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Résumé

Le test des circuits intégrés est une étape cruciale du processus de production car il
permet de garantir la qualité des dispositifs fabriqués et le respect des spécifications.
Lorsqu’il peut être réitéré in situ dans le cadre du fonctionnement des circuits, le test
peut également permettre de vérifier leur fiabilité pendant leur cycle de vie. Dans le
cas des blocs numériques, bien que leur complexité ait explosé au cours des dernières
décennies, l’utilisation de techniques de test structurel avec une approche basée sur la
détection de défauts a permis de limiter la part du coût de test dans le prix de revient
de ces blocs. En revanche, pour les blocs analogiques et Radio-Fréquence (RF), bien
qu’ils aient moins évolué en termes de complexité que les blocs numériques, leur coût
de test a continué à prendre une part de plus en plus prépondérante dans leur coût de
revient. La raison principale est qu’il n’existe aucun modèle de défaillance reconnu pour
les blocs analogiques et RF et que les approches basées sur la détection de défauts ne
sont donc pas adaptées. Par conséquent, les circuits analogiques et RF sont testés selon
une approche fonctionnelle, qui repose sur la mesure des performances du circuit et la
vérification de la conformité de ces performances vis-à-vis des spécifications garanties
par le fabriquant. Cette approche garantit une qualité de test satisfaisante, mais les
mesures requises nécessitent des équipements de test spécifiques très onéreux et des
temps de test longs, ce qui induit des coûts de test extrêmement élevés. Par ailleurs,
une problématique importante pour les circuits RF concerne le test au niveau "wafer".
En effet, l’application et la capture de signaux RF doivent dans ce cas être réalisées par
des équipements de test "sous pointes" ("probers"), ce qui s’avère délicat compte tenu
de la présence d’éléments parasites dans la liaison équipement-circuit qui dégradent la
qualité des signaux appliqués et capturés.

Dans ce contexte, il existe une forte demande pour le développement de solutions al-
ternatives au test de spécifications afin de réduire le coût du test des circuits analogiques
et RF. Une approche intéressante est l’utilisation d’une stratégie de test indirect basée
sur l’utilisation d’algorithmes d’apprentissage automatique ("machine-learning"). Bien
que proposée il y a plus de 10 ans, cette stratégie reste relativement peu utilisée à ce
jour dans l’industrie, ce qui s’explique d’une part par sa complexité de mise en œuvre,
qui nécessite de multiples choix dans diverses étapes de l’élaboration de la solution, et
d’autre part par la difficulté à obtenir une évaluation fiable de son efficacité. L’objectif

xi
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de cette thèse est de répondre à ces différents enjeux en proposant une méthodologie
qui permette d’explorer différentes options d’implantation et de guider l’ingénieur de
test dans les choix à faire pour une implantation efficace.

Le premier chapitre de la thèse est consacré à poser les bases nécessaires à l’étude.
Le principe de la stratégie de test indirect est tout d’abord présenté. Cette stratégie
repose sur deux phases distinctes, à savoir la phase d’apprentissage et la phase de test
de production. L’idée est d’établir, pendant la phase d’apprentissage, la dépendance
inconnue entre des mesures indirectes pouvant être réalisées à faible coût (IMi) et les
mesures conventionnelles de performance (Pj). Pour cela, les mesures de performance et
les mesures indirectes sont effectuées sur un ensemble de dispositifs d’apprentissage et
un algorithme d’apprentissage automatique est utilisé pour construire des modèles de ré-
gression permettant de relier l’espace des paramètres indirects à l’espace des paramètres
de performance. Par la suite, lors de la phase de test de production, seules les mesures
indirectes sont effectuées et les performances de chaque nouveau circuit sont prédites
à l’aide des modèles de régression construits lors de la phase initiale d’apprentissage.
Cette stratégie peut être appliquée soit avec une approche dédiée à la classification
directe des circuits, soit avec une approche dédiée à la prédiction des performances.
Dans cette thèse, nous avons étudié une mise en œuvre dédiée à la prédiction des
performances.

De nombreux éléments sont susceptibles d’affecter la qualité globale de la stratégie
de test indirect. La deuxième partie du chapitre est consacrée à ces différents aspects,
en s’appuyant sur les travaux proposés dans la littérature. Les modèles de régression
classiques tels que la Régression Linéaire Multi-niveaux (MLR), la Régression Multi-
variée par Spline Adaptative (MARS), les Machines à Vecteurs de Support (SVM) et
les Arbres de Décision (DT) sont ainsi présentés en détail. La sélection des mesures
indirectes les plus pertinentes est un processus de recherche aussi important que le
choix du modèle de prédiction. Les trois principaux types d’algorithmes de sélecetion
des paramètres ("feature selection") sont donc analysés. Enfin, les métriques classiques
utilisées pour évaluer et comparer différentes solutions sont définies, à savoir l’erreur
quadratique moyenne (RMSE), le coefficient de détermination R2, le taux d’échec des
prédictions (FPR) et le taux d’erreurs de classification (MR).

Le deuxième chapitre est consacré à une étude détaillée sur le choix des modèles
de régression, et plus particulièrement sur l’utilisation de méthodes d’ensemble pour la
construction des modèles. En effet, ces méthodes sont apparues assez récemment dans
le domaine général de l’apprentissage automatique et leur utilisation n’a pas encore
été explorée dans le contexte spécifique d’une stratégie de test indirect. Les méth-
odes d’ensemble permettent de construire des modèles plus complexes, susceptibles de
mieux représenter la relation entre les performances du circuit et les mesures indirectes
disponibles. En outre, ces méthodes permettent de limiter la dépendance des modèles à
la taille de la population d’apprentissage et à la structure des données d’apprentissage.
Concrètement, ces méthodes reposent sur l’apprentissage de plusieurs modèles de régres-
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sion individuels ("base learners") et la combinaison de leurs résultats afin d’améliorer
la stabilité et le pouvoir de prédiction du modèle final. L’idée derrière cette procé-
dure est qu’avec une combinaison appropriée de divers modèles individuels, il devrait
être possible d’exploiter les forces et de surmonter les faiblesses des modèles individu-
els et d’obtenir une meilleure performance prédictive globale. Les modèles construits
avec une méthode d’ensemble peuvent être assemblés de nombreuses manières, avec
un apprentissage séquentiel ou parallèle des différents modèles individuels, sur la base
d’un seul type de modèle (construction homogène) ou de différents types (construction
hétérogène).

Dans la première partie de ce chapitre, les techniques les plus courantes de méthodes
d’ensemble sont d’abord présentées, à savoir les techniques de "Bagging", "Boosting" et
"Stacking". Afin d’examiner les avantages des méthodes d’ensemble par rapport aux
techniques de régression classiques, d’une part, et de réaliser une étude comparative
entre les différentes méthodes d’ensemble d’autre part, un protocole expérimental est
développé. Ce protocole se décline en quatre phases principales. La première consiste
en la partition des données en deux sous-ensembles, l’un dédié à l’apprentissage et
l’autre à la validation. Afin de préserver les caractéristiques statistiques de l’ensemble
de données original, une technique d’échantillonnage de type Latin-Hypercube est util-
isée. La deuxième phase du protocole consiste à sélectionner les mesures indirectes les
plus pertinentes en utilisant le sous-ensemble d’apprentissage. La sélection repose sur
une technique de recherche itérative appelée "Sequential-Forward-Selection" (SFS). Le
principe consiste à construire itérativement des modèles de régression en sélectionnant
une mesure indirecte à chaque itération. La mesure indirecte sélectionnée à chaque
itération est celle qui, parmi toutes les combinaisons possibles, génère le modèle avec
l’erreur de prédiction minimale (score RMSE le plus bas). Dans ce travail, nous avons
mis en œuvre une telle procédure en utilisant l’algorithme MARS pour construire les
modèles de régression et en limitant la sélection à un maximum de 15 mesures indi-
rectes. La troisième phase du protocole concerne la construction des modèles, en se
basant sur les mesures indirectes sélectionnées dans la phase précédente. Dans ce tra-
vail, nous avons considéré trois type de modèles de régression classiques (MLR, MARS,
SVM) et cinq méthodes d’ensemble (deux basées sur une technique de Stacking, deux
sur une tecnhique de Boosting et une basée sur la technique de Bagging). Finalement,
dans la dernière phase du protocole concerne l’évaluation des différents modèles. Pour
cela, la prédiction des circuits contenus dans l’ensemble de validation est réalisée pour
chacun des modèles construits dans la phase précédente, et les mesures d’évaluation
classiques sont calculées.

Ce protocole est ensuite appliqué à une étude de cas spécifique, à savoir un am-
plificateur RF faible bruit pour lequel nous disposons de données de test sur plus de
3850 circuits. Les résultats montrent que l’utilisation des méthodes d’ensemble permet
une amélioration de la performance globale des modèle de prédiction. Les résultats
montrent également que les performances des modèles de prédiction classiques peuvent
être égalées tout en utilisant un ensemble réduit d’instances d’apprentissage lorsque
les méthodes d’ensemble sont mises en œuvre. Enfin, concernant la comparaison des
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différentes méthodes d’ensemble, la technique de Stacking apparaît comme la plus per-
formante.

Néanmoins, cette étude soulève des questions quant à la pertinence des métriques
classiques utilisées pour évaluer la qualité d’un modèle en termes de qualité d’ajustement
(R2), précision (RMSE) et fiabilité (FPR). En effet, les résultats montrent que ces dif-
férentes métriques sont indépendantes les unes des autres, mais il est également difficile
de les relier au taux d’erreurs de classification (MR). Cette dernière métrique apparaît
par ailleurs pessimiste par rapport à l’efficacité réelle qui sera obtenue lors du test de
production. Une nouvelle métrique (T-MR pour "Trusted Misclassification Rate") a
été introduite, qui permet de mieux évaluer la capacité d’un modèle de prédiction à
effectuer une classification correcte en tenant compte de l’incertitude de mesure RF
classique.

Le troisième chapitre est consacré au développement d’une solution d’implantation
originale basée sur un flot de test adaptatif. En effet, l’un des principaux problèmes qui
limitent aujourd’hui le large déploiement de la stratégie de test indirect dans l’industrie
est que les algorithmes d’apprentissage automatique utilisés pour construire les modèles
de régression sont perçus comme une boîte noire et induisent souvent un manque de
confiance dans les résultats de prédiction. Pour faire face à ce problème, une stratégie
de test adaptatif peut être adoptée. En effet traditionnellement, le contenu des tests, le
flot de test et les limites de test sont fixés de manière statique, ce qui signifie que toutes
les pièces sont testées de la même manière, indépendamment de leurs performances
individuelles. Dans le cadre d’un test adaptatif, le contenu, le flot ou les limites des
tests peuvent être modifiés pour chaque pièce en fonction de données intermédiaires
issues du test. L’idée est de mettre en œuvre une telle stratégie en définissant un
flot de test à deux branches, la première branche correspondant au test indirect et la
deuxième au test RF conventionnel. Lors du test de production, une première évaluation
du circuit est réalisée par la première branche en utilisant les mesures indirectes. Cette
évaluation est accompagnée d’une information sur la confiance accordée au résultat.
Si la confiance est suffisamment élevée, les prédictions sont considérées comme fiables
et le circuit est classé comme bon ou mauvais uniquement sur la base des prédictions
réalisées par le test indirect. Si la confiance est insuffisante, le circuit est alors dirigé
vers la deuxième branche où il est soumis à un test de spécification standard, c’est-à-dire
que les mesures RF conventionnelles sont effectuées et le circuit est classé comme bon
ou mauvais sur la base de ces mesures. L’hypothèse sous-jacente à cette approche est
que la grande majorité des circuits seront triés par la première branche, et que seule une
petite fraction des circuits doit passer par la deuxième branche. Cette approche offre
ainsi une plus grande confiance dans la qualité et l’efficacité du test, tout en maintenant
une réduction significative des coûts de test.

Dans ce chapitre, un état de l’art des solutions proposées dans la littérature selon
cette approche est tout d’abord réalisé. Une nouvelle solution d’implantation est alors
proposée, basée sur la définition d’une zone de tolérance autour des limites du test.
En effet, les expériences réalisées dans le chapitre précédent ont montré que presque
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tous les circuits mal classés sont des circuits dont la valeur prédite est proche d’une
limite de test, alors que des décisions correctes sont prises pour les circuits dont la
valeur prédite est éloignée des limites de test. Par conséquent, la proposition consiste
à établir la confiance en examinant l’emplacement de la valeur prédite par rapport
à la zone de tolérance définie autour d’une limite de test. Les principaux atouts de
cette solution sont sa simplicité et sa capacité d’adaptation à différentes contraintes
industrielles. Pour cela, la taille de la zone de tolérance établie autour de la limite
d’essai est un paramètre crucial. En faisant varier cette taille, il est possible d’explorer
différents compromis entre le coût et la qualité du test.

Dans la deuxième partie du chapitre, le protocole expérimental développé dans le
premier chapitre est étendu afin d’inclure cette nouvelle option. Le nouveau protocole
comporte notamment une phase supplémentaire spécifique à l’implémentation d’un flot
de test adaptif, qui réalise une exploration de l’influence de la taille de la zone de
tolérance sur la qualité du test (exprimée par le taux d’erreurs de classification) et le
coût du test (exprimé par le pourcentage de circuits devant être soumis à un test RF
conventionnel). Un autre raffinement du protocole est également introduit, qui concerne
l’utilisation optionnelle d’un filtre permettant d’exclure de l’ensemble d’apprentissage
les circuits présentant des caractéristiques éloignées de la distribution statistique de la
population générale, ce qui est généralement recommandé dans la littérature.

Dans la dernière partie du chapitre, le protocole expérimental est appliqué à un
circuit RF pour lequel nous disposons d’un large volume de données de test (plus de
26700 circuits testés). Une analyse de l’utilisation du filtre optionnel sur la composi-
tion de l’ensemble d’apprentissage est tout d’abord réalisée, pour différentes sévérités
du filtre. L’efficacité du flot de test adaptatif à deux branches est ensuite évaluée et
comparée à l’implémentation classique de test indirect. Les résultats montrent qu’il
n’est pas pertinent de réaliser un filtrage de la population d’apprentissage car les mod-
èles construits sur des populations filtrées se révèlent moins robustes et moins précis
une fois évalués sur l’ensemble de validation, par rapport aux modèles construits sur la
population initiale. Les résultats démontrent aussi clairement le bénéfice apporté par la
stratégie de test adaptative. En effet, une très bonne qualité de test peut être atteinte
tout en préservant une réduction substantielle des coûts de test. Plus précisément pour
le cas d’étude considéré, le taux d’erreurs de classification atteint par une mise en œu-
vre classique de la stratégie de test indirect reste supérieur à quelques pourcents, dans
les meilleures conditions. En utilisant le flot de test adaptatif, un taux d’erreurs de
classification inférieur à quelques dixièmes de pourcents peut être atteint avec moins
de 25% des dispositifs qui doivent passer par un test de spécification standard.

Finalement, le dernier chapitre de la thèse ouvre une nouvelle perspective d’exploitation
de la stratégie de test indirect, qui concerne le contrôle des performances d’un circuit
dans son application. En effet, en raison des effets du vieillissement, et en particulier
dans les nouveaux nœuds technologiques, la nécessité de surveiller en ligne les per-
formances d’un dispositif n’a jamais été aussi importante. Tout au long des travaux
précédents, la stratégie de test indirect a été envisagée comme une alternative aux
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mesures de performances RF classiquement réalisées pour le test en volume des circuits
lors de leur sortie de production. Dans ce chapitre, nous réalisons une étude prospec-
tive sur les potentialités de la stratégie de test indirect pour un contrôle en ligne des
performances du circuit au cours de sa durée de vie.

La première partie du chapitre introduit le principe d’un contrôle en ligne des per-
formances basé sur la stratégie de test indirect et présente les adaptations nécessaires.
Comme dans la stratégie classique, le principe consiste à établir, durant une phase
d’apprentissage, un modèle de régression liant des mesures indirectes à une perfor-
mance du circuit. La principale différence est que les mesures indirectes disponibles
pour la construction des modèles doivent être significatives non seulement des effets des
variations du procédé de fabrication, mais également des phénomènes de dégradation
ou de défaillance susceptibles de se manifester dans le temps. Les modèles établis seront
ensuite utilisés au cours de la vie du circuit pour réaliser une prédiction embarquée et
vérifier qu’il n’y a pas de dégradation par rapport aux performances initiales. Il est pour
cela nécessaire que le circuit ou le système soit équipé des ressources nécessaires à la réal-
isation des mesures et au calcul des prédictions. En particulier, le circuit doit disposer
d’une infrastructure permettant l’accès aux différents nœuds ou structures internes im-
pliqués dans les mesures indirectes utilisées dans les modèles. Le système doit par
ailleurs disposer de ressources de numérisation pour convertir les valeurs analogiques
mesurées dans le domaine numérique. Finalement, le système doit être muni (i) de
ressources mémoire afin de stocker les coefficients des modèles établis pendant la phase
d’apprentissage, les performances initiales du circuit ainsi que les valeurs de seuil in-
diquant une dégradation, et (ii) de ressources de calcul afin de réaliser la prédiction
de la performance et vérifier que la différence entre la performance initiale et la per-
formance estimée en fonctionnement est inférieure aux seuils définis. Dans ce travail,
nous privilégions l’utilisation d’un modèle MLR en raison de sa simplicité et de sa ra-
pidité d’exécution avec des ressources mémoire et de calcul standards. Nous proposons
toutefois une solution originale pour améliorer la qualité de ce type de modèle. L’idée
consiste à enrichir l’espace des mesures indirectes susceptibles d’être utilisées pour la
construction du modèle, d’une part en appliquant des transformations non-linéaires
simples sur les mesures indirectes, et d’autre part en considérant des interactions entre
deux mesures indirectes.

Afin de développer une preuve de concept, un cas d’étude qui possède toutes les car-
actéristiques requises est présenté dans le deuxième chapitre. Il s’agit d’un émetteur-
récepteur RF pour lequel nous souhaitons réaliser un contrôle en ligne du niveau de
puissance délivré lors de l’émission du signal RF. Cet émetteur-récepteur dispose d’une
infrastructure de test permettant d’accéder à onze mesures indirectes, d’un convertis-
seur analogique-numérique 12 bits, d’un processeur intégré (Cortex-M4 ARM), ainsi
que d’un grand nombre de registres internes de configuration pouvant être utilisés pour
la calibration. Cependant, ces ressources n’ont pas été pensées pour être spécifiquement
utilisées dans le contexte d’une stratégie de test indirect. Une campagne de mesures
a été réalisée afin de déterminer s’il est possible d’utiliser les registres internes de con-
figuration pour émuler une dégradation du niveau de puissance émise et si les mesures
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indirectes sont influencées par ces différentes configurations. Une base de données de
test correspondant à 1024 observations a été constituée. Les résultats montrent que
la programmation des registres internes de configuration permet d’engendrer une vari-
ation de la puissance émise, mais que seules deux mesures indirectes parmi les onze
sont affectées. La situation est donc loin d’être parfaite, mais elle est considérée comme
suffisante pour réaliser une étude de preuve de concept.

Dans la troisième partie du chapitre, l’élaboration du modèle pour prédire une
variation du niveau de puissance émise est détaillée. L’intérêt d’utiliser un modèle
MLR enrichi à l’aide de transformations non-linéaires appliquées au préalable sur les
mesures indirectes est tout d’abord établi. La mise en œuvre pratique sur le cas d’étude
considéré est alors présentée. La solution retenue implique quatre mesures indirectes ;
le modèle construit présente une erreur quadratique moyenne RMSE proche de 0,4 dB.
Sur la base de ces résultats, la gamme de détection est établie, en distinguant la gamme
de détection possible (à partir d’une dégradation supérieure à 1,25 dB) et la gamme de
détection certaine (pour une dégradation au-delà de 2,5 dB).

La dernière partie du chapitre est consacrée à la mise en œuvre pratique de la pré-
diction embarquée sur le cas d’étude considéré. Les premiers résultats révèlent une
dispersion importante sur les valeurs prédites pour le niveau de puissance émise, ne
permettant pas une détection certaine de la dégradation de performance. Etayée par
une étude théorique, cette dispersion s’explique par le fait que la résolution complète du
convertisseur analogique-numérique présent dans le circuit ne peut pas être exploitée,
compte tenu des limitations de sa dynamique de mesure. Pour pallier cette difficulté,
une technique de moyennage est mise en place pour augmenter la résolution effective
du convertisseur. Avec ce moyennage, les résultats de prédiction embarquée montrent
qu’il est possible de détecter une détérioration de la performance du circuit, validant
donc la preuve de concept.

Au cours de cette thèse, nous avons examiné de nombreux aspects liés à l’implantation
d’une stratégie de test indirect pour les circuits intégrés analogiques et RF. Des options
intéressantes ont été développées afin d’améliorer la confiance dans cette stratégie ainsi
que son efficacité, qu’il s’agisse de l’utilisation de méthodes d’ensemble pour construire
les modèles de régression ou encore de la mise en œuvre d’un flot de test adaptatif.
Nous avons également exploré un aspect totalement novateur, à savoir la possibilité
d’effectuer un suivi des performances en ligne basé sur une stratégie adaptée du test
indirect. Tous les résultats présentés dans cette thèse ont été évalués en utilisant des
données de tests industrielles sur différents circuits RF, étayant pleinement les innova-
tions développées.



