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Abstract

Face biometric systems are now a reality in numerous mainstream applications including

access control, banking and forensics. Notably, face recognition systems have recently

advanced and achieved striking performances due to the uprise of deep learning and the

the abundant, almost endless, amount of available training data. However, these systems,

that are mainly deployed in visible spectrum, are subject to fail when employed in

unconstrained scenarios. Among the main challenges in visible spectrum based systems,

variable or low illumination conditions have been proved to be some of their major

weaknesses. A promising approach to acquire crisp images in total darkness is using

thermal imagery. Thermal imaging technology has significantly evolved during the last

couple of decades, mostly thanks to thermal cameras having become more affordable and

user friendly. However, and given that the exploration of thermal imagery is reasonably

new, only a few public databases are available to the research community. This limitation

consequently prevents the impact of deep learning technologies from generating improved

and reliable face recognition systems that operate in the thermal spectrum. A possible

solution relates to the development of technologies that bridge the gap between visible

and thermal spectra. In attempting to respond to this necessity, the research presented

in this dissertation aims to explore interspectral synthesis as a direction for efficient and

prompt integration of thermal technology in already deployed face biometric systems.

As a first contribution, a new database, containing paired visible and thermal face

images, which was acquired with a dual camera that allowed for the simultaneous capture

of face images in both spectra, was collected and made publicly available to foster research

in thermal face image processing. Motivated by the need for fast and straightforward

integration into existing face recognition systems, a following contribution consisted in

proposing a cross-spectrum face recognition framework based on a novel approach of

thermal-to-visible face synthesis in order to estimate the visible face from the thermal

input, when the visible image cannot be provided, e.g. in poorly lit environments. The

proposed approach is based on deep generative models and was trained on a set of

paired visible and thermal data to learn a mapping from the thermal face to its visible

equivalent. After this initial work, another contribution presents the development of

an illumination invariant face recognition system that incorporates a novel, dynamic
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quality-weighted, fusion of visible and thermal spectrum at the score level. Thanks to

the proposed mechanism, an uninterrupted and efficient functioning of a face recognition

setup during day and night time may be ensured.

Motivated by the favorable results achieved in the first part of our research work,

additional contributions presented in this thesis explore the process of interspectral

synthesis in the reverse direction, i.e. from visible to thermal spectrum. Visible-to-

thermal image synthesis was employed to address the shortage of annotated public

face databases in thermal spectrum, which limits the development of fundamental task

in thermal face image processing. With the scope of this study being focused on the

facial landmark detection task, fully annotated synthesized thermal face databases were

obtained by transforming public annotated visible face databases into thermal spectrum.

Facial landmark detectors trained on the synthesized thermal face databases led to

significant improvements in landmark detection accuracy. A final contribution explored

visible-to-thermal synthesis to study the impact of spoofing attacks on thermal face

biometric systems. The robustness of thermal based systems lies in the acquisition process

itself as it provides proof of liveness by detecting the heat emitted by the face. A new

thermal attack, at the post-sensor level, is then proposed. Thermal face images, that are

obtained by visible-to-thermal face synthesis, are directly injected in the communication

channel after the sensor. In order to increase the difficulty of the proposed setup, a

scenario where the attacker has a priori knowledge about the spoofing countermeasure

employed by the system is also considered. Such a priori knowledge is exploited in

order to synthesize more threatening attacks for a given countermeasure technique. The

evaluation of spoofing detection systems when facing the proposed attack highlights the

vulnerability of thermal face recognition systems to the proposed indirect attack.
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Chapter 1

Introduction

1.1 Context and motivation

Biometric recognition is rapidly emerging as a reliable and a fast tool of identity man-

agement by analyzing physical and behavioral characteristics specific to each individual

that are distinctive, permanent and universal. While until very recently fingerprint was

known to be the most prevalent form of biometrics in commercial biometric systems [1],

face is now taking over to establish itself as a more convenient and accessible alternative.

Face represents the most natural and intuitive mean of recognition by humans, and the

information conveyed in face is especially rich and diverse. Unlike iris, hand geometry

and hand veins biometric systems, face recognition does not require costly and high

accuracy acquisition sensors. Furthermore, face recognition does not involve physical

interaction with the end user, thereby facilitating the identification of target subjects

from relatively great distances without the target’s cooperation, a significant asset for

law enforcement and security applications.

Over three decades of extensive research has led to a massive deployment of face

recognition systems along with substantial gains and improvements in performance. This

is due to a variety of factors that include the steady hardware developments and the

outbreak of abundant face data at the disposal of researchers. Face recognition systems

spans nowadays a wide range of vertical industries including banking, border control,

healthcare and security applications. Following the explotion in the ubiquity of smart

devices equipped with camera sensors, face recognition is now powering through Internet

of Things market.

In spite of its world-wide deployment and its growing popularity, face recognition

systems are still prone to fail when employed in unconstrained conditions. Face recognition
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systems are exclusively deployed using 2D and/or 3D acquisition sensors operating solely

in visible spectrum that suffers from various limitations. Among the main challenges

confronted by visible face recognition systems, variable or low illumination conditions

have been proved to be some of the major weaknesses of such systems [2,3,4], due to the

reflective nature of visible spectrum. Furthermore, head pose [5], facial expression [6],

makeup [7] are only some of other challenges that decreases the reliability of visible face

recognition systems. Moreover, visible face recognition systems are also threatened by

presentation attacks that endeavor to spoof the system and gain unauthorized access [8,

9, 10, 11]. Some prompt actions have been taken such as requiring an eye blink, smile

or other visual reaction to prove the liveness of the user, yet this can be easily tricked

using video replay attacks. Presentation attack detection [12,13, 14] is still a very active

research area, although visible face recognition systems are extensively implemented

for border and access control and surveillance systems. Thereby, it is necessary to seek

solutions that are cost effective and easy to integrate with existing face recognition

systems.

Thermal face recognition has emerged as a promising complement to visible face

recognition, as it provides efficient solutions to tackle the challenges encountered by

systems based on visible spectrum. Thermal face images are invariant to light changes

due to the fact that the radiation detected by the thermal sensor is directly emitted by

the human face [15], and not reflected as it is the case for visible spectrum. Therefore, it

is possible to acquire a crisp thermal image without any external source of illumination,

based on subtle differences in temperature. Moreover, the sensitivity of visible face

recognition systems to head pose, facial expression and makeup variations is partly

due to the change of the reflectance of visible light, this is however not an issue in

thermal spectrum. Thereby, thermal face recognition systems are less affected by these

variations [16]. Additionally, thermal technology can be used as a presentation attack

detection tool, as it provides an evidence of the user’s liveness by simple acquisition.

Thermal imagery was initially limited to military use. The first thermal line scanner

was developed in 1947 by the US military and took one hour to produce one single

image [17]. In 1966, the first real-time commercial thermal imager was launched. By the

end of the 1990s, uncooled focal plane arrays with higher resolution were introduced at a

reduced prices, which motivated their use in civil applications. These applications include

building and roof inspection, environment control, medical testing and diagnosis and

art analysis [18]. However, the cost of thermal sensors remained exorbitantly high and

the quality of thermal data was insufficient for thermal spectrum to be explored in face

recognition applications. During the last decade, driven by the progress in microelectronics

and the dramatic lowering of manufacturing prices, uncooled microbolometers focal

plane arrays are providing high thermal sensitivity and high spatial resolution at very

2
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competitive prices. This even pertains to some models of smart phones that are starting

to be equipped with thermal imagers [19, 20]. Consequently, research interest in thermal

face recognition has significantly grown. However, the data in thermal spectrum available

for the research community has not increased at a comparable pace to that of visible

spectrum face databases. This is a limitation for thermal spectrum investigation as a

biometric, particularly in the context of the current deep learning based trends, which

tend to be particularly data hungry. While visible face databases are abundant and can

lead to the training of highly complex deep neural models, the same cannot be done, as

of the time of writing of this dissertation, for thermal imagery.

While it is obvious that the dropping manufacturing costs in thermal sensors will

eventually make those capturing devices as mainstream as those in visible spectrum,

security related scenarios in which thermal sensors are already a reality cannot wait for

the available resources in thermal spectrum to balance with that of the visible spectrum.

For thermal spectrum databases to leverage the potential of those deep learning based

algorithms, characterisable by their data needy functioning, methods that allow to exploit

the complementary of the information that lies in both thermal and visible spectra need

to be developed, motivating the research presented in this dissertation.

The principal contributions of the presented work are focused on the development

of new advances that lay the ground for an efficient and prompt integration of thermal

technology in already commercially deployed face biometric systems. Such contributions

are needed to lead a step up in directing the development of state-of-the-art in thermal

facial image processing and sustain the growing usage of thermal spectrum. Promoting

the integration of thermal technology in existing face biometric systems is based on the

use of interspectral synthesis in both directions. Thermal face images can be transformed

in visible spectrum, bridging the impact of the aforementioned factors on visible faces,

and can then benefit from the wide range of available facial image processing tools.

Alternatively, it is possible to generate synthetic thermal face images required for the

design and the development of a specific task, by transforming available visible face

databases to thermal spectrum. The array of the proposed solutions throughout this

thesis prevents the adaptation and re-optimization of available resources to operate on

thermal spectrum, as well as the extensive collection of thermal face databases, that can

be costly and inefficiently time consuming.

1.2 Contributions and thesis outline

The need for the availability of multi spectral resources while massive thermal data is not

at the disposal for the research community has motivated the lines of research that are
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presented in this dissertation and outlined in the following paragraphs. The contributions

made by the research included in this thesis are then as follows.

Chapter 3

A first contribution is that of Chapter 3, which presents the efforts developed by the

author of this dissertation in collecting a dual visible-thermal, paired-by-design face

database that include numerous variations in terms of facial expression, head pose,

occlusion and illumination conditions to replicate real-life, challenging scenarios for the

face recognition state-of-the-art systems. The careful design of this database aims to

foster the research in the field in as much as it also provides with the foundations on

which the remainder of the works presented in this thesis are built. Besides the design

and discussion of the collection protocol for the database, results of initial experiments

for its validation in face recognition research were reported.

Part of the work presented in this chapter was published in:

• K. Mallat, J.-L Dugelay, “A benchmark database of visible and thermal

paired face images across multiple variations” in Proc. 17th International

Conference of the Biometrics Special Interest Group BIOSIG, Darmstadt, Germany,

September 2018.

which was awarded with the best poster award. The VIS-TH database has since then

been available to the research community and has been downloaded by over 25 teams

worldwide.

Chapter 4

The work presented in Chapter 4 relates to the first application of state-of-the-art deep

generative models to the problem of thermal-to-visible data synthesis. Recent advance-

ments in deep learning have led to the development of deep neural network topologies

capable of generating high-quality transformation between images of a significantly

different domains, with our interested being focused on cascaded refinement networks

(CRNs) [21]. In particular, our work puts the focus on the application of CRNs to

the problem of cross-spectrum face recognition in highly challenging scenarios, i.e. the

absolute darkness scenario, by allowing for thermal data to be immediately usable by

visible spectrum based systems by means of a CRN-based transformation. This contri-

bution prevents the extensive recollection of enrollment data in thermal spectrum and

the development of reliable algorithms for thermal face recognition. Results validated
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the proposed methodology and opened the door to the exploration of the better use

of a CRN-based transformation to further face image processing related tasks in the

remainder of this thesis.

Part of the work presented in this chapter was published in:

• K. Mallat, N. Damer, F. Boutros, A. Kuijper, J.-L Dugelay, “Cross-spectrum

thermal to visible face recognition based on cascaded image synthesis” in

Proc. best conference, in Proc. 12th IARP International Conference on Biometrics

ICB,Crete, Greece, June 2019.

Chapter 5

Motivated by the positive results in Chapter 4, Chapter 5 reports the investigation of

mechanisms that intelligently incorporate the best attributes of face recognition systems

that work simultaneously on (i) visible images, and (ii)on synthesized thermal-to-visible

images. Whilst the quality achieved by thermal-to-visible face synthesis via the method

reported in Chapter 4 achieves a high quality and realism, of particular benefit in

scenarios in which the visible spectrum cannot cope, i.e. in poorly lit environments, the

resulting images are evidently a few steps behind that of standard, visible spectrum,

face images. The main contribution of this chapter then relates to the development

of a novel method based on dynamic fusion of matching scores of visible probes and

synthesized thermal-to-visible probes against visible gallery, via the usage of various

quality metrics widely used in image processing. The proposed method allows for a

face recognition system to smoothly transition between using visible or synthesized

thermal-to-visible images depending the relevance of each sample determined by a quality

score. The presented contribution enabled the design of illumination invariant face

recognition system, by exploiting the invariance of thermal spectrum to illumination

changes, without the requirement of thermal specific face recognition algorithms.

Part of the work presented in this chapter was published in:

• K. Mallat, N. Damer, F. Boutros, J.-L Dugelay, “Robust face authentication

based on dynamic quality-weighted comparison of visible and thermal-

to-visible images to visible enrollments” in Proc. 22nd International Confer-

ence on Information Fusion FUSION,Ottawa, Canada, July 2019.
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Chapter 6

Following, Chapter 6 explores the potential benefit of CRN-based interspectral synthesis

for a task related to, but different than face recognition, that is of facial landmark

detection. The contribution of this work consists in introducing an innovative concept,

that to the our knowledge, hasn’t been previously explored in the literature. This novel

concept aims to tackle the shortage of annotated data in thermal spectrum. Given the

positive results achieved in the experiments included in the other chapters of this thesis,

we propose the leveraging of CRN-based image synthesis in the reverse spectral direction,

i.e. from visible to thermal spectrum, in order to synthesize thermal face databases and

exploit the annotation information provided in the visible spectrum for facial landmark

detection. The presumably higher information domain of visible spectrum compared

to that of thermal domain allows for the resulting transformation to be of extremely

high quality. Relating to our new application of interest of facial landmark detection,

the resulting high-quality, synthesized, thermal face databases allow for the training of

facial landmark detectors directly on the thermal spectrum. Facial landmark detection

in thermal spectrum still remains a challenge, mainly due to the limited resources of

databases with annotated landmarks in the thermal spectrum. Our proposed approach

achieves remarkable results with high facial landmark detection accuracy evaluated on

thermal data of different quality.

Part of the work presented in this chapter was submitted to:

• K. Mallat, J.-L Dugelay “Facial landmark detection on thermal data via

fully annotated visible-to-thermal data synthesis” in Submitted to Interna-

tional Joint Conference on Biometrics IJCB, Houston, USA, September 2020.

Chapter 7

The last contribution, presented in Chapter 7 of this dissertation, relates to a consequence

of the great success that face image processing techniques are acquiring in the recent years.

Face recognition systems are now widely used by both public authorities and domestic

users. Consequently, and whilst these methods normally provide with an enhanced level of

security in the authentication process for the average user, spoofing attacks have become

increasingly common, attracting wide research interest for face recognition among many

other biometric traits. Thermal imagery is generally considered as a natural spoofing

countermeasure. However, its robustness to spoofing threats lies in the acquisition process

itself. In the work presented in Chapter 7, we take the role of an attacker that intends

to break a thermal face biometric system by short-circuiting the thermal sensor and

injecting a thermal face image in the communication channel between the sensor and
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the subsequent processing module. The proposed attack, performed at post-sensor level,

is obtained by visible-to-thermal face synthesis. Two spoofing scenarios are studied: (i)

the attacker blindly injects a synthesized thermal image, or (ii) the attacker possesses

a prior knowledge about the spoofing countermeasure of the target system. For the

second scenario, a customized interspectral synthesis model, that incorporates the prior

information in the development of visible-to-thermal face synthesis, is introduced in

order to leverage more robust attacks against the targeted spoofing countermeasures.

While initial results in the literature report for thermal imagery to be a very robust

countermeasure to presentation attacks, the work presented in this dissertation highlights

the vulnerability of spoofing countermeasures when confronting attacks at post-sensor

level. This contribution aims to study the vulnerability of thermal face biometric systems

and the threats it may potentially confront once it is deployed.

