx0(du), δx0(∗) as the Dirac measure concentrated at
x0.

It is derived from Equation (2.1.1) that

Xt := Xx0,t0
t = e−α(t,t0)

[
x0 − β(t, t0) +

∫ t

t0

σ(u)eα(u,t0)dBu

]
, t ≥ t0, (2.1.2)

where α, β, γ are defined in (1.3.3).
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Furthermore given t > s, the transition pdf p(x, t|y, s) of Xt, satisfies the following Fokker-
Planck equation (FPE), see Appendix A.1 :

∂p(x, t|y, s)
∂t

= (− ∂

∂x
) [(a(t)x+ b(t))p(x, t|y, s)] + c(t)

∂2

∂x
p(x, t|y, s), (2.1.3)

where c(t) := σ2(t)
2 , p(±∞, t|y, s) = 0, p(x, s|y, s) = fy(x), fy as the pdf of y when it exists.

The transition pdf p(x, t|y, s), t ≥ s of Xt can be solved directly when y is deterministic :

p(x, t|y, s) =
eα(t,s)√
4πγ(t, s)

exp(−(xeα(t,s) + β(t, s)− y)2

4γ(t, s)
), (2.1.4)

where α, β, γ are defined in (1.3.3). This expression is derived by a time-change in Section
1.3.2, or from Fokker-Planck Equation (2.1.3) directly by a time-space change as in Appen-
dix A.2 or by a Lie-algebraic method as in [91].

When y is a random variable with distribution Fy, p(x, t|y, s) is also defined based on the
expectation :

p(x, t|y, s) =

∫ +∞

−∞
p(x, t|u, s)dFy(u). (2.1.5)

In such a way, the uniform notation for transition pdf p(x, t|y, s) is given no matter y is
deterministic or not. And in following sections, except for special attention, these 2 cases will
not be distinguished.

2.1.3 First Passage Time

When the degradation process has been represented by a stochastic process Xt, first
passage failure is translated to classical first passage time (FPT) problem for the process Xt

in a mathematical view.

The first passage time τy,s when Xt reaches L(t) based on the observation (y, s) i.e. with
Xs = y, as a constant, is given by

τy,s := inf
t≥s

{
t|Xy,s

t ≥ L(t)
}
, (2.1.6)

where L(t) is enough smooth, upper, pre-set and time-dependent failure level. In such a
definition, when the observation y ≥ L(s), τy,s = s. And throughout this thesis, we suppose
conditions are satisfied such that P (τy,s < ∞) = 1, i.e. the process will reach the boundary
at a finite time almost surely.

The residual useful lifetime based on current observation (y, s) is naturally defined by
RULs := τy,s − s, which is essentially determined by the conditional first passage time based
on the current observation. Correspondingly, the conditional mean time to failure (MTTFs)
is defined by the expectation of the failure time based on current observation (y, s), i.e.
E(τy,s)− s.

The definition of RUL is different with the one in [66] (see p.54 therein.). In [66], the
authors consider the RUL definition from a conditional view. That is to say, the RUL is
defined as E(τX0,0 − s|τX0,0 > s) for the current time s. It is conditioned on the event that
the system doesn’t fail before the current time.

However in general we can observe the current system state y at time s. Based on the
Markov property of the adopted OU process, the future state of the system is determined
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only by the current system state. Therefore the future failure is not conditioned on previous
events. Therefore in this paper the RULs is proposed to be τy,s−s. We don’t have a preference
for these two definitions. Actually the definition in [66] could be useful when the real system
state cannot be observed or can only partially observed. This could be another discussion
beyond the consideration in this paper.

Moreover due to the lack of perfect observation, e.g. due to undetectable small cracks
[17], when the initial value x0 is treated as a random variable with distribution function F0,
the first passage time τx0,t0 can be considered as a randomized first passage time (RFPT) as
described in [38, 48, 83]. Its distribution function is calculated for t ≥ t0 from (2.1.6) :

P(τx0,t0 ≤ t) =

∫ L(t0)

−∞
P(τu,t0 ≤ t)dF0(u) +

∫ +∞

L(t0)
dF0(u). (2.1.7)

Remark :

1. in the following, we only concentrate on the case when the initial value is centered
on [−∞, L(t0)]. In the real case, this means we don’t consider a component which is
already in the failed state.

2. The tolerance of initial uncertainties for x0 is not only due to imperfect observation,
but also can process a simple case of random boundary for Xt. On one hand, for Xt

satisfying dXt = m(t)dt+n(t)dBt, with X0 = x0. And suppose the boundary is given
by L(t) + ξ, ξ is a random variable. On the other hand, if we consider Yt = Xt − ξ
for the boundary L(t) with the initial value Y0 = x0− ξ, then the first passage time is
the same with the one for Xt. In this simple case, the randomness in the boundary is
converted to the initial uncertainties instead.

The core issues to describe the first passage time τy,s is to derive its pdf and cdf, which
are discussed in following sections. And we note hereafter for τy,s in (2.1.6)

g(t|y, s) :=
∂P (τy,s ≤ t|Xs = y)

∂t
,G(t|y, s) = P (τy,s ≤ t|Xs = y). (2.1.8)

Moreover, we denote that

u(x, t|y, s) := P (Xt < x, τy,s > t|Xs = y), w(x, t|y, s) =
∂u(x, t|y, s)

∂x
. (2.1.9)

The denoted functions g(t|y, s), G(t|y, s), w(x, t|y, s), u(x, t|y, s) are considered throughout
this thesis. And actually following notations in (2.1.8) and (2.1.9), their connection holds for
t ≥ s :

P (τy,s > t|Xs = y) = 1−G(t|y, s) = 1−
∫ t

s
g(z|y, s)dz

= P (Xt < L(t), τy,s > t|Xs = y) = u(L(t), t|y, s) =

∫ L(t)

−∞
w(z, t|y, s)dz.

(2.1.10)

We should notice that Equation (2.1.10) holds because the event {τy,s > t}is included in
{Xt < L(t)} . Therefore the desired cdf G(t|y, s) and pdf g(t|y, s) for the first passage time
can be converted to the value of u(x, t|y, s) and also corresponding w(x, t|y, s), vice versa.
It is difficult to discuss the direct problems for the first passage density g(t|y, s) and cdf
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G(t|y, s). And at a first glance it seems strange to introduce more complex issues w(x, t|y, s)
and u(x, t|y, s) which not only depends on t, but also on x. This seems more difficult than
the original problem. However in later sections we can see this complication can lead to the
desired first passage density g(t|y, s) by introducing new tools.

2.1.4 The Difficulty to Apply Results for Brownian motion

As is described in Section 1.3.2, the OU process can be treated as a Gauss-Markov process
with a drift part, i.e. n(t) + h(t)B(f(t)). So at a first glance, it seems trivial to consider the
analysis on the OU process, as many results for Brownian motion can be extended to the OU
process under the time-change.

However, as the OU process considered in this thesis is time-dependent with nonlinear
appearance, the time-change f(t) given for the Gauss-Markov process may not have an explicit
expression for its inverse. So when applying those results of Brownian motion, it would induce
a big problem on the calculation. Even treated numerically, to find the inverse for a general
function f(t) is not efficient as this procedure could be involved in the calculation many
times.

2.2 The Connection between First Passage density and the
Process’ Probability Laws

The discussion in this subsection contributes to the probability laws of the OU process is
connected with the first passage problems by several integral equations, which are given in
Lemma 2.2.1 and Lemma 2.2.2.

Fortet’s Equation

The first connection is given by the following integral equation between the first passage
density g(t|x0, t0) and transition pdf of the process p(x, t|y, s) in (2.1.4). Such an equation is
called Fortet’s equation in general [32, 57].

Lemma 2.2.1. [32, 57] Suppose L(t) ∈ C[t0,+∞), for Xt in (2.1.1) with x0 < L(t0), t ≥ t0,
the following equation holds :

p(x, t|x0, t0) =

∫ t

t0

g(s|x0, t0)p(x, t|L(s), s)ds, ∀x ≥ L(t). (2.2.1)

Proof. First, we should notice that by strong Markov property, the following equation holds

P (Xt < x, τx0,t0 ≤ t|x0, t0) =

∫ t

t0

p(Xt < x|τx0,t0 = s)g(s|x0, t0)ds

=

∫ t

t0

p(Xt < x|Xs = L(s))g(s|x0, t0)ds

=

∫ t

t0

∫ x

−∞
g(s|x0, t0)p(z, t|L(s), s)dsdz.

(2.2.2)
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Therefore we have :

u(x, t|x0, t0) = P (Xt < x, τx0,t0 > t|Xt0 = x0) = P (Xt < x|Xt0 = x0)− P (Xt < x, τx0,t0 ≤ t|Xt0 = x0)

=

∫ x

−∞
p(z, t|x0, t0)dz −

∫ x

−∞

∫ t

t0

g(s|x0, t0)p(z, t|L(s), s)dsdz, (2.2.3)

From Lebesgue’s dominated convergence theorem, differentiate (2.2.3) for x, we have

w(x, t|x0, t0) :=
∂u(x, t|x0, t0)

∂x
= p(x, t|x0, t0)−

∫ t

t0

g(s|x0, t0)p(x, t|L(s), s)ds. (2.2.4)

Noticing u(x, t|x0, t0) = u(L(t), t|x0, t0), ∀x ≥ L(t), so w(x, t|x0, t0) = 0, ∀x > L(t) :

0 = p(x, t|x0, t0)−
∫ t

t0

g(s|x0, t0)p(x, t|L(s), s)ds. (2.2.5)

When x = L(t), from the continuity of w(x, t|y, s), the right limit at L(t) exists and

p(L(t), t|x0, t0)−
∫ t

t0

g(s|x0, t0)p(L(t), t|L(s), s)ds = lim
x→L(t)+

{w(x, t|x0, t0)} = 0. (2.2.6)

Summarize all the above, it comes to (2.2.1).

Remarks :
◦ Equation (2.2.1) can also be verified based on intuitive consideration. Actually as Xt

is a diffusion process, from its continuity, strong Markov property, and the continuity
of L(t) it is promised that the state of the process is on the boundary at the first
passage time. Therefore for any current observation x ≥ L(t) at time t, the process
must cross the boundary L(s) at a previous time s ≤ t [57], see Figure 2.1.
◦ Fortet’s equation also reveals the Markov property, i.e. the conditional first passage

time τy,s has the same probability law with the first passage time of of a new process
Xy,s
t to the boundary.

◦ w(x, t|y, s) is not differentiable at x = L(t) such that wx(L(t), t|y, s) doesn’t exist.
However it should be noticed that wx(L(t)−, t|y, s) and wx(L(t)+, t|y, s) exist.

Figure 2.1 – An illustration of Fortet’s equation.
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The Master Equation

By integrating both sides, Lemma 2.2.1 on Fortet’s equation leads to the following equa-
tion. This is called the master equation [57].

Lemma 2.2.2. Suppose L(t) ∈ C[t0,+∞), for Xt in (2.1.1) with x0 < L(t0), t ≥ t0, the
following equation holds :

1− F (x, t|x0, t0) =

∫ t

t0

g(s|x0, t0)(1− F (x, t|L(s), s))ds, x ≥ L(t) (2.2.7)

where noting Φ(∗) as the cdf of standard normal distribution,

F (x, t|y, s) :=

∫ x

−∞
p(z, t|y, s)dz = Φ(

xeα(t,s) + β(t, s)− y√
2γ(t, s)

). (2.2.8)

Proof. From Lemma 2.2.1, integrating (2.2.1) on [x,+∞) for x ≥ L(t), then from Fubini’s
theorem we get :

1− F (x, t|x0, t0) =

∫ t

t0

g(s|x0, t0)(1− F (x, t|L(s), s))ds. (2.2.9)

Furthermore, we have

F (x, t|y, s) =

∫ x

−∞

eα(t,s)√
4πγ(t, s)

exp(−(zeα(t,s) + β(t, s)− y)2

4γ(t, s)
)dz

=
1√
2π

∫ x

−∞
exp(−(zeα(t,s) + β(t, s)− y)2

4γ(t, s)
)d

zeα(t,s)√
2γ(t, s)

=
1√
2π

∫ xeα(t,s)+β(t,s)−y√
2γ(t,s)

−∞
exp(−z2/2)dz

= Φ(
xeα(t,s) + β(t, s)− y√

2γ(t, s)
). (2.2.10)

2.3 Initial-Boundary Value Problem for Fokker-Planck Equa-
tion

The Fokker-Planck equation is a partial differential equation which is strongly connected
with the transition pdf of the OU process. And this section is written to explain the view
of first passage problems based on the initial-boundary value problem for Fokker-Planck
equation. The discussion in this section can be divided into several steps for the function
w(x, t|y, s) defined in (2.1.9) :

1. It is proved that the joint pdf w(x, t|y, s) satisfies an initial-boundary value problem
for Fokker-Planck Equation. This is done by using Fortet’s equation which is a new
way to consider the existing result. See Section 2.3.1.

2. The connection between g(t|y, s) and w(x, t|y, s) is explained based on Fokker-Planck
Equation. See Section 2.3.2.
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3. The initial-boundary value problem for Fokker-Planck Equation for w(x, t|y, s) is sol-
ved by the method of images, which leads to explicit solutions under some special
failure level. See Section 2.3.3.

4. Based on the derived result, analytical approximations of first passage density and
distribution are derived for the general boundary. See Section 2.3.4.

5. Based on the method of images in Section 2.3.3, the linear programming approach is
introduced to approximate the first passage density. This is a direct application of the
method of images. See Section 2.3.5.

6. Based on a special boundary given in Section 2.3.3, it is considered to derive an
explicit expression of first passage density g(t|y, s) for a piecewise boundary where in
each interval the boundary is of the given form. See Section 2.3.6.

7. With a preliminary result for mean-zero Gaussian processes, an approximation is de-
rived for g(t|y, s). This is found to be the same with the approximation derived in
Section 2.3.4. See Section 2.3.7.

2.3.1 Derivation

It is a classical result that the first passage density is connected with the initial-boundary
value problem of Fokker-Planck equation, see [5, 13, 33, 62]. However this connection is
generally derived from a physical illustration to introduce an absorbing boundary for FPE.
That is to say, releasing particles at the initial time, the first passage time is investigated by
counting remaining particles when an absorbing boundary is proposed to remove particles
crossed before current time [33, 62].

To the extent of the author’s knowledge, a rigorous proof for the representation of FPT
problem based on the PDE approach is given for the Brownian motion in [43]. However
this question confuses the authors in more complex situations in [53]. In this section we
will try to make clear such a problem in a simple situation from a new angle of Fortet’s
equation (2.2.1), where only one-dimensional process to one-sided boundary is considered.
What should be mentioned more is that the analysis for Brownian motion in [43] is from an
angle of constructing crossing boundaries from the explicit expression based on the method
of images. Our starting point is from Fortet’s equation when the crossing boundary is given.

The initial-boundary value problem for FPE is given by the following lemma for w(x, t|y, s)
defined in (2.1.9). The key idea is to use Equation (2.2.4) to derive corresponding calculation.

Lemma 2.3.1. Denote w(x, t) := w(x, t|y, s) as in (2.1.9), then ∀t ≥ s it satisfies :

∂w(x, t|y, s)
∂t

= − ∂

∂x
((a(t)x+ b(t))w(x, t|y, s)) + c(t)

∂2w(x, t|y, s)
∂2x

, (2.3.1)

with w(x, t|y, s) = 0,∀x ≥ L(t), w(−∞, t|y, s) = 0, w(x, s|y, s) = fy(x), x < L(s) and fy is
the pdf of y if it is existing, or the Dirac measure centered at y when y is deterministic.

Proof. First, it is well-known that p(x, t|y, s) satisfies Fokker-Planck equation (2.1.3) with
initial and boundary conditions p(±∞, t|y, s) = 0, p(x, s|y, s) = fy(x), t ≥ s.

Second, the initial and boundary conditions for w(x, t|y, s) can be verified from Lemma
2.2.1.

◦ ∀x ≥ L(t), t ≥ s, from (2.2.1) and (2.2.4), it comes to w(x, t|y, s) = 0.
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◦ From (2.2.4),

w(−∞, t|y, s) = p(−∞, t|y, s)−
∫ t

s
g(z|x0, t0)p(−∞, t|L(z), z)dz = 0. (2.3.2)

And also ∀x < L(s),
w(x, s|y, s) = p(x, s|y, s) = fy(x). (2.3.3)

Third, when x < L(t), from (2.2.4), further calculation contributes to :

∂w(x, t|y, s)
∂t

=
∂p(x, t|y, s)

∂t
−
∫ t

s
g(z|y, s)∂p(x, t|L(z), z)

∂t
dz − g(t|y, s)p(x, t|L(t), t). (2.3.4)

Notice p(x, t|L(t), t) is a Dirac measure centered at L(t), where p(x, t|L(t), t) = 0 when
x < L(t). Therefore we know for x < L(t),

∂w(x, t|y, s)
∂t

=
∂p(x, t|y, s)

∂t
−
∫ t

s
g(z|y, s)pt(x, t|L(z), z)dz, (2.3.5)

Furthermore,

∂w(x, t|y, s)
∂x

=
∂p(x, t|y, s)

∂x
−
∫ t

s
g(z|y, s)∂p(x, t|L(z), z)

∂x
dz, (2.3.6)

also
∂2w(x, t|y, s)

∂x2
=
∂2p(x, t|y, s)

∂x2
−
∫ t

s
g(z|y, s)∂

2p(x, t|L(z), z)

∂x2
dz. (2.3.7)

From (2.3.5), (2.3.6), (2.3.7), and Fokker Planck equation (2.1.3), denote w(x, t) :=
w(x, t|y, s), g(t) := g(t|y, s), p1(x, t) := p(x, t|y, s), p2(x, t) := p(x, t|L(s), s), we can derive :

− ∂

∂x
((a(t)x+ b(t))w(x, t)) + c(t)

∂2(w(x, t))

∂2x
= −a(t)w(x, t)− ((a(t)x+ b(t))wx(x, t) + c(t)wxx(x, t)

= −a(t)(p1(x, t)−
∫ t

s
g(z)p2(x, t)dz)− (a(t)x+ b(t))(p1

x(x, t)−
∫ t

s
g(z)p2

x(x, t)dz)

+ c(t)(p1
xx(x, t)−

∫ t

s
g(z)p2

xx(x, t)dz)

= −a(t)p1(x, t)− ((a(t)x+ b(t))p1
x(x, t) + c(t)p1

xx(x, t)

+ a(t)

∫ t

s
g(z)p2(x, t)dz + (a(t)x+ b(t))

∫ t

s
g(z)p2

x(x, t)dz − c(t)
∫ t

s
g(z)p2

xx(x, t)dz

= p1
t (x, t|y, s)−

∫ t

s
g(z)p2

t (x, t|L(z), z)dz =
∂w(x, t)

∂t
. (2.3.8)

Therefore from (2.3.8) and previously stated boundary condition, the proof is completed.

From Lemma 2.3.1, a free boundary problem can be introduced for u(x, t|y, s), which is
proved well-posed in [12, 13].

Lemma 2.3.2. Denote u(x, t) := u(x, t|y, s), then ∀t ≥ s it satisfies :

∂u(x, t)

∂t
= −(a(t)x+ b(t))

∂u(x, t)

∂x
+ c(t)

∂2u(x, t)

∂2x
, (2.3.9)

where u(x, t|y, s) = u(L(t), t|y, s),∀x ≥ L(t), u(−∞, t|y, s) = 0, u(x, s|y, s) = Fy(x), x <
L(s) and Fy is the distribution function of y.
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Proof. As u(x, t|y, s) =
∫ x
−∞w(z, t|y, s)dz, and w(x, t|y, s) satisfies (2.3.1). By integrating

Equation (2.3.1) for both sides on (−∞, x), it is natural to get (2.3.9).

As u(L(t), t) = P (τy,s > t) is unknown in direct problems, the free boundary can be
proposed when the inverse problem is considered, i.e. u(L(t), t) is known but the boundary
is to be solved.

2.3.2 Connection with First Passage Density

In the last subsection, w(x, t|y, s) is proved to satisfy a boundary problem for FPE. Its
connection with first passage density will be explained as follows.

The connection between w(x, t|y, s) and τy,s is explained by the first passage distribution
as in (2.1.10). Following statements in [5, 13, 43, 62], another expression will be introduced
by first passage density. From (2.1.10), the pdf g(t|y, s) of τy,s satisfies :

−g(t|y, s) =
∂P (τy,s > t)

∂t
=
∂P (Xt < L(t), τy,s > t|Xs = y)

∂t
=
∂
∫ L(t)
−∞ w(x, t|y, s)dx

∂t
(2.3.10)

When x < L(t), w(x, t|y, s), wt(x, t|y, s) ∈ C(R × R+). Then we have the following equation
from analysis knowledge,

∂(
∫ L(t)
−∞ w(x, t|y, s)dx)

∂t
=

∫ L(t)

−∞

∂w(x, t|y, s)
∂t

dx+ w(L(t), t|y, s)L′(t). (2.3.11)

From the boundary condition of (2.3.1), we have

−g(t|y, s) =
∂
∫ L(t)
−∞ w(x, t|y, s)dx

∂t
=

∫ L(t)

−∞

∂w(x, t|y, s)
∂t

dx. (2.3.12)

It is of the following form from (2.3.1) :

−g(t|y, s) =

∫ L(t)

−∞
(− ∂

∂x
[(a(t)x+ b(t))w(x, t|y, s)] + c(t)

∂2(w(x, t|y, s))
∂2x

)dx. (2.3.13)

Noticing corresponding boundary conditions w(L(t), t|y, s) = 0, w(−∞, t|y, s) = 0, then

g(t|y, s) = −c(t)∂(w(x, t|y, s))
∂x

|x=L(t). (2.3.14)

Here the notation f(x)|x=z is introduced to represent the value of f(x) at z. Summarizing all
the above, a way to get FPT distribution (2.1.10) or first passage density (2.3.14) is to solve
w(x, t|y, s) from FPE (2.3.1).

2.3.3 Method of Images

As stated in the last section, the first passage density can be solved from w(x, t|y, s),
therefore w(x, t|y, s) will be solved by the method of images in this subsection. The discussion
in this subsection for w(x, t|y, s) is divided into several steps as follows :
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1. As the original boundary L(t) is time-dependent, it results in the confusion to consider
corresponding symmetric area in the method of images. So by introducing a variable-
change process Yt = Xt − L(t), the original boundary L(t) for Xt is converted to 0
for the changed process Yt, which corresponds to a joint pdf w̃(x, t|y0, s) = w(x +
L(t), t|y, s), y0 = y − L(s).

2. Introducing the pending initial condition U(r) the explicit expression for w̃(x, t|y0, s)
is given in (2.3.17) by the method of images.

3. Under a quasi-linear boundary defined in (2.3.21), the explicit expression for the first
passage density is derived in (2.3.22).

4. An explicit condition for the boundary is given whose corresponding first passage time
is promised to be almost surely finite.

5. A special case of derived results is the inverse Gaussian distribution for Brownian
motion, which is extended to the time-changed Brownian motion.

Variable-Change

In this subsection, following results in [11, 43, 96], the method of image is discussed for
the boundary-value problem itself to derive possible explicit solutions, which requires solving
a Fredholm integral equation of first kind.

By variable-change of Yt = Xt − L(t), denote y0 = y − L(s), τYy0,s := inft≥s{Yt ≥ 0}, it is
derived that

dYt =
[
a(t)Yt + b(t) + a(t)L(t)− L′(t)

]
dt+ σ(t)dBt, t ≥ s, Ys = y0. (2.3.15)

Then it is obvious that τYy0,s = τy,s. From Lemma 2.3.1, denote b̃(t) = b(t)+a(t)L(t)−L′(t),

w̃(z, t|y0, s) :=
∂P (Yt<z,τYy0,s>t|Ys=y0)

∂z satisfies :

∂w̃(z, t|y0, s)

∂t
= − ∂

∂z
((a(t)z + b̃(t))w̃(z, t|y0, s)) + c(t)

∂2w̃(z, t|y0, s)

∂2z
, (2.3.16)

with w̃(z, t|y0, s) = 0,∀z ≥ 0, w̃(−∞, t|y0, s) = 0, w̃(z, s|y0, s) = fy0(z), z < 0 and fy0(z) =
fy(z + L(s)) is the pdf of y0.

From (2.1.4), (2.1.5) and the method of images, we know that a general solution to (2.3.16)
is given by :

w̃(z, t|y0, s) =
eα(t,s)√
4πγ(t, s)

{
∫ 0

−∞
exp(−(zeα(t,s) + β̃(t, s)− r)2

4γ(t, s)
)fy0(r)dr

−
∫ +∞

0
exp(−(zeα(t,s) + β̃(t, s)− r)2

4γ(t, s)
)U(r)dr}, (2.3.17)

where U(r), r ∈ [0,+∞) is a pending function to be solved. Moreover,

β̃(t, s) = −
∫ t

s
b̃(r)eα(r,s)dr = β(t, s)− L(s) + L(t)eα(t,s). (2.3.18)

It is noticed further that w̃(x, t|y0, s) = w(x+ L(t), t|y, s), y0 = y − L(s), such that

w(x, t|y, s) = p(x, t|y, s)−
∫ +∞

0
p(x, t|L(s) + r, s)U(r)dr. (2.3.19)
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Noticing the boundary condition w̃(0, t|y0, s) = 0, ∀t ≥ 0, then U(r) can be solved from
the following Fredholm integral equation of first kind :

h(t) =

∫ +∞

0
K(r, t)U(r)dr, ∀t ≥ s, (2.3.20)

where K(r, t) = eα(t,s)√
4πγ(t,s)

exp(− (β̃(t,s)−r)2
4γ(t,s) ) = p(L(t), t|L(s) + r, s), h(t) =∫ 0

−∞K(r, t)fy0(r)dr = p(L(t), t|y, s).
Equation (2.3.20) is generally hard to be solved, even numerically, so much attention is

paid to (2.3.20) to search an explicit expression for U(r) [43, 46, 11]. In the following we will
derive a special boundary from (2.3.20), under which w(x, t|y, s) can be solved explicitly.

Quasi-Linear Boundary

[46, 11, 79] contribute to establish the special failure level with several adjustable para-
meters. Such an idea is reproduced in the following proposition. However, the key idea here
is not to directly search a special boundary, but to propose a boundary L(t) based on the
boundary L(s) at s. As can be seen later, the treatment of variable-change saves plenty of
calculation on the tangent method and the piecewise approximation of the original boundary.

Before the discussion, we first introduce the definition of quasi-linear.

Definition 2.3.3. A boundary L(t) is called quasi-linear, if for a constant C ∈ R,

L(t) = e−α(t,s)(L(s)− β(t, s) + Cγ(t, s)), (2.3.21)

where α, β, γ are defined in (1.3.3).

Remark : We call the boundary (2.3.21) as quasi-linear boundary because for Brownian
motion, this boundary is simplified to a linear boundary. This will be shown later.

Then we have the following proposition.

Proposition 2.3.4. For a boundary L(t), suppose the process Xt is given as in (2.1.1) with
the initial start (y, s) where y is a random variable with the pdf fy defined on (−∞, L(s)).
If there exists a constant C ∈ R such that the boundary L(t) satisfies (2.3.21), then the first
passage density g(t|y, s) satisfies :

g(t|y, s) =
c(t)e2α(t,s)√

4πγ3(t, s)

∫ L(s)

−∞
(L(s)− r) exp(−(β(t, s) + L(t)eα(t,s) − r)2

4γ(t, s)
)fy(r)dr. (2.3.22)

Moreover the distribution function G(t|y, s) := P (τy,s ≤ t) satisfies :

G(t|y, s) =

∫ L(s)

−∞

[
Φ(
−L(s)− Cγ(t, s) + r√

2γ(t, s)
) + eC(r−L(s))Φ(

Cγ(t, s)− L(s) + r√
2γ(t, s)

)

]
fy(r)dr

(2.3.23)
where Φ(∗) is the normal distribution function.

Proof. First, the following transform comes directly from the boundary condition (2.3.20)∫ +∞

0
exp(−(β̃(t, s)− r)2

4γ(t, s)
)(U(r)− exp(−r β̃(t, s)

γ(t, s)
)fy0(−r))dr = 0. (2.3.24)



2.3. INITIAL-BOUNDARY VALUE PROBLEM FOR FOKKER-PLANCK EQUATION
45

Therefore the following necessary condition can be introduced to promise (2.3.20)

U(r) = exp(−r β̃(t, s)

γ(t, s)
)fy0(−r), ∀r ≥ 0. (2.3.25)

Noticing the left side of (2.3.25) depends only on r, there should be a constant C ∈ R to
promise

β̃(t, s)

γ(t, s)
= C. (2.3.26)

By calculating Equation (2.3.26) explicitly, it is found L(t) is quasi-linear as in (2.3.21).

Second, under the condition (2.3.26), U(r) = e−Crfy0(−r), that leads to

w̃(z, t|y0, s) =
eα(t,s)√
4πγ(t, s)

{
∫ 0

−∞
exp(−(zeα(t,s) + β̃(t, s)− r)2

4γ(t, s)
)fy0(r)dr

−
∫ +∞

0
exp(−(zeα(t,s) + β̃(t, s)− r)2

4γ(t, s)
)e−Crfy0(−r)dr}

=
eα(t,s)√
4πγ(t, s)

{
∫ 0

−∞
exp(−(zeα(t,s) + β̃(t, s)− r)2

4γ(t, s)
)fy0(r)dr

−
∫ +∞

0
exp(−(zeα(t,s) + β̃(t, s) + r)2 − 4rzeα(t,s)

4γ(t, s)
)fy0(−r)dr}, (2.3.27)

Third, it should be noticed that w̃(z, t|y0, s) = w(z + L(t), t|y, s) such that

w(x, t|y, s)

=
eα(t,s)√
4πγ(t, s)

∫ L(s)

−∞
(1− exp(−(r − L(s))(x− L(t))eα(t,s)

γ(t, s)
)) exp(−(xeα(t,s) + β(t, s)− r)2

4γ(t, s)
)fy(r)dr

(2.3.28)

This is also translated to the following form when y is defined on (−∞, L(s)),

w(x, t|y, s) =

∫ L(s)

−∞

[
p(x, t|r, s)− eC(r−L(s))p(x, t|2L(s)− r, s)

]
fy(r)dr. (2.3.29)

Moreover, from (2.1.10), (2.2.8) and the condition (2.3.21),

1−G(t|y, s) =

∫ L(t)

−∞
w(x, t|y, s)dx

=

∫ L(s)

−∞

[
F (L(t), t|r, s)− eC(r−L(s))F (L(t), t|2L(s)− r, s)

]
fy(r)dr

=

∫ L(s)

−∞

[
Φ(
L(t)eα(t,s) + β(t, s)− r√

2γ(t, s)
)− eC(r−L(s))Φ(

L(t)eα(t,s) + β(t, s)− 2L(s) + r√
2γ(t, s)

)

]
fy(r)dr

=

∫ L(s)

−∞

[
Φ(
L(s) + Cγ(t, s)− r√

2γ(t, s)
)− eC(r−L(s))Φ(

Cγ(t, s)− L(s) + r√
2γ(t, s)

)

]
fy(r)dr. (2.3.30)

Noticing that 1− Φ(x) = Φ(−x), it comes naturally to (2.3.23).
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Fourth, from (2.3.28), ∂w(x,t|y,s)
∂x satisfies :

∂w(x, t|y, s)
∂x

|x=L(t) =
e2α(t,s)√
4πγ3(t, s)

∫ L(s)

−∞
(r − L(s)) exp(−(β(t, s) + L(t)eα(t,s) − r)2

4γ(t, s)
)fy(r)dr.

(2.3.31)

By Equations (2.3.14) and (2.3.31), it is natural to achieve Equation (2.3.22).

Remarks :
◦ the proposition can also be possibly derived by time-change based on inverse Gaussian

distribution for Brownian motion.
◦ (2.3.28) provides an expression of conditional survival probability P (τy,s > t|Xt = x),

which will be addressed later. And if we derive from the general method of images
without the variable-change, it is hard to see clearly this connection.

Hitting the Boundary with a Finite Time

As stated at the beginning, it is supposed that the first passage time τy,s considered in
this thesis is always almost surely finite without rigorous consideration. Here from (2.3.23),
an explicit condition to promise P (τy,s <∞) = 1 for y ∈ (−∞, L(s)) is given by the following
corollary.

Corollary 2.3.5. If there exists a constant C < 0, such that L(t) satisfies

L(t) ≤ e−α(t,s)(L(s)− β(t, s) + Cγ(t, s)), (2.3.32)

then

P (τy,s =∞) = 0, or equivalently, P (τy,s <∞) = 1. (2.3.33)

Proof. It is denoted here L̃(t) := e−α(t,s)(L(s) − β(t, s) + Cγ(t, s)), and τ1 := inft≥s{t|Xt ≥
L̃(t)}. From (2.3.21), L̃(t) is quasi-linear such that its first passage distribution is explicit.

Then from (2.3.32), the boundary L(t) ≤ L̃(t), it is natural to see the event of {τy,s > t}
is included in the event of {τ1 > t} . Then from (2.3.23) with the hypothesis of C < 0, we
have

0 ≤ P (τy,s =∞) ≤ P (τ1 =∞)

= lim
t→∞
{1− Φ(

−L(s)− Cγ(t, s) + y√
2γ(t, s)

)− eC(r−L(s))Φ(
Cγ(t, s)− L(s) + y√

2γ(t, s)
)} = 0.

(2.3.34)

Drifted Brownian Motion

As introduced in Section 1.2, the drifted Brownian motion is a widely used degradation
process. It is of special interest although it is also a special OU process. Proposition 2.3.4
provides another view for the inverse Gaussian distribution for Brownian motion, actually we
have
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Corollary 2.3.6. For the drifted Brownian motion Xt = µt+ σBt + x0 with a deterministic
start x0 at 0, its first passage density to a constant boundary L > x0 satisfies inverse Gaussian
distribution :

g(t|x0, 0) =
L− x0√
2πσ2t3

exp(−(L− µt− x0)2

2σ2t
). (2.3.35)

Correspondingly, the first passage distribution is given by

G(t|x0, 0) = Φ(
−L+ µt+ x0

σ
√
t

) + e
2µ

σ2
(L−x0)Φ(

−µt− L+ x0

σ
√
t

), (2.3.36)

where Φ(∗) is the normal distribution function.

Proof. As dXt = µdt+ σdBt with initial distribution δ(x− x0) as Dirac measure centred at
x0, notations in (2.3.22) are modified to

α(t, 0) = 0, β(t, 0) = −µt, γ(t, 0) =
σ2t

2
. (2.3.37)

Substitute all the above to (2.3.22), and let C = −2µ
σ2 in (2.3.21), we come to (2.3.35).

Moreover, from (2.2.8), we know

1−G(t|x0, 0) = F (L(t), t|x0, 0)− eC(x0−L(s))F (L(t), t|2L(s)− x0, 0)

= Φ(
L− µt− x0

σ
√
t

)− e−
2µ

σ2
(x0−L)Φ(

L− µt− 2L+ x0

σ
√
t

). (2.3.38)

Time-Changed Brownian Motion

The drifted Brownian motion is with a linearly-increasing mean and variance. This limits
its applications in degradation modeling where the nonlinear performance is presented. So
here it is of interest to extend the simplicity of Brownian motion to a more general case,
where its mean and variance can be adjusted. But at the same time, it could keep the simple
calculation on the first passage density. This leads to the consideration of time-changed
Brownian motion [49]. We here will also apply Proposition 2.3.4 to this process.

Definition 2.3.7. Xt is called a time-changed Brownian motion, if Xt is of the form

dXt =
C

2
σ2(t)dt+ σ(t)dBt, X0 = x0, t ≥ 0 (2.3.39)

where C > 0, and σ(t) > 0 is a continuous function.

Remark : The process Xt here can be essentially translated to the case of time-changed
drifted Brownian motion Xt = C

2 Λ(t) + BΛ(t) [49] based on the time-change Λ(t) = 2γ(t, 0),
see Section 1.3.2. However we would like to discuss this process in the framework of stochastic
differential equations.

The notations in (1.3.3) for (2.3.39) are updated to

α(t, s) = 0, γ(t, s) =
1

2

∫ t

s
σ2(z)dz, β(t, s) = −C × γ(t, s), (2.3.40)
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It is solved explicitly

Xt = x0 − β(t, 0) +

∫ t

0
σ(s)dBs. (2.3.41)

Correspondingly its transition pdf is given by

p(x, t|y, s) =
1√

4πγ(t, s)
exp(−(x− y − Cγ(t, s))2

4γ(t, s)
), (2.3.42)

such that the transition distribution is given by

F (x, t|y, s) = Φ(
x− y − Cγ(t, s)√

2γ(t, s)
). (2.3.43)

Following Proposition 2.3.4, it is interesting to see that the first passage problem for the
time-changed Brownian motion is also explicitly solved.

Corollary 2.3.8. For the time-changed Brownian motion (2.3.39) with the observation of
y at time s , its first passage density to a constant boundary L > y satisfies the following
equation :

g(t|y, s) =
σ2(t)(L− y)

2γ(t, s)
p(L, t|y, s). (2.3.44)

Correspondingly, the first passage distribution is given by

G(t|y, s) = Φ(
−L+ Cγ(t, s) + y√

2γ(t, s)
) + e−C(y−L)Φ(

−Cγ(t, s)− L+ y√
2γ(t, s)

), (2.3.45)

where Φ(∗) is the normal distribution function.

Proof. It is noticed that, for C in (2.3.39) and L(s) = L,

L(t) = L(s)− β(t, s)− Cγ(t, s) = L(s) = L, for t ≥ s. (2.3.46)

Therefore L satisfies is quasi-linear boundary by (2.3.21), and from Proposition 2.3.4, the
first passage density and distribution are given explicitly.

Remark : The time-changed Brownian motion coincides with the drifted Brownian mo-
tion when σ(t) = ν as a constant.

2.3.4 The Tangent Approximation

In the last subsection, we have presented under a quasi-linear boundary, the first passage
density can be given explicitly. In this subsection, it aims to approximate a general boundary
by the quasi-linear boundary. And we concern the following points :

1. A tangent approximation of the first passage density and distribution is presented,
this gives a good estimate when the time is near the current observation.

2. This tangent approximation can have a global accuracy under some conditions.
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The tangent approximation for first passage problems of Brownian motion is to approxi-
mate the real boundary by the linear boundary. This is well studied in [43], and in this
subsection we will try to reproduce the idea of tangent approximation for the OU process
based on the quasi-linear boundary (2.3.21). The classical result is only for the first passage
density of Brownian motion. Here we will also consider the first passage distribution for the
OU process.

Recall that the discussion for the quasi-linear boundary L(t) in (2.3.21) is given by

L(t) = e−α(t,s)(L(s)− β(t, s) + Cγ(t, s)), (2.3.47)

where C ∈ R and L(s) is the initial boundary. Then the first passage density and distribution
are given by (2.3.22) and (2.3.23) respectively.

For a general boundary L(t) not in the form of (2.3.47), we want to approximate the
real boundary by the quasi-linear one. This induces the tangent approximation. And the
remaining statements are due to the approximation on L(s) and C in (2.3.47).

