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Abstract

Doctor of Philosophy

A rigorous multipolar framework for nanoparticles optical properties

description: theory and experiments

by Jeremy Rouxel

Using metallic nanoparticles with a threefold symmetry thorough the study, the im-

pact of the symmetry on the nonlinear properties is investigated. Interpretations of

polarization-resolved SHG experiments indicate the importance of multipolar resonances,

in particular quadrupole and octupole, to explain the strong values of the nonlinear sus-

ceptibilities in such systems. A fully irreducible formalism is then developed to treat

extended objects like nanoparticles. In this formalism, the nonlinear response tensor is

a discrete set of values easily constrained by symmetries instead of a field. This formal-

ism permits to describe simply linear and nonlinear optical response from nanoparticles.

Finally, time-domain experiments are conducted with the aim to connect spatial and

spectral properties. These experiments allow to interpret the spectra in terms of eigen-

modes.

Key-Words : nonlinear optics ; symmetries ; nanoparticles ; time-resolved spectroscopy
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Résumé

Thèse de doctorat

Propriétés optiques nonlinéaires de nanoparticules métalliques

Jeremy Rouxel

Les propriétés optiques linéaires et non-linéaires de nanoparticules métalliques de tailles

non-négligeables comparées à celles des longueurs d’onde excitatrices sont étudiées dans

cette thèse. Les informations issues de la symétrie sont mises en avant afin de décrire

des nanoparticules appartenant à des groupes ponctuels. Pour cela, un formalisme

totalement irréductible est mis en place afin de prendre en compte l’extension spatiale des

objets étudiés. Dans ce formalisme, le tenseur de réponse non-linéaire possède un nombre

fini de valeurs significatives reliant les composantes multipolaires des champs incidents et

sortants. Ce formalisme est alors appliqué analytiquement à l’étude de la réponse non-

linéaire du second ordre de nano-étoiles d’or en interprétant des mesures de SHG résolue

en polarisation. Finalement, des expériences de spectroscopies multidimensionnelles sont

utilisées dans le but de connecter les propriétés spatiales et les propriétés spectrales de

ces objets. L’introduction de modes propres définis par la symétrie des objets permet

encore une fois de donner un sens physique aux comportements électroniques mis en jeu.

Mots-clefs : Optique non-linéaire ; symétries ; nanoparticules ; spectroscopie résolue

en temps
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Introduction

Introduction and general overview

The emergence of nanotechnologies together with the development of increasingly fast

and reliable light sources has led to a new stage in the study of the optical phenomena

in metals[1–4]. The ability to manufacture nanostructures such as nanoparticles[5–9],

nanofilms[10], colloids[11] or nanowires[12] has a lot of promising applications in a mul-

titude of fields. To cite a few of them, one could find ultrasensitive sensors[13, 14],

photovoltaics[15], medical treatments[16] or photonics[17] among many others. An in-

clusive description on the behavior of nanoparticles of various shapes is still necessary in

order to provide an improved ability to engineer the light-matter interaction. Moreover,

metallic nano-objects have intriguing properties that are difficult to describe unlike bulk

materials.

An early treatment of the scattering by a sphere has been rigorously solved in 1908 by

G. Mie[18]. In this seminal paper, G. Mie uses an expansion in term of multipolar fields

to solve the problem in spherical coordinates. Unfortunately, when the nanostructures

are different from a sphere or a related shape, a fully analytical treatment is no longer

possible and one has to rely on simplified models or numerical computations. Neverthe-

less, group theory and multipolar expansion can still provide a great deal of information.

The main goal of this work is to describe the optical behavior of nanoparticles by a small

number of significant coefficients and by taking account of the symmetries of the system.

As a consequence, an irreducible frame has been developed focusing on the geometry

and the shape of the nanoparticles.

Among the different optical techniques, non-linear optics provide a very sensitive and

shape-specific set of experiments that have been used in this work. For example,

polarization-resolved SHG experiment on single nanoparticles has been used to correlate

the nature of the nonlinear optical response to their shapes. In this thesis, it has been

chosen to focus on nanoparticles belonging to the group D3 because this point group is

the simplest of the non-trivial one. Its algebraic structure is easy to apprehend but still

1



Chapter 1. Introduction 2

offer a step further to engineer the shape of the nanoparticles compared to, for example,

nanorods. It is also possible to synthesize D3 nanoparticles routinely in the laboratory

using lithography or chemical synthesis.

This track of complexifying the shape of objects in order to engineer the nature of the

light-matter interaction has already been followed by molecular physicists. With the aim

to design optimized molecular nonlinear emitter, they showed that the introduction of

molecules with more complex shape than the already well-used cylindrically symmetric

ones permitted a whole new area of engineering. In particular, molecules belonging to

discrete subgroup of the rotation group such as D3 offered interesting behavior. Inves-

tigations showed that it was related to the relative weight of the multipolar component

of the response tensor : molecules having only the octupolar part of the tensor non

vanishing were indeed called octupolar molecules. The use of the irreducible tensor for-

malism allowed to settle the basic bricks to understand nonlinear interaction with those

molecules but the multipolar nature of the problem was only present in the expansion of

the response tensor. The fields emitted by the molecule were still almost purely dipolar

since those molecules were much smaller than the wavelengths of radiation used, in the

optical regime. In this work, we claim that the use of gold nanoparticles that resonate

in the visible range offer again a new step in the development of optimized nonlinear

emitter. Contrary to molecule, an understanding of their interaction with light neces-

sitates the use of a fully multipolar formalism dealing with the fields and the response

tensor in a uniform way. The non negligible size of nanoparticle compared to the excit-

ing wavelength creates a response strongly sensitive to the shape. One can then tune

the spatial extension, the shape and the symmetries of the object to obtain the desired

optical response. The theoretical effort made to develop an appropriate formalism has

to be assorted with a work on nanofabrication since efficient responses are easily altered

by even slightly inappropriate shapes.

Figure 1 outlines the problematic of this thesis. A typical optical experiment on nanopar-

ticles will possess an incoming electric field which role is to excite the system through

its response tensor. As a reaction to the exciting field, an electric current is created

that will in turn emit an outgoing electric field. An experimental apparatus is then in

charge to detect the radiated field, most of the time in far field. In this thesis, both the

incoming and outgoing are expanded over a multipolar basis and the response tensor

relates those two expansions in a similar way that the T-matrix method does it[19].

However, the formalism of irreducible tensors provides a more physical angle of descrip-

tion of the response and allows to discuss links between geometry and optical properties

using analytical modeling while the T-matrix method uses a less powerful basis for its

definition and relies on numerical computations.



Chapter 1. Introduction 3

Figure 1: Outline of the general problem. The response tensor which relates the
outgoing field to the incoming field is a cartesian tensor field. Instead of using this form
linking two vector field, we expand both electromagnetic field on multipole fields. Thus,
the response tensor becomes a irreducible tensor linking the multipolar components of
the incoming and emitted electromagnetic fields. The propagation of each multipolar

field through the experiment is then calculated in order to analyze the data.

Outline of this thesis

This thesis has been divided into three parts addressing different aspects of this work.

The first part introduces quickly the key concepts used more extensively in the next two

parts. In this part, those notions are also used to derive new results that appears to be

a direct extension of already known results. For example, the derivation of multipolar

point spread functions are used to discuss vector diffraction theory of electromagnetic

waves but are also a pretext to furnish a first use of multipoles in this work. Moreover,

multipolar PSFs are also side results of this that are used to interpret the experiment

conducted by N. T. Nguyen[20] and interpreted in this part. The second part is the core

of this thesis. It contains the presentation of the fully irreducible formalism for nonlinear

optics which is the most fundamental results of this work. The next two chapters of this

part are used to discuss developments of this theory and provide a possible structure

for the methodology for its concrete usage. The third part will deal with time domain

experiments achieved during this thesis. Preliminary results have been achieved on

nanoparticles using pump probe spectroscopy. Moreover, photosynthetic complexes have
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been studied using two-dimensional electronic spectroscopy using the same experimental

setup. Both topics are presented in this concluding part.

A more detailed summarization of the content of this thesis, chapter by chapter, is done

in the following of this section :

The basic principles needed in this work encompassing topics in electromagnetism, non-

linear optics, nanotechnologies and group representation theory, are introduced in chap-

ter 1 together with a quick overview of preliminary studies achieved in this field. The

presentation of group theory also includes a short introduction to the expansion of ten-

sors into irreducible parts, each part corresponding to an irreducible representation of the

rotation group, also known as a multipole. Until recently, scientific interest about multi-

pole in non-linear optics has been mainly focussed on so-called octupolar molecules which

response tensor have a dominant octupolar irreducible component. These molecules of-

fer great possibilities to engineer optical components but nanoparticles offer a whole

new area of capabilities. Basic results about the nanoparticles under interest are then

discussed to highlight their remarkable properties. Finally, the experimental process to

achieve the fabrication of those nanoparticles and observation are given in the end of

the chapter.

Chapter 2 introduces multipolar Point Spread Functions (PSF) that will be used in

chapter 6 to link theoretical modeling with optical experiments. Firstly, vector diffrac-

tion theory is reviewed in the context of the focusing of an electric field by a perfect

imaging system. It is shown that some results commonly accepted in the literature may

be incomplete and an in-depth discussion about the validity of the description and of

the useful approximations is given. From this solid starting point, multipolar electro-

magnetic fields are introduced and used to derive and display multipolar PSFs.

Chapter 3 pursues the discussion about the properties of D3h nanoparticles and fo-

cuses on the interpretation of the SHG signal. A polarization resolved SHG experiment

of single nanoparticles is described and its results are discussed. Those measurements

have been conducted by N. T. Nguyen during her PhD thesis and the present work is

rooted to a limited extent in the interpretation of her work. As a starting model, the

nanoparticle can be considered as a set of dipoles located at its tips but, quickly, this

description happens to be too simple since it takes into account the spatial extension

partially. A multipolar approach can instead be introduced to provide more physical

insight about the nature of the electromagnetic response. In this chapter, the introduc-

tion of multipoles is done using simple projections over the multipolar basis while more

involved descriptions are proposed in the next chapters.
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In chapter 4, an extensive presentation of a fully irreducible theory of the optical in-

teraction of nanoparticles and light is given. In the irreducible formalism developed by

J. Jerphagnon and J. Zyss, only the response tensor was split into its irreducible parts

but the exciting and outgoing electromagnetic fields were still described in a cartesian

fashion or as an irreducible local vector. The purpose of this chapter is to generalize

this formalism in order to take in account the extension of the nanoparticle. The elec-

tromagnetic field can no longer be considered as a local vector and one needs to use an

expansion in terms of vector multipolar fields. The viability of this formalism and its

link with previous ones is firstly demonstrated in different fashions in linear optics. A

nonlinear description is then introduced with the help of a new object, multipolar vector

spherical harmonics, which are constructed from irreducible products of vector spherical

harmonics.

Chapter 5 discusses the algebraic operations that can be achieved on multipolar fields

to translate them. Before shortly exposing the demonstration of the translational ad-

dition theorem that effectively does the translation, its significance and its implications

to interpret the spatial manipulation of multipoles is highlighted. This theorem, well-

known in multiple sphere scattering, allows to write a multipole located somewhere in

space as a sum of multipoles at one specific point. Gathering all the dipole over the

nanoparticle, one can then consider the nanoparticle as one discrete set of multipole

located at one specific point rather than a field of dipole all over the volume of the

extended object. Indeed, when one starts to design nanoparticle to spatially engineer

multipolar radiation, it is necessary to have a clear view on the spatial behavior of mul-

tipolar fields. Then, limiting cases of the translational addition theorem and examples

are presented to conclude the chapter.

Chapter 6 uses the theory of the preceding chapter to derive a simple multipolar model

for D3 nanoparticles. The experiments of chapter 2 are discussed again briefly using

the previous results. In the aim to link models with multiple dipoles and a multipolar

description, translational addition theorems of multipolar fields are used according to the

previous chapter. Then, the exciting electric field is also expanded in vector multipolar

fields in order to reconstruct a possible response tensor for the nanoparticle under study.

With this point of view, the experiment of chapter 3 can be used to investigate the

irreducible response tensor components.

Chapter 7 opens the last part of this thesis that focuses more on temporal aspects

of the nonlinear optical interaction. This chapter introduces the necessary concepts of

ultrafast nonlinear spectroscopy to understand techniques used in the laboratory like

pump-probe spectroscopy and two-dimensional electronic spectroscopy. Results of the
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latter techniques are used to inspect the frequency-frequency correlation function of

Chlorophyll a according to the solvent.

Finally, chapter 8 presents preliminaries results of ultrafast spectroscopies conducted on

nanoparticles. A discussion in term of mode is presented to interpret ultrafast nonlinear

signals. Experimental pitfalls are pointed out and further developments are proposed.

Personal contributions of the author

In order to simplify the exposition of this thesis’ results, the personal contributions of

the author are briefly presented in this section. Calculations presented in this thesis

about multipolar Point Spread Functions, fully irreducible formalism and modeling of

nanostars using translational addition theorem have been carried out by the author under

the guidance of his PhD supervisors. Moreover, the fabrication of gold nanostars using

e-beam lithography described in chapter 1 has also been done by the author together

with an optimization of the fabrication parameters. The chemical synthesis of silver

nanoprisms have been achieved with the help of Mikahil Moiseev in NTU that cordially

showed his protocol.

Polarization resolved SHG experiments presented in chapter 3 have been done by Nguyen

Thanh Ngoc in the group of Sophie Brasselet during her PhD thesis. She also contributed

to the derivation of the fitting models in the cartesian domain but their final form,

their extension to irreducible bases and the actual fits presented in this work have been

achieved by the author. In order to use a suitable irreducible formalism, a compilation of

known results in angular momentum theory has been used and adapted to the framework

of this thesis.

About ultrafast spectroscopies of chlorophyll a and LHCII presented in the last part

of this thesis, the author joined the experiments conducted by Kym Wells and actively

participated in the experimental acquisition and modifications of the multidimensional

spectroscopy setup. Those modifications included the addition of a new optical to extend

the experiment ability to pump other wavelengths and the writing of the associated

Labview programs. Moreover, an important contribution has been done in writing the

Matlab and Mathematica codes to analyze the data using the CLS method. Those codes

were writing by adapting known theoretical developments in nonlinear optics. Using the

chemically synthesized nanoparticles as samples, the author also modified the setup to

allow the use of a pump centered at 800 nm and 400 nm.
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General frame of the study
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Chapter 1

Irreducible tensors in nonlinear

optics

In this chapter, we introduce the necessary theoretical background and concepts that

will be used all along this thesis. After linking this work with existing researches, the

basis used to describe multipolar fields is introduced together with simple illustrations.

1.1 Review of basic concepts in optics

In this work, we have chosen to use a classical point of view to describe the electro-

magnetic field and the matter under consideration. This is justified by the fact that

a classical treatment is appropriate at room temperature and for typical sizes around

100 nm to 150 nm. However, the formalism that will be developed along this thesis is

adaptable to a quantum approach. Then, one can rely on the Maxwell’s classical theory

of electromagnetism which is presented with much details in many textbook [21, 22].

In this theory, the light-matter interaction is contained in the polarization P that acts

as a source in the wave equation for E.

∆E −∇(∇ · E)− 1

c2

∂2E

∂t2
=

1

ε0c2

∂2P

∂t2
(1.1)

The vector potential A follows a similar wave equation but the source field is replaced

by the current density J . It is in general very difficult to relate the local polarization

to the macroscopic electric field. However, when the fields are not too intense, one

can assume that a power expansion in the electric field is a valid way to express the

polarization[23–26]. Nonlinear optics is the domain that focusses in the nonlinear terms

9
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of this perturbative expansion. The object linking the n-th power of the macroscopic

electric field to the nonlinear polarization are n + 1 rank tensors called susceptibilities

and written χ(n). The polarization can then be written :

P (ω) = P (1)(ω) + P (2)(ω) + P (3)(ω) + ... (1.2)

= ε0
(
χ(1)(ω;ω1) · E(ω1) + χ(2)(ω;ω1, ω2) · E(ω1)⊗ E(ω2)

+ χ(3)(ω;ω1, ω2, ω3) · E(ω1)⊗ E(ω2)⊗ E(ω3) + ...
)

(1.3)

Those multilinear expressions can be expressed by a convolution product in time-domain

using the properties of the Fourier transform. However, by assuming linearity, invariance

by time translation and causality, convolution products can also appear naturally.

P (1)(t) =

∫ +∞

0
R(1)(t1) · E(t− t1)dt1 (1.4)

P (2)(t) =

∫ +∞

0
R(2)(t2, t1) · E(t− t2)⊗ E(t− t1)dt1dt2 (1.5)

Where the tensors R(n) are the Fourier transform of the tensor χ(n). In this notations,

the time tn corresponds to temporal distance from time t to a time of interaction in

the past. Even if this definition is a bit misleading because the symbol t is an absolute

time while the ti are time intervals, this notation is the one mainly used and we conform

with it. At this stage, no spatial dependance has been taken into account which means

that only homogeneous samples like colloids for example can be described in such a way.

In the space-dependent case, the expression of the polarization in time and frequency

spaces becomes :

P (n)(~r, t) =

∫
d~rn

∫
d~rn−1 · · ·

∫
d~r1

∫ ∞

0
dtn

∫ ∞

0
dtn−1 · · ·

∫ ∞

0
dt1 R

(n)(~r, ~rn · · ·~r1, tn · · · t1)·

E(~rn, t− tn)E(~rn−1, t− tn − tn−1) · · ·E(~r1, t− tn − · · · − t1) (1.6)

The previous definition corresponds to the convention used in figure 1.1 (a). All the time

intervals ti add up to express the time delay between the different pulses. This definition

is convenient when one deals with short pulses and wants to use time ordering. However,

when the electric fields are not time-limited, referencing all the pulses from time t as

depicted in figure 1.1 (b) can be convenient. The following two equations correspond to

this choice of time-domain variables with its Fourier transformed counterpart :
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P (n)(~r, t) =

∫
d~rn

∫
d~rn−1 · · ·

∫
d~r1

∫ ∞

0
dtn

∫ ∞

0
dtn−1 · · ·

∫ ∞

0
dt1 R

(n)(~r, ~rn · · ·~r1, tn · · · t1)·

E(~rn, t− tn)E(~rn−1, t− tn−1) · · ·E(~r1, t− t1) (1.7)

P (n)(~r, ω) =
1

(2π)n

∫
d ~rn

∫
d~rn−1 · · ·

∫
d~r1

∫
dωn

∫
dωn−1 · · ·

∫
dω1 χ

(n)(~r, ~rn · · · ~r1, ωn · · ·ω1)·

E(~rn, ωn)E(~rn−1, ωn−1) · · ·E(~r1, ω1) e−iωst (1.8)

A graphical representation of the time integration variable is given in figure 1.1. The

use of time intervals allows to write the nonlinear response as a convolution between the

response tensor and the incoming electric fields.

Time

Time

(a)

(b)

Figure 1.1: Time variable chosen in equation 1.6 : τi are absolute times while the
ti represent time intervals. In this diagram, the arrow direction from right to left

corresponds, according to the definition, to a positive time interval.

No particular spatial dependance has been assumed in this expression and it is then

necessary to integrate over all space. While describing a nanoparticle, this integration

becomes bounded by the extension of the object. Thus, it can also be useful to consider

relative space integration around each position ~r instead of the absolute positions ~ri of

equation 1.1.

1.2 Irreducible tensor for point objects

In this section, we will review some basics about group theory. The emphasis will be on

the representation theory of the continuous Lie group SO(3) and its relationship with
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angular momentum theory. Many interesting books describe in details the application

of group theory in physics and we refer to them for more details (Tinkham [27], Wigner

[28], Hamermesh [29] for examples).

1.2.1 Introduction to group theory

1.2.1.1 Abstract group theory

We consider that the reader is already familiar with the basic properties of a group

which is a set possessing an associative and invertible internal operation with a neutral

element. Then, a representation of a group can directly be defined :

Definition 1.2.1. A group representation of the group G is an homomorphism Γ between

G and GLn(K), the general linear group.

Thus, we associate to each abstract element in the group a matrix and the product of

these matrices should follow the same rules than the group element themselves since

the representation is an homomorphism. It is easier to work with group of matrices

than with abstract elements of the original symmetry group and many informations

can already be obtained from the representation. The homomorphisms Γ are not in

general isomorphisms. When Γ is an isomorphim, the representation is said to be faithful

: we assign a different matrix for each group element. On the other hand, we can

assign the number 1, an element of GL1(R), to each group element to obtain the trivial

representation. At an intermediate level, a matrix in the representation could represent

a coset of the group.

A very important notion in group representation in the notion of irreducibility. Given

some representations Γ(i) of the group G, it is easy to construct higher dimensional

representations of the group. For example, for the group element A and B, we can

construct :

Γreducible(A) =




Γ(1)(A) 0 0

0 Γ(2)(A) 0

0 0
. . .


 (1.9)

Γreducible(B) =




Γ(1)(B) 0 0

0 Γ(2)(B) 0

0 0
. . .


 (1.10)

Since the product of block diagonal matrices is reduced to the matrix product of the

different blocks, these matrices are a representation of the group since they still satisfy
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the defining relation of an homomorphism.




Γ(1)(A) 0 0

0 Γ(2)(A) 0

0 0
. . .







Γ(1)(B) 0 0

0 Γ(2)(B) 0

0 0
. . .


 =




Γ(1)(A)Γ(1)(B) 0 0

0 Γ(2)(A)Γ(2)(B) 0

0 0
. . .


 =




Γ(1)(AB) 0 0

0 Γ(2)(AB) 0

0 0
. . .


 (1.11)

However, since the matrices in the representation are all block diagonal in the same way,

the representation can be thought of as a direct sum of lower dimensional ones and is

then said to be reducible. We thus call a representation irreducible when it does not

exist a transformation which bring all the matrices in an identical block diagonal form.

The notion of irreducibility is central in group representation theory since any reducible

representation can be written as the direct sum of the irreducible representations and

since some powerful orthogonality theorems of great interest in physics exist for them :

Irreducible representations can be recasted into unitary matrices (U † = U−1) and they

satisfy the following orthogonality relation :

∑

R

[Γ(i)(R)]µν [Γ(j)(R)∗]αβ =
g

li
δµαδνβδij (1.12)

With g the order of the symmetry group, li the dimension of the ith irreducible repre-

sentation and R the different elements of the group under consideration. In equation

1.12, the summation over R implies that we are describing the orthogonality theorem for

groups with a countable number of elements. However, this theorem can be extended to

continuous groups by replacing the summation by an integration with a proper measure

as we will see later. In physics, each eigenfunction can be associated to an irreducible

representation. When computing matrix elements, one can then use the orthogonality

theorem to infer vanishing elements without any explicit computation. We now turn our

attention to the concept of character. As we have said before, the matrices of an irre-

ducible representation can be recast into unitary matrices. However, this set of matrices

is not unique since it is equivalent to an another set obtained through an unitary trans-

formation. In order to have a description which is invariant to such transformation, one

can use the invariance property of the trace through such transformation. In the context

of group representation theory, the trace is called the character and is noted χ(i)(R) for

the trace of the matrix representing the element R in the i irreducible representation.

Since all the matrices representing elements which belong to the same conjugacy class
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have the same trace (because they are related by unitary transformation), we can alter-

natively write χ(i)(Ck) where Ck is the kth conjugacy class. The orthogonality theorem

can also be expressed in term of characters of the irreducible representations :

∑

k

Nkχ
(i)(Ck)χ

(j)(Ck)
∗ = gδij (1.13)

∑

i

χ(i)(Ck)χ
(i)(Cl)

∗ =
g

Nk
δkl (1.14)

1.2.1.2 Angular momentum theory

In this section, we will introduce the concept of Lie groups, also called continuous groups,

which are of great interest in physics. We will not enter deeply in the theory of Lie groups

and will quickly focus on the angular momentum theory. The reader seeking for a more

rigorous treatment can refer to the Gilmore’s book for example [30].

Frequently, a physical system can exhibit a continuous symmetry, the most common

example being the rotational invariance around an axis. In this case, many informations

can be gained through the representation theory in a similar way with finite groups.

However, the number of irreducible representations will be in general infinite. From a

mathematical point of view, a Lie group is a group which also possesses the structure of

a manifold. We recall that a manifold is a geometrical structure which is locally homeo-

morphic to Rn, the nth dimensional cartesian space. For us, this means basically that it

is possible to conduct differentiation over the Lie group. So, a Lie group can be thought

of as a geometrical space in which two almost identical symmetry transformations are

near, i.e. that the functions mapping the group operations on the manifold are differen-

tiable. Examples of Lie groups are the group GLn(K) of n× n matrices of the field K,

the special orthogonal groups SO(n) of n × n real matrices with unit determinant and

SU(n) the group of n×n complex hermitian matrices with unit determinant. SO(n) and

SU(n) will be studied later in this section since they physically describe the invariance

by continuous rotations.

Another additional structure is the Lie algebra of a Lie group. Much information about

a Lie group can be obtained by looking at the behavior of the symmetry operations

around the identity. Thus, a vector space of infinitesimal transformation operators is

constructed and is a Lie algebra :

Definition 1.2.2. A Lie algebra is a vector space endowed by a Lie bracket [•, •] which

is a bilinear, alternate operation satisfying the Jacobi identity.
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The Lie algebra of the rotational group SO(3), noted so(3), is in fact well known by the

physicists since it corresponds to the algebra of angular momentum operators. The main

reason for the usefulness of the Lie algebra in physics is the following : any operation

in the Lie group can be expressed as an exponential power series of the Lie algebra

operators. As stressed in the previous section, symmetry operations provide a natural

way to associate quantum numbers with eigenfuntions of the Hamiltonian. For a Lie

group, since all symmetry operations can be expressed from Lie algebra operators, the

”good” quantum numbers associated with a continuous symmetry are those associated

with the finite number of operators in the Lie algebra.

The rotation group SO(3) provides an excellent illustration of the Lie algebra of a Lie

group. The rotation of a function ψ(r) by an angle θ around an axis defined by the

vector ~n can be expressed through an operator R(~n, θ). By the definition of the Lie

group, this operator is orthogonal and can thus be written as the exponential of an

Hermitian matrix.

R(~n, θ) = e−iS(~n,θ) (1.15)

We now consider an infinitesimal translation θ in order to find the operators in the

Lie algebra. Since the transformation is small, orders higher than one in the Taylor

expansion of the exponential are neglected.

R(~n, θ) = 1− iS(~n, θ) (1.16)

Since the rotation is small, we can approximately say that the difference between the

rotated and non rotated function is of first order in θ. We defined the angular momentum

operators, vectors in the Lie algebra, in this way :

R(~ex, θ)ψ(~r)− ψ(~r) = −iθJxψ (1.17)

Where we have chosen the rotation to be around the x axis. Of course, similar equations

exist for any rotation axis. Using angular momentum operators, the finite rotation

operator can then be recasted using infinitesimal angular momentum operators.

R(~n, θ)ψ = e−iθ(~n·
~J)ψ (1.18)

Let us now work out the commutation properties of the angular momentum operators

which will be the definition of the Lie algebra. Due to the non-commutativity of SO(3),

making a rotation around x followed by another one around y and repeating this with

the inverse rotations leads approximately to a rotation around the z axis :
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R(~ey, θ
′)−1 R(~ex, θ)

−1 R(~ey, θ
′) R(~ex, θ) ≈ R(~ez, θ

′θ) (1.19)

eiθ
′JyeiθJxe−iθ

′Jye−iθ
′Jx ≈ eiθθ′Jz (1.20)

Expanding the exponentials up to second order in θ and θ′, one can observe than the

first order terms cancel each other out and that the θθ′ terms have to obey the following

commutation relation :

JxJy − JyJx = iJz (1.21)

In a more compact form, the commutation relations between angular momentum oper-

ators can be written :

[Ji, Jj ] = iεijkJk (1.22)

Where εijk is the Levi-Civita symbol and i, j and k represent the cartesian coordinates.

Equation 1.22 defines the Lie algebra so(3) of the group SO(3) and the angular momen-

tum operators constitutes a good set to define quantum numbers. If one has started

from the Lie algebra as a definition, he could have constructed finite rotations. However,

a Lie group has a unique Lie algebra but a Lie algebra can construct many Lie groups by

exponentiation. For example, the Lie group SU(2) of complex 2×2 hermitian matrices

possesses the same Lie algebra.

At this stage, we can give a short presentation of the representations of SO(3) and SU(2).

The usual method is firstly to prove the existence of an homomorphism between these

two Lie groups. More precisely, to each element on SO(3) it is possible to associate two

elements in SU(2). Secondly, it is possible to work out the irreducible representations of

SU(2) and then to obtain those of SO(3). The irreducible representations of SO(3) are

called the Wigner matrices D(j)(α, β, γ) where α, β and γ are the Euler angles defined

in figure 1.2 in the z− y′− z′ convention and are (2j+ 1)× (2j+ 1) hermitian matrices.

This is the convention (A) used by Varshalovich [31] and it is different from the one

used by Mathematica which follows an z − x′ − z′ convention with the Wigner matrix

defined as D(j)(φ, θ, ψ). The two conventions describe an equivalent rotation when :

φ = α+
π

2
β = θ γ = ψ − π

2
(1.23)

In the case of SO(3), the number of irreducible representations is infinite : j is a positive

integer number. In SU(2), half-integer representations also exist and they correspond to

spin degrees of freedom. When the space under interest in the usual geometrical space,

the function which subtends the irreducible representations are the well known spherical
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Figure 1.2: Successive rotations α, β and γ in the z−y− z convention used thorough
this manuscript. Many conventions using either the x axis or the y axis for the second
rotation, making rotation from initial or new axis and using rotation α and β starting
from the x or the y components. In this thesis, we use rotation in the z − y − z
convention, from new axis with angles α and β starting from x. Those graphs have
been obtained using the Mathematica notebook on Euler angles written by Strauch

[32].

harmonics defined by :

Ylm(θ, ϕ) =

√
2l + 1

4π

√
(l −m)!

(l +m)!
Pml (cos θ)eimϕ (1.24)

Where the Pml are the associated Legendre polynomials. We have replaced the letter j

usually reserved to abstract angular momentum by the letter l which is customary when

using spherical harmonics representation. The rotation of a spherical harmonics is thus

expressed using the corresponding Wigner matrix.

R(θ, ϕ, ψ) Ylm =

l∑

m′=−l
D

(l)
m′m(θ, ϕ, ψ) Ylm′ (1.25)

These functions are labelled according to their eigenvalues in the Lie algebra of SO(3).

In the context of geometrical angular momentum, the operators J are denoted L and

called orbital angular momentum.

One subject of great interest in physics is the coupling of angular momenta. The problem

is the following : one has two distinct systems with angular momenta L1 and L2 and

want to consider the angular momentum of the whole system L = L1 + L2. A basis to

describe the angular momentum L could be constituted of the direct products of 2l1 + 1

functions of L1 and the 2l2 + 1 functions of L2. However, this representations will not

be reducible in general and one has to reduce it to be able to use efficiently angular

momentum theory in the product space. Using bracket notation or directly spherical
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harmonics, one can define coefficients which do the reduction for us :

|lml1l2〉 =
∑

m1m2

C lml1m1,l2m2
|l1m1〉 ⊗ |l2m2〉 (1.26)

Y lm
l1l2(θ, ϕ, θ′, ϕ′) =

∑

m1m2

C lml1m1,l2m2
Yl1m1 ⊗ Yl2m2 (1.27)

The coefficients C lml1m1,l2m2
are called the Clebsch-Gordan coefficients and their values

has been calculated and tabulated. It is also useful to define 3j symbols that are only

an alternative definition to the Clebsch-Gordan coefficients and are easier to handle in

calculations.

(
l1 l2 l

m1 m2 −m

)
= (−1)l1−l2+m 1√

2l + 1
C lml1m1l2m2

(1.28)

3j symbols are invariants by even permutations of columns and change by a phase

(−1)l1+l2+l through odd permutations or by inverting signs in the second row. Finally,

we define the 6j symbols which correspond to the recoupling of three angular momenta.

When coupling 3 irreducible representations of SO(3) of order J1, J2 and J3, one can

operate the coupling in three different ways :

1) J1 + J2 = J12 then J12 + J3 = J (1.29)

2) J2 + J3 = J23 then J23 + J1 = J (1.30)

3) J1 + J3 = J13 then J13 + J2 = J (1.31)

Those three coupling schemes lead to the same set of states up to an unitary transfor-

mation. The coefficients of this transformation are related to the 6j symbols by a nor-

malization and a phase factor chosen to make them more symmetric. For example, if the

coefficients relating the coupling scheme 1 to the scheme 2 are U(J1J2JJ3; J12 → J23),

the corresponding 6j are defined by :

U(J1J2JJ3; J12 → J23) = (−1)J1+J2+J3+J
√

(2J12 + 1)(2J23 + 1)

{
J1 J2 J12

J3 J J23

}

(1.32)

In this thesis, the 6j will be appear while using the translational addition theorem in

chapter 5 for vector spherical harmonics.
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1.2.1.3 Definition of irreducible tensor

This section will be dedicated to the irreducible tensor formalism. Tensors are often

used in science to describe some physical properties in a vector space. For example, the

tensor giving the second order polarization χ(2) is related to the polarization by :

P i(ω1 + ω2) = χ(2)(ω1, ω2)ijk · Ej(ω1)⊗ Ek(ω2) (1.33)

Tensors possess some constraints over their components according to the geometrical

symmetries of the system they describe. Since all the finite groups of symmetry are sub-

groups of the rotation group SO(3), it is interesting to recast tensors into an irreducible

form, i.e. a tensor which behave like an irreducible representation under rotation. For

instance, one can show that, by the simple following change of basis, cartesian vectors

can be rotated using the J = 1 irreducible representation of SO(3)1.

~e±1 = ∓ 1√
2

(~ex ± i~ey) ~e0 = ~ez (1.35)

However, the irreducible decomposition of a cartesian tensor will not be, in general,

that straightforward. A rank n cartesian tensor T is written as the direct sum of its

irreducible part :

T =
∑

⊕τ,J
T (τ)J (1.36)

The so-called seniority index τ corresponds to the possibility, for a cartesian tensor, to be

reduced in more than one irreducible part of the same weight J . The irreducible parts

of a tensor describing physical properties contain straightforward information about

the influence of the symmetry on physical properties[33]. They are also convenient to

deal with when one wants to make reference-frame transformations and orientational

averaging. The reduction of a cartesian tensor into its irreducible parts is done in two

steps. Firstly, a change of basis 1.35 is done for each of the ranks of the cartesian tensor.

The resulting tensor is in general not irreducible and is then reduced using 3n − j

1This change of basis using a complex coefficient for the ~ey components is more tricky that it looks.
As one can see in equation 1.40, the metric tensor is no longer diagonal and is now equal to :

g =

 0 0 −1
0 1 0
−1 0 0

 (1.34)

This implies that covariant and contravariant vectors are no longer equivalents and one needs to take
care of this in calculations. In this work, the notation does not always distinguish the two since the
context is in general clear enough to know the nature of the vector.
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symbols. This reduction scheme as well as tables for the reduction of n ≤ 3 cartesian

tensors can be found in Jerphagnon’s article [34]. For instance,the second rank tensor

α can be represented as the direct sum of three irreducible tensors :

α = α0 ⊕ α1 ⊕ α2 (1.37)

• the trace α0 with one component α00 ;

• the antisymmetric part α1 with three components α1,±1 and α10;

• the traceless symmetric part α2 with five components α2,±2, α2,±1 and α20.

Each of these components can be related to the cartesian ones using the mentioned

tables. As in angular momentum theory, each irreducible tensor part of weight J has

2J + 1 components and a rotation of a weight J irreducible tensor is accomplished with

the help of the Wigner D matrix.

R(θ,ϕ,ψ)[T
J ]M =

J∑

M ′=−J
DJ(θ, ϕ, ψ)M ′MT

JM ′ (1.38)

This equation can be considered as the definition of an irreducible tensor of weight J .

Of course, one can also make a definition starting from the infinitesimal rotation :

[Jµ, T JM ] =
√
J(J + 1)CJM+µ

JM1µ T
JM+µ (1.39)

The commutation properties of irreducible tensors are thus the same than those with

spherical harmonics. The reduction of a tensor into its irreducible parts is interesting

by itself for physical applications since a norm can be defined which allows to interpret

and compare the magnitude of different effects.

||T J ||2 =
∑

M

(−1)MT JM T J,−M (1.40)

The norm of the different irreducible parts help measuring the degree of anisotropy

of a given effect. Moreover, if the geometry of the system is symmetric under some

point groups, the simplifications induced in the tensor will be easier to handle in the

spherical formalisms in most cases. However, for this study, we will need to make some

algebra between different tensors and thus need to have a definition for direct product

and contracted product. We can not take the cartesian product of the two irreducible

spaces as a direct product since the result would not be irreducible. Thus, we define the

irreducible tensor product as :
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{T j1 ⊗ U j2}JM =
∑

m1,m2

CJMj1m1,j2m2
T j1m1 U j2m2 (1.41)

The produced tensor is an irreducible tensor of weigh J . The fully contracted product

between tensor of same ranks is easy to define :

T J · UJ =
∑

M

(−1)MT JM UJ,−M (1.42)

1.2.2 Multipolar molecules for nonlinear optics

The field of organic nonlinear optics experienced a revival in the past 20 years thanks

to the use of irreducible tensors. The objective was to synthesize nonlinear molecular

units with a high hyperpolarizability β that can be used to develop a material with a

high χ(2) in the macroscopic frame. While the attention was previously directed toward

polar nonlinear molecules having only a non-vanishing dipolar response tensor part,

group theory help designing new multipolar molecules that are not dominated by a

single dipolar component of their irreducible parts [35–37]. Those molecules no longer

have C∞ν as a symmetry group but rather belong to C3h or D3h. A large family of

multipolar molecules has been introduced since then but then schematically represented

by the molecules (b) and (c) in figure 1.3.

(a) (c)(b)

Figure 1.3: Schematic representation of non-centrosymmetric molecules investigated
by Brasselet and Zyss [36]. (a) Dipolar molecule. (b) Multipolar molecule. (c) Octupo-

lar molecule.

Under Kleinman symmetry, only the irreducible tensors βJ=1 and βJ=3 do not vanish

and the total hyperpolarizability can be written :

β = βJ=1 ⊕ βJ=3 (1.43)
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As said in the previous section, the J = 1-components are a signature of the dipolar

nature of the molecule while the J = 3-components correspond to a nonlinear octupolar

anisotropy. Because of the invariance of the norm of an irreducible tensor under rota-

tions, the nonlinear anisotropy ρ of such molecules has been defined in this field by the

ratio of the octupolar part’s norm over the dipolar one :

ρ =
||βJ=3||
||βJ=1|| (1.44)

This ratio, that vary from 0 to +∞ for a dipolar and an octupolar molecule respec-

tively, can be used to relate the weight that the symmetry has on the efficiency of the

quadratic nonlinear response. In a fully irreducible tensorial formalism, the polarization

is expressed as the fully contracted product of the hyperpolarizability and the incoming

electric field. However, since the molecules studied were very small, the extended nature

of the electric field did not have to be taken into account and only the local polarization

vector nature has to be reduced instead of the full vectorial field. Since a fully contracted

product gives a scalar as result, one need to contract the hyperpolarizability with a ten-

sor of the same rank. The reading tensor F is defined in this aim by F = e2ω⊗Eω⊗Eω.

The polarization is then :

P 2ω = β · F (1.45)

The vector e2ω corresponds to the direction of the detector since, by the contracted

product, the polarization will be calculated along this direction. One can experimentally

choose a combination of polarizations for the incoming fields and a specific direction for

a polarizer before the detector in order to have different surviving components in the

reading tensor F and then measuring different components of the hyperpolarizability.

As mentioned before, those results are obtained under the simplification of the Kleinman

symmetry for the hyperpolarizability. The Kleinman symmetry is valid only when non-

resonant processes are involved which is not a problem in this case since such a process is

better avoided to not damage the system. However, this matter of fact is also a limitation

of those molecules since mostly off-resonant hyperpolarizabilities are considered. Using

much more robust metallic nanoparticles, one can expect to work closer to the resonance

and then achieve higher efficiencies.
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1.3 Multipolar radiation

1.3.1 Spherical expansion of vector potential Green’s function

Because of the gauge invariance of the Maxwell equation, the electric field can be ex-

pressed in term of the vector potential A and the scalar potential Φ. In the Lorentz

gauge, the scalar and the vector potentials satisfy two inhomogeneous wave equations :

∆Φ− 1

c2

∂2Φ

∂t2
= − ρ

ε0
(1.46)

∆A− 1

c2

∂2A

∂t2
= −µ0J (1.47)

The scalar potential is of no use now since no static charges are considered now. In the

case of an harmonic time dependence, the inhomogeneous wave equation becomes the

Helmholtz equation :

∆A+ k2A = −µ0J (1.48)

This Helmholtz equation can be solved in term of the Green function. The vector

potential A(~r) caused by a current distribution J(~r′) is then given by the following

integral form :

A(~r) =
µ0

4π

∫
J(~r′)

eik|~r−~r
′|

|~r − ~r′| d
3r′ (1.49)

In order to express the vector potential in terms of multipoles, one can expand the

Green function into spherical harmonics. This expansion is defined over all space using

the following form :

eik|~r−~r
′|

4π|~r − ~r′| = ik
∑

lm

jl(kr<)Y ∗lm(θ<, φ<)h
(1)
l (kr>)Ylm(θ>, φ>) (1.50)

Where r< corresponds of the vector having the smallest norm between r and r′ while

r> corresponds to the biggest one. Thus, at fixed |r|, the expression of the spherical of

the expansion varies when the expansion is considered inside the sphere of radius |r| or

outside.

