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Abstract

The ultimate objective of this thesis is to evaluate the possibility to validate and op-
timize a manufacturing process using numerical simulation and taking into account
the irreducible uncertainties in the process, materials and geometry of manufactured
product. Taking into account the uncertainties requires quantifying the effects of
variations of model parameters on the outputs, by propagating these variations via
computer simulation to assess their effects on the outputs. In this work, we have
proposed a procedure to determine the sensitivity threshold of the numerical model
to build numerical Design of Experiments consistent with this threshold. We have
also shown that, given the uncertainties in the materials and the geometry of the
product, it is possible to optimize certain process parameters to control the effects of
uncertainties on the dimensional and morphological variations of the product. For
this, we have proposed an optimization procedure based on NSGA-IT algorithm and
a meta-modeling of the process. The application for deep drawing of a U-shaped
sheet metal part, springback included, shows that it is a robust design problem for
which we get all the compromise between the deviation from the mean and standard
deviation of a "performance" depending on the process correctly chosen. Finally,
the analysis of these results allows us to quantify the relationship between the notion
of robustness of an optimized solution of the process and criteria for measuring the
quality of the product.

Keywords: uncertainty, sheet-metal forming, robust design, numerical simulation,
sensitivity threshold, uncertainty propagation, robust design optimization, multiple
criteria decision making.
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1.1 Background and motivation

In a context where it is necessary to respond industrial challenges towards shorter
lead times, lower cost and better customer satisfaction. Concurrent Engineering
(CE) was born as a solution to these issues. The solution of the CE is carried out in
a manner that the different tasks in the product and production development process
are integrated and performed at the same time rather than in sequence. Due to the
tasks being implemented in parallel, by integrating product and process design, this
makes decrease the development lead time and enhance the quality [201]. In order
to improve further the CE, tools and methods of design of product, process and
manufacturing systems based on computer simulation need to be more developed
[201].

In the other side, sheet metal stamping is a productive process which is mainly
used in mass production, particularly to produce the components for "body in white"
in the automotive industry as illustrated in Figure 1.1. More specifically, there are
around 100 to 150 stamped metal panels on vehicles produced nowadays such as au-
tomobiles, light trucks, and minivans [126]. Due to ever increasing competition, the
cost reduction and productivity improvement are demands at which the automotive
manufacturers aim. However, the sheet metal stamping design process is very expen-
sive and time-consuming because of the costly trial-and-error procedures. Indeed,
an automotive plant needs to produce about 40-50 critical panels per a car model
that require 150-200 stamping dies [86]. Hence, it is very necessary to shorten the
process design time and eliminate costly physical trials which add to the manufac-
turing cost. As a solution for this issue, CAD software and FEM-based numerical
simulation tools have been widely used to design and support in the design and
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product development process. A designer can use sheet metal stamping simulation
to assess the posibility of successfully manufacturing a sheet metal stamping part
without the expense of making a physical tool. Nevertheless, it still has the dis-
crepancy between results from computer simulation and physical experiment. The
discrepancy can be provoked by either approximations and errors in FEM models,
or variations of the input variables [88].

On the other hand, searching a manufacturing process design producing the parts
of which specifications are as close as possible to the nominal values, meanwhile re-
ducing variations of the part performance caused by uncertainties of input variables.
Unfortunately, the automobile manufacturers often cope with several defects on the
stamped parts in which shape defect due to springback, thinning, wrinkling and

tearing are conspicuous defects in the sheet metal stamping process.

Figure 1.1: Metal sheet components in Body-In-White of a car

The variations in material properties, blank thickness, lubrication, tooling di-
mensions and process parameters can be causes of those variations in performance
of the output. As a consequence, it leads to amplified variations and problems in
the downstream assembly process, and in turn, results in quality issues. The sources
of the inherent variations stems from the part-to-part, batch-to-batch, and within
batch variation during production process [126]. Thus, taking irreducible inher-
ent variability into account and optimization of the process design are major issues
should be tackled to obtain a robust process design in the sheet metal stamping
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process design.

In the context of Concurrent Engineering and Robust Design, this thesis is mo-
tivated by a demand to elaborate a strategy in which engineering activities in the
product and production development process are integrated and carried out simulta-
neously, more particularly searching a robust process design insensitive to variations
is included. Moreover, this research challenge is one of the problems which is posed
by French research group of Design for Producing Robust Product from the French
Association of Mechanical Engineering (AFM) as follows:

" How to manage the uncertainties in the early product life cycle, in particular at
the production level?"

1.2 Problem definition and Objective of thesis

1.2.1 Research scope and purpose of thesis

In order to capture research scope of the thesis, the product life-cycle is used as
the reference. Alting [6] indicated that the life-cycle of a product goes through six
phases including:

e Need recognition

Design/development

Production

Distribution

e Usage
e Disposal/recycling

These phases of the life-cycle of a product is illustrated in Figure 1.2. The framework
of this research work in relation to this representation of a product life-cycle will
touch the early three phases comprising the need recognition, the product design/
development and the product production.

In particular, this thesis addresses the design process in which a part of the
embodiment design and detailed design phase are focused on as shaded in Figure
1.3. More specifically, robust design for a sheet metal forming process is taken into
account in detail.

The purpose of the thesis is to propose a methodology to manage uncertainties
in the sheet metal forming process based on FEM numerical simulation, served for
Research & Development (R & D) stage.

1.2.2 Problem statement

Using high performance FEM-based numerical simulation solutions to design sheet
metal parts and to support in the product development process is more and more
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Design
development Production

Distribution

Disposal/
Recycling

Figure 1.2: The life-cycle of a product [6]
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Figure 1.3: Design process [162],[188], [55].
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common in the automotive industry. The progress on numerical simulation tools
can increase the level of predictability and precision, but these numerical tools re-
main dependent on many factors including primary causes such as software factors,
numeric factors, process parameters, material and workpiece as listed in Figure 1.4
[204]. Moreover, FEM-based numerical models are deterministic - rerunning the

software specific factors materlal workpiece

costs useability

den5|ty blank thickness
licensing 5
fFcient yield strength, blank form
efficien preprocessmg Iastlc hardenin symmetry \
period of adjustment
R-value complexity \
postprocessing features hardening curves

constitutive equation / meshing

/ mesh refinement
automatic meshing

element types

reliable and
>efficient simulation

drawing velocity, blank holder force

pre-cut part, die geometry_ /time integration method

draw bead configurations

gravity effects

temperature
—_—

contact types

mass scaling

solver type element quality

friction
RLLA LN .
process parameters numeric factors

Figure 1.4: Ishikawa diagram for sheet metal forming simulation process [204]

code with the same inputs gives identical observations. It is this lack of random
error that makes computer experiments different from physical experiments [183].
While uncertainty is inevitable in any manufacturing process, at any stages of
product development, and throughout a product life-cycle. Uncertainties can lead to
variations in performance of the ouputs. Uncertainties emanate from various sources
such as manufacturing imprecision, variations in material properties, variations in
geometric dimensions of workpiece, and variations in process parameters. Uncer-
tainty sources in a sheet metal forming process is synthesized in Figure 1.5 [154]. The
sources of these inherent variations stem from the part-to-part, batch-to-batch, and
within batch variation during production process [126]. In particular, the variability
in material properties differs from coil-to-coil, laboratory-to-laboratory and test-to-
test. It is indicated that the scatter laboratory-to-laboratory is approximately equal
to test-to-test scatter at one laboratory. Coil-to-coil variations are typically greater
than the observed test-to-test scatter, particularly in the transverse direction[98]. As
a consequence, it leads to amplified variations and problems in the downstream as-
sembly process, and in turn, results in quality issues. Therefore, in order to improve
the quality, uncertainty quantification in the design process is required to take into
account. Computer experiments based on FEM numerical simulations are the most
common approach to study problems in uncertainty quantification [183]. However,
these computer experiments consider FEM-based numerical tools as a black-box,
thus it is impossible to modify inside to improve their precision. In addition, since
FEM-based numerical software has finite precision (due to the errors introduced the
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Input variations Output variations
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Process

Figure 1.5: Uncertainty sources in a sheet metal forming process [154].

numerical solution methods used such as discretization error, approximation error,
convergence problems, modeling error, etc), its sensitivity threshold to input pa-
rameters’ variation intervals is necessary to study. This contributes to enhancing
the confidence of the results in uncertainty propagation.

In the detailed design phase, to ensure the desired behaviour and functional
requirements of a part in spite of uncertainties, the part features are assigned a
tolerance zone within which the value of feature. Therefore, tolerance design is a key
element in industry for improving product quality and decreasing the manufacturing
cost. Since the sheet metal part’s performance variation induced by uncertainties
of the inputs is quite large due to springback, geometric tolerance analysis for the
sheet metal part is a problem to consider.

Due to variations being unavoidable in manufacturing process, minimizing the
variations of the performance under uncertainty are required from automotive indus-
try. In order to solve this problem, Robust Design proposed by Taguchi (also known
as Taguchi method) [208], [211] was given. Nevertheless, the Taguchi method has
several drawbacks. Since Taguchi generates experimental designs based on orthog-
onal arrays, the optimum designs can be only obtained at these sampling points,
while the points between them are not evaluated. Another drawback of the Taguchi
method is the impossibility of taking into account interaction effects between design
variables [221]. In addition to the shortcomings of the Taguchi method, the variance
in response is caused solely by uncertainties in noise factors. Hence, it is essential to
build a multi-objective optimization strategy based on Robust Design Optimization
(RDO) to the performance variations under uncertainties in both design variables
and noise factors.
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For multi-objective optimization problem, the Pareto optimal front (POF) rep-
resents optimum solutions in the objective space. A designer selects the ultimate
solution among the Pareto set on the basis of additional requirements, which may
be subjective.

1.2.3 Objective of thesis

The general goal of this thesis is to respond the question: "How to manage the
uncertainties in the early product life-cycle, in particular at the production level?"
for a sheet metal forming process using FEM-based numerical simulations.

The specific objectives are carried out in this thesis as follows:

e Identify the credibility of a FEM-based numerical simulation of a sheet metal
forming process.

e Analyze the effect of uncertainties in the input parameters on part perfor-
mance via FEM simulation and metamodels

e Optimize the process in the presence of uncertainties and identify the best
optimal design configurations based on process capability indices.

1.3 Dissertation outline

The dissertation is organized into 5 chapters as follows:

e Chapter 1: This chapter introduces the background and motivation in prod-
uct development in industry. The problem statements as well as objectives of
the thesis are presented.

e Chapter 2: One of the focuses of the thesis, this chapter reviews numer-
ical approaches including FEM-based numerical simulations for sheet metal
forming process and metamodeling techniques. Particularly, an approach
identifying sensitivity threshold of the FEM-based numerical models
18 proposed. An application of U-shaped part draw bending process is taken
into account. A strategy for building metamodels is suggested.

e Chapter 3: The literature review on uncertainty, sampling techniques, and
process capability indices are employed. Geometric tolerance analysis and
determination of sheet metal part’s performance variations are presented.
Analysis of the effects of uncertainties on the part performance are
carried out.

e Chapter 4: A strategy for multi-objective robust design optimization of the
sheet metal forming process is built based on metamodels and multi-objective
algorithms. An approach is proposed to address the best optimal de-
sign configuration based on the capability indices applied for Robust
Design.
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e Chapter 5: Key conclusions and perspectives are given in this chapter.
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The main objective of this chapter is to qualify the level of predictability of a
FEM-based numerical simulation of a sheet metal forming process.

2.1 Introduction to sheet metal forming processes

Sheet metal forming processes are those in which force is applied to a piece of sheet
metal to modify its geometry rather than remove any material. The applied force
stresses the metal beyond its yield strength, causing the material to plastically de-
form, but not to fail. By doing so, the sheet can be bent or stretched into a variety of
complex shapes. Sheet metal forming processes are mainly used in mass production
for producing automobiles, domestic appliances, building products, aircraft, food
and drink cans. Sheet-metal parts have the advantage that the material has a high
elastic modulus and high yield strength so that the parts produced can be stiff and
have a good strength-to-weight ratio [83]. There is a large number of techniques to
make sheet metal parts in which the most common sheet metal forming techniques
including deep drawing process is interested in this research work.

2.1.1 Die-bending process

Bending is the simplest metal forming process in which a force is applied to a
piece of sheet metal, causing it to bend at an angle and form the desired shape.
Plastic deformation occurs only in the bend region and the material away from the
bend is not deformed. If the material lacks ductility, cracking may appear on the
outside bend surface, but the greatest difficulty is usually to obtain an accurate and
repeatable bend angle. Elastic springback is appreciable [83].

U-bending sometimes called deep drawing process (the depth larger than the
width) requires a blank, blank holder, die, and punch as shown Figure 2.1. To form
U-part, the blank is clamped by the blank holder over the die which has a cavity
where the punch moves downward into the blank. As the punch is pushed into the
sheet, tensile forces are generated at the centre. These are the forces that cause the
deformation and the contact stress between the punch and the sheet is very much
lower than the yield stress of the sheet. The tensile forces are resisted by the material
at the flange of the blank and compressive stresses will develop in this region. As
a result, the U-bent part is generated after removing the tools. Ideally, the bent
part meets desired functional and technical requirements. However, geometrical
defect of the bent part due to springback is an inherent problem in the bending
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process. Reducing and compensating the springback occurred are still challenges to
the industry.

Workpiece

Figure 2.1: U-bending process [1].

2.1.2 Deep drawing process

Deep drawing process is a process in which thin walled metal parts are also shaped
by punches and dies. The punch pushes downward on the sheet metal, forcing it
into a die cavity in the shape of the desired part. In stamping, most of the final
part is formed by stretching over the punch although some material around the sides
may have been drawn inwards from the flange. As there is a limit to the stretching
that is possible before tearing, stamped parts are typically shallow. This process is
widely used to form auto-body panels and a variety of appliance parts. A typical
part formed in stamping is shown in Figure 2.2.

Figure 2.2: Typical part formed in stamping [83].

To form deeper parts, much more material must be drawn inwards to form the
sides and such a process is termed deep drawing. Deep drawn parts are characterized
by a depth equal to more than half of the diameter of the part. Typical example of
deep drawing is presented in Figure 2.3.

The deep drawing process requires a blank, blank holder, punch, and die. The
blank is a piece of sheet metal, typically a disc or rectangle, which is pre-cut from
stock material and will be formed into the part. The blank is clamped down by
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Before After

Pressure
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Blank
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Blank Drawn cup

Figure 2.3: Typical example of deep drawing [95].

the blank holder over the die, which has a cavity in the external shape of the part.
A tool called a punch moves downward into the blank and draws, or stretches, the
material into the die cavity. The movement of the punch is usually hydraulically
powered to apply enough force to the blank. Both the die and punch experience
wear from the forces applied to the sheet metal and are therefore made from tool
steel or carbon steel. The process of drawing the part sometimes occurs in a series
of operations, called draw reductions. In each step, a punch forces the part into
a different die, stretching the part to a greater depth each time. After a part is
completely drawn, the punch and blank holder can be raised and the part removed
from the die. The portion of the sheet metal that was clamped under the blank
holder may form a flange around the part that can be trimmed off.

2.2 Determination of sheet material properties

In sheet metal forming, there are two regimes of interest consisting of elastic and
plastic deformation. Forming a sheet to some shape obviously involves permanent
plastic flow and the strains in the sheet could be quite large. While elastic strain has
an important effect to give rise to springback when the sheet metal part is released
from the tools.

Moreover, advanced high strength Dual Phase (DP) steels are ever increasingly
used to make automotive parts, particularly in Body-In-White, to reduce weight as
well as to improve passive safety. Nevertheless, a major problem of cold-stamped
parts made from such high strength steels is the large springback value. Springback
occurred in a formed part needs to be considered in the process design due to that
springback is variably sensitive to materials and process parameters [34], [229]. In
subsequent section, a unixial tension test of DP780 steel which is presented.
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2.2.1 Uniaxial tension test

The measured engineering stress-strain curve in the rolling direction for DP780 steel
is shown in Figure 2.4.

The engineering stress—strain curve of the DP780 steel
900 ; T T

800 7

~
o
o
T
I

Engineering stress (MPa)

200 7

0 0.05 0.1 0.15 0.2
Engineering strain (mm)

Figure 2.4: Engineering stress-strain curve of DP780 steel |75].

The initial yield stress is defined as

by
=Y 2.1
(@10 = 5 (2.1)
where P, is the initial yielding load at which plastic deformation commences.
The maximum engieering stress called the ultimate tensile strength (UTS) is

calculated as
Pmaa:

Ao
However, it can be seen from Figure 2.4 the transition from elastic to plastic defor-
mation is not sharp and it is difficult to establish a precise yield stress. Therefore,
yield stress called yield strength (YS) is determined by drawing a line parallel to the
elastic loading line which is offset by the specified amount of 0.2%. In tensile test
of DP780 steel, the properties are different in directions so that some anisotropy
exists. The state of anisotropy is usually indicated by the R-value which is defined
as the ratio of width strain to thickness strain. As for anisotropic plastic behavior,
the sheet sample was characterized along three directions: the rolling, 45 degree

and transverse directions. Uniaxial tension test data of the DP780 steel is shown in
Table 2.1.

Urs =

(2.2)

2.2.2 The true stress-strain curve

Since the engineering stress-strain curve is calculated based on the initial cross-
sectional area of the sample and the original gauge length, it is not suitable for
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Table 2.1: Uniaxial tension test data [75].

Direction Rolling direction
E |GPa| 198.8

YS [MPa] 527

UTS [MPa| 831.5

Uni. elongation [%] 13.1
Total elongation [%] 19.8

R-value 0.781
Poisson’s ratio 0.3
Friction coefficient 0.1

use in the analysis of forming process. To overcome these disadvantages, the study
of sheet metal forming processes is based on the true stress-strain curve. The true
stress-strain curve can be calculated from the engineering stress-strain diagram using
the relationships as follows:

_ P B P Ay B l B €eng
C= AT A A Tenay, = Oeng (1+550) (2:3)
_ Ceng
e=lIn (1—1— 100) (2.4)

The true stress-strain curve calculated from the engineering stress-strain curve is
shown in Figure 2.5. The true stress-strain curve in Figure 2.5 cannot be calculated

The true stress—strain curve of the DP780 steel

950

900
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550

5000 0.02 0.04 0.06 0.08 0.1 0.12 0.14

True strain (mm)

Figure 2.5: True stress-strain curve of DP780 steel.

beyond a strain corresponding to maximum load. This strain is called the maximum

uniform strain defined as: .
v=In(1+ =% 2.
€ n < + 10 O> (2.5)
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2.3 Deformation of sheet in plane stress

2.3.1 Strain diagram

In a typical sheet process most elements will deform under membrane stresses o
and oy, which are both non-zero. The third stress, o3, perpendicular to the surface
of the sheet is usually quite small as the contact pressure between the sheet and
the tooling is generally very much lower than the yield stress of the material. It is
assumed that normal stress is zero, such a process is called plane stress deformation.
It is convenient to describe the deformation of an element as shown in Figure 2.6
in terms of either the strain ratio 8 or the stress ratio . The usual convention
is to define the principal directions so that o1 > o9 and the third direction is
perpendicular to the surface where o3 = 0. The deformation mode is thus:

£1;62 = Persez = —(1 + B)ey (2.6)

01;09 = aop;03 =0 (2.7)

The sum of natural strains is zero:
€1 +ex+e3=0 (2.8)
The sheet metals are very sensitive to modes of deformation to which they are

Plane stress
03 = D,
g3 =—(1+ B¢

il o = (¥Fy
1059 %
!.?= ﬁ."‘]

Figure 2.6: A general plane stress sheet process.

applied. For a given material, the necessary efforts as well as the capacity of de-
formation can differ greatly from one mode to another. Therefore, the study of the
formability of the sheet metal by the definition of the different deformation modes
is vital. In the study of any sheet metal forming process, it is first necessary to
determine the strain over the part. This can be done by measuring a grid marked
on the sheet metal which is shown in Figure 2.7. By convention, the major prin-
cipal direction 1 is assigned to the direction of the greatest principal stress and
consequently greatest principal strain. The minor principal direction 2 is considered
as perpendicular to the direction 1. Figure 2.8 indicates the strain distribution of
different modes.
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? o AT o A T LT

Figure 2.7: An element of a sheet showing: (a) the undeformed state with circle and
square grids marked on it; (b) the deformed state with the grid circles deformed to
ellipses of major diameter d; and minor diameter dy and (c) the tractions, T , or
forces transmitted per unit width [83].

Figure 2.8: Strain distributions of different modes [83].
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Table 2.2: Modes of deformation of sheet metal forming

Mode Deformation Stresses
Equal biaxial tension, =1 | &1 > 0;e9 > 0;e3 < | 01 > 0;09 > 0;03 = 0;
Oe1 +e2 = —€3; 61 =
_ &3
E9 = -3
Plane strain, =0 g1 > 0;eg = 0jes < | o1 > 0;00 > 0503 =
0;61:—83 0;0’2:%
Uniaxial tension, f=-1/2 g1 > 069 < 0jeg < | 01 >0;00=0;03=0
O;e2 + 63 = —e1362 =
_ =&
£3 = — 3
Pure shear, S=-1 €1 > 0;eg < Ojes = |01 > 0;00 < 0;03 =
0;62:—{51 0;—02201
Uniaxial compression, f=- | €1 > 0;e2 < 0;e3 2 | 01 =03=0
2 0;e3 + 61 = —ez;61 =
—_&
£3 = )

2.3.2 Effective stress-strain laws

The next step in study of sheet metal forming processes is to determine the stress
state associated with strain at each point. As mentioned previously, the engineering
stress-strain curve is characterized by an elastic part and a plastic part. In order to
model the isotropic hardening behaviour, empirical effective stress-strain laws are
necessarily used. The constitutive laws are commonly used as:

- Power law: A power law or law of Hollomon is defined as

g=Ke" (2.9)

where & is effective or equivalent stress; € is effective or equivalent plastic strain;
K is the strength coefficient and n is the strain-hardening index. The power law is
described as in Figure 2.9. The constants K and n are obtained by linear regression.
The slope of this curve give the exponent of strain-hardening. By fitting the power
law to two points, a point, A, and the maximum stress point, the exponent of
strain-hardening, n, is determined as:

INomaz — lNo 4

= 2.10
" Ine, —Iney ( )
By substitution, the coefficient of strain-hardening K is defined as
o
K=— 2.11
: (211)

The disadvantage of this law is that at zero strain, it predicts zero stress and an
infinite slope to the curve. It does not indicate the actual initial yield stress.
- Law of Swift or law of Krupkowski is defined as:

7 =K(eo+8)" (2.12)
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Figure 2.9: Law of Hollomon.

where the constant g is termed a pre-strain or offset strain constant. The Swift law
is represented as in Figure 2.9.

In materials which are very nearly fully annealed and for which gg is small, this
relation can be obtained by first fitting Equation 2.9 and then, using the same values
of K and n, to determine the value of ¢¢ by fitting the curve to the experimentally
determined initial yield stress using the equation:

o, = Ke! (2.13)

- Law of Ludwik is defined as:
g =0y + Ke" (2.14)

where o is initial yield stress. The law of Ludwik is described as in Figure 2.9.

In order to describe the strain-hardening of DP780 steel, it is essential to give a
constitutive law which well characterized its behavior in FE numerical simulation.
Three material laws are compared with experimental data of DP780 steel as shown
in Figure 2.10. It has been found that the Swift law is the best fit to the experimental
data. Therefore, it is used in numerical analysis in next sections.

2.4 State-of-the-art of FEM simulation in sheet metal
forming

2.4.1 Role of finite element simulation applied in automotive in-
dustry

The automotive industry faces world-wide serious challenges: fierce market compe-
tition and strict governmental regulations on environment protection. The strate-
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Figure 2.10: Comparison of experimental data with material laws.

gies of the automakers to meet these challenges is sometimes called the 3R Strat-
egy: Reduction in time-to-market, reduction in development costs to gain com-
petitiveness, and reduction in the vehicle weight to improve fuel efficiency. The
solutions to achieve this triple goal are essentially based on the implementation of
CAD/CAE/CAM technologies in product development and process design. A very
significant component of this endeavour is focused on the reduction of the tooling
costs and the lead-time related to the stamping of autobody panels, even under
increasing technological difficulties such as the use of aluminum alloys and high-
strength steels, and requirements for higher geometrical accuracy of stamped parts.
To deal with the problems brought about by these trends, which are beyond past
experience, numerical methods for sheet forming simulation become more and more
important, replacing the physical tryout of stamping dies by a computer tryout. The
success of numerical simulation depends mainly on the advances in forming simula-
tion codes, but progress in other related technologies is also important. Examples of
related technology are the CAD systems that rapidly construct and modify tool sur-
faces, modern mesh generators to, more or less automatically, create FE- meshes on
CAD surfaces, visualization hardware and software, which enables users to grasp the
huge data, and, finally, the computer hardware, which makes it possible to perform
large scale simulations within reasonable time [129].

At present, the role of finite element simulation in design and manufacturing of
stamping tools is illustrated as in Figure 2.11. This process is begun with the concept
and style design of a new car and ended up with the commencement of production.
Simulation may be effectively performed at five different stages in Figure 2.11 for
the purpose of helping decision making in design and modification of parts and
tools. The first simulation is at the production process design stage <1>. Purpose
of the simulation at the stage is to make a rough estimation whether panels of
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Figure 2.11: Design and manufacturing process of stamping tools in automobile
industry at present [128].

new designed car can be formed or not. If answer is "no", the ear design must be
modified. However, at this stage geometry of body parts are not fully described in
CAD system and no tool data exists, thus it is not possible to make full simulation.
The precise simulation is achieved at stage <3> to determine number of stamping
steps, such as first drawing, second drawing, trimming, edge bending, and to design
die face geometry used at each stamping step. At this stage die face geometry
is modeled by CAD surface description and thus modification of die face data is
made rather easily according to the simulation results on same CAD system. The
performance of integrated CAD and simulation system is crucial for obtaining well
optimized stamping steps and die face shape in very limited time allocated to the
production tool design. The simulation is also required at the tryout stage <4>,
to find a solution to avoid the forming defects appeared during tryout. In order
to study the mechanism of origination and propagation of defects, the systematic
series of simulation can be taken place after production stated <5>, and obtained
information is efficiently made use of in the next new model [128].

Ideally, the finite element simulation is powerful enough to predict all the forming
defects and provide optimum stamping tools and conditions. The prototype tools
from the design and manufacturing procedure are eleminated and number of trial
and modification operations is reduced. Thus, the design and manufacturing process
of stamping tools might be shorten dramatically as is illustrated in Figure 2.12[128].

2.4.2 Literature review on FEM simulation of sheet metal forming
process for springback prediction

Using FEM simulation for predicting defects in sheet metal forming design is very
common. One of these dominant defects is geometrical defects due to the spingback.
Several research works assessed how springback prediction capability depends on the
utilized numerical approaches. Mattiasson et al. [134|, Wagoner et al. [228] and Li
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Figure 2.12: Design and manufacturing process of stamping tools in automobile
industry in the future [128].

et al. [121] FEM simulations of springback are much more sensitive to numerical
tolerances than forming simulations are. Li et al. [121] investigated the effects of
element type on the springback simulation. Yuen [244] and Tang [214] found that
different unloading scheme will affect the accuracy of the springback prediction.
Similarly, Focellese et al. [60] and Narasimhan and Lovell [150| pointed out that
different integration scheme will also influence the result of springback simulation.
Park et al. [165] and Valente and Traversa [223] attempted to link dynamic ex-
plicit simulations of forming operations to static implicit simulations of springback.
He and Wagoner investigated the impact of the finite element mesh system of the
blank on springback results using the same benchmark problem [76]. The effect of
the dynamic term on springback was evaluated by Chung et al. [35]. Numerical
factors affecting springback including contact damping parameter, penalty param-
eter, blank element size, number of corner elements were investigated by Lee and
Yang [116]. For the last few years, a couple of investigations in relation to the
effectiveness of numerical models have been also taken into consideration making
comparison between numerical predictions and experimental results. Particularly,
the influence of numerical parameters comprising the type of the utilized element,
the number of integration points, the hardening rule and so forth, with the aim to
improve the effectiveness and reliability of the numerical results [120]. Xu et al.
analyzed the effect of sensitivity factors in a U-bending process of Numisheet’93
benchmark problem using a fully explicit solution scheme in which the impact of
integration points number, blank element size and punch velocity is researched [240].
Li et al. [120] explored a variety of issues in the springback simulations. They con-
cluded that (1) typical forming simulations are acceptably accurate with
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5-9 through thickness integration points for shell/beam type elements,
whereas springback analysis within 1% numerical error requires up to 51
points, and more typically 15-25 points, depending on R/t (R:tool radius
and t: sheet thickness), sheet tension and friction coefficient. (2) More
contact nodes are necessary for accurate springback simulations than for
forming simulation, approzimately one node per 5 [°] of turn angle ver-
sus 10 [°] recommended for forming. (3) Three-dimensional shell and
non-linear solid elements are preferred for springback prediction even
for large w/t ratios because of the presence of persistent anticlastic cur-
vature. For R/t>5.6, shell elements are preferred since solid elements
are too computation-intensive. For R/t<5.6, nonlinear 3D solid elements
are required for accurate springback prediction.

It has been found that the reliability of a numerical simulation depends both on
material behavior modeling (yield condition and hardening model) and on typical
numerical parameters (mesh dimension, element type, number of integration points,
integration scheme, punch velocity, and so on). Oliveira et al. [158] evaluated the in-
fluence of work-hardening modeling in springback prediction in the first phase of the
Numisheet2005, Benchmark 3: the U-shape Channel Draw. Several work-hardening
constitutive models are used in order to allow the different materials’ mechanical
behavior to be better described: the Swift law or a Voce type saturation law|[227] to
describe the classical isotropic work-hardening; a Lemaitre and Chaboche[118] type
law to model the non-linear kinematic hardening, which can be combined with the
previous two; and Teodosiu’s microstructural work-hardening model [217]. They
found that the differences in springback prediction are not significantly higher than
those previously reported for components with lower equivalent plastic strain lev-
els. It is shown that these differences can be related to the predicted through-
thickness stress gradients [158]. Taherizadeh et al. [212] predicted the springback of
Numisheet2005 Benchmark 3 with different material models using the commercial
finite element code ABAQUS. They concluded that the isotropic hardening
model cannot accurately predict springback of sheet metal parts when the
forming process leads to cyclic deformations.. While the mixed isotropic-
nonlinear kinematic hardening model is able to capture the main cyclic hardening
phenomena and therefore is more appropriate for simulating the springback. Li et
al.[122] investigated Effect of the material-hardening mode on the springback sim-
ulation accuracy of V-free bending. They found that the material-hardening mode
directly affects the springback simulation accuracy, and the greater the veracity of
the hardening mode, the greater the springback accuracy. Geng and Wagoner [64]
evaluated springback prediction accuracy in comparing four different yield functions:
von Mises, Hill quadratic, Barlat three parameter, and Barlat 1996. They found that
Simulations utilizing Barlat’s 1996 yield function showed remarkable agreement with
all measurements, in contrast to simulations with the other three yield functions.

Many authors investigated the effect of material anisotropy on springback amount.
Gomes et al. [71] analyzed the variability of springback of an anisotropic high
strength steel, comparing numerical and experimental investigations of a benchmark
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U-shape stamping process (NUMISHEET 93). Springback variations comparing the
results along rolling direction 0 [°] and along transverse one 90 [°] were considerable:
springback increases at the increasing of the angle from the rolling direction. The
role of anisotropy on the springback occurrence was also assessed by Ragai et al.
[176] They studied stainless steel 410 draw-bend specimens at the varying of blank
holder force and noticed differences on springback at 0 [°], 45 [°], and 90 [°] from the
rolling direction. In particular, such differences proved that the effect on the process
results is different for different restraining forces levels. Verma et al. [225] developed
both FE and analytical models to analyze effect of normal anisotropy, concluding
that higher anisotropy gives higher springback, so that springback is minimum for
an isotropic material. They also analyzed by analytical models the effects of sheet
thickness and strain hardening exponent observing that both parameters increase
implies a springback lowering.

Another parameter to be considered in springback investigation is Young mod-
ulus E. Some researchers have pointed out that most of the metallic materials are
characterized by an inelastic recovery behavior after plastic deformation since the
elastic modulus decreases with plastic strain [144]. Yu [243] compared the effect of
varied elastic modulus and constant elastic modulus on springback. He conluded
that Springback angles simulated with varied elastic modulus are larger than those
simulated with constant elastic modulus. And the simulated profile for U-channel
with varied modulus is closer to the experimental result than that with constant elas-
tic modulus. The effect of inelastic recovery on springback needs to be considered
so as to get a more precise springback simulation.

2.5 State-of-the-art of metamodeling techniques for com-
puter based engineering design

Since several thousand evaluations are required for a probabilistic evaluation, the
FE model of the sheet metal forming process can not directly be used. There is a
need to use an approximation, a metamodel, of the numerical model.

2.5.1 Role of metamodeling in support of engineering design

Metamodels are widely used to replace the actual expensive computer analyses in en-
gineering design optimization. Engineering analyses using complex computer codes
supplying a vector of design variables and computing a vector of responses can take
many hours to run. Even though the computing power is improved, the expense of
running many analysis codes remains significant. To solve such a challenge, approx-
imation or metamodeling techniques are often employed. It has been obvious that
metamodeling provides a decision-support role for design engineers. Metamodeling
and its role in support of engineering design optimization are shown in Figure 2.13.
The supporting functions that metamodeling can provide as follows [232]:

e Model approximation. Approximation of computation-intensive processes
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across the entire design space, or global approximation, is used to reduce
computation costs.

e Design space exploration. The design space is explored to enhance the en-
gineers’ understanding of the design problem by working on a cheap-to-run
metamodel.

e Problem formulation. Based on an enhanced understanding of a design op-
timization problem, the number and search range of design variables may
be reduced; certain ineffective constraints may be removed; a single objective
optimization problem may be changed to a multi-objective optimization prob-
lem or vice versa. Metamodel can assist the formulation of an optimization
problem that is easier to solve or more accurate than otherwise.

e Optimization support. Industry has various optimization needs, e.g., global
optimization, multi-objective optimization, multidisciplinary design optimiza-
tion, probabilistic optimization, and so on. Each type of optimization has its
own challenges. Metamodeling can be applied and integrated to solve various
types of optimization problems that involve computation-intensive functions.

Muiltidisciplinary
Design
Optimization

| Metamodeling

o l Design Space
Approximation Exploration
Problem
Formulation el

Figure 2.13: Metamodeling and its role in support of engineering design optimization
[232].
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2.5.2 Metamodeling process

A metamodel is an approximation of the input/output (I/O) transformation that is
implied by the simulation model [103]. The principle of metamodeling is presented
as in Figure 2.14. This shows that the FE model is an approximation of the physical
process and the metamodel is an approximation of the FE model. Due to this "dou-
ble approximation", there is a risk that the physical process is not well-represented
by the metamodel.
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Figure 2.14: Principle of metamodeling [103].

2.5.3 Literature review of metamodeling techniques

Metamodeling is mainly conducted involving three basic steps (a) choosing an ex-
perimental design for generating data, (b) choosing a model to represent the data,
and then (c) fitting the model to the observed data [200]. The commonly used
metamodeling techniques categoried according to sampling, model types and model
fitting are shown in Table 2.3 |200].

2.5.3.1 Design of Experiments

In engineering, traditionally a single parameter is varied (perturbed) and the effects
are observed. Experimental design techniques which were developed for physical
experiments are being applied to the design of computer experiments to increase
the efficiency of the analyses. An experimental design represents a sequence of
experiments to be performed, expressed in terms of factors (design variables) set
at specified levels (predefined values). An experimental design is represented by a
matrix X where the rows denote experiment runs, and the columns denote particular
factor settings [200]. Classic experimental designs are widely used including factorial
or fractional factorial [142], central composite design (CCD) [142], Box-Behnken
|142|, alphabetical optimal [140] and Plackett-Burman designs [142|. These classic
methods tend to spread the sample points around boundaries of the design space and
leave a few at the center of the design space. The most basic experimental design
is a full factorial design. The number of design points dictated by a full factorial
design is the product of the number of levels for each factor. The most common are
2% (for evaluating main effects and interactions) and 3* designs (for evaluating main
and quadratic effects and interactions) for k factors at 2 and 3 levels, respectively.
A 23 full factorial design is shown in Figure 2.15 (a).

The size of a full factorial experiment increases exponentially with the number of
factors; this leads to an unmanageable number of experiments. Fractional factorial
designs are used when experiments are costly, and many factors are required. A
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DOE

Classic meth- | Space-filling Hybrid methods
ods methods
(Fractional) Space-filling Random or hu-
factorial methods man selection
Central composite | Simple Grids Importance sam-
pling
Box-Behnken Latin Hypercube | Directional simu-
lation
Alphabetical opti- | Orthogonal  Ar- | Discriminative
mal rays sampling
Plackett-Burman | Hammersley Sequential or
sequence adaptive methods
Uniform designs
Minimax and
Maximin

Metamodel Choice

Polynomial (linear, quadratic, or higher)

Splines (linear, cubic, NURBS)

Multivariate Adaptive Regression Splines (MARS)

Gaussian Process

Kriging

Radial Basis Functions (RBF)

Least interpolating polynomials

Artificial Neural Network (ANN)

Knowledge Base or Decision Tree

Support Vector Machine (SVM)

Hybrid models

Model Fitting

(Weighted) Least squares regression

Best Linear Unbiased Predictor (BLUP)

Best Linear Predictor

Log-likelihood

Multipoint approximation (MPA)

Sequential or adaptive metamodeling

Back propagation (for ANN)

Entropy (inf.-theoretic, for inductive learning on decision tree)

Table 2.3: Commonly used metamodeling techniques [200].
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Figure 2.15: Basic three-factor designs. (a) 23 full factorial; (b) 237! fractional
factorial; (c) composite design [200].

fractional factorial design is a fraction of a full factorial design; the most common
are 2(5=P) designs. A half fraction of the 23 full factorial design is shown in Figure
2.15(b). The reduction of the number of design points in a fractional factorial design
is not without a price. The 23 full factorial design shown in Figure 2.15(a) allows
estimation of all main effects (x1,x9,x3) all two factor interactions (zjx2, x123 and
xox3), as well as the three factor interaction (zixoz3). For the 26=1 fractional
factorial indicated by the solid dots in Figure 2.15(b), the main effects are aliased
(or biased) with the two factor interactions. The most common second order designs,
configured to reduce the number of design points, are central composite and Box-
Behnken designs. A Central Composite Design (CCD) is a two level (2(5=P) or 2F)
factorial design, augmented by n. center points and two star points positioned at
+a for each factor. This design, shown for three factors in Figure 2.15(c) consists of
2(k=p) 1 9k 1 n, total design points. For three factors, setting o = 1 locates the star
points on the centers of the faces of the cube, giving a face-centred central composite
(CCF) design; note that for values of « other than 1, each factor is evaluated at
five levels. Often it is desirable to use the smallest number of factor levels in an
experimental design. One common class of such designs is the Box-Behnken designs
[19]. These are formed by combining 2* factorials with incomplete block designs.
They do not contain points at the vertices of the hypercube defined by the upper and
lower limits for each factor. This is desirable if these extreme points are expensive or
impossible to test. Besides CCD, alphabetical optimal designs, especially D-optimal
designs, are also widely used [67], [140]. Myers and Montgomery |[142| identified the
pitfalls of the D-optimality designs, which have only model-dependent D-efficiency
and do not address prediction variance. Moreover, for second-order models, the
D-criterion often does not allow any (or many) center runs. This often leaves large
variance in the design center.