Actually when L(z) ∈ C1[s, t] and s is near t,

C̃(t, s) :=
L′(t)− a(t)L(t)− b(t)

c(t)eα(t,s)
≈ L(t)eα(t,s) − L(s) + β(t, s)

γ(t, s)
, (2.3.48)

such that for z ∈ [s, t], we can approximate the original boundary L(z) by the following one,

L̃(z) = L(t)eα(t,z) + β(t, z)− C̃(t, s)γ(t, z). (2.3.49)

Therefore, an approximation for the first passage density and first passage distribution
are given by the following propositions.

Proposition 2.3.9. If for a constant T , the boundary L(t) ∈ C1[s, T ], for C̃, L̃ defined in
(2.3.48) and (2.3.49),

G̃(t|y, s) := 1− F (L(t), t|y, s) + eC̃(t,s)(y−L̃(s))F (L(t), t|2L̃(s)− y, s) (2.3.50)

Then we have
G(t|y, s) = G̃(t|y, s)(1 +O(γ(t, s))), t→ s. (2.3.51)

Proof. First step : control the original boundary by quasi-linear boundaries

As L(t) ∈ C1[s, T ], therefore C̃(t, z) is continuous, such that C̃(t, z) ≤ K/2 for an enough
large constant K in the given area, [s, T ]× [s, T ]. This K depends only on the end-time T .

It is known from (2.3.49) when z ∈ [s, t], by mean-value theorem,

|L̃(z)− L(z)| = |L(t)eα(t,z) + β(t, z)− L(z)− C̃(t, s)γ(t, z)|
= γ(t, z)|C̃(ξ, z)− C̃(t, s)|, for some ξ ∈ (z, t)

≤ Kγ(t, z). (2.3.52)

Therefore we have

L̃(z)−Kγ(t, z) ≤ L(z) ≤ L̃(z) +Kγ(t, z), for z ∈ [s, t]. (2.3.53)

Second step : control the original first passage distribution by two explicit expressions
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Now consider t is enough close to s, such that L̃(s)+Kγ(t, s)−y > 0 due to L(s)−y > 0.
Denote L̃1(z) := L̃(z)−Kγ(t, z), and L̃2(z) := L̃(z)+Kγ(t, z), then we have L̃1(z) ≤ L(z) ≤
L̃2(z), for z ∈ [s, t]. Denote the first passage times to these two boundaries respectively as
τ̃1, τ̃2. It is noticed that L̃1(z), L̃2(z) are also quasi-linear boundaries from Equation (2.3.49)
such that for z ∈ (s, t)

P (τ̃2 ≤ z) ≤ G(z|y, s) ≤ P (τ̃1 ≤ z),
P (τ̃2 ≤ z) ≤ G̃(z|y, s) ≤ P (τ̃1 ≤ z). (2.3.54)

Here we have

1− P (τ̃2 ≤ z) = F (L(z), z|y, s)− e(C̃(z,s)+K)(y−L̃(s)−Kγ(z,s))F (L(z), z|2(L̃(s) +Kγ(z, s))− y, s).

1− P (τ̃1 ≤ z) = F (L(z), z|y, s)− e(C̃(z,s)−K)(y−L̃(s)+Kγ(z,s))F (L(z), z|2(L̃(s)−Kγ(z, s))− y, s).
(2.3.55)

By the expression of F (x, t|y, s) in (2.2.8), such that for t close to s, there exists a constant
Nt,s only depending on t and s,

P (τ̃1 ≤ z)− P (τ̃2 ≤ z) ≤ Nt,sγ(z, s), for z ∈ [s, t]. (2.3.56)

Therefore due to |G(t|y, s)− G̃(t|y, s)| ≤ P (τ̃1 ≤ t)− P (τ̃2 ≤ t), it leads directly to

G(t|y, s) = G̃(t|y, s)(1 +O(γ(t, s))). (2.3.57)

Remark : An illustration for constructing two quasi-linear boundaries to control the
original boundary can be seen in Figure 2.2.

Figure 2.2 – Control the original boundary (black) by quasi-linear boundaries (red).

For the first passage density, the estimation requires much more efforts, however it is
natural to derive the following result for the practical calculation.

Proposition 2.3.10. Under some conditions, if for a constant T , the boundary L(t) ∈
C1[s, T ], for C̃, L̃ defined in (2.3.48) and (2.3.49),

g̃(t|y, s) =
c(t)eα(t,s)

γ(t, s)
(L̃(s)− y)p(L(t), t|y, s). (2.3.58)
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Then

g(t|y, s) = g̃(t|y, s)(1 + o(1)), t→ s. (2.3.59)

Proof. The detailed proof is omitted here. However an indirect proof can be derived from the
time-change of the OU process. Then the conclusion comes by using the preliminary result
for Brownian motion [43].

Global accuracy

The tangent approximation converges when t→ s, however it also has a global accuracy
under some conditions. And it seems strange at a first glance, because the tangent approxi-
mation is a local approximation. Also interestingly, it is found that this approximation is the
same with the approximation by Durbin in [25, 27], which will be explained explicitly later.

This global accuracy is discussed in [43] for Brownian motion. In that monograph, the
global accuracy is considered based on asymptotic analysis for given parametric boundaries
solved from the method of images. However, for a general boundary, this treatment means
we should construct a convergent boundary series satisfying the hypothesis of the method
of images. This would be tedious and technical. Another error estimation of the tangent
approximation is given based on an integral equation method in [31]. In this thesis, we will
consider the global accuracy from a practical view, and the estimate of the global error would
be missing. This rough consideration is adopted for Brownian motion before for the fitting
of life tables [71] and also in residual useful life estimation [66].

2.3.5 Parametric Approximation

Now we go back to the original initial-boundary problem (2.3.1) for a general boundary
L(t). The discussion in this subsection concerns 2 points as follows :

1. By the method of images, it is proposed to consider an approximate function for the
first passage density with several parameters. And this is later estimated by a linear
programming approach.

2. a special case of 2-point approximation induces the explicit expression of first passage
density for a special class of boundaries, which are called quasi-Daniels boundaries.

A Linear Programming Approach

As w(x, t|y, s) satisfies an initial-boundary problem in (2.3.1), and it can be generally
written by the method of images from (2.3.19)

w(x, t|y, s) = p(x, t|y, s)−
∫ +∞

0
p(x, t|L(s) + r, s)U(r)dr, (2.3.60)

where U(r) can be obtained from the Fredholm integral equation (2.3.20). Such an equation
can hardly be solved analytically. Even numerical solutions to a Fredholm integral equation
can not be direct as such a problem is generally ill-posed where collocation methods could
be useful [35]. However here we do not adopt a rigorous way to consider numerical problems,
but consider a more heuristic way leading to linear programming problems [95].
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Following the idea in [95], suppose mesh points {ri}Ni=1 are given for (0,+∞), and then
an approximation for U(r) is introduced by the point-measure :

U(r)dr =

N∑
i=1

ξiδL(s)+ri(dr), (2.3.61)

where δy(∗) is the Dirac measure centered at y, {ξi}Ni=1 are nonnegative and pending to be
solved. With such an approximation, correspondingly for w(x, t|y, s)

w(x, t|y, s) ≈ p(x, t|y, s)−
N∑
i=1

ξip(x, t|L(s) + ri, s). (2.3.62)

This leads to the explicit expression of first passage density from (2.3.14) :

g(t|y, s) = −c(t)(px(x, t|y, s)−
N∑
i=1

ξipx(x, t|L(s) + ri, s))|x=L(t)

≈ c(t)e2α(t,s)√
4πγ(t, s)

{
∫ L(s)

−∞

β(t, s) + L(t)eα(t,s) − r
2γ(t, s)

exp(−(β(t, s) + L(t)eα(t,s) − r)2

4γ(t, s)
)fy(r)dr

−
N∑
i=1

ξi
β(t, s) + L(t)eα(t,s) − L(s)− ri

2γ(t, s)
exp(−(L(t)eα(t,s) + β(t, s)− L(s)− ri)2

4γ(t, s)
)} (2.3.63)

Correspondingly, the first passage distribution G(t|y, s) is given

1−G(t|y, s) = F (L(t), t|y, s)−
N∑
i=1

ξiF (L(t), t|L(s) + ri, s)). (2.3.64)

Here when a mesh {tj}Mj=1 is considered for (0, T ], M ≥ N , the remaining task is to
determine ξi such that the error term for the approximation at mesh points can be minimized.
The error term ε(t) by approximating (2.3.20) can be given by

ε(t) = h(t)−
N∑
i=1

ξiK(ri, t) (2.3.65)

When the initial value y at s is deterministic, then we have

h(t) = p(L(t), t|y, s),K(r, t) = p(L(t), t|L(s) + r, s). (2.3.66)

As stated in [95], it is natural to derive a P -weighted linear programming problem which
minimize the error term ε(t). Introducing a positive weight M -dimensional vectors P , W =
(ξi)N×1, we denote N -dimensional vectors E = (ε(ti))M×1, H = (h(ti))M×1, N ×M matrix
K̃ = (K(ri, tj))N×M .

Then the following linear programming problem gives the estimate of ξi.

Minimize Z = P TE,

subject to : E +W T K̃ = H, E ≥ 0, W ≥ 0. (2.3.67)

Other parametric expressions based on different choices of U(r) rather than the point
measure can refer to those in [95].
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Quasi-Daniels Boundary

A special case in such a parametric approximation is to consider a two-parameter approxi-
mation in (2.3.61) leading to a quasi-Daniels boundary [15]. This is given by the following
proposition, and also we would like to propose L(t) based on L(s) rather than an explicit
function.

Before the discussion, we first introduce the definition of quasi-Daniels.

Definition 2.3.11. A boundary L(t) ∈ C[s, t] is called quasi-Daniels, if for ξ1, ξ2 ∈ R+ and
L(s) > y,

L(t) = e−α(t,s){L(s)− β(t, s) +
γ(t, s)

y − L(s)
log(

ξ1 +
√
ξ2

1 + 4ξ2 exp(−2(y−L(s))2

γ(t,s) )

2
)}. (2.3.68)

where α, β, γ are defined in (1.3.3).

Remark : We call the boundary (2.3.21) quasi-linear boundary because for Brownian
motion, this boundary is simplified to a linear boundary. This will be shown later.

Proposition 2.3.12. For the process Xt in (2.1.1) with the current observation (y, s), when
the boundary is quasi-Daniels as given in (2.3.68), then the corresponding first passage density
is given by

g(t|y, s) =
c(t)eα(t,s)

2γ(t, s)
{(β(t, s) + L(t)eα(t,s) − y)p(L(t), t|y, s)

−
2∑
i=1

ξi(β(t, s) + L(t)eα(t,s) − L(s)− ri)p(L(t), t|L(s) + ri, s)}, (2.3.69)

where r1 = L(s)− y, r2 = 3(L(s)− y).

Proof. It is natural to see (2.3.69) from (2.3.63), for r1, r2 > 0

Ũ(r) = ξ1δ(r − r1) + ξ2δ(r − r2). (2.3.70)

Then we want to solve L(t) explicitly based on (2.3.70) from the Fredholm equation of
first kind (2.3.20) where y0 and β̃ are defined, we have

exp(−(β̃(t, s)− y0)2

4γ(t, s)
)−

2∑
i=1

ξi exp(−(β̃(t, s)− ri)2

4γ(t, s)
) = 0, (2.3.71)

This leads to

exp(− y2
0

4γ(t, s)
) =

2∑
i=1

ξi exp(−(r2
i − 2β̃(t, s)(ri − y0))

4γ(t, s)
) (2.3.72)

When it is chosen that r2 = −3y0, r1 = −y0 where y0 = y − L(s) < 0 with initial value y

at time s, then (2.3.72) becomes a quadratic equation for z := exp(y0
β̃(t,s)
γ(t,s) ) such that

ξ2 exp(− 2y2
0

γ(t, s)
) + ξ1z − z2 = 0. (2.3.73)
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The solution is given by

z =
ξ1 +

√
ξ2

1 + 4ξ2 exp(− 2y20
γ(t,s))

2
, (2.3.74)

where the negative solution is ignored as z is nonnegative. This is due to ξ2 ≥ 0.

Furthermore, recalling that β̃(t, s) = β(t, s) − L(s) + L(t)eα(t,s), therefore an explicit
expression for L(t) is given by :

L(t) = e−α(t,s){L(s)− β(t, s) +
γ(t, s)

y0
log(

ξ1 +
√
ξ2

1 + 4ξ2 exp(− 2y20
γ(t,s))

2
)}

= e−α(t,s){L(s)− β(t, s) +
γ(t, s)

y − L(s)
log(

ξ1 +
√
ξ2

1 + 4ξ2 exp(−2(y−L(s))2

γ(t,s) )

2
)}. (2.3.75)

Proposition 2.3.12 leads directly to the Daniels’ boundary for Brownian motion [15]. This
is given by the following corollary.

Corollary 2.3.13. For the Brownian motion B(t) with the initial start (y, s), when the
boundary is given by

L(t) = {L(s) +
t− s

2(y − L(s))
log(

ξ1 +
√
ξ2

1 + 4ξ2 exp(−4(y−L(s))2

t−s )

2
)} (2.3.76)

where ξ1, ξ2 ∈ R+ and L(s) > y are adjustable values, then the corresponding first passage
density is given by

g(t|y, s) =
1

2(t− s)
{(L(t)− y)p(L(t), t|y, s)−

2∑
i=1

ξi(L(t)− L(s)− ri)p(L(t), t|L(s) + ri, s)},

(2.3.77)

where r1 = L(s)− y, r2 = 3(L(s)− y).

Proof. The Brownian motion Bt coincides with Equation (2.1.1) with a(t) = 0, b(t) =
0, σ(t) = 1, c(t) = 1

2 and

α(t, s) = 0, β(t, s) = 0, γ(t, s) =
(t− s)

2
. (2.3.78)

Substitute all the above into Proposition 2.3.12, the result comes naturally.

2.3.6 Piecewise Quasi-Linear Monte-Carlo Method

In Section 2.3.3, we have derived the explicit first passage density and distribution under
the quasi-linear boundary. This result will be extended to a piecewise quasi-linear Monte-
Carlo method for the first passage time to a general boundary in this subsection. The discus-
sion in this subsection concerns two points :

1. For a piecewise quasi-linear boundary, the corresponding first passage distribution can
be given explicitly.
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2. For a general boundary, the result of piecewise quasi-linear boundary can be exten-
ded by approximating the general boundary by the piecewise boundary. Therefore a
piecewise quasi-linear Monte-Carlo method is derived to calculate the first passage
distribution.

It is known that for Brownian motion, the piecewise linear boundary can be proposed
such that corresponding first passage density is expressed by a closed form [86, 97]. Such an
idea will be reproduced here for the OU process, and previously such a generalization is also
considered based on time-change [87]. However this is not utilizable for computation as the
inverse of time-change is not explicit for the general OU process.

The piecewise boundary is considered based on the idea of conditional first passage time
among independent intervals from the Markov property of the process, and this fact is given
by the following lemma.

Lemma 2.3.14. For a Markov process Xt, and a time ϑ ∈ (s, t), let τy,s denote the first
passage time to L(t) based on the current observation (y, s) and let u(x, t|y, s) := P (Xt <
x, τy,s > t|Xs = y). We have

u(x, t|y, s) =

∫ L(ϑ)

−∞
u(x, t|z, ϑ)P (τy,s > ϑ|Xϑ = z)p(z, ϑ|y, s)dz. (2.3.79)

Proof. For a time ϑ ∈ (s, t), by the Markov property of Xt, we have

P (τy,s > t,Xt < x|Xs = y) = P ({Xη < L(η), s ≤ η ≤ t}&{Xt < x}|Xs = y)

=

∫ L(ϑ)

−∞
P ({Xη < L(η), s ≤ η ≤ ϑ|Xϑ = z,Xs = y)

× P ({Xη < L(η), ϑ ≤ η ≤ t}&{Xt < x}|Xϑ = z,Xs = y)p(z, ϑ|y, s)dz

=

∫ L(ϑ)

−∞
P (τy,s > ϑ|Xϑ = z)P ({Xη < L(η), ϑ ≤ η ≤ t}&{Xt < x}|Xϑ = z)p(z, ϑ|y, s)dz

(2.3.80)

Therefore Equation (2.3.79) comes naturally.

Remark : There is no requirement for the continuity of L(t) at the chosen time ϑ,
therefore this lemma provides the possibility to investigate piecewise continuous boundary.

The lemma leads directly to the following corollary to state a view of w(x, t|y, s).

Corollary 2.3.15. For a time ϑ ∈ (s, t), w(x, t|y, s) = ∂u(x,t|y,s)
∂x

w(x, t|y, s) =

∫ L(ϑ)

−∞
w(x, t|z, ϑ)P (τy,s > ϑ|Xϑ = z)p(z, ϑ|y, s)dz. (2.3.81)

Proof. Differentiate both sides of Equation (2.3.79) by x, then by Lebesgue’s dominated
convergence theorem, Equation (2.3.81) comes naturally.

Iteratively using Equation (2.3.79), we achieve at the following proposition.

Proposition 2.3.16. Suppose the time mesh is given {ti}Ni=0, with t0 = s, tN = T , and
the boundary values at these mesh points {L(ti)}Ni=0 are also given. Moreover, the boundary
L(t) is chosen such that L(t) = e−α(t,ti)(L(ti) − β(t, ti) + ηiγ(t, ti)) for t ∈ (ti, ti+1], with
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ηi = (L(ti+1)eα(ti+1,ti) + β(ti+1, ti)− L(ti))/γ(ti+1, ti). That is to say, L(t) is quasi-linear in
each interval (ti, ti+1].

Denote the function Υk(t0, t1, ..., tk, z0, z1, ..., zk), k ≥ 1 as

Υk(t0, t1, ..., tk, z0, z1, ..., zk) = Πk−1
i=0 I(zi+1 < L(ti+1))(1−exp(−(zi − L(ti))(zi+1 − L(ti+1))eα(ti+1,ti)

γ(ti+1, ti)
)),

(2.3.82)
where I(∗) is the indicator function.

Then for any t ∈ (tk, tk+1] and x ≤ L(t), we have

u(x, t|y, s) = E [u(x, t|Xtk , tk)Υk(s, t1, ..., tk, y,Xt1 , ..., Xtk)] (2.3.83)

= E

[∫ x

−∞
(1− exp(−(Xtk − L(tk))(η − L(t))eα(t,tk)

γ(t, tk)
))p(η, t|Xtk , tk)dηΥk(s, t1, ..., tk, y,Xt1 , ..., Xtk)

]

Proof. First step : quasi-linear boundary

It is noticed that for an observation z at time ϑ related to the boundary L(t), and x ≤ L(t)

u(x, t|z, ϑ) =

∫ x

−∞
P (τy,s > t|Xt = η)p(η, t|z, ϑ)dη, (2.3.84)

such that
w(x, t|z, ϑ) = P (τy,s > t|Xt = x)p(x, t|z, ϑ). (2.3.85)

Therefore when the crossing boundary in the interval [ϑ, t] satisfies the quasi-linear boun-
dary given by (2.3.21), from (2.3.28), for x ≤ L(t) we know that

P (τz,ϑ > t|Xt = x) = 1− exp(−(z − L(ϑ))(x− L(t))eα(t,ϑ)

γ(t, ϑ)
). (2.3.86)

Second step : piecewise quasi-linear boundary

Now recall Xt is given by (2.1.1), select the mesh {ti}Ni=1 with t0 = s, tN = T , and the
boundary in each interval (ti, ti+1] is chosen as in the proposition, such that the boundary is
quasi-linear in each interval (ti, ti+1].

For t0 = s, t1 > t0, it is derived from (2.3.79) that for t ∈ (tk, tk+1]

u(x, t|y, s) =

∫ L(t1)

−∞
u(x, t|z1, t1)P (τy,s > t1|Xt1 = z1)p(z1, t1|y, s)dz1. (2.3.87)

Iteratively, do the same transform from (2.3.79) for u(x, t|z1, t1) for t2, ...,tk, finally we
have

u(x, t|y, s) =

∫ L(tk)

−∞
· · ·
∫ L(t1)

−∞
u(x, t|zk, tk)Πk−1

i=0

[
P (τzi,ti > ti+1|Xti+1 = zi+1)p(zi+1, ti+1|zi, ti)

]
dZ,

(2.3.88)

where dZ := Πk
i=1dzi, z0 = y, t0 = s.

Third step : introducing the function of Υk

Then from (2.3.86), for zi+1 ∈ (−∞, L(ti+1)), zi ∈ (−∞, L(ti)), we have

P (τzi,ti > ti|Xti+1 = zi+1) = (1− exp(−(zi − L(ti))(zi+1 − L(ti+1))eα(ti+1,ti)

γ(ti+1, ti)
)) (2.3.89)
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with z0 = y, t0 = s.

If we introduce the function Υk in (2.3.82), Equation (2.3.88) can be rewritten as

u(x, t|y, s) =

∫ +∞

−∞
· · ·
∫ ∞
−∞

u(x, t|zk, tk)Υk(t0, t1, ..., tk, z0, z1, ..., zk)Π
k−1
i=0 p(zi+1, ti+1|zi, ti)dZ,

(2.3.90)
where dZ := Πk

i=1dzi, z0 = y, t0 = s.

Fourth step : explicit expression of u(x, t|y, s)
It is further noticed that Πk−1

i=0 p(zi+1, ti+1|zi, ti) is the joint distribution of (y,Xt1 , ..., Xtk)
for the OU process. And a calculation for u(x, t|zk, tk) from (2.3.84) and (2.3.86) leads to the
following equation

u(x, t|y, s) = (2.3.91)

E

[∫ x

−∞
(1− exp(−(Xtk − L(tk))(η − L(t))eα(t,tk)

γ(t, tk)
))p(η, t|Xtk , tk)dηΥk(s, t1, ..., tk, y,Xt1 , ..., Xtk)

]
.

Equation (2.3.83) is derived directly from (2.3.91).

Remark : It is noticed that there is no requirement for the global continuity of L(t),
but just the continuity in each small interval (ti, ti+1]. Here we continue the discussion in the
proposition with the hypothesis that the boundary L(t) should be Càdlàg, i.e. right continuous
with left limits. Then we can extend naturally the proposition to investigate those piecewise
continuous boundary, without any technical difficulty.

It is natural to derive the corresponding expression for w(x, t|y, s) such that

Corollary 2.3.17. Under the piecewise boundary proposed in Proposition 2.3.16, for t ∈
(tk, tk+1] and x ≤ L(t)

w(x, t|y, s) = E [w(x, t|Xtk , tk)Υk(s, t1, ..., tk, y,Xt1 , ..., Xtk)] (2.3.92)

= E

[
(1− exp(−(Xtk − L(tk))(x− L(t))eα(t,tk)

γ(t, tk)
))p(x, t|Xtk , tk)Υk(s, t1, ..., tk, y,Xt1 , ..., Xtk)

]
.

Proof. Differentiating both sides of (2.3.83) with respect to x, by Lebesgue’s dominated
convergence theorem, Equation (2.3.92) comes naturally.

Corollary 2.3.18. Under the piecewise boundary proposed in Proposition 2.3.16, for t ∈
(tk, tk+1], denote Ḡ(t|y, s) = 1−G(t|y, s) as the survival function.

Ḡ(t|y, s) = E [Υk(s, t1, ...tk, t, y,Xt1 , ..., Xtk , Xt)] , (2.3.93)

Proof. By Equation (2.3.83),

Ḡ(t|y, s) = P (τy,s > t) = u(L(t), t|y, s) = E [u(L(t), t|Xtk , tk)Υk(s, t1, ..., tk, y,Xt1 , Xt2 , ..., Xtk)]
(2.3.94)

Further it is noticed from (2.3.86) that

u(L(t), t|zk, tk) =

∫ +∞

−∞
I(x < L(t))(1− exp(−(zk − L(tk))(x− L(t))eα(t,tk)

γ(t, tk)
))p(x, t|zk, tk)dx.

(2.3.95)

From (2.3.90), then we achieve at the expression for P (τy,s > t) in (2.3.93).
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Piecewise Quasi-Linear Monte-Carlo Simulation

Following the same procedures in [86], we can extend the discussion by approximating a
general boundary L(t) based on the piecewise quasi-linear boundary discussed before. In this
thesis we are interested to fulfill the calculation, rigorous consideration is on going, which
would be fulfilled later.

Actually we approximate a general L(t) by a piecewise quasi-linear boundary L̃(t) as
follows :

1. Select the mesh {ti}Ni=1 with t0 = s, tN = T , define ΛN = maxi=0,...,N−1{ti+1 − ti}.
2. For L(ti) to be the real boundary at ti, construct the piecewise boundary L̃(t)

between (ti, ti+1] as L̃(t) = e−α(t,ti)(L(ti) − β(t, ti) + ηiγ(t, ti)), t ∈ (ti, ti+1] with
ηi = (L(ti+1)eα(ti+1,ti) + β(ti+1, ti)− L(ti))/γ(ti+1, ti).

Then we can imagine when ΛN is enough small, the constructed piecewise boundary is
near the original boundary also. Therefore when ΛN is small, the first passage distribution
calculated from Equation (2.3.93) can approximate the real first passage distribution accu-
rately. The construction can be directly seen in Figure 2.3.

Figure 2.3 – Approximating the original boundary (black) by the piecewise quasi-linear
boundary (red).

Then by adopting proper numerical algorithms for Xt, e.g. Euler-Maruyama scheme [36],
Monte-Carlo simulation can be adopted to produce the estimate of G(t|y, s) based on (2.3.93).

By Euler-Maruyama scheme [36] and the expression of Xt in (3.1.1), one trajectory can
be produced for {Xi}Ni=0, here Xi is the value of Xti

X0 = x0, Xi+1 = (a(ti)Xi + b(ti))(ti+1 − ti) + σ(ti)∆Bi, i = 0, ..., N − 1, (2.3.96)

where ∆Bi ∼ N(0, ti+1 − ti).
For a mesh {ti}Ni=1, we produce J trajectories {zji }Jj=1 with J enough large, here zji denote

the value of Xti at the j-th trajectory. An approximate expression is achieved for G(t|y, s)
from (2.3.93) :

1. G(t0|y, s) = 0, with z0 = y, t0 = s.

2. For k ≥ 1,

G(tk|y, s) ≈ 1− 1

J

J∑
j=1

Υk(s, t1, ..., tk, y, z
j
1, ..., , z

j
k). (2.3.97)
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Comparison with a Simple Monte-Carlo Method

We have developed a piecewise quasi-linear Monte-Carlo simulation method to calculate
the first passage distribution, in this subsection it is aimed to show its advantages compared
to a simple Monte-Carlo simulation method.

Intuitively, using Monte-Carlo simulation methods to produce trajectories of the given
process, the first passage time can be statistically described by recording when those tra-
jectories cross the boundary. Here the selected numerical scheme for MC simulation of Xt

in (2.1.1) is the Euler-Maruyama scheme [36], which is described by the following iterative
algorithm for a time mesh {ti}Ni=0 :

Xi+1 = Xi + (a(ti)Xi + b(ti))(ti+1 − ti) + σ(ti)∆Bi, i = 0, ..., N (2.3.98)

where ∆Bi ∼ N (0, ti+1 − ti).
Therefore, the trajectory of the process Xt can be produced based on (2.3.98). The boun-

dary L(t) is used based on its discretization Li = L(ti). The first passage time for the jth
simulated path reaching the boundary is τj . The MC algorithm aims to produce J trajectories
of the deterioration process Xt to investigate statistical description of the corresponding first
passage times :

step 1 j = 0 ;

step 2 while j ≤ J , take j = j + 1, X0 = x0 or produce X0 from the initial distribution
function, and i = 0 ;

step 3 while Xi < Li, calculate Xi+1 from (2.3.98) and let i = i+ 1 ;

step 4 if Xi ≥ Li, record ti−1 as the first passage time τj and go to step 2.

In such a case, we have a lower estimate for the first passage time, however this error can
be controlled by reducing the step-size ∆t. Later the first passage density can be estimated
based on the values {τj}Jj=1 by methods such as kernel density estimation [64], which is
included in R software as the density function to provide the fitted pdf. The first passage
distribution can be given by the cumulative values of τj at different times directly.

Compared with the simple Monte-Carlo simulation method, the piecewise quasi-linear
Monte-Carlo simulation method shows its advantages on the following aspects :

1. In the procedure of producing trajectories, the piecewise quasi-linear Monte-Carlo
simulation doesn’t need the calculation until the trajectory reaches the boundary. It
can return the value of first passage distribution immediately when the trajectories at
the current time are produced. This provides the possibility to do parallel computation
when producing trajectories.

2. When the time mesh and the number of produced trajectories are fixed, the piecewise
quasi-linear Monte-Carlo simulation method is expected to be more accurate than the
simple Monte-Carlo simulation.

2.3.7 Durbin’s Approximation

It concerns two points in this subsection :

1. An analytical approximation of first passage density is derived from the result of
Durbin in [25] for mean-zero Gaussian processes.

2. This approximation of first passage density, interestingly is the same with the result
derived from the tangent approximation given in (2.3.58).
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For a mean-zero process Yt with the boundary Ly(t), we denote

e(t) := lim
z→t−

(t− z)−1E
[
I(τYy,s > z)(Ly(z)− Yz)|Yt = Ly(t)

]
, (2.3.99)

d(t) := (2π var(Yt))
−1/2 exp(−1

2
L2
y(t)/ var(Yt)), (2.3.100)

where τYy,s := inft≥s{t|Yt ≥ Ly(t)} and I(τYy,s > z) is the indicator function which equals to 1
if the sample path doses not cross the boundary prior to time z and equals to 0 otherwise.

Lemma 2.3.19. [25] Suppose the following conditions are satisfied :

1. The boundary Ly(z) is continuous for s ≤ z ≤ t, and left-differentiable at t.

2. The covariance function cov(Yr, Yz) is positive definitive and has continuous first-order
partial derivative on (r, z) ∈ [0, t] × [0, t], where appropriate left or right derivatives
are taken at the end values of considered intervals.

3. The variance of the increment Yt − Yz satisfies the condition

lim
z→t

var(Yt − Yz) = λt, 0 < λt <∞. (2.3.101)

Then the first passage density g(t|0, 0) of a mean-zero process Yt to an upper, continuous
boundary L(t) satisfies

g(t|0, 0) = e(t)d(t). (2.3.102)

Proof. see [25]

Remark : limz→t var(Yt−Yz) = λt, 0 < λt <∞ is also equivalent to limz→t(
∂ cov(Yz ,Yt)

∂z −
∂ cov(Yz ,Yt)

∂t ) = λt ∈ (0,+∞), see [25].

From Durbin’s Result to the Tangent Approximation

It is hard to calculate e(t) directly except for some special cases, an approximate expression
is suggested by Durbin [25] by ignoring the indicator function I(τYy,s > z) such that

g(t|y, s) ≈ lim
z→t

1

t− z
E((Ly(z)− Yz)|Yt = Ly(t))d(t). (2.3.103)

To simplify the calculation, we first consider the conditional expectation of mean-zero
Gaussian processes. An important property for the mean-zero Gaussian process Yt is essential
to reach the approximation, and it is given as follows

Lemma 2.3.20. [25] For a mean-zero Gaussian process, and Ly(t) ∈ C1[0,+∞),

lim
z→t−

(t− z)−1E [(Ly(z)− Yz)|Yt = Ly(t)] =
Ly(t)

var(Yt)

∂ cov(Yt, Yz)

∂z
|z=t− − L′y(t). (2.3.104)

Proof. As Yt is Gaussian and the conditional expectation E(Yz|Yt) is the projection of Yz on
the space produced by Yt,

E [Yz|Yt] = E(Yz) +
cov(Yt, Yz)

var(Yt)
(Yt − E(Yt)). (2.3.105)
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Conditioned on Yt = Ly(t) and due to the mean-zero property of Yt, Equation (2.3.105) leads
to

lim
z→t−

(t− z)−1E [(Ly(z)− Yz)|Yt = Ly(t)]

= lim
z→t−

(t− z)−1{E [(Ly(z)− Ly(t))|Yt = Ly(t)] + E [(Ly(t)− Yz)|Yt = Ly(t)]}

= −L′y(t) +
Ly(t)

var(Yt)

∂ cov(Yt, Yz)

∂z
|z=t−. (2.3.106)

Now we turn back to the OU process (2.1.1) to construct a mean-zero Gaussian process.
It is direct to see Xt with a deterministic initial value y at time s can be expressed from
(2.1.2) that

Xt := Xy,s
t = e−α(t,s)

[
y − β(t, s) +

∫ t

s
σ(u)eα(u,s)dBu

]
, t ≥ s. (2.3.107)

Corresponding statistical properties are derived as follows :

E(Xt) = e−α(t,s)

(
y − β(t, s)

)
, var (Xt) = e−2α(t,s)

{∫ t

s
σ2(u)e2α(u,s)du

}
,

cov(Xt, Xz) = e−(α(t,s)+α(z,s))

{∫ t∧z

s
σ2(u)e2α(u,s)du

}
, t, z ≥ s. (2.3.108)

It is known that Xt is Gaussian and with almost surely continuous trajectories, however
to fit the mean-zero hypothesis, the following process Yt with initial value y0 := 0 at s will
be discussed in this subsection

Yt := Xt − E(Xt), t ≥ s. (2.3.109)

With Equations in (2.3.108), we have

E(Yt) = 0, var(Yt) = var(Xt), cov(Yt, Yz) = cov(Xt, Xz), t, z ≥ s. (2.3.110)

The original FPT τy,s of Xt to the boundary L(t) is equal to the first passage time τ of
Yt to the boundary

Ly(t) := L(t)− E(Xt). (2.3.111)

Therefore we achieve at an approximate expression for the first passage density for (2.1.1)
to an upper boundary L(t) based on Lemmas 2.3.19 and 2.3.20.

Proposition 2.3.21. Suppose the following conditions are satisfied : the process Xt given by
(2.1.1)

1. The boundary L(z) is continuous for s ≤ z ≤ t, and left-differentiable at t.

2.

lim
z→t

(
∂ cov(Xz, Xt)

∂z
− ∂ cov(Xz, Xt)

∂t
) = λt ∈ (0,+∞) (2.3.112)
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An approximate expression for the first passage density to the boundary L(t) ∈ L1 is given
by

g(t|y, s) ≈p(L(t), t|y, s)
[
a(t)E(Xt) + b(t)− L′(t) + (L(t)− E(Xt))(

σ2(t)

var(Xt)
+ a(t))

]
.

(2.3.113)

Proof. First, it is noticed that g(t|y, s) = fτ (t), where fτ (t) is the first passage density of Yt
defined in (2.3.109) to an upper boundary Ly(t) defined in (2.3.109). Also d(t) = p(L(t), t|y, s).
And with (2.3.108), E(Yt) = 0, var(Yt) = var(Xt), cov(Yt, Yz) = cov(Xt, Xz), t, z ≥ s.
Therefore cov(Xt, Xz) is differentiable and with (2.3.112), the conditions in Lemma 2.3.19
are satisfied.

Second, as Yt is a continuous, mean-zero Gaussian process, fτ (t) = e(t)p(L(t), t|y, s) from
Lemma 2.3.19, with e(t) defined in (2.3.99).

Third, Lemma 2.3.20 leads to the approximate expression of e(t). Recalling (2.3.108),
(2.3.109), (2.3.110), it is derived that

∂ cov(Yz, Yt)

∂z
|z=t− = a(t) var(Yt) + σ2(t). (2.3.114)

And from (2.3.108), (2.3.111) and (2.3.104), we know

L′y(t) = L′(t)− E′(Xt) = L′(t)− (a(t)E(Xt) + b(t)). (2.3.115)

From (2.3.104),the following equation holds

e(t) ≈ −L′y(t) + Ly(t)(
σ2(t)

var(Yt)
+ a(t)). (2.3.116)

Summarize all the above, we achieve at Equation (2.3.113).

It is interesting to find the following conclusion.

Proposition 2.3.22. The Durbin’s approximation (2.3.113) is the same with the tangent
approximation (2.3.58) for the OU process.

Proof. Calculate (2.3.113) explicitly with the expressions in (2.3.108), and compare it with
the result in (2.3.58), the conclusion comes naturally.

Remarks :

1. This proposition provides the connection among different approximations of the first
passage density. In Durbin’s approximation, it ignores the probability that the process
have crossed the boundary before the current time. In tangent approximation, it ap-
proximates the first passage density based on the local approximation of the boundary
by a quasi-linear boundary. From the final result, it is interesting to see that these two
ideas are essentially the same.

2. This connection is observed for Brownian motion by Durbin in [26].

Durbin also provides another series’ expression of the first passage density g(t) for Brownian
motion based on the following integral equation in [27].
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Lemma 2.3.23. For Brownian motion Bt with the first passage boundary L(t), g(t|0, 0) can
be solved from the following equation :

g(t|0, 0) = (
L(t)

t
−L′(t))p(L(t), t|0, 0)−

∫ t

0
g(u|0, 0)

[
L(t)− L(u)

t− u
− L′(t)

]
p(L(t), t|L(u), u)du.

(2.3.117)

Proof. see [27].

Remark : In this integral equation, the first item is the tangent approximation / Durbin’s
approximation. And it is also possible to extend this result to the OU process, which leads
to the discussion of a non-singular Volterra integral equation in the next section.

2.4 Nonsingular Volterra Integral Equation of Second Kind

In the last section, we have investigated the first passage problem based on the initial-
boundary value problem for the Fokker-Planck equation. This section contributes to the
consideration of first passage problems based on integral equations in Section 2.2. And the
discussion on such an issue is divided into several steps in this section :

1. The kernel in Fortet’s equation in Section 2.2 is singular. See Section 2.4.1.

2. To avoid the singularity, we consider using the sum of Fortet’s equation and the master
equation in Section 2.2 under some conditions. See Section 2.4.2.

3. The resulted non-singular Volterra integral equation of second kind can be used for
numerical calculation. See Section 2.4.3.

4. The Volterra integral equation leads to a series’ expression of first passage density
under some conditions. The corresponding truncated approximation is presented for
the first passage distribution. See Section 2.4.4.

2.4.1 Singularity of Transition Kernel

Following results in [10], we will derive a non-singular Volterra integral equation to nu-
merically solve the first passage density based on (2.2.1).

The first thing we should notice is that lims→t p(L(t), t|L(s), s) = +∞. Actually by
L’Hôpital’s rule and using notations given in (1.3.3), we have

lim
t→s

(L(t)eα(t,s) + β(t, s))− L(s)

4γ(t, s)

= lim
t→s

(L′(t)− L(t)a(t)− b(t))eα(t,s)

4c(t)e2α(t,s)
=
L′(s)− L(s)a(s)− b(s)

4c(s)
.

(2.4.1)

Therefore, we have

lim
t→s

((L(t)eα(t,s) + β(t, s))− L(s))2

4γ(t, s)
= 0, (2.4.2)
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which contributes to

lim
s→t

p(L(t), t|L(s), s) = lim
t→s

eα(t,s)√
4πγ(t, s)

exp(−((L(t)eα(t,s) + β(t, s))− L(s))2

4γ(t, s)
)

= lim
t→s

eα(t,s)√
4πγ(t, s)

= +∞.
(2.4.3)

Moreover, the following equation holds :

px(x, t|L(s), s) =
−2(xeα(t,s) + β(t, s)− L(s))e2α(t,s)

8
√
πγ3(t, s)

exp(−((xeα(t,s) + β(t, s))− L(s))2

4γ(t, s)
).