Inserting that expansion into the integral form of the vector potential, one can get the

following multipolar expansion :

A(~r) = ikµ0

∑

lm

~Jlm(r)h
(1)
l (kr)Ylm(θ, φ) +

~̃
J lm(r)jl(kr)Ylm(θ, φ) (1.51)
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Where the multipolar coefficients ~Jlm(r) and
~̃
J lm(r) are defined by :

~Jlm(r) =

∫ r

0
J(~r′)jl(kr

′)Y ∗lm(θ′, φ′)d3r′ (1.52)

~̃
J lm(r) =

∫ +∞

r
J(~r′)h

(1)
l (kr′)Y ∗lm(θ′, φ′)d3r′ (1.53)

The multipolar expansion can be greatly simplified by considering only sources that have

a finite extension in space and evaluating the fields outside a sphere containing those

sources. The coefficients
~̃
J lm(r) are then zero because the current density is vanishing

over the r′ values. Moreover, the coefficients ~Jlm(r) does not depend on r anymore

and the integral can be conducted over all space for simplification. Then, one gets the

following multipolar expansion for the vector potential :

A(~r) = ikµ0

∑

lm

~Jlmh
(1)
l (kr)Ylm(θ, φ) (1.54)

Where the coefficients ~Jlm have been defined as :

~Jlm =

∫
J(~r′)jl(kr

′)Y ∗lm(θ′, φ′)d3r′ (1.55)

In the long wavelength limit and in the far field region, each term can be associated with

the usual multipoles of electrostatic : l = 0 to the dipole, l = 1 to the quadrupole,...

The radiation space can be split into three zones : the near zone, the induction zone

and the far zone. In the near and far zones, simplifications can be made to avoid the

use of the spherical formalism. Anyway, the spherical expansion of the vector potential

is valid everywhere and no approximation has been made so far.

1.3.2 Dipolar and quadrupolar radiation

We are now going to show how one can associate each term of the above spherical

expansion to the usual multipolar radiations. Let us consider the first term l = 0 of the

expansion. Assuming that only J00 in equation 1.54 is non-zero and using in expression

in terms of J(~r′), one is lead to the following expression :

A(~r) = ikµ0h
(1)
0 Y00(θ, φ)

∫∫∫
J(r′)j0(kr′)Y00(θ′, φ′)∗d3r′ (1.56)

Using the explicit expression for the spherical harmonic Y00 and spherical Hankel func-

tion h
(1)
0 (see appendix A for the properties of the spherical Bessel-like function used in
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this chapter), the previous equation becomes :

A(~r) =
µ0

4π

eikr

r

∫∫∫
J(r′)j0(kr′)d3r′ (1.57)

As pointed out, this relationship is true for any size of the radiating object and the

wavelength. We now make the approximation that the object is small compared to

the wavelength. This approximation is illustrative but will not be valid in the case of

nanoparticles of non negligible size. This means that J(~r′) is non-zero only for small

values of kr′. In the small argument limit, the spherical Bessel function simply tends

towards 1 at first order which give us the following expression for the vector potential :

A(~r) −→
kr′�1

µ0

4π

eikr

r

∫∫∫
J(r′)d3r′ (1.58)

Integrating by part and then using the charge conservation law (∇ · J(r′) = iωρ(r′)),

one can show the following identity :

∫∫∫
J(r′)d3r′ = −

∫∫∫ (
∇ · J(r′)

)
~r′d3r′ = −iω

∫∫∫
~r′ρ(r′)d3r′ = −iω~µ (1.59)

The last equality is the definition of the dipole moment of electrostatics ~µ. Finally, the

electric dipolar vector potential is :

A(~r) = −ωµ0

4π

eikr

r
~µ (1.60)

This equation is exactly the one which define a pure dipolar vector potential as one can

find in Jackson’s book [21]. We now turn our attention to the next order. Thus, we keep

only the l = 1 terms in equation 1.54 which correspond to the electric quadrupolar and

magnetic dipolar radiations and contain three values of m = −1, 0, 1.

A(~r) = ikµ0h
(1)
1 (kr)

∑

m

Y1m(θ, φ)

∫∫∫
J(r′)j1(kr′)Y1m(θ′, φ′)∗d3r′ (1.61)

The sum over m of a spherical harmonics product is related to Legendre polynomials :

∑

m

Y1m(θ, φ)Y1m(θ′, φ′)∗ =
3

4π
P1

(~r · ~r′
rr′

)
(1.62)

A(~r) =
3i

4π
kµ0h

(1)
1 (kr)

∫∫∫
J(r′)j1(kr′)P1

(~r · ~r′
rr′

)
d3r′ (1.63)
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Since the first Legendre polynomial is P1(x) = x, the previous equation can be drastically

simplified.

A(~r) =
3i

4π
kµ0

h
(1)
1 (kr)

r

∫∫∫
J(r′)

j1(kr′)

r′
~r · ~r′d3r′ (1.64)

We can again use the long wavelength limit of the spherical Hankel and Bessel function

to obtain the solution for a source which is very small compared to the wavelength :

A(~r) =
µ0

2π

eikr

r

(1

r
− ik

)∫∫∫
J(r′)

(
~n · ~r′

)
d3r′ (1.65)

We defined the unit vector ~n = ~r/|r|. The magnetic dipolar and electric quadrupolar

radiations are mixed in this equation. If one want to extract them, it is necessary to

separate the antisymmetric part (magnetic dipolar) and the symmetric part (electric

quadrupolar) of the matrix J(r′)(~n · ~r′).

This section has allowed us to familiarize with the spherical expansion of the vector

potential Green’s function. Before discussing vector multipole fields, it is however nec-

essary to introduce the wavenumber dependence of the multipolar basis to describe

electromagnetic radiation.

1.3.3 Multipolar expansion of the current density

In section 1.3.1, the spherical expansion of the Green’s function of the Helmholtz equa-

tion has been discussed. It is important to observe that the Helmholtz equation is

obtained for a fixed wavenumber k and that the time-domain variations of the vector

potential are obtained by Fourier transform.

In this context, the expansion coefficients of the vector potential were obtained by pro-

jecting the current density over the scalar multipolar basis :

~Jlm(k) =

∫
J ψklmd

3r′ (1.66)

Where the dependence of the projection on the wavenumber has been emphasized. Doing

this projection for all wavenumbers is in fact a spherical Bessel transform that can be

defined for an abstract scalar function in the following way :

f(r, θ, ϕ) =
∑

lm

∫

k
fklmψklmdk (1.67)

ψklm =

√
2

π
k jl(kr)Ylm(θ, ϕ) (1.68)



Chapter 1. Irreducible tensors in nonlinear optics 27

ψ̃klm =

√
2

π
k h

(1)
l (kr)Ylm(θ, ϕ) (1.69)

The additional
√

2/π k factor has been added to ensure the orthogonality of the scalar

multipolar basis for different wavenumbers using the following property of the spherical

Bessel functions : ∫

r
jl(kr)jl(k

′r)r2dr =
π

2k2
δ(k − k′) (1.70)

The basis function ψ̃klm has also been introduced. It is not needed at this point for the

considered current density because this field is regular but if one would have to consider

expansion of diverging field, those elements have to be used. When dealing with the

vector potential or electromagnetic fields, the diverging basis elements are to be used

according to section 1.3.1 When one consider the Helmholtz equation with a fixed k,

only the projection of current density on this k subspace contributes to the radiation.

Thus, if one is observing only a few frequencies, only the corresponding parts of the

current density has to be taken into account.

Due to this choice of normalization, the spherical expansion of the Green’s function and

the vector potential can now be written :

G(r − r′) =
eik|r−r

′|

4π|r − r′| =
iπ

2k

∑

lm

ψ̃klm(r, θ, ϕ)ψklm(r′, θ′, ϕ′) (1.71)

A =
iπ

2k
µ0

∑

lm

ψ̃klm(kr)

∫

r′
J(~r′)ψ∗klm(~r′)d3r′ (1.72)

Using the spherical Bessel transform of the current density, one gets :

A =
iπ

2k
µ0

∑

lm

~Jklmψ̃klm(~r) (1.73)

Where ~Jklm are the components of the spherical Bessel transform of the current density.

The basis ψklm is a convenient multipolar basis to deal with scalar fields. However,

the quantities described in electromagnetism are mostly vector fields. Here, each of

the components of the current density is expanded over the scalar multipolar basis but

the irreducibility of the expansion is not conserved because the vectorial nature of the

current density has not been taken into account.

Thus, it is necessary to introduce a vector multipolar basis that would allow to expand

vector fields while obtaining irreducible components.
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1.3.4 Definition of the vector spherical harmonics

A naive method to construct a vector basis of spherical harmonics could be to simply

couple each scalar spherical harmonics with the cartesian basis vector ex, ey and ez.

However, this construction will not be consistent with the irreducible tensor formalism

since we will not form irreducible tensors in this way. To solve this problem, we use the

irreducible tensor product of spherical harmonics with spherical basis vectors [31]. We

recall here the convention used in this report for the spherical basis vector :

~e1 = − 1√
2

(~ex + i~ey) (1.74)

~e0 = ez (1.75)

~e−1 =
1√
2

(~ex − i~ey) (1.76)

This simple orthogonal transformation offers an irreducible basis vectors. We now define

vector spherical harmonics (VSH) as the irreducible tensor product between this basis

and scalar spherical harmonics :

Y JM
l = {Y l ⊗ eS=1}JM =

∑

mσ

CJMlm1σYlm eσ (1.77)

We can also easily extend this definition to tensor spherical harmonics. These functions

will be eigenfunctions of an angular momentum operator J , direct sum of an orbital

angular momentum L and a spin angular momentum in the tensor spherical basis. Tensor

spherical harmonics are written Y JM
ls and obey the following identities :

J2Y JM
ls = j(j + 1)Y JM

ls (1.78)

S2Y JM
ls = s(s+ 1)Y JM

ls (1.79)

L2Y JM
ls = l(l + 1)Y JM

ls (1.80)

JzY
JM
ls = MY JM

ls (1.81)

The tensor equivalent of the equation 1.77 is

Y JM
ls = {Y l ⊗ eS=s}JM =

∑

mσ

CJMlmsσYlm esσ (1.82)

Of course, tensor spherical harmonics reduce to scalar ones when s = 0 and to vector

ones when s = 1. A fundamental relationship which allows to find many properties of

the VSH algebra is :

2iL ∧ Y JM
l1 =

(
J(J + 1)− l(l + 1)− 2

)
Y JM
l1 (1.83)
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Using mainly VSH, we will usually omit the subscript s = 1 in Y JM
l1 . The selection

rules of the Clebsch-Gordan coefficients show that J and l are not independent : l =

J − 1, J or, l+ 1. We find that for each irreducible rank J , we need three independent

vectors Y JM
J−1, Y

JM
J et Y JM

J+1 in accordance to the dimension of the three dimensional

euclidean space. The VSH defined by Jackson [21] in the multipolar expansion of the

electromagnetic field are equivalent to Y lm
l :

Y lm
l = X lm =

1√
l(l + 1)

LYlm (1.84)

More equivalences between the different notations and conventions used to express the

vector spherical harmonics are given in appendix B.

1.3.5 Vector multipole fields expansion

In the previous section, we expanded the vector potential over a scalar basis and the

coefficients ~Jklm contained the vectorial nature of the field. However, in this formalism,

different orders of multipolar radiation come mixed and the algebra involved to separate

them becomes more and more tricky as the orders grow. This algebra is in fact closely

related to an irreducible tensors decomposition and to avoid doing it, we can directly

use a vector irreducible tensor formalism, i.e. vector multipole fields.

Let us start by writing the vector ~Jklm over the irreducible basis : Jklm =
∑

σ J
σ
klmeσ.

Inserting it in equation 1.54, we get terms like Ylm eσ that we can express as a sum

of vector spherical harmonics. To get this sum, we simply use the definition of vector

spherical harmonics and introduce orthogonality relationships between Clebsch-Gordan

coefficients.

Y J ′M ′
l1 =

∑

mσ

CJ
′M ′

lm1σYlm eσ (1.85)

∑

JM

Y JM
l1

(∑

mσ

CJMlm1σC
J ′M ′
lm1σ

)
=
∑

mσ

CJ
′M ′

lm1σYlm eσ (1.86)

Rearranging the left-hand side sum and identifying the terms of equal orders, we find :

Ylmeσ =
∑

JM

Y JM
l1 CJMlm1σ (1.87)
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We can now expand the vector potential over vector spherical harmonics :

A(~r) =
iπ

2k
µ0

∑

lm

h
(1)
l (kr)

∑

σ

JσklmYlmeσ (1.88)

=
iπ

2k
µ0

∑

JlM

h
(1)
l (kr)

(∑

mσ

JσklmC
JM
lm1σ

)
Y JM
l1 (1.89)

=
iπ

2k
µ0

∑

JlM

h
(1)
l (kr)J lJMk Y JM

l1 (θ, φ) (1.90)

The coefficients J lJMk of the vector multipole fields expansion are related to the scalar

ones by the following transformation :

J lJMk =
∑

mσ

JσklmC
JM
lm1σ (1.91)

Jσklm =
∑

J ′M ′

CJ
′M ′

lm1σ J
l′J ′M ′
k (1.92)

We want our formalism to be self-consistent and to avoid the use of the scalar expansion

coefficients. Thus, we need to express the coefficients J lJMk directly in the vector basis.

Starting with equation 1.91 and using the definition of Jσklm given in equation 1.55, we

find :

J lJMk =

√
2

π
k

∫
jl(kr

′)
(∑

mσ

CJMlm1σ

[
J(~r′)

]
σ
Y ∗lm(θ′, φ′)

)
d3r′ (1.93)

=

√
2

π
k

∫
jl(kr

′)
∑

σ

[
J(~r′)

]
σ

∑

m

CJMlm1σY
∗
lm(θ′, φ′)d3r′ (1.94)

=

√
2

π
k

∫
jl(kr

′)
∑

σ

[
J(~r′)

]
σ

[
Y JM
l (θ′, φ′)∗

]
σ
d3r′ (1.95)

=

∫
J(r′) ·ΨJM

l (k)(r′, θ′, φ′)∗d3r′ (1.96)

This last equation shows that we can project the current density in a straightforward

fashion on the vector spherical basis without relying on the scalar basis. Moreover, the

basis of vector multipole fields defined for the expansion is :

ΨJM
l (k) =

√
2

π
kjl(kr)Y

JM
l (θ, φ) (1.97)

Ψ̃
JM

l (k) =

√
2

π
kh

(1)
l (kr)Y JM

l (θ, φ) (1.98)
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The two basis elements correspond to the regular and irregular solutions of the Helmholtz

equation. When the expansion is carried over fields regular at the origin, typically

sources, one has to use the jl while h
(1)
l has to be use for fields corresponding to a

radiation like the electric field or the vector potential. The k-dependence of the vector

multipolar basis will be noted between parenthesis or as a subscript according to what

make the equation the simplest to read. When no confusion is possible, the k-dependence

will be omitted from the notation.

As a conclusion of this section, we have shown how we can expand the vector potential

into vector spherical harmonics and how the coefficients of the vector expansion are

related to those of the scalar one. However, this basis is not the most convenient one

since we can choose another basis equivalent by an unitary transformation which much

more powerful algebraic properties and physical insights.

1.3.6 Electromagnetic multipole fields

In this section, we want to define a basis for the fields expansion that has more physical

meaning but conserves the irreducibility of the vector multipolar basis. In order to

conserve those algebraic properties, we can only perform an unitary transformation

inside each irreducible subspace. Thus, the best choice of combination of vector multipole

fields to describe electromagnetic fields is the following :

ΨJM
m = ΨJM

J (1.99)

ΨJM
e =

√
J + 1

2J + 1
ΨJM
J−1 −

√
J

2J + 1
ΨJM
J+1 (1.100)

ΨJM
l =

√
J

2J + 1
ΨJM
J−1 +

√
J + 1

2J + 1
ΨJM
J+1 (1.101)

Here, the m, e and l indices stand respectively for magnetic, electric and longitudinal

for a reason that will become clear later in the end of this section. Those basis vectors

will be called electromagnetic multipole fields (EMF). The angular part of the EMF

are the combinations of vector spherical harmonics just given above. The radial parts

are the corresponding combination of spherical functions associated to different physical

behavior : spherical Bessel functions when discussing the current distribution expansion

and spherical Hankel functions of the first kind when discussing fields. This comes from

the Green tensor’s expansion 1.3.6. Again, the diverging basis components will denoted

using a tilde.

The two first EMF Ψ10
m and Ψ10

e are represented in figure 1.4 and can intuitively be

associated with the well-known electric and magnetic dipolar currents.
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Figure 1.4: Graphical representation of some electromagnetic multipole fields. The
electromagnetic multipole fields Ψ10

e and Ψ10
m are respectively represented in the top

left and top right position. Pictures in the bottom represent a quasi Ψ10
m of fish shoals

taken from an Omega advertisement (bottom right) and a National Geographic image
(bottom left).

The definition for the EMF proposed in the previous equations is particularly suitable

for electromagnetic problems due to the way they behave under transformations by

differential operators, such as :

∇∧ΨJM
e = −ikΨJM

m ∇ ·ΨJM
e = 0 (1.102)

∇∧ΨJM
m = ikΨJM

e ∇ ·ΨJM
m = 0 (1.103)

∇∧ΨJM
l = 0 ∇ ·ΨJM

l = −kΨJM (1.104)



Chapter 1. Irreducible tensors in nonlinear optics 33

Those results can be proven using the definition of the electromagnetic multipole fields,

and the curl and divergence of vector multipole fields :

∇∧ΨJM
J+1 = ik

√
J

2J + 1
ΨJM
J (1.105)

∇∧ΨJM
J = ik

√
J + 1

2J + 1
ΨJM
J−1 − ik

√
J

2J + 1
ΨJM
J+1 (1.106)

∇∧ΨJM
J−1 = −ik

√
J + 1

2J + 1
ΨJM
J (1.107)

∇ ·ΨJM
J+1 = −k

√
J + 1

2J + 1
ΨJM (1.108)

∇ ·ΨJM
J = 0 (1.109)

∇ ·ΨJM
J−1 = −k

√
J

2J + 1
ΨJM (1.110)

Of course, the basis vectors form an orthonormal basis according to the following scalar

product : ∫
ΨJM∗
i (k) ·ΨJ ′M ′

i′ (k′)d3r = δii′δJJ ′δMM ′δ(k − k′) (1.111)

With a simple dimensional analysis, one can see that the EMF vectors are without

dimensions and then a correct definition of the projections need to be done. We define

the projection of the electric current density over the multipolar basis as :

J iJMk =

∫
ΨJM∗
i (k) · Jd3r∫

ΨJM∗
i ·ΨJM

i d3r
(1.112)

Where i stands for e, m or l. The denominator ensures the correctness of the coefficient

dimension which is the same as that of an electric current multiplied by a length, i.e.

CL−1T−1. The extra length dimension comes from the k factor in the normalization

of the vector basis. Now, we can expand the electric current density into EMFs and

calculate in an easy way the radiated electromagnetic field. Again, we start with the

integral expression of the vector potential . So, the part of J that radiates with the

wavenumber k is expressed as :

J(k) =
∑

JM

JeJMk ΨJM
e (k) + JmJMk ΨJM

m (k) + J lJMk ΨJM
l (k) (1.113)

A = µ0ik
∑

iJM

ΨJM
i

∫
ΨJM∗
i ·

( ∑

i′J ′M ′

JJ
′M ′

i′ ΨJ ′M ′
i′

)
d3r (1.114)
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Thanks to the orthogonality equation 1.111, we obtain directly the vector potential and

the magnetic and electric fields using the curl of the basis vectors :

A = µ0
iπ

2k

∑

JM

JJMe ΨJM
e + JJMm ΨJM

m + JJMl ΨJM
l (1.115)

H = −π
2

∑

JM

(−)JJMe ΨJM
m + JJMm ΨJM

e (1.116)

E =
π

2
ikZ0

∑

JM

JJMe ΨJM
e + JJMm ΨJM

m (1.117)

Where Z0 is the vacuum impedance
√
µ0/ε0. Some remarks can be made about this

multipolar expansion the electromagnetic fields. First, thanks to the orthogonality prop-

erties of the EMF, once the multipolar expansion of the current density is known, the

electric and magnetic fields can be calculated easily outside and inside the charge distri-

bution algebraically. In order to compute the fields inside the charge distribution, one

just needs to take care of the radial part of the EMFs by using the regular ones.

Moreover, one can observe that the so-called longitudinal coefficients do not contribute

to the electric and magnetic fields but only to the vector potential. Thus, they corre-

spond to a non-radiating part of the electric field and to a pure near-field effect. This

also means that, from far-field measurements, one will only be able to determine the

electric and magnetic coefficients of the electric density expansion. Finally, in this choice

of basis, the electric field has exactly the same angular behavior as its sources if one

does not consider the non-radiating part.

We now turn our attention to a limit case of the electric and magnetic multipole coeffi-

cients. Using the section 9.10 of Jackson’s book [21], it is possible to obtain the following

expressions for the multipole coefficients :

JJMe =
i√

J(J + 1)

∫
Y ∗JM

(
cρ
∂

∂r
(rjJ(kr))+ik(r·J)jJ(kr)−ik∇·(r∧M)jJ(kr))

)
d3r

(1.118)

JJMm =
−i√

J(J + 1)

∫
Y ∗JM

(
∇·(r∧J−jJ(kr)+∇·M ∂

∂r
(rjJ(kr))−k2(r·M)jJ(kr)

)
d3r

(1.119)

Where J and M are the current density and the magnetization respectively. As one can

see, those expressions are quite complicated ! The reason is that the current density

or equivalently, the charge density are not treated with an irreducible point of view
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and make the computation much more cumbersome. However, we show this result

here in order to make a connection with usual descriptions. Still following Jackson, we

can take the small argument approximation of the spherical Bessel function to obtain

much simpler expressions. This corresponds to source scale very small compared to the

wavelength. Moreover, we neglect magnetization to make it even simpler.

JJMe −→
kr�1

ickJ

(2J + 1)!!

√
J + 1

J

∫
rJρY ∗JMd

3r (1.120)

JJMm −→
kr�1

ikJ

(2J + 1)!!

√
1

J(J + 1)

∫
rJ∇ · (r ∧ J)Y ∗JMd

3r (1.121)

Where tvecJ and M are respectively the current density and the magnetization. We see

with those expressions that the electric multipole coefficients have a similar expression

in the long wavelength limit as the multipoles from the electrostatics. Similarly, the

magnetic coefficients are related to magnetic moments.

1.3.7 Mie theory

In 1908, Gustav Mie wrote an important paper on how to calculate light scattering by

a spherical particle [18]. Early computation were already done by Lorenz in 1890 but

were not recognized at the time, probably due to the danish language used in his article

[38]. In his theory, Mie’s vector basis for the incident, the scattered and the internal

electric fields expansion is equivalent to the vector multipolar fields that we use here.

The link between is basis vectors M and N is discussed in appendix B :

Einc =
km

ω2εmµ

∑

JM

AJMM
JM +BJMN

JM (1.122)

Escat =
km

ω2εmµ

∑

JM

AJMaJM
JM +BJMbJN

JM (1.123)

Eint =
km

ω2εmµ

∑

JM

AJMcJM
JM +BJMdJN

JM (1.124)

Where km and εm are the wavenumber and the permittivity in the medium surrounding

the sphere. Similar equations hold for the magnetic field. The coefficients AJM and BJM

are determined by the choice of the incident electric field. For a plane wave polarized

along x, those coefficients are :

AJ±1 =
√
π(2J + 1)iJ (1.125)

BJ±1 = ±
√
π(2J + 1)iJ+1 (1.126)
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The calculation of the coefficients aJ and bJ allows to know the scattered field outside

of the spherical particle. They are calculated using the continuity of the tangential

components of the fields as a boundary condition between the sphere and the surrounding

medium[39]. Using the basing functions defined by Mie instead of the one used in this

work, one obtains the well known Mie coefficients :

aJ =
µmm

2jJ(mx)[xjJ(x)]′ − µjJ(x)[mxjJ(mx)]′

µmm2jJ(mx)[xh
(1)
J (x)]′ − µh(1)

J (x)[mxjJ(mx)]′
(1.127)

bJ =
µjJ(mx)[xh

(1)
J (x)]′ − µmh(1)

J (x)[mxjJ(mx)]′

µjJ(mx)[xjJ(x)]′ − µmjJ(x)[mxjJ(mx)]′
(1.128)

With x = ka and m = n/nm. Once the electric fields are completely known, one can

calculate, as displayed in figure 1.5, the extinction cross-section using a proper model

for the wavelength-dependent permittivity [40] that can be measured experimentally.

a = 20 nm

a = 40 nm

a = 60 nm

2. ´10-7 3. ´10-7 4. ´10-7 5. ´10-7 6. ´10-7
Λ

1

2

3

4

5

6

7

QextΛHΛL

Figure 1.5: Extinction cross section of spherical gold nanoparticle in an homogeneous
solution of water (nm = 1.33).

Many extensions of Mie’s theory have been developed especially since the advent of

computers. To cite a few of them, the interested reader can find topics on nonspherical

particles like oblates or prolates [41], coated spheres [39], scattering of a gaussian beams

[42], multiple spheres scattering[43–47] and many others [48].

The vector multipole fields help solving analytically the problem of scattering by a

sphere. In this work, they will be used to focus on non-spherical nanoparticles in non-

linear optics problems.
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1.4 An illustration : designing apolar nanoparticles

SERS has widely been used to inspect molecular modes in the visible spectrum. This

technic advantage is to overcome the low signal provided by traditional Raman scat-

tering. In SERS, the molecule is adsorbed at a metal surface which will enhance dra-

matically Raman signal. On the other hand, SEIRA is analogous to SERS by being its

infrared counterpart. Like Raman spectroscopy and infrared spectroscopy are comple-

mentary to characterize molecules, SERS and SEIRA provide each other complementary

informations.

In the aim of providing nanostructures suitable for those two techniques, it is necessary

to comply with the following two constraints : the structure needs to be apolar since

polarization management is non-desirable for sensing applications and the it is also

necessary that the substrate resonates efficiently both in visible for SERS and in IR for

SEIRA. The first constraint is discussed in this section while the second one is discussed

in appendix D. Those works have been a part of the european project Nanoantenna.

1.4.1 Fabrication process

In this section, we briefly describe the nanoparticles fabrication process using e-beam

lithography (EBL) on glass. EBL is a well-known technique [49] that allows the fabri-

cation of high quality patterns of nanoparticle on a substrate. It is a necessary step to

study the nanoparticles behavior and the process is described briefly here :

• Sample preparation : As a substrate, we use a glass microscope slide. To clean

the substrate, we sonicate it for 5 minutes in water, 5 minutes in IPA, 5 minutes

in acetone and finally for 5 minutes in IPA. A thin layer of PMMA (about 100

nm) is spin coated onto the substrate (Spin coating parameters : Speed = 4000

RPM/s, Acceleration = 3000 RPM/s and the time of centrifugation is 30s). The

film is then baked for 15 minutes at 170 C. To complete the sample preparation,

a very thin layer of aluminium is evaporated onto the surface in order to ensure a

good conduction during the lithography.

• Lithography : After achieving a good setting of the Scanning Electron Microscope

(SEM), the lithography is completed according to the patterns previously defined

with the software. Lithography parameters on Hitachi SEM : Voltage = 30 kV,

current = 10 pA. The Area or Line dose parameter is optimized for each different

desired shape.
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• The aluminium is removed by dipping the sample for 50 seconds in a KOH solution

and then rinsed with water for 15 seconds.

• The development of the insolated parts is accomplished by dipping the sample for

1 minute in MIBK:IPA 1:3. The sample is then rinsed in IPA.

• A 50nm-thick gold layer is evaporated on the surface of the substrate.

• The lift off is accomplished by dipping the sample for more than 20 minutes and

no more than a couple of hours in acetone. Then, by shaking softly the solution

the PMMA and unwanted gold is removed. Finally, the sample is rinsed in IPA

and dried.

Glass

Spin Coating

PMMA

Evaporation

E-beam lithography

Development

Gold deposition

Lift off

Aluminium

Figure 1.6: Nanolithography process.

In addition to this process, the cleaning procedure can be replaced by a surface func-

tionalization since the nanoparticles can easily be removed from the substrate during

the lift-off. Chromium is an efficient bonding material which is often used. However,

the chromium has a strong effect on the optical response and can not be used in gold

plasmonics.

1.4.2 Apolar metallic nanoparticles

In this section, we suggest a model to demonstrate why nanostructures with Cn symme-

try (n > 3) exhibit an apolar behavior in linear optic. In this model, we assume that the

linear optical response of the nanoparticle can be described using a linear polarizability
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Figure 1.7: Nanolithography process.

α which is similar to giving it a molecule-like behavior. It is a crude approximation to

neglect the spatial extension of the nanoparticle but it offers a simple application of irre-

ducible tensors and spatial extension issues will be dealt with later in this thesis. Thus,

the polarization that is detected in far-field is linearly related to the incident electric field

via a second-rank polarizability tensor α and have the intrinsic relationship P = α •E.

Although the response of the particle is a near-field phenomenon, far-field observation

and response homogeneity allow us to define a linear relationship. The second rank

tensor α can be represented as a direct sum of three irreducible tensors according to

equation 1.37 :

α = α0 ⊕ α1 ⊕ α2 (1.129)

The components of the irreducible polarization are obtained by fully contracting the

irreducible polarizabilities. To select a component of the polarization, the reading vector

ê is used the same way it was for nonlinear organic molecules. The components in the

spherical basis of the polarization are thus given by taking the following reading tensor

ê = eµ.

Pµ = α0 • {E ⊗ eµ}0 + α1 • {E ⊗ eµ}1 + α2 • {E ⊗ eµ}2 (1.130)

The nanoparticle’s C3 symmetry axis is oriented along the direction z as depicted in

figure 1.8 in order to use easily the Wigner D matrices.
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Figure 1.8: Geometry of the nanoparticles and the local frame associated.

Let’s now consider a particle with Cn symmetry (n > 3). In this case, each component

has to obey the following equation : αJM = e2πiM
n αJM . This relationship can be

verified only if M is a multiple of 3. So, only the components α00, α10 and α20 of α do

not vanish. They are connected to a cylindrically symmetric behavior. Since all these

components are invariant by rotation around the z axis, the response of the particle is

polarization independent when considering normal incidence :

α = α00 ⊕ α10 ⊕ α20 (1.131)

Furthermore, α10 is also zero for a particle belonging to a Cnν or Dnh group since

it corresponds to the antisymmetric part of the tensor which vanishes under reflection

symmetries. A surviving α10 component would lead to a polarization rotation and would

appear in the Cn group. Using equation 1.130, the response to a normally incident

electric field is easily deduced by using the numerical values of the Clebsch-Gordan

symbols and eµ = (−1)µ e−µ :

P 1 = −E1(
1√
3
α00 − 1√

2
α10 +

1√
6
α20) (1.132)

P 0 = 0 (1.133)

P−1 = −E−1(
1√
3
α00 +

1√
2
α10 +

1√
6
α20) (1.134)

The polarization field is then parallel to the incident electric field when α10 = 0 and

their magnitude are related by :

||P || = ||E||
[( 1√

3
α00 +

1√
6
α20
)2
− 1

2

(
α10
)2
]

(1.135)
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To resume, we have shown that a particle belonging to a Cn (n > 3) group has an

apolar polarization response. Moreover, if the particle belongs to Cnν or Dnh groups,

the polarization is parallel to the incoming electric field.





Chapter 2

Multipolar Point Spread

Functions

Recently, spectroscopy and microscopy of single molecules or nanoparticles have seen

an important development. It is now very common to investigate single nanoparticle

by exciting it and collecting its signal through the objective of a confocal microscope.

In particular, nanoparticles emit a signal which offer a richer physics since the dipolar

approximation for the emitted field can not be used anymore due to their non-negligible

spatial extension. Thus, a precise description of the image field is essential to deduce

some information from the measured signal.

An early treatment by Richards and Wolf [50, 51] on the structure of the image field of

a source located at infinity on the axis of the objective has given the theoretical basis

of a vectorial description of the problem. This work has been extended by Enderlein

[52] in order to obtain the analytical expression of a dipole emitter located at the focal

point of the objective. However, it is necessary to develop the theory further to deal

with multipolar emitters that appear for non-punctual radiating objects.

We start by reviewing the derivation of the PSF (Point Spread Function) for a dipolar

emitter. The emphasis is put on the validity of the paraxial approximation which is

sometimes used inappropriately in the literature. Then, we offer an alternative deriva-

tion within the frame of a more general multipolar formalism using vector spherical

harmonics. The next section presents the analytical expressions of the image field for

quadrupole and octupole in a ”ready to use” format. Their paraxial approximations are

also given. Moreover, it has been noticed that a projection of the image field along a

specific direction with a polarizer provides a better signature of its multipolar behavior.

For each multipolar order presented, polar graphs are then represented. Finally, a way

43
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to obtain the electric field structure for orders higher than the octupole is given in the

last section.

In the next chapter, the dipolar PSF will be used to calculate the electric field measured

on an square-law detector from a single nanoparticle through an imaging system. In

chapter 6, multipolar PSFs will be used since the nanoparticle will be described as a

collection of multipoles rather than various dipoles.

2.1 Vector Diffraction Theory

In this section, the problem of diffraction of a vector electric wave by a convergent

lens is tackled. This topic has been covered by Wolf [50] using the angular spectrum

representation of the fields. In this paper, the integral representation of the electric field

will be retrieved using a Green function formalism. This derivation will allow to have

a better control on the approximations and also to deal with different lens geometries.

The starting point is the integral formulation expressing the electric field in a source-

free region enclosed by a surface S which has been developed by Stratton and Chu[53],

Bouwkamp [41] and Visser and Wiersma [54–56] :

E =

∫∫

S
−ik′GES −∇G ∧ (~n ∧ ES)dS (2.1)

Where ES is the electric field on the surface S, ~n is the inward normal vector on S and

G is the Green function defined by :

G =
eik
′||
−→
PF+~r||

4π||−−→PF + ~r||
∇G =

( 1

||−−→PF + ~r||
− ik′

) eik
′||
−→
PF+~r||

4π||−−→PF + ~r||
~ers (2.2)

Where ~ers is the unit vector in the direction of ||−−→PF + ~r||. We first choose the surface

S shown in figure 2.1 as the integration limit in equation 2.1. Even if the integration

is over the whole closed surface S, one just needs to integrate on the reference sphere

spawned by the lens because the electric field contribution on the rest of the surface is

negligible.

It is necessary to do some approximations to make the integral tractable. At this stage,

the focused electric field is expressed in spherical coordinates ~r = (r, θ, ϕ) and the integral

is carried over the reference sphere also expressed in spherical coordinates (θ′, φ). Since

the focused electric field becomes negligible when r is bigger than a decade of λ and

that the tube lens of an imaging system is of the order of hundreds of millimeter, one
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A

ρ = f ′ tan θ′

B

S′
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θ′

f ′ F ′
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f ′
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Figure 2.1: Geometries considered to describe the focusing of an electric field by
an aplanetic lens. (a) First geometry considered using the reference sphere S as a
boundaries. (b) Second geometry considered using directly the surface of the lens as
the diffracting surface. As expected, both boundaries give the same diffraction integral.

can use a first order expansion for ||−−→PF + ~r|| [57].

||−−→PF + ~r|| = f ′
(

1 +

−−→
PF · ~r
f ′2

)
= f ′

(
1 +

r

f ′
cos ε

)
(2.3)

Where :

cos ε = sin θ sin θ′ cos(ϕ− φ) + cos θ cos θ′ (2.4)

Using this approximation, one obtains the following expression for the Green function :

G =
eik
′f ′

4πf ′
eik
′r cos ε (2.5)

The double cross product can also be simplified :

~ers ∧ (~n ∧ ES) =
1

f ′
(
f ′~n ∧ (~n ∧ ES) + ~r ∧ (~n ∧ ES)

)
(2.6)

= −ES (2.7)

Inserting those approximations in the equation 2.1, one obtains an integral equation

similar to the angular spectrum representation used by Wolf [50].

E(~r) = −2ik′
eik
′f ′

4πf ′

∫∫

S
eik
′r cos εES sin θ′dθ′dφ (2.8)

One now needs to obtain an expression for ES on the reference sphere. The lens is

considered as a phase transformation object. Using the Malus-Dupin theorem, the

optical path ABB′PF ′ is the same for every rays going through the lens as depicted in
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the figure 2.1. The phase shift induced by the lens is δ(ρ) = [BB′] = K− [B′P ]. [B′P ] is

equal to the length from the surface of the lens to the one of the reference sphere which

gives δ(ρ) = K −
√
ρ2 + f ′2. K is found by using the condition δ(R) = 0 which leads to

the final expression of the phase shift function :

δ(ρ) =
√
R2 + f ′2 −

√
ρ2 + f ′2 (2.9)

Moreover, one needs to include the phase shift induced by the propagation from B′

to S which is eik
′f ′
(

1/ cos θ′−1
)

together with a coefficient A(θ′) which accounts for the

conservation of energy. The energy conservation is assured by the intensity law. More

precisely, the surface intensity of the electric field coming from an annulus of area δS1

directed along the vector e1 is preserved at the interface of the lens. If the amplitudes

are A1 for the incoming field and A2 for the refracted field, we have :

|A1|2dS1 = |A2|2dS2 (2.10)

According to the figure 2.2, the surface elements dS1 and dS2 can be expressed in their

corresponding frame of coordinates : dS1 = ρdρdφ and dS2 = f ′2 sin θ′dθ′dφ. Using that

a point ρ in the cylindrical system of coordinates can be expressed as ρ = f ′ tan θ′, one

obtains A1 = A2 cos3/2 θ′. Then, the function A(θ′) dealing with the conservation of

energy is :

A(θ′) = cos−3/2 θ′ (2.11)

Finally, the electric field ES used as a boundary on the surface S can be expressed as :

ES = Einc(ρ, φ)e−ik
′
√
r2+f ′2eik

′f ′
(

1
cos θ′−1

)
H(R− r)

cos
3
2 θ′

(2.12)

ES = Einc(f
′ tan θ′, φ)

H(R− r)
cos

3
2 θ′

(2.13)

Where H(R− r) is the Heaviside function which takes into account the finite size of the

lens. The final expression for the diffraction integral by a lens is :

E(r, θ, ϕ) = −ik e
ik′f ′

2πf ′

∫ θm

θ′=0

∫ 2π

φ=0
eik
′r cos εEinc(f

′ tan θ′, φ)
sin θ′

cos3/2 θ′
dθ′dφ (2.14)

This expression is not exactly equivalent to the one obtained by Wolf [51] since the

intensity conservation coefficient is not the same. However, one can check easily that

the intensity of the total field is conserved over the surface of the lens.
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So far, the reference sphere S was used as our boundaries for the equation 2.8. It is also

possible to use the surface of the lens S′ as our boundaries and to obtain the same result

as in equation 2.14. Using the same approximation as previously in the new geometry

leads to the following expression for ||−−→PF + ~r|| :

||−−→PF + ~r|| = f ′

cos θ′
+ r cos ε (2.15)

The surface element of integration dS′ can be converted from the cylindrical to the

spherical coordinates :

dS′ = ρdρdφ = f ′2
sin θ′

cos3 θ′
dθ′dφ (2.16)

The conservation of energy now gives A2 =
√

cos θ′A1. Inserting equations 2.15 and 2.16

in the integral expression of the electric field 2.1 permits to obtain also the same result

as in equation 2.14 :

E(r, θ, ϕ) = −ik′ e
ik′f ′

2π

∫ θm

θ′=0

∫ 2π

φ=0

cos θ′

f ′
eik
′r cos εEinc(f

′ tan θ′, φ)
√

cos θ′
sin θ′

cos3 θ′
dθ′dφ

(2.17)

Using either surfaces S or S′ lead to a final equation 2.14 that is similar but not equivalent

to the one used in most references [52, 58]. However, the consistency of the result with

different geometries is convincing of the correctness of the previous derivation.

2.2 Dipolar Point Spread Function

2.2.1 Cartesian derivation

In the previous section, the focusing of an incoming electromagnetic wave by an aplanatic

lens has been considered and an integral equation 2.14 has been obtained. This section

will deal with the problem of imaging a dipolar source localized at the focus of a perfect

objective.

To go further in the analytical development of the diffraction integral, one has to express

the field Einc in the same vector basis. As shown in figure 2.2, this is done by splitting

the incoming electric field into TE and TM components. The TE part is not changed

by the refraction while the TM part is refracted as in the following equation :

ES =
(

(Einc · ~nφ)~nφ + (Einc · ~nρ)~nθ
)√n1

n2

1

cos
3
2 θ′

(2.18)
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S

f ′ z

�nρ

�nφ

�E(r, ϕ, z)
�Einc

⊗�nφ

�nθ′

⊗

�ES

Figure 2.2: The incoming electric field Einc is splitted into its TE (along ~nφ) and TM
(along ~nρ) parts. The field refracted on the lens is thus the projection of these parts
along the new coordinates ~nθ and ~nφ. Finally, one can use the integral 2.14 to calculate

the focused field E(r, θ, ϕ) in the image space.

From now, cylindrical coordinates (r, ϕ, z) in the image space will be used for the focused

electric field. The origin of the coordinates frame is positionned at the focal point in

the image space. The reference sphere in the object space has coordinates (θ, φ) and the

one in the image space has (θ′, φ). Using those systems of coordinates, the focused can

be expressed in the following manner :

E(r, ϕ, z) =
−ik′eik′f

2πf ′

∫ θm

0

∫ 2π

0
ES(θ′, φ)eik

′z cos θ′eik
′r sin θ′ cos(ϕ−φ) sin θ′dφdθ′ (2.19)

f ′
z

�nρ

�E(r, ϕ, z)

⊗

�nφ

�nθ′

⊗

⊗

�nφ

�nφ

θ′θ

�nθ

�p

f

Figure 2.3: Schematic of a perfect imaging system. This configuration is used
throughout the analytical derivation of multipolar. In this case, ~p represents a cartesian

dipole but an irreducible dipole and higher multipolar sources are also used.

We now consider the configuration of figure 2.3 where a dipole radiation is collimated

and then focused by a second lens. However, we now have two lens with focal length
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f on the left and f ′ on the right. We denote E0, E1 and E2 the electric fields with

amplitude A0, A1 and A2. The intensity law now states that :

|A0|2 dS0 = |A1|2 dS1 = |A2|2 dS2 (2.20)

A2 = A0

√
n

n′
cos

3
2 θ

cos
3
2 θ′

(2.21)

There is no need to do the projection twice since the rays are parallel between the lens.