Introduction

Checking whether an IC meets its specifications after the manufacturing process is an
essential task to guarantee the device quality. However, this test process has a strong
impact on the total cost of the product. This is particularly true for Analog and RF
circuits that require complex and expensive test equipment with a long testing time to
evaluate the circuit specifications. An interesting approach to reduce the testing costs is
to adopt an indirect test strategy. The idea is to measure parameters that require only
low-cost test resources and to correlate these measurements, called Indirect Measure-
ments (IMs), with the device specifications. These correlations are often established
using machine-learning algorithms.

The general purpose of this PhD is to establish a methodology for an efficient im-
plementation of the indirect test strategy for Analog/RF Integrated Circuits. The
objective is to assist and guide the test engineer in its practical choices for an efficient
implementation and ensure a high level of confidence in the implemented test flow. The
PhD report is divided into four chapters.

The first chapter is an overview of the indirect test strategy. We introduce the
concept of an indirect test strategy. Then, we present the different classical prediction
models used in previous studies. We also introduce the main techniques for indirect
measurement selection. In addition, we present the various performance evaluation
metrics that are used in the context of an indirect test strategy. Finally, we discuss the
existing limitations in the implementation of such a strategy.

In the second chapter, we introduce the concept of the Ensemble Learning. We
present the different techniques and characteristics of the existing Ensemble Learning
methods. Moreover, we introduce our experimental protocol to evaluate the benefits of
using Ensemble Learning methods over the classical prediction models and to complete
a comparative study between the different existing Ensemble Learning methods. Then,
we present and analyze the results of our study and we introduce a new evaluation
metric called Trusted Misclassification Rate (T-MR).

In the third chapter, we examine a novel two-tier adaptive test flow. We begin by
introducing the concept of an adaptive test flow in the context of an indirect test strat-
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egy. Then, we present our proposed solution. In addition, we develop an experimental
protocol for a case study. Moreover, we present the measurement campaign and the
data preparation steps. Finally, we study the efficiency of the two-tier adaptive test
flow and present the results of our experiment.

In the fourth chapter, we propose an adapted strategy, based on the indirect test
one, to perform an on-line monitoring of the device performance within its application.
Then, we present the necessary criteria for such an adaptation. Furthermore, we intro-
duce the case study used as a proof-of-concept. In addition, we discuss the development
of the model and its implementation. Finally, we present a theoretical study on the
impact of the ADC resolution on the prediction accuracy as well as the results achieved
while performing an embedded prediction.

Finally, the main contributions of this thesis are summarized in the conclusion and
perspectives for future work. This thesis is a collaboration between LIRMM (Labora-
toire d’Informatique, de Robotique et de Microélectronique de Montpellier) and NXP
Semiconductors in the framework of the European project HADES ("Hierarchy-Aware
and secure embedded test infrastructure for Dependability and performance Enhance-
ment of integrated Systems").



Chapter 1

Indirect Test for Analog/RF IC

1.1 Introduction
Testing Integrated Circuits (ICs) is a crucial step in the production process as it

ensures the quality of manufactured devices and verifies their reliability during their
life-cycle. In the case of digital blocks, even though complexity has exploded over the
decades, fault-oriented testing has allowed to limit the part of the testing costs of these
blocks. On the other hand, for analog and RF blocks, even if they have less evolved
in complexity than digital blocks, their testing costs have continued to increase. The
main reason is that there is no recognized fault model for analog and RF blocks and
therefore fault-oriented approaches are inadequate. In consequence, analog and RF cir-
cuits are tested with a specification-oriented approach, which relies on the measurement
of the circuit performances and the verification of whether these performances comply
with the datasheet. This approach ensures a satisfying test quality but the required
measurements necessitate very expensive test equipment and long test time, which are
responsible for the excessive testing costs [1]. Furthermore, recent design trends tend to
experiment with heterogeneous systems and the notion of System-in-Package and 3D
devices. Such advances raise new technical difficulties for the testing process in terms
of access to the internal components in order to provide stimuli for specific inputs and
the ability to read the device response on its outputs, which will of course result in
additional test costs. Finally, when considering RF ICs, it would be complicated to
rely entirely on wafer-level specification-based testing for RF signals due to probing
complexity [2] and limited resources [3].

Several approaches have been studied to avoid these direct performance measure-
ments. All fault model-based solutions such as digital test techniques never achieved
an acceptable level of test efficiency, even if recent solutions improve the effectiveness
of these techniques. Built-in-Self-Test or DFT (Design For Testability) solutions often
reduce the required external resources, but have a significant silicon impact, and above
all, do not allow performance to be measured with the same accuracy as external mea-
surement instruments. In this context, an interesting approach is to adopt an indirect
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test strategy based on machine-learning algorithms.

This chapter is organized as follows. Section 1.2 presents the concept of an indirect
test strategy. Section 1.3 describes the synopsis of this test strategy. In Section 1.4,
we present the commonly used classical prediction algorithms in order to choose the
appropriate machine-learning algorithm for our study. Section 1.5 explains the various
available techniques to choose the most pertinent and important indirect measurements.
In Section 1.6 we define the metrics that we will use to evaluate our indirect test strategy.
In Section 1.7 we present the initial limitations faced with the indirect test strategy.
Finally, Section 1.8 concludes the chapter.

1.2 Concept of an Indirect Test Strategy
Indirect test for analog/RF integrated circuits was firstly introduced in [4] as alter-

nate test. The main motivation behind such an approach is to alleviate the burden and
relax the constraints on the industrial test equipment to process conventional perfor-
mance specification measurements, which require additional dedicated and expensive
equipment. The underlying concept of an indirect test strategy is that the process vari-
ations exhibited in the fabrication process that affect the device performances will also
affect non-conventional low-cost indirect parameters easily measured by low-cost test
equipment. Thus, it is possible to find and establish a correlation between the indirect
parameter space and the performance specification space. As a result, the intention of
establishing a correlation is to test only indirect parameters to verify the performance
of the device under test.

However, the relation between these two sets of measurements is usually complex
and not always easy to identify through analytical functions. One solution to overcome
this problem is to utilize the computing powers of machine learning algorithms. The
implementation of a machine learning algorithm can be under two distinctive forms in
the context of an indirect test strategy; it could be either considered as a classification
or a regression problem.

1.2.1 Classification-oriented Indirect Test
In the case of a classification-oriented indirect test, the idea is to establish a de-

cision boundary that separates good from faulty circuits. This decision boundary is
determined within the indirect measurement space. This approach has been previously
presented in [5–7].

Of course, such an approach is only possible when the test limits are available to
be able to establish a model that differentiates between these two classes. Indeed, im-
plementing a classification-oriented indirect test is deemed as a fast strategy to classify
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new devices as either faulty or good circuits while only using rapidly executed low-cost
indirect measurements. However, once the new device is classified, this approach does
not offer any capabilities to diagnose the results of such a classification. Moreover,
usually due to the life cycle of new devices, the specification test limits may change,
which implies to re-define and re-establish a new decision boundary in the indirect
measurement space to classify circuits as good or faulty.

1.2.2 Prediction-oriented Indirect Test
The prediction-oriented indirect test is another implementation of an indirect test

strategy, which has been previously explored in [8–10]. Instead of establishing a deci-
sion boundary, like in the case of a classification-oriented indirect test, in this approach
the target is to establish a regression function that can predict the value of the device
performance by building a regression function that maps the values of indirect measure-
ments (IMi) into the performance measurements (Pj) as expressed in Equation 1.1, thus
dispensing the need of retaining the performance specification limits while establishing
the indirect test strategy.

fIM→P : [IM1, ..., IMl]→ [P1, ...,PN ]. (1.1)

In fact, this strategy has several advantages over the previous strategy. The main
advantage is that there is no need to re-establish the regression function that maps
the indirect measurement space to the performance specification space each time the
specification test limits vary during the life cycle of the device. Moreover, due to
the produced performance estimation through the established regression function, it
is plausible to diagnose, and interpret the indirect test strategy efficiency. Thus, in
our work we have adopted the prediction-oriented test approach due to its advantages
over classification-oriented strategy, and we present the prediction-oriented indirect test
synopsis in the following section.

1.3 Synopsis of an Indirect Test Strategy
When implementing an indirect test strategy based on machine learning algorithms,

the aim is to replace the conventional specification based testing approach. Hence,
the machine learning model should satisfy different important criteria. The regression
model in which we estimate the performance of the device should be of high accuracy,
and represent correctly the relationship between the device’s specifications and the indi-
rect measurements. Furthermore, the regression model has to predict the performance
specification of the device under test (DUT) during the production testing phase in a
reliable manner. Finally and most importantly, the regression model should utilize the
minimum number of indirect measurements as possible to efficiently reduce the test cost.
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The indirect test synopsis can be divided into two distinct phases, namely learning
and production testing phases, as illustrated in Figure 1.1. The idea is to establish
during the learning phase the unknown dependency between the low-cost indirect mea-
surements (IMi) and the conventional performance measurements (Pj). To achieve this,
both the specification tests and the low-cost indirect measurements are performed on a
set of learning devices. It is imperative that the set of learning devices is representative
of the set of devices tested at the production phase. Thus, a machine-learning algo-
rithm is trained on the set of learning devices to build a regression model that maps
the indirect parameter space to the performance parameter space. Then, during the
production testing phase, only the low-cost indirect measurements are performed and
the specifications of every new device are predicted using the mapping learned in the
initial learning phase.

Figure 1.1: Indirect test synopsis [11]

1.4 Classical Regression Algorithms
The classical approach to predict the value of a target parameter on unseen instances

is to build a single regression model. Many different algorithms exist to perform this
task. The most popular algorithms used in the context of indirect test are Multiple
Linear Regression (MLR), Multi-Adaptive Regression Splines (MARS), Support Vector
Machine (SVM), and Decision Trees (DT). The fundamentals of these models are briefly
described hereafter.

1.4.1 Multiple Linear Regression
A MLR model is a simple analytical model that expresses a linear relationship be-

tween the output variable (the circuit performance to be predicted) and multiple in-
dividual input variables (the indirect measurements) [12]. Once trained, the model
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predicts new instances by simply computing a weighted sum of the input variables ex-
pressed in Equation 1.2, where xi represents the different input variables and θi are the
different model parameters, which include the bias term of the regression function θ0.
The parameters of the model are computed in a way that minimizes the RMSE (Root
Mean Square Error, see Section 1.6) score on the training dataset.

ŷ = θ0 + θ1x1 + θ2x2 + ...+ θnxn (1.2)

The main interest of this model is that it gives a clear idea of how the inputs affect the
output. Moreover, thanks to its extreme simplicity, it is very fast to compute. However,
because it assumes only linear relationship between the input and output variables
and is considered as a parametric regression function, it might not be appropriate to
correctly represent complex data, since it tends to under-fit the data. An example of a
simple linear regression model is presented in Figure 1.2.

Figure 1.2: Simple Linear Regression

1.4.2 Multivariate Adaptive Regression Splines
A more refined model is a MARS model [13], which is based on a non-parametric re-

gression. It can be considered as an extension of linear models. Nonetheless, it includes
automatic modeling of non-linearities and interactions between variables. In particular,
the technique involves the partitioning of the input space into several regions, each one
with its own linear regression equation. The algorithm automatically computes the
different parameters related to the partitioning of the input space and the combination
of the variables and what is called hinge functions expressed with Equation 1.3. An
example is illustrated in Figure 1.3.

h(x− t) = [x− t]+ =
{
x− t, x > t
0, else

(1.3)
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Figure 1.3: Hinge Function

The main advantage of a MARS model is that it makes no assumption about the
underlying functional relationship between the dependent and independent variables.
In counterpart, its computational cost is much higher than MLR models.

1.4.3 Support Vector Machines
SVM is a supervised machine learning algorithm that can be used for both classifi-

cation or regression challenges. The general objective of the SVM algorithm is to find
a linear hyper-plane which separates the data into classes for a classification problem,
and to fit the data within this hyper-plane for a regression problem. However, if a linear
hyper-plane cannot be found to fit or separate the data, the algorithm can exploit the
built-in kernel methods that transform the data into a higher order dimensional space
by creating new features allowing the algorithm to find a linear hyper-plane and solve
non-linear problems. Polynomial and Gaussian Radial Basis Function (RBF) are the
mostly used built-in kernels, and are defined in [12].

The characteristics of the linear hyper-plane, its dimensions and its support vectors
are only determined based on the training data. Thus, the number of coefficients that
defines the hyper-plane will increase with the number of training instances and this
might entail an additional computational complexity. In Figure 1.4, an example of a
Linear SVM regression model is presented by its hyper-plane and the different support
vectors. More details can be found in [14].



CHAPTER 1. INDIRECT TEST FOR ANALOG/RF IC 9

Figure 1.4: Linear Support Vector Regression [14]

Finally in the case of a regression problem, the prediction of new instances will
depend on the support vectors and the coefficients of the model. The value of a new
instance can be calculated through Equation 1.4, where k(xi, x) represents the kernel
transformation built in the algorithm, the coefficients along with the support vectors
are defined within α∗i − αi, and b represents the bias term in the regression function.

f(x) =
l∑

i=0
(α∗i − αi)k(xi, x) + b (1.4)

1.4.4 Decision Trees
Similar to SVM algorithms, Decision Trees are considered as a flexible machine learn-

ing algorithms, where both regression and classification problems could be solved. This
algorithm identifies ways to split the dataset across the available features. Moreover,
the decision rules are generally built on the bases of if-then-else statements, as the
example presented in Figure 1.5.

Figure 1.5: Decision Tree Decision Rules
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Unlike MLR, Decision Trees are considered as non-parametric supervised machine
learning algorithms since the number of parameters is not determined prior to training
the model. In such circumstances, the model is free to replicate the training data, which
might lead to over-fitting. However, such circumstances could be avoided by controlling
the model’s hyper-parameters which could introduce a regularization factor and control
its degree of freedom. Number of hyper-parameters can control the model. One of them
is the depth of the decision tree: if left uncontrolled, the tree and its decision rules will
continuously expand until there are no samples left in the dataset. Furthermore, the
minimum number of samples required to split the data and create a decision rule can
also be specified. Indeed, tuning this types of models requires deep understanding of
the effect of each hyper-parameter on its fit. Further details can be found in [12].

Finally, the effect of one of the Decision Tree parameters (max_depth) is presented
in Figure 1.6 as an example. It shows how the fit of the data could change as we vary
one of the model’s hyper-parameters.

Figure 1.6: Max Depth parameter effect

1.5 Indirect Measurement Selection
In the previous section, we briefly described the most common regression algorithms

used in the context of indirect test strategy. Nonetheless, regardless of the model type
or complexity, the quality of the prediction model will be hugely dependent on the
available indirect measurements in the dataset. Thus, the choice of the indirect mea-
surements is going to affect greatly the performance achieved through an indirect test
strategy, which raises the importance of finding pertinent indirect measurements. Nev-
ertheless, the pertinent indirect measurements can vary from one product to another,
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or even from one specification to another for the same product.

Furthermore, we should ensure that the used indirect measurements are information-
rich and correlate with the circuit specifications. Primarily, the test engineer will depend
on the designer expertise and knowledge of the circuit under test to use the ad-hoc in-
direct measurements. The authors in [15] have used standard final DC tests that are
usually performed for each manufactured device, which can thus be easily added to the
list of indirect measurements without additional costs. Moreover, it is also possible to
use internal DC probes along with a DC test bus to measure some pre-defined internal
nodes, as presented in [16]. Furthermore, designers could also include various types of
built-in sensors that could be deemed as additional indirect measurement, as proved
in [17,18]. Finally, the authors in [9] have explored the possibility of changing the test
conditions for the various types of indirect measurements, in order to increase the total
number of indirect measurements.

Once all the possible indirect measurement candidates have been generated for a
specific product, it becomes feasible to construct a prediction model that correlates the
circuit specifications with the rich collection of indirect measurements. However, the
effectiveness of this process comes into question for various purposes. Firstly, we have
to remember the main motivation behind the indirect test strategy, the aim is to reduce
the test cost for analog and RF integrated circuits. Thus, having a substantial collection
of indirect measurements would keep the test cost at a high level, which would nullify
the expected gain of an indirect test strategy. In addition, building a complex pre-
diction model comprised of numerous input variables will increase the computational
complexity of the task. Furthermore, some of the generated indirect measurements
might not contain any additional information or even duplicate or correlate well with
other indirect measurements, which will reduce their importance. Finally and most
importantly, while increasing the number of indirect measurements will diversify the
available collection that could be used to predict the circuit specifications, it will force
us to face the curse of dimensionality, which is a well documented phenomenon in the
domain of machine learning [19]. This problem will affect the performance of the re-
gression model where the generalization error will eventually start to increase as the
dimension of the input variables increases, tending to over-fit the training data.

Consequently, limiting the number of indirect measurements is beneficial on several
fronts, and it raises the importance of selecting the most pertinent indirect measure-
ments among the collection of the available measurements. This problem of selecting
a subset of features among a larger set is a recurrent problem in the field of machine
learning, known as feature selection. For this, various algorithms have been proposed,
which can be divided into three categories, namely filters, wrappers and embedded
methods [20], as well as any hybrid algorithm that combines the above methods.
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1.5.1 Filter Methods
Filter methods select pertinent features based on their statistical characteristics.

These methods are thus independent of the machine learning model and are consid-
ered as a pre-processing step, since the selection process begins before training the
model and since it does not take into consideration the model’s performance.

Mainly, the motivation behind applying these types of methods is justified since they
are easy to implement, simple to comprehend, and most importantly computationally
inexpensive. Basically, filter methods are very good tools to eliminate redundant, irrel-
evant or duplicated features. Filter methods could range from the very basic filters that
eliminate constant and quasi-constant features, or features that are highly correlated
with each other, to statistical and correlation-based filters that could be univariate or
multivariate.

Feature selection based on Pearson correlation

The Pearson correlation describes the strength of the linear relationship between
two random variables, hence it could be calculated for the different indirect measure-
ments (input variables) with respect to the circuit specifications (target variables). It
is expressed by Equation 1.5, where x̄ and ȳ represent the mean value of the random
variables X and Y, whereas n represents the total number of samples.

RX,Y =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(1.5)

The Pearson correlation is built on the assumption that a linear dependency exists
between the two random variables and that they are normally distributed. The value
of the Pearson correlation can vary between -1.0 and 1.0:

• 1.0 means positive correlation,

• -1.0 means a negative correlation,

• 0 means no correlation between the two random variables.

Actually, it is also possible to define the Pearson correlation as the covariance of the
two random variables divided by the product of their standard deviation, as expressed
in Equation 1.6:

RX,Y = cov(X, Y )
σ(X)σ(Y ) (1.6)
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Consequently, in the context of an indirect test strategy, we compute the Pearson
correlation for each indirect measurement and we rank them in a decreasing order
based on their score. Once ranked, it is possible to select the most relevant indirect
measurements without the use of a prediction model, by choosing the highest ranked
indirect measurements.

Feature selection based on Brownian distance correlation

Unlike Pearson correlation, which assumes a linear dependency between random vari-
ables, Brownian distance correlation [21] is a multivariate correlation score that is sen-
sitive to non-linear dependencies. It has been used in the context of an indirect test
strategy in [22].

Considering (Xi, Yi) : i = 1, 2, ..., n a random instance from an independent and
identically distributed random vector variable (X, Y ). The squared sample distance
covariance dCov2

n(X, Y ) is defined as the arithmetic average of the products Aj,i and
Bj,i presented in Equation 1.7.

dCov2
n(X, Y ) = 1

n2

n∑
j,i=1

Aj,iBj,i (1.7)

where the products Aj,i and Bj,i correspond to the doubly centered distances com-
puted from the Euclidean distance matrices (aj,i) = (‖Xj −Xi‖) and (bj,i) = (‖Yj − Yi‖):

Aj,i = aj,i − āj. − ā.i + ā.. , Bj,i = bj,i − b̄j. − b̄.i + b̄..

where

āj. = 1
n

n∑
i=1

aj,i , ā.i = 1
n

n∑
j=1

aj,i , ā.. = 1
n2

n∑
j,i=1

aj,i

and

b̄j. = 1
n

n∑
i=1

bj,i , b̄.i = 1
n

n∑
j=1

bj,i , b̄.. = 1
n2

n∑
j,i=1

bj,i

The sample distance variance dV arn(X) is a special case of distance covariance
when the two variables are identical and is given by the square root of:

dV ar2
n(X) = dCov2

n(X, Y ) = 1
n2

n∑
i=1

A2
j,i (1.8)

Finally, the distance correlation dCorn(X, Y ) of two random variables(X, Y ) is ob-
tained by dividing their distance covariance by the product of their distance standard
deviations (square root of distance variances):
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dCorn(X, Y ) = dCovn(X, Y )√
dV arn(X)dV arn(Y )

(1.9)

In a similar manner to the Pearson correlation, the most relevant indirect measure-
ments are the most highly ranked measurements.

1.5.2 Wrapper Methods
The filter methods, explored previously, rely basically on the statistical characteristics

of the features, and select them in an independent manner from the type of prediction
model. As a consequence, the features are not selected to optimize the prediction model
performance and tend to ignore feature interactions, since filter methods evaluate fea-
tures individually. Thus, it would be interesting to explore feature selection methods
which take into consideration the prediction performance of the model. Such methods
are defined as wrapper methods.