(2.4.4)

Noticing the equation (2.4.1), we have

lim
s→t

px(L(t), t|L(s), s) = lim
t→s

−2(xeα(t,s) + β(t, s)− L(s))e2α(t,s)

8
√
πγ3(t, s)

=
L′(t)− L(t)a(t)− b(t)

4c(t)
lim
t→s

1√
πγ(t, s)

=∞.
(2.4.5)

So in the following subsection, how to avoid the singularity for lims→t p(L(t), t|L(s), s) is
analyzed to establish a non-singular kernel.

2.4.2 Avoiding the Singularity

Because the kernel p(L(t), t|L(s), s) is singular as stated in last subsection, it could be a
difficult point for numerical issues. Therefore in this subsection it is discussed how to derive a
non-singular integral equation. The idea comes from the one in [10], where a Volterra integral
equation (VIE) of second kind is derived for the FPT densities based on Lemma 2.2.1. It is
specially designed such that in some special cases the singularity of transition kernel can be
avoided, whose numerical solution therefore can be derived naturally.

The technical discussion is divided into several steps as follows :

1. The master equation (2.2.7) leads to a Volterra integral equation of second kind, see
(2.4.6).

2. By introducing a coefficient function k(t), we consider the new integral equation by the
sum of (2.4.6) and Fortet’s equation with a new kernel K(x, t|y, s) defined in (2.4.9).

3. The kernel function K(x, t|y, s) defined in (2.4.9) can be expressed explicitly in (2.4.12)
and (2.4.13).

4. Requiring lims→tK(L(t), t|L(s), s) = 0 leads a non-singular kernel K(x, t|y, s) where
k(t) is chosen by (2.4.15).

And first we introduce a new integral equation for g(t|x0, t0).

Lemma 2.4.1. Suppose L(t) ∈ C[t0,+∞), F (x, t|y, s) =
∫ x
−∞ p(z, t|y, s)dz, x0 is constrained

in (−∞, L(t0)), then the following equation holds :

g(t|x0, t0) = −2
∂F (L(t), t|x0, t0)

∂t
+ 2

∫ t

t0

g(s|x0, t0)
∂F (L(t), t|L(s), s)

∂t
ds. (2.4.6)
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Proof. Differentiate (2.2.7) with respect to t for x = L(t), then we have :

−∂F (L(t), t|x0, t0)

∂t
= g(t|x0, t0)(1−lim

s→t
F (L(t), t|L(s), s))−

∫ t

t0

g(s|x0, t0)
∂F (L(t), t|L(s), s)

∂t
ds.

(2.4.7)
Moreover, with notations in (1.3.3), we know

lim
s→t

F (L(t), t|L(s), s) = lim
s→t

Φ(
L(t)eα(t,s) + β(t, s)− L(s)√

2γ(t, s)
). (2.4.8)

Obviously, lims→t
L(t)eα(t,s)+β(t,s)−L(s)√

2γ(t,s)
= lims→t

√
γ(t, s)/2L

′(t)−a(t)L(t)−b(t)
c(t) = 0. There-

fore lims→t F (L(t), t|L(s), s) = 1
2 . Combining with (2.4.7), (2.4.6) holds.

From all the above, g(t|x0, t0) satisfies a Volterra integral equation of second kind as
follows :

Proposition 2.4.2. Suppose L(t) ∈ C[t0,+∞), k(t) ∈ C[t0,+∞), x0 is constrained in
(−∞, L(t0)), setting for all y ∈ R and t0 ≤ s < t,

K(L(t), t|y, s) =
∂F (L(t), t|y, s)

∂t
+ k(t)p(L(t), t|y, s), (2.4.9)

then g(t|x0, t0) satisfies :

g(t|x0, t0) = −2K(L(t), t|x0, t0) + 2

∫ t

t0

g(s|x0, t0)K(L(t), t|L(s), s)ds. (2.4.10)

Proof. From the definition of K(L(t), t|y, s) and Equations (2.4.6),(2.2.1), we know that

− 2K(L(t), t|x0, t0) + 2

∫ t

t0

g(s|x0, t0)K(L(t), t|L(s), s)ds

= −2
∂F (L(t), t|x0, t0)

∂t
+ 2

∫ t

t0

g(s|x0, t0)
∂F (L(t), t|L(s), s)

∂t
ds

− k(t)

[
p(L(t), t|x0, t0)−

∫ t

t0

g(s|x0, t0)p(L(t), t|L(s), s)ds

]
= g(t|x0, t0).

(2.4.11)

Therefore, (2.4.10) holds.

The above Volterra integral equation seems numerically efficient with a good ite-
rative structure. However, noticing that lims→t p(L(t), t|L(s), s) = +∞, so the kernel
K(L(t), t|L(s), s) is generally singular when s → t. To remove this singularity, we follow
the method in [10], and firstly we introduce the following lemma :

Lemma 2.4.3. Under the condition of theorem 2.4.2, for t0 < s < t, we have :

K(L(t), t|y, s) = p(L(t), t|y, s)H(t, s, y), (2.4.12)

where

H(t, s, y) = −a(t)L(t)− b(t)− c(t)eα(t,s)L(t)eα(t,s) + β(t, s)− y
2(γ(t, s))

+ k(t). (2.4.13)
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Proof. From (2.1.3), we have :

∂F (L(t), t|y, s)
∂t

=
∂
∫ z
−∞ p(x, t|y, s)dx

∂t
|z=L(t) =

∫ L(t)

−∞

∂p(x, t|y, s)
∂t

dx

=

∫ L(t)

−∞

[
−∂(a(t)x+ b(t))p(x, t|y, s)

∂x
+ c(t)

∂p(x, t|y, s)
∂x2

]
dx

= [−(a(t)x+ b(t))p(x, t|y, s) + c(t)px(x, t|y, s)]L(t)
−∞

= −(a(t)L(t) + b(t))p(L(t), t|y, s) + c(t)px(L(t), t|y, s)

=

[
−(a(t)L(t) + b(t))− c(t)eα(t,s)L(t)eα(t,s) + β(t, s)− y

2γ(t, s)

]
p(L(t), t|y, s).

(2.4.14)

From above equations, the lemma obviously holds.

From the above lemma, we have the following theorem.

Proposition 2.4.4. If K(L(t), t|L(s), s) is given as in theorem 2.4.2, and L(t) ∈ C2[t0,+∞),
then lims→tK(L(t), t|L(s), s) = 0 iff :

k(t) =
a(t)L(t) + b(t) + L′(t)

2
(2.4.15)

Moreover under the above condition,

K(L(t), t|y, s) =

[
L′(t)− a(t)L(t)− b(t)

2
− c(t)eα(t,s)L(t)eα(t,s) + β(t, s)− y

2(γ(t, s))

]
p(L(t), t|y, s).

(2.4.16)

Proof. On the one hand, if K(L(t), t|L(s), s) is given by (2.4.16), then by L’Hôpital’s rule
and (2.4.1), we know that :

lim
s→t

c(t)eα(t,s)L(t)eα(t,s) + β(t, s)− L(s)

2(γ(t, s))
=
L′(t)− a(t)L(t)− b(t)

2
. (2.4.17)

Moreover, from Lemma (2.4.3), we can deduce that :

lim
s→t

K(L(t), t|L(s), s)

= lim
s→t

[
L′(t)− a(t)L(t)− b(t)

2
− c(t)eα(t,s)L(t)eα(t,s) + β(t, s)− L(s)

2(γ(t, s))

]
p(L(t), t|L(s), s)

=
1√
4π

exp(−L
′(t)− a(t)L(t)− b(t)

2c(t)
) lim
s→t

[
L′(t)− a(t)L(t)− b(t)

2
√
r(t, s)

− c(t)eα(t,s)L(t)eα(t,s) + β(t, s)− L(s)

2(γ
3
2 (t, s))

]
(2.4.18)

From (2.4.18), lims→tK(L(t), t|L(s), s) = 0 holds.

On the other hand, it is supposed that lims→tK(L(t), t|L(s), s) = 0 holds. Noticing
that lims→t p(L(t), t|L(s), s) = +∞, therefore to promise lims→tK(L(t), t|L(s), s) = 0,

lims→tH(t, s, L(s)) must be 0. Moreover from (2.4.17), k(t) = a(t)L(t)+b(t)+L′(t)
2 holds.
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We conclude at the end by two interesting propositions.

Proposition 2.4.5. The first item of the non-singular Volterra integral equation, i.e.
−2K(L(t), t|y, s) as defined in (2.4.16), is the same with the tangent approximation (2.3.58)
for the OU process.

Proof. Calculate (2.3.58) explicitly, it is natural to find this conclusion.

Remark : The result here can be seen as a parallel consideration with the one in [27].

Proposition 2.4.6. The boundary is quasi-linear iff K(L(t), t|L(s), s) = 0, where K is
defined in (2.4.16).

Proof. On one hand, if the boundary is quasi-linear as in (2.3.21), then K(L(t), t|L(s), s) = 0
comes directly.

On the other hand, if K(L(t), t|L(s), s) = 0, we have

(L′(t)− a(t)L(t)− b(t))eα(t,s)γ(t, s)− c(t)e2α(t,s)(L(t)eα(t,s) + β(t, s)− L(s)) = 0. (2.4.19)

That is to say,
∂

∂t
(
L(t)eα(t,s) + β(t, s)− L(s)

γ(t, s)
) = 0. (2.4.20)

Therefore there exists a constant C ∈ R (which may depend on the initial time s), such that

L(t)eα(t,s) + β(t, s)− L(s)

γ(t, s)
= C. (2.4.21)

This expression coincides with the definition of quasi-linear in (2.3.21).

2.4.3 Numerical Solutions to Volterra Integral Equations

From all the above, to numerically solve (2.4.10), we here choose the non-singular kernel
K(L(t), t|y, s) as in theorem 2.4.4, then corresponding numerical schemes are analyzed in [10].
And in this thesis we don’t concern much on numerical analysis rigorously, and the scheme
to numerical integrals throughout this thesis is adopted as compound trapezoid rule.

Based on (2.4.10), the following numerical scheme is proposed Xt defined in (2.1.1) with
a constant start x0 < L(t0). Suppose the time grid for [t0, T ] is given by {ti}ni=0, it is aimed
to estimate gi = g(ti), i = 1, 2, ..., n. Here K(x, t|y, s) is given by (2.4.16).

g0 = 0, g1 = −2K(L(t1), t1|x0, t0)

gk = −2K(L(tk), tk|x0, t0)

+

k−1∑
j=0

(tj+1 − tj)(gjK(L(tk), tk|L(tj), tj) + gj+1K(L(tk), tk|L(tj+1), tj+1)), k = 1, 2, 3...

(2.4.22)

Corresponding pseudocode is given in Algorithm 1.

Although in previous analysis, we don’t distinguish between FPT and randomized FPT,
as they don’t show difference for analysis. However when numerical issues are discussed, ran-
domized FPT should be treated slightly differently due to unexplicit expression of transition
pdf.
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Algorithm 1 First passage density estimation : non-singular VIE with constant start

Require: Time grid, {ti}ni=0 for [t0, T ] ; Transition variable, G ; Failure level L(t) ;
Parameters of the process, a(t), b(t), σ(t), x0 ; Related functions, α(t, s), β(t, s), γ(t, s) ;
Transition pdf, p(x, t|y, s) ; Non-singular kernel, K(x, t|y, s) ;

Ensure: First passage density at time ti, {gi}ni=0 ;
1: g0 = 0, g1 = −2K(L(t1), t1|x0, t0) ;
2: for k = 2, k < n, k + + do
3: G = −2K(L(tk), tk|x0, t0) ;
4: for j = 1, j < k, j + + do
5: G = G+ 2gj × (tj − tj−1)×K(L(tk), tk|L(tj), tj) ;
6: end for
7: gk = G ;
8: end for
9: return {gi}ni=0 ;

Based on (2.1.5) and (2.1.7), we truncate the pdf of x0 on [lb, L(t0)]. lb can be set to enough
small to achieve required accuracy. For instance, for x0 ∼ N(µ, σ2), it would be enough to set
lb = 6σ. Then given a time grid {si}qi=0 for [lb, L(t0)], we can approximate K(x, t|x0, t0) in
(2.4.16) as

Kq(x, t|x0, t0) :=
1

2

q−1∑
i=0

(si+1 − si)(K(x, t|si+1, t0)f0(si+1) +K(x, t|si, t0)f0(si)). (2.4.23)

Remarks : More rigorous consideration should be discussed based on other tools, e.g. optimal
quantization [50].

Therefore when the time grid for [t0, T ] is given by {ti}ni=0, gi = g(ti), i = 1, 2, ..., n is
estimated still based on (2.4.16) with (2.4.23).

g0 = 0, g1 = −2Kq(L(t1), t1|x0, t0)

gk = −2Kq(L(tk), tk|x0, t0)

+

k−1∑
j=0

(tj+1 − tj)(gjK(L(tk), tk|L(tj), tj) + gj+1K(L(tk), tk|L(tj+1), tj+1)), k = 1, 2, 3...

(2.4.24)

Corresponding pseudocode is given in Algorithm 2.

2.4.4 Truncated Approximation from Series’ Expression

In this subsection, several series’ solutions will be given based on previous integral equa-
tions. And the discussion here is devoted to :

1. The master equation (2.2.7) leads to a Volterra integral equation, whose distribution
function can be solved by a series’ solution as in (2.4.29).

Moreover, following classical results for Volterra integral equation, a series solution is
given, and the proof can be divided into several steps :

1. It is shown that the first passage distribution G(t|x0, t0) satisfies a self-mapping related
to an integral operator.
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Algorithm 2 First passage density estimation : non-singular VIE with random start

Require: Time grid, {si}qi=0 for [lb, L(t0)],{ti}ni=0 for [t0, T ] ; Transition variables, E,G ;
Parameters of the process, a(t), b(t), σ(t), f0(t) ; Related functions, α(t, s), β(t, s), γ(t, s) ;
Transition pdf, p(x, t|y, s) ; Non-singular kernel, K(x, t|y, s) ; Failure level L(t) ;

Ensure: First passage density at time ti, {gi}ni=0 ;
1: g0 = 0, E = 0 ;
2: for i = 0, i < q, i+ + do
3: E = E + (si+1 − si)(K(Lt1 , t1|si+1, t0)f0(si+1) +K(L(t1), t1|si, t0)f0(si)) ;
4: end for
5: g1 = −E ;
6: for k = 2, k < n, k + + do
7: E = 0 ;
8: for i = 0, i < q, i+ + do
9: E = E + (si+1 − si)(K(L(tk), tk|si+1, t0)f0(si+1) +K(L(tk), tk|si, t0)f0(si)) ;

10: end for
11: G = −E ;
12: for j = 1, j < k, j + + do
13: G = G+ 2gj × (tj − tj−1)×K(L(tk), tk|L(tj), tj) ;
14: end for
15: gk = G ;
16: end for
17: return {gi}ni=0 ;

2. Under the condition given by (2.4.27) and (2.4.28), the mapping is proved to be a
contraction.

3. By the fixed-point theorem, the solution for G(t|x0, t0) can be expressed by a series’
form which is given in (2.4.29). This could be a way to give an approximate solution
based on the truncated form, which is discussed also in [27].

4. To keep the simplicity of calculation and also high accuracy, we combine the one-term
truncation with the previously derived tangent approximation in Proposition 2.3.9.

Derivation

Denote the first passage distribution function as G(t|y, s) = P (τy,s ≤ t), it leads to the
following Voterra integral equation of second kind.

Lemma 2.4.7. Suppose L(t) ∈ C[t0,+∞), F (x, t|y, s) =
∫ x
−∞ p(z, t|y, s)dz, f0(x) is defined

in (−∞, L(t0)), then the following equation holds :

G(t|x0, t0) = 2(1− F (L(t), t|x0, t0))− 2

∫ t

t0

G(s|x0, t0)
dF (L(t), t|L(s), s)

ds
ds. (2.4.25)

Proof. By partial integral, for (2.2.7) with x = L(t), it can be expressed by :

1−F (L(t), t|x0, t0) = G(t|x0, t0)(1−lim
s→t

F (L(t), t|L(s), s))+

∫ t

t0

G(s|x0, t0)
dF (L(t), t|L(s), s)

ds
ds.

(2.4.26)

Moreover, as lims→t F (L(t), t|L(s), s) = 1
2 , (2.4.25) comes naturally from (2.4.26).
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Proposition 2.4.8. For the OU process Xt with first passage boundary L(t) ∈ C1[t0,+∞),
L(t0) > x0 satisfying for any s ∈ [t0, t], a constant κ ∈ R,

L(t)eα(t,t0) − L(t0) + β(t, t0) < κ
√

2γ(t, t0). (2.4.27)

and also
dF̄ (L(t), t|L(s), s)

ds
≥ 0, (2.4.28)

where F̄ (x, t|y, s) = 1− F (x, t|y, s).
Let G(t|x0, t0) denote the distribution function of the FPT τ := inft>0{Xt ≥ L(t)|x0, t0}.

Then we have

G(t|x0, t0) = h(t) +

∞∑
n=1

(

∫ t

t0

Kn(t, s)h(s)ds) (2.4.29)

where the series converges uniformly over all t ≥ t0 and

h(t) = 2F̄ (L(t), t|x0, t0),

K1(t, s) = 2
dF̄ (L(t), t|L(s), s)

ds
, (2.4.30)

Kn+1(t, s) =

∫ t

s
K1(t, r)Kn(r, s)dr,

for 0 ≤ s < t and n ≥ 1.

Proof. The proof is given by using fixed point theorem [57].

First, from Equation (2.4.25), by notations in (2.4.30), it comes to

G(t|x0, t0) = h(t) +

∫ t

t0

G(s|x0, t0)K1(t, s)ds (2.4.31)

Define a mapping T on B(R+) by setting

(T (G))(t) = h(t) +

∫ t

t0

G(s)K1(t, s)ds (2.4.32)

for G ∈ B(R+). Here B(∗) is Banach space. Then Equation (2.4.31) turns to

T (G(t|x0, t0)) = G(t|x0, t0), (2.4.33)

Therefore it remains to solve (2.4.33) in B(R+). To verify the fixed-point theorem, it needs
to show T is a contraction from B(R+) to B(R+) under the sup norm ‖h‖∞ := supt≥t0 |h(t)|.

Second, we have

‖T (G1)− T (G2)‖∞ = sup
t≥t0
|T (G1 −G2)(t)|

= sup
t≥t0
|
∫ t

t0

(G1(s)−G2(s))K1(t, s)ds|

≤ sup
t≥t0

(

∫ t

t0

|K1(t, s)|ds) ‖G1 −G2‖∞ (2.4.34)
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So from (2.4.27),

sup
t≥t0

(

∫ t

t0

|K1(t, s)|ds) ≤ 2

∫ t

t0

dF̄ (L(t), t|L(s), s)

ds
ds

= sup
t≥t0

2(
1

2
− F̄ (L(t), t|L(t0), t0))

= sup
t≥t0

2(Φ(
L(t)eα(t,t0) + β(t, t0)− L(t0)√

2γ(t, t0)
)− 1

2
) ≤ 2(Φ(κ)− 1

2
) < 1

(2.4.35)

So summarize all the above, T is a contraction from the Banach space B(R+) to itself, and
by the fixed-point theorem there exists a unique solution g(t) in B(R+) satisfying (2.4.32)
which is the desired first passage density g(t|x0, t0).

Third, the series solution in (2.4.29) can be derived directly from (2.4.32) and the well
known formula for the resolvent of the integral operator K = T − h with the kernel K1 :

(I −K)−1 =

∞∑
n=0

Kn. (2.4.36)

This completes the proof.

Truncated Approximation

This series’ solution leads directly to the approximation of first passage distribution. For
example, truncated at the first item, it returns

G(t|x0, t0) ≈ 2F̄ (L(t), t|x0, t0) + 4

∫ t

t0

F̄ (L(s), s|x0, t0)dF̄ (L(t), t|L(s), s). (2.4.37)

This one-term truncated approximation can hardly return an accurate result, and it would be
very difficult to calculate the truncation with many items. As this involves multi-integral, the
calculation based on discretized schemes could introduce new errors which increase rapidly as
the truncation is with more items. Therefore to promise the accuracy, the calculation increase
rapidly to compensate the errors.

Noticing the operator T (G) in (2.4.32) is a contraction, therefore if the starting point is
near the real solution, even the one-term truncation approximation can also return an accurate
result. Therefore our natural idea comes to use a previously derived tangent approximation
in Proposition 2.3.9 as the starting point :

H(t) := Φ(
−L̃(t0)− C̃(t, t0)γ(t, t0) + x0√

2γ(t, t0)
) + eC̃(t,t0)(x0−L(t0))Φ(

C̃(t, t0)γ(t, t0)− L̃(t0) + x0√
2γ(t, t0)

).

(2.4.38)

Then the first passage distribution is approximated by

G(t|x0, t0) ≈ 2F̄ (L(t), t|x0, t0) + 2

∫ t

t0

H(s)dF̄ (L(t), t|L(s), s). (2.4.39)

To calculate the value of G(t|x0, t0), the iterative steps can be applied like the procedures
in Algorithm 1 for the non-singular VIE. For a mesh {ti}Ni=0,
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Table 2.1 – Boundary requirements of different methods

Method piecewise continuity continuity differentiablity

Simple MC not required not required not required
Piecewise MC required not required not required

Non-singular VIE required required required
Tangent approximations required required required

Linear programming required required not required
Truncated approximation required required required

1. G(t0|x0, t0) = 0;

2. Using the right-point rectangle scheme,

G(ti|x0, t0) ≈ 2F̄ (L(ti), ti|x0, t0)+2
i∑

j=1

H(tj)(F̄ (L(ti), ti|L(tj), tj)−F̄ (L(ti), ti|L(tj−1), tj−1)).

(2.4.40)

Remark :The approximation (2.4.39) is not easy to be calculated, as an integral is invol-
ved which needs discretization in the calculation. But we should notice even the calculation
is tedious, it is still an explicit expression with only the information on the boundary L(t).
Therefore it could be expected as an approximation when the boundary L(t) is pending,
such as in the case of maintenance optimization which will be discussed in Chapter 4. Such
an approximation is expected to compensate the accuracy of purely tangent approximation
when the tangent approximation doesn’t perform well.

2.5 Simulation Tests

In previous sections, we have investigated the first passage problems from different angles
with corresponding solving methods, and in general they can be divided into 3 categories :
Monte-Carlo methods, numerical algorithms and analytical approximation. These methods
can be distinguished in a theoretical view based on the classification of considering bounda-
ries :

1. Differentiable boundary. All methods proposed in this chapter are utilizable for those
differentiable boundaries.

2. Continuous boundary. When the global differentiability of the boundary cannot be
promised, those methods involving the derivative cannot be used directly.

3. Piecewise continuous boundary. When the boundary is only piecewise continuous,
only Monte-Carlo simulation methods are utilizable, or other methods need tedious
transformations.

These facts are obvious from those hypotheses used for the derivation of different methods,
which are summarized in Table 2.1 2.

2. Here simple MC and piecewise quasi-linear MC are presented in Section 2.3.6. Non-singular VIE is
given in Section 2.4.3. Tangent approximations are given in Section 2.3.3, including Durbin’s approximation
in Section 2.3.7. Linear programming is given in Section 2.3.5. Truncated approximation is given in Section
2.4.4.
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However, even theoretically distinguishing proposed methods could be interesting, the
following simulation tests are still essential to consider the calculation correctness, accuracy
and also efficiency.

Therefore the simulation tests in this section will be organized based on this consideration,
and the discussion is divided specifically into the following points :

1. The accuracy and efficiency of different methods are compared in the case of a drifted
Brownian motion.

2. The accuracy and efficiency of different methods are compared in the case of a time-
changed Brownian motion.

3. Different methods are tested for a general OU process, where results are compared
based on the one calculated from the Volterra integral equation method.

4. Some cases are presented where the proposed methods have bad performance.

The simulation tests are all done in a laptop with a computing core i7-3520M, 12G
memory, where the software environment is the R software with the operating system of
Windows 7.

2.5.1 Drifted Brownian Motion

In this subsection, proposed methods are tested for the drifted Brownian motion, and it
concerns the following points :

1. The influence of step sizes for the non-singular VIE and the truncated approximation
is discussed from the view of accuracy and efficiency.

2. The influence of number of produced trajectories and time step-sizes for Monte-Carlo
simulation methods is discussed from the view of accuracy and efficiency.

3. The influence of chosen point-measures and also fitting times for the linear program-
ming approach is discussed from the view of accuracy and efficiency.

Experimental Setup

The first passage problems can hardly be derived analytically except for some special
cases, so to verify previously stated methods, we first consider to compare different methods
with the analytical solutions of the first passage problem for the drifted Brownian motion
Xt = µt + σdBt, µ, σ ∈ R. The drifted Brownian motion is also a well-known model to
describe degradation processes with fluctuations, and it can be found in many applications in
PHM [66] and maintenance [44]. It is also a special case of the OU process dXt = (a(t)Xt +
b(t))dt+ σ(t)dBt, with corresponding coefficients to be a(t) = 0, b(t) = µ, σ(t) = σ.

Suppose Xt = t+Bt is considered with the failure level as L = 10. In such a case, the first
passage density satisfies the inverse Gaussian distribution in Corollary 2.3.6, which is given
explicitly by :

g(t) =
L exp(−(t− L)2/(2t))√

2πt3
. (2.5.1)

Corresponding first passage distribution is given by

G(t) = Φ(
−L+ t√

t
) + e2LΦ(

−t− L√
t

) (2.5.2)



74 PROGNOSIS OF SYSTEMS FAILURES VIA FIRST PASSAGE PROBLEMS

The pdf and cdf functions are shown in Figure 2.4(a) and Figure 2.4(b) respectively.

Moreover, as for the drifted Brownian motion, it is noticed that in this setup, the tangent
approximations / Durbin’s approximation degenerate to the exact result, such that these
two trivial issues will be ignored in the following simulation tests. So we will mainly discuss
numerical solutions to integral equations, Monte-Carlo simulation methods and the linear
programming approach.

Integral Equation Methods

Supposing the step-size ∆t > 0 is chosen and assuming t0 = 0, denote tn = n∆t for
n = 0, 1, 2, ..., then we can fulfill the numerical algorithm based on the non-singular Volterra
integral equation in Section 2.4.3 and also the truncated approximation in Section 2.4.4.
Here we want to investigate the influence of time step-size ∆t for these two methods, on the
estimation accuracy and the calculation time.

Moreover as only the first passage density {gi}Ni=0 is given based on the VIE method, it
is of interest to produce further corresponding cdf {Gi}Ni=0 from the iterative steps based on
the right-point formula :

1. G0 = 0,

2. Gi+1 = Gi + ∆tgi+1, i = 0, 1, ..., N − 1.

The calculation time of the methods with three different step-size 0.05, 0.02, 0.01, which
are given in Table 2.2. Corresponding errors of estimated first passage distribution are shown
in 2.5.

Summarize the results, we can conclude

1. The non-singular VIE and truncated approximation have the same level of calculation
time and also accuracy with the same step-size.

2. When the step-size is smaller, the estimate is more accurate.

3. The time is given based on the calculation on all the time mesh points.

(a) Inverse Gaussian : pdf (b) Inverse Gaussian : cdf

Figure 2.4 – The pdf and cdf of the first passage time of Xt = t+Bt with L = 10.
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(a) Errors of the VIE method on cdf,
step-size ∆t = 0.01, maximal deviation
≈ 7e− 04.

(b) Errors of the truncated approxima-
tion on cdf, step-size ∆t = 0.02, maxi-
mal deviation ≈ −6e− 04.

(c) Errors of the VIE method on cdf,
step-size ∆t = 0.02, maximal deviation
≈ 0.00014.

(d) Errors of the truncated approxima-
tion on cdf, step-size ∆t = 0.02, maxi-
mal deviation ≈ 0.00012.

(e) Errors of the VIE method on cdf,
step-size ∆t = 0.05, maximal deviation
≈ 0.00035.

(f) Errors of the truncated approxima-
tion on cdf, step-size ∆t = 0.05, maxi-
mal deviation ≈ 0.00030.

Figure 2.5 – Errors of different methods compared with the real first passage density for the
drifted Motion Xt = t+Bt.
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Table 2.2 – Calculation time of different methods with different time step-sizes

Method ∆t = 0.05 ∆t = 0.02 ∆t = 0.01

Non-singular VIE 12.97374 secs 36.13607 secs 6.167119 mins
Truncated approximation 31.25279 secs 2.337634 mins 7.941354 mins

Exact solution 3 0.7410431 secs 0.980056 secs 1.020058 secs

Table 2.3 – Calculation time of Monte-Carlo methods in different situations

Method ∆t = 0.05 ∆t = 0.02 ∆t = 0.01

Simple MC (200 trajectories) 4.971285 secs 3.578205 secs 7.245414 secs
Piecewise MC (200 trajectories) 9.364536 secs 15.34588 secs 26.2165 secs
Simple MC (2000 trajectories) 14.55883 secs 22.48129 secs 38.01617 secs

Piecewise MC (2000 trajectories) 32.24885 secs 1.184968 mins 1.927094 mins
Simple MC (20000 trajectories) 1.34541 mins 4.31843 mins 7.133408 mins

Piecewise MC (20000 trajectories) 3.90794 mins 8.581241 mins 16.3463 mins

Monte-Carlo Simulation Methods

Supposing the step-size ∆t > 0 is chosen and assuming t0 = 0, denote tn = n∆t for
n = 0, 1, 2, ..., Xn = Xtn and X0 = x0. Constrained in the consideration of the drifted
Brownian motion t+Bt, the Euler-Maruyama scheme for Monte-Carlo simulation is updated
to

Xn+1 = Xn + ∆t+ ∆Bt, (2.5.3)

where ∆Bt ∼ N (0,∆t).

Here the calculation time of the methods with three different step-size 0.05, 0.02, 0.01 and
also with three different numbers of trajectories 200, 2000, 20000, which are given in Table
2.3 4. Corresponding errors are shown respectively in Figure 2.6, 2.7 and 2.8.

Summarize the results, it is concluded that

1. The accuracy is improved by producing more trajectories with the same step-size for
Monte-Carlo simulation methods.

2. When the step-size is smaller, the estimate is more accurate.

3. The piecewise quasi-linear MC method is more accurate than the simple MC method,
with the same number of trajectories and the same step-size. But it also costs more
time to do extra calculation, however in general the piecewise quasi-linear MC method
costs the same level of time with the simple MC method.

4. When enough trajectories are produced (20000 trajetories), the Monte-Carlo simula-
tion methods is still less accurate than the integral equation methods with the same
step-size.

4. Here the calculation time and errors are given based on trajectories produced in one test, and it may
vary due to different simulation tests. This influence would be slight when enough trajectories are produced
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(a) Errors of simple MC, 20000 trajec-
tories, , maximal deviation ≈ 0.012

(b) Errors of piecewise MC, 20000 tra-
jectories, maximal deviation ≈ 0.003

(c) Errors of simple MC, 2000 trajec-
tories, maximal deviation ≈ 0.02

(d) Errors of piecewise MC, 2000 tra-
jectories, maximal deviation ≈ 0.01

(e) Errors of simple MC, 200 trajecto-
ries, maximal deviation ≈ 0.06

(f) Errors of piecewise MC, 200 trajec-
tories, maximal deviation ≈ 0.06

Figure 2.6 – Errors of Monte-Carlo simulation methods on cdf for the drifted Motion Xt =
t+Bt, step-size ∆t = 0.01
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(a) Errors of simple MC, 20000 trajec-
tories, maximal deviation ≈ 0.015

(b) Errors of piecewise MC, 20000 tra-
jectories, maximal deviation ≈ 0.004

(c) Errors of simple MC, 2000 trajec-
tories, maximal deviation ≈ 0.015

(d) Errors of piecewise MC, 2000 tra-
jectories, maximal deviation ≈ 0.005

(e) Errors of simple MC, 200 trajecto-
ries, maximal deviation ≈ 0.07

(f) Errors of piecewise MC, 200 trajec-
tories, maximal deviation ≈ 0.06

Figure 2.7 – Errors of Monte-Carlo simulation methods on cdf for the drifted Motion Xt =
t+Bt, step-size ∆t = 0.02
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(a) Errors of simple MC, 20000 trajec-
tories, maximal deviation ≈ 0.02

(b) Errors of piecewise MC, 20000 tra-
jectories, maximal deviation ≈ 0.005

(c) Errors of simple MC, 2000 trajec-
tories, maximal deviation ≈ 0.02

(d) Errors of piecewise MC, 2000 tra-
jectories, maximal deviation ≈ 0.015

(e) Errors of simple MC, 200 trajecto-
ries, maximal deviation ≈ 0.08

(f) Errors of piecewise MC, 200 trajec-
tories, maximal deviation ≈ 0.02

Figure 2.8 – Errors of Monte-Carlo simulation methods on cdf for the drifted Motion Xt =
t+Bt, step-size ∆t = 0.05
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Linear Programming Approach

Recall the method of linear programming proposed in Section 2.3.5. An approximation
for the first passage density is proposed based on

p(L(t), t|y, s)−
N∑
i=1

ξip(L(t), t|L(s) + ri, s) ≈ 0, (2.5.4)

for some selected points {ri}ni=1 to estimate {ξi}ni=1 in (2.3.67). In such a case, the first passage
density is given in (2.3.63), and corresponding first passage distribution is given in (2.3.64).
Later the estimation of {ξi}ni=1 is to promise (2.5.4) at several times {ti} such that the error
can be minimized on these times.

From previous statements, numerical algorithms involve the choice of time step-sizes,
Monte-Carlo simulation methods involve not only the time step-size, but also those produced
trajectories. However things are totally different when it comes to the linear programming ap-
proach. Actually, from the derivation of the method, it is found that this method is influenced
more by the choice of point measures and the fitting times.

Therefore the time mesh is chosen as ti = i∆t, i ∈ N in the interval [0, 25], with ∆t = 0.05,
the following issues are concerned here

1. The different performance when the linear programming approach is solved for those
times in a smaller interval.

2. The different performance when the point measures vary.

The calculation times of the linear programming approach in different situations are given
in Table 2.4. The objective values of the linear programming approach in different situations
are given in Table 2.5. Corresponding errors of estimated first passage distribution are shown
in Figure 2.9.

Summarize the results for linear programming, it is concluded that

1. The accuracy is improved if the points ri are properly selected. Especially in this case,
the exact result is in the parametric form as adopted in linear programming. Therefore
when a point is chosen as the boundary, the fitting result is just the exact result. And
in general cases, it is suggested to choose the points around the mean first passage
time.

2. The fitting times influence the estimate a lot, and it is suggested to consider to fit the
linear programming around the mean first passage time.

Based on all the above results, among the three methods

1. The integral equation methods show a good approximation accuracy.

2. The piecewise Monte-Carlo method is superior than the simple Monte-Carlo method.
With few trajectories, the piecewise Monte-Carlo method shows also a good accuracy.
However with the same time step-size, it can hardly reach the same accuracy of the
integral equation methods.

3. The linear programming approach depends a lot on the preliminary guess on the fitting
times and chosen points. But this approximation is analytical. Moreover, if the real
first passage density is of the parametric form, it is possible to derive an exact result
from the linear programming approach.
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(a) Errors of the linear program-
ming approach on cdf, fitting times
between 5 and 15, chosen points
0.5+3i,i=0,...,8.

(b) Errors of the truncated ap-
proximation on cdf, fitting times
between 0 and 10, chosen points
0.5+3i,i=0,...,8.

(c) Errors of the linear program-
ming approach on cdf, fitting times
between 10 and 25, chosen points
0.5+3i,i=0,...,8.

(d) Errors of the linear program-
ming approach on cdf, fitting times
between 5 and 15, chosen points
0.5+i,i=0,...,8.

(e) Errors of the truncated ap-
proximation on cdf, fitting times
between 0 and 10, chosen points
0.5+i,i=0,...,8.

(f) Errors of the linear program-
ming approach on cdf, fitting times
between 10 and 25, chosen points
0.5+i,i=0,...,8.

(g) Errors of the linear program-
ming approach on cdf, fitting times
between 5 and 15, chosen points
10+i,i=0,...,8.

(h) Errors of the truncated ap-
proximation on cdf, fitting times
between 0 and 10, chosen points
10+i,i=0,...,8.

(i) Errors of the linear program-
ming approach on cdf, fitting times
between 10 and 25, chosen points
10+i,i=0,...,8.

Figure 2.9 – Errors of the first passage distribution of linear programming approach for the
drifted Motion Xt = t+Bt.
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Table 2.4 – Calculation time of different situations for the linear programming approach

fitting times in [5, 15] fitting times in (0, 10] fitting times in [10, 25]

ri = 0.5 + 3i, i = 0, ..., 8 4.395251 secs 2.908166 secs 4.329247 secs
ri = 0.5 + i, i = 0, ..., 8 4.105235 secs 4.490256 secs 4.495257 secs
ri = 10 + i, i = 0, ..., 8 4.071233 secs 4.478257 secs 4.532259 secs

Table 2.5 – Objective values of different situations for the linear programming approach

fitting times in [5, 15] fitting times in (0, 10] fitting times in [10, 25]

ri = 0.5 + 3i, i = 0, ..., 8 3.317761 4.252861 0.6275354
ri = 0.5 + i, i = 0, ..., 8 12.35105 8.728594 2.773304
ri = 10 + i, i = 0, ..., 8 0 0 0

2.5.2 Time-changed Brownian Motion

As introduced in (2.3.39), a time-changed Brownian motion is introduced to model non-
linear tendency of the degradation process. Especially its first passage density is explicit,
and therefore it could be interesting as it can simplify corresponding analysis in reliability
analysis. And here we will consider one time-changed Brownian motion Xt as follows :

dXt = 0.5tdt+
√
tdBt, X0 = 0, t ≥ 0. (2.5.5)

Its transition pdf p(x, t|y, s) when t > s is given by

p(x, t|y, s) =
1√

π(t2 − s2)
exp(−(x− y − (t2 − s2)/4)2

(t2 − s2)
), (2.5.6)

such that the transition distribution is given by

F (x, t|y, s) = Φ(
x− y − (t2 − s2)/4√

(t2 − s2)/2
). (2.5.7)

And given the failure level L = 10, corresponding first passage density is given by

g(t|0, 0) =
2L

t
p(L, t|0, 0). (2.5.8)

Correspondingly, the first passage distribution is given by

G(t|0, 0) = Φ(
−L+ t2/4√

t2/2
) + e−(y−L(s))Φ(

−t2/4− L√
t2/2

), (2.5.9)

where Φ(∗) is the normal distribution function. The pdf and cdf of the first passage time are
shown in Figure 2.10(a) and Figure 2.10(b) respectively.

Moreover, it is noticed that in this setup, the tangent approximations / Durbin’s approxi-
mation degenerate to the exact result, such that these two trivial issues will be ignored in
the following simulation tests. And we will mainly discuss numerical solutions to integral
equations, Monte-Carlo simulation methods and the linear programming approach.
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Table 2.6 – Calculation time of different methods with different time step-sizes

Method ∆t = 0.05 ∆t = 0.02 ∆t = 0.01

Non-singular VIE 11.08863 secs 1.019258 mins 3.333924 mins
Truncated approximation 21.21021 secs 3.023623 mins 10.12706 mins

Exact solution 5 0.9240532 secs 1.003058 secs 1.183067 secs

Integral Equation Methods

Supposing the step-size ∆t > 0 is chosen and assuming t0 = 0, denote tn = n∆t for
n = 0, 1, 2, ..., then we can fulfill the numerical algorithm based on the non-singular Volterra
integral equation in Section 2.4.3 and also the truncated approximation in Section 2.4.4.
Here we want to investigate the influence of time step-size ∆t for these two methods, on the
estimation accuracy and the calculation time.