We can thus directly make the projection from the left on the first lens to the right of

the second lens as shown in figure 2.3. The focused electric field is now :

E(r, ϕ, z) = − ik
′

2π

f

f ′
ei(k

′f ′−kf)

∫ θm

0

∫ 2π

0
ES(θ, φ)eik

′z cos θ′e
ik′r f

f ′ sin θ′ cos(ϕ−φ)
sin θdφdθ

(2.22)

We can explicitly show the dependence in the incoming electric field :

E(r, ϕ, z) = − ik
′

2π

f

f ′
ei(k

′f ′−kf)

√
n

n′

∫ θm

0

∫ 2π

0

( cos θ

cos θ′

) 3
2
[
(Einc · ~nφ)~nφ + (Einc · ~nρ)~nθ′

]

eik
′z cos θ′e

ik′r f
f ′ sin θ cos(ϕ−φ)

sin θdφdθ (2.23)

At this stage, one can use an exact multipolar expression of the incoming field or some

approximations related to the dipolar order. Firstly, we are going to use a dipolar specific

derivation following the letter of Enderlein [52]. Then, the electric field can be written

as

E(r, ϕ, z) = − ik
′

2π

f

f ′
ei(k

′f ′−kf)

√
n

n′

∫ θm

0

∫ 2π

0

( cos θ

cos θ′

) 3
2
[
(~p · ~nφ)~nφ + (~p · ~nρ)~nθ′

]

eik
′z cos θ′e

ik′r f
f ′ sin θ cos(ϕ−φ)

sin θdφdθ (2.24)

In this equation, ~p is the dipole moment vector. At this stage, the scalar product can

be calculated by expressing ~nφ, ~nρ and ~nθ explicitly in cartesian coordinates. This

calculation would lead exactly to the results provided in the Enderlein’s letter and this

article will rather focus on a derivation using vector spherical harmonics. We are first

recovering the known dipolar result for the PSF in the next section in a way that can

be generalized in a easy way for the higher order multipoles.
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2.2.2 Spherical derivation

To obtain the electric dipole propagation tensor, we now need to replace Einc by the

far-field dipolar radiation. In term of vector multipole fields, the irreducible electric

dipolar radiation is :

Einc(r, θ, φ) = Z0

∑

m

J1M
e ∇∧Ψ1m

1 (r, θ, φ) (2.25)

Using the far-field approximation and the long wavelength limit, the electric field can

be simplified :

Einc(r, θ, φ) = Z0

√
2

3
i c k2 e

ikr

r
(µ1Y

11
1 ∧ ~n+ µ0Y

10
1 ∧ ~n+ µ−1Y

1−1
1 ∧ ~n) (2.26)

Where the asymptotic expression of the spherical Hankel function of the first kind has

been used (see appendix A). In order to obtain a result comparable to those of the

precedent section, we now switch from irreducible coordinates to cartesian coordinates.

To handle this, we first recast the sum in equation 2.26 in a matrix form arranging

the dipole components into a vector and we then use the passage matrix between the

irreducible and cartesian coordinates systems. Finally, the cartesian electric field can be

written as :

Einc(r, θ, φ) =
ω2

ε0c2

eikr

4πr
Gdip,cart(θ, φ) · ~p (2.27)

Gdip,cart(θ, φ) =




1− cos2 φ sin2 θ − sinφ cosφ sin2 θ − cosφ sin θ cos θ

− sinφ cosφ sin2 θ 1 + cos2 φ sin2 θ − sinφ sin θ cos θ

− cosφ sin θ cos θ − sinφ sin θ cos θ sin2 θ


 (2.28)

The vector ~p = (px, py, pz) is the usual dipole moment. It is obtained from the irreducible

electric dipole by the following change of coordinates :




px

py

pz


 = Mcart←irr




µ1

µ0

µ−1


 with Mcart←irr =




− 1√
2

0 1√
2

− i√
2

0 − i√
2

0 1 0


 (2.29)

Once the incoming electric field has been recasted in a suitable form, we can calculate

its projection on the imaging system. Since the dipole is supposed to be placed at the

focal point in the object space, the r variable of the electric field is equal to f and then

ES depends only on θ and φ. The electric field E
(x)
∞ on the lens created by a dipole
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oriented along x (~p = px~nx) is calculated using equation 2.18. To make the calculation,

we first give the expression of the vectors ~nφ, ~nθ and ~nθ′ .

~nφ =




− sinφ

cosφ

0


 ~nθ =




cosφ cos θ

sinφ cos θ

− sin θ


 ~nθ′ =




cosφ cos θ′

sinφ cos θ′

sin θ′


 (2.30)

From figure 2.3, θ and θ′ are not independent :

f tan θ = f ′ tan θ′ (2.31)

sin θ′ =

f
f ′ tan θ

√
1 +

( f
f ′

)2
tan2 θ

cos θ′ =
1√

1 +
( f
f ′

)2
tan2 θ

(2.32)

E(x)
∞ (θ, φ) =

ω2

ε0 c2
px
eikf

4πf

√
n

n′

( cos θ

cos θ′

) 3
2

[



1− cos2 φ sin2 θ

− cosφ sinφ sin2 θ

− cosφ sin θ cos θ


·




− sinφ

cosφ

0







− sinφ

cosφ

0


+




1− cos2 φ sin2 θ

− cosφ sinφ sin2 θ

− cosφ sin θ cos θ


 ·




cosφ cos θ

sinφ cos θ

− sin θ







cosφ cos θ′

sinφ cos θ′

sin θ′




]
(2.33)

E(x)
∞ (θ, φ) =

ω2

ε0 c2
px
eikf

4πf

√
n

n′

( cos θ

cos θ′

) 3
2




1 + cos θ cos θ′ − (1− cos θ cos θ′) cos 2φ

(cos θ cos θ′ − 1) sin 2φ

2 cos θ sin θ′ cosφ




(2.34)

Similar expressions hold for a dipole oriented along y and one oriented along z. Finally,

we can calculate the focused field using equation 2.23 and using some identities of the

integrals involved :

∫ 2π

0
cosnφeix cos(ϕ−φ) dφ = 2π inJn(x) cosnϕ (2.35)

∫ 2π

0
sinnφeix cos(ϕ−φ) dφ = 2π inJn(x) sinnϕ (2.36)
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E(x)(r, ϕ, z) = i
k′ω2

ε0c2
px
f ′

f

ei(kf−k
′f ′)

8π

√
n

n′

∫ θm

0

( cos θ

cos θ′

) 3
2

sin θ ×

×




(1 + cos θ cos θ′)J0(k′r ff ′ sin θ) + (1− cos θ cos θ′)J2(k′r ff ′ sin θ) cos 2ϕ

(1− cos θ cos θ′)J2(k′r ff ′ sin θ) sin 2ϕ

2i cos θ sin θ′J1(k′r ff ′ sin θ) sinϕ


 eik

′z cos θ′ dθ

(2.37)

We can also calculate the field for dipole along y and z in the same way but it is

more convenient to put the result in a matrix form and to define some functions. The

cartesian dipole propagation tensor will be written Gdip
c (~r, ~r0) and it relates a radiation

dipole located at ~r0 in the object space to the focused electric field at the point ~r in the

image space. We have calculated the case of a dipole located at the focus of the object

space, i.e. ~r0 = 0.

E(~r) = KGdip(~r, 0) · ~p (2.38)

K1 = i
k′ω2

ε0c2

f ′

f

ei(kf−k
′f ′)

8π

√
n

n′
(2.39)

Gdip
c

(~r, ~r0 = 0) = K1




gd1(r, z) + gd3(r, z) cos(2ϕ) gd3(r, z) sin(2ϕ) −2igd2(r, z) cos(ϕ)

gd3(r, z) sin(2ϕ) gd1(r, z)− gd3(r, z) cos(2ϕ) −2igd2(r, z) sin(ϕ)

2igd4(r, z) cos(ϕ) 2igd4(r, z) sin(ϕ) −2gd5(r, z)




(2.40)

For conciseness, the definition of the functions gdi can be found in appendix C where

we have omitted the argument of the Bessel functions which is always k′r ff ′ sin θ. We

have also introduced the angle θm related to the numerical aperture NA by θm =

arcsin(NA/n′). The tensor Gdip in equation 2.38 allows one to obtain the exact ex-

pression of the electric field in every point of the image space radiated by an electric

dipole ~p. The intensity of the imaged electric is represented in figure 2.5 for each carte-

sian dipole orientation. The numerical values used to compute the PSF are M = 60,

NA = 1.15 and λ′ = 600 nm. One can see that the intensity for a dipole oriented

along the z axis is, as one can expect intuitively, lower than for the two other directions

and can usually be neglected. Moreover, one can observe the ellipticity of the PSF for

the x and y dipolar components. This feature is a sign that we do not use a natural

representation for the dipole which would be described in a better way using, indeed,

the irreducible basis. This more convenient representation for the dipole will in fact
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become necessary when higher multipolar orders will be under investigations because

higher order cartesian multipoles are higher rank tensors and would involve higher rank

propagation tensors. Instead of using tensor algebra, it is more convenient to deal with

irreducible coordinates and the multipolar propagation tensor are 3× (2J + 1) matrices.

Figure 2.4: Contour plots of the intensity in the image plane of the field radiated by
an irreducible electric dipole of components µ−1, µ0 and µ1 from left to right.

Figure 2.5: Contour plots of the intensity in the image plane of the field radiated by
a cartesian electric dipole of components px, py and pz from left to right.

We then introduce the spherical dipole propagation tensor Gdip
s (~r, ~r0) related to the

cartesian one by Gdip
s (~r, ~r0) = M−1

cart←irrG
dip
c (~r, ~r0)Mcart←irr.

Gdip
s

(~r, ~r0 = 0) = K1




gd1(r, z) i
√

2gd2(r, z)e−iϕ −gd3(r, z)e−2iϕ

−i
√

2gd4(r, z)eiϕ −2gd5(r, z) i
√

2gd4(r, z)e−iϕ

−gd3(r, z)e2iϕ −i
√

2gd2(r, z)eiϕ gd1(r, z)




(2.41)

From now, we will omit the argument ~r0 = 0 of the propagation tensors since we consider

only object located approximately at the focal point. In this equation, one can see that

both the µ1 and µ−1 components have exactly the same intensity. At this point, we

also point out that we have been interested only in the electric radiation so far. The

magnetic radiation could be handled out using ΨJM
m instead of ΨJM

e at the beginning of
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the derivation. This choice would lead to the same PSFs with a different constant and

can be found in the supplementary material.

2.2.3 Approximations

The exact expression of the imaged electric field involves different oscillating integrals

which need to be evaluated numerically when one wants to display or quantify them.

However, approximations can be done in order to make their expression much simpler.

First, in a magnifying optical system, the focal length f ′ will be much bigger than f .

Then, one can simply use this simplification in equation 2.32 : sin θ′ → 0 and cos θ′ → 1.

In this approximation, the Ez component of the electric field (or equivalently the E0

one) will vanish and the electric field is then polarized orthogonally to the optical axis.

The cos
3
2 θ that appears because of the energy conservation is different to what is gen-

erally employed in the literature [58]. This small difference will be crucial shortly when

discussing the validity of the paraxial approximation. The expression of the cartesian

and spherical tensors are respectively :

Gdip
c

(~r) = K1

∫ θm

0
sin θ cos

3
2 θeik

′z




(1 + cos θ)J0 + (1− cos θ)J2 cos 2ϕ (1− cos θ)J2 sin 2ϕ −2i sin θJ1 cosϕ

(1− cos θ)J2 sin 2ϕ (1 + cos θ)J0 − (1− cos θ)J2 cos 2ϕ −2i sin θJ1 sinϕ

0 0 0


 dθ

(2.42)

Gdip
s

(~r) = K1

∫ θm

0
sin θ cos

3
2 θeik

′z




(1 + cos θ)J0 i
√

2 sin θJ1 −(1− cos θ)J2e
−2iϕ

0 0 0

−(1− cos θ)J2e
2iϕ −i

√
2 sin θJ1 (1 + cos θ)J0


 dθ

(2.43)

Since the argument k′r ff ′ sin θ of the Bessel function is small , the function J0 gives a

much higher contribution and the approximation can be extended further by neglecting

the terms involving J1 and J2. However, by doing so, some features of the PSF are lost

like the ellipticity of the cartesian one. In this case, the propagation tensors are diagonal
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matrices and only the function gd1 is enough to describe the propagation tensor :

Gdip
c

(~r) = K1

∫ θm

0
sin θ cos

3
2 θ(1 + cos θ)J0e

ik′z




1 0 0

0 1 0

0 0 0


 dθ (2.44)

Gdip
s

(~r) = K1

∫ θm

0
sin θ cos

3
2 θ(1 + cos θ)J0e

ik′z




1 0 0

0 0 0

0 0 1


 dθ (2.45)

Furthermore, one could invoke the paraxial approximation to simplify even more the

expression of the dipolar propagation tensor. This approximation is valid when one

uses a low numerical aperture and integrates only upon small values of the collection

angle. The integrals then turn out to be analytical. Using the following integral, one

can calculate the paraxial propagation tensors :

∫ Xm

0
Xn+1Jn(X)dX = Xn+1

m Jn+1(Xm) (2.46)

Gdip
c

(~r) = 2Keik
′zθ2

m

J1(k
′rf
f ′ θm)

k′r ff ′ θm




1 0 0

0 1 0

0 0 0


 (2.47)

Some authors propose that the paraxial approximation is valid even for high numerical

apertures when comparing numerical results. However, we believe it is not the case and,

when the correct expression of the propagation tensor is used, it leads to non-negligible

discrepancies as can be observed in the figure 2.6. The reason of the difference is the

following : when using the paraxial approximation one usually apply it also on the

boundaries of the angular spectrum integral and so NA = nθm. Then, if one integrates

up to NA/n even using the non approximated integrand, the integration is not carried

over the whole angle of collection and the rays far from the paraxial approximation are

just discarded. The paraxial approximation result gives almost the same result because

the paraxial rays are not used also in the ”exact” expression. Finally, one has to carefully

express the boundaries of the integral in order to take in account all the rays.

The evolution of the relative error of the full width at half maximum (FWHM) of the

approximated paraxial PSF is represented as a function of the numerical aperture in

figure 2.8. One can observe that the error increases drastically as the numerical aperture

increases. Thus, with the standard parameters used in this section, the relative error is

14% at NA = 1.1 and 28% at NA = 1.4. In fact, as NA will be closer and closer from its
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Figure 2.6: The exact function gd1(r, z = 0) is plotted in red and compared to the
approximated functions. Comparisons between the exact function (red), the correctly
approximated function using the paraxial approximation (blue) and the approximated
one from Enderlein’s paper [52] (green) are displayed for different values of the numerical
aperture . As one can see, the paraxial approximation is valid for small NA but some
discrepancies appear for bigger NA as expected. As NA increases, the discrepancies

between the function from reference [52] and the exact one become larger.
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Figure 2.7: The exact function gd2(r, z = 0) is plotted in red and compared to the
approximated functions as in figure 2.6.

maximum value n′, the error will be larger and larger. Then, the paraxial approximation

can not be used when one wants to use high NA objectives.
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Figure 2.8: Relative error made on the FWHM when one uses the paraxial approx-
imation instead of the exact function. The relative error is about 28% for objectives
having a numerical aperture of 1.4 which is almost the theoretical maximum in oil

immersion objective.

2.3 First higher multipolar orders

In this section, the quadrupolar and octupolar electric propagation tensor will be cal-

culated following the notation and method of the previous section. For higher order

multipoles, the cartesian basis becomes very inconvenient since one has to deal with

higher rank tensors containing a lot of redundant information. The irreducible form of

the multipoles are then used and are written JJMe where M can take value from −J to J .

The image electric field can be described in a cartesian or an irreducible basis since those

2 basis are equivalent through an unitary transformation Mcart←irr when J = 1. The

choice has been to use the irreducible basis because it leads to more compact expressions.

2.3.1 Quadrupole

The result of the calculation of the quadrupolar PSFs is given directly in equation 2.48.

The quadrupolar PSF is obtained by inserting Ψ2M
e in equation 2.23. The definition of

the function gqi can be found in appendix C.

Gquad
s

=

K2




−gq1(r, z)eiϕ −igq4(r, z)
√

6gq7(r, z)e−iϕ igq5(r, z)e−2iϕ −gq2(r, z)e−3iϕ

i
√

2gq3(r, z)e2iϕ −
√

2gq6(r, z)eiϕ i
√

3gq8(r, z)
√

2gq6(r, z)e−iϕ i
√

2gq3(r, z)e−2iϕ

−gq2(r, z)e3iϕ igq5(r, z)e2iϕ −
√

6gq7(r, z)eiϕ −igq4(r, z) gq1(r, z)e−iϕ




(2.48)

Where the coefficient K2 = −iK1. In general, the coefficient corresponding to the mul-

tipole of order J will be KJ = −(−i)J+1K1 due to the factor (−i)J+1 in the asymptotic
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limit of h
(1)
J . The intensity in the image plane from unit quadrupoles are displayed in

figure 2.10. As one can see, the appearance of the density plots is qualitatively the same

as the one for the dipolar PSF. This comes from the fact that all those functions are

rotationally invariant around z up to a phase factor due to the choice of an irreducible

basis function. Moreover, the radial functions appearing in the expression are integral

of Bessel function Jn that have all the same qualitative behavior except J0. Then, those

density maps offer incomplete informations about the multipole being measured. How-

ever, one can instead consider cartesian components of the quadrupolar current density

as displayed in figure 2.9 since they do have different qualitative behavior. Using carte-

sian components, the quadrupole is now a traceless symmetric matrix which components

are obtaining from linear combinations of the irreducible ones :

Qxy ∝ Q2 −Q−2 (2.49)

Qxz ∝ Q1 −Q−1 (2.50)

Qyz ∝ Q1 +Q−1 (2.51)

Qxx ∝
√

3

2
(Q2 +Q−2)−Q0 (2.52)

Qyy ∝ −
√

3

2
(Q2 +Q−2)−Q0 (2.53)

Qzz ∝ 2Q0 (2.54)

Where we haven’t stated the proportionality coefficient since it differs from convention

to another [21, 34]. The two components Qxx and Qyy look similar because Qzz is small

compared to them in our standard configuration.

One can also rely on other techniques such as defocus imaging that increases the degree

of informations achievable or use quantitative measurements of the radial functions if

the experiment offers this precision. The first option is much more feasible. Once again,

using the fact that f ′ � f , one can simplify the expression of the tensor greatly :

Gquad
s

= K2

∫ θm

0
sin θ cos

3
2 θeik

′z




(Gquad
s )12e

iϕ (Gquad
s )11 (Gquad

s )10e
−iϕ (Gquad

s )1−1e
−2iϕ (Gquad

s )1−2e
−3iϕ

0 0 0 0 0

(Gquad
s )−12e

3iϕ (Gquad
s )−11e

2iϕ (Gquad
s )−10e

iϕ (Gquad
s )−1−1 (Gquad

s )−1−2e
−iϕ


 dθ

(2.55)
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Figure 2.9: Contour plots of the intensity in the image plane of the field radiated by
a cartesian electric quadrupole.

(Gquad
s )12 = −2(1 + cos θ) sin θJ1 = (Gquad

s )−1−2 (2.56)

(Gquad
s )−12 = 2(1− cos θ) sin θJ3 = (Gquad

s )1−2 (2.57)

(Gquad
s )11 = 2i(cos θ + cos 2θ)J0 = −(Gquad

s )−1−1 (2.58)

(Gquad
s )−11 = 2i(cos θ − cos 2θ)J2 = −(Gquad

s )−1−1 (2.59)

(Gquad
s )10 = −

√
6 sin 2θJ1 = (Gquad

s )−10 (2.60)

The paraxial approximation of the quadrupolar spherical propagation tensor is the fol-

lowing :

Gquad
s

= 2K2
ik′z

k′r ff ′




−2θ2
mJ2e

iϕ 2iθmJ1 −
√

6θ2
mJ2e

−iϕ 0 0

0 0 0 0 0

0 0 −
√

6θ2
mJ2e

iϕ −2iθmJ1 −2θ2
mJ2e

−iϕ




(2.61)
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Figure 2.10: Contour plots of the intensity in the image plane of the field radiated by
an irreducible electric quadrupole of components Q±2, Q±1 and Q0 from left to right.

2.3.2 Octupole

This section follows exactly the previous one by dealing with the octupolar order this

time. The field from an unit radiating octupole is obtained from Ψ3M
e and inserted in

equation 2.23.

Goct
s

=



go1e
2iϕ i

2
√

6
go4e

iϕ − 1
4
√

15
go7 − i√

5
go10e

−iϕ 1
4
√

15
go8e

−2iϕ i
2
√

6
go5e

−3iϕ −go2e−4iϕ

−i
√

2g3iϕ
o3

1√
3
go6e

2iϕ − i√
30
go9e

iϕ
√

2
5go11

i√
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(2.62)

The density maps of the intensity from those unit quadrupoles are displayed in figure

2.11 with similar conclusion as the ones discussed in the previous section.
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Figure 2.11: Contour plots of the intensity in the image plane of the field radiated
by an irreducible electric octupole of components O±3, O±2, O±1 and O0 from left to

right.
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2.3.3 Defocus Imaging

In this section, some contour plots of a defocused dipole are provided. Defocus imaging

microscopy allows the retrieval of various informations such as orientation or crystallinity

[59]. In figure 2.12, defocused contour plots of dipolar PSFs are obtained by varying z in
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equation 2.41. The defocus is taken at three values : z = 0 µm (in focus), z = 0.47 µm

and z = 0.95 µm. Those values have to be compared with the density of field of the

objective corresponding to the plots which is about 0.2 µm.

Figure 2.12: Defocused density plot of irreducible dipoles.

If one wants to disentangle the multipolar structure of the system being probed, it is

necessary to be able to distinguish them experimentally. Unfortunately, while some

PSFs are specific to one kind of multipoles, many of them have similar functions in the

image plane and it is difficult to assign to which multipole they belong. Fortunately,

it is possible to use defocus imaging to inspect their z behavior which provides more

informations. As an example, the defocused PSFs of the components Qxy, Qxz and Qxx

of a cartesian quadrupole are displayed in the figure 2.13. The qualitative behavior is

completely different with the one of the dipole and thus, one can easily distinguish them.
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Figure 2.13: Defocused density plot of some components of a cartesian quadrupole.





Chapter 3

Observing multipoles in threefold

gold nanostars through Second

Harmonic Generation

3.1 Basic properties of threefold gold nanostars

The emergence of improved techniques of fabrication paved the way for the design of

smaller objects. Among this family of new systems in nanotechnologies, nanoparticles

have an important role due to their special optical properties. In particular, metallic

nanoparticles have a central role to play since their plasmonic resonances fall in the

visible range and have interesting properties [1, 16]. Plasmons are collective oscillationw

of the free electrons cloud in metallic objects. While a surface plasmon polariton of-

fers fascinating properties at the interface between a metal and a dielectric, metallic

nanoparticles possess the so called Localized Surface Plasmon Resonance (LSPR). The

collective charge motion inside the nanoparticle oscillates in phase with the incoming

electric field and can enhance the electromagnetic field. The LSPR of a nanoparticle

is strongly dependent on its composition, shape, symmetry and local environment. A

large variety of shape has been investigated such as spheres[60, 61], shells[62, 63], rods[6],

prisms[64, 65], stars[66, 67] for example. Adding the ability to put those nanoparticles

in arrays[5, 68, 69] in order to have coupling effects, one can easily see that the number

of possibilities is tremendous.

In figure 3.1, one can see the extinction spectra of two different systems of gold nanopar-

ticles. On the left, spectra of nanostars organized in an hexagonal lattice are displayed.

Those lattices has been made using the e-beam lithography explained in chapter 1 in the

aim to produce efficient surface for SERS. Extinction spectra for lattices with a smaller

65
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Figure 3.1: (Left) Extinction spectra of different lattices of gold nanostars as displayed
in the bottom right of figure 1.7. The size of the circumscribed circle if given over the

curves. (Right) Extinction spectrum of a colloidal solution of nanoprism in water.

gap are provided in appendix D. The spectrum on the right is an extinction spectrum

obtained with a Cary 100 UV-Vis (Agilent) on a colloidal solution of nanoprisms accord-

ing the procedure proposed by Yin [70]. One can observe two peaks in the spectrum,

one at 700 nm and one at 450 nm. Within the frame of Mie theory, resonances corre-

spond to the cancellation of the coefficients aJ/bJ and then one can assign a specific

type of multipole to each resonance. Thus, the first peak is often referred as ”dipo-

lar resonance”, the second one as ”quadrupolar resonance” and so on. However, Mie

theory is applicable only with spheres and resonances in non-spherical systems can not

be assigned in such a straightforward manner. Instead of that, resonances can easily

be associated with irreducible representations of the finite group of the nanoparticle.

For example, in nanostars or nanoprisms, resonances can be assigned to the representa-

tions A1, A2 or E. Those resonant modes will themselves radiate some light that can

be described using the multipolar expansion of electromagnetic fields. Nevertheless, a

resonant mode can radiate various multipolar fields according to the projection of the

irreducible representations of the nanoparticles over representations of SO(3).

A simple phenomenological model to understand the nonlinear response of nanostars has

been constructed based on the assumption that the induced nonlinear dipole sources are

located close to the tips of the star arms. Accordingly, SHG responses are generated from

the nonlinear sources located at a given distance from the center of star. Consequently,

these models take into account the symmetry of the particles as well as their spatial

extension. A parameter describing the coherence of those dipoles radiation which is

strongly dependent on the nanoparticle size is then introduced. The polar SHG responses

as a function of this coherence parameter are then compared with the experimental

results. Finally, in the last section, we develop some physical interpretations of this

model and compare them which what is already well known with the non-linear responses

of molecule. The emphases is put on the description of a non-punctual object like a
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nanoparticle which is of crucial importance to understand its difference with previous

works on multipolar molecules.

3.2 Polarization resolved SHG measurements
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Figure 3.2: (a) Scanning Electron Microscopy (SEM) images of nano-stars particles.
(b) SHG scanning image of an array of nano-stars. The signal scale represents the sum
of the SHG signal over 32 incident polarization angles, in counts/100 µs, pixel size: 60
nm. (c) Geometry used for positioning the nanoparticles in the sample plane (X,Y)
for polarization resolved and efficiency measurements. (d) Emission spectrum from a
single nano-star. Integration time: 1s. (e) Schematic of the polarization resolved SHG

experiment. Figure from [71].

Figure 3.2 outlines the SHG experiment conducted by N. T. Nguyen in her PhD and

modeled in this chapter. The SHG signal of a single nanoparticle depicted in figure 3.2 (a)

is collected using the experiment schematized in figure 3.2 (e). The nanoparticles were

fabricated using the method presented in the first chapter. The signals were collected

by two photodiodes, each one measuring a different polarization components thanks to

a polarizing beam splitter. More details about the experimental procedure followed by

N. T. Nguyen can be found in [71].

3.2.1 Description of the model

A model of polarization resolved response of nanostars is introduced in this section. We

assume that the induced nonlinear dipoles follow roughly the direction of the incident

polarization and are located close to the tip of the star arm. Therefore, three nonlinear

sources that have the following susceptibility tensors β1, β2 and β3 are modeled by po-

sitioning them at a given distance h from the center of particle as in figure 3.3. Each
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second harmonic induced dipole is treated like a point dipole with the hyperpolarizabil-

ity β tensor consisting of 3 independent tensorial components [25, 72, 73]: β↑↑↑, β↑⊥⊥

and β⊥↑⊥ where the symbol ↑ denotes a direction along the arm the star and ⊥ is per-

pendicular to its arm. With both theory and experiment, W. Hübner [74] showed that

the tensorial element β↑↑↑ dominates over the elements β⊥↑⊥ and β↑⊥⊥. Each induced

dipole thus possesses one single tensorial coefficient β↑↑↑ along each arm direction. The

expression of polarization of each induced dipole is written :

~µj↑ = ε0 β↑↑↑ · ( ~E(ω) · ~ej↑) · ( ~Eω · ~ej↑) · ~ej↑ (3.1)

The three induced dipoles positioned in the focal plane, translated by a distance h from

the focal point, emit a radiation that is collected by an imaging system such as the one

described in chapter 2. Only the dipolar PSF needs to be used, the resulting imaged field

is thus the sum of three imaged dipolar fields weighted by the strength of the dipoles

β1, β2 and β3.

Microscope 

Objective
Tube lens

SHG �eld images 

of three dipoles

 
↑↑↑2

β

 
↑↑↑1

β

 
↑↑↑3

β

h

Figure 3.3: The radiation of three SH induced dipoles through the collection objective
of microscope give rise to three SHG field images.

The total SHG signal results from the addition of the three radiations images, which

contains incoherent contributions when the dipoles separation length introduces a loss

of overlap in the SHG diffraction limit spots. A interference parameter c is introduced

in order to weight the importance of the overlap between the dipoles radiations. Then,

the parameter c is defined as a normalized overlap integral of two of the three electric

fields Ei over the photodiode’s surface.

cijp =

∫∫
Eip√
sip

Ejp√
sjp

ds (3.2)

Where p stands for X or Y to describe the detection of the X or the Y components of

the imaged electric field on the photodiode. The normalizing factor sip is the integrated

signal of the corresponding electric field over the photodiode. Since the star is considered

to be perfectly symmetric so far, the coherence parameter is equal for every set of two

dipoles and one obtained cijp = c.
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In order to explicitly obtain an analytical expression for the total signal detected and

the coherence parameter, one needs to use the exact forms of the imaged dipole electric

fields. The imaged field of a radiating dipole through an aplanetic optical objective has

been calculated [51, 52, 58] and we then use those results to complete the model. The

total signal is given by :

stotal = c scoherent + (1− c) sincoherent (3.3)

= c

∫∫ 
∑

j

E
(2ω)
j (r, α)




2

ds+ (1− c)
∫∫ ∑

j

(
E

(2ω)
j (r, α)

)2
ds

The coherence parameter is given as a function of the distance h of the three dipoles to

the center of the star and also depends on the parameters of the optical microscope, the

magnification M and the numerical aperture NA = n sin θm.

c =
4

π

∫ 1

0

sin(
√

3M ah
√

1− v2)√
3M ah

dv (3.4)

With a = kθm
M . The derivation of the coherence parameter and the total detected signal

can be found in the appendix D and its dependence on the translation length h is

represented in Figure 3.4 .
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Figure 3.4: Evolution of the overlap parameter c as a function of the distance h of
translation of the dipole from the center of the star. When h = 0, the 3 dipoles are on
top of each other and then interfere constructively. As h increases, the overlap decreases

and the dipoles start to interfere destructively.

Indeed, the total SHG signal stotal is independent of the polarization of the exciting

field as it has been proven in previous studies [66]. However, the polarization beam

splitter allows us to get the signal projected along X (sx) and Y (sy) axes of the sample

plane. Those contributions to the signal vary strongly as a function of the polarization

of Eω(α), α being defined as the angle between X and Eω. Then, a set of polar plots
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which are a signature of a nanoparticle’s response is obtained for different values of c as

displayed in figure 3.4.

When h is close to 0 as in figure 3.5 (a), the radiation adds up in a fully spatial co-

herent way and the resulting polarization dependence exhibits the characteristic lobes

of threefold symmetry structures in the dipolar approximation. When h increases (see

figures 3.5(b),(c),(d),(e),(f)) the overlap of the SHG images decreases, and spatial phase

delay-like effects appear into the final signal build-up. As a consequence, an opening of

the polarization responses lobes appears. When the SHG images do not overlap any-

more, a complete incoherent addition of the responses occurs, with a loss of sensitivity

to the threefold symmetry of the nanostructure. SHG polarization responses are there-

fore highly informative about both the symmetry of the nanoparticles and their spatial

effects governed by their size.

Figure 3.5: Those polar patterns show the SHG signal onto the photodiodes X and Y
as a function of the polarization angle for various values of c corresponding to different
translations h from the star center. Two lobes polar patterns are typical of a fully inco-
herent signal whereas four lobes polar ones are for fully coherent signals , corresponding

to a threefold symmetry.
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3.2.2 Comparison with experimental results

Experimental SHG polarization responses were recorded for a large quantity of single

nano-stars. The incident polarization was varied continuously in the (X,Y) sample plane

between 0◦ and 180◦ in 32 steps, and the emitted SHG signal was analyzed along the X

and Y directions. The polarimetric SHG responses for each single particle of this array

are then plotted as polar graphs by averaging the sX(α ) and sY (α) signals on an area

of 10×10 pixels around the center of the nanoparticle. The polarization responses show

deviations from particle to particle. About half of the whole investigated population ex-

hibits a pure four lobe of polarization dependence for both sX(α) and sY (α), while the

rest of the population exhibit just two lobe polar shape. The SEM images correspond-

ing to the measured particles show that the polarization response is strongly sensitive

to the particle shape deviation. A careful check of the SEM images of recorded particles

before and after SHG measurement show that shape deviations occur only during the

fabrication processes. When a particle has lost its threefold symmetry even with a slight

deviation, its polarization response exhibits a shape with two lobes.

Then, the model developed in the previous section is not sufficient to describe fully

the imperfect nanostars and two others models have been constructed to take this into

account. We finally use three models summarized in figure 3.5 to fit the experimental

data :

• Model 1 (developed in section 3.1) : Ideal star with three dipoles of same strength

β at 2π
3 from each other and translated by h from the center ;

• Model 2 : An ideal star of model with a dipole added in the center. This dipole

has a strength β0 and an orientation γ ;

• Model 3 : With inequivalent dipoles of strengths β1, β2 and β3 with angles ν1 and

ν2 between the dipoles.

Moreover, an angle ϕ has been also included to describe an overall rotation by ϕ of the

object in the (X,Y) plane. Fitting results show that there is a good agreement between

the model 3 and the experimental data.

The fitting parameters also show that for polar plots exhibiting a pure four lobe shape,

the corresponding nanostars’ shapes are closer to a threefold symmetry (allowing slight

angular deviation), give results in agreement with the SEM images (figure 3.6). The

threefold symmetry of the nonlinear induced dipoles arrangement is seen to be slightly



Chapter 3. Observing multipoles in threefold gold nanostars 72

φ

β

h

x

y
β

h

x

y

γβ0

β1

h

x

y

β3

β2

ν1

ν2

(a) (b) (c)

φ φ

Figure 3.6: Schematic of the three models to fit the data. (a) Three dipoles of strength
β located at a distance h from the center and separated by 2π

3 . (b) Same as (a) plus one
dipole in the center of strength β0 and angle γ. (c) Three dipoles of different strengths

β1, β2 and β3 and arbitrary angles ν1 and ν2.

modified for nanoparticles deviating from a perfect shape. In figure 3.7 (b), the nanostar

has lost its three fold symmetry since one arm is visibly larger than the two other ones.
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Figure 3.7: Fitting results obtained on the data of two typical nanostars. The fitting
parameter can be obtained in table 3.2. (a) Star having an almost perfect threefold
symmetry. The corresponding polar plots exhibit a characteristic four lobes shape. (b)
Deformed nanostar. The model 1 that describes a perfect nanostar can not fit properly

a polar response with a strong dipolar behavior.
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Figure 3.8: Fitting results on the data of two typical triangles, a perfect one (a) and
a deformed one (b).

3.3 Multipolar interpretation of the data

The experimental results obtained on nanostars and nanotriangles are properly fitted

using the model of the previous section. This model has permitted us to understand

the high sensitivity of the response to the shape of the nanoparticle. This possibility

to tune the polar response of the nonlinear emitter because of its shape is something

new compared to the previous works on octupolar molecules and offer new engineering

possibilities. For example, the insensitivity of the polar response is strongly due to the

symmetry of the object. This is a non trivial property which depends on the nonlinear

order of the interaction with the nanoparticle.

However, even if this model respects the symmetry of the nanoparticle, it does not

highlight the influence of the symmetry group of the object. The nanoparticle is not

treated as a whole but as a collection of dipoles. Moreover, it is possible to describe

in principle any kind of shape by choosing an appropriate set of dipoles distribution

but this choice would not make the physical interpretation much clearer. It is then

interesting to treat the object as a whole with an unique response tensor which would

include the element of symmetry of the nanoparticle.
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For punctual objects, the expansion of the hyperpolarizability in its irreducible parts[34]

has shown that the high nonlinear efficiency of those molecules was due to an impor-

tant octupolar part of the tensor. Although multipolar elements of the tensor play an

important role in the nonlinear response, the radiation of those molecules is still purely

dipolar. However, a nanoparticle is an extended object and the richness of its physics

is due to its spatial extension and shape. Then, one can not just simply use a local

irreducible formalism to describe the nonlinear response. It can be shown that, as the

size of the nanoparticle increase, higher multipolar radiations appear. To quantify those

radiations, the radiated electric field is projected over the basis of the electric and mag-

netic vector spherical harmonics [21] defined in chapter 1 and that we recall here for

convenience :

ΨJM
m (r, θ, ϕ) =

1√
J(J + 1)

jJ(kr)LYJM (θ, ϕ) (3.5)

ΨJM
e (r, θ, ϕ) =

i

k
∇∧ΨJM

m (r, θ, ϕ) (3.6)

Where YJM is the scalar spherical harmonics, L = 1
i (~r ∧ ∇) is the orbital angular

momentum operator and jJ is the spherical Bessel function.

In this study, the multipolar coefficients are obtained by a direct projection of the current

distribution in the following way :

JJMi (c) =

∫
J(c, r) ·ΨJM

i dV (3.7)

Where i refers to m or e and J(c, r) is the current distribution generated by the three

punctual dipoles according to the model of section 2. In this section, we do not use the

whole apparatus of the multipolar PSF but it will be done in chapter 6 when we will

be equipped with a more complete formalism. We recall that the norm of an irreducible

tensor T J is defined as [31]
∑

M (−1)MT JMT J−M . Then, the norm of the coefficients

over a whole subspace is calculated and normalized in order the measure the relative

multipolar contributions.

JJ(c) =

∑
iM (−1)MJJMi (c)JJ−Mi (c)∑
JiM (−1)MJJMi (c)JJ−Mi (c)

(3.8)

The table 3.1 shows that, as the size of the nanoparticle increases the radiation has to

be described using more and more multipolar orders. Indeed, when the particle has no

spatial extension (h = 0) only a dipolar radiation is emitted as it is observed in the

molecular case. Moreover, for the nanoparticle’s size considered, only three orders of

the multipolar expansion are necessary since the J = 4-pole does not appear for small
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Multipolar orders JJ(c) Dipole Quadrupole Octupole (J = 4)-pole

c = 1 (h = 0) 1 0 0 0

c = 0.8 (h = 50nm) 0.81 0.18 0.01 0.

c = 0.6 (h = 70nm) 0.66 0.30 0.04 0.

c = 0.4 (h = 89nm) 0.52 0.40 0.08 0.

c = 0.2 (h = 108nm) 0.39 0.47 0.14 0.01

Table 3.1: Relative weights of the different multipole order for different values of the
nanostar size.

nanoparticles. Then, nanoparticles with an high nonlinear efficiency are also the one

that display a more complicated radiation including dipolar, quadrupolar and octupolar

radiations.

The results in table 3.1 are obtained for the perfect star model. More extensive multi-

polar projection are done in table 3.2 for the different models involved using the fitting

results from figure 3.7 and 3.8. The model 1 which consider 3 equivalents dipoles sepa-

rated by 2π
3 has been useful to describe an ideal star but does not provide excellent fits

on the real nanostar. It comes from the deformation of the nanostar and then, model 2

and model 3 has been proposed to improve it. Model 2 adds a dipole at the center of the

object while model 3 allows the dipoles to be oriented freely. Model 3 is the one giving

the best fit and then the polar responses are more sensitive to deviation in the orienta-

tion of the dipoles. For the model 2 and 3, the multipolar distributions are dependent

on the angle φ of the incoming field polarization. Then, we calculate this multipolar

distribution for two angles, the one with the maximum of dipole denoted (dip) and the

one with the maximum of quadrupole denoted (quad). One can observe that the star

1 possesses a much more important quadrupolar part than the star 2, especially using

model 3. Then, the strong efficiency observed in the ”good” stars seems to be related

to their quadrupolar emission. On the other side, the multipolar distribution of triangle

is quite robust to shape deformation although they don’t have a great SHG efficiency.
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Part II

Development of a fully irreducible

formalism
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Chapter 4

A fully irreducible formalism for

non-local objects

4.1 Motivation

In this chapter, a formalism which links directly the irreducible components of the

incoming and outgoing fields will be developed. The irreducible response tensor con-

structed there is of completely different nature than the one presented in the previous

parts. Those tensors were still belonging to the geometrical space related to cartesian

tensors by an unitary transformation and then a reduction. Thus, the fields were just

locally irreducible through the change of basis 1.35 but not globally. This is solved by

using the multipolar fields introduced in the previous section and then the irreducible

response tensor lies in a infinitely dimensional vector space spawned by the vector spher-

ical harmonics (or one of their linear combination). Fortunately, in the case of metallic

nanoparticles whose sizes are a bit smaller than the excitation wavelength, the multi-

polar expansion converges quickly and only up to the octupolar rank of the irreducible

response tensor is needed.

However, it is important to emphasize that the situation discussed here describes a

single nanoparticle without a high confinement of the electromagnetic fields. If such

confinement were to be described, one may expect the multipolar expansion to converge

slower. One the other hand, adding the diverging multipolar fields to the basis of the

current density may help the description of such fields with more physical insights.

79
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Nanoparticle response tensor
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Figure 4.1: In this chapter, we focus on the construction of a fully irreducible response
tensor that will represent how the nanoparticle connect incoming fields to radiating

current density..

4.2 Derivation of the formalism

Is this section, the existence of such an irreducible response tensor is proven in two man-

ners. The first way proceeds by identification and is quite naive but rather straightfor-

ward. The second way, which leads to much more interesting properties will necessitate

to introduce more advanced mathematical tools, the bipolar vector spherical harmonics.

We will then easily derive some properties of that object according to different objects.

Finally, we will show how we can expand some basic beams at the vicinity of a particle

in vector multipolar fields.