A wrapper method is firstly based on a search strategy within the space of possible
feature subsets, then each feature subset is evaluated based on the prediction model
performance. Such a process entails different choices that should be specified before
implementing such a method:

• Search strategy,

• Prediction model type,

• Performance evaluation metric (see Section 1.6),

• Stopping criterion.

Such methods are considered as greedy search algorithms since they tend to find
the best possible feature subset that maximizes the prediction model performance, and
most often will be computationally expensive in the case of an exhaustive search. On
the other hand, wrapper methods can detect feature interactions and will find an op-
timal solution tailored for a specific type of prediction model. Finally, to reduce the
computational burden of such a process, it is recommended to include a stopping cri-
terion for the search strategy, either by monitoring the performance behavior or by
choosing a desired number of features. Multiple search strategies exist, such as best-
first, depth first search, hill climbing and genetic algorithms. Nonetheless, the most
common strategy used in the context of an indirect test strategy is based on a best-first
search, which adds the best feature candidate in each iteration. It is also known as
Sequential Forward Selection (SFS) [18,23].

The procedure of SFS starts by building a prediction model for each available feature
and selecting the feature that generates the model with the best performance. At the
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second iteration, a prediction model is built for each pair of features that includes the
previously selected feature; the pair that gives the best model is then selected. The
process then continues with triplets and so on, until a stopping criterion is reached, for
instance the number of selected features reaches a maximum target limit, or the desired
level of performance is reached.

1.5.3 Embedded Methods
Unlike wrapper methods in which the models are trained and then their performances

are evaluated to select the feature subset, embedded methods complete the feature se-
lection process within the training process of the prediction model. Embedded methods
internally compute the features importance in terms of prediction contribution during
the training phase, and in the end remove non-important features. Thus, the main
advantages of such a process are the following:

• Fast computation, similar to filter methods,

• Consideration of feature interactions, similar to wrapper methods,

• Higher accuracy than filter methods,

• Less prone to over-fitting.

Tree-based models are capable of identifying the most important features while
building the model since, as seen previously in the case of Decision Trees (Section
1.4.4), they tend to split the dataset based on certain features to build the decision
rules. Hence, once the tree based algorithm is fully trained, it is easy to rank the
importance of features based on the dataset partition decision rules. MARS model
(Section 1.4.2) is another prediction model that is capable of eliminating unnecessary
features while building the prediction model, as presented in [24].

Nevertheless, surely not all types of prediction models are capable of performing
embedded feature selection. Another solution for linear models is the use of regulariza-
tion: it is quite used in the domain of machine learning whenever we wish to penalize
over-fitting, or to limit the freedom of certain parameters. Indeed, regularization also
increases the model’s robustness to noise and improves its generalization to prevent
huge validation errors. There exists three types of regularization for linear models:

• Lasso Regression, or L1 regularization,

• Ridge Regression, or L2 regularization,

• Elastic Nets L1/L2 regularization.

For interested readers, the full explanation and the differences between those three
types of regularization is presented in [25, 26]. This topic is out of the scope of this
chapter.
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1.5.4 Hybrid Methods
Finally, after having presented the most commonly used methods to perform feature

selection in the domain of machine learning and their implementation in an indirect
test strategy, it is possible to compare the pros and cons of each method in order
to utilize the most suitable method for a specific application. Nonetheless, it is also
possible to consider hybrid methods which are constructed using two or more of the
above mentioned methods. Indeed, we can create a tailored made method that could
suit our application; for example we can use filter methods alongside wrappers or even
wrappers alongside embedded methods. Such propositions have been explored in the
context of an indirect test strategy as presented in [27].

1.6 Evaluation Metrics
Once the most pertinent indirect measurements have been selected, along with the

type of regression model which of course will depend on the data and the device un-
der test, the evaluation of the prediction model implemented within the indirect test
strategy will be considered as a crucial following step. This evaluation will serve as a
reflection on the efficiency of the indirect test strategy, and as an indication of confi-
dence whenever a test engineer considers replacing the classical specification test by an
indirect test strategy. There exists several evaluation metrics in the world of machine
learning, however, the metrics used in the context of a prediction-oriented indirect test
strategy are discussed in this section.

1.6.1 Normalized Root Mean Square Error
The most commonly used metric to evaluate the quality of a model in the context

of indirect testing is the Mean Square Error (MSE), or the Root Mean Square Error
(RMSE), which is a measure of the difference between the values predicted by a model
and the actually observed values. This metric gives information on the accuracy of a
model. The interest of the RMSE score is that it is expressed in units of the variable
of interest. It is computed as the square root of the average of squared errors:

RMSE =
√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (1.10)

where yi is the actual performance value of the ith instance, ŷi is the predicted perfor-
mance value of the ith instance and n is the number of instances. Note that the RMSE
score depends on the variable scale. Therefore, it can be used to compare different
models for a given variable, but not between different variables. To facilitate the com-
parison between variables with different scales, normalization can be applied. Although
there is no consistent means of normalization in the literature, common choices are the
mean or the range of the observed data. In this manuscript, we define the Normalized
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Root Mean Square Error (NRMSE), expressed in percentage, as the RMSE divided by
the mean ȳ of the observed data:

NRMSE = RMSE
ȳ

(1.11)

1.6.2 Coefficient of Determination
Another common metric used in statistics to evaluate the quality of a regression model

is the coefficient of determination R2, which is a measure of how well the regression
predictions approximate the real data points. This score is a measure of the goodness-
of-fit of a model and it is described in Equation 1.12. The interesting thing about the
R2 score is that it is a normalized score that ranges between 0 (no correlation) and 1
(perfect correlation), therefore permitting comparison across different variables.

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2 (1.12)

Note that the NRMSE score can be computed form the R2 score as shown in Equation
1.13 where σy is the standard deviation of the observed data, and CVy = σy/ȳ is the
coefficient of variation which corresponds to a standardized measure of the variability of
the population. This equation indicates that, despite normalization, the NRMSE score
has a dependence with the observed data since it depends not only on the quality of the
model through the R2 score, but also on dispersion of the observed data through the
coefficient of variation CVy. Comparison of NRMSE scores between variables might be
meaningless if the observed data for each variable present a very different dispersion.
In contrast, the R2 score permits fair comparison across different variables.

NRMSE = σy

ȳ
∗
√

1−R2 = CVy ∗
√

1−R2 (1.13)

1.6.3 Failing Prediction Rate
Another metric has been introduced in [28], which permits to quantify the prediction

reliability of a model. This metric, called Failing Prediction Rate (FPR), which is
represented in Equation 1.14, expresses the percentage of circuits with a prediction
error that exceeds the conventional measurement uncertainty εmeas.

FPR = 1
n

n∑
i=1

(|yi − ŷi| > εmeas)with (|yi − ŷi| > εmeas) = 1 if True

(|yi − ŷi| > εmeas) = 0 otherwise
(1.14)

1.6.4 Misclassification Rate
When the conventional specification test is considered for the circuit performance

verification, the test quality could be obtained through two key metrics: the yield loss
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and the test escape. The yield loss represents the percentage of good circuits that were
discarded, out of the total number of circuits. The test escape represents the percentage
of circuits deemed to be functional when in reality they are faulty circuits, out of the
total number of circuits. It is important to note that both of these metrics could be
only computed if the test limits are available and the notion of good and faulty circuits
is established.

It would be interesting if a similar metric could be used in the context of indirect
test strategy. Actually, such a metric already exists and it is called the Misclassification
Rate (MR); it can be computed only if the test limits are available in both prediction
or classification-oriented indirect test strategies. Basically, it expresses the ratio of
misclassified circuits, when the model predicts faulty circuits as good or vice versa, with
respect to the total number of circuits. Hence, the MR metric expressed in Equation
1.15 could be considered as the sum of the yield loss and the test escapes metrics which
reflects the test quality in the classical specification test.

MR = yield loss+ test escapes

Total # of circuits
(1.15)

1.7 Limitations
After introducing the basic and necessary elements of an indirect test strategy in

this chapter, we have to be realistic about the prospect of adopting such a strategy,
since some crucial challenges might be faced during the production test phase. Those
challenges will have to be treated in order to establish a confident and efficient indi-
rect test strategy, since we are replacing the expensive and reliable specification-based
testing with low-cost indirect measurements for a huge number of devices. Generally,
industry always has doubts about this strategy and does not have a full confidence in
the predicted performance values, due to the lack of clarity and certainty on various
aspects. For instance, the regression model is heavily dependent on the training phase,
which is based most importantly on the selected indirect measurements and the number
of available devices. We have to remember also that these prediction models are built
using a limited set of training devices that might not reflect the actual distribution and
the behavior of the device during its full life cycle.

Previous studies have been already conducted to try and alleviate those challenges,
but still the indirect test strategy is far from being adopted in an industrial context.
In this manuscript, we will try to improve the efficiency of the existing solutions. Our
objective is to achieve and implement a complete framework, which could help any test
engineer in performing an adequate comparative analysis and study of the different
indirect test strategy options in order to reach a state of full confidence in the indirect
test strategy.
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1.8 Conclusions
The concept of an indirect test strategy has been introduced in this chapter. This

test strategy is an alternative approach to the specification-based testing for analog/RF
integrated circuits in order to reduce the ever-increasing testing costs. Although this
strategy has been proposed and developed over the years, it has generally not been
adopted in an industrial context due to the lack of confidence. Nevertheless, this strat-
egy heavily relies on the machine learning domain and could always be improved by
newly proposed techniques or models for better consideration from the industry.

The various elements required to implement an indirect test strategy were presented,
such as the type of indirect test strategy, the regression models, the indirect measure-
ment selection and finally the evaluation metrics. Indeed, different options exist within
each essential element, which allows us to perform a comparative analysis and highlight
the advantages and disadvantages of each option. Thus, we offer an important insight
for test engineers who wish to implement an indirect test strategy.

In the following chapters, we will present our work in which we investigate differ-
ent approaches to enhance the performance of the prediction models, or to improve
the overall confidence in the prediction value while offering a complete framework to
establish an efficient and trustworthy indirect test strategy.



Chapter 2

Ensemble Learning

2.1 Introduction
In the previous chapter, the concept of an indirect test strategy for analog/RF cir-

cuits was presented and discussed. Moreover, the predominant prediction models that
are usually used in this context were described in section 1.4. However, regardless of the
type of prediction model, using one prediction model for an indirect test strategy can
force certain limitations, and could be problematic in some scenarios. Indeed, the per-
formance of an individual prediction model may vary from one product, or specification
to another, and the size of the training set can also impact the performance achieved by
the implemented prediction model. Furthermore, the presence of extreme values in the
dataset can lead to deterioration in the performance of some types of prediction models.

Therefore, the objective of this chapter is to explore the use of multiple prediction
models. The chapter is organized as follows. In section 2.2, we define the concept
of ensemble learning and introduce the different methods that are usually used in the
literature in the domain of machine learning. An experimental setup is then introduced
in section 2.3, in which we investigate the advantages of ensemble learning over classical
individual models, and compare the different methods of ensemble learning. Results
are summarized and discussed in section 2.4. Finally we conclude with a perspective of
extending the implementation of indirect test strategy in section 2.5.

2.2 Ensemble Learning
Unfortunately, in the field of machine learning, it is quite impossible to find an ideal

model, a single prediction model that can outperform others in different scenarios or
circumstances. Thus, researchers began to use several prediction models to circumvent
the limitations and drawbacks of using a single prediction model. The main idea of this
approach is to exploit the strengths and mitigate the weaknesses of individual models.
Hence, the combination of a diverse set of individual models can potentially lead to

20



CHAPTER 2. ENSEMBLE LEARNING 21

better stability and better predictive power.

The process of using multiple individual models (base learners) and aggregating
their outcomes is called Ensemble Learning. It can be applied in various forms which
have been proposed in the literature [29]. The different base learners can be homoge-
neous, by using a single type of base learners, or heterogeneous, by using different types
of base learners. Both of which can be trained sequentially or in parallel, depending on
the ensemble learning algorithm and technique.

In the context of indirect testing of analog/RF circuits, ensemble learning has been
firstly introduced in [30], where the implementation of the ensemble methods has been
handled by the ENTOOL Matlab toolbox [31]. However, the authors in [30] used the
toolbox without conducting a full comparison between the different ensemble methods,
and studying the benefits of using such methods over the use of classical individual
models. In addition, model redundancy which is an aspect of ensemble learning, has
been investigated in [32, 33] where it is compared with the classical approach of using
one individual prediction model. In this section, we wish to explore various ensemble
learning algorithms and techniques. More precisely, three of the most largely used
ensemble learning methods are considered, namely Bagging, Boosting, and Stacking.

2.2.1 Bagging
A first approach to obtain a diverse set of base learners consists in manipulating the

original training set in order to create different random subsets. Multiple base learners
can then be trained on these random subsets and aggregated by averaging their output,
which will reduce the variance achieved with an individual model for the totality of the
training set.

The creation of the random subsets can be achieved by re-sampling the original
training set. When re-sampling is performed with replacement, it is called Bagging
which stands for bootstrap aggregating. Note that, when Bagging is applied, it is
possible for a training instance to be sampled several times for the same base learner.
This process is illustrated in Figure 2.1; it is a parallel ensemble method based on
homogeneous base learners.
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Figure 2.1: Principle of ensemble model construction with Bagging

One of the most popular Bagging algorithm is called Random Forest. It is composed
of multiple decision trees (Section 1.4.4), which are trained on various sub-samples of
the initial dataset and randomized by selecting a random subset of features averaged
to produce the final ensemble model. However, Bagging can be applied with any type
of model.

2.2.2 Boosting
Boosting is also an ensemble method based on homogeneous base learners built us-

ing a manipulation of the original training set. However contrary to Bagging, it is a
sequential method where the different training sets are calculated depending on the
performance of the base learner constructed in the previous iteration. The main idea
of Boosting is that, at each iteration, a new model is built with the objective to correct
the prediction errors of its predecessor, thus leading to a better ensemble model by
focusing on the under-fitted samples at each step. Two of the most used approaches
implemented in Boosting are AdaBoost and Gradient Boosting.
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AdaBoost

Adaptive Boosting (AdaBoost) is implemented by learning a first predictor on the
entire training set by assigning an equal weight to all the samples. In a second step,
depending on the performance of the model, the weights are then updated to highlight
all the under-fitted samples. Subsequently, the next-in-line model is trained on the
updated training samples with their newly assigned weights. This process continues
until all the prediction models have been trained. Finally, a weighted average of the
different predictions is used to compute the final prediction value, as illustrated in
Figure 2.2.

Figure 2.2: Principle of ensemble model construction with AdaBoost
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Gradient Boosting

Like AdaBoost, the Gradient Boosting generates sequentially a new model that cor-
rects its predecessor. However, instead of updating the weights of the training samples,
Gradient Boosting algorithm tries to fit the residual errors made in the previous step.
In this case, the final prediction value is produced by adding all the predictions ob-
tained in every step (Figure 2.3). Although both Boosting techniques can be used with
any type of predictive model, they are generally applied using decision trees as base
learners.

Figure 2.3: Principle of ensemble model construction with Gradient Boosting
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2.2.3 Stacking
An ensemble model can also be built by using different types of base learners. Un-

like Bagging and Boosting methods, Stacking (short for stacked generalization) uses
heterogeneous types of base learners. It is established on a simple concept. Instead
of aggregating the different predictions using a trivial function (a sum or a weighted
average), a prediction model, called a meta-learner, is used to perform the aggregation
of the various base learners. The diversity of base learners is achieved by varying the
types of models. The meta-learner is trained by using the predicted values of the base
learners as input features, as illustrated in Figure 2.4. The two essential differences
between Stacking and Bagging/Boosting are: (i) the base models are not obtained by
manipulating the training data but by using different model types, and (ii) the ag-
gregation of the different base models is not performed by a simple combiner such as
averaging or weighted sum but by a prediction model.

Figure 2.4: Principle of ensemble model construction with Stacking



CHAPTER 2. ENSEMBLE LEARNING 26

2.3 Experimental Setup

2.3.1 Experimental Protocol
In order to perform a comparative analysis of the different ensemble learning tech-

niques, an experimental protocol has been developed, which is described in Figure 2.5.
The main objective of this protocol is to examine the theoretical superiority of ensemble
models over individual regression models, and compare the different ensemble learning
techniques in the context of an indirect test strategy.

The experimental protocol therefore includes four distinct phases consisting of (i)
population partition, (ii) feature selection, (iii) model construction, and (iv) test effi-
ciency evaluation. The definition and the details of the different phases are explained
hereafter.

Figure 2.5: General overview of the experimental protocol

(i) Population Partition

In order to ensure a correct evaluation of the prediction model quality, it is essential
to divide the dataset into training and validation sets. Instances of the training set
will be used for the learning of the prediction model while the model evaluation will be
conducted using the unseen instances of the validation set. Predicting unseen instances
permits to verify that the prediction model built on the training instances avoids over-
fitting, thus guaranteeing its generalization capabilities.
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Moreover, to efficiently evaluate the performance of the established regression model,
the training and validation sets must have similar statistical properties, i.e. same distri-
bution and standard deviation and they should reflect the expected device distribution
and properties. One way to ensure consistency between both sets is to perform a strat-
ified sampling from an initial full dataset which contains all the needed measurements
to implement an indirect test strategy. We could achieve a stratified sampling with
regard to one performance specification while using Latin Hyper-cube Sampling (LHS)
described in [34] and introduced in [28] in the context of an indirect test strategy to di-
vide the initial Learning Set into two identical sets in terms of their statistical properties.

Finally, it would be more advantageous to achieve a similar outcome when the
sampling is performed on multiple variables in a multivariate distribution. This might
resemble a case where multiple performance specifications are required to be predicted
based on a model established using a homogeneous learning set. Therefore, we opted
to use an extended version of the LHS, called conditioned LHS, described in [35].

(ii) Feature Selection

Generally, a large number of indirect measurements exists in the initial dataset. A
necessary step is to select only a subset of relevant indirect measurements for use in
the model construction, among all the available indirect measurements. This process
is identified as feature selection in the domain of machine learning, where the selected
indirect measurements are called features. Selecting only a limited number of features is
essential in order to avoid the curse of dimensionality and enhance generalization ability
by reducing over-fitting. Moreover in the context of the indirect test strategy where the
objective is to reduce the overall test cost, it permits to maintain the simplicity of the
prediction model and limit the number of measurements realized during the production
testing phase. It also helps in providing insight about the circuit performance.

There are different types of feature selection algorithms, which can be divided into
three categories, namely filters, wrappers, and embedded methods [20] as explained in
Section 1.5. The most commonly used solution in the context of indirect test strategy is
a wrapper method based on Sequential Forward Selection (SFS). The procedure starts
by building a regression model for each available IM, and then selecting the IM that
generates a model with the minimum prediction error (lowest RMSE score). At the
second iteration, a regression model is built for each pair of IMs which includes the
previously selected IM; the pair that gives the best model is then selected. The process
then continues with triplets and so on, until a stopping criterion is reached as explained
in Section 1.5. In this experiment, we have implemented SFS using a MARS regression
model, and limiting the selection to 15 features maximum.
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(iii) Model Construction

Based on the features selected in the previous step, it is now possible to build re-
gression models of different types. The main objective here is to investigate whether
ensemble methods can outperform classical regression methods. Practically, we have
decided to compare the three mostly used classical prediction models, namely MLR,
MARS and SVM presented in Section 1.4, with some ensemble models. For the con-
struction of the ensemble models, there are infinite possibilities and ways to build these
models. We have chosen to study five ensemble models covering the different categories
presented in Section 2.2, as described in the following.

• Bagging: one ensemble model is built from ten MARS models trained in parallel
on ten bootstrap samples of the original training set.

• Boosting: one ensemble model is built using the AdaBoost algorithm with a
sequential training of ten MARS models, and one ensemble model is built using
the Gradient Boosting algorithm with 100 decision trees.

• Stacking: one ensemble model is built using the three classical models (MLR,
MARS, SVM) as base models, and one ensemble model is built by adding a
Random Forest (RandF) model as a fourth base model, obtained with a bagging
algorithm applied on 300 decision trees. In both cases, the aggregation of the
base learners is achieved by the MARS algorithm.

(iv) Test Efficiency Evaluation

Finally, the last phase of the experimental protocol concerns the evaluation of the test
efficiency. In this phase, all the models built in the previous phase are used to achieve
performance prediction of the devices in the validation set. The various performance
metrics that were discussed in Section 1.6 are then computed, namely the NRMSE
which reflects the accuracy of the model, the R2 score which illustrates the goodness-
of-fit, and the FPR score which quantifies the reliability of the model. Moreover, if the
performance specification test limits are available, the MR is also computed, which is
an important metric in the context of an indirect test strategy since it gives an idea
about the overall yield in the final production line.
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2.3.2 Case Study
The test vehicle used in this experiment is a Low-Noise Amplifier (LNA) developed

by NXP Semiconductors for which we have a production test data comprising 3,850
devices. More precisely, the test data includes conventional measurements of three
different RF specification performances, namely the gain (G), the output power at
1dB compression point (P1dB), and the third-order intercept point (IP3). In addition,
the test data also includes 79 low-cost indirect measurements, that correspond to DC
voltages on internal nodes and additional DC signatures delivered by built-in process
monitors.