Moreover as only the first passage density {gi}Ni=0 is given based on the VIE method, it
is of interest to produce further corresponding cdf {Gi}Ni=0 from the iterative steps based on
the right-point formula :

1. G0 = 0,

2. Gi+1 = Gi + ∆tgi+1, i = 0, 1, ..., N − 1.

The calculation time of the methods with three different step-size 0.05, 0.02, 0.01, which
are given in Table 2.6. Corresponding errors of estimated first passage distribution are shown
in Figure 2.11.

Summarize the results, we can conclude

1. The non-singular VIE and truncated approximation have the same level of calculation
time and also accuracy with the same step-size.

2. When the step-size is smaller, the estimate is more accurate.

5. The time is given based on the calculation on all the time mesh points.

(a) The first passage density of time-changed
Brownian motion

(b) The first passage density of time-changed
Brownian motion

Figure 2.10 – The pdf and cdf of the first passage time of dXt = 0.5tdt+
√
tBt with L = 10.
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(a) Errors of the VIE method on cdf,
step-size ∆t = 0.01, maximal deviation
≈ 0.0015.

(b) Errors of the truncated approxima-
tion on cdf, step-size ∆t = 0.01, maxi-
mal deviation ≈ −0.0012.

(c) Errors of the VIE method on cdf,
step-size ∆t = 0.02, maximal deviation
≈ 0.003.

(d) Errors of the truncated approxima-
tion on cdf, step-size ∆t = 0.02, maxi-
mal deviation ≈ −0.0025.

(e) Errors of the VIE method on cdf,
step-size ∆t = 0.05, maximal deviation
≈ 0.008.

(f) Errors of the truncated approxima-
tion on cdf, step-size ∆t = 0.05, maxi-
mal deviation ≈ −0.008.

Figure 2.11 – Errors of different methods compared with the real first passage density for
the time-changed Brownian motion dXt = 0.5tdt+

√
tdBt
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Table 2.7 – Calculation time of Monte-Carlo methods in different situations

Method ∆t = 0.05 ∆t = 0.02 ∆t = 0.01

Simple MC (200 trajectories) 6.569376 secs 6.297361 secs 9.576548 secs
Piecewise MC (200 trajectories) 8.770501 secs 11.30465 secs 18.15304 secs
Simple MC (2000 trajectories) 4.816276 secs 28.84765 secs 31.10478 secs

Piecewise MC (2000 trajectories) 31.75282 secs 47.44571 secs 1.501519 mins
Simple MC (20000 trajectories) 1.584791 mins 2.68857 mins 5.702576 mins

Piecewise MC (20000 trajectories) 2.172774 mins 8.341027 mins 14.55055 mins

Monte-Carlo Simulation Methods

Supposing the step-size ∆t > 0 is chosen and assuming t0 = 0, denote tn = n∆t for
n = 0, 1, 2, ..., Xn = Xtn and X0 = x0. Constrained in the consideration of the time-changed
Brownian motion dXt = 0.5tdt+

√
tdBt, the Euler-Maruyama scheme for Monte-Carlo simu-

lation is updated to

Xn+1 = Xn + 0.5tn∆t+
√
tn∆Bt, (2.5.10)

where ∆Bt ∼ N (0,∆t).

Here the calculation time of the methods with three different step-size 0.05, 0.02, 0.01 and
also with three different numbers of trajectories 200, 2000, 20000, which are given in Table
2.7 6. Corresponding errors are shown respectively in Figures 2.12, 2.13 and 2.14.

Summarize the results, it is concluded that

1. The accuracy is improved by producing more trajectories with the same step-size for
Monte-Carlo simulation methods.

2. When the step-size is smaller, the estimate is more accurate.

3. The piecewise quasi-linear MC method is more accurate than the simple MC method,
with the same number of trajectories and the same step-size. But it also costs more
time to do extra calculation, however in general the piecewise quasi-linear MC method
costs the same level of time with the simple MC method.

4. When enough trajectories are produced (20000 trajetories), the Monte-Carlo simula-
tion methods is still less accurate than the integral equation methods with the same
step-size.

Linear Programming Approach

Recall the method of linear programming proposed in Section 2.3.5. An approximation
for the first passage density is proposed based on

p(L(t), t|y, s)−
N∑
i=1

ξip(L(t), t|L(s) + ri, s) ≈ 0, (2.5.11)

for some selected points {ri}ni=1 to estimate {ξi}ni=1 in (2.3.67). In such a case, the first passage
density is given in (2.3.63), and corresponding first passage distribution is given in (2.3.64).

6. Here the calculation time and errors are given based on trajectories produced in one test, and it may
vary due to different simulation tests. This influence would be slight when enough trajectories are produced



86 PROGNOSIS OF SYSTEMS FAILURES VIA FIRST PASSAGE PROBLEMS

(a) Errors of simple MC, 20000 trajec-
tories, maximal deviation ≈ −0.025

(b) Errors of piecewise MC, 20000 tra-
jectories, maximal deviation ≈ 0.005

(c) Errors of simple MC, 2000 trajec-
tories, maximal deviation ≈ 0.04

(d) Errors of piecewise MC, 2000 tra-
jectories, maximal deviation ≈ 0.015

(e) Errors of simple MC, 200 trajecto-
ries, maximal deviation ≈ −0.06

(f) Errors of piecewise MC, 200 trajec-
tories, maximal deviation ≈ −0.08

Figure 2.12 – Errors of Monte-Carlo simulation methods on cdf for the time-changed Brow-
nian motion dXt = 0.5tdt+

√
tdBt, step-size ∆t = 0.01



2.5. SIMULATION TESTS 87

(a) Errors of simple MC, 20000 trajec-
tories, maximal deviation ≈ −0.02.

(b) Errors of piecewise MC, 20000 tra-
jectories, maximal deviation ≈ −0.004.

(c) Errors of simple MC, 2000 trajec-
tories, maximal deviation ≈ −0.04.

(d) Errors of piecewise MC, 2000 tra-
jectories, maximal deviation ≈ 0.01.

(e) Errors of simple MC, 200 trajecto-
ries, maximal deviation ≈ 0.04.

(f) Errors of piecewise MC, 200 trajec-
tories, maximal deviation ≈ −0.04.

Figure 2.13 – Errors of Monte-Carlo simulation methods on cdf for the time-changed Brow-
nian motion dXt = 0.5tdt+

√
tdBt, step-size ∆t = 0.02
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(a) Errors of simple MC, 20000 trajec-
tories, maximal deviation ≈ −0.04.

(b) Errors of piecewise MC, 20000 tra-
jectories, maximal deviation ≈ −0.008.

(c) Errors of simple MC, 2000 trajec-
tories, maximal deviation ≈ −0.04.

(d) Errors of piecewise MC, 2000 tra-
jectories, maximal deviation ≈ −0.025.

(e) Errors of simple MC, 200 trajecto-
ries, maximal deviation ≈ −0.06.

(f) Errors of piecewise MC, 200 trajec-
tories, maximal deviation ≈ −0.04.

Figure 2.14 – Errors of Monte-Carlo simulation methods on cdf for the time-changed Brow-
nian motion dXt = 0.5tdt+

√
tdBt, step-size ∆t = 0.05
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Table 2.8 – Calculation time of different situations for the linear programming approach

fitting times in [5, 15] fitting times in (0, 10] fitting times in [10, 25]

ri = 0.5 + 3i, i = 0, ..., 8 3.372193 secs 2.949169 secs 2.948169 secs
ri = 0.5 + i, i = 0, ..., 8 4.645266 secs 4.527259 secs 3.852221 secs
ri = 10 + i, i = 0, ..., 8 4.356249 secs 3.893223 secs 3.67221 secs

Later the estimation of {ξi}ni=1 is to promise (2.5.11) at several times {ti} such that the error
can be minimized on these times.

From previous statements, numerical algorithms involve the choice of time step-sizes,
Monte-Carlo simulation methods involve not only the time step-size, but also those produced
trajectories. However things are totally different when it comes to the linear programming ap-
proach. Actually, from the derivation of the method, it is found that this method is influenced
more by the choice of point measures and the fitting times.

Therefore the time mesh is chosen as ti = i∆t, i ∈ N in the interval [0, 25], with ∆t = 0.05,
the following issues are concerned here

1. The different performance when the linear programming approach is solved for those
times in a smaller interval.

2. The different performance when the point measures vary.

The calculation times of the linear programming approach in different situations are given
in Table 2.8. The objective values of the linear programming approach in different situations
are given in Table 2.9. Corresponding errors of estimated first passage distribution are shown
in Figure 2.15.

Summarize the results for linear programming, it is concluded that

1. The accuracy is improved if the points ri are properly selected. Especially in this case,
the exact result is in the parametric form as adopted in linear programming. Therefore
when a point is chosen as the boundary, the fitting result is just the exact result. And
in general cases, it is suggested to choose the points around the mean first passage
time.

2. The fitting times influence the estimate a lot, and it is suggested to consider to fit the
linear programming around the mean first passage time.

Based on all the above results, among the three methods

1. The integral equation methods show a good approximation accuracy.

2. The piecewise Monte-Carlo method is superior than the simple Monte-Carlo method.
With few trajectories, the piecewise Monte-Carlo method shows also a good accuracy.
However with the same time step-size, it can hardly reach the same accuracy of the
integral equation methods.

3. The linear programming approach depends a lot on the preliminary guess on the fitting
times and chosen points. But this approximation is analytical. Moreover, if the real
first passage density is of the parametric form, it is possible to derive an exact result
from the linear programming approach.
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(a) Errors of the linear program-
ming approach on cdf, fitting times
between 5 and 15, chosen points
0.5+3i,i=0,...,8.

(b) Errors of the truncated ap-
proximation on cdf, fitting times
between 0 and 10, chosen points
0.5+3i,i=0,...,8.

(c) Errors of the linear program-
ming approach on cdf, fitting times
between 10 and 25, chosen points
0.5+3i,i=0,...,8.

(d) Errors of the linear program-
ming approach on cdf, fitting times
between 5 and 15, chosen points
0.5+i,i=0,...,8.

(e) Errors of the truncated ap-
proximation on cdf, fitting times
between 0 and 10, chosen points
0.5+i,i=0,...,8.

(f) Errors of the linear program-
ming approach on cdf, fitting times
between 10 and 25, chosen points
0.5+i,i=0,...,8.

(g) Errors of the linear program-
ming approach on cdf, fitting times
between 5 and 15, chosen points
10+i,i=0,...,8.

(h) Errors of the truncated ap-
proximation on cdf, fitting times
between 0 and 10, chosen points
10+i,i=0,...,8.

(i) Errors of the linear program-
ming approach on cdf, fitting times
between 10 and 25, chosen points
10+i,i=0,...,8.

Figure 2.15 – Errors of the first passage distribution of linear programming approach for
the tim-changed Brownian motion dXt = 0.5tdt+

√
tdBt.
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Table 2.9 – Objective values of different situations for the linear programming approach

fitting times in [5, 15] fitting times in (0, 10] fitting times in [10, 25]

ri = 0.5 + 3i, i = 0, ..., 8 0.3249917 2.841034 7.309698e-05
ri = 0.5 + i, i = 0, ..., 8 1.857895 6.08458 0.003083371
ri = 10 + i, i = 0, ..., 8 0 1.81146e-08 1.967621e-07

2.5.3 A General OU process

Experimental Setup

Hereafter we will consider a case described in (1.2) which is estimated from the degradation
data of a passive component in power plants. In Chapter 1, we have discussed the modeling
work, and the following process Xt is given :

dXt = (−r(Xt −m(t)) +m′(t))dt+ σdBt, t ≥ 0, X0 = x0, (2.5.12)

where r = 0.1806708, σ = 2.4640884,m(t) = 2.4402845((t + 1)0.8892020 − 1) + x0, x0 =
2.8074561. Some trajectories of the process (2.5.12) are produced based on Monte-Carlo
simulation, which are shown in Figure 1.4(b).

Other issues related to the first passage problem are chosen as follows :

1. The failure level is chosen as a constant 10.

2. The considered time interval is [0,25].

3. The step-size ∆t to discretize the time interval is 0.01.

Nonsingular Volterra Integral Equation

The nonsingular Volterra integral equation (VIE) (2.4.10) is adopted to calculate the first
passage density, and the results are shown in Figure 2.16(a). Correspondingly the pdf is com-
pared with the fitted pdf from the simple Monte-Carlo simulation (50000 times simulation),
see Figure 2.16(b).

The corresponding calculated cdf is also compared with the simulated cdf from the simple
Monte-Carlo method, see Figure 2.16(c) and 2.16(d).

Piecewise Quasi-Linear Monte-Carlo Simulation

Proposed in Section 2.3.6, it is suggested to consider another MC simulation method
from approximating the original boundary L(t) to a piecewise quasi-linear boundary. As
stated before, when the time step-size is very small, this method provides an approximation
of first passage distribution to the real one.

We have produced 20000 trajectories to calculate the piecewise quasi-linear Monte-Carlo
simulation. The corresponding calculated cdf is also compared with the results from the VIE
method, see Figure 2.16(c) and 2.16(d).
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(a) First passage density : VIE method (b) First passage density : VIE-black,
MC-red

(c) First passage distribution : VIE-
black, MC-red

(d) Difference between VIE and simple
MC on first passage distribution, maxi-
mal deviation ≈ −0.02.

Figure 2.16 – The VIE method, compared with the simple Monte-Carlo method

(a) First passage distribution : piece-
wise MC-black, VIE-red

(b) Difference between piecewise
quasi-linear MC simulation and VIE
method, maximal deviation ≈ −0.008.

Figure 2.17 – The piecewise quasi-linear Monte-Carlo method, compared with the results
from VIE method
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Linear Programming Approach

Continuing previous consideration in this simulation test, we concern two issues : the
fitting times in consideration, and the chosen points {ri}ni=1. The weight P is chosen with
all elements to be 1. Here suppose the time mesh {ti}mi=1 in the time interval [0, 25] with a
step-size 0.01 is considered. And later we choose those times in a smaller interval, such that
the estimation based on this smaller interval is compared with the estimation based on [0,25].

A first illustration on the result of linear programming approach is presented for the case
with ri = 0.5 + i, i = 0, 1, .., 9, and the time interval considered for the linear programming is
[1, 7]. The objective value is achieved at 4.996158, corresponding to the coefficient series (ξi) =
(0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 1.755968, 6.324348, 0.00000, 0.00000).
The pdf and cdf by linear programming are shown in Figure 2.18(a) and 2.18(b), compared
with the ones from the VIE method. The difference on pdf and cdf between the linear
programming the VIE method are shown in Figure 2.18(c) and 2.18(d).

(a) First passage density : LP-
black,VIE-red

(b) First passage distribution : LP-
black, VIE-red

(c) Difference between LP and VIE on
First passage density, maximal devia-
tion ≈ −0.03.

(d) Difference between LP and VIE on
first passage distribution, maximal de-
viation ≈ −0.02.

Figure 2.18 – The linear programming approach, compared with the VIE method : consi-
dered time [1, 7], ri = 0.5 + i, i = 0, 1, .., 9.

Now it is supposed that the time interval is considered as (0, 20]. Then the calculation
gives the objective value is achieved at 41.29026, corresponding to the coefficient series (ξi) =
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(0.00000, 0.000000, 0.00000, 0.00000, 0.00000, 0.00000, 0.1038629, 1.7883317, 0.00000, 0.00000).
The pdf and cdf by linear programming are shown in Figure 2.19(a) and 2.19(b), compared
with the ones from the VIE method. The difference on pdf and cdf between the linear
programming the VIE method are shown in Figure 2.19(c) and 2.19(d). From the pictures,
we can see the considered time interval is extremely important, as the returned results show
a great error compared to the consideration in [1, 7].

(a) First passage density : LP-
black,VIE-red

(b) First passage distribution : LP-
black, VIE-red

(c) Difference between LP and VIE on
First passage density, maximal devia-
tion ≈ −0.15.

(d) Difference between LP and VIE on
first passage distribution, maximal de-
viation ≈ −0.12.

Figure 2.19 – The linear programming approach, compared with the VIE method : consi-
dered time (0, 20], ri = 0.5 + i, i = 0, 1, .., 9.

Now keep the considered time interval [1, 7], but with changed values on (ri) =
(0.5, 3.5, 6.5, 9.5). Then the calculation returns the objective value 8.166429, corresponding
to the coefficient series (ξi) = (0.000000, 0.000000, 3.714276, 5.796250). The pdf and cdf by
linear programming are shown in Figure 2.20(a) and 2.20(b), compared with the ones from
the VIE method. The difference on pdf and cdf between the linear programming and the VIE
method are shown in Figure 2.20(c) and 2.20(d). We can see compared with the case with
10-point approximation, the accuracy of 4-point approximation is only slightly decreasing
(based on the hypothesis of the accuracy of the VIE method).

So we have several conclusions here :
◦ The accuracy depends a lot on the chosen time series, where too many near-zero values
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will influence the result a lot. So even we don’t know the first passage density before
the calculation, a first step is essential to estimate and analyze such that the chosen
time series is around the mean first passage time.
◦ The selected {ri}ni=1 should be chosen also around the process’ mean first passage

time such that they could get more weight. It could be seen that even we include more
consideration for different times, but only the ones around the mean first passage time
return obvious weight values.
◦ Therefore a preliminary analysis on mean first passage time could be helpful to give

an accurate estimate of first passage time based on linear programming. What should
be emphasized is that this accurate approximation is not numerical. It is analytical,
such that it could be used for later analysis.

(a) First passage density : LP-
black,VIE-red

(b) First passage distribution : LP-
black, VIE-red

(c) Difference between LP and VIE on
First passage density, maximal devia-
tion ≈ −0.05.

(d) Difference between LP and VIE on
first passage distribution, maximal de-
viation ≈ −0.03.

Figure 2.20 – The linear programming approach, compared with the VIE method : consi-
dered time [1, 7], (ri) = (0.5, 3.5, 6.5, 9.5).

Durbin’s Approximation

The Durbin’s approximation is compared with the VIE method in Figure 2.21(a) and
2.21(b). The maximal difference with the results of VIE method is about 0.006, therefore this
approximation is accurate in this case.
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The Tangent Approximation

As stated in Section 2.3.3, when time is not far away from the current observation, the
corresponding first passage density and distribution can be approximated by a tangent me-
thod given in (2.3.58). In a previous analysis, it is found that this tangent approximation is
the same with the one of Durbin’s approximation. And therefore here we just test the ap-
proximate first passage distribution. The approximation is compared with the results derived
from VIE methods.

The produced cdfs and the difference with the VIE method are presented in Figure 2.22(a)
and 2.22(b). The maximal difference with the results of VIE method is about 0.005, therefore
this approximation is accurate in this case.

(a) First passage density : Durbin-
black, VIE-red

(b) Difference on first passage density
between VIE and Durbin’s approxima-
tion, maximal deviation ≈ −0.006.

Figure 2.21 – Durbin’s approximation, compared with the VIE method

(a) First passage distribution : Tan-
gent approximation-black, VIE-red

(b) Difference on first passage distri-
bution between VIE and the tangent
approximation, maximal deviation ≈
0.005.

Figure 2.22 – Tangent approximation, compared with the VIE method
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Truncated Approximation

It is presented in Section 2.4.4 that the first passage distribution can be estimated from
a truncated approximation if the initial point H(s) is chosen as the tangent approximation,

G(t|x0, t0) ≈ 2F̄ (L(t), t|x0, t0) + 2

∫ t

t0

H(s)dF̄ (L(t), t|L(s), s). (2.5.13)

The first passage distribution produced by 2.5.13 is given in Figure 2.23(a). In Figure
2.23(b), the difference of (2.5.13) and the results from VIE method is presented.

(a) First passage distribution : Trun-
cation approximation-black, VIE-red

(b) Difference on first passage distri-
bution between VIE and the trunca-
ted approximation, maximal deviation
≈ 0.005.

Figure 2.23 – Truncated approximation starting with tangent approximation, compared
with the VIE method

Quasi-Linear Boundary

As the first passage problems can be solved explicitly under the quasi-linear boundaries,
such that it aims to present the appearance of these boundaries when involved parameters are
changing. It is also of interest to see what shape of boundaries can be applied to real cases.
The quasi-linear boundary is a two-parameter boundary with the adjustable initial boundary
and one shape variable. It is expected to have more flexility than the constant boundary. And
as stated in Corollary 2.3.5, C < 0 is a more practical choice such that the system will be
failed at the end.

With the form L(t) = e−α(t,0)(L(0) − β(t, 0) + Cγ(t, 0), and L(0) = 10, by changing the
parameter C, following figures are presented, see Figure 2.24(a), 2.24(b), 2.24(c) and 2.24(d).

A great variability can be seen in the results. This is a very important point in real ap-
plications where failure records are presented. When fitting these failure records, the flexility
of the failure level increases the fitting goodness of the first passage time. In such a way, the
gap between the failure records and first passage times is expected to be small.

At a first glance, a rapid increasing rate of some boundaries seems unrealistic. However
these boundaries can still fit well those ”significant” failure records. That is to say, the
boundary is chosen such that the corresponding first passage time has a significant pdf for
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the most part of failure records. We can ignore the influence of the failure level for those
unusual events.

(a) L(0)=10,C=-0.567 (b) L(0)=10,C=-0.1

(c) L(0)=10,C=0.5 (d) L(0)=10,C=-1+0.2*i, i=1,2,...,10

Figure 2.24 – Difference appearance of quasi-linear boundaries

2.5.4 Prognostics of Different Models

In this subsection, the discussion in Chapter 1 is continued on the topic of prognostics
of first passage failures. In Chapter 1, we have presented three different models to fit the
degradation data-set and have compared their fitting goodness. In this subsection, these
three models will be considered respectively for the prediction of system failures based on
first passage times.

The first passage time is considered for constant failure levels 15, 35 and 50 respectively.
Later supposing a new component is put into operation and according to the three models
given in Tables 1.1, 1.2 and 1.3, the pdf and cdf for the first passage time are calculated based
on the integral equation (2.4.10) and (2.4.22).

The corresponding first passage density and distribution can be observed directly in Fi-
gures 2.25 and 2.26. Also corresponding MTTF is estimated and results are listed in Table
2.10. In these pictures, the solid line stands for MLD, the dashed one stands for MOU, the
mixed one stands for MOUR.

Some conclusions are derived here
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1. The comparison between MOU and MLD : when the model is with more fluctuations,
the pdf of the first passage time is more spread-out ; when the model is with less
fluctuations, the pdf of the first passage time is more peaky.

2. The comparison between MOU and MOUR : The initial uncertainties show little in-
fluence for a low boundary (L = 15). But for a high boundary (L = 35 and L = 55),
the pdf of MOU is more peaky than MOUR because less uncertainties are introduced.

Therefore if the model’s uncertainties is over-estimated, then more probability is distri-
buted to the less possible events, especially those failed states. This could lead to a more
conservative RUL estimate.

This conservative estimate may lead to an earlier estimate of the failure time by first
passage failures. This phenomenon is observed, and is tried to be explained by last passage
failures in [6]. However in this paper, we tried to reduce the gap between the real failure and
first passage failure by adjusting the model’s statistical properties properly.

Table 2.10 – MTTF prediction based on first passage failure
boundary MLD MOU MOUR

15 6.321825 5.825432 5.800996
35 16.7787 17.69869 22.35642
55 27.19735 30.79393 46.59552
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(a) Boundary=15
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(b) Boundary=35
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(c) Boundary=55

Figure 2.25 – first passage density function : − · −MOU, −−MOUR, −MLD.

2.5.5 The Global Accuracy of Durbin’s Approximation

Although we didn’t analyze the global errors for Durbin’s approximation analytically,
some simulation tests will be done to see its performance illustratively. As suggested by [25],
the global accuracy is influenced by the probability of crossing boundary before the current
time. Therefore we will consider the global accuracy based on the folowing experiment set-up :

1. The boundary is set to be a constant L = 10.

2. The process is chosen as in (2.5.12) with a polynomial function m(t) = 2.4402845((t+

1)0.8892020 − 1) + 2.8074561 with variable r and σ. Here the variance v(t) = σ2

2r (1 −
exp(−2rt)), and cov(Xt, Xs) = σ2

2r exp(−r(t+ s))(exp(2rs)− 1).
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(a) Boundary=15
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(b) Boundary=35
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(c) Boundary=55

Figure 2.26 – cumulative passage probability : − · −MOU, −−MOUR, −MLD.

Having chosen the processes with the same mean function, we compare the results of Durbin’s
approximation with the results from the VIE method. And corresponding results for different
σ and r are given as in Figure 2.27.

The approximation is achieved by ignoring the probability of crossing boundary before
the current time. Therefore introducing more fluctuations into the model would increase this
probability. This would lead to a larger error of Durbin’s approximation.

Furthermore, it is noticed that σ2/2r is the asymptotic variance, and r is the asymptotic
correlation coefficient. As stated in Chapter 1, the correlation evaluates fluctuations in one
trajectory of the process, while the variance evaluates the total fluctuations in the process.
Therefore from the results, some conclusions can be derived :

1. The global accuracy of Durbin’s approximation can be promised.

2. When the correlation is stronger (r is smaller), the Durbin’s approximation is more
accurate.

3. When the variance is smaller (σ
2

2r is smaller), the Durbin’s approximation is more
accurate.

4. The influence of variance is smaller than the influence of correlation. In Figure 2.27(f),
with a large variance and a strong correlation, the result is still accurate.

2.5.6 Summary

In this section, proposed methods are fulfilled in simulation tests, the advantages and
disadvantages of proposed methods are commented here. As different methods are proposed
with different concerns, the time-efficiency and accuracy are hard to be discussed with the
same standard. So these comments are more from a general consideration.

1. The non-singular Volterra integral equation method refers to an ordinary numerical
technique to solve an integral equation, so its accuracy is increasing as the chosen
step-size decreases. The results are numerical, and the accuracy can be reached by
sacrificing the time-efficiency due to different requirements in applications. However,
as it is an iterative numerical solving procedure based on the time mesh, it cannot
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(a) σ = 2.4640884, r = 1.806708, σ2/2r =
1.68033, maximal deviation≈ 0.15.

(b) σ = 2.4640884, r = 0.1806708, σ2/2r =
16.8033, maximal deviation≈ 0.006.

(c) σ = 0.7792132, r = 1.806708, σ2/2r =
0.168033, maximal deviation≈ 0.04.

(d) σ = 0.7792132, r = 0.01806708, σ2/2r =
16.8033, maximal deviation≈ −0.001.

(e) σ = 7.792132, r = 0.1806708, σ2/2r =
168.033, maximal deviation≈ 0.02.

(f) σ = 7.792132, r = 0.01806708, σ2/2r =
1680.33, maximal deviation≈ 0.0.0015.

Figure 2.27 – Difference between Durbin’s approximation and the VIE method, for processes
with the same mean m(t) = 2.4402845((t+ 1)0.8892020 − 1) + 2.8074561.
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quickly react to return the value at a large time. From the simulation tests, this method
balances well the accuracy and efficiency.

2. The piecewise Monte-Carlo simulation method produces many times of computer si-
mulations to calculate the corresponding average. This method is influenced by the
time step-size and the number of produced trajectories. And when producing enough
trajectories, the accuracy is still less than integral equation methods under the fixed
step size. The piecewise quasi-linear MC method costs a little more time than the
simple MC, but it reaches also a more accurate estimate. It could be a substitute of
Volterra integral equation method when the boundary is without differentiability.

3. The tangent approximations / Durbin’s approximation are analytical approximations
which can return the approximate value of first passage density immediately. And
the result is not bad in general, and it is increasingly accurate as the probability
that the process has crossed the boundary before the considered time diminishes [25].
It is already used in the field of PHM [66].The error of this approximation depends
on the similarity of boundary to the quasi-linear boundary. When the boundary is
quasi-linear, the approximation turns to be the exact solution.

4. The linear programming approach provides an analytical approximation which can
return the approximate value of first passage density immediately. The accuracy of
this method depends a lot on the chosen points and fitting times, which are both
suggested to be around its mean first passage time. This needs preliminary judgement
on the mean first passage time. This is due to the similarity of the real distribution
to a linear combination of two chosen distribution functions. When the initial guess is
good enough, it is expected to be accurate.

5. The truncated series’ solution is explicit in an integral form, which needs to be approxi-
mated when the it is calculated. So the calculation afford is between totally analytical
expression and totally numerical algorithms. And combining the tangent approxima-
tion with the truncated approximation is a trial to make up the cases when tangent
approximations don’t perform well. The accuracy and efficiency seem at the same level
with non-singular Volterra integral equation method.

2.6 Conclusions and Perspectives

In this chapter, providing that the stochastic degradation process is expressed by the OU
process Xt (2.1.1) dXt = (a(t)Xt + b(t))dt+ σ(t)dBt, the system failure is described by first
passage failure to a given failure level L(t). That is to say, the failure time is defined by condi-
tional FPT τy,s := inft≥s{Xt ≥ L(t)|y, s}. It is of great interest to investigate τy,s in the field
of reliability analysis, PHM and condition-based maintenance. And in this chapter different

methods are derived to estimate RUL density g(t|y, s) :=
∂P (τy,s≤t)

∂t and also corresponding
cdf P (τy,s ≤ t).

A key characteristic to distinguish RUL estimation in reliability engineering with other
first passage problems is the requirement of condition-based prognosis, that is to say, updating
prognosis of system failures based on the current observation. This task induces the conside-
ration of τy,s, i.e. the first passage time conditioned on y at time s throughout this thesis. Also
the heterogeneity and non-stationarity of the time-dependent OU process induces plenty of
difficulty to follow existing analysis. And this chapter have reproduced several classical ideas
for this time-dependent OU process to provide a foundation for later analysis.
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Different methods have been derived to calculate the first passage density or first passage
distribution, and they are categorized into three classes :

1. Analytical approximations. In this chapter, we have investigated the first passage
problem for the OU process from different angles, and some analysis turns out to be
good approximations meanwhile. In these methods, the tangent approximation derived
from the method of images is of most interest. The Durbin’s approximation is proved
to be the same with the tangent approximation. And a truncated approximation is
derived based on the series solution of integral equation. The linear programming
approach is derived directly from the method of images, and it is accurate when the
chosen points are well-posed.

2. Monte-Carlo method. Based on the analysis of the OU process, a novel piecewise
quasi-linear Monte-Carlo simulation method is derived, which shows superior than
the simple Monte-Carlo simulation method.

3. Numerical algorithms. Based on Fortet’s equation, a non-singular Volterra integral
equation is derived to calculate the first passage density of the OU process.

The first passage problem induces an interdisciplinary consideration among stochastic
analysis, PDE, integral equation, numerical analysis etc.. And the analysis in this chapter
starts with w(x, t|y, s), however a possibility to follow other analysis exists. Relaxing the
constraint of crossing boundaries by using the explicit expression from the method of images
leads to many insightful results [43].

The view of u(x, t|y, s) := P (τy,s > t,Xt < x|y, s) leads to a free boundary problem in
(2.3.9), which is essential for a rigorous analysis of inverse first passage problem [13, 12].
This will be addressed in the next chapter. Also it is a starting point for optimal stopping
problems [58].

Derived approximate expressions of first passage density are preferred in engineering pro-
blems than the numerical results, as in applied problems the computability could be more
emphasized than the accuracy. With the explicit RUL estimate, the heuristic framework of
maintenance optimization can be possibly reproduced, which will be explained in Chapter 4.





Chapitre 3

Failure Level Estimation via Inverse First
Passage Problems

Several results in this chapter appear in [19, 21, 22].

When the stochastic degradation process is established from inspection records, the failure
level itself describes system failures when first passage failures are considered. In previous
literature the failure level is generally treated as physical barriers or experts’ opinions, based
on which failure prognosis can hardly fit existing failure records. Therefore in this chapter to
make up such a gap, it is considered from a pure data-analysis based on inverse first passage
problem to do the failure level estimation.

Suppose the lifetime distribution is given or estimated from failure records, the inverse first
passage problem aims to reproduce the failure level under which the first passage time of the
given stochastic process can have the same distribution with the given lifetime distribution.
Therefore if we consider the system failure as the first passage failure, the failure records
can provide a data-analysis method to estimate the failure level, such that the gap between
failure records and prognosis of system failures are made up.

The whole chapter is organized as follows. In Section 3.1, IFPT problem will be introduced.
In Section 3.2, an result on limit at zero for Brownian motion is introduced, and this result will
be extended to the time-dependent OU process at a given time. In Section 3.3, the estimation
of failure level based on Fortet’s equation will be presented. In Section 3.4, the estimation of
failure level based on the Master equation will be presented. In Section 3.5, simulation tests
for presented results will be done. Conclusions and prospectives will be given in Section 3.6.

3.1 Introduction

3.1.1 Background

In real cases, it is natural to use observed information of the considered system to describe
and predict system failures. And in this chapter, the observed information is considered only
from two sources : failure information on the recorded failures and inspection information on
the system’s state. Emphasizing on different sources of system information, the failure can
be described also from two different angles : one is from statistical analysis of failure records
leading to lifetime distribution [40], the other is from system dynamic models leading to first
passage failure [1, 41, 89]. These two views are rather independent in previous literature, and
this chapter is therefore triggered to merge together the failure information and inspection
information. The technical task is fulfilled by estimating the failure level for first passage
failures based on inverse first passage problems (IFPT) [12, 21, 97].

Based on inspection information of detectable degradation indicators such as temperature,
vibration signal, crack length etc., stochastic degradation models can be established e.g.
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Figure 3.1 – The introduction of inverse first passage problems into PHM.

Gamma process [84], drifted Brownian motion [44] and OU process [20]. Furthermore to
connect the degradation process with system failures, it is natural to introduce a failure level
such that the system failure is defined as the first passage failure. That is to say, the failure
time is described by the time when the degradation indicator reaches the failure level for the
first time.

It is quite common to determine the failure level based on physical barriers or experts’
judgments. However corresponding first passage failures can hardly fit existing failure records
due to models’ fitting goodness and uncertainties. Moreover in some cases, degradation in-
dicators are derived from data-analysis techniques, e.g. principle component analysis from
multiple indicators such that no physical meaning is presented [78]. Therefore in the latter
situation, physical barriers and experts’ experience can contribute little to estimating the
failure level.

The above inconsistency between first passage failures and existing failure records induces
our consideration based on IFPT problems in this chapter. Suppose the lifetime distribution
is given or estimated from failure records, the inverse first passage problem aims to reproduce
the failure level under which the first passage time of the given stochastic process can have
the same lifetime distribution 1. Solving such a problem maximizes simultaneously the utility
of failure information and degradation modeling, and it is valuable in model-based prognosis
and system health management (PHM). An illustration of the role of inverse first passage
problems can be seen in Figure 3.1.

In the previous literature, some other efforts exist to consider simultaneously the failure
records and inspection records. However most of them are from the parametric view and
don’t reflect the real system dynamic. The proportional hazard regression (also known as
Cox model) [14] tries to jointly fit the inspection data and survival records from the view
of hazard rate. This consideration emphasizes on the failure information, and the structure
between the inspection records and the survival records can hardly be explained in a direct
way.

For some degradation processes with explicit first passage density, e.g. drifted Brownian
motion and Gamma process [84], the failure level can be estimated by fitting failure records.
This parametric consideration adopts a strong pre-judgment for the failure level, and it cannot

1. The definition of inverse first passage problem here could be confusing with the inverse problem for
random first passage problem [38, 83], that is to say, to find the initial distribution function to reproduce the
randomized first passage density for a given boundary.
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work for general cases without explicit first passage density.

The explicit first passage density of Brownian motion induces also the consideration of
marker processes [81, 90, 41], where the system is described by the observed marker process
and a hidden degradation process. Here the hidden process is expressed by a drifted Brownian
motion [90]. In such a case, the failure level and the hidden degradation process are jointly
determined from failure records and inspection records. It is remarked that this consideration
should not be confused with the filtering problem (e.g. [68]). The hidden process and the
estimated failure level don’t reflect the real system dynamic.

Specifically in this chapter, the stochastic degradation model is supposed as a time-
dependent Ornstein-Uhlenbeck (OU) process [2, 20, 92]. This process shows good properties
in degradation modeling, especially from its mean-reversion and controllable flexibility on
mean, variance and covariance [20]. Moreover, although the general IFPT problem is still
open, the IFPT problem for diffusion processes (including the time-dependent OU process)
is proved to be well-posed from recent results by Chen etc. [12, 13]. From [12], the solution to
the IFPT problem for the time-dependent OU process exists with uniqueness (under the sense
of viscosity solution). These results provide the solid mathematical foundation to discuss the
IFPT problem in this chapter.

3.1.2 Problem Statement

Supposing the degradation process is described by a stochastic process Xt, t ≥ 0 defined
on a complete probability space (Ω,F,P), the following time-dependent Ornstein-Uhlenbeck
process Xt will be considered throughout this chapter [2, 20, 92] :

dXt = (a(t)Xt + b(t))dt+ σ(t)dBt, t ≥ 0, (3.1.1)

where a(t), b(t), σ(t) ∈ C1(R+), Bt is a standard Brownian motion and X(0) = x0 is a
constant.

Remarks : The model in this chapter is discussed without initial uncertainties.

It is derived from Equation (3.1.1) for the initial observation (x0, 0) that

Xt = Xx0,0
t = e−α(t,0)

[
x0 − β(t, 0) +

∫ t

0
σ(u)eα(u,0)dBu

]
, t ≥ 0, (3.1.2)

where α, β, γ are defined in (1.3.3).

The transition pdf p(x, t|y, s), t > s of Xt can be solved directly when y is deterministic :

p(x, t|y, s) =
eα(t,s)√
4πγ(t, s)

exp(−(xeα(t,s) + β(t, s)− y)2

4γ(t, s)
), (3.1.3)

where α, β, γ are defined in (1.3.3).

Furthermore the conditional first passage time τy,s of Xt based on the observation (y, s)
to a given failure level L(t) ∈ C1[s,+∞) is defined as :

τy,s := inf
t≥s
{t|Xt ≥ L(t)}. (3.1.4)

The failure level influences a lot for PHM based on such a model-based first passage
failure, and it is hard to promise its consistence to observed failure records when the failure
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level is estimated from physical barriers or experts’ judgments. Therefore the question comes
naturally : whether the failure level can be estimated in a way such that the first passage
failure can fit well the observed failure records ? This is true when the degradation process is
considered as the OU process, where corresponding failure level is given by solving the IFPT
problem.

In this chapter, the pdf of τx0,0 is denoted by pτx0,0(t) depending on L(t), and the lifetime
density function g(t) is supposed to be given or estimated from failure records. Then the
IFPT problem is to find the failure level L(t) such that

pτx0,0(t) = g(t). (3.1.5)

Or equivalently, given G(t) as the lifetime distribution function, the IFPT problem is to find
L(t) such that

P (τx0,0 ≤ t) = G(t). (3.1.6)

From [12, 13], the existence and uniqueness of the solution to this IFPT problem for a general
diffusion process are promised. However the analytical solutions are impossible except for few
cases, therefore this chapter concentrates on how to numerically solve the IFPT problem, and
several methods will be derived in the following.