4.2.1 First derivation

We start from the common linear non-local response and get rid of the time dependence

assuming harmonically varying fields for a while. In case of linear optics,it means that

all the basis function will be used at a fixed wavenumber k. Thus, in this section the

dependence on the wavenumber is considered implicit and will be most of the time

omitted. The coefficients of the current density will be noted JJMl instead of J lJMk .
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Then, the linear current density is obtained from the incoming electric field by the

following relationship :

~J =

∫
R(r − r′) · ~Einc(r

′)d3r′ (4.1)

Where R is the cartesian response tensor. In this equation, we expand the electric field

into vector multipole fields. We use the regular ones since the electric field does not

diverge in the vicinity of the nanoparticle. One is then left with :

~J =
∑

l′J ′M ′

EJ
′M ′

l′

∫
jl′(kr

′)R(r − r′) · ~Y J ′M ′
l′ (r′)d3r′ (4.2)

Now, using the definition of the vector spherical harmonics and writing the matrix

product term by term, one is lead to the following expression :

~J =
∑

l′J ′M ′

∑

µσ

EJ
′M ′

l′

∫
jl′(kr

′)Rσµ(r − r′)[Y J ′M ′
l′ (r′)]µ~eσd

3r′ (4.3)

One can now use the definition of the projection onto vector multipole fields to get the

l′J ′M ′ components of the current density.

JJMl =
∑

l′J ′M ′

EJ
′M ′

l′

∑

µσ

∫∫
Rσµ(r − r′)[ΨJ ′M ′

l′ (r′)]µeσ •ΨJM
l (r)d3rd3r′ (4.4)

JJMl =
∑

l′J ′M ′

EJ
′M ′

l′

∑

µσ

∫∫
Rσµ(r − r′)[ΨJ ′M ′

l′ (r′)]µ[ΨJM
l (r)]σd3rd3r′ (4.5)

This can finally be summarized by introducing a response tensor R which relates com-

ponents of the current density and incoming electric field.

JJMl =
∑

l′J ′M ′

Rl
′J ′M ′
lJM EJ

′M ′
l′ (4.6)

Rl
′J ′M ′
lJM =

∑

µσ

∫∫
Rσµ(r − r′)[ΨJ ′M ′

l′ (r′)]µ[ΨJM
l (r)]σd3rd3r′ (4.7)

Writing out explicitly the frequency dependence of the response tensor, one would get :

J lJMk =
∑

l′J ′M ′

Rl
′J ′M ′
lJM (k)El

′J ′M ′
k (4.8)
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Rl
′J ′M ′
lJM (k) =

∑

µσ

∫∫
Rσµ(r − r′)[ΨJ ′M ′

l′ (k, r′)]µ[ΨJM
l (k, r)]σd3rd3r′ (4.9)

The response tensor links multipolar components with the same wavenumber together.

Explicitly writing out the wavenumber dependence will become necessary when dealing

with nonlinear optics because different wavenumbers get mixed in this case.

The equation 4.6 is very important since it shows that a formalism expressed only in

terms of multipolar coefficients is possible and can be linked with the usual cartesian

description. Then, one can start with the multipolar coefficients of the electric field and

get those of the current. The tensor R has as uncommon nature : it relates elements

of two infinite dimensional vector spaces, both being vector spaces of vector multipole

fields. Moreover, the basis vectors inside the vector multipole space are vector fields

rather than collections of three numbers... An infinite dimensional vector space of vector

fields is very appealing despite its complexity. Its strength relies on its ability to describe

extended objects with a limited number of elements and without integrating the local

fields over the nanoparticle.

Another interest in describing the light matter interaction with the equation 4.6 is the

possibility to easily include the symmetry properties of the nanoparticle. We will show

later that symmetries reduce the number of non-vanishing components and that rotations

and translations of the nanoparticle are easy to work out.

However, this first proof of existence of such a tensor does not provide a clear interpre-

tation of the nature of the tensor R. The coefficients of E and J live in the vector space

spanned respectively by ΨJ ′M ′
l′ (r′) and ΨJM

l (r) but we need to know in which vector

space the Rl
′J ′M ′
lJM are.

4.2.2 Second derivation

In this section, we offer another derivation which will lead to the same expression relating

the multipolar coefficients of the incoming electric field and the current density. However,

this one will make obvious the nature of this tensor which relates different vector spaces

and how it can be reduced. Intuitively, one could assume that the basis of the tensor

R is obtained by the direct product of the vector multipole fields. This can formally be

written :

R =
∑

l1J1M1

∑

l2J2M2

Rl2J2M2
l1J1M1

ΨJ1M1
l1

⊗ΨJ2M2
l2

(4.10)
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For the formalism developed by J. Zyss and S. Brasselet, we know that we can express

the current density vector on the spherical basis.

J =
∑

σ

Jσeσ (4.11)

Where Jσ is calculated from a fully contracted product with the electric field and a

reading tensor.

Jσ =

∫
R(r, r1) •

(
E ⊗ eσ

)
d3r1 (4.12)

We can now expand the electric field in vector multipole fields and also project the

current density onto them.

JJ2M2
l2

=
∑

σ

∫
Jσ(r2)eσ •ΨJ2M2

l2
(r2)d3r2

=
∑

l1J1M1

EJ1M1
l1

∑

σ

∫ (∫
R(r2, r1) •

(
ΨJ1M1
l1

(r1)⊗ eσ
)[

ΨJ2M2
l2

(r2)
]σ
d3r1

)
d3r2

=
∑

l1J1M1

EJ1M1
l1

∫ (∫
R(r2, r1) •

(
ΨJ1M1
l1

(r1)⊗
(∑

σ

[
ΨJ2M2
l2

(r2)
]σ
eσ
))
d3r1

)
d3r2

=
∑

l1J1M1

EJ1M1
l1

∫ (∫
R(r2, r1) •

(
ΨJ1M1
l1

(r1)⊗ΨJ2M2
l2

(r2)
)
d3r1

)
d3r2

(4.13)

We see from the last equation that the coefficients JJ2M2
l2

are obtained after a full con-

traction with the object ΨJ1M1
l1

(r1)⊗ΨJ2M2
l2

(r2) and an integration over all space. This

operation really looks like a scalar product and suggest we can also develop R(r2, r1)

over the basis ΨJ1M1
l1

(r1)⊗ΨJ2M2
l2

(r2). Expanding scalar functions of two angular direc-

tions is already a well-known problem that can be tackled using the bipolar spherical

harmonics, which are defined in the following way :

{
Yl1(θ1, ϕ1)⊗ Yl2(θ2, ϕ2)

}LM
=
∑

m1m2

CLMl1m1l2m2
Yl1m1(θ1, ϕ1)Yl2m2(θ2, ϕ2) (4.14)

The Clebsch-Gordan coefficients appear in the definition since the tensor product Yl1m1(θ1, ϕ1)⊗
Yl2m2(θ2, ϕ2)1 is generally reducible. Then, an irreducible basis of bipolar spherical har-

monics needs to be defined using the irreducible tensor product. The bipolar spherical

1Also written as Yl1m1(θ1, ϕ1)Yl2m2(θ2, ϕ2) for shortness.
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harmonics form an irreducible orthonormal basis according to the following orthogonal-

ity relation :

∫∫ {
Yl1(Ω1)⊗Yl2(Ω2)

}LM{
Yl′1(Ω1)⊗Yl′2(Ω2)

}L′M ′
dΩ1dΩ2 = δl1l′1δl2l′2δLL′δMM ′ (4.15)

In our problem, we want to describe a tensor function R(r2, r1) and not a scalar one

anymore. In the equation 4.13, we see that the tensor R(r2, r1) is contracted with

the object ΨJ1M1
l1

(r1) ⊗ ΨJ2M2
l2

(r2) and we can then deduce they are of same nature.

Moreover, we know from classical tensor analysis that a tensor of rank 2 can be defined

in the space constructed by the direct product of the underlining vector space and itself

(or its dual). We can then define the bipolar vector spherical harmonics as an extension

of the bipolar spherical harmonics to the vectorial case. Thus, we have the following

definition :

{
Y J1
l1

(Ω1)⊗ Y J2
l2

(Ω2)
}JM

=
∑

M1M2

CLMJ1M1J2M2
Y J1M1
l1

(Ω1)Y J2M2
l2

(Ω1) (4.16)

Where Ω1 is the couple of angles (θ1, ϕ1). We are now going to prove the orthogonal-

ity of the vector bipolar spherical harmonics. We start by recalling the orthogonality

relationship of the vector spherical harmonics :

∫
Y J ′M ′
l′ (Ω) • Y JM

l (Ω)dΩ = δll′δJJ ′δMM ′ (4.17)

To prove the orthogonality of the vector bipolar spherical harmonics, we just need to

take their scalar product and insert their definition in the following way :

∫∫ {
Y J1
l1

(Ω1)⊗ Y J2
l2

(Ω2)
}
JM
•
{
Y
J ′1
l′1

(Ω1)⊗ Y J ′2
l′2

(Ω2)
}
J ′M ′

dΩ1dΩ2

=
∑

M1M2,M ′1M
′
2

CJMJ1M1J2M2
CJ
′M ′

J ′1M
′
1J
′
2M
′
2

∫
Y J1M1
l1

(Ω1) • Y J2M2
l2

(Ω1)dΩ1×

∫
Y
J ′1M

′
1

l′1
(Ω2) • Y J ′2M

′
2

l′2
(Ω2)dΩ2 (4.18)

= δl1l′1δl2l′2δJ1J ′1δJ2J ′2

∑

M1M2

CJMJ1M1J2M2
CJ
′M ′

J1M1J2M2
(4.19)

= δl1l′1δl2l′2δJ1J ′1δJ2J ′2δJJ ′δMM ′ (4.20)

We see that the vector bipolar spherical harmonics form an orthogonal basis for the

response tensor R. We stop here in our presentation of the bipolar vector spherical
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harmonics and go back to equation 4.13. We expand the response tensor as direct

products of vector spherical harmonics.

R(k1; k2) =
∑

l1l1J1l2J2M2

Rl2J2M2
l1J1M1

ΨJ1M1
l1

(k1, r1)⊗ΨJ2M2
l2

(k2, r2) (4.21)

The wavenumber dependence has been kept general in this case. In the case of linear

optics k1 = k2 = k and one is left with the previous expression R(k) or simply R where

k is implied.

However, in the previous equation, the tensor R is not expanded on a irreducible basis

which is a loss for our theory that we want to be completely irreducible. Then, one

can reduce the basis using the orthogonality of the Clebsch-Gordan coefficients. This

reduction is exactly the same as the one used to reduce Ylm ⊗ eσ in vector spherical

harmonics and we thus only give the result here :

Y J1M1
l1

(Ω1)⊗ Y J2M2
l2

(Ω2) =
∑

JM

CJMJ1M1J2M2

{
Y J1
l1

(Ω1)⊗ Y J2
l2

(Ω2)
}
JM

(4.22)

The response tensor can then be expanded in vector bipolar spherical harmonics in the

following way :

R =
∑

JM

∑

l1l2J1J2

RJMl1l2J1J2

{
ΨJ1
l1

(r1)⊗ΨJ2
l2

(r2)
}
JM

(4.23)

RJMl1l2J1J2 =
∑

M1M2

CJMJ1M1J1M2
Rl2J2M2
l1J1M1

(4.24)

We can finally prove in a very straightforward way the equation 4.6 we obtained in the

first derivation. In the equation 4.13, we insert the expansion of the response tensor in

direct product of vector spherical harmonics and simply use the orthogonality properties.
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JJ2M2
l2

=
∑

l1J1M1

EJ1M1
l1

∫ (∫
R(r2, r1) •

(
ΨJ1M1
l1

(r1)⊗ΨJ2M2
l2

(r2)
)
d3r1

)
d3r2

=
∑

l1J1M1

∑

l′2J
′
2M
′
2

l′1J
′
1M
′
1

R
l′2J
′
2M
′
2

l′1J
′
1M
′
1
EJ1M1
l1

∫∫ (
Ψ
J ′1M

′
1

l′1
(r1)⊗Ψ

J ′2M
′
2

l′2
(r2)

)
•

(
ΨJ1M1
l1

(r1)⊗ΨJ2M2
l2

(r2)
)
d3r1d

3r2

=
∑

l1J1M1

∑

l′2J
′
2M
′
2

l′1J
′
1M
′
1

R
l′2J
′
2M
′
2

l′1J
′
1M
′
1
EJ1M1
l1

δ(l1J1M1),(l′1J
′
1M
′
1)δ(l2J2M2),(l′2J

′
2M
′
2)

=
∑

l1J1M1

Rl2J2M2
l1J1M1

EJ1M1
l1

(4.25)

A factor π
2k2
δk(0) has been simplified because of the orthogonality of the Bessel function

recalled here :

∫ +∞

0
jn(kr)jn(k′r)r2dr =

π

2k2
δ(k − k′) (4.26)

To make the equation more compact and corresponding with the result of the previous

section, we can include those constant number in the definition of the response tensor

and we are then left with the following simple result :

JJ2M2
l2

=
∑

l1J1M1

Rl2J2M2
l1J1M1

EJ1M1
l1

(4.27)

In those two sections, we have shown that we can define a response tensor relating the

multipolar coefficients of the incoming electric field and the radiating current density.

This tensor allows to describe an extended response and deals with the complete fields

without carrying out an integral over all space. The infinite number of elements in that

sum is not a big problem since we will want to describe the response tensors of nanopar-

ticles. Their size is not negligible compared to the exciting wavelength and then the

multipolar expansion is not reduced to its first dipolar order but those nanoparticles

are still smaller than the wavelength. Thus, we know that only the first few coefficients

of J will be non-negligible. As an illustration, according to the model of the previous

chapter, we have hints which show that for a nanoparticle of 150 nm illuminated with

a light at 800 nm (SHG at 400 nm), only the first 3 terms alone will be sufficient to

describe the second order response. Moreover, a small number of coefficient EJ1M1
l1

are

needed to model with a good precision the field at the vicinity of the nanoparticle. This
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aspect will be developed further in the next section.

Before dealing with the multipolar expansion of common exciting electric fields, we will

first derive some simple properties of the irreducible response tensor under rotation and

translation, define a relationship relating multipolar coefficient using that irreducible

response tensor and extend the theory to describe non-linear responses.

4.2.3 Nonlinear response tensor

So far, we have only been concerned with the linear response of a nanoparticle. We now

want to extend the formalism to describe non-linear responses. In the previous sections,

we have not included the frequency dependence of the response tensor but it is trivially

deduced from the k dependence of the tensor by the dispersion relationship. However, in

the case of a non-linear response, we have to explicitly write the frequency and allow the

response tensor to mix the frequencies of the incoming electric fields as commonly seen

in in non-linear optics. This extension is quite straightforward since it just implies that

the coefficients of the response tensor and of the electric become frequency dependent.

In the case of a linear response, we simply get :

J
(1)JM
l (ω) =

∑

l1J1M1

R
(1)lJM
l1J1M1

(ω) EJ1M1
l1

(ω) (4.28)

The exponent (1) stands for the first order of the non-linear expansion (i.e. the linear

response) following the usage in the spectroscopy field. Then, the second order non-linear

current would be given by the following expression :

J
(2)JM
l (ω) =

∑

l1J1M1l2J2M2

R
(2)lJM
l1J1M1l2J2M2

(ω;ω1, ω2) E J1M1
1 l1

(ω1)E J2M2
2 l2

(ω2) (4.29)

A generalization of this equation to the nth order is also straightforward to obtain :

J
(n)JM
l (ω) =

∑

l1J1M1···lnJnMn

R
(n)lJM
l1J1M1···lnJnMn

(ω;ω1, · · · , ωn) E J1M1
1 l1

(ω1) · · ·E JnMn
n ln

(ωn)

(4.30)

The nth order non-linear response tensor is then expanded over the basis spanned by

the direct product of n+ 1 vector spherical fields ΨJ1M1
l1

(k1, r1)⊗ · · · ⊗ΨJnMn
ln

(kn, rn)⊗
ΨJM
l (k, r) that will also be written

⊗
n

ΨJnMn
ln

(kn, rn) for compactness. It is clear that
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this n+ 1 dimensional basis can be reduced in the same way as the two-dimensional one

we got when we were describing a linear response.

4.2.4 Fully reduced tensor

The response tensor of the previous sections is linking two irreducible basis. However,

the response tensor itself is not fully reduced since it does not transform by rotation

according to the Wigner D matrices. In this section, we show how this tensor can be

reduced in the case of a second-order nonlinear optical process, the Second Harmonic

Generation (SHG), that will be used later.

The squared exciting field will then be reduced and written as a reading field, following J.

Zyss semantics [35]. In this formalism, the component of the irreducible current being

read is calculated from the fully contracted product of the response tensor and the

reading field in a natural way J (2) = R(2) •F . The nonlinear response tensor expansion

becomes :

R(2) =
∑

i1J1i2J2iJM

R
(2) J ′M ′

i1J1i2J2(J12)iJM (2k; k, k)Ψ(3) J ′M ′

i1J1i2J2(J12)iJM
(2k; k, k) (4.31)

Where Ψ(3) is a tripolar vector spherical harmonic defined by :

Ψ(3) J ′M ′

i1J1i2J2(J12)iJM
(2k; k, k) =

{{
ΨJ1
i1

(k)⊗ΨJ2
i2

(k)
}J12 ⊗ΨJM

i (2k)
}J ′M ′

(4.32)

The notation here has a small subtlety : the reading component ΨJM
i should in fact not

depend on M according to the definition of the irreducible tensor product. Indeed, a

sum over M is contained in the definition of the tensor product but, in order to read only

one component corresponding to the desired multipolar current coefficient, we consider

the vector of multipolar tensor fields with a component equal to one for ΨJM
i and zero

for the others. We will also omit J12 in the following notation since it is not necessary

in this problem. In practice, the fact that many coefficients are zero naturally forbid

multiple paths of couplings.

Symmetry constraints can be applied in a straightforward manner on the fully irreducible

tensor in a similar way as the one presented at the end of chapter 1 on the polarizability

α. Moreover, each component of the tensor is clearly associated to an element of the

symmetry group. For example, it is possible to infer which components will disappear

or appear if the shape of the nanoparticle is modified or which one should be small if

they belong to small defects, like rugosity.
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4.3 Basic developments

4.3.1 Rotation of the nanoparticle

From now, we will call the response tensor, the response tensor expanded on the reducible

basis ΨJ1M1
l1

(r1) ⊗ ΨJ2M2
l2

(r2) with coefficients Rl2J2M2
l1J1M1

and will we use the name irre-

ducible response tensor for the one expanded on the bipolar vector spherical harmonics

with coefficients RJMl1l2J1J2 .

Rotating the nanoparticle has a very simple effect on the irreducible response tensor

because it is by definition an irreducible tensor ! This effect is calculated using the usual

Wigner DJ matrices parametrized by the Euler angles Ω = (θ, ϕ,Ψ) in the following

way :

RΩ

[
RJM

′
l1l2J1J2

]
=
∑

M

DJ
MM ′(Ω) RJMl1l2J1J2 (4.33)

The rotation of the reducible response tensor is a bit more complicated. Since this tensor

is not irreducible, one can not just use the Wigner matrices to perform the rotation. In

order to do this operation, we can proceed in two steps : we first rotate the incoming

electric field to make it incident at the angle we want on the object, then we rotate

the current in the opposite direction to put everything back in the original frame of

coordinate.

We can expand both fields in their multipolar coefficients and using the Wigner D

matrices to operate their rotation.

JJMl =
∑

l′J ′M ′

∑

M2

RlJMl′J ′M ′ D
(J ′)
M2M ′

(Ω) EJ
′M2

l′ (4.34)

∑

M1

D
(J)∗
MM1

(Ω)JJM1
l =

∑

l′J ′M ′

∑

M2

RlJMl′J ′M ′ D
(J ′)
M2M ′

(Ω) EJ
′M2

l′ (4.35)

JJMl =
∑

l′J ′M ′

∑

M1M2

(
D

(J)
M1M

(Ω) RlJM1
l′J ′M2

D
(J ′)
M2M ′

(Ω)
)
EJ
′M ′

l′ (4.36)

We have renamed the dummy indices to make the equation clearer. From the last

equation, we see how the reducible response tensor will transform under rotation :

RΩ

(
RlJMl′J ′M ′

)
=
∑

M1M2

D
(J)
M1M

(Ω) RlJM1
l′J ′M2

D
(J ′)
M2M ′

(Ω) (4.37)
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4.3.2 Translation of the nanoparticle

We now turn our attention to the translation transformation. In the equation 4.1, a

translation of the object will result in an additional translation vector r̃. The response

tensor G(r − r′) defined on the cartesian basis is thus now replaced by G(r − r′ − r̃).

J(r) =

∫
G(r − r′ − r̃) E(r′)d3r′ =

∫
G(r − r′) E(r′ − r̃)d3r′ (4.38)

The coefficients of the reducible response tensor defined in equation 4.7 are almost the

same, only the arguments of the vector spherical harmonics belonging to the electric

field are translated by r̃ :

Rl
′J ′M ′
lJM =

∑

µσ

∫∫
Gσµ(r − r′)[ΨJ ′M ′

l′ (r′ − r̃)]µ[ΨJM
l (r)]σd3rd3r′ (4.39)

One can use the translation theorem of vector spherical harmonics defined in chapter 5

which we recall here :

ΨJ ′M ′
l′ (r′ − r̃) =

∑

l′′J ′′M ′′

Tl′′J ′′M ′′,l′J ′M ′(r̃)Ψ
J ′′M ′′
l′′ (r′) (4.40)

Inserting this equation in the previous one, one can see that the reducible response

tensor follows the rule of translation of vector multipole fields :

Tr̃

[
RlJMl′J ′M ′

]
=

∑

l′′J ′′M ′′

Tl′′J ′′M ′′,l′J ′M ′ R
lJM
l′′J ′′M ′′ (4.41)

The translation behavior of the irreducible response tensor is obtained easily using the

relationship linking it to the reducible one :

Tr̃

[
RJMl1l2J1J2

]
=
∑

M1M2

CJMJ1M1J1M2
Tr̃

[
Rl2J2M2
l1J1M1

]
(4.42)

4.3.3 Dipolar order

The aim of this section is to show how the response gets simplified in the case of a local

and punctual response. Before discussing the response tensor itself, we will discuss how

a point dipole, a doublet, can described over the multipolar basis. For simplicity, we

will consider the multipolar expansion of a doublet oriented along the z axis :

J = δ(~r)~e0 (4.43)
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To get the multipolar expansion of this doublet, one can simply project it over the basis

of the multipolar vector fields :

J lJMk =

∫

r
δ(r)~e0 •ΨJM∗

l (k, r)d3r (4.44)

=
[
ΨJM∗
l (k, 0)

]0
(4.45)

=
k

π
√

2
δl,0δJ,1δM,0 (4.46)

Where we have used the fact that the only non-vanishing multipolar vector field is Ψ1M
0

which take the following value :

Ψ1M
0 (k, 0) =

k

π
√

2
eM (4.47)

Using the electromagnetic multipolar basis, one would observe that only the electric

multipole Ψ1M
e is non-vanishing.

A doublet will then radiate a dipolar field at all wavenumbers, i.e. at all frequencies and

can be expressed as :

J = δ(~r)~e0 =

∫

k

k

π
√

2
Ψ10

0 (k)dk (4.48)

Now, we will consider what are the implication of system behaving like a doublet on

the response tensor itself and link it with the standard cartesian response tensor. We

will switch to an expansion in term of the electromagnetic multipole fields ΨJM
i with

i = e,m, l instead of the vector multipole fields because this basis has a much direct

physical interpretation. The reducible response tensor can then be written on that basis

without any difficulty since those two bases are simply related by a ”rotation”. The

coefficients of the expansion on bipolar multipole fields are RiJMi′J ′M ′ instead of RlJMl′J ′M ′ .

Since the multipolar expansion of a doublet leads to a dipolar radiation for all k, the

response tensor takes a non-vanishing value only for i = e, J = 1. Since the response

is considered local, the electric field interacts with the doublet only at the origin of the

coordinate frame. Thus, only the dipolar components on the electric field interacts with

the double because only those components are non-vanishing at the frame of coordinate

using a similar reasoning as for the expansion of the current density.

To link the multipolar response tensor to the cartesian one, one can use the projection

equation 4.7 that we recall here :

Ri
′J ′M ′
iJM =

∑

µσ

∫∫
Rσµ(r − r′)[ΨJ ′M ′

l′ (k, r′)]µ[ΨJM
l (k, r)]σd3rd3r′ (4.49)
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In the case of a point of matter, one needs only to consider the dipolar part of the

projection and the previous equation simplifies as :

Re1M
′

e1M =
∑

µσ

∫∫
Rσµ(r − r′)[Ψ1M ′

e (k, r′)]µ[Ψ1M
e (k, r)]σd3rd3r′ (4.50)

The consideration of a single point of matter implies that the spatial dependence of the

cartesian response tensors is simply a Dirac that can be expanded as dipolar fields for

all k :

Re1M
′

e1M =
∑

µσ

∫∫ ∫∫
Rσµ

k

π
√

2
j0(kr)

k′

π
√

2
j0(k′r′)dkdk′[Ψ1M ′

e (k, r′)]µ[Ψ1M
e (k, r)]σd3rd3r′

(4.51)

To calculate the integrals over space and wavenumbers, one need the expression of the

electromagnetic dipolar field at the origin :

Ψ1M
e (k, 0) =

√
2

π

k√
4π

(

√
2

3
eM ) (4.52)

Where the contribution of Ψ1M
2 has not been written because it is orthogonal with j0.

Inserting this definition and doing the integral over space gives :

Re1M
′

e1M =
1

2π2

∫∫
RMM ′(0) kk′

k2

3π2

π2

4k4
δ(k − k′)dkdk′ (4.53)

Re1M
′

e1M =
1

6

RMM ′(0)

4π2
(4.54)

Only the elements i = i′ = e, J = J ′ = 1 of the irreducible tensor are non vanishing

under those two approximations : firstly, only the dipolar component of the field interacts

with the object and secondly the material radiate only a dipolar field. Thus, a single dot

of interacting material is effectively corresponding to an usual dipole as one would have

expected. Moreover, for a point object, the response tensor defined on the multipolar

basis coincides with the standard response tensor defined over the irreducible basis

(e1, e0, e−1). Discussions on irreducibility of systems represented by this kind of tensors

and their interpretations thus correspond to the classical case of Jerphagnon [34] and

extensively used in nonlinear optics by Zyss and co-workers [35].

4.3.4 Zyss’ writing and reading fields

Although we have defined the irreducible response tensor over the vector spherical har-

monics space, we have mainly used its reducible version. In order to use the irreducible
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response tensor, we still need to show how this irreducible tensor can be related to the

electric current which radiated the measured electric field. On their use of the irreducible

tensor over the spherical basis, J. Zyss and S. Brasselet [36] developed the concept of a

reading field which we are going to explain now.

In the standard cartesian picture, the linear polarization is obtained using the matrix

product of the polarisability and the incoming electric field in the following way ~P =

α · ~E. However, when using higher order tensors and an irreducible description of the

matter properties, the matrix product is not clearly defined anymore. Then, to get the

components of the polarization that is actually measured, Zyss has introduced an unit

vector v, that allows to use fully contracted product which are well defined in tensor

theory.

P v = α •
(
v ⊗ E

)
(4.55)

According to the previous equation, we obtain the magnitude of the electric field in the

v direction using a full contraction. The tensor
(
v ⊗ E

)
is called a reading field since

the tuning of a polarizer giving the direction v allows one to isolate experimentally each

component of the polarisability and then ”read” this tensor. In the case where v is one

of the basis vectors, we then obtain the component of P along that basis vector :

Pi = α •
(
ei ⊗ E

)
where i = x, y, z (4.56)

This way of obtaining the polarization allowed to expand both α and the reading field

and is straightforwardly extended to non-linear orders. We now wish to prove that this

kind of description is still valuable when working with a vector multipole fields basis.

We start with the fully contracted products of the linear reducible response tensor with

the direct product of a reading vector (the equivalent of v before) and the incoming

electric field. We begin by expressing the response tensor R along its basis.

R •
(

ΨJM
l ⊗ E

)
=

∑

l1J1M1
l2J2M2

Rl2J2M2
l1J1M1

(
ΨJ1M1
l1

(r)⊗ΨJ2M2
l2

(r′)
)
•
(

ΨJM
l (r)⊗ E(r′)

)
(4.57)

=
∑

l1J1M1
l2J2M2

Rl2J2M2
l1J1M1

(
ΨJ1M1
l1

(r) •ΨJM
l (r)

)
⊗
(

ΨJ2M2
l2

(r′) • E(r′)
)

(4.58)

Where we have regrouped terms belonging to the same subspace. We can now use the

orthogonality condition to express those contracted products and expand the electric

field over the vector spherical fields. We recall the orthogonality of the vector spherical

harmonics ; ∫∫
Y J ′M ′
l′ (Ω)∗ · Y JM

l (Ω)dΩ = δll′δJJ ′δMM ′ (4.59)
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This scalar product is used to express this contraction and one obtain :

R •
(

ΨJM
l ⊗ E

)
=

∑

l1J1M1
l2J2M2

Rl2J2M2
l1J1M1

δl1lδJ1lδM1M

∑

l′J ′M ′

δl2l′δJ2J ′δM2M ′E
J ′M ′
l′ (4.60)

=
∑

l′J ′M ′

Rl
′J ′M ′
lJM EJ

′M ′
l′ (4.61)

= JJMl (4.62)

From the last result, we see that the expression R•
(

ΨJM
l ⊗E

)
still allows us to read one

specific component of the current density. However, we now read one component of the

multipolar expansion of the current density (which is directly related to the multipolar

components of the radiated field) instead of one of the cartesian vectors. We can now

use of the well known reduction schemes to reduce the response tensor and the reading

field. Both of them will them be express over the bipolar vector spherical harmonics.

In this chapter, a fully irreducible formalism has been presented. This formalism grants

us the ability to discuss the influence of the symmetry on the nonlinear response since it

contains all the information about the shape in a discrete number of components having a

clear geometrical behavior. It is then expected that this formalism, applied to concrete

cases, could lead to a better understanding of the link between shapes and physical

properties. For example, it can show which components are dominant in nanostars and

nanotriangles compared to nanospheres. To do so, it is possible to make models within

that formalism that will be presented in the next chapters.

Additionally, it is expected that the inclusion of elements not belonging to the symmetry

group would make some components of the tensor appear. Experiments carried on

nanoparticles such as EELS [75] show that the geometric eigenmodes are extremely

robust and are not greatly affected by small deviations. Then, small defects and rugosity

for example should not lead to major modifications on the main components of the

irreducible response tensor and their influence should depends on the eigenmodes, i. e.

the energy, considered. According to this, it is conjectured that the components of the

response tensor can be associated with various physical properties of the object.



Chapter 5

Translational addition as a tool to

describe extended objects

5.1 On the use of the translational addition theorem

In this chapter, we will see how multipoles can be spatially moved in a chosen frame

of coordinates. In order to achieve this translation, the translated multipole fields are

expanded over the basis of multipolar fields located at the origin of another frame of

coordinates. This transformation is algebraically done by the translational addition

theorem demonstrated by Cruzan [76] and by Danos and Maximon [77].

It will be shown it the next chapter how the translational addition theorem can serve as

a tool to model nonlinear sources in a nanoparticles. Assuming a spatial distribution of

radiating dipoles, one can gather them all at a single point and describe them as a sum

of multipoles. The weight of each of those multipoles can then be measured using, for

example, results of the previous chapter. Multipoles constructed in this way offer global

informations about the system whereas a distribution of dipole only reflects the local

environment. Thus, non-vanishing multipoles can also be inferred from group theoretical

arguments and measured directly without assuming a local distribution of radiating

dipoles. This approach has to be contrasted with techniques like the Discrete-Dipole

Approximation (DDA) [64, 78] or the Multiple MultiPole (MMP) method [79] which are

losing informations on global properties of the nanoparticles. Expressed differently, the

goal of such numerical techniques is to discretize the problem efficiently while the aim

here is to synthesize it.

In this chapter, we firstly introduce the translational addition theorem using a mod-

ern demonstration [80–85]. Then, we apply it to two simple cases that are useful for

95
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the understanding of the behavior of the multipolar fields under translation. We firstly

introduce infinitesimal translations that have interesting algebraic properties. For ex-

ample, one could expect that the sum of two infinitesimally multipole would construct

multipoles of higher orders like a derivative would do but they instead create particular

and simple combinations of higher and lower orders of multipoles.

5.2 Demonstration of the translational addition theorem

5.2.1 Scalar translational addition theorem

Let us start with the functions Ψlm(r, θ, φ) = jl(kr)Ylm(θ, φ) which are solutions of the

scalar Helmoltz equation (∆ + k2)Ψ = 0 where k2 is a parameter corresponding to the

wavevector magnitude squared of the considered wave. So, the functions Ψlm are the

scalar multipole fields.

The translational addition theorem is robust by the change of the radial function. It

means that everywhere in this chapter, the spherical Bessel function can be replaced by

a Hankel function of the first kind. Those functions will not be discussed here but more

can be find in the paper by Felderhof [82].

In order to describe two infinitely near mul-

tipoles, it is necessary to know how the Ψlm

in a frame of coordinates can be translated,

the result being described as a sum of mul-

tipole field in the same frame. We will write

Ψlm(~r)[~R] the function of ~r corresponding to

a pure multipolar field in the frame ~r + ~R.

This function will usually correspond to an

infinite sum of multipolar fields in the frame

~r. The frame associated with ~r will be de-

scribe using the coordinates (r, θ, φ) while

the translation vector ~R can be projected on this basis and has coordinates ~R = [R,Ω,Φ].

At this stage, it is important to recall that great care should be taken with the difference

between active and passive translation : it is equivalent to translate a function values

by ~R or its coordinate frame by −~R. Because we want to work with active translations

of the multipolar fields, we have to translate the coordinates by −~R. This discussion is

represented in the adjacent picture.
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The translated multipolar field is projected of the multipolar fields basis in the original

frame using coefficients Tl′m′,lm[R,Ω,Φ] which depends on the multipolar field under

consideration and the translation applied to it :

Ψlm[R,Ω,Φ] =
∑

l′,m′

Tl′m′,lm[R,Ω,Φ]Ψl′m′ (5.1)

We have omitted variables of the functions for shortness since they all depend on (r, θ, φ).

The explicit expression of the Tl′m′,lm[R,Ω,Φ] coefficients can be calculated using the

spherical expansion of a plane wave (Rayleigh expansion) :

ei
~k·~r = 4π

∑

lm

iljl(kr)Ylm(θ′, ϕ′)Y ∗lm(θ, ϕ) (5.2)

Where r, θ, ϕ are the coordinates of vector ~r and k, θ′, ϕ′ those of vector ~k.

One can now consider a translation −~R that transforms the frame r, θ, ϕ in r′, θ′, ϕ′.

In this case, we take the coordinates of ~k to be k, θ′′, ϕ′′. The plane wave ei
~k·~r can be

written ei
~k·~r′ei

~k·~R. Using the Rayleigh expansion, we find :

∑

LM

4πiLjL(kr)Y ∗LM (θ′′, ϕ′′)YLM (θ, ϕ) =

(∑

l′m′

4πil
′
jl′(kr

′)Y ∗l′m′(θ
′′, ϕ′′)Yl′m′(θ

′, ϕ′)

)
×

×
( ∑

l′′m′′

4πil
′′
jl′′(kR)Y ∗l′′m′′(θ

′′, ϕ′′)Yl′′m′′(Ω,Φ)

)
(5.3)

To be able to use the orthogonality between the spherical harmonics on the left hand

side of this equation, it is necessary to multiply each side by Ylm(θ′′, ϕ′′) and to integrate

over the whole solid angle : only the lm term survive in the sum. The right hand side

is reduced is the integration of three spherical harmonics formula.

∫
Ylm(θ, ϕ)Yl′m′(θ, ϕ)Yl′′m′′(θ, ϕ)dΩ =

√
(2l + 1)(2l′ + 1)(2l′′ + 1)

4π
×

(
l l′ l′′

0 0 0

)(
l l′ l′′

−m m′ m′′

)
(5.4)

The right hand side 5.3 then becomes :
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∑

l′m′

( ∑

l′′m′′

(4π)
3
2 il
′+l′′
√

(2l + 1)(2l′ + 1)(2l′′ + 1)

(
l l′ l′′

0 0 0

)(
l l′ l′′

−m m′ m′′

)
×

× jl′′(kR)Yl′′m′′(Ω,Φ)

)
jl′(kr

′)Yl′m′(θ
′, ϕ′) (5.5)

Associating r′, θ′, ϕ′ with the origin coordinate frame and comparing with equation 5.1,

the Tl′m′,lm[R,Ω,Φ] coefficients are finally expressed in the following way :

Tl′m′,lm[R,Ω,Φ] =
∑

l′′,m′′

il
′+l′′−l(−1)m

√
4π(2l + 1)(2l′ + 1)(2l′′ + 1)×

(
l l′ l′′

0 0 0

)
×
(

l l′ l′′

−m m′ m′′

)
jl′′(R)Yl′′m′′(Ω,Φ) (5.6)

In figure 5.1, we show that the construction of Ψ00 as a sum of other multipolar fields in

another frame is possible and we remark that a big number of multipole is not necessary

to achieve a satisfying reconstruction. The convergency will in fact depend on the order

of the Ψlm and on the size of the translation. In figure 5.2, we show a similar result in

the case of Ψ31.

5.2.2 Tensor translational addition theorem

To calculate the translation coefficients of vector spherical harmonics, we will start with

the result obtained for scalar multipole fields and couple each side with the spherical

basis vector. We will extensively use Fano and Racah notation of irreducible tensor

products that we used in equation 1.77.

∑

m′m′′

C lml′m′l′′m′′Yl′m′(θ
′, ϕ′) Yl′′m′′(θ

′′, ϕ′′) =
{
Y l′ ⊗ Y l′′

}lm
(5.7)

If T is an irreducible tensor of rank J , T J is the whole irreducible subspace spanned

by T J is T J,J , T J,J−1 ... T J,−J . Using this notation, we can write the scalar multipole

translation as :
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Figure 5.1: Translation of Ψ00 by 5 units along −~ez. Only the function with M = 0
are used due the specific direction of translation.

Ψlm[R] =
∑

l′l′′

il
′+l′′−l(−1)l

′−l′′√4π(2l′ + 1)(2l′′ + 1)

(
l l′ l′′

0 0 0

)
jl′′(kR)jl′(kr

′)
{
Y l′⊗Y l′′

}lm

(5.8)

The new coefficients before the 3j symbol comes from the conversion of the second 3j

symbol of equation 5.6 in a Clebsch-Gordan symbol using equation 1.28. We now couple

each side with the spherical basis vector :
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Figure 5.2: Translation of Ψ31 along the vector [4, π3 , 0] (in spherical coordinates).

{
Ψl⊗es

}JM
=
∑

l′l′′

il
′+l′′−l(−1)l

′−l′′√4π(2l′ + 1)(2l′′ + 1)

(
l l′ l′′

0 0 0

)
jl′′(kR)jl′(kr

′)×

×
{{

Y l′′ ⊗ Y l′
}l
⊗ es

}JM
(5.9)

In this equation, three angular momenta appear : L′′, L′ and S. The coupling scheme

which appeared naturally in the previous equation is the following J = (L′′ +L′) + S =

L + S. However, we need to express the result as a sum of vector spherical harmonics

and thus have to change the coupling scheme to J = L′′ + (L′ + s) = L′′ + J ′. This is

a physically equivalent coupling and an unitary transformation relate the two schemes.

Irreducible tensors recoupling formula is given in Varshalovich’s book (p.69 [31]) and

can be applied in our case :
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{{
Y l′′ ⊗ Y l′

}l
⊗ es

}JM
=
∑

J ′

(−1)l
′+l′′+S+J

√
(2l + 1)(2J ′ + 1)

{
l′′ l′ l

S J J ′

}

{
Y l′′ ⊗

{
Y l′ ⊗ es

}J ′
}JM

(5.10)

Using this result in equation 5.9, we find :

{
Ψl⊗es

}JM
=
∑

l′l′′J ′

il
′+l′′−l(−1)S+J

√
4π(2l + 1)(2l′ + 1)(2l′′ + 1)(2J ′ + 1)

(
l l′ l′′

0 0 0

)
×

×
{
l′′ l′ l

S J J ′

}
jl′′(kR)jl′(kr

′)

{
Y l′′ ⊗

{
Y l′ ⊗ es

}J ′M ′
}JM

(5.11)

We now use equation 5.7 to separate translation coefficient and vector multipoles :

{
Ψl⊗es

}JM
=
∑

l′l′′J ′

∑

m′′M ′

il
′+l′′−l(−1)S+J

√
4π(2l + 1)(2l′ + 1)(2l′′ + 1)(2J ′ + 1)

(
l l′ l′′

0 0 0

)
×

×
{
l′′ l′ l

S J J ′

}
CJMl′′m′′J ′M ′jl′′(kR)jl′(kr

′)Yl′′m′′(Ω,Φ)
{
Y l′ ⊗ es

}J ′M ′
(5.12)

Let us convert the Clebsch-Gordan symbol into a 3j symbol :

{
Ψl⊗es

}JM
=
∑

l′J ′M ′

( ∑

l′′m′′

il
′+l′′−l(−1)S+M

√
4π(2l + 1)(2l′ + 1)(2l′′ + 1)(2J + 1)(2J ′ + 1)×

×
(

l l′ l′′

0 0 0

)(
J J ′ l′′

−M M ′ m′′

){
l′′ l′ l

S J J ′

}
jl′′(kR)Yl′′m′′(Ω,Φ)

)
jl′(kr

′)
{
Y l′⊗es

}J ′M ′

(5.13)

Finally, we can write vector multipolar fields translation in the simpler form :

ΨJM
l [R,Ω,Φ] =

∑

l′J ′M ′

Tl′J ′M ′,lJMΨJ ′M ′
l′ (5.14)
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Tl′J ′M ′,lJM [R,Ω,Φ] =
∑

l′′m′′

il
′+l′′−l(−1)M+1

√
4π(2l + 1)(2l′ + 1)(2l′′ + 1)(2J + 1)(2J ′ + 1)×

×
(

l l′ l′′

0 0 0

)(
J J ′ l′′

−M M ′ m′′

){
l′′ l′ l

1 J J ′

}
jl′′(kR)Yl′′m′′(Ω,Φ) (5.15)

5.3 Application of the translational addition to simple cases

5.3.1 Infinitesimal addition of multipoles

5.3.1.1 Infinitesimal translation in the scalar case

We start with the simplest translation : the one along z. It is the simplest because the

resulting sum will not mix different values of m. We consider the limit of two multipoles

translated along z. So one is translated by [ε, 0, 0] while the other one is translated by

[ε, π, 0]. In this section, we will omit the arguments of the functions Ψlm since they will

all be expressed in the same coordinate system (r, θ,Φ).

lim
ε→0

Ψlm[ε, π, 0]−Ψlm[ε, 0, 0]

kε
(5.16)

We can use equation 5.1 to introduce the Tl′m′,lm[R,Ω,Φ] in the previous one. Since

the spherical harmonics expansion converge uniformly, we can safely exchange limit and

sum :

lim
ε→0

Ψlm[ε, π, 0]−Ψlm[ε, 0, 0]

kε
= 2

∑

l′m′

lim
ε→0

Tl′m′,lm[ε, π, 0]− Tl′m′,lm[ε, 0, 0]

2kε
Ψl′m′ (5.17)

The factor 2 has been introduced here for convenience and the factor k to keep the

denominator independent of the wave vector scale. We can now simplify the expression

of the coefficients which appear in this expansion.

lim
ε→0

Tl′m′,lm[ε, π, 0]− Tl′m′,lm[ε, 0, 0]

2kε
=
∑

l′′m′′

il
′+l′′−l(−1)m

√
4π(2l + 1)(2l′ + 1)(2l′′ + 1)

(
l l′ l′′

0 0 0

)
×

×
(

l l′ l′′

−m m′ m′′

) (
lim
ε→0

jl′′(kε)

kε

)
Yl′′m′′(π, 0)− Yl′′m′′(0, 0)

2
(5.18)
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Using parity properties of the spherical harmonics, we can greatly reduce this expression.