Figure 2.6: Distribution of the three RF specifications

Figure 2.6 illustrates the distribution of the three RF performances under inves-
tigation. It clearly appears that the three RF performances exhibit a non-Gaussian
distribution. Moreover, the three RF performances correspond to three very different
situations, as highlighted in Table 2.1 that summarizes the main statistical character-
istics of the full dataset, for each RF performance. Indeed, it is obvious that there is a
strong disparity between the three RF performances in terms of range, dispersion, and
location of the distribution with respect to the test limits.
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Table 2.1: Main characteristics of the three RF performances

RF Performance
Gain P1dB IP3

Mean value 17.78dBm 19.74dBm 34.68dBm
Std deviation 0.09dB 0.24dB 0.72dB
Coef. of variation 0.49% 1.22% 2.08%
Meas. uncertainty 0.1dB 0.1dB 0.5dB
Test limits [17.3dBm;19.5dBm] [19dBm;22dBm] [34dBm;43dBm]
# circuits within spec 3850 3847 3043
# circuits out of spec 0 3 807

For the gain performance, we observe a very tight distribution with dispersion of
only 0.51% and a standard deviation of 0.09dB that is slightly smaller than the typical
RF measurement uncertainty of 0.1dB. Such a situation is far from perfect, since we
might be dealing with the noise present in the measurement setup, rather than modeling
the impact of manufacturing process variations on the circuit performance. Further-
more, the test limits are located far away outside the distribution of available samples.
As a consequence, there are no faulty circuits with respect to the gain performance,
which means that the evaluation of the MR metric is pointless.

For the P1dB performance, we observe a slightly larger distribution with a disper-
sion around 1% and a standard deviation of 0.24dB that is a bit more than twice the
typical RF measurement uncertainty of 0.1dB. The situation is therefore more favorable
to capture the impact of manufacturing process variations on the circuit performance.
However as for the gain performance, the distribution mostly falls within the test lim-
its, even if the lower test limit is located very close to the left tail of the distribution.
Only three circuits have a P1dB performance inferior to this limit, which constitutes a
negligible portion of the population (less than 0.1%). The evaluation of the MR metric
is therefore also meaningless for this performance.

Finally, for the IP3 performance, we observe a significantly larger distribution with
a dispersion around 2% but a standard deviation of 0.72dB that is only about 1.5 times
the typical RF measurement uncertainty of 0.5dB. The interesting point for this perfor-
mance is that the lower test limit falls within the distribution of available circuits. In
particular, 807 circuits exhibit an IP3 value inferior to this limit, which corresponds to
around 20% of the population. Such a proportion is sufficient to allow the evaluation
of the MR metric.

Taking into account this diversity, it is particularly interesting to see how the indirect
test approach, and more specifically the different types of model, are able to handle
these different situations. In this objective, the experimental protocol presented in the
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previous subsection has been applied. The initial dataset has been partitioned into
two independent sets, namely the Training Set (2000 instances) and the Validation Set
(1850 instances), with the help of cLHS described in Section 2.3.1 in order to preserve its
statistical characteristics and does not introduce any bias. As illustrated in Table 2.2, it
can be observed that, for each RF performance, both sets exhibit similar characteristics
in terms of coefficient of variation and proportion of good/faulty circuits.

Table 2.2: Statistical characteristics of the training and validation sets

RF Performance
Gain P1dB IP3

Training Set
2000 instances

Coef. of Variation 0.48% 1.21% 2.08%
# of good circuits 2000 1999 1591
# of faulty circuits 0 1 409

Validation Set
1850 instances

Coef. of Variation 0.49% 1.23% 2.09%
# of good circuits 1850 1848 1452
# of faulty circuits 0 2 398

2.3.3 Initial Results
Prediction of Gain (G)

Figure 2.7 summarizes the comparison between classical and ensemble methods for
the prediction of the gain specification. More precisely, it reports the evolution of R2

, NRMSE, and FPR scores evaluated on the validation set with respect to the number
of features used in the regression model for the different methods (classical models are
plotted in dotted lines and ensemble models in solid lines).

Several comments arise from the analysis of these graphs. Regarding classical meth-
ods, there is a clear advantage to the model generated by MARS algorithm compared
to MLR and SVM models. The best solution is actually obtained using a MARS model
built with nine features, with an R2 score of 0.65, an NRMSE score of 0.29% and an
FPR score of 2.9%. Regarding ensemble methods, models generated using stacking
are more performing than models generated using boosting or bagging methods. The
best solution corresponds to an ensemble model built with nine features that combines
MLR, MARS, and SVM models, with a Random Forest (RandF) ensemble model. This
ensemble model permits to reach an R2 score of 0.72, an NRMSE score of 0.26% and
an FPR score of 1.5%.
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(a) (b)

(c)

Figure 2.7: Comparison of classical and ensemble methods for gain prediction: (a) R2

score, (b) NRMSE score and (c) FPR score

More generally for the gain specification, these results show that it is possible to
benefit from using ensemble methods compared to classical methods, especially when
stacking is applied. Compared to the best solution obtained using a classical method
(MARS model in this case), the benefit is particularly visible on the achieved goodness-
of-fit with an R2 score that improves roughly by 10%, and on the robustness with
a FPR score that is reduced by a factor of almost two. The improvement is less
visible on the accuracy with an NRMSE score that only reduces of 0.03%. However, it
should be noticed that, whatever the method used to build the regression model and
despite the fact that the R2 score is relatively low, a very good accuracy is achieved for
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this specification. This good accuracy mainly comes from the fact that the observed
population exhibits a very tight distribution with a very low coefficient of variation.

Prediction of output power at 1dB compression point (P1dB)

Figure 2.8 summarizes the comparison between classical and ensemble methods for
the prediction of the P1dB specification, in terms of R2 , NRMSE, and FPR scores
achieved on the validation set by using the different methods.

(a) (b)

(c)

Figure 2.8: Comparison of classical and ensemble methods for P1dB prediction: (a)
R2 score, (b) NRMSE score and (c) FPR score



CHAPTER 2. ENSEMBLE LEARNING 34

Concerning classical methods, unlike the gain specification, we can observe that
the SVM model is more powerful than MARS or MLR models, especially when only a
limited number of features is used; results are then almost comparable when a higher
number of features is used. The best solution is obtained using an SVM model built
with eight features, with an R2 score of 0.85, an NRMSE score of 0.48% and an FPR
score of 12.3%. Regarding ensemble methods, we observe a similar trend as in the gain
specification, i.e. models generated using stacking method appear to be more powerful
than models generated using boosting or bagging methods. The best solution is for
an ensemble model built with twelve features that combines MLR, MARS, and SVM
models, with a Random Forest ensemble model. This model permits to reach an R2

score of 0.87, an NRMSE score of 0.45%, and an FPR score of 11.2%.

Globally for the P1dB specification, there is a slight benefit in using ensemble models
generated with stacking method compared to the best model generated with a classical
method (SVM model in this case), with a more limited improvement than for the gain
specification. In this case, the R2 score only improves by roughly 2.3%, whereas both
the NRMSE and FPR scores remain in the same range, thus a limited improvement
is achieved in terms of model’s accuracy and robustness. It should be noticed that for
this specification, despite the fact that the achieved goodness-of-fit is much better than
for the gain, the achieved accuracy and the robustness are significantly lower than for
the gain.

Prediction of third order intercept point (IP3)

Figure 2.9 summarizes the comparison between classical and ensemble methods for
the prediction of the IP3 specification, in terms of R2 , NRMSE, and FPR scores
achieved on the validation set by using the different methods.

In the case of the IP3 specification, a similar behavior is observed as in the case of
the P1dB specification, i.e. the most powerful model obtained with classical methods is
SVMmodel and the most powerful models generated with ensemble methods are models
generated with stacking method. However, the benefit brought by the use of ensemble
methods is not obvious in this case. Indeed, the best solution obtained with a classical
method is an SVM model built with 14 features that exhibits an R2 score of 0.93, an
NRMSE score of 0.57% and an FPR score of 0.59%, while the best solution obtained
with an ensemble method is a stacked model built with 14 features that exhibits an
R2 score of 0.94, an NRMSE score of 0.52% and an FPR score of 0.70%. There is
therefore a small improvement of the R2 and NRMSE scores, but a small degradation
of the FPR score. Note that for this specification, whatever the method used to build
the regression model, good results are obtained for all of the three metrics that express
goodness-of-fit, accuracy and reliability.
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(a) (b)

(c)

Figure 2.9: Comparison of classical and ensemble methods for IP3 prediction: (a) R2

score, (b) NRMSE score and (c) FPR score
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2.3.4 Influence of the training set size
Following our analysis of the initial results, we have decided to further extend the

experiment, investigating whether the use of ensemble learning might offer additional
benefit with respect to the training set size. Indeed, the main objective of using an in-
direct test strategy is to reduce the overall test cost, which could be eventually achieved
by limiting the number of indirect measurements performed during the production test-
ing phase, but also by decreasing the number of circuits used during the learning phase
to build the regression models. Hence, it is important to study the quality achieved by
both classical and ensemble models while varying the training set size.

In this objective, additional experiments have been performed gradually reducing
the size of the training set. More precisely, we have considered four different sizes of
training sets: 2,000, 1,000, 500, and 200 circuits. The circuits for the various training
sets have been chosen among the initial training set population of 2,000 circuits by
using cLHS, in order to preserve the distribution of each specification.

For each RF performance, we have selected the best ensemble model and the best
classical model in terms of accuracy when the training is performed on the full initial
training set of 2,000 circuits. In the case of ensemble learning, it is the same type of
model that offers the best accuracy for the three performances, i.e. a stacked model
built from four base learners including the Random Forest model. In contrast for clas-
sical models, the type of model that offers the best accuracy depends on the considered
RF performance, i.e. a MARS model for the gain, and an SVM model for the two other
RF performances. All these models have been trained on the different training sets and
the R2, NRMSE, and FPR scores have been recorded. Note that whatever the size of
the training set, all the metrics are evaluated on the same validation set composed of
1,850 devices. Results are summarized in Figure 2.10, which shows the evolution of
the different metrics with respect to the size of the training set used, for the three RF
performances.

As expected, there is a global degradation in the achieved scores for both classical
and ensemble models as the size of the training set is reduced. This degradation is
almost negligible when the training set size is reduced from 2,000 to 1,000 devices but
it is more pronounced when the training set size is further reduced down to 500 and
200 devices. Furthermore, the level of degradation differs from a situation to another,
depending on the considered metric and the evaluated RF performance.
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(a) (b)

(c)

Figure 2.10: Influence of the training set size on performances achieved for the best
classical and ensemble learning models for the 3 RF specifications: (a) R2score, (b)

NRMSE score and (c) FPR score

In term of goodness-of-fit, the superiority of the ensemble model over the classical
model is preserved whatever the size of the training set and whatever the evaluated
specification. Nonetheless, we were expecting a more robust performance from ensem-
ble learning, where we hoped to have a sort of stability while reducing the size of the
training set, while we actually observe a decline in the R2 score that is roughly similar
to the case of classical algorithms.
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In term of accuracy, we have the same trend overall, i.e. the ensemble models
outperform the classical models for the different training set sizes and the three RF
specifications. However, the superiority of ensemble models does not increase as the
training set size reduces. There is even an exception for the P1dB specification where
the training set is composed only of 200 circuits. In this case, the NRMSE score
achieved by the classical SVM model is slightly lower than the one achieved by the
stacked ensemble model.

Finally, in term of reliability, the comparison between classical and ensemble mod-
els differs depending on the evaluated specification. For the IP3 specification, the best
classical and ensemble models present a similar performance with nearly equivalent
FPR scores over the different training set sizes. For the Gain specification, there is a
clear advantage for the best ensemble model compared to the best classic model when
the learning is performed on 2,000 devices. Nonetheless, this advantage lessens as the
training set size reduces and eventually vanishes when the learning is performed only
on 200 devices. In contrast, for the P1dB specification, the dominance observed of the
ensemble model increases as the size of the training set reduces. This is the only case
where the use of the ensemble model leads to a better stability than the classical model.

Globally, this experiment shows that the benefit of using ensemble models is con-
served, but it does not necessarily bring additional stability with respect to the training
set size. However, by referring again to Figure 2.10, it is fair to argue that the differ-
ent scores achieved by using the classical models built on 2000 training samples can
be reproduced or even improved by using ensemble models built only on 500 training
samples. The only exception observed here is in the case of the P1dB prediction and
concerns only the model robustness, where the FPR score of the ensemble model built
on a reduced set of 500 training samples does not outperform the FPR score of the clas-
sical model built on the full training set of 2000 samples. Overall, the use of ensemble
models instead of classical models could be justified, since it might permit to reduce
the number of circuits to be used during the training phase.

2.4 Results Summary
Table 2.3 summarizes the best results obtained using either classical or ensemble

methods for the three RF specifications, with learning performed on the training set of
2,000 devices. The criterion considered to select the “best” solution is the maximum
value of R2 score computed on the validation set. A first general comment is that the use
of ensemble methods, and in particular ensemble methods based on stacking, permits
to obtain an improvement in the goodness-of-fit of the generated model for the three
specifications. However, the level of improvement is different in each case and seems to
depend on the quality of the goodness-of-fit that can be reached by a single model. In
particular, based on the results presented in Table 2.3, we can observe that whenever
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a single model achieves a high R2 score, the level of improvement gained by the use
of ensemble methods decreases. The use of ensemble methods also permits to obtain
an improvement in the accuracy of the generated models for the three specifications,
however it is considered as a minor improvement with a reduction of the NRMSE score
of only few hundredths of percentage point. In contrast, the situation is more diverse
with respect to the reliability of the generated models. Indeed, we observe a significant
reduction by about a factor of two of the FPR score in case of the gain specification,
only a minor reduction of the FPR score in case of the P1dB specification, and a slight
degradation of the FPR score in case of the IP3 specification.

Table 2.3: Comparison between classical and ensemble methods: Summary of best
results for the three RF performances

Best solution selected from max(R2) on validation set
RF perf Model R2 NRMSE FPR MR # Feat

Classical method
Gain MARS 0.65 0.29% 2.86% 0% 9
P1dB SVM 0.85 0.48% 12.32% 0.1% 8
IP3 SVM 0.93 0.57% 0.59% 4.2% 14

Ensemble method
Gain Stack+RandF 0.72 0.26% 1.51% 0% 9
P1dB Stack+RandF 0.87 0.45% 11.24% 0.1% 12
IP3 Stack+RandF 0.94 0.52% 0.7% 4.2% 14

Still, an important point to underline is that when using classical methods, the
type of the model that gives the best results (MARS, SVM...), differs depending on
the specification under investigation, which might hinder the implementation of the
indirect test strategy, since we have to include a model type selection phase for each
new product or scenario. In contrast, ensemble models built with stacking always lead
to the best result. It is an interesting characteristic to have a solution able to handle a
variety of different situations in a robust manner, while preserving its superiority over
other regression model types.

Hence, globally, the use of ensemble models that are built using stacking appears
to be an interesting and robust option. Moreover, it should be mentioned that we did
not explore all the possibilities offered by stacking. Further improvements might be
obtained, for instance by including other types of model as base learners, which will
diversify even more the collection of models, by trying another type for the aggregating
model (MARS model in this study), or by exploring the use of multi-layer stacking
ensemble methods.
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Test efficiency evaluation

More generally, this study also opens the question on what is a pertinent metric
to evaluate the indirect test efficiency. Indeed, the results show that the achieved
performances can significantly vary depending on the considered specification and the
considered metric.

First, it appears that there is no evident relation between the goodness-of-fit, the
accuracy and the reliability of a model. Indeed, for the gain specification, the best
model has a rather low quality in terms of goodness-of-fit with an R2 score of around
0.7, but attain a good accuracy with an NRMSE below 0.3%, and a fairly good reli-
ability with less than 2% of the devices that exhibit a prediction error which exceeds
the classical measurement uncertainty. In contrast for the P1dB specification, we can
obtain a reasonable quality in terms of goodness-of-fit with an R2 score around 0.85,
together with a good accuracy with an NRMSE smaller than 0.5%, but, however, a
relatively low reliability with more than 10% of the devices that exhibit a prediction
error which exceeds the classical measurement uncertainty. Finally, for the IP3 specifi-
cation, we can have at the same time a good quality in terms of goodness-of-fit with an
R2 score higher than 0.9, a good accuracy with an NRMSE around 0.5%, and a good
reliability with less than 1% of the devices that exhibit a prediction error that exceeds
the classical measurement uncertainty.

Moreover, it should be highlighted that it is difficult to establish a link between
these different metrics and the misclassification rate. Indeed, the misclassification rate
strongly depends on the location of the test limits with respect to the distribution of
the available samples. For instance, in the case of the gain specification, the test limits
are located far away from the distribution; despite the relatively low goodness-of-fit
of the models, all devices are correctly classified within the specification limits, and a
perfect misclassification rate of 0% is achieved. In contrast for the IP3 specification, the
lower test limit falls within the distribution; so even if we have models with very high
scores in terms of goodness-of-fit, accuracy, and reliability, around 4% of the circuits
are misclassified, which can be considered as a non-negligible number. Yet, this result
should be mitigated by the fact that all the misclassified circuits are located relatively
close to the test limit, as illustrated in Figure 2.11, which highlights the location of
misclassified circuits on the global IP3 distribution of the validation set. In fact, the
computed misclassification rate might not be fully representative of the indirect test
efficiency because it does not take into account the uncertainty that can affect the
conventional measurement.
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Figure 2.11: Illustration of misclassified devices by using the “Stack+RandF”
ensemble model for IP3 specification

Trusted Misclassification Rate

To further explain this point, let us analyze more in details Figure 2.11. When the
measurement uncertainty is taken into account, it exists a region of uncertainty around
the test limit where the circuits might comply with the specification or not; only the
circuits outside this region, can be trustfully classified as good or faulty when using the
conventional method. For our practical case on the IP3 specification, among the 1,850
circuits of the validation set, 400 are within the uncertainty region, 180 are trusted
faulty circuits that do not comply with the specification, and 1,270 are trusted good
circuits that comply with the specification. Now looking at the results of the imple-
mented indirect test strategy, it appears that almost all the misclassified circuits are
located within the uncertainty region, only five circuits being outside this region. The
computed misclassification rate of 4% does not reflect this situation in a clear manner.

The situation might be better evaluated or understood, if the classical misclassifica-
tion rate is accompanied by a new metric that represents the percentage of circuits that
have an incorrect decision with the indirect prediction among the number of circuits
that have a certain decision with the conventional measurement. This new metric is
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called Trusted Misclassification Rate (TMR). For our case study, 1450 circuits of the
validation set are considered as trusted (i.e. outside the uncertainty region). Among
them, only five circuits are wrongly classified with the indirect test strategy, which cor-
responds to a very low TMR of 0.34%. We believe that this metric can be legitimate
and more representative of the intrinsic ability of a prediction model to correctly clas-
sify circuits under test. The actual misclassification rate achieved in production when
using the indirect test will be somewhere between the classical misclassification rate
and the trusted one.

2.5 Conclusion
In this chapter, we have investigated the benefit that could be achieved by using

ensemble methods in the context of indirect test for RF circuits. Different ensemble
methods based on bagging, boosting, and stacking have been studied and compared
to classical individual models. The developed experimental protocol was applied to a
practical case study, which was provided by a production test dataset from an LNA
integrated circuit. According to this experiment, it seems that ensemble models built
with stacking outperform the other ensemble models built with bagging or boosting in
all cases (RF performance, number of features, training set size).

Furthermore, this study shows that in most situations, ensemble methods surpass
the various classical individual models’ performances, both in terms of accuracy and
reliability, and tend to have a stronger predictive power. Overall, ensemble models built
with stacking appear to be the most suitable solution for a wide range of situations.
This study should be deepened by further explorations, in particular by adding more
diversity to the model collection (i.e. including other types of model as base learners),
or by changing the type of the aggregating model (MARS model in this study).

Finally, this chapter highlights a meaningful question in the context of indirect RF
testing, which is the pertinence of the metrics that are usually considered to evaluate
the quality of a model, and the level of confidence we can have through these metrics.
Not only are the metrics of goodness-of-fit, accuracy, and reliability independent of each
other, but also it is difficult to relate them to an industrial test misclassification rate.
An additional metric, called the trusted misclassification rate, has been introduced that
permits to evaluate the ability of a prediction model to perform correct classification
while taking into account the conventional RF measurement uncertainty. However,
this study actually pinpoints one of the main obstacles towards the wide deployment
of indirect test in an industrial context, i.e. the difficulty to assess the confidence in
the decision to classify a device as good or faulty with respect to a given specification,
based only on indirect measurements.
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In the following chapter, a fallback scenario for the implementation of the indirect
test strategy will be investigated based on the concept of trusted classification regions
with the objective to increase the confidence level and offer the possibility to reduce
the global testing costs without compromising the test quality.



Chapter 3

Adaptive Test Flow

3.1 Introduction
In order to implement an indirect test strategy in an industrial context, it is essential

to preserve the test quality achieved by the conventional specification test. However,
one of the main issues that today limits the wide deployment of the indirect test strategy
in industry is a problem of confidence in the predicted results. Indeed, the machine-
learning algorithms used to build regression models are perceived as a black box and
often induce a lack of confidence. To cope with this issue, an extension of the indirect
test strategy has been proposed, called the two-tier adaptive test flow. The objective
of this approach is to preserve the test quality of specification testing while leveraging
the low-cost of indirect testing.