As computer experiments involve mostly systematic error rather than random
error as in physical experiments, Sacks et al. [183] stated that in the presence of
systematic rather than random error, a good experimental design tends to fill the de-
sign space rather than to concentrate on the boundary. They also stated that classic
designs, e.g. CCD and D-optimality designs, can be inefficient or even inappropriate
for deterministic computer codes. Simpson et al. [89] confirmed that a consensus
among researchers was that experimental designs for deterministic computer anal-
yses should be space filling. For sampling deterministic computer experiments, the
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use of space-filling designs which treat all regions of the design space equally [195].
Simpson et al. [196] and Palmer [163] also recommend the use of space filling designs
in the early stages of design when the form of the metamodel cannot be pre-specified.
As discussed by Booker et al. [16], in the ’classical’ design and analysis of physical
experiments (i.e. using central composite and factorial designs) random variation is
accounted for by spreading the sample points out in the design space, and by taking
multiple data points (replicates) (see Figure 2.16(a)). Sacks et al. [183] state that
the ’classical’ notions of experimental blocking, replication and randomization are
irrelevant when it comes to deterministic computer experiments; thus, sample points
in DACE (Design and Analysis of Computer Experiments also referred to as kriging)
should be chosen to fill the design space. They suggest minimising the Integrated
Mean Squared Error (IMSE) over the design region by using IMSE-optimal designs;
the ’space filling’ design illustrated in Figure 2.16(b) is an IMSE optimal design.
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Figure 2.16: (a) "Classical" Design and (b) "Space filling" Design [17].

Koch [108] investigates the use of a modified central composite design which
combines half fractions of a CCI and a CCF to more evenly distribute the points
throughout the design space. Koehler and Owen [109] described several Bayesian
and Frequentist "Space Filling" designs, including maximum entropy design [39],
mean squared-error designs, minimax and maximin designs [93], Latin Hypercube
designs, randomized orthogonal arrays, and scrambled nets. Minimax and maximin
designs were originally proposed by Johnson et al. [93], specifically for use with
computer experiments. Sherwy and Wynn [193] and Currin et al. [39] use the maxi-
mum entropy principle to develop designs for computer experiments. Tang [213] de-
scribes orthogonal array-based Latin hypercubes, which he asserts are more suitable
for computer experiments than general Latin hypercubes. Park [167] discusses opti-
mal Latin hypercube designs for computer experiments which either minimize IMSE
or maximise entropy, spreading the points out over the design region. Morris and
Mitchell [145] propose maximin distance designs found within the class of Latin hy-
percube arrangements, since they offer a compromise between the entropy/maximin
criterion, and good projective properties in each dimension. Owen [160] advocates
the use of orthogonal arrays as suitable designs for computer experiments, numerical
integration and visualisation; a collection of orthogonal array generators is available
over the Internet [159]. A review of Bayesian experimental designs for linear and
nonlinear regression models is given in Chaloner and Verdinelle |25]. Hammersley
sequences and uniform designs belong to a more general group called low discrep-
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ancy sequences are relatively more often used in the literature [28|. Hammersley
sampling is found to provide better uniformity than Latin Hypercube designs. It
is found that the Latin Hypercube design is only uniform in 1-D projection while
the other methods tend to be more uniform in the entire space. Also found is
that the appropriate sample size depends on the complexity of the function to be
approximated. In general, more sample points offer more information of the func-
tion, however, at a higher expense. For low-order functions, after reaching a certain
sample size, increasing the number of sample points does not contribute much to
the approximation accuracy. Moreover, when certain optimality criteria are used to
generate samples, these optimality criteria such as maximum entropy are concerned
with the sample distribution and are independent to the function. While the approx-
imation accuracy depends on whether sample points capture all the features of the
function itself. Therefore those optimality criteria are not perfectly consistent with
the goal of improving approximation, due to which the additional computational
cost of searching for the optimal sample is often not well justified [198].

The Monte Carlo Simulation (MCS) method, which is a random sampling method,
is still a popular sampling method in industry, regardless of its inefficiency. It is
probably because the adequate and yet efficient sample size at the outset of meta-
modeling is unknown for any blackbox function. Improved from the Monte Carlo
simulation method, the importance sampling (IS) bears the potential of improving
its efficiency while maintain the same level of accuracy as MCS [255]. Zou and col-
leagues developed a method based on an indicator response surface, in which IS was
performed in a reduced region around the limit state [255], [254], [106]. Another
variation of MCS is directional simulation [48], [230], [155]. A new discriminative
sampling method has been developed when the sampling goal was for optimization
instead of global metamodeling [235], [234]. With its original inspiration from [62],
this sampling method is space filling and reflects the goal of sampling; it is a more
aggressive MCS method. Comparatively, these MCS-rooted methods are less struc-
tured but offer more flexibility. If any knowledge of the space is available, these
methods may be tailored to achieve higher efficiency. They may also play a more
active role for iterative sampling-metamodeling processes.

Mainly due to the difficulty of knowing the appropriate sampling size a priori,
sequential and adaptive sampling has gained popularity in recent years. Lin [124]
proposed a sequential exploratory experiment design (SEED) method to sequen-
tially generate new sample points. Jin et al. [91] applied simulated annealing to
quickly generate optimal sampling points. Sasena et al. [187] used the Bayesian
method to adaptively identify sample points that gave more information. Wang
[231] proposed an inheritable Latin Hypercube design for adaptive metamodeling.
Samples are repetitively generated fitting a Kriging model in a reduced space [233].
Jin et al. [90] compared a few different sequential sampling schemes and found
that sequential sampling allows engineers to control the sampling process and it is
generally more efficient than one-stage sampling. One can custom design flexible
sequential sampling schemes for specific design problems.
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2.5.3.2 Metamodeling

After the experimental design is appropriately selected and the computer runs are
performed, the next step is to choose an approximating model and fitting method.
Metamodeling evolves from classical Design of Experiments (DOE) theory, in which
polynomial functions are used as response surfaces, or metamodels. Given a re-
sponse, y, and a vector of independent factors x influencing y, the relationship
between y and x is:

y=f(z)+e (2.15)

where € represents random error which is assumed to be normally distributed with
mean zero and standard deviation o. Since the true response surface function f(z) is
usually unknown, a response surface g(z) is created to approximate f(z). Predicted
values are then obtained using § = g(z). The most widely used response surface
approximating functions are low-order polynomials. For low curvature, a first order
polynomial can be used as in Equation 2.16; for significant curvature, a second order
polynomial which includes all two-factor interactions is available as represented in
Equation 2.17:

k
§=PBo+ Y Bixi (2.16)
i=1

k k k
y=Po+ Zﬁz‘ﬂiz‘ + Zl‘f + Z Z Bijxir; (2.17)

i=1 i i=1 j=1,i<j
The parameters of the polynomials in Equations 2.16 and 2.17 are usually deter-
mined by least squares regression analysis by fitting the response surface approx-
imations to existing data. These approximations are normally used for prediction
within Response Surface Methodology (RSM). RSM was first developed by Box and
Wilson [20]. A more complete discussion of response surfaces and least squares
fitting is presented in Myers and Montgomery [142].

Besides the commonly used polynomial functions, Sacks et al. [183], [182] pro-
posed the use of a stochastic model, called Kriging [38], to treat the deterministic
computer response as a realization of a random function with respect to the actual
system response. Neural networks have also been applied in generating the response
surfaces for system approximation [164]. Other types of models include Radial Basis
Functions (RBF) [52],|57], Multivariate Adaptive Regression Splines (MARS) [61],
Least Interpolating Polynomials [41], and inductive learning [111]. A combination
of polynomial functions and artificial neural networks has also been archived in
[224]. So far there is no conclusion about which model is definitely superior to the
others. Among various models, Kriging and second-order polynomials are the most
intensively studied.

In general the Kriging models are more accurate for nonlinear problems but
difficult to obtain and use because a global optimization process is applied to identify
the maximum likelihood estimators. Kriging is also flexible in either interpolating
the sample points or filtering noisy data. On the contrary, a polynomial model is
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easy to comstruct, clear on parameter sensitivity, and cheap to work with but is
less accurate than the Kriging model [89]. However, polynomial functions do not
interpolate the sample points and are limited by the chosen function type.

Recently, a new model called Support Vector Regression (SVR) was used and
tested [36]. SVR achieved high accuracy over all other metamodeling techniques in-
cluding Kriging, polynomial, MARS, and RBF over a large number of test problems.
It is not clear, however, what are the fundamental reasons that SVR outperforms
others. The Least Interpolating Polynomials use polynomial basis functions and also
interpolate responses. They choose a polynomial basis function of "minimal degree"
as described by [41] and hence are called "least interpolating polynomials". This
type of metamodel deserves more study. In addition, Pérez et al. [168] transformed
the matrix of second-order terms of a quadratic polynomial model into the canonical
form to reduce the number of terms. Messac and his team developed an extended
RBF model [146] by adding extra terms to a regular RBF model to increase its
flexibility, based on which an optimal model could be searched for. It is claimed
that this extended RBF applies to almost all problems.

Each metamodel type has its associated fitting method. For example, polynomial
functions are usually fitted with the (weighted) least square method; the kriging
method is fitted with the search for the Best Linear Unbiased Predictor (BLUP).
Building a neural network involves fitting a network of neurons by means of back-
propagation to data which is typically hand selected.

It can be concluded that there are many metamodeling methods to use as a
surrogate model for FEM simulations. However, it depends on the accuracy of
metamodels which is used to fit given data. Comparing the accuracy between meta-
models needs to carry out. The metamodel which has the best accuracy is chosen.
In addition, the confidence of results obtained from FEM numerical simulations is
very important. The subsequent section will discuss a novel approach to detect the
sensitivity threshold of FEM numerical models.

2.6 Identification of sensitivity threshold of a FEM nu-
merical model

2.6.1 Problem statement

Recently, much research has exploited FEM simulation-based computer experiments
with DOE methods to design engineering system in the presence of uncertainty.
Marreta and Lorenzo [131] used the integration of central composite design (CCD)
in which the experiments are placed in the design variables hypercube, FEM nu-
merical simulation and Monte Carlo to evaluate the influence of material properties
variability on springback and thinning in sheet metal stamping processes. Chen and
Kog [27] adopted the DOE of Box-Behnken RSM with random number generation
combined with FE analysis to identify the effects of BHF, material and friction
on springback variation of DP steel channel. Computer experiments based on the
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Box-Behnken method are placed in the design variables hypercube as in the cen-
ter of each edge and in the center of the hypercube. Jansson et al. [88] applied
D-optimality criterion (DOPT) in which it uses a Genetic Algorithm to filter the
set of current designs and mark a D-optimal subset, as the DOE with FE model
to assess reliability of a sheet metal forming process using the Monte Carlo anal-
ysis and metamodels. Central composite design was utilized to create input data
for FE numerical simulation of sheet metal stamping process for searching optimal
stamping tools configuration, punch travel and blank holder force (BHF) in research
work of Ledoux et al. [113]. To design sheet metal forming process in the presence
of uncertainties, Zhang [249] adopted a DOE of Box-Behnken method, FEM model
of sheet metal forming process and probabilistic design approach to execute un-
certainty propagation. Souza and Rolfe [42]| considered the inherent variability in
material, sheet thickness and process conditions in sheet metal forming by using
the full factorial DOE, FEM simulation and multivariate probabilistic models. In
order to have robust design, Aspenberg and Kini also used the combination of the
DOE, FEM deterministic numerical simulation, surrogate model and Monte Carlo
analysis in the design of automotive body and production systems [10], [101].

However, these FEM numerical simulation-based computer experiments lack a
step to qualify the FEM models before building the DOE as shown in Figure 2.17.
The computer experiments show that FEM numerical simulation has finite preci-
sion due to errors introduced by the numerical solution methods used (resolution
of meshing, contact/friction, discretization error, approximation error, convergence
problems, etc) [204]. Therefore, a method which determine the input parameters’
tolerance range at which FEM numerical models can give confident results is re-
quired.

2.6.2 Sensitivity in FEM analysis: illustrating sensitivity threshold

The notion of sensitivity threshold in this research work derives from the observation
of the responses of FEM numerical simulations which show unconfident results.
Sensitivity threshold is understood to be a threshold at which a response of FE
numerical model is chaotic to very small variation of an input parameter.

2.6.2.1 Illustration on a simple FE numerical beam bending model in
1D

To illustrate this sensitivity threshold of FEM numerical simulation, consider a linear
elastic (E) cantilever beam shown in Figure 2.18 subjected to a point load (F)) at
its free end and with the solution of the deflection of the free end A [88]:

3

A 12FL

3Ea*
The values of the variables in the beam bending application are given in Table 2.4.

The side length of the beam considered as an input variable which is changed from
+5% down to +107%% around its nominal value. The reason why step variation of

(2.18)
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Figure 2.17: A typical FEM simulation-based uncertainty propagation approach.
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input parameter in percent is that percentage can express any quantity with any
unit as well as any scale.

Table 2.4: Beam bending data

Force F' [N] Young’s modulus Beam Side length
E |GPa] length L a [mm]|
[rm]
1000 210 100 10
A F
/]
©
L a

Figure 2.18: Cantilever beam problem.

Modeling and simulation of beam bending are carried out in 1D in Abaqus/
Standard. Euler-Bernoulli beam element is used to model the beam. Comparison
of deflection calculated by analytic formula (2.18) and FE numerical analysis in 1D
is shown in Figure 2.19.

It can be seen from Figure 2.19 that once the side length varies around its
nominal values from —5% to +5%, the response calculated by the analytic formula
(2.18) and that of FE numerical analysis in 1D are coincident. The responses are
smooth and sharp. However, when zooming in the local zone of +0.02% around the
nominal value of 10 [mm]|, the responses calculated by the FE numerical analysis in
1D with different element sizes have leaps corresponding to the side length values of
10+ 0.01%. While the analytic formula of the deflection gives a smooth and sharp
response. Even this problem is also observed when the element size decreases. This
shows finite precision of FE numerical simulation.

2.6.3 Elaboration of numerical model of sheet metal draw bending

Prior to illustrating the sensitivity threshold on a complex application of sheet metal
forming process, benchmark problem description and modeling are presented.

2.6.3.1 Benchmark problem of draw bending process

A case study investigated in this paper is a benchmark problem of Numisheet 2011
International conference [75]. The main problem of this benchmark which needs to
take into account is to evaluate the springback behavior of advanced high strength
steels such as DP780 steel. A schematic view of die, punch, blank and their dimen-
sions for the draw bending process is shown in Figure 2.20.
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Figure 2.19: Comparison of deflection calculated by analytic formula and FE nu-
merical analysis in 1D with different element sizes enlarged.
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Figure 2.20: A schematic view of tools and dimensions for the open-channel.
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The blank is obtained from DP780 steel sheet of 1.4 mm thick, 360 mm long and
30 mm wide. Details on material properties are shown in Table 2.1 and Table 2.5.

With respect to machine and tooling specifications, blank holding force of 2.94
KN is maintained by the blank holder. For lubrication, P-340N is applied on the
tool surfaces and the blank. The punch speed is 1 mm/s and the punch stroke is
71.8 mm after initial contact between the punch and the blank.

Table 2.5: Material constant for yield function Hill 48 [75].

Sample F G H L M N
DP780 0.4640 0.5615 0.4385 1.5000 1.5000 1.5926

2.6.3.2 Springback and side wall curl determination

In order to represent shape defect due to the springback, three measurements in-
cluding the springback of wall opening angle (51, the springback of flange angle 5o
and sidewall curl radius p are shown in Figure 2.21. They describe the variation of
the part’s cross-sectional shape obtained before and after removing the tools. The
springback in the direction orthogonal to the cross-section is not considered in this
case.

Axis OT Symmetry
Y

Figure 2.21: A schematic view of springback profile and parameters proposed by
Numisheet 2011.

For calculating the springback parameters, it is necessary to determine the mea-
surements before and after springback. To do so, the least square method is applied
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to identify the points of Ao, Bo, Co, Do and Eo on the formed part’s profile ac-
cording to given x and y coordinates. Based on the known point coordinates, the
wall angle (6) and the flange angle (69) before springback are computed. Similarly,
other points of A, B, C, D and E are defined on the part’s profile which the tools
have been removed. They are then used to calculate the wall angle (6;) and the
flange angle (03) after springback. The side wall curl radius is estimated by a curve
fitting technique through three points A, B and C to construct a circular arc.

The equations for calculating the springback and the side wall curl radius are
presented in Appendix A.1 .

2.6.3.3 Numerical modeling of draw bending process
FEM modeling

Observations from experimental measurements have shown that the part profiles
remains symmetric during the manufacturing process [75], so only half of the draw
bending model in 3D is illustrated as in Figure 2.22. Thus, the blank sheet is
discreted by 2709 elements with element size of 1.4 mm. Also, the blank sheet is
modeled by using one layer of four nodes shell element (4-node doubly curved shell,
reduced integration, hourglass control and finite membrane strains). The blank
thickness is modeled by 7 integration points through thickness with Simpson’s rule.
The punch, die and blank holder are modeled as analytical rigid surfaces. Boundary
conditions applied on the tools are shown in Figure 2.22. Displacement of punch and
blank holder is translation along axis Z, the remaining degrees of freedom (DOF)
are blocked. The die is blocked all the DOF. Symmetrical boundary condition is
applied on the half of the part profile in which the translation along axis X, rotation
around axis Y and Z are blocked. The blank holder force remains constant during
the draw bending process.

Displacement of blank holder
(Ux=Uy=URx=URy=URz=0})
F=f(t)

Displacement of punch
(Ux=Uy=URx=URy=URz=0)

Symmetry: —>
XSYMM

(Ux=URy=URz=0) Encastre die (Ux=Uy=Uz=URx=URy=URz=0)

<

Figure 2.22: A schematic modeling of draw bending process.
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For contact interaction, contact constraint enforcement method for modeling
sheet metal forming operation is penalty contact enforcement in which type of con-
tact of surface-to-surface is applied between blank surface and tools’ surfaces. The
pure master-slave contact pair is used with tools’ surfaces being assigned as master
surfaces while blank’s surface being considered as slave surface. Friction formulation
used between the blank and the tools is basic Coulomb friction model. In the basic
form of the Coulomb friction model, two contacting surfaces can carry shear stresses
up to a certain magnitude across their interface before they start sliding relative to
one another. The Coulomb friction model is defined:

Terit = WP (219)

where 7., is critical shear stress at which sliding of the surfaces starts as a fraction of
the contact pressure p between the surfaces; the fraction p is known as the coefficient
of friction.

Constitutive modeling

The relationship between the yield stress and the plastic strain for the material used
in this case study follows the Swift law [207]:

g=K(o+)" (2.20)

where €¢ is a pre-strain or offset strain constant; ¢, is effective plastic strain; K and
n are strain hardening coefficients. Where

t
E_p=/ epdt (2.21)
0

The anisotropic characteristics of the sheet metal are described according to the
quadratic Hill yield criterion [78] has the form:

2 0 90 2 0 2 2
o o - 0110 + o —0o°=0 (2.22

where Ry, Ry4s5, and Rgp are Lankford’s coefficients for describing the material
anisotropy; 11,0292, and oo are stress components.

Modeling and numerical simulation of draw bending process are carried out
by Finite Element Method using the ABAQUS®software. Process simulations are
executed through two different steps. The first step is to simulate forming operation
via dynamic explicit procedure. Simulation of springback behavior is performed in
the second step through static implicit procedure. The details of two procedures are
dicussed in Appendix A.2.
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2.6.3.4 Discussion on different results between Abaqus versions

The values of springback parmeters obtained from FEM simulations with three
versions of Abaqus (6.9-1, 6.11-2 and 6.12-2) are different despite using the same
input file. A comparison of springback results obtained by using three different
versions of Abaqus is shown in Table 2.6. It shows that there is uncertainty between
Abaqus versions.

Table 2.6: A comparison of springback results obtained by using three different
versions of Abaqus.

Parameters Values Abaqus version [ [°] B2 [°] p [mm]|
Fonr IkN] 38235 4 ) -7.8796  -9.4804 186.895
R; [mm)] 2
R, [mm| 2
R, [MPa] 950 6.11-2 -7.9531 -9.2680 187.725
Ry [MPa] 840
" 0.13

6.12-2 -8.0313 -9.3651 189.42
t [mm)] 1.5

2.6.3.5 Sensitivity threshold in FEM numerical simulation of sheet metal
draw bending

Sensitivity threshold analysis of FEM numerical simulation in sheet metal draw
bending is executed as illustrated in Figure 2.23. The input data used in numerical

Holder force —|_>

Friction coeff. —s FEM | —> [
Blank thickness — DOE numerical Result > g
Yield strength —> model determination )

Tensile strength —J

Figure 2.23: Sensitivity threshold analysis of FEM numerical simulation in sheet
metal draw bending.

model of draw bending for comparison with experimental resulst is shown in Table
2.7. In order to be able to take into account the sensitivity threshold when having
the variation of material properties, it is essential to transform the yield strength
R,, tensile strength R,, and uniform elongation F, into the coefficients of Swift’s
model encompassing K, n, and gg.
The pre-strain gq is defined as:
R.

— 2.2
€= (2.23)

where F is Young’s modulus of material.
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The maximum uniform strain g, is defined as:

E,
w=In (1422 9.94
£ n( + 100> (2.24)

The true yield strength and true tensile strength are calculated as follows:
RI"™e = R (1 + &9) (2.25)

RIre = R, (1+&y) (2.26)
The strain-hardening index n and the strength coeffcient K are defined as:

true true
_InR7" — InRy

= 2.27
" In(eg + €4) — Ineg ( )
Rtrue
—_m (2.28)
(€0 + &u)™

Table 2.8 shows a comparison between experimental results provided by Numisheet
2011 |75] and our numerical results. Figure 2.24 shows the true stress-strain curve
of DP780 steel which is fitted by the Swift law with different values of R, and R,,.

Fitting the law of Swift to the true stress—strain curve of DP780 steel

1100 T T T T T T
v
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Figure 2.24: Representation of Swift’s law with different values of R, and R,,.

On the other hand, in order to analyze the sensitivity threshold of FEM numer-
ical model, the nominal values of input parameters of draw bending are given as
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Table 2.7: Input data for comparison with experimental results of Numisheet 2011.

Input parameters

Blank thickness [mm]
Yield strength [MPa]
Tensile strength [MPa)|
Friction coefficient
Blank holder force [N]
Die radius [mm)]
Punch radius [mm|]

14
527
831.5
0.1
2940

>

Table 2.8: Numerical and experimental comparison of Numisheet 2011.

Springback parameters — 6; [°]

02 |°| p [mm]

Numerical results 108.32

Experimental  results 110.62-118.3425

[75]

75.228 137.02
77.61-80  118.36-120

Table 2.9: Nominal values of input parameters for sensitivity threshold analysis

Input parameters

Blank thickness [mm]|
Yield strength [MPa]
Tensile strength [MPa]
Friction coefficient
Blank holder force [N]
Die radius [mm]
Punch radius [mm]

14
550
840
0.1
2940
7

Table 2.10: Output parameters

Springback parameters ~ 6; [°]

02 [°] p [mm]

Before springback 90.2001
After springback 108.674

90.1709  N/A
751115 135.048
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shown in Table 2.9. As a result, springback measurements obtained from numerical
results are shown in Table 2.10.

Consider springback responses of 81, 82 and p with respect to blank thickness
variation +5% to £0.01% around the nominal value from 1.1 [mm]| to 1.6 [mm]| as
shown in Figure 2.25, 2.26, 2.27.

28 ! !
—+ FE response of B1 : :

26

24

22

20

1:599 1.6:1.6011.6021.603

B, [

18

161

12 : : :

21.76"- e e ?

10 1195 1.2, 1.205 i ; ; ;

1 1.1 1.2 1.3 14 1.5 1.6 1.7 1.8
Blank thickness [mm]

Figure 2.25: Evolution of blank thickness with respect to the wall opening angle S;.

Preliminarily, it can be seen that the springback responses are smooth, sharp
and shows clear trend in the global variation range from 1.1 [mm] to 1.6 [mm]|. The
responses of #1 and 2 gradually decrease with increasing blank thickness. While
the response of p increases when the blank thickness augments.

Nevertheless, it is found that there are noises on the springback responses in
the local variation range around nominal values of blank thickness. To illustrate
for this, consider the springback responses with respect to blank thickness of 1.2
[mm| and 1.6 [mm| in which thickness values are decreasingly varied from +5%
to +0.01% around their nominal values. When zooming in the local zone around
the nominal value of 1.2 [mm]| and 1.6 [mm]|, observation shows that it appears the
noises on the springback responses. The closer to nominal value the thickness values
are, the more significant the amplitude of noises is. As a consequence, it makes the
results inacccurate. Similar problem is also observed on the springback responses
with respect to the other nominal values.

From these results, it is worth noting here that there is indeed a sensitivity
threshold below which the variations around a nominal value are not correctly prop-
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Figure 2.26: Evolution of blank thickness with respect to the flange angle [s.
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Figure 2.27: Evolution of blank thickness with respect to the side wall curl p.
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agated by the numerical model.

2.7 Finite Difference Method (FDM)-based sensitivity
threshold identification of FEM numerical simula-
tion

2.7.1 Sensitivity analysis method

Sensitivity analysis is of fundamental importance to design based on computational
approaches. Sensitivity analysis consists in computing derivatives of one or more
quantities (outputs) with respect to one or several independent variables (inputs).
It allows the use of gradient descent methods, reveals when optimal designs have
been produced and indicates which variables are of most importance at any stage
in the design process [99].

Finite-difference formulae are very commonly used to estimate sensitivities. Finite-
difference approximations for a derivative are derived by truncating a Taylor series
expansion of the function y = f(z) about a point z. To outline the derivation
of finite-difference approximations, consider the Taylor series expansion of a scalar
function f(z + h)

df  h2d®f R3d3f

The forward finite-difference approximation for the first derivative can then be

obtained by solving the preceding equation for % , which gives

& _ fla+h) - (@)
dx h
where h is called the finite-difference interval. The truncation error is O(h), and

+0(h) (2.30)

hence this is a first-order approximation. To reduce the truncation error, an addi-
tional set of equations can be attained by writing down the Taylor series expansion
of f(x — h) as follows:

df  h*d*f hPdif

e (2.31)

fle=h)=flz) - hdiL‘ 20dx?2  3ldx3 T

The backward finite-difference approximation for the first derivative can then be

obtained by solving the preceding equation for % , which gives

& f@)~ fz—h)
dx h

+O(h) (2.32)

Subtracting Equation (2.31) from Equation (2.29) and solving for % gives the
following central difference approximation

df _ fle+h)=fl—h)
dr 2h

+ O(h?) (2.33)
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It can be seen that the central difference scheme is second-order accurate since
the truncation error is O(h?). It is similarly possible to construct higher-order finite-
difference formulae. Finite-difference approximations for the higher-order deriva-
tives can be derived by nesting lower-order formulae. For example, the central dif-
ference approximation in Equation (2.33) can be used to estimate the second-order
derivative as follows:

d?f  df(z+h)/dx —df(x — h)/dz

R 2
o o +O(h?) (2.34)

Substituting central difference approximations for df (z—h)/dx and df (z+h)/dx
into the preceding equation gives
d*f  f(z+2h) —2f(x) + f(z — 2h)

proh e + O(h?) (2.35)

In theory, one can use an arbitrarily small step-size h without any significant loss
of accuracy |99|. Consequently, when estimating sensitivities of an analytic function
using finite-difference formulae, the finite-difference approximations are different at
large step sizes and converge with decreasing step size. In particular, as depicted in
Figure 2.28 the first-order forward, backward and central difference approximation
converge at the same limit as the step size h approaches asymptotically zero.

f(x);\

Forward difference

Backward difference

Central difference

S
L
X

x-h X x+h

Figure 2.28: Different geometric interpretations of the first-order finite difference
approximation related to forward, backward and central difference approximation.

In practice, however, because of finite precision arithmetic (round-off errors),
the accuracy of the approximations critically depends on the step size h. Therefore,
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when estimating sensitivities of an analytic function using finite-difference formulae,
we are faced with the step-size dilemma, that is the desire to choose a small step
size to minimize truncation error while avoiding the use of a step so small that
errors due to subtractive cancellation become dominant [99]. More specifically, the
subtractive cancellation errors arises because of the term f(x + h) — f(x) in the
numerator of forward finite differences. It is difficult to accurately evaluate the
difference between two terms that are similar in magnitude using finite precision
arithmetic, particularly for small values of h.

2.7.2 Illustration of analytic function

To illustrate the influence of the step size in the finite-difference method on the
sensitivity estimation, consider the following analytic function [133]:

e$

vV sindz + cos3x

The variation of nominal value of z = 1.5 in percentage is decreasingly varied
from 10% down to 10713%. Calculation is performed by Matlab.

f(z) = (2.36)

Sensitivity threshold 1e-006%, sensitivity : 4.05343

4.0535F ‘ ——Forward difference |
—— Central difference
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Variation of z in % for nominal value of z = 1.5
Figure 2.29: Sensitivity of f(x) at = 1.5 using the finite difference approximations.
As can be seen from Figure 2.29, the first-order forward, backward, central

difference approximations have large differences at the greater variation step sizes
on the right side and then asymptotically converge at the smaller step size in the
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middle. More specifically, they asymptotically converge at the variation size of
107%% which is marked by a vertical line in red. However, as the variation size is
reduced below a value of 1077%, subtractive cancellation errors become significant
at which the derivatives diverge and as a consequence, the estimates are unreliable.
When the variation step h is so small that no difference exists in the numerator of
finite difference approximations (for steps smaller than 10719, the finite-difference
estimates yields zero. This results from finite precision of numerical tools.

—=—Forward difference |
—=—Central difference |
Backward difference]j

Relative Error

;

107107107107 10° 10107 10° 1010 1010210 10° 10
Variation of z in % for nominal value of z = 1.5

Figure 2.30: Comparison of € relative error in the first derivative computed using
FDM with respect to analytical derivative.

Relative error in the sensitivity estimates given by finite-difference method with

the dependence on the step size h of the accuracy of the derivative approximations
for the forward finite difference, central difference and the backward difference. It
can clearly be seen that as the step size is reduced, the accuracy of the finite-
difference approximations degrades significantly because of subtractive cancellation
errors. In particular, when the variation step size is less than or equal to 107%%,
the relative error in the derivative approximations increases substantially. Beyond
that, once the variation of z is too small to have the difference in the output, smaller
than 10716%, the finite-difference estimates eventually yields zero and then relative

the analytic result as the reference ¢ =

error € = 1.
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It is concluded that the Matlab can give confident results when the variation
step size is larger than or equal to 107%%. In other words, the minimum sensitivity
threshold of the Matlab in this case study reaches to the variation step size of 1076%.

2.7.3 Illustration of FE numerical beam bending model in 1D

Sensitivity threshold analysis by FDM of the FE numerical beam bending model
in 1D is shown in Figure 2.31. In particular, the sensitivity threshold analysis of

Sensitivity threshold: 0.04%, sensitivity: -0.76375
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Figure 2.31: Sensitivity threshold of FE numerical beam bending model in 1D with
element size of 0.2.

FEM numerical simulation when having the cross-sectional side length variation of
the beam is calculated as follows:
The variation step h of side length determined from the variation percentages of

nominal value is defined as:

percent
0 i x Val Nom

100

where 6§ercem is the jth side length variation in percentage and Valy,m, is the

h =

(2.37)

nominal value of side length (¢ = 10 [mm]|)
The forward finite-difference approximation is calculated as follows:

df _ f(A+h)—f(A)
= . (2.38)

where f(A) is the deflection value of the free end of the beam at @ = 10 [mm]| and
f(A+ h) is the deflection value of the free end of the beam at a = 10 + h [mm].
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The backward finite-difference approximation is determined as:

a _ f(A) = f(A-h)

= 2.39
da h ( )
where f(A — h) is the deflection value of the free end of the beam at a = 10 — h
[mm)].
The central finite-difference approximation is defined as:
d A+h)— f(A-h

da 2h

It is found that initially the first-order forward, central and backward finite-difference
approximations have large difference at the variation step size of 5% and asymptoti-
cally converges at the variation step size of 0.04%. Below this point, the approxima-
tions diverges at the smaller variation step sizes. It can be claimed that the minimum
sensitivity threshold of the FE numerical beam bending model in 1D reaches to the
variation step size of 0.04% corresponding to the side length a = 104+0.004 [mm)].

On another hand, the relative error in the estimates using FDM with respect to
theorical result is calculated and represented in Figure 2.32. It is found that the
minimum sensitivity threshold of the FE numerical beam bending model corresponds
to minimum difference between the relative errors in the estimates by FDM with
respect to theorical result.
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Figure 2.32: Relative error in the estimates using FDM with respect to theorical
result.

Whether the minimum sensitivity threshold can be improved or not, the analysis
is tested with different element sizes encompassing element size of 20, 10, 5, 1 and 0.2.
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The results of sensitivity threshold analysis are shown in Table 2.11. Surprisingly,
however, the sensitivity threshold augments with the number of elements in this
case.

Table 2.11: Synthesis of sensitivity threshold of FE numerical beam bending model
in 1D with different element sizes

Element size Sensitivity threshold Corresponding side

[mm)| [%] length [mm]

20 0.01 1041074

10 0.01 1041074
0.01 104104

1 0.02 1042 x 1073

0.2 0.04 10+4 x 1073

2.7.4 Proposed methodology for identifying sensitivity threshold
of FE numerical simulation

To investigate the minimum sensitivity threshold of a FE non-linear numerical
model to the input’s variations, an approach based on the sensitivity analysis of
finite-difference method (FDM) is proposed. The procedure of proposed approach
includes steps as shown in Figure 2.33. A problem is set up with variation of in-
put parameters. Design of experiments is used for sampling the input variables’
values which they are then used as inputs in FE numerical simulation. The ouput
responses are determined and used in identification of sensitivity threshold based on
finite-difference method. As a result, these sensitivity threshold results are consid-
ered as a reminder when entering the variation interval of the input parameters in
the DOE of computer experiments.

In order to run numerical experiments conveniently and identify the sensitivity
threshold automatically, simulating draw bending process by Abaqus software and
determining the springback responses with Matlab are integrated under the workflow
of ModeFrontier.

To reduce the analysis time, parallel calculation technique is applied by connect-
ing several computers in a network server instead of only using one computer with
the Cygwin in the ModeFrontier. The input files of Abaqus in which the variables’
values have been updated from DOE are sent to the calculation server to run the
numerical experiments in parallel. Subsequently, the result files will be returned to
a local computer to determine the springback measurements as well as to calculate
the sensitivity.

The technique for detecting the minimum sensitivity threshold:

The minimum sensitivity threshold of FE numerical model is identified at a value
of variation step where the forward, backward and central difference approximation
converge.
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{Modeling problem}

Identifying in-
put variables

DOE sampling

FEM numeri-
cal simulation

Identifying out-
put variables

Identifying sen-
sitivity threshold
based on FDM

[Sensitivity threshold}

Figure 2.33: Proposed methodology for identifying sensitivity threshold of FE nu-
merical simulation.
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2.8 Example of application

To validate the proposed method for identification of minimum sensitivity threshold,
a complex case of numerical simulation of sheet metal draw bending process is
considered in this section.

2.8.1 Identification of minimum sensitivity threshold

In order to identify the minimum sensitivity threshold of FEM numerical simulation
of the draw bending process, the h variation step of the input variables including
sheet thickness. material properties. friction coefficient. blank holder force and tool-
ing geometry is gradually decreased from 20% to 0.01% of their nominal values.
Input data for identifying the minimum sensitivity threshold is shown in Table A.1.

The springback responses including 81, 52 and p are considered as the response
functions. They are respectively computed according to the finite difference method
as shown in Section 2.7.1.

The minimum sensitivity threshold results of FE numerical sheet metal draw
bending when having variation step of sheet thickness from 20% to 0.01% determined
from 25 computer runs are shown in Figure 2.34, 2.35, 2.36.

Sensitivity threshold 0.20%, sensitivity : —17.38479

Sensitivity of B,I [®/mm]
N
=

~24 —+—F6rwérd diﬁereﬁce
—=—Central difference A P A
-26 Backward difference |
005 01 02 0.5 081 152 5 10 20

Blank thickness variation in (%) for nominal value of 1.4 mm

Figure 2.34: The minimum sensitivity threshold of FE numerical sheet metal draw
bending regarding 31 when having the blank thickness variations from 20% to 0.01%.