Yl′′m′′(π, 0)− Yl′′m′′(0, 0)

2
=

(−1)l
′′+m′′ − 1

2
Yl′′,m′′(0, 0) (5.19)

On the other hand, the limit implying spherical Bessel function jl′′ can also be worked

out. In fact, for all l′′ 6= 0, jl′′(0) = 0; thus the limit can be written as a derivative.

However, we need to take care of the l′′ = 0 case. In this case, we have to use the

spherical harmonics to remove the indetermination.

lim
ε→0

j0(kε)

kε
(Y00(π, 0)− Y00(0, 0)) = lim

ε→0

1

2
√
π

(sin(kε)

k2ε2
− sin(kε)

k2ε2

)
= 0 (5.20)

In all the other case, l′′ 6= 0 and we can derivate spherical Bessel functions :

jl′′(kr)
′ =

k

2l′′ + 1

(
l′′jl′′−1(kr)− (l′′ + 1)jl′′+1(kr)

)
(5.21)

The derivative being taken as ε tend to zero, only l′′ = 1 contributes.

lim
ε→0

jl′′(kε)

kε
=

[
d

d(kr)
jl′′(kr)

]

r=0

=
l′′

2l′′ + 1
δl′′,1 (5.22)

The sum over l′′ in equation 5.18 is thus reduced to only one term. We can also sim-

plify the summation over m using equation 5.19 which, in the case l′′ = 1, is equal to

−Y10(0, 0)δm′′,0. Equation 5.18 becomes :

lim
ε→0

Tl′m′,lm[ε, π, 0]− Tl′m′,lm[ε, 0, 0]

2kε
= −il′+1−l(−1)m

√
(2l + 1)(2l′ + 1)

(
l l′ 1

0 0 0

)(
l l′ 1

−m m′ 0

)

(5.23)

Finally, two scalar multipolar fields translated along z can be expressed as :

lim
ε→0

Ψlm[ε, π, 0]−Ψlm[ε, 0, 0]

kε
= −2

∑

l′m′

il
′+1−l(−1)m

√
(2l + 1)(2l′ + 1)

(
l l′ 1

0 0 0

)
×

×
(

l l′ 1

−m m′ 0

)
Ψl′m′ (5.24)

We will now illustrate this result with some examples from the first orders. Firstly, let us

consider two monopoles translated along z. We can directly use equation 5.24 adapted
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to l = 0, m = 0.

lim
ε→0

Ψ00[ε, π, 0]−Ψ00[ε, 0, 0]

kε
= −2

∑

l′m′

il
′+1
√

(2l′ + 1)

(
0 l′ 1

0 0 0

)(
0 l′ 1

0 m′ 0

)
Ψl′m′

(5.25)

The 3j symbol is alway null except for l′ = 1 and m′ = 0. The 3j symbol can be obtained

from any table :

(
0 1 1

0 0 0

)
= − 1√

3
. The result of the infinitesimal translation is :

lim
ε→0

Ψ00[ε, π, 0]−Ψ00[ε, 0, 0]

kε
=

2√
3

Ψ10 (5.26)

The validity of this result is confirmed using the figure 5.3. Furthermore, the validity

of the numerical coefficient in equation 5.26 is checked by comparing the values of the

function.

Figure 5.3: Upper side : we approach two monopoles Ψ00 as in equation 5.26. Lower
side : dipole Ψ10.

Let us now focus on the next term of the spherical expansion : the limit of two dipoles

Ψ10 along z. In this case, the values 0 6 l′ 6 2 are authorized by the nullity condition
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of the 3j symbols. Again, we recall the explicit values of the corresponding symbols :(
1 1 1

0 0 0

)
= 0,

(
1 2 1

0 0 0

)
=
√

2
15 . The equation 5.24 gives the following result :

lim
ε→0

Ψ10[ε, π, 0]−Ψ10[ε, 0, 0]

kε
=

4√
15

Ψ20 −
2√
3

Ψ00 (5.27)

Repeating the same steps than for the monopoles, we now display the comparison be-

tween the limit of two dipoles and a quadrupole in the figure 5.4 and check numerically

the correctness of the coefficients with Mathematica. This time, we observe that the

limit of two dipoles gives rise two a quadrupole but also to a monopolar term. This

surprising thing is in fact the rule and the limit of two multipoles of order l will always

lead to term of order l − 1 and l + 1.

From the multipolar expansion of radiation in electromagnetism, we know that the

smallest radiating unit is the dipole and that no radiating monopole exists. However,

when we will treat the vectorial case this problem will not appear since the monopolar

term will cancel naturally.

Figure 5.4: Upper side : we approach two monopoles Ψ10 as in equation 5.27. Lower
side : displaying of 4√

15
Ψ20 − 2√

3
Ψ00.

For reference, we give here results concerning infinitesimal translation along other di-

rections. The calculation follows exactly the same steps and the derivation will be more
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succinctly presented. The y translation case results will be given at the end of the

chapter.

For an x infinitesimal translation, we have to calculate the following limit :

lim
ε→0

Ψlm[ε, π2 , π]−Ψlm[ε, π2 , 0]

kε
(5.28)

The coefficients of this spherical expansion can be written as :

lim
ε→0

Tl′m′,lm[ε, π2 , π]− Tl′m′,lm[ε, π2 , 0]

2kε
=
∑

l′′m′′

il
′+l′′−l(−1)m

√
4π(2l + 1)(2l′ + 1)(2l′′ + 1)×

×
(

l l′ l′′

0 0 0

)(
l l′ l′′

−m m′ m′′

)
Yl′′m′′(

π
2 , π)− Yl′′m′′(π2 , 0)

2

(
lim
ε→0

jl′′(kε)

kε

)
(5.29)

Exactly as in the previous section, derivatives over spherical Bessel functions will allow

only the l′′ = 1 to survive. The m′′ sum is a little bit trickier to treat ; we have to

use again the parity of spherical harmonics Ylm(θ, ϕ + π) = (−1)mYlm(θ, ϕ) but the

sum over m′′ has now two non zero terms m′′ = ±1. We finally obtain the coefficients

corresponding to the x infinitesimal translation.

lim
ε→0

Tl′m′,lm[ε, π2 , π]− Tl′m′,lm[ε, π2 , 0]

2kε
= il

′+1−l(−1)m
√

(2l + 1)(2l′ + 1)

2

(
l l′ 1

0 0 0

)
×

×
[(

l l′ 1

−m m′ 1

)
−
(

l l′ 1

−m m′ −1

)]
(5.30)

lim
ε→0

Ψlm[ε, π2 , π]−Ψlm[ε, π2 , 0]

kε
=
∑

l′m′

(
il
′+1−l(−1)m

√
2(2l + 1)(2l′ + 1)

(
l l′ 1

0 0 0

)
×

×
[(

l l′ 1

−m m′ 1

)
−
(

l l′ 1

−m m′ −1

)])
Ψl′m′ (5.31)
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5.3.1.2 Infinitesimal translation in the vector case

The infinitesimal translations of two vector multipolar fields can be calculated in the

same way than scalar multipole fields. In this case, only the results for the z direction

is given without much demonstrations :

lim
ε→0

Tl′J ′M ′,lJM [ε, π, 0]− Tl′J ′M ′,lJM [ε, 0, 0]

kε
=
∑

l′′m′′

il
′+l′′−l(−1)M+1

√
4π(2l + 1)(2l′ + 1)(2l′′ + 1)×

√
(2J + 1)(2J ′ + 1)

(
l l′ l′′

0 0 0

)(
J J ′ l′′

−M M ′ m′′

){
l′′ l′ l

S J J ′

}
×

(
lim
ε→0

jl′′(ε)

kε

)(−1)l
′′+m′′ − 1

2
Yl′′m′′(0, 0) (5.32)

The derivative over spherical Bessel function still provides great simplification since it

makes a δl′′,1 appearing and reduces the summation :

lim
ε→0

ΨJM
l [ε, π, 0]−ΨJM

l [ε, 0, 0]

kε
= 2

∑

J ′l′M ′

il
′+1−l(−1)M

√
(2l + 1)(2l′ + 1)(2J + 1)(2J ′ + 1)×

×
(

l l′ 1

0 0 0

)(
J J ′ 1

−M M ′ 0

){
1 l′ l

1 J J ′

}
ΨJ ′M ′
l′ (5.33)

5.3.2 Using translational addition to make simple models

In this section, we develop simple models that show how the multipolar sources of

radiation can be engineered by playing with the position of different dipolar sources.

A translated dipole will generate a sum of multipoles according to the translational

addition theorem. Those multipoles are a result of the way to choose the origin and

are not intrinsic to the system of sources. However, when the origin is carefully chosen,

typically at the center of the nanoparticles, it is a great tool to compare different system

of sources and their corresponding multipolar expansions.
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To illustrate this point, the norms of different configurations of translated multipoles

are given in figure 5.5 and 5.6. We recall that the norm of a multipolar order physically

describe the energy of the field in this multipole. Figure 5.5 represents the norm of

a simple dipole oriented and translated along the z axis. One can observe how the

multipoles of higher appears one after another when the translation size increases. We

also consider three configurations of sources having 2, 3 and 4 dipolar sources translated

according to figure 5.6. Those three sets of dipolar sources corresponds to different

symmetries and could model different kind of nanoparticles (nanorod, 3-branch nanostar,

4-branch nanostar). Using the translational addition theorem, we combine all the dipoles

of a model as a sum of multipole at the origin for three different lengths of translation.

For a nano-objects of typical size 100 nm and a wavelength in the visible, kR has a value

roughly equal to one which is represented in the top row of the figure 5.6.

J=1

kR = 0

J=1

J=2

J=3

kR = 1

J=1

J=2

J=3

J=4
J=5

kR = 3
J=2

J=3

J=4

J=5

J=6

kR = 5
Multipoles0.0

0.2

0.4

0.6

0.8

1.0

ÈÈJm
J ÈÈ2

Figure 5.5: Histrograms representing the multipole norms of a translated dipole along
z. When the dipole is not translated, only the dipolar component is present and equal
to one. As the size of the translation increases, more multipoles are necessary to recover

the equivalent radiation.

As can be seen from the histograms, almost only the first non-zero order is present at

this value and smaller objects would then lead to a similar distribution of multipoles.

Moreover, we also consider three different relative weights between the dipoles : same

weight for all, weighted by a cosine function of their angular position and and weighted

by a cosine squared function of their angular position. The second and third cases

correspond to the projection of a linearly polarized incoming field on the dipole for

linear and second order nonlinear optics.
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The three models exhibit very different multipolar distributions. It is interesting to look

at the vanishing orders for the different models employed. The model with two dipoles

keeps non-zero the odd multipole when the dipoles have the same weight and when a

squared cosine is applied while only even order are kept when the projection is a cosine

wave. A physical system that would be represented by such a distribution of dipoles,

possibly a nanorod, would then radiate mainly like a dipole in second-order nonlinear

optics and like a quadrupole in linear optics.

Interestingly, the model with 3 dipoles and the one with 4 keep all the multipolar weights

nonzero except for two cases. The three dipoles model retains all orders except the

dipolar one when the three dipoles are strictly equivalent. The four dipoles model keeps

only even orders when a square cosine projection is applied.

If physical objects would be associated with such models, one could choose the most in-

teresting one according to the multipolar distribution that is the most interesting for the

problem considered. Choosing the shapes of the particle permits to select non vanishing

orders while the size of the system control their relative weight. As expected, when the

system gets bigger, higher orders in the multipolar expansion become predominant.

The model using three dipoles and a cosine squared projection will be studied with more

depth in the next chapter and applied to the interpretation of the experiment presented

in chapter 3.



Chapter 6

Illustration : application to

threefold symmetry nanoparticles

6.1 Rigorous multipolar interpretation of the SHG exper-

iment

6.1.1 Discretization of the current distribution

In this section, we will show how the translation of vector multipolar fields can be applied

to describe the field radiated by a D3 shaped nanoparticles. In this model, we represent

a nanoparticle as three radiating dipoles located on each tip. Hence, an incoming light

excites independently these dipoles which emit their own dipolar radiations. However,

from a far field point of view, one can see only one object that radiates a multipolar

expansion, combination of the three dipole radiations. A convenient way to tackle this

problem is to express these three dipoles as a combination of multipoles located at the

center of the nanoparticle. Let us start by expressing the radiated field Erad in terms

of an integral equation involving the Green function G(r, r′) and the current density

J(r′, ω).

Erad = iωµ0

∫
G(r, r′) J(r′, ω) d3r′ (6.1)

=
ω2

ε0 c2

∫
G(r, r′) P (r′, ω) d3r′ (6.2)

This last equality is due to the relation between polarization and current density J =

iωP . The polarization is calculated using the hyperpolarizabilities and the local field.

At this stage, we do not pay attention to local field correction and assume that this

111
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field is equal to the incident field. For a non-localized response, the polarization can be

expressed in frequency domain as :

P (r′, ω) =
1

2π

∫
dr1dω1 α(r′; r1, ω) · E(r1, ω1)δ(ω − ω1)

+
1

(2π)2

∫
dr1dr2dω1dω2 β(r′; r1, r2, ω1+ω2, ω1) : E(r1, ω1)⊗E(r2, ω2)δ(ω−ω1−ω2)+...

(6.3)

We now consider a monochromatic electric field and use the approximation that the field

is constant over the object. Then, the electric field is E(r, ω) = e δ(ω − ωL) where e is

a constant amplitude vector and ωL is the frequency of the monochromatic light.

P (r′, ω) =
δ(ω−)

2π

∫
dr1dω1 α(r′; r1, ω) · E(r1, ω1)δ(ω − ω1)

+
1

(2π)2

∫
dr1dr2dω1dω2 β(r′; r1, r2, ω1+ω2, ω1) : E(r1, ω1)⊗E(r2, ω2)δ(ω−ω1−ω2)+...

(6.4)

At this stage, we have to choose some expression for the polarizabilities (that are phe-

nomenological here) to model the nanoparticles. By choosing a local point response

positioned at the end of each tip, the radiation corresponds to three dipoles located on

each of these points. According to this approximation, the hyperpolarizabilities can be

written as :

α(r′; r1, ωL) =
∑

i

α(r′; r1, ωL) δ(r1 − ri) δ(r′ − ri) (6.5)

β(r′; r1, r2, 2ωL, ωL) =
∑

i

β(r′; r1, r2, 2ωL, ωL) δ(r1 − ri) δ(r2 − ri) δ(r′ − ri)(6.6)

The sum over i runs over the different points where we have positioned dipoles. In

this case, all the integrations disappear thanks to the Dirac δ and the polarization is

simplified to :

P (r′, ω) =
δ(ω − ωL)

2π

∑

i

α(r′; ri, ωL) · e+
δ(ω − 2ωL)

(2π)2

∑

i

β(r′; ri, ri, 2ωL, ωL) : e⊗ e

+ ...+
δ(ω − nωL)

(2π)n

∑

i

α(n)(r′; ri...ri, nωL...ωL)� e⊗ ....⊗ e (6.7)
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We then use the integral equation 6.2 to obtain the radiated field in terms of the Green

function.

Erad(r, ω) =
ω2

ε0c2

δ(ω − ωL)

2π

∑

i

G(r, ri) · (α(ri; ri, ωL) · e)+

ω2

ε0c2

δ(ω − 2ωL)

(2π)2

∑

i

G(r, ri) · (β(ri; ri, ri, 2ωL, ωL) : e⊗ e) + ... (6.8)

We recall that, in free space, the field G(r, ri) · p corresponds to a dipole propagation.

Then, by restricting the response to a local one, we are back a simple combination of

dipole radiation located at the i points. The dipole moments are given by the contraction

of the response tensor and the electric field amplitude. Since the non-linear terms are

just different from the linear ones by the value of the dipole moment, we restrict ourselves

to the linear polarizability from now without loss of generality. So far, the discussion has

been quite general but we now explicitly position the dipole at the edge of the particle

by giving the values of the ri vectors.

r1 =




R
π
2

0


 r2 =




R
π
2

4π
3


 r3 =




R
π
2

2π
3


 (6.9)

Where R is the radius of the nanoparticle (distance between the center and the tip).

The position of the dipoles in space is not enough to characterize them and we will need

also their orientations which are expressed in terms of Euler angles :

r1 :




0
π
2

0


 r2 :




2π
3
π
2

0


 r3 :




4π
3
π
2

0


 (6.10)

The position and orientation of these dipole moments are given in the figure 6.1. The

electric field can then be expressed in a simpler form :

Erad(r, ωL) =
ω2
L

2πε0c2

∑

i

G(r, ri) · di (6.11)

The Green tensor can be expressed in terms of vector multipole field. The simple dipolar

radiation created by the ith dipole and expressed in its local coordinate frame is :

Erad,i(r
local
i ) =

ω2
L

ε0c2

(
Ψ11

1 d
local,i
1 + Ψ10

1 d
local,i
0 + Ψ1−1

1 dlocal,i−1

)
(6.12)
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Here, we have considered the multipolar expansion of the doublet over all frequen-

cies. However, since we are only interested in the radiation associated with one specific

frequency, one the projection of the doublet over the dipole having the appropriate

wavenumber is taken into account in the previous equation. That is only the part of the

current density associated with the wavelength 400 nm is kept for the expansion.

We choose the local coordinates with their z axis along the dipole moments. In this

way, only the zero component of the local dipole moment is non-zero. The next step is

to express these local radiation in the main frame of coordinates. This is made by first

rotating the local frames to make the z axis parallel and then by translating the origin

of the local frame to the origin of the main frame. The first step is accomplished by

using Wigner D matrices and the second one by using finite translation operators that

we described in this chapter. The dipolar fields are then :

Erad,1(r) = − ω2
L

ε0c2
dlocal,10 TR,π

2
,π
2

[
D(1)

0,π
2
,0

[
Ψ10

1

]]
(r) (6.13)

Erad,2(r) = − ω2
L

ε0c2
dlocal,20 TR,π

2
,π
2
− 2π

3

[
D(1)

2π
3
,π
2
,0

[
Ψ10

1

]]
(r) (6.14)

Erad,3(r) = − ω2
L

ε0c2
dlocal,30 TR,π

2
,π
2

+ 2π
3

[
D(1)

− 2π
3
,π
2
,0

[
Ψ10

1

]]
(r) (6.15)

The minus sign appears because the Wigner D matrices are used in the active transfor-

mation picture. However, since we move the coordinate frames and not the values of

the function itself, a minus sign as to be applied. We do not face such problems with

the translation operator since the passive picture has been chosen for them.

Then, the total linear electric field radiated by this polarization is just the sum of those

three electric fields.

6.1.2 Second harmonic generation by the tips

In the previous section, we have seen how we can use the multipolar expansion to get

rid of the integral formulation of the electric field. Now, we will consider the second-

harmonic emission from the tips of the threefold nanostar. The nanoparticle is illumi-

nated by a plane wave with a definite polarization which will be denoted by Φ. Then,

each of the non-linear dipoles is excited by the projection of the electric field on its

axis. For second harmonic generation in which we are interested now, the excitation is

dependent on the square of the electric field. Then, the respective weights of the three

dipoles will be cos(Φ), cos(Φ − 2π/3) and cos(Φ + 2π/3). The current distribution is
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depicted in the figure 6.1.

Figure 6.1: The red arrows represent the dipole current distribution that has been
chosen to model the nanoparticle and mathematically expressed in the equation 6.16.

The calculation will be done in two steps. Firstly, we will project this non-linear current

distribution on the multipolar basis keeping track carefully of the polarization depen-

dance of each multipole. Then, we will use the multipolar PSFs of the previous chapter

to obtain the electric field arriving on the photodetector. Finally, we plot the angular

intensity that is the experimental response. For numerical applications, the excitation

wavelength will be taken as 800 nm and then, the SHG current distribution will radiate

an electric field at 400 nm.

As in the previous section, we start by the translation of the three dipoles independently

but, instead of working in terms of their irreducible emitted electric fields, we use directly

their current distributions which are simply related as we have shown in the chapter 1.

Without polarization, the current distribution is here modeled as a sum of three radiated

dipole oriented along the tips of the nanoparticle (figure 6.1).

~J = d
(
TR,π

2
,0

[
D(1)

0,π
2
,0

[
Ψ10
m

]]
(r)+TR,π

2
, 2π
3

[
D(1)

0,π
2
,− 2π

3

[
Ψ10
m

]]
(r)+TR,π

2
,− 2π

3

[
D(1)

0,π
2
, 2π
3

[
Ψ10
m

]]
(r)
)

(6.16)

The coefficient d simply represent the strength of the excited dipole. Now, we explicit

the form of the Wigner matrices. Then, the three dipoles can be expressed as :

~J1 = − d√
2

(
TR,π

2
,0(Ψ11

m −Ψ1−1
m )

)
(6.17)

~J2 = − d√
2

(
TR,π

2
, 2π
3

(Ψ11
me
− 2π

3 −Ψ1−1
m e

2π
3 )
)

(6.18)

~J3 = − d√
2

(
TR,π

2
,− 2π

3
(Ψ11

me
2π
3 −Ψ1−1

m e−
2π
3 )
)

(6.19)
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Figure 6.2: Those density maps represent the norm of the current density generated
by the three radiating dipoles defined above. The calculation as be carried out exactly

by a change of coordinates in the arguments of the dipolar EMFs.

Figure 6.3: This density maps represent the norm of the current density generated
by the three radiating dipoles defined above. This is a reconstruction of the current
density of the figure 6.2 using a truncated sum of radiating multipole located of the

origin.

The figure 6.2 and 6.3 represent the norm of those three current densities. One can see

that the algebraic reconstruction of the current densities is faithful to the analytic one.

The summation has been truncated at the seventh order to make those pictures This

order is quite high but the translation length was 400 nm (R =400nm) which is a very

big translation compared to the wavelength of radiation of those dipoles (R = λ !). This

translation has been made that big in order to make apparent the translation to the eye

on the picture. Of course, since the nanoparticle’s diameter is about 100 to 200 nm the

parameter R will be varying in the range 50 to 100 nm.

In the next figure (fig 6.4), we have shown the current density of the three radiating

dipoles in two cases. When R = 200 nm, we see clearly the three tips corresponding

to the orientation of each dipole. Again, in that case, the multipolar expansion has to

be conducted to the seventh order in order to be faithful. At R = 90 nm, the three

dipoles are almost on top of each other and one can not distinguish them anymore. It

is interesting to point out that the multipolar has to be conducted only up to the third

order now and that the two first orders almost vanish : this is almost a pure octupole

! Of course, when one takes into account the projection of the exciting electric field,
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the symmetry is broken and dipole and quadrupole appear. The polarization will be

included only by weighting properly the three dipoles :

~J = cos(Φ)2 ~J1 + cos(Φ +
2π

3
)2 ~J2 + cos(Φ− 2π

3
)2 ~J3 (6.20)

So far, to show the figures, the translation operator has been used numerically but if

we want to obtain analytical expressions of the weight of the different multipoles as a

function of R and Φ, we need to use their expressions obtained in the previous chapter.

Figure 6.4: Those density maps represent the norm of the current density generated
by the sum of the three radiating dipoles defined above. On the left, the translation R

is 200 nm whereas on the right, the translation is 90 nm.

Explicitly, each dipole is now expressed as a sum of multipoles at the origin. Unfor-

tunately, the addition-translation theorem was obtained only for the VMFs (Vector

Multipole Fields) and not for the EMFs (Electric Multipole Fields). In order to trans-

late the EMFs, we go back to the basis of VMFs, express their translations and do the

reverse change of basis on the coefficients.

~J1 = − d√
2

cos(Φ)2
∑

l′J ′M ′

(∑

l”m”

il
′+l”
√

4π Πl′l”J ′1 jl”(kR) Yl”m”(
π

2
, 0)

(
1 l′ l”

0 0 0

){
l” l′ 0

1 1 J ′

}[( 1 J ′ l”

−1 M ′ m”

)
−
(

1 J ′ l”

1 M ′ m”

)])
ΨJ ′M ′
l′

(6.21)
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~J2 = − d√
2

cos(Φ +
2π

3
)2
∑

l′J ′M ′

(∑

l”m”

il
′+l”
√

4π Πl′l”J ′1 jl”(kR) Yl”m”(
π

2
,
2π

3
)

(
1 l′ l”

0 0 0

){
l” l′ 0

1 1 J ′

}[( 1 J ′ l”

−1 M ′ m”

)
e−2iπ

3−
(

1 J ′ l”

1 M ′ m”

)
e2iπ

3

])
ΨJ ′M ′
l′

(6.22)

~J3 = − d√
2

cos(Φ− 2π

3
)2
∑

l′J ′M ′

(∑

l”m”

il
′+l”
√

4π Πl′l”J ′1 jl”(kR) Yl”m”(
π

2
,−2π

3
)

(
1 l′ l”

0 0 0

){
l” l′ 0

1 1 J ′

}[( 1 J ′ l”

−1 M ′ m”

)
e2iπ

3−
(

1 J ′ l”

1 M ′ m”

)
e−2iπ

3

])
ΨJ ′M ′
l′

(6.23)

To make the expression less cumbersome, we take the sum of those three terms and

make some factorizations.

~J = − d√
2

∑

l′J ′M ′

(∑

l”m”

il
′+l”−13

√
4π Πl′l”J ′ jl”(kR) Yl”m”(

π

2
, 0)

(
1 l′ l”

0 0 0

){
l” l′ 0

1 1 J ′

}

[( 1 J ′ l”

−1 M ′ m”

)
(cos(Φ)2 + cos(Φ +

2π

3
)2 ei(m”−1) 2π

3 + cos(Φ− 2π

3
)2 e−i(m”−1) 2π

3 )

−
(

1 J ′ l”

1 M ′ m”

)
(cos(Φ)2+cos(Φ+

2π

3
)2 ei(m”+1) 2π

3 +cos(Φ−2π

3
)2 e−i(m”+1) 2π

3 )
])

ΨJ ′M ′
l′

(6.24)

Finally, one can obtain the analytical expressions of the coefficient by a simple change

of basis :

JJ
′M ′

e (R,Φ) =

√
J ′ + 1

2J ′ + 1
cJ
′M ′
J ′−1 (R,Φ)−

√
J ′

2J ′ + 1
cJ
′M ′
J ′+1 (R,Φ) (6.25)

JJ
′M ′

m (R,Φ) = cJ
′M ′
J ′ (R,Φ) (6.26)

JJ
′M ′

l (R,Φ) =

√
J ′

2J ′ + 1
cJ
′M ′
J ′−1 (R,Φ) +

√
J ′ + 1

2J ′ + 1
cJ
′M ′
J ′+1 (R,Φ) (6.27)
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JJ
′M ′

l′ (R,Φ) =
∑

l”m”

il
′+l”−13

√
4π Πl′l”J ′ jl”(kR) Yl”m”(

π

2
, 0)

(
1 l′ l”

0 0 0

){
l” l′ 0

1 1 J ′

}

[( 1 J ′ l”

−1 M ′ m”

)
(cos(Φ)2 + cos(Φ +

2π

3
)2 ei(m”−1) 2π

3 + cos(Φ− 2π

3
)2 e−i(m”−1) 2π

3 )

−
(

1 J ′ l”

1 M ′ m”

)
(cos(Φ)2 + cos(Φ +

2π

3
)2 ei(m”+1) 2π

3 + cos(Φ− 2π

3
)2 e−i(m”+1) 2π

3 )
]

(6.28)

We now express the multipolar coefficients up to the third order. Due to the selection

rules of the 3j and 6j coefficients, only nine terms are non zero.

J1−1
m (Φ, R) = −3

4
e2iΦfd(R) c11

m (Φ, R) =
3

4
e−2iΦfd(R) (6.29)

J2−2
m (Φ, R) = −9

8

√
3

5
e−2iΦfq(R) c20

m (Φ, R) =
9

2
√

10
fq(R) c22

m (Φ, R) = −9

8

√
3

5
e2iΦfq(R)

(6.30)

J3−3
m (Φ, R) = −9

4

√
5

7
fo(R) c3−1

m (Φ, R) =
9

8

√
3

7
e2iΦfo(R) (6.31)

J31
m (Φ, R) = −9

8

√
3

7
e−2iΦfo(R) c33

m (Φ, R) =
9

4

√
5

7
fo(R) (6.32)

It is worth noting that the R dependance for multipoles of same J is exactly the same

and that’s why we have defined the functions fd, fq and fo.

fd(R) = j0(kR) + j2(kR) (6.33)

fq(R) = j1(kR) + j3(kR) (6.34)

fo(R) = j2(kR) + j4(kR) (6.35)

We are now done with the determination of the multipolar coefficients of the current

distribution we have chosen to model the threefold symmetry nanoparticle. Before

moving to the second step in the next section, it is interesting to depict the evolution of

those coefficients as a function of R. To do this, we take the sum of the modulus squared

of the multipoles in each irreducible subspace. One can see right away that the result is

independent of the polarization from the definition of the coefficients. This norm allows

to see the relative contributions of each multipolar orders compared to each other as a

function of the size of the nanoparticle. The result is given in figure 6.5.

On the figure 6.5, we see that for very small object (with a radius less than 20 nm), the

current distribution is almost only dipolar. Then, as the size of the object increases,
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S ÈcJM 2

Figure 6.5: This curve represents the evolution of the norm of each multipolar order
as a function of the translation length R. The red curve is the dipolar order, the blue
one is the quadrupolar order, the green one the octupolar order and the black one is

the J = 4 order.

the higher multipolar terms appear one after the other. The sizes we are interested in

experimentally are for a radius between 50 nm and 100 nm. For those sizes, one can

observe we are exactly at the scale where the dipolar order and the quadrupolar orders

become comparable. The octupolar order also appears within this scale. We have plot

in black the J = 4 order in order to show that, for a radius inferior to 100 nm, its

contribution is negligible and we were safe by stopping our description at the J = 3

order.

6.1.3 Polar response

We now have all the elements to compute the polar responses which are measured in the

experiment depicted in figure 3.2. In this experiment, the polarization of the incoming

electric field φ is controlled by an half waveplate. Through an imaging system, the

nanoparticle is excited and generates a current distribution. This current distribution

is described according to the model of the previous section. This current distribution

is described as a sum of a dipolar, a quadrupolar and a hexapolar multipoles. The

radiation of each multipole is then propagated through the optical system thanks to the

multipolar PSFs calculated in the previous chapter. The x and y components of the

electric field are separated by a beam splitter and detected on the image plane with

photodiodes. The experimental curves are then a polar plot of the intensity Ix and Iy

as a function of the exciting field polarization φ.

The intensities can be written :
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Ix(φ,R) =

∫∫

image space

(∑

iJM

JJMi (φ,R)GiJMx

)
rdrdϕ (6.36)

Iy(φ,R) =

∫∫

image space

(∑

iJM

JJMi (φ,R)GiJMy

)
rdrdϕ (6.37)

Here, we have included the elements of the mixed Green tensor. The integral is conducted

numerically on the image space in cylindrical coordinates. Of course, the integration

over r is truncated at a distance large enough to consider the integrand negligible. The

sum over the multipolar terms is reduced to the nine terms calculated in the previous

section.

Figure 6.6: Polar response calculating according to the model described in this chap-
ter. IX is represented in red while IY is represented in blue.

6.2 Multipolar expansion of exciting fields

So far, we have been mostly concerned with the description of the response tensor itself

and how it relates the coefficients of the multipolar expansion of the electric fields to

those of the non-linear current densities. Now, we start to turn our attention to some real

excitations cases where a nanoparticle is illuminated by a realistic electric field. The aim

of this section is then to calculate the multipolar expansion of some very common electric

fields like a plane wave or a gaussian beam. We will show that only a limited number

of coefficients is needed to describe the field surrounding the nanoparticle accurately.

We have already proven in the previous section that a punctual response will need only
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the first term of the electric field expansion that is the dipolar order. As the size of

the object grows, more and more coefficients will be needed since the extension of the

nanoparticle is bigger and it then experiences larger variations of the field. However,

for sizes around 100 to 200 nm nanoparticles excited in the visible range, only a few

coefficients will be necessary and that is one of the reason why a multipolar description

is useful for such objects.

We start by expanding a vector plane wave in vector spherical harmonics. We use the

expression of a linearly polarized plane wave but a circularly one could be treated in the

same fashion. The x-polarized electric field we want to expand is then :

E(r) = exE0e
ikz (6.38)

In order to express this vector field in term of vector multipole fields, one can use the

well-known plane wave expansion :

eikz = 4π
∑

l

iljl(kr)
∑

m

Y ∗lm(θ, ϕ)Ylm(0, 0) (6.39)

Using the expression for spherical harmonics at the origin, this equation can be reduced

to :

eikz =
√

4π
∑

l

√
2l + 1 il jl(kr)Y

∗
l0(θ, ϕ) (6.40)

To express the expansion of the vector plane wave into vector spherical harmonics, one

then has to use the equation we proved earlier and that we recall here for convenience :

Yl0 eσ =
∑

JM

CJMl01σ Y
JM
l (6.41)

Then, if we plug this expression into the one of the vector plane wave linearly polarized

along a spherical basis vector eσ, we obtain its vector spherical fields expansion :

eikz eσ =
√

4π
∑

lJM

√
2l + 1 il CJMl01σ jl(kr) Y

JM
l (θ, ϕ) (6.42)

For example, for an x polarized plane wave using the previous equation and the fact

that ex = − 1√
2
(e1 − e−1), we get :

eikzex =
√

2π
∑

lJ

√
2l + 1 il

(
CJ1
l011ΨJ1

l − CJ−1
l01−1ΨJ−1

l

)
(6.43)

In this equation, one can see that a plane wave is the sum of vector spherical harmonics

of momenta 1 and -1 which is equivalent to say that a linearly polarized plane wave is
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the sum of two circularly polarized ones. This simple result is quite similar to the one

obtained by Jackson [21] who is using vector multipolar fields to expand a circularly

polarized wave plane incident along the z axis instead :

E = (ex ± iey) eikz =
√

4π
∑

J

iJ
√

2J + 1
(

ΨJ,±1
m ± iΨJ±1

e

)
(6.44)

Figure 6.7: This figure displays the real part of the electric field of a waveplane.
On the right, the exact x waveplane given by the equation 6.38 is represented with a
wavelength of 800 nm. A fictitious 200 nm nanoparticle is drawn on top of the field
density map to show which extension of the field it can experience. On the center and
on the right, a reconstruction of that field using multipolar fields is done. Only a few
coefficients are necessary to achieve a good reconstruction of the field at the vicinity of

the nanoparticle.

One important thing is that we only need a few coefficients to describe the electric field

at the vicinity of the nanoparticle. For example, for a nanoparticle which size is around

200 nm, only 3 coefficients are enough to achieve a realist electric field distribution and 4

of them lead to an accurate field behavior as one can see in the figure 6.7. Then, one has

to use only a few coefficients to describe the electric field and the number of multipolar

coefficients we need for the current density is also very limited. We have shown in the

previous chapter that only 3 of them (dipolar, quadrupolar and octupolar) are needed to

recover experimental response for the size of nanoparticles we have. According to those

informations, only a few elements of the irreducible response are needed to describe the

nanoparticle as it will be shown in the last section of this chapter.

6.3 Reconstruction of the fully irreducible response tensor

The objective of this section is to show that it is possible to access to the components

of the irreducible response tensor introduced in chapter 4 using the model described in

chapter 3. The methodology here is quite simple : knowing the multipolar expansion of

the nonlinear current J (2) thanks to the analysis of experimental data along a model and
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the multipolar expansion of the incoming field, one can solve a set of algebraic equations

to retrieve the irreducible response tensor R(2) defined in equation 4.29. For the sake of

simplicity, we again focus on the model of a perfect star of the previous sections with

which we deduced the components of the irreducible currents to be :

J (2)m1 =




3
4fd(R)e−2iΦ

0

−3
4fd(R)e2iΦ


 J (2)m2 =




−9
8

√
3
5fq(R)e2iΦ

0
9

2
√

10
fq(R)

0

−9
8

√
3
5fq(R)e−2iΦ




J (2)m3 T =
(9

4

√
5

7
fo(R) , 0 , −9

8

√
3

7
fo(R)e−2iΦ , 0 ,

9

8

√
3

7
fo(R)e2iΦ , 0 , −9

4

√
5

7
fo(R)

)

(6.45)

The plane wave expansion of the previous section allows us to expand a linearly polarized

waveplane as :

eikz




cosα

sinα

0


 =

√
2π
∑

lJ

√
2l + 1iljl(kr)

(
e−iαCJ−1

l01−1Y
J−1
l − eiαCJ1

l011Y
J1
l

)
(6.46)

=
∑

J

√
π(2J + 1)iJ

(
e−iα(ΨJ−1

m − iΨJ−1
e ) + eiα(ΨJ1

m + iΨJ1
e )
)

(6.47)

Following again the previous section, we truncate this multipolar expansion at J = 3

since the field is already well reconstructed near the nanoparticle at this order. Thus,

the incoming electric field is properly described by 12 terms. Fortunately, from equation

6.47, the four coefficients of each order are not independent and then the number of

independent coefficients reduces to 3. The second-order nonlinear response tensor was

expanded over the basis of electromagnetic multipole fields as :

R(2)(2k; k, k) =
∑

i1J1i2J2iJ

R
(2) J ′M ′

i1J1i2J2(J12)iJM (2k; k, k)
{{

ΨJ1
i1

(k)⊗ΨJ2
i2

(k)
}J12⊗ΨJM

i (2k)
}J ′M ′

(6.48)

We will omit the index (2) in order to simplify the lecture. The wavenumber depen-

dence of the response tensor will also be omitted from here. The basis of the electric
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fields expansions has a wavenumber k while the second-harmonic current density has a

wavenumber 2k in the following.

This tensor links the irreducible components of the current density to the one of the

exciting electric fields in the following way :

JJMi = RJ
′

i1J1i2J2(J12)iJM •
{{
EJ1i1 ⊗ E

J2
i2

}J12 ⊗ΨJM
i

}J ′
(6.49)

From here, a brute force calculation can be accomplished by expanding the tripolar

vector spherical harmonics and solving the resulting system of linear equations. However,

a great deal of simplification can be accomplished by using the knowledge about the

symmetries of the response tensor :

• Using the same reasoning as in section 1.4.2, the invariance by rotation of 2π/3

keeps only the components for which M ′ is a multiple of 3.

• The invariance by rotation of π by an axis along the tip causes RJ
′M ′

i1J1i2J2(J12)iJM =

(−1)J
′−M ′RJ

′−M ′
i1J1i2J2(J12)iJM .

• From the symmetry of the coefficients of J and E, components of the irreducible

response tensor obey the following constraint :

RJ
′M ′

i1J1i2J2(J12)iJM = (−1)M
(
RJ
′M ′

i1J1i2J2(J12)iJ−M
)∗

(6.50)

This relationship allows us to treat only half on the components of the irreducible

current since the other can be obtained straightforwardly.

• The phase of the irreducible currents can be obtained only by a specific combina-

tion of the irreducible components of the electric fields :

– Case e−2iφ for J11
m and J31

m : only the product of components EJ1−1
m EJ2−1

m

leads to such a phase. Inserting this in the developed form of equation 6.48

leads to M ′ = 3 and thus to J ′ > 3.

– Case e2iφ for J22
m : the product of components EJ11

m EJ21
m has to be used.

– Case 1 for J20
m and Jm33 : the product of components EJ11

m EJ2−1
m has to be

used.

The calculation can be carried in a relative simple manner by applying those infor-

mations. Great care needs to be taken when writing explicitly the components of the

tripolar vector spherical harmonics. Especially, the component ΨJM
i is written here as

a shortcut since the irreducible tensor product is supposed to sum over all M values.
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However, since ΨJM
i is used to fully contract the tensor and get the component in this

direction, it is in fact a tensor who has a zero value for all M except in the reading direc-

tion in which the component is one. Thus, we have written directly ΨJM
i as a shortcut to

signify that the sum of the second irreducible product is dealt by the nature of the last

tensor. Moreover, we have not emphasized so far the covariant/contravariant feature of

this formalism but it is necessary to take it in account here. Since ΨJM
i has the nature

of a contravariant vector in the basis of vector spherical harmonics, its components need

to be inserted with the metric tensor defined in equation 1.34.