In this chapter, we explore a novel implementation of this approach in the context
of prediction-oriented indirect test. This chapter is organized as follows. Section 3.2
introduces the principle of the two-tier adaptive test flow, briefly reviews the state-of-
the-art, and presents the proposed implementation. Section 3.3 is then dedicated to the
experimental protocol developed in order to assist the test engineer in the elaboration
of the two-tier adaptive test flow. Finally, the case study and results are presented and
discussed in Sections 3.4 and 3.5, respectively.

3.2 Two-Tier Adaptive Test-Flow

3.2.1 Principle
The principle of the two-tier adaptive test flow is illustrated in Figure 3.1. As in

the classical indirect test implementation, it involves two distinct phases: the training
and production testing phases. The training phase is identical to the classical imple-
mentation, only the production testing phase differs. More precisely, the idea is first
to process every device by the indirect test, i.e. to predict its performances based only

44
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on the low-cost indirect measurements using the models learned in the initial training
phase. However, the predicted values are also accompanied by an information on the
confidence in the predictions. If the confidence is high enough, predictions are con-
sidered reliable and the device is labeled according to the indirect test decision. This
constitutes the first tier. If the confidence in the prediction is insufficient, the device
is then directed to a second tier in which it is submitted to a standard specification
test, i.e. the conventional RF measurements are performed and the device is labeled
according to these measurements. The underlying assumption behind this approach
is that the large majority of devices will be sorted by the first tier, and that only a
small fraction of devices need to go to the second tier. This approach then permits to
maintain a significant test cost reduction, but offers more confidence in the achieved
test quality.

Figure 3.1: Two-Tier Adaptive test flow synopsis

3.2.2 State-of-the-art on adaptive indirect test
Traditionally, test content, test flow and test limits are statically set, which means

that all parts are tested in the same way, regardless of their individual performances.
On the other hand, in adaptive testing, test content, test flow or test limits can be
changed for each part based on manufacturing test data or statistical data analysis [36].
This concept has emerged in the early nineties to optimize the tests applied on VLSI
digital dies [37]. It has then been largely exploited in the context of Iddq-testing of
digital circuits [38]. More recently, adaptive approaches have been explored for analog
and mixed-signal circuits [39]. In this section, we focus more specifically on adaptive
testing in the context of indirect testing for analog/RF ICs.
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Classification-oriented indirect test

Adopting an adaptive test flow to improve the quality and accuracy of an indirect
test strategy was firstly introduced in [7]. The authors have implemented an ontogenic
neural network to create two guard-bands between faulty and good circuits in the in-
direct measurement space. During the production testing phase, each new device first
goes through the indirect test tier. If the device falls outside the guard-bands, it is
assigned to the dominant class (good or faulty) based solely on the low-cost indirect
measurements. Oppositely, if the device falls within the constructed guard-bands, it
is directed to the second tier where it is retested using the conventional specification test.

In another work, the authors of [40] have proposed a confidence estimation, by
creating three different regions in the indirect measurement space, where the prediction
of new devices can be trusted, discarded, or retested. The boundaries of these different
regions are established using an SVM classifier that differ between two different classes:
trusted and untrusted predictions.

Prediction-oriented indirect test

The adaptive two-tier test approach has also been explored in the context of prediction-
oriented indirect test. It was firstly introduced in [41], where the authors proposed a
strategy based on model redundancy. The main idea is to apply various prediction
models on the same training set, while using a different set of indirect measurements
for each model. Whenever a lack of consistency in the different predictions for a par-
ticular instance is detected, the circuit is then re-directed for further thorough testing.

In an another work, the authors of [42] have proposed two adjustable defect filters, in
order to avoid the entailed risks in predicting the performance of marginal and extreme
instances. The first one is a strict filter, where all the instances that are adequately
represented in the training data will have their performance predicted by using the
established regression function. On the other hand, all the suspicious instances are
redirected to the more lenient filter, which will discard gross defects (extreme instances)
and re-test marginal devices in a classical manner. Unlike the introduced guard-bands
in [7], where a classifier is trained to create a buffer zone in the indirect measurement
space, the defect filters are constructed based on Kernel Density Estimation of the
indirect measurements, which has been introduced in [43].

Multi-site indirect test

Finally, in the case of multi-site testing, the authors of [44] have proposed an imple-
mentation of an adaptive test strategy to reduce the test time. The main supposition is
that the indirect test strategy, which has already defined the set of the most pertinent
performance indicators, is capable of replacing the specification based testing and can
replicate its accuracy. The adaptive element in this strategy is the number of indirect



CHAPTER 3. ADAPTIVE TEST FLOW 47

measurements included in the prediction model: the less are incorporated, the more
time can be saved. Thus, the learning phase involves the ordering of the available
features and the incremental training of different regression models by adding a new
feature at each iteration. During the production test, the test program starts with an
evaluation using a model with a low number of indirect measurements. If all the sites
are predicted with an acceptable level of confidence, the circuits under test do not have
to keep on exploring the remaining indirect measurements and the test program halts,
leading to test time improvement.

3.2.3 Proposed Solution
As discussed in the previous section, there are diverse ways of approaching an adap-

tive indirect test implementation. Our target is to develop an adaptive solution in
the context of a prediction-oriented indirect test. Compared to the solution proposed
in [42] where circuits are re-directed based on their distribution in the indirect mea-
surement space, our preference is to base the adaptive strategy on the distribution of
the predicted instances in the RF performance space. Our intention is also to limit as
much as possible the number of used indirect measurements in order to maximize the
cost reduction. Hence, the solution proposed in [41] is not suitable, since it relies on
the building of redundant models that involves different indirect measurements, which
necessarily increases the number of required indirect measurements.

In this section, we present a novel implementation of the two-tier adaptive test flow
in the context of prediction-oriented indirect test. The idea is to evaluate confidence
based on a tolerance zone around test limits. Indeed, experiments realized in Chapter
2 have shown that almost all of misclassified circuits are circuits with a predicted value
close to a test limit, while correct decisions are taken for circuits with a predicted value
far from test limits. Therefore, the proposal is to establish confidence by looking at the
location of the predicted value with respect to a tolerance zone defined around a test
limit.

This principle of confidence estimation is illustrated in Figure 3.2. In the proposed
solution, any device with a performance prediction that falls outside the tolerance zone
will be directly classified according to the indirect test prediction outcome with regard
to the test limit, while any device with a prediction that falls within the tolerance zone
will be directed to the second tier in order to be evaluated and classified through the
conventional specification tests.
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Figure 3.2: Principle of confidence estimation in the proposed two-tier adaptive test
flow.

A chief interest of this solution is its simplicity while it has the ability to adapt
to different industrial constraints. For this, the size of the tolerance zone established
around the test limit is a crucial parameter. The first obvious solution would be to
choose the size of the tolerance zone according to the conventional performance mea-
surement uncertainty. Indeed, as discussed in the previous chapter, only circuits outside
this zone can be trustfully classified as good or not. However, the size of the tolerance
zone is an interesting parameter to exploit. Indeed, varying the size of the tolerance
zone around the test limit permits to explore different trade-offs between test quality
and test cost, which facilitates the development of a cost-effective test plan based on the
two-tier adaptive test flow. More precisely, the initial implementation of the indirect
test strategy developed in Chapter 2 did not include a tolerance zone around the test
limit. Therefore, 100% of the evaluated devices during production test are processed
by the low-cost first tier. The test cost is in this case minimum, but the test quality
expressed in terms of misclassification rate might not be sufficient to meet with the
industrial constraints. By creating and enlarging the tolerance zone around the test
limit, we can expect an improvement of the test quality with a decrease of the misclas-
sification rate, though at the expense of retesting a number of devices and therefore
lower the benefit of using an indirect test strategy in terms of test cost reduction. It
is therefore essential to have an appropriate setting of this parameter during the ini-
tial learning phase, depending on the targeted industrial constraints, in order to really
benefit from the two-tier adaptive test approach.
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3.3 Experimental Protocol
In the previous section, we have introduced the principle of the two-tier adaptive test

approach. The practical implementation of such a principle implies several choices, such
as the selection of pertinent IMs, the choice of the regression algorithm and the size of
the tolerance zone. Obviously the achieved test quality relies on these choices. In this
section, we describe the methodology that has been defined in order to assist the test
engineer in the elaboration of the test flow. The general overview of this methodology
is depicted in Figure 3.3.

Figure 3.3: Principle of confidence estimation in the proposed two-tier adaptive test
flow.

Data Preparation

Similar to the protocol developed in Chapter 2, the first phase concerns the data pre-
processing and data preparation. The initial dataset should contain the conventional
performance measurements and a large variety of indirect measurements for a sufficient
number of circuits (typically several thousands). This full dataset is first partitioned
into two datasets, called learning and validation sets. The learning set will be used to
explore the different possibilities regarding the test flow implementation and to identify
the best options. The second set is dedicated to the validation of the retained options
using an independent set of devices; it is intended to represent the production testing
phase. Note that, although both sets are independent, it is essential that they present
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similar characteristics to ascertain the validity of the results. Therefore, the partition-
ing is realized using conditioned Latin-Hypercube Sampling (LHS), which is a sampling
approach (presented in Section 2.3.1) that preserves the statistical characteristics of the
initial distribution in the sampled sub-datasets.

The learning set is in turn partitioned into two subsets, i.e. the train set and the
test set. The first one will be used to train the prediction models and the second one
to evaluate the accuracy of the constructed models. It is important to perform this
evaluation on different instances than the ones used for training in order to verify the
model generalization ability, and avoid issues related to over-fitting.

Finally, note that it is often recommended in the literature [43, 45] to work with a
dataset that does not contain extreme instances when implementing an indirect test
strategy, due to their non-statistical nature. Indeed, since those random instances do
not represent the actual distribution and are mainly caused by production defects,
data outliers can spoil and mislead the training process, resulting in longer training
times, less accurate models and ultimately poorer results. Consequently, an optional
pre-processing step is implemented to exclude these instances from the learning set by
applying an iterative one-dimensional filter, which have been proposed in [46]. The
basic principle of this filter is, for a given parameter, to remove all instances that have
a measured value outside the interval [µ − kσ;µ + kσ], where µ is the mean value
of the population for the considered parameter, σ the standard deviation, and k a
positive integer that permits to choose the strictness of the filter. The filter is applied
individually on each RF performance and each indirect measurement. The final list of
circuits excluded by the filtering process is the union of all circuits pruned by the filter
over all RF performances and indirect measurements.

Model Exploration

The second phase of the methodology is the model exploration. In this phase, a
number of regression models will be built using different subsets of IMs. As seen
in Chapter 2, the problem of selecting a pertinent subset of IMs within a large set
of candidates remains a crucial step in the proposed framework. Similar to Chapter
2, the implemented approach is a wrapper method called Sequential Forward Selection
(SFS). For this study, we have implemented such a procedure using MARS, and limiting
the number of selected IMs to 15. The next step is then to train regression models
using the selected IMs. Many different algorithms exist to perform this task. Classical
algorithms, including Multiple Linear Regression (MLR), Multi- Adaptive Regression
Splines (MARS), Support Vector Machine (SVM), or more elaborated algorithms that
combine several models in an approach called ensemble learning, have been described
in the previous chapters. For this study, our focus is mainly to explore the effects of
implementing a two-tier adaptive test flow, and not to perform a complete comparison of
the different model types. Therefore, we have implemented only two types of regression
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models which are the most commonly used algorithms in the context of an indirect test
strategy, i.e. MARS and SVM, for their capabilities of depicting non-linear behaviors.

Model Selection

The third phase of the methodology concerns model selection. In this phase, all the
models learned in the previous phase are used to predict the performance specification
of the devices included in the test set. The accuracy of these models is evaluated in
terms of Normalized Root Mean Square Error (NRMSE), which is a normalized measure
of the RMS prediction error expressed in percentage. Models with the lowest NRMSE
are then retained as the best solutions for each performance specification.

Tolerance Selection

The following phase is specific to the implementation of a two-tier adaptive test flow.
It is related to the exploration of the trade-off that can be achieved between the test
quality, expressed in terms of Misclassification Rate (MR), and the test cost, expressed
in terms of the percentage of devices that are retested by the conventional specification
test. Practically, for each selected model, the misclassification rate is first computed
with a tolerance zone set to zero (only indirect test). The size of the tolerance zone is
then progressively enlarged in order to study the evolution of the misclassification rate
versus the number of devices directed to the second tier. The appropriate size of the
tolerance zone can be chosen for each RF performance with respect to a targeted test
quality, i.e. the smallest size that does not overcome a predefined maximum MR.

Efficiency Evaluation

Finally, the last phase of the methodology is dedicated to the evaluation of the
two-tier adaptive test flow efficiency. All the options retained in the learning phase
are evaluated on the devices of the validation set. Indeed, it is important to verify
that the efficiency established on the test set during the learning phase is preserved
on the validation set, which is intended to be representative of the realistic conditions
encountered during the industrial testing phase.

3.4 Case Study

3.4.1 RF Product
The case study used in this chapter is a front-end integrated circuit designed for

Wireless Local Area Network (WLAN) applications. The three main specifications to
be verified are the gain of the receiver chain (Rx-gain), the gain of the transmitter
chain (Tx-gain) and the Error Vector Magnitude of the transmitter chain (Tx-EVM).
The low-cost indirect measurements investigated for this product include standard DC
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measurements performed on external nodes of the device, together with internal DC
measurements (the device is equipped with an internal DC bus and internal probes that
give access to the voltage at some specific nodes and signatures delivered by built-in
process monitors). Overall, we have a total of 131 possible indirect measurements.

3.4.2 Measurement Campaign
In order to build an extensive dataset, a campaign of measurements has been car-

ried out in a production test environment. Test data have been collected on more than
26,700 circuits, extracted from different wafers, which are purposefully fabricated under
various process conditions including extreme process conditions. The test data, which
include both the conventional measurements of the three RF specification performances
and the 131 indirect measurements, constitute the full dataset. The main characteris-
tics of this dataset are summarized in Table 3.1 for the three RF performances.

Table 3.1: Characteristics of the full dataset for the three RF performances

RF Performance
Tx-EVM Tx-Gain Rx-Gain

Full Dataset
26,706 instances

Coef. of Variation 11.1% 3.0% 3.7%
% of good circuits 76.4% 97.7% 100%
% of faulty circuits 23.7% 2.3% 0%

It can be noticed that the characteristics of the population significantly differ de-
pending on the considered RF performance. For the Tx-EVM, we observe a quite large
distribution with a dispersion around 11%; more than 76% of the circuits satisfy the tar-
geted EVM requirement. For the Tx-gain, the distribution is tighter with a dispersion
of only 3%; almost 98% of the circuits satisfy the targeted gain requirement. Finally,
for the Rx-gain, we also observe a tight distribution with a dispersion around 3.7%; in
this case the targeted requirement is sufficiently far away from the distribution so that
100% of the circuits satisfy the requirement. At this point, it is important to underline
that a number of wafers are manufactured with corner process conditions, and their
circuits have been included in the population on purpose. Therefore, the proportion of
faulty circuits is not representative of what would be the actual production yield under
normal process conditions.
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3.4.3 Data Preparation
Dataset Partitioning

The first step of the data preparation is the partition of the full dataset in two sets,
i.e. the learning and validation sets. In this work, we choose an equal repartition
between the two sets, realized using conditioned Latin Hypercube Sampling (c-LHS).
The full dataset of 26,706 devices has therefore been partitioned into two sets of about
13,350 devices. The main characteristics of these two sets are summarized in Table
3.2, which provides the coefficient of variation, the percentage of good circuits and the
percentage of faulty circuits, for the three RF performances.

Table 3.2: Main characteristics of the learning and validation sets for the three RF
performances

RF Performance
Tx-EVM Tx-Gain Rx-Gain

Learning Set
13,354 instances

Coef. of Variation 11.0% 3.0% 3.7%
% of good circuits 77.2% 97.9% 100%
% of faulty circuits 22.8% 2.1% 0%

Validation Set
13,352 instances

Coef. of Variation 11.3% 3.0% 3.7%
% of good circuits 75.5% 97.6% 100%
% of faulty circuits 24.5% 2.4% 0%

From this table, it clearly appears that the learning and validation sets exhibit
similar characteristics in terms of distribution dispersion, and proportion of good or
faulty circuits for each RF performance. It is thus confirmed that the use of conditioned
Latin Hypercube Sampling permits to obtain several subsets with the same distribution
characteristics as the initial population.

Use of the Optional Filter

The influence of the use of a filter during the learning phase has also been examined.
In particular, a detailed analysis of the distribution and the properties of the circuits
identified by the filtering process has been realized, in terms of number of circuits,
repartition of these circuits with respect to their compliance with the RF specifica-
tions, and distribution of these circuits within the different subsets generated from the
full dataset. Although this optional filter would be applied only on the learning set
in the proposed methodology (Figure 3.3), the preliminary analysis presented here has
been performed on the full dataset and varying the strictness of the filter, i.e. varying
the value of k. Concretely, we have considered two different filters, i.e. a strict one
with a limit at ±6σ and a more relaxed filter with a limit at ±10σ (the influence of
these two filters on the achieved test efficiency will be studied in the following sections).
For the completeness of the current preliminary analysis, we have also included here
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more lenient filters, i.e. filters with a higher value of k (25, 50 and 100). Results are
presented hereafter.

Figure 3.4 shows the evolution of the number of circuits identified by the filtering
process with respect to the filter severity (note the log scale on the y-axis). As expected,
the number of circuits with outlying values quickly diminishes as the filter becomes more
relaxed. For the strict filter, 10,186 circuits are identified by the filtering process, which
corresponds to 38.1% of the total population. This number reduces to 2,673 circuits
for the relaxed filter, which corresponds to 10%. This number then rapidly falls down
below 150 circuits for more lenient filters, which corresponds to a negligible portion of
the population (less than 0.5%).

An important remark is that, whatever the filter severity, all circuits identified by
the filtering process have extreme values because of one or several indirect measure-
ments, but none because of the RF performances. Another remark is that, even for
an extremely lenient filter with of value of (k = 100, 8 circuits present extreme IM
values. Even small (only 0.03% of the population), this number is unexpected taking
into account that none of the circuits present in the dataset has an RF performance
value outside ±6σ of the distribution.

Figure 3.4: Number of circuits identified by the filtering process vs. filter severity

Then we have analyzed the repartition of circuits identified by the filtering pro-
cess with respect to their compliance with the RF specifications. Results are reported
in Figure 3.5. More precisely, Figure 3.5.a illustrates the number of good and faulty
circuits within the set of circuits identified by the filtering process and Figure 3.5.b
expressed this information in terms of percentage.
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This figure shows that the proportion of faulty circuits among the total number
of circuits identified by the filtering process varies between 13% and 37% depending
on the filter severity. Globally, this proportion is in relative good agreement with the
proportion of faulty circuits within the full dataset, i.e. 24%. However surprisingly, we
observe a non-monotonic variation. Indeed, the proportion of faulty circuits among the
total number of circuits identified by the filtering process is around 25% for the strict
and relaxed filters with k=6 and 10. This proportion falls down to 13% for the lenient
filters with k=25 and 50. It then increases up to 37% for the extremely lenient filter
with k=100. This reveals that there is no direct relation between the fact that a circuit
exhibits extreme values for indirect measurements, and the fact that it is a good or faulty
circuit with respect to its RF performances. This point is important because it indicates
that the use of a one-dimensional filter applied on the IMs during the production testing
phase would be totally ineffective since it does not help to discriminate between good
and faulty circuits. Even worse, it would eliminate a number of good circuits, provoking
yield loss.

(a) (b)

Figure 3.5: Representation of filtered circuits in terms of good and faulty circuits

Finally, we have analyzed the repartition of the circuits identified by the filtering
process within the different subsets used in the learning and validation phases (Train,
Test, and Validation). Indeed, the conditioned-LHS process used for the partitioning
of the population is realized considering only the RF performances. To ensure that
there is no bias coming from this partition, it is essential to verify that the generated
subsets also reflect the original dataset with respect to the indirect measurements. In
particular, the proportion of circuits identified by the filtering process in each subset
should be in accordance with the realized partitions, i.e. 18% in the train set, 32% in the
test set, and 50% in the validation set. Results are reported in Figure 3.6. This figure
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shows that, even if the number of circuits identified by the filtering process decreases
as the filter becomes more relaxed, the expected repartition is globally maintained.

(a) (b)

Figure 3.6: Repartition of filtered circuits over Train, Test and Validation subsets

To summarize, this analysis shows that the use of a one-dimensional filter does not
significantly modify the characteristics of the initial population with respect to the RF
performances. Moreover, the circuits flagged by the filter are distributed in the different
subsets in accordance with the realized partitions. It is therefore founded to investigate
whether the use of such a filter can improve the accuracy of the models constructed
during the learning phase, which might result in a better test efficiency during the pro-
duction testing phase.