Part of the work presented in this chapter was submitted to:

• K. Mallat, J.-L Dugelay, “Indirect synthetic attack on thermal face biomet-

ric systems via visible-to-thermal spectrum conversion” in Submitted to

25th International Conference on Pattern Recognition ICPR, Milan, Italy, January

2021.

The overall outline of this thesis is appended by means of a literature review relating

to facial image processing and thermal imagery in Chapter 2, and conclusions and

future work, which are presented in Chapter 8.
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Chapter 2

Thermal spectrum in facial image

processing: literature overview

This chapter reveals the motivation behind the usage of thermal spectrum in facial image

spectrum. An overview of the literature of relevance to facial image processing in thermal

spectrum is provided. This includes a review of research works that study thermal facial

image processing under unconstrained scenarios. Further detailed read can be found in

widely cited survey articles for thermal spectrum in face biometric systems [16,22].

2.1 Spectral imaging

Spectral imaging refers to imaging methods which operate in different bands of the

electromagnetic spectrum. In this section, some background fundamentals related to the

electromagnetic spectrum and infrared band are presented. The motivation behind the

usage of infrared spectrum, in particular thermal spectrum, in facial image processing is

then defended.

2.1.1 Electromagnetic spectrum

Electromagnetic radiation is a form of energy that propagates through space as elec-

tromagnetic waves carrying packets of energy called photons or light quanta [23]. The

electromagnetic energy spans a broad range of wavelengths and frequencies, known as
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According to the International Commission on Illumination [25], it is recommended to

divide the infrared spectrum into four sub-bands as shown in table 2.1:

IR sub-bands Acronym Wavelength

near IR NIR 0.75 - 1.4

short wave IR SWIR 1.4 - 3

medium wave IR MWIR 3 - 5

long wave IR LWIR 8 - 15

Table 2.1: Spectral decomposition of infrared spectrum according to International
Commission on Illumination [25].

Each sub-band corresponds to continuous frequency block of the solar spectrum

which are divided by absorption lines of different atmospheric gazes [26], as depicted in

figure 2.1. Most of the infrared spectrum is not usable as it is blocked by the atmosphere.

Also, a window of the infrared spectrum between MWIR and LWIR from 5µm to 8µm

has no atmospheric transmission.

Figure 2.2: Heat emission by the human body predicted by Planck’s law at 305 K [16].
The highlighted part represents the dead zone with no atmospheric infrared transmission.

According to the Planck’s law, each body being in the thermal equilibrium emits

radiation in a broad spectral range. In the context of face processing, the difference

between different infrared sub-bands originates as a consequence of the human body’s

heat emission, as represented in Figure 2.2. The most of the heat energy is emitted in
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2.2. Thermal spectrum for facial image processing

spectrum. The invariance of thermal spectrum to facial expression changes is the reason

why emotion recognition is not being widely investigated in thermal spectrum.

2.2.3 Head pose variation

Changes in head pose yield to a change of light distribution across the face and the

appearance of shadows that occlude facial features in visible spectrum. Being invariant

to light changes, thermal spectrum is less affected by head pose variation compared to

visible spectrum. Friedrich et al. [28] proved this by comparing image space differences of

thermal and visible spectrum. Abidi et al. [40] studied the fusion of visible and thermal

spectrum at data level and at decision level as a solution for a robust face recognition

against pose variation by exploiting the thermal information. Pop et al. [41] proposed a

score based fusion of visible and thermal spectrum using PCA feature extraction and

nearest neighbor classification. The proposed approach improves the face recognition

performance reported on visible spectrum.

Being less affected by head pose changes than visible spectrum, several studies [42,43,

44,45] have focused solely on thermal spectrum to develop solutions of pose invariant face

recognition. Zaeri et al. [42] introduced a new approach for thermal face recognition based

on affine moment invariants technique. Face images are divided into 16 non-overlapped

components. Similarity measures of the feature vectors corresponding to the different

components are fused to obtain a final score. Experimental results have showed that

this technique has delivered robustness against head pose variation. Buddharaju et

al. [45] proposed using the physiological properties of the human face captured in thermal

spectrum. The proposed approach is based on extracting of the vascular network of the

face. To generalize the approach to different head pose variation, the vascular network

was extracted from images of faces in 5 different poses. The branching points of the

skeletonized vascular network are then matched to report face matching scores.

2.2.4 Eyeglasses challenge

Eyeglasses are opaque to the infrared spectrum in the SWIR, MWIR and LWIR sub-bands

[16], as the eyeglasses block the emitted radiation. Contrarily, the impact of eyeglasses

on the appearance in the visible spectrum is way less significant. Figure 2.6 illustrates

the impact of eyeglasses on visible and thermal spectrum.

A lot of efforts were devoted to tackle the eyeglasses challenge in thermal face

recognition. Studies conducted by Gyaourova et al [46] and Singh et al. [47] proposed

a data level fusion technique based on feature selection in visible and thermal thermal
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2.3 Summary

This chapter defines some background fundamentals of thermal imagery and the mo-

tivation behind its usage in facial image processing. In addition, a literature overview

of facial image processing in thermal spectrum is presented for various unconstrained

scenarios.

22



Chapter 3

Visible and thermal paired face

database

Although thermal face recognition has recently grown as an active area of research,

it still suffers from shortage of available thermal databases designed for training and

evaluation of facial image processing that limits its exploration. In attempt to exploit

the information complementarity provided by visible and thermal spectrum, a novel

dual face database, that is acquired simultaneously in visible and thermal spectra, is

introduced. The proposed database includes numerous facial variation such as expression,

head pose, occlusion and illumination variations as to replicate the challenging scenarios

encountered by face biometric systems. The remainder of the work presented in this

dissertation are based on the database introduced in this chapter.

In this chapter, we introduce the first contribution of the work presented in this

dissertation. Section 3.1 presents an overview of the existing public databases providing

visible and thermal face images. Then, the proposed database that addresses the

lack of variability in the existing ones, is introduced in Section 3.2 aiming to develop

face recognition systems robust against real-world challenges. Section 3.3 presents a

preliminary study conducted to assess the performance of the visible and the thermal

spectrum under each variations. Following, a comparative study of different levels of

fusion of visible and thermal spectra is conducted to conclude the saliency of each

spectrum under different variations. Finally, a summary of the chapter is presented in

Section 3.4
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3.1 Overview of the existing visible and thermal face

databases

Currently, there are numerous public face databases acquired in visible spectrum covering

all variations possible [60]. However, interest in utilizing thermal face images has grown

only recently and thus only a few databases have been provided, particularly databases

that involve simultaneously acquired images in visible and thermal spectra. We present

in the following the few public databases containing visible face images and their thermal

counterpart. Table 3.1 summarizes the key descriptors of the presented databases.

3.1.1 EQUINOX

The "human identification at a distance" [61], collected by Equinox Corp., is the most used

database for evaluating face recognition algorithms based on thermal spectrum. The data

was collected under 3 different lighting conditions (frontal, lateral right and lateral left),

using a system composed of a visible CCD array and a LWIR microbolometer, capable

of capturing simultaneous co-registered videos. During the acquisition, the subjects were

asked to pronounce some vowels, and then to act out some expressions (smile, frowning,

and surprised).

3.1.2 UND-X1

"UND collection X1 " [62, 63, 64] is a thermal and visible facial database collected by the

University of Notre Dame, using a Merlin uncooled LWIR sensor and a high resolution

visible color camera. The data was acquired, in multiple sessions, under only two lighting

conditions. For each illumination, two images were taken (neutral face and smiling).

3.1.3 USTC-NVIE

"The natural visible and infrared facial expression database" [65] was collected by the

University of Science and Technology of China, using a DZ-GX25M visible camera and a

SAT-HY6850 thermal camera. Each subject was asked to act out 6 different expressions,

and then was exposed to situations provoking these expressions naturally and capture

additional 6 different samples.
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3.1.4 IRIS

IRIS thermal visible face database [66] is a public database collected by Imaging, Robotics

& Intelligent Systems Lab. The data was acquired using a Panasonic WV-CP234 visible

camera and a Raytheon Palm-IR-Pro thermal camera of 7-14µm spectral range. The

database contains face images from 32 subjects asked to perform three different expressions.

Five illumination conditions were considered. The two cameras are placed on a mechanized

setup in a way that 11 images are captured from different viewing angles for each

illumination and expression variation.

3.1.5 CARL

Carl Dataset [67, 68] is a public database collected by the Polytechnical University of

Catalonia. The database contains face images from 41 different subjects in near-infrared,

thermal, and visible spectrum. The data is acquired using a CMOS image sensor for

visible spectrum and TESTO 880-3 thermal camera with spectral range of 8-14µm. Carl

Dataset contains images from 41 subjects using 3 different illumination setups.

Table 3.1 sums up the key descriptors of the aforementioned databases.

Database Thermal resolution #subjects/#images
# facial variations

Illumination Expression Head pose Occlusion

Equinox [61] 320×240 90/5000 pairs 3 3 1 1

UND-X1 [62,63,64] 312×239 32/2292 pairs 2 2 1 0

USTC-NVIE [65] 320×240 103/3230 pairs 1 2×6 1 0

IRIS [66] 320×240 30/2816 pairs 5 3 11 0

Carl [67,68] 160×120 41/2460 pairs 3 1 1 0

Table 3.1: Existing face databases acquired in both visible and thermal spectra.

We should point out the fact that these databases were focused on different aspects

of studies. The EQUINOX database [61] was collected in a single session, taking into

account 3 expression variations and 3 light conditions. UND-X1 database [62, 63, 64]

focused on studying time-lapse impact on thermal face recognition performance, the data

was acquired in multiple sessions under two lighting conditions only, with neutral and

smiling expressions. Whereas NVIE database [65] was acquired mainly to investigate the

impact of thermal spectrum on expression recognition, thus the only variation considered

was facial expression. The IRIS database [66] was designed to cover all the head pose

variations. The CARL database [67, 68] was focused on studying multispectral face

recognition under 3 different illumination conditions. UND-X1, USTC-NVIE, IRIS and

CARL databases were collected using different devices to acquire face images in visible
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and thermal spectra separately which does not guarantee the simultaneous acquisition

resulting in not having the same face image in the two spectra. However, EQUINOX

database [61] was collected using a sensor capable of capturing simultaneous videos in

both domains. Among all the reviewed databases, the IRIS database seems to cover

the widest range of facial variations. However, the visible and the thermal images are

taken from different viewing angles. Lastly, although occlusion variations are still a

challenging factor for face recognition algorithms, none of the databases have considered

these variations.

3.2 Visible and thermal paired face database

The collection of a new database of visible face images and their thermal counterpart is

motivated by the limited number of the public face databases providing paired images

acquired simultaneously, and the lack of facial variations considered. In this section, we

present the sensor used in the database collection, the acquisition setup, and a description

of the collection protocol.

3.2.1 Dual Visible and thermal camera - FLIR Duo R

FLIR systems [69], acronym for forward-looking infrared, is the world’s largest company

specializing in thermal cameras and sensors production. A thermal imaging camera is

a non-invasive instrument which scans and visualizes the temperature distribution of

surfaces of an object rapidly and accurately.

The sensor used in collecting the database, presented in this section, is a newly (at

the time of collection of the database) developed dual sensor thermal camera FLIR Duo

R by FLIR Systems, featured in Figure 3.1. This camera is designed for unmanned

aerial systems (UAS), but it is well suited for simultaneously capturing images and

videos in both visible and thermal spectrum. The camera can be easily configured and

operated using the FLIR UAS mobile application which allows to set color palettes,

image optimization features and many other parameters shown in Figure 3.1. The visible

sensor is a CCD sensor with a pixel resolution of 1920×1080. The thermal sensor of

this camera is an uncooled Vanadium Oxide (VoX) microbolometer and has a spectral

response range of 7.5 - 13.5µm with a pixel resolution of 160×120 and a noise equivalent

temperature difference NETD<100mK. We acknowledge that the thermal resolution of

the camera is considerably low. However, Mostafa et al. [70] has proven that high face

recognition rates can be achieved with low resolution 64×64 pixels thermal face images,

making of the camara’s resolution a minor drawback. Moreover, an updated version of

the camera with 640×512 resolution has been released later on, and a high resolution
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3.3 Preliminary evaluation

The aim of this section is to present a preliminary evaluation to assess the applicability of

the proposed database. A comparison of thermal and visible spectra against various facial

variations introduced in our database is performed. This study will provide an efficient

comparison of the performance of visible and thermal spectrum in the face recognition

application, thanks to the simultaneous acquisition of the data that allowed to eliminate

all other factors that may bias the comparison. Finally, a comparative study of different

levels of fusion of visible and thermal spectra is carried out.

3.3.1 Evaluation protocol

Visible images were subsampled into 160×120 pixels. Faces in both visible and thermal

spectra were detected and cropped. Face images were then normalized. Two benchmark

approaches for face recognition were selected for our preliminary evaluation:

Eigenfaces [72] is a holistic approach based on principal component analysis (PCA).

The idea of using principal components to represent human faces was developed by

Sirovich and Kirby [73]. Eigenfaces approach is still considered as a baseline comparison

method to demonstrate the minimum expected performance of a system.

Fisherfaces [74] is based on both principal component analysis (PCA) and linear

discriminant analysis (LDA). Fisherfaces algorithm has achieved high performances on

visible face images. Moreover, Socolinsky et al. [4] have compared holistic face recognition

algorithms and proved that Fisherfaces achieved the highest recognition rate on thermal

face images.

Performing a cross-fold validation, the data has to be split randomly in two subsets,

one will be selected as a training set and the other as a testing set. Reiterating this

process and returning the average performance reports significant results. However, since

our aim is to study the impact of different variations on face recognition performance for

visible and thermal face images, the database was split in 4 subsets, with each subset

associated with a variation: illumination, expression, pose and occlusion. In order to test

the face recognition performance for each variation, we have repeated the experiment

considering, at each iteration, a different variation subset as training. For instance,

to assess the face recognition performance on visible and on thermla spectrum under

expression variation, the testing set, in this case, is the set containing images representing

all the expression variations and the experiment will be repeated considering a different
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training set at each iteration (illumination, pose and occlusion).

3.3.2 Face recognition in thermal and in visible spectrum

Table 3.2 and Table 3.3 illustrate the Rank-1 recognition rates of Eigenfaces (PCA)

and Fisherfaces (LDA) algorithms on each spectrum. In addition, cumulative match

characteristic (CMC) curves [75] are presented for visible and thermal spectra under

different variations. A CMC curve shows various probabilities of recognizing a person

depending on how similar their biometric features are to that of other people’s. Figure 3.5

shows the overall CMC curves for Eigenfaces and Fisherfaces, representing results

aggregated over visible and thermal spectrum. Each plot of Figure 3.5 represent CMC

curves under different facial variation.

TEST
Illumination Expression

VIS TH VIS TH
PCA LDA PCA LDA PCA LDA PCA LDA

T
R
A
I
N

Illumination N/A N/A N/A N/A 0.703 0.814 0.606 0.96
Expression 0.857 0.733 0.765 0.973 N/A N/A N/A N/A
Pose 0.854 0.66 0.708 0.893 0.617 0.914 0.446 0.891
Occlusion 0.891 0.793 0.725 0.973 0.69 0.957 0.63 0.962
Average 0.867 0.728 0.733 0.946 0.67 0.895 0.56 0.937

Table 3.2: Rank-1 recognition under expression and illumination variations.

TEST
Pose Occlusion

VIS TH VIS TH
PCA LDA PCA LDA PCA LDA PCA LDA

T
R
A
I
N

Illumination 0.352 0.312 0.284 0.365 0.706 0.69 0.45 0.59
Expression 0.296 0.476 0 .268 0.417 0.667 0.83 0.503 0.53
Pose N/A N/A N/A N/A 0.627 0.633 0.36 0.42
Occlusion 0.28 0.38 0.268 0.428 N/A N/A N/A N/A
Average 0.309 0.389 0.273 0.382 0.667 0.719 0.436 0.513

Table 3.3: Rank-1 recognition under pose and occlusion variations.