Once the calculation is fully carried out, one obtains the following non-zero components

of the fully irreducible response tensor :

R33
m1m1(2)m11 = − j0

4π R33
e1e1(2)m11 =

j2
4π

(6.51)

R60
m2m2(4)m22 = − 27

80π

√
77
5 j1 R60

e2e2(4)m22 =
27

80π

√
77

5
j3 (6.52)

R60
m2m2(4)m20 = 9

80π

√
77
5 j1 R60

e2e2(4)m20 =
9

80π

√
77

5
j3 (6.53)

R93
m3m3(6)m33 = − 3

28π

√
663
5 j2 R93

e3e3(6)m33 =
3

28π

√
663

5
j4 (6.54)

R93
m3m3(6)m31 = 3

140π

√
663
5 j2 R93

e3e3(6)m31 = − 3

140π

√
663

5
j4 (6.55)

Where all the spherical Bessel functions have kR as an argument, k being the wavenum-

ber and R the size of translation of the dipoles (i. e. the nanoparticle size). It is

interesting to observe that considering the limit of kR tending to zero makes all the

coefficients vanishing except the one created by the component Ψ1±1
m of the incoming

electric fields. For point objects, the irreducible response tensor reduces to this compo-

nents and can be straightforwardly calculated. On the other side, for extended objects,

the components of the irreducible tensor linking dipolar current and electric field can be

calculated easily using the limit case.

The numerical values of the components of the irreducible tensor for a nanoparticle

corresponding to R = 60nm are given in table 6.1. This table shows that the response

tensor is mainly dominated by a few components, especially R60
m2m2(4)m22. Intuitively,

the nature of the response has a simple shape and one thus could expect that such a

response takes its origin from a limited amount of components.

Those components are calculated along the model of the previous section and are a result

of this model rather than a fundamental result of the formalism. However, it shows

that the formalism is complete in the sense that the fully response tensor defined for its

interesting geometric properties can be calculated for specific cases allowing comparisons

between different nanoparticles in terms of a limited amount of coefficients. Moreover,
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kR = 1 R33
i1i1(2)m11 R60

i2i2(4)m22 R60
i2i2(4)m20 R93

i3i3(6)m33 R93
i3i3(6)m31

i = m 0.067 0.13 0.042 0.024 0.0049

i = e 0.0049 0.0038 0.0013 4× 10−4 7.9× 10−5

Table 6.1: Value of the components of the fully irreducible tensor for kR = 1 (R =
60nm).

this model corresponds properly to the optical response of a nanostar with a good shape.

Thus, experiments can be achieved to obtain the value of R for a specific nanoparticle

and the numeric value of the components are obtained accordingly.
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Chapter 7

Time-domain experiments

While the purpose of this work, so far, has been to link the spatial properties of nanopar-

ticles to the multipolar nature of their responses, this part will introduce ultrafast non-

linear spectroscopic techniques that allow to study the dynamics of the excited nanopar-

ticles. In this first chapter, we are going to review the basics of ultrafast spectroscopy

and give some of its results applied to the study of Chlorophyll a and LHCII. The next

chapter will provide informations on how nonlinear spectroscopy can be applied to study

the dynamics of nanoparticles.

7.1 General framework of ultrafast optical experiments

7.1.1 Measuring response function using ultrafast nonlinear spectroscopy

In the first chapter, nonlinear response functions have been introduced in the frequency

and in the time domains. In order to remain focused on the spatial properties, the fields

were considered to have an harmonic time dependence and then response functions

were expressed in the frequency domain. However, when one excites a system with

a time-limited pulse, it is possible to gain information about the dynamic the spectral

components as well as their couplings. In this chapter, we will focus mainly on the third-

order nonlinear polarization P (3)(t) and will assume that the pulses are time-ordered.

Then, they can be labelled as E1, E2 and E3. According to those conditions, the

nonlinear polarization can be expressed as follow :

P (3)(t) =

∫ +∞

0
R(3)(t3, t2, t1)·E3(t−t3)⊗E2(t−t3−t2)⊗E1(t−t3−t2−t1)dt1dt2dt3 (7.1)
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In the impulsive limit, the pulses are considered short enough compared to the dynamic

of the system and the time-dependence can be approximated as a Dirac function.

E3(t) = E3δ(t)e
±ik3r (7.2)

E2(t) = E2δ(t+ Tw)e±ik2r (7.3)

E1(t) = E1δ(t+ Tw + τ)e±ik1r (7.4)

In this case, the integrals in equation 7.1 are easily calculated with the Dirac func-

tions and a measurement of the polarization is directly a measurement of the response

function R(3)(t, Tw, τ). While we have only been concerned so far with classical consid-

erations, the physical processes involving photosynthetic molecules are well described

in terms of a time-dependent perturbation on the density matrix. Since photosynthetic

complexes are a side topic in this manuscript, the quantum theory behind nonlinear op-

tical experiments will be described quickly and the lector is redirected to the literature

for more information[86]. Quantum theory of nonlinear optics has not been used so far

for nanoparticles since it is not expected to bring important corrections. However, this

theory could still be applied for such systems to interpret their nonlinear responses in

terms of eigenmodes. The density matrix is a powerfull tool to interpret microscopically

the informations contained in the response signal and is defined by :

ρ(t) = |ψ(t)〉〈ψ(t)| (7.5)

Using a density matrix formalism, the expectation value of an operator is obtained by

taking the trace with the density matrix. In nonlinear optics, the polarization is then

calculated in the following way :

P (r, t) = Tr(P (r)ρ(t)) (7.6)

In order to compute the time-dependent expectation value of the polarization, it is neces-

sary to know the time-evolution of the density matrix which is given by the Liouville-von

Neumann equation :
∂ρ

∂t
= − i

~
[H, ρ] (7.7)

Where H is the Hamiltonian of the system. It is not possible to solve this equation in

general and one has to rely on Dyson series to find the formal solution of the Liouville-von
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Neumann equation using the interaction picture :

ρ(t) = ρ(0)
+∞∑

n=1

(
− i

~

)n ∫ t

0
dτn

∫ τn

0
dτn−1...

∫ τ2

0
dτ1

U0(t)
[
H ′(τn),

[
H ′(τn−1), ...

[
H ′(τ1), ρ(0)

]
...
]]
U †0(t) (7.8)

In nonlinear optics, the interaction Hamiltonian is −µE in the scalar approximation

where µ is the dipole transition vector and E the incident electric field. The nonlinear

polarization is obtained by taking the trace according to equation 7.6 :

P (n)(t) =
(
− i
~

)n ∫ +∞

0
dtn

∫ +∞

0
dtn−1...

∫ +∞

0
dt1〈µ(tn+...+t1)[µ(tn−1)+...t1), ...[µ(0), ρ(0)]...]〉×

× E(t− tn)E(t− tn − tn−1)...E(t− tn − ...− t1) (7.9)

By identification with equation 7.1, the response function R(3)(t3, t2, t1) is :

R(3)(t3, t2, t1) = 〈µ(t3 + t2 + t1)[µ(t2 + t1), [µ(t1), [µ(0), ρ(0)]]]〉 (7.10)

Since the third-order response function is constituted of three commutators, it is com-

posed of a sum of 8 signals, each corresponding to a different pathway of excitation.

Moreover, each electric field interaction comes with a positive or a negative phase con-

tribution and thus increases dramatically the number of possible combinations. Fortu-

nately, multiple tricks exist to recover each part of the signal separately[86]. The first

of them is time ordering that constrains the pulses to interact in a definite order. Sec-

ondly, one can use the rotating-wave approximation, which consists of eliminating the

elements that have a rapid oscillatory phase term, to reduce drastically the number of

relevant contributions. Finally, since each electric field carries a wavevector that will

contribute positively and negatively, the signals will be emitted in all possible direction

±~k1 ± ~k2 ± ~k3. However, when one does not want to use a box-car geometry in order

to keep an experiment close to a pump-probe geometry, it is still possible to disentangle

the different contributions to the response function using phase cycling. This technique

consists of sending the two first pulses collinearly through the sample with a controlled

relative phase. By cycling the experiment over different phase delays, one can recover

the different components of the signal by doing appropriate linear combinations of the

experimental datas.
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Figure 7.1: Non-rephasing interac-
tion pathway.

According to the previous paragraph, each ele-

ment of the signal can be detected separately and

thus, one can gain a lot of information about the

system being probed. As an example, an ele-

ment of the sum can be expressed as 〈µ(t3 + t2 +

t1)µ(0)ρ(0)µ(t1)µ(t2 + t1)〉 and is depicted on the

adjacent double-sided Feynman diagram that al-

lows to keep track of the different patterns of in-

teraction and to calculate easily the components

of the response function. We give now a typical

example of such calculation in the simple case of

a two level system in the scalar approximation.

The first interaction brings the system in a coher-

ence state with a transition proportional to µab.

The system then evolves freely for a time t1 with a factor e−iωabt1−Γabt1 where Γab is

a phenomenological decay of the coherence. The second pulse brings the system in a

population state proportionally to µab for a time t2 and the last pulse puts it back in

a coherence state again evolving in the same way than the previous one for time t3.

Finally, the trace of the density matrix is taken in order to make the measurement and

the response function is :

〈µ(t3 + t2 + t1)µ(0)ρ(0)µ(t1)µ(t2 + t1)〉 = µ4
abe
−iωabt1−Γabt1e−iωabt3−Γabt3 (7.11)

Where no population relaxation has been included during time t2. This contribution

to the signal is called non-rephasing because the first and third pulses add a phase

e−iωabt in both case. This way of modeling third-order response function is the simplest

possible and is in fact too simple. For example, the decoherence taken as an exponential

decay corresponds to a limiting case. A more refined description can be achieved and

measured using 2D electronic spectroscopy (2DES). Moreover, more complex systems

like light harvesting complexes are usually multilevel systems with a complex manifold of

coupled states that need more involved investigations. In the next section, measurements

of the decoherence function, the lineshape function, on chlorophyll a is provided and is

followed by measurements of 2D spectra in LHCII which contains multiple molecular

excited states.
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7.1.2 2D electronic spectroscopy

Two-dimensional electronic spectroscopy is the most complete technique to access to the

full third-order nonlinear optical response R(3)(t, Tw, τ). Schematically, the experiment

is represented in figure 7.2

Figure 7.2: Figure from [86]. Three pulses hit the sample with wave vector ~k1,~k2
and ~k3 pass through the sample and generate signals in the directions ±~k1 + ±~k2 ±
~k3 which correspond to different interaction pathways (different Feynman diagrams).
Those components of the full response are acquired by placing the detector in the proper

direction.

The experiment in the lab uses a regenerative amplifier laser system (Legend Elite,

Coherent) that provides pulses centered at 800 nm (0.8 W, 1 kHz, 40 fs). The beam is

then split in two as one can see in figure 7.3, one for the pump path and one for the

probe path.

On the pump-path, the pulses are used to pump a home-built, two-stage optical para-

metric amplifier (OPA) to generate near-infrared wavelengths that are doubled to fall

in the visible. The obtained pulses are centered around 665 nm to be resonant with the

Qy band of chlorophyll a or 650 to excite LHCII. This beam is then passed through a

commercially available acousto-optic programmable dispersive filter (Dazzler, Fastlite)

to shape the pulses. The shaping permits to create two pulses from an incoming one

with a controlled delay and relative phase between them in order to achieve a 1×2 phase

cycling scheme[87, 88]. The Dazzler is also used to reference the shaped pulses to a

carrier frequency of 419 THz to use a partial rotating frame and to attenuate the energy

of the two pulses down to 300 nJ per two pulses. Finally, the pulse shaper is also used to

compress the pulses to 45 fs FWHM (<1.3 times transform limited) using the feedback

from an intensity autocorrelator.

The pulse in the probe path is used to generate a white light continuum by focusing

the 800 nm light in a 2 mm sapphire window. The arrival time of the white light on

the sample is controlled by a corner cube on a motorized delay stage. The white light
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is delayed in order to be the last interaction with a controlled waiting time Tw with

the first two pulses. It also acts as the local oscillator to heterodyne detect the signal.

The shaped pump pulse and the white light continuum are overlapped in the sample

sample cell and the white light is then sent to a spectrometer (Acton SP2300, Princeton

Instruments) equipped with a CCD detector (PIXIS 100B, Princeton Instruments)

OPA$Dazzler$

Sx$

SHG$
IR$Filter$

Block$
95$%$

5$%$

Legend$
Elite$

OPA$

Sapphire$

Delay$
stage$

Sx$Probe$

Ref$

50$

50$

95$%$

5$%$

Legend$
Elite$

(a) Pump Path

(b) Probe Path

Figure 7.3: Experimental setup. (a) 95% of the pulses are driven toward an OPA
that permits to tune the wavelength of the exciting pump between 550 nm and 700nm
after the SHG crystal. Then, the light passes through a Dazzler which shapes the pulses
: from one single pulse coming from the OPA, two pulses with controlled delay and
relative phase emerge from the pulse shaper and are directed toward the sample Sx.
(b) The 5 other percents are sent through a sapphire window that generates a white
light continuum and then delayed by a translation stage. This probe pulse is split in

two parts, one that crosses the pump called the probe and one reference.

7.2 Application of 2D spectroscopy to study Chlorophyll

a and LHCII

Before being able to use the experimental setup on nanoparticles, the author participated

in measurements conducted on Chlorophyll a and Light Harvesting Complex II (LHCII)

that are respectively represented in figure 7.4 (a) and (b). LHCII is one of the major

photosynthetic complex in plants and it responds to various necessities. It acts as
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antenna to gather energy from the sunlight and then transfer it toward the reaction

center. LHCII is composed of 14 chlorophyll molecules (8 Chl a and 6 Chl b) and thus

has a very intricate manifold of states. The side results obtained in this topic are briefly

presented in this section.

  
(a) (b)

Figure 7.4: Schematic representation of a Chlorophyll a molecule (a) and of a Light
Harvesting Complex II (b).

7.2.1 Lineshape analysis

So far, only a phenomenological decay was used to describe the dephasing by introducing

an exponential decay of the amplitude during the coherences time. However, dephasing

could be included more naturally by discussing the influence of the bath surrounding the

system. It is done by considering that the fluctuation of the bath slightly modifies the

dipole transition moment by interacting with the system. Then, instead of having an

harmonic oscillation eiω10t during the coherences, one now obtains the time-dependent

dipole transition moment with the following equation :

µ̇10(t) = −iω10(t)µ01(t) (7.12)

Which is formally solved in the following way :

µ10(t) = µ10(0)e−i
∫ t
0 ω10(τ)dτ (7.13)
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Assuming that the fluctuations are small, it is reasonable to express the transition fre-

quency ω10(t) as a sum of its average 〈ω10(t)〉 = ω10 and of a small time varying part

δω10(t). Using a truncated cumulant expansion to calculate the mean value of equation

7.13, the linear response function can be calculated in term of a lineshape function g(t):

〈µ10(t)µ10ρ00〉 = µ2
10e
−iω10te−g(t) (7.14)

Where the lineshape function can be expressed with the frequency-frequency correlation

function δω10(τ ′)δ10(τ ′′) :

g(t) =
1

2

∫ t

0

∫ t

0
δω10(τ ′)δω10(τ ′′)dτ ′dτ ′′ (7.15)

The frequency-frequency correlation function (FFCF) measures the ensemble averaged

frequency fluctuation of a transition over time and is sensitive to changes in the solvation

environment. In third-order nonlinear optical experiments, g(t) also describes the line-

shape of the multidimensional spectra. As an example, the non-rephasing contribution

calculated in the previous section now becomes :

〈µ(t3+t2+t1)µ(0)ρ(0)µ(t1)µ(t2+t1)〉 = µ4
abe
−iωab(t1+t3)e−g(t1)−g(t2)−g(t3)+g(t1+t2)+g(t2+t3)−g(t1+t2+t3)

(7.16)

7.2.2 Measuring the frequency-frequency correlation function

7.2.2.1 Experimental methodology

In this section, we investigate and quantify the spectral diffusion dynamics of the Qy

band of chlorophyll a in methanol, by observing the evolution of the time-dependent

portion of the FFCF utilizing partially collinear, pump-probe geometry 2D electronic

spectroscopy as described in the previous section. In order to measure the FFCF, the

center-line slope method (CLS) devised by Fayer [89] was utilized. This method enables

a simplified extraction of the FFCF.

Adding information obtained by fitting the linear spectrum, it is possible to recover

the FFCF from the experimental data. Such a strategy has also been used recently by

Marcus [90] in his study of exciton-coupled porphyrin dimers. However, it seems that

the use of the CLS method has not been used in electronic spectroscopy so far and was

restrained to vibrational systems. Here, the CLS method is used to measure directly

the normalized FFCF of the chromophores from 2D spectra.
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All measurements were conducted at ambient temperatures of approximately 298 K.

Chlorophyll a (Sigma Aldrich) was dissolved in methanol to provide a sample OD of

0.22 in a 1 mm sample cell (1 mm sapphire windows).

For each 2D electronic spectra (2DES) collected, the delay between the first two inter-

action pulses covers a total time range of 180 fs in 3 fs steps, while the Tw time remains

constant. Due to the observation of a coherent artifact which is spectrally overlapped

with the desired signal, collection of 2DES was only permissible at a shortest Tw of 250

fs. This is not a significant limitation, as the CLS method used to recover the normalized

FFCF only applies for waiting time much longer than the free induction decay (FID)

time scale. In this instance, the FID is approximately 70 fs. 2DES were collected at Tw

values extending to 400 ps, to ensure that the evolution of the 2DES over time scales

pertinent to the time-dependent portion of the FFCF was fully observed.

7.2.2.2 Results

Figure 7.5 shows the linear spectrum of Chl a in methanol. The main peak is assigned

to the Qy transition, within the plane of the porphyrin ring[91]. The peak is centered

at 665 nm (451 THz) with a bandwidth of 20 nm (14 THz). The other peaks blue-

shifted from the main peak are generally assigned to a vibronic progression from the Qy

band[92].

Figure 7.5: Linear absorption spectra of Chl a in methanol (black), with typical
spectrum of the frequency doubled OPA output overlaid (red dashed).

Figure 7.6 shows the evolution of the 2DES line shape of theQy band of Chl a in methanol

as Tw is increased, with the corresponding CLS fits overlaid which are subsequently

discussed. These 2DES are typical examples of the observed 2DES at these Tw values.
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The use of a continuum probe has been demonstrated to cause frequency dependent

distortions to the antidiagonal 2DES line width[93]. The limited minimum Tw value of

250 fs, combined with the long time scales of the processes measured here compared to

the chirp of the probe over the bandwidth of the Qy transition means no such distortions

are easily discernible here. It is however anticipated that at short Tw values, and in

cases where the time scales of the measured processes and probe chirp are comparable,

corrective procedures such as those suggested by Ogilvie[93] will become necessary..

Figure 7.6: 2DES of the Qy band of Chl a in methanol shown at Tw values of 0.3, 3,
and 10 ps (top to bottom) with corresponding CLS fits overlaid (white dashed lines).

In recent years, efforts have been made to simplify the extraction of the FFCF from

experimental 2D data, with the ellipticity method suggested by Tokmakoff[94] and the

CLS method of Fayer [89] being the most straightforward to implement. In the CLS

method, one fits a line through the maxima of the slice of the 2D spectrum at each detec-

tion frequency. Fayer have shown analytically that, under the short time approximation

where the coherence time is short compared to Tw, the gradient of this line equates the

normalized FFCF as a function of Tw :

S(Tw) = CLS(Tw) =
〈δω(Tw)δω(0)

〈δω(0)δω(0)
(7.17)

In this work, a band of about 10 THz corresponding to the highest signal intensity (to

reduce the influence of noise at the edges of the peak) was fitted with a Gaussian function

at each value of ωt and linear regression of the determined maxima were performed

through a least-squared method to yield the CLS values. Figure 7.7 depicts the CLS

progression as Tw increases. Figure 7.7 depicts the measured CLS versus Tw. These

data points were fitted with a biexponential decay with amplitude A1 and A2 and decay

constant of τ1 and τ2 as well as a baseline offset (A3) corresponding to a process with

a time scale larger than the observation window of these measurements (� 500 ps).

The determined fit parameters are displayed in Table 1. The optimal values of the

two amplitudes are similar, with A1 ≈ 0.07 and A2 ≈ 0.06, and have time constants
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of τ1 ≈ 0.5 ps and τ2 ≈ 7 ps, respectively. Supplementary to these 2DES, pump-

probe scans of the transient spectra of Chl a in methanol were also measured (not

presented here) and the Qy excited-state lifetime was found to be 110 ± 15 ps. High

temporal resolution pump-probe scans at pump-probe delay times < 1ps do not show

any discernible oscillations.

(a) (b)

Figure 7.7: (a) CLS fits of 2DES at Tw values of 0.5, 1.4, 6, and 10 ps (progressing
from thickest line to thinnest respectively). (b) 2DES of the Qy band of Chl a in
methanol shown at Tw values of 0.3, 3, and 10 ps (top to bottom) with corresponding

CLS fits overlaid (white dashed lines).

The FFCF can be phenomenologically modeled with a generalized Kubo line shape,

using a series of exponential decays, where each term may represent a certain dynamical

process :

C(t) =
∑

i

∆2
i e
− t
τi (7.18)

where ∆i and τi are the amplitude and the correlation time of the frequency fluctuation

of the ith component, respectively. No discernible oscillation is observed in the CLS

data presented in Figure 7.7, as well as in the pump-probe traces. This leads us to

conclude that there is no underdamped oscillating component in the FFCF of equation

7.18 in this instance. C(t) is related to the line shape function g(t)

g(t) =

∫ t

0
dt1

∫ t1

0
C(t2)dt2 (7.19)

which is in turn related to the linear optical response R(1)(t1) and the third-order non-

linear optical response R(3)(t1, t2, t3)

In the case where ∆iτi � 1, the line-shape function can be expressed as g(t) = δ(t)/T2

and is said to be motionally narrowed (where T2 is the homogeneous dephasing constant),

and the observed linear spectrum line shape is Lorentzian in nature. Conversely, when

∆iτi � 1, it simplifies to give g(t) = (∆i/2)t2 and can be approximated as a constant,
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corresponding to the inhomogeneous limit, and a Gaussian line shape is observed. In

many condensed phase systems, ∆iτi ≈ 1 and are classified as being in the spectral

diffusion regime. From a purely absorptive 2D spectrum, the CLS gives the normalized

FFCF as shown in equation 7.17. Comparing equations 7.17 and 7.18, the experimental

amplitudes of the exponential decay used to fit the CLS can therefore be recognized as

Ai = ∆2
i /
∑

∆2
i . By definition, S(Tw = 0) = 1. The three amplitudes in table 7.1 sum

to only 0.239. The experimental data points only begin at Tw = 250 fs. It is therefore

clear that at least one fast process is occurring within the first 250 fs that is not directly

observed in these measurements. We therefore assign an additional exponential decay

with quantities ∆0 and τ0 to account for this short process which makes up for the

shortfall of 0.761. From Table 7.1, we know the values of τ1 and τ2, while the time scale

for the baseline component, τ3 (corresponding to A3), is assigned as >1 ns. This leaves

only the value of τ0 and the total sum of the square of the fluctuation amplitude,
∑

∆2
i ,

to be determined. In order to obtain these values, we make use of the linear spectrum.

The linear spectrum is related to the FFCF via the line-shape function g(t), as shown

in equation 7.20.

I(ω) = Re
[
FT
(
e−g(t)

)]
(7.20)

A1 τ1 (fs) A2 τ2 (ps) A3

0.070 ± 0.022 500 ± 299 0.060 ± 0.012 6.9± 3.5 0.109± 0.007

Table 7.1: Fitting parameters of measured biexponential decays of the normalized
FFCF

Using this relationship, we can obtain values for
∑

∆2
i and τ0 by fitting to the experi-

mental linear spectrum. In the fit optimization performed here, the relative amplitudes

between ∆2
i are constrained according to values in Table 7.1. This means that the rela-

tive normalized amplitude, ∆0, of the extremely fast component, is set to be 0.761. The

total of the square of the fluctuation amplitudes
∑

∆2
i and τ0 were allowed to vary to

obtain the best fit to the experimental linear spectra, while the transition frequency was

allowed to vary over tight bounds around the experimentally observed transition max-

ima. For the experimental linear spectrum to be fitted, it is imperative that only the

band of the Qy transition of Chl a is used. However, the experimental linear spectrum

consists of vibronic progressions on the blue side of the main Qy transition peak.

An excellent fit to the linear spectrum is obtained. The optimized fit value for the short

time constant τ0 = 65± 10 fs while that for the total of the square of the fluctuation

amplitudes
∑

∆2
i = 42.4 THz. Despite the large errors associated with the fit to the

CLS, the recovered τ0 and
∑

∆2
i values are extremely robust since the relative amplitude

of the unknown component is large (0.761) compared to the sum of the other components
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(0.239). In cases where the relative amplitude of the unknown component is small, the

propagation of error will result in greater uncertainty in the recovered values for the

unknown component. Table 2 summarizes the values recovered from both the fit and

experiment.

Numerous experiments such as 3PEPS (3 Pulse Photon Echo Peak Shift) have been

performed on dye molecules. One common feature is the presence of a fast component

that is attributed to the inertial component of solvation. In the present study, the time

constant τ0 of 65± 10 fs is consistent with values recorded for other species elsewhere in

the literature.This fast component with ∆0τ0 = 2.36 is not in the motionally narrowed

regime that gives rise to homogeneous line-width contributions to the spectrum. This is

also obvious from observing the linear line shape, as there is no discernible Lorentzian

component, typified by a gentle slope at the spectral wings of the Voigt profile making up

the spectrum. The relative proportion of the fast component is also consistent with these

other studies. Sub-10 fs time scale components have been observed in studies of IR144

and attributed to the rapid dephasing of the initially prepared vibronic wavepacket. In

the measurements presented here, these extremely fast components are not observed.

If there is indeed a very fast sub-10 fs component, it does not significantly contribute

to the line shape, as it may well be in the motionally narrowed regime (∆τ � 1), and

the resultant Lorentzian line shape would be too narrow to contribute to the final line

shape, as discussed above.

A more exact value of the long time component of τ3 cannot be determined due to the

limited scanning range of this experimental setup, as well as limitations in achieving

reasonable signal-to-noise ratios as the signal decays. It is therefore assigned as τ3 > 1

ns. This long time component is not due to the lifetime of the excited state. The

reason is that the FFCF measured here is not the intensity of the signal as a function

of Tw but that of the slope of the peak. This long time component is a measure of the

inhomogeneity of the chromophore and has a value of 13.97 THz.

As a conclusion, the full FFCF occurs over four time scales, with each represented by an

exponential decay. The shortest time scale whose amplitude accounts for approximately

75% of the FFCF decay has a time constant of 65 fs and is attributed to the inertial

component of solvation. The next components are attributed to spectral diffusion, τ1

with a time scale of ≈500 fs and τ2, a picosecond component, of ≈7 ps, assigned to

solvent rearrangement. The long time (>1 ns) is attributed to inhomogeneity and could

be intramolecular in origin.
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7.2.3 2D spectroscopy of LHCII trimers

In this section, we follow a supermolecule approach[95] to interpret the multidimensional

optical signal from LHCII trimers.

As stated in the beginning of this section, LHCII molecules have a complex dynamics

due to the high number of couple excitonic (molecular) eigenstates. In this section, 2D

spectroscopies done on LHCII trimers are interpreted using a multilevel approach and

allowing population transfer during the population time. To do so, a superoperator in

Liouville space is introduced in order to model population transfer by a master equation

:

ρ̇ee(t) = −
∑

e′

Kee,e′e′ ρe′e′(t) (7.21)

The solution of this differential equation can be formally be obtained using a population

Green function G : ρe′e′(t) =
∑

eGe′e′,ee(t)ρee(0). The Green function is expressed as :

Ge′e′,ee(t) =
[
e−Kt

]
e′e′,ee

(7.22)

The time-evolution of the coherences ρe′e(t) = e−iωe′et−Γe′etρe′e(0) is also included in the

Green’s function which final components are :

Ge4e3,e2e1(t) = δe4e3δe2e1θ(t)
[
e−Kt

]
e4e4,e2e2

+ (1− δe4e2)δe3e1θ(t)e
−iωe4e3 t−Γe4e3 t (7.23)
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Figure 7.8: Feynman diagram equiv-
alent to 7.1 with population transfer

added.

Contrary to equation 7.11, we also need to add

a sum over states since we consider a multilevel

system. Indeed, LHCII has complex set of eigen-

states and the richness of its physics comes from

the great number of couplings between them. As

an example, the Feynman diagram corresponding

to the equation 7.11 is modified accordingly and

the element of the response function is now :

Rnr =
∑

e4e3e2e1

µge4µe3gµge1µe2g e
−iωe4gt1−Γe4gt1e−iωe2gt3−Γe2gt3Ge4e3,e2e1(t2)

(7.24)
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Experiments were conducted on LHCII trimers ex-

tracted from spinach thylakoid membranes. The

trimers were placed in the experiment previously described in figure 7.3 and their 2D

spectra were measured by tuning the OPA at 650 nm with a FWHM of 14 nm to be

resonant with the Qy transition of Chl b. The pulse from the OPA was then sent in the

Dazzler as previously mentioned and the resulting two pulses were compressed down to

55 fs.

The measured non-rephasing, rephasing and purely absorptive pathways are displayed

on the 2D Electronic spectra in figure 7.9. The first significant 2D spectra are measured

at Tw = 250 fs because the coherent artifact is present at shorter times. The purely

absorptive spectra all exhibit a diagonal resonance corresponding to molecular states of

the Chlorophyll b which vanish along time. For the longer time displayed here (1 ps),

the diagonal peak is already very weak and completely disappear around 5 ps. Those

molecular states get their energy transferred to the Chlorophyll a molecular states as

can be observed on the crosspeak that appears around (15 400 cm−1 , 14800 cm−1).

This cross peak finally decays for longer waiting time (>10 ps) when the system relaxes

to the ground state.

The fitting procedure uses a mix between global and target analysis as a strategy [96].

Since individual states can not be resolved, we use target analysis to recover the num-

ber of necessary states to recover the experimental data. Those states are those of

a compartmental model in which states having close resonances and lifetimes can not

be distinguished. This approach permits to find the number of separable states of the

system accessible by the experiment.

In this case, we first use a spectral model in which all 2D spectra are fitted using

lorentzian lineshapes while the Tw time dependence is adjusted by a linear coefficient :

Fit =
∑

Ti

aiS(ωτ , Ti, ωt) (7.25)

Where S(ωτ , Ti, ωt) is a sum over states of 2D lorenzian. Using this model, we can

distinguish 4 four main compartmental states corresponding to Chlorophyll b high (15408

cm−1) and low (15256 cm−1) and to Chlorophyll a high (14910 cm−1) and low (14700

cm−1) molecular eigenstates. The lineshapes of those four states are also defined by

the following decoherence of the population : Γhb,ha = 249cm−1,Γlb,la = 263cm−1, and

Γha,la = 354cm−1 where h and l stands for high and low and a and b stands for the two

kind of chlorophyll a and b.
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Figure 7.9: Experimental 2D electronic spectra measured on LHCII trimers. From
left to right, the columns represent the time evolution of the non-rephasing, of the
purely absorptive and of the rephasing spectra. At Tw = 0, the interesting signal is
hidden by the coherent artifact and the shortest viable data are measured at Tw = 250

fs.

Once the distinguishable states are obtained by fitting the data, the linear time coefficient

are trashed and a spectral model is proposed. This model requires to conjecture a

specific time dependence, i.e a form of the master equation rate matrix, in order to

be numerically tractable. This choice can be assisted using kinetic models and decay
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associated spectra[97]. The rate matrix chosen is the following :

K =




γla,la 0 0 0

−γha,la γha,ha 0 0

−γlb,la 0 γlb,lb 0

0 −γhb,ha −γhb,lb γhb,hb




(7.26)

To make the model simpler, we have not included the possibility for the excitation energy

transfer to move from low energy states to higher ones. If those coefficients were to be

included, they are not independent and can be calculated using the detailed-balance[95].

Moreover, the off-diagonal components are not independent with the diagonal ones be-

cause of the probability conservation :
∑

eKee,e′e′ = 0.

The fitting procedure thus uses the coefficients of the rate matrix as fitting parameters

while the resonance positions and the lineshapes parameters are given from the previous

fitting. One obtains γhb,hb = 6590fs−1, γhb,lb = 106fs−1, γhb,ha > 1ps−1, γlb,la = 782fs−1

and γha,hb < 1ps. Results from the fitting model are shown in figure 7.10 to show the

acceptable agreement between it and the data.
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Figure 7.10: Display of some 2D rephasing spectra using the parameter obtained by
the fitting procedure described in this section.
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Those results can be compared with the one obtained by K. Wells [97] whose analysis

suggested the following :

• A fast energy transfer (6 300 fs) from high chlorophyll b (15400-15500 cm−1) to

low chlorophyll a.

• An other fast energy transfer from intermediate chlorophyll b (15200-15300 cm−1)

to low ones (15000-15100 cm−1).

• A picoseconds energy transfer from chlorophyll b to chlorophyll a.

• A slow relaxation (� 10 ps) of the high energy chlorophyll a to its lower levels.

As a conclusion of this short digression, the excitation energy transfer has been inves-

tigated using a supermolecule approach. The data collected using 2DES allowed to

obtained a lot informations on the energy pathways even if the technique does not pro-

duce fully resolved spectra. More investigations are still required to disentangle further

the complicated energy transfer relaxation pathways in LHCII.



Chapter 8

Pump-Probe on nanoparticles

8.1 Eigenmodes in nanoparticles

The goal of this chapter is to introduce preliminary works on the dynamical properties

of gold nanoparticles in the visible range. While the formalism of ultrafast spectroscopy

makes a great use of quantum mechanics when molecules are investigated, nanoparticles

are described in a classical fashion and the modes probed by a spectroscopic technique

need to be clarified. Once the modes of the global electromagnetic motion are well under-

stood, it is possible to use them to calculate time-domain response function. Moreover,

since each mode belongs to irreducible representations of the symmetry group of the

nanoparticle, they fit completely in the irreducible formalism developed in the previous

part.

Those modes were firstly postulated at the beginning of this work as eigenmodes of the

electron cloud depending only on the shape and the symmetry of the nanoparticle which

acts only as a support for the modes. In the end, the exact value of measured quantity

will be calculated using the materials properties but a great deal of informations can be

obtained without that. It appears that the use of the Local Density Of States (LDOS)

concept can introduce naturally eigenmodes under some constraints [75, 98–100]. In this

section, we first present how geometric eigenmodes can be introduced in the electrostatic

limit as proposed by Boudarham and Kociak [75]. Then, we present simple calculation

of geometric eigenmodes using conformal mapping that can retrospectively be explained

using geometric eigenmodes.

149
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8.1.1 Notion of geometric eigenmodes

In this section, we present briefly the notion of geometric eigenmodes recently introduced

by Kociak[75]. The Maxwell equation ∇ · εE = 4πρf , where ε is the permittivity of

the material under consideration and ρf the free charges, can be expressed in term of

potentials :

∇ ·
(
ε(−∇Φ− ∂A

∂t
)
)

= 4πρf (8.1)

In the static limit, one then just obtains a Poisson equation for the scalar potential :

∇ ·
(
ε∇Φ

)
= −4πρf (8.2)

Equation 8.2 can be written in an integral form separating contribution from the homo-

geneous part of the material and from the inhomogeneity of the permittivity :

Φ(r, ω) = Φ∞(r, ω) + Φb(r, ω) (8.3)

Φ∞(r, ω) =

∫
ρext(r′;ω)

ε(r′, ω)|r − r′|dr
′ (8.4)

Φb(r, ω) =
1

4π

∫ ∇Φ(r′, ω) · ∇ε(r′, ω)

ε(r′, ω)|r − r′| dr′ (8.5)

In our case, where we consider the material inside the nanoparticles homogeneous, the

second term reduce to the surface contribution and can be recast in a surface equation :

Φb(r, ω) =

∫
σ(s, ω

|~r − ~s|ds (8.6)

Where σ is the induced boundary charge. Following reference [99], the expression of the

surface charge σ can be written as an eigenvalue problem with source :

2πλ(ω)σ(s, ω) = ~ns · ∇φ∞(s, ω) +

∫
F (s, s′)σ(s′, ω) (8.7)

Where ~ns is the normal vector at the boundary s. The normal derivative F (s, s′) of the

Green function in equation 8.6 and λ(ω) are defined by :

F (s, s′) = −~ns · (~s− ~s
′)

|s− s′|3 = ∂ns
1

|s− s′| (8.8)

λ(ω) =
ε2(ω) + ε1(ω)

ε2(ω)− ε1(ω)
(8.9)
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Putting the source-term to zero, one calculate the eignemodes σi of the system :

2πλiσ
i(s) =

∫
F (s, s′)σi(s′)ds′ (8.10)

In the paper written by Ouyang and Isaacson [98], it is proven that the eigenvalues

λi are real due to algebraic properties of the operator appearing in equation 8.10 and

defined by :

C =

∫
∂ns

1

|s− s′| • ds
′ (8.11)

In fact, C is not symmetric but shares its spectrum with a self-adjoint operator and

thus the λi are real. Moreover, the eigenmodes σi(s) form a basis having the following

orthogonality relationship :

∫
σi(s)σj(s′)∗

|s− s′| dsds′ = δij (8.12)

For objects having sharp shapes, i. e. the surface S of the nanoparticle is not smooth,

σi(s) may be singular are the irregular points of S and it is then more convenient to

solve the equation of the adjoint operator to C. The eigenmodes of the adjoint operator

C∗ to C are denoted τ i(s) and verify :

2πλiτ
i(s) =

∫
F (s′, s)τ i(s′)ds′ (8.13)

The introduction of the basis τ i(s) is equivalent to construct a reciprocal basis to the

basis of σi(s). Physically, the modes τ i(s) can be interpreted as a distribution of dipoles

over the surface. As a reciprocal basis, they naturally have a simple orthogonality

relationship with the original basis [101] :

∫
σi(s)τ j(s)ds = δij (8.14)

At this stage already, in equation 8.10, one can notice that the eigenproblem is scale

invariant. Thus, the eigenmodes is just a property of the shape of the objects. The size

and the material properties will appear when one will move from the eigenmodes σi/τ i

to the corresponding scalar potential φb,i/φ̃b,i respectively using equation 8.6. Being

equipped with the basis σi and its reciprocal basis τ i, one can use spectral theory [102]

to expand the Green function of equation 8.10 on its eigenstates. We define the operator

L as :

L • =

∫
F (s, s′) • ds′ (8.15)
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The Green function g(s, s′′, λ) of L is defined by :

(
L − 2πλ

)
g(s, s′′, λ) = δ(s− s′′) (8.16)

Where

g(s, s′′, λ) =
1

2π

∑

i

σi(s)τ i(s′′)

λ− λi
(8.17)

The scalar Green function of the scalar potential Gb(r, r′, ω), the dyadic Green G(r, r′, ω)

function of the corresponding electric field and the LDOS ρ that can be obtained from

G(r, r′, ω) can all be deduced from g(s, s′′, λ). This interesting feature makes g(s, s′′, λ)

a fundamental quantity which contains essential information about the shape of the

nanoparticles. However, the use of the Poisson equation as start and thus of the quasi-

static limit is a crude approximation in our case since the size of the nanoparticle is

non-negligible compared to the excitation wavelength. This procedure is strictly valid

for small nanoparticles and discrepancies will appear for bigger ones as retardation effects

will become larger. One can still argue that the nanoparticles under study in this thesis

are still small enough (≈ λ/3) to make the approximation acceptable. Moreover, further

investigations using the spectral theory of operators could allow to find eigenmodes of

the time-dependent problem rather than in the quasi-static limit.

8.1.2 Obtention of modes through conformal mapping

According to the previous section, the existence of eigenmodes that contains informations

about the symmetry is acquired. Before knowing the work in reference [75], the author

postulated the existence of eigenmodes based only on geometrical considerations. In this

case, no clear equation that permits to calculate rigorously the eigenmodes are available

but, as discussed before, any physical integral equation giving the electric field from

sources, whether it is a Poisson or a wave equation, should lead to qualitatively similar

modes since they are strongly constrained by group theory.

Two different candidates of eigenmodes were then created for the nanostars D3 starting

from well-known eigenstates of rotationally invariant problems. Those circular eigen-

states are then transformed in eigenstates of D3 using conformal mapping and group

theoretical considerations are used to assign unambiguously each eigenstates to each

irreducible representations in D3.

Those eigenmodes should not be mingled with the irreducible current densities discussed

in the previous parts of this thesis. The irreducible currents were belonging to irreducible
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representation of SO(3) while those eigenmodes are related to the irreducible represen-

tation of the point group D3. The link between the eigenmodes of the nanoparticle and

the irreducible currents can be achieved by inspecting how the representations of D3

are projected into the representation of SO(3). Thus, each eigenmode will generate a

finite and predictable number of irreducible currents. The analytical calculation of the

corresponding irreducible currents can be achieved using an appropriate Green function.

Finally, irreducible current densities obtained in such way does not depend on the in-

coming electric field and are rather adapted to the shape of the system. Thus, they

are related to the components of the irreducible tensor and offer a basis of irreducible

currents more adapted to the point group under consideration than the full irreducible

basis in SO(3).

8.1.2.1 Harmonic oscillator modes

The first candidate is the well-known Hermite polynomials basis defined by :

ψnx(x) =
( 1

π

) 1
4 1√

2mm!
Hm(x)e−

1
2
x2 (8.18)

Where Hn(x) is the Hermite polynomial of order n. The function ψnx(x) are the solution

of the eigenproblem for a harmonic oscillator. This configuration is chosen due to the

broad range of validity of the harmonic oscillator which describes the behavior of any

dynamic close to its equilibrium. The eigenmodes of the 2D circular harmonic oscillator

are just the direct product of the one of the 1D oscillator. The eigenstates are then

ψnxny(x, y) = ψnx(x)ψny(y). The basis ψnxny are the eigenvectors of the operator :

L • = −1

2
∆ •+

1

2
kr2• (8.19)

Where k describes the oscillator’s shape. For a circular oscillator, k = 1 while ”nanostars-

shaped” can be constructed using k = a+ b cos(3θ) with a and b are parameters leading

to various shapes of stars. The eigenvalues corresponding to the eigenvectors are :

λnxny = (nx + ny + 1) (8.20)

It is interesting to observe that, although the symmetry group of the circular harmonic

oscillator is SO(2) which contains only one-dimensional irreducible representation, each

level n = nx + ny is degenerated n + 1 times. Extra degeneracies can appear in two

fashions : either by coincidence when a parameter of the system has been fine tuned to

make accidental degeneracies or when some hidden symmetries have not been taken into
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account. In the case of the 2D harmonic oscillator, we fall in the second case. According

to Noether theorem, the construction of an invariant operator will correspond to a extra

symmetry called dynamic symmetry. Following reference [103], it is possible to construct

the following operator A that will commute with L :

Aij =
1

2
(∇i∇j + xixj) (8.21)

From this operator, we can define three more invariants by :

S1 =
A12 +A21

2
(8.22)

S2 =
A22 +A11

2
(8.23)

S3 =
Lz
2

(8.24)

The explicit calculation of the commutators leads to the following relationship :

[Si, Sj ] = εijkSk (8.25)

As seen in chapter 1, this is the Lie algebra of the rotation group SO(3). The 2D

harmonic oscillator possesses a dynamical symmetry that explains the degeneracies of

the level n. However, the degeneracy of the level n is 2n + 1 in SO(3) and not n + 1

as in this case. This comes from the fact that SO(3) authorizes only integer values of

J while the harmonic oscillator needs instead half-integer ones. Finally, the symmetry

group of the 2D harmonic oscillator is SU(2) which is homomorphic to SO(3).