In the remaining of the chapter, we will consider only the strict and relaxed filters
(k=6 and k=10) and we will study how the use of these filters during the learning
phase impacts the test efficiency achieved on the validation set. For the sake of clar-
ity, we stress that in the proposed methodology the optional filter is applied only to
the learning set (i.e. train and test sets) and not to the validation set, which should
remain representative of a realistic production population. The main characteristics of
the filtered learning sets are summarized in Table 3.3. It can be clearly observed that,
for each RF performance, the filtered learning sets exhibit a similar dispersion than
the original learning set (maximum difference of 0.4%), and the proportion of good or
faulty circuits is globally preserved (maximum difference of 1.2%).
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Table 3.3: Characteristics of the filtered learning sets for the three RF performances

RF Performance
Tx-EVM Tx-Gain Rx-Gain

10σ-filtered
Learning Set

12,067 instances

Coef. of Variation 11.0% 2.9% 3.7%
% of good circuits 77.4% 98.5% 100%
% of faulty circuits 22.6% 1.5% 0%

6σ-filtered
Learning Set
8,295 instances

Coef. of Variation 11.1% 2.6% 3.7%
% of good circuits 77.8% 99.1% 100%
% of faulty circuits 22.2% 0.9% 0%

3.5 Results
The methodology presented in Section 3.3 has been applied to our case study and the

experimental results are discussed in this section. Model selection is firstly discussed
and explained, then we examine the efficiency of a classical indirect test implementation,
and finally we analyze the efficiency of the previously proposed two-tier adaptive test
flow solution.

3.5.1 Model selection
The prediction accuracy achieved for the three different RF specifications is rep-

resented in terms of their NRMSE score, depicted in Figure 3.7 and Figure 3.8, for
MARS and SVM models respectively. Moreover, we represent the evolution of the
models’ accuracy with respect to the number of IMs used to construct the prediction
model, considering either the original or filtered learning sets.

By analyzing these results, several comments can be drawn. A first general comment
is that the different regression models built for each RF specification do not suffer from
over-fitting since there is no strong discrepancy between the NRMSE scores evaluated
on train and test sets, for both types of regression models. Nevertheless, a slight ad-
vantage can be observed on this point for MARS models compared to SVM models. A
second comment is that, whatever the model type, the level of accuracy differs over the
different RF performances. Indeed, an NRMSE score below 1% can be achieved for the
Tx-gain and Rx-gain performances, for both model types. The NRMSE score remains
significantly higher for the Tx-EVM, with best score around 2.5% in case of a MARS
model and around 1.6% in case of a SVM model. Finally, the last comment concerns
the influence of the learning population. Its impact is mostly visible on the prediction
of the Tx-EVM performance. For both model types, we observe that the use of a filter
leads to an improvement in the accuracy of the constructed models, especially in the
case of a strict filter.
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From this exploratory phase, the best model (i.e. the one with the lowest NRMSE
score on the test set) can be selected for each RF performance and for the different
scenarios. Results are summarized in Table 3.4, which reports for each model the
number of selected IMs together with the NRMSE scores computed on train and test
sets, for both model types.

(a) Tx-EVM (b) Tx-gain

(c) Rx-gain

Figure 3.7: NRMSE score achieved on train and test sets for the different scenarios of
learning population - MARS model
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(a) Tx-EVM (b) Tx-gain

(c) Rx-gain

Figure 3.8: NRMSE score achieved on train and test sets for the different scenarios of
learning population - SVM model
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Table 3.4: Summary of the best results achieved under different scenarios of learning
population for the three RF performances

MARS-NRMSE SVM-NRMSE
#IM Train Test #IM Train Test

Original
Learning Set

Tx-EVM 15 2.86% 2.89% 13 2.48% 2.63%
Tx-gain 13 0.85% 0.87% 15 0.56% 0.76%
Rx-gain 15 0.60% 0.60% 13 0.48% 0.61%

10σ-filtered
Learning Set

Tx-EVM 10 2.75% 2.85% 12 2.26% 2.46%
Tx-gain 15 0.85% 0.84% 14 0.56% 0.63%
Rx-gain 14 0.57% 0.58% 15 0.49% 0.55%

6σ-filtered
Learning Set

Tx-EVM 12 2.52% 2.52% 12 1.51% 1.62%
Tx-gain 13 0.63% 0.68% 14 0.42% 0.52%
Rx-gain 15 0.51% 0.55% 12 0.49% 0.54%

These results confirm the general trends previously observed on the graphs. Indeed,
we observe that whatever the learning set, the difference between the NRMSE scores
computed on training and test sets never exceeds 0.2%, clearly indicating that there
is no over-fitting. Regarding the improvement brought by the use of a filter, it can be
considered as negligible in case of the relaxed filter with a reduction of the NRMSE
score that remains inferior to 0.2% over the 3 RF performances for both model types.
In case of the strict filter, it is also negligible regarding the Rx-gain and Tx-gain for
both model types (NRMSE reduction less than 0.2%). It is more significant regarding
the Tx-EVM, especially for the SVM model with an (NRMSE reduction around 1%
while it is only of 0.37% for the MARS model.

Globally, these results are positive for the implementation of the indirect test strat-
egy since they show that it is possible to build quite accurate models for the three
RF performances. The best solution is obtained using SVM models constructed on a
learning population filtered with a strict filter. In this case, we obtain an accuracy
of 0.54% for Rx-gain prediction, 0.52% for Tx-gain prediction and 1.62% for Tx-EVM
prediction.

3.5.2 Efficiency of classical indirect test implementation
In this part, we explore the efficiency that can be achieved with a classical indirect

test implementation, i.e. all circuits are evaluated using only the indirect test flow and
there is no circuit directed to a regular specification test flow (tolerance zone set to
zero). Additionally, we also investigate the influence of using (or not) a filter during
the initial learning phase onto the fore-mentioned indirect test efficiency. Resulted pre-
sented in this section are obtained using the best MARS and SVM models constructed
in the training phase for each scenario of learning population. Results are summarized
in Figure 3.9, 3.10, and 3.11 for the three RF performances, in which the NRMSE and
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MR scores achieved on the test and validation sets are compared.

(a) NRMSE

(b) MR

Figure 3.9: NRMSE and MR scores achieved on test and validation sets for the
different scenarios of learning population - Tx-EVM
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(a) NRMSE

(b) MR

Figure 3.10: NRMSE and MR scores achieved on test and validation sets for the
different scenarios of learning population - Tx-gain
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(a) NRMSE

(b) MR

Figure 3.11: NRMSE and MR scores achieved on test and validation sets for the
different scenarios of learning population - Rx-gain

A first evident comment arises: although working with a filtered population during
the initial learning phase permits to improve the quality of the constructed models,
these models are nevertheless not able to correctly handle all circuits that can be en-
countered during the production testing phase, which are emulated by the validation
set. Indeed, the best results in terms of NRMSE and MR scores achieved on the val-
idation set are actually obtained when the models are built on the original learning
population. Detailed comments are provided hereafter.
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When the strict filter is used, we can observe a significant degradation between
the NRMSE and MR scores determined on the test set and the ones achieved on the
validation set. The strongest difference is observed for the Tx-EVM (Figure 3.9). In
this case, the NRMSE score increases by +2.3% for the MARS and +1% for the SVM
model. Similarly, the MR score increases by +3.8% for the MARS model and +3.1%
for the SVM model. For the Tx-gain (Figure 3.10), we observe a smaller increase of the
NRMSE score by +0.4% for the MARS model and +0.5% for the SVM model, but still
a significant increase of the MR score by +2.0% for the MARS model and +1.6% for
the SVM model. Finally, for the Rx-gain (Figure 3.11), the impact is mostly visible in
case of the MARS model. Indeed, the NRMSE score increases by +1.3% and although
a perfect MR score of 0% is expected from the result on the test set, 0.39% of the
circuits of the validation set are misclassified. The degradation of the NRMSE score is
more limited in case of the SVM model with an increase of only+0.4% and the perfect
MR score of 0% is preserved. Globally over the three RF performances, SVM models
built under this learning scenario outperform MARS models in terms of both NRMSE
and MR scores achieved on the validation set.

When the relaxed filter is used, the degradation of the NRMSE and MR scores
between the test and validation sets lessens. Indeed in this case, the increase of the
NRMSE and MR scores respectively does not exceed +0.3% and +0.7% over the three
RF performance, for both model types. Still, SVM models perform slightly better than
MARS models.

Finally when the learning is realized on the original population, the difference be-
tween the NRMSE and MR scores determined on the test set and the ones achieved
on the validation set becomes negligible. Indeed, the maximum difference observed
over the three RF performances is only of 0.06% in the NRMSE score and 0.3% in the
MR score, for both model types (note that the difference in the scores between test
and validation sets is positive is some cases and negative in other cases). SVM models
present a slight advantage compared to MARS models, but not really significant.

All these results indicate that it is not pertinent to work with a filtered population,
since it can entail a strong discrepancy between the test quality estimated during the
learning phase and the one encountered during the production phase. Moreover, this
experiment shows that the best results achieved on the validation set are obtained when
the learning is done on the original learning set. Hence, it is recommended to include
circuits with possible extreme values with regards to the indirect measurements in the
learning population. This gives some assurance that the accuracy of the models evalu-
ated during the training phase is representative of the one that will be achieved during
the production testing phase.
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To conclude on this study regarding the classical implementation of the indirect test
strategy, a fairly good efficiency is attained for the practical case study investigated in
this chapter when the models are built on the original learning set (unfiltered). Indeed,
evaluation on the validation set leads to a low MR around 2.5% and 1.8% for the Tx-
EVM and Tx-gain respectively, and the ideal MR of 0% for the Rx-gain for both types
of regression models. Globally over the three RF performances, the misclassification
rate is around 4%. Note that this misclassification rate is higher than the one achieved
on each individual RF performance because the circuits misclassified for a given perfor-
mance are not necessarily the same than the ones misclassified for another performance.

Despite the drastic testing cost reduction offered by the classical indirect test solu-
tion where all the circuits are evaluated based only on low-cost indirect measurements,
a misclassification rate around 4% might not be sufficient to comply with the indus-
trial test quality constraints. This motivates the need of investigating on an adaptive
two-tier test approach and examining its advantages upon a classical indirect test.In
particular, it is possible to attain a very low MR score below few tenths of percent with
a majority of devices that are tested using only the low-cost indirect measurements.

3.5.3 Efficiency of two-tier adaptive test flow
In this section, we present results that show the benefit that can be brought by the

implementation of a two-tier adaptive test flow, in particular regarding the trade-off
between test quality and test cost. As mentioned in Section 3.2.3, this trade-off depends
on the size of the tolerance zone around the test limits.

Results are summarized in Figure 3.12 and 3.13, which report the trade-off curves
between MR score and percentage of retested circuits obtained by varying the size of
the tolerance zone, for both model types. Note that these curves are presented only for
the Tx-EVM and Tx-gain performances since the ideal MR of 0% is achieved for the
Rx-gain without the need of retesting any devices. These results indicate again that the
use of a filter during the learning phase (especially the strict one) is not recommended,
since there is a huge difference between the trade-off curve evaluated on the test set
and the one observed on the validation set. Moreover, the decrease in the MR score
observed on the validation set is much slower than the one obtained when the learning
is performed on the original population. These results also clearly demonstrate that it
is possible to significantly improve the test quality compared to a classical indirect test
implementation. Indeed, with a learning performed on the original population, there is
a rapid decrease of the MR score observed on the validation set, which means that the
test quality improvement can be obtained with only a limited number of devices that
need to be retested through a conventional specification test.
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(a) MARS (b) SVM

Figure 3.12: Trade-off curves between MR and percentage of retested devices -
Tx-EVM

(a) MARS (b) SVM

Figure 3.13: Trade-off curves between MR and percentage of retested devices - Tx-gain

For the sake of a concrete illustration, an arbitrary target of a MR score below 0.1%
for each RF performance has been fixed. Based on devices of the test set, the size of
the tolerance zone necessary to fulfill this constraint has been determined for each RF
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performance; the efficiency of the two-tier adaptive test flow has then been evaluated
on the validation set. Results are summarized in Table 3.5 (results obtained under the
best learning scenario with no filter applied on the learning population).

Table 3.5: Summary of results achieved by the two-tier adaptive test flow with an MR
target of 0.1% for each RF performances

MARS SVM

MR (%) % retested MR (%) % retested
Test Validation Validation Test Validation Validation

Tx-EVM 0.10 0.14 15.7 0.10 0.12 29.0
Tx-gain 0.10 0.09 12.0 0.10 0.08 12.4
Rx-gain 0 0 0 0 0 0
ALL RF Perf. 0.19 0.23 23.8 0.19 0.20 31.4

These results confirm that the two-tier adaptive test flow permits to reach a sub-
stantial reduction of the test cost while preserving a very good test quality. Indeed, the
targeted MR score of 0.1% can be attained for each RF performance; the difference be-
tween the MR score anticipated on the test set and the one evaluated on the validation
set remains inferior to 0.04%, for both model types. Only a limited number of devices
need to be retested to ensure this quality, especially when considering a MARS model,
i.e. around 16% for the Tx-EVM, 12% for the Tx-gain, and 0% for the Rx-gain. The
percentage of retested devices is significantly higher for the Tx-EVM in case of a SVM
model, with a value reaching 29%, while it remains around 12% for the Tx-gain, and
0% for the Rx-gain.

For both model types, the global misclassification rate achieved over the three RF
performances is around 0.2%, so higher than the targeted one on each individual RF
performance. The global MR score achieved over the three RF performances actually
corresponds to the sum of the MR score achieved on each individual performance, indi-
cating that circuits misclassified with respect to a given performance are different than
the circuits misclassified for another performance. Regarding the percentage of retested
devices, the global percentage over the three RF performances is also higher than the
individual percentage on one performance, but inferior to the sum of the individual
percentages. This indicates that among all circuits directed to the second tier of the
test flow, a number of them present a low confidence for more than one RF performance.

To conclude on this study regarding the implementation of a two-tier adaptive in-
direct test flow, a very good test quality can be achieved for this practical case study,
with only about 0.2% misclassified devices over the three RF performances while a
majority of devices are processed using only the low-cost indirect measurements lead-
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ing to substantial saving in the test costs. For this adaptive test flow, MARS models
seems more performing than SVM models since, for the same level of misclassification
rate, more than 76% of the devices are evaluated by the indirect test tier when using
MARS models, and only 69% when using SVM models. Finally, note that all these
numbers correspond to worst-case results because they are established on a population
fabricated with corner process conditions. We can expect lower numbers, especially the
percentage of circuits that need to be retested, in the regular context of production
testing where circuits are manufactured under normal process conditions.

3.6 Conclusion
In this chapter, we have investigated on a practical case study whether it is possi-

ble to benefit of the potential test cost reduction offered by the indirect test strategy
without compromising the test quality. We have proposed an original implementation
of a two-tier adaptive test flow that relies on the use of a tolerance zone around test
limits in order to establish the confidence in the decision proposed by the indirect test;
only devices with sufficient confidence are processed by the indirect test while others
are directed to a second tier where they are evaluated by a standard specification test.
A methodology has been defined in order to make the pertinent choices for the efficient
implementation of this test flow.

Particular attention has been paid on the composition of the learning set, especially
with regard to the presence of circuits that present outlying values. These circuits can
be easily identified with a simple one-dimensional filter. In this study, we observed that
it is not pertinent to exclude these circuits from the learning set. Indeed, although
working with a filtered population improves the accuracy of the models built in the
training phase, it results in a degradation of the test efficiency observed on the valida-
tion set, which is representative of the test efficiency that will be achieved during the
production testing phase. Nevertheless, it should be highlighted that for this particular
study, the circuits exhibit outlying values only with respect to the indirect measure-
ments. The use of a filter might be relevant in the case of circuits that exhibit outlying
values with respect to the RF performances.

Finally, results clearly demonstrated the value of the two-tier adaptive test flow,
which allows to attain a very good test quality, while achieving a substantial reduction
in the test costs. Indeed, in this case study, the misclassification rate attained by a
classical implementation of the indirect test strategy remains above few percent, in the
best conditions. Using the two-tier indirect test flow, a misclassification rate below few
tenths of percent can be achieved with less than 25% of the devices that have to go
through a standard specification test. Using the proposed methodology, test engineers
have multiple choices at their disposal to ensure an efficient implementation of indirect
testing.



Chapter 4

Embedded Indirect Test for
Performance Monitoring

4.1 Introduction
In the previous chapters, the concept of an indirect test strategy has been introduced

and studied in the context of replacing the classical specification-based testing for ana-
log and RF integrated circuits. The objective is to verify the quality of manufactured
devices at the time of their production. However, once the device leaves the production
facility and is deployed in the field, issues regarding reliability become crucial, espe-
cially with regards to a possible performance degradation due to aging effects. In this
chapter, we introduce a new perspective of exploitation of the indirect test strategy for
performance monitoring of the device within the application.

Reliability issues have been extensively studied for digital devices and a number of
on-line monitoring solutions have been proposed. In contrast, research is more scarce
for analog/RF circuits. Authors in [47] investigate the design of an adaptive checker
for concurrent error detection based on common mode signal analysis. Authors in [48]
proposed a real time estimation to monitor a performance accurately by capturing
the distortion performance variation. The use of an embedded temperature sensor to
monitor the performance for a RF circuit has been proposed in [49]. A current-based
monitor circuit has been proposed in [50] to monitor performance degradation. On the
other hand, the use of an indirect test strategy has been limited to implementing a
built-in self test (BIST) for analog/RF integrated circuits [18, 51–54], or to perform a
post-manufacturing calibration [55, 56]. Hence, to the best of our best knowledge, the
use of an indirect test strategy has never been proposed to monitor a performance online.

In this chapter, we delve into how to adapt the indirect test strategy for online
performance monitoring of a circuit during its lifetime. The chapter is organized as
follows. Section 4.2 introduces the principle and discusses the necessary adaptations.
The case study used for the development of a proof-of-concept is then presented in

69
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Section 4.3. Finally, Section 4.4 and Section 4.5 are respectively dedicated to the
elaboration of the regression model and the implementation of embedded performance
prediction.

4.2 Adaptation of the Indirect Test Strategy for
Performance Monitoring

The principle of the proposed strategy for on-line performance monitoring is illus-
trated in Figure 4.1. As in the classical indirect test implementation, it involves a
preliminary learning phase in which the mapping between a given circuit performance
and some indirect measurements is established through the construction of a regression
model. The main difference is that the learning set should include not only devices
affected by process variations but also devices representative of the main wear-out fail-
ure mechanisms susceptible to occur during the circuit life. It is therefore preconized
that the learning set includes devices that have been submitted to accelerate life tests
or burn-in. Once the learning phase is finished, the second phase of the strategy can
start. In this phase, every new device deployed in the field predicts its own performance
based on model established during the learning phase.

Figure 4.1: On-line performance monitoring based on the indirect test strategy

To perform the embedded prediction, a number of resources are obviously necessary:
(i) a dedicated infrastructure (e.g. test bus) in order to access to the internal nodes or
structures involved in the indirect measurements, (ii) digitization resources to convert
the measured analog values into the digital domain, (iii) a non-volatile memory to store
and fetch the coefficients of the established regression model and finally, (iv) a processing
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unit to perform the computation of performance prediction. The main requirements on
these resources are discussed hereafter. Note that all these resources do not necessarily
have to be embedded within the circuit itself, but some of them might be available in
the application.

4.2.1 Indirect Measurements
Assembling a comprehensive set of pertinent indirect measurements is a keystone to

achieve a successful implementation of an indirect test strategy for production testing.
Thus, the same is of course true for an on-line performance monitoring solution based on
the indirect test strategy. However, not all types of indirect measurements considered
as potential candidates in the context of production testing (cf. Section 1.5) are appli-
cable in the context of an on-line monitoring solution. For example, the standard DC
tests usually applied on external pins are realized with the help of the ATE resources
and can not be easily performed by the device itself. In the same way, the possibility
of changing the test conditions, e.g. the power supply voltage, is not an issue during
production testing but it is much more tricky to implement when the device is deployed
in the field. Hence, candidates in the context of on-line performance monitoring are
embedded measurements that can be realized with a simple test infrastructure (e.g.
internal nodes or with built-in sensors accessible with a DC test bus).

Furthermore, the main motivation behind the on-line performance monitoring strat-
egy is to observe and detect any performance deterioration induced by aging effects.
The most important IC aging phenomena observed today in nanometric technologies
are hot carrier injection (HCI), time dependent dielectric breakdown (TDDB), bias
temperature instability (BTI) and electromigration (EM) [57]. These aging phenomena
affect not only the digital parts but also the analog/RF parts [58]. They result in in-
ternal variations and alterations of the integrated circuit characteristics, such as a shift
of the threshold voltage, which can heavily impact the value of the bias voltage of an
amplifier, or a shorter gate-oxide breakdown lifetime among other effects [59]. Hence,
in order to monitor any performance degradation in-field, it is not sufficient for the
indirect measurements to be sensitive to process variations, they also must be sensitive
to the main wear-out mechanisms due to aging.

4.2.2 Digitization
Once the indirect measurements and the test infrastructure allowing to access these

measurements are defined, the following step is the choice of the digitization resources.
Indeed, the measured analog values must be converted into digital values in order to
be further processed for the computation of the embedded prediction. It is essential
that the quantization error introduced by this conversion does not significantly affect
the accuracy of the computed prediction. The choice and the design of the digitization
resources in terms of number of bits and measurement range is therefore an important
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aspect.

The choice should take into consideration the characteristics of the different indi-
rect measurements used for performance prediction. Indeed, it is likely that the indirect
measurements cover a large voltage range while the variation range of each indirect pa-
rameter might be small. The digitization resources have to cope with this diversity
without comprising the conversion accuracy. In particular, the voltage resolution of
the ADC used to perform the conversion of a given indirect parameter must be much
smaller than the variation range of this parameter.