As can be seen, thermal spectrum outperforms the visible spectrum when tested on

the illumination variation. This confirms the statement that thermal spectrum does not

need an external source of illumination to acquire images while visible spectrum is highly

sensitive to light changes. Similarly when tested on expression variation, we note that

face recognition performance is particularly higher for the thermal spectrum compared to

visible spectrum. We believe that this outcome is due to the reflective nature of visible

spectrum that makes it highly sensitive to light changes unlike the thermal spectrum,
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(a) Illumination variation (b) Expression variation

(c) Head pose variation (d) Occlusion variation

Figure 3.5: Cumulative Match Characteristic curves for various collection scenarios.

since changes in facial expressions imply changes in the distribution of the light across

the face surface. Although, when it comes to head pose variations, we notice that both

visible and thermal spectrum perform almost equally at Rank-1 recognition. Furthermore,

performance obtained by visible spectrum is significantly higher than the performance of

thermal spectrum for occlusion variation. This is due to some limitations of the thermal

spectrum. For example, the eye glasses are opaque to the thermal wavelengths since they

block the heat emitted by the face region covered by the glasses’ frame and lenses, while

on visible spectrum we can see the eye details thanks to visible light transmittance in

glass. Comparing the face recognition performance obtained using the two benchmark

face recognition algorithms, we observe that the performance of the Fisherfaces approach

on thermal spectrum is significantly higher than the performance of the Eigenfaces

method, exclusively for illumination variation (Figure 3.5a) and to a lower degree for

expression variations (Figure 3.5b). However, this increase in performance is not observed

for visible spectrum. This is justified by the fact that intra-class variability in thermal
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spectrum is considerably smaller than intra-class variability in visible spectrum. Light

distribution across the face changes according to the illumination conditions and to some

extent to the expression conditions, leading to a high variability in visible images but

not in thermal images as the thermal spectrum is immune to light changes.

3.3.3 Comparative study of different levels of fusion

In this section, we present early experiments in sensor-level, feature-level and score-level

fusion to study the impact of different levels of fusion on face recognition rate on the

proposed database and to infer the saliency of each spectrum against each variation.

Preprocessing

One of the main challenges of sensor-level fusion is that it requires high precision in image

registration. The data acquired with the new sensor FLIR Duo R presents a slight shift.

Visible and thermal face images were co-registered using edge-based image registration

approach inspired from [76].

Schemes of different levels of fusion

In the sensor-level fusion approach, pixels values of visible and thermal images are

weighted and summed to generate fused images. Face recognition experiments are then

performed on the fused face images. Figure 3.6 illustrates a fused image 3.6c resulting

from the average summation of Figure 3.6a and Figure 3.6b. We can observe that the

fused image presents the properties of both visible and thermal spectra.

(a) Visible image (b) Thermal image (c) Fused image

Figure 3.6: Sensor-level fusion of visible and thermal spectra.

For feature-level fusion, we compute separately the face subspace from the training

set for each of the spectra. For testing set, the projection of gallery and probe faces are

done onto the corresponding face subspace. Visible features and thermal features are
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then fused through weighted summation.

Whereas for score-level fusion, face subspaces are computed separately for the visible

images and its thermal counterpart. Scores, for the visible and the thermal spectra,

are then computed between the gallery and the probe faces. Then, these scores are

normalized, using min-max normalization. Finally, the scores are fused using a weighted

summation.

For the three proposed schemes of fusion, we have varied the weight associated with

the visible spectrum as well as the thermal spectrum, as illustrated in Equation 3.1 where

fused, visible and thermal refer to either the image, the face feature or the matching

score and computed rank-1 recognition for Eigenfaces and Fisherfaces algorithms for

each weight.

fused = Wvisible × visible + (1−Wthermal)× thermal (3.1)

Experimental results

To study the impact of different levels of fusion on face recognition performance for each

spectrum, we present, in Figure 3.7, the variation of recognition rate according to the

weight associated to the visible and the thermal spectrum when tested under different

facial variations.

For illumination variation, it is already proved that face recognition systems based on

thermal spectrum perform better than the system based on visible spectrum. However,

in particular for sensor-level fusion, we have perceived when we have added the visible

information the recognition rate has relatively increased and that is due to the textural

information that the visible spectrum provides. Although after a certain threshold, the

more visible information we consider, the more the performance decreases. This observa-

tion can be justified by the fact that visible spectrum is highly sensitive to illumination

changes. Figure 3.7b illustrates the impact of fusion levels on recognition rate under

expression variation. We observe that score-level fusion provides the highest performance

rates. However, the performance has hardly increased compared to the performance

of thermal based face recognition. Considering now the recognition performance when

tested under head pose variation featured in Figure 3.7c, it is noted that the performance

has drastically increased when the two spectra were uniformly fused. Particularly, the

highest performance rates were registered when sensor fusion was applied. We believe

this improvement is due to the combination in image level of the textural information of

the visible spectrum and the invariance of thermal spectrum to light distribution across
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3.4 Summary

A new database of face images acquired simultaneously in thermal and visible spectra,

aiming to cover a wider range of facial variations compliant with hands-on scenarios, is

introduced in this chapter. The proposed database is publicly available∗ upon request.

Preliminary evaluation is presented to assess the applicability of the proposed database to

the face recognition task and to determine the performance of state-of-the-art benchmark

face recognition approaches for both visible and thermal spectrum. In addition, a

comparative study of different fusion levels was conducted to gauge the saliency of each

spectrum in improving face recognition performance.

∗VIS-TH database: http://vis-th.eurecom.fr/
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Cross-spectrum face recognition

based on thermal-to-visible image

synthesis

Face synthesis from thermal to visible spectrum is fundamental to perform cross-spectrum

face recognition as it simplifies the integration of thermal technology in already deployed

face recognition systems and enables manual face verification. In this chapter, a new

solution based on cascaded refinement networks is proposed. This method generates

synthesized visible images of high visual quality without requiring large amounts of

training data. By employing a contextual loss function during training, the proposed

network is inherently scale and rotation invariant. We discuss the visual perception,

followed by a qualitative evaluation of the synthesized visible faces in comparison with

recent works. We also provide an evaluation in terms of cross-spectrum face recognition,

where the synthesized faces are compared against a gallery in visible spectrum using two

state-of-the-art deep learning based face recognition algorithms. The evaluation results

show the efficiency of the proposed approach and pave the way to its exploration for

further facial image processing tasks.

The remainder of this chapter is organized as follow. Motivation that drove to this

work are presented in Section 4.1. The proposed approach for thermal-to-visible image

synthesis is introduced in Section 4.2. Section 4.4 details the adopted experimental

setup. A qualitative and quantitative assessment of the synthesized visible images is

presented in Section 4.5. Following, an evaluation of the proposed approach in terms of

cross-spectrum face recognition is reported in Section 4.6. The chapter is summarized in

Section 4.7.
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4.1 Context and motivation

While thermal face processing [15, 45, 77, 78, 79] has evolved during the last two decades,

the deployment of thermal technology remains a step behind compared to technologies

deployed in visible light spectrum. The motivation behind the work presented in this

chapter relates to the need of a prompt and straightforward integration of thermal sensors

in already deployed face recognition systems. However, enrollment data of these existing

systems are commonly acquired exclusively in visible light spectrum. Recollection of

enrollment samples in thermal spectrum would be costly in terms of time, efforts, and

financial and storage resources, and is thus an un-realistic alternative to thermal face

recognition deployment. Many studies [27, 80, 81, 82, 83, 84, 85] have attempted to match

thermal face images against visible face enrollment samples. Considering the large

difference between the visible and the thermal spectra, several efforts have been made to

try to overcome this gap. These can be categorized into three aspects: latent subspace,

domain invariant features and image synthesis.

Latent subspace approaches aim to project faces acquired in both spectra into one

common underlying subspace, in which the relevance of thermal-to-visible data can

be directly measured. Choi et al. [82] [27] used Partial Least Squares Discriminant

Analysis (PLS-DA) to learn the mapping between thermal and visible face images. Safraz

et al. [80] used a multilayer fully-connected feed-forward neural network to learn the

non-linear mapping between the two modalities over the training set while preserving the

identity information. The second approach to perform cross-spectrum face recognition

seeks to extract domain invariant features, that are only related to face identity. Chen

et al. [83] introduced a thermal-to-visible matching framework based on hidden factor

analysis used to extract the identity features of a person across different spectra. Image

synthesis approaches aim to convert a face image from one spectrum to another, so that

face matching can be carried out in the same domain. In this work, we focus on an

image synthesis strategy for cross-spectrum face recognition, consisting in generating

visible images from thermal captures that will be matched against a gallery of visible

faces. This approach bridges the spectrum gap at the image preprocessing, as illustrated

in Figure 4.1, without requiring modification on inner modules of the face recognition

system. Opting for this strategy is essential to enabling the integration of thermal face

data in existing face recognition systems, as well as manual face verification by human

examiners.
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volutional Generative Adversarial network (DCGAN) [93] and Boundary Equilibrium

Generative Adversarial Networks (BEGAN) [94]. DCGAN introduced the Convolution

Neural Network (CNN) into the discriminator and the generator. BEGAN introduced

an equilibrium factor that controls the model training by balancing the discriminator

and generator. These GAN models significantly improved the training stability, but they

did not improve the generated images quality. However, and notwithstanding the more

complex resulting topologies, some GAN-based approaches such as Cycle-Consistent

Adversarial Networks (CycleGAN) [95] and Image-to-Image Translation with Condi-

tional Adversarial Nets (Pix2Pix) [96] succeeded at generating higher resolution images.

CycleGAN consists of four neural networks (two generators and two discriminators).

Training such a big model is computationally costly and requires large databases, that

are unavailable for an application like the one dealt with in this chapter, to achieve

satisfactory results.

Zhang et al. [84] considered synthesizing colored faces from thermal images with

various head poses and occlusion with eyeglasses. This work used Conditional GANs

inspired from the Pix2Pix system [96], but coupled with a closed-set face recognition

loss that led to preserve the face identity information. A cross-spectrum face recognition

evaluation is performed, using the pre-trained MatConvNet VGG-based model [97],

and reported a performance improvement of 14.88% compared to the Pix2Pix [96]

system’s reported performance. A recent work by Wang et al. [88] derived from the

CycleGAN model [95] incorporated a facial landmark detector loss that depicts face

identity preserving features. This system was evaluated using a FaceNet model [98]

pre-trained on publicly available visible datasets, and improved cross-spectrum face

recognition performance by 3% compared to the original CycleGAN system. However,

this work is different from our framework in that its aim is to generate visible face images

in gray scale, and it also discarded face generation under challenging conditions such as

head pose and occlusion.

4.3 Thermal-to-visible image synthesis

To generate images from thermal to visible spectrum, we propose to base our approach on

cascaded refinement networks (CRNs) [21]. We chose the CRN as the basic block for our

image synthesis as it considers multi-scale information and is based on training a limited

number of parameters. This allows for a higher resolution generation and less data size

dependency in comparison to solutions based on GANs. Chen at al. [21] have adopted

pixel-to-pixel loss, perceptual loss [99], to train the CRN model. We, on the other hand,

used contextual loss [100], that compare regions of images based on semantic meaning.

In this section, we first present the CRN network architecture. Then, we introduce the
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loss allows to tolerate some local deformations that are required to perform the thermal-

to-visible style transferring. Both losses were calculated between image embeddings

extracted by a pre-trained VGG19 [103] network trained on the ImageNet database [104].

The total loss is calculated as given in [100] and formulated as:

LCX(IT H , IV IS , G) =λ1(− log(CX(Φls(G(IT H)), Φls(IV IS))))+

λ2(− log(CX(Φlc(G(IT H)), Φlc(IT H)))),
(4.5)

where IT H , IV IS , and G are the input thermal image, reference visible image, and

the generator (i.e. thermal-to-visible image synthesis module) respectively. CX is the

rotation and scale invariant contextual similarity [100]. Φ is a perceptual network, VGG19

in our work. Φlc(x), Φls(x) are the embeddings vectors extracted from the image x

at layer lc and ls of the perceptual network respectively. Here lc is the conv4_2 layer

representing the content layer and ls is the conv3_2 and conv4_2 layers representing the

style layers, as motivated in [102]. Feature sets are considered as 5×5 patches extracted

with stride of 2 from the content and style layers.

4.4 Experimental setup

In this section, we present the preprocessing steps we applied on the database used for

the development and the evaluation of our proposed solution. Then, we introduce our

implementation details set to perform thermal-to-visible image synthesis. Finally, we

present the baselines models of image synthesis to which our approach is compared.

4.4.1 Database preprocessing

We used the VIS-TH face database [105], presented in chapter 3, for the development

and the evaluation of our solution. As stated, pixel resolution of face images in visible

spectrum is 1920×1080 pixels and in thermal spectrum is 160×120 pixels. Images, from

both visible and thermal spectrum, were normalized and sampled to 128× 128. Enabling

an evaluation of our solution in hands-on scenarios, and considering that face alignment

in thermal spectrum still remains a challenge itself, the face images were not aligned,

thus they contained slight variable shifts.

4.4.2 Implementation details

In our implementation, the training was run for 40 epochs, batch size of one, and 1e-4

learning rate. The weights assigned to each term of the loss function are set to λ1 = 0.01

and λ2 = 0.99 by checking the resulting synthesized image visually. Moreover, the pairs of
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input thermal image and reference visible images are of identical faces that are acquired

simultaneously, and thus the loss weighted by λ2 maintains the structural details of the

source image.

Face images from 45 subjects, except for the ones acquired in total darkness, were

used for training the face synthesis network. The thermal face images from the remaining

5 subjects were fed to the trained model to synthesize the visible images. This experiment

was performed 10 times in order to cover all the images contained in the database without

overlapping the test and train images or identities.

4.4.3 Image synthesis baselines

In order to assess the efficiency of our proposed approach to perform thermal-to-visible

image synthesis, we have selected two baseline models. The two selected baselines are

based on GANs, as it is the most used generative model since it was introduced in 2014

by Goodfellow et al [92]. The first baseline is the renowned Pix2Pix model, proposed by

Isola et al. [96] to perform image to image translation. The second baseline is TV-GAN

model presented by Zhang et al. [84]. This baseline is more adapted to our framework

where the proposed model aims to synthesize visible face images from thermal inputs.

Isola et al. [96] , referred to as Pix2Pix, learns the mapping from one domain to

another, by training a conditional GAN using a least absolute deviations (L1) loss

function. The generator is based on the U-Net [106] architecture, an encoder-decoder

with skipped connections between mirrored layers in the encoder and decoder stacks.

At the same time, the discriminator aims to classify real images from generated ones.

Pix2Pix model has been extensively used for a variety of tasks and applications. The

training was run for 85 epochs, batch size of one, and 2e-4 learning rate.

Zhang et al. [84] , have designed a network, called TV-GAN, notably to generate

visible face images from thermal captures. This work is inspired from Pix2Pix [96], as

it uses the same exact network for the generator. However, the authors proposed a

multi-task discriminator, that does not only classify real from generated images, but also

performs a closed-set face recognition with which they can compute an identity loss. This

aims to generate visible images while preserving identity information from the thermal

inputs. The introduction of identity loss in the GAN training was inspired by Tran et

al. [107]. The training was run for 65 epochs, batch size of one, and 2e-4 learning rate.
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4.5 Quality assessment of synthesized visible images

The human visual cortex is exclusively trained on scenes which spans visible light

wavelength detected by the human eye, much similarly to existing face recognition

systems. Consequently, humans present very limited ability to interpret thermal images.