3.2 Initial Boundary Estimation

As the information in the IFPT problem are only the lifetime distribution and the sto-
chastic degradation process, therefore to connect such information with the failure level, we
first consider the asymptotic analysis of the first passage distribution. Interestingly based on
such an analysis, the failure level near the initial time can be approximately estimated. In
the following we call the failure level recovered near the initial time as initial boundary. In
later analysis, we will extend this initial boundary estimation to the boundary at later times
by an iterative procedure.

In this section, it concerns two points as follows :

1. A preliminary result to estimate the initial boundary in [13] for the Brownian motion
is introduced.

2. The result in [13] is extended to the OU process by the technique of time-change.

3.2.1 Preliminary Results on Brownian Motion

Several preliminary results have been already derived for Brownian motion. For example,
the initial estimate based on pdf is proposed for Brownian motion in [56]. However we are
more interested in the following result. As proved in [13], there is an estimate of limt→0 L(t)
for Brownian motion which is given by the following Lemma.

Lemma 3.2.1. [13] For a standard Brownian motion Bt, L(t) is the corresponding upper
boundary for the first passage time τ := inft≥0{Bt ≥ L(t)}, G(t) := P (τ ≤ t) . Assume that

lim
t→+0

sup
G(t)

tG′(t)
< +∞, (3.2.1)

then

lim
t→+0

L(t)√
−2t logG(t)

= 1. (3.2.2)
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Proof. See [13], and the sign is changed from the symmetry of Brownian motion to fit the
discussion of upper boundaries in this thesis.

3.2.2 First Passage Time via Time-change

To apply results of Brownian motion to OU process, in this subsection a connection will
stated for FPTs between OU process and Brownian Motion. First, it is noticed that OU
process can be treated as a Gauss-Markov process under a time-change which has been given
in Section 1.3.2. Denote ρ(t) := 2γ(t, 0),m(t) := e−α(t,0)(y − β(t, 0)), n(t) := e−α(t,0), and
suppose the initial value is y at time 0. It comes that

Xt = e−α(t,0)

[
y − β(t, 0) +

∫ t

0
σ(u)eα(u,0)dBu

]
= m(t) + n(t)Bρ(t), (3.2.3)

with ρ(0) = 0.

This time-change establishes the connection between OU process and Brownian motion,
and the connection between their first passage times can be derived as in the following lemma.
This can be also found in [87].

Lemma 3.2.2. Suppose τ := inft≥0{Xt ≥ L(t)} and τ∗ := infs≥0{Bs ≥ (L(ρ−1(s)) −
m(ρ−1(s)))/n(ρ−1(s))}. And denote respectively the pdfs for τ and τ∗ by pτ (t) := dP (τ≤t)

dt

and pτ∗(t) := dP (τ∗≤t)
dt . We have

pτ (t) = pτ∗(ρ(t))ρ′(t) (3.2.4)

Proof. Noticing ρ(t) is strictly increasing if σ(t) 6= 0, the inverse ρ−1 exists.

P (τ > t) = P (Xs < L(s), s ≤ t) = P (m(s) + n(s)Bρ(s) < L(s), s ≤ t)
= P (Bs < (L(ρ−1(s))−m(ρ−1(s)))/n(ρ−1(s)), s ≤ ρ(t))

= P (τ∗ > ρ(t)). (3.2.5)

Differentiate Equation (3.2.5), it comes naturally to (3.2.4).

Remark : even if the lemma presented here is helpful to calculate the first passage time
of the OU process based on the time-change, it is not convenient to calculate the first passage
problem in general cases except when the inverse of time-change ρ−1 is explicit. And that is
also the motivation why we reproduce the tedious analysis on the first passage time of the
OU process rather than calculating based on the time-change from the results for Brownian
motion.

Based on Lemma 3.2.2, the following proposition comes :

Proposition 3.2.3. Suppose under the passage boundary L(t), the corresponding first passage
density pτ (t) for Xt is given. And under L1(t), the corresponding first passage density pτ∗(t)
is given for Brownian motion. If pτ (t) and pτ∗(t) satisfy the equation (3.2.4), then we have

L(t) = L1(ρ(t))n(t) +m(t) (3.2.6)

Proof. The existence and uniqueness of the solution to the IFPT problem for diffusion process
have been derived in [13]. And here we just state that if (3.2.4) holds, then L1(ρ(t))n(t)+m(t)
would be one solution satisfying the IFPT problem for the time-dependent OU process (3.1.1).
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Actually, denote L2(t) = L1(ρ(t))n(t) +m(t), then we have

τ∗ = inf
s>0
{Bs ≥ L1(s)} = inf

s>0
{Bs ≥ (L2(ρ−1(s))−m(ρ−1(s)))/n(ρ−1(s))}. (3.2.7)

From Lemma 3.2.2, we know that for τ1 := inft>0{Xt ≥ L2(t)},

pτ1(t) = pτ∗(ρ(t))ρ′(t).

From the given condition (3.2.4), we have pτ = pτ∗(ρ(t))ρ′(t) = pτ1 , and due to the
uniqueness of the solution to the IFPT problem, it comes to L = L2.

Following Lemmas 3.2.1, Lemma 3.2.2 and Proposition 3.2.3, the following proposition is
given to estimate the initial boundary for the FPT τx0,0 of Xx0,0

t to the upper boundary L(t).

Proposition 3.2.4. Following notations in (3.2.3), denote τ := inft>0{m(t) + n(t)Bρ(t) ≥
L(t)}, suppose G(t) := P (τ ≤ t) is already known. Assume that

lim
t→+0

sup
ρ′(t)G(t)

ρ(t)G′(t)
< +∞. (3.2.8)

Then

lim
t→+0

L(t)−m(t)

n(t)
√
−2ρ(t) logG(t)

= 1. (3.2.9)

Proof. From Lemma 3.2.2, for Brownian motion Bt induced by (3.2.3), τ∗ := infs≥0{Bs ≥
(L(ρ−1(s))−m(ρ−1(s)))/n(ρ−1(s))}, the following equation holds :

Gτ∗(ρ(t)) := P (τ∗ ≤ ρ(t)) = P (τ ≤ t) = G(t). (3.2.10)

From Lemma 3.2.1 and the hypothesis (3.2.8), noticing t → ρ(t) is a bijection from R+ to
R+, then

lim
ρ(t)→+0

sup
Gτ∗(ρ(t))

ρ(t)G′τ∗(x)|x=ρ(t)
= lim

t→+0
sup

ρ′(t)G(t)

ρ(t)G′(t)
< +∞. (3.2.11)

Therefore the condition (3.2.8) in Lemma 3.2.1 is satisfied for Brownian motion Bρ(t). Then
by Lemma 3.2.1, its boundary L1(ρ(t)) can be estimated :

lim
t→+0

L1(ρ(t))√
−2ρ(t) logGτ∗(ρ(t))

= 1. (3.2.12)

By Proposition 3.2.3, the result can be translated to Xt = m(t)+n(t)Bρ(t) directly, which
leads to Equation (3.2.9).

Corollary 3.2.5. Consider G(t|y, s) := P (τy,s ≤ t) and g(t|y, s) = ∂G(t|y,s)
∂t are known for

the process Xt = e−α(t,s)(y − β(t, s) +
∫ t
s σ

2(z)eα(z,s)dBz), assume that

lim
t→+s

sup
γ′(t, s)G(t|y, s)
γ(t, s)g(t|y, s)

< +∞, (3.2.13)

then

lim
t→+s

L(t)eα(t,s) + β(t, s)− y√
−4γ(t, s) logG(t|y, s)

= 1. (3.2.14)
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Proof. From Proposition 3.2.4, set the initial value as (y, s), denote ρ(t) := 2γ(t, s),m(t) :=
e−α(t,s)(y − β(t, s)), n(t) = e−α(t,s), the result comes naturally.

Remark : This limit gives the estimation of L(t) when t is near 0, such that

L(t) ≈ e−α(t,0)(x0 − β(t, 0) +
√
−4γ(t, 0) logG(t)). (3.2.15)

However, due to the calculation limit of the computer to calculate limt→0 logG(t) = ∞, the
estimation may not exist when t is too small. Therefore it should be careful to test this
estimate several times to balance the accuracy and the computability.

3.3 Integral Equation Method

3.3.1 Fortet’s Equation

In this subsection, the following conditions are considered :

σ(t) > 0, a(t) ≤ 0,∀t ∈ [0,+∞). (3.3.1)

On one hand, the first passage density pτ to the failure time τ satisfies Fortet’s equation
corresponding to the failure level L(t) [57] :

p(x, t|x0, 0) =

∫ t

0
pτ (s)p(x, t|L(s), s)ds, ∀x ≥ L(t), (3.3.2)

where p(x, t|y, s) is the transition pdf defined in (3.1.3).

On the other hand, the IFPT problem is proved to be a well-posed problem such that if
the lifetime pdf g(t) is given, the solution L(t) should also satisfy Equation (3.3.2), i.e.

p(x, t|x0, 0) =

∫ t

0
g(s)p(x, t|L(s), s)ds, ∀x ≥ L(t), (3.3.3)

therefore the remaining task is to solve such an equation to find the failure level L(t).

An iterative procedure is adopted in this section to solve Equation (3.3.3). Supposing
L(s) is known for all s ∈ [0, t), let denote in this section

Γ(x, t) := p(x, t|x0, 0), Ψ(x, t) :=

∫ t

0
g(s)p(x, t|L(s), s)ds (3.3.4)

From (3.3.3), the current boundary L(t) will just be the minimal zero solution of the following
equation :

Z(x, t) := Γ(x, t)−Ψ(x, t) = 0. (3.3.5)

That is to say,
L(t) = inf

x∈R
{x|Z(x, t) = 0}. (3.3.6)

Here the original IFPT problem has been converted to the problem of solving Equation (3.3.6).
For such a topic, various classical numerical schemes can be possibly used such as secant
method, Newton’s method, bisection method etc. However to promise the efficiency and
correctness of the calculation, more analysis is necessary. Especially in this iterative solving
procedure, the following questions are essential :

◦ How is Ψ(x, t) expressed in a computable form ?
◦ How is L(t) verified as the minimal solution of Equation (3.3.5) ?

In the last section, the initial boundary has been estimated explicitly, and the above two
questions will be discussed in this section.
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3.3.2 Discretization of Ψ(x, t)

The integral Ψ(x, t) in (3.3.4) can hardly be expressed explicitly, which induces the need
of approximate expression. However as lims→t p(L(t), t|L(s), s) = +∞, Ψ(x, t) is with a sin-
gular point at t. So for later numerical calculation, the integral Ψ(x, t) should be considered
carefully.

From (1.3.3), it is noticed first that :

∂γ(t, s)

∂s
=

∫ t

s
c(u)eα(u,s) × 2a(s)du− c(s) = 2a(s)γ(t, s)− c(s). (3.3.7)

Noticing as in Chapter 1, c(t) = σ2(t)
2 > 0, therefore γ(t, s) =

∫ t
s c(u)eα(u,s)du is a decrea-

sing function for the variable s. That is to say, the following inequality holds :

∂γ(t, s)

∂s
= 2a(s)γ(t, s)− c(s) ≤ η < 0, (3.3.8)

for some η ∈ R when s is in any closed set in R+. This is derived from the constraint (3.3.1)
for a(s) and σ(s).

Furthermore Equation (3.3.7) contributes to :

d
√
γ(t, s) =

1

2
√
γ(t, s)

∂γ(t, s)

∂s
ds. (3.3.9)

Based on (3.3.8) and (3.3.9), now another expression for Ψ(x, t) is given :

Ψ(x, t) =

∫ t

0
g(s)p(x, t|L(s), s)ds

=

∫ t

0
g(s)

eα(t,s)√
4πγ(t, s)

exp(−((xeα(t,s) + β(t, s))− L(s))2

4γ(t, s)
)ds

=

∫ t

0
g(s)

eα(t,s)

√
π(2a(s)γ(t, s)− c(s))

exp(−((xeα(t,s) + β(t, s))− L(s))2

4γ(t, s)
)d
√
γ(t, s)

(3.3.10)

Remark : the singularity in Equation (3.3.10) is avoided as for any s ∈ [0, t],

| g(s)eα(t,s)

√
π(2a(s)γ(t, s)− c(s))

exp(−((xeα(t,s) + β(t, s))− L(s))2

4γ(t, s)
)| ≤ g(s)eα(t,s)

√
π|2a(s)γ(t, s)− c(s)|

,

(3.3.11)
which is bounded from Equation (3.3.8).

Following Equation (3.3.10), denoting

Ω(x, t|y, s) :=
eα(t,s)

√
π(2a(s)γ(t, s)− c(s))

exp(−((xeα(t,s) + β(t, s))− y)2

4γ(t, s)
), (3.3.12)

an approximate expression by compound trapezoid scheme is adopted for Ψ(x, t) :

Ψn(x, t) ≈1

2

n−1∑
i=0

(
√
γ(t, ti+1)−

√
γ(t, ti)) [g(ti+1)Ω(x, t|L(ti+1), ti+1) + g(ti)Ω(x, t|L(ti), ti)]

(3.3.13)
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where n ∈ N, t0 = 0, tn = t, {ti}ni=0 are mesh points for [0, t]. In such a form, it is noticed
some items vanish, especially Ω(L(t), t|L(t), t) = −1√

πc(t)
from Equation (2.4.1) and g(0) = 0.

We should notice that the original equation Γ(x, t) − Ψ(x, t) = 0 is now approximated
by a new equation Γ(x, t) − Ψn(x, t) = 0, a natural question is whether the solution to the
approximate equation can also approximate the real solution to the original equation. This
question is beyond our concentration here, but it is reasonable in general. A partial answer
can refer to approximation optimization in Appendix B.

3.3.3 The Minimal solution to Z(x, t) = 0

In this subsection, we will address how to verify that the solution is the minimal solution of
Equation (3.3.5). Due to the properties of the function Z(x, t), it is found that this verification
can be promised by a simple step in the numerical algorithm. Actually, we have

◦ Z(x, t) = 0, ∀x ≥ L(t).

◦ ∂Z(x,t)
∂x |x=L(t)− = −g(t)/c(t) < 0, when g(t) 6= 0.

The first point is just Fortet’s equation (2.2.1). And the second point is derived from Equation
(2.2.4) and (2.3.14).

Therefore Z(x, t) > 0 holds for x ∈ (L(t) − ε, L(t)) with a small ε. When searching L(t)
by the secant method, if we start with a S near the real solution L(t) such that Z(S, t) > 0,
the iteration converges naturally to L(t) due to the monotonicity of Z(x, t) w.r.t x without
the risk of overestimation.

3.3.4 Numerical Scheme

Based on previous results, a numerical scheme is proposed as follows. Considering the
IFPT problem on [0, T ], which is divided by {ti}Ni=0, where N is finite, the approximate value
Li will be calculated for the failure level L(ti) based on the secant method. And in such an
algorithm Z(x, ti) ≈ Γ(x, t)−Ψn(x, t) is applied by (3.3.13).

1. Initial failure level : L0 = x0 , and by (3.2.9) for t1 small enough,

L1 ≈ e−α(t1,0)(x0 − β(t1, 0) +
√
−4γ(t1, 0) log(g(t1)t1).

2. Initial guess : for i ≥ 2, suppose L1, ..., Li−1 are calculated, then a good initial estimate
of Li is essential for later calculation. However there is a risk of over-estimating of Li
as Z(x, ti) = 0, ∀x ≥ L(ti). So the initial guess S0

i for Li is given by Li−1 from the
continuity of L(t), and it is modified by the following procedure :
◦ S0

i ← Li−1 ;
◦ while (Z(S0

i , ti) ≤ ε), S0
i ← S0

i − c× (ti − ti−1),
where c is positive to control the reduction of initial guess, and ε is an enough small
digit.

3. Secant Method : following the estimate S0
i in Step 2, we calculate iteratively Sji for

Li : S
1
i = S0

i − c× (ti − ti−1),

Sji = Sj−1
i − Z(Sj−1

i , ti)
Sj−1
i −Sj−2

i

Z(Sj−1
i ,ti)−Z(Sj−2

i ,j−2)
, j ≥ 2.

(3.3.14)

The iteratively solving process is stopped when Sji is enough close to the previous
iterative value :

|Sji − S
j−1
i | ≤ ε. (3.3.15)
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Then the value of Sji will be assigned to Li.

4. Iterative procedure : after Li is calculated, let i← i+ 1, and turn back to Step 2.

3.4 Another Integral Equation

3.4.1 The Master Equation

The previously stated numerical algorithm adopts a variable-change trick to discretize
the singular integral Ψ(x, t). And this can also be avoided in other ways. In this section
the master equation (2.2.7) will be adopted to calculate the failure level. Such an idea is
reproduced based on [57, 97].

From Lemma 2.2.2 for Xt in (3.1.1) with an initial start (x0, 0), (2.2.7) holds,

1− F (x, t|x0, 0) =

∫ t

0
(1− F (x, t|L(s), s))g(s)ds, ∀x ≥ L(t). (3.4.1)

Here note Φ(∗) as the cdf of normal distribution,

F (x, t|y, s) = Φ(
xeα(t,s) + β(t, s)− y

2
√
γ(t, s)

). (3.4.2)

As Φ(∗) is an easily calculated function, Equation (3.4.1) is expressed in a computable form
based on (3.4.2) :

1− Φ(
xeα(t,0) + β(t, 0)− x0

2
√
γ(t, 0)

) =

∫ t

0
(1− Φ(

xeα(t,z) + β(t, z)− L(z)

2
√
γ(t, z)

))g(z)dz, ∀x ≥ L(t).

(3.4.3)

Following iterative procedures in Section 3.3, to solve the equation (3.4.3). Supposing
L(s) is known for all s ∈ [0, t), let denote in this section

Ω̃(x, t) := 1−Φ(
xeα(t,0) + β(t, 0)− x0

2
√
γ(t, 0)

), Ψ̃(x, t) :=

∫ t

0
(1−Φ(

xeα(t,z) + β(t, z)− L(z)

2
√
γ(t, z)

))g(z)dz,

(3.4.4)
From (3.4.3), the current boundary L(t) will just be the minimal zero solution of the following
equation :

Z̃(x, t) := Ω̃(x, t)− Ψ̃(x, t) = 0. (3.4.5)

That is to say,

L(t) = inf
x∈R
{Z̃(x, t) = 0}. (3.4.6)

Here the original IFPT problem has been converted to the problem of solving Equation (3.4.6).

Not similar with the singular integral in (3.3.4), Equation (3.4.4) is without problems
to calculate. However the integral Ψ(x, t) in (3.4.4) can also hardly be expressed explicitly,
which induces the need of approximate expression. By compound trapezoid scheme, denoting

Ω̃(x, t|y, s) := 1− Φ(
xeα(t,s) + β(t, s)− y

2
√
γ(t, s)

), (3.4.7)
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an approximate expression is proposed for Ψ̃(x, t) based on the compound trapezoid rule :

Ψ̃n(x, t) ≈1

2

n−1∑
i=0

(ti+1 − ti)
[
g(ti+1)Ω̃(x, t|L(ti+1), ti+1) + g(ti)Ω̃(x, t|L(ti), ti)

]
, (3.4.8)

where n ∈ N, t0 = 0, tn = t, {ti}ni=0 are mesh points for [0, t]. In such a form, some items
vanish, especially Ω̃(L(t), t|L(t), t) = 1/2 from Lemma 2.4.1, g(0) = 0.

We should notice the original equation Γ̃(x, t)−Ψ̃(x, t) = 0 is now approximated by a new
equation Γ̃(x, t)− Ψ̃n(x, t) = 0, a natural question is whether the solution to the approximate
equation can also approximate the real solution to the original equation. This question is
not our concentration here, but it is reasonable in general. A partial answer can refer to
approximation optimization in Appendix B.

3.4.2 Numerical Scheme

Based on previous results, a numerical scheme is proposed as follows. The main procedures
are the same with the one in Section 3.3, however with different interior technical calculation.
Considering the IFPT problem on [0, T ], which is divided by {ti}Ni=0, where N is finite, the
approximate value Li will be calculated for the failure level L(ti) based on secant method.
And in such an algorithm Z̃(x, ti) ≈ Γ(x, t)− Ψ̃n(x, t) is applied by (3.4.8).

1. Initial failure level : L0 = x0 , and by (3.2.9) for t1 small enough,

L1 ≈ e−α(t1,0)(x0 − β(t1, 0) +
√
−4γ(t1, 0) log(g(t1)t1).

2. Initial guess : for i ≥ 2, suppose L1, ..., Li−1 are calculated, then a good initial estimate
of Li is essential for later calculation. However there is a risk of over-estimating of Li
as Z̃(x, ti) = 0, ∀x ≥ L(ti). So the initial guess S0

i for Li is given by Li−1 from the
continuity of L(t), then it is modified by the following procedure :
◦ S0

i ← Li−1 ;
◦ while(Z̃(S0

i , ti) ≤ ε), S0
i ← S0

i − c× (ti − ti−1),
where c is positive to control the reduction of initial guess, and ε is an enough small
digit.

3. Secant Method : following the estimate S0
i in Step 2, we calculate iteratively Sji for

Li : S
1
i = S0

i − c× (ti − ti−1),

Sji = Sj−1
i − Z̃(Sj−1

i , ti)
Sj−1
i −Sj−2

i

Z̃(Sj−1
i ,ti)−Z̃(Sj−2

i ,j−2)
, j ≥ 2.

(3.4.9)

The iteratively solving process is stopped when Sji is enough close to the previous
iterative value :

|Sji − S
j−1
i | ≤ ε. (3.4.10)

Then the value of Sji will be assigned to Li.

4. Iterative procedure : after Li is calculated, let i← i+ 1, and turn back to Step 2.

3.5 Simulation Tests

3.5.1 Experimental Setup

Hereafter we will consider a model described in Table 1.2 which is estimated from the
degradation data of a passive component in power plants. In Chapter 1, we have discussed
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the modeling work, and the following process Xt is given :

dXt = (−r(Xt −m(t)) +m′(t))dt+ σdBt, t ≥ 0, X0 = x0, (3.5.1)

where r = 0.1806708, σ = 2.4640884,m(t) = 2.4402845((t + 1)0.8892020 − 1) + x0, x0 =
2.8074561. Some trajectories of the process are produced based on Monte-Carlo simulation,
which are shown in Figure 1.4(b).

Other issues related to the first passage problem are chosen as follows :

1. The considered time interval is [0, 10].

2. The step-size ∆t to discretize the time interval is 0.01.

3. The lifetime density g(t) and distribution G(t) are produced based on the first passage
time to the boundary L(t) ≡ 10.

The pdf and cdf of the first passage time have been calculated based on the Volterra
integral equation method (2.4.10). And their appearance is shown in Figure 3.2(a) and 3.2(b).

(a) First passage density to L(t) = 10 (b) First passage distribution to L(t) = 10

Figure 3.2 – The produced lifetime pdf and cdf for calculation.

In the following simulation tests, it is aimed to reproduce the original failure level L = 10
by solving the IFPT problem.

Remark : The time-dependent boundary is not discussed, as it can be transformed to
the process itself based on the variable-change in (2.3.15).

3.5.2 The Estimate of Initial Boundary

The first issue to test is the accuracy of the initial boundary given in (3.2.15), i.e.

L(t) ≈ e−α(t,0)(x0 − β(t, 0) +
√
−4γ(t, 0) logG(t)). (3.5.2)

And here we want to see its performance when different times are proposed. The estimated
failure level from the initial estimation can be seen in Figure 3.3(a) and a special consideration
near zero can be seen in Figure 3.3(b). We should notice when time is near 0, the estimate is
with a very high accuracy. Actually the estimate returns L(0.01) ≈ 9.979214. Later calculation
will be based on this initial boundary value.
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3.5.3 Integral Equation Methods

The Fortet’s Equation Method

The Fortet’s equation method is fulfilled here, and the reproduced failure level is given in
Figure 3.4(a). Corresponding errors are shown in Figure 3.4(b).

From the result, we can derive

1. The error of the estimate increases rapidly as the time increases. This is due to the
discretization error of the numerical integral, which is based on the difference of the
changed time

√
γ(t, s). And we should notice with the equal time step-size, this dis-

cretization will induce rapidly increasing errors as
√
γ(t, s) is exponentially increasing.

This would be improved by consider non-equal time step-size, and design the step-size
according to the time-change.

2. The estimate has a sudden drop near the initial time. This is because of the natural
limit of the numerically solving procedure. As it is impossible for the computer to
recognize Z(x, t) = 0, instead it is frequent to judge Z(x, t) < ε for a small ε. This
treatment will tolerate small errors. Therefore at the beginning, the initial guess for
the solving procedure of the boundary is so good such that Z(x, t) < ε for the initial
guess and the solving is stopped immediately and returns the result. But when the
initial guess doesn’t satisfy Z(x, t) < ε for some time, the solving procedure starts to
search a result which is different with the initial guess. That is why a sudden drop
appears in the estimate.

The Master Equation Method

The master equation method is fulfilled here, and the reproduced failure level is given in
Figure 3.5(a). Corresponding errors are shown in Figure 3.5(b).

1. The estimate is very accurate and performs much better than the Fortet’s equation
method. This verifies also the guess for the error of the Fortet’s equation, as here

(a) Estimated initial boundary (black) com-
pared with the original boundary (red)

(b) The performance near zero, L(0.01) ≈
9.98.

Figure 3.3 – The estimation on the initial boundary
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(a) Estimated boundary (black) compared
with the original boundary (red)

(b) The estimate near the peak of the lifetime
distribution.

Figure 3.4 – The estimation on the boundary based on Fortet’s equation.

(a) Estimated boundary (black) compared
with the original boundary (red)

(b) The estimate near the peak of the lifetime
distribution.

Figure 3.5 – The estimation on the boundary based on the Master equation.
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the discretization error of the numerical integral is much less than the ones appeared
in Fortet’s equation method. Here when discretizing, the time is not changed and it
increases linearly.

2. There is also a sudden drop for the estimates near the initial time. The reason has
been explained before in the Fortet’s equation method.

3.6 Conclusions and Perspectives

In this chapter, the inverse first passage problem is introduced for the time-dependent
OU process. Such a problem aims to reproduce the failure level such that corresponding first
passage failure can fit given failure records. This makes up the gap between the prognosis
based on first passage failures and existing failure records. Integral equation methods based
on Fortet’s equation and master equation have been proposed in this chapter to solve this
problem respectively. Corresponding numerical tests are done to verify proposed algorithms.

The effort to make up the gap between failure records and inspection records are made
from various considerations. Generally speaking, 2 ways exist to fulfill this task when
boundary-crossing failures are considered. One is to modify the description of system fai-
lures, such as introducing last passage failure [59], passage duration [9] and killed FPT [29].
Such efforts consider the failure level is fixed but the failure description itself can be modified.

The other is to treat the failure level as pending which can be determined based on given
failure records. IFPT problem is therefore introduced to reproduce the failure level. We should
notice the OU process is a simple process, such that it would be much more difficult when
it comes to other diffusion processes. To extend the inverse first passage problem into other
processes, such as jump processes or jump-diffusion processes could also be interesting.





Chapitre 4

Maintenance Optimization for
Continuously Monitored Systems

In this chapter, the condition-based maintenance based on the OU process will be dis-
cussed for continuously monitored systems. This is the direct application of Chapter 1 on
the modeling work of degradation processes, Chapter 2 and Chapter 3 on the description
and prognosis of system failures. These issues are used for condition-based maintenance to
prevent the system failures.

Based on monitored system conditions and the prognosis of system failures, the condition-
based maintenance introduces preventive maintenance such that the balance can be achieved
between operation costs and disastrous results caused by system failures. In this chapter, cor-
responding maintenance optimization problems are discussed based on the time-dependent
OU process and the hypothesis of continuously monitored system. Due to the unexplicit
expression for prognosis of system failures, classical heuristic optimization procedures can-
not be fulfilled. Therefore the approximate first passage density is introduced to fulfill the
maintenance optimization.

The whole chapter is organized as follows. In Section 4.1, basic facts for condition-based
maintenance, description on the continuously monitored system and regenerative processes
will be introduced. In Section 4.2, the maintenance optimization problems will be proposed
for the time-dependent OU process based on the cost criterion and the availability criterion.
In Section 4.3, the idea of approximation-optimization is fulfilled to solve maintenance opti-
mization problems for three cases : the drifted Brownian motion, the time-changed Brownian
motion and the general OU process. In Section 4.4, several simulation tests will be done to
solve these maintenance optimization problems. In Section 4.5, conclusions and perspectives
will be given.

4.1 Introduction

4.1.1 Background

The condition-based maintenance is a current active field in the field of reliability enginee-
ring. And it is generally treated as maintenance when need arises. Compared to the planned
maintenance, personally condition-based maintenance shows its power on three points :

1. Because of the technical developments, sensors or detection techniques become more
convenient and also cheaper. So more and more inspection data appears in modern
industrial systems, how to combine this immense observed information to improve the
system performance, especially on preventing a system failure could be utilizable.

2. As the modern industrial system becomes more and more complex, the uncertainties
in the system state are also increasing. These uncertainties induce a high variation in
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the system states, such that the system state can hardly be predicted, or the prediction
is with a high uncertainty also. Therefore the planned maintenance, which is totally
based on the prediction of system states in its lifetime, can hardly process such a
situation. And actually the planned maintenance gives an intuitive and simple solution
to such a problem : proposing more strict strategies to prevent the risk of ignoring the
uncertainty contained in the prediction.

3. It should be noticed that even the long-term system state can hardly be predicted
with a high accuracy, the prediction in a short period could be trustable based on
the current observation. Independent of the prediction techniques, the prediction can
basically be around the current observation in a short period, if the system state is
supposed to have some continuity. This also gives the reasonability to consider a more
accurate control based on the current observation.

Moreover in the framework of condition-based maintenance, 2 kinds of maintenance ac-
tions are of interest : preventive maintenance and corrective maintenance. And correspondin-
gly 2 kinds of system failures are considered : real failure and virtual failure 1. When a real
failure occurs, the corrective maintenance is performed. When a virtual failure occurs, the
preventive maintenance is performed.

The key idea of maintenance optimization for continuously monitored systems is then
to arrange the preventive maintenance appropriately such that proposed objective functions
such as operation cost, system availability etc. can be optimized. Moreover in this thesis, the
real failure and virtual failure are all considered as first passage failures discussed in Chapter
2 and Chapter 3. Therefore in this chapter, the first passage failure to the corresponding
virtual failure level determines the preventive maintenance. Such hypotheses simplify the
original problem of arranging the preventive maintenance to the optimization of the virtual
failure level based on some objective functions.

Therefore, the strong connections among maintenance optimization, stochastic degra-
dation modeling and prognosis of system failures are revealed : the stochastic degradation
modeling provides a way to consider first passage failures, the first passage failures simplify
the maintenance optimization problems, and the maintenance optimization problems return a
virtual failure level below the real failure level which helps to control the system performance.

An important hypothesis on the maintenance action adopted in this chapter is ”as good
as new”. That is to say, after each maintenance operation the system state returns to the
new state. This induces the natural consideration of regenerative theory and simplifies the
maintenance optimization problems.

However, it is not an easy work to move directly from the previous analysis on first
passage times to the maintenance optimization. Due to the demand on a computable form of
the objective function with the virtual failure level in the maintenance optimization problems,
it is inconvenient to apply those numerical results which require a pre-set failure level to the
optimization problem.

So in this chapter, the work is presented based on the approximation-optimization fra-
mework. Previously derived approximation of the first passage density will be introduced
into the objective function and later the induced approximate expression will be optimized.
We will first consider two cases with explicit first passage density : drifted Brownian motion
and time-changed Brownian motion. For the general OU process, the approximate expression
from Section 2.3.7 will be considered.

1. The virtual failure is generally treated as an alarm before the real failure.
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4.1.2 System Description

In this chapter, we suppose the system state is inspected continuously. Following the hy-
potheses in [63, 7, 44], we consider maintenance optimization problems based on the minimum
cost and the maximum availability respectively.

During the lifetime of the system, supposing the degradation process is described by a one-
dimensional stochastic process {Xt, t ≥ 0} defined on a complete probability space (Ω,F,P),
the following time-dependent Ornstein-Uhlenbeck process Xt will be considered throughout
this chapter [20, 92, 2] :

dXt = (a(t)Xt + b(t))dt+ σ(t)dBt, t ≥ 0, (4.1.1)

where a(t), b(t), σ(t) ∈ C1(R+), σ(t) is positive, Bt is a standard Brownian motion and
X0 = x0 is a deterministic initial value.

Therefore Xt can be expressed explicitly by (1.3.3).

Xt = e−α(t,0)

[
x0 − β(t, 0) +

∫ t

0
σ(s)eα(s,0)dBs

]
. (4.1.2)

Remark : Although in maintenance problems, it is a general hypothesis to propose an
initial value 0 which is translated as the new state. But this treatment is not appropriate to
consider the OU process. This is due to

1. The degradation process is supposed to be independent with the real physical state,
and derived from data-analysis, such that 0 doesn’t have an explicit meaning in general.

2. Technically, the considered OU process is not with independent increments, such that
the initial value matters the later prediction a lot.

To consider optimization problems, it is specifically supposed that :

1. The system state is monitored continuously.

2. The real failure occurs instantly when the monitored system state reaches a pre-set
failure level Lr, where the failure time is denoted as τr := inft>0{xt ≥ Lr}. Also when
a real failure occurs, a maintenance is decided and the system state is immediately
unavailable.

3. The virtual failure occurs instantly when the monitored system state reaches a failure
level Lv ∈ [x0, Lr], where the failure time is denoted as τv := inft>0{xt ≥ Lv}. Also
when a virtual failure occurs, a maintenance is decided. But the system still works
until the maintenance starts or until the real failure occurs.

4. Maintenance will be performed after a deterministic delay time κ when it is decided,
and the maintenance operation has a random duration λ. When the maintenance is
finished, the system state is as good as new.

5. Between τv and τv + κ, the system deteriorates and possibly reaches the real failure
level during this period. If a real failure occurs (τr ≤ τv + κ), the system is off from
failure time until the end of maintenance operation τv +κ+λ. If a real failure doesn’t
occur (τr > τr + κ), the system is unavailable from the time τv + κ until the end of
maintenance operation τv + κ+ λ.

In such a framework, maintenance optimization problem is to find a value for the virtual
failure level Lv such that the objective function can be minimized. Corresponding to different
emphases in application, the objective function can vary in a large range, such as cost-based
optimization [63, 34], availability-based optimization [7, 44] etc..
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Figure 4.1 – Description of the maintenance policy.

Table 4.1 – Problem setup for the maintenance optimization

Degradation process Xt

Maintenance delay κ
Maintenance duration λ
Virtual failure level Lv

Real failure level Lr
Virtural failure time τv

Real failure time τr

Summarize all the above, the problem setup is given in Table 4.1.2. And also it is illus-
trated in Figure 4.1.

4.1.3 Preliminary Knowledge on Regenerative Process

When the hypothesis of ”as good as new” is considered for maintenance operations, the
whole degradation process can be naturally considered as a regenerative process. This is
because system states can return to the new state after each maintenance, which are supposed
to be independent of the previous states. Another reason why maintenance optimization
problems are deeply involved with the regenerative theory is that the objective function can
hardly proposed based on finite domains due to random effects, where time-average properties
could be utilizable from the renewal-reward theorem [69]. So in this subsection, it is aimed
to introduce the following issues :

1. The definition of regenerative processes.

2. The first passage times of the OU process can construct a regenerative process.

3. The renewal-reward theorem for the regenerative process.

Definition

Definition 4.1.1. [69] A stochastic process {Xt, t ≥ 0} is called regenerative if (by enlarging
the probability space if necessary) there is a random variable R1 > 0 such that
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1. {Xt+R1 : t ≥ 0} is independent of {{Xt, t < R1}, R1}, and

2. {Xt+R1 : t ≥ 0} is stochastically equivalent to {Xt : t ≥ 0}.

Here R1 is generally called a regeneration epoch, and say that Xt regenerates or starts
over at this point.

An alternative definition of regenerative processes is also given in [69, 72], which is given
as follows.

Definition 4.1.2. [69] A stochastic process {Xt, t ≥ 0} is called regenerative if (by enlarging
the probability space if necessary) there is a random variable R1 > 0 such that

1. {Xt+R1 : t ≥ 0} is independent of R1, and

2. {Xt+R1 : t ≥ 0} is stochastically equivalent to {Xt : t ≥ 0}.

The Regenerative Process with the Component as the OU process

Now consider {Xt, t ≥ 0} to be the OU process given in (4.1.1) with intial value x0. For
a failure level L > x0, the following consideration comes naturally.

Let τ1(L) := inft>0{Xt = L} denote the first passage time of Xt to the failure level L.
And define Z1 := inft>τ1(L){Xt = L}. Recursively define for k ≥ 1 :

τk+1(L) = inf
t>Zk
{Xt = L}, Zk+1 := inf

t>τk+1(L)
{Xt = L}. (4.1.3)

Following the statement in [69] for Brownian motion, by the continuity of the OU process
and corresponding strong Markov property. {Zk : k ≥ 1} is a well-defined embedded renewal
process for Xt that is null recurrent. Note that Xt is delayed regenerative with respect to the
embedded renewal process {τk(L) : k ≥ 1}.

Moreover since the OU process is with continuous trajectories, the only possible regene-
ration epochs R1 are hitting times to a fixed state : continuity together with the definition
4.1.1 implies that X(R1) is independent of itself which implies that there exists a L such that
P (YR1 = L) = 1.

Renewal-Reward Theorem

For the regenerative process, a renewal-reward theorem can be of interest to translate the
average rate function in long-term period to the one in one regenerative cycle. This is divided
into two steps as follows :

1. The renewal-reward theorem is introduced.

2. The limiting behaviour of regenerative processes is introduced.

The renewal-reward theorem is given from the statement in [85]. Denote the system
rewards rate as f(x) whenever it is in state x, then the total reward up to time t is given
by
∫ t

0 f(Xs)ds, where {f(Xt), t ≥ 0} is a regenerative process. The renewal-reward theorem
states that the average reward rate in long-term period can be given by the limiting behavior
of regenerative processes.

Lemma 4.1.3.

lim
t→+∞

∫ t

0
f(X(s))ds/t =

∫ +∞

−∞
f(y)dF (y) = E(f(X∞)), (4.1.4)

where F (y) is the limiting distribution of the regenerative process Xt.
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And the limiting distribution of the regenerative process is given by the following lemma.

Lemma 4.1.4.

F (y) =
1

E(R1)
E(

∫ R1

0
IXs∈(−∞,y]ds), (4.1.5)

where R1 is the regeneration epoch, and IA is the indicator function of A.

Moreover the result on the indicator function can be extended to a more general function,
and it turns back to the original problem.

Lemma 4.1.5. If the state space E is a complete separable metric space, for a measurable
function f : E → R, we have that

lim
t→+∞

E(f(Xt)) =
1

E(R1)
E(

∫ R1

0
f(Xs)ds). (4.1.6)

Therefore this classical result has turned the long-term average reward into the conside-
ration in one regeneration cycle. It induces also directly a computable form of the objective
function in maintenance optimization in the next section.

4.2 Evaluation Criterions

4.2.1 Cost-Based Maintenance Optimization

To consider the cost-based maintenance optimization, it is supposed further that :

1. A maintenance is performed with a cost Cm.

2. The inactivity of the system has a cost per unit of time Cu.

Under above hypotheses, the process Xt describing the system state is a regenerative
process with regenerative times which are times of maintenance. At a time of maintenance
the process returns to x0, and the random evolution of the system after the maintenance does
not depend on the past.