The voltage resolution of an ADC is equal to its measurement range (or full scale
range), divided by the number of quantization levels, i.e. 2n , where n is the number
of bits of the converter. To ensure an appropriate voltage resolution, it is therefore
possible to play either on the measurement range or on the number of bits. In this
context, several options can be considered for the design of the required digitization
resources, i.e. (i) a single high-resolution ADC with a large measurement range that
covers the complete variation range of all indirect measurements, (ii) a single medium-
resolution ADC with a programmable measurement range that can be adapted to groups
of indirect measurements with a similar order of magnitude in the variation range, or
(iii) several low-resolution ADCs, each one with a fixed measurement range perfectly
adapted to the variation range of one indirect. The retained solution obviously strongly
depends on the case study and will be a compromise between the required silicon area
and the conversion accuracy (that impacts the prediction accuracy).

4.2.3 Memory and Arithmetic
A regression model is defined by (i) the structure of the function that relates the

indirect measurements to the predicted performance and, (ii) a set of coefficient values
that parametrizes the regression function. In order to implement an embedded pre-
diction, it is therefore necessary to have memory as well as arithmetic resources. The
memory resources are used to store the value of the coefficients established during the
learning phase. These coefficient values obviously need to be permanently stored in the
circuit or the system, which implies the use of a non-volatile memory. Alongside the
memory, an arithmetic unit must be included in the circuit or system to perform the
calculations defined by the established regression model.

It is important to mention that performance monitoring of a device it the field is an
auxiliary option to improve the reliability of the system but is not the main core of the
application. Therefore, the additional circuitry required to implement the embedded
prediction must be minimized. More important, the processing time must be minimized
in order to maintain the normal operation of the system without disruption. Hence, it
is essential to reduce the number of required operations; one way to achieve this is to
use simple prediction models.
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Regression model choice: Enriched MLR model

In Chapters 2 and 3 we have seen that usually, when implementing an indirect test
strategy in the context of production testing, we tend to use a non-linear regression
model (MARS, SVM) or a more complex model such as ensemble methods (Stacking,
Random Forest...) to predict the device performance with a high accuracy. However,
in the context of on-line performance prediction, the use of these types of models is
problematic. Indeed, they involve the storage of a substantial number of coefficients
as well as the computation of specific non-linear functions that cannot be straightly
implemented with a standard arithmetic unit. Embedded performance computation
based of such models is therefore consuming both in terms of memory resources and
processing time, which is a strong drawback. Moreover, they usually require a large
amount of learning data in order to avoid over-fitting.

An alternative way is to lean on less accurate but easier to implement models, such
as linear prediction models. Indeed, as seen in Section 1.4, MLR models are simple
models that involves only basic arithmetic operations and that can be easily trained
using only small dataset. However, the simplicity of implementation comes at the cost
of lower model accuracy.

Nevertheless, the authors in [60] have suggested a strategy to enhance the perfor-
mance of linear prediction models by creating an enriched set of feature candidates from
the initial available feature set. More precisely, they have proposed a Python library to
generate non-linear features (log(x),

√
x, 1

x
, x2, x3, |x|, ex) and combine pairs of features

with various operators (+,−, ∗); feature selection is then applied on this enriched set to
build linear prediction models. Such an approach seems highly promising in the context
of embedded performance prediction, since it has the potential be implemented with
few memory resources and only basic arithmetic operations, implying low processing
time.

4.3 Case Study

4.3.1 Test vehicle: RF transceiver (NXP JN518x)
The test vehicle under investigation is a wireless microcontroller based on an ultra-

low power Arm Cortex-M4 processing core that can operate at a maximum frequency
of 48MHz. The device supports both Zigbee 3.0 and thread networking stacks to target
and enable the development of Home Automation, Smart Lighting and wireless sensor
network applications. To support the different networking stacks, the device includes a
2.4GHz IEEE 802.15.4 compliant transceiver along with a combination of analog and
digital peripherals as presented in Figure 4.2, such as an eight channel 12-bit ADC and
a 320kB embedded Flash memory.
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Figure 4.2: High level hardware block diagram of the test vehicle

Alongside with the processing capabilities, the ADC and the embedded Flash mem-
ory presented in Figure 4.2, the device also includes an internal analog test structure
(DC probes) that connects internal nodes, situated in the different essential blocks, to
two General Purpose Input Output (GPIO) pins. Moreover, the internal nodes are also
connected to the 12-bit ADC, which permits the main core to process and monitor those
internal measurements. Based on the presented and highlighted capabilities of the test
vehicle, we believe that the device under study possesses the needed requirements to
implement an on-line performance monitoring based on an indirect test strategy.

4.3.2 Dataset Collection: Measurement campaign
The target in this case study is to monitor on-line the transmitted power level of the

in-field device based on the indirect test strategy, thus a regression model is needed to
predict the power level with the help of the available indirect measurements. Of course
building a regression model necessitates the collection of sufficient learning data in which
an adequate variation on the level of the transmitted power is observed. Nonetheless,
since we are implementing such a strategy on a newly mass-produced device, it is quite
impossible to obtain the value of the transmitted power level and the different indirect
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measurements data impacted with aging effects; keeping in mind that the implemen-
tation of an on-line performance monitor has not been considered during the design
phase of the device.

Nonetheless, by changing the configuration of two internal registers that directly
impact the transmitted power level, we are able to emulate a power level deterioration
within the device in order to imitate the effect of aging and thus obtain an adequate
power level variation. Each register is configured using four bits (16 configurations),
thus re-configuring both registers would result in 256 different possibilities to operate the
transmission block of the device, one of which corresponds to the nominal configuration
of the device. Exploiting the capability of re-configuring the device simplifies the task
of collecting real and representative data that could be used to build a regression model.

In this experiment, we collected test data from four different JN518X integrated
circuits on the V93K industrial test platform from Advantest as illustrated in Figure
4.3. For each circuit we iterate through the 256 possible configurations while measuring
the transmitted power level that we wish to predict along with the eleven available
test resources (indirect measurements) within the transmitter block (DC30 to DC40)
resulting in 1024 observations and 12,288 (1024 instances x 12 measurements) values in
total. Certainly the collected dataset is considered as small when compared with the
other datasets we have used in the previous chapters. Nonetheless, in this case study
we are studying the feasibility of achieving an on-line performance monitor based on
the indirect test strategy and thus we are not expecting an industrial accuracy level
from the prediction model; the case study is considered as a proof-of-concept rather
than being an established method to monitor a performance on-line.

Figure 4.3: Measurement campaign for dataset collection
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4.3.3 Dataset Analysis
RF performance: transmitted power level

The histogram of the power level measurements performed with the help of the RF
ATE resources in the Advantest V93K across the 1024 observations is presented in Fig-
ure 4.4. A clear variation of the power level is observed across the 1024 observations. For
this device, the typical power level value under the nominal configuration is 11.4dBm.
The minimal value observed on the dataset is around 8.1dBm and the maximal value
around 13.2dBm, which corresponds to a variation of about −29% and +16% from the
typical value. This variation is relatively limited, but significant enough in the objective
of building a regression model that is able to predict this performance. However, it is
important to confirm that the variation is mainly related to the 256 possible internal
register configurations rather than the variability from one IC to another.

Figure 4.4: Histogram of the transmitted power level measurements for the 1024
observations

In Figure 4.5 we represent the boxplot of the power level measured under 256 con-
figurations for the four different ICs. This figure clearly shows that there is a very low
variability between circuits. The difference between circuits does not exceed 0.36dB for
the mean value, 0.41dB for the minimal value, and 0.30dB for the maximal variation,
which corresponds to a circuit variability of less than 5%.
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Figure 4.5: Boxplot of the power level measured under the 256 configurations for the
four ICs

Indirect measurements

Figure 4.6 presents a boxplot of the DC values measured on the 1024 observations, for
the eleven indirect measurements. This figure reveals that the indirect measurements
are dispersed over a large range of DC values, spreading from 0 to 1.15V . However, it
is not a uniform distribution and the indirect measurements can be arranged in four
different groups, depending on their DC value range:

• DC30, DC31, DC32, DC34, DC36, DC38 and DC40: values between 1.04V and
1.15V

• DC39: values between 0.59V and 0.60V

• DC33: values between 129mV and 138mV

• DC35 and DC37: values between 2.3mV and 2.5mV
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Figure 4.6: Boxplot of the DC values measured on the 1024 observations, for the
eleven indirect measurements

This is an important point because, in the perspective of an embedded prediction,
it means that the circuit should be equipped with an infrastructure able to perform DC
measurements in different ranges. In addition, because of these different ranges, it is
not easy to comment and compare the variations observed on each indirect measure-
ment. Therefore, we have computed the relative deviation from the mean (expressed
in %) for each indirect measurement.

Figure 4.7 presents a boxplot of this relative deviation for the eleven indirect mea-
surements. This figure reveals that most of the indirect measurements present a small
variation over the 1024 observations, i.e. a maximum variation of around 5%. Only two
indirect measurements, namely DC35 and DC37, exhibit a significant variation over the
1024 observations, i.e. a maximum variation that exceeds 10%.
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Figure 4.7: Boxplot of the relative DC deviation measured on the 1024 observations,
for the eleven indirect measurements

However here again, it is important to establish whether this variation is related
to the internal register configurations or to the variability from one integrated circuit
to another. Therefore, we have paid attention to the mean relative DC deviation
over the four integrated circuits, which is representative of the influence of the circuit
configuration, on the one hand, and to the mean relative DC deviation over the 256
configurations, which is representative of the influence of the circuit variability, on the
other hand. Results are summarized in Figures 4.8 and 4.9 respectively.

Figure 4.8: Boxplot of the mean relative DC deviation over the four ICs, for the
eleven indirect measurements
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Figure 4.9: Mean relative DC deviation over the 256 configurations, for the eleven
indirect measurements

Figure 4.8 clearly shows that only DC35 and DC37 are actually impacted by the cir-
cuit configuration with a variation that exceed 20%, all the other indirect measurements
presenting an almost constant value (variation lower than 0.03%). In contrast, Figure
4.9 shows that the mean relative DC deviation over the 256 configurations presents a
comparable variation range for all indirect measurements, indicating that all the indirect
measurements have a similar behavior with respect to the circuit variability. Moreover,
the difference from one circuit to another is quite small (maximum difference around
5%). Still, it is important to note that for DC30, DC31, DC32, DC33, DC34, DC36,
DC38, DC39, and DC40, this difference is higher than the maximum variation induced
by the circuit configuration.

To better illustrate this point, Figures 4.10 and 4.11 respectively present the dis-
tribution of DC30 and DC35 measurements under the 256 configurations, for the four
different integrated circuits. It can be observed that DC35 exhibits a comparable dis-
tribution for the four integrated circuits, with a similar mean value and a similar dis-
persion. This dispersion is directly related to the circuit configuration. In contrast for
DC30, there is no dispersion induced by the circuit configuration, though there is a
different DC value for each integrated circuit.
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Figure 4.10: Histogram of DC30 measurements under the 256 configurations, for the
four ICs

Figure 4.11: Histogram of DC35 measurements under the 256 configurations, for the
four ICs

This preliminary analysis reveals that measured values for DC35 and DC37 are
mainly determined by the circuit configuration while measured value for all the other
indirect measurements mainly come from the manufacturing process. Since the circuit
configuration has an influence on the power level along with DC35 and DC37, those two
indirect measurements are considered as pertinent and valuable to establish a regression
model that is able to predict the power level.
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Summary

Let us recapitulate the main points presented in this section. We have seen that it
is possible to change the internal register configuration in order to create a sufficient
power level variation instead of using a substantial amount of circuits to build a more
comprehensive dataset. The four different circuits used in this case study behave simi-
larly with respect to the power level variation created by the different internal register
configuration. On the other hand, inconsistent behavior can be observed regarding the
variations of the different indirect measurements. Indeed, only two (DC35 and DC37)
out of the eleven available indirect measurements exhibit a variation related to the
internal register configuration higher than the variability observed due to the circuit
variation.

It is clear that this situation is not the best context to implement an efficient solution
for an on-line performance monitoring based on an indirect test strategy. However, it
might be sufficient to establish a proof-of-concept. The expectation is that, despite
the weaknesses of this dataset, we can build a regression model that combines the
different indirect measurements with a sufficient accuracy to predict the power level.
This regression model, once established, will the be used to perform an embedded
performance prediction in addition to the main device application, and therefore to
validate the concept of the proposed strategy.

4.4 Model Elaboration

4.4.1 Preliminary study: choice of model type
As commented in Section 4.2.3, a possible solution to improve the accuracy of a stan-

dard MLR model is to enrich the space of candidates available for the construction of
the model during the training phase by including, not only the original IMs, but also
non-linear transformations of the original IMs as well as combinations of pairs of IMs.
In our context of an embedded prediction, it is important to ensure that the compu-
tation of the non-linear transformations as well as the interaction between IMs can be
computed within the circuit.

Regarding the non-linear transformations, some transformations such as 1
x
and x2

can be implemented at low-cost because they require only a limited number of elemen-
tary arithmetic operations. In contrast, other transformations such as log(x),

√
x and

exp(x) would require much longer processing times and they are only approximations.
Indeed, their exact computation is not feasible with elementary arithmetic operations;
instead, numerical algorithms that involve many elementary arithmetic operations have
to be used to compute an approximation. In this study, we consider only transforma-
tions that can be implemented at low-cost, i.e. 1

x
and x2.
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Regarding the interaction between IMs, all combinations of pairs of IMs using the
four elementary operators (+,−, ∗, /) can be easily implemented. However, combina-
tions using (+) and (−) operators are intrinsically present in the model; therefore only
combinations using (∗) and (/) operators are considered in this study.

Globally, with the considered non-linear transformations and interactions, an en-
riched space of 209 candidates has been generated from the original space of eleven IM
candidates. MLR models have been constructed to predict the power level, applying
feature selection while using SFS based on multiple linear regression on both the origi-
nal space and the enriched one.

Figure 4.12 reports the accuracy of the constructed models in both cases, for a
number of features comprised between one and five. This figure shows the improvement
brought by the enrichment of the candidate space, with a reduction of the NRMSE score
of about 0.025dB, which corresponds to an accuracy improvement of about 6%.

Figure 4.12: Comparison of MLR models constructed on the original IM space or on
the enriched one

The retained solution for all following experiments is the use of an MLR model
defined by Equation 4.1 that would be used to predict the power level P̂i and which is
constructed on the enriched space with 3 features that involve four IMs:

• Feature 1: DC39/DC35

• Feature 2: 1/DC372

• Feature 3: DC30 ∗DC35
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P̂i = a0 + a1 ∗ (DC39i

DC35i

) + a2 ∗ ( 1
DC372

i

) + a3 ∗ (DC30i ∗DC35i) (4.1)

where a0, a1, a2, a3 are the model coefficients that must be stored in the available
Flash memory to be able to produce a power level prediction within the circuit.

4.4.2 Implementation in the case study
The main objective of this case study is to detect a possible power level degradation

of the circuit during its operation and alongside its main application. Thus, the idea
is to perform an embedded power level prediction by implementing a regression model.
The regression model is established during an initial learning phase using other circuits
as presented in Section 4.2, Figure 4.1. The available dataset is comprised of four dif-
ferent circuits for which we have their test data, i.e. the measurements performed on
the ATE which are then used to build the regression model.

Even though the available dataset is limited and does not have a substantial amount
of data, it is possible to develop an experimental protocol to validate our proposed
proof-of-concept. Indeed, it is necessary to evaluate the established regression model
on unseen instances. One way to perform such a task is through employing a Leave-one-
out cross-validation technique [61]. The main idea is to use all the available instances
except one to establish the prediction model and evaluate the model using the one
remaining instance. Although, in our case we will consider a circuit as the leave-one-out
sample instead of considering one observation out of 1024 available observations. Thus,
in reality it is a Leave-n-out cross validation where we perform the learning phase on
three circuits (768 observations) and then we predict the power level of the remaining
circuit across its 256 different configurations to eventually evaluate the established
regression model. As a result, we have four possible learning combinations; each one of
them is studied and the results are summarized in Table 4.1 which reports the RMSE
score achieved for each learning and validation sets.

• Combination 1: Learning: IC1, IC2, IC3 Validation: IC4

• Combination 2: Learning: IC1, IC2, IC4 Validation: IC3

• Combination 3: Learning: IC1, IC3, IC4 Validation: IC2

• Combination 4: Learning: IC2, IC3, IC4 Validation: IC1
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Table 4.1: Training and Validation RMSE scores for the four possible learning
combinations

Combination 1 Combination 2 Combination 3 Combination 4
RMSE score - Training 0.421dB 0.418dB 0.422dB 0.418dB
RMSE score - Validation 0.417dB 0.427dB 0.415dB 0.426dB

By exploring the results presented in Table 4.1, it is evident that all the different
combinations lead to similar results, the different regression models achieve basically
the same accuracy on the learning and validation sets. It is also important to high-
light that none of the established regression models suffer from over-fitting, given that
the difference in accuracy between the learning and validation set is clearly minimal.
Therefore, from this point onward, only combination 1 will be considered and all the
results presented in the following sections will be based on this combination.

Once the regression model is selected, the ability of the model to detect any per-
formance deterioration, by monitoring the power level prediction, should be evaluated.
Hence, the predicted power level variation ∆̂Pi has been computed for each configura-
tion with the use of the following Equation 4.2:

∆̂Pi = P̂i − Pnom (4.2)
where P̂i is the predicted power level in configuration i and Pnom is the power level

measured on the ATE for the nominal configuration. Moreover, the prediction error has
also been computed with the help of following Equation 4.3, where ∆Pi is the power
level variation measured on the ATE in configuration i:

εi = ∆̂Pi −∆Pi (4.3)
Results are illustrated in Figures 4.13 and 4.14, which present respectively the pre-

dicted power level variation versus the measured one, and the normalized distribution
of the prediction error. Numerical results are summarized in Table 4.2, which reports
the mean, the standard deviation and the maximum values of the prediction error ob-
served over the 256 configurations.

By examining Figure 4.13, it is clear that the regression model perform acceptably
well considering the different shortcomings, i.e. the use of a linear prediction model
and the limited size of the dataset. Indeed, when analyzing also the results presented
in Figure 4.14 and in Table 4.2, it appears that the prediction error follows a Gaussian
distribution and that roughly most of the predicted samples have a prediction error
smaller than three times the standard deviation of the prediction error. Moreover, we
notice that the spread of the samples around the ideal regression line is uneven across
the distribution, where it is evident that the spread of samples in the center is higher
than the spread at the extremities.



CHAPTER 4. EMBEDDED INDIRECT TEST FOR PERFORMANCE
MONITORING 86

Figure 4.13: Predicted power level variation vs. measured power level variation

Figure 4.14: Normalized distribution of the prediction error

Table 4.2: Statistics of the prediction error on the 256 configurations

All configurations

Mean (dB) Standard
deviation (dB) Max (dB)

Prediction error - Training 0.00 0.42 1.30
Prediction error - Validation -0.02 0.42 1.19
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Now, from the presented results, we can (i) determine a limit on the predicted value
that will be used during the on-line monitoring process to determine whether a circuit
is affected by a performance degradation or not, and (ii) evaluate the efficiency of the
on-line monitoring process by computing a priori the detection range of power level
degradation. The principle is illustrated in Figure 4.15 and it relies on three steps:

• First, boundaries are determined around the ideal regression line in order to de-
limit a zone that contains all predicted values. Classically, these boundaries are
determined considering 3 times the standard deviation of the prediction error
(ε = 3σ)

• Then, the intersection between the lower boundary and the x-axis origin (i.e.
no performance degradation) is used to determine a limit on the predicted value
(∆̂P |lim). This limit will be used during the on-line monitoring process to decide
whether a circuit is affected by a performance degradation or not. Any circuit
with a predicted value below ∆̂P |lim will be flagged as a degraded circuit. Note
that this limit ensures that all circuits with a predicted value above ∆̂P |lim are
indeed circuits with a performance equal or superior to the typical specification.

• Finally, the intersection between ∆̂P |lim and the higher boundary determines
the separation (∆P |det) between the regions of certain and possible performance
degradation detection. All circuits with an actual power level degradation bigger
than ∆P |det will assuredly be detected as degraded circuits by the on-line moni-
toring process, while for circuits with a power level degradation comprised in the
interval [∆P |det;0], detection might be possible but is not guaranteed. The value
of ∆P |det is therefore an indicator of the on-line monitoring process efficiency; the
smaller this value, the better the efficiency.
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Figure 4.15: Principle of limit value determination and resulting detection range

Note that the efficiency is directly related to the model quality. Indeed, it is clear
that the better the model quality, the lower the prediction error, the closer the bound-
aries from the ideal regression line, and therefore the larger the certain detection range.
This information is very important during the elaboration of the on-line performance
monitoring process to evaluate whether the achieved detection range is sufficient for
the targeted application, or whether further efforts should be deployed to construct a
regression model of better quality.