The motivation behind thermal-to-visible image synthesis is not only limited to perform

cross-spectrum face recognition, it is also driven by the need to convert images from

thermal to visible spectrum so that it can be interpreted by humans. Visual quality

assessment is then necessary. In this section, we present firstly a qualitative assessment

of synthesized visible images. Then, a quantitative evaluation is reported by comparing

the synthesized images to the reference visible images.

4.5.1 Qualitative assessment

The images in Figure 5.1 illustrate, in each row, a sample from different facial variations

of synthesized visible face images from thermal inputs. The column (a) shows the input

thermal faces. In columns (b) to (d), we present visible faces synthesized using the

Pix2Pix model by Isola et al. [96], the TV-GAN model by Zhang et al. [84] and finally our

model based on cascaded refinement network, respectively. The last column (e) shows

the ground truth visible faces.

The different face images with frontal face pose were synthesized with satisfying visual

quality. Although we note that our proposed model has succeeded in generating more

informative details (e.g. eyes, mouth) compared to the Pix2Pix and TV-GAN results,

it does not always generate the correct attributes such as skin color and gender. We

can observe that all synthesized visible faces differ in skin color from the ground-truth

images, and this applies to all synthesis models. This is due to the fact that thermal

images do not contain texture and color information, thus, it is difficult to infer the skin

color tone from the thermal signatures. Another visual distortion can be noted on the

visible samples synthesized by our proposed model in the second and the fourth row

of Figure 5.1. These samples show some added facial hair around the mouth and the

jaw area. This observation can be reasoned by the unbalanced distribution of gender

representation within the training data. Third and sixth rows display samples from

different head poses, where we can observe major artefacts in the synthesized visible

faces when compared to the frontal head pose. As for images acquired with occlusion,

illustrated in the fourth and seventh rows, they were synthesized in relative good quality.

However, we perceive some confusion in generating faces with eyeglasses. This is justified

by the fact that the training data contains samples with eyeglasses and others with

sunglasses that both have similar thermal pattern, both blocking the heat emitted by the
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eyes area. Synthesizing visible images with occlusion by hand was successful, however,

with high level of blur in the hand region. Overall, it is noteworthy that our proposed

model provides visible faces that are the most visually pleasing compared to Pix2Pix

and TV-GAN models.

To highlight the main motivation of this work, we display, in Figure 4.6, samples

that were acquired in operative scenarios of thermal sensors usage, where face images

were captured in total darkness. As expected, the poor or absent illumination does not

impact the synthesized visible images. In fact, we succeeded in synthesizing images with

informative facial attributes that are absent in the visible spectrum.
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higher image quality.

PSNR = 10 log10

(

max2
I

MSE

)

MSE(IV IS , G(IT H)) =
1

m× n

m−1
∑

i=0

n−1
∑

j=0

(G(IT H)(i, j)− IV IS(i, j))2

(4.6)

where MSE is mean square error, and maxI is the maximum pixel value of the

image (255 for 8 bits images). IV IS , IT H , G indicate the reference visible image, the

input thermal image and the image synthesis model, respectively. G(IT H) represent the

synthesized visible face image.

Structure similarity index measure (SSIM) was introduced by Wang et al. [108].

This quality metric is considered more adapted to the human visual system. SSIM

measures the image degradation as the perceived alteration of the structural information.

Let us suppose that x and y are two windows extracted from the reference visible

face image IV IS and the synthesized visible image G(IT H), respectively. SSIM is then

formulated as:

SSIM(x, y) =
(2µxµy)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(4.7)

where µx and µy are the average of x and y, σ2
x and σ2

y are the variance of x and y,

respectively. c1 and c2 are positive constant to prevent a null denominator.

Table 7.1 reports the PSNR and SSIM values obtained when comparing the synthesized

visible face images, generated using different image synthesis models, to the ground truth

visible images. The obtained results, ∼17dB for PSNR and ∼0.65 for SSIM, do not reflect

high fidelity of the synthesized visible images to the ground truth. The synthesized visible

faces are generated from facial thermal signatures, that represent different information.

Thermal-to-visible image synthesis models aim to reproduce an estimation of visible light

spectrum properties but it cannot predict them accurately, such as texture, color and

more detailed geometrical information.

Comparing the results obtained for the two baselines, the identity loss term that was

introduced by Zhang et al. [84], to the model proposed by Isola et al. [96] has led to a
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slight increase of quality indices. However, a more relatively important improvement is

noted for our proposed model, which aligns with our qualitative assessment of the image

synthesis quality.

PSNR (dB) SSIM

Isola et al. [96] 17.247 (± 2.855) 0.6485 (±0.123)

Zhang et al. [84] 17.257 (±2.897) 0.6509 (±0.125)

Ours 17.8144 (±3.635) 0.6725 (±0.131)

Table 4.1: PSNR and SSIM reported on synthesized visible images obtained using our
proposed approach as well as the image synthesis baselines.

4.6 Cross-spectrum face recognition evaluation

The main motivation of the work presented in this chapter is to provide an efficient and

prompt solution to integrate thermal technology in already deployed face recognition

systems. In this section, we evaluate the efficiency of our proposed approach of thermal-

to-visible image synthesis in context of cross-spectrum face recognition. Firstly, we

introduce the algorithms selected to carry out face recognition experiments. Then, we

define the experimental scenarios that we have considered. Finally, results and discussion

are presented.

4.6.1 Face recognition algorithms

For evaluating the synthesized faces when used in cross-spectrum face recognition task,

we measured the recognition performance of two selected widely-used face recognition

algorithms:

OpenFace [109] is an implementation of face recognition system using deep neural

networks based on Google’s FaceNet [110] architecture. The OpenFace network is trained

using the combination of the two largest public face databases CASIA-WebFace [111]

and FaceScrub [112]. The training of the OpenFace model was based on triplet loss

minimization. The evaluation of OpenFace model provided competitive performances

compared to previous state-of-the-art systems. We use the OpenFace pretrained model

to map faces into 128-dimension embeddings. Then, nearest neighbours algorithm is

applied using the Euclidean distance to discriminate matching samples.
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LightCNN [113] is a new implementation of CNN for face recognition designed to have

fewer trainable parameters and to handle noisy labels. This network introduces a new

concept of max-out activation in each convolutional layer, called Max-Feature-Map, for

feature filter selection. This network has achieved better performance than CNNs while

reducing computational costs and storage space. When evaluated on the LFW database,

LightCNN achieved face recognition accuracy of 99.33%, outperforming OpenFace that

obtained a 92.92% of accuracy. We used the trained network with 29-layers to obtain

embeddings of 256-dimension from face images. Embeddings extracted from gallery and

probe templates are compared using cosine similarity.

4.6.2 Experimental scenarios

The performance of our image synthesis solution in cross-spectrum face recognition is

compared to face recognition experiments performed in the following scenarios:

Visible: We perform face recognition in the visible spectrum, by considering the neutral

face image as gallery and the rest of the facial variations as probe images. This will report

the performance of the selected face recognition algorithms, that will be considered as

an upper bound for the evaluation of the synthesized images. Besides, this baseline will

depict the utility of thermal-to-visible face synthesis in hands-on scenarios, in particular

when the face is acquired in poorly lit environments.

Thermal: Here, we conduct cross-spectrum face recognition without any modifications

applied to the thermal data. Simply put, we consider as gallery set the neutral face

image acquired in visible spectrum and as probe set all the other face variations acquired

in thermal spectrum. This baseline will quantify the gap between the two spectra.

Isola et al. [96] (Pix2Pix) We perform cross-spectrum face recognition by matching

the synthesized visible faces obtained by the model proposed by Isola et al. [96] against

the visible face enrollments. It is interesting to compare our approach to this baseline, as

it is considered a benchmark for image synthesis.

Zhang et al. [84] (TV-GAN) Synthesized face images obtained by the model pro-

posed by Zhang et al. [84] are matched against visible face enrollments. The performance

reported by the face recognition algorithms when using the synthesized face images

obtained by TV-GAN will quantify the improvement brought by appending the identity

loss term in the training of the Pix2Pix model. In addition, evaluating the model proposed
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by Zhang et al. [84] will lead to a fair comparison of our approach, as both models are

introduced in the same framework, i.e. that of thermal-to-visible image synthesis.

4.6.3 Experimental setup

The database contains in total 21 different facial variations. Cross-spectrum face recogni-

tion evaluation is performed for the different variation set separately. Therefore, we have

split the database into 5 subsets of as follow:

Neutral 1 sample/subject

Expression 6 samples/subject

Head pose 4 samples/subject

Occlusion 5 samples/subject

Illumination 5 samples/subject

Table 4.2: Distribution of the database across the defined subsets.

The neutral face image acquired in visible spectrum is considered as an enrollment

sample for all the subjects.

4.6.4 Results

In order to evaluate the synthesized visible face images, we have performed cross-spectrum

face recognition using two different systems. The evaluation experiment consists in

comparing, in the first place, the synthesized neutral face against the ground truth, and

then matching the synthesized faces from each of the facial variation subsets against

the visible neutral face. We report, in Table 4.3 and Table 4.4, the recognition accuracy

of the OpenFace and LightCNN, respectively. To get a deeper understanding of the

performance of the two face recongition systems used to evaluate the results obtained,

we plot the receiver operating characteristic (ROC) curves, in Figure 4.7 and Figure 4.8,

corresponding to some selected samples from different face variations. It is worth noting

that the LightCNN face recognition system results outperform by far that of OpenFace.

We note from the reported results that all synthesis models outperformed the system

defined in the thermal scenario, which proves the efficiency of synthesizing visible face

images in reducing the spectral gap between visible and thermal data. TV-GAN reports

better performances than Pix2Pix confirming the efficacy of the identity loss in preserving

the subject identity when synthesizing visible images. Foremost, our proposed solution,

based on CRNs, outperforms all the models by a large margin, particularly observed
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Visible Thermal Isola et al. [96] Zhang et al. [84] Ours

Neutral - 4 8 20 20

Expression 97.66 3.33 7.66 11 17.33

Head Pose 75.5 2.5 4 8 9.5

Occlusion 80 2 7.2 8.4 10

Illumination 80.8 3.2 10.4 11.6 20

Average 86.79 3.01 8.49 10.76 15.37

Table 4.3: Cross-spectrum face recognition accuracy across multiple facial variations
using OpenFace system

Visible Thermal Isola et al. [96] Zhang et al. [84] Ours

Neutral - 32 48 54 82

Expression 99.66 23 37.33 38.33 67.66

Head Pose 80.5 12.5 14.5 15.5 30

Occlusion 98.8 14.4 16.4 25 44.8

Illumination 87.2 15.6 29.6 35.2 63.6

Average 95.232 19.5 29.166 33.606 57.612

Table 4.4: Cross-spectrum face recognition accuracy across multiple facial variations
using LightCNN system

on LightCNN results, and that applies to all facial variations. This is mainly due to

the limitations of GANs that are known for being data hungry. However, our system

succeeded in generating relatively high quality visible images despite the limited size of

the training data. Furthermore, both Pix2Pix and TV-GAN models are trained using

a L1 loss function, making them very sensitive to image misalignment. Alternatively,

our proposed system uses contextual loss which makes it inherently scale and rotation

invariant.

The improvements in performance reported by our proposed approach, is relatively

higher for neutral, expression and illumination variations when compared to the improve-

ments in performance reported on occlusion and head pose variations. This is due to

the fact that our proposed model of thermal-to-visible face synthesis, as well as the two

baseline models, are more likely to fail in generating correct facial traits when the face is

presented in a challenging head pose and/or occlusion variations.
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(a) (b)

(c)

Figure 4.7: ROC curves of cross-spectrum face recognition based on OpenFace system
for selected samples from: (a) expression variation, (b) head pose variation, (c) occlusion
variation.
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(a) (b)

(c)

Figure 4.8: ROC curves of cross-spectrum face recognition based on LightCNN system
for selected samples from: (a) expression variation, (b) head pose variation, (c) occlusion
variation.
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Table 4.5 reports the rank-1 recpgnition of OpenFace and LightCNN face recognition

systems when employed in total darkness. We plot also, in Figure 4.9, the ROC curves of

the two evaluation systems in the absolute dark condition. We can clearly observe that

our proposed model not only outperforms other face synthesis models but also it provides

significantly higher performance compared to the visible spectrum. This affirms the

efficacy of face synthesis from thermal to visible in one of the most challenging scenarios

such as poorly lit environments.

Visible Thermal Isola et al. [96] Zhang et al. [84] Ours

OpenFace 16 2 10 14 22

LightCNN 42 16 28 36 56

Table 4.5: Cross-spectrum face recognition accuracy in operative scenario where samples
were acquired in total darkness.

(a) (b)

Figure 4.9: ROC curves of cross-spectrum face recognition in dark environment: (a)
OpenFace system (b) LightCNN system.

4.7 Summary

Although several efforts have been devoted in recent years for face synthesis from thermal

to visible spectrum, the task remains challenging considering the shortage of the available

data designed for this task. We present, in this chapter, a novel solution based on cascaded

refinement networks, that succeeded in generating color visible image of satisfying quality,

trained on a limited size database. The proposed network is based on the use of a

contextual loss function, enabling it to be inherently scale and rotation invariant. Despite

the existence of challenging facial variations such as occlusions, expression, head pose

and illumination, our solution has produced the most visually pleasing synthesized face
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images when compared to existing work. We also performed an evaluation of our solution

in cross-spectrum face recognition task. The reported results have shown that our system

outperforms recent face synthesis systems. Underlining the motivation of face synthesis

from thermal to visible spectrum, we have proved that face recognition performance

reported on the synthesized images is significantly higher than the one reported on visible

spectrum when operated in poorly lit environments, as it was improved by 37.5% (i.e.

from 16% to 22%) and 33.33% (i.e. from 42% to 56%) evaluated by OpenFace and

LightCNN, respectively.
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Chapter 5

Illumination invariant face

recognition based on dynamic

quality-weighted fusion of visible

and thermal spectrum

A new scheme of score level fusion is introduced in this chapter for illumination invariant

face recognition from visible and thermal spectrum. The work presented in this chapter

explores a direction leading to a fast and smooth integration into existing face recognition

systems and does not require recollection of enrollment data in thermal spectrum. This

chapter investigates the potential role of thermal spectrum in improving face recognition

performances when employed under adversarial acquisition conditions. We consider a

context where individuals have been enrolled solely in visible spectrum, and their identity

will be verified using two sets of probes: visible images and thermal-to-visible images.

The thermal-to-visible face synthesis [114] is performed using the approach presented

in Chapter 4, and face features are extracted and matched using LightCNN [113] and

Local Binary Patterns [115]. The contribution of this work lies in performing the fusion

procedure through several quality measures computed on both visible and thermal-to-

visible synthesized probes and compared to the quality of visible gallery images, in a way

that it determines the relevance of each of the probes in improving the face recognition

performance

The remainder of this chapter is organized as follows. Motivations leading to this work

are given in section 5.1. A literature overview on visible and thermal spectrum fusion,

followed by a brief review on quality based fusion for multimodal biometric, is presented in
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Section 5.2. Section 5.3 introduces the proposed dynamic quality-based fusion scheme for

illumination invariant face recognition. Experimental results are presented in Section 5.4.

A summary of the work and findings reported in this chapter ares given in Section 5.5.

5.1 Motivation

Our first attempt to synthesize visible face images from thermal inputs [114] took the

first steps towards enabling a prompt and easy integration of thermal sensors in already

deployed face biometric systems. While this work showed improvement in performance

in terms of visual quality [116] and cross-spectrum face recognition compared to some

selected baseline models [84, 96], face recognition based solely on visible spectrum

significantly outperforms systems based on synthesized visible face images when operated

under controlled illumination conditions.