Using conformal mapping, the eigenstates in SU(2) will be transformed in eigenstates

of the subgroup D3. However, if one wants to keep track of the association of each

eigenstates to each irreducible representation, it is first necessary to know how each

representation of SU(2) will be projected over D3. Since D3 is a subgroup of SO(3), it

corresponds to integer values of J = n/2 and can not take into account the fact that a

rotation by 2π is not the identity in SU(2). Thus, an extended group D′3 is introduced

instead. In this group, the identity E is a rotation by 4π around z while a new symmetry

operation R is introduced and is a rotation by 2π around z. Using the character table

of D3 and orthogonality relationships between characters, it is possible to construct the

character table of D′3 :
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D′3 E R 2C3 2RC3 3C ′2 3RC ′2

A1 1 1 1 1 1 1

A2 1 1 1 1 −1 −1

E 2 2 −1 −1 0 0

A′1 1 −1 −1 1 1 −1

A′2 1 −1 −1 1 −1 1

E′ 2 −2 1 −1 0 0

(8.26)

It is then easy to calculate the values of the characters of the irreducible representation

of SU(2) for the operations of symmetry in D′3 that we give in the following table :

D′3 E R 2C3 2RC3 3C ′2 3RC ′2

D0 1 1 1 1 1 1

D1/2 2 −2 1 −1 0 0

D1 3 3 0 0 −1 −1

D3/2 4 −4 −1 1 0 0
...

...
...

...
...

...
...

(8.27)

The next step is to use this table to project the reducible representation of the irreducible

ones using :

aj =
1

g

∑

k

Nkχ
(j)(Ck)χ(Ck) (8.28)

The result of the projection gives how irreducible representations of SU(2) will be written

as a linear combination of the one of D′3 :

D0 = A1 (8.29)

D1/2 = E′ (8.30)

D1 = A2 + E (8.31)

D3/2 = A′1 +A′2 + E′ (8.32)

As one could expect, the integer representation of SU(2) are projected over the represen-

tations of D3 while the half-integer ones require the introduction of the representations

of D′3. It will now be possible to label each eigenstates of D′3 according to their ir-

reducible representations since we know from which representations in SU(2) they are

made from.
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Since our problem is essentially two-dimensional, one can use conformal mapping. The

mapping that we will use is represented in figure 8.1 and the holomorphic function used

is :

z ← z +
1

4
z4 (8.33)

This mapping can be translated for the variables x and y of the plane as :

{
x← x+ 1

4(x4 + y4)− 3
2(xy)2

y ← y + x3y − xy3
(8.34)

Figure 8.1: Schematic description of the conformal mapping.

The applications of the conformal mapping on the fundamental mode and the first

doubly-degenerated higher state is displayed in figure 8.2. Those eigenstates can be

associated easily to representations A1 or E′ respectively and behave under transforms

according to the character table 8.26.

The next level n = 2 is triply degenerated in SU(2) and the conformal mapping of those

functions is represented in figure 8.3. Those three eigenstates were degenerated in the

circular geometry and the conformal mapping has projected them on A2 and E.

However, it is not obvious from the aspect of the modes if they subtend irreducible

representation or if they all have a mixture between eigenmodes of A2 and E. Group

theory provides tools to inspect the belonging of a eigenstate to an irreducible represen-

tation like the generalized Unsöld theorem[27, 104] or an automatic procedure to make

projector. The Unsöld theorem states that the sum of the square modulus of spherical

harmonics over a whole subspace is invariant by rotation :
∑

m |Ylm(θ, ϕ)|2 = (2l+1)/4π.

The generalized version of the theorem applies on any group of symmetry and affirms

that the sum of the squared eigenstates is an invariant of the group :

PR
∑

κ

|ϕ(j)
κ |2 =

∑

κ

|ϕ(j)
κ |2 (8.35)
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Figure 8.2: Obtention of the three first eigenmodes using conformal mapping. The
eigenmodes of the cylindrical symmetry are mapped toward the modes of D′3. The
first excited mode is doubly degenerated and this degeneracy is preserved through the

mapping toward the two-dimensional representation E′ of D′3.

Figure 8.3: Representation of the eigenmodes obtained from the one of the irreducible
representation D1 of SU(2).

Figure 8.4 displays this sum for the n = 2 level of SU(2) and shows that the Unsöld

theorem is followed by the eigenmodes obtained through conformal mapping.

Thanks to the Unsöld theorem, we know that the eigenmodes still form complete sub-

space but we can not disambiguate between the one of A2 and E.

P(j)
κ =

lj
g

∑

R

Γ(j)
κκ(R)∗PR (8.36)
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Figure 8.4: Sum of the squared moduli of the eigenfunction ψ20, ψ11 and ψ02. One
can observe that the function obtained is invariant by the operation of the D′3 according

to the generalized Unsöld theorem.

With g the order of the symmetry group, lj the dimension of the j-th irreducible repre-

sentation and R a group operation according to the notation of chapter 1. For D′3, all

the representations, except E and E′, are one dimensional and the projector are easily

obtained using the character table 8.26.

PA1 =
1

6

(
PE + PC3 + PC−3 + PC′2(1) + PC′2(2) + PC′2(3)

)
(8.37)

PA2 =
1

6

(
PE + PC3 + PC−3 − PC′2(1) − PC′2(2) − PC′2(3)

)
(8.38)

Where we have not included the primed operations of the group since we are interested

in the projection of D1 over A2 and E. It is again an interesting feature of the double

group D′3 that integer representation of SU(2) are projected and affected only by the

unprimed representation of D′3 and that the half-integer ones follow the primed ones.

In order to connect this section with experiments, figure 8.5 shows measurements on

aluminum nanotriangles using Electron Energy Loss Spectroscopy (EELS) made by J.

Martin [105] in the LNIO. This technique accesses to maps tightly connected to the

LDOS projected along the z axis. By varying the beam energy, various modes appears

having shapes clearly belonging to irreducible representation of D3. As can be seen,

the shape of the intensity maps obtained by this technique strongly suggests that the

eigenmodes of the nanotriangles behave like irreducible representation of the group D3.
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Figure 8.5: EELS intensity maps obtained on aluminium nanotriangles by J.
Martin[105].

8.2 Preliminary results on nanoparticles

In this section, preliminary results of time domain experiments on nanoparticles with

symmetry D3 are presented.

8.2.1 Experiment

The experimental setup used in this experiment is the one displayed in figure 7.3. How-

ever, this setup is well suited for solutions and the use of lithographed nanoparticles as

a sample is not possible with this configuration. Thus, chemical synthesis were used to

obtained nanoprisms following straightforwardly the protocol published by Yin’s group

[70]. In this protocol, 24.24 mL of distilled water was mixed and stirred with a so-

lution of silver nitrate (0.05M, 50 µL), disodium citramalate (75 mM, 0.5 mL), PVP

(Mw ≈ 25000g/mol, 17.5 mM, 0.1 mL) and hydrogen peroxide (10 wt. %, 60 µL)

at room temperature. Sodium borohydride (100mM, 50 µL) was then injected in the

mixture and the nanoprisms where obtained after letting the growth occurring.

Moreover, other colloidal solutions of nanoprisms, with less size-dispersion, were also

provided by the Xue Can’s group (NTU - MSE) following their pH-switchable fabrication

protocol to produce nano-prisms [106]

Pump-probe spectroscopy were achieved on the colloidal solution of nanoprism synthe-

sized by the author and by Xue Can’s group with no major variations. The reader is

referred to the previous chapter for detailed informations on the setup. The OPA was

tuned in order to deliver an excitation centered at 650 nm. One can see that the center
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of the main peak is positioned at 700 nm rather than 650 nm but the choice of an exci-

tation has been chosen for convenience. The lineshape of the peak is broad enough to

be excited in a large spectral band and, since LHCII requires an excitation wavelength

centered at 650 nm, both sets of experiment can be done with minor modifications of

the setup. The Dazzler was not taken out of the beam but was simply programmed to

block pulses, acting as a simple chopper for the pump-light. Both pump and probe light

were polarized parallel to the optical table.

8.2.2 Results

The pump-probe signal acquired is displayed in figure 8.6 for every probing wavelength

λ. One can observe that, although the excitation wavelength is 650 nm (bandwidth of

≈14 nm), a pump-probe signal is obtained for a large bandwidth, all over the spectral

range of the probe light.

Figure 8.6: Pump-Probe signal of a colloidal solution of nanoprisms. The pump is
centered around 650 nm and has a duration of 55 fs (1.15 Fourier-transform limited)

and the probe is a broadband white light.

A specific pump-probe trace corresponding to λpump = 650 nm and λprobe = 650 nm

is displayed in figure 8.7. A simple decaying exponential fit has been used on the data

giving a lifetime of 2 017 fs (95 % confidence interval : 1708 - 2326 fs).

The coherent oscillation inside the nanoparticle is driven by the excitation provided

by the ultrashort pulse which duration is about 50 fs. After the pump is gone, the

plasmon starts to dephase quickly with a much faster lifetime than the one measured

here. As an example Utikal [107, 108] obtains a decay time of 10 fs due to electron-

electron scattering. The microscopic mechanisms underlying this decay are still under
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Figure 8.7: Extraction of pump-probe trace at 650 nm. The decaying pump-probe
signal is fitted by a simple exponential decay, giving a lifetime of 2 ps.

investigation and depend in many parameters like the shape, the size, the material and

the surrounding environment. The plasmon could decay by pure dephasing[109] due to

local inhomogeneities in the nanoparticle or a loss of the collective mode because of the

various phase velocities. It could also be due to an energy transfer to an electron-hole

pair. This coherent oscillation is inaccessible in this experiment due to its very short

timescale and would then require much shorter pulses.

The physical phenomena corresponding to a lifetime of ≈ 2 ps and measured in this

experiment has been assigned to the relaxation of nonthermalized ”hot” electrons[110].

However, this time dependence is also highly shape-dependent and the inhomogeneous

broadening present in the experiment inevitably blurry the informations for the pump-

probe in figure 8.7. To solve this problem, Spatial Modulation Spectroscopy (SMS) has

been proposed in the literature [111, 112] to detect the signal from single nanoparticle

by modulating its position in the focal point of the excitation light. Combined with the

pump-probe setup used in this thesis, it could be used to study relaxation of the electron

cloud. Although the state oscillating coherently with the incoming field has been lost at

this stage, the ”hot” electron cloud is most likely in a geometrical eigenmode according

to previous discussions. Thus, 2DES could provide a way to inspect this conjecture and

study the behavior of those modes.

By combining knowledge of the spectral features and of the geometric eigenmodes, it

would be greatly fruitful to end in the construction of some kind of spectroscopic table

relating the eigenmodes and their properties (energy, lifetime...) to their irreducible

representations in the finite group.





Conclusion

Metallic nanoparticles offer a wide range of promising fundamental and applied devel-

opments. As the collective excitation of the electron cloud generating LSPR can be

easily excited in the visible range for such particles, their optical properties are of great

interests. Moreover, those properties can be finely tuned using different shapes and

materials. Adding the ability to couple those elementary bricks together or with vari-

ous other structures, one is virtually left with an infinite number of possible structures.

However, a deep understanding of the behavior of the nanoparticles under linear and

nonlinear excitations is still required. While a great effort has already been realized by

the community, this work had for objective to highlight the importance of the nanopar-

ticles’ symmetries and to obtain as much information as possible from it.

The most natural way to introduce symmetry considerations in nonlinear optics is

through group theory and particularly irreducible representation theory. The use of

irreducible tensors allows one to rewrite nonlinear optics with a fully irreducible formal-

ism which is the main result of this work. This formalism permits to greatly simplify the

description of the nonlinear polarization of a nanoparticle by gathering all the spatial

dependence of the response tensor in a finite number of coefficients. Indeed, instead

of taking into account the value of the exciting fields and the resulting current at each

point of space, those fields are expanded in discrete number of multipolar fields. The

link between the irreducible currents and the irreducible components of the exciting field

is the irreducible response tensor. This approach should not be mistaken for a T-matrix

one that is deeply a numerical method by essence while the irreducible tensor formalism

is rooted in analytical development and the creation of models within it.

To demonstrate the viability of the formalism, it has been applied to the description of

nonlinear optical experiments, especially polarization-resolved SHG experiments done on

threefold symmetry gold nanoparticles. The high susceptibilities of those nanoparticles

has been linked to the emergence of higher multipolar current densities as the size of

the nanoparticles increase. Nanoparticles need to be big enough in order to have non-

negligible multipolar contributions and still small enough so the plasmonic resonance

163
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still falls in the visible range. The model chosen within the fully irreducible formalism

is a simple one that describes correctly only almost perfect stars. Within the irreducible

formalism, it would then be interesting to introduce imperfections like the ones used

in the fitting models in chapter 3 or like rugosity. Vanishing elements of the response

tensor in the perfect case would no longer be zero and linking them with the shape

of the stars under consideration could permit to quantify deviations acceptable from

perfection that conserve the strong nonlinear resonances of nanostars. The modeling

procedure presented in this work could also be greatly improved by introducing a more

realistic description of the incident electromagnetic field like a gaussian beam and its

associated multipolar expansion.

The use of more complex beam shapes could in fact lead to a better ability to separately

address the components of the irreducible response tensor. Higher order modes, like

Laguerre-Gauss modes, carry a specific angular momentum and would allow to address

specific irreducible components of the response tensor, whereas the plane wave used

in this thesis to reconstruct the response tensor is not sufficient to distinguish those

components without using an already stringent model. However, a polarization-resolved

experiment already permitted to extract useful information.

This polarization-resolved experiment could fruitfully be extended to the time-domain,

as proposed in chapter 8, by looking at the polarization dependence of the pump-probe

signal. However, two main drawbacks have to be addressed in order to pursue work in

that direction. The pump-probe experiment has to be able to collect the signal from

a single nanoparticle, rather than an ensemble in solution, that requires to include a

microscope setup. Otherwise, the signal is averaged over the different directions that

the nanoparticles have in the colloidal solution and it is necessary to include the possible

reorientation of the particles during the waiting time. This microscope system would

make the non collinear crossing between the pump and the probe difficult to achieve

in the experiment and then a fully collinear pump-probe should be done. This brings

the second difficulty of extracting the pump-probe signal in a collinear setup since the

powerful pump beam will be on top of it. An appropriate phase-cycling scheme or

a spatial modulation method could perhaps be proposed to reach that goal. Two-

dimensional electronic spectroscopy is also a good candidate to study spectral properties

of nanoparticles and disentangle the possible couplings between the eigenmodes.

The ultimate goal of the spectral and spatial approaches is to make them converge toward

an unified treatment. Then, one could expect to be able to obtain information about the

spectral properties from the spatial ones. The components of the irreducible response

tensors have so far been obtained by linking the measured current density to the known

incoming electric fields. This current density can also be viewed as a consequence of the
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oscillation of the plasmon modes inside the nanoparticle. Computing those modes could

be simplified by using symmetry properties and their eigenvalues would give spectral

information. Then, since those modes belong to irreducible representations of the finite

group of the nanoparticle, they can be projected onto the representations of SO(3) , e.

g. the multipolar fields.





Appendix A

Useful relationships

This appendix recapitulates the main formulae used in this work obtained from the

literature[31, 113].

A.1 Special functions

A.1.1 Bessel functions

• Definition of the Bessel and Hankel functions

Jn(z) =
(1

2
z
)n∑

k

(
− 1

4z
2
)k

k! Γ(n+ k + 1)
(A.1)

Yn(z) =
Jn(z) cosnπ − J−n(z)

sinnπ
(A.2)

H(1)
n (z) = Jn(z) + iYn(z) (A.3)

H(2)
n (z) = Jn(z)− iYn(z) (A.4)

• Definition of the spherical Bessel and Hankel functions

jn(z) =

√
π

2z
Jn+ 1

2
(z) (A.5)

yn(z) =

√
π

2z
Yn+ 1

2
(z) (A.6)

h(1)
n (z) = jn(z) + iyn(z) (A.7)

h(2)
n (z) = jn(z)− iyn(z) (A.8)
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• Integral definition :

Jn(z) =
i−n

π

∫ π

0
eiz cos θ cosnθdθ (A.9)

• Limits :

jn(z) −→
z�1

zn

(2n+ 1)!!
(A.10)

h(1)
n (z) −→

z�n
(−i)n+1 e

iz

z
(A.11)

A.2 Angular momentum

A.2.1 Spherical harmonics

• Explicit form :

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ) eimϕ (A.12)

• Angular momentum operators :

[Lµ, Ylm] =
√
l(l + 1)C lm+µ

lm1µ Ylm+µ (A.13)

L2Ylm = l(l + 1) Ylm (A.14)

• Condon and Shortley phase choice :

Yl0(0, 0) =

√
2l + 1

4π
=⇒ Y ∗lm = (−1)mYl−m (A.15)

• Rotation :

R(θ, ϕ, ψ) Ylm =
l∑

m′=−l
D

(l)
m′m(θ, ϕ, ψ) Ylm′ (A.16)

A.2.2 Vector spherical harmonics and multipolar fields

• Definition of the vector spherical harmonics :

Y JM
l = {Y l ⊗ eS=1}JM =

∑

mσ

CJMlm1σYlm eσ (A.17)

ΨJM
l = jl Y

JM
l (A.18)
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• Equivalent definition :

Y JM
J =

~L YJM√
J(J + 1)

(A.19)

Y JM
J−1 = − 1√

J(2J + 1)
(−J~n+ i~n ∧ ~L)YJM (A.20)

Y JM
J+1 = − 1√

(J + 1)(2J + 1)
((J + 1)~n+ i~n ∧ ~L)YJM (A.21)

• Definition of the vector multipolar fields :

ΨJM
m = ΨJM

J (A.22)

ΨJM
e =

√
J + 1

2J + 1
ΨJM
J−1 −

√
J

2J + 1
ΨJM
J+1 (A.23)

ΨJM
l =

√
J

2J + 1
ΨJM
J−1 +

√
J + 1

2J + 1
ΨJM
J+1 (A.24)

• Curl and divergence of the vector multipolar fields :

∇∧ΨJM
e = −ikΨJM

m ∇ ·ΨJM
e = 0 (A.25)

∇∧ΨJM
m = ikΨJM

e ∇ ·ΨJM
m = 0 (A.26)

∇∧ΨJM
l = 0 ∇ ·ΨJM

l = −kΨJM (A.27)
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Links between different notations

In this appendix, vector spherical harmonics defined by others authors are presented

with their link to the ones defined in this work.

• Blatt and Weisskopf[114], Rose [115] :

TM
J1 = (−1)JY JM

e (B.1)

TM
J0 = (−1)J−1Y JM

m (B.2)

TM
J−1 = (−1)JY JM

l (B.3)

• Jackson [21] :

XJM = Y JM
J (B.4)

• Mie theory :

MJM = i(−1)M

√
4π
J(J + 1)

2J + 1

(J +M)!

(J −M)!
fl Y

JM
J (B.5)

M∗JM = i

√
4π
J(J + 1)

2J + 1

(J +M)!

(J −M)!
fl Y

J−M
J (B.6)
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Multipolar PSF functions

C.1 Dipolar PSF functions

gd1 (r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2

(1 + cos θ cos θ′) J0 e
ik′z cos θ′ sin θdθ (C.1)

gd2 (r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2

sin θ cos θ′ J1 e
ik′z cos θ′ sin θdθ (C.2)

gd3 (r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2

(1− cos θ cos θ′) J2 e
ik′z cos θ′ sin θdθ (C.3)

gd4 (r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2

cos θ sin θ′ J1 e
ik′z cos θ′ sin θdθ (C.4)

gd5 (r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2

sin θ sin θ′ J0 e
ik′z cos θ′ sin θdθ (C.5)

C.2 Quadrupolar PSF functions

gq1(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2
(1 + cos θ cos θ′) sin θJ1e

ik′z cos θ′ sin θdθ (C.6)

gq2(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2
(1− cos θ cos θ′) sin θJ3e

ik′z cos θ′ sin θdθ (C.7)

gq3(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2

sin 2θ sin θ′J2e
ik′z cos θ′ sin θdθ (C.8)

gq4(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2
(cos θ + cos 2θ cos θ′)J0e

ik′z cos θ′ sin θdθ (C.9)
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gq5(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2
(cos θ − cos 2θ cos θ′)J2e

ik′z cos θ′ sin θdθ (C.10)

gq6(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2

cos 2θ sin θ′J1e
ik′z cos θ′ sin θdθ (C.11)

gq7(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2

sin 2θ cos θ′J1e
ik′z cos θ′ sin θdθ (C.12)

gq8(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2

sin 2θ sin θ′J0e
ik′z cos θ′ sin θdθ (C.13)

C.3 Octupolar PSF functions

go1(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2
(1 + cos θ cos θ′) sin θJ2 sin θ2eik

′z cos θ′ sin θdθ (C.14)

go2(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2
(1− cos θ cos θ′) sin θJ4 sin θ2eik

′z cos θ′ sin θdθ (C.15)

go3(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2

cos θ sin θ′J3 sin θ2eik
′z cos θ′ sin θdθ (C.16)

go4(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2
(4 sin 2θ − cos θ′(sin θ − 3 sin 3θ))J1e

ik′z cos θ′ sin θdθ (C.17)

go5(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2
(4 sin 2θ + cos θ′(sin θ − 3 sin 3θ))J3e

ik′z cos θ′ sin θdθ (C.18)

go6(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2
(1 + 3 cos 2θ) sin θ sin θ′J2e

ik′z cos θ′ sin θdθ (C.19)

go7(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2
(6 + 10 cos 2θ+ cos θ′(cos θ+ 15 cos 3θ))J0e

ik′z cos θ′ sin θdθ

(C.20)

go8(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2
(6 + 10 cos 2θ− cos θ′(cos θ+ 15 cos 3θ))J2e

ik′z cos θ′ sin θdθ

(C.21)
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go9(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2
(7− 15 cos 2θ) cos θ sin θ′J1e

ik′z cos θ′ sin θdθ (C.22)

go10(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2
(3 + 5 cos 2θ) cos θ′ sin θJ1e

ik′z cos θ′ sin θdθ (C.23)

go11(r, z) =

∫ θm

0

( cos θ

cos θ′

) 3
2
(3 + 5 cos 2θ) sin θ′ sin θJ0e

ik′z cos θ′ sin θdθ (C.24)





Appendix D

Coupled systems of nanoparticles

for SERS and SEIRA

The goal of this appendix is to propose a first step in the design of a nanostructured

surface that can be used in SERS and SEIRA. To achieve this, the bidimensional metal

lattice has to be resonant in both infrared and visible. In this part, we use a simple model

to show the feasibility of such structure : we will assume that the surface absorption

around a wavelength is proportional to the eigenvalue number and we will use a scalar

model.

D.1 Nanowire

In this section, we present a simple model to expression the limitation induced by

nanowires used as nanoantenna. We use a scalar model to describe electromagnetic

resonance for simplification purpose. Each nanowire is assumed to be coupled with its

two nearest neighbor. This one dimensional is represented in figure D.1.

Figure D.1: Nanowires chain. Each wire resonate at ω and the coupling factor be-
tween two wires is Ω.

Thus, a matrix describing the resonance of nanowires could be written as :
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


ω Ω 0 0 0

Ω ω Ω 0 0

0
. . .

. . .
. . . 0

0 0 Ω ω Ω

0 0 0 Ω ω




(D.1)

If one would consider an infinite chain of nanowire, it is possible to loop the first and

the last element of this matrix.

This matrix eigenmodes correspond to resonance wavelength. For exemple, for a matrix

describing 1000 nanowires, the list of eigenvalues obtained is plotted on figure D.2. We

have chosen ω = 2 eV and Ω = 0.5 eV.

200 400 600 800 1000
Eigenvalues number

3

4

5

6

Eigenvalues HeVL

Figure D.2: Nanowires chain eigenvalues.

The curve D.2 is rather smooth : this does not allow high resonances. Because we

consider the resonance to be proportional to the eigenvalues density, it gives clearer

informations to plot the eigenvalues number against frequencies intervals as in figure

D.3. The resonance seems very flat except on the edges of the graph : an important

number of modes are localized at the extremal frequencies. These modes corresponds to

non-physical ones since a very low gaussian noise (ω± noise, Ω± noise) removes them.

This means that these modes correspond to perfectly collective behavior of the nanowires

assembly and can not exist in a real system.

When a gaussian noise is added, two pikes still appear but the curve is too flat to obtain

interesting resonance. This very simple example showed that nanowires does not seem

to be suitable for multi-wavelength resonator.
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1.5 2.0 2.5 3.0
Eigenvalues HeVL
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Figure D.3: Nanowires chain eigenvalues number density. ω = 2 eV, Ω = 0.5 eV. Left
: 1000 nanowires with no gaussian. Right : 1000 nanowires with a low gaussian noise.

noise ∼ 1/10 Ω.

D.2 Array of nanostars

D.2.1 Objectives

We are now going to apply the same procedure to a gold nanostar lattice. We want to

show that these objects offer a peculiar behavior in linear and non-linear optics. One

of these nanoparticles is represented in figure D.4. Thanks to their shape, it is possible

to construct an hexagonal lattice which is a two dimensional lattice. We want to show

that an array of these particles exhibits two distinct resonances and so are suitable to

design IR-visible resonator.

Figure D.4: Left : Gold nanostar. Right : hexagonal lattice made form nanostar.
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D.2.2 Scalar Model : matrix formulation

We are interested in the eigenvalues density for the nanoparticles hexagonal lattice. The

hexagonal lattice’s unit cell is depicted in figure D.5 and is used to fill the whole plane.

Each nanoparticle is linked with three neighbors by a coupling factor Ω (less than one

eV). We can consider a finite assembly of nanoparticles as represented in the right part

of figure D.5. Like in the previous section, we are looking for the eigenvalues of such a

coupling matrix. Alternatively, an infinite lattice can be modeled with a finite matrix by

coupling the edges with a dephasing factor. This is similar to Bloch functions dephasing

in a periodic lattice. In that case, the coupling matrix is no longer real but hermitian.

Figure D.5: Construction of the periodic lattice of gold nanoparticles. Left : Unit
cell in a graphen like lattice. Right : Coupling occuring for 12 nanoparticles : each

particle is coupled with its three neighbors.

The code to write the coupling matrix for an arbitrary number of nanoparticles is given

in appendix.

D.2.3 Results

The coupling matrix eigenvalue problem is solved numerically and the frequency depen-

dent eigenvalues density is plotted. We will consider different values for Ω, ω, φ and Ψ..

A new behavior appears with nanostars eigenvalues plot : a ”forbidden band” appears

near ω. This phenomena leads to two pikes at ω + Ω and ω − Ω and, thus, to a multi-

wavelength resonator.

The figure D.6 corresponds to φ = 2π
3 and Ψ = 4π

3 . The values of ω and Ω are ω = 1.2

eV, Ω = 0.4 eV in order to obtain resonances in visible and infrared (775 nm and 1551
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nm). If one increases Ω, it will appear negative eigenvalues : resonances can not be

further appart than ω − ω
3 and ω + ω

3 .

50 100 150 200 250
Eigenvalues HeVL

0.5

1.0

1.5

2.0

Eigenvalues number

0.5 1.0 1.5 2.0
Eigenvalues HeVL

5

10

15

20

Density

Figure D.6: Left : Nanostars lattice eigenvalues. Right : Nanostars lattice eigenvalues
number density. Two resonances are observed at 0.8 eV and 1.6 eV.
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Figure D.7: Left : Eigenvalues density without noise. Right : Eigenvalues density
with a gaussian noise. The resonance peaks are still important and are not translated.

We want our model to be robust : when a gaussian noise is included, the behavior of the

response is almost the same. The normalized eigenvalue density is plotted in figure The

right part of the graph has been made using five random noise iterations and taking the

average over them.

We are also interested to see how the eigenmodes are represented on the lattice. For a

better understanding, we represent the eigenvectors components on the lattice. A disk

is represented on each nanoparticle with a radius and color corresponding respectively

to the amplitude and the phase. The figure D.8 gives the first eigenmode for a 288

nanoparticles cell on an infinite lattice. One can see that the components of an eigen-

vector have all the same value. This is consistent with the fact all the particles are the

same in an infinite lattice.
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Because the lattice is infinite, the modes have to be periodic and we can observe it by

juxtaposing lattice cell as the left part of figure D.8 and taking account of the dephasing

factor we have chosen to calculate the eigenmodes. Indeed, figure D.8 also shows this

periodicity of the modes on the lattice.

Figure D.8: Left : First eigenvector on a nanoparticle’s hexagonal lattice (φ = π
3 ,

and ψ = π
4 ). Right :Same eigenvector on a bigger part of the lattice.
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Table D.1: Eigenvalues density with gaussian noise for different dephasing angles
values.

The Table D.1 shows the dependance in dephasing angles. Here ω and Ω has been

chosen to ensure there is no negative eigenvalues, ω = 2 eV and Ω = 0.5 eV. The figures
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in Table D.1 show that the gap position does not depend on φ and Ψ. As φ and Ψ

decrease, the resonances seem to be slightly sharper.

This model is a highly simplified representation of coupled systems. However, coupling

is a very general feature in physical phenomena and deep understanding is not always

necessary to have an overview of it. For example, in the present case, both the res-

onances of single units and the coupling strengths between them is taken as a given

value and adjusted to correspond to data measured. In fact, the resonance of a single

nanoparticle is a complicated function of its shape and its material while the coupling

strength depends on the gap size chosen.

To investigate the hypothesis of this appendix, lattices as the one displayed in figure D.9

has been made by e-beam lithography and sent to Paris in the group of M. Lamy de la

Chapelle where extinction measurements has been carried out. Even if those results have

to be taken cautiously, the lattices seem to exhibit two resonances in the IR and in the

visible as desired. Unfortunately, e-beam lithography is a money and time consuming

fabrication process that does not fit with the applied goal of such systems. Thus, a

PhD thesis by J. Ibrahim focuses on the development of an efficient fabrication process

using interferometric lithography and will achieve a new step in the achievement of multi

wavelength SERS substrate.

Figure D.9: Left : One of the hexagonal lattices used for the preliminary measure-
ment. Right : Extinction measurement of corresponding nano-antenna lattice. The
size of the nanostars is varied from 100 nm to 200 nm while the gap between them is

kept constant at 20 nm.





Appendix E

Algebraic properties of

translation operators

Infinitesimal translations of vector multipole fields possess a specific algebraic nature

that can be related to the operators of the Lie algebra of SO(3). Having an operator

point of view on the combined application of rotation and translation can lead to sim-

plified computation and to a better understanding of the behavior of the infinitesimal

translation operators.

The definition of the translation operators and the form of their coefficients lead us to

define a linear combination of the translation operators similar to the one ue for spherical

basis vectors.

T+ = − 1

2
√

2
(Tx + iTy) (E.1)

T 0 =
Tz
2

(E.2)

T− =
1

2
√

2
(Tx − iTy) (E.3)

We thus define the coefficients ail′m′,lm and ail′J ′M ′,lJM with i = 1,−1, 0 with are easily

obtained from cartesian definitions.

T il′m′,lm = il
′+1−l(−1)m

√
(2l + 1)(2l′ + 1)

(
l′ l 1

0 0 0

)(
l′ l 1

m′ −m −i

)
(E.4)
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T il′J ′M ′,lJM = il
′+1−l(−1)M

√
(2l + 1)(2l′ + 1)(2J + 1)(2J ′ + 1)

(
l′ l 1

0 0 0

)

×
(

J J ′ 1

−M M ′ −i

){
1 J ′ J

1 l l′

}
(E.5)

These T i operators commute. This comes from the fact that infinitesimal translations

can be expressed as a derivative. A well known property of multivariate analysis states

that partial derivatives ordering can be changed if all partial derivatives exists and are

continuous. The Ψlm and ΨJM
l satisfy this property since they are all continuous in 0

and we can thus safely say that translation operators commute.

[T i, T j ] = 0 (E.6)

Then, translation operators form an abelian Lie algebra and are generators of a com-

mutative Lie group. From the coefficients definition, we can also easily calculate adjoint

operators :

(T+)† = T− (T−)† = T+ (T 0)† = −T 0 (E.7)

All these properties are stated for scalar and vector translation operators. The infinites-

imal translation operator is in fact highly related to the gradient operator. For example,

the application of the irreducible gradient∇µ on a vector multipole field can be expressed

as :

∇µΨJM
l = (−1)J+l

√
(2J + 1)(l + 1)

∑

J ′

{
J J ′ 1

l + 1 l 1

}
CJ
′M+µ

JM1µ ΨJ ′M+µ
l+1 +

(−1)J+l
√

(2J + 1)l
∑

J ′

{
J J ′ 1

l − 1 l 1

}
CJ
′M+µ

JM1µ ΨJ ′M+µ
l−1 (E.8)

This expression can recasted in a form similar to the one in equation E.5 up to a

normalization factor by switching to 3j symbols and including the sum over l′.

To complete the algebraic structure of the operation on the multipole fields, it is possible

to mix rotation and translation to study the link between the two. We will now turn to

their relationship with angular momentum operators. We recall here angular momentum

commutators and adoints :

[Jµ, Jν ] = −
√

2 C1λ
1µ,1ν J

λ (J+)† = J− (J−)† = J+ (J0)† = J0 (E.9)
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Orbital angular momentum acting on a spherical harmonic gives :

LµYlm = (−1)l+m+µ
√
l(l + 1)(2l + 1)

(
l 1 l

−m −µ m+ µ

)
Yl m+µ (E.10)

Using this relationship, we can calculate directly LµT i :

LµT iΨlm = (−1)l+µ+i(2l−1)
√
l(l − 1)(2l + 1)

(
l − 1 l 1

0 0 0

)(
l − 1 l 1

m+ i −m −i

)
×

×
(

l − 1 1 l − 1

−m− i −µ m+ i+ µ

)
Ψl−1,m+µ+i − (−1)l+µ+i(2l+3)

√
(l + 1)(l + 2)(2l + 1)

(
l + 1 l 1

0 0 0

)
×

×
(

l + 1 l 1

m+ i −m −i

)(
l + 1 1 l + 1

−m− i −µ m+ i+ µ

)
Ψl+1,m+µ+i (E.11)

We can calculate also T iLµ and then deduce the commutators. Even if calculation is

tedious, the commutators are extremely simple :

[T+,L−] = T 0 [T+,L0] = −T+ [T 0,L0] = 0

[T−,L+] = T 0 [T−,L0] = T−

In the vector case, we can not directly calculate each term of the commutator. However,

it is possible to calculate directly the whole commutator. As a example, we study the

commutator between T+ and J−.

[T+, J−]ΨJM
l =

∑

l′J ′M ′

√
J(J + 1)−M(M − 1)

2
il
′+1−l(−1)M−1Πll′JJ ′

(
l l′ 1

0 0 0

)
×

×
(

J J ′ 1

−M + 1 M ′ −1

){
1 J ′ J

1 l l′

}
Ψ′J

′M ′
l

−
∑

l′J ′M ′

√
J ′(J ′ + 1)−M ′(M −′ 1)

2
il
′+1−l(−1)MΠll′JJ ′

(
l l′ 1

0 0 0

)
×

(
J J ′ 1

−M M ′ −1

){
1 J ′ J

1 l l′

}
Ψ′J

′,M ′−1
l (E.12)

At this stage, we use the definition Πa...d =
√

(2a+ 1)...(2d+ 1) to make the equations

better looking. Using cancelation properties of 3j symbols, we can simplify the sum over
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M ′.

[T+, J−]ΨJM
l = − 1√

2

∑

l′J ′

[√
J(J + 1)−M(M − 1)

(
J J ′ 1

−M + 1 M −1

)

+
√
J ′(J ′ + 1)−M(M + 1)

(
J J ′ 1

−M M + 1 −1

)]
×

× il′+1−l(−1)MΠll′JJ ′

(
l l′ 1

0 0 0

)
×
{

1 J ′ J

1 l l′

}
Ψ′J

′M
l (E.13)

To continue, we need to use the following relationship between 3j symbols :

(
J J ′ 1

−M M 0

)
= − 1√

2

[√
J(J + 1)−M(M − 1)

(
J J ′ 1

−M + 1 M −1

)
+

√
J ′(J ′ + 1)−M(M + 1)×

(
J J ′ 1

−M M + 1 −1

)]
(E.14)

Inserting this result in the previous equation, we can make the T 0 coefficients appear and

obtain the commutators [T+, J−] = T 0. All the commutators can be calculated in a sim-

ilar fashion. The result are identical with those obtain in the scalar case except that we

have here a composite angular momentum J instead of the orbital angular momentum L.

[T+, J−] = T 0 [T+, J0] = −T+ [T 0, J0] = 0

[T−, J+] = T 0 [T−, J0] = T− (E.15)

Finally, one can see that the algebraic properties of the operators of translation and

rotation keep the simplicity they usually have when applied on simpler basis. The use

of these properties can offer a great deal of simplification when carrying out specific

calculations. Moreover, it is expected that more investigations on the structure of this

specific representation of the Lie algebra of rotation and translation in 3D space could

lead to an improved understanding of the one in the corresponding Lie group.



Appendix F

Résumé de la thèse en français

F.1 Introduction

Ce résumé en français contient les idées clefs développées dans chacun des chapitres de

ce manuscrit. Cette thèse prolonge des travaux sur les relations entre la symétrie et

les propriétés optiques non-linéaires de nanoparticules métalliques commencés de longue

date par J. Jerphagnon [34] puis par J. Zyss [35] dans des cas différents.

Le premier s’est intéressé à l’implémentation d’un formalisme irréductible afin de sim-

plifier l’écriture et la compréhension des propriétés des tenseurs qui décrivent le com-

portement de la matière condensée dans des domaines aussi divers que l’optique ou la

mécanique. L’utilisation de l’irréductibilité, au sens de la théorie des groupes, afin de

décrire les propriétés physiques de la matière a puisé son origine dans les avancées fonda-

mentales effectuées par E. Wigner [28] et par Fano et Racah dans le cadre de la physique

atomique.

L’étape suivante, franchie par J. Zyss, a été de s’intéresser à l’irréductibilité de tenseurs

”ponctuels” au sens où ils décrivent les propriétés d’un objet qui a une extension spatiale

négligeable. Ainsi, J. Zyss et S. Brasselet ont pu optimiser les tenseurs d’hyperpolarisabilités

non-linéaires afin que les polarisabilités associées aient une grande amplitude. Dans ce

but de créer des émetteurs non-linéaires performants, ils ont ainsi été en mesure de

constater que les molécules ayant un comportement satisfaisant puisaient l’efficacité de

leur réponse dans les composantes irréductibles d’ordres supérieurs. En effet, un tenseur

T décrivant des propriétés physiques pourra toujours s’exprimer comme une somme de

tenseurs irréductibles T J :

T =
∑

⊕J
T J (F.1)
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Cette écriture consiste à décomposer le tenseur initial en une somme de tenseurs dont

la rotation s’effectue à l’aide des représentations irréductibles du groupe des rotations

SO(3). Un point de vue équivalent consiste à affirmer que les tenseurs irréductibles for-

ment une base de décomposition pour les tenseurs isomorphe aux harmoniques sphériques.

Revenant aux molécules, la composante octupolaire J = 3 a permis d’apporter de nou-

velles possibilités d’ingénierie et donc de sélectionner une nouvelle classe de molécules,

les molécules octupolaires, comme de bonnes candidates pour une hyperpolarisabilité

β importante. Ces molécules possèdent idéalement des composantes dipolaires J = 1

et quadrupolaires J = 2 nulles et leur hyperpolarisabilité totale est donc seulement

contenue dans la composante octupolaire βJ=3.

L’objet de la présente étude est d’étendre ces travaux aux nanoparticules métalliques.

Les nanoparticules métalliques ont l’avantage par rapport aux molécules de pouvoir être

utilisées à résonance avec un endommagement limitée ainsi que de pouvoir être orga-

nisées spatialement afin d’ajouter un effet de réseau à l’efficacité d’une nanoparticule

unique. Cependant, le fait de s’intéresser à des objets qui ne sont plus négligeables

devant la longueur d’onde amène de nouvelles difficultés théoriques fondamentales qui

constituent le noyau de cette thèse ”Propriétés optiques non-linéaires de nanopar-

ticules métalliques”. Ces éléments seront développés dans les sections de ce résumé

mais l’on peut d’ors et déjà indiquer que la nécessité de prendre en compte les possibles

variations du champ dans le volume de la nanoparticule imposerait l’utilisation d’un

champ de tenseurs irréductibles si l’on voulait se contenter de réduire la partie vecto-

rielle des champs et donc spinorielle du tenseurs. Ainsi, une description qui conserve

l’esprit des précédents études, c’est à dire réduire la réponse en un nombre fini de com-

posantes qui prennent en compte la globalité de l’objet afin de contenir sa symétrie,

doit non seulement réduire les parties spinorielles et orbitales. Les termes ”spinoriels”

et ”orbitaux” ne doivent pas être interprétés dans le cadre de la théorie du moment an-

gulaire en mécanique quantique mais bien dans celui de la physique classique. En effet,

la composante spinorielle du champ décrit sa partie vectorielle dans l’espace e1, e0 et

e−1 alors la composante orbitale s’intéresse aux fonctions qui dépendent des variables de

l’espace. Chacune de ces composantes peut être réduite séparément mais les propriétés

d’irréductibilité sont alors perdues car un produit direct de tenseurs irréductibles n’en

est pas un. Il est alors nécessaire d’introduire la notion de produit tensoriel irréductible

afin de résoudre ce problème et de donner aux formalismes les propriétés algébriques

souhaitées.