It can be seen from the Figure 2.34 that three forward, backward and central
difference approximations regarding the springback angle of (3, are different at the
point of 20%. Subsequently, they are gradually close to together at the point of 1%
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Sensitivity threshold 0.80%, sensitivity : —12.81495
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Figure 2.35: The minimum sensitivity threshold of FE numerical sheet metal draw
bending regarding 35 when having the blank thickness variations from 20% to 0.01%.
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Figure 2.36: The minimum sensitivity threshold of FE numerical sheet metal draw
bending regarding p when having the blank thickness variations from 20% to 0.01%.
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and converge at the point of 0.2%. Below this point, they diverge at the point of
0.1%, they continue diverging at the point of 0.05% and then changing according
to arbitrary direction. It is claimed that the minimum sensitivity threshold of FE
numerical model regarding $; when having uncertainty of blank thickness is 0.2%.
Similarly, the difference approximations of the angle S5 in Figure 2.35 converge at
the point of 0.8%, afterwards they diverge from this point till the point of 0.01%. It
is said that the minimum sensitivity threhold regarding (2 reaches to 0.8%. In the
similar detecting technique, the sensitivity threshold of side wall curl radius p is at
0.1% as shown in Figure 2.36. The derivatives of springback reponses with respect
to blank thickness variation steps are initially different from the point of 20% and
comes close to together at 1% as well as at 0.5%. They converge at the point of
0.1%. The sensitivity curves of springback responses are not smooth and sharp due
to the behaviour of non-linear response functions of FE numerical models as well as
scatter due to errors of numerical methods.

According to the proposed approach, this shows that FEM numerical simulation
is not sensible to very small variation step of blank thickness, in particular variation
step of nominal values smaller than 0.2%, 0.8% and 0.1% respectively corresponding
to the angles of £y, f2 and side wall curl radius p. As a consequence, numerical
responses of this FEM model are unstable when the interval of blank thickness
variation are smaller than 0.8% around its nominal value. Meaning that the FEM
numerical simulation does not get confident responses with blank thickness of 1.4 £+
0.0112 [mm]| in this case study. Furthermore, the local sensitivity of springback
responses in terms of blank thickness variation is also inferred from these sensitivity
results. As can be seen from Figure 2.34,2.35, 2.36 that the local sensitivity of wall
opening angle (1, the flanfe angle g2 and the side wall curl radius p is 17.38479
[cmm~!], 12.81495 [°mm~!] and 144.55225 [mm mm '] when blank thickness is 1.4
[mm]. It shows that the blank thickness influence significantly on the springback
responses.

With similar detection, the minimum sensitivity threshold of seven parameters
including blank thickness (t), yield strength (R.), ultimate tensile strength (R,,),
blank holder force (Fpur), friction coefficient (u), die radius (R4) and punch radius
(Ryp) is synthesized in Table 2.12.

Sensitivity results are listed in Table 2.13.

2.8.2 Sensitivity analysis of sheet metal draw bending

In order to identify the influence of individual input parameter on springback, sensi-
tivity analysis can be conducted from the results of the proposed method to predict
the influence of indvidual input parameter on the springback responses by using
sensitivity functions as follows:

e For the wall opening angle (:

d/B 1+ nom
. x i

do; > "

S; = (2.41)
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Table 2.12: Synthesis of the seven input parameters’ minimum sensitivity threshold

Parameters Sensitivity Sensitivity Sensitivity General Corresponding
threshold  threshold threshold  sensitivity variation range
regarding regarding regarding  threshold

pL %] p2 |7 p 7] 7]
t 0.2 0.8 0.1 0.8 1.440.0112 [mm|
R, 1 5 5 5 550£27.5 [MPal
Fpur 1.5 5 1.5 5 29404147 [N]
,u 1.5 ) ) ) 0.14+0.005
Ry 0.2 5 1 5 7£0.35 |mm]|
R, 1 5 10 10 5£0.5 [mm]
R 2 5 2 5 84042 [MPa]

Table 2.13: Sensitivity of springback responses with respect to the input parameters

Parameters Sensitivity of 51 Sensitivity of 52 Sensitivity of p

t 17.3848 [Pmm~!]  12.8150 [Pmm™!]  144.5523 [mm mm}]
R, 0.0072 [°MPa~']  0.00027 [°MPa~!]  0.0285 [mm MPa™!]
Fpur 0.00044 [°N—1] 0.00056 [° N—1] 0.00534 [mm N~1]
Fric. coeff. 26.4348 5.3282 145.9892

Ry 0.0639 [° mm ! 0.2547 [°mm ™! 6.07191 [mm mm~!]
R, 0.7132 [°mm™!] 0.1225 [° mm™!] 1.1378 [mmmm™]

R, 0.0188 [°MPa~!']  0.0139 PMPa~!]  0.1622 [mm MPa™!]
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e For the flange angle Bs:

S; = —jﬁQ gxpom (2.42)
L
e For the side wall curl radius p:

dp . nom
S@ == d_jl‘_:,'.; ’.L't‘

(2.43)
where z; is the #thth input parameter; £ is the variation percentage and z7™ is the
ith input parameter at nominal value.

Sensitivity analysis results of the input variables contributing to the springback
responses of By, B9, and p are presented in Figure (2.37, 2.38, 2.39).

Sensitivity result of input variables contributing to [31 at their nominal value

30%

47%

0
8% 2%

Bt IR g4 [ JFric. coeff. (IR IR, IR,

Figure 2.37: Sensitivity analysis result of the input variables contributing to £ at
their nominal value

As can be clearly seen from Figure 2.37 blank thickness and ultimate
tensile strength are pointed out as two parameters having the greatest in-
fluence on the wall opening angle B,, followed by yield strength, punch
radius, friction coefficient, blank holder force and die radius in which
the effect of die radius is quasi-null. Also, the influence of blank thick-
ness accounts for 52% of the overall variation of the flange angle Bs,
followed by UTS with 34%, BHF and die radius with 5%. Whereas the
effect of friction, punch radius and YS is trivial. The variation of the
side wall curl p is significantly contributed by blank thickness, UTS and
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Sensitivity result of input variables contributing to [32 at their nominal value
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Figure 2.38: Sensitivity analysis result of the input variables contributing to (s at
their nominal value

Sensitivity result of input variables contributing to p at their nominal value

47%
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I IR, [0Fp, - [ Fric. coeff. (IR, HER, IR,

Figure 2.39: Sensitivity analysis result of the input variables contributing to p at
their nominal value
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die radius with 47%, 31% and 10% respectively. While the influence of
YS, BHF, friction and punch radius is quite low in this case. Qverall,
it 1s found that taking the uncertainty of blank thickness and material
properties scatter (YS and UTS) into account in the early process design
for controlling their infulences on formed part performance contributes
significantly to reduction of scrap rate. In order to reduce the effects of
inherent variability of the sheet, material properties and tooling geome-
try, searching optimal configurations of controllable variables consisting
of BHF and friction condition should be done.

2.9 Building surrogate-models for computer experiments

As previously mentioned, in addition to reducing computation costs in time-consuming
FEM simulation-based desgin process, applying metamodeling in uncertainty prop-
agation and optimization brings many benefits including [232]:

e The efficiency of optimization is greatly improved with metamodels;

e Parallel computation is supported because the approximation is based on
sample points, which could be obtained independently;

e Sensitivity analysis can obtain that this helps the relationship between input
variables and output variables;

e Metamodeling can handle both continuous and discrete variables.

Hence, in this section a strategy for building metamodels is proposed that will also
be used in uncertainty propagation in Chapter 3 and optimization in Chapter 4.

2.9.1 Proposed strategy

Metamodels are built according to the flowchart as shown in Figure 2.40. This
strategy consists of 5 stages in which the first stage of modeling encompasses the first
6 steps as mentioned in Section 2.5.2. More specifically, the goals of the metamodels
in this thesis are understanding and prediction of variations in sheet metal forming
process. Subsequently, executing optimization algorithms on the metamodels to
search for optimal designs for the process. The input and output variables were
specified in modeling of the sheet metal forming process. The range of accuracy
of the metamodels depends on the goals of the metamodel. A metamodel used for
prediction should be very accurate, whereas for a metamodel used for understanding,
it will be sufficient if only a trend is visible. The accuracy required for metamodels
utilised for optimisation purposes will lie somewhere in between. The ranges of
accuracies may be specified via the validity measures such as the Root Mean Square
Error (RMSE), Maximum Absolute Error (MAE) and the R2-value. Secondly, prior
to sampling for the input variables based on DOE methods, it is crucial to identify
the minimum senstivity threshold of FE model to obtain confident results from
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Figure 2.40: Flowchart of metamodeling process



62 Chapter 2. Numerical approaches and qualification of FEM model

FEM simulation. The method for identifying the minimum senstivity threshold of
FE model has been proposed in previous section. As a result of this method, the
intervals of the input variables for DOE are properly given.

Next stage, the input variables are sampled based on DOE methods, followed
by running FEM simulations. Afterwards, the metamodels are fitted through the
response values. The validity measures are calculated to compare the metamodel’s
accuracy to the required accuracy. If the metamodel does not satisfy the accuracy
demands, one may return to the DOE stage to add more experimental points and
subsequently fit the metamodel with the additional information. This process is
repeated until the required accuracy demands are met.

2.9.2 Metamodeling for sheet metal forming process

One FEM simulation of sheet metal forming process usually takes several hours
to complete. In order to have a probabilistic evaluation (i.e. mean and variance
of the outputs) in uncertainty propagation of sheet metal forming process, several
thoundsand evaluations are required. Furthermore, for obtaining the best solution
in optimization, several thoundsands sample points are demanded. Therefore, it is
impractical to run the input/output FEM simulations directly. Instead of that there
is a need to use a surrogate-model for these purposes. The workflow of metamodeling
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Figure 2.41: Workflow of metamodeling for sheet metal forming process

for sheet metal forming process, which is modeled by modeFRONTIER™

, 1s shown
in Figure 2.41. The input variables include sheet thickness ¢, blank holder force
Fppp, friction coefficient p, yield strength R., tensile strength R,,, punch radius

R,, and die radius R4. Input data for DOE strategy is given in Table 2.14, in which
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material properties are referred from Arcelormittal [7]. Design of experiments based

Table 2.14: Input data for DOE strategy

Factors Levels

t |mm]| 1 1.5 2
Fppr |kN] 2.94 26.47 50
7 0.04 0.1 0.16
R, [MPa] [7] 500 550 600
R,, [MPa] [7] 780 840 900
R, [mm] 2 6 10
R [mm] 2 6 10

on a multi level Full-Factorial sequence is utilized to sample. This method works
best with less than 8 variables and less than 4 levels. In this case, 7 factors are
assigned 3 levels as shown in Table 2.14. Hence, they are combined as 37 = 2187
initial sampling points are generated.

The output variables are springback parameters including the flange angle (s,
the wall opening angle 51 and the side wall curl radius p. We need to build a
metamodel for each output variable:

61 - fl(taFBHF>,u7 RevavaaRd) (244)
62 - f2(t7FBHFHua R67Rvap7Rd) (245)
pP= f3(t7 FBHFa,ua RevRTruva Rd) (246)

The aim of a metamodel 3 is to accurately approximate a true response model
y. In this work, the true response model y is the FEM simulation responses. An
expression which shows the relationship between the FEM simulation responses and
the metamodel as follows:

y=9y+e (2.47)

where ¢ is a random error term.

Metamodeling techniques are used to build the metamodel g in this work encom-
passing Response Surface Methodology (RSM), Kriging and Radial Basis Functions
(RBF). The detailed desciption of the metamodeling techniques is represented in
Appendix A.5.

2.9.2.1 Metamodel validation

The fitness of the metamodel is assessed using a variety of techniques. As shown
in previous sections, least squares regression analysis is used with Response Surface
Methodology(RMS) [142], the Kriging method is fitted with the search for the Best
Linear Unbiased Predictor (BLUP) [200]. Metamodels are to be validated before
being thereafter used as a surrogate in uncertainty propagation and optimization
processes. According to Jin et al. [92] two metrics , namely, R-square and Relative
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Maximum Absolute Error (RMAE) are used to measure the accuracy of metamodels.
While R-square indicates overall accuracy (the larger the better), RMAE indicates
local errors (the smaller the better). A good overall accuracy does not necessarily
means a good local accuracy. The RMAE |, Maximum Absolute Error (MAE) and
the R%-value, defined below:

rvAp - Maz(yL = gil, [y2 — g2, - [Yn — Yul)

(2.48)
VESL -0
MAE = max|y; — gi|,i = 1,....,m (2.49)
m RV

> i1 (yi — )
where m is the number of validation points; ; is the predicted value for the observed
value y;. ¥ is the mean of the observed values at the validation points. It is to
be noted that the lower the value of RMSE and/or M AX, the more accurate the
metamodel. RMSE is used to gauge the overall accuracy of the model, while M AX
is used to gauge the local accuracy of the model.

2.9.2.2 Results of Metamodels

As discussed above, the Full Factorial Design (FFD) of 7 factors with 3 levels is
used as the DOE. Initially, 2187 designs are sampled, after FEM simulation, 2128
correct simulations get. There are 59 fails due to the numerical problems between
the input values and meshing problem resulting in excessive distortions. Hence, it
should complement DOEs to improve the accuracy of metamodels. There are 972
DOEs added by the FFD of 7 factors in which 5 factors are assigned 3 levels and
2 factors are assigned 2 levels with the input data as shown in Table 2.15. Totally,
there are 3100 designs used to build the metamodels. Figure 2.42a, 2.42b show

Table 2.15: Input data for DOE strategy

Factors Levels

t [mm]| 1 1.5 2
Fprr [kN] 14.705 N/A 38.235
7 0.07 N/A 0.13
R [MPa] [7] 500 550 600
R, [MPa] [7] 780 840 900
R, [mm] 2 6 10

Ry [mm)| 2 6 10

graphical representation of the FFD of Fpyr, Rq, R, and R, R;,,t respectively.
Metamodels for sheet metal draw bending process are built based on two methods
of polynomial RSM and Kriging.



2.9. Building surrogate-models for computer experiments

65

Rp (Z Axis)

BHF (X Axis

Y
o
0o
0o
o

(b) Re, R, t.

Figure 2.42: Graphical representation of the FFD of the factors.
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Polynomial RSM

The relationship between the output variables of 1, 82, p and the input variables
of t, Fur, i, Re, R, Ry, Rq using the polynomial of degree of 2 is represented as
follows:

B1=02+402Fgpr + 1.3Rg +0.1R, — 0.3t — 0.1F3y — 0.1Fggr Ry — 0.6R3
+ 0.1R4R,, + O.lFBHFRp — OlRZ —0.2Fpprf —0.1Ryf + 0.2Fpgrt — 0.4R4t
— 0.1R,t + 0.2ft — 0.1t (2.51)

By =0.7+0.7TRy — 0.1f — 0.2t — 0.1F% 1 — 0.4R% — 0.2Fpypf + 0.3Fpypt
—0.2Rgt — 0.1R,,t + 0.2ft — 0.2t (2.52)

p=0.01—-0.01Fggp —0.03Rg — 0.01f — 0.04¢ + 0.01Fggrp Ry + 0.02R3
— 0.01R4Re — 0.01Rg Ry + 0.01Re Ry, — 0.01Ryf + 0.01R. f + 0.01R, f + 0.01f2
+0.02F g pt + 0.03R4t — 0.01R.t + 0.03¢2 (2.53)

Graphically, it is impossible to represent the responses associated with all the in-
puts in 3D. Therefore, metamodels are graphically represented between 1, 52, p and
design variables of Fpppr, Ry as follows:

B1 = f(Fpur, Ra) (2.54)
B2 = f(Fpur, Rq) (2.55)
p= f(Fpur, Rq) (2.56)

These metamodels built by using Multivariate Polynomial Interpolation based on
the Singular Value Decomposition (SVD) with polynomial degree of 2 are presented
in Figue 2.43.

Kriging
The outputs of springback in function of the inputs variables can be rewritten based

on Kriging as follows:

y=XpB+Z(x) (2.57)

where Z(x) is assumed to be a Gaussian stochastic process with zero mean. Meta-
models built by using Kriging between 31, 52, p and design variables Fgyp, Rqy are
shown in Figure 2.44.
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(a) By in function of Feyp, Rg. (b) B2 in function of Fgyr, Ry.

Rd (Y Axis)

(c) p in function of Fgyr, Ry.

Figure 2.43: Metamodels of 81, f2 and p in function of Fpgr, Rq built by RSM.

Table 2.16: Comparison of accuracy between radial functions of RBF

Radial Functions Responses MAE R-square

B1 9.0596x 10~ 1
Inverse MultiQuadrics B 3.2892x10710 1

p 6.0101x1077 1

b1 3.8164x10~7  0.9999
Gaussians Bo 2.3661x107%  0.9999

p 1.3626x1072  0.9999

b1 2.1150x1079 1
Duchon’s Polyharmonic Splines [ 3.0074x1079 1

p 1.1064x107° 1

b1 1.7401x1072 1
Hardy’s MultiQuadrics Bo 7.7675x1079 1

p 1.8937x107° 1
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beta2 (7 pyis )

(b) B3 in function of Fpyr, Ry.

(a) B1 in function of Fpyp, Ry.

(c) p in function of Fpyr, Ry

Metamodels of 1, B2, p in function of Fpyp, Rq built by Kriging.

Figure 2.44:
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Radial Basis Functions

As discussed in Section A.5.3, there are five different radial functions available in
the ModeFRONTIER. Each kind of radial functions results in different accuracy of
metamodels. In order to have the best accuracy of metamodels built by the RBF,
comparison of accuracy between radial functions of the RBF is presented in Table
2.16. It can be seen that the RBF with radial function of Inverse MultiQuadrics has
the best accuracy. Therefore, it is used for fitting the responses. Metamodels built
by the RBF with radial function of the IMQ between 31, 82, p and design variables
Fppr, Ry are shown in Figure 2.45.

(a) By in function of Feyp, Rg. (b) B2 in function of Fgyp, Ry.

(c) p in function of Fgyp, Ry.

Figure 2.45: Metamodels of 81, B2, p in function of Fpgpr, R4 built by Radial Basis
Functions.
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Neural Networks

NN are a very efficient and powerful interpolation tool. Inspired by the brain struc-
ture and functions, NN can learn from training data: in this way NN can model
any generic non-linear relationship between input and output variables. This re-
sponse surface method based on classical feedforward Neural Networks, with one
hidden layer, and with an efficient Levenberg-Marquardt back propagation training
algorithm. The initialization of the network’s parameters is based on the proper
initialization approach by Nguyen and Widrow [153]. Metamodels built by NN
between (51, B2, p and design variables Fprp, Rq are shown in Figure 2.46.

BHF (X Axis) BHF (X Axis)

2SS
A X

()

=
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(a) By in function of Feyp, Rg. (b) B2 in function of Fpyr, Ry.

(c) p in function of Fgyr, Ry.

Figure 2.46: Metamodels of 1, 82, p in function of Fpgp, Rg built by Neural Net-
works.

2.9.2.3 Accuracy of Metamodels

As discussed above, in order to use the metamodels as surrogate models of time-
consuming FEM numerical simulations, it is vital to evaluate the accuracy of the
metamodels. The two metrics which are used to measure the metamodels’ accuracy
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are the R-square and the MAE. Table 2.17 shows the accuracy of each kind of
metamodels.

Table 2.17: Comparison of accuracy of metamodels

RSM Responses MAE R-square
B 7.4591x107°  0.9999
Kriging (2 5.6535x1073  0.9999
P 4.2752x1076 1
b1 12.0715 0.8727
SVD2 B, 30.8179 0.8829
p 96665.8 0.0768
B 9.9122 0.9724
SVD3 B, 29.4869 0.9651
p 92667.0694 0.1431
b1 9.0596x 10~ 1
RBF Ba 3.2892x10710 1
p 6.0101x1077 1
B 0.8783 0.9999
NN B 12.1686 0.9982
p 21912.8576 0.9154

It is found that the accuracy of RBF is the best both in terms of R-square and
in terms of MAE. Thus, the metamodels built by using RBF will be used in next
steps of this thesis.

2.10 Summary of the chapter

This chapter has been dedicated to numerical approaches applied for design of com-
puter experiments based on FEM numerical simulation. Several main points in this
chapter are synthesized as follows:

e The widely used sheet metal forming processes have been reviewed. In partic-
ular, the sheet metal bending has been introduced exhaustively and has been
used as a case study in this thesis. Comparison between constitutive equations
used to model material behavior has been also done.

e The state-of-the-art of FEM numerical simulation in sheet metal forming pro-
cess design has been reviewed. It has been addressed that there is a sensitivity
threshold of FEM numerical simulation below which the responses are insen-
sitive to very small variations of input parameters. A FDM-based method
has been proposed to detect the sensitivity threshold. As a result of this
method, the intervals of input parameters are given, and thus when carrying
out design of computer experiments using FEM numerical models, the values
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of the input paramters must be outside the detected intervals to have good
results.

Shape variation due to springback of formed part is taken into account and
determined. Sensitivity analysis has been performed to identify the effects of
seven input parameters on the response. It has been found that blank thickness
is the most influenced parameter on shape variation due to springback in the
sheet metal bending.

Design of computer experiments with full factorial of FEM numerical model
of U-shaped sheet metal bending has been executed. Since running the ex-
periments directly with FEM numerical model is impossible, a strategy based
on metamodels for computer experiments are introduced. Observation from
comparison between the RSM methods has shown that metamodels built by
RBF with radial function of inverse multiquadratics have the best accuracy. It
will be used as surrogate model in uncertainty propagation and optimization
in next chapters.
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3.1 State-of-the-art

3.1.1 Uncertainty definition, categorization and propagation
3.1.1.1 Uncertainty definition

The concept of uncertainty has been around for a much longer time; starting with
Socrates and Plato, philosophers doubted whether scientific knowledge, no matter
how elaborate, sufficiently reflected reality. They realized that the more we gain
insight into the mysteries of nature, the more we become aware of the limits of our
knowledge about how 'things as such’ are [215].

A fundamental definition of uncertainty is "liability to chance or accident",
"doubtfulness or vagueness", "want of assurance or confidence; hesitation, irres-
olution", and "something not definitely known or knowable" [194], [218].
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Although the term is used in various ways among the general public, many spe-
cialists in decision theory, statistics and other quantitative fields have defined uncer-
tainty as: "Uncertainty: The lack of certainty. A state of having limited knowledge
where it is impossible to exactly describe the existing state , a future outcome, or
more than one possible outcome”.

Uncertainty can be viewed as the difference between the present state of knowl-
edge and the complete knowledge as shown in Figure 3.1. It is classified into aleatory
and epistemic types |79].

| Uncertainty |
Epistemic | Aleatory ‘
uncertainty uncertainty Knowledge
[ I
Complete ignorance Present knowledge Complete knowledge

Figure 3.1: Uncertainty types [74]

Uncertainty is ubiquitous in any engineering system, at any stage of product
development, and throughout a product life cycle. Examples of uncertainty are
manufacturing imprecision, usage variations, imperfect knowledge, and variability
associated with loading, material properties, and geometric dimensions. Such un-
certainties have a significant impact on product performance. A small variation in
environment or design variables may lead to a significant quality loss. The ignorance
of uncertainty may cause erroneous decision making, low robustness and reliability,
costly warranty, low customer satisfaction, and even catastrophe [74], [157], [51],
[247], [85]. With the intensive requirement of high product quality and reliabil-
ity, understanding, identifying, and managing various uncertainties have become
imperative |74].

3.1.1.2 Uncertainty categorization

There are different possibilities to classify uncertainties which the engineer has to en-
counter during the design process. One way to categorize the sources of uncertainty
proposed by Kennedy et al. [100] is to consider:

e Parameter uncertainty, which comes from the model parameters that are in-
puts to the computer model (mathematical model) but whose exact values
are unknown to experimentalists and cannot be controlled in physical ex-
periments. Examples are the local free-fall acceleration in a falling object
experiment, and various material properties in a finite element analysis for
engineering.

e Parametric variability, which comes from the variability of input variables
of the model. For example, the dimensions of a work piece in a process of
manufacture may not be exactly as designed and instructed, which would
cause variability in its performance.
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Structural uncertainty, also known as model inadequacy, model bias, or model
discrepancy, which comes from the lack of knowledge of the underlying true
physics. It depends on how accurately a mathematical model describes the
true system for a real-life situation, considering the fact that models are al-
most always only approximations to reality. One example is when modeling
the process of a falling object using the free-fall model; the model itself is
inaccurate since there always exists air friction. In this case, even if there is
no unknown parameter in the model, a discrepancy is still expected between
the model and true physics.

Algorithmic uncertainty, also known as numerical uncertainty, which comes
from numerical errors and numerical approximations per implementation of
the computer model. Most models are too complicated to solve exactly. For
example the finite element method or finite difference method may be used
to approximate the solution of a partial differential equation, which, how-
ever, introduces numerical errors. Other examples are numerical integration
and infinite sum truncation that are necessary approximations in numerical
implementation.

Experimental uncertainty, also known as observation error, which comes from
the variability of experimental measurements. The experimental uncertainty
is inevitable and can be noticed by repeating a measurement for many times
using exactly the same settings for all inputs/variables.

Interpolation uncertainty, which comes a lack of available data collected from
computer model simulations and/or experimental measurements. For other
input settings that do not have simulation data or experimental measure-
ments, one must interpolate or extrapolate in order to predict the correspond-
ing responses.

Another way of catergorization is to classify uncertainty into two categories,

aleatory uncertainty and epistemic uncertainty [79], [156], [40].

e Aleatory uncertainty is defined in the literature as irreductible uncertainty,

inherent uncertainty, variability and stochastic uncertainty. Aleatory uncer-
tainty is generally quantified by a probability or frequency distribution when
sufficient information is available to estimate the distribution. Examples of
this category include the dimensions of manufacturing parts and material
properties.

On the other hand, epistemic uncertainty is due to the lack of knowledge or
the incompleteness of information. Epistemic uncertainty is also referred to
in the literature as reducible uncertainty, subjective uncertainty, and cogni-
tive uncertainty. Epistemic quantities are sometimes referred to as quantities
which have a fixed value in an analysis, but we do not know that fixed value.
For example, the elastic modulus for the material in a specific component is
presumably fixed but unknown or poorly known.
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3.1.1.3 Uncertainty propagation

There are two major types of problems in uncertainty quantification: one is the
forward propagation of uncertainty and the other is the inverse assessment of model
uncertainty and parameter uncertainty. In this research work, we focus on the for-
ward uncertainty propagation which is the quantification of uncertainties in system
outputs propagated from uncertain inputs. It focuses on the influence on the out-
puts from the parametric variability listed uncertainty categorization. The targets
of uncertainty propagation analysis can be:

e To evaluate low-order moments of the outputs, i.e. mean and variance.

e To evaluate the reliability of the outputs. This is especially useful in reliabil-
ity engineering where outputs of a system are usually closely related to the
performance of the system.

e To assess the complete probability distribution of the outputs. This is useful
in the scenario of utility optimization where the complete distribution is used

to calculate the utility.

The illustration of the methodologies for uncertainty propagation and distribution
propagation is shown in Figure 3.2 [37].

x1,u(xq) A g(x1)
) : g(x2)
) | vue) R . L

9(y)
x3,u(x3) Aﬂ(xs) .

a) Propagation of uncertainties b)  Propagation of distributions

Figure 3.2: Methodologies for uncertainty propagation and distribution propagation
[37]

Figure 3.2a shows an illustration representing the propagation of uncertainties.
In this case, three input quantities are presented x1,z2 and x3 along with their
respective uncertainties u(x1), u(z2) and u(zs). The measurand and its uncertainty
are respectively y and u(y). As can be noted, only the main moments (expectation
and standard deviation) of the input quantities are used in the propagation and thus
a certain amount of information is lost. When propagating distributions however,
see Figure 3.2b, no approximations are made and the whole information contained
on the input distributions are propagated to the output [37].
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3.1.2 Uncertainty modeling, representation and propagation

As mentioned previously, uncertainties can be broadly classified into two types of
aleatory and epistemic. The main reason why classifying uncertainties in engineering
systems is that the strategy and methods for modeling and representing uncertainty
in design depend on the types of uncertainty. Aleatory uncertainty is commonly
modeled by random variables or stochastic processes by probability theory if in-
formation is sufficient to estimate probability distributions. Epistemic uncertainty
can be handled by probability theory and nonprobability theories including evidence
theory [192], posibility theory [105], [L04], fuzzy set theory [245] and interval analysis
[143]. The first step for robust design is to charaterize and quantify uncertainty in a
system. Uncertainty analysis methods can be classified into the types as probabilis-
tic and non-probabilistic methods as presented in Table 3.1. Hence, in this section,
several approaches for representing and propagating uncertainty are reviewed.

3.1.2.1 Probabilistic approaches

Probabilistic methods are the most popular ones for representing parameter uncer-
tainty because of their universality. Three types of probabilistic models are com-
monly used to represent uncertainty in design: random variable, random field and
time-dependent stochastic processes. Probabilistic models are appropriate when
sufficient experimental or field data exists on the quantities of interest. To illus-
trate, consider an uncertain scalar £&. Given a sufficient number of realizations of
this scalar, kernel density estimation techniques can be employed to fit a probability
density function (PDF) £2(€) to the data. Alternatively, the structure of the PDF
can be assumed (e.g., Gaussian, log-normal, beta, etc.) and its parameters can be
estimated from the data. However, in practice, it is often the case that sufficient
data may not exist for accurately estimating the joint pdf of the uncertain parame-
ters. In such situations, it is necessary to invoke simplifying assumptions or perhaps
solicit expert opinion. For example, when modeling uncertainties arising from man-
ufacturing tolerances on an engineering component, a Gaussian model is often used.
The use of a Gaussian uncertainty model can sometimes be justified on the basis
of data/experience generated from previous studies or in some cases by virtue of
the central-limit theorem. In practice, the Gaussian assumption is often made for
the sake of mathematical convenience since a Gaussian distribution can be specified
uniquely by its first two moments. However, when representing uncertainty in the
Young’s modulus of a component say, a Gaussian model cannot be justified. This
is because the support of a Gaussian distribution is [—oo,+00], so with nonzero
probability, the Young’s modulus can turn out to be negative. This is of course not
physically permissible. Hence, recourse has to be made to nonnegative distributions
such as the log-normal or uniform distributions [99].

The probabilistic methods are further classified as statistical and non-statistical
approaches.
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Approach Probabilistic Non-
probabilistic
Monte Carlo | Interval
Simulation-based methods Simulation ?11118;,1]}/ -

Latin Hyper-
cube Sampling

Fuzzy  set
theory [245]

Importance Possibility
Sampling theory [152]
[137],[54]
Adaptive Sam- | Evidence
pling [24] theory [192]
Surrogate Convex
models modeling
[13]

Local expansion-based methods

Taylor series

Most probable point-based methods [58|

First-order
reliability
method

Second-order
reliability
method

Functional expansion-based methods

Neumann ex-
pansion

Polynomial
chaos expan-

sion
Numerical integration-based methods | Dimension
[56],[191],[117] reduction

[177],[242]

Table 3.1: Methodologies for uncertainty propagation




3.1. State-of-the-art 79

Simulation-based methods

Simulation methods are nonintrusive and can be applied to virtually any uncertainty
propagation problem. The most popular simulation method is the Monte Carlo sim-
ulation (MCS) technique. The procedure of the basic Monte Carlo method involves
[33]:

e generating a set of values by randomly sampling the known or assumed prob-
ability density function for each input variable,

e executing an experiment and collecting the data for each of the generated
samples,

e employing statistics for the output data set to define its probability density
function.

When probabilistic models with specified statistics are used to represent uncertainty,
the uncertainty propagation problem essentially involves computing the statistical
moments of the output and its complete probability distribution. Given the joint
probability density function (&) of the uncertain parameters, the MCS technique
can be applied to compute the complete statistics of the response quantities of
interest with an arbitrary level of accuracy, provided sufficient number of samples
is used. Consider the multidimensional integral given below:

1= (6(6)) = /g 6(6) P(€)de (3.1)

where ¢(&) is a function calculated by running an expensive computer model. The
above integral arises, for example, when computing the kth statistical moment of an
output function f(£), in which case we set (&) = f#(£). Multidimensional integrals
of this form can rarely be evaluated analytically. The basic idea of simulation
techniques is to numerically approximate the above multidimensional integral. In
Monte Carlo integration, ¢(§) is evaluated at various points generated by drawing
samples from the distribution 22(¢),say €1, €3 .. £(™) Subsequently, the integral
is approximated by an average of the realizations of ¢, that is:

(BE) ~ o= ¢ (3.2)
=1

~

¢ is referred to as the Monte Carlo estimate of I, that is, an approximation to (¢(£)).

~

The strong law of large numbers states that, if ¢ is integrable over £, then ¢ — I
almost surely as m — oo. The variance of the Monte Carlo estimate is given by

~ g

Var(¢) = s (3.3)

N

~

where 0(275 = ﬁ m (@) — ¢)? is the sample estimate of the variance of $(€).
The variance computed using Equation 3.3 can be used to judge the accuracy of the
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Monte Carlo estimate. It follows from Equation 3.3 that the standard error of ¢ is
given by o4//m. Note that the error estimate is independent of the dimension of
&. Tt is important to know that, even if the Monte Carlo method converges to the
exact statistic solution as the number of samples goes to infinity, the convergence of
the mean error estimate is slow. Hence, thousands or millions of data samples may
be required to get enough accuracy. Since the convergence rate of the Monte Carlo
estimate is O(1/4/m), to improve accuracy by one decimal place, around 100 times
more samples will be required [99].

Since the basic Monte Carlo method is computationally expensive, modifications
of the Monte Carlo method have been developed to improve the efficiency of un-
certainty analysis. One of the most popular modified Monte Carlo methods is the
Latin Hypercube sampling method [135]. In the Latin Hypercube sampling method,
the selection of sample points is highly constrained. For a single random variable,
instead of randomly sampling from a complete PDF, the range of random values is
partitioned into several segments of equal probability. Each segment corresponds
to an equal area under the PDF curve. In each segment, a point is sampled with
respect to the complete PDF. In the case of multiple random variables, the values
picked in the segments of each random variable are randomly combined with the
values in the segments of other random variables without duplicating [33].

Using a surrogate model of the black-box simulation code in uncertainty analysis
has been widely used in the last few years. The approach involves first constructing
a polynomial model of the simulation code which is then used as a surrogate of the
original computationally expensive model during MCS.

Input Black-box
{ ara:,etiF’ DOE simulation
P code

Output
parameters

Surrogate

MCS model

Figure 3.3: Uncertainty analysis using surrogate models.

Local expansion-based methods

For improving computational efficiency, non-statistical methods have been devel-
oped. The most widely used non-statistical uncertainty analysis method is local
expansion-based methods. In local expansion-based methods, Taylor series expan-
sions can be employed to approximate the statistical moments of the outputs of
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interest. Consider the second-order Taylor series approximation of the function
#(€) at the point £

. . 23 ) p€ pé 82¢> .
O =o' + D 5o (G - ¢ Y sgag, GG -6 (B4
i=1 >t i=1 j=1 >*

The mean and standard deviation of ¢(£) can be approximated using Equation 3.4
as follows:

82
flo = Z e (3.5)

A ) p§  pg 82¢ 2
Gp = Z}() - ZZ(%%) 0202 (3.6)

Neglecting the second-order terms in Equation 3.5 and Equation 3.6 results in first-
order approximations for the mean and standard deviation of ¢(§). The knowledge of
the first two statistical moments of the input uncertainties is required to approximate
the mean and standard deviation of ¢(§). This is in contrast to simulation methods,
which require the joint PDF of £ [99]. The local expansion-based methods are very
simple, convenient are very useful for exploration of a design space. However, the
methods are good for Gaussian probability distribution, and it is very hard to apply
to other types of probability distributions in input parameters. Also, the result can
be inaccurate since these are approximate methods.

Functional expansion-based methods

In order to deal with the problem that if the probability distributions of the input
parameters are not normal distributions, the approximate methods could be inac-
curate, Polynomial Chaos expansions are proposed. The idea of polynomial chaos
(PC) representations of stochastic processes was introduced by Wiener [237] as a
generalization of Fourier series expansion. More specifically, Wiener used multidi-
mensional Hermite polynomials as basis functions for representing stochastic pro-
cesses. The basic idea is to project the process under consideration onto a stochastic
subspace spanned by a set of complete orthogonal random polynomials. A general
second-order stochastic process h(6) can be represented as

=3 higi(6) (3.7)
=0

where @;(£) are orthogonal polynomials and h; are the PC coefficients. Since ¢;(§),
1=20,1,2,...00 form an orthogonal basis in the Lo space of random variables

(pi(€)w(€)) = (#7(€))dis, (3.8)
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where 0,1, is the Kronecker delta operator and (.) defined as

(F(©)g(6) = / F©)9OW(€)de (3.9)

where W (¢) is the weight function corresponding to the PC basis. The weight
function is chosen to correspond to the distribution of the elements of £ [239]. For
example, when Hermite polynomials are used as basis functions, the weight function
is given by the multidimensional Gaussian distribution.

More recently, Xiu and Karniadakis [239] proposed a generalized PC approach
that employs basis functions from the Askey family of orthogonal polynomials. The
Hermite chaos expansion appears as a special case in this generalized approach,
which is referred to as Wiener-Askey chaos |9]. The motivation for this generaliza-
tion arises from the observation that the convergence of Hermite chaos expansions
can be far from optimal for non-Gaussian inputs. In such cases, the convergence
rate can be improved by replacing Hermite polynomials with other orthogonal poly-
nomials that better represent the input. For instance, when the elements of £ have a
uniform distribution, then an expansion in Legendre basis functions converges faster
compared to Hermite polynomials. This finding opens the possibility of representing
stochastic processes with different orthogonal polynomials according to the property
of the processes as shown in Table 3.2 [239].

Table 3.2: Relations between probability distributions and orthogonal polynomials

Distribution | Probability Density Orthogonal Support
Polynomials Range
2
Normal 6\;;? Hermite (=00, 4+00)
He,(x)
Uniform 1/2 Legendre (—1,41)
Py ()

(1—2)*(1— =)

Beta Jacobi —1,+1
20t8t1B(a+ 1,8 + 1) plod) () ( )
Exponetial | e Laguerre (0, 4+00)
Ln(z)
Gamma I?Fae;f) Generalized (0, 400)
Laguerre
Ly ()

3.1.2.2 Non-probabilistic approaches

In this section, only interval analysis and fuzzy set are briefly reviewed. The others
are advanced topics which are not considered in this thesis.
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Interval analysis

Interval analysis [143] has been widely used for uncertainty analysis. Interval analy-
sis is based on using algebraic procedures to propagate intervals of possible values for
variables through to an interval of possible values for a function of these variables.
The uncertainty in each element z; of X would be represented by an interval.