It is undeniable that face recognition performance reported on the synthesized images

is significantly higher than the one reported on visible spectrum when engaged in poorly

lit environments, as face recognition accuracy was improved by 37.5% [114] for LightCNN

system. However, synthesized visible face images are stillfew steps behind compared to

visible images when confronting other sorts of variations. Thermal-to-visible face synthesis

inadvertently generates few artctifacts and occasionally some wrong facial attributes

that may alter the face matching process. In an attempt to achieve an illumination

invariant face recognition system operating continuously day and night, we propose to

fuse scores obtained while matching visible face probes with visible face gallery and

the scores obtained by matching thermal-to-visible generated images from thermal face

against the same visible face gallery. Based on the intuition that image quality can be

indicative of the utility of a face sample, we propose to fuse the score of matching visible

face images and synthesized visible face images against visible gallery images, based on

the image quality score of each component.

5.2 Related work

Since the emergence of thermal imagery in biometrics, a lot of efforts have been devoted to

performing visible and thermal fusion in order to achieve improvements in unconstrained

face recognition research. Several studies [46,47] explored the usage of genetic algorithms

(GAs) to select features extracted separately from visible and thermal spectra and perform

fusion at score level. Desa et al. [117] used GAs to find the optimal strategy of feature

fusion at non linear transformed domain, exploring two non linear face subspaces: Kernel

Principle Component Analysis and Kernel Fisher’s Linear Discriminant Analysis. Chen et
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al. [118] used a decision based fuzzy integral fusion of visible and thermal face recognition

results. Buyssens et al. [119] introduced a special type of CNN based on diabolo network

model [120] to extract features from both visible and thermal images and then fused the

matching scores. Hariharan et al. [39] proposed a new data-level fusion scheme using

empirical mode decomposition.

In an attempt to exploit the thermal spectrum for illumination invariant face recogni-

tion, several fusion studies have been proposed. Heo et al. [48] proved the complementarity

of visible and thermal spectrum for illumination invariance by investigation data and

decision level fusion. Arandjelovic et al. [33, 34, 121] presented a multistep fusion scheme,

carried out at the decision level and holistic and local feature level of visible and thermal

faces. Socolinsky et al. [30, 122, 123] proposed a simple decision based fusion using a

weighted combination of visible and thermal matching scores. The proposed fusion scheme

was evaluated indoors and outdoors, resulting in better face recognition performance in

varying illumination conditions but failing in extreme illumination conditions.

The research objective of this work is to provide a continuous face recognition system

that is invariant to illumination changes. This can be achieved by setting up a visible

and thermal fusion scheme where the weight of each component is assigned by the

corresponding image quality.

Several fusion and modality selection solutions were proposed, in setting multimodal

biometric systems, based on quality assessment of the biometric sample. Good quality im-

age usually yields a robust matching performance. Fierrez-Aguilar et al. [124] introduced

one of the earliest works of biometric quality fusion at the score level, integrating quality

information into a Bayesian statistical model for multimodal biometric classification.

Using a unimodal biometric system, Vatsa et al. [125] proposed fusing the RGB channels

based on quality scores to improve the performance of iris recognition. Zhou et al. [126]

presented quality based eye recognition by segmenting the eye into iris ans scelra and

performing classification on the selected region as reported by its quality.

5.3 Quality-weighted score fusion

In this section, we describe in detail the proposed fusion solution. First, we depict

the continuous day and night face recognition scenario. Then, we define the two face

recognition systems used to compare face samples and obtain their matching scores.

Subsequently, we list the quality assessment metrics considered in this study. Finally, we

describe the proposed quality-weighted fusion scheme.
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5.3.1 Scenario description

The main motivation of this work is to assure a continuous day and night face recognition

while granting an easy integration of thermal sensors in face recognition systems. The

thermal sensor integration is provided by synthesizing visible face images from thermal

inputs and matching the synthesized image against the visible gallery samples [114], as

presented in Chapter 4. As for the continuity of face recognition, it is controlled by the

quality weighted fusion of matching visible faces and synthesized visible faces against

visible face gallery. Thereby, the participation of each component is indicated by the

corresponding quality score.

Figure 5.1 depicts different gallery samples as well as probe samples in three different

illumination conditions. Probe V IS corresponds to face images acquired in visible light

spectrum, whereas Probe GV IS represents synthesized visible faces from thermal inputs.

Thermal-to-visible face synthesis model [114] is presented in Chapter 4. Training the

thermal-to-visible face synthesis model was carried out using numerous facial variations

taken in controlled illumination conditions. This model provides a faithful estimation of

the visible information based on the thermal input when it is initially missing in the visible

spectrum. In other words, this step is essential to provide the missing visible information

due to lack of illumination. In case of Condition 1, when the illumination conditions

are controlled, the quality of visible images is undoubtedly superior to the quality of

synthesized visible images. Consequently, it is expected that the proposed quality based

fusion scheme will leverage the visible spectrum to obtain accurate face recognition results.

While in Condition 2, some information in visible face images are missing due to low

illumination. In this case, our proposed solution is supposed to exploit the information

provided by the visible images and the synthesized visible images complementary. In

case of Condition 3 however, the visible information is almost completely absent, which

may encourage our proposed fusion system to consider for the most part the information

obtained from the synthesized visible faces.

5.3.2 Face feature extraction and matching

We present here the face comparison systems used to obtain the matching scores on

which the fusion will be applied. We selected a state-of-the-art system based on deep

learning embeddings and a second system based on handcrafted features.

LightCNN [113] is a pretrained model of a light CNN of 29 layers. LightCNN was

used in Chapter 4 and led to better face recognition performances compared to a similar

baseline based on OpenFace [109], and thus it was retained for the work presented in

62





Chapter 5. Illumination invariant face recognition based on dynamic
quality-weighted fusion of visible and thermal spectrum

this chapter as well. 256-dimension embeddings are extracted, using LightCNN, from

gallery and probe samples and then matched using cosine similarity.

Local Binary Pattern (LBP) was originally introduced by Ojala et al. [115] for

texture analysis, but later on it was thoroughly explored in numerous applications.

Particularly, it has shown its efficiency for face analysis not only in visible but also in

thermal spectrum. LBP represent a binary pattern that describes the local neighborhood

of each pixel of the face image. The obtained LBP features are then concatenated to

create a single histogram feature vector of 256-dimensions. Histograms extracted from

gallery and probe image samples are compared using the χ2 distance as dissimilarity

measure.

5.3.3 Quality assessment metrics

Most often, quality of face samples reflects their relevance in providing a correct and

accurate recognition with a high matching score. High quality samples often deliver

highly informative features, yet low quality samples suffer heavily from noisy data and

missing information. Therefore, selecting quality assessment metrics is very critical in

boosting or lowering recognition performance.

We present, here, a number of selected quality metrics in order to study the impact

of each on face recognition performance.

• Lightening symmetry [127]: it quantifies the symmetry between sub-regions of

an image and can be measured as the difference between the histogram of intensity

in each half sub-region.

• Brightness [128]: is given by the average value of the image intensity histogram.

• Contrast [128, 129]: can be defined as the scale difference between maximum

and minimum intensity values in an image.

• Global Contrast Factor (GCF) [130]: is the weighted sum of local contrast

for various resolutions of the image.

• Exposure [131]: indicates the amount of light in the image and can be measured

using image statistical measures.

• Blur [132]: is based on the fact that sharp images have thin edges and blurry

images have wider edges, blur is expressed as the edge width.

• Sharpness [129]: is defined as the sum of gradients at every pixel intensity.
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5.3.4 Proposed fusion scheme

Figure 5.2 illustrates the proposed asymmetric approach of quality weighted fusion at

score level. Let QVIS, QGVIS
and QGallery denote the quality measures of the visible image

probe, the quality of the thermal-to-visible generated image probe, and the quality of

visible gallery image, respectively, obtained using one of the quality assessment metrics

just presented in Section 5.3.3. During recognition, we calculate the quality similarity

scores of the original visible image and the thermal-to-visible synthesized image by

determining their similarity to QGallery, as follow:

QSi = e

QGallery−Qi

QGallery , where i ∈ {V IS, GV IS}. (5.1)

Once the quality scores are obtained, they are normalized using min-max normaliza-

tion. Then, we compute the weight to be assigned to each entity, as

wi =
QSi

QSV IS + QSGV IS

, i ∈ {V IS, GV IS}. (5.2)

The closer Qi is to QGallery, the higher the weight will be assigned to i. Next, the

face matching scores, denoted by Si, are computed. SV IS are obtained by comparing

the visible image probe to the visible gallery set. SGV IS
are calculated by performing a

face comparison between the synthesized visible image and the visible gallery set. The

obtained matching scores are then normalized. The overall fused score is computed using

the weighted exponential sum rule, as follow:

Sfused =
∑

i

wie
Si , where i ∈ {V IS, GV IS}. (5.3)

Simply put, the quality weight will play a role in determining whether the visible

sample is reliable enough to provide an accurate recognition. The quality of visible

samples deteriorates mostly due to lack of illumination. Thereupon, the proposed fusion

scheme will favor the synthesized visible sample as it is estimated from thermal inputs

that are immune to illumination variations. The proposed method is summarized in

Algorithm 1.
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Algorithm 1: Quality-weighted score fusion

Input Probe Samples: set of samples acquired simultaneously in visible and

thermal spectrum under various facial variations.

Gallery Samples: set of neutral face samples acquired solely in visible

spectrum.

for p ∈ Probe Samples do

V IS ← Read Visible Image (p)

TH ← Read Thermal Image (p)

GV IS ← Thermal-to-Visible face synthesis (TH) as per chapter 4.

QV IS ← Quality Estimation( V IS)

QGV IS
← Quality Estimation (GV IS)

for g ∈ Gallery Samples do

Gallery ← Read Visible Image (g)

QGallery ← Quality Estimation(Gallery)

QSV IS(p, g)← Quality Similarity Score (QV IS , QGallery) as per Eq.5.1

QSGV IS
(p, g)←Quality Similarity Score (QGV IS

, QGallery) as per Eq.5.1

SV IS(p, g)← Matching Score (V IS, Gallery) as per Sec.5.3.2

SGV IS
(p, g)← Matching Score(GV IS , Gallery) as per Sec.5.3.2

end

end

Min-Max normalization of QSV IS , QSGV IS
, SV IS and SGV IS

Compute weights wV IS and wGV IS
as per Eq.5.2

Sfused ← Quality-weighted score fusion (wV IS , SV IS , wGV IS
SGV IS

) as per Eq.5.3

return the overall fused score Sfused
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5.4 Experiments and results

In this section, we present the data used to perform face recognition based on quality

weighted fusion. Then, we detail the evaluation protocol used to assess the proposed

fusion approach. Finally, we present the obtained results followed by an analysis of the

impact of different quality assessment metrics on face recognition performance.

5.4.1 Database

We used the VIS-TH face database [105], presented in Chapter 3, for the evaluation of

our proposed fusion solution. Three different sets are considered:

• Gallery set: face samples acquired in visible spectrum under controlled illumina-

tion conditions, with neutral expression and frontal head pose.

• Probe V IS: probe face samples acquired in visible spectrum under different facial

variations including varying illumination conditions.

• Probe GV IS: probe face samples initially acquired in thermal spectrum under dif-

ferent facial variations including varying illumination conditions, and then converted

into visible spectrum. Thermal-to-visible face synthesis is detailed in section 4.3 of

chapter 4.

5.4.2 Experimental protocol and results

Feature extraction is performed using either LBP or LightCNN. Feature vectors from

gallery and probe sets are compared to obtain the matching scores of the two components.

In parallel, quality measures are computed using 7 different quality assessment metrics

and quality similarity scores are then deduced. Dynamic quality weighted fusion at score

level is carried out as described in Section 5.3.4. The performance of our proposed fusion

approach is compared to the performance of fusing scores obtained from matching visible

probes and thermal probes against a common visible gallery set.

To highlight the main motivation of thermal spectrum usage in face recognition, we

display, in Figure 5.3, the receiver operating characteristic (ROC) curve of the three

setups aforementioned for face images that were acquired in total darkness. We can

clearly observe that the setup based on thermal-to-visible synthesized images provides

significantly higher performance compared to the setup based on visible images. This

affirms the efficacy of thermal imagery in most of the challenging scenarios, i.e. poorly lit

environments. Also, we note that the setup based on thermal-to-visible synthesized images
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outperforms the thermal based setup, which proves the efficiency of thermal-to-visible

face synthesis in reducing spectral gap between visible and thermal spectrum.

Figure 5.3: ROC curves in extremely poor illumination environment using LightCNN
system

Table 5.1 presents the rank-1 recognition of LightCNN and LBP systems reported

over all the facial variations contained in VIS-TH database. In this table, we report

firstly the recognition performance of each of the following setups: matching visible

probe, original thermal probe and thermal-to-visible synthesized faces against visible

gallery. We observe that face recognition using the synthesized visible images leads

to better performance than when using thermal images, which proves the efficiency of

thermal-to-visible face synthesis in reducing the gap between visible and thermal spectra.

Although, the synthesized visible images are still few steps behind standard visible face
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images and that is perceivable mostly for the performance across all the facial variations.

Furthermore, we can evidently perceive that face recognition using deep learning

embeddings (LightCNN) outperforms hand-crafted features (LBP) which confirms the

assertions presented in [133].

To assess the impact of each quality metric used in this Chapter, we report rank-1

recognition of quality weighted fusion of visible images and synthesized visible images

(denoted as (VIS, GVIS) in Table 5.1) for each quality metric, where Q1, Q2, Q3, Q4,

Q5, Q6 and Q7 denote lightning symmetry, brightness, contrast, GCF, exposure, blur

and sharpness, respectively. Qavg refers to using the average quality score of the 7 quality

assessment metrics. Furthermore, quality weighted score fusion of visible face images and

original thermal images (denoted as (VIS,TH) in Table 5.1) is considered as a baseline.

We note that the described fusion scheme using the thermal-to-visible face synthesis unit

outperforms significantly the fusion of visible and thermal images plainly. This divergence

in performance certifies the proficiency of thermal-to-visible face synthesis in bringing the

two spectra closer together. The rank-1 recognition results of LightCNN system showed

that the proposed fusion approach has led to the best performance, particularly for global

contrast factor quality metric. However, we can determine that the proposed quality

weighted score fusion shows nearly similar performance for all the quality assessment

metrics.

To get a deeper understanding of the performance of our proposed fusion scheme,

we plot the ROC curves, in Figures 5.4 and 5.5. The ROC curve is computed over all

the facial variations contained in the database, so as to demonstrate the efficacy of our

proposed approach in a wide range of operative scenarios. The plot confirms our previous

observations, as we can see that all the considered quality assessment metrics impact the

performance of the fused system similarly. Conclusively, we observe that the proposed

fusion based approach in this chapter outperforms face recognition operating solely on

visible data. It is fair to admit that the difference of performance is not significantly

large, that is due to the distribution of the variations within the database, as it contains

more samples acquired under controlled illumination conditions compared to only few

samples acquired under low illumination conditions that highlights the thermal imagery

usage.
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LightCNN LBP

VIS TH GVIS (VIS, TH) (VIS, GVIS) VIS TH GVIS (VIS, TH) (VIS, GVIS)

Q1

0.916 0.180 0.542

0.643 0.880

0.821 0.042 0.457

0.211 0.638

Q2 0.805 0.921 0.284 0.698

Q3 0.775 0.923 0.440 0.729

Q4 0.508 0.925 0.363 0.696

Q5 0.542 0.918 0.337 0.718

Q6 0.805 0.92 0.28 0.702

Q7 0.735 0.908 0.428 0.680

Qavg 0.746 0.923 0.429 0.735

Table 5.1: Rank-1 recognition across multiple facial variations using LightCNN and LBP face recognition algorithm.
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(a) Lightning symmetry (b) Brightness

(c) Contrast (d) Global Contrast Factor (GCF)

Figure 5.4: ROC curve deduced over all the facial variations in VIS-TH database [105]
using LightCNN

.
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(a) Exposure (b) Blur

(c) Sharpness (d) Average

Figure 5.5: ROC curve deduced over all the facial variations in VIS-TH database [105]
using LightCNN

.
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5.5 Summary

Integrating thermal imagery in face recognition systems tackles, particularly, the poor

illumination challenge for visible spectrum. Therefore, a new scheme of score level

fusion for robust face recognition from visible and thermal face data that enables

straightforward integration in the existing face recognition systems is proposed in this

chapter. The proposed system operates according to the following protocol in face

recognition: individuals have been enrolled solely in visible spectrum (i.e. gallery)

but can be afterwards controlled by dual visible and thermal acquisition (i.e. probe).