Following the consideration in [63], where the long run expected cost per unit of time is
defined as the mean cost on a cycle divided by the mean duration of a cycle :

EC∞ =
Cm + CuE((τv + κ+ λ− τr)Iτr≤τv+κ + λIτr>τv+κ)

E(τv + κ+ λ)

=
Cm + Cu(Eλ+ κ− E(inf(κ, τr − τv)))

E(τv) + κ+ Eλ
.

(4.2.1)

Then the cost-based problem is to solve Lv from the following problem :

argminLvEC∞, s.t. x0 ≤ Lv ≤ Lr. (4.2.2)

The remaining work is to give a computable expression of EC∞ with the virtual failure
level Lv. Following the analysis in [63], we first calculate E(inf(σ, τr−τv)), related to the joint
pdf pτv ,τr(x, y) of (τv, τr).

As it is constrained that Lv ≤ Lr, then obviously τr ≥ τv. So the joint distribution of
(τv, τr) is concentrated on {x ≤ y}. Different to Gamma process considered in [63], the time-
dependent OU process considered here is continuous, and therefore the probability of τr = τv
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is zero. We only need to consider the survival function of (τv, τr) on x < y based on the strong
Markov property and also the continuity of the OU process Xt :

P (τv > x, τr > y) = P (τr > y)− P (τv ≤ x, τr > y) = P (τr > y)−
∫ x

0
P (τr > y|τv = z)gτv(z|x0, t0)dz

=

∫ +∞

y
gτr(s|x0, t0)ds−

∫ x

0

∫ +∞

y
gτr(η|τv = z)gτv(z|x0, t0)dηdz

=

∫ +∞

y
gτr(s|x0, t0)ds−

∫ x

0

∫ +∞

y
gτr(η|Lv(z), z)gτv(z|x0, t0)dηdz,

(4.2.3)

where gτr(η|y, s) expresses the conditional first passage density to Lr for Xt based on (y, s),
gτv(x|y, s) for the conditional first passage density to Lv for Xt based on (y, s).

From (4.2.3), its density function is equal to :

pτv ,τr(x, y) =
∂2

∂x∂y
(P (τv > x, τr > y)) = gτr(y|Lv(x), x)gτv(x|x0, 0). (4.2.4)

Furthermore, we have for t ≥ 0, the survival function H̄(t) of τr − τv is given :

H̄(t) =

∫ ∫
y−x>t

pτv ,τr(x, y)dxdy =

∫ +∞

t

∫ y−t

0
gτr(y|Lv(x), x)gτv(x|x0, 0)dxdy. (4.2.5)

Finally we get

E(inf(κ, τr − τv)) =

∫ κ

0
H̄(s)ds. (4.2.6)

Based on all the above we actually have expressed EC+∞ in a closed form by the condi-
tional first passage density for τv and τr, and more specific computation on such issues with
direct connection for Lv will be investigated in the next section for the optimization in (4.2.2).

4.2.2 Availability-Based Maintenance Optimization

It is also an emphasis in the field of reliability engineering to maximize the system availa-
bility. And therefore the following asymptotic unavailability criterion can also be of interest
[7].

Supposing Xt is the regenerative process based on the OU process with the regenerative
times defined in (4.1.3), the asymptotic unavailability rate is given by the mean off time on
a cycle divided by the mean duration of a cycle. This is due to the renewal-reward theorem.

U∞ =
E(λIτr>τv+r + (τv + κ− τr + λ)Iτr≤τv+κ)

E(τv + κ+ λ)

=
Eλ+ E((τv + κ− τr)Iτr≤τv+κ)

E(τv + κ+ λ)

=
Eλ+ κ− E(inf(κ, τr − τv))

E(τv) + κ+ Eλ
. (4.2.7)

Then the availability-based problem is to solve Lv from the following problem :

argminLvU∞, s.t. x0 ≤ Lv ≤ Lr. (4.2.8)
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It is noted that essentially there is no technical difference between the cost-based opti-
mization and availability-based optimization, as the core issues in (4.2.1) and (4.2.7) remain
the same.

4.2.3 Linking the Maintenance Duration with the System State

It is a natural consideration to suppose that the time of maintenance operation depends
on system states such that in [7], it is suggested to consider that

Eλ = λ1 + λ2E(Xτv+κ), (4.2.9)

where λ1, λ2 are deterministic values. The initial idea for such a proposition is to consider
that the maintenance duration is longer when the system degradation is more severe.

However instead of (4.2.9), in this chapter another discounted version for the duration of
maintenance operation would be considered as follows,

Eλ = λ1 + λ2E(Xτv+κe
α(τv+κ,0)). (4.2.10)

This is due to the calculation difficulty for (4.2.9) by the nonlinearity of the process. And
also (4.2.10) didn’t introduce any issue related to the process, but just a weight eα(t,0) to
Xt. Therefore it still can reproduce the original idea of linking the system state with the
maintenance duration. However the relationship turns from a linear link to a nonlinear link.

To proceed the estimation on E(Xτv+κe
α(τv+κ,0)), the following lemma on the martingale

properties of Xt is essential.

Lemma 4.2.1. Recalling the process Xt in (4.1.2), the process Xte
α(t,0) + β(t, 0) − x0 is a

mean-zero Gaussian martingale.

Proof. Note that under the time-change given in Proposition 1.3.1, Xte
α(t,0) + β(t, 0) − x0

is a Gauss-Markov process. And this result comes naturally from Exercise 1.13, Page 86 in
[61].

Based on Lemma 4.2.1, the following proposition is given for the expression of E(Xτv+κ).

Proposition 4.2.2. The discounted mean degradation level at the entrance time τv + κ is
given by

E(Xτv+κe
α(τv+κ,0)) = −E(β(τv + κ, 0)) + x0. (4.2.11)

Proof. By Lemma 4.2.1, the process Xte
α(t,0)+β(t, 0)−x0 is a Gaussian martingale. Therefore

for the natural filtration Ft of the process Xt, we have

E(Xte
α(t,0) + β(t, 0)− x0|Fs) = Xse

α(s,0) + β(s, 0)− x0. (4.2.12)

Therefore by the optional stopping theorem with the stopping time τv +κ, we know that

E(Xτv+κe
α(τv+κ,0) + β(τv + κ, 0)− x0) = 0. (4.2.13)

This leads to
E(Xτv+κe

α(τv+κ,0)) = −E(β(τv + κ, 0)) + x0. (4.2.14)
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To calculate E(β(τv + κ, 0)), the following proposition could be utilizable.

Proposition 4.2.3. For any function f ∈ C1[s,+∞), and denote the conditional first passage
time of a continuous process Xt to the boundary L(t) by τy,s := inft>s{Xy,s

t ≥ L(t)},

E(f(τy,s)) = f(s) +

∫ +∞

s
P (τy,s > t)df(t). (4.2.15)

Especially,

E(τy,s) = s+

∫ +∞

s
P (τy,s > t)dt. (4.2.16)

Proof. Noticing P (τy,s > s) = 1, P (τy,s > +∞) = 0,

E(f(τy,s)) =

∫ +∞

s
f(t)g(t|y, s)dt = −

∫ +∞

s
f(t)dP (τy,s > t) (4.2.17)

= −f(t)P (τy,s > t)|+∞t=s +

∫ +∞

s
P (τy,s > t)df(t)

= f(s) +

∫ +∞

s
P (τy,s > t)df(t).

4.3 Approximation-Optimization

In Section 4.2, it is presented that the core issues in the maintenance optimization pro-
blems are to calculate the mean first passage time for the OU process Xt to the virtual failure
level Lv and E(inf(κ, τr − τv)). However it is difficult to have an explicit expression of the
first passage density for the OU process like Gamma process [7], such that in this section we
will emphasize on the possibility to derive results from approximate expressions.

Here we suppose Lr and Lv are all constant boundaries in this section. And as descri-
bed before the real failure level Lr is given, and Lv is pending to be optimized from the
maintenance optimization problems. And the key idea in this section is to propose some com-
putable expressions whose accuracy doesn’t depend on the pending Lv, such that the optimi-
zation procedure for Lv will not be influenced by the approximation. Such an approximation-
optimization procedure is widely in engineering problems where the objective function cannot
be expressed explicitly, more consideration can be referred to Appendix B.

And the discussion in this section concerns the following points :

1. It is presented that the drifted Brownian motion can be considered in an explicit way
for the presented maintenance optimization problems.

2. It is presented that when the time-changed Brownian motion is applied, the mainte-
nance optimization problem can be solved based on an approximation-optimization
way. We should notice the first passage density is still explicit in this case, what we
need do is to do approximation for the integral involved in the objective functions.

3. For a general OU process, the situation is similar. And we try to reproduce the
approximation-optimization procedure for the time-changed Brownian motion. We
first approximate the first passage density by a parametric form related to the virtual
failure level, and solve the optimization problems based on corresponding objective
functions. This leads to the estimate of the failure level directly. And here the derived
results in Section 2.3.7 are applied in the calculation.
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4.3.1 Drifted Brownian motion

Basic Properties

In this subsection, a direct analysis based on Brownian motion will be presented. And
our consideration is limited to the drifted Brownian motion given by Xt = µt + σBt with
the initial value 0 at 0, µ, σ > 0, and corresponding virtual and real failure level Lv and Lr,
whose transition pdf is given by

p(x, t|y, s) =
1√

2πσ2(t− s)
exp(−(x− y − µ(t− s))2

2σ2(t− s)
). (4.3.1)

Its first passage density to a constant boundary L > 0 based on (y, s) satisfies inverse
Gaussian distribution :

g(t|y, s) =
L− y√

2πσ2(t− s)3
exp(−(L− µ(t− s)− y)2

2σ2(t− s)
). (4.3.2)

Corresponding first passage distribution G(t|y, s) is given from (2.3.36) for C = −2µ
σ2

G(t|y, s) = 1− F (L, t|y, s) + e
2µ

σ2
(y−L)F (L, t|2L− y, s)

= Φ(
µ(t− s)− L+ y

σ
√
t− s

) + e
2µ

σ2
(y−L)Φ(

−µ(t− s)− L+ y

σ
√
t− s

), (4.3.3)

where Φ(∗) is the normal distribution function.

The mean first passage time is given by

E(τy,s) =

∫ +∞

s
tg(t|y, s)dt =

∫ +∞

0
(z + s)g(z|y, 0)dz = s+

L− y
µ

. (4.3.4)

Calculation on E(inf(κ, τr − τv))

It is noticed that the Brownian motion is with continuous trajectories such that it can
simplify the calculation on E(inf(κ, τr − τv)). This simplification is due to the continuity and
strong Markov propertie of Brownian motion.

It should be noticed by the homogeneous property of Xt that τr−τv should have the same
probability law with the first passage time of Xt to the boundary Lr − Lv, which is denoted
by τr−v.

Therefore we have

E(inf(κ, τr − τv)) = E(inf(κ, τr−v)) =

∫ κ

0
(1−Gτr−v(z|0, 0))dz. (4.3.5)

It is then derived from (2.3.36) that

1−Gτr−v(t|0, 0) = F (Lr − Lv, t|0, 0)− e
2µ

σ2
(Lv−Lr)F (Lr − Lv, t|2(Lr − Lv), 0). (4.3.6)

Therefore, we have

E(inf(κ, τr − τv)) = E(inf(κ, τr−v))

=

∫ κ

0
F (Lr − Lv, z|0, 0)dz − e

2µ

σ2
(Lv−Lr)

∫ κ

0
F (Lr − Lv, z|2(Lr − Lv), 0)dz.

(4.3.7)
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And also if we propose to connect the maintenance duration with the degradation level,
then we have Eλ = λ1 + λ2E(τv + κ) with

E(Xτv+κ) = µ(E(τv) + κ). (4.3.8)

Therefore it is achieved at a computable form for the asymptotic unavailability criterion

U∞ =
Eλ+ κ− E(inf(κ, τr − τv))

E(τv) + κ+ Eλ

=
λ1 + λ2E(τv + κ) + κ−

∫ κ
0 (1−Gτr−v(z|0, 0))dz

E(τv) + κ+ λ1 + λ2E(τv + κ)
. (4.3.9)

Correspondingly the asymptotic cost rate is given by

EC∞ =
Cm + Cu(λ1 + λ2E(τv + κ) + κ−

∫ κ
0 (1−Gτr−v(z|0, 0))dz)

E(τv) + κ+ λ1 + λ2E(τv + κ)
. (4.3.10)

Only one integral is involved which needs further approximation, and the compound
trapezoid rule is adopted to approximate this issue. Then the optimization error only depends
on the error from numerical integrals, and this can be compensated generally by considering
more accurate numerical algorithms with smaller step-sizes.

4.3.2 Time-changed Brownian motion

The time-changed Brownian motion will be discussed in this subsection on its application
in maintenance optimization problems. And also the core issue is also to calculate E(τv) and
E(inf(κ, τr − τv)).

Recall in (2.3.39), the time-changed Brownian motion is discussed with the following form.

dXt =
C

2
σ2(t)dt+ σ(t)dBt, X0 = 0, t ≥ 0 (4.3.11)

where C > 0, and σ(t) > 0 is a continuous function.

The notations in (1.3.3) for (2.3.39) are updated to

α(t, s) = 0, γ(t, s) =
1

2

∫ t

s
σ2(z)dz, β(t, s) = −C × γ(t, s), (4.3.12)

Remark : Although under a time-change Γ(t) = 2γ(t, 0), Xt can be treated in the form
of Xt = C

2 Γ(t) + BΓ(t), such that much simpler analysis can be performed based on the
properties of Brownian motion. But this treatment can only lead directly to E(Γ(τv)) and
also the probability law of Γ(τr)−Γ(τv), which are still far from the desired issues E(τv) and
E(inf(κ, τr − τv)). Therefore the following analysis is not trivial to derive some approximate
expressions for calculation.

Basic Properties

For the time-changed Brownian motion, its transition pdf is given by

p(x, t|y, s) =
1√

4πγ(t, s)
exp(−(x− y − Cγ(t, s))2

4γ(t, s)
), (4.3.13)
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such that the transition distribution is given by

F (x, t|y, s) = Φ(
x− y − Cγ(t, s)√

2γ(t, s)
). (4.3.14)

Furthermore, for a constant failure level L, its first passage density is given by (2.3.44)

g(t|y, s) =
σ2(t)(L− y)

2γ(t, s)
p(L, t|y, s). (4.3.15)

Correspondingly, the first passage distribution is given by (2.3.45)

G(t|y, s) = Φ(
−L+ Cγ(t, s) + y√

2γ(t, s)
) + e−C(y−L)Φ(

−Cγ(t, s)− L+ y√
2γ(t, s)

), (4.3.16)

where Φ(∗) is the normal distribution function.

These analytical properties lead to the calculation in the following.

Mean First Passage Time

From Proposition (4.2.3), for the time-changed Brownian motion, it comes to

E(τv) =

∫ +∞

0
(1−Gτv(z|0, 0))dz. (4.3.17)

And also for the mean duration of maintenance action,

E(Xτv+κ) = −E(β(τv + κ, 0)) = −
∫ +∞

0
(1−Gτv(z|0, 0))dβ(z + k, 0)

=
C

2

∫ +∞

0
(1−Gτv(z|0, 0))σ2(z + k, 0)dz (4.3.18)

To allow a computable form of these two issues, we should consider a truncated form for
the integral on infinite interval. But the difficulty exists for the value of the virtual failure level
Lv which is unknown before the optimization. And to judge whether the truncated integral
is enough good is not obvious.

Here it is suggested to consider truncating the integral based on the analysis of τr as τr ≥
τv. It is obvious therefore the value of (1−Gτr(z|y, s)) is always larger than (1−Gτv(z|y, s)).
If we truncate the interval based on the judgement of (1−Gτr(z|y, s)), it should be enough
accurate for the smaller function (1 − Gτr(z|y, s)) even it is with a pending parameter Lv.
And the truncated integral for (1 −Gτr(z|y, s)) should be at least as good as the truncated
integral for (1−Gτr(z|y, s)).

So summarize all the above, the computation follows the following procedures :

1. Set a tolerance error ε > 0 and a control value h > 0, and choose a large value T
such that 1 − Gτr(T |y, s) < ε and

∫ T+h
T (1 − Gτr(z|y, s))dz < ε. The same treatment

is applied to
∫ +∞

0 (1−Gτv(z|y, 0))σ2(z + κ)dz, but it needs the consideration on (1−
Gτr(z|y, s))σ2(z + κ).
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2. When the end-time T is chosen, such that the approximations are given :∫ ∞
s

(1−Gτr(z|y, s))dz ≈
∫ T

s
(1−Gτr(z|y, s))dz, (4.3.19)

and ∫ ∞
s

(1−Gτr(z|y, s))σ2(z + κ)dz ≈
∫ T

s
(1−Gτr(z|y, s))σ2(z + κ)dz. (4.3.20)

3. The integral in a finite interval is further approximated by numerical algorithms, such
as compound trapezoid rule.

Following the above procedures, we can achieve an enough accurate approximate expres-
sion for the mean regenerative time and mean maintenance duration, which is an explicit
function on the pending Lv. The approximation accuracy could be slightly influenced by the
knowledge on Lv, and only the error from the numerical integral scheme contributes.

Calculation on E(inf κ, τr − τv)

From (4.2.6), we know

E(inf(κ, τr − τv)) =

∫ κ

0
H̄(s)ds (4.3.21)

where

H̄(t) =

∫ +∞

t

∫ y−t

0
gτr(y|Lv, x)gτv(x|0, 0)dxdy. (4.3.22)

Although as stated before, gτr(y|Lv(x), x) and gτv(x|0, 0) can be given explicitly, but the
integral on the infinite interval is still a problem for the optimization. Following the previous
stated analysis based on the fact that τr ≥ τv, we will also propose to truncate the infinite
interval based on τr.

Actually, from the Fortet’s equation (2.2.1),

p(Lr, t|0, 0) =

∫ t

0
p(Lr, t|Lv, z)gτv(z|0, 0)dz. (4.3.23)

Therefore from (4.3.15), we have∫ y−t

0
gτr(y|Lv, x)gτv(x|0, 0)dx =

∫ y−t

0

σ2(y)(Lr − Lv)
2γ(y, x)

p(Lr, t|Lv, x)gτv(x|0, 0)dx. (4.3.24)

Noticing x ∈ [0, y − t] such that γ(y, x) ∈ [γ(y, y − t), γ(y, 0)], and Lr − Lv ∈ [0, Lr − x0]
therefore from (2.2.1), we should have∫ y−t

0
gτr(y|Lv, x)gτv(x|0, 0)dx ≤ σ2(y)(Lr − x0)

2γ(y, y − t)

∫ y−t

0
p(Lr, t|Lv, x)gτv(x|0, 0)dx

=
σ2(y)(Lr − x0)

2γ(y, y − t)
p(Lr, y − t|0, 0). (4.3.25)

Now we can propose the truncated approximation for E(inf(κ, τr − τv)) as follows :
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1. Set a tolerance error ε > 0 and a control value h > 0, and choose a large value T > t

such that σ2(T )(Lr−x0)
2γ(T,T−t) p(Lr, T − t|0, 0) < ε and

∫ T+h
T

σ2(z)(Lr−x0)
2γ(z,z−t) p(Lr, z− t|0, 0)dz < ε.

2. When the end-time T is chosen, the approximation is given :

H̄(t) ≈
∫ T

t

∫ y−t

0
gτr(y|Lv, x)gτv(x|0, 0)dxdy. (4.3.26)

3. The integral in a finite interval for
∫ κ

0 H̄(s)ds is further approximated by numerical
algorithms, such as compound trapezoid rule.

Following the above procedures, we can achieve an enough accurate approximate expres-
sion for

∫ κ
0 H̄(s)ds, which is an explicit function on the pending Lv. The approximation

accuracy could be slightly influenced by the knowledge on Lv, and only the error from the
numerical integral scheme contributes. This could be compensated by more accurate approxi-
mation schemes on the integrals.

4.3.3 The General OU Process

Durbin’s Approximation

In Section 2.3.7, an approximate expression for first passage density function has been
proposed. Using such an approximation to calculate the optimization problem, it comes to the
same heuristic procedures for maintenance optimization as in the one for Brownian motion
[44] and the one for Gamma process [7].

Recalling the process Xt given by (4.1.1),

dXt = (a(t)Xt + b(t))dt+ σ(t)dBt, X0 = x0, t ≥ 0. (4.3.27)

An approximate expression for the first passage density to the boundary L(t) is given by
(2.3.113) :

g(t|y, s) ≈
[
a(t)E(Xt) + b(t)− L′(t) + (L(t)− E(Xt))(

σ2(t)

var(Xt)
+ a(t))

]
× p(L(t), t|y, s),

(4.3.28)

where

E(Xt) = e−α(t,s)

(
y − β(t, s)

)
,

var (Xt) = e−2α(t,s)

∫ t

s
σ2(u)e2α(u,s)du. (4.3.29)

Especially for the constant failure level L, it is noted that

g(t|y, s) ≈
[
a(t)E(Xt) + b(t) + (L− E(Xt))(

σ2(t)

var(Xt)
+ a(t))

]
p(L, t|y, s). (4.3.30)

The expression in (4.3.30) leads directly to the expression of first passage densities
gτr(t|y, s) and gτv(t|y, s) by considering Lr and Lv respectively.
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Mean First Passage Time

Now we have an explicit expression for the approximate first passage density (4.3.30),
which leads directly to the mean first passage time and the proposed mean maintenance
duration. From Proposition (4.2.3), for the OU process, it comes to

E(τv) =

∫ +∞

0
zgτv(z|x0, 0))dz. (4.3.31)

And also the mean duration of maintenance action,

E(Xτv+κe
α(τv+κ,0)) = −E(β(τv + κ, 0)) + x0 = x0 −

∫ +∞

0
gτv(z|x0, 0))β(z + k, 0)dz.

(4.3.32)

To allow a computable form of these two issues, we should consider a truncated form for
the integral on infinite interval. But the difficulty exists for the value of the virtual failure level
Lv which is unknown before the optimization. And to judge whether the truncated integral
is enough good is not obvious.

Following the previous stated analysis for the time-changed Brownian motion (4.3.25),
using the fact that τr ≥ τv, we can propose a controllable approximation to truncate the
infinite interval based on τr.

Calculation on E(inf κ, τr − τv)

From (4.2.6), we know

E(inf(κ, τr − τv)) =

∫ κ

0
H̄(s)ds (4.3.33)

where

H̄(t) =

∫ +∞

t

∫ y−t

0
gτr(y|Lv, x)gτv(x|x0, 0)dxdy. (4.3.34)

It follows two steps to give an approximation of H̄(t) :

1. Truncate the infinite interval with an end-time T > 0, such that

H̄(t) ≈
∫ T

t

∫ y−t

0
gτr(y|Lv, x)gτv(x|x0, 0)dxdy. (4.3.35)

2. Approximate
∫ T
t

∫ y−t
0 gτr(y|Lv, x)gτv(x|x0, 0)dxdy by numerical algorithms, such as

compound trapezoid rule.

Such an approximation has two kinds of errors, which are stated as follows :

1. Errors in control. As stated before, gτr(y|Lv(x), x) and gτv(x|0, 0) can be approximated
by (4.3.30) explicitly, what we need to do is to truncate the infinity interval and
propose approximations for the integral in a finite interval. Following the previous
stated analysis for the time-changed Brownian motion (4.3.25), using the fact that
τr ≥ τv, we can propose a controllable approximation to truncate the infinite interval
based on τr.
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Table 4.2 – Experimental setup for the maintenance optimization based on the drifted
Brownian motion

Process κ λ1 λ2 Cm Cu Lr
Xt = 2t+ 10Bt 2 2 0.2 100 40 20

Table 4.3 – The maintenance optimization results for the drifted Brownian motion
criterion optimal value optimal Lv

asymptotic cost rate EC∞ 31.55786 17.18251
asymptotic unavailability U∞ 0.6832056 2.088506

2. Errors out of control. We should notice the accuracy of the approximate first passage
density (4.3.30) can be promised for itself, but when it comes to an approximation for
the multiple integral H̄(t) involving many approximate first passage density values, it
is hard to have an estimate for the overall error for such an approximation. Therefore
even we here do this approximation, we cannot propose an accurate control right now.
And it induces more consideration on the original first passage problem in the future.

Following the above procedures, we can achieve an enough accurate approximate expres-
sion for

∫ κ
0 H̄(s)ds, which is an explicit function on the pending Lv. The approximation

accuracy can be promised without the knowledge on Lv.

4.4 Simulation Tests

4.4.1 Drifted Brownian motion

The first example is chosen as the drifted Brownian motion, and here we suppose the
considered process as the drifted Brownian motion Xt = 2t + 10Bt. And other parameters
are chosen as in Table 4.4.1.

The optimization is performed based on the asymptotic unavailability (4.2.7) and also the
asymptotic cost rate (4.2.1). And the results are presented in Table 4.4.1. Correspondingly,
the asymptotic unavailability and asymptotic cost rate are presented in Figure 4.2(a) and
Figure 4.2(b) respectively.

4.4.2 Time-Changed Brownian Motion

Continuing the setup in Section 2.5, here we will consider a time-changed Brownian motion
Xt as follows :

dXt = 0.5tdt+
√
tdBt, X0 = 0, t ≥ 0. (4.4.1)

And other parameters for the simulation test are chosen as in Table 4.4.2.

Table 4.4 – Experimental setup for the maintenance optimization based on the time-changed
Brownian motion

Process κ λ1 λ2 Cm Cu Lr
dXt = 0.5tdt+

√
tdBt 2 2 0.2 100 40 10 .
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Table 4.5 – The maintenance optimization results for the time-changed Brownian motion
criterion optimal value optimal Lv

asymptotic cost rate EC∞ 26.84566 4.710752
asymptotic unavailability U∞ 0.3929153 2.3366

The optimization is performed based on the asymptotic unavailability (4.2.7) and also the
asymptotic cost rate (4.2.1). And the results are presented in Table 4.4.2. Correspondingly,
the asymptotic unavailability and asymptotic cost rate are presented in Figure 4.3(a) and
Figure 4.3(b) respectively.

(a) Asymptotic unavailability rate (b) Asymptotic cost rate

Figure 4.2 – The performance of systems under different criterions for Xt = 2t+ 10Bt

(a) Asymptotic unavailability rate (b) Asymptotic cost rate

Figure 4.3 – The performance of systems under different criterions for dXt = 0.5tdt+
√
tdBt
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Table 4.6 – Experimental setup for the maintenance optimization based on the OU process
dXt = (−r(Xt −m(t)) +m′(t))dt+ σdBt

Process κ λ1 λ2 Cm Cu Lr x0

dXt = (−r(Xt −m(t)) +m′(t))dt+ σdBt 2 2 0.2 10 5 10 2.8074561.

Table 4.7 – The maintenance optimization results for the OU process
criterion optimal value optimal Lv

asymptotic cost rate EC∞ 4.587412 8.007235
asymptotic unavailability U∞ 0.6886225 4.050314

4.4.3 Ornstein-Uhlenbeck Process

Continuing the discussion for MOU in Section 1.5.3 with corresponding parameters fitted
from a real degradation data-set given in Table 1.4, we here will consider a OU process Xt

as follows :

dXt = (−r(Xt −m(t)) +m′(t))dt+ σdBt, t ≥ 0, X0 = x0, (4.4.2)

where r = 0.1806708, σ = 2.4640884,m(t) = 2.4402845((t + 1)0.8892020 − 1) + x0, x0 =
2.8074561. Some trajectories of the process (2.5.12) are produced based on Monte-Carlo
simulation, which are shown in Figure 1.4(b). And other parameters for the simulation test
are chosen as in Table 4.4.3.

The optimization is performed based on the asymptotic unavailability (4.2.7) and also the
asymptotic cost rate (4.2.1). And the results are presented in Table 4.4.3. Correspondingly,
the asymptotic unavailability and asymptotic cost rate are presented in Figure 4.4(a) and
Figure 4.4(b) respectively.

As stated before, due to the approximate expression of first passage density in the calcu-
lation, the overall error of the calculation can hardly be controlled. And this can be easily
observed in the calculation results themselves. From Figure 4.4(a), it is noticed when time
is small, a value around 1.05 is returned while the real one should be smaller than 1, this
overestimated value will give the confusion to use such a result directly. This is due to the
negative value produced by the Durbin’s approximation, although this value tends to zero
when the time is large.

So we redo the experiment by simply setting those negative values to zero, and new figures
are produced, see Figure 4.5(a) and 4.5(b). And under this treatment, the optimal value for
the cost criterion and unavailability criterion are given in Table 4.4.3.

Even with errors, the trend of the object functions can be described in a computable
form, such that corresponding optimal value for the virtual failure level could be treated as
an independent reference compared with experts’ judgements.

4.5 Conclusions and Perspectives

In this chapter, we presented the maintenance optimization problem for a continuously
monitored system, where it is aimed to arrange properly the preventive maintenance before
corrective maintenance. The previous discussion on first passage problems are extended to
this application. Under the description of first passage failures, the maintenance optimization
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(a) Asymptotic unavailability rate (b) Asymptotic cost rate

Figure 4.4 – The performance of systems under different criterions for dXt = (a(Xt−m(t))+
m′(t))dt+ σdBt, rough calculation.

(a) Asymptotic Unavailability (b) Asymptotic Cost rate

Figure 4.5 – The performance of systems under different criterions for dXt = (a(Xt−m(t))+
m′(t))dt+ σdBt, modified calculation.
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problem is simplified to find an optimal virtual failure level as a decision rule.

The consideration is based on an approximation-optimization way, and three different
processes are discussed : the drifted Brownian motion, the time-changed Brownian motion
and the genenral Ornstein-Uhlenbeck process. The former two cases are with explicit first
passage density, but the latter is with unexplicit expression such that the Durbin’s approxi-
mation is introduced to fulfill the approximation-optimization. The maintenance problem is
also considered from two different criterions : the asymptotic cost rate and the asymptotic
unavailability rate. Moreover the link between the maintenance operation duration and the
degradation level is considered in the problem.

Using analytical approximations of first passage density in maintenance optimization pro-
blems allows more possibilities rather than the continuously monitored system. A natural
extension is to consider optimizing the inspection interval at the same time with the virtual
failure level when the system is not continuously monitored [34].



Conclusions and Perspectives

Conclusions

In this thesis, we have discussed four issues, aiming to describe, predict and prevent
system failures :

1. stochastic degradation modeling based on a time-dependent Ornstein-Uhlenbeck (OU)
process ;

2. prognosis of system failures via first passage problems ;

3. failure level estimation via inverse first passage problems ;

4. maintenance optimization for a continuously monitored system.

The whole work adopts a model-based view based on first passage failures, and the illustration
of the framework is presented in Figure 4.6.

In the part about stochastic degradation modeling based on a time-dependent OU pro-
cess, we have introduced the following time-dependent OU process in the form of stochastic
differential equation :

dXt = (a(t)Xt + b(t))dt+ σ(t)dBt, t ≥ 0. (4.5.1)

It is shown that the time-dependent OU process is a good choice for degradation modeling
from different aspects :

1. The OU process is with great flexility to model statistical properties of degradation
records, especially on the mean, variance and covariance.

2. The mean-reverting property of the OU process localizes the fluctuations introduced
in the degradation process. This is a good point to connect the stochastic modeling
with justified experts’ opinions and physical laws.

Figure 4.6 – System failures : description as first passage failures, prediction and prevention.
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3. The OU process is with an explicit transition pdf, such that the parameter estimation
from degradation records is not hard to be fulfilled.

4. A case study for a degradation data-set from passive components in power plants is
performed to compare the OU process with a nonlinear-drift, linear-diffusion process.

In the part about prognosis of system failures via first passage problems, it concerns
the residual useful lifetime estimation from conditional first passage problems. And we have
developed different techniques to estimate the corresponding first passage density or the
first passage distribution from two different views : partial differential equations and inte-
gral equations. These techniques can be generally categorized into three classes : analytical
approximations, numerical algorithms and Monte-Carlo methods. Specifically, the following
issues have been investigated.

1. By solving an initial-boundary value problem for Fokker-Planck equation, it is found
that the first passage problems can be solved explicitly under a quasi-linear boundary
defined in Proposition 2.3.4.

2. The quasi-linear boundary leads to an explicit tangent approximation for the first
passage distribution in Proposition 2.3.9, which is proved to have a global accuracy
under some conditions. This is proved to be the same with Durbin’s approximation in
Proposition 2.3.21.

3. The general consideration of the method of images leads to the parametric approxi-
mation of first passage density, which is solved by a linear programming approach
(2.3.67). A special case of quasi-Daniels boundary is considered in Proposition 2.3.12.

4. A piecewise quasi-linear Monte-Carlo method is derived in (2.3.6).

5. A non-singular Volterra integral equation leads to a numerical algorithm (2.4.22).

6. Simulation tests are done to compare these methods in three cases : drifted Brownian
motion, time-changed Brownian motion and a general OU process.

In the part about failure level estimation via inverse first passage problems, the gap
between first passage failures and existing failure records is considered from a pure data-
analysis view. To make up the gap, the inverse first passage is introduced, which is solved
later based on integral equation methods. The role of the inverse first passage problem is
illustrated in Figure 4.7. Specifically, the following issues have been discussed :

1. The initial boundary estimation in (3.2.15) for the OU process is derived from a
preliminary result for Brownian motion.

2. The inverse first passage problem is solved from the Fortet’s equation and the master
equation respectively via an iterative procedure.

3. A simulation test is done to reproduce the failure level from simulated first passage
density and distribution in a case study.

In the part about maintenance optimization for a continuously monitored system, it aims
to propose a decision rule to perform preventive maintenance before corrective maintenance
such that the objective function can be optimized. Continuing the discussion based on first
passage failures, the technical target is simplified to find an optimal virtual failure level.
Specifically, the following issues have been fulfilled :

1. The OU process has been introduced into condition-based maintenance for a conti-
nuously monitored system.

2. The maintenance optimization problem for the OU process has been solved in an
approximation-optimization way, under the criterion of the asymptotic cost rate and
asymptotic unavailability rate.
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Figure 4.7 – The introduction of inverse first passage problems into PHM.

3. This maintenance optimization problem is discussed respectively for the drifted Brow-
nian motion, time-changed Brownian motion and the OU process in simulation tests.

Perspectives

The perspectives of this thesis can be considered from also four aspects : degradation
modeling, failure prognosis, failure level estimation and maintenance optimization.

The mean-reversion in stochastic degradation modeling implies the possibility to consider
2-stage models furthermore as in [75] and also Section 1.3.3. That is to say, the real degra-
dation process is treated as a should-be processes given by physical laws. To make up the
gap between this should-be process and observed data, the co-effect of mean-reversion and
exciting-noise leads to a modified model.

Also the mean-reversion could be a starting point to introduce Levy-driven OU processes
into stochastic degradation modeling. This is triggered by considering the risk of sudden
change of system states or jumps in mathematical descriptions. However this is from a mo-
deling view, it would be difficult to consider prognosis of system failures and involve more
mathematical tools.

To do failure prognosis, the first passage problem is introduced for the OU process.
This induces an interdisciplinary consideration among stochastic analysis, PDE, integral
equation, numerical analysis etc.. The analysis in this thesis starts with w(x, t|y, s) :=
∂P (τy,s>t,Xt<x|Xs=y)

∂x , but a possibility to follow other analysis exists. Relaxing the constraint
of crossing boundaries by using the explicit expression from the method of images leads to
many insightful results [43].

The view of u(x, t|y, s) := P (τy,s > t,Xt < x|Xs = y) leads to a free boundary problem
in (2.3.9), which is essential for a rigorous analysis of inverse first passage problems [13, 12].
Also it leads to a starting point of optimal stopping problems [58].

The first passage failure to the pre-set failure level can hardly fit existing failure records.
The effort to make up the gap between failure records and first passage failures are made from
various considerations. Generally speaking, 2 ways exist to fulfill this task when boundary-
crossing failures are considered. One is to modify the description of system failures, such as
introducing last passage failure [59], passage duration [9] and killed FPT [29]. Such efforts
consider the failure level is fixed but the failure description itself can be modified.
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The other is the inverse first passage problem we have discussed in this thesis. We should
notice the OU process is a simple process, such that it would be much more difficult when
it comes to other diffusion processes. To extend the inverse first passage problem to other
processes, e.g. jump processes or jump-diffusion processes could also be interesting.

Using analytical approximations of first passage density in maintenance optimization pro-
blems allows more possibilities rather than the continuously monitored system. A natural
extension is to consider optimizing the inspection interval at the same time with the virtual
failure level when the system is not continuously monitored [34].



Annexe A

Fokker-Planck Equation

A.1 Derivation

We here will derive the Fokker Planck Equation (2.1.3) for Xt satisfying the equation
(2.1.1), the derivation of Fokker Planck equation for general SDEs may follow the same
procedure. The following statement is based on the one by Einstein from Kamers-Moyal
expansion [28, 37], other statements can refer to [62, 33].

First, it is noticed that Xt is a Markov process as it is a solution to Itô’s SDE.

Second, as Xt is a Markov process, we consider three times t1, t2, t3 where t0 ≤ t1 ≤ t2 ≤
t3,∆ > 0, and the transition pdfs satisfies the Chapman-Kolmogorov equation

p(x, t3|y, t1) =

∫ +∞

−∞
p(x, t3|z, t2)p(z, t2|y, t1)dz (A.1.1)

Third, ∀h(z) ∈ C∞(R) with compact support (i.e. it vanishes at ∞), for ∆ > 0, we have∫ +∞

−∞
h(x)

∂p(x, t|y, s)
∂t

dx = lim
∆→0

1

∆

∫ +∞

−∞
h(x)(p(x, t+ ∆|y, s)− p(x, t|y, s))dx. (A.1.2)

Applying (A.1.1) into (A.1.2), the right side of (A.1.2) can be written by

lim
∆→0

1

∆

[∫ +∞

−∞

∫ +∞

−∞
h(x)p(x, t+ ∆|u, t)p(u, t|y, s)dudx−

∫ +∞

−∞
h(x)p(x, t|y, s)dx

]
. (A.1.3)

Noticing
∫ +∞
−∞ p(x, t+ ∆|u, t)dx = 1 and changing the notation x to u in the second term in

(A.1.3), then we get

lim
∆→0

1

∆

[∫ +∞

−∞
p(u, t|y, s)

∫ +∞

−∞
(h(x)− h(u))p(x, t+ ∆|u, t)dudx

]
. (A.1.4)

Furthermore, based on Taylor’s expansion for h(x) at u, we have

lim
∆→0

1

∆

[∫ +∞

−∞
p(u, t|y, s)

∫ +∞

−∞

+∞∑
n=1

hn(u)
(x− u)n

n!
p(x, t+ ∆|u, t)dudx

]
. (A.1.5)

Noting

Dn(u, t) =
1

n!
lim
∆→0

1

∆

∫ +∞

−∞
(x− u)np(x, t+ ∆|u, t)dx, (A.1.6)

it follows that∫ +∞

−∞
h(x)

∂p(x, t|y, s)
∂t

dx =

∫ +∞

−∞
p(u, t|y, s)

+∞∑
n=1

Dn(u, t)hn(u)du. (A.1.7)



146 FOKKER-PLANCK EQUATION

Integrating each term in the right side by parts n times, and using the assumptions on h,
∀n ∈ N , we know∫ +∞

−∞
p(u, t|y, s)Dn(u, t)hn(u)du =

∫ +∞

−∞
h(u)(− ∂

∂u
)n [Dn(u, t)p(u, t|y, s)] du. (A.1.8)

Substitute (A.1.8) into (A.1.7), we have

∫ +∞

−∞
h(u){∂p(u, t|y, s)

∂t
−

+∞∑
n=1

(− ∂

∂u
)n [Dn(u, t)p(u, t|y, s)]}du = 0 (A.1.9)

As h is arbitrarily chosen, therefore ∀u, we should have

∂p(u, t|y, s)
∂t

=
+∞∑
n=1

(− ∂

∂u
)n [Dn(u, t)p(u, t|y, s)] . (A.1.10)

Remark : The equation (A.1.10) is called commonly as Kramers-Moyal expansion.