X = [fpminammax] =T c R|$mzn <z < Tmax (310)

The interval bounds are then propagated through the analysis model to arrive at
bounds on the output variables of interest which can be conservatively wide. All
values within the interval are equally likely - this is in constrast to probabilistic
representations where the extremes occur with much lower frequency than the aver-
age value. Interval analysis is a representation that requires very little information
about variability of a parameter because it is not necessary to know how a parameter
X is distributed between its two bounds. Furthermore, interval analysis does not
infer an uncertainty structure on f(X) based on an uncertainty structure assumed
for X. Thus, the uncertainty representation for f(X) obtained with interval analy-
sis lacks the structure obtained with the other uncertainty representations such as
probability, evidence, and possibility theory.

Fuzzy set

Fuzzy set theory proposed by Zadeh [245] also provides a powerful approach for
modeling parameter uncertainty based on inexact or incomplete knowledge. Fuzzy
sets are sets whose elements have degres of membership. In classical set theory, the
membership of elements in a set is assessed in binary terms according to a bivalent
condition - an element either lies inside a set or outside it. In fuzzy set theory,
classical bivalent sets are usually called crisp sets, since the degree of membership
of a point is either 1 if it is inside the set or 0 if outside the set.

A fuzzy set is a pair (U,m) where U is a set and m: U — [0, 1].

For each z € U, the value m(x) is called the grade of membership of z in
(U,m). For a finite set U = {z1, ..., x5}, the fuzzy set (U, m) is often denoted by
{m(x1) /1, ..., m(zp)/xn}

Let x € U. Then z is called not included in the fuzzy set (U,m) if m(z) =0, x
is called fully included if m(z) = 1, and x is called a fuzzy member if 0 < m(z) < 1.
The set {x € Ulm(x) > 0} is called the suport of (U, m) and the set {x € Ulm(x) =
1} is called its kernel. The function m is called the membership function of the
fuzzy set (U, m).

In fuzzy modeling, uncertainty is represented using sets with fuzzy boundaries.
In other words, a membership function is associated with a fuzzy set, which indicates
the degree of membership of a given point. The degree of membership can vary from
0 to 1.

Possibility theory is an extension of theory of fuzzy set and fuzzy logic [152].
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3.1.3 Sampling techniques

As mentioned in simulation-based methods Section 3.1.2.1, there are two commonly
used sampling techniques: Random Sampling (RS) (also known as Monte Carlo
Sampling) and Latin Hypercube Sampling (LHS).

3.1.3.1 Random sampling

The random sampling, also known as Monte Carlo Sampling (MCS), is widely used
for stochastic analysis [180]. Given the stochastic properties of one or more random
variables, a sample average approximation problem is constructed. Assume that N
samples of the random vector X = [X1, Xa,..., X,,]T are needed. If each variable
Xi (i = 1,2,...,n) follows a CDF (Cumulative Distribution Function) Px;, the
N samples xz (j=1,2, ...,N) are independently generated using Quantile-Quantile
transformation from the N samples Vij , which are uniformly distributed on [0,1),

ol = P ) (i=1,2,..,n;5 =1,2,..., N), (3.11)

where P);Z_l(.) is the inverse CDF of Xj.
Then, the following N samples of X are obtained.

o =2, 2] (j=1,2,...,N). (3.12)

An example of MCS input generation of 10000 sample points is given in Figure 3.4.

225

2.2F
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1'9340 960 980 1000 1020 1040 1060
X
1

Figure 3.4: Monter Carlo Sampling generation based on Gaussian distribution.
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3.1.3.2 Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) which was introduced by McKay et al. [136] is
a stratified sampling technique in which the uniformly distributed samples v/ (j =
1,2,...,N) are drawn by

o om(i—1 J
vl = W(i =1,2,..,nj=1,2,....N) (3.13)
where 7; is a uniform permutation of 0,..., N — 1, and wf is a random observation
from U|0,1). v} can also be obtained by the widely used median version of Equation
3.13,

C omG—1)+05
vl = 7”(]N)+(z‘ = 1,2,..,m:5 =1,2,...,N). (3.14)

Then,
‘TZ = P);ll(yf)(l =12..,n7=12, 7N) (315)

The N samples of X7 are paired at random without replacement with the N samples

2.135% 10

2L : R
11)00 1005 1010 1015
X

Figure 3.5: Latin Hypercube Sampling generation based on Uniform distribution.

of Xs. These N pairs are combined in a random manner without replacement with
the N samples of X3 to form N triplets. This process continues until Nn-tuplets
are formed. The Nn-tuplets may be contained in an N X n sample matrix in which
each row corresponds to one sample of X. Totally, there are N samples of X in the
matrix [84]. An example of LHS input generation of 10000 sample points is given
in Figure 3.5.

Since LHS exhaustively stratifies across the whole range of each sampled variable,
it mitigates the problem that important intervals with low probability but high
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consequences are likely to be missed [161]. Compared to RS, LHS requires fewer
samples for a similar accuracy. It is more efficient for estimating statistical moments
(mean, variance, etc.) and produces more stable results than RS [77]. However, the
main shortcoming of LHS stratification scheme is one-dimensional and does not
provide good uniform properties on a multidimensional unit hypercube [49]. If
the performance function is highly nonlinear, LHS provides no significant practical
advantage over RS [130], [68].

Hence, in this thesis, the sampling mode of LHS for uncetainty propagation is
used

3.1.4 Determination of sheet metal part variations
3.1.4.1 NUMISHEET benchmark

Springback variation is one of the main causes which influence on the performance
of stamped parts. Springback arises due to elastic strain recovery of material after
reloading deformation loads. Therefore, its magnitude is significantly dependent on
the residual stresses in the workpiece after the forming tools are released. Springback
cannot be eliminated but it can be controlled and minimized. In this section, several
methods for determination of springback variations are reviewed.

In order to represent shape defect due to springback in the U-draw bending
process, the NUMISHEET conference [127], |75] proposed the benchmark measure-
ments of springback includes the wall angle 6, flange angle 6> and sidewall curl
radius p are shown in Figure 3.6. The parameters 31, fo and p are introduced to

AX1s 01 Symmetry
Y

B2

Figure 3.6: A schematic view of springback profile and parameters.



3.1. State-of-the-art 87

estimate the variation of part shape before and after springback. More specifically,
they describe the variation of the part’ cross-sectional shape obtained before and
after removing the tools. The springback in the direction orthogonal to the cross-
section is not considered in this case. Marretta et al. [132] utilized the relative
displacement between deformed blank after load removing and final stamped part
as springback indicator. Such indicator was calculated in terms of three dimensional
nodal displacement taking into account the maximum value of such displacement.
Springback values obtained from simulations via sections shown in Figure 3.7.

a b

[mm]

0.997049
0.897344
0.797639
0.697934
0.598229
0.498524
> 0.398819
0.299115
0.199410
0.099705

0.000000

Figure 3.7: Springback map and its section [132].

3.1.4.2 Geometric defects based on modal analysis

Ledoux et al. [112] proposed a method to represent geometric defects of stamped
part based on a discrete modal decomposition. This method enable to decompose
size, position and form defects based on model basis which is generated by the
natural vibration of forms. Geometric defects of stamped part are represented by
different modes as illustrated in Figure 3.8.

M—-.,Odc 3 | “Mode 2

'l o0s om J015 om a0 003 0035 004 0045 005

Figure 3.8: Shapes of the modes of stamped part [112].
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3.1.4.3 Geometric deviations description using Principal Component
Analysis (PCA)

Starting from the idea that how to visualize the Pareto optimal front in multi-
objective optimization for 3 output variables (31, B2,p )in which each one has 2 ob-
jectives to optimize. This leads to using 6-dimensional hypersurface. To overcome
this problem, PCA is proposed. The PCA can transform the high-dimensional prob-
lems into lower-dimensional problems and provide sufficient information. The PCA
is a statistical procedure that uses an orthogonal transformation to convert a set of
observations of possibly correlated variables into a set of values of linearly uncorre-
lated variables called principal components. The idea of using the PCA to describe
the part’s geometric deviation is to transform the coordinate of nodes representing
the part shape after springback from higher dimension into lower dimension. The
advantages of this are able to represent any part shape and to reduce the dimen-
sion of the ouput if the output variables have relationship and dependence to each
other. Particularly, instead of determining 3 springback parameters (1, 82, p) via
the cross-sections, the part performance is represented by its node coordinates. This
idea is illustrated in Figure 3.9. Where [1 X n;] is row matrix of node coordinates
of the i¢th design, n; is number of node of the ith design.

Input settingl 1 5 [1xny4]

Input setting2 ———> FEM numerical ———> [1xn,]
: simulation :

Input settingi —— > ———> [1xny]

Figure 3.9: Approach of geometric deviation determination based on the sheet metal
part’s node coordinates.

The aim of PCA is to introduce a new set of m orthogonal axes in such a way that
our original data will show the highest variance on the principal axis 1, the second
highest variance along the principal axis 2, and so on, with the least variance being
shown along the principal axes m. These axes are referred to as principal component
axes. Each principal component is a linear combination of the original variables.
The procedure of PCA is shown in Figure 3.10. In the application of sheet metal
draw bending process, 2187 designs (3 levels and 7 factors) are executed, each output
has 2860 nodes in 3-dimensions. Data set from FEM simulation is a matrix which
has a size of [2187x8580].

However, through analysis of deformation modes of the part, it has been found
that it requires at least 3 modes of deformation to represent the formed part shape
properly. Meaning that there are still 3 output dimensions which are not our interest.
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Figure 3.10: Procedure of the principal component analysis.
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3.1.5 Quality evaluation of sheet metal part with multiple charac-
teristics

3.1.5.1 Definition of process capability index

A process capability index is a numerical summary that compares the behaviour
of a product or process characteristics to engineering specifications [202]. These
measures are also often called the process capability indices or process capability
ratio which is a statistical measure of process capability. A process capability is the
ability of a process to produce output within specification limits. A process where
almost all the measurements fall inside the specification limits is a capable process.
This can be represented as shown in Figure 3.11.

Midpoint

LSL Actual process spread USL
Allowable process spread

Figure 3.11: Graphical illustration of process capability.

There are several commonly accepted process capability indices that can be used
to measure the capability of a process such as C), Cpr, Cpm, and Cppi;.

3.1.5.2 The C), index
The C) index is defined by the following formula [94], [206], [96]:

USL—LSL _IT

C, = = —
60 60

(3.16)
where IT is tolerance interval defined by upper specification limit (USL) and lower
specification limit (LSL) and o is standard deviation of product batch.

Under the usual assumption of normality of the distribution law of the batch and
a process centered in the middle of the tolerance range, the rate of non-conforming
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parts can be calculated [2]:
NCRppm = 2®(1 — 3C,)10° (3.17)

where @ is the function of a standard normal distribution law [110] and NCR is
non-conformity rate. Due to its simplicity, however, the index of C}, only compares
the batch dispersion with respect to the tolerance zone and it does not take into
account the mean shift of the batch compared to the target.

3.1.5.3 The () index

On the other hand, the index Cpy takes both the magnitude of process variance
and the mean shift into consideration. The () index is defined by the following
formula:

Cpr, = mi
pk mm{ 3o 3o 3o

where § represents the mean shift of the batch compared to the target.
As mentioned above, the Cp; index was developed because the C), index does

L — — LSL I _ 5

not adequately deal with cases where process mean p is not centered (the mean does
not equal to the midpoint) as illustrated in Figure 3.12. However, Cp by itself still

Mean shift

N

LSL Midpoint Mean USL

Figure 3.12: Normal distribution with a mean shift causes an increase in rejects.

cannot provide an adequate measure of process centering. That is, a large value of
Cpr does not provide information about the location of the mean in the tolerance
interval USL — LSL. The C), and Cp, indices are appropriate measures of progress
for quality improvement situations when reduction of variability is the guiding factor
and process yield is the primary measure of a success. However, they are not related
to the cost of failing to meet customers’ requirement of the target [238].
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By respecting an index Cp, greater than 1 means ensuring that the batch is in
the range of tolerance [Min, Max]|.

Boyles |21] presented the application of Cpj on the normal distribution and the
variations of reject rate for different values of the index Cp in terms of the mean
shift of the batch. Two limits are defined on the rate of non-conformity in terms of
Cpi. of the batch.

The lower bound is defined by [2]:

NCRIower = (1 — ®(3C,))10° (3.19)

ppm

The upper bound is defined by [2]:

NORUPPE™ = 2(1 — ®(3C,;))10° (3.20)

ppm

Relationship between the C, index and process yield and process fallout is shown
in Table 3.3.

Table 3.3: Relationship between C); and process yield and process fallout

Cpk Sigma level Area under the Process yield [%] Process  fallout

(o) probability  den- (DPMO/PPM)
sity function
0.33 1 0.6826894921 68.27 317311
0.67 2 0.9544997361 95.45 45500
1.00 3 0.9973002039 99.73 2700
1.33 4 0.9999366575 99.99 63
1.67 5 0.9999994267 99.9999 1
2.00 6 0.9999999980 99.9999998 0.002

3.1.5.4 The (), index

Hsiang and Taguchi [82] introduced the Cp,, index which was also later proposed
independently by Chan et al. [26]. The C),, index is based on the loss function of
Taguchi. The Cp,, index is defined by the following formula |21]:

USL - LSL r
Com = = 3.21
P 6y/02+ (u—T)% 6Vo?+02 (3:21)

This index is oriented towards measuring the ability of a process to cluster around

the target, and reflects the degrees of process targeting.

3.1.5.5 The (), index

Pearn et al. [169] proposed the process capability index of Cjpy,k, which combines
the features of the three earlier indices of C),, Cpi, and Cpyp,. The Cpypyy index alerts
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the user whenever the process variance increases and/or the process mean deviates
from its target value [238]. The Cpy,y, index is defined as [169]:

USL — 1 u—LSL}_ L —|5] (3.22)
3vVo2 + 62 302 + 52 3Vo2 4 62 .

An expression of upper bound of non-conformity rate in terms of the Cp,;, index

Cpmi = min {

is expressed in Pearn et al. [170] derived from the relation which was presented by
Boyles [21] between the Cp, index and the upper bound of non-conformity rate:

NCRWP = 2(1 — ®(3Cymi))10° (3.23)

3.1.5.6 The inertia criterion

Starting from the definition of the loss function Taguchi, Pillet proposes a new
criterion called the inertia criterion which is defined by [2]

I=1/0210? (3.24)

This criterion represents the quality loss due to the off-centering and spread of a
batch.

3.2 Uncertainty propagation in sheet metal forming pro-
cess design

3.2.1 Uncertainty classification

A classical classification is the separation of uncertainty into the two types: aleatory
and epistemic. Aleatory uncertainties are of intrinsically irreducible stochastic na-
ture. Aleatory uncertainties in sheet metal forming include stochastic variabilities
in material properties, blank thickness and friction. These aleatory uncertainties
are regarded as parametric variabilities. On the other hand, epistemic uncertainty
is due to the lack of knowledge or the incompleteness of information and it is subjec-
tive and reducible. Epistemic uncertainties include uncertainties about the model
used to describe the reality, its boundary and operation conditions, also referred to
as model form errors [125], and also the errors introduced by the numerical solution
methods used (e.g., discretization error, approximation error, convergence problems)
[14].

In the sheet metal forming process design based on FEM numerical simulation,
both kind of uncertainties are present. The classification of the uncertainties is
shown in Figure 3.13. In terms of aleatory uncertainties, the variation of blank
thickness and material properties emanates from batch-to-batch variation and/or
coil-to-coil variation, even within batch and part-to-part variation. They are inher-
ent irreducible uncertainties in the sheet metal forming process. They are random
variations and uncontrollable variables. While friction variation between tool sur-
faces within batch is derived from lubrication variation, however, it is controllable
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Uncertainty
|
| 1
Aleatory Epistemic
Uncertainty Uncertainty
¢ Material e Errors introduced
properties by numerical
* Blank thickness methods

¢ Friction

Figure 3.13: Taxonomy of uncertainty in sheet metal forming process design based
on FEM numerical simulation.

variable. On the other hand, the accuracy of a mathematical model to describe an
actual physical system of interest depends on the model uncertainty which is referred
to as model form and numerical method errors is a form of epistemic uncertainty.
Due to FEM numerical model considered as a black box, the errors introduced by the
numerical solution methods are unavoidable uncertainties. To reduce these errors
due to finite precision of FEM numerical simulation, we have proposed a method to
point out "a prohibited interval" where the values of input parameters should not
be inside when propagating uncertainties based on FEM simulation to get reliable
reponses.

On the other hand, on the basis of the original idea proposed by Taguchi, the
parameters in any design problem may be classified into two groups [30]: (1) control
factors composed of the inputs that the designer is free to manipulate and (2) noise
factors, which are the inputs that are difficult or expensive to control.

Uncertainties: z, Model uncertainty
Design parameters: p Product / Process > Response: f
(Noise factors) —_—

A
I @<e— Uncertainties: z,

Design variables: x
(Controlfactors)

Figure 3.14: P-Diagram.

Figure 3.14 depicts a P-diagram of a numerical model used to describe the real
physical product or process. It represents the schematic relationship between the
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input of the model and the response. A sheet metal forming process or product has
an output or response f which depends on the input. The input can be divided into
design variables x and design parameters p. The design parameters or noise fac-
tors can be categorized as material properties (e.g. yield strength, tensile strength),
blank thickness and friction between surfaces of tools and blank. The output behav-
ior of the system can be controlled by the design variables such as process settings
(e.g. blank holder force), tooling geometry (e.g. die and punch radii). This can be
described by the following mathematical formulation:

f=F(z,p) (3.25)

When uncertainties exist, the response f can be rewritten as follows:

f=fl@+ 2z, p+ 2) (3.26)

Moreover, model uncertainty arises when using numerical techniques to describe
the real physical process, thus the designer has to deal with model uncertainties like
numerical noise [216]. The resulting model uncertainty depends on the input of the
system. The presence of this type of uncertainty is represented in Figure 3.14 by an
arrow coming out of the system and entering the system again since it can be seen
as an internal error of the model itself.

3.2.2 Strategy for uncertainty propagation

As discussed in Chapter 2, before carrying out uncertainty propagation, it is very
necessary to build metamodels which are thereafter used to estimate probabilistic
moments of the responses. Since several thousand, even million evaluations are
required for a probabilistic evaluation, the FE model of the sheet metal forming
process can not directly be used. Therefore, an approach for uncertainty propagation
based on metamodel is proposed as shown in Figure 3.15.

After the input variables have been distinguished, the uncertainty of input pa-
rameters is modeled and represented by probabilistic approach. In particular, the
inputs in sheet metal forming process design are modeled and represented by prob-
abilistic approaches in which a Gaussian distribution is used.

More specifically, the idea here is to represent the input parameters by the
nominal value, i.e. the mean or average value, the interval [z, x:r
;1:;F denote the lower and upper bound respectively. Afterwards, probabilistic models

], where x;” and

are used to represent the uncertain parameters as continuous random variables.
Modeling uncertainties arising from manufacturing tolerances of sheet thickness,
variations in material properties, friction variation between tooling surfaces is by
probabilistic distributions. Monte Carlo Sampling or Latin Hypercube Sampling is
then used to sample values of the uncertain parameters. These sampling points are
propagated through the metamodels to obtain statistical moments of the responses.
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[Model uncertainties}

Sample based on
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Estimate proba-

bilistic moments on
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Perform statistical eval-
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{ Finish }

Figure 3.15: An proposed approach for uncertainty propagation.

3.2.2.1 Probabilistic description of uncertainty

In the practical engineering problems, randomness of the uncertain parameters are
often modeled as a set of discretized random variables. Suppose X is a random vari-
able and n observations of X are given. The samples of X are given by x1, xo, ..., Tp.
The statistical description of a random variable X can be completely described by
a cumulative distribution function (CDF) or a probability density function (PDF),
denoted by Px(x) and px(x) respectively. To calculate the probability Pr[| of X
having a value between x; and 3, the area under the PDF between these two limits
is calculated as follows:

€2

Priz; < X <] = / px(x)dx = Px(x2) — Px(x1) (3.27)
xr1

The PDF is the first derivative of the CDF, that is:

. dPX(m)
 dx

px(z) (3.28)
The PDF and CDF for a normal or Gaussian distribution with px = 0 and standard
variation ox = 1 are given in Figure 3.16.

The expected value E(X) and variance Var(X) of the random variable are given

by: .\
E(X)=ux = / xpy(x)dx (3.29)

—00
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Figure 3.16: Probability density function and cumulative distribution function for
a normal distribution
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“+oo
Var(X) =% = [ (o pxPpx(X)is (3.30)

—00
In sheet metal forming process, there are several variables being taken into account.
Uncertainty modeling and representation of input parameters are shown in Table
3.4. Modeling uncertainties of the input parameters is represented by Gaussian dis-

Table 3.4: Probabilistic modeling and representation of uncertainties in the input
parameters

Parameters Distribution Interval bounds Mean Stdev. IT

Fprr [kN] Normal 12.94,50] 2647 0.6667 +2
R [mm] Normal [2,10] 6 0.0167 £0.05
R, |mm]| Normal 2,10] 6 0.0167 =£0.05
R, [MPa]  Normal [500,600] 550 16.667 +£50
R,, [MPa] Normal [780,900] 840 20 +60
7’ Normal [0.04, 0.16] 0.1 0.0033 =£0.01
t |mm)| Normal [1,2] 1.5 0.0167 +£0.05

tribution since a Gaussian model can be specified uniquely by its first two moments.

3.2.2.2 Propagation of distribution

Uncertainties in the input parameters are modeled by Gaussian distribution and
propagated based on the RBF metamodels as built in Section 2.9. Illustration of
methodology of distribution propagation in the sheet metal draw bending process is
demonstrated in Figure 3.17. The input parameters are sampled by LHS. The input
parameters are assumed as continuous random variables. This represents aleatory
uncertainties in the input parameters of sheet metal draw bending process.

One of the purposes of uncertainty propagation is to evaluate the statistical
moments of the outputs. Figure 3.18 and Table 3.5 show probability density as well
as the mean and standard deviation of 81, 82 and p.

Table 3.5: The two first statistical moments of 81, S2 and p

Parameters Bil°] B2[° p [mm]
Mean 17.823 12.7535 150.854
Standard deviation 0.9693 0.745 66.7696

It can be seen that the distribution shape of 37 and By is almost Gaussian,
whereas that of p is not Gaussian. This shows strong nonlinearity of the model.

3.2.3 Analysis of the effects of uncertainties on the product per-
formance

Depending on the part’s functional requirements, the part performance can be rep-
resented in different ways. In this section, several geometric descriptions of perfor-
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Figure 3.17: Illustration of proposed approach for distribution propagation.

mance variations are presented.

3.2.3.1 Geometric tolerance analysis for the sheet metal part

Traditionally, initial design tolerances for mechanical parts are often selected from
tolerance chart, which describes the natural variation of the processes by which parts
are made. This chart indicates the range of variation achievable by each process.
Also, the range of variation depends on the nominal size of the part dimension.
However, these tolerance values are used as a estimate, since no parts have been
made. In addition, the aleatory uncertainties are unavoidable in the manufacturing
process, they result in the part performance variations.

In order to overcome these problems, an arbitrary geometric tolerance analysis
for the sheet metal parts in the presence of uncertainty is suggested. Geometric
tolerances of the sheet metal part under consideration are presented in Figure 3.19.
In particular, flatness, parallelism, position and perpendicularity tolerances are re-
quired to represent the performance variations due to manufacturing imprecisions.
These geometric tolerances’ values are determined through nodal coordinates of the
formed part which have been obtained from FEM numerical simulation.

Analysis of geometric tolerances for the sheet metal part is carried out on the
basis of uncertainty propagation. Figure 3.22 and 3.23 show the probability density
of geometric tolerances obtained by propagating the uncertainties of input parame-
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Figure 3.18: The probability density of 81, Sz and p
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Figure 3.19: Geometric tolerances of the sheet metal part.

ters on metamodels of the geometric tolerances. The metamodels of the geometric
tolerances with respect to Fpyr and R4 are shown in Figure 3.20 and 3.21.

As can be seen from Figure 3.22 and 3.23, it is found that due to the uncertainties
in the inputs, the variations in performance are quite large. This can lead to troubles
in the assembly process. In order to tackle this problem, process design optimization
will be carried out in Chapter 4.

3.2.3.2 An example of determination of performance variations based
on functional requirement

According to the part’s functional requirement, it is subsequently assembled with
other components as illustrated in Figure 3.24. It is assumed that the components
are assembled each other by rivets. To ensure that there is no problem in the
assembly process, the components need to work properly as functioned. Hence, the
holes’ position variation on the components due to the springback should be taken
into account.

Figure 3.25 shows cross-sections of the components in the assembly system.

In order to determine the variability of hole position due to the springback,
the cross-section 5 through the part 1 is considered as shown in Figure 3.25. Hole
position, marked by point T, before and after springback with a half of the part 1
is demonstrated in Figure 3.26. The functional requirement of the hole on the part
includes:

e The position of the hole from the reference point in the horizontal axis is 100
[mm].
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(a) T1 flatness tolerance with re-
spect to Fpgr and Ry

(b) T2 perpendicularity tolerance
with respect to Frygr and Ry

(c) T'3 flatness tolerance with respect
to FBHF and Rd

Figure 3.20: Probability density of geometric tolerances of T'1, T2, T'3
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Figure 3.21: Probability density of geometric tolerances of T4 and T'5
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Figure 3.22: Probability density of geometric tolerances of T'1, T2, T'3
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Figure 3.23: Probability density of geometric tolerances of T4 and T'5
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Figure 3.24: Components assembled in the system [72].

Figure 3.25: Cross-sections in the assembly system [72].
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Figure 3.26: The variability of hole position before and after springback.
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e The magnitude of the hole’s displacement should be in allowable tolerance
interval.

However, the sheet metal components used in this semi-industrial case study usually
have large shape defects due to the springback. Thus, taking into account the
components’ performance variations caused by the uncertainties of input parameters
in the early design process is required.

In short, the magnitude of hole displacement after springback is considered as
an output variable in this case study. Instead of taking into account the effect of
uncertainties on the springback measurements of 51, 82 and p, the effect of uncer-
tainties on the magnitude of hole displacement Ur is investigated. The magnitude
of hole displacement is defined by:

Ur = \/(@r —29)% + (yr — 4)? (3.31)

where (2%, y%) is coordinate of point 7" before springback and (27, yr) is coordinate
of point T after springback.

3.2.3.3 Metamodel and uncertainty analysis for Ur

In order to figure out which RSM is best fit for the reuslts of Ur from the DOE,
comparison between the accuracy of the metamodels is investigated as shown in
Table 3.6. As can be seen from Table 3.6, the RBF has the best accuracy for fitting

Table 3.6: Comparison of accuracy of metamodels for Ur

RSM Responses MAE R-square
Kriging Ur 1.0258x10~%  0.9999
SVD2 Uy 36.6112 0.8268
SVD3 Uy 38.6366 0.9370
RBF Ur 5.7494x10710 1

NN Ur 16.9244 0.9988

the Up. Therefore, it is used to build metamodel. Figure 3.27 shows metamodel of
Ur with respect to Fpgr and Ry. With the same input parameters as presented in
Table 3.4, Figure 3.28 shows the probability density as well as mean and standard
deviation of hole displacement Up. It can be seen that the variation of hole position
is significant due to aleatory uncertainties in the inputs. Also, the hole displacement
is quite large, thus reducing its displacement and variation is necessary. As a solution
of this problem, the MORDO will be proposed in the Chapter 4.
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3.2.3.4 Prediction of process capability based on Cp

In contrast of tolerance analysis as mentioned above, prediction of process capabil-
ity is carried out based on customer requirements which are defined by specification
limits. Process capability is the ability of a process to produce output within spec-
ification limits [151]. In other words, measures of process fallout are estimated.
Process fallout quantifies how many defects a process produces and is measured
by Defects Per Million Opportunities (DPMO) or Parts Per Million (PPM). If the
process output is approximately normally distributed, the relationships between the
process capability index () and process yield as well as process fallout are shown in
Table 3.3. From the geometric tolerance limits are given by the customer require-
ments, the process capability index Cpy is subsequently calculated and compared
with the parameters in Table 3.3 to evaluate the process capability. The index Cpy
is defined by the following formula as reviewed in Section 3.1.5.3:

T 19l

O =
Pk 30

(3.32)
Moreover, with given values of Cp as shown in Table 3.3, the I'T values are

determined as follows:
IT = 60Cyy, + 2|9| (3.33)

3.3 Summary of the chapter

This chapter focuses on uncertainty propagation and analysis of the effects of un-
certainties on the output parameters. The methods for modeling, representing and
propagating uncertainties have been reviewed. Uncertainty classification in mod-
eling and simulating sheet metal bending process is given, in particular uncertain-
ties in material properties, blank thickness and friction condition are considered as
aleatory uncertainties which are uncontrollable factors. The aleatory uncertainties
are modeled by Gaussian distribution. Errors introduced by numerical methods in
FEM numerical model of the process are regarded as epistemic uncertainties. In
order to reduce the effects of epistemic uncertainties in FEM numerical model, an
approach for detecting the sensitivity threshold has been proposed as presented in
Chapter 2.

The criteria for evaluating the product quality and process capability has been
also reviewed. Uncertainty propagation based on metamodels built by RBF is car-
ried out. Geometric tolerance analyis based on geometric variations caused by un-
certainties in the inputs and based on the €, index is introduced. It is found that
due to the uncertainties in the inputs, the variation in performance of the formed
part is quite large.

In order to investigate the effects of geometric variation of the formed part due
to uncertainties on the assembly process, the displacement of a hole on the part
has been taken into account. Observation from uncertainty analysis for the hole
displacement shows that the performance of hole position varies significantly.
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Prediction of process yield based on the Cp, index shows that the process design
being subjected to uncertainties of input parameters gives significant changes in
production and non-conform parts.

It is required to optimize the process to meet the tolerances specifications.
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4.1 State-of-the-art

4.1.1 Robust design and Reliability-based design

Various non-deterministic methods have been developed to deal with design uncer-
tainties. These methods can be classified into two approaches, namely reliability-
based methods and robust design based methods.

4.1.1.1 Robust design

A robust design is a design which is insensitive to variations. The term Robust
Design was originally introduced by the Japanese engineer Genichi Taguchi in the
1950s and early 1960s, also known as Taguchi method, as a way of improving the
quality of product and processes by reducing their sensitivity to variations resulting
from uncertainty, thereby reducing the effects of variability without eliminating its
sources [208], [211],[4] [115].
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According to Taguchi, product design is a more cost-conscious and effective way
to realize robust, high quality products than by tightly controlling manufacturing
processes. Taguchi noticed that there are two ways a product may prove to be unsat-
isfactory - the product may not meet target performance specifications or the vari-
ability in the product ‘s performance may be unacceptably large. From Taguchi’s
perspective, tolerance design which involves tightening tolerances on product or pro-
cess parameters is expensive and should be utilized only when robustness cannot be
"designed in" by selecting parameter levels that are least sensitive to variations [4].
Taguchi ‘s approach to the product design process may be divided into three stages
[208]:

(1) System design: is the conceptual design stage where the system configuration
is developed. This stage determines the basic performance parameters of the product
and its general structure.

(2) Parameter design: sometimes called robust designs identifies factors that
reduce the system sensitivity to noise, thereby enhancing the system s robustness.

(3) Tolerance design: specifies the allowable deviations in the parameter values,
loosening tolerances if possible and tightening tolerances if necessary.

Robust design occurs during the parameter design stage that precedes tolerance
design but follows the system design in which a preliminary layout is specified for
the product or process. Taguchi notes that too many tolerance-driven engineers skip
directly from system design to tolerance design and ignore the critically important
parameter design stage.

Instead of measuring quality by means of tolerance ranges, Taguchi proposed a
quality loss function in which the quality loss L is proportional to the square of the
deviation of performance y from a target T" as Figure 4.1. The quality loss function
is defined as:

L=k(y—T)> (4.1)

The quality loss function represents Taguchi“s Philosophy of striving to deliver on-
target products and processes rather than those that barely satisfy a corporate limit
or tolerance level. Figure 4.2 shows the different types of performance variations,
where the large circles denote the target and the response distribution is indicated by
the dots and the associated probability density function. The aim of robust design
is to make the system response close to the target with low variations, without
eliminating the noise factors in the system, as illustrated in Figure 4.2(d). In the
robust design, there are three categories of information [4]: control factors, noise
factors, and responses as shown in Figure. Control factors, also known as design
variables, are parameters that a designer adjusts to reach a desired product. Noise
factors are exogenous parameters that affect the performance of a product or process
but are not under a designer “s control. Responses are performance measures for the
product or process.

Robust design is classified differently according to various viewpoints. Synthesis
of classification of robust design is shown in Table 4.1. Park et al. |[166| classified
robust design into three methods: (1) the Taguchi method, (2) robust optimization
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Figure 4.1: The quality loss function and performance target for three manufactured
products whose performance varies through different ranges and whose values of
mean performance may or may not coincide with the desired performance [4]
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Figure 4.3: A P-diagram showing information input and response in a product or
process model [4].

Table 4.1: Synthesis of classification of robust design

Classification of Robust Design
Zang et al. 2005 Parketal. 2006 [166] Choi 2006 [33] and Allen et

[246] al. 2006 [4]

Taguchi method Taguchi method Type I - Taguchi method

Optimization Robust optimization Type II - Managing uncer-

method tainty in controllable pa-
rameters

Stochastic optimiza- Robust design with Type III - Managing uncer-
tion method the axiomatic ap- tainty embedded in system
proach functions
Type IV - Managing prop-
agated uncertainty in a de-
sign and analyis process
chain
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(3) robust design with the axiomatic approach. According to Zang et al. [246]
robust design is classified into three catergories including Taguchi, optimization
and stochastic optimization methods. However, Choi et al. [33] and Allen et al.
[4] distinguish four main types of robust design based on the source of variability,
namely as follows:

e Type I - Managing uncertainty in uncontrollable parameters: Robust design
aimes to identify design variables that satisfy the design requirements despite
variation in noise factors (aleatory uncertainty). Type I robust design was
proposed by Taguchi.

Suppose that y is a function of control factors « and noise factors z, then:

y = f(x,2) (4.2)

where the function f can be a detailed simulation model, a surrogate model, or
a physical system. Taguchi’s robust design evaluates the mean performance
and its variation by crossing two arrays: an inner array, designed in the control
variables, and an outer array, designed in the noise variables. Figure 4.4 a two

MNoise Array
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Figure 4.4: Taguchi robust design matrix [248|.

level factorial design is adopted for both the inner and outer array. For each
row of the inner array, response values are generated for each noise variables
combination. For example, inner array row 1 with outer column 1 leads to
the response value y11 , inner row 1 with outer column 2 leads to response
value 412 , and so on. This design then leads to multiple response values for
each combination of control variables, from which a response mean, p , and
variance or standard deviation, o, can be computed [248|.

Given the mean and variance for each inner array row, the experiments can
be compared to determine which set of control settings best achieves "mean
on target" and "minimized variation" performance goals.
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The Mean Square Deviation (MSD) measures the deviation of y from the
desired target value 1"

n

MSD := % > (i — 1) (4.3)
i=1

Taguchi proposed the signal-to-noise ratio (SNR):

1 n
SNR = —10log1o(MSD) = —10logio (n > (i T)2> (4.4)
=1

as measure of the MSD in the performance. The use of SNR in system anal-
ysis provides a quantitative value for response variation comparison. Taguchi
used the SNR as an optimization criterion. Maximizing the SNR results in
the minimization of the response variation and more robust system perfor-
mance is obtained. There are many different SNR. However, there are four
primary ones suggested by Taguchi. Specific SNR depend on the goal of the
experiment. Only three is considered here. The smaller the better: Taguchi
treats this case as if there is a target value of zero for the response. Thus

1 n
SNR = —10l MSD) = —101 - 2 4.5
0g10( ) 0910 (n ; yz) (4.5)

The larger the better: This case is treated in the same fashion as the smaller
the better case, but y; is replaced by 1/y;. As a result, the SNR is given by

n

1 1

SNR = —10log1o(MSD) = —10log1o (n > 2) (4.6)
: Y:
=1 77

The target is best: In this case, we are attempting to determine values of x
that achieve a target value for the response. Deviations in either direction
are undesirable. If the control parameters are chosen such that §y = 7' (the
population mean is the target value), then the MSD is just the population
variance. If the population standard deviation is related to the mean, then
the MSD may also be scaled by the mean to give

2 =2
SNR = —10[0910(MSD) = —10[0910 <§2> = 1010910 <,ZS/'2> (47)

In general, there are two goals in performing robust design. One is to minimize
the variability produced by the noises factors. The other is to make the mean
value close to the target value. The design to attain one goal is not usually
consistent with the one to attain the other goal. To meet the two goals,
Taguchi developed a two-step optimization strategy. The first step is to reduce
the variation, and the second step is to adjust the mean on the target. The
procedure is shown in Figure 4.5. The first step, shown in Figure 4.5(a),
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Figure 4.5: Two steps of Taguchi method [166].
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concentrates on minimization of the variation, while the mean is ignored. In
the second step (Figure 4.5(b)), the mean is moved to the target value while
sacrificing the improved variation somewhat [208], [209] [171],[210], [166].

The principle of the Taguchi method is easy to understand and does not
require a strong background in statistics [166]. However, the Taguchi method
has several drawbacks. First of all, the SNR is criticized since it combines
the mean and variance of the response and hence, mean and variance are
confounded. This means that one cannot distinguish which variables affect
the mean and which variables affect the variance. Other drawbacks of the
Taguchi method are the many function evaluations required for the crossed
array design and the impossibility of taking into account interaction effects
between design variables [221], [97], [236].