Considering that the gap between the visible and thermal spectra is important, it was

necessary to include a step where synthesized visible images are generated from thermal

inputs. This solution benefits from the quality measures of the visible gallery and probe

faces to assign weights for visible and thermal samples in order to provide an illumination

invariant face recognition solution. The results report an interesting improvement in

face recognition performance compared to when using solely visible samples. In addition,

results have proved the efficiency of thermal-to-visible face synthesis in providing more

accurate performance for face recognition system.
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Chapter 6

Facial landmark detection on

thermal data through fully

annotated thermal data synthesis

Facial landmark detection is a crucial prerequisite for facial image processing. Given

the upswing of deep learning based approaches, the performance of facial landmark

detection has been significantly improved. However, this uprise is mostly limited to

visible spectrum based face analysis tasks, as there are only few research works on facial

landmark detection in thermal spectrum. This limitation is mainly due to the lack of

available thermal face databases that include full facial landmark annotations. In this

chapter, we propose to tackle this data shortage by converting existing face databases,

designed for the facial landmark detection task, from visible to thermal spectrum. By

doing so, facial landmark annotations available in databases collected in the visible

spectrum can be leveraged in their artificially generated, thermal, counterpart. Using the

synthesized thermal databases along with the facial landmark annotations, two different

facial landmark detection models are trained using active appearance models [134] and

deep alignment networks [135]. The evaluation of these models shows accurate facial

landmark detection on real thermal data of different quality. With the need to provide

prompt solutions for thermal face analysis, our proposed framework provides a vehicle to

fuel future research in thermal imagery, not only limited to facial landmark detection

but also extendable to other tasks that require extensive annotation.

The remainder of this chapter is organised as follows. Section 6.1 introduces the

motivation behind this work. Section 6.2 presents the previous work in facial landmark

detection mainly focused on thermal spectrum. Section 6.3 describes the selected
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databases to synthesize a thermal face database and the employed landmark annotation

standard, followed by a presentation of the proposed approach to perform visible-to-

thermal face synthesis. Section 6.4 introduces two selected approaches used for facial

landmark detection in this work. Section 6.5 reports the experimental setup and the

evaluation protocol followed by results and discussion. A summary is presented in

Section 6.6.

6.1 Context and motivation

Facial landmark detection (FLD) consists in locating predefined landmarks, such as

eye contours, eye brows, nose, lips in a human face. These detectors provide a shape

representation of the face that captures transformations due to facial expressions and/or

head movement. FLD has drawn a lot of attention during recent times, as it became an

essential requirement to perform a wide range of task related to facial image processing,

e.g. face alignment and frontalization [136,137], 3D face reconstruction [136,138], emotion

recognition [139] and lip reading [140]. However, FLD on thermal data has not been

extensively explored yet, and to our knowledge there are no public facial landmark

detectors available designed for thermal spectrum. Thermal imagery provides data with

lower spatial resolution and contrast when compared with visible imagery, and it also

lacks textural and geometrical information. Therefore, applying the advances of FLD

designed for visible data to thermal spectrum may be challenging. Also, the lack of public

thermal face databases available with facial landmark annotations prevents thermal

spectrum from benefiting from the recent advances in deep learning that have led to

remarkable improvements in FLD performance, including when tested in-the-wild.

In this work, we present a novel concept that aims to tackle the lack of annotated data

in spectra that are less studied than visible spectrum through interspectral conversion,

with a focus in the thermal spectrum for FLD task. This proposed concept will enable

broader exploration of thermal image processing. Thereby, we provide thermal face

databases with full facial landmark annotation through artificial visible-to-thermal data

synthesis using existing visible face database designed for FLD, notably LFPW [141] and

Helen [142] databases. We explore the possibility of training different FLD models on

the synthesized thermal face data to be robust when tested on real thermal data. In

particular, we used active appearance models [134] and deep alignment networks [135] to

train our facial landmark detectors.
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6.2 Related work

FLD in visible spectrum has been extensively studied during the few last decades and it

has witnessed great progress. Early works, based on classic parameterized approaches,

include active appearance models [134] and constrained local models [143]. Later on,

FLD approaches based on cascaded shape regression [144,145] were introduced. Recently,

approaches based on deep learning have achieved impressive results, notably Deep

Alignment Network [135] and Style Aggregated Network [146]. A thorough survey of

existing techniques of FLD on visible images and videos can be found in [147].

Very few works have focused on FLD on thermal data despite the attention that

is being drawn to the usage of thermal imagery in face analysis tasks. First attempts

aimed to perform single landmark detection. Tzeng et al. [148] used video frames to

detect nostrils through tracking the temperature variation due to respiration. Wang et

al. [149] trained a support vector machine (SVM) to perform binary classification of

the eye region based on Haar-like features. Alkali et al. [150] located the temperature

maxima as it is commonly situated in the inner corner of the eyes.

More recent works focused on the face region as a whole and aimed to detect multiple

facial landmark points. Kopaczka et al. [151] trained an active appearance model

using histogram of oriented gradients HOG and Scale-invariant feature transform SIFT

to perform face tracking in thermal videos. This work has been extended [152] by

incorporating the active appearance model into a deep convolutional network to provide

it with a prior shape information. These two approaches were trained on a fully annotated

thermal face database [153] collected by the University of Aachen. This database provides

high spatial resolution data at 1024×768 pixels, with high contrast and noise equivalent

temperature difference (NETD) lower than 30mK, meaning that the sensor with which

the data is acquired is able to identify very small differences of temperature as little as

30mK or lower. These data specifications result in extremely high quality thermal data

much higher than the data provided by the currently available thermal databases and the

affordable thermal sensors available on the market. The high quality of the training data

of the FLD model mentioned above results in a drastic decrease of landmark detection

accuracy when tested on low or medium quality thermal data, which is usually used

nowadays for research and commercial purposes.

6.3 Thermal face database synthesis

Several face databases were used in the work presented in this chapter. As a matter of

convenience, we gathered all the relevant information about these databases, in Table 6.1,

as well as its usage throughout this work.
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Database Spectrum
Thermal spatial

resolution
NETD

Facial landmark
annotation

Usage

LFPW [141] Visible - - Provided

Section 6.3.1: Used as input
to synthesize thermal data

+ the provided facial
landmark annotation.

Helen [142] Visible - - Provided

Section 6.3.1: Used as input
to synthesize thermal data

+ the provided facial
landmark annotation.

VIS-TH [105] Visible and thermal 160x120 <100mK Not provided
Section 6.3.2: Training
visible-to-thermal data

synthesis.

Aachen database [151] Thermal 1024 x 768 <30mK Provided
Section 6.5.1: Training

baseline models.

CSMAD Visible and thermal 320x240 <70mK
Not provided,
but possible

Section 6.5.4: Quantitative
evaluation on low quality

thermal data.

Aachen expression
subset [153]

Thermal 1024x768 <30mK Provided
Section 6.5.5: Quantitative
evaluation on high quality

thermal data.

UND-X1 [62] Visible and thermal 320x240 <100mK Not provided
Section 6.5.6: Qualitative

evaluation.

UTW database [154] Thermal 640x480 <30mK Not provided
Section 6.5.6: Qualitative

evaluation.

Table 6.1: Properties of face databases used in this chapter.
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6.3. Thermal face database synthesis

In this section, we describe the selected visible face databases provided with landmark

annotation that are used in this work. Then, we describe the approach to perform

visible-to-thermal data synthesis in order to obtain a synthesized thermal face database

with full facial landmark annotations. Finally, we present some samples of the generated

thermal faces.

6.3.1 Face databases with full facial landmark annotation

Numerous visible face databases provided with facial landmark annotation are avail-

able [141,142,155,156,157]. We present, here, the selected databases and the landmark

annotation used in this chapter.

Helen [142]: Helen database contains 2330 face images collected from Flickr. The

database includes a large set of variations including pose, lighting, expression, occlusion,

and individual differences. The facial landmarks were annotated manually using Amazon

Mechanical Turk after an initialisation performed using STASM [?] algorithm.

LFPW [141]: The Labeled Face Parts in-the-wild database contains 1035 images

collected from the web (Flickr, Google, Yahoo...). LFPW database covers the same vari-

ations as Helen database. The Labeling and facial landmark annotation were performed

by three Amazon Mechanical Turk members.

Facial landmark annotations, used in this work for these databases, were obtained

from those released in the context of the 300 Faces in-the-Wild Challenge: the first facial

landmark localization Challenge [158]. Organized by iBUG∗, the provided annotations

attempted to mitigate the mismatched original annotation criterions present in Helen and

LFPW databases, with 194 and 29 selected landmark points, respectively. This mismatch

in dimensionality motivated the application of a shared semi-supervised approach to

FLD followed by manual correction, resulting in a common, consistent, 68 facial points

annotation illustrated in Figure 6.1. These annotations, which have been widely used as

the de facto benchmark for landmark detection, were thus used as reference in the work

presented here.

∗Intelligent Behaviour Understanding Group (iBUG), Department of Computing, Imperial College
London

79



Chapter 6. Facial landmark detection on thermal data through fully
annotated thermal data synthesis

Figure 6.1: 68 facial landmark annotation defined in the context of 300 Faces in-the-Wild
Challenge: the first facial landmark localization Challenge [158].

6.3.2 Visible-to-thermal data synthesis

Data synthesis from visible to thermal spectrum was carried out using the approach

presented in Chapter 4. This approach aimed to synthesize visible face images from

thermal inputs to perform synthesis based cross-spectrum face recognition. However, in

our case, we needed to re-train the model presented in [114] to perform face synthesis in

the opposite direction, i.e. from visible to thermal spectrum.

The used approach is based on cascaded refinement networks (CRN) trained using

contextual loss, enabling it to be inherently scale and rotation invariant. During the train-

ing phase of the visible-to-thermal data synthesis model, we used VIS-Th datatabse [105]

introduced in Chapter 3. This database provides thermal images of 160×120 spatial

resolution and NETD<100mK acquired with different facial variations. For training,

one variation acquired in total darkness was discarded, leaving 1000 pairs of face images.

The loss function designed for visible-to-thermal data synthesis is modeled invertedly

compared to the loss function defined in Equation 4.5 of Chapter 3. The style loss is

computed between the generated thermal image and the ground truth thermal image.

Whereas the content loss is computed between the input visible image and the generated

thermal image. The training was run for 40 epochs with a learning rate of 1e-4.

To obtain the synthesized databases from visible to thermal spectrum, the images of

HELEN and LFPW databases are fed to our trained model, that returns the thermal
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statistical appearance method aiming to model the shape of the face and its appearance

as probabilistic distributions that can be generalized nearly to any face. To train the

FLD model, AAM requires a set of face images with annotation points defining the facial

landmarks. In the training phase, Procrustes analysis [159] is applied to align the set

of landmarks, and the statistical shape and appearance model variations are extracted

using principal component analysis (PCA). Unseen faces can be represented by a linear

combination of the mean shape and the appearance from the training data with weighted

shape and appearance vector.

As to faithfully replicate the AAM approach used to train the FLD model provided

by Aachen University [151], we have trained a dense histogram of gradients HOG

feature-based AAM model fitted using the Inverse-Compositional algorithm [160].

6.4.2 Deep alignment network

The second selected approach is Deep Alignment Network (DAN) [135] as it is the

state-of-the-art in facial landmark detection for visible images. DANs are based on

multi-stage neural networks that perform an iterative process of refinement of landmark

positions. Each stage of a DAN network is a feed-forward neural network that provides a

prediction of the refined facial landmark location. Each stage of a DAN network takes

3 inputs: the original image aligned to an initial estimation of the landmark location,

assumed to be the average face shape, the landmark heatmap, and the feature image

provided by the previous stage. The first stage only takes the input image. The stages of

DAN networks are trained consecutively. Each stage is trained until the validation error

stabilises. We have used a two-stage DAN: between the two stages a similarity transform

is applied to re-align the image to the average face shape. A learning rate of 1e-3 is used

with Adam optimizer on mini batches of sizes 64.

6.5 Experimental setup and results

In this section, we present firstly our two baseline FLD models. Then, we detail

our experimental setup. Finally, we introduce our evaluation protocol followed by a

quantitative and qualitative evaluation on real thermal data of different quality.

6.5.1 Baseline models

We consider as baseline models the facial landmark detectors, described in Section 6.4,

trained on high quality database provided by Kopaczka et al. [151] from University of

Aachen. We will refer, in the remainder of this chapter, to the active appearance model
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and deep alignment networks, both trained on Aachen database, as ‘AAM-Aachen’ and

‘DAN-Aachen’, respectively. The Aachen database includes high resolution thermal face

images that are manually annotated [153]. Video sequences were acquired using a thermal

camera with a NETD<30mK and spatial resolution of 1024×768 pixels. 695 frames were

extracted and manually annotated with 68 point landmarks. To train the AAM model

described in section 6.4.1, the face images were mirrored and 1272 images were selected

for the training phase, as described in [151].

6.5.2 Experimental setup

The two selected approaches for FLD, described in section 6.4, are trained on the

synthesized thermal face databases Helen and LFPW separately. We refer to AAM

models trained on the synthesized thermal data from Helen and LFPW as ‘’AAM-Helen’

and ‘AAM-LFPW ’ and to DAN models as ‘DAN-Helen’ and ‘DAN-LFPW ’, respectively.

Following the protocol defined in the context of 300 Faces in-the-Wild Challenge: the

first facial landmark localization Challenge [158], we have used 2000 face images from

the Helen database and their corresponding facial landmark annotation files for training.

Whereas for LFPW database, we have used 811 face images for training our models.

6.5.3 Evaluation protocol

The evaluation of FLD performance is assessed by comparing the estimated landmark

coordinates to the ground truth. The normalized root mean square error (NRMSE), is

computed, point-to-point, to assess the average localization error. NRMSE is considered

as a standard metric to evaluate FLD performance [161] and it consists of the Euclidean

distance between the predicted landmarks and the ground truth landmarks normalized

by a predefined distance. Several normalization distances were defined for facial land-

mark detection evaluation [161, 162, 163, 164, 165]. To maintain consistency with the

setup defined for the 300W competition [158], we performed the normalization with

regards to inter-ocular distance (IOD) which is the distance between the two eye outer

corners as defined in [158]. The normalization process is essential to obtain performance

measurement independent of the face size or the image resolution.

The NRMSE, referred to as E, is obtained as follows:

Ek =

√

((x, y)k − (x̄, ȳ)k)2

dnorm

(6.1)
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Results, in Table 6.2, show the average and the standard deviation of the localization

error in terms of NRMSE obtained by evaluating the different FLD models on the CSMAD

database. The first column of the table corresponds to the AAM approach trained on

different databases: where ‘TH ’, ‘SynTH ’ and ‘VIS ’ refer to thermal data, synthesized

thermal data and visible data, respectively. The second column reports the same results

for a DAN-based approach. The localization errors reported by the FLD models trained

and tested on thermal face data is relatively higher than the errors reported by the model

trained and tested on the original visible images. This is mainly due to the conversion of

the face images from highly informative domain, the visible spectrum, to a comparatively

lower informative domain as the thermal spectrum, resulting in a loss of information

relevant for accurate FLD. We also observe the detection models trained on synthesized

thermal data exhibit considerably lower errors than the models trained on the Aachen

database, which demonstrates the efficiency of our proposed solution. The reported

results prove that a FLD model trained on synthesized thermal face data is more robust

than a model trained on high quality thermal face data, and that is due to the large gap

in data quality between the Aachen database [153] and the current existing thermal face

databases.