For the case study considered in this chapter, the standard deviation of the predic-
tion error on the training set is 0.42dB. The limit of the predicted power level variation
is therefore placed at −1.26dB and the certain detection range is [−∞;-2.52], as illus-
trated in Figure 4.16. It can be observed that only few observations are within the
region of certain detection. Of course, it is not a favorable situation to finely evaluate
the efficiency of the on-line monitoring process. However, we can still exploit these data
to present a proof-of-concept.
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Figure 4.16: Illustration of limit value and detection range for the case study

4.5 Embedded Prediction
In this section, we apply the on-line monitoring process to the case study. More

precisely, we use the regression model elaborated in the previous section from ATE
measurements on IC1, IC2, and IC3 to perform embedded power level prediction on
IC4. We choose to evaluate the proposed solution using two circuit configurations, i.e.
C172 and C241. C172 is the nominal circuit configuration; the on-line monitoring pro-
cess should therefore flag IC4 as a correct circuit in this first case. C241 is a degraded
configuration, in which the learning circuits exhibit a power level degradation around
−3.17dB. This power level degradation is within the region of certain detection; the
on-line monitoring process should therefore flag IC4 as a degraded circuit in this second
case.

This section firstly presents an exploratory study on the requirements of the circuitry
dedicated to embedded measurements. The practical implementation of the proposed
solution on the case study is then detailed and experimental results are discussed.



CHAPTER 4. EMBEDDED INDIRECT TEST FOR PERFORMANCE
MONITORING 90

4.5.1 Theoretical study on ADC resolution
As described in Section 4.2, the proposed strategy requires that the product is

equipped with a test infrastructure that allows access to the selected indirect mea-
surements as well as digitization of the embedded measurements. In this section, we
realize an exploratory study to investigate which are the required performances of the
digitizing resources in terms of resolution, assuming that the measurement range of the
digitizing resources can be adapted to the variation range of each indirect measurement
involved in the prediction model.

Simulation experiments have been conducted considering an ideal ADC model and
varying the resolution of this ADC. The measurement range of the ADC has been
adapted to the variation range of each indirect measurement, adding a 10% margin on
the observed min/max values. Table 4.3 summarizes the ADC measurement range used
for each indirect measurement.

Table 4.3: ADC measurement range used for each IM involved in the prediction model

Observed variation
range on training

data

Adapted ADC
Measurement range

DC30 [1.047 V; 1.080 V] [0.942 V; 1.188 V]
DC35 [1.528 mV; 2.495 mV] [1.375 mV; 2.744 mV]
DC37 [1.130 mV; 1.642 mV] [1.017 mV; 1.806 mV]
DC39 [0.586 V; 0.599 V] [0.527 V; 0.685 V]

Taking into account these measurement ranges, the quantized values of each indi-
rect measurement are first determined for different values of the ADC resolution. The
computation of the predicted power level variation is then realized using these quan-
tized indirect measurement values instead of the original indirect measurement values
measured by the ATE.

Results are summarized in Figure 4.17, which plots the evolution of the predic-
tion error observed on IC4 (RMSE score evaluated over the 256 circuit configurations)
according to the ADC resolution. This figure shows that a constant RMSE score of
0.417dB is observed for an ADC resolution from 14 bits down to 6 bits. This RMSE
scores is identical to the one computed when the prediction is achieved with the origi-
nal indirect measurements values measured by the ATE, indicating that the prediction
accuracy is fully preserved. An increase of the RMSE score appears when the ADC
resolution is below 6 bits. However, it is quite small for 5-bit and 4-bit resolutions, i.e.
an increase of only +1.4% for 5-bit resolution and +6% for 4-bit resolution ADCs. the
impact on the accuracy of predicted values is therefore limited. The increase of the
RMSE score is significantly higher when the ADC resolution falls below 4 bits, i.e. an
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increase of +23% for 3-bit resolution, +72% for 2-bit resolution and +189% for 1-bit
resolution ADCs. Obviously in these last situations, the accuracy of predicted values
is strongly degraded.

Figure 4.17: Influence of ADC resolution on prediction error on IC4

These results suggest interesting perspectives for the design of the required test in-
frastructure. Indeed, they show that there is no significant degradation in the prediction
accuracy due to the use of digitized embedded measurements, provided that each mea-
surement is digitized with a resolution of at least 4 bits. This means that the use of a
high-resolution ADC is not necessarily required. Instead, a low-resolution ADC can be
used, but it should have an adaptable measurement range. Alternatively, dedicated cir-
cuitry might be included in the test infrastructure in order to apply shift/amplification
operations on the indirect measurements so that they all present a similar range of
variation. In this case, a low-resolution ADC with a fixed measurement range can be
used.

4.5.2 Implementation on the case study
Product programming

To emulate the operation of the circuit within an application environment, we use
an evaluation board where the circuit is mounted. Alongside the evaluation board, a
stand alone debug probe is used to download and debug the firmware through a JTAG
interface. The connection to the IDE through a PC is established by using a USB cable
which also powers the debug probe. All the needed tools and software are provided by
NXP Semiconductors. Figure 4.18 illustrates the experimental setup that we used to
conduct the full experiment. A code dedicated to the on-line performance monitoring
process has been developed. The flowchart of this code is illustrated in Figure 4.19.
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Figure 4.18: Illustration of the experimental setup

The code is mainly divided into three different stages, (i) the initialization stage, (ii)
the measurement and storage stage and finally (iii) a computation stage. During the
first stage we initialize the circuit and launch a test sequence that activates the trans-
mitter. Once the circuit is ready, we loop through the selected indirect measurements to
measure their raw value using the ADC and store them in the available SRAM memory.
Then alongside the raw measurements of the different IMs, the model coefficients are
fetched from the Flash memory and used to produce a power level prediction. Finally,
we use the retained power level value under the nominal configuration, from the Flash
memory, to calculate the power level variation. Therefore, if the variation in the power
level is substantial, a flag is raised in order to indicate a performance deterioration.
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Figure 4.19: Flowchart of the on-line performance monitoring process
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Note that during the execution of the program a number of outputs that correspond
to different stages have been included. In particular the raw measurements of the
selected indirect measurements, the power level variation based on the predicted power
level and the status of the alert flag. These different outputs are transferred to the
PC via the USB interface ad can be extracted with the help of the IDE. Note that
in the final version of the code, the only output will be the alert flag. However, for
validation purpose, it is interesting to have access to the raw measurements of the
indirect measurements and the value of the predicted power level alongside the power
level variation. Indeed, it permits to compare the result of the computation performed
on an external PC with the result of the embedded computation within the circuit.

Initial results

The developed code has been launched for two configurations of the product, i.e.
the nominal configuration (C172) and a degraded one (C241). For each configuration,
100 runs have been performed in order to analyze the repeatability of the prediction
results. Figure 4.20 illustrates the predicted power level degradation observed in each
configuration, for the 100 runs.

Figure 4.20: Embedded prediction of power level degradation on IC4

Results of Figure 4.20 reveal that there is a very large dispersion of the prediction
results over the 100 runs, in both configurations, whereas the values of predicted power
level degradation are expected to be contained in the range [−1.26dB; +1.26dB] in the
nominal configuration and [−4.39dB;−1.87dB] on the degraded one. Obviously such
a large dispersion does not permit to guarantee the certain detection of a power level
degradation. We presume that this large dispersion comes from measurement repeata-
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bility/accuracy problems.

Several elements support this assumption. First, DC35 and DC37, which are es-
sential indirect measurements in the model, have a very low DC value in the range of
few millivolts. Measurement of such small values is clearly sensitive to noise and there-
fore might be subject to a measurement repeatability issue. Moreover, the variation
induced by the circuit configuration is also very small, i.e. a maximal deviation from
the nominal value of only 0.34mV . Correct evaluation of such a small deviation clearly
necessitates high measurement precision. However, the ADC used for the embedded
measurement can be programmed only for two different measurement ranges, i.e from
0 to 3.6V and from 0 to 0.9V . This second measurement range is chosen for the mea-
surement of DC35 and DC37. Taking into account the 12-bit resolution of the ADC,
it means that one LSB correspond to 0.22mV ; a deviation of 0.34mV corresponds to
a difference of 1.5 LSB, which means that only 2 bits out of the 12 bits of the ADC
are actually exploited. Obviously, such a low equivalent resolution has a strong impact
on the measurement accuracy and therefore on the prediction error, as discussed in the
theoretical study of the ADC resolution presented in Section 4.5.1.

Use of averaging

A possible solution to cope with the problem of measurement repeatability and mit-
igate the impact of the low equivalent resolution of the ADC for the measurement of
DC35 and DC37 is to implement averaging. This is a very common solution imple-
mented in many instruments in order to improve the measurement accuracy.

A study has been conducted in order to determine which is the appropriate number
of averaging that leads to a sufficient measurement accuracy. Practically, the initial
measurement set that contains 100 values for the four indirect measurements involved
in the regression model has been randomly re-sampled, varying the re-sample size. The
re-sampling process has been iterated 1,000 times for each re-sample size. For each
re-sampled set, the average of the DC measurements has been computed. Prediction is
then performed using these averaged values as inputs of the regression model.

Results are summarized in Figure 4.21 that shows the boxplots of the predicted
values over the 1,000 re-sampling iterations for different re-sample sizes (i.e. number
of averaging), in the nominal and degraded configurations. By examining the results,
it appears that the dispersion of the predicted values reduces when the re-sample size
increases. Moreover, certain predicted values, especially for re-sample sizes of one and
five, are situated far outside the expected range of each configuration, thus creating
a crossover between the two regions. As previously stated, the aim is to avoid any
crossover between the two regions, which is respected when at least ten samples are
used to produce the predicted value. However, when using ten samples, the dispersion of
the predicted value is adjacent to the boundaries of the expected range in the degraded
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configuration. Thus, it is preferable to choose 20 as the number of applied averaging to
predict the power level of the device.

Figure 4.21: Boxplot of predicted values for power level degradation over the 1,000
re-sampling operation vs. the re-sample size, in the nominal and degraded

configurations

Results

The initial code dedicated to the on-line performance monitoring process has been
updated to include averaging on 20 measurements. The updated code has then been
launched for the two configurations of the product, i.e. the nominal configuration
(C172) and a degraded one (C241). In each configuration, the value of the predicted
power level degradation has been transferred to the PC, as well as all the indirect mea-
surement values collected over the 20 measurements. Using these indirect measurement
values, we can therefore also perform the computation of the predicted power level
degradation on the PC.

Results are illustrated in Figure 4.22, which shows the power level variation values
predicted using either the original indirect measurements performed on the ATE or the
embedded ones achieved within the circuit, in both configurations. Comparison between
external computation performed on a PC and embedded computation achieved within
the circuit is also provided. Many observations can be drawn out from the results in
Figure 4.22. First of all, the difference in the predicted value between embedded and
external computation is negligible. Indeed, the two points are superposed in both con-
figurations and most importantly within the established boundaries (±3σ of prediction
error). Besides, the original indirect measurements performed on the ATE produces a
different prediction than the measurements achieved within the circuit, probably due
to the difference in measurement accuracy.
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Figure 4.22: Comparison of power level degradation prediction on IC4 using either
ATE or embedded measurements

Results presented in Table 4.4 show the prediction error across both the nominal
and degraded configurations using either the original indirect measurements performed
on the ATE or the embedded ones achieved within the circuit. Certainly there exists
a prediction error in both methods due to the intrinsic imperfections of the established
regression model. However, as previously stated, the difference in the measurement
accuracy leads to a disparity in the prediction error. The prediction error observed
when using the embedded indirect measurements is substantially higher than the one
obtained with ATE measurements in the case of the degraded configuration, whereas it
is roughly the same in terms of absolute value in the case of the nominal configuration.
Nonetheless, the prediction error is acceptable enough for the proof-of-concept of an
on-line performance monitoring based on an indirect test strategy.

Table 4.4: Summary of prediction error on IC4

Nominal
Configuration

Degraded
Configuration

Prediction error using ATE indirect measurements (dB) -0.311 +0.1246

Prediction error using
embedded indirect measurements
with averaging (dB)

Embedded Computation
within circuit +0.385 +0.602

External computation
on PC +0.376 +0.602
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4.6 Conclusion
In this chapter, we have investigated the feasibility of performing an on-line perfor-

mance monitoring based on an indirect test strategy. We have introduced the strategy
and proposed the essential requirements needed to adapt an indirect test strategy in or-
der to monitor a performance on-line. The strategy has been implemented on a wireless
microcontroller with the aim to monitor its transmitted power level using the available
indirect measurements within the device. We have collected the different required mea-
surements from four circuits using an industrial ATE while changing the configuration
of two internal registers in order to expand our dataset and build a regression model.

Within the proposed strategy, we have investigated on the use of a limited set of
non-linear transformations of the available indirect measurements in order to improve
the accuracy of linear prediction models. Results have been presented, showing an im-
provement and achieving a sufficient accuracy for a proof-of-concept. With the help of
the transformed indirect measurements we have established a regression model that uses
three of the four circuits and validated the model on the fourth circuit. Moreover, we
have analyzed the model capability to detect a performance deterioration by computing
the power level variation between the retained value of the nominal configuration and
the value predicted during its operation.

The presented on-line monitoring process has been applied to our case study. We
have introduced an exploratory study on the effect of the ADC resolution on the per-
formance of the prediction model. Subsequently, the practical implementation and the
flowchart of the process have been presented. In addition, we have studied the impor-
tance of using averaging in the context of embedded measurements in order to produce
a more reliable power level prediction. Once the averaging applied, the results in terms
of prediction error have been presented under different circumstances (embedded vs
external prediction) for only two important configurations (nominal and degraded).
Results have shown that it is possible to produce a sufficient and reliable prediction
using the available resources within our case study in order to detect a power level
deterioration. These results can be considered as a valid proof that it is possible to
monitor a performance on-line based on an indirect test strategy.



Conclusion

The work presented in this PhD manuscript introduces a generic methodology for the
efficient implementation of an indirect test strategy. Considering the first challenge of
improving the quality of an indirect test strategy, we introduced the concept of ensem-
ble learning in order to improve the robustness and the efficiency of the implemented
prediction model. The idea behind this procedure is that with an appropriate combi-
nation of various individual models, it should be possible to exploit the strengths and
overcome the weaknesses of the individual models and achieve a better overall predic-
tive performance. A full comparative study was conducted using different training set
sizes. Results have shown that the use of Ensemble methods would enhance the overall
performance of the prediction model across the different evaluation metrics. Moreover,
we have shown that the performance of the classical prediction models can be met even
when using a reduced set of learning instances if Ensemble methods are implemented.
Finally, overall Stacking methods outperform all the different Ensemble techniques.
Indeed, across the different specifications and training set sizes, Stacking performed
better than all the other presented techniques. Nonetheless, this comparative study
highlights a meaningful question in the context of an indirect test strategy, which is
the pertinence of the metrics that are usually considered to evaluate the quality of a
model, and the level of confidence in the test that we can have through these metrics.
Not only are the metrics of goodness-of-fit, accuracy and reliability independent of each
other, but also it is difficult to relate them to an industrial test misclassification rate.
In this context, we introduced an additional metric, called the trusted misclassification
rate, that permits to evaluate the ability of a prediction model to perform correct clas-
sification while taking into account the conventional RF measurement uncertainty.

Following this first study, we have focused more specifically on test efficiency and
confidence improvements. We have proposed a novel two-tier adaptive test flow ap-
proach based on a tolerance zone around the test limits in order to establish the con-
fidence in the decision given by the indirect test. Initially, we presented the results on
the efficiency of classical indirect test implementation, i.e. the tolerance zone equals
to zero. Next, an optional one-dimensional filter which excludes circuits with extreme
characteristics can be applied to the learning set. The results showed that the use of
the optional filter would result in a weaker and an over-confident model in validation.
Thus, in order to evaluate the two-tier adaptive test flow, we have chosen to use only
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the prediction models established on the original Learning set. The results showed that
a very good test quality can be preserved while achieving a substantial test cost reduc-
tion, i.e. a low misclassification rate of a few tenths of percents with less than 25% of
the devices that need to go through a standard specification test in the case of a MARS
model (respectively less than 31% for an SVM model). Using this methodology, test
engineers have several choices at their disposal to ensure an efficient implementation of
indirect testing.

Throughout this work, the indirect test strategy has been discussed as an alternative
to the classical specification based testing for analog/RF integrated circuits. We have
proposed an adapted strategy for the indirect test allowing to perform an on-line mon-
itoring of the device performance in the final application. In this study, we have used
a wireless microcontroller that has the required hardware capabilities to implement an
on-line monitoring of the transmitted power level, based on the indirect test strategy.
We collected test data from four integrated circuits while varying the configuration of
two internal registers in order to create a substantial variation in the power level that
emulates a performance degradation. Alongside the power level, the test data includes
eleven indirect measurements. During the test data analysis, we verified that the ob-
served variation on the power level was due to the different register configurations and
not to the circuit variability. On the other hand, contradictory impressions were ob-
served on the eleven indirect measurements: firstly, the eleven indirect measurements
are divided into four different voltage ranges and secondly, only two indirect measure-
ments show a substantial variation across the different register configurations. The
situation is far from ideal, but it can be considered as sufficient to complete a proof-of-
concept study. In addition, during this study we have examined the use of non-linear
transformations on the original indirect measurements to increase the accuracy of lin-
ear prediction models. Once we have established the prediction model with the use of
the non-linear transformed indirect measurements, we examined the effect of using an
ADC for the digitization of the indirect measurements on the accuracy of the regression
model. Finally, we have implemented our strategy on the device to predict the power
level variation between two register configurations, namely the nominal configuration
and a degraded configuration, in order to detect any performance level deterioration.
The results have shown promising signs when the device is used to predict the power
level variation, and the error is considered acceptable for a proof-of-concept case study.

This work opens interesting perspectives concerning indirect test strategies for Ana-
log and RF integrated circuits. Further investigations may be conducted to improve
the proposed flow by implementing others options in relation with feature selection,
test metrics, the adaptive test flow and the embedded implementation of the on-line
performance monitoring to further improve the quality of the model. Another direction
is to study the impact of manufacturing process shift during the production test phase
on the predictive models.
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Abstract 
Process variations and physical defects can degrade the performance of a circuit, or even drastically 

affect its operation. It is therefore essential to verify the performance of each circuit produced in order 

to ensure the quality of manufactured devices shipped to the customers. This is the role of the testing 

process. This process represents a significant part of the total cost of an Integrated Circuit (IC), 

especially for analog and Radio-Frequency (RF) circuits, whose performances must be measured with  

sophisticated and expensive test equipment, following time-consuming test procedures. In order to 

reduce testing costs, an attractive solution is to adopt an indirect test strategy, which consists in 

measuring parameters that require only low-cost test resources and correlating these measurements, 

called Indirect Measurements (IMs), with the device specifications. This correlation is generally 

established using machine-learning algorithms during an initial learning phase. Then, during the 

production testing phase, every new device is evaluated using only the low-cost indirect measurements. 

While the indirect test strategy seems attractive, its deployment in an industrial context is viable only if 

sufficient test quality can be achieved. In this thesis, we have developed a methodology that permits to 

assist and guide the test engineer in its practical choices for an efficient implementation.  Different 

aspects have been explored, such as the use of different types of regression models, the definition of 

pertinent metrics to evaluate the test efficiency, or the proposition of an original adaptive test flow in 

order to make a trade-off between test quality and test cost. We have also proposed an adaptation of the 

indirect test strategy allowing to perform on-line monitoring of a RF device performance within its 

application. All the results presented in this thesis have been evaluated using industrial test data on 

various case studies, which fully supports the developed innovations. 

 

Résumé 
Les variations de processus de fabrication et les défauts physiques peuvent dégrader les performances 

d'un circuit, voire affecter considérablement son fonctionnement. Il est donc essentiel de vérifier les 

performances de chaque puce fabriquée afin de garantir la qualité des circuits envoyés aux clients. C'est 

le rôle du processus de test. Ce processus représente une part importante du coût total d'un circuit intégré, 

en particulier pour les circuits analogiques et Radio-Fréquences (RF), dont les performances doivent 

être mesurées à l'aide d'un équipement de test sophistiqué et coûteux tant à l'achat qu'en temps 

d'utilisation. Afin de réduire les coûts de test, une solution intéressante consiste à adopter une stratégie 

de test indirect, qui consiste à mesurer des paramètres ne nécessitant que des ressources de test peu 

coûteuses, et à corréler ces mesures indirectes avec les performances du circuit. Cette corrélation est 

généralement établie à l'aide d'algorithmes d'apprentissage, au cours d'une phase d'apprentissage initiale. 

Ensuite, pendant la phase de test de production, chaque nouveau circuit est évalué en utilisant 

uniquement les mesures indirectes peu coûteuses. Si cette stratégie de test indirect semble attrayante, 

son déploiement dans un contexte industriel n'est viable que si la qualité des tests est suffisante. Dans 

cette thèse, nous avons développé une méthodologie qui permet d'assister et de guider l'ingénieur de test 

dans ses choix pratiques pour une mise en œuvre efficace.  Différents aspects ont été explorés, tels que 

l'utilisation de différents types de modèles de régression, la définition de métriques pertinentes pour 

évaluer l'efficacité des tests, ou la proposition d'un flot de test adaptatif original permettant de réaliser 

un compromis entre la qualité et le coût du test. Nous avons également proposé une adaptation de la 

stratégie de test indirect en vue d'un contrôle en ligne des performances d'un dispositif RF dans son 

application. Tous les résultats présentés dans cette thèse ont été évalués en utilisant des données de t ests 

industrielles sur différents circuits RF, soutenant pleinement les innovations développées.  