Although Taguchi s contributions to the Philosophy of robust design are al-
most unanimously considered to be of fundamental importance, there are cer-
tain limitations and inefficiencies associated with his methods [246]. Taguchi’s
techniques were based on direct experimentation. However, designers often
use a computer to simulate the performance of a system instead of actual
experiments. On the other hand, Box and Fung [63| pointed out that the
orthogonal array method does not always yield the optimal solution and sug-
gested that non-linear optimisation techniques should be employed when a
computer model of the design exists. Box [18| pointed out that there are var-
ious mathematical difficulties/requirements associated with the use of signal-
to-noise ratio. Montgomery [141] demonstrated that the inner array used for
the control factors in the Taguchi’s approach and the outer array used for
noise factors, is often unnecessary and results in a large number of experi-
ments. Tsui [220] showed that the Taguchi method does not necessarily find
an accurate solution for design problems with highly non-linear behaviour.

e Type IT - Managing Uncertainty in Controllable Parameters: Robust design
aims to identify the design variables that satisfy the design requirements de-
spite the variations (aleatory uncertainty) in the design variables themselves.
Type II robust design was proposed by Chen et al. [30] as shown in Figure
4.6. Type II robust design is different from Type I in that its input does
not include a noise factor. The variation in performance is caused solely by
variations in control factors or design variables [30]. In Type II robust design,
designers search for means of control factors that satisfy a set of performance
requirement targets despite variation in control factors. For example, in the
early stages of design, it is clear that design variable values will change as
the design evolves; therefore it is preferable to identify starting values which,
if they change, have the least possible effect on the system performance and
thus require minimal iteration as the design process proceeds [4].

A method combining Types I and II robust design in the early stages of prod-
uct development, namely, the Robust Concept Exploration Method (RCEM)
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[31] has been developed. RCEM is a domain-independent approach for gen-
erating robust, multidisciplinary design solutions. RCEM has been employed
successfully for a simple structural problem and design of a solar powered
irrigation system [31], a High Speed Civil Transport [29], a General Aviation
Aircraft [197], product platforms [199], and other applications.

e Type III - Managing Uncertainty Embedded in System Functions: Robust de-
sign identifies the adjustable ranges for design variables that satisfy the set of
performance requirement targets and are insensitive to variability (epistemic
uncertainty) within the system model. For example, a model may incorpo-
rate simplifying assumptions or random factors (e.g., random realizations of
a micro-structure in materials design) that affect the accuracy and precision
of its predictions [4]. Figure 4.7 illustrates Type III Robust design.
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Figure 4.7: Type III Robust design [33].

e TypelV - Managing Propagated Uncertainty in a Design and Analysis Process
Chain: Robust design identifies the adjustable ranges of design variables under
potential uncertainty (aleatory and epistemic uncertainty) and uncertainty
propagation in a design and analysis process chain; accounts for uncertainty
in downstream activities and uncertainty propagation. Type IV robust design
is focused on uncertainty associated with the design process chain as shown
in Figure 4.8 [33].

4.1.1.2 Reliability-based design

Reliability-based design was developed based on reliability analysis. Reliability anal-
ysis is essentially concerned with calculating the probability that a system may fail
given a statistical model of the uncertain parameters affecting its response. To il-
lustrate, consider the case when the criterion governing failure of the system under
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Figure 4.8: Type IV Robust design [33].

consideration can be written as g(X) < 0, where X € RPX is a set of random vari-
ables whose statistics are known. The equation g(X) = 0 is commonly referred to
as the limit state function or the equation of the failure surface. Figure 4.9 depicts
how the limit state function partitions the uncertainty space into the failure domain
and the safety domain [99]. The central focus of reliability analysis is the develop-
ment of efficient numerical methods for calculating the probability of failure Py that
g(X) <0, that is,

Py = Plg(X) (4.8)
where p(X) is the joint PDF of X. The reliability of the system under consideration
is then given by (1 — Py) or 100(1 — Py)%. Reliability-based design method is
illustrated in Figure 4.10.

The integral in Equation 4.8 is difficult to evaluate in practice for the following
reasons [99]:

(1) the domain of integration g(X) < 0 is usually not available in analytical form
and is often computed by running a computationally expensive computer model,

(2) in practice, pX can be large and hence direct numerical evaluation of the
multidimensional integral is often computationally prohibitive,

(3) in many situations, only the first two statistical moments of X are available
and hence assumptions have to be made regarding the structure of the joint pdf
p(X).

The probability of failure can be approximated by the Monte Carlo estimate
[99]:

m

> Ig(x") <0

1

~
~

Py (4.9)

1
m
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Figure 4.9: Limit state function in reliability analysis. The region where g(X) < 0
is the failure domain whereas the region where g(X) > 0 is the safe domain [99].
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where [ is the indicator function which returns the value 1 if g(X*) < 0 an 0 if the
converse is true. The reliability of the system R can be calculated as:

#SimulationsInFailureRegion\ ([ #SimulationsInSafeRegion
Total#SystemSimulations N

=1-Pr=1—
i / < Total#SystemSimulations

(4.10)
This calculation is executed by the following steps [249]: (1) Model and represent
random variables by appropriate distributions in which their properties are indi-
cated.

(2) Specify the number of simulations to be executed.

(3) Generate uniformly distributed random numbers for each random variable.

(4) Convert each uniform random number to a random variable value corre-
sponding to appropriate distribution.

(5) Evaluate failure function(s) using random variable values, and determine
whether simulation point is a success (¢(X) > 0) or failure (¢(X) < 0) for each
failure function g(X).

(6) Repeat step 3 through step 5 for the number of simulations specified in step
2.

(7) Compute reliability R for each failure function.

Moreover, the first-order reliability method (FORM) and second-order reliability
method (SORM) are two popular methods which were developed based on reliability
analysis.

e First Order Reliability Method (FORM):

The FORM [80] linerizes g(X) at the MPP (Most Probable Point) in the
transformed U-space, which consists of independent standard normal vari-
ables U that are transformed from independent random variables X. The
transformation is given by [179]:

Fx,(X;) = @(U;) (4.11)

where F'x, and ® are the cumulative distribution functions (CDF) of X; and
U; respectively.

Ui =3 'F(X;) (4.12)

If X; (i=1,...,n) are dependent, the transformation is given by the Nataf trans-
formation [179],

Uy =& 'Fyx, (X))
Uz = ® ' Fy, x, (X2| X1)
Us = ‘1’_1FX3\X1,X2(X3|X1,X2)
(4.13)

where Fx, x, (X2|X1) and Fyx,|x, x,(X3]|X1, X2) are conditional CDFs of X
and X3 respectively
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Figure 4.11: FORM reliability analysis method.

The MPP u* is found by solving

min|ul|| = (4.14)

subject to g(u) =0

where g(u) is the limit-state function in the U-space. Then the reliability
index is calculated by

n 1/2
B=lull= [Z(U*)2] (4.15)

i=1
When P < 0.5, Py computed by [123]
Pp = ®(—p) (4.16)

A most probable point (MPP) search algorithm may need the derivative of
g(U) [251]. If the derivative are evaluated numerically, the number of function
calls will be linearly proportional to the number of random variables n. If the
forward finite difference algorithm is used, the number of limit-state function
calls NFORM is

Nrorm = k(n + 1) (4.17)

where k is the number of iterations of the MPP search. Because Npogas is
linear in terms of n, the FORM is first-order efficient.
e Second Order Reliability Method (SORM):

If g(U) is highly nonlinear, the FORM will be inaccurate. Then the SORM
may be used. Breitung s formulation [23] for the SORM is given by

n—1

Py =o(-8) [J(1 + Buvi)'/? (4.18)

=1
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where v;(i = 1,...,n—1) are the principal curvatures of §(U) at the MPP. The
other popular SORM formulation is given by Tvedt [222], which is considered
more accurate than the Breitung s formulation [252].

The SORM is more expensive than the FORM becasue second derivatives are
required. If the forward finite difference formula is used for the derivative
evaluation, the number of fucntion calls by the SORM is

nin+1) — Nypp + n(n+1)

N =k 1
SORM (n+1)+ 5 5

(4.19)

The SORM is second-order efficient because Ngogras is quadratic in terms of
n.

4.1.2 Optimization under uncertainty

Optimization under uncertainty is referred to combination of optimisation tech-
niques and uncertainties in order to optimise robust manufacturing processes. Two
approaches to Optimisation Under Uncertainty are often distinguished: robust op-
timisation and reliability based optimisation. Before discussing the two approaches,
the approach of deterministic optimization will be described.

4.1.2.1 Deterministic optimization (DO)

A traditional optimisation problem is often formulated as [8]:

Find x (4.20a)
to minimize f(z) (4.20b)
subject to gi(x) <0(i=1,2,....k) (4.20¢)

v <z <y rzE€R (4.20d)

where the vector x denotes the vector of all input variables that one wants to
choose in an optimal way. The variables are subjected to types of constraints, the
functions g;, that represent constraints on some given responses, and the second
group of constraints which represents limits for the variables themselves. In a deter-
ministic design optimization, the basic idea is to optimize a merit function subject
to deterministic constraints and input variable bounds.

The functions can be evaluated by two methods. One is to use experiments
when the function is not mathematically defined. The other is to use mathematical
expression that are directly calculated or approximated by numerical approaches.
This thesis is mainly focused on the latter method.

The aim of deterministic optimisation is to minimise objective function f subject
to constraint g < 0. The input variables in this strategy can be exactly controlled.
Running the FEM simulation for selected values of the input variables yields one
value for each response. The deterministic optimum lies exactly on the constraint
(the shaded area is the infeasible region) as shown Figure 4.12(a). This implies the
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Figure 4.12: (a) Deterministic constrained optimisation; (b) Robusteness and relia-
bility of a deterministic constrained optimum where noise is present [15].
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process is feasible, at least in a deterministic situation [15]. Unfortunately, in a real
manufacturing environment, input variables cannot be controlled exactly. Moreover,
some variables cannot be controlled at all, but show a large degree of variation. This
variation is subsequently translated to the response quantities, which will display a
probability distribution instead of one value only as illustrated in Figure 4.12(b).
The deterministic constrained optimum input variable setting is now subject to
noise. This causes response distributions of both objective function f and constraint
g. The obtained response variation implies that the products violating the constraint
will not satisfy demands after the process, which will result in scrap [15].

Large variations in response quantities will deteriorate product quality and a
high scrap rate significantly contributes to the costs. Therefore, taking account
of variation during optimisation in order to achieve a robust sheet metal forming
process is very important. The DO of metal forming processes can be found in many
research works, see e.g. [22], [87], [149], [15], [174].

4.1.2.2 Reliability Based Design Optimization (RBDO)

Due to the existence of uncertainties in either engineering simulations or manufac-
turing processes, RBDO is required to deal with the uncertainties as soon as in the
design process. Reliability analysis and optimization are two essential components
of RBDO: (1) Reliability Analysis focuses on analyzing the probabilistic constraints
to ensure the reliability levels are satisfied; (2) Optimization is seeking for the op-
timal performance subject to the probabilistic constraints. The RBDO approach
handles noise variables in a probabilistic way. The goal of RBDO is to minimize an
objective function defined in terms of the nominal performance and its variability
subject to a target reliability on the constraint functions. In other words, an original
inequality constraint of the form g < 0 is replaced with a reliability constraint of
the form Plg < 0] < R,, where R, is the specified reliability target and P[] is the
probability of failure. The probability that the inequality constraint is not satisfied
is hence given by 1 — R, [99].

When noise or perturbations exist, the objective and the constraint functions
are modified as follows:

fx) = f(z,2) (4.21)
gi(x) = gi(x, 2) (4.22)
where  and z denote the design variables anf noise factors respectively.

The reliability-based design optimization formulation can be formally given as
follows [99]:

Find x (4.23a)
to minimize 1[f(z,2)] (4.23b)
subject to Plgi(z,2)] < Ry (4.23¢)

xp <z <ay (4.23d)



130 Chapter 4. Optimization under uncertainty of sheet metal forming

where the function {[f(z, z)] is the new objective function that ensures that the
mean and variance of f(x, z) are simultaneously minimized, and Ry; is the reliability
target for the ith constraint.

As can be seen from 4.23 that at each function evaluation (i.e., at each given
x) we need to calculate the probability of every constraint value at this point being
greater or less than specified threshold values. The inequality 4.23¢ can be expressed
by a multi-dimensional integral as follows:

9i(T,22,2p) <0

where p(zz, 2p) is the joint probability density function of uncertain variables z, and
2p. These probabilities are dictated by the tails of the probability distributions of
the constraint functions. The probability that a manufacturing process fails equals
the area below the probability density function outside the specification limits for a
3o-process as shown in Figure 4.13. The predefined reliability level is achieved by
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Figure 4.13: Robust and reliability based optimization|[15].

shifting the probability density function of the response, rather than reducing its
variability as was the case for robust optimisation. Shifting the response distribution
by reliability-based optimisation differs from shifting the response by deterministic
optimisation. Deterministic optimisation can be seen as shifting the mean of an
unknown response distribution. Reliability-based optimisation aims at shifting the
distribution by explicitly and accurately determining the area in the tail of the
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distribution that is outside the specification limits [15]. The RBDO problems in
metal forming were discussed in [88], [102], [178], [184], [205], [250].

4.1.2.3 Robust Design Optimization (RDO)

A robust design is a design insensitive with respect to uncertainties. The task
of robust design optimization is to minimize the variability of the performance,
while meeting the requirements of optimum performance and constraint conditions.
Similar to the RBDO approach, uncertainties are handled in a probabilistic way. An
illustration of the principle of RDO is shown in Figure 4.14 which design variable
setting xo is selected instead of x1 due to that the xo yield a narrower response
and thus a more robust design. Less variation implies a higher product quality and
lower costs. The RDO techniques aim at reducing the variability in the response
by influencing control variables given a certain input noise. While it can be seen

A

fi

fz

T £2 x

Figure 4.14: The principle of robust design optimization [15], [236].

from Figure 4.13 that the RBDO approach focuses on the area in the tail of the
distribution outside the specification limit [15], [236].

Lee et al. [114] and Doltsinis et al. [50] presented the mathematical formulation
of RDO where the variations of the design variables and the structural performance
are introduced into the objective functions as well as the constraint conditions. The



132 Chapter 4. Optimization under uncertainty of sheet metal forming

RDO formulation is given as follows [50], [10]:

Find x (4.25a)
to minimize [E(f(z,2)),0(f(z,2))] (4.25b)
subject to E(gi(z,2)) + Bio(gi(x,2)) <0(i =1,2,... k) (4.25c¢)
a(hj(z,2)) <ol (G =1,2,...,1) (4.25d)
xp <z <ay (4.25e)

This formulation indicates that both the expected value of the performance func-
tion E(f), and its standard deviation o(f) are minimized. The notation h;(z, z)
represents the structural performances to which constraints on standard deviations
are applied. In other words, the jth structural performance function has an upper
limit on the standard deviation that is given by O'J—-’—. The variable boundaries and
optimal design values now refer to the choice of the mean value if x is stochastic.
The quantity S; is a prescribed feasibility index for the ith original constraint. Thus,
the constraint will not always be fulfilled. Depending on the different choices of j3;,
the probability that constraint is fulfilled will vary. Assuming that the function
gi(x) is normally distributed and S; is set to be 3, the probability that the original
constraint condition will be satisfied is 0.9987 [50], [10].

Doltsinis et al. [50] take one further step in formulating a robust design op-
timisation problem, by introducing a weighting factor a for the tradeoff between
minimising the mean performance and its standard deviation.

Find x (4.26a)
to minimize f=0—-a)E(f(z,2)/p" +ac(f(z,2))/c* (4.26b)
subject to E(gi(z,2)) + Bio(gi(x,2)) < 0(i = 1,2, ..., k) (4.26¢)
o(hs(z,2)) < 0F(j = 1,2,....]) (4.26d)

v <o <ay (4.26e)

0<a<l (4.26f)

This is the simplest form of introducing weights to the objectives, namely by making
them linearly weighted. « = 0 corresponds to a pure mean value minimisation
problem and « = 1 a pure standard deviation minimisation problem. This particular
formulation can be useful when investigating the tradeoff situation, simply by using
different values of « from zero to one. All the different choices of the parameter
« constitutes the Pareto optimal set. The basic idea here is that the problem
will have a different optimal solution depending on what variances of the objective
performance we tolerate. This, of course, is the designers choice. Levi et al. [119]
give one example on how to choose «, where the choice depends on the desired
objective for the objective function f. There was only a few reasearch works using
the RDO in metal forming processes that it can be found in [248], [15], [236].
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4.1.2.4 A comparison between DO, RBDO and RDO

For deterministic optimization, uncertainties are not taken into account during op-
timization. The goal of DO is to increase the reliability of a process by optimizing
towards a point as far away as possible from the failure constraints. In other words,
shifting the mean of the response to a location far away from the specification limits
gives a more reliable process in this case. However, the probability distribution of
response is not known, as a consequence, the variation of the response is not known
either. Therefore, it cannot conclude on the robustness or reliability of the obtained
optimal process. Nevertheless, after having obtained the deterministic optimum, one
can validate the process capability (process robustness and reliability) by performing
a Monte Carlo Analysis (MCA). More specifically, the noise variables are sampled
randomly according to a normal distribution, while the design variables values are
the ones of the obtained deterministic optima. As a result, the process mean p and
variation ¢ can be calculated for each response by running the FEM simulations for
varying values of the noise variables. Comparing the response distributions to the
LSL and USL of each response yields the scrap rate. Nonetheless, it is impractical to
perform MCA using FEM simulations due to its extremely time-consuming process.

Reliability-based design optimization takes into account noise variables and re-
sponse distributions. The RBDO estimates the probability distribution of the re-
sponse based on the known probability distributions of the random parameters, and
thus, the estimation of probability of failure of a product or process is also obtained
by determining the tail of the response distribution that is outside the specification
limit. Compared with the DO, the RBDO can shift the whole of the probability
density function of the response to achieve a certain reliability level, while the DO
can only shift the mean of response due to the distribution being unknown.

Robust design optimization presents a good compromise between deterministic
and reliability based optimisation. It not only takes uncertainties into account
but also minimize the effects of uncertainty without eliminating their causes. The
objective is different from the RBDO, and is to optimize the mean performance and
minimize its variation, while maintaining feasibility with probabilistic constraints.
The response distribution is described by a mean p and standard deviation o, which
makes it possible to increase process robustness in a quantitative way. Even the
process reliability can be quantified by calculating the process capability index (e.g.
Cpk, Cpm; Cpimm). This is based on the assumption that the response distribution
is normally distributed. If the response is not normally distributed, the quantified
reliability level is just an approximation.

According to Park et al. [166], the RBDO is similar to the RDO. Both approaches
aim at incorporating uncertainty into the optimization study. Whereas Zang et al.
[246] discussed that there is a conceptual difference between RDO and RBDO. The
RDO rather aims at reducing the variability of structural performance caused by
fluctuations in parameters than to avoid a catastrophe in an extreme event. In the
case of RBDO, it can make a design that displays large variations as long as there
are safety margins failure in the design, i.e. the variability is not minimized.
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Furthermore, the two approaches differ in some aspects [236]. The choice for
using the RDO approach or the RBDO approach depends on the objective of the
optimization study. In the RDO, insensitiveness of the objective function is em-
phasized. In the RBDO, reliability of constraints is important [166]. Thus, both
approaches will obviously lead to different optimization outcomes.

The optimization objectives in an industrial setting are the minimization the
number of scrap products or costs of a production process. Purely minimizing the
objective function (instead of the variance) favors the use of RBDO [5|. Moreover,
this approach is able to give a quantification of the reliability of the found optimum.
However, the accuracy of the RBDO approach depends on several factors:

e The prediction of the probability of failure is affected significantly by mean
errors. When using FEM simulations to simulate a process, many assumptions
are being made, it leads to a large mean shift of the simulated response. For
instance, the impact of material modeling on the response of a stamping
process is studied in [11], [12]. Del et al. [47]| showed that there is a bias
in the mean predicted by stochastic FEM simulations of a drawing operation
and measured experimental values. From this point of view, using the RBDO
approach would result in erroneous results.

e The RBDO approach focuses on the tail of the response distribution to cal-
culate the probability of failure or reliability. Accuracy at low probabilities
require more objective function evaluations compared to a robustness analy-
sis [189], [205]. If only a limited number of FE simulations can be performed
(which is generally the case because of time reasons), care must be taken in
interpreting the resulting reliability of the RBDO approach.

e The RBDO approach is more sensitive to inadequate assumptions on the
probabilistic distribution compared to the robust optimization approach. In
this sense, the RBDO might be of less practical value if information about
the statistical distribution is limited available and not sufficient to permit a
reliability analysis.

On the other hand, the RDO is less sensitive to model errors, inadequate stochas-
tic input data and more efficient compared to the RBDO approach [101], [97], [115],
[81]. This is because the mean of the objective function is of interest in this case, for
which statistics are less costly to compute and more reliable for small sample sizes
and limited stochastic input data [53]. If the focus of an optimization problem is
on minimizing the response variance, the RDO approach is most suitable. However,
this approach can also be used to simultaneously minimize the mean of the response.

4.1.3 Multi-objective optimization and Pareto optimality

The design scope is frequently defined by multiple and sometimes conflicting design
objectives, along with a substantial number of design variables. The simultaneous
optimization of competing objectives is considered as multi-objective optimization.
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The presence of multi objectives in a problem gives rise to a set of optimal solution,
known as Pareto optimal solutions, instead of a single optimal solution [139], [46],
[69]. The terms in multi-objective optimization are reviewed in the following [139],
[43], [148], [203]:

4.1.3.1 Search space

Search space or design space is the set of all possible combinations of the design
variables. If all design variables are real, the design space is given as x € RN (N is
the number of design variables). The feasible domain S is the region in design space
where all constraints are satisfied.

4.1.3.2 Multi-objective optimization problem formulation

Multi-objective optimization problem is formulated as
Minimize F'(z), where F = f; :Vj=1,M;x =x; :Vi=1,N
Subject to :

C(z) <0, where C =¢, :Vp=1,P,
H(x) =0, where H = hy, : Vk =1, K.

4.1.3.3 Domination criteria

A feasible design (1) dominates another feasible design z(?) (denoted as z() < z(2)),
if both of the following conditions are true:
The design (M) is no worse than z(® in all objectives, i.e., fj(x(l)) P fj(ac(2))
for all 7 =1,2,..., M objectives
v ¢ 2@ = vje Mf;(zW) # f;(a®) (4.27a)
or Vje Mfj(azM) < f;(=®) (4.27D)
The design z(1) is strictly better than () in at least one objective, or fj(x(l) <
f;(x?) for at least one j € {1,2,..., M}

() < .%'(2) = Nj € ij(l'(l) < fj($(2)) (4.28)

4.1.3.4 Non-dominated solutions

If two designs are compared, then the designs are non-dominated with respect to
each other ¢ f neither design dominates the other.

A design x € S (S is the set of all feasible designs) is non-dominated with respect
toaset ACS,iflac A:a<z.

Such design in function space are called non-dominated solutions. Moreover,
any design z is Pareto optimal if x is non-dominated with respect to S [70].

4.1.3.5 Pareto optimal set

All the designs x (z € S) which are non-dominated with respect to any other design
in set S, comprise a set known as Pareto optimal set.
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4.1.3.6 Pareto optimal front (POF)

The function space representation of the Pareto optimal set is the Pareto optimal
front. When there are two objectives, the Pareto optimal front is a curve, when
there are three objectives, the Pareto optimal front is represented by a surface and
if there are more than three objectives, it is represented by a hyper-surface. A
generic Pareto front is illustrated in Figure 4.15.
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Figure 4.15: Generic Pareto front.Full blue points indicate members of the pareto
set. Point (a) is the optimum for objective function for a given value of (red points).
Point (b) minimizes for another value of (compared to green points). For a member
of the Pareto set, say (c), any attempt to improve a goal involves worsening the
other, point (d) for comparison. Empty blue points are other possible solutions that
are worse than those in the Pareto set [175].

4.1.3.7 Trade-offs between multiple objectives

The aim of multi-objective optimization is to determine a single best design that
satisfies designer’s requirement for each objective. One way is to find a solution based
on a trade-off that determined empirically or interactively by designers. Another
way is to first find trade-offs between multiple objectives and then designers select
the best solution based on a suitable criterion. In the latter case, the trade-offs are
represented by non-dominated solutions, which are solutions that are not dominated
by any other solutions as shown in Figure 4.16. To select the best solution from a
set of non-dominated solutions, it would be better to sample many non-dominated
solutions. Ideally, Pareto solutions, which mean global non-dominated solutions that
form global trade-offs, should be obtained [186]. In multi-objective optimization, the
RDO objectives including the deviation from the mean and standard deviation are
to vary in the antagonistic way.
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Figure 4.16: Trade-off of two-objective minimization problem, which is represented
by non-dominated solutions [186].

4.1.4 Algorithms for multi-objective optimization

There are a number of different methods available for solving multi-objective op-
timization problems. These problems can be tackled by stochastic (genetic algo-
rithms, simulated annealing) and deterministic (sequential quadratic programming)
optimization methods. One popular approach is condensing multiple objectives into
a single, composite objective function by methods like using a weighted sum of
multiple objective functions to combine them into a scalar fitness function [147],
geometric mean, perturbation, Tchybeshev, min-max, goal programming, and phys-
ical programming [139], [138], [190]. Another approach is to optimize one objective
while treating other objectives as constraints [226]. These approaches give one
Pareto optimal solution in each simulation. On the other hand, there numerous
multi-objective evolutionary algorithms (MOEAs) that can be made to find multi
Pareto optimal solutions in a single simulation run. Some of the latest ones include
strength Pareto evolutionary algorithm proposed by Zitzler and Thiele [253|, Pareto
archived evolutionary strategies (PAES) by Knowles and Corne [107], elitist non-
dominated sorting genetic algorithm (NSGA-II) by Deb et al. [44], and controlled
elitist non-dominated sorting genetic algorithm by Deb and Goel [45].

4.1.4.1 Evolutionary algorithms

Evolutionary algorithms (EAs) are based on the principle of biological evolution,
i.e. survival of the fittest. Unlike classical methods, they do not use a single search
point but a population of points called individuals. Each individual represents a po-
tential solution to the problem. In these algorithms, the population evolves toward
increasingly better regions of the search space by undergoing statistical transfor-
mations called recombination, mutation and selection[66]. The typical evolutionary
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algorithms are genetic algorithms which have been mainly applied to single objective
optimization problems.

Multi-objective optimization problems (MOPs) are more complex than single-
objective optimization problems (SOPs) because they involve optimization of seceral
objectives. This yields not a single optimal solution but a set of equally important
optima, called the Pareto front. In multi-objective optimization it is important
to guide the search process toward the Pareto front and at the same time maintain
adequate population variety to capture as many diverse optimal solutions as possible
[173].

Most of the popular evolutionary algorithms are based on the concept of Pareto
dominance and involve a finite size of population at each generation [43|. One of the
multi-objective evolutionary algorithms (MOEAs) that has been effective in finding
the Pareto optimal solutions is the elitist non-dominated sorting genetic algorithm
(NSGA-II) developed by Deb et al. [44]. The algorithm is described as follows [43]:

Elitist non-dominated sorting genetic algorithm (NSGA-II)

The flowchart of NSGA-II is given as shown in Figure 4.17. The algorithm is de-
scribed as follows:

1. Randomly initialize population (designs in the variable space) of size npop.
2. Compute objectives and constraints for each design.
3. Rank the population using non-domination criteria (many individuals can have
same rank and rank-1 is the best).
4. Compute crowding distance (this distance finds the relative closeness of a solu-
tion to other solutions in the function space and is used to differentiate between the
solutions on same rank).
5. Employ genetic operators - selection, crossover and mutation - to create interme-
diate population of size npop.
6. Evaluate objectives and constraints for this intermediate population.
7. Combine the two (parent and intermediate) populations, rank them and compute
the crowding distance.
8. Select new population of npop best individuals based on the rank and crowding
distance.
9. Go to step 3 and repeat till termination criteria is reached, which in the current
study is chosen to be the number of generations.

The NSGA-II is a fast and elitist multi-objective evolutionary algorithm. Its main
features are:

e A fast non-dominated sorting procedure is implemented. Sorting the indi-
viduals of a given population according to the level of non-domination is a
complex task: non-dominated sorting algorithms are in general computation-
ally expensive for large population sizes. The adopted solution performs a
clever sorting strategy.

e NSGA-ITimplements elitism for multi-objective search, using an elitism-preserving
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approach. Elitism is introduced storing all non-dominated solutions discov-
ered so far, beginning from the initial population. Elitism enhances the con-
vergence properties towards the true Pareto-optimal set.

e A parameter-less diversity preservation mechanism is adopted. Diversity and
spread of solutions is guaranteed without use of sharing parameters, since
NSGA-II adopts a suitable parameter-less niching approach. It is used the
crowding distance, which estimates the density of solutions in the objective
space, and the crowded comparison operator, which guides the selection pro-
cess towards a uniformly spread Pareto frontier.

e The constraint handling method does not make use of penalty parameters.
The algorithm implements a modified definition of dominance in order to solve
constrained multi-objective problems efficiently.

e NSGA-II allows both continuous ("real-coded") and discrete ("binary-coded")
design variables. The original feature is the application of a genetic algorithm
in the field of continuous variables.

4.2 Multi-objective optimization strategy under uncer-
tainty for sheet metal forming process

The focus of this thesis is to propose a robust design optimization strategy for
sheet metal forming process. Prior to performing the RDO strategy, deterministic
process design optimization is conducted in order to investigate whether we can
vary the springback parameters acting on the design variables. In this section,
optimization strategies for the benchmark problem of sheet metal draw bending
process as presented in Section 2.6.3.1 will be deployed.

As discussed in Section 3.2.1, the input variables of the process are distinguished

into two types: design variables (control factors) and design parameters (noise fac-
tors). In particular, the design variables include three parameters:

e Blank holder force Fgyp
e Die radius Ry
e Punch radius R,
Noise factors consist of 4 parameters:
e Blank thickness t
e Yield strength R,
e Ultimate tensile strength R,,
e Friction coefficient

Suppose that the target values of springback parameters 31,82, p and hole dis-
placement Ur are respectively 0[°], 0[°],+oc and 0[mm)].
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4.2.1 Deterministic process design optimization

As reviewed in Section 4.1.2.1, the basic idea of deterministic process design op-
timization is to optimize a merit function subject to deterministic constraints and
design variable bounds. However, uncertainties in noise factors are not taken into
account. A deterministic process design optimization strategy is shown in Figure
4.18. The deterministic process design optimization is formulated depending on the
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DOE sampling

Executing optimization
algorithms based

on metamodels
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L Finish }

Figure 4.18: A deterministic process design optimization strategy

ouput variables of the sheet metal draw bending process under consideration.
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4.2.1.1 Springback parameters of 31,02,p

In the case that the ouput variables consist of three parameters (51, 82, p). Multi-
objective optimization problem is formulated as follows:

Find T

to minimize

(4.29a
(4.29b
Fopji(z) = (E[B1(2)])? (4.29c¢
Fobja(x) = (E[B2()])? (4.29d

2
Fopjs(x) = (E[;(z)]) (4.29¢)

where the vector z denotes the vector of seven input variables (Fppr, Ry, R,
t, Re, R, pt). EJ] is expected value of output variables.

)
)
)
)

The values of design variables are randomly generated in the interval bounds as
presented in Table 4.2, while the design parameters are assigned by their nominal
value. The sampling points of the design variables are graphically represented in
Figure 4.20.

Table 4.2: The interval bounds of input variables

Input variables Interval bounds Nominal values

Frrr [kN] [2.94, 50] N/A
R; [mm] 2, 10] N/A
R, [mm] [2, 10] N/A
R. [MPa N/A 550
Ry [MPa] N/A 840
W N/A 0.1
t [mm] N/A 1.5

The optimization algorithm used in this strategy is NSGA-II. More specifically,
the input parameters of NSGA-II are presented in Table 4.3. The NSGA-II has

Table 4.3: Parameters of NSGA-II

Parameters Values
Population size 1000
Number of Generations 100
Crossover Probability 0.9
Mutation Probability for Real-Coded Vectors 1.0
Mutation Probability for Binary Strings 1.0

Distribution Index for Real-Coded Crossover 20
Distribution Index for Real-Coded Mutation 20

found 23822 POF designs. The obtained POFs are shown in Figure 4.21.



4.2. Multi-objective optimization strategy under uncertainty for sheet
metal forming process 143

Figure 4.19: 1000 random designs for Rq, R, and Fpyr

Figure 4.20: Design of experiments based on a random sequence for the design
variables.

4.2.1.2 Weighted Sum Method

Multi-objective optimization problems have many optimal solutions. Therefore,
after the Pareto optimal solutions are obtained, there is still a need to further search
among them to find one or a few good compromise solutions.

The Weighted Sum Method (WSM) is one of the multi-criteria decision making
methods which is widely used for evaluating a number of alternatives in terms of
a number of decision criteria [59], [219]. The WSM is based on weights given by
a decision maker. Suppose that a given multi-criteria decision analysis problem is
defined on m alternatives and n decision criteria, the best alternative is the one that
satisfies the following expression [59]:

n
Aysar—score = Y Wifij,J =1,2,3,..,m. (4.30)
=1

where Ajy g score 15 the WSM score of the alternative A;, w; denotes the weight
defining the importance of the ith criterion and f;; is the performance value of the
alternative A;. For the maximization case, the best alternative is the one that yields
the maximum total performance value [219].

It is crucial to state here that it is applicable only when all the data are ex-
pressed in exactly the same unit. The criteria vectors f(i = 1,n) are often non-
commensurable among themselves, with possibly large numerical differences in their
entries. These incompatibilities are overcome by normalizing the entries of each vec-
tor over the positive unit range [0, 1|, without changing their ordinal positions. In
general, for a vector f* with entries f7(j = 1,m), this is accomplished through the
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Figure 4.21: The POF obtained by NSGA-II.
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normalization calculation [73]:

(ff = fm™n)
(fmaa: _ fmzn)

where f™" and f™*" are the minimum and maximum entry values for the original

X = (4.31)

vector f*. Note that the minimum and maximum entry values for the normalized
vector X = [X1, ..., X;n]T are X™" = 0 and X™* = 1. The normalization applies
regardless of whether the individual vector entries f are positive, negative or zero
valued.

For the multi-objective optimization problem of three springback parameters,
23822 Pareto-optimal design alternatives have been found by NSGA-II. The WSM
method is applied to find the best compromise solution on the POF surfaces. With
the weights wg, = wg, = wy;, = 0.3333, the best compromise solution is presented
in Table 4.4.

Table 4.4: The best compromise solution obtained by the WSM.

Parameters NSGA-II
Fpur [kN] 22.419
Ry [mm)] 2.2292
R, [mm| 8.0641
R, [MPa] 550

R, [MPa| 840

W 0.1

t [mm)| 1.5

B[] 9.9412 x10~2
Predicted results (2 [°]  -6.2576x 107!
p [mm] 319.0607

4.2.1.3 POF verification

In the case of optimization of springback parameters 81, B2 and p, a best compro-
mise solution has been obtained by the WSM. In order to verify the feasibility of
this optimal design, the optimal design configuration is tested to the FEM numerical
model of the process. The verified results are shown in Table 4.5 Numerical illus-
tration of the optimal design solutions in multi-objective optimization of springback
parameters (51, B2, p is shown in Figure 4.22.

As can be seen from Table 4.5, the verified results obtained from optimal con-
figurations with respect to the springback parameters 51, B2, p are consistent.
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Figure 4.22: Numerical illustration of the optimal design solution obtained when
optimizing the springback parameters 81,82,p0 by NSGA-II.
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Table 4.5: The best compromise solution obtained by the WSM for springback
parameters 31, B2, p.

Parameters NSGA-II
Fpur [kN] 22.419
R4 [mm)] 2.2292
R, |mm]| 8.0641
R [MPa| 550
R,, [MPa] 840
I 0.1
t [mm] 1.5
B [°]  9.9412x1072
Predicted results Ba[°]  -6.2576x107!

p [mm] 319.0607

B[] 6.2180x107!
Numerical verification B2 [°]  7.8136x107!

p [mm| 349.22

Bi°]  5.224x1071
Difference Ba[°]  1.556x107!

p [mm] 30.1593

4.2.2 Uncertainty analysis

By using the DO, it has obtained the deterministic results as shown in Table 4.5.
However, as mentioned previously uncertainties are inherent in material properties,
sheet dimension and friction condition. Consequently, they lead to variation in
formed parts’ performance. In order to show this problem, uncertainty analysis
on the basis of the obtained deterministic results is carried out. It is assumed
that uncertainties in material properties, sheet dimension and friction condition are
represented by Gaussian distribution. Note that this analysis is effected for the
optimal configurations obtained by NSGA-II. Distributions of uncertainty analysis
of the springback parameters 31, 82, p are shown in Figure 4.23.

It can be seen that there is the deviation in the mean value and the variance in
the responses caused by aleatory uncertainties in the uncontrollable parameters as
shown in Table 4.6. a

As a consequence, this optimal configuration of design variables is not robust.
To overcome this problem, robust design approach is proposed in next section.
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Figure 4.23: Results of uncertainty analysis of 81, 82 and p
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Table 4.6: Analysis results of the effects of aleatory uncertainties in uncontrollable
parameters on the ouput parameters of 8y, B2, p

Deterministic design optimization Uncertainty analysis

Output variables S, B2, p 51, B2, p
Parameters Nominal value Mean Stdev
Fpur [kN] 22.419 22.419 N/A

Ry [mm)] 2.2292 2.2292 N/A

R, |mm| 8.0641 8.0641 N/A

R [MPa| 550 550 16.6667
R, [MPa] 840 840 20

1 0.1 0.1 0.0033

t [mm)] 1.5 1.5 0.0167

B [°] 9.9412x 1072 -3.784x107Y  5.375x107!
B2 [°] -6.2576x 107! -5.283x1071  4.75x107!
p [mm] 319.0607 295.467 142.747

4.2.3 Multi-objective robust design optimization (MORDO)

According to Choi et al. [33] and Allen et al. [4], there are four types of robust design
as reviewed in Section 4.1.1.1. A proposed approach of robust design in this thesis
is combined both the type I and type II. In the type I, the variance in response is
caused by variations in the noise factors. While the type II robust design is different
from type I that the variation in performance is caused by solely by variations in
control factors or design variables [30]. The proposed approach for MORDO takes
both uncertainties in control factors and uncertainties in noise factors into account.

Robust design optimization is to minimize both the deviation in the mean value
d = |uy — T, and the variance 0120, of the performance function, subject to the
constraints. The multi-objective design strategy using robust design optimization
is demonstrated in Figure 4.24. Suppose that z is vector of the control factors
of Fpyr, R4, Ry and z is vector of the noise factors of ¢, R, R,,, u. Probabilistic
modeling and representation of uncertainties in the factors are presented in Table 4.8.
Modeling uncertainties of blank thickness, material properties, friction coefficient is
represented by Gaussian distribution for the sake of mathematical convenience since
a Gaussian model can be pecified uniquely by its first two moments.