The plots, presented in Figure 6.5, illustrate the detection rate that corresponds to a

defined threshold value for FLD models trained on different databases. We swept the

detection threshold from 0.0 to 1.0 with a step of 0.05. We observe that the two facial

landmark detectors trained on the Aachen database, represented by the blue curve, led to

significantly lower detection rates compared to the detectors trained on the synthesized

thermal data. This can be justified by the fact that Aachen models have been trained on

very high resolution, i.e. high contrast images captured with very high thermal sensitivity.

These images are very different from the images provided by the publicly available

thermal face databases, as it is the case for CSMAD database. In addition, the detection

rates obtained using DANs are considerably higher than the detection rates obtained

using AAM. This confirms the efficacy of deep learning solutions in the FLD task.

Additional qualitative results, presented in Figure 6.6, depict the performance of each

model of FLD on thermal face images with some facial variations. We note that the

facial landmark detectors trained on Aachen database [151], shown in column (c) and

(f), fail to accurately localize most of the facial traits even under the least challenging

variation. However, all the four models trained on the synthesized thermal data provide

more accurate landmark localization. Furthermore, we observe that deep learning based

detectors (columns (f), (g) and (h)) led to a more meticulous facial landmark localization

compared to the statistical modelling based detector. Besides, deep learning models

seem to be very robust against challenging facial variation such as occlusion by glasses

(rows 2 and 4). These methods managed to predict the facial landmark coordinates that
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AAM DAN

Aachen (TH) 0.07267 (±0.031) 0.06061 (±0.020)

LFPW (SynTH) 0.09534 (±0.034) 0.07827 (±0.015)

Helen (SynTH) 0.10700 (±0.039) 0.06409 (±0.014)

Table 6.3: Average NRMSE (± standard deviation) reported on the expression subset of
Aachen database.

approach, the detection rate reported by the model trained on Aachen data is significantly

higher compared to the models trained on synthesized thermal data. However, for DAN,

we notice that the curve corresponding to the model trained on the Aachen database

overlaps with the curve obtained using the model trained on synthesized thermal data

from Helen, attesting that the two models perform similarly.

Figure 6.8 presents some samples of the expression subset of Aachen database

portraying the performance of each FLD model. Overall, FLD was less challenging

when applied on high quality than on low quality thermal data, as revealed when we

compare Figure 6.6 and Figure 6.8. For the AAM approach, facial landmark detectors

trained on synthesized data perform slightly poorer than the detectors trained on the

Aachen database. Nevertheless, when using DAN, the three different facial landmark

detectors achieve similar performances as they all succeeded to meticulously locate the

facial landmarks. For some face variations, we can observe that the model trained on the

synthesized thermal Helen database (column (h)) detected adequately some challenging

landmarks, as the bottom lip (row 1) and closed eyes (row 2), whereas the facial landmark

detector trained on Aachen did not manage to correctly predict the localization of these

landmarks (column (f)).

6.5.6 Qualitative evaluation on thermal samples of different quality

Given that there are no public thermal face databases, other than Aachen’s [153], provided

with full facial landmark annotation, further quantitative performance assessment cannot

be performed on more data. Therefore, some qualitative results are illustrated in Figure 6.9

to demonstrate that the facial landmark detector trained on synthesized thermal data can

operate accurately on thermal data of different quality. Results obtained using the DAN

approach trained on Aachen database ‘DAN-Aachen’ are shown in row 1 of Figure 6.9.

We have presented, in row 3, results obtained using the DAN model trained on the

synthesized thermal data from Helen database ‘DAN-Helen’, as it is the best performing

model.
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6.6. Summary

The best performing model that we have trained on the synthesized thermal face

data has achieved an average localization error of 0.07 and 94.59% of detection rate at

threshold value of 0.15 when evaluated on low quality thermal data. This facial landmark

detection model will be shortly made publicly available, as facial landmark detection is

an essential step for many face analysis tasks and as of today there are no public facial

landmark detection tools for thermal spectrum that are available. Interspectral data

synthesis is also reproducible to tackle any lack of available data for tasks that requires

extensive annotation.
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Chapter 7

Indirect spoofing attack on

thermal face biometric system

The robustness of thermal spectrum against spoofing attacks lies in the acquisition

process of thermal properties by the thermal sensor. In this chapter, we propose a new

type of attack on thermal face recognition systems, performed at post-sensor level. In

visible spectrum, this attack would be carried out by simply injecting a face image of the

claimed identity into the communication channel right after the sensor. However, thermal

face images are not easy to obtain, unlike visible face images that are abundantly available

on the web. Therefore, we propose to generate synthetic thermal attacks by converting

visible face images into thermal spectrum. To perform visible-to-thermal attack synthesis,

we use the approach presented in Chapter 6 based on cascaded refinement networks (CRN)

trained using contextual loss as described in Chapter 4. In a scenario where the imposter

has prior knowledge about the spoofing countermeasure of the system, we introduce a

new loss computed at local binary pattern (LBP) maps level to fool a LBP-based spoofing

attack detection algorithm. The threat caused by the proposed attacks is then evaluated

using two existing baselines of spoofing attack detection. The experimental results show

that the new proposed attacks alter the performance of spoofing attack detection and

lead to a higher error compared to the challenging presentation attack using silicone

masks.

The remainder of this chapter is organized as follows. The context and motivation of

this work are presented in Section 7.1. Section 7.2 presents the studies carried out for

spoofing attacks on thermal spectrum. Section 7.3 recalls our approach to generate the

proposed thermal attack, and the modifications we applied to obtain a more challenging

attack for a given spoofing attack detection approach. Section 7.4 details the process
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own biometric sample in evasion scenarios. Recent research studies [51,52,53,55,56] have

proved that using thermal imagery might be the most effective solution to presentation

attack detection. The thermal signature of the human face provides evidence of the user’s

liveness. Artifacts presented by the imposter exhibit different thermal characteristics of

those of a face, leading to a straightforward presentation attack detection solution.

Indirect or logical access attack, on the other hand, occurs at the post-sensor level.

For this scenario, it is assumed that the impostor has access to the communication

channel between the sensor and the feature extraction module, as shown in Figure 7.1.

This kind of attack intercepts the face sample acquired by the sensor and substitutes it

with a fake sample of the claimed identity. This attack can be as simple as inserting a

photograph or replaying a video of the victim. Face samples are easy to obtain so as

to spoof conventional visible spectrum based face biometric systems. However, this is

not the case for thermal face biometric systems, as thermal images are not abundantly

available.

While until very recently the deployment of thermal technologies would have been

very expensive to deploy, and thus an un-realistic alternative to presentation attack

detection, the use of thermal imagery is now a reality. It is perhaps for this reason that

thermal imagery is gaining a lot of attention, and starting to be deployed across many

applications requiring high levels of security. Therefore, it is essential to study all the

vulnerabilities of thermal face biometric systems and the threats it may encounter.

7.2 Literature overview: spoofing attacks and thermal spec-

trum

First attempts of spoofing attacks included techniques as simple as the presentation

of a photograph from the claimed identity on a printed paper or on a mobile device

screen, which can alter the performance of algorithms operating exclusively on 2D images.

Some prompt solutions have been proposed such as requiring an eye blink, smile or

other visual reactions to prove the liveness of the user, yet this can be easily tricked

using video replay attacks. New sensor based presentation attack countermeasures have

also been considered, as these sensors deliver complementary visual information. 3D

sensors [172,173] merely unravel the lack of depth information when a printed photograph

or a video played on a device is presented. A much more robust sensor against these

attacks is that present in thermal cameras, as it provides a proof of the user’s liveness

simply through acquisition [54]. When presenting these aforementioned attacks, the

acquired thermal sample will present some properties that are different from those of

a human face thermal signature. More elaborate and high-cost methods of spoofing
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detection independently for each spectrum. For presentation attack detection, they

proved that thermal spectrum is the most robust spectrum in comparison to visible and

near-infrared spectra. The best performing system was based on redundant discrete

wavelet transform (RDWT), Haralick features and support vector machines (SVM).

However, the results reported on thermal spectrum are questionable since the thermal

data is clearly acquired using FLIR MSX∗ technology which adds visible light details to

the thermal images. George et al. [52] present a new multi-channel database containing

different 2D and 3D attacks. Multi-channel convolutional neural network (CNN) was

proposed in this work for presentation attack detection. In addition, a score level fusion

was performed combining the scores of each channel’s presentation attack detection

algorithm. For thermal spectrum, a presentation attack detection algorithm, based on

local binary pattern (LBP) feature extraction followed by logistic regression classification,

had outperformed the RDWT-Haralick-SVM baseline proposed by [53]. In [56], a disguise

database in visible and thermal spectrum was proposed. The authors proposed to combine

patches from visible and thermal images for presentation attack detection.

7.3 Visible-to-thermal attack synthesis

A new attack on thermal face biometric systems is proposed in this work. This attack

occurs at the post-sensor level and is obtained by converting available visible face images

to thermal spectrum. In this section, we reintroduce the used approach to convert visible

images to thermal spectrum. A customization of the used approach is later presented

to generate more challenging attacks to a given approach of thermal spectrum based

presentation attack detection. Finally, implementation details of the proposed approaches

are given.

7.3.1 Generalized approach for attack synthesis

Visible-to-thermal attack synthesis was carried out using the approach presented in

Section 4.5 of Chapter 4. This approach is based on cascaded refinement networks

(CRN) [21] trained using contextual loss [100]. In this case, the data synthesis is

performed from visible to thermal spectrum as it is the case of Chapter 6 of this thesis.

The synthesized attack to be generated is generalized to all spoofing attack detection

algorithms. We reformulate the loss, defined in equation 4.5 in Chapter 4, to adapt it to

visible-to-thermal image synthesis:

∗FLIR MSX: https://www.flir.com/discover/professional-tools/what-is-msx/
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LCRN (IV IS , IT H , G) =λ1(− log(CX(Φls(G(IV IS)), Φls(IT H))))+

λ2(− log(CX(Φlc(G(IV IS)), Φlc(IV IS)))),
(7.1)

Where IV IS , IT H and G denote the input visible image, the ground truth thermal

image and the generator (i.e. visible to thermal synthesis model), respectively. Φlc

and Φls refer to the VGG-19 embeddings extracted at content layers level and style

layers level, respectively. CX denote the contextual similarity defined in Equation 4.4

in Chapter 4. λ1 and λ2 represent two emperically optimized weights associated to the

style and content losses, respectively.

7.3.2 Customized approach for attack synthesis

Here, we explore the scenario in which an imposter has obtained prior information about

the spoofing attack detection approach used in the targeted thermal face biometric

system. Therefore, the generalized approach for attack synthesis will be customized

according to this prior information.

The study, carried out by George et al. in [52], has proven that the spoofing attack

detection algorithm based on LBP feature extraction is outperforming the solution

provided by [53]. Therefore, we consider the LBP based spoofing attack detection as

our target spoofing countermeasure on which the impostor has some prior information.

Consequently, we customized our generalized visible-to-thermal attack synthesis model in

a way that it intends to generate thermal images of which the LBP map is more similar

to the LBP map of thermal ground truth images, or, simply put, more similar to the

LBP map of thermal bona fide samples.
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Ψ=CX(LBP) The second option is to use a contextual loss computed on LBP maps,

but solely at style level, as our objective is to generate thermal attacks of which the

LBP maps is closer to the LBP map of thermal bona fide images. We extracted the

VGG-19 embedding vectors from LBP maps of the synthetic thermal image and the

thermal ground truth, at style layers. Consequently, the total loss of the customized

attack synthesis model, in this case, is defined as follow:

LT otal(IV is, IT h, G) =α1LCRN (IV is, IT h, G)+

α2(− log(CX(Φls(LBP (G(IV is))), Φls(LBP (IT h))))
(7.3)

In addition to the annotation defined in the equation 7.1, LBP and LBPhist denote

the LBP map and the histogram of the LBP map, respectively.

For the remainder of the paper, we refer to the visible-to-thermal attack synthesis

models as CRN, CRN+χ2(LBP), and CRN+CX(LBP) to denote the generalized model,

the customized model combined with LBP histogram comparison using χ2 distance, and

the customized model combined with the contextual loss at style level computed on LBP

maps, respectively.

7.3.3 Implementation details

The different visible-to-thermal attack synthesis models are trained using the VIS-TH

database presented in Chapter 3. One variation was discarded from the database, as it

was acquired in total darkness. Visible and thermal images are re-sampled to 128×128

pixels.

The training of the three proposed models of visible-to-thermal attack synthesis

was performed with a learning rate of 1e-4. The CRN model was run for 40 epochs,

CRN+χ2(LBP) model for 60 epochs and CRN+CX(LBP) model for 90 epochs. The

weights assigned to the different losses α1, α2, λ1 and λ2 were adjusted using grid search.

7.4 Indirect attack synthesis

In this section the dataset, from which the synthetic thermal attacks are generated, is

first introduced. A quality assessment of the synthetic thermal images is then performed.
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7.4.1 CSMAD dataset for indirect attack synthesis

Choosing the Custom Silicone Mask Attack Dataset (CSMAD) [51] is motivated by the

fact that this dataset contains the most challenging attack on thermal face biometric

systems, and therefore it will be considered as a baseline attack. In other words, the

damage caused of the new attack, which we are proposing in this chapter, on spoofing

attack detection will be quantified and compared to the damage brought by the silicone

masks attack.

The CSMAD contains presentation attacks made of six custom-made silicone masks.

Face images are collected from 14 subjects. Bona fide samples were collected from all

subjects. Extra bona fide samples were acquired for few subjects, for which they wore

eye glasses. Attack samples were acquired for all 6 masks but worn by different attackers.

Additional attack samples were recorded with the masks attached to their provided stands.

The CSMAD provides bona fide and attack acquisitions, consisting of videos of 5 to 10

seconds, in visible, near-infrared and thermal spectrum, and also depth maps collected

simultaneously. The dataset was collected under 4 different illumination conditions. In

our study, we have only considered data from visible and thermal spectrum. Figure 7.4

present some attack samples. We can observe, in column (a), when the mask is worn

by the attacker it gets warm, leading to a thermal face sample that looks more like a

real face in terms of temperature. Whereas for the attacks where the mask is attached

to a stand, we can barely differentiate the mask from the background in the thermal

spectrum, as they probably have similar temperatures.

7.4.2 Quality assessment of the synthetic attacks

Bona fide samples from the CSMAD dataset, that are acquired in visible spectrum, are

simply fed to the visible-to-thermal attack synthesis models presented, in Section 7.3, to

generate the synthetic attack. Two of the illumination conditions were discarded as they

altered the quality of the synthetic images resulting in black areas in the face caused by

missing information due to low illumination.

Figure 7.5 illustrates the synthetic attacks in column (c), (d) and (e). We note that

the synthetic thermal images present realistic patterns of thermal signature. Some details,

such as hair and eye brows, are converted into low pixel values reflecting regions with lower

temperature compared to the face region. However, we can observe that the synthetic

thermal images, when compared to thermal ground truth in column (b), present more

details in some facial traits such as eyes and mouth. This is expected as the synthetic

thermal images are generated from data with different source of information. Comparing

the synthetic thermal images generated using the three proposed visible-to-thermal attack
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synthesis models, we note that the three sets of synthetic images are remarkably similar,

even though we can note few minor differences that are almost not visually perceptible.

PSNR (dB) SSIM

CRN 15.576 (± 4.246) 0.610 (± 0.103)

CRN+χ2(LBP) 15.223 (± 4.594) 0.613 (± 0.123)

CRN+CX(LBP) 15.616 (± 4.208) 0.618 (± 0.107)

Table 7.1: Quality assessment of the synthetic attacks in terms of PSNR and SSIM.