Fourth, the remaining work is for calculating Dn(u, t) in the case of OU process. Actually
given Xt as in (2.1.1), we can write (A.1.6) in another form

Dn(u, t) =
1

n!
lim
∆→0

1

∆

∫ +∞

−∞
(x− u)np(x, t+ ∆|u, t)dx

=
1

n!
lim
∆→0

1

∆
E((Xt+∆ −Xt)

n)|Xt=u

=
1

n!

E((dXt)
n)

dt
|Xt=u,

(A.1.11)

where E((Xt+∆−Xt)
n)|Xt=u is the conditional expectation of (Xt+∆−Xt)

n based on Xt = u.

Recalling the equation (2.1.1), we have

dXt = (atXt + bt)dt+ σtdBt. (A.1.12)

Therefore from E(dBt×dBt) = dt,E(dBt×dt) = 0, dt×dt = 0,E(dBn
t ×dmt ) = 0, n+m ≥ 3,

we have

(dXt)
n =

n∑
i=0

Cin(atXt + bt)
iσn−it (dBi

t × dtn−i). (A.1.13)

Equation (A.1.13) leads to

D1(u, t) = a(t)u+ b(t), D2(u, t) = σ2(t), Dn(u, t) = 0, n ≥ 3. (A.1.14)

Substitute (A.1.14) into (A.1.10), we then arrive at the Fokker Planck equation (2.1.3)

∂p(u, t|y, s)
∂t

= (− ∂

∂u
) [(a(t)u+ b(t))p(u, t|y, s)] +

σ2(t)

2

∂2

∂u
p(u, t|y, s). (A.1.15)

Fifth, noting p(u, t|y, s) is discussed based on the initial condition Xs = y, therefore when
the distribution of y is given by fy, the initial condition for (A.1.10) is p(u, s|y, s) = fy(u).
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A.2 Time-Space Transform Method for the Initial-Value Pro-
blem

As stated in (2.1.3), the transition pdf of an OU process satisfies a linear Fokker-Planck
equation. Here a time-space transform method to solve (2.1.3) is explained as follows. And it
is adopted in many literatures, eg. [62]. And we recall the linear Fokker-Planck equation in
(2.1.3) :

∂p(x, t|y, s)
∂t

= {−∂(a(t)x+ b(t))

∂x
+ c(t)

∂2

∂2x
}p(x, t|y, s), (A.2.1)

where c(t) > 0 and p(±∞, t|y, s) = 0, p(x, s|y, s) = fy(x), t ≥ s. In the following we denote
p(x, t) := p(x, t|y, s).

Then we can do a variable transform as follows :{
ψ(x, t) = x exp(α(t, s)) + β(t, s);
φ(t) = 2γ(t, s),

(A.2.2)

where α(t, s), β(t, s), γ(t, s) are given by (1.3.3).

Moreover, c(t) > 0 promises that φ(t) is monotone and therefore (t̃, x̃) = (φ(t), ψ(x, t)) :
R × R → R × R is a bijective. Then we define a new function η(x̃, t̃) = p((x̃ −
β(φ−1(t̃), s))e−α(φ−1(t̃),s), φ−1(t̃)), satisfying η(ψ(x, t), φ(t)) = p(x, t). For this new function,
we should notice its natural boundary conditions η(±∞, t̃) = p(±∞, t̃) = 0, t̃ ≥ φ(s), and the
initial condition η(x̃, φ(s)) = p(x̃, s) = fy(x̃), x̃ ∈ R.

With this expression, for η(ψ(x, t), φ(t)) the following equations hold from (1.3.3) and
(A.2.2) :

∂p(x,t)
∂t = ∂η

∂x̃
∂ψ(x,t)
∂t + ∂η

∂t̃

∂φ(t)
∂t = {(−xa(t)eα(t,s) − b(t)eα(t,s))∂η∂x̃ + 2c(t)e2α(t,s) ∂η

∂t̃
}|t̃=φ(t),x̃=ψ(x,t);

∂p(x,t)
∂x = ∂η

∂x̃
∂ψ(x,t)
∂x + ∂η

∂t̃

∂φ(t)
∂x = eα(t,s) ∂η

∂x̃ |t̃=φ(t),x̃=ψ(x,t);
∂2p(x,t)
∂x2

= e2α(t,s) ∂2η
∂x̃2
|t̃=φ(t),x̃=ψ(x,t).

(A.2.3)

Substitute (A.2.3) into (A.2.1), under the condition t̃ = φ(t), x̃ = ψ(x, t), it comes to :

∂η

∂t̃
=

1

2

∂2η

∂x̃2
(A.2.4)

where the boundary condition is η(±∞, t̃) = 0, the initial condition is η(x̃, s) = fy(x̃).

For the equation (A.2.4), it is just the familiar heat equation, whose solution can be given
easily by :

η(x̃, t̃) =
1√
2πt̃

∫ +∞

−∞
exp(−(x̃− u)2

2t̃
)fy(u)du (A.2.5)

Noticing the transform t̃ = φ(t), x̃ = ψ(x, t), inverse the above transforms, and the solu-
tion p(x, t) to (2.1.3) is given :

p(x, t|y, s) = η(ψ(x, t), φ(t)) =
eα(t,s)√
2πφ(t)

∫ +∞

−∞
exp(−(ψ(x, t)− u)2

2φ(t)
)fy(u)du

=
eα(t,s)√
4πγ(t, s)

∫ +∞

−∞
exp(−(xeα(t,s) + β(t, s)− u)2

4γ(t, s)
)fy(u)du.

(A.2.6)
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A.3 The Method of Images for Initial-Boundary Value Pro-
blems

Initial-Boundary Value Problems

Now we will turn to the initial-boundary value problem for Equation (A.2.1). The initial-
boundary value problem for the constrained equation is presented to search a solution
w(x, t|y, s) satisfying (A.2.1) with the boundary condition at a one-sided, upper absorbing
boundary L(t) given by

w(L(t), t|y, s) = 0, w(−∞, t|y, s) = 0, (A.3.1)

with also the initial condition

w(x, s|y, s) = fy(x), for x ≤ L(s). (A.3.2)

Method of Images

The method of images provides an illustrative way to solve initial-boundary value pro-
blems w(x, t|y, s) when corresponding initial-value problem p(x, t|y, s) is explicit. The key
idea is to extend the initial condition for x ≤ L(s) into the whole real line, such that a new
unbounded problem is presented.

Suppose the function p(x, t|r, s) satisfies the initial-value problem for the Fokker-Planck
equation (A.2.1) with a deterministic initial condition r, and it can be solved explicitly by
(A.2.6). Then for w(x, t|y, s), introducing a pending function U(x) to the undefined internal
x > L(s), we can verify that the following equation satisfies the initial-value problem (A.2.1).

w(x, t|y, s) =

∫ L(s)

−∞
p(x, t|r, s)fy(r)dr −

∫ +∞

L(s)
p(x, t|r, s)U(r)dr, (A.3.3)

where w(x, s|y, s) = fy(x), x ≤ L(s).

To esimate the pending function U(x), it is referred to the boundary condition
w(L(t), t|y, s) = 0 such that

p(L(t), t|y, s)−
∫ +∞

L(s)
p(L(t), t|r, s)U(r)dr = 0, ∀t ≥ s. (A.3.4)

This is a Fredholm integral equation of first kind, and in general there is no explicit
solution.



Annexe B

Approximation Optimization

In previous discussions on inverse first passage problems and also maintenance optimiza-
tion problems, plenty of approximate expressions have been adopted to substitute the original
objective functions in the optimization. Such a treatment is utilizable, and it appears fre-
quently in similar situations where exact expressions for objective functions are not available.
To see whether this approximation-optimization is appropriate, the discussion will be intro-
duced in this section. A framework on sequential approximation optimization (SAO) can also
be referred to as in [39].

Instead of a specific consideration, we will present a fundamental result on the convergence
of the supreme of a function sequence. Suppose the objective function is given by h(θ) with
θ in a compact space Θ. We want to find a θ∗ such that h(θ∗) = supθ∈Θ h(θ). Then when
approximating the original h(θ) by a series hq(θ), for each q, we can do the optimization to
get an optimal parameter θq. It is natural to guess that under some conditions, θq → θ∗.
Actually this is verified by the following lemma.

Lemma B.0.1. Given a real function h(θ) ∈ C(Θ) and a real function sequence {hq(θ)}+∞q=1 ∈
C(Θ), where Θ is a compact sub-space of Rn, we suppose that ∀θ ∈ Θ, uniformly
limq→+∞ hq(θ) = h(θ). Then if {θq}+∞q=1 satisfy hq(θq) = supθ∈Θ hq(θ), a sub-sequence

{θqk}
+∞
k=1 exists such that limk→+∞ θqk = θ∗ ∈ Θ, moreover the following equation holds :

h(θ∗) = sup
θ∈Θ

h(θ). (B.0.1)

Proof. To prove (B.0.1), we suppose there is a θ1 ∈ Θ such that h(θ1) = supθ∈Θ h(θ). Then
as uniformly hq → h, ∀ε > 0,∃Q ∈ N, ∀q > Q, we have :

|hq(θq)− h(θq)| < ε, |hq(θ1)− h(θ1)| < ε. (B.0.2)

Moreover, from (B.0.2), we have

h(θ1)− ε < hq(θ
1) ≤ hq(θq) < h(θq) + ε ≤ h(θ1) + ε. (B.0.3)

That is to say,

|hq(θq)− h(θ1)| ≤ ε. (B.0.4)

Therefore, hq(θq)→ h(θ1) when q → +∞. Noticing that Θ is compact, there exists a subse-
quence {θqk}

+∞
k=1 such that θqk → θ∗. Furthermore, the following inequality holds :

|h(θ1)− h(θ∗)| ≤ |h(θ1)− hqk(θqk)|+ |hqk(θqk)− h(θqk)|+ |h(θ∗)− h(θqk)| (B.0.5)

Let k → +∞ in (B.0.5), then from (B.0.4), (B.0.2) and the continuity of h(θ), h(θ∗) = h(θ1) =
supθ∈Θ h(θ), i.e. (B.0.1) holds.
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If the uniqueness of θ1 is given, then the uniqueness of θ∗ is promised by (B.0.5) vice
versa. Actually if we find a convergent sub-sequence θqk , then the lemma says that the limit
will just be one of the optimal parameters for the original function. Especially this is true
when h(θ) is convex (or concave), naturally we have the following proposition.

Proposition B.0.2. Under the conditions in Lemma B.0.1, if h is convex (or concave), then
there exists a point θ∗, θk → θ∗. Moreover h(θ∗) = supθ∈Θ h(θ).

Proof. From Lemma B.0.1, a sub-sequence {θqk}
+∞
k=1 for hq exists such that limk→+∞ θqk = θ∗,

then h(θ∗) = supθ∈Θ h(θ). If there exists another sub-sequence {θ∗qk}
+∞
k=1 exists such that

limk→+∞ θ
∗
qk

= θ∗∗, h(θ∗∗) = supθ∈Θ h(θ) holds. As h is a convex function, only one global
optimization result is returned such that θ∗∗ = θ∗.

Remark : in another word, when the approximation for the original function is enough
accurate, the result of approximation-optimization can be treated an approximate solution
for the original optimization problem.

In this thesis, the approximation occurs almost all in the cases of discretizing the integral.
Therefore to validate the uniform convergence of the approximate integral schemes such that
the condition in Lemma B.0.1 is satisfied, the following lemma is introduced for the compound
trapezoid scheme (which can be found easily in any textbook on numerical analysis) :

Lemma B.0.3. For f ∈ C2[a, b], q ∈ N ,and ∆ := b−a
q , then the following equation holds :

∫ b

a
f(x)dx−∆

[
1

2
f(a) +

q−1∑
i=1

f(a+ i∆) + f(b)

]
= −(b− a)3

12q2
f
′′
(ζ), (B.0.6)

for some ζ ∈ (a, b).

Furthermore, if f is with parameters θ in Θ, define h(θ) =
∫ b
a f(x|θ)dx, and hq(θ) :=

∆
[

1
2f(a|θ) +

∑q−1
i=1 f(a+ i∆|θ) + f(b|θ)

]
, then

hq(θ)→ h(θ), uniformly when q →∞. (B.0.7)

Proof. The proof is omitted.



Annexe C

Résume de Thèse en Français

C.1 Introdution

C.1.1 Contexte

L’objet central de ces travaux de thèse est l’utilisation d’informations de surveillance
pour décrire, prédire et prévenir la défaillance de systèmes. Ces travaux s’inscrivent ainsi
dans une démarche de Prognostic and Health Management (PHM) [70] visant à augmenter
la disponibilité et la sécurité d’un système en se basant sur une maintenance conditionnelle
[16, 34] du système, fonction de son état courant.

Ces travaux de thèse s’organisent autour de trois problématiques qui sont :
◦ la description de la défaillance,
◦ la prédiction de l’instant de défaillance,
◦ la prévention de la défaillance.

L’approche adoptée repose sur l’hypothèse que le processus de dégradation du système
peut être modélisé [1]. Sur la base de ce modèle et des observations réalisées sur le système,
l’état de santé courant du système peut être évalué et l’évolution de cet état peut être prédit.
Si par ailleurs, la défaillance du système est associée au temps d’atteinte d’un état de santé
critique, la prédiction de l’instant de défaillance du système peut également être réalisée. Ces
informations peuvent enfin être exploitées dans le cadre d’une démarche d’optimisation de la
maintenance.

C.1.2 Organisation du document

Cette thèse est organisé en quatre parties :

1. la modélisation stochastique de la dégradation,

2. le pronostic de l’instant de défaillance du système,

3. l’estimation du niveau dégradation associé à la défaillance,

4. l’optimisation de la maintenance.

Ces différentes parties sont liées entre elles et tentent de décrire, prévoir et prévenir la
défaillance du système.

Dans la première partie, un modèle stochastique de la dégradation s’appuyant sur un
processus d’Ornstein-Uhlenbeck (OU) dépendant du temps et sur l’exploitation conjointe des
donnés d’inspection est proposé. Les qualités de ce modèle sont démontrées au travers de ses
propriétés statistiques qui permettent d’ajuster de manière indépendante la moyenne, la va-
riance et la corrélation. Une propriété de ”convergence” vers la moyenne est ensuite exploitée
pour interpréter la corrélation temporelle des fluctuations autour d’une tendance globale de
dégradation. Puis, s’appuyant sur une technique de maximisation de la vraisemblance, une
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méthode d’estimation des paramètres de ce modèle est proposée. Enfin, un cas d’application
portant sur l’étude de la dégradation d’un composant passif de central électrique est traité.

La deuxième partie de la thèse est consacrée au pronostic de l’instant de défaillance du
système en s’appuyant sur un processus OU dépendant du temps. Cet instant de défaillance
est défini comme le premier temps d’atteinte d’un état de dégradation, critique i.e. d’un état
de santé inacceptable.. L’estimation de cet instant de défaillance est abordé selon deux ap-
proches : i) équations aux dérivés partielles, ii) équations intégrales. Ces approches conduisent
à différentes techniques d’estimation qui peuvent être classées selon le schéma suivant : les
techniques d’approximation analytique, les techniques d’approximation numérique, les tech-
niques de simulation de Monté-Carlo.

Des essais numériques destinés au calcul de la densité de l’instant de défaillance et
permettant la confrontation de ces différentes techniques, concluent cette seconde partie de
la thèse.

L’estimation du niveau dégradation associé à la défaillance, que l’on appelle dans la
suite par commodité niveau de défaillance, est l’objet de la troisième partie du document.
Classiquement, ce niveau de défaillance est déterminé sur la base de caractéristiques phy-
siques ou d’avis d’experts. Cependant ce niveau de défaillance ”théorique” n’est pas toujours
cohérent avec les données associées à des défaillances réelles. L’accent est donc mis sur la
réduction de cet écart. Pour ce faire, la loi de la durée de vie est supposée connue ou, tout
au moins, estimée sur la base de données de défaillances. Le niveau de défaillance peut alors
être déterminé de telle sorte que le processus stochastique de dégradation considéré conduise
à une distribution du premier temps d’atteinte du niveau de défaillance qui corresponde à la
densité estimée.

La quatrième partie est dédiée à l’optimisation de la maintenance lorsque le processus de
dégradation considéré est un processus OU dépendant du temps. S’appuyant sur les données
de surveillance continue du système et sur le pronostic de l’instant de défaillance, un com-
promis peut être trouvé entre les coûts de maintenance préventive et ceux associés à une
défaillance du système. Dans ce contexte, la formulation non explicite du pronostic de l’ins-
tant de défaillance ne permet pas d’exploiter les techniques d’optimisation classiques. Une
approximation de la densité de l’instant de défaillance est donc proposée pour mener à bien
cette étape d’optimisation.

C.1.3 Contributions principales

Les contributions principales de ces travaux sont les suivantes :
◦ le processus OU dépendant du temps est proposé pour la modélisation stochastique de

la dégradation dans le cadre d’une démarche de Prognostic and Health Management.
◦ le prognostic de l’instant de défaillance est considéré d’un point de vue pratique. En

d’autres termes on s’interroge sur la possibilité d’utiliser et d’exploiter des techniques
de calcul existantes et on cherche à tester leur mise en oeuvre dans des configurations
rélles ou réalistes. Dans ce contexte, des approximations analytiques, des techniques
de calcul numériques, et une méthode de Monté-Carlo quasi-linéaire par morceaux
sont proposés.
◦ la détermination du seuil de dégradation critique menant à la défaillance est vu et
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traité comme un problème inverse.
◦ l’optimisation de la maintenance d’un système surveillé en continu et dont la

dégradation est modélisée par un processus OU fonction du temps est présentée.

C.2 Processus d’Ornstein-Uhlenbeck dépendant du temps
pour la modélisation de la dégradation

Un processus d’Ornstein-Uhlenbeck (OU) dépendant du temps est proposé pour modéliser
la dégradation. Ce processus présente l’avantage d’avoir une moyenne, une variance et une
corrélation qui peuvent être fixés de manière indépendante. Une propriété de ”convergence”
vers la moyenne est également étudié pour permettre d’interpréter des fluctuations tempo-
raires autour d’une tendance générale. L’estimation des paramètres par maximum de vraisem-
blance est présentée. Plusieurs essais numériques sur données réelles sont présentés également.

Dans cette thèse, nous nous concentrons sur les systèmes soumis à des processus de
dégradation progressifs tels que la fissuration par fatigue, la corrosion, l’érosion, etc. D’une
manière générale, les données issues d’inspections de ce type de dégradation se caractérisent
par des évolutions (taille, profondeur, etc.) différentes pour un même système et un même
environnement. Ces différences sont généralement associées, d’une part, aux incertitudes
inhérentes aux équipements de mesures et, d’autre part, aux mécanismes internes de
détérioration. Les modèles physiques et purement déterministes de ces mécanismes de
dégradation ne peuvent pas expliquer et représenter ces variations.

Lorsque la modélisation du mécanisme de dégradation par une approche physique s’avère
insuffisante, elle peut être abordée comme un problème de régression ou de filtrage pour un
modèle choisi. Dans ce cas, la flexibilité du modèle est cruciale pour approcher correctement
les données de dégradation disponibles. Dans ce contexte, nous proposons de modéliser le
système de détérioration par un processus stochastique en temps continu que nous appelons
processus de dégradation. Une hypothèse réaliste est que les fluctuations temporaires de la
dégradation peuvent être tolérées tandis que la tendance générale de dégradation doit être
conservée.

Pour les processus couramment utilisés tels que le processus Gamma [84] ou le
mouvement brownien [66], la tendance de la moyenne (ou la ”dérive”) peut être choisie
relativement librement. En revanche, la variance dépend fortement du processus envisagé.
L’accent a donc été mis sur la mise en cohérence des propriétés statistiques du processus
de dégradation considéré et des données de dégradation disponibles ainsi que la possible
prise en compte d’avis d’experts. L’élaboration d’un modèle permettant de choisir libre-
ment à la fois la tendance de la moyenne et la variance est la principale contribution de
cette section et justifie l’utilisation d’un processus d’Ornstein-Uhlenbeck dépendant du temps.

La dégradation est souvent vue comme un phénomène purement monotone pouvant être
modélisé par des processus stochastiques tels que le processus de Lévy ou les processus
de sauts incluant notamment les processus Gamma [84], et inverse Gaussien [88]. Ceci
vient notamment de l’hypothèse que la dégradation résulte de l’accumulation de petits
chocs sans réparation ou auto-réparation [75]. La propriété de monotonie conduit à une
formulation explicite de l’instant de défaillance (il s’agit d’un temps d’atteinte) pour un
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niveau de défaillance constant. Cette formulation facilite amplement l’estimation de l’instant
de défaillance, de la durée de vie résiduelle (Remaining Useful Life, RUL) et du temps
moyen avant la défaillance (Mean Time To Failure, MTTF), etc. Toutefois, un processus
monotone ne peut modéliser correctement les fluctuations observées dans les données de
dégradation. Pour décrire ces fluctuations, une première approche consiste à les imputer
à des phénomènes stochastiques externes tels que les erreurs de mesure. Cela conduit à
introduire dans les modèles de dégradation précédents (physique et stochastique) un bruit
extérieur. L’estimation du processus de dégradation devient alors un problème de régression
pour les modèles déterministes et un problème de filtrage pour les modèles stochastiques.
Par exemple, Le Son et al. introduisent un bruit additif gaussien indépendant sur un modèle
de processus Gamma [78].

Une seconde approche pour décrire ces fluctuations est de les imputer à des phénomènes
internes au mécanise de dégradation. On peut citer par exemple dans le cas de la propagation
de fissure de fatigue, la non-homogénéité des matériaux, les variations de charges (incer-
titudes) ou les effets thermiques [52, 73, 75, 76]. Cette approche conduit à introduire des
phénomènes aléatoires sur des systèmes dynamiques : l’ajout de bruit blanc est communément
acceptée et permet d’introduire des fluctuations gaussiennes corrélées que l’on retrouve
notamment dans les données de dégradation. On parle généralement alors de modèle de
diffusion. Ces modèles de diffusion sont établis selon des lois physiques spécifiques telles qu’ils
peuvent difficilement être appliqués à un processus de dégradation général où les mécanismes
de dégradation ne sont pas, ou pas encore bien connus. De plus, l’estimation du premier
temps d’atteinte d’un niveau de défaillance est délicate dans le cas général des processus de
diffusion. Aussi, très souvent, les modèles de diffusion effectivement considérés sont réduits au
mouvement Brownien [54, 45] où le premier temps d’atteinte d’un niveau de défaillance peut
être explicitement obtenu par la distribution gaussienne inverse. La linéarité du mouvement
brownien limitant son application, Si et al. [66], Tseng et Peng [82] ont considéré un processus
avec une dérive non linéaire et une diffusion linéaire. L’estimation de la RUL repose alors
sur une expression approchée de la densité de premier passage d’un processus de Gauss [25].
Un modèle plus général, le processus de Gauss-Markov [23] a été récemment repris par Peng
et Tseng [55]. L’estimation de la RUL est obtenue alors par la résolution numérique d’une
équation intégrale. Pour l’ensemble de ces modèles, on peut regretter cependant que l’intro-
duction des fluctuations autour d’une tendance moyenne amène à considérer un processus
dont la variance n’est pas vraiment ”contrôlable” : on ne dispose pas de suffisament de degrès
de liberté pour ajuster à la fois la moyenne et la variance de manière ”optimale” aux données.

La suite de ce chapitre est donc consacrée à la définition d’un modèle dynamique
présentant un bon compromis entre capacité d’ajustement et efficacité d’exploitation pour
l’estimation de la RUL. Le processus d’Ornstein-Uhlenbeck (OU) dépendant du temps
s’avère être un bon candidat et ses propriétés sont tout d’abord présentées pour justifier ce
choix. Les capacités de contrôle de critères statistiques tels que la moyenne, la variance et
la corrélation seront discutées, de même que l’estimation du premier temps d’atteinte d’un
niveau de défaillance donné (estimation de la RUL). La propriété de ”convergence” vers la
moyenne sera ensuite présentée. Elle pourra être interprétée comme un mécanisme d’auto
réparation permettant de compenser les incertitudes inhérentes au processus OU dépendant
du temps. Elle permettra également de mettre en avant le fait que même si des fluctuations
existent au sein des données de dégradation, ces fluctuations sont nécessairement temporaires
et le comportement moyen tend forcément vers une dégradation monotone.
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Pour conclure ce premier châpitre, on précise ci-dessous les propriétés du système
considéré dans la suite de ces travaux :

◦ la dégradation du système est supposée graduelle, sans choc important, de telle sorte
que le processus de dégradation puisse être supposé continu.
◦ les relevés de dégradation sont entachés de bruit et sont associés à un processus de

dégradation sous-jacent ayant une tendance monotone à long terme.
◦ les bruits des données de dégradation sont Gaussien et proviennent de mécanismes

internes. Ils sont susceptibles de s’accumuler et d’influencer les relevés de données de
dégradation suivant.
◦ Il existe des mécanismes ”d’autoréparation” permettant au système de ne pas

s’éloigner du processus de dégradation sous-jacent.

C.3 Le processus d’Ornstein-Uhlenbeck

Propriétés principales

Le processus OU est un des rares processus pouvant être traité de manière explicite
par des lois de probabilité issues d’équations différentielles stochastiques. L’application d’un
tel processus dans le domaine de la fiabilité est intéressant pour la constitution d’un bon
compromis entre capacité de modélisation (d’ajustement) et calculabilité. Le processus OU
est largement utilisé dans le domaine des marchés financiers pour décrire notamment la
dynamique de systèmes se stabilisant sur un point d’équilibre. Il ne peut cependant pas être
directement appliqué à la modélisation de la dégradation étant donné que sa moyenne est
constante ce qui va à l’encontre de la tendance générale d’un phénomène de dégradation.
Deux modifications sont donc proposées pour compenser cet inconvénient :

1. l’ajout d’une dérive, comme proposé dans [47] ;

2. la prise en compte de coefficients dépendants du temps, comme proposé dans [2].

De ce qui précède, il résulte qu’il faudra traiter l’équation stochastique différentielle d’Itô
[92] :

dYt = (a(t)Yt + b(t))dt+ σ(t)dBt, t ≥ 0. (C.3.1)

où a, b et σ sont des fonctions assez lisses et Bs est le mouvement brownien standard.
La valeur initiale Y0 est une variable aléatoire indépendante de Bt (y compris dans le cas
déterministe où la distribution tend vers une mesure de Dirac).

Les notations suivantes seront, par ailleurs, considérées tout au long de ce document :

α(t, s) = −
∫ t

s
a(u)du,

β(t, s) = −
∫ t

s
b(u)eα(u,s)du, (C.3.2)

γ(t, s) =

∫ t

s
c(u)e2α(u,s)du,

où c(t) = σ2(t)
2 > 0.
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L’équation (C.3.1) est trop générale pour être directement connectée à la modélisation de
dégradation, mais plusieurs propriétés intéressantes peuvent être soulignées :

◦ une forme explicite de Yt peut être déduite de l’équation (C.3.1). Les notations sont
reprises de l’équation (C.3.2) :

Yt = e−α(t,0)

[
Y0 − β(t, 0) +

∫ t

0
σ(s)eα(s,0)dBs

]
. (C.3.3)

◦ la moyenne du processus est donnée par :

E(Yt) = e−α(t,0)

(
E(Y0)− β(t, 0)

)
. (C.3.4)

◦ la covariance du processus est donnée par :

cov(Yt, Ys) = e−(α(t,0)+α(s,0))

{
var(Y0) +

∫ t∧s

0
σ2(u)e2α(u,0)du

}
, (C.3.5)

◦ la variance correspondante s’écrit donc :

var (Yt) = e−2α(t,0)

{
var(Y0) +

∫ t

0
σ2(u)e2α(u,0)du

}
. (C.3.6)

◦ le processus de ”coefficient de corrélation” est le suivant :

ρYt,Ys =
cov(Yt, Ys)√

var(Yt) var(Ys)
=

√
var(Y0) +

∫ s
0 σ

2(u)e2α(u,0)du√
var(Y0) +

∫ t
0 σ

2(u)e2α(u,0)du
, t ≥ s (C.3.7)

Enfin, il est important de préciser que le processus OU est markovien à trajectoires conti-
nues.

Un processus OU fonction du temps

A partir de maintenant, un processus OU particulier est considéré. Il est noté Xt au lieu
de Yt, et est décrit par l’équation différentielle stochastique d’Itô suivante :

dXt = (a(t)Xt +m′(t)− a(t)m(t))dt+ σ(t)dBt, t ≥ 0, (C.3.8)

où X0 est une variable aléatoire E(X0) = m(0), var(X0) = v(0).

Le processus Xt est non-stationnaire, inhomogène en temps et son expression explicite
peut être formellement dérivée de l’équation (C.3.3) :

Xt = e−α(t,0)
(
X0 − β(t, 0) +

∫ t

0
σ(u)eα(u,0)dBu

)
, (C.3.9)

avec les notations suivantes mises à jour :

α(t, s) = −
∫ t

s
a(u)du et β(t, s) = m(s)−m(t)eα(t,s).

Il peut être déduit naturellement de l’équation (C.3.9) que E(Xt) = m(t).
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C.3.1 Propriété de convergence vers la moyenne

On peut montrer que le processus Xt est exactement déterminé par la connaissance
des fonctions m(t), v(t) et σ(t) qui décrivent respectivement sa moyenne, sa variance et
la corrélation à long terme. Sur le plan statistique, ce processus semble pertinent pour la
modélisation d’observations non monotones. En outre, le processus OU fonction du temps
présente une propriété de retour à la moyenne qui fait qu’à long terme la grandeur Xt converge
vers sa valeur moyenne. En effet, supposons que le processus de dégradation a été parfaite-
ment observé à l’instant s avec Xs = y. De l’équation (C.3.9), l’espérance E(Xy,s

t ), t ≥ s
peut être écrite comme :

E(Xy,s
t ) = m(t) + (y −m(s)) exp(

∫ t

s
a(u)du). (C.3.10)

Lorsque a(t) est négatif et satisfait l’équation
∫∞
s a(u)du = −∞, l’influence de l’observa-

tion réalisée à l’instant s sur l’estimation de la valeur moyenne du processus tend à s’annuler
au fur et à mesure que l’on s’éloigne de s.

C.3.2 Estimation des paramètres du modèle

Dans cette section, la problème de l’inférence statistique du processus OU est traité. La
première étape consiste à choisir certaines fonctions paramétriques pour m(t), v(t) et σ(t).
Dans la suite, le vecteur de paramètres utiles sera noté θ et les fonctions correspondantes
respectivement m(t|θ), v(t|θ) et σ(t|θ). Ces fonctions sont dépendantes du cas d’étude et
peuvent être choisies au sein d’une liste prédéterminée, ce choix s’appuyant sur les statistiques
descriptives des données disponibles ou sur des avis d’experts.

Soit Xt;θ le processus stochastique décrit par l’équation (C.3.8). La densité de probabilité
p(x, t|θ) := p(x, t|xs, s; θ), t > s ≥ 0 peut être déduite de l’équation stochastique intégrale
d’Itô [80].

Il peut être montré que l’expression analytique de p(x, t|y, s; θ) est donnée par :

p(x, t|y, s; θ) =
eα(t,s|θ)√
4πγ(t, s|θ)

exp(−(xeα(t,s|θ) + β(t, s|θ)− xs)2

4γ(t, s|θ)
), (C.3.11)

où α(t, s|θ), β(t, s|θ), γ(t, s|θ) et c(u|θ) := σ(u|θ)2
2 sont donnés :

α(t, s|θ) = −
∫ t

s
a(u|θ)du,

β(t, s|θ) = m(s|θ)−m(t|θ)eα(t,s|θ), (C.3.12)

γ(t, s|θ) =

∫ t

s
c(u|θ)e2α(u,s|θ)du.

Dans la suite, on suppose que les données de dégradation proviennent de n composants
indépendants. On note mi le nombre de données recueillis sur l’i-ième composant avec (1 ≤
i ≤ n), et (xij , tij) l’enregistrement à l’instant j du i-ième composant avec j ∈ {1, . . . ,mi}. On
note dans le cas général que X0 suit une distribution F0,θ et que la distribution de la transition
correspondante, basée sur la condition initiale p(x, t|X0, 0; θ) peut être écrite comme :

p(x, t|X0, 0; θ) =

∫ +∞

−∞
p(x, t|u, 0)dF0,θ(u) (C.3.13)
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Si X0 est considéré comme déterministe, sa loi de probabilité devient une mesure de Dirac
avec ti0 = 0 et xi0 = x0 pour tous i ∈ {1, . . . , n}. Comme le processus stochastique considéré
est un processus de Markov, la densité de probabilité conditionnelle d’un enregistrement
connaissant les enregistrements précédents de la même trajectoire peut être simplifiée :

p(xij , tij |xi(j−1), ti(j−1); θ) = p(xij , tij |{(xiz, tiz)}j−1
z=0; θ).

La fonction log-vraisemblance pour la i-ième trajectoirevaut alors :

logLi(θ) =

mi−1∑
j=1

log
(
p
(
xi(j+1), ti(j+1)|xij , tij ; θ

))
+ log(p(xi1, ti1|X0, 0; θ). (C.3.14)

Si l’on considère l’indépendance des différentes trajectoires (des différents composants),
la fonction log-vraisemblance pour l’ensemble des données disponibles devient :

logL(θ) =

n∑
i=1

mi−1∑
j=1

log
(
p
(
xi(j+1), ti(j+1)|xij , tij ; θ

))
+

n∑
i=1

log(p(xi1, ti1|X0, 0; θ)). (C.3.15)

L’estimation du maximum de vraisemblance θ∗ = argmaxθ logL(θ) des paramètres du
modèle peut être obtenue par maximisation de la fonction du log-vraisemblance (C.3.15).
Une solution analytique est généralement délicate à obtenir et des solutions numériques telles
que la méthode Nelder-Mead mises en oeuvre.

C.4 Pronostic de défaillance du système et temps d’atteinte

Le pronostic de l’instant de défaillance du système est traité dans ce chapitre. Ce pro-
nostic s’appuie sur le processus OU dépendant du temps venant d’être présenté et qui est
supposé ici être le processus stochastique de dégradation du système considéré. Ce chapitre
comporte plusieurs résultats publiés [20, 18, 17] et met l’accent sur l’estimation des lois
de probabilité de l’instant de premier passage (First Passage Time, FPT) d’un niveau de
dégradation donnée (précédemment nommé niveau de défaillance). On parelra également de
temps d’atteinte. Différentes méthodes sont proposées, celles-ci sont notamment connectée à
l’équation de Fortet [32, 57].

C.4.1 Introduction

Contexte

L’objectif de ce chapitre est de proposer des méthodes permettant l’estimation de la durée
de vie résiduelle d’un système (Remainig Useful Life, RUL). Cette RUL est souvent utilisée
comme un indicateur de décision clé dans les démarches de type PHM. Elle est communément
définie comme : la durée de vie résiduelle d’un système à l’instant t étant donné toutes les
informations disponibles jusqu’au temps t.

Le problème central est donc de déterminer quand la défaillance du système va se produire.
Pour rappel, nous nous focalisons dans ce document sur les phénomènes de dégradation
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cumulatifs (corrosion, érosion, propagation de fissure, etc.) qui ”s’intègrent” jusqu’à la rupture
mécanique du système. Dans ce contexte, la notion de temps d’atteinte est primordiale,
elle correspond à la première atteinte, par accumulation de dégradation, d’un niveau de
dégradation donné associé généralement à la défaillance du système (on parle également de
niveau de défaillance 1).

En fiabilité, lorsque des processus stochastiques monotones croissants sont considérés, il
est aisé d’obtenir la loi du temps d’atteinte en raison de la propriété de monotonie. C’est le
cas pour le processus Gamma [84], le processus de Poisson ou le processus Gaussien inverse
[93].

Dans le cas général de l’utilisation des modèles de diffusion, l’obtention de la loi du temps
d’atteinte est plus délicate : la propriété de monotonie n’étant plus acquise. On pourra dans
ce domaine notamment se référer au travail bibliographique réalisé dans [24, 83]. Les résultats
les plus intéressants sont obtenus lorsqu’un mouvement Brownien et une limite linéaire sont
considérés. Dans ce cas, la loi du temps d’atteinte peut être analytiquement déterminée
et prend la forme d’une distribution Gaussienne inverse. Le développement d’algorithmes
efficaces fait également l’objet de nombreux travaux. Ceux-ci s’appuient généralement i) soit
sur l’équation intégrale [57], ii) soit sur l’équation de Fokker-Planck [43, 53].

Dans la suite de ce chapitre, ces deux dernières approches sont examinées et adaptées au
processus OU. Une connexion entre ces deux approches est proposée au travers de l’équation
de Fortet [24, 83]. Ces deux approches conduisent à différentes méthodes pour l’estimation
de la loi du temps d’atteinte au sein desquelles trois catégories peuvent être identifiées :

1. les approximations analytiques,

2. les algorithmes numériques,

3. la simulation Monté-Carlo.

Notons, pour achever la présentation du contexte de ces travaux, que ce chapitre ne porte
pas seulement sur le problème de l’estimation de la loi du temps d’atteinte mais également
sur celui de l’estimation de la loi conditionnelle du temps d’atteinte. En effet, l’orientation
PHM de nos travaux nous conduit à mettre jour le pronostic de durée de vie résiduelle du
système sur la base de observations nouvellement réalisées. Comme nous le verrons dans la
suite, cette ”extension” n’est pas directe lorsque le processus de dégradation considéré est
non-homogène et non stationnaire.

Temps d’atteinte ou instant de premier passage

Nous considérons le processus Xt tel que défini équation pas l’(C.3.1). L’instant de pre-
mier passage τy,s lorsque Xt atteint le niveau de défaillance prédéterminé L(t), basée sur
l’observation (y, s), c’est-à-dire sachant Xs = y est donnée par la relation suivante :

τy,s := inf
t≥s

{
t|Xt ≥ L(t)

}
, (C.4.1)

Dans la suite, nous supposons : P (τy,s < ∞) = 1 et, par ailleurs, que lorsque y ≥ L(s)
alors τy,s = s.

1. On trouve dans la littérature de nombreuses expressions similaires : seuil d’alarme, limite de sécurité,
barrière de sécurité, passage level, etc. Niveau de défaillance est le terme qui sera utilisé dans le contexte
”applicatif” ; Limite de passage est le terme qui sera utiliés dans le contexte mathématique.
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La durée de vie résiduelle basée sur l’observation actuelle (y, s) est naturellement définie
par la relation RULs := τy,s − s . En conséquence, le temps moyen avant la défaillance
(MTTFs) conditionnellement à l’observation actuelle (y, s) est défini par E(τy,s)− s.