The MORDO optimization is also carried out by NSGA-II algorithm with input
parameters as shown in Table 4.7.
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Figure 4.24: Robust design strategy applied for sheet metal forming process design.
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Table 4.7: Parameters of NSGA-II

Parameters Values
Population size 125
Number of Generations 20
Crossover Probability 0.9

Mutation Probability for Real-Coded Vectors 1.0
Mutation Probability for Binary Strings 1.0
Distribution Index for Real-Coded Crossover 20
Distribution Index for Real-Coded Mutation 20

4.2.3.1 MORDO of hole displacement of Ur

In the case that the performance function of the problem is hole displacement Ur,

the MORDO formulation is represented as follows:

Find

to minimize

x (4.32a)

(4.32b)

Fopji(z) = ElUr(z, 2)] — UTT‘"gd (4.32¢)
Fopja(x) = o(Ur(z, 2)) (4.32d)

The noise factors are assumed to be stochastic, whereas the control factors are
used to optimise the process. The factors are assumed to be continuous random
variables in which uncertainties are represented by probabilistic distributions as

presented in Table 4.8.

Table 4.8: Probabilistic modeling and representation of uncertainties in the param-

eters for the case of hole displacement Up

Parameter Distribution Mean Stdev. Interval bounds of mean
Fppr [kN|] Normal N/A  0.6667  [4.940,48|

R [mm] Normal N/A  0.0167  [2.05,9.95]

R, [mm] Normal N/A  0.0167 [2.05,9.95]

R, [MPa] Normal 550 16.6667 N/A

R,, [MPa] Normal 840 20 N/A

i Normal 0.1 0.0033 N/A

t [mm] Normal 2 0.0167 N/A

The NSGA-II algorithm is used in this MORDO optimization with input pa-
rameters as shown in Table 4.7. This algorithm has been found 425 optimal design
solutions graphically represented by Pareto optimal front (POF) as shown in Figure

4.25.
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4.2.3.2 MORDO of springback parameters of 51, 1, p

The multi-objective robust design optimization formulation with the three output
variables is represented as follows:

Find x (4.33a)
to minimize (4.33b)
Fopja(2) = B[y (2, )] — BT (4330
Fopja(x) = B[Ba(x, 2)] — By " (4.33d)
1 1
Fobjg(SU) =F |:p(.’E Z):| - pTarget (4336)
Fopja(z) = o(Bi(x, 2)) (4.33f)
Fopjs(x) = o(Ba(x, 2)) (4.33g)
Fopje(x) = o <p(xlz)> (4.33h)

Similarly, the uncertainties in controllable and uncontrollable paramters are modeled
by Gaussian distribution as shown in Table 4.9.

Table 4.9: Probabilistic modeling and representation of uncertainties in the param-
eters for the case of three output variables of 51, S, p

Parameter Distribution Mean Stdev. Interval bounds
Fppr [kN] Normal N/A  0.6667  [4.940,48]

Ry |mm)| Normal N/A  0.0167 ]2.05,9.95]

R, |mm]| Normal N/A  0.0167  [2.05,9.95]

R, [MPa]  Normal 550 16.6667 N/A

R,, [MPa] Normal 840 20 N/A

i Normal 0.1 0.0033 N/A

t [mm]| Normal 1.5 0.0167 N/A

Since there are 6 objective functions, Pareto optimal solutions are represented
by a hypersurface of 6-dimensions. However, it may not be graphically represented
in this case.

4.2.4 Pareto multiple objective criteria decision-making support
based on capability indices

Results of multi-objective robust design optimization are Pareto optimal solutions.
One of the problems in MORDO is to address a good compromise design which is
governed by multiple conflicting criteria. To solve this, a Pareto multiple objective
criteria decision making based on capability indices of Cyy, Cpy, and I is proposed.
Where, the indices of Cp,, and I are the same, so only the (), index is used to
identify an IT’s value with the Taguchi criterion. Firstly, this approach is introduced
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for the case of design governed by objective criteria of 2 when optimizing the hole
displacement Up. Afterwards, it is extended to design governed by objective criteria
of more than 2, particularly applied for 6 objective criteria (3 means and 3 standard
deviations) in MORDO of springback paramters of 1, 82, 1/p.

4.2.4.1 Decision-making support in 2-D criteria space

The idea is started from graphical representation of capability indices of Cp and
Cpmin which the (), index is represented by linear form, whereas the Cp,, index
are represented by quadratic form.

The O index is defined by the following formula:

IT
- — 0
USL u’,u L,S’L} 5 9] (4.34)

Cph = min { 3o 3o 30

Where ¢ is standard deviation; d is deviation from target; I'T is interval of tolerance.
The index C),, is defined by the following formula:

IT
6v 02 + o2

The graphical representation of the Cpi and Cpy, indices with a Pareto front is

Cpm = (435)

shown in Figure 4.26. Depending on which capability index used by a designer, a
best compromise solution is figured out. Graphically, the best solution is a tangent
point between the representations of indices and the Pareto front.

As the target value of Ur is assumed to be 0 [mm]|, the specification of Ur is
represented as Up = 0+ IT/2 [mm)].

The C,; index

To support decision making in design process, a proposal based on the Cp; index
is performed. Tolerance intervals (I7) of the design are indicated corresponding to
values of C, in the following expression:

IT; =2 % |64, | + 6 x o5, x Cyy, (4.36)

Where ¢ denotes the i-th Pareto optimal design, ¢ = 1,2, ...,425 in this case. Table
4.10 and Figure 4.27 show the synthesis of relationship between the values of Cp
and the IT and design ID.

The C,,, index

Identification of the best solution based on the (), index is started from the fol-
lowing expression:

IT = 6C},, % \/(67,,)% + (o}, )2 (4.37)

However, it is different from the C),; index that the value of I7T" does not influence on
determinating the best design configuration. More specifically, whatever the value
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Table 4.10: Relationship between the values of Cp and the IT and design ID

Cpr Process yield [%] Process fallout (PPM) IT [mm]| Design ID

0.33 68.27 317311 4.16 2270 (Table 4.11)
0.67 95.45 45500 6.48 1112 (Table 4.12)
1.00 99.73 2700 8.72 1112 (Table 4.12)
1.33  99.99 63 11 1112 (Table 4.12)
1.67 99.9999 1 13.3 2388 (Table 4.13)
2.00 99.9999998 0.002 15.5 2388 (Table 4.13)
2 :
- POF
o T
Bl S~— e ]
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©
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Figure 4.27: Graphical representation of different values of the Cp; with respect to
the POF
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Table 4.11: The best solution when C’;k =0.33

Cpr. values Cpr = 0.33
IT values [mm] IT =4.16
Solution ID 2270
Parameters Mean Stdev Min Max
Fpur N] 4.7469x10%  6.6530x10%  4.5398x10%*  4.9590x10%
Ry [mm)| 9.95 1.6686x1072  9.8977 1.0003x 101
R. [MPa] 5.4999x10%  1.6703x10'  4.8229x10%  6.0456 x 102
R,, [MPa] 8.4001x10% 20 7.7752x10%  9.1239x102
R, |mm]| 2.5346 1.6709x1072  2.4716 2.5875
1 0.1 3.3052x1073 8.8856x1072 1.1199x107!
t [mm] 2 1.6682x1072  1.9476 2.0518
Ur [mm] 9.5861x1071  1.1350 -2.2866 4.6162

Table 4.12: The best solution when Cp;, = 0.67, Cp, = 1.00 and Cp, = 1.33

Cpr, values
IT values [mm]|

Cpi = 0.67; Cpi = 1.00; Cp, = 1.33

IT =6.48; IT =8.72; IT =11

Solution TD 1112

Parameters Mean Stdev Min Max

Fgur [N] 4.7778x10*  6.6530x10%2  4.5707x10*  4.9898x10*

Ry [mm] 9.95 1.6686x1072 9.8977 1.0003x 101

R. [MPa] 5.4999x10%  1.6703x10'  4.8229%x102  6.0456 x 102

Ry, [MPa] 8.4001x10% 20 7.7752x10%  9.1239x102

R, [mm] 2.5346 1.6709x1072  2.4716 2.5875

U 0.1 3.3052x1073  8.8856x1072 1.1199x10~!

t [mm] 2 1.6682x1072  1.9476 2.0518

Ur [mm] 9.5960x10~1  1.1340 -2.2829 4.6259
Table 4.13: The best solution when Cp;, = 1.67 and Cp, = 2.00

Cpi, values Cpr, = 1.67; Cpp, = 2.00

IT values [mm]| IT =13.3 and IT = 13.5

Solution ID 2388

Parameters Mean Stdev Min Max

Fpur [N] 4.8000x10*  6.6530x10%  4.5929x10*  5.0120x10*

Ry [mm] 9.95 1.6686x1072 9.8977 1.0003x 101

R [MPa| 5.4999x10%  1.6703x10!  4.8229x10%  6.0456x 10>

R, [MPa] 8.4001x10% 20 7.7752x10%  9.1239x102

R, [mm] 2.4464 1.6709x1072  2.3834 2.4993

L 0.1 3.3052x1073  8.8856x1072 1.1199x10~!

t [mml] 2 1.6682x1072  1.9476 2.0518

Ur [mm] 9.7356 <1071 1.1306 -2.2787 4.6392
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of Cpm, the IT changes but the design solution is still the same. Table 4.14 shows
the synthesis of relationship between the values of Cpp and the IT and design ID.
Figure 4.28 illustrates graphical representation of the Cp,;, of 1.33 with respect to
the POF.

Table 4.14: Relationship between the values of Cpy, and the I'T and design ID

Cpm Process yield %] Process fallout (PPM) IT [mm| Design ID

0.33  68.27 317311 2.94 1112 (Table 4.15)
0.67 95.45 45500 5.97 1112 (Table 4.15)
1.00  99.73 2700 8.91 1112 (Table 4.15)
1.33  99.99 63 11.85 1112 (Table 4.15)
1.67  99.9999 1 14.89 1112 (Table 4.15)
2.00  99.9999998 0.002 17.83 1112 (Table 4.15)

IT [mm] = 11.8546; CprnU =1.33; DesignlD by Cpm: 1112
T

T T T T T T T L
- POF
o IT .
min
—Cpm=1.33
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Figure 4.28: Graphical representation of the Cpp, of 1.33 with respect to the POF
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Table 4.15: The best solution found by using the C),,, index

Criteria, Com

Solution ID 1112

Parameters Mean Stdev Min Max

Fpup [N]  4.7778x10*  6.6530x10%  4.5707x10*  4.9898x10*
Ry [mm] 9.95 1.6686x1072 9.8977 1.0003x10*
R. [MPa]  5.4999x10%2  1.6703x10'  4.8229x10%>  6.0456x10?
R, [MPa]  8.4001x10% 20 7.7752x10%  9.1239x10?
R, [mm] 2.5346 1.6709x1072  2.4716 2.5875

U 0.1 3.3052x1073  8.8856x1072 1.1199x10~!
t [mm] 2 1.6682x1072  1.9476 2.0518

Uz [mm] 9.5960x10~!  1.1340 -2.2829 4.6259

Comparison of the IT values between using Cp; and Cp,

It can be seen from Table 4.16 that when the values of capability indices are larger
than or equal to 1, the IT values found by the C} index is less than the ones by
the Cpy, index in this case study.

Table 4.16: Comparison of the IT" values between using Cp, and Cpp,

Values of capability indices IT by Cp [mm| IT by Cp,, [mm]
0.33 4.16 2.94

0.67 6.48 5.97

1.00 8.72 8.91

1.33 11 11.85

1.67 13.3 14.89

2.00 15.5 17.83
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4.2.4.2 Decision making in 6-D criteria space

The proposed approach is extended to design governed by objective criteria of more
than 2, particularly applied for 6 objective criteria in MORDO of springback pa-
rameters of 81, f2, and 1/p. Since there are 6 given objective functions, Pareto
optimal solutions are represented by a hypersurface of 6-dimensions of 0,,05,,01/,,
0815084501/, Thus, finding a best compromise solution from Pareto optimal solu-
tions in 6-D will be carried out by combining used capability indices from higher
dimensions into lower dimensions.

As mentioned above, the target values of 31, 52, and 1/p are supposed to be 0 [°]
and 0 [mm]| respectively, the specifications of these three variables are represented
as b1 =0x£1IT/2[°], Bo=0x1IT/2[°] and 1/p =0+ IT/2 [mm)].

The C,; index

In order to find a best compromise solution from Pareto optimal solutions, combining
C’;k of multi-objective is proposed as follows [172]:

m (1/m)
MC,y, = <H c;’,k) (4.38)
=1

Where, ¢ is the number of ouput variables.
In the case of three springback parameters of (1, B2, 1/p, the best solution is
the one that is a maximum value of the following expression:

MCpi = (Chp x Ol x €31/ (4.39)

Where, the C;i)k for three output variables of (1, B2, 1/p is represented by the
following expressions:

° Cf,i is defined as follows:

IT/2 — |6p,|
Cﬁl =/ A 4.40
pk 30—61 ( )
° Cf,i is defined as follows:
IT/2 — |dp,|
o=t 4.41
pk 30—52 ( )

° C;,ép is defined as follows:

Cl/p . IT/2 - |51/p|

= 4.42
pk 301/p ( )
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higher dimensions
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The principle of the proposed approach is to combine the standard deviation (o)
and the deviation from the mean (8) of an output parameter from 2-dimensions into
1-dimension as represented in Figure 4.29.

As mentioned above, the best solution is the one that the value of MCyp is
maximum and with different values of IT. the best solution is different. However,
in order to ensure that the process yield is at least of 99.99%, the value of the Cpy
is larger or equal to 1.33. Thus, it needs to find the best design configuration which
satisfies both these requirements.

e With 0 < IT < 8, the best alternative obtained cosrresponding to the max-
imum value of MCly is as shown in Table 4.17. However, it is found that
the values of Cgkl, and Cgﬁ are less than 1.33 as illustrated in Figure 4.30. It
should be noted that the cluster of points on the Figure 4.30 is not the POF,
but it is the result of reducing the dimensions by the indices. In addition to
this, the values of output variables are fairly large. This design configuration
does not meet the required tolerance interval.

IT=8; CpkI ¢ 1=—7.58287; Cpkheh1=—6.44559; Cpk,1m=520(].56; DesigniD: 177

- POF

,\ . o MCpk_

x 10

Cpk”p

-10

10 15

Figure 4.30: The best compromise solution found by finding maximum value of

MCyy with IT =8

e With 9 < IT < 502, the best alternative is obtained as shown in Table 4.18.

The Cpm index

The best solution in the Cpy, index case is a maximum value of the following ex-
pression [172]:
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Table 4.17: The best compromise solution found by finding maximum value of M C),

of three springback parameters 31, 2, 1/p

Cpr, values Cfg = —7.58287;05,3 = —6.44559; Cf, = 5200.56

IT values IT =38

Solution ID 177

Parameters Mean Stdev Min Max

Fppr [N]  8.9333x10° 6.6530x10%  6.8621x10° 1.1054x 10*
Ry [mm] 9.95 1.6686x1072  9.8977 1.0003x 10!
R. [MPa]  5.4999x102 1.6703x10"  4.8229x10? 6.0456x 102
R,, [MPa]  8.4001x102 20 7.7752%x10? 9.1239x10?
R, [mm| 7.9776 1.6709x1072  7.9147 8.0306

m 0.1 3.3052x1073  8.8856x1072  1.1199x107!
t [mm] 1.5 1.6682x1072  1.4476 1.5518

B [°] 1.9099x 10! 6.6373x1071  1.6715x10! 2.1122x10*
B2 [°] 1.2667x10! 4.4823x1071  1.1131x10! 1.4010x 101
1/p [mm|  6.82479x1073 2.5595x107% 7.65895x1073 5.92428x10~3

Table 4.18: The best compromise solution found by finding maximum value of M C),

of three springback parameters (31, 2, 1/p

Cpr values Cll = 3.62217; Cl? = 3.27706; C = 24051

IT values IT=9

Solution ID 1736

Parameters Mean Stdev Min Max

Fppr [N]  2.7150x10*  6.6530x10%  2.5079x10*  2.9270x10%
Ry [mm] 2.4013 1.6686x1072  2.3491 2.4542

R. [MPa]  5.4999x10%2  1.6703x10'  4.8229x10%  6.0456x10?
R,, [MPa]  8.4001x10% 20 7.7752x10%  9.1239x 102
R, [mm] 9.95 1.6709x1072  9.8870 1.0003x 10!
m 0.1 3.3052x1073  8.8856x1072 1.1199x107!
t [mm] 1.5 1.6682x1072  1.4476 1.5518

B [°] -6.1158 <10~ 3.5784x10~! -1.8810 4.7824x107!
B2 [°] 9.0027x1072  4.4857x1071 -1.5982 1.6313

1/p [mm|  4.5243x107%  6.2305x107°5 4.7692x1073 4.2682x1073
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mo o\ (/m)
MGy, = <H c;m) (4.43)
=1

In the case of three springback parameters of 1, 82, and 1/p, the best solution
is the one that is a maximum value of the following expression:
MG, = (O, x C22 % CLY/P (4.44)
Where, the C;m for three output variables 1, 32, 1/p is represented by the
following expressions:

. Cg}n is defined as follows:

IT
o= (4.45)

2 2
64/05, + 3,

IT
Oty = (4.46)

2 2
64/05, + 93,

1T

/52 2
6 61/p T

Similarly, the best alternative is the one that the value of MC),, is maximum.
As mentioned above, with any different values of IT, the best solutions found by
the Cpyy, is identical.

e With IT = 3.8, the best alternative is obtained as shown in Table 4.19. This
design configuration satisfies the process yield requirement of 99.99% and the

o Cgfn is defined as follows:

° C;T/np is defined as follows:

Clr = (4.47)

required tolerance interval of 3.8.

4.2.5 Synthesis of results

The best solutions based on the capability indices which have been obtained from
the MORDO of Ur hole displacement and three springback parameters of 81, (o,
1/p are synthesized in Table 4.20. It is found that the optimal design configuration
which is indicated by using the Cp index is dependent upon the I'T values. While
the optimal design configuration is identical despite different values of IT when
using the O, index.

For springback parameters of 51, 82, 1/p, the optimal design configuration ob-
tained by Cpy, meet the I'T" value smaller than the one attained by Cp. The differ-
ence of predicted results of 51, B2, 1/p is very small when comparing between the
design solutions attained based on Cp, and Cpy,. Whereas, for Uz hole displacement
the IT value got from Cp,, is bigger than the one from Cp;. The predicted results
of Ur based on these indices are the same.
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Table 4.19: The best compromise solution found by finding maximum value of
MCpy, of three springback parameters (1, 2, 1/p

Criteria Com

Interval of tolerance IT =338

Solution ID 1271

Parameters Mean Stdev Min Max

Fpur [N] 2.6728x10*  6.6530x10%  2.4656x10*  2.8848x10*
Ry [mm] 2.4055 1.6686x1072  2.3532 2.4583

R. [MPa| 5.4999x10%  1.6703x10'  4.8229x10%  6.0456x 10>
R,, [MPa] 8.4001x10% 20 7.7752x10%  9.1239x102
R, [mm] 9.6323 1.6709x1072  9.5694 9.6853

U 0.1 3.3052x1073  8.8856x107% 1.1199x10~!
t [mm] 1.5 1.6682x1072  1.4476 1.5518

B [°] 2.0182x1072  3.9007x10~! -1.4289 1.2220

B2 [°] 1.0770x 10" 4.5186x107" -1.5421 1.6678

1/p [mm] 4.2183x107%  8.5893x107° 4.5659x1073 4.0159x1073

Table 4.20: Synthesis of the best solutions based on the capability indices

Parameters IT Cpk Cpm Solution ID

B 9] 3.6222

5o 9 °] 3.2771 N/A 1736 (Table 4.18)

1/p 9 [mm]| 24051

Ur 11 [mm] 1.335 1112 (Table 4.12)

B 38 ] 1.6215

B 3.8 [°] 1.3634 1271 (Table 4.19)
N/A

1/p 3.8 |mm]| 150.107

Ur 12 [mm)| 1.346 1112 (Table 4.15)
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4.3 Summary of the chapter

The main objective of this chapter is to treat Robust Design Optimization applied for
sheet metal forming process design and to propose capability indices-based Pareto
multiple objective criteria decision making applied for Robust Design. A couple of
major points is summarized as follows:

e The approaches in Robust Design and Reliability-based Design have been re-
viewed and compared between them. The issues in conventional design op-
timization and optimization under uncertainty have been also addressed. It
has been found that conventional design optimization may not always satisfy
the desired targets due to the significant uncertainty that exist in material
properties, blank thickness and friction condition. While optimization un-
der uncertainty takes the uncertainties into account as soon as in the design
process. In addition, optimization algorithms have been reviewed and inves-
tigation shows that the NSGA-II algorithm is the best effective in this case
study.

e A multi-objective optimization under uncertainty strategy applied for sheet
metal forming process has been introduced. A Pareto multiple objective crite-
ria, decision making based on capability indices applied for robust design has
been proposed. It has been found that a best solution obtained from Pareto
optimal solutions by using the Cp index depends on the tolerance interval
(IT). With different values of IT', the best solution is different. Whereas the
value of IT does not influence on determining the best alternative by using
the Cpy, index. The best solution found by these indices is identical with any
various values of I'l'. However, in order to verify the capability of obtained
optimal design configurations based on Cp and Cp,,, these design solutions
have been determinated to ensure the process yield of 99.99% corresponding to
the process fallout of 63 PPM. This proposed approach has been successfully
applied to the optimization problems in 2-D and 6-D criteria space.



CHAPTER 5

Conclusions and perspectives

5.1 Conclusions

The two objectives of robust design are to make the mean value close to the tar-
get value and to minimize the variability that results from uncertainty represented
by noise factors. This thesis has proposed a robust optimization strategy to take
aleatory uncertainties in noise factors into account as well as to optimize process de-
sign in presence of the uncertainties. In the context of concurrent engineering and
FEM numerical simulation, this strategy has been elaborated for responding the
challenge in the design process: "How to design for producing robust products?".
It is dedicated to sheet metal forming process design. Serveral key conclusions are
drawn from this research including:

e In terms of modeling and FEM simulation, the accuracy of FEM numerical
models depends on the accuracy of models used to describe the reality (con-
stitutive equations of material, boundary conditions...) and the accuracy of
numerical solution methods (discretization, mass scaling, meshing, contact
types...). In addition, it is also up to process parameters (blank holder force,
friction condition, workpiece, tooling geometry, drawing velocity...). Investi-
gation of FEM numerical models in this study has been shown that there is
a sensitivity threshold at which responses of these FEM numerical models are
insensitive to very small variations of input parameters of the process. As
a consequence, small variations around nominal values of the input param-
eters are not correctly propagated by FEM numerical models. In order to
be able to build computer experiments based FEM numerical simulation and
propagate consistently the uncertainties, we have proposed an FDM-based ap-
proach to detect minimum sensitivity threshold of FEM numerical simulation
to very small variations of input parameters of the process. This method has
been successfully applied for a benchmark problem of Numisheet 2011 of sheet
metal draw bending process. Hence, it is necessary to figure out the sensitivity
thresholds before executing Design of Experiments.

e Uncertainty is inevitable in any manufacturing process. Therefore, manag-
ing the uncertainties in the early product life cycle, particularly as soon as
the early design stage is vital. Through uncertainty analysis in sheet metal
bending, it has been found that conventional design methods may not always
satisfy the desired targets due to the aleatory uncertainties that exist in mate-
rial properties, sheet thickness, and process parameters. Investigation of these
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aleatory uncertainties has shown that they influence significantly on variation
of the product performance. In particular, blank thickness and material prop-
erties (UTS and YS) are parameters having the greatest influence on the shape
variation due to springback.

e Through uncertainty analysis of design configurations obtained by conven-
tional optimization (also known as deterministic design optimization), it is
found that there is the deviation in the mean value and the standard de-
viation in responses of U-shaped sheet metal bending due to the significant
aleatory uncertainties in the uncontrollable parameters as shown in Table 4.6.
In order to tackle this problem, a robust design optimization strategy applied
for sheet metal forming process design has been proposed. This strategy has
been successfully applied to the benchmark problem of U-shaped sheet metal
bending process.

e A multi-objective optimization under uncertainty strategy applied for sheet
metal forming process has been introduced. A Pareto multiple objective crite-
ria decision making based on capability indices applied for robust design has
been proposed. It has been found that a best solution obtained from Pareto
optimal solutions by using the Cp; index depends on the tolerance interval
(IT). With different values of IT, the best solution is different. Whereas the
value of I'T" does not influence on determining the best alternative by using
the C,, index. The best solution found by this index is identical with any
various values of IT. However, in order to verify the capability of obtained
optimal design configurations based on Cp and Cp,,, these design solutions
have been determined to ensure the process yield of 99.99% corresponding to
the process fallout of 63 PPM. This proposed approach has been successfully
applied to the optimization problems in 2-D and 6-D criteria space.

5.2 Perspectives

Several points for future research are recommended on the basis of the knowledge
gained and the problems encountered during the study of this thesis:

e For FEM numerical simulation of sheet metal forming processes, an appro-
priate constitutive model which properly describes the behaviour of material
is crucial. One of the significant effects on the quality of the springback pre-
diction is constitutive model of the material. In particular, modeling of the
Bauschinger effect and cyclic hardening characteristics of materials is vital. As
a point for future research, advanced constitutive models should be adopted in
the springback prediction such as the Geng-Wagoner hardening law [65] and
the Yoshida-Uemori hardening law [241] which have been proven to describe
the springback behavior best. Furthermore, there is still the discrepancy be-
tween results obtained from physical process and numerical simulation. This
difference results from model assumptions, discretization of the model, contact
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types, meshing, mass scaling, etc. Improvement of the numerical methods and
the problem modeling is recommended for future research.

e Regarding sensitivity threshold analysis of FEM numerical simulation, this
threshold can be improved when the accuracy of numerical model is enhanced.
Investigation of sensitivity threshold with finer meshing and lower punch ve-
locity is recommended in perspective. Moreover, the proposed approach for
detecting the sensitivity threshold should be tested with different FEM-based
software as a point for future work.

e Since metamodels play a very important role in robust design optimization
strategy, enhancing the accuracy of metamodeling methods is recommended
as a point in future work. Presently, the accuracy of metamodel depends on
the choice of which metamodeling method is the best fit of input data.

e In terms of modeling the variations of input parameters, in this thesis there has
been seven input parameters under consideration. Adding more the parame-
ters under study is proposed for future research. Especially, consideration of
the scatter in anisotropic properties of material is a suggestion. On the other
hand, uncertainties in the input parameters in this thesis are taken into ac-
count due to part-to-part, coil-to-coil, batch-to-batch, within batch, lab-to-lab
variations. It is recommended to investigate uncertainties of the input param-
eters resulting from within part variations. For example, thickness within part
varies differently due to imprecision of rolling process. Likewise, the scatter of
process parameters such as holder force, friction between surfaces should be
investigated in perspective.

e Concerning geometric tolerance, form tolerances analysis based on modal basis
to represent form variations of formed part is suggested for future research.

e Since the optimization strategy is carried out by using numerical models and
approximations of the real process, the errors always exist. Validation of
obtained optimal design configurations is highly recommended to test in the
physical process.
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Résumé

L’objectif ultime de ce travail de thése est d’évaluer la possibilité de valider et
d’optimiser un processus de fabrication en utilisant la simulation numérique en ten-
ant compte des incertitudes irréductibles sur le procédé, les matériaux et la géométrie
du produit fabriqué. La prise en compte des incertitudes nécessite de quantifier
les effets des variations des paramétres du modéle sur les sorties de celui-ci, en
propageant ces variations via la simulation numérique pour évaluer leurs effets sur
les sorties. Dans ce travail nous avons proposé une procédure pour déterminer le
seuil de sensibilité du modeéle numérique afin de construire des plans d’expériences
numériques cohérents avec ce seuil. Nous avons également montré que, compte
tenu des incertitudes sur les matériaux et la géométrie du produit, il est possible
d’optimiser certains paramétres du procédé pour controler les effets des incertitudes
sur les variations dimensionnelles et morphologiques du produit. Pour cela, nous
avons proposé une procédure d’optimisation basée sur un algorithme NSGA-II et
une méta-modélisation du procédé. L’application & I’emboutissage d’une téle en
U, retour élastique inclus, montre qu’il s’agit d’un probléme de conception robuste
pour lequel nous obtenons ’ensemble des compromis entre ’écart & la moyenne et
I’écart type d’une fonction "performance" du procédé correctement choisie. Finale-
ment analyse de ces résultats nous permet de quantifier le lien entre la notion de
robustesse d’une solution optimisée du procédé et les critéres de mesure de la qualité
du produit.

Mot-clés: incertitude, tole, travail de la, commande robuste, simulation par or-
dinateur, décision multicritére






Introduction

Contexte et motivation

Dans un contexte ou il est nécessaire de répondre aux défis industriels dans des
délais plus courts, et & moindre coit pour une meilleure satisfaction du client,
I'ingénierie simultanée s’est imposée comme une solution. L’ingénierie simultanée
consiste & réaliser le plus simultanément possible les différentes taches du proces-
sus de développement de produit, plutdt que successivement [201]. Le recouvre-
ment partiel voire total de certaines taches permet alors de diminuer le temps de
développement et d’améliorer la qualité du produit. Une mise en ceuvre efficace
de 'ingénierie simultanée nécessite des modes d’organisations et des outils informa-
tiques spécifiques [201].

L’emboutissage de tole est un processus de production qui est tres utilisé dans

la production de masse, en particulier pour fabriquer des composantes de "caisse en
blanc" dans I'industrie automobile comme le montre la Figure 5.1. Plus précisément,

Figure 5.1: Des composantes de "caisse en blanc" d’une voiture.

il y a environ 100 a 150 panneaux métalliques emboutis sur les véhicules (camions
légers, automobiles, fourgonnettes, ...) produits aujourd’hui [126]. En raison de
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la concurrence de plus en plus sévére, la réduction des coiits et ’amélioration de
la productivité sont des exigences que les constructeurs automobiles se doivent de
satisfaire. Cependant, la conception d’un processus d’emboutissage est trés cotiteuse
et prend du temps en raison des procédures d’essais et d’erreurs. En effet, une
usine automobile doit produire environ 40-50 panneaux différents pour un modele de
voiture ce qui représentent 150-200 matrices d’emboutissage [86]. Par conséquent,
il est nécessaire de réduire le temps de conception du processus d’emboutissage
et d’éliminer les essais physiques coliteux qui augmentent celui de la fabrication.
Les logiciels de simulation par éléments finis accompagnés par les logiciels de CAO
pour la définition des modéles géométriques sont des outils aujourd’hui largement
utilisés dans la définition des processus d’emboutissage. Un concepteur peut utiliser
la simulation d’emboutissage pour évaluer la possibilité de fabrication d’une piéce
emboutie sans les frais de fabrication d’un outil physique. Néanmoins, il existe
encore, évidemment, une différence entre les résultats de la simulation numérique
et ceux de ’expérience physique. Différence encore aujourd’hui inévitable & cause
des approximations dans les modéles numériques, ou des variations inattendues des
variables d’entrée [88].

D’autre part, malgré les apports de la simulation numérique, les fabricants sont
encore confrontés & des défauts comme des amincissements trop importants, des rides
et des déchirures sur les piéces embouties. Lorsque ces défauts rédhibitoires sont
éliminés, la conception d’un processus d’emboutissage doit encore garantir que les
piéces produites satisfassent tout au long de la production les exigences du cahier des
charges, malgreé les variations (incertitudes) des parameétres d’entrée du processus.

Les variations des propriétés des matériaux, de I’épaisseur du flan, des conditions
de lubrification, les dimensions de l'outillage (dues & 'usure) et des parameétres de
procédé peuvent étre les causes des variations de la performance des piéces produites.
Ces variations peuvent avoir des conséquences dans le processus d’assemblage qui
suit les opérations d’emboutissage. Cela peut déboucher sur des problémes de non-
qualité. Les sources des variations inhérentes aux flans peuvent venir de la variation
de piéce-a-piéce, de lot-a-lot, mais également a 'intérieur du lot au cours du proces-
sus de production [126]. Ainsi, en tenant compte de 'incertitude et des variabilités
inhérentes et irréductibles, I’optimisation du processus sont les questions essentielles
et doivent étre résolues pour obtenir une conception de processus robuste du pro-
cessus d’emboutissage de tole.

Dans le contexte de l'ingénierie simultanée et de la conception robuste, cette
thése est motivée par une demande pour développer une méthodologie et un concept
dans lequel les activités d’ingénierie dans le processus de développement des produits
et la production sont intégrées et réalisées simultanément, plus particuliérement
la recherche d’une conception de processus robuste le plus insensible possible aux
variations inévitables. Cet enjeux de recherche est 'un des problémes qui est posé
par groupe de recherche francais nommeé "concevoir pour produire robuste" & ’AFM
(Association Frangaise de Mécanique) comme suit:

"Comment maitriser les incertitudes, au plus tot dans le cycle de vie du produit,
en particulier au niveau de la production?"
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Problématiques et Objectifs de la thése

Positionnement de la thése

Afin de préciser le contexte de ces travaux de thése, le cycle de vie du produit est
utilisé comme référentiel. Alting postule que le cycle de vie d’un produit passe par
six phases, comprenant [6]:

e L’analyse du besoin

Conception/Développement

Production

Distribution

e Usage

Elimination / recyclage

Ces phases du cycle de vie d’un produit sont illustrées dans la figure 5.2. Le cadre
de ce travail de recherche par rapport & cette représentation du cycle de vie d’'un
produit concerne les phases de la conception du produit/développement et de la
production de produits.

Design

Production

Distribution

Disposal/
Recycling

Figure 5.2: Le cycle de vie d’un produit [6]

En particulier, cette thése a la partie "detailled design" du processus de concep-
tion représenté sur la figure 5.3. Plus précisément, ce travail de thése concerne la
conception robuste pour un procédé de formage de todle métallique.
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Figure 5.3: Le processus de conception [162],[188], [55].

Problématiques

Les progrés réalisés sur les outils de simulation numérique permettent d’augmenter
le niveau de prédictivité et de précision. Cependant la qualité des résultats de
ces outils reste dépendante de nombreux facteurs, dont : les caractéristiques fonc-
tionnelles de ces logiciels, les facteurs numériques, les paramétres du procédé, le
matériau et la piece brute comme indiqué sur la figure 5.4 [204]. En outre, les

software specific factors matenal workpiece

costs useability

’ ) denSIty blank thickness
icensing 5
fficient yield strength, blank form
efficien preprocessmg Iastlc hardenin symmetry \
period of adjustment
Rvalue .\ complexity \
postprocessing features ardemn curves

constitutive equatlon meshing

reliable and
’efficient simulation

drawing velocity, blank holder force

pre-cut part, die geometry  /time integration method

/ mesh refinement
automatic meshing

element types

draw bead configurations

gravity effects

contact types
—_—

mass scaling
—_—

temperature solver type element quality
friction
— .
process parameters numeric factors

Figure 5.4: Diagramme d’Ishikawa pour simuler le procédé d’emboutissage [204]

modéles numériques basés sur méthode des éléments finis (MEF) ont un comporte-
ment déterministe dans la mesure ou si I'on relance le code avec les mémes données
d’entrée on obtient des observations identiques. C’est cette absence d’erreur aléa-
toire qui différencie des expériences numériques des expériences physiques [183]. Les
incertitudes sont inévitables dans un processus de fabrication, a toutes les étapes
du développement de produit, et pendant tout le cycle de vie du produit. Les
incertitudes peuvent conduire & des variations dans les performances des sorties.
Les incertitudes proviennent de diverses sources telles que I'imprécision de fabrica-
tion, les variations dans les propriétés des matériaux, les variations de dimensions
géométriques de la piece, et les variations de parameétres du procédé. Les sources
d’incertitude dans un procédé de formage de tole de métal sont synthétisées dans la
figure 5.5 [154]. Les sources de ces variations inhérentes proviennent de la variation
piéce-a-piéce, de lot-a-lot, et l'intérieur du lot au cours du processus de produc-
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Figure 5.5: Sources d’incertitude dans un procédé de formage de tole en acier [154].

tion [126]. En particulier, la variabilité des propriétés des matériaux est différente
de bobine-a-bobine, de laboratoire-a-laboratoire et d’essai-a-essai. Karthik indique
que la dispersion de laboratoire-a-laboratoire est approximativement égale a la dis-
persion d’essai-a-essai dans un laboratoire. Par contre les variations de bobine-a-
bobine présentent généralement plus de dispersions d’essai-a-essai, en particulier
dans le sens transversal [98]. Par conséquent, cela conduit & amplifier les variations
de performances de la piéce. Afin d’améliorer la qualité, la quantification des incer-
titudes dans le processus de conception est nécessaire. Des expériences d’ordinateur
basées sur des simulations numériques MEF sont ’approche la plus commune pour
étudier les problémes de quantification de l'incertitude [183]. Toutefois, ces expéri-
ences informatiques considérent les outils numériques de type MEF comme une boite
noire, et il est trés difficile de modifier ces outils pour améliorer leur précision. En
outre, puisque le logiciel numérique type MEF a une précision finie (en raison des
erreurs introduites par les méthodes de résolution numériques utilisées comme les
erreurs de discrétisation, les erreurs d’approximation, les problémes de convergence,
les erreurs de modélisation, etc), il est nécessaire d’étudier son seuil de sensibilité
pour des intervalles de variation des paramétres d’entrée.

Dans la phase de conception détaillée, afin d’assurer le comportement attendus
et de satisfaire les exigences fonctionnelles d’une piéce malgré les incertitudes, des
tolérances sont affectées a chaque fonction de la piéce. Par conséquent, la défini-
tion des tolérances est un élément clé dans 'industrie pour améliorer la qualité des
produits et maitriser les cotits de fabrication. Etant donné que la variation de la
performance induite par les incertitudes des entrées de la tole est assez grande en
raison du retour élastique, ’analyse de la tolérance géométrique de la piéce en tole
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est un probléme a prendre en considération.