Ce résumé va donc reprendre chacune des parties de cette thèse en se concentrant sur les

résultats obtenus. La première section est un résumé succinct des éléments théoriques

nécessaires et des bases choisies dans la suite de l’étude. La section suivante présente

les résultats préliminaires qui ont motivé l’introduction d’un formalisme totalement
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irréductible. La troisième section développe ce formalisme et l’applique à l’expérience

présentée dans la section d’avant. La quatrième et dernière section présente les travaux

préliminaires effectués dans le domaine temporel.

F.2 Cadre de l’étude

F.2.1 Tenseurs irréductibles et champs multipolaires

Afin de décrire le comportement optique non-linéaire d’objets ayant des symétries élevées,

l’utilisation des tenseurs irréductibles s’impose naturellement. Dans ce formalisme, un

tenseur T de rang n est décomposé en une somme directe de parties irréductibles comme

indiqué à l’équation F.1. Chaque tenseur irréductible T (τ)J se transforme par rota-

tion selon les représentations irréductibles de SO(3), c’est-à-dire en leur appliquant les

matrices de Wigner. Un tenseur cartésien peut se décomposer en plusieurs tenseurs

irréductibles du même ordre J et l’indice de séniorité τ sert alors à les distinguer.

Le champ électromagnétique peut lui même être décomposée en une somme de tenseurs

irréductibles qui sont solutions de l’équation de Helmholtz sphérique. Leurs parties an-

gulaires sont les harmoniques sphériques vectorielles Y JM
l (θ, φ) issues du produit direct

irréductible entre les harmoniques sphériques scalaires et un spineur S = 1. La partie

radiale fl est quant à elle une fonction de Bessel sphérique ou une des fonctions qui y

sont associées :

ΨJM
l (r, θ, φ) = fl(kr)Y

JM
l (θ, φ) (F.2)

Une autre base issue d’une combinaison linéaire de la précédente et dû à Hansen permet

un traitement algébrique plus adapté à l’électromagnétisme :

ΨJM
m = ΨJM

J (F.3)

ΨJM
e =

√
J + 1

2J + 1
ΨJM
J−1 −

√
J

2J + 1
ΨJM
J+1 (F.4)

ΨJM
l =

√
J

2J + 1
ΨJM
J−1 +

√
J + 1

2J + 1
ΨJM
J+1 (F.5)

En effet, ΨJM
m et ΨJM

e sont de divergences nulles et permettent de décomposer naturelle-

ment les champs de radiation sur cette base.
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F.2.2 Fabrication et description des échantillons

Afin d’effectuer des mesures optiques sur les nanoparticules, ces dernières ont été fab-

riquées en utilisant un procédé de lithographie électronique dont les étapes sont résumées

à la figure F.1. Les étapes de fabrications principales sont les suivantes :

• Sur un substrat de verre nettoyé, une couche de PMMA est déposée par tournette

afin d’obtenir une épaisseur de 150 nm. Par évaporation, une couche de quelques

nanomètres d’argent est à son tour déposée afin d’assurer une bonne conductivité

pour la lithographie électronique ;

• Le faisceau électronique d’un MEB (Microscope Electronique à Balayage) est

utilisé pour insoler la résine. Il s’agit d’une résine positive et les zones insolées

sont donc celles où sera déposé de l’or;

• Après avoir enlevé la couche d’aluminium à l’aide d’une solution de KOH, du

MIBK est utilisé pour l’étape de révélation en enlevant le PMMA insolé;

• De l’or est déposé sur l’échantillon par évaporation. Le reste de résine est finale-

ment enlevèe par lift-off.

Glass

Spin Coating

PMMA

Evaporation

E-beam lithography

Development

Gold deposition

Lift off

Aluminium

Figure F.1: Résumé des différentes étapes nécessaires à la conception d’un échantillon
par lithographie électronique.

Par cette méthode, de nombreux échantillons ont été fabriqués. Quelques réalisations

sont présentées à la figure F.2. Bien que la majeure partie de cette thèse soit con-

centrée sur les propriétés de nanoparticules uniques, les couplages entre nanoparticules
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constituent une étape supplémentaire qui a aussi été considérée (voire l’appendice D).

Les nanoparticules sont suffisamment éloignées de façon à négliger les interactions entre

elles.

Figure F.2: Différents types de réseaux obtenus par lithographie électronique.

F.3 Génération de seconde harmonique pour les nano-étoiles

F.3.1 Description de l’expérience

Les nanoparticules d’or en forme de nanoétoiles possèdent une susceptibilité non-linéaires

du second ordre élevée (44 pm/V). Ainsi, cette dernière est plus importante que celle

du KTP (34 pm/V) qui est déjà un cristal non-linéaire de qualité. Afin d’étudier

cette réponse non-linéaire, l’expérience schématisée à la figure F.3 (e) à été conduite

préalablement à ce travail de thèse. Les nanoparticules sont excitées par un faisceau

issu d’un laser titane- saphir et de longueur d’onde centrale égale à 800 nm. La polar-

isation de l’onde incidente est contrôlée par une lame λ/2. Un objectif de microscope

sert à focaliser l’excitation sur une nanoparticule. La mesure effectuée par les deux pho-

todiodes (voir légende) permet d’obtenir les intensités Ix(φ) et Iy(φ) des composantes

Ex et Ey du champ de seconde harmonique rayonné par la nanoétoile.

Une des premières étapes de cette thèse fut de décrire et d’interpréter les résultats

expérimentaux de cette expérience. La nécessité de décrire correctement la propaga-

tion du champ électrique à travers le système optique a conduit à prolongé des calculs
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Figure F.3: Cette figure résume les différentes étapes expérimentales réalisées afin
d’obtenir la SHG de nanoparticules uniques. L’expérience représentée en (e) permet
d’exciter des nanoparticules uniques telle que celles visible en (a) tout en contrôlant
la polarisation du champ incident grâce à la lame λ/2. L’intensité du signal SHG est
alors détectée par deux photodiodes permettant de mesurer séparément les amplitudes
carrées selon x et selon y. Les signaux obtenus sur une assemblée de nanoparticules
est représentée en (b). On peut y voir que la réponse est très différente selon les
nanoparticules considérées et il est alors nécessaire de corréler les réponses mesurées
optiquement aux observations des étoiles par microscopie électronique. Le spectre d’une
nanoparticule particulière est représenté en (d). On peut y voir une résonance très
piquée à 400 nm correspondant au signal de seconde harmonique. Finalement, un

schéma de la nanoparticule avec le champ incident l’excitant est représenté en (c).

effectués par Enderlein afin de calculer les PSFs (Point Spread Function) d’un dipôle

rayonnant puis celle de multipôles. Pour cela, la géométrie présentée en figure F.4 est

utilisée afin de conduire les calculs. Cette configuration permet d’utiliser la propagation

du spectre angulaire afin de conduire le calcul :

E(~r) = −2ik′
eik
′f ′

4πf ′

∫∫

S
eik
′r cos εES sin θ′dθ′dφ (F.6)

Finalement, les calculs permettent d’obtenir une fonction de Green GJ qui est une

matrice 3 × (2J + 1) et qui permet d’obtenir le champ E(~r) dans l’espace image d’un

multipole rayonnant MJ de rang J situé au point focal de l’espace objet :

E(~r) = KJG
J ·MJ (F.7)

Les figures F.5 et F.6 représentent les intensités de dipôles cartésiens et sphériques re-

spectivement. La PSF d’un dipôle cartésien est similaire à celle déjà obtenue dans des
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Figure F.4: Représentation schématique de l’imagerie d’un dipôle. Le choix des
vecteurs de base pour projeter le champ entre les repères sphériques et cylindriques est

représenté sur le schéma.

travaux précédents à celui-ci. Cependant, alors que l’ouverture numérique augmente,

les PSFs obtenues deviennent différentes car les auteurs considèrent généralement que

l’approximation paraxiale est valable au-delà de son domaine de validité. La PSF dipo-

laire sphérique de la figure suivante présente un aspect similaire mais l’ellipticité des

PSFs orientées selon ~ex et ~ey disparait pour les PSFs orientées selon ~e−1 et ~e1. Cela

provient simplement du fait que la base sphérique est une base plus respectueuse de la

symétrie cylindrique du problème considéré.

Figure F.5: Intensité du champ électrique dans le plan image des différentes com-
posantes d’un dipôle cartésien. De gauche à droite, le dipôle source est respectivement
orienté selon ~ex, ~ey et ~ez. L’ellipticité des champs pour les dipôles µx et µy est liée à la

réductibilité de la base cartésienne.

F.3.2 Une première interprétation multipolaire

Fort de la capacité de pouvoir décrire analytiquement la propagation des multipôles à

travers le système optique, il est alors possible de modéliser la nanoparticule excitée

comme une assemblée de dipôles rayonnants et de calculer le champ correspondant dans



Appendix F. Résumé de la thèse en français 196

Figure F.6: Intensité du champ électrique dans le plan image des différentes com-
posantes d’un dipôle irréductible. De gauche à droite, le dipôle source est respective-

ment orienté selon ~e1, ~e0 et ~e−1.

l’espace image, c’est-à-dire celui mesuré sur les photodiodes. Les modèles utilisés afin

de représenter la nanoparticule sont illustrés à la figure F.7 et considèrent que l’essentiel

de l’émission non-linéaire est issue de dipôles positionnés le long des bras. Ce modèle

simple permet de conserver les propriétés de symétrie de l’objet et dépend de peu de

paramètres (distance h des trois dipôles par rapport au centre et force des trois dipôles

β). Il s’avère représenter de façon acceptable la variation polaire des intensités Ix et Iy

lorsque les nanoparticules considérées sont proches de la perfection mais pas quand elles

sont déformées. Les modèles (b) et (c) de la figure F.7 ont dont été introduits afin de

modéliser les imperfections.

φ

β

h

x

y
β

h

x

y

γβ0

β1

h

x

y

β3

β2

ν1

ν2

(a) (b) (c)

φ φ

Figure F.7: Représentation graphique des différents modèles utilisés afin de
représenter les données expérimentales. L’étoile représentée en (a) est une étoile parfaite
conservant les propriétés de symétrie du groupe D3 de la nanoparticules. Cependant,
la réponse optique non-linéaire étant très sensible aux variations de forme et aux écarts
à la symétrie parfaite, il a été nécessaire d’introduire deux autres modèles prenant en
compte ces imperfections. Le modèle (b) rajoute un dipôle au centre de la nanopartic-
ule alors que le modèle (c) libère les angles des trois dipôles aux pointes et leur autorise

d’avoir une amplitude différente.

Les résultats des ajustements de courbe sont donnés à la figure F.8 dans le cas d’une

nanoparticules proche de la perfection en (a) et d’une avec des défauts en (b). Ces

résultats correspondent à une distribution de courant (3 dipôles paramètrés) qui peut
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alors être projetée sur la base multipolaire. Cette projection indique la nanopartic-

ule de bonne qualité rayonne une composante quadrupolaire non-négligeable et même

dominante selon la polarisation choisie alors que le rayonnement de la nanoparticule

imparfaite est très nettement dominé par sa composante dipolaire.
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kh = 0.9, φ = 351˚, β1 = 80.76, β2 = 80.99, β3 = 79.98, ν1 = 145˚, ν2 = 92˚

R2 = 0.92

R2 = 0.96

R2 = 0.93

kh = 0.9, φ = 351˚, β = 72.29

kh = 0.9, φ = 357˚, β = 72.29, γ = 230˚, β0 = 100.98

kh = 1.88, φ = 130˚, β = 39.05

kh = 0.9, φ = 130˚, β = 36.25, γ =222˚, β0 = 94.52

kh = 0.01, φ = 122˚, β1 = 758.44, β2 = 47.6, β3 = 762.72, ν1 = 92˚, ν2 = 85˚

R2 = 0.92

R2 = 0.98

R2 = 0.93

Figure F.8: Résultats des fits effectués selon les modèles de la figure ??. La colonne
de gauche correspond à une nanoparticule ayant une forme de bonne qualité alors que
celle de droite correspondant à une nanoparticule de moins bonne qualité. On peut ainsi
observer que dès le modèle 1, le fit est convenable dans le cas de la bonne nanoparticule

alors que ce n’est pas du tout le cas pour celle ayant une mauvaise forme.

F.4 Développent et application d’un formalisme complètement

irréductible

F.4.1 Exposition du formalisme

Les résultats de la section indiquent l’importance des éléments multipolaires d’ordre

supérieurs aux dipôles dans l’interprétation de la réponse non-linéaire. Cependant, à la

différence du cas moléculaire où seul le tenseur de réponse était décomposé en tenseurs

irréductibles, l’extension de la nanoparticule nécessite de décomposer aussi les champs

sur une base multipolaire. Dans ces conditions, le tenseur de réponse dépend alors de
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l’espace et la réduction de ses composantes sur une base irréductible est insuffisante et

il convient décomposer aussi sa dépendance spatiale. Ceci permet ainsi d’obtenir un

tenseur qui prend en compte la globalité de la nanoparticule et qui comporte donc des

informations sur sa symétrie que ne pourrait pas contenir un tenseur local. Qui plus est,

le tenseur est décrit par un nombre discret de composantes dans cette base convergeant

rapidement et localisées en un point unique de l’espace pris pour origine. En pratique,

quelques valeurs permettront donc de décrire un objet tel que ceux considérés dans cette

thèse (dont la taille est environ ≈ λ/3).

On peut démontrer que le tenseur de réponse linéaire R peut s’écrire sur la base des

produits directs d’harmoniques sphériques vectorielles :

R =
∑

l1J1M1

∑

l2J2M2

Rl2J2M2
l1J1M1

ΨJ1M1
l1

⊗ΨJ2M2
l2

(F.8)

Ce tenseur de réponse permet d’obtenir les composantes irréductibles de la densité de

courant JJ2M2
l2

induite par le champ incident :

JJ2M2
l2

=
∑

l1J1M1

Rl2J2M2
l1J1M1

EJ1M1
l1

(F.9)

L’homologue non-linéaire de cette équation peut être obtenu de façon directe :

J
(n)JM
l (ω) =

∑

l1J1M1···lnJnMn

R
(n)lJM
l1J1M1···lnJnMn

(ω;ω1, · · · , ωn) E J1M1
1 l1

(ω1) · · ·E JnMn
n ln

(ωn)

(F.10)

Où l’on a ajouté explicitement les fréquences ωn car elles ne sont alors plus toutes égales

à la même valeur ω. La base choisie jusqu’alors est issue du produit direct de tenseurs

irréductibles et peut elle-même être réduite, conduisant à la définition des harmoniques

sphériques vectorielles bipolaires dans le cas linéaire :

{
Yl1(θ1, ϕ1)⊗ Yl2(θ2, ϕ2)

}
LM

=
∑

m1m2

CLMl1m1l2m2
Yl1m1(θ1, ϕ1)Yl2m2(θ2, ϕ2) (F.11)

Dans le cas non-linéaire, la base irréductible sera obtenue par produit irréductible succes-

sifs d’harmoniques sphériques vectorielles. Ces bases sont complètement irréductible et

permettent de décomposer le tenseur de réponse de façon efficace en prenant en compte

la symétrie de la nanoparticule. Dans le cas linéaire, le tenseur de réponse s’écrit alors :

R =
∑

l1J1l2J2JM

RJMl1J1l2J2

{
ΨJ1
l1
⊗ΨJ2

l2

}JM
(F.12)
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Des expressions analogues existent en utilisent les harmoniques sphériques multipolaires

ΨJM
m et ΨJM

e plutôt que les ΨJM
l . L’utilisation d’une base ou d’un autre, totale-

ment réduite ou pas, s’effectue en fonction du problème considéré, les calculs et les

interprétations s’avérant plus simple dans un formalisme ou dans un autre en fonction

des cas.

Afin de traiter des problèmes concrets avec ce formalisme, il est nécessaire de pouvoir

développer des modèles avec. Typiquement, une mesure de la réponse optique non-

linéaire permet d’accéder indirectement à la densité de courante émettrice en utilisant

un modèle approprié comme à la section précédente. Connaissant le champ excita-

teur envoyé et sa décomposition multipolaire, il est possible de déduire les composantes

irréductibles du tenseur de réponse les reliant. Cette tâche est en général peu aisée

car une mesure complète de la densité de courante est souvent inaccessible. Dans cette

situation, il est important d’utiliser les propriétés de symétrie du tenseur afin d’éliminer

les termes non autorisés par la géométrie de l’objet.

F.4.2 Application à la description du comportement non-linéaire de

nano-étoiles

En utilisant la théorie précédente, il est possible de décrire plus précisément les résultats

de l’expérience de la figure F.8. On considère le cas du modèle (a) de la figure F.7

et donc d’une étoile parfaite ayant la symétrie D3. La distribution de courant corre-

spondante, trois dipôles positionnés dans les bras de la nanoparticule, est simplifiée en

l’écrivant comme une somme de multipôles à l’origine. Pour cela, le théorème d’addition

translationnelle permettant d’exprimer une harmonique sphérique vectorielle translatée

en une somme de ces objets à l’origine est utilisé :

ΨJM
l [R,Ω,Φ] =

∑

l′J ′M ′

Tl′J ′M ′,lJMΨJ ′M ′
l′ (F.13)

Où les composantes de l’opérateur de translation T sont définit par :

Tl′J ′M ′,lJM [R,Ω,Φ] =
∑

l′′m′′

il
′+l′′−l(−1)M+1

√
4π(2l + 1)(2l′ + 1)(2l′′ + 1)(2J + 1)(2J ′ + 1)×

×
(

l l′ l′′

0 0 0

)(
J J ′ l′′

−M M ′ m′′

){
l′′ l′ l

1 J J ′

}
jl′′(kR)Yl′′m′′(Ω,Φ) (F.14)
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La distribution de courant de la nanoparticule s’obtient en translatant et en orientant

de façon appropriée les trois champs dipolaires placés sur chacun des bras :

~J = µ
(
TR,π

2
,0

[
D(1)

0,π
2
,0

[
Ψ10
m

]]
(r)+TR,π

2
, 2π
3

[
D(1)

0,π
2
,− 2π

3

[
Ψ10
m

]]
(r)+TR,π

2
,− 2π

3

[
D(1)

0,π
2
, 2π
3

[
Ψ10
m

]]
(r)
)

(F.15)

Les projections effectuées précédemment nous indiquent que seuls les trois premiers or-

dres multipolaires sont nécessaires pour reconstruire une distribution de courante fidèle.

Après calcul, les composantes multipolaires non nulles de la densité de courant sont :

J1−1
m (Φ, R) = −3

4
e2iΦfd(R) c11

m (Φ, R) =
3

4
e−2iΦfd(R) (F.16)

J2−2
m (Φ, R) = −9

8

√
3

5
e−2iΦfq(R) c20

m (Φ, R) =
9

2
√

10
fq(R) c22

m (Φ, R) = −9

8

√
3

5
e2iΦfq(R)

(F.17)

J3−3
m (Φ, R) = −9

4

√
5

7
fo(R) c3−1

m (Φ, R) =
9

8

√
3

7
e2iΦfo(R) (F.18)

J31
m (Φ, R) = −9

8

√
3

7
e−2iΦfo(R) c33

m (Φ, R) =
9

4

√
5

7
fo(R) (F.19)

Avec :

fd(R) = j0(kR) + j2(kR) (F.20)

fq(R) = j1(kR) + j3(kR) (F.21)

fo(R) = j2(kR) + j4(kR) (F.22)

Les poids relatifs des multipôles entrant en jeu dans le développement de la distribution

de courant sont représentés à la figure F.9. On peut y observer que pour les tailles des

nanoparticules étudiées (R = 50 nm à R = 100 nm), les composantes dipolaires (en

rouge) et quadrupolaires (en bleu) sont celles qui prédominent largement.

Les données mesurées expérimentalement peuvent être reconstruites en utilisant les PSFs

multipolaires précédemment calculées pour propager les rayonnements correspondants

à cette décomposition multipolaire :

Ix(φ,R) =

∫∫

image space

(∑

JM

JJMm (φ,R)GmJMx

)
rdrdϕ (F.23)

Iy(φ,R) =

∫∫

image space

(∑

JM

JJMm (φ,R)GmJMy

)
rdrdϕ (F.24)

On obtient alors des courbes similaires à celles affichées à la figure F.8 pour une étoile

parfaite. Cette étape permet de relier l’expérience au modèle et donc de déduire les
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Figure F.9: Variation des poids multipolaires à mesure que la distance entre les
dipôles, et donc la taille de l’étoile, augmente. La composante dipolaire en rouge est
l’unique présente en R = 0 conformément au fait que la somme de trois dipôles en un
point redonne un dipôle pur. Lorsque la taille de l’étoile augmente, les composantes
multipolaires d’ordre supérieur apparaissent l’une après l’autre. Ainsi, une nanoparti-
cles de 150 nm de diamètre circonscrit (soit R = 75 nm) correspond environ au moment
le quadrupole en bleu devient dominant devant le dipôle et où l’octupole commence à

apparaitre.

multipôles décrivant l’objet ainsi que leur dépendance en fonction de la polarisation du

champ incident. Ensuite, le champ incident est à sont tour décomposé sur une base

multipolaire de la façon suivante :

eikz




cosα

sinα

0


 =

∑

J

√
π(2J + 1)iJ

(
e−iα(ΨJ−1

m − iΨJ−1
e ) + eiα(ΨJ1

m + iΨJ1
e )
)

(F.25)

Pour préserver la simplicité des calculs, le champ incident a été modélisé par une onde

plane mais il est bien sur possible d’utiliser la décomposition multipolaire de faisceaux

plus réalistes tel que des faisceaux gaussiens et la famille de leurs modes d’ordres

supérieurs (Laguerre-Gauss, Hermite). Cette décomposition peut s’avérer nécessaire

dans le cas d’objet grand par rapport à la taille du col (”waist”) du faisceau. De plus, un

choix judicieux de faisceaux différents permettrait d’adresser différemment les différentes

composantes du tenseur de réponse et donc d’obtenir des informations différentes. La

figure F.10 représente la reconstruction de l’onde plane en utilisant l’équation F.25. La

nanoparticule est représentée en rouge par dessus le champ. Encore une fois, le nombre

de composantes nécessaires à une reconstruction acceptable du champ est très limité et

seul un nombre restreint d’ordre est nécessaire.
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Figure F.10: Reconstruction du champ électromagnétique à proximité de la nanopar-
ticule. Une nanoparticule de 150 nm de diamètre circonscrit est représentée en rouge au
centre du champ. Il est possible d’observer que seuls quelques ordres sont nécessaires

afin de reproduire le champ de façon convenable.

Dans un formalisme totalement réduit, le tenseur de réponse est développé sur une base

d’harmoniques sphériques tripolaires :

R(2) =
∑

i1J1i2J2iJ

R
(2) J ′M ′

i1J1i2J2(J12)iJΨ(3) J ′M ′

i1J1i2J2(J12)iJM
(F.26)

Cette expression permet d’utiliser simplement l’invariance par rotation de 2π/3 du

système afin d’obtenir les composantes du tenseur.

F.5 Etude du comportement non-linéaires dans le domaine

temporel

F.5.1 Etude des mécanismes de photosynthèse

Dans le cadre de cette thèse, le montage expérimental utilisé pour mesurer des signaux de

pompe-sonde sur des solutions collöıdales de nanoparticules l’a aussi été pour étudier le

comportement optique de complexes moléculaires en charge de la captation et du trans-

fert de l’énergie dans le cadre de la photosynthèse. Le complexe étudié, LHCII (Light

Harvesting Complex II), est l’un des complexes photosynthétiques majeurs présents dans

la nature et est constitué d’un nombre important de chromophores. Ces chromophores

sont essentiellement des molécules de chlorophylle a et b couplées entre elles. Deux

études ont donc été menées, l’une se concentrant sur la fonction de fluctuation respons-

able de la décohérence de la chlorophylle a alors que l’autre étudie le transfert d’énergie

entre niveau d’énergie moléculaire dans LHCII.
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Les informations obtenues l’ont été grâce à la mise en place d’une expérience de spec-

troscopie bidimensionnelle représentée à la figure F.11. La spectroscopie bidimension-

nelle est l’expérience la plus complete afin d’accéder au tenseur de réponse non-linéaire

du troisième ordre. En ajustant la position du détecteur et en contrôlant de façon

adéquate les délais entre les pulses ainsi que leur phase relative, il est possible d’accéder

indépendamment à différents éléments du tenseur de réponse correspondant à des dia-

grammes de Feynmann différents, c’est-à-dire à des chemins d’interactions différents.
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(b) Pump Path

Figure F.11: Représentation schématique de l’expérience de spectroscopie
électronique bidimensionnelle. La partie supérieure (a) représente le chemin emprunté
par la pompe. Après avoir traversé un OPA qui permet de choisir une longueur d’onde
centrale entre 550 et 700 nm, la pompe est dirigée dans un Dazzler. Ce façonneur de
pulse est utilisé afin de générer deux pulses de pompes avec une phase relative et une
distance temporelle entre eux contrôlées précisément. La sonde décrite dans la partie
(b) traverse un cristal de saphir afin de générer une lumière blanche qui va permettre
de sonder sur une large bande spectrale. Son arrivé sur l’échantillon est contrôlée par
un miroir disposé sur une ligne à retard. La sonde est ensuite séparée en deux afin de
créer une référence et la véritable sonde qui va se superposer à la zone traversée par la

pompe.

La fonction de corrélation des fluctuations (FFCF pour Frequency-Frequency Correlation

Function) de la Chlorophylle a a été mesurée en utilisant la pente de la résonance du

niveau Qy. En effet, il a été montré que la pente de l’ellipse de l’élément diagonal
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correspondant à cette résonance est reliée à la FFCF normalisée :

S(Tw) = CLS(Tw) =
〈δω(Tw)δω(0)

〈δω(0)δω(0)
(F.27)

L’ajustement de la courbe par un modèle bi-exponentiel a permis d’observer une décroissance

des corrélations sur deux durées : une durée courte τ1 ≈ 500 fs et une durée plus longue

τ2 ≈ 7 ps. Par ailleurs, une décroissance sur un temps nettement plus long (> 1 ns) a

aussi été mesurée dans la littérature et, ne pouvant être sondé sur l’expérience présentée

ici, est représentée par une ligne de base. De même, les premières valeurs mesurables

de la fonction CLS sont inférieures à 1, ce qui indique qu’il existe aussi un temps de

décroissance < 250 fs ne pouvant être mesuré dans cette expérience. Les deux durées de

décroissances intermédiaires ont pu être sondées et être assignées au réarrangement du

solvant suite à l’excitation de la molécule.

(a) (b)

Figure F.12: Illustration de la méthode de la pente centrale (Center Line Slope) afin
d’obtenir la fonction de corrélation des fluctuations (Frequency-Frequency Correlation
Function). (a) Evolution de la pente de la résonance diagonale du spectre 2D. (b) FFCF

normalisée correspondante.

L’expérience de spectroscopie bidimensionnelle a aussi été conduite sur des solutions de

complexes LHCII afin d’étudier le transfert d’énergie de l’excitation (EET, Excitation

Energy Transfer) entre les niveaux moléculaires. Pour cela, les données expérimentales

ont été reconstruites à l’aide d’un modèle autorisant le transfert d’énergie entre popula-

tions via une équation maitresse :

ρ̇ee(t) = −
∑

e′

Kee,e′e′ ρe′e′(t) (F.28)
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La fonction de Green de l’équation a aussi été modifié pour inclure les oscillations et les

relaxations durant les temps de cohérence :

Ge4e3,e2e1(t) = δe4e3δe2e1θ(t)
[
e−Kt

]
e4e4,e2e2

+(1− δe4e2)δe3e1θ(t)e
−iωe4e3 t−Γe4e3 t (F.29)

En utilisant cette évolution temporelle pour les cohérences et les populations, l’ajustement

de ce modèle sur les données expérimentales a permis d’accéder aux paramètres de

l’équation maitresse et de reconstruire les données expérimentales dont le fit est représenté

à la figure F.13.
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Figure F.13: Ajustement du modèlle présenté dans le texte sur les données
expérimentales de spectroscopies bidimensionnelles effectuées sur des solutions de

LHCII..

F.5.2 Résultats préliminaires sur les nanoparticules

Le développement du formalisme multipolaire a permis de comprendre le lien entre

forme et comportement multipolaire de la nanoparticule. Ce faisant, il est alors possible

d’associer l’efficacité de la réponse optique non linéaire des nano-étoiles à leur comporte-

ment multipolaire différent de celui des nanobatonnets. Cependant, une compréhension

complète du comportement optique nécessite d’étudier les modes propres de ces systèmes

ainsi que leur comportement fréquentiel afin de pouvoir interpréter chaque résonance en

fonction d’un phénomène physique particulier.

En effet, la base multipolaire est très puissante pour les problèmes de rayonnement étant

donnée l’isotropie de l’espace et constitue donc une base privilégiée pour une multitude

de nanoparticules. Il est ainsi intéressant de décomposer les courants rayonnés sur

la base multipolaire puisque ce sont les éléments de cette base qui seront mesurés en

champ lointain. Par contre, les densités de courant dans la nanoparticule sont constitués

d’éléments qui eux appartiennent à son groupe fini. Chacun de ces éléments constituent
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une base plus naturelle adaptée à chaque nanoparticule et peuvent être décomposés en

somme de multipoles rayonnant. Ces éléments constituent une base de mode propre et

fournissent un lien entre le comportement spatial et le comportement fréquentiel.

Ces modes peuvent être obtenus à partir d’une équation aux valeurs propres ne dépendant

que de la géométrie de la nanoparticules. Cette équation a été obtenue dans le cadre

de l’électrostatique par M. Kociak[75] et il est très envisageable qu’une similaire ex-

iste dans le cadre de l’électrodynamique. Comme ces modes propres ne dépendent

que de la géométrie de la nanoparticule, l’utilisation de la théorie des groupes per-

met de les construire de façon raisonnable. Ainsi, les modes obtenus par des con-

sidérations géométriques seules ont nécessairement un comportement qualitatif accept-

able et l’utilisation de l’équation aux valeurs propres pour le calcul exact n’est supposée

qu’apporter des corrections mineures.

Dans le but d’obtenir des modes réalistes, une transformation conforme permettant de

passer de la géométrie circulaire à celle d’une nano-étoile a été appliquée sur les modes

de l’oscillateur harmonique circulaire. Les modes propres de ce dernier sont les produits

direct de polynômes d’Hermite ψnx(x) =
(

1
π

) 1
4 1√

2mm!
Hm(x)e−

1
2
x2 . La transformation

conforme utilisée est la suivante :

z ← z +
1

4
z4 (F.30)

Figure F.14: Obtention des trois premiers modes propres d’une nano-étoile en util-
isant la transformation conforme de l’équation F.30. Le mode en bas à gauche est
le mode fondamental alors que les deux suivants constituent le premier mode excité

doublement dégénéré et correspondant à la représentation E′ du groupe D′3.
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Chaque mode propre de SO(3) est alors transformé en modes de D′3 comme le montre

la figure F.14. L’association entre ces modes issues des transformations conformes et

les représentations irréductibles de D′3 est réalisée en utilisant des projecteurs sur ces

dernières. L’utilisation explicite de l’opérateur de l’équation aux valeurs propres per-

mettrait d’obtenir la valeur propre du mode. Ensuite, chaque mode peut finalement

être développé sur la base multipolaire. La finalité de cette démarche est de connaitre

l’énergie d’excitation de chaque mode afin d’interpréter les spectres expérimentaux. As-

socié à la connaissance du tenseur de réponse irréductible à une fréquence donnée, ceci

pourrait permettre de développer le tenseur de réponse irréductible sur une base de

modes propres et donc combiner les connaissances spatiales et spectrales sur les nanopar-

ticules.

Afin d’étudier le comportement spectral des nanoparticules de forme D′3, des expériences

de pompe-sonde ont été réalisées sur celles-ci. Devant la difficulté de réaliser ces mesures

sur un montage initialement destiné à l’étude de molécules, des solutions collöısales de

nanoprismes d’argent ont été réalisées par voie chimique. Ceci permet d’obtenir un signal

plus important et donc mesurable sur ce système bien que le contrôle de la position des

nanoparticules soit perdu et que l’élargissement inhomogène soit plus conséquent. La

figure F.15 présente un résultat de pompe-sonde obtenu sur ces nanoprismes pour une

pompe et une sonde centrées à 650 nm. Cette mesure a permis d’obtenir le temps de

vie du système à cette énergie qui est de 2 017 fs.

1000 2000 3000 4000 5000 6000 7000
Tw
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4
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Figure F.15: Pompe-sonde dont la pompe et la sonde sont centrées à 650 nm. La
décroissance du signal peut être modélisée par une simple décroissance exponentielle

ayant un temps de vie de 2017 fs.
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F.5.3 Conclusion

Les nanoparticules métalliques possèdent une grand nombre d’applications fondamen-

tales et appliquées. En particulier, l’exploitation des propriétés de la résonance plas-

monique ouvre la voie à l’exploration de nouveaux comportements optiques. La grande

sensibilité de la résonance plasmon à la taille et au forme des nanoparticules utilisées

nécessite l’élaboration d’un formalisme qui prend en compte ces différents éléments afin

de concevoir des objets qui possèdent le comportement désiré. Cette thèse a eu pour ob-

jectif de montrer que l’utilisation d’un formalisme totalement irréductible, c’est-à-dire en

décomposant aussi bien les champs incidents et émis que le tenseur de réponse lui-même

sur une base multipolaire, permet une interprétation d’expériences d’optique linéaire

et non-linéaire en associant des comportements physiques spécifiques à des éléments

irréductibles particuliers.

L’utilisation du formalisme totalement irréductible combiné à une modélisation utilisant

le théorème d’addition translationnelle a pu mettre en lumière l’importance des éléments

quadripolaires dans le rayonnement de seconde harmonique des nano-étoiles d’or. Ce

formalisme peut être étendu de nombreuses façon afin d’inclure les couplages dans des

assemblées de nanoparticules ou pour compléter l’association entre propriétés spectrales

et géométriques.



Bibliography

[1] Y. Wang, E. W. Plummer, and K. Kempa. Foundations of plasmonics. Advances

in Physics, 60(5), 2001.

[2] F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpu-

rua, and P. Nordlander. Metallic nanoparticle arrays : A common substrate for

both surface-enhanced raman scattering and surface-enhanced infrared absorption.

ACS Nano, 2(4), 2008.

[3] X. M. Hua and J. I. Gersten. Theory of second-harmonic generation by small

metal spheres. Phys. Rev. B, 33:3756, 1986.

[4] V. Lozovski. Electrodynamical interactions inside a system of nano-particles. Phys-

ica E, 19, 2003.

[5] T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. van Duyne. Nanosphere

lithography: Tunable localized surface plasmon resonance spectra of silver

nanosphere lithography: Tunable localized surface plasmon resonance spectra of

silver nanosphere lithography: Tunable localized surface plasmon resonance spec-

tra of silver nanoparticles. J. Phys. Chem. B, 104, 2000.

[6] C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre,

K. D. Dorkenoo, and A. Fort. Role of surface plasmon in second harmonic gener-

ation from gold nanorods. Appl. Phys. Lett, 90:181105, 2007.

[7] E. Hutter and J. H. Fendler. Exploitation of localized surface plasmon resonance.

Adv. Mater, 16:1685, 2004.

[8] C. L. Nehl, H. Liao, and J. H. Hafner. Optical properties of star-shaped gold

nanoparticles. Nano Lett, 6:683, 2006.

[9] Sami Kujala, Brian K. Canfield, Martti Kauranen, Yuri Svirko, and Jari Turunen.

Multipolar analysis of shg from gold nanoparticles. Optics Express, 16(22):17196,

2008.

209



Bibliography 210

[10] V Svorcik, Z. Kolska, T. Luxbacher, and J. Mistrik. Properties of au nanolayer

sputtered on polyethyleneterephthalate. Materials Letters, 64(5), 2010.

[11] C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed. Chemistry and properties

of nanocrystals of different shapes. Chem. Rev., 105, 2005.

[12] J. Y. Suh and T. W. Odom. Nonlinear properties of nanoscale antennas. Nano

Today, 8, 2013.

[13] A. N. Shipway, E. Katz, and I Willner. Nanoparticle arrays on surfaces for elec-

tronic, optical, and sensor applications. Chem. Phys. Chem., 1, 2000.

[14] K. A. Willets and R. P. Van Duyne. Localized surface plasmon resonance spec-

troscopy and sensing. Annual Review of physical chemistry, 58, 2007.

[15] E. Stratakis and E. Kymakis. Nanoparticle-based plasmonic organic photovoltaic

devices. Materials Today, 16(4), 2013.

[16] N. G. Khlebtsov and L. A. Dykman. Optical properties and biomedical applica-

tions of plasmonic nanoparticles. Journal of quantitative spectroscopy and radiative

transfer, 111, 2010.

[17] C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendoff, J. Gao, L. Gou, S. E.

Hunyadi, and T. Li. Anisotropic metal nanoparticles : synthesis, assembly and

optical applications. J. Phys. Chem. B, 109, 2005.

[18] Gustav Mie. Contributions on the optics of turbid media, particularly colloidal

metal solutions - translation. Annalen der Physik, 25(3), 1908.

[19] M. I. Mischenko, L. D. Travis, and D. W. Mackowski. T-matrix computations of

light scattering by nonspherical particles : a review. J. of Quantitative Spectroscopy

& Radiative Transfer, 55(5), 1996.

[20] T. N. Nguyen. Second harmonic generation of three-fold symmetry gold nanopar-

ticles : measurements and modelling. PhD thesis, Universite de Technologie de

Troyes, 2013.

[21] John David Jackson. Classical Electrodynamics. Wiley, 1998.

[22] R. G. Brown. Classical electrodynamics part ii, 2007.

[23] Shaul Mukamel. Principles of Non-Linear Optical Spectroscopy. Oxford, 1995.

[24] Robert W. Boyd. Nonlinear Optics, Third Edition. Elsevier, 2008.

[25] Y. R. Shen. The principles of Nonlinear optics. John Wiley and Sons, Inc, Hobo-

ken, USA, 2003.



Bibliography 211

[26] M. Joffre. Optique non-linéaire en régimes continu et femtoseconde.

http://www.enseignement.polytechnique.fr/profs/physique/manuel.joffre/onl/index.htm,

2009.

[27] Michael Tinkham. Group Theory and Quantum Mechanics. Dover, 1964.

[28] Eugene Wigner. Group Theory and its Application to the Quantum Mechanics of

Atomic Spectra. Academic Press, 1959.

[29] Morton Hamermesh. Group Theory and its Application to Physical Problems.

Dover, 1989.

[30] Robert Gilmore. Lie Groups, Lie Algebras, and Some of Their Applications. Dover,

2005.

[31] D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii. Quantum Theory of

Angular Momentum. World Scientific Pub Co Inc, 1988.

[32] F. W. Strauch. Euler angles : http://demonstrations.wolfram.com/eulerangles/,

2011.

[33] Jean Jerphagnon. Invariants of the third-rank cartesian tensor : Optical nonlinear

susceptibilities. Physical Review B, 1970.

[34] Jean Jerphagnon, Daniel Chemla, and R. Bonneville. The description of the phys-

ical properties of condensed matter using irreducible tensors. Advances in Physics,

1978.

[35] Joseph Zyss. Molecular engineering implications of rotational invariance in quadra-

tique nonlinear optics : From dipole to octupolar molecules and materials. J.

Chem. Phys., 98(9), 1993.

[36] Sophie Brasselet and Joseph Zyss. Multipolar molecules and multipolar fields :

probing and controlling the tensorial nature of nonlinear molecular media. J. Opt.

Soc. Am. B, 1997.

[37] I. Ledoux and Joseph Zyss. Multipolar engineering of molecules and materials for

quadratic nonlinear optics. C. R. Physique, 3, 2002.

[38] L. Lorenz. Oeuvres scientifiques de L. Lorenz. Sur la lumière réfléchie et réfractée
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Construction d’un  cadre  rigoureux
pour la description multipolaire des 
propriétés optiques de nanoparticules 
 
 
Les propriétés optiques linéaires et non-linéaires de 
nanoparticules métalliques de tailles non-
négligeables comparées à celles des longueurs 
d’onde excitatrices sont étudiées dans cette thèse. 
Les informations issues de la symétrie sont mises en 
avant afin de décrire des nanoparticules 
appartenant à des groupes ponctuels. Pour cela, un 
formalisme totalement irréductible est mis en place 
afin de prendre en compte l’extension spatiale des 
objets étudiés. Dans ce formalisme, le tenseur de 
réponse non-linéaire possède un nombre fini de 
valeurs significatives reliant les composantes 
multipolaires des champs incidents et sortants. Ce 
formalisme est alors appliqué analytiquement à 
l’étude de la réponse non- linéaire du second ordre 
de nano-étoiles d’or en interprétant des mesures de 
SHG résolue en polarisation. Finalement, des 
expériences de spectroscopies multidimensionnelles 
sont utilisées dans le but de connecter les propriétés 
spatiales et les propriétés spectrales de ces objets. 
L’introduction de modes propres définis par la 
symétrie des objets permet encore une fois de 
donner un sens physique aux comportements 
électroniques mis en jeu. 
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Using metallic nanoparticles with a threefold 
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symmetry on the nonlinear properties is 
investigated. Interpretations of polarization-resolved 
SHG experiments indicate the importance of 
multipolar resonances, in particular quadrupole and 
octupole, to explain the strong values of the 
nonlinear susceptibilities in such systems. A fully 
irreducible formalism is then developed to treat 
extended objects like nanoparticles. In this 
formalism, the nonlinear response tensor is a 
discrete set of values easily constrained by 
symmetries instead of a field. This formalism 
permits to describe simply linear and nonlinear 
optical response from nanoparticles. Finally, time-
domain experiments are conducted with the aim to 
connect spatial and spectral properties. These 
experiments allow to interpret the spectra in terms 
of eigenmodes. 
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