A quality assessment of the synthetic thermal attacks obtained by the different

proposed approaches is performed in terms of peak signal-to-noise ratio (PSNR) and

structural similarity index measure (SSIM). PSNR and SSIM are computed between the

synthetic thermal images and the thermal bona fide samples (ground truth). Table 7.1

reports the PSNR and SSIM results obtained for each visible-to-thermal attack synthesis

model. We acknowledge that the obtained results do not reflect high fidelity of the

synthetic thermal images to the ground truth. As pointed out for Figure 7.5, the synthetic

attacks are generated from visible face images which provides a different information

compared to thermal spectrum. The visible-to-thermal attack synthesis models aim to

generate thermal-like images but it cannot predict accurately the thermal signature.

The quality assessment provides similar results for the different attack synthesis models

(∼15dB for PSNR and ∼0.6 for SSIM), with the CRN+CX(LBP) model delivering the

highest values of PSNR and SSIM.

7.5 Evaluation of face spoofing attack detection for indi-

rect synthetic attack

In this section, we carry out a performance evaluation of spoofing attack detection when

confronting the new proposed synthetic attack in order to quantify the threat it causes.

First, we present the spoofing attack detection algorithms used for the evaluation. Then,

we introduce our experimental setup followed by the reported results and discussion.

7.5.1 Spoofing attack detection baselines

The selected baselines of spoofing attack detection were introduced in studies of thermal

spectrum robustness against spoofing attacks [51,52,53,54].
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Mean facial brightness (MFB) As defended in [51, 54], mean facial brightness is

a simple but a very efficient solution to prove the user’s liveness. This argument can

be endorsed by the fact that face regions are rather bright in thermal spectrum, while

presentation attacks are quite dark since they are at a significantly lower temperature

than faces. This is also valid for silicone mask attacks, since it is expected that the attack

region will be relatively darker than face region even when worn by the attacker. Mean

facial brightness can be used simply as spoofing attack detection score.

Local Binary Patterns and Logistic Regression (LBP+LR) Local binary pat-

terns (LBP) are used to represent the texture variation between bona fide samples and

attack samples. Subsequently, logistic regression (LR) is used to build a classifier to

label samples as bona fide or attack. LBP features are normalized before training the LR

model. We have applied normalization to zero mean and unit standard deviation using

parameters extracted only from the bona fide feature set. Given a LR trained model, the

output of this spoofing attack detection is the probability of a sample being a bona fide.

7.5.2 Experiments and results

The performance evaluation of the presented spoofing attack detection baselines is

assessed using the CSMAD dataset along with the synthetic attacks obtained using the

different visible-to-thermal attack synthesis models. The CSMAD dataset provides video

samples that are split into frames. Spoofing attack detection scores are computed at

frame level.

Face regions are cropped by extracting the face coordinates on visible spectrum and

projecting them on thermal face images. MFB is computed across the face region. Fig-

ure 7.6 illustrates the score distribution of MFB for bona fide samples and attack samples.

The score distribution of bona fide samples is the same for all the Figures 7.6a, 7.6b, 7.6c

and 7.6d, as we have considered the same bona fide set for the 4 sets of attacks. For

the silicone mask attacks illustrated in Figure 7.6a, we observe that the two score dis-

tribution are clearly separated, resulting in a 2.3% of equal error rate (EER). However,

the score distribution for the synthetic attack generated by the three different models of

visible-to-thermal attack synthesis significantly overlaps with the score distribution of

bona fide samples. The synthetic attack generated using CRN+χ2(LBP) model gives

the highest equal error rate of 67.7%. The EER reported on all of the three different

synthetic attacks surpasses 50%. Accordingly, we can deduct that the proposed synthetic

attack have led to a terrible failure of the spoofing attack detection solution based on

MFB.
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Figure 7.7: Detection error tradeoff (DET) curves of LBP+LR spoofing attack detection
baseline for different attacks.

The EERs of the two reported spoofing attack baselines for the different attacks are

gathered in Table 7.2. It is observable that the proposed synthetic attack represents a

considerable higher threat, in comparison to silicone mask attack that is considered so far

a challenging attack for thermal spectrum. The EER has increased from 2.3% to 67.7%

and from 0.21% to 11.6% for MFB and LBP+LR spoofing attack detection, respectively.
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MFB LBP + LR

Silicone mask attack 2.3 0.21

Synthetic attack CRN 58.5 7.43

Synthetic attack CRN + χ2(LBP) 67.7 9.44

Synthetic attack CRN + CX(LBP) 50.7 11.6

Table 7.2: Equal error rate (%) of face spoofing attack detection evaluated on the
proposed attacks.

When the impostor does not have any a priori knowledge about the spoofing counter-

measure implemented in the system, the performance of the spoofing attack detection

significantly drops when it faces the synthetic attack obtained by the generalized CRN

model. Consequently the EER increased from 0.21% to 7.43%. Although when the

impostor does indeed have a priori information about the spoofing countermeasure that

is being employed, he can use this information in a way to customize his attack to have

higher chances to breach the system. This scenario is executed for visible-to-thermal

attack synthesis models, CRN + χ2(LBP) and CRN + CX(LBP), where we have used

the LBP map information to better attack the LBP+LR based spoofing attack detection

system. In addition, it is important to highlight that when using a contextual loss at

style level to compute the loss between the LBP maps of the synthetic thermal attack

and the bona fide thermal sample, we have obtained a higher EER (11.6%) compared to

using a LBP histogram comparison using χ2 distance (9.44%).

7.6 Summary

Deploying thermal technology in face biometric systems requires an extensive study of its

implications and the risk it may confront. In this chapter, we proposed a new attack on

thermal face biometric systems, that takes place at the post-sensor level. This thermal

attack is generated through visible-to-thermal attack synthesis of visible face images that

could be available on the social networks or acquired sneakily from a distance. A quality

assessment of the synthetic attacks have been performed by comparing the synthesized

thermal images to thermal bona fide samples. Subsequently, the threat of the proposed

synthetic attack was measured through an evaluation of two existing spoofing attack

detection solutions designed for thermal spectrum. This evaluation reported a significant

drop of performance of the two used baselines when they face the proposed synthetic
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attack compared to when they confront silicone mask attacks, the most challenging

attack for thermal spectrum studied so far. A scenario representing an impostor that

has a priori knowledge of the spoofing attack detection solution is also explored. For

local binary pattern (LBP) based spoofing attack detection system, we have adjusted the

visible-to-thermal attack synthesis model in a way that it aims to generate thermal images

of which the LBP map is closer to the LBP map of thermal bona fide samples. The

obtained synthetic attacks using the customised attack synthesis models have increased

the error rate reported by the targeted spoofing attack detection approach.

We have proven through this work that, even though it is true that thermal spectrum

is extremely robust against presentation attacks, this does not deny the fact that new

attacks customized for thermal imagery might act as a serious threat. Spoofing attack

detection approaches based on the detection of human vitals signs, such as respiratory

rate or heart rate, might be an efficient, parallel, solution to counter-defend against the

attacks proposed in this chapter.
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Chapter 8

Conclusion

This chapter provides a summary of the contributions and findings from the work reported

in this dissertation. This material is reported in Section 8.1. Different directions for

future research are presented in Section 8.2.

8.1 Summary

Conventional visible face recognition systems have greatly evolved during the three last

decades to achieve human-level performances. However, human performance does not

always define an upper bound of what is achievable. Human vision system is limited by

the potential of visible spectrum that detects reflected radiation in visible wavelengths.

Thereby, visible face recognition systems are heavily affected by the illumination variation.

Thermal imagery provides efficient solutions to the challenges encountered by visible face

recognition systems. The foremost advantage of thermal imagery lies in its invariance to

illumination changes. This is inherent in the nature of thermal imagery as it detects the

radiation emitted by the face. Thermal face recognition has attracted a lot of attention

these last years, however its progress is still far behind that of visible face recognition.

This is mainly due to the shortage in thermal face databases and in public resources

required for its exploration.

The research work reported in this thesis is centered on the development of novel

methodologies that enable an efficient and prompt integration of thermal technology in

face biometric systems. The set of developed methodologies, presented in this disserta-

tion, was established based on interspectral synthesis that confers the exploitation of

complementary information provided by face images in visible and thermal spectra. The

proclivity for such direction is motivated by the explotion in usage of thermal technology
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as the need and the investments for security applications grow steadily. The contributions

presented throughout this thesis have promoted an integration of thermal technology

without requiring:

• recollection of face enrollment databases in thermal spectrum as the legacy enroll-

ment databases are restrained to visible spectrum.

• adapted and re-optimized algorithms specifically designed for thermal spectrum.

• extensive manual annotation and labeling of thermal data that is costly and

time-consuming.

The shortage of public face databases that provide face images in visible and in

thermal spectrum has motivated the first contribution of our work. A new face database,

introduced in Chapter 2, includes face images acquired simultaneously in visible and

in thermal spectrum using a dual sensor. The proposed database has been acquired

with several facial variations in attempt to reproduce real-life challenging scenarios.

Because of its variation, this database can be used to conduct a wide range of studies

related to facial image processing including occlusion removal, expression and/or pose

invariant face recognition and soft biometrics. A benchmark evaluation of the database

has been conducted to study the impact of facial variations on visible and on thermal

face recognition performance validating the advantages and the limitations of each. The

database has been available upon request for the research community. The remainder of

the contributions reported in this dissertation are built upon the representations provided

by the proposed database.

The contribution, introduced in Chapter 4, relates to our fist application of interspec-

tral synthesis and that is to perform cross-spectrum face recognition. Thermal-to-visible

image synthesis is based on cascaded neural network (CRN) [21]. The training of CRN

was performed using contextual loss [100] that enabled a scale and rotation invariant

transformation. The proposed approach was, qualitatively and quantitatively, evaluated

and compared to the state-of-the-art approach in image translation, Pix2Pix [96] and

to a thermal-to-visible synthesis approach based on generative adversarial networks,

TV-GAN [84], designed for cross-spectrum face recognition. The experimental results

revealed the efficiency of our approach in bridging the gap between thermal and visible

spectrum compared to the TV-GAN baselines by reporting an average of 56% of relative

improvement in terms of face recognition accuracy. The presented contribution enables

the straightforward integration of thermal technology in deployed face recognition systems

without the need of recollection of face enrollment data in thermal spectrum, neither the

re-configuration of inner processing modules designed for visible spectrum.
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The work, presented in Chapter 4, was then extended to develop an illumination-

invariant face recognition system using visible and thermal-to-visible face images. Chap-

ter 5 introduced a new scheme of score level fusion that leverages the more informative

spectrum in given illumination conditions, yielding to a continuous day and night face

recognition. While the reported results in Chapter 4 proved the efficacy of the thermal-

to-visible image synthesis, the quality of the synthesized visible images are still few steps

behind standard visible images. Based on the intuition that the quality of a sample can

be an indicator of its relevance in providing an accurate recognition, the matching scores

of visible images and thermal-to-visible images against visible gallery are associated with

a quality matching score that compares the quality of the probe sample to the gallery

sample. The proposed fusion scheme was employed in two face recognition systems, the

first based on handcrafted features, i.e. local binary patterns [115], and the second based

on deep neural embeddings extracted using LightCNN model [113]. The experimental

results validate our approach as slight improvements in face recognition accuracy were

reported .

The contribution of the work presented in Chapter 6 consists in introducing a novel

concept, that to our knowledge has not been previously explored, aiming to tackle the

lack of annotated data in domains, other than visible spectrum, that are less studied in

the field of image processing. The proposed solution consists of transferring the data from

one domain, generally visible spectrum, to a target domain and using the converted data

along with the original annotation to train a model designed to perform a determined

task. Particularly in this dissertation, we have considered thermal spectrum as our target

domain and facial landmark detection as the task to be performed. The data synthesis

method has been adapted to perform visible-to-thermal data transformation. Two facial

landmark detection methods, the first based on active appearance models [134] and the

second based on deep learning technique [135], were trained on the synthesized thermal

databases using the corresponding annotation. The evaluation results have reported a

44% of relative improvement in terms of accuracy detection over the baseline system.

Chapter 7 presents a new attack on biometric samples at the post-sensor level for

thermal face biometric systems. These systems were proved to be very robust against

spoofing attacks, however this robustness lies in the process of acquisition characterizing

thermal sensors by detecting the thermal signature of the face. Therefore, the indirect

access attacks, that occur at the post-sensor level, are an irrefutable threat that jeopardize

the security granted by thermal face biometric systems. It is presumed that the attacker

injects, into the thermal face biometric system, a fake thermal face sample representing

the thermal signature of the claimed identity. This type of attack, to the best of our

knowledge, has not yet been explored in literature. Since thermal face images are

nearly impossible to obtain, the proposed new attack consists of generating synthetic
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thermal face images by transforming images acquired in visible spectrum to thermal

spectrum. The scenario, where the impostor has a priori knowledge about the spoofing

countermeasure used in the system and uses this information to adapt his synthetic

attack to better spoof the system, is also considered. The threat of the proposed synthetic

attacks is quantified using existing countermeasure approaches designed for thermal

spectrum. The experimental results of spoofing attack detection show a relative increase

in terms of equal error rate from 0.21% for silicone mask attack to 11.6% for the proposed

synthetic attack demonstrating the risk it generates.

8.2 Directions for future research

Directions for future research relate to both the extension of the presented work for other

facial image processing tasks as well as the generalization of the proposed methods for

further computer vision applications. Further works include:

• High resolution face paired database in visible and thermal spectrum

As stated in Chapter 3, a high resolution version of the database introduced

in this thesis is being collected. This version of the database is being acquired

with FLIR DUO PRO R sensor, that provides visible images of spatial resolution

of 4000×3000 and thermal images of spatial resolution of 640×512 and thermal

sensitivity lower than 50mK. In addition to the variations considered for the first

version of the database, a variety of metadata is also being collected that includes

weight, height and wrist size that will lay the ground to explore the possibility of

body measurements estimation from face images. The database will also provide

a 1 minute long face videos along with the measurement of heart rate. This will

enable monitoring cardiorespiratory signals using thermal faces. The collection of

this high resolution database is essential for the research community to keep up

with the rapid advancements of thermal imaging technology.

• Sppofing countermeasure for indirect spoofing attack on thermal bio-

metric systems Following the last contribution of this thesis presented in Chapter

7, a spoofing detection solution can be proposed in thermal spectrum based on the

extraction of subcutaneous information that the thermal face images provide. One

possible direction is the extraction of cardiac signals to prove the user’s liveness.

The new database collection will provide the data required for the development

of such countermeasure technique. Another solution can be based on the usage of

subcutaneous information provided by the thermal images. Thermal face recogni-

tion relying on the extraction of subcutaneous features such as vascular network

matching [174] or blood perfusion data [175] can be directly employed.
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• Improvement of interspectral face synthesis While the interspectral face syn-

thesis used for cross-spectrum face recognition yielded to a significant improvement

compared to the baseline systems, the synthesized visible face images still present

few artefacts when the face is presented under challenging face variations such

as head pose and occlusions. Other artefacts are related to incorrect estimation

of some facial attributes such as gender and skin color. Improvements will be

explored with the aim of addressing the aforementioned artefacts to provide higher

cross-spectrum face recognition accuracy and enhanced quality face images.

• Application of interspectral synthesis for crowd density estimation The

research work reported in this dissertation has been already proved to be a low-

hanging fruit. New projects have started to be proposed basing their research scope

on interspectral image synthesis for applications other than that of facial image

processing. An ongoing project entitled "OKLOS: Continuous anomaly detection in

moving crowds"∗ is drawing its focus on applying thermal-to-visible image synthesis

for video surveillance tasks. This project has been selected by the French research

agency (ANR) in the context of ANR Flash Call for Project: "Security of the 2024

Olympic & Paralympic Games". Thermal-to-visible image synthesis will lay the

foundation for continuous day and night monitoring and surveillance, by means

of the wide range of available resources in the visible spectrum. These resources

include crowd motion analysis, density detection, and group behavior analysis.

∗OKLOS website: http://oklos.eurecom.fr/
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