Afin de résoudre ce probléme, une méthode de conception robuste, proposée
par Taguchi, (aussi connu comme méthode Taguchi) [208], [211] & été développée.
Néanmoins, la méthode Taguchi présente plusieurs inconvénients. Puisque Taguchi
géneére des plans expérimentaux basés sur des tableaux orthogonaux, les conceptions
optimales ne peuvent étre obtenues que sur ces points d’échantillonnage, tandis que
les points intermédiaires ne sont pas évalués. Un autre inconvénient de la méthode
Taguchi est I'impossibilité de prendre en compte les effets d’interaction entre les
variables de conception [221]. En plus des inconvénients de la méthode Taguchi, la
variance de la réponse est provoquée uniquement par les incertitudes des facteurs
de bruit. Par conséquent, il est essentiel de construire une stratégie d’optimisation
multi-objectif basée sur 'optimisation de la conception robuste (RDO) pour réduire
les écarts de performance soumis & des incertitudes dans les deux variables de con-
ception et des facteurs de bruit.

Pour le probléme d’optimisation multi-objectif, le front Pareto optimal (POF)
représente la solution optimale dans I’espace objectif. Un concepteur sélectionne la
solution finale parmi I’ensemble de Pareto sur la base d’exigences supplémentaires,
qui peuvent étre subjective.

Objectifs de la thése

L’objectif général de cette these est de répondre aux questions:

"Comment maitriser des incertitudes, au plus tot dans le cycle de vie du produit,
en particulier au niveau de la production?" pour un procédé de formage de toles a
I’aide de simulations numériques basées sur la MEF.

Cet objectif se décline dans cette thése comme suit:

e Qualifier le niveau de prédictibilité de la simulation numérique MEF du
procédé.

e Quantifier les effets des incertitudes sur le procédé de production via la sim-
ulation numérique.

e Analyser les incertitudes qui influent sur les tolérances géométriques de la
piéce emboutie.

e Optimiser le procédé en présence d’incertitude pour obtenir une piéce em-
boutie respectant les tolérances spécifiées et cela n’est pas possible remettre
en cause de la solution de conception du produit (changement de tolérance,
de matériaux, de forme, etc).

e ldentifier les meilleures configurations de conception optimale basées sur les
indices de capacité.



Méthodes numériques et
qualification du modeéle EF

Seuil de sensibilité de simulation numérique par méthode
EF

Comme présenté dans la Section II, la propagation des incertitudes nécessitent de
nombreuses simulations. Pour des trés petites variations des paramétres, des tech-
niques de réduction de modéles spécifiques seront développées pour limiter les temps
de calculs. Cependant, la simulation numérique MEF est elle-méme & précision
finie en raison d’erreurs introduites par les méthodes de résolution numérique util-
isées (résolution de maillage, contact / frottement, erreur de discrétisation, erreur
d’approximation, les problémes de convergence, etc).

Sensibilité dans ’analyse par éléments finis: montrant seuil de sen-
sibilité

La notion de seuil de sensibilité dans ce travail de recherche vient de ’observation des
réponses des simulations MEF, pour lesquelles on observe des résultats incohérents.
Le seuil de sensibilité est défini comme un seuil & partir duquel la réponse d’un
modéle numérique EF est chaotique a pour de trés petite variation d’un paramétre
d’entrée.

Illustration sur une poutre en flexion

Dans le cas élémentaire d’'un modeéle EF en éléments poutre, on peut observer sur
la figure 5.6, que une longueur du coté variant autour de sa valeur nominale de
—5% a +5%, la réponse calculée par la formule analytique (5.1) et celle de I’analyse
numérique EF en 1D sont coincidentes. Les réponses sont lisses et nettes. La formule
analytique de la déflexion de la poutre:

_ 12FrL?

= 1
3FEat (5.1)

Cependant, lors d’un zoom dans la zone locale de 40,02% autour de la valeur
nominale de 10[mm], les réponses calculées par ’analyse numérique EF en 1D avec
différentes tailles d’éléments, on observe des sauts correspondants aux valeurs de
longueur de coté de 10+0,01%. Tandis que la formule analytique de la fleche donne
une réponse lisse et réguliére. Ce méme probléme est également observé lorsque la
taille de I’élément diminue. Cela montre bien la limite introduite par la précision
finie de la simulation numérique EF.
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Figure 5.6: Comparaison de fleche calculée analytiquement (5.1) et D’analyse
numérique EF en 1D avec différentes tailles d’élément.
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Seuil de sensibilité dans la simulation numérique EF de procédé de pliage

Considérons les réponses de retour élastique 1, B2 et p par rapport a la variation
d’épaisseur de £5% a £0,01% autour de la valeur nominale de 1,1 [mm] a 1,6 [mm]|
comme présenté sur les figures 5.7, 5.8, 5.9.

28 ! !
——FE response of B1 ; :

26

24

22

20

1599 1.6:1.6011.6021.603

B, [’

18

161

12r

10 1195 1.2, 1.205 i

1 1.1 1.2 1.3 14 1.5 1.6 1.7 1.8
Blank thickness [mm]

Figure 5.7: évolution d’épaisseur de la tole par rapport a l'angle f.

On peut voir que les réponses du retour élastique sont réguliéres et montrent une
tendance claire dans la plage globale de variation de 1,1 [mm]| 1,6 [mm]|. Les réponses
de B et Bs diminuent progressivement avec I’augmentation de 'épaisseur. Alors que
la réponse de p augmente lorsque I'épaisseur augmente. Néanmoins, on observe des
bruits sur les réponses de retour élastique dans une petite plage de variation autour
des valeurs nominales d’épaisseur du flan de 1,2 [mm]| et 1.6 [mm]|. En faisant varier
I’épaisseur autour des valeurs nominales (1,2 [mm] et 1.6/mm]|) dans un intervalle de
+5% a +0,01% on observe clairement du bruit sur les réponses du retour élastique.
Plus les pas de variations sont petits, donc proches de la valeur nominale et plus
Iamplitude du bruit est importante. Par conséquent, cela rend le résultat incohérent
et la simulation ne traduit pas correctement les petites variations de 'épaisseur. Un
phénomeéne similaire est également observé sur les réponses du retour élastique par
rapport a d’autres valeurs nominales.

A partir de ces résultats, il est intéressant de noter ici qu’il existe bien un seuil
de sensibilité en dessous duquel les variations autour d’une valeur nominale ne sont
pas correctement propagées par le modéle numérique.

Donc une méthode qui permette d’établir le pas de variation minimal acceptable
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sur les paramétres d’entrée utilisés dans le plan d’expériences (DOE) est nécessaire
afin d’obtenir des réponses fiables par la simulation numérique par MEF. Par con-
séquent, le pas de variation associé aux incertitudes des paramétres d’entrée doit étre
bien supérieur au seuil de sensibilité minimal déterminé pour le modéle numérique
MEF et le paramétre en question.

Méthodologie proposée pour identifier le seuil de sensibilité de la
simulation numérique EF

Pour déterminer le seuil minimum de sensibilité d’'un modeéle numérique non linéaire
EF par rapport aux variations d’un paramétre d’entrée, une approche basée sur
Panalyse de la sensibilité de la méthode des différences finies (FDM) est proposée.
La procédure proposée se déroule suivant les étapes représentées sur la figure 5.10.
Tout d’abord un probléme est défini en identifiant les variations des paramétres
d’entrée. Les plans d’expériences (DOE) sont utilisés pour échantillonner les valeurs
des variables d’entrée qui sont ensuite utilisées dans la simulation numérique EF.
Les réponses en sortie sont déterminées et utilisées dans 'identification de seuil
de sensibilité en utilisant la méthode des différences finies. Par conséquent, les
résultats de seuil de sensibilité sont considérés comme une donnée lors de la saisie
de l’intervalle de paramétres d’entrée de la variation de la DOE des expériences
numériques.

Afin de réaliser des expériences numériques facilement et afin d’identifier le seuil
de sensibilité automatiquement, la simulation du processus de pliage et le retour
élastique seront réalisés avec le logiciel Abaqus et les paramétres du retour élas-
tique sont calculés avec Matlab, I’ensemble étant intégré dans le flux de travail de
modeFRONTIER.

Pour réduire le temps d’analyse, le calcul est parallélisé sur plusieurs ordinateurs
via une procédure spécifique dans modeFRONTIER. Les fichiers d’entrée Abaqus
dans lequel les valeurs de variables ont été mises & jour par le DOE sont envoyées
au serveur de calcul pour exécuter chaque expérience numérique. Par la suite, les
fichiers de résultats sont recopiés sur un ordinateur local afin de déterminer les
mesures de retour élastique et calculer la sensibilité.

En théorie, pour une fonction analytique ’approximation de la dérivée par la
technique des différences avant, centrale et arriére divergent pour un pas h grand et
convergent vers la méme limite lorsque le pas h tend asymptotiquement vers zéro.
Cependant, ce n’est plus vrai pour une fonction de réponse numérique EF en raison
de la précision limitée de modéles numériques.

La technique de détection d’un seuil minimal de sensibilité est la suivante:

Le seuil minimal de sensibilité du modéle numérique EF est identifié pour une
valeur du pas de variation pour laquelle Uapprozimation des différences finies avant,
centrale et arriere convergent.
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Figure 5.10: Méthodologie proposée pour identifier seuil de sensibilité de la simula-
tion numérique EF.
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Exemple d’application

Pour valider la méthode proposée pour l'identification du seuil minimal de sensibil-
ité, un cas plus complexe de simulation numérique processus de pliage de tole est
considéré dans cette partie.

Identification du seuil de sensibilité minimale

Afin de déterminer le seuil minimal de la sensibilité de simulation numérique d’un
processus de pliage, le pas de variation h de variables d’entrée comprenant 1’épaisseur
de la téle, les propriétés des matériaux. le coefficient de frottement, la force de serre-
flan et de la géométrie de 'outillage est réduit progressivement a partir de 20%
jusqu’a 0,01% de leurs valeurs nominales.

Les réponses du retour élastique dont (1, s et p sont considérées comme les
fonctions de réponse. Les sensibilités sur ces réponses sont calculées selon la méthode
des différences finies.

Les résultats des seuils minimums de sensibilité du processus de pliage de la tole
pour des pas de variation de 'épaisseur de téle de 20% & 0,01% sont calculés en
paralléle avec 25 processeurs sont présentés sur les figures 5.11, 5.12, 5.13.

Sensitivity threshold 0.20%, sensitivity : =17.38479

Sensitivity of B1 [/mm]

—— Flcnvlard differeﬁce
——Central difference S
-26 Backward difference |-

0.05 01 02 0.5 0.81 1.52 5 10 20
Blank thickness variation in (%) for nominal value of 1.4 mm

Figure 5.11: Le seuil de sensibilité minimale de la simulation numérique EF du
processus de pliage de la téle par rapport a 81 pour des variations d’épaisseur de

20% & 0,01%.

On peut observer sur la figure 5.11 que les trois approximations des différences
finies avant, arriére et centrale concernant 'angle de retour élastique de B, sont
divergentes pour des pas supérieur a 20%. Elles se rapprochent ensuite jusqu’au pas
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Sensitivity threshold 0.80%, sensitivity : =12.81495
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Figure 5.12: Le seuil de sensibilité minimale de la simulation numérique EF du
processus de pliage de la tole par rapport a ;1 pour des variations d’épaisseur de
20% a 0,01%.
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Figure 5.13: Le seuil de sensibilité minimale de la simulation numérique EF du
processus de pliage de la tole par rapport a p pour des variations d’épaisseur de
20% a 0,01%.
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de 1% puis convergent au pas de 0,2%. Aprés cela, elles divergent pour des valeurs
de pas supérieure a 0,1%. Il est clair que le seuil minimal de sensibilité du modele
numérique EF concernant (31 par rapport & ’épaisseur du flan peut étre fixé a 0, 2%.
Le méme raisonnement , pour I'angle (o de la figure 5.12 donne un seuil de 0, 8%,
et de 0,1% pour le parametre p (cf figure 5.13).

On voit que la simulation numérique MEF propage mal les petites variation
d’épaisseur correspond & des pas de variation d’épaisseur du flan plus petits que
0,2%, 0,8% et 0,1% des valeurs nominales, pour les sorties correspondantes re-
spectivement aux angles 51, 82 et p le rayon de courbure de la paroi latérale. En
conséquence, les réponses numériques de ce modéle MEF ne sont pas fiables lorsque
I'intervalle de variation d’épaisseur est plus petit que 0, 8% autour de sa valeur nom-
inale. Ce qui signifie que la simulation numérique MEF n’obtient pas de réponses
fiables avec un épaisseur du flan de 1,4 £ 0.0112 [mm]| pour cette étude de cas. De
plus, la sensibilité locale des réponses du retour élastique par rapport aux variations
d’épaisseur est également déduite de ces résultats. Comme on peut le voir sur les
figures 5.11, 5.12, 5.13 la sensibilité locale de 1, B2, et p est 17,38479 [°mm™!|,
12,81495 [°Pmm™1] et 144,55225 [mmmm~!] lorsque 1’épaisseur est de 1,4 [mm].
Ces résultats montrent que 1’épaisseur influence significativement les réponses du
retour élastique. Avec la méme méthodologie, le seuil minimal de sensibilité des
sept parametres incluant épaisseur du flan, la limite d’élasticité (YS), la résistance a
la traction (UTS), la force de serre-flan (BHF), le coefficient de frottement, le rayon
de matrice et le rayon du poingon sont synthétisés dans le tableau 5.1. Les résultats

Table 5.1: Synthése du seuil de sensibilité minimale des sept paramétres d’entrée

Parameétre Seuil de Seuil de Seuil de Seuil Plage de variation
sensibilité  sensibilité  sensibilité  général correspondante
concer- concer- concer- de sen-
nant (B1 nant (2 nant p sibilité
7] K 72 K

t 0.2 0.8 0.1 0.8 1.440.0112 [mm]

R, 1 5 5 5 550+27.5 [MPa)

Fprr 1.5 5 1.5 5 2940+147 [N]

I 1.5 5 5 5 0.1£0.005

Ry 0.2 5 1 5 7£0.35 [mm|]

R, 1 5 10 10 5£0.5 [mm]

R, 2 5 2 5 840+42 [MPa]

de la sensibilité sont listés dans le tableau 5.2.

L’analyse des sensibilités du processus de pliage de la téle

Afin de déterminer 'influence d’un parameétre d’entrée particulier sur le retour élas-
tique, ’analyse des sensibilités peut étre réalisée a partir des résultats de la méthode
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Table 5.2: La sensibilité de réponse du retour élastique par rapport aux parameétres

d’entrée
Parameétre Sensibilité de g1 Sensibilité de 52 Sensibilité de p
t 17.3848 [°mm™!] 12.815 [°mm™1] 144.5523 [mmmm !
R, 0.0072 [° MPa™!] 0.00027 [° MPa~1] 0.0285 [mm MPa~!]
Fpur 0.00044 [° N~ 0.00056 [° N~1] 0.00534 [mm N—!]
I 26.4348 5.3282 145.9892
Ry 0.0639 [° mm™!] 0.2547 [°mm™!] 6.0719 [mm mm ]
R, 0.7132 [°mm ™! 0.1225 [°mm ™! 1.1378 [mmmm ™|
Ry, 0.0188 [° MPa™!] 0.0139 [° MPa™!] 0.1622 [mm MPa~!]

proposée pour prédire 'influence du parameétre d’entrée sur les réponses individuelles
du retour élastique comme suit:

e Pour 'angle d’ouverture de la paroi f;:

- nom 5.2
e (52
e Pour 'angle de la bride (s:
dBa
S; = nom 5.3
e, (53

e Pour le rayon de courbure de la paroi latérale p:

S = jﬂi o (5.4)
ou x; est le 4éme parametre d’entrée; £ est le pourcentage de variation et 7™ est
le iéme paramétre d’entrée a leur valeur nominale.

Les résultats de 'analyse de sensibilité des variables d’entrée contribuant aux
réponses du retour élastique de 31, [2, et p sont présentés dans la figure (5.14, 5.15,
5.16).

On peut observer sur la figure 5.14 que I’épaisseur du flan et la résistance a
la traction sont les deux paramétres ayant la plus grande influence sur ’angle
d’ouverture de la paroi (1, suivie par la limite d’élasticité, le rayon du poincon,
le coefficient de frottement , la force de serre-flan et le rayon de matrice. On notera
que pour le rayon de matrice, l'influence est quasi-nulle. On peut tirer les mémes
conclusions & propos des deux parameétres les plus influents pour (2 et p. La prise
en compte de 'incertitude sur I’épaisseur du flan et des propriétés du matériau dans
le processus de conception de procédé, pour maitriser leurs influences sur les per-
formances de la piéce emboutie, devrait contribuer & la réduction des taux de rejet.
Afin de réduire les effets de la variabilité d’épaisseur de la tole et des propriétés
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Sensitivity result of input variables contributing to B1 at their nominal value
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Figure 5.14: L’analyse de sensibilité des variables d’entrée contribuant a la réponse
du retour élastique de (1 & leur valeur nominale

Sensitivity result of input variables contributing to [32 at their nominal value
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Figure 5.15: L’analyse de sensibilité des variables d’entrée contribuant a la réponse
du retour élastique de [ & leur valeur nominale



192

Sensitivity result of input variables contributing to p at their nominal value
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Figure 5.16: L’analyse de sensibilité des variables d’entrée contribuant a la réponse
du retour élastique de p a leur valeur nominale

des matériaux et de la géométrie de 'outillage, nous allons rechercher les configu-
rations optimales des paramétres controlables du procédé constitués de BHF et des
conditions de frottement.

Stratégie pour construire des méta-modeéles

Les méta-modéles sont construits selon les 5 premiéres étapes de la démarche illus-
trée a la figure 5.17. Les objectifs de 'utilisation des méta-modéles dans cette these
sont la compréhension et la prédiction des variations dans processus de formage de
la tole. Ensuite, I'exécution des algorithmes d’optimisation sur les méta-modeéles
pour rechercher des conceptions optimales pour le processus. Les variables d’entrée
et de sortie ont été précisées dans la modélisation du processus de formage de tole.
La plage de précision des méta-modéles dépend des objectifs du méta-modele. Un
méta-modele utilisé pour la prédiction doit étre trés précis, tandis que pour un
méta-modele utilisé pour la compréhension. il suffit qu’il puisse reproduire une ten-
dance. Les gammes de précisions peuvent étre spécifiées par les mesures de validité
tels que l'erreur quadratique moyenne (RMSE), I'erreur absolue maximale (MAE).
Avant d’échantillonner des variables d’entrée pour construire un DOE, il est néces-
saire d’identifier le seuil minimum de sensibilité du modéle EF pour obtenir des
résultats de simulation MEF fiables. Le procédé pour identifier ce seuil minimum
de sensibilité du modele EF a été proposé dans la section précédente. L’étape suiv-
ante consiste a exécuter les simulations MEF pour 1'ensemble des variables d’entrée
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échantillonnées dans DOE. Ensuite, les méta-modéles sont construits avec les valeurs
des réponses. Les mesures de validité sont calculées pour comparer la précision du
méta-modeéle avec la précision requise. Si le méta-modeéle ne satisfait pas aux exi-
gences de précision, on peut revenir & ’étape du choix d’'un DOE pour ajouter des
points expérimentaux (donc d’autres simulations) et par la suite adapter le méta-
modéle avec cette information supplémentaire. Ce processus est répété jusqu’a ce
que les exigences de précision requises soient satisfaites.

Méta-modéle pour le procédé de formage de tole

Une simulation MEF du procédé de formage de tole peut nécessiter généralement
plusieurs heures de calculs. Afin d’avoir une évaluation probabiliste (c-a-d: moyenne
la variance des sorties) des parameétres des sortie du procédé de formage de tole,
plusieurs milliers d’évaluations sont nécessaires. De plus, pour obtenir la conver-
gence de 'optimisation, plusieurs milliers de points d’échantillonnage sont exigés.
Donc, il est impossible d’exécuter une simulation MEF pour chaque évaluation.
Alors, il est nécessaire d’utiliser un modéle de substitution pour ce but.

Les variables d’entrée comprennent les toles d’épaisseur ¢, la force de serre-flan
Fpirr, le coefficient de frottement p, la limite d’élasticité R., résistance a la traction
R,,, le rayon du poingon R, et celui de la matrice 4. Les données d’entrée pour
la stratégie DOE sont données dans le tableau 5.3, dans lequel les propriétés des
matériaux sont tirées de données Arcelormittal [7].

Table 5.3: Les données d’entrée pour la stratégie DOE

Facteurs Niveaux

t |mm]| 1 1.5 2
Fpur |kN] 2.94 26.47 50
o 0.04 0.1 0.16
R, [MPa] [7] 500 550 600
R,, [MPa] |7] 780 840 900
R, |mm] 2 6 10
R [mm] 2 6 10

Le plan d’expériences utilisé pour échantillonner, est un plan factoriel complet
& plusieurs niveaux. Cette méthode fonctionne mieux avec moins de huit variables
et moins de quatre niveaux. Dans ce cas, nous avons 7 facteurs & 3 niveaux, soit
37 = 2187 points d’échantillonnage initiaux.

Les variables de sortie sont des paramétres retour élastique S, B2, p. Nous avons
besoin de construire un méta-modéle pour chaque variable de sortie:

b1 = fi(t, FBaF, ity Re; R, Ry, Rq) (5.5)

B2 = fo(t, FrF, b, Re, R, Rp, Ry) (5.6)
p:f3(taFBHFnua R€7RvapaRd) (57)
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En comparant entre la précision de plusieurs méta-modéles, il est constaté que la
précision de la méthode de RBF est la meilleure comme l'indique le tableau 5.4.

Table 5.4: Comparaison de la précision de métamodeéles

RSM Réponses MAE R-carré
b1 7.4591x107°  0.9999
Kriging (2 5.6535x1073  0.9999
p 4.2752x1076 1
b1 12.0715 0.8727
SVD2 B, 30.8179 0.8829
P 96665.8 0.0768
b1 9.9122 0.9724
SVD3 By 29.4869 0.9651
p 92667.0694 0.1431
b1 9.0596x10~ 1 1
RBF Ba 3.2892x10710 1
p 6.0101x10~7 1
b1 0.8783 0.9999
NN Bo 12.1686 0.9982

p 21912.8576 0.9154







Incertitudes et dispersions
géométriques

Catégorisation des incertitudes

Une classification classique des incertitudes est de les séparer en deux types: incer-
titudes aléatoires et incertitudes épistémiques. Les incertitudes aléatoires sont in-
trinséquement de nature stochastique irréductible. Les incertitudes aléatoires pour
une tole emboutie comprennent les variabilités stochastiques dans les propriétés des
matériaux, I’épaisseur de la tole et les caractéristiques de frottement de la surface.
Ces incertitudes aléatoires sont considérées comme des variabilités paramétriques.
D’autre part, l'incertitude épistémique est due au manque de connaissances ou au
caractére incomplet de 'information et elle est subjective et réductible. Les incerti-
tudes épistémiques comprennent des incertitudes sur le modéle utilisé pour décrire
la réalité, ses limites et les conditions d’exploitation, également appelées erreurs de
forme de modéle [125]. On peut aussi y inclure les erreurs introduites par les méth-
odes de résolution numérique utilisées (par exemple, les erreurs de discrétisation, les
erreurs d’approximation, les problémes de convergence, ..) [14].

Dans la conception d'un procédé d’emboutissage de tole basée sur la simulation
numérique MEF, les deux types d’incertitudes sont présents. La classification des
incertitudes est représenté dans la figure 5.18. D’autre part, sur la base de I'idée

Uncertainty
|
| 1
Aleatory Epistemic
Uncertainty Uncertainty
¢ Material e Errors introduced
properties by numerical
* Blank thickness methods

¢ Friction

Figure 5.18: Taxonomie des incertitudes dans la conception dun procédé
d’emboutissage de tole basée sur la simulation numérique MEF.

originale proposée par Taguchi, les parameétres de tous les problémes de conception
peuvent étre classés en deux groupes [30]: (1) les facteurs de controle composés des
entrées que le concepteur est libre de manipuler et (2) des facteurs de bruit, qui sont
des entrées qui sont difficiles ou cotiteuses & controler. La figure 5.19 représente un
P-diagramme d’un modéle numérique utilisé pour décrire le produit ou le processus
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Uncertainties: z, Model uncertainty
Design parameters: p Product / Process ——> Response: f
(Noise factors) —_—

N
I @<— Uncertainties: z,

Design variables: x
(Control factors)

Figure 5.19: P-diagramme

physique réel. Elle représente schématiquement la relation entre I’entrée du modéle
et la sortie ou réponse.

Stratégie pour la propagation de l’'incertitude

Comme indiqué au chapitre précédent, avant de procéder a la propagation des incer-
titudes, il est indispensable de construire des méta-modeéles qui seront ensuite util-
isés pour estimer les moments probabilistes des réponses. En effet plusieurs milliers,
voire des millions d’évaluations sont nécessaires pour une évaluation probabiliste,
le modéle EF du procédé de formage de tole ne peut pas étre utilisée directement.
Par conséquent, une approche pour la propagation de l'incertitude sur la base de
méta-modeéle est proposée comme indiqué dans figure 5.20.

Apres les variables d’entrée aient été identifiées, l'incertitude des paramétres
d’entrée est modélisée et représentée par des distributions Gaussienne comme présenté
dans le tableau 5.5. L’échantillonnage de Latin Hypercube est ensuite utilisé pour

Table 5.5: Modélisation probabiliste : représentation des incertitudes dans les
parameétres d’entrée

Paramétres Distribution Bornes d’intervalle Moyenne écarte-type

Fpur [KN]  Normal [2.94,50] 2647 0.6667
R, [mm] Normal [2,10] 6 0.0167
R, |mm]| Normal [2,10] 6 0.0167
R, [MPa]  Normal [500,600] 550 16.667
R,, [MPa]  Normal [780,900] 840 20

u Normal [0.04, 0.16] 0.1 0.0033
t [mm] Normal [1,2] 1.5 0.0167

les valeurs des parametres incertains. Ces points d’échantillonnage sont propagées
& travers les méta-modeéles pour atteindre moments statistiques des réponses.
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Figure 5.20: Démarche proposée pour la propagation de l'incertitude.

Propagation de distribution

Les parameétres d’entrée sont échantillonnés par LHS comme représentés graphique-
ment dans la Figure 5.21. Les paramétres d’entrée sont supposées comme des vari-
ables aléatoires continues. Cela représente incertitudes aléatoires dans les paramétres
d’entrée de pliage de la tole. L’un des objectifs de propagation de l'incertitude est
d’évaluer les moments statistiques des sorties. Figure 5.22 et Table 5.6 montrent la
densité de probabilité ainsi que la moyenne et I’écart type 81, B2 et p.

Table 5.6: Les deux premiers moments statistiques de 51, B2 and p

Parameétres 1 [°] 52 [°] p [mm]|
Moyenne 17.823 12.7535 150.854
écarte-type  0.9693  0.745 66.7696

Détermination des variations de performance basé sur
I’exigence fonctionnelle

On suppose que les composants sont assemblés entre eux par des rivets. Pour
s’assurer qu’il n’y ait pas de probléme dans le processus d’assemblage, les com-
posants doivent respecter les spécifications fonctionnelles sur la position des pergages
des rivets. Par conséquent, la variation de position d’un trou en raison du retour
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(b) 10000 points d’échantillonnage générés par LHS pour R, R, et ¢

Figure 5.21: Les points d’échantillonnage générés par LHS pour les paramétres
d’entrée
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Figure 5.22: La densité de probabilité de 81, S2 and p
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Figure 5.23: La variabilité de la position du trou avant et apres le retour élastique.

élastique doit étre prise en compte.

La position du trou, marquée par le point T, avant et aprés le retour élastique

avec une moitié de la piéce est présentée dans la Figure 5.23. L’exigence fonctionnelle

du trou sur la piéce se traduit par:

e La position du trou & partir du point de référence dans ’axe horizontal est de
100 [mm].

e L’amplitude du déplacement du trou doit étre dans l'intervalle de tolérance

admi

L’amplitude du déplacement de trou est définie par:

ssible.

Ur = \/(wr — 2§02 + (yr — 42

(5.8)

o (z%, %) est la coordonnée du point T avant retour élastique et (z7,yr) est la

coordonnée du point T aprés retour élastique.
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Métamodeéle et analyse d’incertitude pour Ur

On trouve que le méta-modéle de type RBF présente la meilleure précision pour
représenter le Ur comme indiqué dans le tableau 5.7. La Figure 5.24 montre le

Table 5.7: Comparaison de la précision des méta-modéles pour Up

RSM Résponses MAE R-carré
Krigeage Ur 1.0258x10~%  0.9999
SVD2 Ur 36.6112 0.8268
SVD3 Ur 38.6366 0.9370
RBF Ur 5.7494x10710 1

NN Ur 16.9244 0.9988

meéta-modeéles de Ur par rapport & Fpyp et Ry. La Figure 5.25 montre la densité

BHF (X Axis)

Figure 5.24: Méta-modél de Ur par rapport & Fpyr et Ry.

de probabilité ainsi que la moyenne et ’écart-type de déplacement de trou Up.
On peut voir que la variation de la position du trou est importante en raison des
incertitudes aléatoires sur les entrées. Le déplacement du trou est assez important,
minimiser ce déplacement et sa variation est nécessaire. Une optimisation de type
MORDO sera présentée dans le prochain chapitre pour assurer cette minimisation.
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Figure 5.25: La densité de probabilité du déplacement de trou Ur.



Optimisation multi-objectif en
présence d’incertitudes

Stratégie d’optimisation multi-objectif sous incertitude pour
procédé de formage de tole

L’objectif de cette thése est de proposer une stratégie pour l'optimisation multi-
objectif de la conception robuste du procédé d’emboutissage de la tole.

Comme indiqué, les variables d’entrée du processus se classe en deux catégories:
les variables de conception (facteurs de controle) et les parameétres de conception
(facteurs de bruit). En particulier, les variables de conception comprennent trois
parameétres:

e Force serrage Fpyr
e Rayon de matrice Ry
e Rayon de poincon R,
Facteurs de bruit comprennent 4 parameétres:
e ¢épaisseur de la tole ¢
e Limite d’élasticité R,
e Résistance a la traction R,
e Coefficient de frottement p
Supposons que les valeurs cibles des paramétres de retour élastique 1, 2, p et trou
déplacement Uz sont respectivement 0 [°], 0 [°], 400 et 0 [mm)].
Optimisation multi-objectif et conception robuste
Selon Choi et al. [33] et Allen et al. [4], il existe quatre types de conception robuste.

e Le type I consiste a représenter les incertitudes par des paramétres séparés des
variables de conception. Il s’agit alors d’optimiser les variables de conception
de facon & ce que les spécifications fonctionnelles soient satisfaites quelques
soit les incertitudes sur les facteurs de bruits.

e Le type II consiste & considérer que les incertitudes sont incluses dans les
variables de conception.

e Le type III consiste a considérer que les incertitudes sont incluses dans les
fonctions du systéme.
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e Le type IV consiste & considérer que les incertitudes sont présentes dans le
processus d’analyse du systéme.

L’approche de conception robuste proposée dans cette thése reléve & la fois du type I
et du type II. Dans le type I, la variance de la réponse est provoquée par les variations
des facteurs de bruit. Bien que la conception robuste de type II soit différente du
type I, la variation de la performance est due & uniquement des variations des
facteurs ou des variables de controle de conception [30]. L’approche proposée pour
le MORDO prend en compte les incertitudes dans les facteurs de controle et des
incertitudes dans les facteurs de bruit.

L’objectif de 'optimisation robuste est de minimiser & la fois ’écart de la valeur
moyenne § = |uy — T, et la variance oj%, de la fonction de la performance, sous
les contraintes. La stratégie de conception multi-objectif utilisant I'optimisation de
conception robuste est présentée dans la Figure 5.26. Supposons que x est le vecteur
des facteurs de controle de Fppr, Rq, Ry et z est le vecteur des facteurs de bruit
de t,R¢, R, - La modélisation des incertitudes sur 1’épaisseur, les propriétés des
matériaux, le coefficient de frottement est représentée par la distribution gaussienne
pour des raisons de commodité mathématique car un modéle gaussien peut étre
spécifié uniquement par ses deux premiers moments.

Table 5.8: Modélisation probabiliste et la représentation des incertitudes dans les
parameétres pour le cas de déplacement de trou Ur

Parameétres Distribution Moyenne écarte-type Bornes d’intervalle

Fppr |kN]  Normal 26.470 0.6667 [4.940,48|
R, [mm] Normal 6 0.0167 [2.05,9.95]
R, |mm] Normal 6 0.0167 [2.05,9.95]
R. [MPa]  Normal 550 16.6667  [500,600]
R,, [MPa]  Normal 840 20 [780,900]
,u Normal 0.1 0.0033 [0.04, 0.16]
t [mm] Normal 2 0.0167 [1,2]

MORDO de déplacement de trou de Ur

La modélisation probabiliste et la représentation des incertitudes dans les facteurs
sont présentées dans le tableau 5.9. Dans le cas ou la fonction de performance est
le déplacement de trou Ur, la formulation MORDO est représentée comme suit:

Find z
to minimize

Fopji(z) = E[Up(z, 2)] — US*9 (5.9¢

Fopjo(z) = o(Ur(z, 2)) (5.9d
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Figure 5.26: A multi-objective design strategy using robust design optimization

Table 5.9: Modélisation probabiliste et la représentation des incertitudes dans les

parameétres pour le cas de déplacement de trou Ur

Parameétres Distribution Moyenne

écarte-type

Bornes d’intervalle

Fppr [kN|] Normal 26.470 0.6667

R [mm] Normal 6 0.0167

R, |mm| Normal 6 0.0167

R. [MPa]  Normal 550 16.6667
R,, [MPa]  Normal 840 20

I Normal 0.1 0.0033

t |mm] Normal 2 0.0167

[4.940,48]
[2.05,9.95]
[2.05,9.95]
500,600]
[780,900]
[0.04, 0.16]
[1.2]
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L’algorithme NSGA-II est utilisé dans cette optimisation de MORDO. Cet algo-
rithme a trouvé 425 solutions de conception optimaux graphiquement représentés
par le front de Pareto avant (POF) représenté sur la figure 5.27.
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Figure 5.27: Front optimal de Pareto obtenu de MORDO de dépalcement de trou
de UT
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MORDO des paramétres de 51, 51, p

Le formulation du probléme d’optimisation multi-objectifs de conception robuste
avec les trois variables de sortie est la suivante :

Find x (5.10a)
to minimize (5.10b)
Fopji(z) = B[ (2, 2)] — B9t (5.10¢)
Fopjo(x) = E[fa(x, 2)] — B3 9 (5.10d)
1 1
Fobj3(x> =F |:p(,f[j Z):| — pTarget (5108)
Fopja(z) = o(Bi(x, 2)) (5.10f)
Fopjs(x) = o(B2(x, 2)) (5.10g)
Fopyo() = o <p (;’ Z)> (5.10h)

De méme, les incertitudes dans les parameétres contrblables et non contrélables
sont modélisés par la distribution gaussienne, comme indiqué dans le Tableau 5.10.
Puisqu’il y a six fonctions objectifs, les solutions optimales de Pareto sont représen-

Table 5.10: Modélisation probabiliste et représentation des incertitudes sur les
paramétres dans le cas des 3 sorties 81, 51 et p

Parameétres Distribution Moyenne écarte-type Bornes d’intervalle

Frmr [KN]  Normal 26470 0.6667 [4.940,48]
R; [mm)] Normal 6 0.0167 [2.05,9.95]
R, [mm] Normal 6 0.0167 [2.05,9.95]
R. [MPa]  Normal 550 16.6667  [500,600]
Ro [MPa]  Normal 840 20 [780,900]
i Normal 0.1 0.0033 [0.04, 0.16]
t |mm]| Normal 1.5 0.0167 [1,2]

tées par une hypersurface de dimension six. Cependant, cette hypersurface ne peut
pas étre représentée graphiquement dans ce cas.

La prise de décision de multi-critére basée sur les indices
de capacité

Les résultats de ’optimisation multi-critére de la conception robuste sont des solu-
tions optimales de Pareto. Un des problémes dans MORDO est de déterminer une
conception de compromis qui est gouvernée par plusieurs critéres antagonistes. Pour
résoudre ce probléme, une prise de décision basée sur des indices de capacité de Cpy,
Cpm et I est proposée. Tout d’abord, cette approche est introduite pour le cas de
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la conception gouvernée par des deux objectifs avec I'optimisation du déplacement
du trou Ur. Ensuite, elle est généralisée a la conception gouvernée par plus de
deux objectifs et en particulier appliquée dans le cas de 6 objectifs du MORDO des
parameétres de retour élastique de 5y, fa et 1/p.

Prise de décision dans ’espace de critéres 2-D

La représentation graphique des indices de capacité de Cpg, Cpm et I dans lequel
I'index Cpy est représenté par une forme linéaire, alors que les indices Cpm, et I sont
représentés par la forme quadratique de la figure 5.28. Selon l'indice de capacité

Decision making in 2-D criteria space

—+—POF
—I, Cpm
—Cpk

o (Standard deviation)

Find Max(Cpk) or find Max(Cpm) = Min(l)

8 (Deviation from target)

Figure 5.28: La prise de décision dans I'espace des critéres 2-D basée sur des indices
de capacité

utilisé par un concepteur, une solution de compromis est déterminée.
Comme la valeur cible de Ut est supposée étre 0 [mm], la spécification de Ur
est représenté par Ur =0+ IT/2 [mm].

L’indice de Cp
La meilleure solution est celle qui donne la valeur de C;—;‘k maximale:

T j
i 2 — |6g, |
k— .1
p 3o,
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L’indice de Cp,,

De méme, la meilleure solution est celle qui donne la valeur de C;k maximale:

< T
Com = : 4 (5.12)
6/ (3%,)2 + (01,)?
L’indice de I
La meilleure solution est celle qui donne la valeur de C;k minimale:
1=\ /(01,)? + (5,2 (5.13)

La prise de décision dans ’espace de critéres 6-D

Puisqu’il y a 6 fonctions objectif donnés, des solutions Pareto optimales sont représen-
tées par une hypersurface de dimensions 6 de os,,0p,,01/,, 95,,08,,01/,- Ainsi, la
recherche d’une meilleure solution de compromis de solutions Pareto optimales en 6-
D sera réalisée en combinant les indices de capabilité utilisés & partir de dimensions
supérieures a des dimensions inférieures.