En outre, en l’absence d’observation parfaite, par exemple en raison de petites fissures
indétectables [17], quand la valeur initial x0 est traitée comme une variable aléatoire avec la
fonction de distribution F0, l’instant de premier passage τx0,t0 peut être considéré comme un
temps d’atteinte aléatoire (Randomized First Passage Time, RFPT) comme décrit dans [38,
83, 48]. Sa loi est calculée pour t ≥ t0 par :

(C.4.1) :

P(τx0,t0 ≤ t) =

∫ L(t0)

−∞
P(τu,t0 ≤ t)dF0(u) +

∫ +∞

L(t0)
dF0(u). (C.4.2)

La densité de probabilité et la fonction de répartition de τy,s sont respectivement notées :

g(t|y, s) :=
∂P (τy,s ≤ t|Xs = y)

∂t
, G(t|y, s) = P (τy,s ≤ t|Xs = y). (C.4.3)

On note également :

u(x, t|y, s) := P (Xt < x, τy,s > t|y, s), w(x, t|Xs = y) =
∂u(x, t|y, s)

∂x
. (C.4.4)

C.4.2 Méthodes de résolution

Limite quasi-linéaire

Proposition C.4.1. Pour le processus Xt donné par l’équation (C.3.1) avec la condition
initiale (y, s) où y est une variable aléatoire définie sur (−∞, L(s)], la loi du temps d’atteinte
g(t|y, s) satisfait :

g(t|y, s) =
c(t)e2α(t,s)√

4πγ3(t, s)

∫ L(s)

−∞
(L(s)− r) exp(−(β(t, s) + L(t)eα(t,s) − r)2

4γ(t, s)
)fy(r)dr, (C.4.5)

si la frontière L(t) satisfait :

L(t) = e−α(t,s)(L(s)− β(t, s) + Cγ(t, s)), (C.4.6)

où C ∈ R.

En outre, la fonction de répartition G(t|y, s) := P (τy,s ≤ t) satisfait :

G(t|y, s) =

∫ L(s)

−∞

[
Φ(
−L(s)− Cγ(t, s) + r√

2γ(t, s)
) + eC(r−L(s))Φ(

Cγ(t, s)− L(s) + r√
2γ(t, s)

)

]
fy(r)dr

(C.4.7)

où Φ(∗) est la distribution de la loi normale.

Remarque : Dans la suite nous ferons référence à la limite (C.4.6) comme à la limite
quasi-linéaire.
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Approximation de la tangente

Le principe de la méthode d’approximation de la tangente est d’approximer la limite
réelle par une limite linéaire. Cette méthode est utilisée pour les problèmes de temps d’at-
teinte de mouvements Brownien et est notamment étudiée dans [43]. Nous appliquons ici
cette démarche au processus OU en nous appuyant sur la limite quasi linéaire identifiée par
l’équation (C.4.6).

Ainsi, nous souhaitons approximer la limite L(t) par une équation de la forme de celle
donnée (C.4.6) : cela est possible via l’approximation de la tangente.

Ainsi, quand L(t) ∈ C1[s, t], on peut noter lorsque s est proche de t que :

C̃(t, s) :=
L′(t)− a(t)L(t)− b(t)

c(t)eα(t,s)
≈ L(t)eα(t,s) − L(s) + β(t, s)

γ(t, s)
, (C.4.8)

tel que pour z ∈ [s, t], nous pouvons rapprocher la limite originale L(z) par :

L̃(z) = L(t)eα(t,z) + β(t, z)− C̃(t, s)γ(t, z). (C.4.9)

La densité et la fonction de répartition du temps d’atteinte peuvent être données par la
proposition suivante.

Proposition C.4.2. Si pour un T constant, la limite L(t) ∈ C1[s, T ], pour C̃, L̃ définies
respectivement par les équations (C.4.8) et (C.4.9),

G̃(t|y, s) := F (L(t), t|y, s)− eC̃(t,s)(y−L̃(s))F (L(t), t|2L̃(s)− y, s) (C.4.10)

Nous avons alors :
G(t|y, s) = G̃(t|y, s)(1 + o(γ(t, s))), t→ s. (C.4.11)

Proposition C.4.3. Sous certaines conditions, pour C̃, L̃ définis respectivement par les
équations (C.4.8) et (C.4.9) :

g̃(t|y, s) =
c(t)eα(t,s)

γ(t, s)
(L̃(s)− y)p(L(t), t|y, s). (C.4.12)

alors :
g(t|y, s) = g̃(t|y, s)(1 + o(1)), t→ s. (C.4.13)

Approximation paramétrique

w(x, t|y, s) peut être généralement explicité par la méthode des images pour un mesure
U(r)dr donnée :

w(x, t|y, s) = p(x, t|y, s)−
∫ +∞

L(s)
p(x, t|r, s)U(r)dr. (C.4.14)

D’après l’idée de [95], supposons que des points de maillage soient donnés {ri}Ni=1 sur
l’intervalle (0,+∞) puis, qu’une approximation de U(r) soit introduite pour chaque point de
sorte que :

U(r)dr =

N∑
i=1

ξiδL(s)+ri(dr), (C.4.15)
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où δy(∗) est la mesure de Dirac centrée sur y, et où les {ξi}Ni=1 sont non négatifs et à
déterminer.

Nous obtenons l’approximation suivante pour w(x, t|y, s) :

w(x, t|y, s) ≈ p(x, t|y, s)−
N∑
i=1

ξip(x, t|L(s) + ri, s). (C.4.16)

Cette approximation permet d’obtenir l’expression analytique suivante de la densité du
FPT :

g(t|y, s) ≈ c(t)e2α(t,s)√
4πγ(t, s)

{
∫ L(s)

−∞

β(t, s) + L(t)eα(t,s) − r
2γ(t, s)

exp(−(β(t, s) + L(t)eα(t,s) − r)2

4γ(t, s)
)fy(r)dr

−
N∑
i=1

ξi
β(t, s) + L(t)eα(t,s) − L(s)− ri

2γ(t, s)
exp(−(L(t)eα(t,s) + β(t, s)− L(s)− ri)2

4γ(t, s)
)} (C.4.17)

La fonction de répartition G(t|y, s) qui en découle, est donnée par :

1−G(t|y, s) ≈ F (L(t), t|y, s)−
N∑
i=1

ξiF (L(t), t|L(s) + ri, s)). (C.4.18)

Quand un maillage {tj}Mj=1 est considéré pour (0, T ], M ≥ N , la tâche restante est de
déterminer les ξi afin que le terme d’erreur pour l’approximation de ces points de maillage
puisse être minimisé.

Comme indiqué précédemment, le terme d’erreur ε(t) peut être approximé par la relation
suivante :

ε(t) = h(t)−
N∑
i=1

ξiK(ri, t) (C.4.19)

Lorsque la valeur initiale y à l’instant s est déterministe, nous avons alors :

h(t) = p(L(t), t|y, s),K(r, t) = p(L(t), t|L(s) + r, s). (C.4.20)

Comme indiqué dans [95], un problème de programmation linéaire peut être posé pour
minimiser le terme d’erreur ε(t). Soit le vecteur P de dimension M de poids positifs W =
(ξi)M×1, le vecteur de dimension N noté E = (ε(ti))N×1, le vecteur de dimension N noté
H = (h(ti))N×1, la matrice de dimensions M ×N notée K̃ = (K(ri, tj))M×N .

L’estimation des ξi est alors donnée par le problème de programmation linéaire suivant :

Minimize Z = P TE,

subject to : E +W T K̃ = H, E ≥ 0, W ≥ 0. (C.4.21)

Un cas particulier est de considérer une approximation à 2 paramètres dans l’équation
(C.4.15) conduisant à la limite de quasi-Daniels [15]. Ceci, fait l’objet de la proposition
suivante, où la limite L(t) sachant L(s) est introduite plutôt qu’une fonction explicite.
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Proposition C.4.4. Pour le processus Xt donné équation (C.3.1) avec pour valeur initiale
(y, s), lorsque la limite L(t) est donnée par la relation suivante :

L(t) = e−α(t,s){L(s)− β(t, s) +
γ(t, s)

y − L(s)
log(

ξ1 +
√
ξ2

1 + 4ξ2 exp(−2(y−L(s))2

γ(t,s) )

2
)} (C.4.22)

où ξ1, ξ2 ∈ R et L(s) > y sont des paramètres ajustables.

La densité de premier passage correspondante est donnée par :

g(t|y, s) =
c(t)eα(t,s)

2γ(t, s)
{(β(t, s) + L(t)eα(t,s) − y)p(L(t), t|y, s)

−
2∑
i=1

ξi(β(t, s) + L(t)eα(t,s) − L(s)− ri)p(L(t), t|L(s) + ri, s)}, (C.4.23)

où r1 = L(s)− y, r2 = 3(L(s)− y).

Remarque : nous appelons dans la suite la limite donnée ici comme la limite de quasi-
Daniels.

Simulation de Monte-Carlo quasi-linéaire par morceaux

Pour le mouvement Brownien, une limite linéaire par morceaux peut être proposée de
sorte que la densité du temps d’atteinte peut être exprimée analytiquement [86, 97]. Une
telle idée est reprise ici pour le processus OU.

On considère un maillage {ti}Ni=1 avec t0 = s, tN = T et on définit ΛN =
maxi=0,...,N−1{ti+1− ti}. Soit L(ti) la limite effective au point ti, on peut définir l’approxima-
tion par morceau L̃(t) sur l’intervalle (ti, ti+1] sous la forme : L̃(t) = e−α(t,ti)(L(ti)−β(t, ti)+
ηiγ(t, ti)), t ∈ (ti, ti+1] avec ηi = (L(ti+1)eα(ti+1,ti) + β(ti+1, ti)− L(ti))/γ(ti+1, ti).

Figure C.1 – Approximating the original boundary (black) by the piecewise quasi-linear
boundary (red).

Lorsque ΛN est assez petit, la limite par morceaux est, par construction, proche de la limite
effective. La distribution de premier passage calculée sur la base de cette limite approximée
se rapproche donc de la distribution effective de premier passage.

Ainsi, en adoptant les algorithmes numériques appropriés pour Xt (cf. équation (C.5.1))
tel que, pour ce qui suit, le schéma d’Euler-Maruyama [36], la simulation de Monte-Carlo
peut être adoptée pour produire l’estimation de G(t|y, s).

Supposons ainsi qu’une trajectoire soit décrite par {zi}Ni=0 où zi est la valeur de X(ti)
avec :

z0 = x0, zi+1 = (a(ti)zi + b(ti))(ti+1 − ti) + σ(ti)∆Bi, i = 0, ..., N − 1, (C.4.24)

avec ∆Bi ∼ N(0, ti+1 − ti).
Définissons par ailleurs la fonction Υk(t0, t1, ..., tk, z0, z1, ..., zk), k ≥ 1 par

Υk(t0, t1, ..., tk, z0, z1, ..., zk) = Πk−1
i=0 I(zi+1 < L(ti+1))(1−exp(−(zi − L(ti))(zi+1 − L(ti+1))eα(ti+1,ti)

γ(ti+1, ti)
)),

(C.4.25)
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où I(∗) est la fonction indicatrice.

Ainsi pour un maillage {ti}Ni=1 donné et à condition que suffisamment de trajectoires (soit
ici J trajectoires) soient simulées, une expression approchée de G(t|y, s) est donnée par :

1. G(t0|y, s) = 0, avec z0 = y, t0 = s.

2. Pour k ≥ 1,

G(tk|y, s) ≈ 1− 1

J

J∑
j=1

Υk(s, t1, ..., tk, y, z
j
1, ..., , z

j
k). (C.4.26)

où zji représente la valeur de Xti pour la j-ième trajectoire.

Equation intégrale non-singulière Volterra

Sur la base des résultats présentés dans [10] nous pouvons dériver une équation intégrale
de Volterra non singulière pour déterminer numériquement la densité FPT.

En fait g(t|x0, t0) satisfait une équation intégrale de Volterra de second type comme suit :

Proposition C.4.5. Soit L(t) ∈ C[t0,+∞), k(t) ∈ C[t0,+∞), f0(x) défini sur (−∞, L(t0)),
pour tous y ∈ R et t0 ≤ s < t,

K(L(t), t|y, s) =
∂F (L(t), t|y, s)

∂t
+ k(t)p(L(t), t|y, s), (C.4.27)

si x0 < L(t0), g(t|x0, t0) satisfait :

g(t|x0, t0) = −2K(L(t), t|x0, t0) + 2

∫ t

t0

g(s|x0, t0)K(L(t), t|L(s), s)ds. (C.4.28)

on peut montrer que :

K(L(t), t|y, s) = p(L(t), t|y, s)H(t, s, y), (C.4.29)

où

H(t, s, y) = −a(t)L(t)− b(t)− c(t)eα(t,s)L(t)eα(t,s) + β(t, s)− y
2(γ(t, s))

+ k(t). (C.4.30)

Proposition C.4.6. Si K(L(t), t|L(s), s) est défini comme précédemment, si L(t) ∈
C1[t0,+∞) et si lims→tK(L(t), t|L(s), s) = 0 alors :

k(t) =
a(t)L(t) + b(t) + L′(t)

2
(C.4.31)

De plus sous les conditions précédentes, nous avons :

K(L(t), t|y, s) =

[
L′(t)− a(t)L(t)− b(t)

2
− c(t)eα(t,s)L(t)eα(t,s) + β(t, s)− y

2(γ(t, s))

]
p(L(t), t|y, s).

(C.4.32)
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C.5 Estimation du niveau de défaillance via un problème in-
verse

Plusieurs résultats de ce chapitre sont en cours de publication [21] ou on été publiés
[19, 22].

Dans la littérature fiabiliste relative aux phénomènes de dégradation, le niveau de
défaillance est généralement déterminé d’après des modèles physiques ou des avis d’experts,
en fixant un niveau critique inacceptable sur l’indicateur et le modèle de dégradation retenus.
Cette démarche est justifiée pour les systèmes sur lesquels aucune panne n’est réellement
observée. Nous nous intéressons ici au lien qui peut être fait entre ce niveau critique et
l’observation effective de dates de défaillance lorsqu’il s’avère qu’elles sont observables et dis-
ponibles. En d’autres termes, il s’agit de poser le problème inverse suivant : sachant que l’on
s’est donné un modèle de dégradation sur la base d’observations de dégradations et que l’on
a part ailleurs observé des dates de pannes, quel est le niveau critique de dégradation qu’il
faut fixer pour obtenir une distribution de panne qui correspond effectivement aux dates de
pannes collectées ?

Problème Inverse et temps d’atteinte

En supposant que le phénomène de dégradation est décrit par un processus stochastique
Xt, t ≥ 0 défini sur un espace de probabilité complet (Ω,F,P), le processus d’Ornstein-
Uhlenbeck dépendant du temps noté Xt sera considéré dans ce chapitre [20, 92, 2] :

dXt = (a(t)Xt + b(t))dt+ σ(t)dBt, t ≥ 0, (C.5.1)

où a(t), b(t), σ(t) ∈ C1(R+), σ(t) est positif, Bt est un mouvement brownien standard et
X(0) = x0 est une constante.

Remarques : Dans ce chapitre le modèle est étudié sans incertitudes initiales.

On peut déduire de l’équation (C.5.1) pour l’observation initiale (x0, 0) que :

Xt = Xx0,0
t = e−α(t,0)

[
x0 − β(t, 0) +

∫ t

0
σ(u)eα(u,0)dBu

]
, t ≥ 0, (C.5.2)

où α, β, γ sont définies dans (C.3.2).

La densité de probabilité p(x, t|y, s), t > s de Xt peut être explicitée par résolution directe
lorsque y est déterministe :

p(x, t|y, s) =
eα(t,s)√
4πγ(t, s)

exp(−(xeα(t,s) + β(t, s)− y)2

4γ(t, s)
). (C.5.3)

En outre, l’instant de premier passage τy,s de Xt connaissant le niveau de dégradation à l’ins-
tant s (noté Xs = (y, s)) et connaissant le niveau de défaillance à t (noté L(t) ∈ C1[s,+∞))
est défini comme :

τy,s := inf
t≥s
{t|Xt ≥ L(t)}. (C.5.4)

La date de défaillance étant définie comme l’instant de premier passage du seuil L(t) pour
le processus Xt, le problème inverse que nous posons pour déterminer L(t) est le suivant (on
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notera dans la suite IFPT pour First Inverse Passage Time). La densité de probabilité de
τx0,0 notée pτx0,0(t) est définie en fonction de L(t) d’une part, et la loi de la durée de vie g(t)
est estimée par ailleurs à partir des observations de pannes. Alors la problème de IFPT est
de trouver le niveau de défaillance L(t) tel que :

pτx0,0(t) = g(t). (C.5.5)

Ou de manière équivalente, étant donnée G(t) la fonction de répartition de la durée de vie,
la problème IFPT est de trouver L(t) telle que

P (τx0,0 ≤ t) = G(t). (C.5.6)

Dans [13, 12], l’existence et l’unicité de la solution à ce problème IFPT pour un processus de
diffusion général sont étudiés. Une analyse connexe pour le mouvement brownien peut être
trouvée dans [43]. Toutefois, il n’existe pas de solution analytique, sauf pour quelques cas
particuliers. Nous nous concentrons donc dans ce chapitre sur la résolution numériquement
du problème IFPT, et plusieurs méthodes sont proposées.

C.5.1 Estimation de la limite initiale

Il est intéressant de noter que l’on dispose d’une approximation explicite pour la valeur de
L(t) au voisinage de zéro (on parlera alors de Limite Initiale), en tant que solution du problème
inverse. L’idée est d’utiliser cette approximation comme valeur intiale d’un processus itératif
qui permet de construire L(t).

L’estimation de L(t) au voisinnage de 0 est donnée par :

L(t) ≈ e−α(t,0)(x0 − β(t, 0) +
√
−4γ(t, 0) logG(t)). (C.5.7)

Toutefois, en raison des limites de calcul et du fait que G(0) = 0, lorsque t est trop faible,
l’estimation n’est pas définie. L’implémentation de cette méthode nécessite donc quelques
précautions.

C.5.2 Equation Intégrale

La densité de l’instant de premier passage pτ satisfait l’équation de Fortel correspondant
au niveau de défaillance l(t) [57] :

p(x, t|x0, 0) =

∫ t

0
pτ (s)p(x, t|l(s), s)ds, ∀x ≥ l(t), (C.5.8)

où p(x, t|y, s) est la densité de probabilité définie dans (C.5.3). Comme indiqué précédemment,
la problème de IFPT est un problème bien posé de sorte que si la loi de durée de vie g(t) est
donnée, la solution L(t) vérifie l’équation (C.5.8) :

p(x, t|x0, 0) =

∫ t

0
g(s)p(x, t|L(s), s)ds, ∀x ≥ L(t). (C.5.9)

Il reste donc à résoudre une telle équation pour trouver le niveau de défaillance L(t).

Une procédure itérative est adoptée pour résoudre l’équation (C.5.9). Supposons L(s)
connu pour tous s ∈ [0, t). Notons dans cette section

Γ(x, t) := p(x, t|x0, 0), Ψ(x, t) :=

∫ t

0
g(s)p(x, t|L(s), s)ds, (C.5.10)
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qui sont connus au temps t. A partir de (C.5.9), la limite actuelle L(t) sera alors la solution
de l’équation suivante :

Z(x, t) := Γ(x, t)−Ψ(x, t) = 0. (C.5.11)

C’est à dire
L(t) = inf

x∈R
{x|Z(x, t) = 0}. (C.5.12)

Ici, la problème IFPT original a été converti en la résolution de l’équation (C.5.12).

C.5.3 Equation Intégrale - Cont’d

Pour Xt défini par (C.5.1) avec des conditions initiales (x0, 0), on a :

1− F (x, t|x0, 0) =

∫ t

0
(1− F (x, t|L(s), s))g(s)ds, ∀x ≥ L(t). (C.5.13)

Si on note Φ(∗) la distribution de la loi normale,

F (x, t|y, s) = Φ(
xeα(t,s) + β(t, s)− y

2
√
γ(t, s)

). (C.5.14)

L’équation (C.5.13) peut alors s’exprimer sous une forme calculable basée sur (C.5.14) :

1− Φ(
xeα(t,0) + β(t, 0)− x0

2
√
γ(t, 0)

) =

∫ t

0
(1− Φ(

xeα(t,z) + β(t, z)− L(z)

2
√
γ(t, z)

))g(z)dz, ∀x ≥ L(t).

(C.5.15)
Après une procédure itérative, on peut résoudre l’équation (C.5.15). Supposons que L(s) est
connue pour tous s ∈ [0, t), et notons :

Ω̃(x, t) := 1−Φ(
xeα(t,0) + β(t, 0)− x0

2
√
γ(t, 0)

), Ψ̃(x, t) :=

∫ t

0
(1−Φ(

xeα(t,z) + β(t, z)− L(z)

2
√
γ(t, z)

))g(z)dz,

(C.5.16)
qui sont connus au temps t.A partir de l’équation (C.5.15), la limite actuelle L(t) sera la
solution de l’équation suivante :

Z̃(x, t) := Ω̃(x, t)− Ψ̃(x, t) = 0. (C.5.17)

C’est à dire,
L(t) = inf

x∈R
{Z̃(x, t) = 0}. (C.5.18)

Ici, la problème IFPT original consiste à trouver une solution à l’équation (C.5.18).

C.6 Optimisation de la maintenance des systèmes surveillés
en continu

Dans ce chapitre, une politique de maintenance conditionnelle basée sur le processus
OU sera étudiée pour un système surveillé en continu. C’est l’application directe du tra-
vail de modélisation précédent concernant la dégradation, la description et le pronostic des
défaillances. Ce châpitre a pour objectif de montrer comment les résultats précédents relatifs
à la modélisation de la dégradation et au calcul de la durée de vie résiduelle peuvent être
utilisés pour la modélisation et l’optimisation de politiques de maintenance. On considère que
le système est surveillé en continu (Xt est donc connu à chaque instant) et on s’intéresse à la
mise en oeuvre d’une politique de maintenance conditionnelle.
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C.6.1 Introduction

Background

La maintenance conditionnelle a pour vocation d’utiliser la connaissance que l’on a de
l’état du système pour entreprendre des actions de maintenance préventive. Son utilisation
est actuellement en plein essort pour les raisons principales suivantes :

1. de plus en plus de capteurs ou plus généralement de techniques de surveillance sont
disponibles, bon marché et implementable. Il est donc raisonnable de penser que de
plus en plus d’informations seront disponibles sur l’état de santé du système.

2. les incertitudes liées à l’état du système sont réelles et l’on ne peut se satisfaire de
modèles simples ne les prenant pas en compte. Ces incertitudes peuvent induire une
forte variance dans la prédiction des états futurs et une maintenance calendaire ou
basée sur l’âge, qui sont optimisées sur la prévision moyenne des états du système
peuvent difficilement être efficaces dans ce contexte.

3. il faut remarquer enfin que l’état du système à long terme peut difficilement être prédit
avec une grande précision, indépendamment des techniques de prévision. Cela renforce
l’intérêt d’un contrôle plus fréquent et idéalement, d’un contrôle quasi continu.

Rappelons qu’en général, deux types d’actions de maintenance sont étudiées : la mainte-
nance préventive et la maintenance corrective. En conséquence deux types de temps d’atteinte
sont considérés ici : l’un qui corrrespond à la véritable défaillance du système et l’autre qui
correspond à une défaillance virtuelle 2. Quand un véritable échec se produit, une maintenance
corrective est effectuée. Quand une panne virtuelle se produit, une maintenance préventive
est effectuée. L’idée clé de l’optimisation de la maintenance des systèmes surveillés en continu
est alors d’organiser une maintenance préventive appropriée, et d’optimiser les fonctions ob-
jectifs proposées telles que le coût de fonctionnement, la disponibilité du système, etc... en
fonction du niveau de défaillance virtuelle.

Une hypothèse importante au sujet de l’action de maintenance adoptée dans ce chapitre
est que le système est remis à neuf après chaque opération. Ceci permet d’utiliser les outils
relatifs à la théorie du renouvellement et simplifie les problèmes d’optimisation de la main-
tenance. Nous avons d’abord considéré deux cas avec une densité explicite de l’instant de
premier passage : mouvement brownien avec dérive linéaire et le mouvement brownien avec
dérive non linéaire. Pour le processus OU général, une expression approchée sera considérée.

Description du système

Dans ce chapitre, nous supposons que l’état du système est surveillé en permanence.
Suivant les hypothèses émises dans [63, 7, 44], nous considérons les problèmes d’optimisation
de maintenance en fonction du coût minimum et de la disponibilité maximale respectivement.

On suppose par ailleurs que :

1. L’état du système est surveillé en permanence.

2. Une véritable défaillance se produit instantanément lorsque l’état du système atteint
un niveau de défaillance pré-établi constant Lr, et l’instant de défaillance est noté
τr := inft>0{t|xt ≥ Lr}. Quand une véritable défaillance se produit, une action de
maintenance est décidé et l’état du système est indisponible.

2. La défaillance virtuelle est généralement traitée comme une alarme avant la véritable défaillance
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3. Une défaillance virtuelle se produit instantanément lorsque l’état du système atteint
un niveau de défaillance constant Lv ∈ [x0, Lr], où l’instant de défaillance est noté
τv := inft>0{t|xt ≥ Lv}. Le système fonctionne encore jusqu’à ce que la maintenance
commence ou jusqu’à ce que la véritable défaillance se produise.

4. La maintenance préventive ou corrective sera effectuée après un délais déterministe κ
, et l’opération de maintenance a une durée aléatoire λ. Lorsque la maintenance est
terminée, l’état du système est comme neuf.

5. Entre τv et τv + κ, le système se détériore et peut atteindre le niveau de véritable
défaillance au cours de cette période. Si une véritable défaillance se produit (τr ≤
τv+κ), le système est hors service jusqu’à la fin de l’opération de maintenance τv+κ+λ.
Si une véritable défaillance ne se produit pas (τr > τr + κ), le système n’est pas
disponible à partir du moment τv + κ jusqu’à la fin de l’opération de maintenance
τv + κ+ λ.

Dans un tel cadre, la problème d’optimisation de la maintenance consiste à trouver une
valeur pour le niveau de défaillance virtuel Lv tel que la fonction objectif peut être minimisée
ou maximisée (fonction objectif de type coûts [63, 34], ou de tyoe disponibilité [7, 44] etc ..)

C.6.2 Critères d’évaluation

Optimisation de la maintenance basée sur les coûts

Pour envisager l’optimisation de la maintenance basée sur les coûts, il est supposé en
outre que :

1. une maintenance est effectuée avec un coût Cm.

2. l’inactivité du système a un coût par unité de temps Cu.

Sous les hypothèses ci-dessus, le processus Xt décrivant l’état du système est un processus
de régénération avec des instants de régénération qui sont les périodes de maintenance. Au
moment de la maintenance le processus revient à x0, et l’évolution aléatoire du système après
la maintenance ne dépend pas du passé. D’après l’étude proposée dans [63], on a le coût à
long terme prévu par unité de temps qui est égal au coût moyen sur un cycle divisé par la
durée moyenne d’un cycle :

EC∞ =
Cm + Cu(Eλ+ κ− E(inf(κ, τr − τv)))

E(τv) + κ+ Eλ
. (C.6.1)

Le problème est alors de trouver le seuil Lv optimal tel que :

argminLvEC∞, s.t. x0 ≤ Lv ≤ Lr. (C.6.2)

Il faut pour cela trouver une expression calculable de EC∞ en fonction du niveau de
défaillance virtuel Lv. Cela passe par le calcul de E(inf(σ, τr − τv)), lié à la densité jointe
pτv ,τr(x, y) du couple (τv, τr). En outre, nous savons que pour t ≥ 0, la fonction de survie
H̄(t) de τr − τv est donnée par :

H̄(t) =

∫ ∫
y−x>t

pτv ,τr(x, y)dxdy =

∫ +∞

t

∫ y−t

0
gτr(y|Lv(x), x)gτv(x|0, 0)dxdy, (C.6.3)

où gτr(η|y, s) est la densité conditionnelle de premier passage pour Lr sachant (y, s), et
gτv(x|y, s) est la densité conditionnelle de premièr passage pour Lv sachant (y, s).
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Finalement :

E(inf(κ, τr − τv)) =

∫ κ

0
H̄(s)ds (C.6.4)

Sur la base de tout ce qui précède, nous avons effectivement exprimé explicitement EC+∞
en fonction de la densité de premier passage conditionnelle pour τv et τr. Le calcul plus précis
sur ces questions sera examiné dans la section suivante pour l’optimisation dans (C.6.2).

Optimisation de la maintenance basée sur la disponibilité

Dans le domaine de l’ingénierie et de la fiabilité, il peut être pertinent également d’op-
timiser la disponibilité du système [7]. On utilise alors un critère asymptotique d’indisponi-
bilité. Supposons que Xt est le processus de régénération de type OU avec des instants de
régénération définis par les instants de maintenance. Le taux d’indisponibilité asymptotique
est donné par le temps moyen d’indisponibilité sur un cycle, divisé par la durée moyenne d’un
cycle.

U∞ =
Eλ+ κ− E(inf(κ, τr − τv))

E(τv) + κ+ Eλ
. (C.6.5)

Alors la problème d’optimisation des équipements consiste à trouver le seuil Lv tel que :

argminLvU∞, s.t. x0 ≤ Lv ≤ Lr. (C.6.6)

Il est à noter que, intrinsèquement, il n’y a pas de différence technique entre l’optimisa-
tion basée sur les coûts et l’optimisation basée sur la disponibilité, parce que les questions
fondamentales dans (C.6.1) et (C.6.5) restent les mêmes.

Durée de la maintenance et état du système

C’est une idée naturelle de supposer que la durée de la maintenance dépend de l’état du
système de sorte que dans [7], il est suggéré de considérer que

Eλ = λ1 + λ2E(Xτv+κ), (C.6.7)

où λ1, λ2 sont des valeurs déterministes. L’idée initiale de cette proposition est de considérer
que la durée de la maintenance est plus longue lorsque la dégradation du système est plus
importante. Cependant, au lieu de (C.6.7), dans ce chapitre une autre version actualisée de
la durée de la maintenance est choisie car la non linéarité du processus de dégradation rend
la première version difficilement calculable.

Eλ = λ1 + λ2E(Xτv+κe
α(τv+κ,0)). (C.6.8)

L’expression de E(Xτv+κ) est alors donnée par l’équation suivante :

Proposition C.6.1.

E(Xτv+κe
α(τv+κ,0)) = −E(β(τv + κ, 0)) + x0. (C.6.9)
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C.6.3 Approximation-optimization

Dans le contexte précédent, une expression approchée de la loi du temps d’atteinte a
été proposée. Sur la base de cette approximation, la problème d’optimisation de la mainte-
nance consiste à mettre en oeuvre des heuristiques similaires à celles mises en ouvre pour le
mouvement brownien dans [44] et pour le processus Gamma dans [7].

Rappelons que le processus Xt donnée par(C.5.1) a la frome suivante :

dXt = (a(t)Xt + b(t))dt+ σ(t)dBt, X0 = x0, t ≥ 0. (C.6.10)

Une expression approchée de la densité de premier passage à la limite L(t) est donnée par
(2.3.113) :

g(t|y, s) ≈
[
a(t)E(Xt) + b(t)− L′(t) + (L(t)− E(Xt))(

σ2(t)

var(Xt)
+ a(t))

]
× p(L(t), t|y, s),

(C.6.11)

où

E(Xt) = e−α(t,s)

(
y − β(t, s)

)
,

var (Xt) = e−2α(t,s)

∫ t

s
σ2(u)e2α(u,s)du. (C.6.12)

Pour un niveau de dégradation constant L, on a :

g(t|y, s) ≈
[
a(t)E(Xt) + b(t) + (L− E(Xt))(

σ2(t)

var(Xt)
+ a(t))

]
p(L, t|y, s). (C.6.13)

L’expression (C.6.13) mène directement à l’expression de la densité de premier passage
gτr(t|y, s) et gτv(t|y, s) en considérant Lr et Lr respectivement.

Temps moyen de premier passage

Nous avons maintenant une expression explicite pour la loi du temps d’atteinte (C.6.13),
qui mène directement au temps moyen de premier passage et à la durée moyenne de la
maintenance. Pour le processus OU, il s’agit de

E(τv) =

∫ +∞

0
zgτv(z|x0, 0))dz. (C.6.14)

et :

E(Xτv+κe
α(τv+κ,0)) = −E(β(τv + κ, 0)) + x0 = x0 −

∫ +∞

0
gτv(z|x0, 0))β(z + k, 0)dz.

(C.6.15)

Pour une forme calculable de ces deux quantités, nous devrions envisager une forme tronquée
de l’intégrale. Mais la difficulté existe pour la valeur du niveau virtuel de défaillance Lv qui
n’est pas connu avant l’optimisation. Juger si l’intégrale tronquée sera assez bonne n’est pas
évident. Mais en utilisant le fait que τr ≥ τv, nous pouvons proposer une approximation
contrôlable pour tronquer l’intervalle infini basé sur τr.
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Calcul sur E(inf κ, τr − τv)

A partir de (C.6.4), nous savons que :

E(inf(κ, τr − τv)) =

∫ κ

0
H̄(s)ds (C.6.16)

où

H̄(t) =

∫ +∞

t

∫ y−t

0
gτr(y|Lv, x)gτv(x|x0, 0)dxdy. (C.6.17)

Il s’ensuit deux mesures pour donner une approximation de H̄(t) :

1. Tronquer le domaine d’intégration avec un temps de fin T > 0, de sorte que

H̄(t) ≈
∫ T

t

∫ y−t

0
gτr(y|Lv, x)gτv(x|x0, 0)dxdy. (C.6.18)

2. calculer numériquement
∫ T
t

∫ y−t
0 gτr(y|Lv, x)gτv(x|x0, 0)dxdy.

En suivant la procédure ci-dessus, nous pouvons parvenir à une expression approchée
suffisamment précise pour

∫ κ
0 H̄(s)ds, qui est une fonction explicite du temps d’atteinte de

Lv. La précision de l’approximation peut être assurée quelle que soit Lv.

C.7 Conclusions et perspectives

Conclusions

Dans cette thèse, nous avons discuté de quatre grands thèmes, visant à décrire, prédire
et prévenir les défaillances du système :

1. la modélisation de la dégradation stochastique basée sur un processus d’Ornstein-
Uhlenbeck (OU) dépendant du temps ;

2. le pronostic des défaillances d’un système via un problème de temps d’atteinte ;

3. l’estimation du niveau de défaillance via un problème inverse de temps d’atteinte ;

4. l’optimisation de la maintenance d’un système surveilé en continu.

Dans la partie de Modélisation de dégradation basée sur un processus OU en fonction du
temps, nous avons introduit le processus OU dépendant du temps avec l’équation différentielle
stochastique suivante :

dXt = (a(t)Xt + b(t))dt+ σ(t)dBt, t ≥ 0. (C.7.1)

Nous avons montré que ce processus est un bon choix pour la modélisation de la dégradation
pour les raisons suivantes :

1. le processus OU permet d’avoir suffisament de degrès de liberté pour adapter de
manière indépendante la moyenne, la variance et la covariance aux données.

2. Le processus OU converge vers sa valeur moyenne, ce qui permet de localiser dans le
temps l’effet des fluctuations introduites pas le bruit blanc. Cela peut s’avérer positif et
en parfait accord avec les avis d’experts et les lois physiques associées au phénomème
de dégradation.
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3. Le processus OU a une densité de probabilité explicite, ce qui rend aisé l’estimation
des paramètres à partir des données de dégradation..

4. Une étude de cas réel est proposée concernant des composants passifs dans les centrales
électriques.

Dans la partie de Pronostic de défaillances et temps d’atteinte, on présente l’estimation de
la durée de vie conditionnelle d’un système à partir du modèle de dégradation proposé dans
le châpitre précédent. Nous avons développé différentes techniques à partir de deux points
de vue différents : équations aux dérivées partielles et équations intégrales. Ces techniques
peuvent être généralement classées en trois catégories : approximation analytique, algorithmes
numériques et les méthodes de Monte-Carlo.

Dans la partie de Estimation du niveau de défaillance via un problème inverse, on s’in-
terroge sur l’adéquation entre le niveau de défaillance choisi pour le modèle de dégradation
et l’observation de dates de défaillances. Plus précisément, les questions suivantes ont été
traitées :

1. estimation de la limite initiale (C.5.7) pour le processus OU est résultat préliminaire
pour le mouvement brownien.

2. problème inverse de premier passage résolu à partir de l’équation de Fortet et l’équation
Master respectivement par l’intermédiaire d’une procédure itérative.

3. tests en simulation pour reproduire le niveau de défaillance et la distribution du temps
d’atteinte..

Dans la partie de Optimisation de la maintenance pour une système surveillé en continu,
on propose une règle de décision pour effectuer la maintenance préventive avant la mainte-
nance corrective de telle sorte que la fonction objectif peut être optimisée. L’objectif est de
trouver trouver un niveau optimal de défaillance virtuelle. Plus précisément, les questions
suivantes ont été étudiées :

1. le problème d’optimisation de la maintenance pour le processus OU a été résolu à
l’aide d’une approximation, en minimisant un critère de taux asymptotique de coût et
un critère de taux asymptotique d’indisponibilité.

2. le problème d’optimisation de la maintenance est étudié respectivement pour le mou-
vement brownien avec dérive, pour le mouvement brownien avec dérive non linéaire et
pour le processus OU.

Perspectives

Les perspectives de cette thèse peuvent être considérées égaelement selon 4 grands axes :
modélisation de la dégradation, pronostic de défaillance, estimation de niveau de défaillance
et optimisation de la maintenance.

La convergence vers la moyenne du processus OU offre la possibilité d’étudier les
phénomènes en respectant l’idée suivante : il existe un processus de dégradation réel traité
comme un processus sous-jacent et qui peut être déterminé par des lois physiques. Cette
propriété de ”retour à la moyenne” pourrait être un point de départ pour introduire des
processus OU de type Levy dans la modélisation de la dégradation stochastique.

Pour la pronostic de défaillance, la problème de temps d’atteinte est introduit pour le
processus OU. Cela induit un exercice multidisciplinaire entre analyse stochastique, PDE,
équation intégrale, analyse numérique, etc .. L’analyse dans cette thèse commence par

w(x, t|y, s) :=
∂P (τy ,s>t,Xt<x|Xs=y)

∂x , cependant la possibilité de suivre une autre analyse existe.
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Et la méthode des images conduit à de nombreux résultats également pertinents qu’il pourrait
être intéressant d’explorer davantage. [43].

Concernnant le niveau de défaillance et l’étude d’un problème inverse, il faut remar-
quer que le processus OU est un processus simple, de sorte qu’il est sans doute difficile
d’étendre les résultats obtenus à d’autres processus de diffusion. Toutefois, il semble pertinent
de s’intéresser à des processus tels que les processus de saut ou les processus saut-diffusion.

Enfin, concernant la maintenance, les approximations analytiques de la densité du temps
d’atteinte dans les problèmes d’optimisation de la maintenance doivent permettre d’envisager
des politiaues plus élaborées. Une extension naturelle est de considérer que l système n’est plus
surveillé en continu et de s’intéresser à l’optimisation de l’intervalle entre deux inspections.
[34].
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