Comme mentionné ci-dessus, les valeurs cibles de (31, B2 et 1/p sont supposées
étre 0 [°] et 0 [mm] respectivement, les spécifications de ces trois variables sont
représentées comme 31 =0+ IT/2 [°], fo =0£IT/2[°| et 1/p =0+ 1T/2 [mm]|.
L’indice de Cp

La meilleure solution est celle qui donne la valeur de M C),;, maximale:

m (1/m)
MCyy, = <H c;‘,k) (5.14)
=1

Ou 7 est le nombre de variables de sortie.

L’indice de Cp,,

La meilleure solution est celle qui donne la valeur de M C),,, maximale:

m (1/m)
MC,,, = <H C;m> (5.15)
=1

L’indice de I
La meilleure solution est celle qui donne la valeur de M I minimale:

MI = (ﬁ 1;)/m™) (5.16)

=1
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Synthése des résultats

Les meilleures solutions en fonction des indices de capacité qui ont été obtenues &
partir de la MORDO de déplacement de trou de Ur et trois parameétres de retour
élastique de (31, P2, 1/p sont synthétisées dans le tableau 5.11. On trouve que la
configuration de la conception optimale qui est indiquée en utilisant le Cpy, indice
dépend de la valeurs I'T. Bien que la configuration de conception optimale soit
identique malgré les différentes valeurs de I'T" lors de l'utilisation de 'indice de Cl,,

Pour les parameétres de retour élastique de (1, B2, 1/p, la configuration de con-
ception optimale obtenue par C,,, satisfait la valeur de I'T" plus petit que celui
atteint par Cpy. La différence de résultats prévus de i, B2, 1/p est trés petite
lorsque 'on compare entre les solutions de conception basées sur Cpy, et Cpyp,. Alors
que pour déplacement de trou de Ur la valeur de IT" a partir de Cp, est plus grand
que celui de Cpy,. Les résultats prévus de Ur basés sur ces indices sont les mémes.

Table 5.11: Syntheése des meilleures solutions sur la base des indices de capabilité

Parameétres IT Cpk Com Solution ID

B1 9 [°] 3.6222

B 9 [°] 3.2771 1736 (Table 5.12)
N/A

1/p 9 [mm]| 24051

Ur 11 [mm] 1.335 1112 (Table 5.13)

51 3.8 [°] 1.6215

B 3.8 [°] N/A 1.3634 1271 (Table 5.14)

1/p 3.8 [mm] 150.107

Ur 12 [mm| 1.346 1112 (Table 5.15)
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Table 5.12: La meilleure solution de compromis trouvé en trouvant valeur maximale
de MCpy, de trois parameétres retour élastique 31, B2, 1/p

Valeurs de Cpy,

B _ OB — . —
Cp,i, = 3.62217; C’p,f_ = 3.27706; Cgk = 24051

Valeurs d’IT IT=9

Solution ID 1736

Parameétres Mean Stdev Min Max

Fpur [N 2.7150x10*  6.6530x10%  2.5079x10*  2.9270x10*
Ry [mm] 2.4013 1.6686x1072  2.3491 2.4542

R. [MPa] 5.4999x 102 1.6703x 101 4.8229x10%  6.0456x10?
Ry, [MPa] 8.4001x10% 20 7.7752x10%  9.1239x102
R, [mm] 9.95 1.6709x1072  9.8870 1.0003x 10!
U 0.1 3.3052x1073  8.8856x1072 1.1199x107!
t [mm] 1.5 1.6682x1072  1.4476 1.5518

b1 [°] -6.1158x1071  3.5784x107! -1.8810 4.7824x1071
B2 [°] 9.0027x1072  4.4857x1071 -1.5982 1.6313

1/p [mm] 4.5243x1073  6.2305x107°  4.7692x1073  4.2682x1073

Table 5.13: La meilleure solution lors de Cp; = 0.67, Cp, = 1.00 and C, = 1.33

Valeurs de Cpy,
Valeurs ’IT [mm)|

Cpr = 0.67; Cpp = 1.00; Cpp = 1.33
IT = 6.48; IT =8.72; IT = 11

Solution ID 1112

Parametres Mean Stdev Min Max

Fpur [N] 4.7778x10*  6.6530x10%  4.5707x10*  4.9898x10*
Ry [mm] 9.95 1.6686x1072  9.8977 1.0003x 10!
R. [MPa] 5.4999x10%  1.6703x101  4.8229x10%  6.0456x10?
Ry, [MPa] 8.4001x10% 20 7.7752x10%  9.1239x10?
R, [mm] 2.5346 1.6709x1072  2.4716 2.5875

U 0.1 3.3052x107%  8.8856x1072 1.1199x10~!
t [mm] 2 1.6682x1072  1.9476 2.0518

Ur [mm] 9.5960x10~1  1.1340 -2.2829 4.6259
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Table 5.14: La meilleure solution de compromis trouvé en trouvant valeur maximale
de MCpy, de trois paramétres retour élastique £y, B2, 1/p

Critére Com
Interval de tolérance IT =338
Solution ID 1271
Parameétres Mean Stdev Min Max
Fpur [N] 2.6728x10*  6.6530x10%  2.4656x10*  2.8848x10*
Ry [mm] 2.4055 1.6686x1072  2.3532 2.4583
R [MPa| 5.4999x10%  1.6703x10'  4.8229x10%  6.0456x 10>
R,, [MPa] 8.4001x10% 20 7.7752x10%  9.1239x102
R, [mm] 9.6323 1.6709x1072  9.5694 9.6853
U 0.1 3.3052x1073  8.8856x1072 1.1199x107!
t [mm] 1.5 1.6682x1072  1.4476 1.5518
B [°] 2.0182x1072  3.9007x10~1 -1.4289 1.2220
B2 [°] 1.0770x1071  4.5186x1071 -1.5421 1.6678
1/p [mm] 4.2183x1072  8.5893x107° 4.5659x1073 4.0159x1073
Table 5.15: La meilleure solution trouvée par I’aide de I'indice de Cpp,
Critere Cpm
Solution ID 1112
Paramétres Mean Stdev Min Max
Fpur [N]  4.7778x10*  6.6530x10%  4.5707x10*  4.9898x10*
Ry [mm)] 9.95 1.6686x1072  9.8977 1.0003x 10"
R. [MPa]  5.4999x10%2  1.6703x10'  4.8229x10%>  6.0456x10?
R,, [MPa]  8.4001x10% 20 7.7752x10%  9.1239x10?
R, [mm] 2.5346 1.6709x1072  2.4716 2.5875
m 0.1 3.3052x1073  8.8856x1072 1.1199x10~!
t [mm] 2 1.6682x1072  1.9476 2.0518
Ur [mm] 9.5960x10~!  1.1340 -2.2829 4.6259




Conclusions et perspectives

Conclusions

Les deux objectifs de conception robuste sont de rendre la valeur moyenne proche
de la valeur cible et de minimiser la variabilité qui résulte de I'incertitude représen-
tée par des facteurs de bruit. Cette thése a proposé une stratégie d’optimisation
robuste pour prendre en compte les incertitudes aléatoires dans les facteurs de bruit
pour optimiser la conception des processus de fabrication en présence des incerti-
tudes. Dans le contexte de 'ingénierie simultanée et la simulation numérique MEF,
cette stratégie a été élaborée pour répondre au défi dans le processus de concep-
tion: "Comment concevoir pour produire des produits robustes". Il est dédié a la
conception de procédé d’emboutissage.
Plusieurs conclusions clés sont tirées de cette recherche :

e En termes de modélisation et de simulation MEF, la précision des modéles
numériques MEF dépend de la précision des modéles utilisés pour décrire
la réalité (des équations du comportement du matériau, des conditions aux
limites ...) et de la précision des méthodes de résolution numeériques (discréti-
sation, facteur de mise a 1’échelle de la masse, maillage, types de contact ...).
En outre, elle dépend aussi de parameétres du processus (I'effort du serre-flan,
des conditions de frottement, de la piéce, de la géométrie de outillage, de la
vitesse ...). L’étude des modéles numériques MEF a démontré qu’il existe un
seuil de sensibilité auquel les réponses de ces des modéles numériques MEF
sont insensibles & de trés faibles variations des paramétres d’entrée du mod-
éle. En conséquence, des variations inférieures a ce seuil autour de valeurs
nominales des paramétres d’entrée ne sont pas correctement propagées par le
modeéle numériques MEF. Afin d’étre capable de construire des expériences
numériques basées sur simulation MEF et de propager de maniére cohérente
ces incertitudes, nous avons proposé une approche basée sur une méthode de
différence finie (FDM) pour détecter seuil minimum de sensibilité d'un modéle
EF. Cette méthode a été appliquée avec succes pour le probléme de référence
de pliage de tole Numisheet2011.

e L’incertitude est inévitable dans un processus de fabrication. Par conséquent,
la gestion des incertitudes dans le cycle de vie du produit au début, en par-
ticulier dés les phases de conception préliminaire est essentielle. A travers
I’analyse des incertitudes du pliage de tole, nous avons montré que les méth-
odes de conception classiques ne peuvent pas toujours satisfaire les objectifs
souhaités en raison des incertitudes aléatoires qui existent dans les propriétés
du matériau, ’épaisseur de la tole et les parameétres du processus. L’étude
de ces incertitudes aléatoires a permis de constater qu’elles influencent de
maniére significative la variation des performances du produit. En particulier,
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I’épaisseur et les propriétés des matériaux vierges sont des parameétres ayant
la plus grande influence sur la variation de forme due au retour élastique.

A travers I’analyse des incertitudes de configurations de conception obtenues
par optimisation classique (également connue sous le nom d’optimisation de
la conception déterministe), nous avons constaté qu’il existe un écart entre la
valeur moyenne et I’écart-type dans les réponses des paramétres de forme du
pliage d’une tole en forme de U en raison des incertitudes aléatoires impor-
tantes dans les paramétres incontrolables. Afin de résoudre ce probléme, une
stratégie d’optimisation de conception robuste appliquée a la conception d’un
processus de pliage de la tole a été proposé. Cette stratégie a été appliquée
avec succes au probléme de référence du processus de pliage d’une tole en U.

Une stratégie d’optimisation multi-objectif en contexte incertain pour les pro-
cessus de pliage de tole a été introduite. Un critére de prise de décision fondé
sur les indices de capacité appliqués a la conception robuste a été proposé.
Nous avons établi que la meilleure solution, obtenue & partir des solutions op-
timales de Pareto en utilisant I'indice Cp; dépend de I'intervalle de tolérance
(IT). Avec différentes valeurs de IT, la meilleure solution est différente. Alors
que la valeur de IT n’a pas d’influence sur la détermination de la meilleure
alternative en utilisant 'indice Cpy,. La meilleure solution trouvée par cet
indice est identique pour toutes les différentes valeurs de I7T. Toutefois, afin
de vérifier la capacité de configuration de conceptions optimales obtenues sur
la base des indices Cy, et Cpp,, ces solutions de conception ont été déterminées
pour assurer un taux de fiabilité du procédé de 99,99 % correspondant a un
taux de rebut de 63 PPM. Cette approche a été appliquée avec succes aux
problémes d’optimisation avec les critéres s’exprimant dans des espaces en 2
et 6 dimensions.

Perspectives

Plusieurs points pour une recherche future sont proposés sur la base des connais-

sances acquises et les problémes rencontrés lors de I’étude de cette thése:

e Pour la simulation numérique MEF des procédés de formage de la tole, un

modéle de comportement approprié qui décrit correctement le comportement
du matériau est crucial. Un des effets significatifs sur la qualité de la pré-
diction du retour élastique est le modéle de comportement du matériau. En
particulier, la modélisation de l'effet Bauschinger et des caractéristiques de
durcissement cycliques des matériaux est essentielle. Pour la recherche future,
il serait judicieux d’essayer des modéles de comportement avancées pour la
prédiction du retour élastique comme la loi d’écrouissage de Geng-Wagoner
[65] et la loi d’écrouissage de Yoshida-Uemori[241] qui ont montré que pour
décrire le retour élastique elles produisaient un meilleur comportement. En
outre, il y a encore I’écart entre les résultats obtenus par un procédé physique
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et la simulation numérique. Cette différence résulte des hypothéses du mod-
éle, discrétisation du modéle, les types de contact, du maillage, du facteur
de mise a I’échelle de la masse, etc... L’amélioration continue des méthodes
numériques et de la modélisation de problémes reste indispensable pour la
recherche future.

En ce qui concerne ’analyse de sensibilité de seuil de la simulation numérique
MEF, ce seuil peut étre amélioré lorsque la précision du modéle numérique
est améliorée. L’étude du seuil de sensibilité avec un maillage plus fin et une
vitesse de poincon inférieure est recommandée. En outre, ’approche proposée
pour détecter le seuil de sensibilité doit étre testé avec un différent logiciel
basé sur MEF comme un point de départ pour des travaux futurs.

Puisque les méta modeéles jouent un réle trés important dans la stratégie
d’optimisation en conception robuste, I’amélioration de la précision des méth-
odes de méta-modélisation est recommandée comme un point dans les travaux
futurs. Actuellement, la précision du méta modéle dépend du choix de la
méthode de méta-modélisation la mieux adaptée aux données d’entrée.

Dans ce travail de thése nous nous sommes limités & I'usage de sept parameétres
d’entrée pour le modéle numérique. L’ajout de plus de paramétres dans I’étude
est proposé comme recherche future. En particulier, ’étude de la dispersion
des propriétés d’anisotropies du matériau est une suggestion. D’autre part,
les incertitudes dans les paramétres d’entrée sont pris en compte en raison des
variations de piéce-a-piéce, a 'intérieur du lot, de bobine-a-bobine, de lot-a-lot
et de laboratoire-a-laboratoire. Il est recommandé d’étudier les incertitudes
des parameétres d’entrée résultant de variations a l'intérieur de piece. Par
exemple, la variation de ’épaisseur dans la piéce en raison de 'imprécision du
processus de laminage. De meéme, la dispersion des parameétres de processus
tels que la force serrage, la friction entre les surfaces devrait étre approfondie.

En ce qui concerne la tolérancement géométrique, nous suggérons d’utiliser
une analyse des tolérances basée sur une base modale pour représenter les
variations de forme des piéces embouties.

La stratégie d’optimisation est effectuée en utilisant des modéles et des approx-
imations numériques du processus réel , des erreurs existent toujours. Nous
recommandons fortement de valider les configurations de conception optimale
obtenues en les testant sur un procédé réel.
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Appendix

A.1 Equations for calculating the springback paramters

ox x AoBo
09 = _ Al
1 = arceos <|01‘| X |AoBo|> (A1)

0 0% x AoBo
= - A2
b2 = arccos (\oxl X ]AoBo\) (4.2)
o x AB
_ i A.
61 = arccos <\om| » |AB|> (A.3)
AB x DE
_ ‘ A4
0 arCCOb(|DE]><|AB|) (A.4)
B =61 — 6} (A.5)
B2 = 05 — 0 (A.6)
p=+/(xa—=z1)2+ (ya — yr)? (A7)
Where,

by — by
xrr = ((1_ 1)) (A8)

ag ail

Xz

yr=b1— (=) (A.9)

ai
g = B Y4 (A.10)

IR — XA

YB+YA L T+ Ty

= A1l
by 5 T %, ( )
gy = 2C Y4 (A.12)

To —TA
bzzyC+yA+xC+xA (A.13)

2 2&2



220 Appendix A. Appendix

A.2 Numerical analysis procedures

A.2.1 Dynamic explicit procedure

Starting from the virtual work equation:

/Tij(Sui,jdV:/tiéuidS—/ pii;du;dV (A.14)
v S \%

where T;; is the Cauchy stress tensor, u; ; the gradient of the displacements, ¢; the
traction vector, p the density, ii; the acceleration of material particles and § the
variational operator. After being discreted from the principle of virtual work, the
equation (A.14) has the form:

_ Ft

wnt

[M]i* = F!

ext

(A.15)

where [M] is the mass matrix, F’,, the external force and F,, the internal force
vector at a time t. An explicit central-difference time integration rule is used in the
explicit dynamics procedure to perform a large number of small time increments
efficiently. The explicit central-difference operator satisfies the dynamic equilibrium
equations at the beginning of the increment, t; the accelerations calculated at time
t are used to advance the velocity solution to time t + At¢/2 and the displacement
solution to time t + At. The equations of motion for the body are integrated using
the explicit central-difference integration rule:

At + Aty
N _.N i+1 @) . N
Y Tl T T e (A.16)
Uipn) = UGy + At(i+t)ué\z‘[+§) (A-17)
where u? is a degree of freedom and the subscript i refers to the increment number

in an explicit dynamics step. The central-difference integration operator is explicit
N
(i-3)

and ug) from the previous increment. In order to compensate for possible density

in the sense that the kinematic state is advanced using known values of

manipulations, the equation (A.15) must be introduced by an artificial damping
term:

[M]i* + [C]u* = FL,, — F} (A.18)

int
where |C]| is the damping matrix and % the velocity. Since the central-difference

operator is conditionally stable, the the stable time increment is given by:

2 L* Le
~ (A.19)

amaz - Fd - E

\/ P
where wpqz 18 the highest frequency of the system; L€ is the element length in the
mesh; Cy is the wave speed of the material; E is the Young’s modulus of the material;

Atstable <

p is the mass density.
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Most sheet metal forming analyses require too much computer time to be run in
their physical time scale because the actual time period of forming events is large
by explicit dynamics. Thus, it is critical to reduce the time of the analysis. There
are two methods for speeding up the analysis:

e  Artificially increase the punch velocity so that the same forming process
occurs in a shorter step time. This method is called load rate scaling.

e Artificially increase the mass density of the elements so that the stability
limit increases, allowing the analysis to take fewer increments. This method is called
mass scaling.

In order to ensure that dynamic effects are insignificant on the output results,
the kinetic-to-internal energy ratio is required less than about 5%.

A.2.2 Static implicit procedure

The virtual work equation which body forces are not considered has the form:

\4 S

After being transformed into a known configuration in time yielding, the equation
(A.20) is defined as follows:

/ [dTZ] — Tkjdui,k + Tijduk,k]éui7jdv = / t;6u;dS (A.21)
\%4 S

A stiffness equation obtain after discretizing from the principle of virtual work:
[K(u)]Ju=F (A.22)

The static implicit procedure is executed according to an incremental step-by-step
solution in which it is assumed that the static equilibrium configuration of a body
is defined at the increment t. The configuration at the time ¢t + At attains by means
of an iterative procedure, based on each interation on the solution of the following
finite element governing equations [3]:

(IKL)} + [Kni ) AU = REFHA _ pHAA=D (A.23)

UHALG) — prt+Ati=1) L A () (A.24)

where [Kp]! is the linear strain incremental stiffness mastrix at the time t mea-
sured with respect to the configuration at the same time t; [Ky]i the non-linear
strain incremental stiffness matrix at the time t, which contains the term due to the
non-linear relationship between strains and displacements; AU® the vector of the
increments of the nodal point displacements calculated in the iteration i; R‘tA? the

vector of the externally applied nodal point loads at t)he time t + At which include
t+At, (i—1

By A

forces equivalent to the element stresses at the time £+ At and measured with respect

the ones deriving from the thermal stresses; the vector of the nodal point

to the configurations at the same time ¢+ At, calculated by means of the solution of
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the previous iteration; and U241 and UHA4L(-1) the nodal displacement vectors
at the time t + At, calculated at the i and the (i-1) iterations respectively.

The results of sheet metal forming analysis are repsented by the incremental

displacement field and by the stresses and strain incremental fields.

A.3 Input data for sensitivity threshold identification

h varia- Blank Yield UTS Blank Friction  Die Punch
tion step thick- strength ~ (MPa) holder coeffi- ra- ra-
(%) ness (MPa) force (N) cient dius  dius
(tnm) (mm)  (mm)
-20 1.12 440 672 2352 0.08 5.6 4
-10 1.26 495 756 2646 0.09 6.3 4.5
-5 1.33 522.5 798 2793 0.095 6.65 4.75
-2 1.372 539 823.2 2881.2 0.098 6.86 4.9
-1.5 1.379 541.75 827.4 2895.9 0.0985 6.895 4.925
-1 1.386 544.5 831.6 2910.6 0.099 6.93 4.95
-0.8 1.3888 545.6 833.28  2916.48 0.0992 6.944 4.96
-0.5 1.393 547.25 835.8 2925.3 0.0995 6.965 4.975
-0.2 1.3972 548.9 838.32  2934.12  0.0998 6.986  4.99
-0.1 1.3986 549.45 839.16 2937.06  0.0999 6.993  4.995
-0.05 1.3993 549.725  839.58  2938.53  0.09995  6.9965 4.9975
-0.01 1.39986  549.945  839.916 2939.706 0.09999  6.9993 4.9995
0 14 550 840 2940 0.1 7 5
+0.01 1.40014  550.055  840.084 2940.294 0.10001  7.0007 5.0005
+0.05 1.4007 550.275  840.42 2941.47  0.10005  7.0035 5.0025
+0.1 1.4014 550.55 840.84 294294  0.1001 7.007  5.005
+0.2 1.4028 951.1 841.68  2945.88 0.1002 7.014 5.01
+0.5 1.407 552.75 844.2 2954.7 0.1005 7.035 5.025
+0.8 1.4112 554.4 846.72  2963.52 0.1008 7.056 5.04
+1 1.414 955.5 848.4 2969.4 0.101 7.07 5.05
+1.5 1.421 558.25 852.6 2984.1 0.1015 7.105  5.075
+2 1.428 561 856.8 2998.8 0.102 7.14 5.1
+5 1.47 D77.5 882 3087 0.105 7.35 5.25
+10 1.54 605 924 3234 0.11 7.7 5.5
+20 1.68 660 1008 3528 0.12 8.4 6

Table A.1: The input parameters for indentifying sensitivity threshold
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A.4 Results of sensitivity threshold identification
A.4.1 Punch radius
Parameter Sensitivity — Sensitivity Sensitivity General Corresponding
threshold of threshold of threshold of sensitivity variation

B1 (%) B2 (%) p(%) threshold of

Ry(%)
R, 1 5 10 10

range of R,

54 0.5mm

Table A.2: Synthesis of punch radius sensitivity threshold

Sensitivity threshold 1.00%, sensitivity : -0.71323 Sensitivity threshold 5.00%, sensitivity : -0.12246
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A.4.2 Die radius

Parameter Sensitivity  Sensitivity Sensitivity General Corresponding
threshold of threshold of threshold of sensitivity variation
B1 (%) B2 (%) (%) threshold of range of Ry
Ra(%)
Ry 0.2 5 1 5 7 £ 0.35mm

Table A.3: Synthesis of die radius sensitivity threshold

Sensitivity threshold 0.20%, sensitivity : 0.06386 Sensitivity threshold 5.00%, sensitivity : 0.25468
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A.4.3 Blank holder force
Parameter Sensitivity — Sensitivity Sensitivity General Corresponding
threshold of threshold of threshold of sensitivity variation
b1 (%) B2 (%) p(%) threshold of range of
BHF (%) BHF
Fpur 1.5 5 1.5 5 2940+ 147N

Table A.4: Synthesis of blank holder force sensitivity threshold

-3 Sensitivity threshold 1.50%, sensitivity : 0.00044

-3 Sensitivity threshold 5.00%, sensitivity : 0.00056
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A.4.4 Friction coefficient
Parameter Sensitivity  Sensitivity Sensitivity General Corresponding
threshold of threshold of threshold of sensitivity variation
b1 (%) B2 (%) p(%) threshold range of
of fric. fric. coeff.
coeff.(%)
1 1.5 5 5 )

0.1 £0.005

Table A.5: Synthesis of friction coefficient sensitivity threshold

Sensitivity threshold 1.50%, sensitivity : 26.43483

Sensitivity threshold 5.00%, sensitivity : 5.32815
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A.4.5 Blank thickness
Parameter Sensitivity — Sensitivity Sensitivity General Corresponding
threshold of threshold of threshold of sensitivity variation

B1 (%) B2 (%) threshold of
blank thick-

ness(%)

p(%)

range of
blank thick-

ness

t 0.2 0.8 0.1 0.8

1.4
0.0112mm

+

Table A.6: Synthesis of blank thickness sensitivity threshold

Sensitivity threshold 0.20%, sensitivity : =17.38479

Sensitivity threshold 0.80%, sensitivity : —12.81495
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A.4.6 Ultimate tensile strength
Parameter Sensitivity ~ Sensitivity Sensitivity General Corresponding
threshold of threshold of threshold of sensitivity variation
b1 (%) B2 (%) p(%) threshold of range of

UTS(%) UTS

) 840

42MPa

+

Table A.7: Synthesis of UTS sensitivity threshold

Sensitivity threshold 2.00%, sensitivity :  0.01881
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A.4.7 Yield strength

Parameter Sensitivity Sensitivity Sensitivity General Corresponding
threshold of threshold of threshold of sensitivity variation
B (%) B2 (%) p(%) threshold of range of YS
YS(%)
R, 1 5] 5] 5] 550 +
27.5MPa

Table A.8: Synthesis of yield strength sensitivity threshold

x10? i 1.00%. itivity :  0.00721 x 107 Sensitivity threshold 5.00%. sensitivity : —0.00027
- — Forward difference 15 ——Forward difference
—— Cenral difference —— Cenral difference
1 —“—Backward difference| . Backward difference)
10| —
= L
el et
© v
£ g =
E % -05
] @
o 4 w
15
ol
005 01 D2 0.5 081 152 5 10 20 005 01 02 05 081 152 5 10
Yield strength Re wariation in (%) for nominal value of 550 MPa Yield strength Re wariaftion in (%) for nominal value of 550 MPa
(a) B (b) B2
itivi 5.00%. itivity : —0.02248
—+—Forward difference
——Central difference
01
&
=
E 0.05|
=
B
I
2
&
—0.05
005 01 D2 0.5 0.81 1.52 5 10 20
‘field strength Re wariation in (%) for nominal value of 550 MPa
(c) p

A.5 Metamodeling techniques

A.5.1 Response Surface Methodology

Polynomial functions with an increasing complexity are fitted through the observa-
tions y or the response parameters. Equation 2.47 may be written in matrix notation
as [142]:

y=XpB+¢ (A.25)
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where X is a matrix containing the levels of independent variables, 3 is a vector of
regression coefficients, and ¢ is a vector of random error terms. Note that the design
matrix X can incorporate non-linear terms with respect to the variables. The order
of these terms is referred to as the order of the polynomial model. The metamodel
is given by:

y=Xp (A.26)

where the unknown regression coefficients g are determined by minimizing the sum
of the squares of the errors ¢; at the training points. The least squares function is:

L= e =ce=(y—XB)"(y—XB) (A.27)
i=1

gé| 5 =0 After simplifying, the least

The least squares estimators must satisfy

squares estimator of 3 is:
B=(XTx)"1xTy (A.28)

The response prediction gy at untried point xg is given by the explicit function:
jo =4 B (A.29)
The variance at this location is given by [142]:
Var(io) = ozl (XTX)Lag (A.30)

The prediction uncertainty of the metamodel is given by the square root of the
variance of Equation A.30 as \/Var(go).
The difference between the observation y; and the fitted value ; is a residual denoted
by:

e=yi— Ui (A.31)

A.5.2 Kriging

Since computer simulations are deterministic in nature, the same input parame-
ters will yield exactly the same result, they are not subject to measurement error.
Hence, the remaining error € in Equation 2.47 should formally be zero [185]. Con-
sequently, Sacks et al. [183] proposed an approach of Design and Analysis of Com-
puter Experiments (DACE) in which Kriging is used as an interpolation technique.
The metamodel can interpolate exactly through the response values at the training
points.
The Equation 2.47 can be written by using Kriging as follows:

y=XB+ Z(x) (A.32)

where the random error term ¢ in Equation 2.47 is replaced by a stochastic part
Z(z) to compute the exact predictions at the available training points. Z(z) is
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assumed to be a Gaussian stochastic process with zero mean, process variance O'%,
and spatial covariance function given by:

cov(Z(x;), Z(x)) = o R(zi, ;) (A.33)

where R(z;, z;) describes the correlation between the known measurement points ;
and z;. The correlation function R determines the shape of the metamodel between
measurement points. This correlation function is specified by the user. The case of
a Gaussian exponential correlation function is given by:

R0,z z;) = exp 0= (A.34)

In the case of m design variables are present, the correlation function depends on
the m one-dimensional correlation functions as follows:
m
R(O,x;,x;5) = 1_[ex])_el(m”_mﬂ)2 (A.35)
=1

The entries of the vectors 8 = {61, 0s,...,0,,} and the distance between the known
measurement points x; and x; determine the structure of R(6,x;,x;.
Similar to RSM, a Kriging metamodel is fitted in order tominimize themean

square error between the Kriging metamodel y(x) and the true model but unknown
response function y(x) [183]:

min E(j(z) — y(x))? (A.36a)
s.t. E(g(x) —y(x)) =0 (A.36b)

In other words, the mean square error is minimized subject to the unbiasedness
constraint that ensures there is no systematic error between the metamodel and the
true function. The Best Linear Unbiased Predictor (BLUP) go at an untried point
xo is now given by [185]:

Yo =a{B+ri R (y— XPB) (A.37)

where X is the design matrix containing the training points. The vector rg contains
the correlation between the point (xg,yo) and the known measurement (x;,v;). R
is amatrix containing the correlation between the training points given by Equation
A.34.

A.5.3 Radial Basis Functions

Radial Basis Functions (RBF) are powerful tool for multivariate scattered data in-
terpolation [52]. Since RBF are interpolant response surfaces they pass exactly
through training points. The method uses linear combinations of a radially sym-
metric function based on Euclidean distance to approximate response functions.
Given a training set of n points sampled from a function f(z): R — R,

f(.’L’Z) = fi,i=1,...,n, (A38)
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a RBF interpolant has the form
s(x) =Y ¢;dl||lx — ;])/9), (A.39)
j=1

where || . || is the Euclidean norm in the d-dimensional space, and § a fixed scaling
parameter. The radial function ¢(r): [0,+00) — R is suitable fixed function. So
the RBF interpolant s is simply a linear combination of identical spherical symmetric
functions, centered at the n different training points sites.

The coefficient c; represents the free parameters of the RBF model. Their values
are obtained by imposing the interpolation equations:

s(xzi) = f(z;) = fi,Vi=1,...,n. (A.40)
By defining the symmetrical matrix A (termed the collocation matrix of the RBF)
as
Ay = ¢(l|zi — x[|/0),4,5 =1,....m, (A.41)
the interpolation equations can be expressed as
n
S(:L’Z) = ZAijcj = fZ,V’L = 1, ey T (A.42)
j=1
or in matrix form as
Ac=f (A.43)

If the matrix A is nonsingular, the unknown coefficients vector is obtained by in-
verting the linear system of equations:

c=A"1lf (A.44)

A key point for obtaining a unique solution is the nonsingularity of the matrix A:
this depends only on the choice of the radial function ¢.

For so-called positive definite (PD) radial functions, the matrix A is positive
definite for every choice of training points, and the linera system Equation A.43 has
a unique solution.

In case of so-called conditionally positive definite (CPD) radial functions, the
RBF interpolant form has to be changed. In order to guarantee a unique solution,
an additional polynomial term has to be introduced in Equation A.39:

s(x) = ZCW(HHC—%'H/& + pm () (A.45)

1=

Here m represents the degree of the polynomial, and it depends only on the choice
of ¢. The polynomial term has the form

pm(z) =Y bimj(x) € PL, (A.46)
Jj=1
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where {;(z)} is a basis of the linear space P% containing all real-valued polynomials
in d variables of degree m. The ¢ is the dimension of the polynomial space P¢,, and

it is equal to ¢ = (m; d)

There exist many different kinds of radial basis function. In ModeFRON-
TIER, five different radial functions are available: Gaussians (G), Duchon’s Poly-
harmonic Splines (PS), Hardy’s MultiQuadrics (MQ), Inverse MultiQuadrics (IMQ),
and Wendland’s Compactly Supported C? (W2) as presented in Table A.9.

Table A.9: Available radial functions

Radial functions Form Type

G o(r) = exp(—1r?) PD
r3 dodd m=(d+1)/2

rs or) = r2log(r) deven m=d/2

MQ 8(r) = (1+72)1/2 m—0

IMQ o(r) = (141212 PD
(1—rP3+@Br+1) d=1

W2 pr)= (1 —r)*+@4r+1) d=2,3 PD

(1—=r)+(Br+1) d=4,5

A.5.4 Neural Networks

A neural network is composed of neurons (single unit perceptrons) which are multiple
linear regression models with a nonlinear transformation on y. If the inputs to each
neuron are denoted {x1,xs,...,z,}, and the regression coefficients are denoted by
the weights w;, then the output y might be given by
1

14 e /T

where n = Yw;xz; + B (where (3 is the ’bias value’ of a neuron) and T is the slope
parameter of the sigmoid defined by the user. A neural network is then created by

y = (A.47)

assembling the neurons into an architecture; the most common of which is the multi-
layer feedforward architecture as shown in Figure A.8. There are two main issues
in building a neural network: (1) specifying the architecture and (2) training the
neural network to perform well with reference to a training set. This is equivalent
to (i) specifying a regression model, and (ii) estimating the parameters of the model
given a set of data [32].

Training a neural network is the determination of the proper values for all weights
wj, in the architecture and is usually done by back-propagation [181]; this requires
a set of n training data points {(z1,41), (z2,%2), ..., (Zp, yp)}. For a network with
output y, the performance is

E= Z(yp - @p)Q (A.48)
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' Input Hidden Output
Inputs ' Units Layer Units
x1 !

n=ZwWiXj + :
X2 \Wl 1
1
X3 Output
L ] y '
. Wn :
Xn y= 1 ; !
1+eWT:
I

Figure A.8: Typical neuron and architecture. (a) Single unit per caption; (b) feed-
forward two-layer architecture [200].

where 7, is the ouput that results from the network given input z,, and E is the
total error of the system. The weights are then adjusted in the proportion to

OF oy
6:1/ 8wij

(A.49)
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FDM Finite Difference Method
FEM Finite Element Method
FFD Full Factorial Design

1/0 Input/Output

1T Interval of Tolerance

LCS Latin Hypercube Sampling
MCS Monte Carlo Sampling
MEF Méthode des Eléments Finis

MOGA-IT  Improved Multi-objective Genetic Algorithm
MOPSO Multi-objective Particle Swarm Optimization
MORDO Multi-objective Robust Design Optimization
MOSA Multi-objective Optimization Simulated Annealing
NCR Non-conformity Rate

NSGA-II  Elitist Non-dominated Sorting Genetic Algorithm

PDF Probability Density Function
POF Pareto optimal front

PPM Parts Per Million

R&D Research & Development
RBDO Reliability Based Design Optimization
RDO Robust Design Optimization
RS Random Sampling

RSM Response Surface Methodology
SNR Signal-to-Noise Ratio

UTS Ultimate Tensile Strength
WSM Weighted Sum Method

YS Yield Strength
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Validation et optimisation robuste d’un
procédeé d’emboutissage par simulation
en contexte incertain

L’objectif ultime de ce travail de thése est d’évaluer
la possibilité de valider et d’optimiser un processus
de fabrication en utilisant la simulation numérique
en tenant compte des incertitudes irréductibles sur
le procédé, les matériaux et la géométrie du produit
fabriqué. La prise en compte des incertitudes néces-
site de quantifier les effets des variations des para-
meétres du modele sur les sorties de celui-ci, en
propageant ces variations via la simulation numé-
rique pour évaluer leurs effets sur les sorties. Dans
ce travail nous avons proposé une procédure pour
déterminer le seuil de sensibilité du modéle numé-
rique afin de construire des plans d’expériences
numeériques cohérents avec ce seuil. Nous avons
également montré que, compte tenu des incertitudes
sur les matériaux et la géométrie du produit, il est
possible d’optimiser certains parameétres du procédé
pour controler les effets des incertitudes sur les
variations dimensionnelles et morphologiques du
produit. Pour cela, nous avons proposé une proceé-
dure d’optimisation basée sur un algorithme NSGA-II
et une méta-modélisation du procédé. L’application
a '’emboutissage d’une tdle en U, retour élastique
inclus, montre qu’il s’agit d’un probléme de concep-
tion robuste pour lequel nous obtenons I’ensemble
des compromis entre I’écart a la moyenne et I’écart
type d’une fonction « performance » du procédé
correctement choisie. Finalement I’analyse de ces
résultats nous permet de quantifier le lien entre la
notion de robustesse d’une solution optimisée du
procédé et les critéres de mesure de la qualité du
produit.

Mots clés : incertitude - tole, travail de la - com-
mande robuste - simulation par ordinateur - déci-
sion multicritére.

Validation and Robust Optimization of
Deep Drawing Process by Simulation in
the Presence of Uncertainty

The ultimate objective of this thesis is to evaluate
the possibility to validate and optimize a manufac-
turing process using numerical simulation and tak-
ing into account the irreducible uncertainties in the
process, materials and geometry of manufactured
product. Taking into account the uncertainties re-
quires quantifying the effects of variations of model
parameters on the outputs, by propagating these
variations via computer simulation to assess their
effects on the outputs. In this work, we have pro-
posed a procedure to determine the sensitivity
threshold of the numerical model to build numerical
Design of Experiments consistent with this thresh-
old. We have also shown that, given the uncertain-
ties in the materials and the geometry of the prod-
uct, it is possible to optimize certain process param-
eters to control the effects of uncertainties on the
dimensional and morphological variations of the
product. For this, we have proposed an optimization
procedure based on NSGA-Il algorithm and a meta-
modeling of the process. The application for deep
drawing of a U-shaped sheet metal part, springback
included shows that it is a robust design problem for
which we get all the compromise between the devia-
tion from the mean and standard deviation of a "per-
formance" depending on the process correctly cho-
sen. Finally, the analysis of these results allows us
to quantify the relationship between the notion of
robustness of an optimized solution of the process
and criteria for measuring the quality of the product.

Keywords: uncertainty - sheet-metal forming - ro-
bust design - numerical simulation - sensitivity
threshold - uncertainty propagation - robust design
optimization.
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